xref: /openbmc/linux/mm/page_alloc.c (revision 1fa0a7dc)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/highmem.h>
20 #include <linux/swap.h>
21 #include <linux/interrupt.h>
22 #include <linux/pagemap.h>
23 #include <linux/jiffies.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/vmstat.h>
43 #include <linux/mempolicy.h>
44 #include <linux/memremap.h>
45 #include <linux/stop_machine.h>
46 #include <linux/random.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
81 
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86 
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88 
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94  * defined in <linux/topology.h>.
95  */
96 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100 
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 	struct zone *zone;
104 	struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108 
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113 
114 /*
115  * Array of node states.
116  */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 	[N_POSSIBLE] = NODE_MASK_ALL,
119 	[N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 	[N_MEMORY] = { { [0] = 1UL } },
126 	[N_CPU] = { { [0] = 1UL } },
127 #endif	/* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130 
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135 
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 
139 /*
140  * A cached value of the page's pageblock's migratetype, used when the page is
141  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
142  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
143  * Also the migratetype set in the page does not necessarily match the pcplist
144  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
145  * other index - this ensures that it will be put on the correct CMA freelist.
146  */
147 static inline int get_pcppage_migratetype(struct page *page)
148 {
149 	return page->index;
150 }
151 
152 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
153 {
154 	page->index = migratetype;
155 }
156 
157 #ifdef CONFIG_PM_SLEEP
158 /*
159  * The following functions are used by the suspend/hibernate code to temporarily
160  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
161  * while devices are suspended.  To avoid races with the suspend/hibernate code,
162  * they should always be called with system_transition_mutex held
163  * (gfp_allowed_mask also should only be modified with system_transition_mutex
164  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
165  * with that modification).
166  */
167 
168 static gfp_t saved_gfp_mask;
169 
170 void pm_restore_gfp_mask(void)
171 {
172 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
173 	if (saved_gfp_mask) {
174 		gfp_allowed_mask = saved_gfp_mask;
175 		saved_gfp_mask = 0;
176 	}
177 }
178 
179 void pm_restrict_gfp_mask(void)
180 {
181 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
182 	WARN_ON(saved_gfp_mask);
183 	saved_gfp_mask = gfp_allowed_mask;
184 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
185 }
186 
187 bool pm_suspended_storage(void)
188 {
189 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
190 		return false;
191 	return true;
192 }
193 #endif /* CONFIG_PM_SLEEP */
194 
195 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
196 unsigned int pageblock_order __read_mostly;
197 #endif
198 
199 static void __free_pages_ok(struct page *page, unsigned int order);
200 
201 /*
202  * results with 256, 32 in the lowmem_reserve sysctl:
203  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
204  *	1G machine -> (16M dma, 784M normal, 224M high)
205  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
206  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
207  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
208  *
209  * TBD: should special case ZONE_DMA32 machines here - in those we normally
210  * don't need any ZONE_NORMAL reservation
211  */
212 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
213 #ifdef CONFIG_ZONE_DMA
214 	[ZONE_DMA] = 256,
215 #endif
216 #ifdef CONFIG_ZONE_DMA32
217 	[ZONE_DMA32] = 256,
218 #endif
219 	[ZONE_NORMAL] = 32,
220 #ifdef CONFIG_HIGHMEM
221 	[ZONE_HIGHMEM] = 0,
222 #endif
223 	[ZONE_MOVABLE] = 0,
224 };
225 
226 EXPORT_SYMBOL(totalram_pages);
227 
228 static char * const zone_names[MAX_NR_ZONES] = {
229 #ifdef CONFIG_ZONE_DMA
230 	 "DMA",
231 #endif
232 #ifdef CONFIG_ZONE_DMA32
233 	 "DMA32",
234 #endif
235 	 "Normal",
236 #ifdef CONFIG_HIGHMEM
237 	 "HighMem",
238 #endif
239 	 "Movable",
240 #ifdef CONFIG_ZONE_DEVICE
241 	 "Device",
242 #endif
243 };
244 
245 const char * const migratetype_names[MIGRATE_TYPES] = {
246 	"Unmovable",
247 	"Movable",
248 	"Reclaimable",
249 	"HighAtomic",
250 #ifdef CONFIG_CMA
251 	"CMA",
252 #endif
253 #ifdef CONFIG_MEMORY_ISOLATION
254 	"Isolate",
255 #endif
256 };
257 
258 compound_page_dtor * const compound_page_dtors[] = {
259 	NULL,
260 	free_compound_page,
261 #ifdef CONFIG_HUGETLB_PAGE
262 	free_huge_page,
263 #endif
264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
265 	free_transhuge_page,
266 #endif
267 };
268 
269 int min_free_kbytes = 1024;
270 int user_min_free_kbytes = -1;
271 #ifdef CONFIG_DISCONTIGMEM
272 /*
273  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
274  * are not on separate NUMA nodes. Functionally this works but with
275  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
276  * quite small. By default, do not boost watermarks on discontigmem as in
277  * many cases very high-order allocations like THP are likely to be
278  * unsupported and the premature reclaim offsets the advantage of long-term
279  * fragmentation avoidance.
280  */
281 int watermark_boost_factor __read_mostly;
282 #else
283 int watermark_boost_factor __read_mostly = 15000;
284 #endif
285 int watermark_scale_factor = 10;
286 
287 static unsigned long nr_kernel_pages __initdata;
288 static unsigned long nr_all_pages __initdata;
289 static unsigned long dma_reserve __initdata;
290 
291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
292 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
293 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
294 static unsigned long required_kernelcore __initdata;
295 static unsigned long required_kernelcore_percent __initdata;
296 static unsigned long required_movablecore __initdata;
297 static unsigned long required_movablecore_percent __initdata;
298 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
299 static bool mirrored_kernelcore __meminitdata;
300 
301 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
302 int movable_zone;
303 EXPORT_SYMBOL(movable_zone);
304 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
305 
306 #if MAX_NUMNODES > 1
307 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
308 unsigned int nr_online_nodes __read_mostly = 1;
309 EXPORT_SYMBOL(nr_node_ids);
310 EXPORT_SYMBOL(nr_online_nodes);
311 #endif
312 
313 int page_group_by_mobility_disabled __read_mostly;
314 
315 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
316 /*
317  * During boot we initialize deferred pages on-demand, as needed, but once
318  * page_alloc_init_late() has finished, the deferred pages are all initialized,
319  * and we can permanently disable that path.
320  */
321 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
322 
323 /*
324  * Calling kasan_free_pages() only after deferred memory initialization
325  * has completed. Poisoning pages during deferred memory init will greatly
326  * lengthen the process and cause problem in large memory systems as the
327  * deferred pages initialization is done with interrupt disabled.
328  *
329  * Assuming that there will be no reference to those newly initialized
330  * pages before they are ever allocated, this should have no effect on
331  * KASAN memory tracking as the poison will be properly inserted at page
332  * allocation time. The only corner case is when pages are allocated by
333  * on-demand allocation and then freed again before the deferred pages
334  * initialization is done, but this is not likely to happen.
335  */
336 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
337 {
338 	if (!static_branch_unlikely(&deferred_pages))
339 		kasan_free_pages(page, order);
340 }
341 
342 /* Returns true if the struct page for the pfn is uninitialised */
343 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
344 {
345 	int nid = early_pfn_to_nid(pfn);
346 
347 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
348 		return true;
349 
350 	return false;
351 }
352 
353 /*
354  * Returns true when the remaining initialisation should be deferred until
355  * later in the boot cycle when it can be parallelised.
356  */
357 static bool __meminit
358 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
359 {
360 	static unsigned long prev_end_pfn, nr_initialised;
361 
362 	/*
363 	 * prev_end_pfn static that contains the end of previous zone
364 	 * No need to protect because called very early in boot before smp_init.
365 	 */
366 	if (prev_end_pfn != end_pfn) {
367 		prev_end_pfn = end_pfn;
368 		nr_initialised = 0;
369 	}
370 
371 	/* Always populate low zones for address-constrained allocations */
372 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
373 		return false;
374 
375 	/*
376 	 * We start only with one section of pages, more pages are added as
377 	 * needed until the rest of deferred pages are initialized.
378 	 */
379 	nr_initialised++;
380 	if ((nr_initialised > PAGES_PER_SECTION) &&
381 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
382 		NODE_DATA(nid)->first_deferred_pfn = pfn;
383 		return true;
384 	}
385 	return false;
386 }
387 #else
388 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
389 
390 static inline bool early_page_uninitialised(unsigned long pfn)
391 {
392 	return false;
393 }
394 
395 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
396 {
397 	return false;
398 }
399 #endif
400 
401 /* Return a pointer to the bitmap storing bits affecting a block of pages */
402 static inline unsigned long *get_pageblock_bitmap(struct page *page,
403 							unsigned long pfn)
404 {
405 #ifdef CONFIG_SPARSEMEM
406 	return __pfn_to_section(pfn)->pageblock_flags;
407 #else
408 	return page_zone(page)->pageblock_flags;
409 #endif /* CONFIG_SPARSEMEM */
410 }
411 
412 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
413 {
414 #ifdef CONFIG_SPARSEMEM
415 	pfn &= (PAGES_PER_SECTION-1);
416 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
417 #else
418 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
419 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
420 #endif /* CONFIG_SPARSEMEM */
421 }
422 
423 /**
424  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
425  * @page: The page within the block of interest
426  * @pfn: The target page frame number
427  * @end_bitidx: The last bit of interest to retrieve
428  * @mask: mask of bits that the caller is interested in
429  *
430  * Return: pageblock_bits flags
431  */
432 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
433 					unsigned long pfn,
434 					unsigned long end_bitidx,
435 					unsigned long mask)
436 {
437 	unsigned long *bitmap;
438 	unsigned long bitidx, word_bitidx;
439 	unsigned long word;
440 
441 	bitmap = get_pageblock_bitmap(page, pfn);
442 	bitidx = pfn_to_bitidx(page, pfn);
443 	word_bitidx = bitidx / BITS_PER_LONG;
444 	bitidx &= (BITS_PER_LONG-1);
445 
446 	word = bitmap[word_bitidx];
447 	bitidx += end_bitidx;
448 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
449 }
450 
451 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
452 					unsigned long end_bitidx,
453 					unsigned long mask)
454 {
455 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
456 }
457 
458 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
459 {
460 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
461 }
462 
463 /**
464  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
465  * @page: The page within the block of interest
466  * @flags: The flags to set
467  * @pfn: The target page frame number
468  * @end_bitidx: The last bit of interest
469  * @mask: mask of bits that the caller is interested in
470  */
471 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
472 					unsigned long pfn,
473 					unsigned long end_bitidx,
474 					unsigned long mask)
475 {
476 	unsigned long *bitmap;
477 	unsigned long bitidx, word_bitidx;
478 	unsigned long old_word, word;
479 
480 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
481 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
482 
483 	bitmap = get_pageblock_bitmap(page, pfn);
484 	bitidx = pfn_to_bitidx(page, pfn);
485 	word_bitidx = bitidx / BITS_PER_LONG;
486 	bitidx &= (BITS_PER_LONG-1);
487 
488 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
489 
490 	bitidx += end_bitidx;
491 	mask <<= (BITS_PER_LONG - bitidx - 1);
492 	flags <<= (BITS_PER_LONG - bitidx - 1);
493 
494 	word = READ_ONCE(bitmap[word_bitidx]);
495 	for (;;) {
496 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
497 		if (word == old_word)
498 			break;
499 		word = old_word;
500 	}
501 }
502 
503 void set_pageblock_migratetype(struct page *page, int migratetype)
504 {
505 	if (unlikely(page_group_by_mobility_disabled &&
506 		     migratetype < MIGRATE_PCPTYPES))
507 		migratetype = MIGRATE_UNMOVABLE;
508 
509 	set_pageblock_flags_group(page, (unsigned long)migratetype,
510 					PB_migrate, PB_migrate_end);
511 }
512 
513 #ifdef CONFIG_DEBUG_VM
514 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
515 {
516 	int ret = 0;
517 	unsigned seq;
518 	unsigned long pfn = page_to_pfn(page);
519 	unsigned long sp, start_pfn;
520 
521 	do {
522 		seq = zone_span_seqbegin(zone);
523 		start_pfn = zone->zone_start_pfn;
524 		sp = zone->spanned_pages;
525 		if (!zone_spans_pfn(zone, pfn))
526 			ret = 1;
527 	} while (zone_span_seqretry(zone, seq));
528 
529 	if (ret)
530 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
531 			pfn, zone_to_nid(zone), zone->name,
532 			start_pfn, start_pfn + sp);
533 
534 	return ret;
535 }
536 
537 static int page_is_consistent(struct zone *zone, struct page *page)
538 {
539 	if (!pfn_valid_within(page_to_pfn(page)))
540 		return 0;
541 	if (zone != page_zone(page))
542 		return 0;
543 
544 	return 1;
545 }
546 /*
547  * Temporary debugging check for pages not lying within a given zone.
548  */
549 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
550 {
551 	if (page_outside_zone_boundaries(zone, page))
552 		return 1;
553 	if (!page_is_consistent(zone, page))
554 		return 1;
555 
556 	return 0;
557 }
558 #else
559 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
560 {
561 	return 0;
562 }
563 #endif
564 
565 static void bad_page(struct page *page, const char *reason,
566 		unsigned long bad_flags)
567 {
568 	static unsigned long resume;
569 	static unsigned long nr_shown;
570 	static unsigned long nr_unshown;
571 
572 	/*
573 	 * Allow a burst of 60 reports, then keep quiet for that minute;
574 	 * or allow a steady drip of one report per second.
575 	 */
576 	if (nr_shown == 60) {
577 		if (time_before(jiffies, resume)) {
578 			nr_unshown++;
579 			goto out;
580 		}
581 		if (nr_unshown) {
582 			pr_alert(
583 			      "BUG: Bad page state: %lu messages suppressed\n",
584 				nr_unshown);
585 			nr_unshown = 0;
586 		}
587 		nr_shown = 0;
588 	}
589 	if (nr_shown++ == 0)
590 		resume = jiffies + 60 * HZ;
591 
592 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
593 		current->comm, page_to_pfn(page));
594 	__dump_page(page, reason);
595 	bad_flags &= page->flags;
596 	if (bad_flags)
597 		pr_alert("bad because of flags: %#lx(%pGp)\n",
598 						bad_flags, &bad_flags);
599 	dump_page_owner(page);
600 
601 	print_modules();
602 	dump_stack();
603 out:
604 	/* Leave bad fields for debug, except PageBuddy could make trouble */
605 	page_mapcount_reset(page); /* remove PageBuddy */
606 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
607 }
608 
609 /*
610  * Higher-order pages are called "compound pages".  They are structured thusly:
611  *
612  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
613  *
614  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
615  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
616  *
617  * The first tail page's ->compound_dtor holds the offset in array of compound
618  * page destructors. See compound_page_dtors.
619  *
620  * The first tail page's ->compound_order holds the order of allocation.
621  * This usage means that zero-order pages may not be compound.
622  */
623 
624 void free_compound_page(struct page *page)
625 {
626 	__free_pages_ok(page, compound_order(page));
627 }
628 
629 void prep_compound_page(struct page *page, unsigned int order)
630 {
631 	int i;
632 	int nr_pages = 1 << order;
633 
634 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
635 	set_compound_order(page, order);
636 	__SetPageHead(page);
637 	for (i = 1; i < nr_pages; i++) {
638 		struct page *p = page + i;
639 		set_page_count(p, 0);
640 		p->mapping = TAIL_MAPPING;
641 		set_compound_head(p, page);
642 	}
643 	atomic_set(compound_mapcount_ptr(page), -1);
644 }
645 
646 #ifdef CONFIG_DEBUG_PAGEALLOC
647 unsigned int _debug_guardpage_minorder;
648 bool _debug_pagealloc_enabled __read_mostly
649 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
650 EXPORT_SYMBOL(_debug_pagealloc_enabled);
651 bool _debug_guardpage_enabled __read_mostly;
652 
653 static int __init early_debug_pagealloc(char *buf)
654 {
655 	if (!buf)
656 		return -EINVAL;
657 	return kstrtobool(buf, &_debug_pagealloc_enabled);
658 }
659 early_param("debug_pagealloc", early_debug_pagealloc);
660 
661 static bool need_debug_guardpage(void)
662 {
663 	/* If we don't use debug_pagealloc, we don't need guard page */
664 	if (!debug_pagealloc_enabled())
665 		return false;
666 
667 	if (!debug_guardpage_minorder())
668 		return false;
669 
670 	return true;
671 }
672 
673 static void init_debug_guardpage(void)
674 {
675 	if (!debug_pagealloc_enabled())
676 		return;
677 
678 	if (!debug_guardpage_minorder())
679 		return;
680 
681 	_debug_guardpage_enabled = true;
682 }
683 
684 struct page_ext_operations debug_guardpage_ops = {
685 	.need = need_debug_guardpage,
686 	.init = init_debug_guardpage,
687 };
688 
689 static int __init debug_guardpage_minorder_setup(char *buf)
690 {
691 	unsigned long res;
692 
693 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
694 		pr_err("Bad debug_guardpage_minorder value\n");
695 		return 0;
696 	}
697 	_debug_guardpage_minorder = res;
698 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
699 	return 0;
700 }
701 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
702 
703 static inline bool set_page_guard(struct zone *zone, struct page *page,
704 				unsigned int order, int migratetype)
705 {
706 	struct page_ext *page_ext;
707 
708 	if (!debug_guardpage_enabled())
709 		return false;
710 
711 	if (order >= debug_guardpage_minorder())
712 		return false;
713 
714 	page_ext = lookup_page_ext(page);
715 	if (unlikely(!page_ext))
716 		return false;
717 
718 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
719 
720 	INIT_LIST_HEAD(&page->lru);
721 	set_page_private(page, order);
722 	/* Guard pages are not available for any usage */
723 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
724 
725 	return true;
726 }
727 
728 static inline void clear_page_guard(struct zone *zone, struct page *page,
729 				unsigned int order, int migratetype)
730 {
731 	struct page_ext *page_ext;
732 
733 	if (!debug_guardpage_enabled())
734 		return;
735 
736 	page_ext = lookup_page_ext(page);
737 	if (unlikely(!page_ext))
738 		return;
739 
740 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
741 
742 	set_page_private(page, 0);
743 	if (!is_migrate_isolate(migratetype))
744 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
745 }
746 #else
747 struct page_ext_operations debug_guardpage_ops;
748 static inline bool set_page_guard(struct zone *zone, struct page *page,
749 			unsigned int order, int migratetype) { return false; }
750 static inline void clear_page_guard(struct zone *zone, struct page *page,
751 				unsigned int order, int migratetype) {}
752 #endif
753 
754 static inline void set_page_order(struct page *page, unsigned int order)
755 {
756 	set_page_private(page, order);
757 	__SetPageBuddy(page);
758 }
759 
760 /*
761  * This function checks whether a page is free && is the buddy
762  * we can coalesce a page and its buddy if
763  * (a) the buddy is not in a hole (check before calling!) &&
764  * (b) the buddy is in the buddy system &&
765  * (c) a page and its buddy have the same order &&
766  * (d) a page and its buddy are in the same zone.
767  *
768  * For recording whether a page is in the buddy system, we set PageBuddy.
769  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
770  *
771  * For recording page's order, we use page_private(page).
772  */
773 static inline int page_is_buddy(struct page *page, struct page *buddy,
774 							unsigned int order)
775 {
776 	if (page_is_guard(buddy) && page_order(buddy) == order) {
777 		if (page_zone_id(page) != page_zone_id(buddy))
778 			return 0;
779 
780 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
781 
782 		return 1;
783 	}
784 
785 	if (PageBuddy(buddy) && page_order(buddy) == order) {
786 		/*
787 		 * zone check is done late to avoid uselessly
788 		 * calculating zone/node ids for pages that could
789 		 * never merge.
790 		 */
791 		if (page_zone_id(page) != page_zone_id(buddy))
792 			return 0;
793 
794 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
795 
796 		return 1;
797 	}
798 	return 0;
799 }
800 
801 #ifdef CONFIG_COMPACTION
802 static inline struct capture_control *task_capc(struct zone *zone)
803 {
804 	struct capture_control *capc = current->capture_control;
805 
806 	return capc &&
807 		!(current->flags & PF_KTHREAD) &&
808 		!capc->page &&
809 		capc->cc->zone == zone &&
810 		capc->cc->direct_compaction ? capc : NULL;
811 }
812 
813 static inline bool
814 compaction_capture(struct capture_control *capc, struct page *page,
815 		   int order, int migratetype)
816 {
817 	if (!capc || order != capc->cc->order)
818 		return false;
819 
820 	/* Do not accidentally pollute CMA or isolated regions*/
821 	if (is_migrate_cma(migratetype) ||
822 	    is_migrate_isolate(migratetype))
823 		return false;
824 
825 	/*
826 	 * Do not let lower order allocations polluate a movable pageblock.
827 	 * This might let an unmovable request use a reclaimable pageblock
828 	 * and vice-versa but no more than normal fallback logic which can
829 	 * have trouble finding a high-order free page.
830 	 */
831 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
832 		return false;
833 
834 	capc->page = page;
835 	return true;
836 }
837 
838 #else
839 static inline struct capture_control *task_capc(struct zone *zone)
840 {
841 	return NULL;
842 }
843 
844 static inline bool
845 compaction_capture(struct capture_control *capc, struct page *page,
846 		   int order, int migratetype)
847 {
848 	return false;
849 }
850 #endif /* CONFIG_COMPACTION */
851 
852 /*
853  * Freeing function for a buddy system allocator.
854  *
855  * The concept of a buddy system is to maintain direct-mapped table
856  * (containing bit values) for memory blocks of various "orders".
857  * The bottom level table contains the map for the smallest allocatable
858  * units of memory (here, pages), and each level above it describes
859  * pairs of units from the levels below, hence, "buddies".
860  * At a high level, all that happens here is marking the table entry
861  * at the bottom level available, and propagating the changes upward
862  * as necessary, plus some accounting needed to play nicely with other
863  * parts of the VM system.
864  * At each level, we keep a list of pages, which are heads of continuous
865  * free pages of length of (1 << order) and marked with PageBuddy.
866  * Page's order is recorded in page_private(page) field.
867  * So when we are allocating or freeing one, we can derive the state of the
868  * other.  That is, if we allocate a small block, and both were
869  * free, the remainder of the region must be split into blocks.
870  * If a block is freed, and its buddy is also free, then this
871  * triggers coalescing into a block of larger size.
872  *
873  * -- nyc
874  */
875 
876 static inline void __free_one_page(struct page *page,
877 		unsigned long pfn,
878 		struct zone *zone, unsigned int order,
879 		int migratetype)
880 {
881 	unsigned long combined_pfn;
882 	unsigned long uninitialized_var(buddy_pfn);
883 	struct page *buddy;
884 	unsigned int max_order;
885 	struct capture_control *capc = task_capc(zone);
886 
887 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
888 
889 	VM_BUG_ON(!zone_is_initialized(zone));
890 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
891 
892 	VM_BUG_ON(migratetype == -1);
893 	if (likely(!is_migrate_isolate(migratetype)))
894 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
895 
896 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
897 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
898 
899 continue_merging:
900 	while (order < max_order - 1) {
901 		if (compaction_capture(capc, page, order, migratetype)) {
902 			__mod_zone_freepage_state(zone, -(1 << order),
903 								migratetype);
904 			return;
905 		}
906 		buddy_pfn = __find_buddy_pfn(pfn, order);
907 		buddy = page + (buddy_pfn - pfn);
908 
909 		if (!pfn_valid_within(buddy_pfn))
910 			goto done_merging;
911 		if (!page_is_buddy(page, buddy, order))
912 			goto done_merging;
913 		/*
914 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
915 		 * merge with it and move up one order.
916 		 */
917 		if (page_is_guard(buddy))
918 			clear_page_guard(zone, buddy, order, migratetype);
919 		else
920 			del_page_from_free_area(buddy, &zone->free_area[order]);
921 		combined_pfn = buddy_pfn & pfn;
922 		page = page + (combined_pfn - pfn);
923 		pfn = combined_pfn;
924 		order++;
925 	}
926 	if (max_order < MAX_ORDER) {
927 		/* If we are here, it means order is >= pageblock_order.
928 		 * We want to prevent merge between freepages on isolate
929 		 * pageblock and normal pageblock. Without this, pageblock
930 		 * isolation could cause incorrect freepage or CMA accounting.
931 		 *
932 		 * We don't want to hit this code for the more frequent
933 		 * low-order merging.
934 		 */
935 		if (unlikely(has_isolate_pageblock(zone))) {
936 			int buddy_mt;
937 
938 			buddy_pfn = __find_buddy_pfn(pfn, order);
939 			buddy = page + (buddy_pfn - pfn);
940 			buddy_mt = get_pageblock_migratetype(buddy);
941 
942 			if (migratetype != buddy_mt
943 					&& (is_migrate_isolate(migratetype) ||
944 						is_migrate_isolate(buddy_mt)))
945 				goto done_merging;
946 		}
947 		max_order++;
948 		goto continue_merging;
949 	}
950 
951 done_merging:
952 	set_page_order(page, order);
953 
954 	/*
955 	 * If this is not the largest possible page, check if the buddy
956 	 * of the next-highest order is free. If it is, it's possible
957 	 * that pages are being freed that will coalesce soon. In case,
958 	 * that is happening, add the free page to the tail of the list
959 	 * so it's less likely to be used soon and more likely to be merged
960 	 * as a higher order page
961 	 */
962 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
963 			&& !is_shuffle_order(order)) {
964 		struct page *higher_page, *higher_buddy;
965 		combined_pfn = buddy_pfn & pfn;
966 		higher_page = page + (combined_pfn - pfn);
967 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
968 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
969 		if (pfn_valid_within(buddy_pfn) &&
970 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
971 			add_to_free_area_tail(page, &zone->free_area[order],
972 					      migratetype);
973 			return;
974 		}
975 	}
976 
977 	if (is_shuffle_order(order))
978 		add_to_free_area_random(page, &zone->free_area[order],
979 				migratetype);
980 	else
981 		add_to_free_area(page, &zone->free_area[order], migratetype);
982 
983 }
984 
985 /*
986  * A bad page could be due to a number of fields. Instead of multiple branches,
987  * try and check multiple fields with one check. The caller must do a detailed
988  * check if necessary.
989  */
990 static inline bool page_expected_state(struct page *page,
991 					unsigned long check_flags)
992 {
993 	if (unlikely(atomic_read(&page->_mapcount) != -1))
994 		return false;
995 
996 	if (unlikely((unsigned long)page->mapping |
997 			page_ref_count(page) |
998 #ifdef CONFIG_MEMCG
999 			(unsigned long)page->mem_cgroup |
1000 #endif
1001 			(page->flags & check_flags)))
1002 		return false;
1003 
1004 	return true;
1005 }
1006 
1007 static void free_pages_check_bad(struct page *page)
1008 {
1009 	const char *bad_reason;
1010 	unsigned long bad_flags;
1011 
1012 	bad_reason = NULL;
1013 	bad_flags = 0;
1014 
1015 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1016 		bad_reason = "nonzero mapcount";
1017 	if (unlikely(page->mapping != NULL))
1018 		bad_reason = "non-NULL mapping";
1019 	if (unlikely(page_ref_count(page) != 0))
1020 		bad_reason = "nonzero _refcount";
1021 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1022 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1023 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1024 	}
1025 #ifdef CONFIG_MEMCG
1026 	if (unlikely(page->mem_cgroup))
1027 		bad_reason = "page still charged to cgroup";
1028 #endif
1029 	bad_page(page, bad_reason, bad_flags);
1030 }
1031 
1032 static inline int free_pages_check(struct page *page)
1033 {
1034 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1035 		return 0;
1036 
1037 	/* Something has gone sideways, find it */
1038 	free_pages_check_bad(page);
1039 	return 1;
1040 }
1041 
1042 static int free_tail_pages_check(struct page *head_page, struct page *page)
1043 {
1044 	int ret = 1;
1045 
1046 	/*
1047 	 * We rely page->lru.next never has bit 0 set, unless the page
1048 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1049 	 */
1050 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1051 
1052 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1053 		ret = 0;
1054 		goto out;
1055 	}
1056 	switch (page - head_page) {
1057 	case 1:
1058 		/* the first tail page: ->mapping may be compound_mapcount() */
1059 		if (unlikely(compound_mapcount(page))) {
1060 			bad_page(page, "nonzero compound_mapcount", 0);
1061 			goto out;
1062 		}
1063 		break;
1064 	case 2:
1065 		/*
1066 		 * the second tail page: ->mapping is
1067 		 * deferred_list.next -- ignore value.
1068 		 */
1069 		break;
1070 	default:
1071 		if (page->mapping != TAIL_MAPPING) {
1072 			bad_page(page, "corrupted mapping in tail page", 0);
1073 			goto out;
1074 		}
1075 		break;
1076 	}
1077 	if (unlikely(!PageTail(page))) {
1078 		bad_page(page, "PageTail not set", 0);
1079 		goto out;
1080 	}
1081 	if (unlikely(compound_head(page) != head_page)) {
1082 		bad_page(page, "compound_head not consistent", 0);
1083 		goto out;
1084 	}
1085 	ret = 0;
1086 out:
1087 	page->mapping = NULL;
1088 	clear_compound_head(page);
1089 	return ret;
1090 }
1091 
1092 static __always_inline bool free_pages_prepare(struct page *page,
1093 					unsigned int order, bool check_free)
1094 {
1095 	int bad = 0;
1096 
1097 	VM_BUG_ON_PAGE(PageTail(page), page);
1098 
1099 	trace_mm_page_free(page, order);
1100 
1101 	/*
1102 	 * Check tail pages before head page information is cleared to
1103 	 * avoid checking PageCompound for order-0 pages.
1104 	 */
1105 	if (unlikely(order)) {
1106 		bool compound = PageCompound(page);
1107 		int i;
1108 
1109 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1110 
1111 		if (compound)
1112 			ClearPageDoubleMap(page);
1113 		for (i = 1; i < (1 << order); i++) {
1114 			if (compound)
1115 				bad += free_tail_pages_check(page, page + i);
1116 			if (unlikely(free_pages_check(page + i))) {
1117 				bad++;
1118 				continue;
1119 			}
1120 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1121 		}
1122 	}
1123 	if (PageMappingFlags(page))
1124 		page->mapping = NULL;
1125 	if (memcg_kmem_enabled() && PageKmemcg(page))
1126 		__memcg_kmem_uncharge(page, order);
1127 	if (check_free)
1128 		bad += free_pages_check(page);
1129 	if (bad)
1130 		return false;
1131 
1132 	page_cpupid_reset_last(page);
1133 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1134 	reset_page_owner(page, order);
1135 
1136 	if (!PageHighMem(page)) {
1137 		debug_check_no_locks_freed(page_address(page),
1138 					   PAGE_SIZE << order);
1139 		debug_check_no_obj_freed(page_address(page),
1140 					   PAGE_SIZE << order);
1141 	}
1142 	arch_free_page(page, order);
1143 	kernel_poison_pages(page, 1 << order, 0);
1144 	if (debug_pagealloc_enabled())
1145 		kernel_map_pages(page, 1 << order, 0);
1146 
1147 	kasan_free_nondeferred_pages(page, order);
1148 
1149 	return true;
1150 }
1151 
1152 #ifdef CONFIG_DEBUG_VM
1153 static inline bool free_pcp_prepare(struct page *page)
1154 {
1155 	return free_pages_prepare(page, 0, true);
1156 }
1157 
1158 static inline bool bulkfree_pcp_prepare(struct page *page)
1159 {
1160 	return false;
1161 }
1162 #else
1163 static bool free_pcp_prepare(struct page *page)
1164 {
1165 	return free_pages_prepare(page, 0, false);
1166 }
1167 
1168 static bool bulkfree_pcp_prepare(struct page *page)
1169 {
1170 	return free_pages_check(page);
1171 }
1172 #endif /* CONFIG_DEBUG_VM */
1173 
1174 static inline void prefetch_buddy(struct page *page)
1175 {
1176 	unsigned long pfn = page_to_pfn(page);
1177 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1178 	struct page *buddy = page + (buddy_pfn - pfn);
1179 
1180 	prefetch(buddy);
1181 }
1182 
1183 /*
1184  * Frees a number of pages from the PCP lists
1185  * Assumes all pages on list are in same zone, and of same order.
1186  * count is the number of pages to free.
1187  *
1188  * If the zone was previously in an "all pages pinned" state then look to
1189  * see if this freeing clears that state.
1190  *
1191  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1192  * pinned" detection logic.
1193  */
1194 static void free_pcppages_bulk(struct zone *zone, int count,
1195 					struct per_cpu_pages *pcp)
1196 {
1197 	int migratetype = 0;
1198 	int batch_free = 0;
1199 	int prefetch_nr = 0;
1200 	bool isolated_pageblocks;
1201 	struct page *page, *tmp;
1202 	LIST_HEAD(head);
1203 
1204 	while (count) {
1205 		struct list_head *list;
1206 
1207 		/*
1208 		 * Remove pages from lists in a round-robin fashion. A
1209 		 * batch_free count is maintained that is incremented when an
1210 		 * empty list is encountered.  This is so more pages are freed
1211 		 * off fuller lists instead of spinning excessively around empty
1212 		 * lists
1213 		 */
1214 		do {
1215 			batch_free++;
1216 			if (++migratetype == MIGRATE_PCPTYPES)
1217 				migratetype = 0;
1218 			list = &pcp->lists[migratetype];
1219 		} while (list_empty(list));
1220 
1221 		/* This is the only non-empty list. Free them all. */
1222 		if (batch_free == MIGRATE_PCPTYPES)
1223 			batch_free = count;
1224 
1225 		do {
1226 			page = list_last_entry(list, struct page, lru);
1227 			/* must delete to avoid corrupting pcp list */
1228 			list_del(&page->lru);
1229 			pcp->count--;
1230 
1231 			if (bulkfree_pcp_prepare(page))
1232 				continue;
1233 
1234 			list_add_tail(&page->lru, &head);
1235 
1236 			/*
1237 			 * We are going to put the page back to the global
1238 			 * pool, prefetch its buddy to speed up later access
1239 			 * under zone->lock. It is believed the overhead of
1240 			 * an additional test and calculating buddy_pfn here
1241 			 * can be offset by reduced memory latency later. To
1242 			 * avoid excessive prefetching due to large count, only
1243 			 * prefetch buddy for the first pcp->batch nr of pages.
1244 			 */
1245 			if (prefetch_nr++ < pcp->batch)
1246 				prefetch_buddy(page);
1247 		} while (--count && --batch_free && !list_empty(list));
1248 	}
1249 
1250 	spin_lock(&zone->lock);
1251 	isolated_pageblocks = has_isolate_pageblock(zone);
1252 
1253 	/*
1254 	 * Use safe version since after __free_one_page(),
1255 	 * page->lru.next will not point to original list.
1256 	 */
1257 	list_for_each_entry_safe(page, tmp, &head, lru) {
1258 		int mt = get_pcppage_migratetype(page);
1259 		/* MIGRATE_ISOLATE page should not go to pcplists */
1260 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1261 		/* Pageblock could have been isolated meanwhile */
1262 		if (unlikely(isolated_pageblocks))
1263 			mt = get_pageblock_migratetype(page);
1264 
1265 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1266 		trace_mm_page_pcpu_drain(page, 0, mt);
1267 	}
1268 	spin_unlock(&zone->lock);
1269 }
1270 
1271 static void free_one_page(struct zone *zone,
1272 				struct page *page, unsigned long pfn,
1273 				unsigned int order,
1274 				int migratetype)
1275 {
1276 	spin_lock(&zone->lock);
1277 	if (unlikely(has_isolate_pageblock(zone) ||
1278 		is_migrate_isolate(migratetype))) {
1279 		migratetype = get_pfnblock_migratetype(page, pfn);
1280 	}
1281 	__free_one_page(page, pfn, zone, order, migratetype);
1282 	spin_unlock(&zone->lock);
1283 }
1284 
1285 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1286 				unsigned long zone, int nid)
1287 {
1288 	mm_zero_struct_page(page);
1289 	set_page_links(page, zone, nid, pfn);
1290 	init_page_count(page);
1291 	page_mapcount_reset(page);
1292 	page_cpupid_reset_last(page);
1293 	page_kasan_tag_reset(page);
1294 
1295 	INIT_LIST_HEAD(&page->lru);
1296 #ifdef WANT_PAGE_VIRTUAL
1297 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1298 	if (!is_highmem_idx(zone))
1299 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1300 #endif
1301 }
1302 
1303 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1304 static void __meminit init_reserved_page(unsigned long pfn)
1305 {
1306 	pg_data_t *pgdat;
1307 	int nid, zid;
1308 
1309 	if (!early_page_uninitialised(pfn))
1310 		return;
1311 
1312 	nid = early_pfn_to_nid(pfn);
1313 	pgdat = NODE_DATA(nid);
1314 
1315 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1316 		struct zone *zone = &pgdat->node_zones[zid];
1317 
1318 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1319 			break;
1320 	}
1321 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1322 }
1323 #else
1324 static inline void init_reserved_page(unsigned long pfn)
1325 {
1326 }
1327 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1328 
1329 /*
1330  * Initialised pages do not have PageReserved set. This function is
1331  * called for each range allocated by the bootmem allocator and
1332  * marks the pages PageReserved. The remaining valid pages are later
1333  * sent to the buddy page allocator.
1334  */
1335 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1336 {
1337 	unsigned long start_pfn = PFN_DOWN(start);
1338 	unsigned long end_pfn = PFN_UP(end);
1339 
1340 	for (; start_pfn < end_pfn; start_pfn++) {
1341 		if (pfn_valid(start_pfn)) {
1342 			struct page *page = pfn_to_page(start_pfn);
1343 
1344 			init_reserved_page(start_pfn);
1345 
1346 			/* Avoid false-positive PageTail() */
1347 			INIT_LIST_HEAD(&page->lru);
1348 
1349 			/*
1350 			 * no need for atomic set_bit because the struct
1351 			 * page is not visible yet so nobody should
1352 			 * access it yet.
1353 			 */
1354 			__SetPageReserved(page);
1355 		}
1356 	}
1357 }
1358 
1359 static void __free_pages_ok(struct page *page, unsigned int order)
1360 {
1361 	unsigned long flags;
1362 	int migratetype;
1363 	unsigned long pfn = page_to_pfn(page);
1364 
1365 	if (!free_pages_prepare(page, order, true))
1366 		return;
1367 
1368 	migratetype = get_pfnblock_migratetype(page, pfn);
1369 	local_irq_save(flags);
1370 	__count_vm_events(PGFREE, 1 << order);
1371 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1372 	local_irq_restore(flags);
1373 }
1374 
1375 void __free_pages_core(struct page *page, unsigned int order)
1376 {
1377 	unsigned int nr_pages = 1 << order;
1378 	struct page *p = page;
1379 	unsigned int loop;
1380 
1381 	prefetchw(p);
1382 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1383 		prefetchw(p + 1);
1384 		__ClearPageReserved(p);
1385 		set_page_count(p, 0);
1386 	}
1387 	__ClearPageReserved(p);
1388 	set_page_count(p, 0);
1389 
1390 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1391 	set_page_refcounted(page);
1392 	__free_pages(page, order);
1393 }
1394 
1395 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1396 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1397 
1398 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1399 
1400 int __meminit early_pfn_to_nid(unsigned long pfn)
1401 {
1402 	static DEFINE_SPINLOCK(early_pfn_lock);
1403 	int nid;
1404 
1405 	spin_lock(&early_pfn_lock);
1406 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1407 	if (nid < 0)
1408 		nid = first_online_node;
1409 	spin_unlock(&early_pfn_lock);
1410 
1411 	return nid;
1412 }
1413 #endif
1414 
1415 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1416 /* Only safe to use early in boot when initialisation is single-threaded */
1417 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1418 {
1419 	int nid;
1420 
1421 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1422 	if (nid >= 0 && nid != node)
1423 		return false;
1424 	return true;
1425 }
1426 
1427 #else
1428 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1429 {
1430 	return true;
1431 }
1432 #endif
1433 
1434 
1435 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1436 							unsigned int order)
1437 {
1438 	if (early_page_uninitialised(pfn))
1439 		return;
1440 	__free_pages_core(page, order);
1441 }
1442 
1443 /*
1444  * Check that the whole (or subset of) a pageblock given by the interval of
1445  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1446  * with the migration of free compaction scanner. The scanners then need to
1447  * use only pfn_valid_within() check for arches that allow holes within
1448  * pageblocks.
1449  *
1450  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1451  *
1452  * It's possible on some configurations to have a setup like node0 node1 node0
1453  * i.e. it's possible that all pages within a zones range of pages do not
1454  * belong to a single zone. We assume that a border between node0 and node1
1455  * can occur within a single pageblock, but not a node0 node1 node0
1456  * interleaving within a single pageblock. It is therefore sufficient to check
1457  * the first and last page of a pageblock and avoid checking each individual
1458  * page in a pageblock.
1459  */
1460 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1461 				     unsigned long end_pfn, struct zone *zone)
1462 {
1463 	struct page *start_page;
1464 	struct page *end_page;
1465 
1466 	/* end_pfn is one past the range we are checking */
1467 	end_pfn--;
1468 
1469 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1470 		return NULL;
1471 
1472 	start_page = pfn_to_online_page(start_pfn);
1473 	if (!start_page)
1474 		return NULL;
1475 
1476 	if (page_zone(start_page) != zone)
1477 		return NULL;
1478 
1479 	end_page = pfn_to_page(end_pfn);
1480 
1481 	/* This gives a shorter code than deriving page_zone(end_page) */
1482 	if (page_zone_id(start_page) != page_zone_id(end_page))
1483 		return NULL;
1484 
1485 	return start_page;
1486 }
1487 
1488 void set_zone_contiguous(struct zone *zone)
1489 {
1490 	unsigned long block_start_pfn = zone->zone_start_pfn;
1491 	unsigned long block_end_pfn;
1492 
1493 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1494 	for (; block_start_pfn < zone_end_pfn(zone);
1495 			block_start_pfn = block_end_pfn,
1496 			 block_end_pfn += pageblock_nr_pages) {
1497 
1498 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1499 
1500 		if (!__pageblock_pfn_to_page(block_start_pfn,
1501 					     block_end_pfn, zone))
1502 			return;
1503 	}
1504 
1505 	/* We confirm that there is no hole */
1506 	zone->contiguous = true;
1507 }
1508 
1509 void clear_zone_contiguous(struct zone *zone)
1510 {
1511 	zone->contiguous = false;
1512 }
1513 
1514 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1515 static void __init deferred_free_range(unsigned long pfn,
1516 				       unsigned long nr_pages)
1517 {
1518 	struct page *page;
1519 	unsigned long i;
1520 
1521 	if (!nr_pages)
1522 		return;
1523 
1524 	page = pfn_to_page(pfn);
1525 
1526 	/* Free a large naturally-aligned chunk if possible */
1527 	if (nr_pages == pageblock_nr_pages &&
1528 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1529 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1530 		__free_pages_core(page, pageblock_order);
1531 		return;
1532 	}
1533 
1534 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1535 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1536 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1537 		__free_pages_core(page, 0);
1538 	}
1539 }
1540 
1541 /* Completion tracking for deferred_init_memmap() threads */
1542 static atomic_t pgdat_init_n_undone __initdata;
1543 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1544 
1545 static inline void __init pgdat_init_report_one_done(void)
1546 {
1547 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1548 		complete(&pgdat_init_all_done_comp);
1549 }
1550 
1551 /*
1552  * Returns true if page needs to be initialized or freed to buddy allocator.
1553  *
1554  * First we check if pfn is valid on architectures where it is possible to have
1555  * holes within pageblock_nr_pages. On systems where it is not possible, this
1556  * function is optimized out.
1557  *
1558  * Then, we check if a current large page is valid by only checking the validity
1559  * of the head pfn.
1560  */
1561 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1562 {
1563 	if (!pfn_valid_within(pfn))
1564 		return false;
1565 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1566 		return false;
1567 	return true;
1568 }
1569 
1570 /*
1571  * Free pages to buddy allocator. Try to free aligned pages in
1572  * pageblock_nr_pages sizes.
1573  */
1574 static void __init deferred_free_pages(unsigned long pfn,
1575 				       unsigned long end_pfn)
1576 {
1577 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1578 	unsigned long nr_free = 0;
1579 
1580 	for (; pfn < end_pfn; pfn++) {
1581 		if (!deferred_pfn_valid(pfn)) {
1582 			deferred_free_range(pfn - nr_free, nr_free);
1583 			nr_free = 0;
1584 		} else if (!(pfn & nr_pgmask)) {
1585 			deferred_free_range(pfn - nr_free, nr_free);
1586 			nr_free = 1;
1587 			touch_nmi_watchdog();
1588 		} else {
1589 			nr_free++;
1590 		}
1591 	}
1592 	/* Free the last block of pages to allocator */
1593 	deferred_free_range(pfn - nr_free, nr_free);
1594 }
1595 
1596 /*
1597  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1598  * by performing it only once every pageblock_nr_pages.
1599  * Return number of pages initialized.
1600  */
1601 static unsigned long  __init deferred_init_pages(struct zone *zone,
1602 						 unsigned long pfn,
1603 						 unsigned long end_pfn)
1604 {
1605 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1606 	int nid = zone_to_nid(zone);
1607 	unsigned long nr_pages = 0;
1608 	int zid = zone_idx(zone);
1609 	struct page *page = NULL;
1610 
1611 	for (; pfn < end_pfn; pfn++) {
1612 		if (!deferred_pfn_valid(pfn)) {
1613 			page = NULL;
1614 			continue;
1615 		} else if (!page || !(pfn & nr_pgmask)) {
1616 			page = pfn_to_page(pfn);
1617 			touch_nmi_watchdog();
1618 		} else {
1619 			page++;
1620 		}
1621 		__init_single_page(page, pfn, zid, nid);
1622 		nr_pages++;
1623 	}
1624 	return (nr_pages);
1625 }
1626 
1627 /*
1628  * This function is meant to pre-load the iterator for the zone init.
1629  * Specifically it walks through the ranges until we are caught up to the
1630  * first_init_pfn value and exits there. If we never encounter the value we
1631  * return false indicating there are no valid ranges left.
1632  */
1633 static bool __init
1634 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1635 				    unsigned long *spfn, unsigned long *epfn,
1636 				    unsigned long first_init_pfn)
1637 {
1638 	u64 j;
1639 
1640 	/*
1641 	 * Start out by walking through the ranges in this zone that have
1642 	 * already been initialized. We don't need to do anything with them
1643 	 * so we just need to flush them out of the system.
1644 	 */
1645 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1646 		if (*epfn <= first_init_pfn)
1647 			continue;
1648 		if (*spfn < first_init_pfn)
1649 			*spfn = first_init_pfn;
1650 		*i = j;
1651 		return true;
1652 	}
1653 
1654 	return false;
1655 }
1656 
1657 /*
1658  * Initialize and free pages. We do it in two loops: first we initialize
1659  * struct page, then free to buddy allocator, because while we are
1660  * freeing pages we can access pages that are ahead (computing buddy
1661  * page in __free_one_page()).
1662  *
1663  * In order to try and keep some memory in the cache we have the loop
1664  * broken along max page order boundaries. This way we will not cause
1665  * any issues with the buddy page computation.
1666  */
1667 static unsigned long __init
1668 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1669 		       unsigned long *end_pfn)
1670 {
1671 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1672 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1673 	unsigned long nr_pages = 0;
1674 	u64 j = *i;
1675 
1676 	/* First we loop through and initialize the page values */
1677 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1678 		unsigned long t;
1679 
1680 		if (mo_pfn <= *start_pfn)
1681 			break;
1682 
1683 		t = min(mo_pfn, *end_pfn);
1684 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1685 
1686 		if (mo_pfn < *end_pfn) {
1687 			*start_pfn = mo_pfn;
1688 			break;
1689 		}
1690 	}
1691 
1692 	/* Reset values and now loop through freeing pages as needed */
1693 	swap(j, *i);
1694 
1695 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1696 		unsigned long t;
1697 
1698 		if (mo_pfn <= spfn)
1699 			break;
1700 
1701 		t = min(mo_pfn, epfn);
1702 		deferred_free_pages(spfn, t);
1703 
1704 		if (mo_pfn <= epfn)
1705 			break;
1706 	}
1707 
1708 	return nr_pages;
1709 }
1710 
1711 /* Initialise remaining memory on a node */
1712 static int __init deferred_init_memmap(void *data)
1713 {
1714 	pg_data_t *pgdat = data;
1715 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1716 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1717 	unsigned long first_init_pfn, flags;
1718 	unsigned long start = jiffies;
1719 	struct zone *zone;
1720 	int zid;
1721 	u64 i;
1722 
1723 	/* Bind memory initialisation thread to a local node if possible */
1724 	if (!cpumask_empty(cpumask))
1725 		set_cpus_allowed_ptr(current, cpumask);
1726 
1727 	pgdat_resize_lock(pgdat, &flags);
1728 	first_init_pfn = pgdat->first_deferred_pfn;
1729 	if (first_init_pfn == ULONG_MAX) {
1730 		pgdat_resize_unlock(pgdat, &flags);
1731 		pgdat_init_report_one_done();
1732 		return 0;
1733 	}
1734 
1735 	/* Sanity check boundaries */
1736 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1737 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1738 	pgdat->first_deferred_pfn = ULONG_MAX;
1739 
1740 	/* Only the highest zone is deferred so find it */
1741 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1742 		zone = pgdat->node_zones + zid;
1743 		if (first_init_pfn < zone_end_pfn(zone))
1744 			break;
1745 	}
1746 
1747 	/* If the zone is empty somebody else may have cleared out the zone */
1748 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1749 						 first_init_pfn))
1750 		goto zone_empty;
1751 
1752 	/*
1753 	 * Initialize and free pages in MAX_ORDER sized increments so
1754 	 * that we can avoid introducing any issues with the buddy
1755 	 * allocator.
1756 	 */
1757 	while (spfn < epfn)
1758 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1759 zone_empty:
1760 	pgdat_resize_unlock(pgdat, &flags);
1761 
1762 	/* Sanity check that the next zone really is unpopulated */
1763 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1764 
1765 	pr_info("node %d initialised, %lu pages in %ums\n",
1766 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1767 
1768 	pgdat_init_report_one_done();
1769 	return 0;
1770 }
1771 
1772 /*
1773  * If this zone has deferred pages, try to grow it by initializing enough
1774  * deferred pages to satisfy the allocation specified by order, rounded up to
1775  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1776  * of SECTION_SIZE bytes by initializing struct pages in increments of
1777  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1778  *
1779  * Return true when zone was grown, otherwise return false. We return true even
1780  * when we grow less than requested, to let the caller decide if there are
1781  * enough pages to satisfy the allocation.
1782  *
1783  * Note: We use noinline because this function is needed only during boot, and
1784  * it is called from a __ref function _deferred_grow_zone. This way we are
1785  * making sure that it is not inlined into permanent text section.
1786  */
1787 static noinline bool __init
1788 deferred_grow_zone(struct zone *zone, unsigned int order)
1789 {
1790 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1791 	pg_data_t *pgdat = zone->zone_pgdat;
1792 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1793 	unsigned long spfn, epfn, flags;
1794 	unsigned long nr_pages = 0;
1795 	u64 i;
1796 
1797 	/* Only the last zone may have deferred pages */
1798 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1799 		return false;
1800 
1801 	pgdat_resize_lock(pgdat, &flags);
1802 
1803 	/*
1804 	 * If deferred pages have been initialized while we were waiting for
1805 	 * the lock, return true, as the zone was grown.  The caller will retry
1806 	 * this zone.  We won't return to this function since the caller also
1807 	 * has this static branch.
1808 	 */
1809 	if (!static_branch_unlikely(&deferred_pages)) {
1810 		pgdat_resize_unlock(pgdat, &flags);
1811 		return true;
1812 	}
1813 
1814 	/*
1815 	 * If someone grew this zone while we were waiting for spinlock, return
1816 	 * true, as there might be enough pages already.
1817 	 */
1818 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1819 		pgdat_resize_unlock(pgdat, &flags);
1820 		return true;
1821 	}
1822 
1823 	/* If the zone is empty somebody else may have cleared out the zone */
1824 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1825 						 first_deferred_pfn)) {
1826 		pgdat->first_deferred_pfn = ULONG_MAX;
1827 		pgdat_resize_unlock(pgdat, &flags);
1828 		return true;
1829 	}
1830 
1831 	/*
1832 	 * Initialize and free pages in MAX_ORDER sized increments so
1833 	 * that we can avoid introducing any issues with the buddy
1834 	 * allocator.
1835 	 */
1836 	while (spfn < epfn) {
1837 		/* update our first deferred PFN for this section */
1838 		first_deferred_pfn = spfn;
1839 
1840 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1841 
1842 		/* We should only stop along section boundaries */
1843 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1844 			continue;
1845 
1846 		/* If our quota has been met we can stop here */
1847 		if (nr_pages >= nr_pages_needed)
1848 			break;
1849 	}
1850 
1851 	pgdat->first_deferred_pfn = spfn;
1852 	pgdat_resize_unlock(pgdat, &flags);
1853 
1854 	return nr_pages > 0;
1855 }
1856 
1857 /*
1858  * deferred_grow_zone() is __init, but it is called from
1859  * get_page_from_freelist() during early boot until deferred_pages permanently
1860  * disables this call. This is why we have refdata wrapper to avoid warning,
1861  * and to ensure that the function body gets unloaded.
1862  */
1863 static bool __ref
1864 _deferred_grow_zone(struct zone *zone, unsigned int order)
1865 {
1866 	return deferred_grow_zone(zone, order);
1867 }
1868 
1869 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1870 
1871 void __init page_alloc_init_late(void)
1872 {
1873 	struct zone *zone;
1874 	int nid;
1875 
1876 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1877 
1878 	/* There will be num_node_state(N_MEMORY) threads */
1879 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1880 	for_each_node_state(nid, N_MEMORY) {
1881 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1882 	}
1883 
1884 	/* Block until all are initialised */
1885 	wait_for_completion(&pgdat_init_all_done_comp);
1886 
1887 	/*
1888 	 * We initialized the rest of the deferred pages.  Permanently disable
1889 	 * on-demand struct page initialization.
1890 	 */
1891 	static_branch_disable(&deferred_pages);
1892 
1893 	/* Reinit limits that are based on free pages after the kernel is up */
1894 	files_maxfiles_init();
1895 #endif
1896 
1897 	/* Discard memblock private memory */
1898 	memblock_discard();
1899 
1900 	for_each_node_state(nid, N_MEMORY)
1901 		shuffle_free_memory(NODE_DATA(nid));
1902 
1903 	for_each_populated_zone(zone)
1904 		set_zone_contiguous(zone);
1905 }
1906 
1907 #ifdef CONFIG_CMA
1908 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1909 void __init init_cma_reserved_pageblock(struct page *page)
1910 {
1911 	unsigned i = pageblock_nr_pages;
1912 	struct page *p = page;
1913 
1914 	do {
1915 		__ClearPageReserved(p);
1916 		set_page_count(p, 0);
1917 	} while (++p, --i);
1918 
1919 	set_pageblock_migratetype(page, MIGRATE_CMA);
1920 
1921 	if (pageblock_order >= MAX_ORDER) {
1922 		i = pageblock_nr_pages;
1923 		p = page;
1924 		do {
1925 			set_page_refcounted(p);
1926 			__free_pages(p, MAX_ORDER - 1);
1927 			p += MAX_ORDER_NR_PAGES;
1928 		} while (i -= MAX_ORDER_NR_PAGES);
1929 	} else {
1930 		set_page_refcounted(page);
1931 		__free_pages(page, pageblock_order);
1932 	}
1933 
1934 	adjust_managed_page_count(page, pageblock_nr_pages);
1935 }
1936 #endif
1937 
1938 /*
1939  * The order of subdivision here is critical for the IO subsystem.
1940  * Please do not alter this order without good reasons and regression
1941  * testing. Specifically, as large blocks of memory are subdivided,
1942  * the order in which smaller blocks are delivered depends on the order
1943  * they're subdivided in this function. This is the primary factor
1944  * influencing the order in which pages are delivered to the IO
1945  * subsystem according to empirical testing, and this is also justified
1946  * by considering the behavior of a buddy system containing a single
1947  * large block of memory acted on by a series of small allocations.
1948  * This behavior is a critical factor in sglist merging's success.
1949  *
1950  * -- nyc
1951  */
1952 static inline void expand(struct zone *zone, struct page *page,
1953 	int low, int high, struct free_area *area,
1954 	int migratetype)
1955 {
1956 	unsigned long size = 1 << high;
1957 
1958 	while (high > low) {
1959 		area--;
1960 		high--;
1961 		size >>= 1;
1962 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1963 
1964 		/*
1965 		 * Mark as guard pages (or page), that will allow to
1966 		 * merge back to allocator when buddy will be freed.
1967 		 * Corresponding page table entries will not be touched,
1968 		 * pages will stay not present in virtual address space
1969 		 */
1970 		if (set_page_guard(zone, &page[size], high, migratetype))
1971 			continue;
1972 
1973 		add_to_free_area(&page[size], area, migratetype);
1974 		set_page_order(&page[size], high);
1975 	}
1976 }
1977 
1978 static void check_new_page_bad(struct page *page)
1979 {
1980 	const char *bad_reason = NULL;
1981 	unsigned long bad_flags = 0;
1982 
1983 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1984 		bad_reason = "nonzero mapcount";
1985 	if (unlikely(page->mapping != NULL))
1986 		bad_reason = "non-NULL mapping";
1987 	if (unlikely(page_ref_count(page) != 0))
1988 		bad_reason = "nonzero _refcount";
1989 	if (unlikely(page->flags & __PG_HWPOISON)) {
1990 		bad_reason = "HWPoisoned (hardware-corrupted)";
1991 		bad_flags = __PG_HWPOISON;
1992 		/* Don't complain about hwpoisoned pages */
1993 		page_mapcount_reset(page); /* remove PageBuddy */
1994 		return;
1995 	}
1996 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1997 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1998 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1999 	}
2000 #ifdef CONFIG_MEMCG
2001 	if (unlikely(page->mem_cgroup))
2002 		bad_reason = "page still charged to cgroup";
2003 #endif
2004 	bad_page(page, bad_reason, bad_flags);
2005 }
2006 
2007 /*
2008  * This page is about to be returned from the page allocator
2009  */
2010 static inline int check_new_page(struct page *page)
2011 {
2012 	if (likely(page_expected_state(page,
2013 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2014 		return 0;
2015 
2016 	check_new_page_bad(page);
2017 	return 1;
2018 }
2019 
2020 static inline bool free_pages_prezeroed(void)
2021 {
2022 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2023 		page_poisoning_enabled();
2024 }
2025 
2026 #ifdef CONFIG_DEBUG_VM
2027 static bool check_pcp_refill(struct page *page)
2028 {
2029 	return false;
2030 }
2031 
2032 static bool check_new_pcp(struct page *page)
2033 {
2034 	return check_new_page(page);
2035 }
2036 #else
2037 static bool check_pcp_refill(struct page *page)
2038 {
2039 	return check_new_page(page);
2040 }
2041 static bool check_new_pcp(struct page *page)
2042 {
2043 	return false;
2044 }
2045 #endif /* CONFIG_DEBUG_VM */
2046 
2047 static bool check_new_pages(struct page *page, unsigned int order)
2048 {
2049 	int i;
2050 	for (i = 0; i < (1 << order); i++) {
2051 		struct page *p = page + i;
2052 
2053 		if (unlikely(check_new_page(p)))
2054 			return true;
2055 	}
2056 
2057 	return false;
2058 }
2059 
2060 inline void post_alloc_hook(struct page *page, unsigned int order,
2061 				gfp_t gfp_flags)
2062 {
2063 	set_page_private(page, 0);
2064 	set_page_refcounted(page);
2065 
2066 	arch_alloc_page(page, order);
2067 	if (debug_pagealloc_enabled())
2068 		kernel_map_pages(page, 1 << order, 1);
2069 	kasan_alloc_pages(page, order);
2070 	kernel_poison_pages(page, 1 << order, 1);
2071 	set_page_owner(page, order, gfp_flags);
2072 }
2073 
2074 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2075 							unsigned int alloc_flags)
2076 {
2077 	int i;
2078 
2079 	post_alloc_hook(page, order, gfp_flags);
2080 
2081 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
2082 		for (i = 0; i < (1 << order); i++)
2083 			clear_highpage(page + i);
2084 
2085 	if (order && (gfp_flags & __GFP_COMP))
2086 		prep_compound_page(page, order);
2087 
2088 	/*
2089 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2090 	 * allocate the page. The expectation is that the caller is taking
2091 	 * steps that will free more memory. The caller should avoid the page
2092 	 * being used for !PFMEMALLOC purposes.
2093 	 */
2094 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2095 		set_page_pfmemalloc(page);
2096 	else
2097 		clear_page_pfmemalloc(page);
2098 }
2099 
2100 /*
2101  * Go through the free lists for the given migratetype and remove
2102  * the smallest available page from the freelists
2103  */
2104 static __always_inline
2105 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2106 						int migratetype)
2107 {
2108 	unsigned int current_order;
2109 	struct free_area *area;
2110 	struct page *page;
2111 
2112 	/* Find a page of the appropriate size in the preferred list */
2113 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2114 		area = &(zone->free_area[current_order]);
2115 		page = get_page_from_free_area(area, migratetype);
2116 		if (!page)
2117 			continue;
2118 		del_page_from_free_area(page, area);
2119 		expand(zone, page, order, current_order, area, migratetype);
2120 		set_pcppage_migratetype(page, migratetype);
2121 		return page;
2122 	}
2123 
2124 	return NULL;
2125 }
2126 
2127 
2128 /*
2129  * This array describes the order lists are fallen back to when
2130  * the free lists for the desirable migrate type are depleted
2131  */
2132 static int fallbacks[MIGRATE_TYPES][4] = {
2133 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2134 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2135 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2136 #ifdef CONFIG_CMA
2137 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2138 #endif
2139 #ifdef CONFIG_MEMORY_ISOLATION
2140 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2141 #endif
2142 };
2143 
2144 #ifdef CONFIG_CMA
2145 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2146 					unsigned int order)
2147 {
2148 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2149 }
2150 #else
2151 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2152 					unsigned int order) { return NULL; }
2153 #endif
2154 
2155 /*
2156  * Move the free pages in a range to the free lists of the requested type.
2157  * Note that start_page and end_pages are not aligned on a pageblock
2158  * boundary. If alignment is required, use move_freepages_block()
2159  */
2160 static int move_freepages(struct zone *zone,
2161 			  struct page *start_page, struct page *end_page,
2162 			  int migratetype, int *num_movable)
2163 {
2164 	struct page *page;
2165 	unsigned int order;
2166 	int pages_moved = 0;
2167 
2168 #ifndef CONFIG_HOLES_IN_ZONE
2169 	/*
2170 	 * page_zone is not safe to call in this context when
2171 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
2172 	 * anyway as we check zone boundaries in move_freepages_block().
2173 	 * Remove at a later date when no bug reports exist related to
2174 	 * grouping pages by mobility
2175 	 */
2176 	VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) &&
2177 	          pfn_valid(page_to_pfn(end_page)) &&
2178 	          page_zone(start_page) != page_zone(end_page));
2179 #endif
2180 	for (page = start_page; page <= end_page;) {
2181 		if (!pfn_valid_within(page_to_pfn(page))) {
2182 			page++;
2183 			continue;
2184 		}
2185 
2186 		/* Make sure we are not inadvertently changing nodes */
2187 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2188 
2189 		if (!PageBuddy(page)) {
2190 			/*
2191 			 * We assume that pages that could be isolated for
2192 			 * migration are movable. But we don't actually try
2193 			 * isolating, as that would be expensive.
2194 			 */
2195 			if (num_movable &&
2196 					(PageLRU(page) || __PageMovable(page)))
2197 				(*num_movable)++;
2198 
2199 			page++;
2200 			continue;
2201 		}
2202 
2203 		order = page_order(page);
2204 		move_to_free_area(page, &zone->free_area[order], migratetype);
2205 		page += 1 << order;
2206 		pages_moved += 1 << order;
2207 	}
2208 
2209 	return pages_moved;
2210 }
2211 
2212 int move_freepages_block(struct zone *zone, struct page *page,
2213 				int migratetype, int *num_movable)
2214 {
2215 	unsigned long start_pfn, end_pfn;
2216 	struct page *start_page, *end_page;
2217 
2218 	if (num_movable)
2219 		*num_movable = 0;
2220 
2221 	start_pfn = page_to_pfn(page);
2222 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2223 	start_page = pfn_to_page(start_pfn);
2224 	end_page = start_page + pageblock_nr_pages - 1;
2225 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2226 
2227 	/* Do not cross zone boundaries */
2228 	if (!zone_spans_pfn(zone, start_pfn))
2229 		start_page = page;
2230 	if (!zone_spans_pfn(zone, end_pfn))
2231 		return 0;
2232 
2233 	return move_freepages(zone, start_page, end_page, migratetype,
2234 								num_movable);
2235 }
2236 
2237 static void change_pageblock_range(struct page *pageblock_page,
2238 					int start_order, int migratetype)
2239 {
2240 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2241 
2242 	while (nr_pageblocks--) {
2243 		set_pageblock_migratetype(pageblock_page, migratetype);
2244 		pageblock_page += pageblock_nr_pages;
2245 	}
2246 }
2247 
2248 /*
2249  * When we are falling back to another migratetype during allocation, try to
2250  * steal extra free pages from the same pageblocks to satisfy further
2251  * allocations, instead of polluting multiple pageblocks.
2252  *
2253  * If we are stealing a relatively large buddy page, it is likely there will
2254  * be more free pages in the pageblock, so try to steal them all. For
2255  * reclaimable and unmovable allocations, we steal regardless of page size,
2256  * as fragmentation caused by those allocations polluting movable pageblocks
2257  * is worse than movable allocations stealing from unmovable and reclaimable
2258  * pageblocks.
2259  */
2260 static bool can_steal_fallback(unsigned int order, int start_mt)
2261 {
2262 	/*
2263 	 * Leaving this order check is intended, although there is
2264 	 * relaxed order check in next check. The reason is that
2265 	 * we can actually steal whole pageblock if this condition met,
2266 	 * but, below check doesn't guarantee it and that is just heuristic
2267 	 * so could be changed anytime.
2268 	 */
2269 	if (order >= pageblock_order)
2270 		return true;
2271 
2272 	if (order >= pageblock_order / 2 ||
2273 		start_mt == MIGRATE_RECLAIMABLE ||
2274 		start_mt == MIGRATE_UNMOVABLE ||
2275 		page_group_by_mobility_disabled)
2276 		return true;
2277 
2278 	return false;
2279 }
2280 
2281 static inline void boost_watermark(struct zone *zone)
2282 {
2283 	unsigned long max_boost;
2284 
2285 	if (!watermark_boost_factor)
2286 		return;
2287 
2288 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2289 			watermark_boost_factor, 10000);
2290 
2291 	/*
2292 	 * high watermark may be uninitialised if fragmentation occurs
2293 	 * very early in boot so do not boost. We do not fall
2294 	 * through and boost by pageblock_nr_pages as failing
2295 	 * allocations that early means that reclaim is not going
2296 	 * to help and it may even be impossible to reclaim the
2297 	 * boosted watermark resulting in a hang.
2298 	 */
2299 	if (!max_boost)
2300 		return;
2301 
2302 	max_boost = max(pageblock_nr_pages, max_boost);
2303 
2304 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2305 		max_boost);
2306 }
2307 
2308 /*
2309  * This function implements actual steal behaviour. If order is large enough,
2310  * we can steal whole pageblock. If not, we first move freepages in this
2311  * pageblock to our migratetype and determine how many already-allocated pages
2312  * are there in the pageblock with a compatible migratetype. If at least half
2313  * of pages are free or compatible, we can change migratetype of the pageblock
2314  * itself, so pages freed in the future will be put on the correct free list.
2315  */
2316 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2317 		unsigned int alloc_flags, int start_type, bool whole_block)
2318 {
2319 	unsigned int current_order = page_order(page);
2320 	struct free_area *area;
2321 	int free_pages, movable_pages, alike_pages;
2322 	int old_block_type;
2323 
2324 	old_block_type = get_pageblock_migratetype(page);
2325 
2326 	/*
2327 	 * This can happen due to races and we want to prevent broken
2328 	 * highatomic accounting.
2329 	 */
2330 	if (is_migrate_highatomic(old_block_type))
2331 		goto single_page;
2332 
2333 	/* Take ownership for orders >= pageblock_order */
2334 	if (current_order >= pageblock_order) {
2335 		change_pageblock_range(page, current_order, start_type);
2336 		goto single_page;
2337 	}
2338 
2339 	/*
2340 	 * Boost watermarks to increase reclaim pressure to reduce the
2341 	 * likelihood of future fallbacks. Wake kswapd now as the node
2342 	 * may be balanced overall and kswapd will not wake naturally.
2343 	 */
2344 	boost_watermark(zone);
2345 	if (alloc_flags & ALLOC_KSWAPD)
2346 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2347 
2348 	/* We are not allowed to try stealing from the whole block */
2349 	if (!whole_block)
2350 		goto single_page;
2351 
2352 	free_pages = move_freepages_block(zone, page, start_type,
2353 						&movable_pages);
2354 	/*
2355 	 * Determine how many pages are compatible with our allocation.
2356 	 * For movable allocation, it's the number of movable pages which
2357 	 * we just obtained. For other types it's a bit more tricky.
2358 	 */
2359 	if (start_type == MIGRATE_MOVABLE) {
2360 		alike_pages = movable_pages;
2361 	} else {
2362 		/*
2363 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2364 		 * to MOVABLE pageblock, consider all non-movable pages as
2365 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2366 		 * vice versa, be conservative since we can't distinguish the
2367 		 * exact migratetype of non-movable pages.
2368 		 */
2369 		if (old_block_type == MIGRATE_MOVABLE)
2370 			alike_pages = pageblock_nr_pages
2371 						- (free_pages + movable_pages);
2372 		else
2373 			alike_pages = 0;
2374 	}
2375 
2376 	/* moving whole block can fail due to zone boundary conditions */
2377 	if (!free_pages)
2378 		goto single_page;
2379 
2380 	/*
2381 	 * If a sufficient number of pages in the block are either free or of
2382 	 * comparable migratability as our allocation, claim the whole block.
2383 	 */
2384 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2385 			page_group_by_mobility_disabled)
2386 		set_pageblock_migratetype(page, start_type);
2387 
2388 	return;
2389 
2390 single_page:
2391 	area = &zone->free_area[current_order];
2392 	move_to_free_area(page, area, start_type);
2393 }
2394 
2395 /*
2396  * Check whether there is a suitable fallback freepage with requested order.
2397  * If only_stealable is true, this function returns fallback_mt only if
2398  * we can steal other freepages all together. This would help to reduce
2399  * fragmentation due to mixed migratetype pages in one pageblock.
2400  */
2401 int find_suitable_fallback(struct free_area *area, unsigned int order,
2402 			int migratetype, bool only_stealable, bool *can_steal)
2403 {
2404 	int i;
2405 	int fallback_mt;
2406 
2407 	if (area->nr_free == 0)
2408 		return -1;
2409 
2410 	*can_steal = false;
2411 	for (i = 0;; i++) {
2412 		fallback_mt = fallbacks[migratetype][i];
2413 		if (fallback_mt == MIGRATE_TYPES)
2414 			break;
2415 
2416 		if (free_area_empty(area, fallback_mt))
2417 			continue;
2418 
2419 		if (can_steal_fallback(order, migratetype))
2420 			*can_steal = true;
2421 
2422 		if (!only_stealable)
2423 			return fallback_mt;
2424 
2425 		if (*can_steal)
2426 			return fallback_mt;
2427 	}
2428 
2429 	return -1;
2430 }
2431 
2432 /*
2433  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2434  * there are no empty page blocks that contain a page with a suitable order
2435  */
2436 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2437 				unsigned int alloc_order)
2438 {
2439 	int mt;
2440 	unsigned long max_managed, flags;
2441 
2442 	/*
2443 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2444 	 * Check is race-prone but harmless.
2445 	 */
2446 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2447 	if (zone->nr_reserved_highatomic >= max_managed)
2448 		return;
2449 
2450 	spin_lock_irqsave(&zone->lock, flags);
2451 
2452 	/* Recheck the nr_reserved_highatomic limit under the lock */
2453 	if (zone->nr_reserved_highatomic >= max_managed)
2454 		goto out_unlock;
2455 
2456 	/* Yoink! */
2457 	mt = get_pageblock_migratetype(page);
2458 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2459 	    && !is_migrate_cma(mt)) {
2460 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2461 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2462 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2463 	}
2464 
2465 out_unlock:
2466 	spin_unlock_irqrestore(&zone->lock, flags);
2467 }
2468 
2469 /*
2470  * Used when an allocation is about to fail under memory pressure. This
2471  * potentially hurts the reliability of high-order allocations when under
2472  * intense memory pressure but failed atomic allocations should be easier
2473  * to recover from than an OOM.
2474  *
2475  * If @force is true, try to unreserve a pageblock even though highatomic
2476  * pageblock is exhausted.
2477  */
2478 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2479 						bool force)
2480 {
2481 	struct zonelist *zonelist = ac->zonelist;
2482 	unsigned long flags;
2483 	struct zoneref *z;
2484 	struct zone *zone;
2485 	struct page *page;
2486 	int order;
2487 	bool ret;
2488 
2489 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2490 								ac->nodemask) {
2491 		/*
2492 		 * Preserve at least one pageblock unless memory pressure
2493 		 * is really high.
2494 		 */
2495 		if (!force && zone->nr_reserved_highatomic <=
2496 					pageblock_nr_pages)
2497 			continue;
2498 
2499 		spin_lock_irqsave(&zone->lock, flags);
2500 		for (order = 0; order < MAX_ORDER; order++) {
2501 			struct free_area *area = &(zone->free_area[order]);
2502 
2503 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2504 			if (!page)
2505 				continue;
2506 
2507 			/*
2508 			 * In page freeing path, migratetype change is racy so
2509 			 * we can counter several free pages in a pageblock
2510 			 * in this loop althoug we changed the pageblock type
2511 			 * from highatomic to ac->migratetype. So we should
2512 			 * adjust the count once.
2513 			 */
2514 			if (is_migrate_highatomic_page(page)) {
2515 				/*
2516 				 * It should never happen but changes to
2517 				 * locking could inadvertently allow a per-cpu
2518 				 * drain to add pages to MIGRATE_HIGHATOMIC
2519 				 * while unreserving so be safe and watch for
2520 				 * underflows.
2521 				 */
2522 				zone->nr_reserved_highatomic -= min(
2523 						pageblock_nr_pages,
2524 						zone->nr_reserved_highatomic);
2525 			}
2526 
2527 			/*
2528 			 * Convert to ac->migratetype and avoid the normal
2529 			 * pageblock stealing heuristics. Minimally, the caller
2530 			 * is doing the work and needs the pages. More
2531 			 * importantly, if the block was always converted to
2532 			 * MIGRATE_UNMOVABLE or another type then the number
2533 			 * of pageblocks that cannot be completely freed
2534 			 * may increase.
2535 			 */
2536 			set_pageblock_migratetype(page, ac->migratetype);
2537 			ret = move_freepages_block(zone, page, ac->migratetype,
2538 									NULL);
2539 			if (ret) {
2540 				spin_unlock_irqrestore(&zone->lock, flags);
2541 				return ret;
2542 			}
2543 		}
2544 		spin_unlock_irqrestore(&zone->lock, flags);
2545 	}
2546 
2547 	return false;
2548 }
2549 
2550 /*
2551  * Try finding a free buddy page on the fallback list and put it on the free
2552  * list of requested migratetype, possibly along with other pages from the same
2553  * block, depending on fragmentation avoidance heuristics. Returns true if
2554  * fallback was found so that __rmqueue_smallest() can grab it.
2555  *
2556  * The use of signed ints for order and current_order is a deliberate
2557  * deviation from the rest of this file, to make the for loop
2558  * condition simpler.
2559  */
2560 static __always_inline bool
2561 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2562 						unsigned int alloc_flags)
2563 {
2564 	struct free_area *area;
2565 	int current_order;
2566 	int min_order = order;
2567 	struct page *page;
2568 	int fallback_mt;
2569 	bool can_steal;
2570 
2571 	/*
2572 	 * Do not steal pages from freelists belonging to other pageblocks
2573 	 * i.e. orders < pageblock_order. If there are no local zones free,
2574 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2575 	 */
2576 	if (alloc_flags & ALLOC_NOFRAGMENT)
2577 		min_order = pageblock_order;
2578 
2579 	/*
2580 	 * Find the largest available free page in the other list. This roughly
2581 	 * approximates finding the pageblock with the most free pages, which
2582 	 * would be too costly to do exactly.
2583 	 */
2584 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2585 				--current_order) {
2586 		area = &(zone->free_area[current_order]);
2587 		fallback_mt = find_suitable_fallback(area, current_order,
2588 				start_migratetype, false, &can_steal);
2589 		if (fallback_mt == -1)
2590 			continue;
2591 
2592 		/*
2593 		 * We cannot steal all free pages from the pageblock and the
2594 		 * requested migratetype is movable. In that case it's better to
2595 		 * steal and split the smallest available page instead of the
2596 		 * largest available page, because even if the next movable
2597 		 * allocation falls back into a different pageblock than this
2598 		 * one, it won't cause permanent fragmentation.
2599 		 */
2600 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2601 					&& current_order > order)
2602 			goto find_smallest;
2603 
2604 		goto do_steal;
2605 	}
2606 
2607 	return false;
2608 
2609 find_smallest:
2610 	for (current_order = order; current_order < MAX_ORDER;
2611 							current_order++) {
2612 		area = &(zone->free_area[current_order]);
2613 		fallback_mt = find_suitable_fallback(area, current_order,
2614 				start_migratetype, false, &can_steal);
2615 		if (fallback_mt != -1)
2616 			break;
2617 	}
2618 
2619 	/*
2620 	 * This should not happen - we already found a suitable fallback
2621 	 * when looking for the largest page.
2622 	 */
2623 	VM_BUG_ON(current_order == MAX_ORDER);
2624 
2625 do_steal:
2626 	page = get_page_from_free_area(area, fallback_mt);
2627 
2628 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2629 								can_steal);
2630 
2631 	trace_mm_page_alloc_extfrag(page, order, current_order,
2632 		start_migratetype, fallback_mt);
2633 
2634 	return true;
2635 
2636 }
2637 
2638 /*
2639  * Do the hard work of removing an element from the buddy allocator.
2640  * Call me with the zone->lock already held.
2641  */
2642 static __always_inline struct page *
2643 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2644 						unsigned int alloc_flags)
2645 {
2646 	struct page *page;
2647 
2648 retry:
2649 	page = __rmqueue_smallest(zone, order, migratetype);
2650 	if (unlikely(!page)) {
2651 		if (migratetype == MIGRATE_MOVABLE)
2652 			page = __rmqueue_cma_fallback(zone, order);
2653 
2654 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2655 								alloc_flags))
2656 			goto retry;
2657 	}
2658 
2659 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2660 	return page;
2661 }
2662 
2663 /*
2664  * Obtain a specified number of elements from the buddy allocator, all under
2665  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2666  * Returns the number of new pages which were placed at *list.
2667  */
2668 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2669 			unsigned long count, struct list_head *list,
2670 			int migratetype, unsigned int alloc_flags)
2671 {
2672 	int i, alloced = 0;
2673 
2674 	spin_lock(&zone->lock);
2675 	for (i = 0; i < count; ++i) {
2676 		struct page *page = __rmqueue(zone, order, migratetype,
2677 								alloc_flags);
2678 		if (unlikely(page == NULL))
2679 			break;
2680 
2681 		if (unlikely(check_pcp_refill(page)))
2682 			continue;
2683 
2684 		/*
2685 		 * Split buddy pages returned by expand() are received here in
2686 		 * physical page order. The page is added to the tail of
2687 		 * caller's list. From the callers perspective, the linked list
2688 		 * is ordered by page number under some conditions. This is
2689 		 * useful for IO devices that can forward direction from the
2690 		 * head, thus also in the physical page order. This is useful
2691 		 * for IO devices that can merge IO requests if the physical
2692 		 * pages are ordered properly.
2693 		 */
2694 		list_add_tail(&page->lru, list);
2695 		alloced++;
2696 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2697 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2698 					      -(1 << order));
2699 	}
2700 
2701 	/*
2702 	 * i pages were removed from the buddy list even if some leak due
2703 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2704 	 * on i. Do not confuse with 'alloced' which is the number of
2705 	 * pages added to the pcp list.
2706 	 */
2707 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2708 	spin_unlock(&zone->lock);
2709 	return alloced;
2710 }
2711 
2712 #ifdef CONFIG_NUMA
2713 /*
2714  * Called from the vmstat counter updater to drain pagesets of this
2715  * currently executing processor on remote nodes after they have
2716  * expired.
2717  *
2718  * Note that this function must be called with the thread pinned to
2719  * a single processor.
2720  */
2721 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2722 {
2723 	unsigned long flags;
2724 	int to_drain, batch;
2725 
2726 	local_irq_save(flags);
2727 	batch = READ_ONCE(pcp->batch);
2728 	to_drain = min(pcp->count, batch);
2729 	if (to_drain > 0)
2730 		free_pcppages_bulk(zone, to_drain, pcp);
2731 	local_irq_restore(flags);
2732 }
2733 #endif
2734 
2735 /*
2736  * Drain pcplists of the indicated processor and zone.
2737  *
2738  * The processor must either be the current processor and the
2739  * thread pinned to the current processor or a processor that
2740  * is not online.
2741  */
2742 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2743 {
2744 	unsigned long flags;
2745 	struct per_cpu_pageset *pset;
2746 	struct per_cpu_pages *pcp;
2747 
2748 	local_irq_save(flags);
2749 	pset = per_cpu_ptr(zone->pageset, cpu);
2750 
2751 	pcp = &pset->pcp;
2752 	if (pcp->count)
2753 		free_pcppages_bulk(zone, pcp->count, pcp);
2754 	local_irq_restore(flags);
2755 }
2756 
2757 /*
2758  * Drain pcplists of all zones on the indicated processor.
2759  *
2760  * The processor must either be the current processor and the
2761  * thread pinned to the current processor or a processor that
2762  * is not online.
2763  */
2764 static void drain_pages(unsigned int cpu)
2765 {
2766 	struct zone *zone;
2767 
2768 	for_each_populated_zone(zone) {
2769 		drain_pages_zone(cpu, zone);
2770 	}
2771 }
2772 
2773 /*
2774  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2775  *
2776  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2777  * the single zone's pages.
2778  */
2779 void drain_local_pages(struct zone *zone)
2780 {
2781 	int cpu = smp_processor_id();
2782 
2783 	if (zone)
2784 		drain_pages_zone(cpu, zone);
2785 	else
2786 		drain_pages(cpu);
2787 }
2788 
2789 static void drain_local_pages_wq(struct work_struct *work)
2790 {
2791 	struct pcpu_drain *drain;
2792 
2793 	drain = container_of(work, struct pcpu_drain, work);
2794 
2795 	/*
2796 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2797 	 * we can race with cpu offline when the WQ can move this from
2798 	 * a cpu pinned worker to an unbound one. We can operate on a different
2799 	 * cpu which is allright but we also have to make sure to not move to
2800 	 * a different one.
2801 	 */
2802 	preempt_disable();
2803 	drain_local_pages(drain->zone);
2804 	preempt_enable();
2805 }
2806 
2807 /*
2808  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2809  *
2810  * When zone parameter is non-NULL, spill just the single zone's pages.
2811  *
2812  * Note that this can be extremely slow as the draining happens in a workqueue.
2813  */
2814 void drain_all_pages(struct zone *zone)
2815 {
2816 	int cpu;
2817 
2818 	/*
2819 	 * Allocate in the BSS so we wont require allocation in
2820 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2821 	 */
2822 	static cpumask_t cpus_with_pcps;
2823 
2824 	/*
2825 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2826 	 * initialized.
2827 	 */
2828 	if (WARN_ON_ONCE(!mm_percpu_wq))
2829 		return;
2830 
2831 	/*
2832 	 * Do not drain if one is already in progress unless it's specific to
2833 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2834 	 * the drain to be complete when the call returns.
2835 	 */
2836 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2837 		if (!zone)
2838 			return;
2839 		mutex_lock(&pcpu_drain_mutex);
2840 	}
2841 
2842 	/*
2843 	 * We don't care about racing with CPU hotplug event
2844 	 * as offline notification will cause the notified
2845 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2846 	 * disables preemption as part of its processing
2847 	 */
2848 	for_each_online_cpu(cpu) {
2849 		struct per_cpu_pageset *pcp;
2850 		struct zone *z;
2851 		bool has_pcps = false;
2852 
2853 		if (zone) {
2854 			pcp = per_cpu_ptr(zone->pageset, cpu);
2855 			if (pcp->pcp.count)
2856 				has_pcps = true;
2857 		} else {
2858 			for_each_populated_zone(z) {
2859 				pcp = per_cpu_ptr(z->pageset, cpu);
2860 				if (pcp->pcp.count) {
2861 					has_pcps = true;
2862 					break;
2863 				}
2864 			}
2865 		}
2866 
2867 		if (has_pcps)
2868 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2869 		else
2870 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2871 	}
2872 
2873 	for_each_cpu(cpu, &cpus_with_pcps) {
2874 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2875 
2876 		drain->zone = zone;
2877 		INIT_WORK(&drain->work, drain_local_pages_wq);
2878 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2879 	}
2880 	for_each_cpu(cpu, &cpus_with_pcps)
2881 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2882 
2883 	mutex_unlock(&pcpu_drain_mutex);
2884 }
2885 
2886 #ifdef CONFIG_HIBERNATION
2887 
2888 /*
2889  * Touch the watchdog for every WD_PAGE_COUNT pages.
2890  */
2891 #define WD_PAGE_COUNT	(128*1024)
2892 
2893 void mark_free_pages(struct zone *zone)
2894 {
2895 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2896 	unsigned long flags;
2897 	unsigned int order, t;
2898 	struct page *page;
2899 
2900 	if (zone_is_empty(zone))
2901 		return;
2902 
2903 	spin_lock_irqsave(&zone->lock, flags);
2904 
2905 	max_zone_pfn = zone_end_pfn(zone);
2906 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2907 		if (pfn_valid(pfn)) {
2908 			page = pfn_to_page(pfn);
2909 
2910 			if (!--page_count) {
2911 				touch_nmi_watchdog();
2912 				page_count = WD_PAGE_COUNT;
2913 			}
2914 
2915 			if (page_zone(page) != zone)
2916 				continue;
2917 
2918 			if (!swsusp_page_is_forbidden(page))
2919 				swsusp_unset_page_free(page);
2920 		}
2921 
2922 	for_each_migratetype_order(order, t) {
2923 		list_for_each_entry(page,
2924 				&zone->free_area[order].free_list[t], lru) {
2925 			unsigned long i;
2926 
2927 			pfn = page_to_pfn(page);
2928 			for (i = 0; i < (1UL << order); i++) {
2929 				if (!--page_count) {
2930 					touch_nmi_watchdog();
2931 					page_count = WD_PAGE_COUNT;
2932 				}
2933 				swsusp_set_page_free(pfn_to_page(pfn + i));
2934 			}
2935 		}
2936 	}
2937 	spin_unlock_irqrestore(&zone->lock, flags);
2938 }
2939 #endif /* CONFIG_PM */
2940 
2941 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
2942 {
2943 	int migratetype;
2944 
2945 	if (!free_pcp_prepare(page))
2946 		return false;
2947 
2948 	migratetype = get_pfnblock_migratetype(page, pfn);
2949 	set_pcppage_migratetype(page, migratetype);
2950 	return true;
2951 }
2952 
2953 static void free_unref_page_commit(struct page *page, unsigned long pfn)
2954 {
2955 	struct zone *zone = page_zone(page);
2956 	struct per_cpu_pages *pcp;
2957 	int migratetype;
2958 
2959 	migratetype = get_pcppage_migratetype(page);
2960 	__count_vm_event(PGFREE);
2961 
2962 	/*
2963 	 * We only track unmovable, reclaimable and movable on pcp lists.
2964 	 * Free ISOLATE pages back to the allocator because they are being
2965 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2966 	 * areas back if necessary. Otherwise, we may have to free
2967 	 * excessively into the page allocator
2968 	 */
2969 	if (migratetype >= MIGRATE_PCPTYPES) {
2970 		if (unlikely(is_migrate_isolate(migratetype))) {
2971 			free_one_page(zone, page, pfn, 0, migratetype);
2972 			return;
2973 		}
2974 		migratetype = MIGRATE_MOVABLE;
2975 	}
2976 
2977 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2978 	list_add(&page->lru, &pcp->lists[migratetype]);
2979 	pcp->count++;
2980 	if (pcp->count >= pcp->high) {
2981 		unsigned long batch = READ_ONCE(pcp->batch);
2982 		free_pcppages_bulk(zone, batch, pcp);
2983 	}
2984 }
2985 
2986 /*
2987  * Free a 0-order page
2988  */
2989 void free_unref_page(struct page *page)
2990 {
2991 	unsigned long flags;
2992 	unsigned long pfn = page_to_pfn(page);
2993 
2994 	if (!free_unref_page_prepare(page, pfn))
2995 		return;
2996 
2997 	local_irq_save(flags);
2998 	free_unref_page_commit(page, pfn);
2999 	local_irq_restore(flags);
3000 }
3001 
3002 /*
3003  * Free a list of 0-order pages
3004  */
3005 void free_unref_page_list(struct list_head *list)
3006 {
3007 	struct page *page, *next;
3008 	unsigned long flags, pfn;
3009 	int batch_count = 0;
3010 
3011 	/* Prepare pages for freeing */
3012 	list_for_each_entry_safe(page, next, list, lru) {
3013 		pfn = page_to_pfn(page);
3014 		if (!free_unref_page_prepare(page, pfn))
3015 			list_del(&page->lru);
3016 		set_page_private(page, pfn);
3017 	}
3018 
3019 	local_irq_save(flags);
3020 	list_for_each_entry_safe(page, next, list, lru) {
3021 		unsigned long pfn = page_private(page);
3022 
3023 		set_page_private(page, 0);
3024 		trace_mm_page_free_batched(page);
3025 		free_unref_page_commit(page, pfn);
3026 
3027 		/*
3028 		 * Guard against excessive IRQ disabled times when we get
3029 		 * a large list of pages to free.
3030 		 */
3031 		if (++batch_count == SWAP_CLUSTER_MAX) {
3032 			local_irq_restore(flags);
3033 			batch_count = 0;
3034 			local_irq_save(flags);
3035 		}
3036 	}
3037 	local_irq_restore(flags);
3038 }
3039 
3040 /*
3041  * split_page takes a non-compound higher-order page, and splits it into
3042  * n (1<<order) sub-pages: page[0..n]
3043  * Each sub-page must be freed individually.
3044  *
3045  * Note: this is probably too low level an operation for use in drivers.
3046  * Please consult with lkml before using this in your driver.
3047  */
3048 void split_page(struct page *page, unsigned int order)
3049 {
3050 	int i;
3051 
3052 	VM_BUG_ON_PAGE(PageCompound(page), page);
3053 	VM_BUG_ON_PAGE(!page_count(page), page);
3054 
3055 	for (i = 1; i < (1 << order); i++)
3056 		set_page_refcounted(page + i);
3057 	split_page_owner(page, order);
3058 }
3059 EXPORT_SYMBOL_GPL(split_page);
3060 
3061 int __isolate_free_page(struct page *page, unsigned int order)
3062 {
3063 	struct free_area *area = &page_zone(page)->free_area[order];
3064 	unsigned long watermark;
3065 	struct zone *zone;
3066 	int mt;
3067 
3068 	BUG_ON(!PageBuddy(page));
3069 
3070 	zone = page_zone(page);
3071 	mt = get_pageblock_migratetype(page);
3072 
3073 	if (!is_migrate_isolate(mt)) {
3074 		/*
3075 		 * Obey watermarks as if the page was being allocated. We can
3076 		 * emulate a high-order watermark check with a raised order-0
3077 		 * watermark, because we already know our high-order page
3078 		 * exists.
3079 		 */
3080 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3081 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3082 			return 0;
3083 
3084 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3085 	}
3086 
3087 	/* Remove page from free list */
3088 
3089 	del_page_from_free_area(page, area);
3090 
3091 	/*
3092 	 * Set the pageblock if the isolated page is at least half of a
3093 	 * pageblock
3094 	 */
3095 	if (order >= pageblock_order - 1) {
3096 		struct page *endpage = page + (1 << order) - 1;
3097 		for (; page < endpage; page += pageblock_nr_pages) {
3098 			int mt = get_pageblock_migratetype(page);
3099 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3100 			    && !is_migrate_highatomic(mt))
3101 				set_pageblock_migratetype(page,
3102 							  MIGRATE_MOVABLE);
3103 		}
3104 	}
3105 
3106 
3107 	return 1UL << order;
3108 }
3109 
3110 /*
3111  * Update NUMA hit/miss statistics
3112  *
3113  * Must be called with interrupts disabled.
3114  */
3115 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3116 {
3117 #ifdef CONFIG_NUMA
3118 	enum numa_stat_item local_stat = NUMA_LOCAL;
3119 
3120 	/* skip numa counters update if numa stats is disabled */
3121 	if (!static_branch_likely(&vm_numa_stat_key))
3122 		return;
3123 
3124 	if (zone_to_nid(z) != numa_node_id())
3125 		local_stat = NUMA_OTHER;
3126 
3127 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3128 		__inc_numa_state(z, NUMA_HIT);
3129 	else {
3130 		__inc_numa_state(z, NUMA_MISS);
3131 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3132 	}
3133 	__inc_numa_state(z, local_stat);
3134 #endif
3135 }
3136 
3137 /* Remove page from the per-cpu list, caller must protect the list */
3138 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3139 			unsigned int alloc_flags,
3140 			struct per_cpu_pages *pcp,
3141 			struct list_head *list)
3142 {
3143 	struct page *page;
3144 
3145 	do {
3146 		if (list_empty(list)) {
3147 			pcp->count += rmqueue_bulk(zone, 0,
3148 					pcp->batch, list,
3149 					migratetype, alloc_flags);
3150 			if (unlikely(list_empty(list)))
3151 				return NULL;
3152 		}
3153 
3154 		page = list_first_entry(list, struct page, lru);
3155 		list_del(&page->lru);
3156 		pcp->count--;
3157 	} while (check_new_pcp(page));
3158 
3159 	return page;
3160 }
3161 
3162 /* Lock and remove page from the per-cpu list */
3163 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3164 			struct zone *zone, gfp_t gfp_flags,
3165 			int migratetype, unsigned int alloc_flags)
3166 {
3167 	struct per_cpu_pages *pcp;
3168 	struct list_head *list;
3169 	struct page *page;
3170 	unsigned long flags;
3171 
3172 	local_irq_save(flags);
3173 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3174 	list = &pcp->lists[migratetype];
3175 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3176 	if (page) {
3177 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3178 		zone_statistics(preferred_zone, zone);
3179 	}
3180 	local_irq_restore(flags);
3181 	return page;
3182 }
3183 
3184 /*
3185  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3186  */
3187 static inline
3188 struct page *rmqueue(struct zone *preferred_zone,
3189 			struct zone *zone, unsigned int order,
3190 			gfp_t gfp_flags, unsigned int alloc_flags,
3191 			int migratetype)
3192 {
3193 	unsigned long flags;
3194 	struct page *page;
3195 
3196 	if (likely(order == 0)) {
3197 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3198 					migratetype, alloc_flags);
3199 		goto out;
3200 	}
3201 
3202 	/*
3203 	 * We most definitely don't want callers attempting to
3204 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3205 	 */
3206 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3207 	spin_lock_irqsave(&zone->lock, flags);
3208 
3209 	do {
3210 		page = NULL;
3211 		if (alloc_flags & ALLOC_HARDER) {
3212 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3213 			if (page)
3214 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3215 		}
3216 		if (!page)
3217 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3218 	} while (page && check_new_pages(page, order));
3219 	spin_unlock(&zone->lock);
3220 	if (!page)
3221 		goto failed;
3222 	__mod_zone_freepage_state(zone, -(1 << order),
3223 				  get_pcppage_migratetype(page));
3224 
3225 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3226 	zone_statistics(preferred_zone, zone);
3227 	local_irq_restore(flags);
3228 
3229 out:
3230 	/* Separate test+clear to avoid unnecessary atomics */
3231 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3232 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3233 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3234 	}
3235 
3236 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3237 	return page;
3238 
3239 failed:
3240 	local_irq_restore(flags);
3241 	return NULL;
3242 }
3243 
3244 #ifdef CONFIG_FAIL_PAGE_ALLOC
3245 
3246 static struct {
3247 	struct fault_attr attr;
3248 
3249 	bool ignore_gfp_highmem;
3250 	bool ignore_gfp_reclaim;
3251 	u32 min_order;
3252 } fail_page_alloc = {
3253 	.attr = FAULT_ATTR_INITIALIZER,
3254 	.ignore_gfp_reclaim = true,
3255 	.ignore_gfp_highmem = true,
3256 	.min_order = 1,
3257 };
3258 
3259 static int __init setup_fail_page_alloc(char *str)
3260 {
3261 	return setup_fault_attr(&fail_page_alloc.attr, str);
3262 }
3263 __setup("fail_page_alloc=", setup_fail_page_alloc);
3264 
3265 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3266 {
3267 	if (order < fail_page_alloc.min_order)
3268 		return false;
3269 	if (gfp_mask & __GFP_NOFAIL)
3270 		return false;
3271 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3272 		return false;
3273 	if (fail_page_alloc.ignore_gfp_reclaim &&
3274 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3275 		return false;
3276 
3277 	return should_fail(&fail_page_alloc.attr, 1 << order);
3278 }
3279 
3280 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3281 
3282 static int __init fail_page_alloc_debugfs(void)
3283 {
3284 	umode_t mode = S_IFREG | 0600;
3285 	struct dentry *dir;
3286 
3287 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3288 					&fail_page_alloc.attr);
3289 
3290 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3291 			    &fail_page_alloc.ignore_gfp_reclaim);
3292 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3293 			    &fail_page_alloc.ignore_gfp_highmem);
3294 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3295 
3296 	return 0;
3297 }
3298 
3299 late_initcall(fail_page_alloc_debugfs);
3300 
3301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3302 
3303 #else /* CONFIG_FAIL_PAGE_ALLOC */
3304 
3305 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3306 {
3307 	return false;
3308 }
3309 
3310 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3311 
3312 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3313 {
3314 	return __should_fail_alloc_page(gfp_mask, order);
3315 }
3316 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3317 
3318 /*
3319  * Return true if free base pages are above 'mark'. For high-order checks it
3320  * will return true of the order-0 watermark is reached and there is at least
3321  * one free page of a suitable size. Checking now avoids taking the zone lock
3322  * to check in the allocation paths if no pages are free.
3323  */
3324 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3325 			 int classzone_idx, unsigned int alloc_flags,
3326 			 long free_pages)
3327 {
3328 	long min = mark;
3329 	int o;
3330 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3331 
3332 	/* free_pages may go negative - that's OK */
3333 	free_pages -= (1 << order) - 1;
3334 
3335 	if (alloc_flags & ALLOC_HIGH)
3336 		min -= min / 2;
3337 
3338 	/*
3339 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3340 	 * the high-atomic reserves. This will over-estimate the size of the
3341 	 * atomic reserve but it avoids a search.
3342 	 */
3343 	if (likely(!alloc_harder)) {
3344 		free_pages -= z->nr_reserved_highatomic;
3345 	} else {
3346 		/*
3347 		 * OOM victims can try even harder than normal ALLOC_HARDER
3348 		 * users on the grounds that it's definitely going to be in
3349 		 * the exit path shortly and free memory. Any allocation it
3350 		 * makes during the free path will be small and short-lived.
3351 		 */
3352 		if (alloc_flags & ALLOC_OOM)
3353 			min -= min / 2;
3354 		else
3355 			min -= min / 4;
3356 	}
3357 
3358 
3359 #ifdef CONFIG_CMA
3360 	/* If allocation can't use CMA areas don't use free CMA pages */
3361 	if (!(alloc_flags & ALLOC_CMA))
3362 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3363 #endif
3364 
3365 	/*
3366 	 * Check watermarks for an order-0 allocation request. If these
3367 	 * are not met, then a high-order request also cannot go ahead
3368 	 * even if a suitable page happened to be free.
3369 	 */
3370 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3371 		return false;
3372 
3373 	/* If this is an order-0 request then the watermark is fine */
3374 	if (!order)
3375 		return true;
3376 
3377 	/* For a high-order request, check at least one suitable page is free */
3378 	for (o = order; o < MAX_ORDER; o++) {
3379 		struct free_area *area = &z->free_area[o];
3380 		int mt;
3381 
3382 		if (!area->nr_free)
3383 			continue;
3384 
3385 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3386 			if (!free_area_empty(area, mt))
3387 				return true;
3388 		}
3389 
3390 #ifdef CONFIG_CMA
3391 		if ((alloc_flags & ALLOC_CMA) &&
3392 		    !free_area_empty(area, MIGRATE_CMA)) {
3393 			return true;
3394 		}
3395 #endif
3396 		if (alloc_harder &&
3397 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3398 			return true;
3399 	}
3400 	return false;
3401 }
3402 
3403 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3404 		      int classzone_idx, unsigned int alloc_flags)
3405 {
3406 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3407 					zone_page_state(z, NR_FREE_PAGES));
3408 }
3409 
3410 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3411 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3412 {
3413 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3414 	long cma_pages = 0;
3415 
3416 #ifdef CONFIG_CMA
3417 	/* If allocation can't use CMA areas don't use free CMA pages */
3418 	if (!(alloc_flags & ALLOC_CMA))
3419 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3420 #endif
3421 
3422 	/*
3423 	 * Fast check for order-0 only. If this fails then the reserves
3424 	 * need to be calculated. There is a corner case where the check
3425 	 * passes but only the high-order atomic reserve are free. If
3426 	 * the caller is !atomic then it'll uselessly search the free
3427 	 * list. That corner case is then slower but it is harmless.
3428 	 */
3429 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3430 		return true;
3431 
3432 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3433 					free_pages);
3434 }
3435 
3436 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3437 			unsigned long mark, int classzone_idx)
3438 {
3439 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3440 
3441 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3442 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3443 
3444 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3445 								free_pages);
3446 }
3447 
3448 #ifdef CONFIG_NUMA
3449 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3450 {
3451 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3452 				RECLAIM_DISTANCE;
3453 }
3454 #else	/* CONFIG_NUMA */
3455 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3456 {
3457 	return true;
3458 }
3459 #endif	/* CONFIG_NUMA */
3460 
3461 /*
3462  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3463  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3464  * premature use of a lower zone may cause lowmem pressure problems that
3465  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3466  * probably too small. It only makes sense to spread allocations to avoid
3467  * fragmentation between the Normal and DMA32 zones.
3468  */
3469 static inline unsigned int
3470 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3471 {
3472 	unsigned int alloc_flags = 0;
3473 
3474 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3475 		alloc_flags |= ALLOC_KSWAPD;
3476 
3477 #ifdef CONFIG_ZONE_DMA32
3478 	if (!zone)
3479 		return alloc_flags;
3480 
3481 	if (zone_idx(zone) != ZONE_NORMAL)
3482 		return alloc_flags;
3483 
3484 	/*
3485 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3486 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3487 	 * on UMA that if Normal is populated then so is DMA32.
3488 	 */
3489 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3490 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3491 		return alloc_flags;
3492 
3493 	alloc_flags |= ALLOC_NOFRAGMENT;
3494 #endif /* CONFIG_ZONE_DMA32 */
3495 	return alloc_flags;
3496 }
3497 
3498 /*
3499  * get_page_from_freelist goes through the zonelist trying to allocate
3500  * a page.
3501  */
3502 static struct page *
3503 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3504 						const struct alloc_context *ac)
3505 {
3506 	struct zoneref *z;
3507 	struct zone *zone;
3508 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3509 	bool no_fallback;
3510 
3511 retry:
3512 	/*
3513 	 * Scan zonelist, looking for a zone with enough free.
3514 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3515 	 */
3516 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3517 	z = ac->preferred_zoneref;
3518 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3519 								ac->nodemask) {
3520 		struct page *page;
3521 		unsigned long mark;
3522 
3523 		if (cpusets_enabled() &&
3524 			(alloc_flags & ALLOC_CPUSET) &&
3525 			!__cpuset_zone_allowed(zone, gfp_mask))
3526 				continue;
3527 		/*
3528 		 * When allocating a page cache page for writing, we
3529 		 * want to get it from a node that is within its dirty
3530 		 * limit, such that no single node holds more than its
3531 		 * proportional share of globally allowed dirty pages.
3532 		 * The dirty limits take into account the node's
3533 		 * lowmem reserves and high watermark so that kswapd
3534 		 * should be able to balance it without having to
3535 		 * write pages from its LRU list.
3536 		 *
3537 		 * XXX: For now, allow allocations to potentially
3538 		 * exceed the per-node dirty limit in the slowpath
3539 		 * (spread_dirty_pages unset) before going into reclaim,
3540 		 * which is important when on a NUMA setup the allowed
3541 		 * nodes are together not big enough to reach the
3542 		 * global limit.  The proper fix for these situations
3543 		 * will require awareness of nodes in the
3544 		 * dirty-throttling and the flusher threads.
3545 		 */
3546 		if (ac->spread_dirty_pages) {
3547 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3548 				continue;
3549 
3550 			if (!node_dirty_ok(zone->zone_pgdat)) {
3551 				last_pgdat_dirty_limit = zone->zone_pgdat;
3552 				continue;
3553 			}
3554 		}
3555 
3556 		if (no_fallback && nr_online_nodes > 1 &&
3557 		    zone != ac->preferred_zoneref->zone) {
3558 			int local_nid;
3559 
3560 			/*
3561 			 * If moving to a remote node, retry but allow
3562 			 * fragmenting fallbacks. Locality is more important
3563 			 * than fragmentation avoidance.
3564 			 */
3565 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3566 			if (zone_to_nid(zone) != local_nid) {
3567 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3568 				goto retry;
3569 			}
3570 		}
3571 
3572 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3573 		if (!zone_watermark_fast(zone, order, mark,
3574 				       ac_classzone_idx(ac), alloc_flags)) {
3575 			int ret;
3576 
3577 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3578 			/*
3579 			 * Watermark failed for this zone, but see if we can
3580 			 * grow this zone if it contains deferred pages.
3581 			 */
3582 			if (static_branch_unlikely(&deferred_pages)) {
3583 				if (_deferred_grow_zone(zone, order))
3584 					goto try_this_zone;
3585 			}
3586 #endif
3587 			/* Checked here to keep the fast path fast */
3588 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3589 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3590 				goto try_this_zone;
3591 
3592 			if (node_reclaim_mode == 0 ||
3593 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3594 				continue;
3595 
3596 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3597 			switch (ret) {
3598 			case NODE_RECLAIM_NOSCAN:
3599 				/* did not scan */
3600 				continue;
3601 			case NODE_RECLAIM_FULL:
3602 				/* scanned but unreclaimable */
3603 				continue;
3604 			default:
3605 				/* did we reclaim enough */
3606 				if (zone_watermark_ok(zone, order, mark,
3607 						ac_classzone_idx(ac), alloc_flags))
3608 					goto try_this_zone;
3609 
3610 				continue;
3611 			}
3612 		}
3613 
3614 try_this_zone:
3615 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3616 				gfp_mask, alloc_flags, ac->migratetype);
3617 		if (page) {
3618 			prep_new_page(page, order, gfp_mask, alloc_flags);
3619 
3620 			/*
3621 			 * If this is a high-order atomic allocation then check
3622 			 * if the pageblock should be reserved for the future
3623 			 */
3624 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3625 				reserve_highatomic_pageblock(page, zone, order);
3626 
3627 			return page;
3628 		} else {
3629 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3630 			/* Try again if zone has deferred pages */
3631 			if (static_branch_unlikely(&deferred_pages)) {
3632 				if (_deferred_grow_zone(zone, order))
3633 					goto try_this_zone;
3634 			}
3635 #endif
3636 		}
3637 	}
3638 
3639 	/*
3640 	 * It's possible on a UMA machine to get through all zones that are
3641 	 * fragmented. If avoiding fragmentation, reset and try again.
3642 	 */
3643 	if (no_fallback) {
3644 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3645 		goto retry;
3646 	}
3647 
3648 	return NULL;
3649 }
3650 
3651 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3652 {
3653 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3654 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3655 
3656 	if (!__ratelimit(&show_mem_rs))
3657 		return;
3658 
3659 	/*
3660 	 * This documents exceptions given to allocations in certain
3661 	 * contexts that are allowed to allocate outside current's set
3662 	 * of allowed nodes.
3663 	 */
3664 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3665 		if (tsk_is_oom_victim(current) ||
3666 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3667 			filter &= ~SHOW_MEM_FILTER_NODES;
3668 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3669 		filter &= ~SHOW_MEM_FILTER_NODES;
3670 
3671 	show_mem(filter, nodemask);
3672 }
3673 
3674 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3675 {
3676 	struct va_format vaf;
3677 	va_list args;
3678 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3679 				      DEFAULT_RATELIMIT_BURST);
3680 
3681 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3682 		return;
3683 
3684 	va_start(args, fmt);
3685 	vaf.fmt = fmt;
3686 	vaf.va = &args;
3687 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3688 			current->comm, &vaf, gfp_mask, &gfp_mask,
3689 			nodemask_pr_args(nodemask));
3690 	va_end(args);
3691 
3692 	cpuset_print_current_mems_allowed();
3693 	pr_cont("\n");
3694 	dump_stack();
3695 	warn_alloc_show_mem(gfp_mask, nodemask);
3696 }
3697 
3698 static inline struct page *
3699 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3700 			      unsigned int alloc_flags,
3701 			      const struct alloc_context *ac)
3702 {
3703 	struct page *page;
3704 
3705 	page = get_page_from_freelist(gfp_mask, order,
3706 			alloc_flags|ALLOC_CPUSET, ac);
3707 	/*
3708 	 * fallback to ignore cpuset restriction if our nodes
3709 	 * are depleted
3710 	 */
3711 	if (!page)
3712 		page = get_page_from_freelist(gfp_mask, order,
3713 				alloc_flags, ac);
3714 
3715 	return page;
3716 }
3717 
3718 static inline struct page *
3719 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3720 	const struct alloc_context *ac, unsigned long *did_some_progress)
3721 {
3722 	struct oom_control oc = {
3723 		.zonelist = ac->zonelist,
3724 		.nodemask = ac->nodemask,
3725 		.memcg = NULL,
3726 		.gfp_mask = gfp_mask,
3727 		.order = order,
3728 	};
3729 	struct page *page;
3730 
3731 	*did_some_progress = 0;
3732 
3733 	/*
3734 	 * Acquire the oom lock.  If that fails, somebody else is
3735 	 * making progress for us.
3736 	 */
3737 	if (!mutex_trylock(&oom_lock)) {
3738 		*did_some_progress = 1;
3739 		schedule_timeout_uninterruptible(1);
3740 		return NULL;
3741 	}
3742 
3743 	/*
3744 	 * Go through the zonelist yet one more time, keep very high watermark
3745 	 * here, this is only to catch a parallel oom killing, we must fail if
3746 	 * we're still under heavy pressure. But make sure that this reclaim
3747 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3748 	 * allocation which will never fail due to oom_lock already held.
3749 	 */
3750 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3751 				      ~__GFP_DIRECT_RECLAIM, order,
3752 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3753 	if (page)
3754 		goto out;
3755 
3756 	/* Coredumps can quickly deplete all memory reserves */
3757 	if (current->flags & PF_DUMPCORE)
3758 		goto out;
3759 	/* The OOM killer will not help higher order allocs */
3760 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3761 		goto out;
3762 	/*
3763 	 * We have already exhausted all our reclaim opportunities without any
3764 	 * success so it is time to admit defeat. We will skip the OOM killer
3765 	 * because it is very likely that the caller has a more reasonable
3766 	 * fallback than shooting a random task.
3767 	 */
3768 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3769 		goto out;
3770 	/* The OOM killer does not needlessly kill tasks for lowmem */
3771 	if (ac->high_zoneidx < ZONE_NORMAL)
3772 		goto out;
3773 	if (pm_suspended_storage())
3774 		goto out;
3775 	/*
3776 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3777 	 * other request to make a forward progress.
3778 	 * We are in an unfortunate situation where out_of_memory cannot
3779 	 * do much for this context but let's try it to at least get
3780 	 * access to memory reserved if the current task is killed (see
3781 	 * out_of_memory). Once filesystems are ready to handle allocation
3782 	 * failures more gracefully we should just bail out here.
3783 	 */
3784 
3785 	/* The OOM killer may not free memory on a specific node */
3786 	if (gfp_mask & __GFP_THISNODE)
3787 		goto out;
3788 
3789 	/* Exhausted what can be done so it's blame time */
3790 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3791 		*did_some_progress = 1;
3792 
3793 		/*
3794 		 * Help non-failing allocations by giving them access to memory
3795 		 * reserves
3796 		 */
3797 		if (gfp_mask & __GFP_NOFAIL)
3798 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3799 					ALLOC_NO_WATERMARKS, ac);
3800 	}
3801 out:
3802 	mutex_unlock(&oom_lock);
3803 	return page;
3804 }
3805 
3806 /*
3807  * Maximum number of compaction retries wit a progress before OOM
3808  * killer is consider as the only way to move forward.
3809  */
3810 #define MAX_COMPACT_RETRIES 16
3811 
3812 #ifdef CONFIG_COMPACTION
3813 /* Try memory compaction for high-order allocations before reclaim */
3814 static struct page *
3815 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3816 		unsigned int alloc_flags, const struct alloc_context *ac,
3817 		enum compact_priority prio, enum compact_result *compact_result)
3818 {
3819 	struct page *page = NULL;
3820 	unsigned long pflags;
3821 	unsigned int noreclaim_flag;
3822 
3823 	if (!order)
3824 		return NULL;
3825 
3826 	psi_memstall_enter(&pflags);
3827 	noreclaim_flag = memalloc_noreclaim_save();
3828 
3829 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3830 								prio, &page);
3831 
3832 	memalloc_noreclaim_restore(noreclaim_flag);
3833 	psi_memstall_leave(&pflags);
3834 
3835 	/*
3836 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3837 	 * count a compaction stall
3838 	 */
3839 	count_vm_event(COMPACTSTALL);
3840 
3841 	/* Prep a captured page if available */
3842 	if (page)
3843 		prep_new_page(page, order, gfp_mask, alloc_flags);
3844 
3845 	/* Try get a page from the freelist if available */
3846 	if (!page)
3847 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3848 
3849 	if (page) {
3850 		struct zone *zone = page_zone(page);
3851 
3852 		zone->compact_blockskip_flush = false;
3853 		compaction_defer_reset(zone, order, true);
3854 		count_vm_event(COMPACTSUCCESS);
3855 		return page;
3856 	}
3857 
3858 	/*
3859 	 * It's bad if compaction run occurs and fails. The most likely reason
3860 	 * is that pages exist, but not enough to satisfy watermarks.
3861 	 */
3862 	count_vm_event(COMPACTFAIL);
3863 
3864 	cond_resched();
3865 
3866 	return NULL;
3867 }
3868 
3869 static inline bool
3870 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3871 		     enum compact_result compact_result,
3872 		     enum compact_priority *compact_priority,
3873 		     int *compaction_retries)
3874 {
3875 	int max_retries = MAX_COMPACT_RETRIES;
3876 	int min_priority;
3877 	bool ret = false;
3878 	int retries = *compaction_retries;
3879 	enum compact_priority priority = *compact_priority;
3880 
3881 	if (!order)
3882 		return false;
3883 
3884 	if (compaction_made_progress(compact_result))
3885 		(*compaction_retries)++;
3886 
3887 	/*
3888 	 * compaction considers all the zone as desperately out of memory
3889 	 * so it doesn't really make much sense to retry except when the
3890 	 * failure could be caused by insufficient priority
3891 	 */
3892 	if (compaction_failed(compact_result))
3893 		goto check_priority;
3894 
3895 	/*
3896 	 * make sure the compaction wasn't deferred or didn't bail out early
3897 	 * due to locks contention before we declare that we should give up.
3898 	 * But do not retry if the given zonelist is not suitable for
3899 	 * compaction.
3900 	 */
3901 	if (compaction_withdrawn(compact_result)) {
3902 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3903 		goto out;
3904 	}
3905 
3906 	/*
3907 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3908 	 * costly ones because they are de facto nofail and invoke OOM
3909 	 * killer to move on while costly can fail and users are ready
3910 	 * to cope with that. 1/4 retries is rather arbitrary but we
3911 	 * would need much more detailed feedback from compaction to
3912 	 * make a better decision.
3913 	 */
3914 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3915 		max_retries /= 4;
3916 	if (*compaction_retries <= max_retries) {
3917 		ret = true;
3918 		goto out;
3919 	}
3920 
3921 	/*
3922 	 * Make sure there are attempts at the highest priority if we exhausted
3923 	 * all retries or failed at the lower priorities.
3924 	 */
3925 check_priority:
3926 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3927 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3928 
3929 	if (*compact_priority > min_priority) {
3930 		(*compact_priority)--;
3931 		*compaction_retries = 0;
3932 		ret = true;
3933 	}
3934 out:
3935 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3936 	return ret;
3937 }
3938 #else
3939 static inline struct page *
3940 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3941 		unsigned int alloc_flags, const struct alloc_context *ac,
3942 		enum compact_priority prio, enum compact_result *compact_result)
3943 {
3944 	*compact_result = COMPACT_SKIPPED;
3945 	return NULL;
3946 }
3947 
3948 static inline bool
3949 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3950 		     enum compact_result compact_result,
3951 		     enum compact_priority *compact_priority,
3952 		     int *compaction_retries)
3953 {
3954 	struct zone *zone;
3955 	struct zoneref *z;
3956 
3957 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3958 		return false;
3959 
3960 	/*
3961 	 * There are setups with compaction disabled which would prefer to loop
3962 	 * inside the allocator rather than hit the oom killer prematurely.
3963 	 * Let's give them a good hope and keep retrying while the order-0
3964 	 * watermarks are OK.
3965 	 */
3966 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3967 					ac->nodemask) {
3968 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3969 					ac_classzone_idx(ac), alloc_flags))
3970 			return true;
3971 	}
3972 	return false;
3973 }
3974 #endif /* CONFIG_COMPACTION */
3975 
3976 #ifdef CONFIG_LOCKDEP
3977 static struct lockdep_map __fs_reclaim_map =
3978 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
3979 
3980 static bool __need_fs_reclaim(gfp_t gfp_mask)
3981 {
3982 	gfp_mask = current_gfp_context(gfp_mask);
3983 
3984 	/* no reclaim without waiting on it */
3985 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
3986 		return false;
3987 
3988 	/* this guy won't enter reclaim */
3989 	if (current->flags & PF_MEMALLOC)
3990 		return false;
3991 
3992 	/* We're only interested __GFP_FS allocations for now */
3993 	if (!(gfp_mask & __GFP_FS))
3994 		return false;
3995 
3996 	if (gfp_mask & __GFP_NOLOCKDEP)
3997 		return false;
3998 
3999 	return true;
4000 }
4001 
4002 void __fs_reclaim_acquire(void)
4003 {
4004 	lock_map_acquire(&__fs_reclaim_map);
4005 }
4006 
4007 void __fs_reclaim_release(void)
4008 {
4009 	lock_map_release(&__fs_reclaim_map);
4010 }
4011 
4012 void fs_reclaim_acquire(gfp_t gfp_mask)
4013 {
4014 	if (__need_fs_reclaim(gfp_mask))
4015 		__fs_reclaim_acquire();
4016 }
4017 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4018 
4019 void fs_reclaim_release(gfp_t gfp_mask)
4020 {
4021 	if (__need_fs_reclaim(gfp_mask))
4022 		__fs_reclaim_release();
4023 }
4024 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4025 #endif
4026 
4027 /* Perform direct synchronous page reclaim */
4028 static int
4029 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4030 					const struct alloc_context *ac)
4031 {
4032 	struct reclaim_state reclaim_state;
4033 	int progress;
4034 	unsigned int noreclaim_flag;
4035 	unsigned long pflags;
4036 
4037 	cond_resched();
4038 
4039 	/* We now go into synchronous reclaim */
4040 	cpuset_memory_pressure_bump();
4041 	psi_memstall_enter(&pflags);
4042 	fs_reclaim_acquire(gfp_mask);
4043 	noreclaim_flag = memalloc_noreclaim_save();
4044 	reclaim_state.reclaimed_slab = 0;
4045 	current->reclaim_state = &reclaim_state;
4046 
4047 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4048 								ac->nodemask);
4049 
4050 	current->reclaim_state = NULL;
4051 	memalloc_noreclaim_restore(noreclaim_flag);
4052 	fs_reclaim_release(gfp_mask);
4053 	psi_memstall_leave(&pflags);
4054 
4055 	cond_resched();
4056 
4057 	return progress;
4058 }
4059 
4060 /* The really slow allocator path where we enter direct reclaim */
4061 static inline struct page *
4062 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4063 		unsigned int alloc_flags, const struct alloc_context *ac,
4064 		unsigned long *did_some_progress)
4065 {
4066 	struct page *page = NULL;
4067 	bool drained = false;
4068 
4069 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4070 	if (unlikely(!(*did_some_progress)))
4071 		return NULL;
4072 
4073 retry:
4074 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4075 
4076 	/*
4077 	 * If an allocation failed after direct reclaim, it could be because
4078 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4079 	 * Shrink them them and try again
4080 	 */
4081 	if (!page && !drained) {
4082 		unreserve_highatomic_pageblock(ac, false);
4083 		drain_all_pages(NULL);
4084 		drained = true;
4085 		goto retry;
4086 	}
4087 
4088 	return page;
4089 }
4090 
4091 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4092 			     const struct alloc_context *ac)
4093 {
4094 	struct zoneref *z;
4095 	struct zone *zone;
4096 	pg_data_t *last_pgdat = NULL;
4097 	enum zone_type high_zoneidx = ac->high_zoneidx;
4098 
4099 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4100 					ac->nodemask) {
4101 		if (last_pgdat != zone->zone_pgdat)
4102 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4103 		last_pgdat = zone->zone_pgdat;
4104 	}
4105 }
4106 
4107 static inline unsigned int
4108 gfp_to_alloc_flags(gfp_t gfp_mask)
4109 {
4110 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4111 
4112 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4113 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4114 
4115 	/*
4116 	 * The caller may dip into page reserves a bit more if the caller
4117 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4118 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4119 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4120 	 */
4121 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4122 
4123 	if (gfp_mask & __GFP_ATOMIC) {
4124 		/*
4125 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4126 		 * if it can't schedule.
4127 		 */
4128 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4129 			alloc_flags |= ALLOC_HARDER;
4130 		/*
4131 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4132 		 * comment for __cpuset_node_allowed().
4133 		 */
4134 		alloc_flags &= ~ALLOC_CPUSET;
4135 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4136 		alloc_flags |= ALLOC_HARDER;
4137 
4138 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4139 		alloc_flags |= ALLOC_KSWAPD;
4140 
4141 #ifdef CONFIG_CMA
4142 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4143 		alloc_flags |= ALLOC_CMA;
4144 #endif
4145 	return alloc_flags;
4146 }
4147 
4148 static bool oom_reserves_allowed(struct task_struct *tsk)
4149 {
4150 	if (!tsk_is_oom_victim(tsk))
4151 		return false;
4152 
4153 	/*
4154 	 * !MMU doesn't have oom reaper so give access to memory reserves
4155 	 * only to the thread with TIF_MEMDIE set
4156 	 */
4157 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4158 		return false;
4159 
4160 	return true;
4161 }
4162 
4163 /*
4164  * Distinguish requests which really need access to full memory
4165  * reserves from oom victims which can live with a portion of it
4166  */
4167 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4168 {
4169 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4170 		return 0;
4171 	if (gfp_mask & __GFP_MEMALLOC)
4172 		return ALLOC_NO_WATERMARKS;
4173 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4174 		return ALLOC_NO_WATERMARKS;
4175 	if (!in_interrupt()) {
4176 		if (current->flags & PF_MEMALLOC)
4177 			return ALLOC_NO_WATERMARKS;
4178 		else if (oom_reserves_allowed(current))
4179 			return ALLOC_OOM;
4180 	}
4181 
4182 	return 0;
4183 }
4184 
4185 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4186 {
4187 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4188 }
4189 
4190 /*
4191  * Checks whether it makes sense to retry the reclaim to make a forward progress
4192  * for the given allocation request.
4193  *
4194  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4195  * without success, or when we couldn't even meet the watermark if we
4196  * reclaimed all remaining pages on the LRU lists.
4197  *
4198  * Returns true if a retry is viable or false to enter the oom path.
4199  */
4200 static inline bool
4201 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4202 		     struct alloc_context *ac, int alloc_flags,
4203 		     bool did_some_progress, int *no_progress_loops)
4204 {
4205 	struct zone *zone;
4206 	struct zoneref *z;
4207 	bool ret = false;
4208 
4209 	/*
4210 	 * Costly allocations might have made a progress but this doesn't mean
4211 	 * their order will become available due to high fragmentation so
4212 	 * always increment the no progress counter for them
4213 	 */
4214 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4215 		*no_progress_loops = 0;
4216 	else
4217 		(*no_progress_loops)++;
4218 
4219 	/*
4220 	 * Make sure we converge to OOM if we cannot make any progress
4221 	 * several times in the row.
4222 	 */
4223 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4224 		/* Before OOM, exhaust highatomic_reserve */
4225 		return unreserve_highatomic_pageblock(ac, true);
4226 	}
4227 
4228 	/*
4229 	 * Keep reclaiming pages while there is a chance this will lead
4230 	 * somewhere.  If none of the target zones can satisfy our allocation
4231 	 * request even if all reclaimable pages are considered then we are
4232 	 * screwed and have to go OOM.
4233 	 */
4234 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4235 					ac->nodemask) {
4236 		unsigned long available;
4237 		unsigned long reclaimable;
4238 		unsigned long min_wmark = min_wmark_pages(zone);
4239 		bool wmark;
4240 
4241 		available = reclaimable = zone_reclaimable_pages(zone);
4242 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4243 
4244 		/*
4245 		 * Would the allocation succeed if we reclaimed all
4246 		 * reclaimable pages?
4247 		 */
4248 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4249 				ac_classzone_idx(ac), alloc_flags, available);
4250 		trace_reclaim_retry_zone(z, order, reclaimable,
4251 				available, min_wmark, *no_progress_loops, wmark);
4252 		if (wmark) {
4253 			/*
4254 			 * If we didn't make any progress and have a lot of
4255 			 * dirty + writeback pages then we should wait for
4256 			 * an IO to complete to slow down the reclaim and
4257 			 * prevent from pre mature OOM
4258 			 */
4259 			if (!did_some_progress) {
4260 				unsigned long write_pending;
4261 
4262 				write_pending = zone_page_state_snapshot(zone,
4263 							NR_ZONE_WRITE_PENDING);
4264 
4265 				if (2 * write_pending > reclaimable) {
4266 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4267 					return true;
4268 				}
4269 			}
4270 
4271 			ret = true;
4272 			goto out;
4273 		}
4274 	}
4275 
4276 out:
4277 	/*
4278 	 * Memory allocation/reclaim might be called from a WQ context and the
4279 	 * current implementation of the WQ concurrency control doesn't
4280 	 * recognize that a particular WQ is congested if the worker thread is
4281 	 * looping without ever sleeping. Therefore we have to do a short sleep
4282 	 * here rather than calling cond_resched().
4283 	 */
4284 	if (current->flags & PF_WQ_WORKER)
4285 		schedule_timeout_uninterruptible(1);
4286 	else
4287 		cond_resched();
4288 	return ret;
4289 }
4290 
4291 static inline bool
4292 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4293 {
4294 	/*
4295 	 * It's possible that cpuset's mems_allowed and the nodemask from
4296 	 * mempolicy don't intersect. This should be normally dealt with by
4297 	 * policy_nodemask(), but it's possible to race with cpuset update in
4298 	 * such a way the check therein was true, and then it became false
4299 	 * before we got our cpuset_mems_cookie here.
4300 	 * This assumes that for all allocations, ac->nodemask can come only
4301 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4302 	 * when it does not intersect with the cpuset restrictions) or the
4303 	 * caller can deal with a violated nodemask.
4304 	 */
4305 	if (cpusets_enabled() && ac->nodemask &&
4306 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4307 		ac->nodemask = NULL;
4308 		return true;
4309 	}
4310 
4311 	/*
4312 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4313 	 * possible to race with parallel threads in such a way that our
4314 	 * allocation can fail while the mask is being updated. If we are about
4315 	 * to fail, check if the cpuset changed during allocation and if so,
4316 	 * retry.
4317 	 */
4318 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4319 		return true;
4320 
4321 	return false;
4322 }
4323 
4324 static inline struct page *
4325 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4326 						struct alloc_context *ac)
4327 {
4328 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4329 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4330 	struct page *page = NULL;
4331 	unsigned int alloc_flags;
4332 	unsigned long did_some_progress;
4333 	enum compact_priority compact_priority;
4334 	enum compact_result compact_result;
4335 	int compaction_retries;
4336 	int no_progress_loops;
4337 	unsigned int cpuset_mems_cookie;
4338 	int reserve_flags;
4339 
4340 	/*
4341 	 * We also sanity check to catch abuse of atomic reserves being used by
4342 	 * callers that are not in atomic context.
4343 	 */
4344 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4345 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4346 		gfp_mask &= ~__GFP_ATOMIC;
4347 
4348 retry_cpuset:
4349 	compaction_retries = 0;
4350 	no_progress_loops = 0;
4351 	compact_priority = DEF_COMPACT_PRIORITY;
4352 	cpuset_mems_cookie = read_mems_allowed_begin();
4353 
4354 	/*
4355 	 * The fast path uses conservative alloc_flags to succeed only until
4356 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4357 	 * alloc_flags precisely. So we do that now.
4358 	 */
4359 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4360 
4361 	/*
4362 	 * We need to recalculate the starting point for the zonelist iterator
4363 	 * because we might have used different nodemask in the fast path, or
4364 	 * there was a cpuset modification and we are retrying - otherwise we
4365 	 * could end up iterating over non-eligible zones endlessly.
4366 	 */
4367 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4368 					ac->high_zoneidx, ac->nodemask);
4369 	if (!ac->preferred_zoneref->zone)
4370 		goto nopage;
4371 
4372 	if (alloc_flags & ALLOC_KSWAPD)
4373 		wake_all_kswapds(order, gfp_mask, ac);
4374 
4375 	/*
4376 	 * The adjusted alloc_flags might result in immediate success, so try
4377 	 * that first
4378 	 */
4379 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4380 	if (page)
4381 		goto got_pg;
4382 
4383 	/*
4384 	 * For costly allocations, try direct compaction first, as it's likely
4385 	 * that we have enough base pages and don't need to reclaim. For non-
4386 	 * movable high-order allocations, do that as well, as compaction will
4387 	 * try prevent permanent fragmentation by migrating from blocks of the
4388 	 * same migratetype.
4389 	 * Don't try this for allocations that are allowed to ignore
4390 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4391 	 */
4392 	if (can_direct_reclaim &&
4393 			(costly_order ||
4394 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4395 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4396 		page = __alloc_pages_direct_compact(gfp_mask, order,
4397 						alloc_flags, ac,
4398 						INIT_COMPACT_PRIORITY,
4399 						&compact_result);
4400 		if (page)
4401 			goto got_pg;
4402 
4403 		/*
4404 		 * Checks for costly allocations with __GFP_NORETRY, which
4405 		 * includes THP page fault allocations
4406 		 */
4407 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4408 			/*
4409 			 * If compaction is deferred for high-order allocations,
4410 			 * it is because sync compaction recently failed. If
4411 			 * this is the case and the caller requested a THP
4412 			 * allocation, we do not want to heavily disrupt the
4413 			 * system, so we fail the allocation instead of entering
4414 			 * direct reclaim.
4415 			 */
4416 			if (compact_result == COMPACT_DEFERRED)
4417 				goto nopage;
4418 
4419 			/*
4420 			 * Looks like reclaim/compaction is worth trying, but
4421 			 * sync compaction could be very expensive, so keep
4422 			 * using async compaction.
4423 			 */
4424 			compact_priority = INIT_COMPACT_PRIORITY;
4425 		}
4426 	}
4427 
4428 retry:
4429 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4430 	if (alloc_flags & ALLOC_KSWAPD)
4431 		wake_all_kswapds(order, gfp_mask, ac);
4432 
4433 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4434 	if (reserve_flags)
4435 		alloc_flags = reserve_flags;
4436 
4437 	/*
4438 	 * Reset the nodemask and zonelist iterators if memory policies can be
4439 	 * ignored. These allocations are high priority and system rather than
4440 	 * user oriented.
4441 	 */
4442 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4443 		ac->nodemask = NULL;
4444 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4445 					ac->high_zoneidx, ac->nodemask);
4446 	}
4447 
4448 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4449 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4450 	if (page)
4451 		goto got_pg;
4452 
4453 	/* Caller is not willing to reclaim, we can't balance anything */
4454 	if (!can_direct_reclaim)
4455 		goto nopage;
4456 
4457 	/* Avoid recursion of direct reclaim */
4458 	if (current->flags & PF_MEMALLOC)
4459 		goto nopage;
4460 
4461 	/* Try direct reclaim and then allocating */
4462 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4463 							&did_some_progress);
4464 	if (page)
4465 		goto got_pg;
4466 
4467 	/* Try direct compaction and then allocating */
4468 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4469 					compact_priority, &compact_result);
4470 	if (page)
4471 		goto got_pg;
4472 
4473 	/* Do not loop if specifically requested */
4474 	if (gfp_mask & __GFP_NORETRY)
4475 		goto nopage;
4476 
4477 	/*
4478 	 * Do not retry costly high order allocations unless they are
4479 	 * __GFP_RETRY_MAYFAIL
4480 	 */
4481 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4482 		goto nopage;
4483 
4484 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4485 				 did_some_progress > 0, &no_progress_loops))
4486 		goto retry;
4487 
4488 	/*
4489 	 * It doesn't make any sense to retry for the compaction if the order-0
4490 	 * reclaim is not able to make any progress because the current
4491 	 * implementation of the compaction depends on the sufficient amount
4492 	 * of free memory (see __compaction_suitable)
4493 	 */
4494 	if (did_some_progress > 0 &&
4495 			should_compact_retry(ac, order, alloc_flags,
4496 				compact_result, &compact_priority,
4497 				&compaction_retries))
4498 		goto retry;
4499 
4500 
4501 	/* Deal with possible cpuset update races before we start OOM killing */
4502 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4503 		goto retry_cpuset;
4504 
4505 	/* Reclaim has failed us, start killing things */
4506 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4507 	if (page)
4508 		goto got_pg;
4509 
4510 	/* Avoid allocations with no watermarks from looping endlessly */
4511 	if (tsk_is_oom_victim(current) &&
4512 	    (alloc_flags == ALLOC_OOM ||
4513 	     (gfp_mask & __GFP_NOMEMALLOC)))
4514 		goto nopage;
4515 
4516 	/* Retry as long as the OOM killer is making progress */
4517 	if (did_some_progress) {
4518 		no_progress_loops = 0;
4519 		goto retry;
4520 	}
4521 
4522 nopage:
4523 	/* Deal with possible cpuset update races before we fail */
4524 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4525 		goto retry_cpuset;
4526 
4527 	/*
4528 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4529 	 * we always retry
4530 	 */
4531 	if (gfp_mask & __GFP_NOFAIL) {
4532 		/*
4533 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4534 		 * of any new users that actually require GFP_NOWAIT
4535 		 */
4536 		if (WARN_ON_ONCE(!can_direct_reclaim))
4537 			goto fail;
4538 
4539 		/*
4540 		 * PF_MEMALLOC request from this context is rather bizarre
4541 		 * because we cannot reclaim anything and only can loop waiting
4542 		 * for somebody to do a work for us
4543 		 */
4544 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4545 
4546 		/*
4547 		 * non failing costly orders are a hard requirement which we
4548 		 * are not prepared for much so let's warn about these users
4549 		 * so that we can identify them and convert them to something
4550 		 * else.
4551 		 */
4552 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4553 
4554 		/*
4555 		 * Help non-failing allocations by giving them access to memory
4556 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4557 		 * could deplete whole memory reserves which would just make
4558 		 * the situation worse
4559 		 */
4560 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4561 		if (page)
4562 			goto got_pg;
4563 
4564 		cond_resched();
4565 		goto retry;
4566 	}
4567 fail:
4568 	warn_alloc(gfp_mask, ac->nodemask,
4569 			"page allocation failure: order:%u", order);
4570 got_pg:
4571 	return page;
4572 }
4573 
4574 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4575 		int preferred_nid, nodemask_t *nodemask,
4576 		struct alloc_context *ac, gfp_t *alloc_mask,
4577 		unsigned int *alloc_flags)
4578 {
4579 	ac->high_zoneidx = gfp_zone(gfp_mask);
4580 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4581 	ac->nodemask = nodemask;
4582 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4583 
4584 	if (cpusets_enabled()) {
4585 		*alloc_mask |= __GFP_HARDWALL;
4586 		if (!ac->nodemask)
4587 			ac->nodemask = &cpuset_current_mems_allowed;
4588 		else
4589 			*alloc_flags |= ALLOC_CPUSET;
4590 	}
4591 
4592 	fs_reclaim_acquire(gfp_mask);
4593 	fs_reclaim_release(gfp_mask);
4594 
4595 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4596 
4597 	if (should_fail_alloc_page(gfp_mask, order))
4598 		return false;
4599 
4600 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4601 		*alloc_flags |= ALLOC_CMA;
4602 
4603 	return true;
4604 }
4605 
4606 /* Determine whether to spread dirty pages and what the first usable zone */
4607 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4608 {
4609 	/* Dirty zone balancing only done in the fast path */
4610 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4611 
4612 	/*
4613 	 * The preferred zone is used for statistics but crucially it is
4614 	 * also used as the starting point for the zonelist iterator. It
4615 	 * may get reset for allocations that ignore memory policies.
4616 	 */
4617 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4618 					ac->high_zoneidx, ac->nodemask);
4619 }
4620 
4621 /*
4622  * This is the 'heart' of the zoned buddy allocator.
4623  */
4624 struct page *
4625 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4626 							nodemask_t *nodemask)
4627 {
4628 	struct page *page;
4629 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4630 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4631 	struct alloc_context ac = { };
4632 
4633 	/*
4634 	 * There are several places where we assume that the order value is sane
4635 	 * so bail out early if the request is out of bound.
4636 	 */
4637 	if (unlikely(order >= MAX_ORDER)) {
4638 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4639 		return NULL;
4640 	}
4641 
4642 	gfp_mask &= gfp_allowed_mask;
4643 	alloc_mask = gfp_mask;
4644 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4645 		return NULL;
4646 
4647 	finalise_ac(gfp_mask, &ac);
4648 
4649 	/*
4650 	 * Forbid the first pass from falling back to types that fragment
4651 	 * memory until all local zones are considered.
4652 	 */
4653 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4654 
4655 	/* First allocation attempt */
4656 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4657 	if (likely(page))
4658 		goto out;
4659 
4660 	/*
4661 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4662 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4663 	 * from a particular context which has been marked by
4664 	 * memalloc_no{fs,io}_{save,restore}.
4665 	 */
4666 	alloc_mask = current_gfp_context(gfp_mask);
4667 	ac.spread_dirty_pages = false;
4668 
4669 	/*
4670 	 * Restore the original nodemask if it was potentially replaced with
4671 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4672 	 */
4673 	if (unlikely(ac.nodemask != nodemask))
4674 		ac.nodemask = nodemask;
4675 
4676 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4677 
4678 out:
4679 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4680 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4681 		__free_pages(page, order);
4682 		page = NULL;
4683 	}
4684 
4685 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4686 
4687 	return page;
4688 }
4689 EXPORT_SYMBOL(__alloc_pages_nodemask);
4690 
4691 /*
4692  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4693  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4694  * you need to access high mem.
4695  */
4696 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4697 {
4698 	struct page *page;
4699 
4700 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4701 	if (!page)
4702 		return 0;
4703 	return (unsigned long) page_address(page);
4704 }
4705 EXPORT_SYMBOL(__get_free_pages);
4706 
4707 unsigned long get_zeroed_page(gfp_t gfp_mask)
4708 {
4709 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4710 }
4711 EXPORT_SYMBOL(get_zeroed_page);
4712 
4713 static inline void free_the_page(struct page *page, unsigned int order)
4714 {
4715 	if (order == 0)		/* Via pcp? */
4716 		free_unref_page(page);
4717 	else
4718 		__free_pages_ok(page, order);
4719 }
4720 
4721 void __free_pages(struct page *page, unsigned int order)
4722 {
4723 	if (put_page_testzero(page))
4724 		free_the_page(page, order);
4725 }
4726 EXPORT_SYMBOL(__free_pages);
4727 
4728 void free_pages(unsigned long addr, unsigned int order)
4729 {
4730 	if (addr != 0) {
4731 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4732 		__free_pages(virt_to_page((void *)addr), order);
4733 	}
4734 }
4735 
4736 EXPORT_SYMBOL(free_pages);
4737 
4738 /*
4739  * Page Fragment:
4740  *  An arbitrary-length arbitrary-offset area of memory which resides
4741  *  within a 0 or higher order page.  Multiple fragments within that page
4742  *  are individually refcounted, in the page's reference counter.
4743  *
4744  * The page_frag functions below provide a simple allocation framework for
4745  * page fragments.  This is used by the network stack and network device
4746  * drivers to provide a backing region of memory for use as either an
4747  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4748  */
4749 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4750 					     gfp_t gfp_mask)
4751 {
4752 	struct page *page = NULL;
4753 	gfp_t gfp = gfp_mask;
4754 
4755 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4756 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4757 		    __GFP_NOMEMALLOC;
4758 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4759 				PAGE_FRAG_CACHE_MAX_ORDER);
4760 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4761 #endif
4762 	if (unlikely(!page))
4763 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4764 
4765 	nc->va = page ? page_address(page) : NULL;
4766 
4767 	return page;
4768 }
4769 
4770 void __page_frag_cache_drain(struct page *page, unsigned int count)
4771 {
4772 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4773 
4774 	if (page_ref_sub_and_test(page, count))
4775 		free_the_page(page, compound_order(page));
4776 }
4777 EXPORT_SYMBOL(__page_frag_cache_drain);
4778 
4779 void *page_frag_alloc(struct page_frag_cache *nc,
4780 		      unsigned int fragsz, gfp_t gfp_mask)
4781 {
4782 	unsigned int size = PAGE_SIZE;
4783 	struct page *page;
4784 	int offset;
4785 
4786 	if (unlikely(!nc->va)) {
4787 refill:
4788 		page = __page_frag_cache_refill(nc, gfp_mask);
4789 		if (!page)
4790 			return NULL;
4791 
4792 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4793 		/* if size can vary use size else just use PAGE_SIZE */
4794 		size = nc->size;
4795 #endif
4796 		/* Even if we own the page, we do not use atomic_set().
4797 		 * This would break get_page_unless_zero() users.
4798 		 */
4799 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4800 
4801 		/* reset page count bias and offset to start of new frag */
4802 		nc->pfmemalloc = page_is_pfmemalloc(page);
4803 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4804 		nc->offset = size;
4805 	}
4806 
4807 	offset = nc->offset - fragsz;
4808 	if (unlikely(offset < 0)) {
4809 		page = virt_to_page(nc->va);
4810 
4811 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4812 			goto refill;
4813 
4814 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4815 		/* if size can vary use size else just use PAGE_SIZE */
4816 		size = nc->size;
4817 #endif
4818 		/* OK, page count is 0, we can safely set it */
4819 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4820 
4821 		/* reset page count bias and offset to start of new frag */
4822 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4823 		offset = size - fragsz;
4824 	}
4825 
4826 	nc->pagecnt_bias--;
4827 	nc->offset = offset;
4828 
4829 	return nc->va + offset;
4830 }
4831 EXPORT_SYMBOL(page_frag_alloc);
4832 
4833 /*
4834  * Frees a page fragment allocated out of either a compound or order 0 page.
4835  */
4836 void page_frag_free(void *addr)
4837 {
4838 	struct page *page = virt_to_head_page(addr);
4839 
4840 	if (unlikely(put_page_testzero(page)))
4841 		free_the_page(page, compound_order(page));
4842 }
4843 EXPORT_SYMBOL(page_frag_free);
4844 
4845 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4846 		size_t size)
4847 {
4848 	if (addr) {
4849 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4850 		unsigned long used = addr + PAGE_ALIGN(size);
4851 
4852 		split_page(virt_to_page((void *)addr), order);
4853 		while (used < alloc_end) {
4854 			free_page(used);
4855 			used += PAGE_SIZE;
4856 		}
4857 	}
4858 	return (void *)addr;
4859 }
4860 
4861 /**
4862  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4863  * @size: the number of bytes to allocate
4864  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4865  *
4866  * This function is similar to alloc_pages(), except that it allocates the
4867  * minimum number of pages to satisfy the request.  alloc_pages() can only
4868  * allocate memory in power-of-two pages.
4869  *
4870  * This function is also limited by MAX_ORDER.
4871  *
4872  * Memory allocated by this function must be released by free_pages_exact().
4873  *
4874  * Return: pointer to the allocated area or %NULL in case of error.
4875  */
4876 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4877 {
4878 	unsigned int order = get_order(size);
4879 	unsigned long addr;
4880 
4881 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4882 		gfp_mask &= ~__GFP_COMP;
4883 
4884 	addr = __get_free_pages(gfp_mask, order);
4885 	return make_alloc_exact(addr, order, size);
4886 }
4887 EXPORT_SYMBOL(alloc_pages_exact);
4888 
4889 /**
4890  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4891  *			   pages on a node.
4892  * @nid: the preferred node ID where memory should be allocated
4893  * @size: the number of bytes to allocate
4894  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4895  *
4896  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4897  * back.
4898  *
4899  * Return: pointer to the allocated area or %NULL in case of error.
4900  */
4901 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4902 {
4903 	unsigned int order = get_order(size);
4904 	struct page *p;
4905 
4906 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4907 		gfp_mask &= ~__GFP_COMP;
4908 
4909 	p = alloc_pages_node(nid, gfp_mask, order);
4910 	if (!p)
4911 		return NULL;
4912 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4913 }
4914 
4915 /**
4916  * free_pages_exact - release memory allocated via alloc_pages_exact()
4917  * @virt: the value returned by alloc_pages_exact.
4918  * @size: size of allocation, same value as passed to alloc_pages_exact().
4919  *
4920  * Release the memory allocated by a previous call to alloc_pages_exact.
4921  */
4922 void free_pages_exact(void *virt, size_t size)
4923 {
4924 	unsigned long addr = (unsigned long)virt;
4925 	unsigned long end = addr + PAGE_ALIGN(size);
4926 
4927 	while (addr < end) {
4928 		free_page(addr);
4929 		addr += PAGE_SIZE;
4930 	}
4931 }
4932 EXPORT_SYMBOL(free_pages_exact);
4933 
4934 /**
4935  * nr_free_zone_pages - count number of pages beyond high watermark
4936  * @offset: The zone index of the highest zone
4937  *
4938  * nr_free_zone_pages() counts the number of pages which are beyond the
4939  * high watermark within all zones at or below a given zone index.  For each
4940  * zone, the number of pages is calculated as:
4941  *
4942  *     nr_free_zone_pages = managed_pages - high_pages
4943  *
4944  * Return: number of pages beyond high watermark.
4945  */
4946 static unsigned long nr_free_zone_pages(int offset)
4947 {
4948 	struct zoneref *z;
4949 	struct zone *zone;
4950 
4951 	/* Just pick one node, since fallback list is circular */
4952 	unsigned long sum = 0;
4953 
4954 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4955 
4956 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4957 		unsigned long size = zone_managed_pages(zone);
4958 		unsigned long high = high_wmark_pages(zone);
4959 		if (size > high)
4960 			sum += size - high;
4961 	}
4962 
4963 	return sum;
4964 }
4965 
4966 /**
4967  * nr_free_buffer_pages - count number of pages beyond high watermark
4968  *
4969  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4970  * watermark within ZONE_DMA and ZONE_NORMAL.
4971  *
4972  * Return: number of pages beyond high watermark within ZONE_DMA and
4973  * ZONE_NORMAL.
4974  */
4975 unsigned long nr_free_buffer_pages(void)
4976 {
4977 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4978 }
4979 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4980 
4981 /**
4982  * nr_free_pagecache_pages - count number of pages beyond high watermark
4983  *
4984  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4985  * high watermark within all zones.
4986  *
4987  * Return: number of pages beyond high watermark within all zones.
4988  */
4989 unsigned long nr_free_pagecache_pages(void)
4990 {
4991 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4992 }
4993 
4994 static inline void show_node(struct zone *zone)
4995 {
4996 	if (IS_ENABLED(CONFIG_NUMA))
4997 		printk("Node %d ", zone_to_nid(zone));
4998 }
4999 
5000 long si_mem_available(void)
5001 {
5002 	long available;
5003 	unsigned long pagecache;
5004 	unsigned long wmark_low = 0;
5005 	unsigned long pages[NR_LRU_LISTS];
5006 	unsigned long reclaimable;
5007 	struct zone *zone;
5008 	int lru;
5009 
5010 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5011 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5012 
5013 	for_each_zone(zone)
5014 		wmark_low += low_wmark_pages(zone);
5015 
5016 	/*
5017 	 * Estimate the amount of memory available for userspace allocations,
5018 	 * without causing swapping.
5019 	 */
5020 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5021 
5022 	/*
5023 	 * Not all the page cache can be freed, otherwise the system will
5024 	 * start swapping. Assume at least half of the page cache, or the
5025 	 * low watermark worth of cache, needs to stay.
5026 	 */
5027 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5028 	pagecache -= min(pagecache / 2, wmark_low);
5029 	available += pagecache;
5030 
5031 	/*
5032 	 * Part of the reclaimable slab and other kernel memory consists of
5033 	 * items that are in use, and cannot be freed. Cap this estimate at the
5034 	 * low watermark.
5035 	 */
5036 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5037 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5038 	available += reclaimable - min(reclaimable / 2, wmark_low);
5039 
5040 	if (available < 0)
5041 		available = 0;
5042 	return available;
5043 }
5044 EXPORT_SYMBOL_GPL(si_mem_available);
5045 
5046 void si_meminfo(struct sysinfo *val)
5047 {
5048 	val->totalram = totalram_pages();
5049 	val->sharedram = global_node_page_state(NR_SHMEM);
5050 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5051 	val->bufferram = nr_blockdev_pages();
5052 	val->totalhigh = totalhigh_pages();
5053 	val->freehigh = nr_free_highpages();
5054 	val->mem_unit = PAGE_SIZE;
5055 }
5056 
5057 EXPORT_SYMBOL(si_meminfo);
5058 
5059 #ifdef CONFIG_NUMA
5060 void si_meminfo_node(struct sysinfo *val, int nid)
5061 {
5062 	int zone_type;		/* needs to be signed */
5063 	unsigned long managed_pages = 0;
5064 	unsigned long managed_highpages = 0;
5065 	unsigned long free_highpages = 0;
5066 	pg_data_t *pgdat = NODE_DATA(nid);
5067 
5068 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5069 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5070 	val->totalram = managed_pages;
5071 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5072 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5073 #ifdef CONFIG_HIGHMEM
5074 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5075 		struct zone *zone = &pgdat->node_zones[zone_type];
5076 
5077 		if (is_highmem(zone)) {
5078 			managed_highpages += zone_managed_pages(zone);
5079 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5080 		}
5081 	}
5082 	val->totalhigh = managed_highpages;
5083 	val->freehigh = free_highpages;
5084 #else
5085 	val->totalhigh = managed_highpages;
5086 	val->freehigh = free_highpages;
5087 #endif
5088 	val->mem_unit = PAGE_SIZE;
5089 }
5090 #endif
5091 
5092 /*
5093  * Determine whether the node should be displayed or not, depending on whether
5094  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5095  */
5096 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5097 {
5098 	if (!(flags & SHOW_MEM_FILTER_NODES))
5099 		return false;
5100 
5101 	/*
5102 	 * no node mask - aka implicit memory numa policy. Do not bother with
5103 	 * the synchronization - read_mems_allowed_begin - because we do not
5104 	 * have to be precise here.
5105 	 */
5106 	if (!nodemask)
5107 		nodemask = &cpuset_current_mems_allowed;
5108 
5109 	return !node_isset(nid, *nodemask);
5110 }
5111 
5112 #define K(x) ((x) << (PAGE_SHIFT-10))
5113 
5114 static void show_migration_types(unsigned char type)
5115 {
5116 	static const char types[MIGRATE_TYPES] = {
5117 		[MIGRATE_UNMOVABLE]	= 'U',
5118 		[MIGRATE_MOVABLE]	= 'M',
5119 		[MIGRATE_RECLAIMABLE]	= 'E',
5120 		[MIGRATE_HIGHATOMIC]	= 'H',
5121 #ifdef CONFIG_CMA
5122 		[MIGRATE_CMA]		= 'C',
5123 #endif
5124 #ifdef CONFIG_MEMORY_ISOLATION
5125 		[MIGRATE_ISOLATE]	= 'I',
5126 #endif
5127 	};
5128 	char tmp[MIGRATE_TYPES + 1];
5129 	char *p = tmp;
5130 	int i;
5131 
5132 	for (i = 0; i < MIGRATE_TYPES; i++) {
5133 		if (type & (1 << i))
5134 			*p++ = types[i];
5135 	}
5136 
5137 	*p = '\0';
5138 	printk(KERN_CONT "(%s) ", tmp);
5139 }
5140 
5141 /*
5142  * Show free area list (used inside shift_scroll-lock stuff)
5143  * We also calculate the percentage fragmentation. We do this by counting the
5144  * memory on each free list with the exception of the first item on the list.
5145  *
5146  * Bits in @filter:
5147  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5148  *   cpuset.
5149  */
5150 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5151 {
5152 	unsigned long free_pcp = 0;
5153 	int cpu;
5154 	struct zone *zone;
5155 	pg_data_t *pgdat;
5156 
5157 	for_each_populated_zone(zone) {
5158 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5159 			continue;
5160 
5161 		for_each_online_cpu(cpu)
5162 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5163 	}
5164 
5165 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5166 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5167 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5168 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5169 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5170 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5171 		global_node_page_state(NR_ACTIVE_ANON),
5172 		global_node_page_state(NR_INACTIVE_ANON),
5173 		global_node_page_state(NR_ISOLATED_ANON),
5174 		global_node_page_state(NR_ACTIVE_FILE),
5175 		global_node_page_state(NR_INACTIVE_FILE),
5176 		global_node_page_state(NR_ISOLATED_FILE),
5177 		global_node_page_state(NR_UNEVICTABLE),
5178 		global_node_page_state(NR_FILE_DIRTY),
5179 		global_node_page_state(NR_WRITEBACK),
5180 		global_node_page_state(NR_UNSTABLE_NFS),
5181 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5182 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5183 		global_node_page_state(NR_FILE_MAPPED),
5184 		global_node_page_state(NR_SHMEM),
5185 		global_zone_page_state(NR_PAGETABLE),
5186 		global_zone_page_state(NR_BOUNCE),
5187 		global_zone_page_state(NR_FREE_PAGES),
5188 		free_pcp,
5189 		global_zone_page_state(NR_FREE_CMA_PAGES));
5190 
5191 	for_each_online_pgdat(pgdat) {
5192 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5193 			continue;
5194 
5195 		printk("Node %d"
5196 			" active_anon:%lukB"
5197 			" inactive_anon:%lukB"
5198 			" active_file:%lukB"
5199 			" inactive_file:%lukB"
5200 			" unevictable:%lukB"
5201 			" isolated(anon):%lukB"
5202 			" isolated(file):%lukB"
5203 			" mapped:%lukB"
5204 			" dirty:%lukB"
5205 			" writeback:%lukB"
5206 			" shmem:%lukB"
5207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5208 			" shmem_thp: %lukB"
5209 			" shmem_pmdmapped: %lukB"
5210 			" anon_thp: %lukB"
5211 #endif
5212 			" writeback_tmp:%lukB"
5213 			" unstable:%lukB"
5214 			" all_unreclaimable? %s"
5215 			"\n",
5216 			pgdat->node_id,
5217 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5218 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5219 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5220 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5221 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5222 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5223 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5224 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5225 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5226 			K(node_page_state(pgdat, NR_WRITEBACK)),
5227 			K(node_page_state(pgdat, NR_SHMEM)),
5228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5229 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5230 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5231 					* HPAGE_PMD_NR),
5232 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5233 #endif
5234 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5235 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5236 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5237 				"yes" : "no");
5238 	}
5239 
5240 	for_each_populated_zone(zone) {
5241 		int i;
5242 
5243 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5244 			continue;
5245 
5246 		free_pcp = 0;
5247 		for_each_online_cpu(cpu)
5248 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5249 
5250 		show_node(zone);
5251 		printk(KERN_CONT
5252 			"%s"
5253 			" free:%lukB"
5254 			" min:%lukB"
5255 			" low:%lukB"
5256 			" high:%lukB"
5257 			" active_anon:%lukB"
5258 			" inactive_anon:%lukB"
5259 			" active_file:%lukB"
5260 			" inactive_file:%lukB"
5261 			" unevictable:%lukB"
5262 			" writepending:%lukB"
5263 			" present:%lukB"
5264 			" managed:%lukB"
5265 			" mlocked:%lukB"
5266 			" kernel_stack:%lukB"
5267 			" pagetables:%lukB"
5268 			" bounce:%lukB"
5269 			" free_pcp:%lukB"
5270 			" local_pcp:%ukB"
5271 			" free_cma:%lukB"
5272 			"\n",
5273 			zone->name,
5274 			K(zone_page_state(zone, NR_FREE_PAGES)),
5275 			K(min_wmark_pages(zone)),
5276 			K(low_wmark_pages(zone)),
5277 			K(high_wmark_pages(zone)),
5278 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5279 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5280 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5281 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5282 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5283 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5284 			K(zone->present_pages),
5285 			K(zone_managed_pages(zone)),
5286 			K(zone_page_state(zone, NR_MLOCK)),
5287 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5288 			K(zone_page_state(zone, NR_PAGETABLE)),
5289 			K(zone_page_state(zone, NR_BOUNCE)),
5290 			K(free_pcp),
5291 			K(this_cpu_read(zone->pageset->pcp.count)),
5292 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5293 		printk("lowmem_reserve[]:");
5294 		for (i = 0; i < MAX_NR_ZONES; i++)
5295 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5296 		printk(KERN_CONT "\n");
5297 	}
5298 
5299 	for_each_populated_zone(zone) {
5300 		unsigned int order;
5301 		unsigned long nr[MAX_ORDER], flags, total = 0;
5302 		unsigned char types[MAX_ORDER];
5303 
5304 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5305 			continue;
5306 		show_node(zone);
5307 		printk(KERN_CONT "%s: ", zone->name);
5308 
5309 		spin_lock_irqsave(&zone->lock, flags);
5310 		for (order = 0; order < MAX_ORDER; order++) {
5311 			struct free_area *area = &zone->free_area[order];
5312 			int type;
5313 
5314 			nr[order] = area->nr_free;
5315 			total += nr[order] << order;
5316 
5317 			types[order] = 0;
5318 			for (type = 0; type < MIGRATE_TYPES; type++) {
5319 				if (!free_area_empty(area, type))
5320 					types[order] |= 1 << type;
5321 			}
5322 		}
5323 		spin_unlock_irqrestore(&zone->lock, flags);
5324 		for (order = 0; order < MAX_ORDER; order++) {
5325 			printk(KERN_CONT "%lu*%lukB ",
5326 			       nr[order], K(1UL) << order);
5327 			if (nr[order])
5328 				show_migration_types(types[order]);
5329 		}
5330 		printk(KERN_CONT "= %lukB\n", K(total));
5331 	}
5332 
5333 	hugetlb_show_meminfo();
5334 
5335 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5336 
5337 	show_swap_cache_info();
5338 }
5339 
5340 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5341 {
5342 	zoneref->zone = zone;
5343 	zoneref->zone_idx = zone_idx(zone);
5344 }
5345 
5346 /*
5347  * Builds allocation fallback zone lists.
5348  *
5349  * Add all populated zones of a node to the zonelist.
5350  */
5351 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5352 {
5353 	struct zone *zone;
5354 	enum zone_type zone_type = MAX_NR_ZONES;
5355 	int nr_zones = 0;
5356 
5357 	do {
5358 		zone_type--;
5359 		zone = pgdat->node_zones + zone_type;
5360 		if (managed_zone(zone)) {
5361 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5362 			check_highest_zone(zone_type);
5363 		}
5364 	} while (zone_type);
5365 
5366 	return nr_zones;
5367 }
5368 
5369 #ifdef CONFIG_NUMA
5370 
5371 static int __parse_numa_zonelist_order(char *s)
5372 {
5373 	/*
5374 	 * We used to support different zonlists modes but they turned
5375 	 * out to be just not useful. Let's keep the warning in place
5376 	 * if somebody still use the cmd line parameter so that we do
5377 	 * not fail it silently
5378 	 */
5379 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5380 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5381 		return -EINVAL;
5382 	}
5383 	return 0;
5384 }
5385 
5386 static __init int setup_numa_zonelist_order(char *s)
5387 {
5388 	if (!s)
5389 		return 0;
5390 
5391 	return __parse_numa_zonelist_order(s);
5392 }
5393 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5394 
5395 char numa_zonelist_order[] = "Node";
5396 
5397 /*
5398  * sysctl handler for numa_zonelist_order
5399  */
5400 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5401 		void __user *buffer, size_t *length,
5402 		loff_t *ppos)
5403 {
5404 	char *str;
5405 	int ret;
5406 
5407 	if (!write)
5408 		return proc_dostring(table, write, buffer, length, ppos);
5409 	str = memdup_user_nul(buffer, 16);
5410 	if (IS_ERR(str))
5411 		return PTR_ERR(str);
5412 
5413 	ret = __parse_numa_zonelist_order(str);
5414 	kfree(str);
5415 	return ret;
5416 }
5417 
5418 
5419 #define MAX_NODE_LOAD (nr_online_nodes)
5420 static int node_load[MAX_NUMNODES];
5421 
5422 /**
5423  * find_next_best_node - find the next node that should appear in a given node's fallback list
5424  * @node: node whose fallback list we're appending
5425  * @used_node_mask: nodemask_t of already used nodes
5426  *
5427  * We use a number of factors to determine which is the next node that should
5428  * appear on a given node's fallback list.  The node should not have appeared
5429  * already in @node's fallback list, and it should be the next closest node
5430  * according to the distance array (which contains arbitrary distance values
5431  * from each node to each node in the system), and should also prefer nodes
5432  * with no CPUs, since presumably they'll have very little allocation pressure
5433  * on them otherwise.
5434  *
5435  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5436  */
5437 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5438 {
5439 	int n, val;
5440 	int min_val = INT_MAX;
5441 	int best_node = NUMA_NO_NODE;
5442 	const struct cpumask *tmp = cpumask_of_node(0);
5443 
5444 	/* Use the local node if we haven't already */
5445 	if (!node_isset(node, *used_node_mask)) {
5446 		node_set(node, *used_node_mask);
5447 		return node;
5448 	}
5449 
5450 	for_each_node_state(n, N_MEMORY) {
5451 
5452 		/* Don't want a node to appear more than once */
5453 		if (node_isset(n, *used_node_mask))
5454 			continue;
5455 
5456 		/* Use the distance array to find the distance */
5457 		val = node_distance(node, n);
5458 
5459 		/* Penalize nodes under us ("prefer the next node") */
5460 		val += (n < node);
5461 
5462 		/* Give preference to headless and unused nodes */
5463 		tmp = cpumask_of_node(n);
5464 		if (!cpumask_empty(tmp))
5465 			val += PENALTY_FOR_NODE_WITH_CPUS;
5466 
5467 		/* Slight preference for less loaded node */
5468 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5469 		val += node_load[n];
5470 
5471 		if (val < min_val) {
5472 			min_val = val;
5473 			best_node = n;
5474 		}
5475 	}
5476 
5477 	if (best_node >= 0)
5478 		node_set(best_node, *used_node_mask);
5479 
5480 	return best_node;
5481 }
5482 
5483 
5484 /*
5485  * Build zonelists ordered by node and zones within node.
5486  * This results in maximum locality--normal zone overflows into local
5487  * DMA zone, if any--but risks exhausting DMA zone.
5488  */
5489 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5490 		unsigned nr_nodes)
5491 {
5492 	struct zoneref *zonerefs;
5493 	int i;
5494 
5495 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5496 
5497 	for (i = 0; i < nr_nodes; i++) {
5498 		int nr_zones;
5499 
5500 		pg_data_t *node = NODE_DATA(node_order[i]);
5501 
5502 		nr_zones = build_zonerefs_node(node, zonerefs);
5503 		zonerefs += nr_zones;
5504 	}
5505 	zonerefs->zone = NULL;
5506 	zonerefs->zone_idx = 0;
5507 }
5508 
5509 /*
5510  * Build gfp_thisnode zonelists
5511  */
5512 static void build_thisnode_zonelists(pg_data_t *pgdat)
5513 {
5514 	struct zoneref *zonerefs;
5515 	int nr_zones;
5516 
5517 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5518 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5519 	zonerefs += nr_zones;
5520 	zonerefs->zone = NULL;
5521 	zonerefs->zone_idx = 0;
5522 }
5523 
5524 /*
5525  * Build zonelists ordered by zone and nodes within zones.
5526  * This results in conserving DMA zone[s] until all Normal memory is
5527  * exhausted, but results in overflowing to remote node while memory
5528  * may still exist in local DMA zone.
5529  */
5530 
5531 static void build_zonelists(pg_data_t *pgdat)
5532 {
5533 	static int node_order[MAX_NUMNODES];
5534 	int node, load, nr_nodes = 0;
5535 	nodemask_t used_mask;
5536 	int local_node, prev_node;
5537 
5538 	/* NUMA-aware ordering of nodes */
5539 	local_node = pgdat->node_id;
5540 	load = nr_online_nodes;
5541 	prev_node = local_node;
5542 	nodes_clear(used_mask);
5543 
5544 	memset(node_order, 0, sizeof(node_order));
5545 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5546 		/*
5547 		 * We don't want to pressure a particular node.
5548 		 * So adding penalty to the first node in same
5549 		 * distance group to make it round-robin.
5550 		 */
5551 		if (node_distance(local_node, node) !=
5552 		    node_distance(local_node, prev_node))
5553 			node_load[node] = load;
5554 
5555 		node_order[nr_nodes++] = node;
5556 		prev_node = node;
5557 		load--;
5558 	}
5559 
5560 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5561 	build_thisnode_zonelists(pgdat);
5562 }
5563 
5564 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5565 /*
5566  * Return node id of node used for "local" allocations.
5567  * I.e., first node id of first zone in arg node's generic zonelist.
5568  * Used for initializing percpu 'numa_mem', which is used primarily
5569  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5570  */
5571 int local_memory_node(int node)
5572 {
5573 	struct zoneref *z;
5574 
5575 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5576 				   gfp_zone(GFP_KERNEL),
5577 				   NULL);
5578 	return zone_to_nid(z->zone);
5579 }
5580 #endif
5581 
5582 static void setup_min_unmapped_ratio(void);
5583 static void setup_min_slab_ratio(void);
5584 #else	/* CONFIG_NUMA */
5585 
5586 static void build_zonelists(pg_data_t *pgdat)
5587 {
5588 	int node, local_node;
5589 	struct zoneref *zonerefs;
5590 	int nr_zones;
5591 
5592 	local_node = pgdat->node_id;
5593 
5594 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5595 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5596 	zonerefs += nr_zones;
5597 
5598 	/*
5599 	 * Now we build the zonelist so that it contains the zones
5600 	 * of all the other nodes.
5601 	 * We don't want to pressure a particular node, so when
5602 	 * building the zones for node N, we make sure that the
5603 	 * zones coming right after the local ones are those from
5604 	 * node N+1 (modulo N)
5605 	 */
5606 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5607 		if (!node_online(node))
5608 			continue;
5609 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5610 		zonerefs += nr_zones;
5611 	}
5612 	for (node = 0; node < local_node; node++) {
5613 		if (!node_online(node))
5614 			continue;
5615 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5616 		zonerefs += nr_zones;
5617 	}
5618 
5619 	zonerefs->zone = NULL;
5620 	zonerefs->zone_idx = 0;
5621 }
5622 
5623 #endif	/* CONFIG_NUMA */
5624 
5625 /*
5626  * Boot pageset table. One per cpu which is going to be used for all
5627  * zones and all nodes. The parameters will be set in such a way
5628  * that an item put on a list will immediately be handed over to
5629  * the buddy list. This is safe since pageset manipulation is done
5630  * with interrupts disabled.
5631  *
5632  * The boot_pagesets must be kept even after bootup is complete for
5633  * unused processors and/or zones. They do play a role for bootstrapping
5634  * hotplugged processors.
5635  *
5636  * zoneinfo_show() and maybe other functions do
5637  * not check if the processor is online before following the pageset pointer.
5638  * Other parts of the kernel may not check if the zone is available.
5639  */
5640 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5641 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5642 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5643 
5644 static void __build_all_zonelists(void *data)
5645 {
5646 	int nid;
5647 	int __maybe_unused cpu;
5648 	pg_data_t *self = data;
5649 	static DEFINE_SPINLOCK(lock);
5650 
5651 	spin_lock(&lock);
5652 
5653 #ifdef CONFIG_NUMA
5654 	memset(node_load, 0, sizeof(node_load));
5655 #endif
5656 
5657 	/*
5658 	 * This node is hotadded and no memory is yet present.   So just
5659 	 * building zonelists is fine - no need to touch other nodes.
5660 	 */
5661 	if (self && !node_online(self->node_id)) {
5662 		build_zonelists(self);
5663 	} else {
5664 		for_each_online_node(nid) {
5665 			pg_data_t *pgdat = NODE_DATA(nid);
5666 
5667 			build_zonelists(pgdat);
5668 		}
5669 
5670 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5671 		/*
5672 		 * We now know the "local memory node" for each node--
5673 		 * i.e., the node of the first zone in the generic zonelist.
5674 		 * Set up numa_mem percpu variable for on-line cpus.  During
5675 		 * boot, only the boot cpu should be on-line;  we'll init the
5676 		 * secondary cpus' numa_mem as they come on-line.  During
5677 		 * node/memory hotplug, we'll fixup all on-line cpus.
5678 		 */
5679 		for_each_online_cpu(cpu)
5680 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5681 #endif
5682 	}
5683 
5684 	spin_unlock(&lock);
5685 }
5686 
5687 static noinline void __init
5688 build_all_zonelists_init(void)
5689 {
5690 	int cpu;
5691 
5692 	__build_all_zonelists(NULL);
5693 
5694 	/*
5695 	 * Initialize the boot_pagesets that are going to be used
5696 	 * for bootstrapping processors. The real pagesets for
5697 	 * each zone will be allocated later when the per cpu
5698 	 * allocator is available.
5699 	 *
5700 	 * boot_pagesets are used also for bootstrapping offline
5701 	 * cpus if the system is already booted because the pagesets
5702 	 * are needed to initialize allocators on a specific cpu too.
5703 	 * F.e. the percpu allocator needs the page allocator which
5704 	 * needs the percpu allocator in order to allocate its pagesets
5705 	 * (a chicken-egg dilemma).
5706 	 */
5707 	for_each_possible_cpu(cpu)
5708 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5709 
5710 	mminit_verify_zonelist();
5711 	cpuset_init_current_mems_allowed();
5712 }
5713 
5714 /*
5715  * unless system_state == SYSTEM_BOOTING.
5716  *
5717  * __ref due to call of __init annotated helper build_all_zonelists_init
5718  * [protected by SYSTEM_BOOTING].
5719  */
5720 void __ref build_all_zonelists(pg_data_t *pgdat)
5721 {
5722 	if (system_state == SYSTEM_BOOTING) {
5723 		build_all_zonelists_init();
5724 	} else {
5725 		__build_all_zonelists(pgdat);
5726 		/* cpuset refresh routine should be here */
5727 	}
5728 	vm_total_pages = nr_free_pagecache_pages();
5729 	/*
5730 	 * Disable grouping by mobility if the number of pages in the
5731 	 * system is too low to allow the mechanism to work. It would be
5732 	 * more accurate, but expensive to check per-zone. This check is
5733 	 * made on memory-hotadd so a system can start with mobility
5734 	 * disabled and enable it later
5735 	 */
5736 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5737 		page_group_by_mobility_disabled = 1;
5738 	else
5739 		page_group_by_mobility_disabled = 0;
5740 
5741 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5742 		nr_online_nodes,
5743 		page_group_by_mobility_disabled ? "off" : "on",
5744 		vm_total_pages);
5745 #ifdef CONFIG_NUMA
5746 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5747 #endif
5748 }
5749 
5750 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5751 static bool __meminit
5752 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5753 {
5754 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5755 	static struct memblock_region *r;
5756 
5757 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5758 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5759 			for_each_memblock(memory, r) {
5760 				if (*pfn < memblock_region_memory_end_pfn(r))
5761 					break;
5762 			}
5763 		}
5764 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5765 		    memblock_is_mirror(r)) {
5766 			*pfn = memblock_region_memory_end_pfn(r);
5767 			return true;
5768 		}
5769 	}
5770 #endif
5771 	return false;
5772 }
5773 
5774 /*
5775  * Initially all pages are reserved - free ones are freed
5776  * up by memblock_free_all() once the early boot process is
5777  * done. Non-atomic initialization, single-pass.
5778  */
5779 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5780 		unsigned long start_pfn, enum memmap_context context,
5781 		struct vmem_altmap *altmap)
5782 {
5783 	unsigned long pfn, end_pfn = start_pfn + size;
5784 	struct page *page;
5785 
5786 	if (highest_memmap_pfn < end_pfn - 1)
5787 		highest_memmap_pfn = end_pfn - 1;
5788 
5789 #ifdef CONFIG_ZONE_DEVICE
5790 	/*
5791 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5792 	 * memory. We limit the total number of pages to initialize to just
5793 	 * those that might contain the memory mapping. We will defer the
5794 	 * ZONE_DEVICE page initialization until after we have released
5795 	 * the hotplug lock.
5796 	 */
5797 	if (zone == ZONE_DEVICE) {
5798 		if (!altmap)
5799 			return;
5800 
5801 		if (start_pfn == altmap->base_pfn)
5802 			start_pfn += altmap->reserve;
5803 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5804 	}
5805 #endif
5806 
5807 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5808 		/*
5809 		 * There can be holes in boot-time mem_map[]s handed to this
5810 		 * function.  They do not exist on hotplugged memory.
5811 		 */
5812 		if (context == MEMMAP_EARLY) {
5813 			if (!early_pfn_valid(pfn))
5814 				continue;
5815 			if (!early_pfn_in_nid(pfn, nid))
5816 				continue;
5817 			if (overlap_memmap_init(zone, &pfn))
5818 				continue;
5819 			if (defer_init(nid, pfn, end_pfn))
5820 				break;
5821 		}
5822 
5823 		page = pfn_to_page(pfn);
5824 		__init_single_page(page, pfn, zone, nid);
5825 		if (context == MEMMAP_HOTPLUG)
5826 			__SetPageReserved(page);
5827 
5828 		/*
5829 		 * Mark the block movable so that blocks are reserved for
5830 		 * movable at startup. This will force kernel allocations
5831 		 * to reserve their blocks rather than leaking throughout
5832 		 * the address space during boot when many long-lived
5833 		 * kernel allocations are made.
5834 		 *
5835 		 * bitmap is created for zone's valid pfn range. but memmap
5836 		 * can be created for invalid pages (for alignment)
5837 		 * check here not to call set_pageblock_migratetype() against
5838 		 * pfn out of zone.
5839 		 */
5840 		if (!(pfn & (pageblock_nr_pages - 1))) {
5841 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5842 			cond_resched();
5843 		}
5844 	}
5845 }
5846 
5847 #ifdef CONFIG_ZONE_DEVICE
5848 void __ref memmap_init_zone_device(struct zone *zone,
5849 				   unsigned long start_pfn,
5850 				   unsigned long size,
5851 				   struct dev_pagemap *pgmap)
5852 {
5853 	unsigned long pfn, end_pfn = start_pfn + size;
5854 	struct pglist_data *pgdat = zone->zone_pgdat;
5855 	unsigned long zone_idx = zone_idx(zone);
5856 	unsigned long start = jiffies;
5857 	int nid = pgdat->node_id;
5858 
5859 	if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone)))
5860 		return;
5861 
5862 	/*
5863 	 * The call to memmap_init_zone should have already taken care
5864 	 * of the pages reserved for the memmap, so we can just jump to
5865 	 * the end of that region and start processing the device pages.
5866 	 */
5867 	if (pgmap->altmap_valid) {
5868 		struct vmem_altmap *altmap = &pgmap->altmap;
5869 
5870 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5871 		size = end_pfn - start_pfn;
5872 	}
5873 
5874 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5875 		struct page *page = pfn_to_page(pfn);
5876 
5877 		__init_single_page(page, pfn, zone_idx, nid);
5878 
5879 		/*
5880 		 * Mark page reserved as it will need to wait for onlining
5881 		 * phase for it to be fully associated with a zone.
5882 		 *
5883 		 * We can use the non-atomic __set_bit operation for setting
5884 		 * the flag as we are still initializing the pages.
5885 		 */
5886 		__SetPageReserved(page);
5887 
5888 		/*
5889 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back
5890 		 * pointer and hmm_data.  It is a bug if a ZONE_DEVICE
5891 		 * page is ever freed or placed on a driver-private list.
5892 		 */
5893 		page->pgmap = pgmap;
5894 		page->hmm_data = 0;
5895 
5896 		/*
5897 		 * Mark the block movable so that blocks are reserved for
5898 		 * movable at startup. This will force kernel allocations
5899 		 * to reserve their blocks rather than leaking throughout
5900 		 * the address space during boot when many long-lived
5901 		 * kernel allocations are made.
5902 		 *
5903 		 * bitmap is created for zone's valid pfn range. but memmap
5904 		 * can be created for invalid pages (for alignment)
5905 		 * check here not to call set_pageblock_migratetype() against
5906 		 * pfn out of zone.
5907 		 *
5908 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5909 		 * because this is done early in sparse_add_one_section
5910 		 */
5911 		if (!(pfn & (pageblock_nr_pages - 1))) {
5912 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5913 			cond_resched();
5914 		}
5915 	}
5916 
5917 	pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev),
5918 		size, jiffies_to_msecs(jiffies - start));
5919 }
5920 
5921 #endif
5922 static void __meminit zone_init_free_lists(struct zone *zone)
5923 {
5924 	unsigned int order, t;
5925 	for_each_migratetype_order(order, t) {
5926 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5927 		zone->free_area[order].nr_free = 0;
5928 	}
5929 }
5930 
5931 void __meminit __weak memmap_init(unsigned long size, int nid,
5932 				  unsigned long zone, unsigned long start_pfn)
5933 {
5934 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
5935 }
5936 
5937 static int zone_batchsize(struct zone *zone)
5938 {
5939 #ifdef CONFIG_MMU
5940 	int batch;
5941 
5942 	/*
5943 	 * The per-cpu-pages pools are set to around 1000th of the
5944 	 * size of the zone.
5945 	 */
5946 	batch = zone_managed_pages(zone) / 1024;
5947 	/* But no more than a meg. */
5948 	if (batch * PAGE_SIZE > 1024 * 1024)
5949 		batch = (1024 * 1024) / PAGE_SIZE;
5950 	batch /= 4;		/* We effectively *= 4 below */
5951 	if (batch < 1)
5952 		batch = 1;
5953 
5954 	/*
5955 	 * Clamp the batch to a 2^n - 1 value. Having a power
5956 	 * of 2 value was found to be more likely to have
5957 	 * suboptimal cache aliasing properties in some cases.
5958 	 *
5959 	 * For example if 2 tasks are alternately allocating
5960 	 * batches of pages, one task can end up with a lot
5961 	 * of pages of one half of the possible page colors
5962 	 * and the other with pages of the other colors.
5963 	 */
5964 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5965 
5966 	return batch;
5967 
5968 #else
5969 	/* The deferral and batching of frees should be suppressed under NOMMU
5970 	 * conditions.
5971 	 *
5972 	 * The problem is that NOMMU needs to be able to allocate large chunks
5973 	 * of contiguous memory as there's no hardware page translation to
5974 	 * assemble apparent contiguous memory from discontiguous pages.
5975 	 *
5976 	 * Queueing large contiguous runs of pages for batching, however,
5977 	 * causes the pages to actually be freed in smaller chunks.  As there
5978 	 * can be a significant delay between the individual batches being
5979 	 * recycled, this leads to the once large chunks of space being
5980 	 * fragmented and becoming unavailable for high-order allocations.
5981 	 */
5982 	return 0;
5983 #endif
5984 }
5985 
5986 /*
5987  * pcp->high and pcp->batch values are related and dependent on one another:
5988  * ->batch must never be higher then ->high.
5989  * The following function updates them in a safe manner without read side
5990  * locking.
5991  *
5992  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5993  * those fields changing asynchronously (acording the the above rule).
5994  *
5995  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5996  * outside of boot time (or some other assurance that no concurrent updaters
5997  * exist).
5998  */
5999 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6000 		unsigned long batch)
6001 {
6002        /* start with a fail safe value for batch */
6003 	pcp->batch = 1;
6004 	smp_wmb();
6005 
6006        /* Update high, then batch, in order */
6007 	pcp->high = high;
6008 	smp_wmb();
6009 
6010 	pcp->batch = batch;
6011 }
6012 
6013 /* a companion to pageset_set_high() */
6014 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6015 {
6016 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6017 }
6018 
6019 static void pageset_init(struct per_cpu_pageset *p)
6020 {
6021 	struct per_cpu_pages *pcp;
6022 	int migratetype;
6023 
6024 	memset(p, 0, sizeof(*p));
6025 
6026 	pcp = &p->pcp;
6027 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6028 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6029 }
6030 
6031 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6032 {
6033 	pageset_init(p);
6034 	pageset_set_batch(p, batch);
6035 }
6036 
6037 /*
6038  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6039  * to the value high for the pageset p.
6040  */
6041 static void pageset_set_high(struct per_cpu_pageset *p,
6042 				unsigned long high)
6043 {
6044 	unsigned long batch = max(1UL, high / 4);
6045 	if ((high / 4) > (PAGE_SHIFT * 8))
6046 		batch = PAGE_SHIFT * 8;
6047 
6048 	pageset_update(&p->pcp, high, batch);
6049 }
6050 
6051 static void pageset_set_high_and_batch(struct zone *zone,
6052 				       struct per_cpu_pageset *pcp)
6053 {
6054 	if (percpu_pagelist_fraction)
6055 		pageset_set_high(pcp,
6056 			(zone_managed_pages(zone) /
6057 				percpu_pagelist_fraction));
6058 	else
6059 		pageset_set_batch(pcp, zone_batchsize(zone));
6060 }
6061 
6062 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6063 {
6064 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6065 
6066 	pageset_init(pcp);
6067 	pageset_set_high_and_batch(zone, pcp);
6068 }
6069 
6070 void __meminit setup_zone_pageset(struct zone *zone)
6071 {
6072 	int cpu;
6073 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6074 	for_each_possible_cpu(cpu)
6075 		zone_pageset_init(zone, cpu);
6076 }
6077 
6078 /*
6079  * Allocate per cpu pagesets and initialize them.
6080  * Before this call only boot pagesets were available.
6081  */
6082 void __init setup_per_cpu_pageset(void)
6083 {
6084 	struct pglist_data *pgdat;
6085 	struct zone *zone;
6086 
6087 	for_each_populated_zone(zone)
6088 		setup_zone_pageset(zone);
6089 
6090 	for_each_online_pgdat(pgdat)
6091 		pgdat->per_cpu_nodestats =
6092 			alloc_percpu(struct per_cpu_nodestat);
6093 }
6094 
6095 static __meminit void zone_pcp_init(struct zone *zone)
6096 {
6097 	/*
6098 	 * per cpu subsystem is not up at this point. The following code
6099 	 * relies on the ability of the linker to provide the
6100 	 * offset of a (static) per cpu variable into the per cpu area.
6101 	 */
6102 	zone->pageset = &boot_pageset;
6103 
6104 	if (populated_zone(zone))
6105 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6106 			zone->name, zone->present_pages,
6107 					 zone_batchsize(zone));
6108 }
6109 
6110 void __meminit init_currently_empty_zone(struct zone *zone,
6111 					unsigned long zone_start_pfn,
6112 					unsigned long size)
6113 {
6114 	struct pglist_data *pgdat = zone->zone_pgdat;
6115 	int zone_idx = zone_idx(zone) + 1;
6116 
6117 	if (zone_idx > pgdat->nr_zones)
6118 		pgdat->nr_zones = zone_idx;
6119 
6120 	zone->zone_start_pfn = zone_start_pfn;
6121 
6122 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6123 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6124 			pgdat->node_id,
6125 			(unsigned long)zone_idx(zone),
6126 			zone_start_pfn, (zone_start_pfn + size));
6127 
6128 	zone_init_free_lists(zone);
6129 	zone->initialized = 1;
6130 }
6131 
6132 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6133 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6134 
6135 /*
6136  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6137  */
6138 int __meminit __early_pfn_to_nid(unsigned long pfn,
6139 					struct mminit_pfnnid_cache *state)
6140 {
6141 	unsigned long start_pfn, end_pfn;
6142 	int nid;
6143 
6144 	if (state->last_start <= pfn && pfn < state->last_end)
6145 		return state->last_nid;
6146 
6147 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6148 	if (nid != NUMA_NO_NODE) {
6149 		state->last_start = start_pfn;
6150 		state->last_end = end_pfn;
6151 		state->last_nid = nid;
6152 	}
6153 
6154 	return nid;
6155 }
6156 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6157 
6158 /**
6159  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6160  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6161  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6162  *
6163  * If an architecture guarantees that all ranges registered contain no holes
6164  * and may be freed, this this function may be used instead of calling
6165  * memblock_free_early_nid() manually.
6166  */
6167 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6168 {
6169 	unsigned long start_pfn, end_pfn;
6170 	int i, this_nid;
6171 
6172 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6173 		start_pfn = min(start_pfn, max_low_pfn);
6174 		end_pfn = min(end_pfn, max_low_pfn);
6175 
6176 		if (start_pfn < end_pfn)
6177 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6178 					(end_pfn - start_pfn) << PAGE_SHIFT,
6179 					this_nid);
6180 	}
6181 }
6182 
6183 /**
6184  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6185  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6186  *
6187  * If an architecture guarantees that all ranges registered contain no holes and may
6188  * be freed, this function may be used instead of calling memory_present() manually.
6189  */
6190 void __init sparse_memory_present_with_active_regions(int nid)
6191 {
6192 	unsigned long start_pfn, end_pfn;
6193 	int i, this_nid;
6194 
6195 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6196 		memory_present(this_nid, start_pfn, end_pfn);
6197 }
6198 
6199 /**
6200  * get_pfn_range_for_nid - Return the start and end page frames for a node
6201  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6202  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6203  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6204  *
6205  * It returns the start and end page frame of a node based on information
6206  * provided by memblock_set_node(). If called for a node
6207  * with no available memory, a warning is printed and the start and end
6208  * PFNs will be 0.
6209  */
6210 void __init get_pfn_range_for_nid(unsigned int nid,
6211 			unsigned long *start_pfn, unsigned long *end_pfn)
6212 {
6213 	unsigned long this_start_pfn, this_end_pfn;
6214 	int i;
6215 
6216 	*start_pfn = -1UL;
6217 	*end_pfn = 0;
6218 
6219 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6220 		*start_pfn = min(*start_pfn, this_start_pfn);
6221 		*end_pfn = max(*end_pfn, this_end_pfn);
6222 	}
6223 
6224 	if (*start_pfn == -1UL)
6225 		*start_pfn = 0;
6226 }
6227 
6228 /*
6229  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6230  * assumption is made that zones within a node are ordered in monotonic
6231  * increasing memory addresses so that the "highest" populated zone is used
6232  */
6233 static void __init find_usable_zone_for_movable(void)
6234 {
6235 	int zone_index;
6236 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6237 		if (zone_index == ZONE_MOVABLE)
6238 			continue;
6239 
6240 		if (arch_zone_highest_possible_pfn[zone_index] >
6241 				arch_zone_lowest_possible_pfn[zone_index])
6242 			break;
6243 	}
6244 
6245 	VM_BUG_ON(zone_index == -1);
6246 	movable_zone = zone_index;
6247 }
6248 
6249 /*
6250  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6251  * because it is sized independent of architecture. Unlike the other zones,
6252  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6253  * in each node depending on the size of each node and how evenly kernelcore
6254  * is distributed. This helper function adjusts the zone ranges
6255  * provided by the architecture for a given node by using the end of the
6256  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6257  * zones within a node are in order of monotonic increases memory addresses
6258  */
6259 static void __init adjust_zone_range_for_zone_movable(int nid,
6260 					unsigned long zone_type,
6261 					unsigned long node_start_pfn,
6262 					unsigned long node_end_pfn,
6263 					unsigned long *zone_start_pfn,
6264 					unsigned long *zone_end_pfn)
6265 {
6266 	/* Only adjust if ZONE_MOVABLE is on this node */
6267 	if (zone_movable_pfn[nid]) {
6268 		/* Size ZONE_MOVABLE */
6269 		if (zone_type == ZONE_MOVABLE) {
6270 			*zone_start_pfn = zone_movable_pfn[nid];
6271 			*zone_end_pfn = min(node_end_pfn,
6272 				arch_zone_highest_possible_pfn[movable_zone]);
6273 
6274 		/* Adjust for ZONE_MOVABLE starting within this range */
6275 		} else if (!mirrored_kernelcore &&
6276 			*zone_start_pfn < zone_movable_pfn[nid] &&
6277 			*zone_end_pfn > zone_movable_pfn[nid]) {
6278 			*zone_end_pfn = zone_movable_pfn[nid];
6279 
6280 		/* Check if this whole range is within ZONE_MOVABLE */
6281 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6282 			*zone_start_pfn = *zone_end_pfn;
6283 	}
6284 }
6285 
6286 /*
6287  * Return the number of pages a zone spans in a node, including holes
6288  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6289  */
6290 static unsigned long __init zone_spanned_pages_in_node(int nid,
6291 					unsigned long zone_type,
6292 					unsigned long node_start_pfn,
6293 					unsigned long node_end_pfn,
6294 					unsigned long *zone_start_pfn,
6295 					unsigned long *zone_end_pfn,
6296 					unsigned long *ignored)
6297 {
6298 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6299 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6300 	/* When hotadd a new node from cpu_up(), the node should be empty */
6301 	if (!node_start_pfn && !node_end_pfn)
6302 		return 0;
6303 
6304 	/* Get the start and end of the zone */
6305 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6306 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6307 	adjust_zone_range_for_zone_movable(nid, zone_type,
6308 				node_start_pfn, node_end_pfn,
6309 				zone_start_pfn, zone_end_pfn);
6310 
6311 	/* Check that this node has pages within the zone's required range */
6312 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6313 		return 0;
6314 
6315 	/* Move the zone boundaries inside the node if necessary */
6316 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6317 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6318 
6319 	/* Return the spanned pages */
6320 	return *zone_end_pfn - *zone_start_pfn;
6321 }
6322 
6323 /*
6324  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6325  * then all holes in the requested range will be accounted for.
6326  */
6327 unsigned long __init __absent_pages_in_range(int nid,
6328 				unsigned long range_start_pfn,
6329 				unsigned long range_end_pfn)
6330 {
6331 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6332 	unsigned long start_pfn, end_pfn;
6333 	int i;
6334 
6335 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6336 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6337 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6338 		nr_absent -= end_pfn - start_pfn;
6339 	}
6340 	return nr_absent;
6341 }
6342 
6343 /**
6344  * absent_pages_in_range - Return number of page frames in holes within a range
6345  * @start_pfn: The start PFN to start searching for holes
6346  * @end_pfn: The end PFN to stop searching for holes
6347  *
6348  * Return: the number of pages frames in memory holes within a range.
6349  */
6350 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6351 							unsigned long end_pfn)
6352 {
6353 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6354 }
6355 
6356 /* Return the number of page frames in holes in a zone on a node */
6357 static unsigned long __init zone_absent_pages_in_node(int nid,
6358 					unsigned long zone_type,
6359 					unsigned long node_start_pfn,
6360 					unsigned long node_end_pfn,
6361 					unsigned long *ignored)
6362 {
6363 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6364 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6365 	unsigned long zone_start_pfn, zone_end_pfn;
6366 	unsigned long nr_absent;
6367 
6368 	/* When hotadd a new node from cpu_up(), the node should be empty */
6369 	if (!node_start_pfn && !node_end_pfn)
6370 		return 0;
6371 
6372 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6373 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6374 
6375 	adjust_zone_range_for_zone_movable(nid, zone_type,
6376 			node_start_pfn, node_end_pfn,
6377 			&zone_start_pfn, &zone_end_pfn);
6378 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6379 
6380 	/*
6381 	 * ZONE_MOVABLE handling.
6382 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6383 	 * and vice versa.
6384 	 */
6385 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6386 		unsigned long start_pfn, end_pfn;
6387 		struct memblock_region *r;
6388 
6389 		for_each_memblock(memory, r) {
6390 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6391 					  zone_start_pfn, zone_end_pfn);
6392 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6393 					zone_start_pfn, zone_end_pfn);
6394 
6395 			if (zone_type == ZONE_MOVABLE &&
6396 			    memblock_is_mirror(r))
6397 				nr_absent += end_pfn - start_pfn;
6398 
6399 			if (zone_type == ZONE_NORMAL &&
6400 			    !memblock_is_mirror(r))
6401 				nr_absent += end_pfn - start_pfn;
6402 		}
6403 	}
6404 
6405 	return nr_absent;
6406 }
6407 
6408 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6409 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6410 					unsigned long zone_type,
6411 					unsigned long node_start_pfn,
6412 					unsigned long node_end_pfn,
6413 					unsigned long *zone_start_pfn,
6414 					unsigned long *zone_end_pfn,
6415 					unsigned long *zones_size)
6416 {
6417 	unsigned int zone;
6418 
6419 	*zone_start_pfn = node_start_pfn;
6420 	for (zone = 0; zone < zone_type; zone++)
6421 		*zone_start_pfn += zones_size[zone];
6422 
6423 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6424 
6425 	return zones_size[zone_type];
6426 }
6427 
6428 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6429 						unsigned long zone_type,
6430 						unsigned long node_start_pfn,
6431 						unsigned long node_end_pfn,
6432 						unsigned long *zholes_size)
6433 {
6434 	if (!zholes_size)
6435 		return 0;
6436 
6437 	return zholes_size[zone_type];
6438 }
6439 
6440 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6441 
6442 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6443 						unsigned long node_start_pfn,
6444 						unsigned long node_end_pfn,
6445 						unsigned long *zones_size,
6446 						unsigned long *zholes_size)
6447 {
6448 	unsigned long realtotalpages = 0, totalpages = 0;
6449 	enum zone_type i;
6450 
6451 	for (i = 0; i < MAX_NR_ZONES; i++) {
6452 		struct zone *zone = pgdat->node_zones + i;
6453 		unsigned long zone_start_pfn, zone_end_pfn;
6454 		unsigned long size, real_size;
6455 
6456 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6457 						  node_start_pfn,
6458 						  node_end_pfn,
6459 						  &zone_start_pfn,
6460 						  &zone_end_pfn,
6461 						  zones_size);
6462 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6463 						  node_start_pfn, node_end_pfn,
6464 						  zholes_size);
6465 		if (size)
6466 			zone->zone_start_pfn = zone_start_pfn;
6467 		else
6468 			zone->zone_start_pfn = 0;
6469 		zone->spanned_pages = size;
6470 		zone->present_pages = real_size;
6471 
6472 		totalpages += size;
6473 		realtotalpages += real_size;
6474 	}
6475 
6476 	pgdat->node_spanned_pages = totalpages;
6477 	pgdat->node_present_pages = realtotalpages;
6478 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6479 							realtotalpages);
6480 }
6481 
6482 #ifndef CONFIG_SPARSEMEM
6483 /*
6484  * Calculate the size of the zone->blockflags rounded to an unsigned long
6485  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6486  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6487  * round what is now in bits to nearest long in bits, then return it in
6488  * bytes.
6489  */
6490 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6491 {
6492 	unsigned long usemapsize;
6493 
6494 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6495 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6496 	usemapsize = usemapsize >> pageblock_order;
6497 	usemapsize *= NR_PAGEBLOCK_BITS;
6498 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6499 
6500 	return usemapsize / 8;
6501 }
6502 
6503 static void __ref setup_usemap(struct pglist_data *pgdat,
6504 				struct zone *zone,
6505 				unsigned long zone_start_pfn,
6506 				unsigned long zonesize)
6507 {
6508 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6509 	zone->pageblock_flags = NULL;
6510 	if (usemapsize) {
6511 		zone->pageblock_flags =
6512 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6513 					    pgdat->node_id);
6514 		if (!zone->pageblock_flags)
6515 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6516 			      usemapsize, zone->name, pgdat->node_id);
6517 	}
6518 }
6519 #else
6520 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6521 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6522 #endif /* CONFIG_SPARSEMEM */
6523 
6524 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6525 
6526 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6527 void __init set_pageblock_order(void)
6528 {
6529 	unsigned int order;
6530 
6531 	/* Check that pageblock_nr_pages has not already been setup */
6532 	if (pageblock_order)
6533 		return;
6534 
6535 	if (HPAGE_SHIFT > PAGE_SHIFT)
6536 		order = HUGETLB_PAGE_ORDER;
6537 	else
6538 		order = MAX_ORDER - 1;
6539 
6540 	/*
6541 	 * Assume the largest contiguous order of interest is a huge page.
6542 	 * This value may be variable depending on boot parameters on IA64 and
6543 	 * powerpc.
6544 	 */
6545 	pageblock_order = order;
6546 }
6547 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6548 
6549 /*
6550  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6551  * is unused as pageblock_order is set at compile-time. See
6552  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6553  * the kernel config
6554  */
6555 void __init set_pageblock_order(void)
6556 {
6557 }
6558 
6559 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6560 
6561 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6562 						unsigned long present_pages)
6563 {
6564 	unsigned long pages = spanned_pages;
6565 
6566 	/*
6567 	 * Provide a more accurate estimation if there are holes within
6568 	 * the zone and SPARSEMEM is in use. If there are holes within the
6569 	 * zone, each populated memory region may cost us one or two extra
6570 	 * memmap pages due to alignment because memmap pages for each
6571 	 * populated regions may not be naturally aligned on page boundary.
6572 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6573 	 */
6574 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6575 	    IS_ENABLED(CONFIG_SPARSEMEM))
6576 		pages = present_pages;
6577 
6578 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6579 }
6580 
6581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6582 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6583 {
6584 	spin_lock_init(&pgdat->split_queue_lock);
6585 	INIT_LIST_HEAD(&pgdat->split_queue);
6586 	pgdat->split_queue_len = 0;
6587 }
6588 #else
6589 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6590 #endif
6591 
6592 #ifdef CONFIG_COMPACTION
6593 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6594 {
6595 	init_waitqueue_head(&pgdat->kcompactd_wait);
6596 }
6597 #else
6598 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6599 #endif
6600 
6601 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6602 {
6603 	pgdat_resize_init(pgdat);
6604 
6605 	pgdat_init_split_queue(pgdat);
6606 	pgdat_init_kcompactd(pgdat);
6607 
6608 	init_waitqueue_head(&pgdat->kswapd_wait);
6609 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6610 
6611 	pgdat_page_ext_init(pgdat);
6612 	spin_lock_init(&pgdat->lru_lock);
6613 	lruvec_init(node_lruvec(pgdat));
6614 }
6615 
6616 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6617 							unsigned long remaining_pages)
6618 {
6619 	atomic_long_set(&zone->managed_pages, remaining_pages);
6620 	zone_set_nid(zone, nid);
6621 	zone->name = zone_names[idx];
6622 	zone->zone_pgdat = NODE_DATA(nid);
6623 	spin_lock_init(&zone->lock);
6624 	zone_seqlock_init(zone);
6625 	zone_pcp_init(zone);
6626 }
6627 
6628 /*
6629  * Set up the zone data structures
6630  * - init pgdat internals
6631  * - init all zones belonging to this node
6632  *
6633  * NOTE: this function is only called during memory hotplug
6634  */
6635 #ifdef CONFIG_MEMORY_HOTPLUG
6636 void __ref free_area_init_core_hotplug(int nid)
6637 {
6638 	enum zone_type z;
6639 	pg_data_t *pgdat = NODE_DATA(nid);
6640 
6641 	pgdat_init_internals(pgdat);
6642 	for (z = 0; z < MAX_NR_ZONES; z++)
6643 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6644 }
6645 #endif
6646 
6647 /*
6648  * Set up the zone data structures:
6649  *   - mark all pages reserved
6650  *   - mark all memory queues empty
6651  *   - clear the memory bitmaps
6652  *
6653  * NOTE: pgdat should get zeroed by caller.
6654  * NOTE: this function is only called during early init.
6655  */
6656 static void __init free_area_init_core(struct pglist_data *pgdat)
6657 {
6658 	enum zone_type j;
6659 	int nid = pgdat->node_id;
6660 
6661 	pgdat_init_internals(pgdat);
6662 	pgdat->per_cpu_nodestats = &boot_nodestats;
6663 
6664 	for (j = 0; j < MAX_NR_ZONES; j++) {
6665 		struct zone *zone = pgdat->node_zones + j;
6666 		unsigned long size, freesize, memmap_pages;
6667 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6668 
6669 		size = zone->spanned_pages;
6670 		freesize = zone->present_pages;
6671 
6672 		/*
6673 		 * Adjust freesize so that it accounts for how much memory
6674 		 * is used by this zone for memmap. This affects the watermark
6675 		 * and per-cpu initialisations
6676 		 */
6677 		memmap_pages = calc_memmap_size(size, freesize);
6678 		if (!is_highmem_idx(j)) {
6679 			if (freesize >= memmap_pages) {
6680 				freesize -= memmap_pages;
6681 				if (memmap_pages)
6682 					printk(KERN_DEBUG
6683 					       "  %s zone: %lu pages used for memmap\n",
6684 					       zone_names[j], memmap_pages);
6685 			} else
6686 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6687 					zone_names[j], memmap_pages, freesize);
6688 		}
6689 
6690 		/* Account for reserved pages */
6691 		if (j == 0 && freesize > dma_reserve) {
6692 			freesize -= dma_reserve;
6693 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6694 					zone_names[0], dma_reserve);
6695 		}
6696 
6697 		if (!is_highmem_idx(j))
6698 			nr_kernel_pages += freesize;
6699 		/* Charge for highmem memmap if there are enough kernel pages */
6700 		else if (nr_kernel_pages > memmap_pages * 2)
6701 			nr_kernel_pages -= memmap_pages;
6702 		nr_all_pages += freesize;
6703 
6704 		/*
6705 		 * Set an approximate value for lowmem here, it will be adjusted
6706 		 * when the bootmem allocator frees pages into the buddy system.
6707 		 * And all highmem pages will be managed by the buddy system.
6708 		 */
6709 		zone_init_internals(zone, j, nid, freesize);
6710 
6711 		if (!size)
6712 			continue;
6713 
6714 		set_pageblock_order();
6715 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6716 		init_currently_empty_zone(zone, zone_start_pfn, size);
6717 		memmap_init(size, nid, j, zone_start_pfn);
6718 	}
6719 }
6720 
6721 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6722 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6723 {
6724 	unsigned long __maybe_unused start = 0;
6725 	unsigned long __maybe_unused offset = 0;
6726 
6727 	/* Skip empty nodes */
6728 	if (!pgdat->node_spanned_pages)
6729 		return;
6730 
6731 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6732 	offset = pgdat->node_start_pfn - start;
6733 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6734 	if (!pgdat->node_mem_map) {
6735 		unsigned long size, end;
6736 		struct page *map;
6737 
6738 		/*
6739 		 * The zone's endpoints aren't required to be MAX_ORDER
6740 		 * aligned but the node_mem_map endpoints must be in order
6741 		 * for the buddy allocator to function correctly.
6742 		 */
6743 		end = pgdat_end_pfn(pgdat);
6744 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6745 		size =  (end - start) * sizeof(struct page);
6746 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6747 					  pgdat->node_id);
6748 		if (!map)
6749 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6750 			      size, pgdat->node_id);
6751 		pgdat->node_mem_map = map + offset;
6752 	}
6753 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6754 				__func__, pgdat->node_id, (unsigned long)pgdat,
6755 				(unsigned long)pgdat->node_mem_map);
6756 #ifndef CONFIG_NEED_MULTIPLE_NODES
6757 	/*
6758 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6759 	 */
6760 	if (pgdat == NODE_DATA(0)) {
6761 		mem_map = NODE_DATA(0)->node_mem_map;
6762 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6763 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6764 			mem_map -= offset;
6765 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6766 	}
6767 #endif
6768 }
6769 #else
6770 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6771 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6772 
6773 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6774 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6775 {
6776 	pgdat->first_deferred_pfn = ULONG_MAX;
6777 }
6778 #else
6779 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6780 #endif
6781 
6782 void __init free_area_init_node(int nid, unsigned long *zones_size,
6783 				   unsigned long node_start_pfn,
6784 				   unsigned long *zholes_size)
6785 {
6786 	pg_data_t *pgdat = NODE_DATA(nid);
6787 	unsigned long start_pfn = 0;
6788 	unsigned long end_pfn = 0;
6789 
6790 	/* pg_data_t should be reset to zero when it's allocated */
6791 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6792 
6793 	pgdat->node_id = nid;
6794 	pgdat->node_start_pfn = node_start_pfn;
6795 	pgdat->per_cpu_nodestats = NULL;
6796 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6797 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6798 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6799 		(u64)start_pfn << PAGE_SHIFT,
6800 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6801 #else
6802 	start_pfn = node_start_pfn;
6803 #endif
6804 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6805 				  zones_size, zholes_size);
6806 
6807 	alloc_node_mem_map(pgdat);
6808 	pgdat_set_deferred_range(pgdat);
6809 
6810 	free_area_init_core(pgdat);
6811 }
6812 
6813 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6814 /*
6815  * Zero all valid struct pages in range [spfn, epfn), return number of struct
6816  * pages zeroed
6817  */
6818 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn)
6819 {
6820 	unsigned long pfn;
6821 	u64 pgcnt = 0;
6822 
6823 	for (pfn = spfn; pfn < epfn; pfn++) {
6824 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6825 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6826 				+ pageblock_nr_pages - 1;
6827 			continue;
6828 		}
6829 		mm_zero_struct_page(pfn_to_page(pfn));
6830 		pgcnt++;
6831 	}
6832 
6833 	return pgcnt;
6834 }
6835 
6836 /*
6837  * Only struct pages that are backed by physical memory are zeroed and
6838  * initialized by going through __init_single_page(). But, there are some
6839  * struct pages which are reserved in memblock allocator and their fields
6840  * may be accessed (for example page_to_pfn() on some configuration accesses
6841  * flags). We must explicitly zero those struct pages.
6842  *
6843  * This function also addresses a similar issue where struct pages are left
6844  * uninitialized because the physical address range is not covered by
6845  * memblock.memory or memblock.reserved. That could happen when memblock
6846  * layout is manually configured via memmap=.
6847  */
6848 void __init zero_resv_unavail(void)
6849 {
6850 	phys_addr_t start, end;
6851 	u64 i, pgcnt;
6852 	phys_addr_t next = 0;
6853 
6854 	/*
6855 	 * Loop through unavailable ranges not covered by memblock.memory.
6856 	 */
6857 	pgcnt = 0;
6858 	for_each_mem_range(i, &memblock.memory, NULL,
6859 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6860 		if (next < start)
6861 			pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start));
6862 		next = end;
6863 	}
6864 	pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn);
6865 
6866 	/*
6867 	 * Struct pages that do not have backing memory. This could be because
6868 	 * firmware is using some of this memory, or for some other reasons.
6869 	 */
6870 	if (pgcnt)
6871 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6872 }
6873 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6874 
6875 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6876 
6877 #if MAX_NUMNODES > 1
6878 /*
6879  * Figure out the number of possible node ids.
6880  */
6881 void __init setup_nr_node_ids(void)
6882 {
6883 	unsigned int highest;
6884 
6885 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6886 	nr_node_ids = highest + 1;
6887 }
6888 #endif
6889 
6890 /**
6891  * node_map_pfn_alignment - determine the maximum internode alignment
6892  *
6893  * This function should be called after node map is populated and sorted.
6894  * It calculates the maximum power of two alignment which can distinguish
6895  * all the nodes.
6896  *
6897  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6898  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6899  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6900  * shifted, 1GiB is enough and this function will indicate so.
6901  *
6902  * This is used to test whether pfn -> nid mapping of the chosen memory
6903  * model has fine enough granularity to avoid incorrect mapping for the
6904  * populated node map.
6905  *
6906  * Return: the determined alignment in pfn's.  0 if there is no alignment
6907  * requirement (single node).
6908  */
6909 unsigned long __init node_map_pfn_alignment(void)
6910 {
6911 	unsigned long accl_mask = 0, last_end = 0;
6912 	unsigned long start, end, mask;
6913 	int last_nid = NUMA_NO_NODE;
6914 	int i, nid;
6915 
6916 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6917 		if (!start || last_nid < 0 || last_nid == nid) {
6918 			last_nid = nid;
6919 			last_end = end;
6920 			continue;
6921 		}
6922 
6923 		/*
6924 		 * Start with a mask granular enough to pin-point to the
6925 		 * start pfn and tick off bits one-by-one until it becomes
6926 		 * too coarse to separate the current node from the last.
6927 		 */
6928 		mask = ~((1 << __ffs(start)) - 1);
6929 		while (mask && last_end <= (start & (mask << 1)))
6930 			mask <<= 1;
6931 
6932 		/* accumulate all internode masks */
6933 		accl_mask |= mask;
6934 	}
6935 
6936 	/* convert mask to number of pages */
6937 	return ~accl_mask + 1;
6938 }
6939 
6940 /* Find the lowest pfn for a node */
6941 static unsigned long __init find_min_pfn_for_node(int nid)
6942 {
6943 	unsigned long min_pfn = ULONG_MAX;
6944 	unsigned long start_pfn;
6945 	int i;
6946 
6947 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6948 		min_pfn = min(min_pfn, start_pfn);
6949 
6950 	if (min_pfn == ULONG_MAX) {
6951 		pr_warn("Could not find start_pfn for node %d\n", nid);
6952 		return 0;
6953 	}
6954 
6955 	return min_pfn;
6956 }
6957 
6958 /**
6959  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6960  *
6961  * Return: the minimum PFN based on information provided via
6962  * memblock_set_node().
6963  */
6964 unsigned long __init find_min_pfn_with_active_regions(void)
6965 {
6966 	return find_min_pfn_for_node(MAX_NUMNODES);
6967 }
6968 
6969 /*
6970  * early_calculate_totalpages()
6971  * Sum pages in active regions for movable zone.
6972  * Populate N_MEMORY for calculating usable_nodes.
6973  */
6974 static unsigned long __init early_calculate_totalpages(void)
6975 {
6976 	unsigned long totalpages = 0;
6977 	unsigned long start_pfn, end_pfn;
6978 	int i, nid;
6979 
6980 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6981 		unsigned long pages = end_pfn - start_pfn;
6982 
6983 		totalpages += pages;
6984 		if (pages)
6985 			node_set_state(nid, N_MEMORY);
6986 	}
6987 	return totalpages;
6988 }
6989 
6990 /*
6991  * Find the PFN the Movable zone begins in each node. Kernel memory
6992  * is spread evenly between nodes as long as the nodes have enough
6993  * memory. When they don't, some nodes will have more kernelcore than
6994  * others
6995  */
6996 static void __init find_zone_movable_pfns_for_nodes(void)
6997 {
6998 	int i, nid;
6999 	unsigned long usable_startpfn;
7000 	unsigned long kernelcore_node, kernelcore_remaining;
7001 	/* save the state before borrow the nodemask */
7002 	nodemask_t saved_node_state = node_states[N_MEMORY];
7003 	unsigned long totalpages = early_calculate_totalpages();
7004 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7005 	struct memblock_region *r;
7006 
7007 	/* Need to find movable_zone earlier when movable_node is specified. */
7008 	find_usable_zone_for_movable();
7009 
7010 	/*
7011 	 * If movable_node is specified, ignore kernelcore and movablecore
7012 	 * options.
7013 	 */
7014 	if (movable_node_is_enabled()) {
7015 		for_each_memblock(memory, r) {
7016 			if (!memblock_is_hotpluggable(r))
7017 				continue;
7018 
7019 			nid = r->nid;
7020 
7021 			usable_startpfn = PFN_DOWN(r->base);
7022 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7023 				min(usable_startpfn, zone_movable_pfn[nid]) :
7024 				usable_startpfn;
7025 		}
7026 
7027 		goto out2;
7028 	}
7029 
7030 	/*
7031 	 * If kernelcore=mirror is specified, ignore movablecore option
7032 	 */
7033 	if (mirrored_kernelcore) {
7034 		bool mem_below_4gb_not_mirrored = false;
7035 
7036 		for_each_memblock(memory, r) {
7037 			if (memblock_is_mirror(r))
7038 				continue;
7039 
7040 			nid = r->nid;
7041 
7042 			usable_startpfn = memblock_region_memory_base_pfn(r);
7043 
7044 			if (usable_startpfn < 0x100000) {
7045 				mem_below_4gb_not_mirrored = true;
7046 				continue;
7047 			}
7048 
7049 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7050 				min(usable_startpfn, zone_movable_pfn[nid]) :
7051 				usable_startpfn;
7052 		}
7053 
7054 		if (mem_below_4gb_not_mirrored)
7055 			pr_warn("This configuration results in unmirrored kernel memory.");
7056 
7057 		goto out2;
7058 	}
7059 
7060 	/*
7061 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7062 	 * amount of necessary memory.
7063 	 */
7064 	if (required_kernelcore_percent)
7065 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7066 				       10000UL;
7067 	if (required_movablecore_percent)
7068 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7069 					10000UL;
7070 
7071 	/*
7072 	 * If movablecore= was specified, calculate what size of
7073 	 * kernelcore that corresponds so that memory usable for
7074 	 * any allocation type is evenly spread. If both kernelcore
7075 	 * and movablecore are specified, then the value of kernelcore
7076 	 * will be used for required_kernelcore if it's greater than
7077 	 * what movablecore would have allowed.
7078 	 */
7079 	if (required_movablecore) {
7080 		unsigned long corepages;
7081 
7082 		/*
7083 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7084 		 * was requested by the user
7085 		 */
7086 		required_movablecore =
7087 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7088 		required_movablecore = min(totalpages, required_movablecore);
7089 		corepages = totalpages - required_movablecore;
7090 
7091 		required_kernelcore = max(required_kernelcore, corepages);
7092 	}
7093 
7094 	/*
7095 	 * If kernelcore was not specified or kernelcore size is larger
7096 	 * than totalpages, there is no ZONE_MOVABLE.
7097 	 */
7098 	if (!required_kernelcore || required_kernelcore >= totalpages)
7099 		goto out;
7100 
7101 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7102 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7103 
7104 restart:
7105 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7106 	kernelcore_node = required_kernelcore / usable_nodes;
7107 	for_each_node_state(nid, N_MEMORY) {
7108 		unsigned long start_pfn, end_pfn;
7109 
7110 		/*
7111 		 * Recalculate kernelcore_node if the division per node
7112 		 * now exceeds what is necessary to satisfy the requested
7113 		 * amount of memory for the kernel
7114 		 */
7115 		if (required_kernelcore < kernelcore_node)
7116 			kernelcore_node = required_kernelcore / usable_nodes;
7117 
7118 		/*
7119 		 * As the map is walked, we track how much memory is usable
7120 		 * by the kernel using kernelcore_remaining. When it is
7121 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7122 		 */
7123 		kernelcore_remaining = kernelcore_node;
7124 
7125 		/* Go through each range of PFNs within this node */
7126 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7127 			unsigned long size_pages;
7128 
7129 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7130 			if (start_pfn >= end_pfn)
7131 				continue;
7132 
7133 			/* Account for what is only usable for kernelcore */
7134 			if (start_pfn < usable_startpfn) {
7135 				unsigned long kernel_pages;
7136 				kernel_pages = min(end_pfn, usable_startpfn)
7137 								- start_pfn;
7138 
7139 				kernelcore_remaining -= min(kernel_pages,
7140 							kernelcore_remaining);
7141 				required_kernelcore -= min(kernel_pages,
7142 							required_kernelcore);
7143 
7144 				/* Continue if range is now fully accounted */
7145 				if (end_pfn <= usable_startpfn) {
7146 
7147 					/*
7148 					 * Push zone_movable_pfn to the end so
7149 					 * that if we have to rebalance
7150 					 * kernelcore across nodes, we will
7151 					 * not double account here
7152 					 */
7153 					zone_movable_pfn[nid] = end_pfn;
7154 					continue;
7155 				}
7156 				start_pfn = usable_startpfn;
7157 			}
7158 
7159 			/*
7160 			 * The usable PFN range for ZONE_MOVABLE is from
7161 			 * start_pfn->end_pfn. Calculate size_pages as the
7162 			 * number of pages used as kernelcore
7163 			 */
7164 			size_pages = end_pfn - start_pfn;
7165 			if (size_pages > kernelcore_remaining)
7166 				size_pages = kernelcore_remaining;
7167 			zone_movable_pfn[nid] = start_pfn + size_pages;
7168 
7169 			/*
7170 			 * Some kernelcore has been met, update counts and
7171 			 * break if the kernelcore for this node has been
7172 			 * satisfied
7173 			 */
7174 			required_kernelcore -= min(required_kernelcore,
7175 								size_pages);
7176 			kernelcore_remaining -= size_pages;
7177 			if (!kernelcore_remaining)
7178 				break;
7179 		}
7180 	}
7181 
7182 	/*
7183 	 * If there is still required_kernelcore, we do another pass with one
7184 	 * less node in the count. This will push zone_movable_pfn[nid] further
7185 	 * along on the nodes that still have memory until kernelcore is
7186 	 * satisfied
7187 	 */
7188 	usable_nodes--;
7189 	if (usable_nodes && required_kernelcore > usable_nodes)
7190 		goto restart;
7191 
7192 out2:
7193 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7194 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7195 		zone_movable_pfn[nid] =
7196 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7197 
7198 out:
7199 	/* restore the node_state */
7200 	node_states[N_MEMORY] = saved_node_state;
7201 }
7202 
7203 /* Any regular or high memory on that node ? */
7204 static void check_for_memory(pg_data_t *pgdat, int nid)
7205 {
7206 	enum zone_type zone_type;
7207 
7208 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7209 		struct zone *zone = &pgdat->node_zones[zone_type];
7210 		if (populated_zone(zone)) {
7211 			if (IS_ENABLED(CONFIG_HIGHMEM))
7212 				node_set_state(nid, N_HIGH_MEMORY);
7213 			if (zone_type <= ZONE_NORMAL)
7214 				node_set_state(nid, N_NORMAL_MEMORY);
7215 			break;
7216 		}
7217 	}
7218 }
7219 
7220 /**
7221  * free_area_init_nodes - Initialise all pg_data_t and zone data
7222  * @max_zone_pfn: an array of max PFNs for each zone
7223  *
7224  * This will call free_area_init_node() for each active node in the system.
7225  * Using the page ranges provided by memblock_set_node(), the size of each
7226  * zone in each node and their holes is calculated. If the maximum PFN
7227  * between two adjacent zones match, it is assumed that the zone is empty.
7228  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7229  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7230  * starts where the previous one ended. For example, ZONE_DMA32 starts
7231  * at arch_max_dma_pfn.
7232  */
7233 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7234 {
7235 	unsigned long start_pfn, end_pfn;
7236 	int i, nid;
7237 
7238 	/* Record where the zone boundaries are */
7239 	memset(arch_zone_lowest_possible_pfn, 0,
7240 				sizeof(arch_zone_lowest_possible_pfn));
7241 	memset(arch_zone_highest_possible_pfn, 0,
7242 				sizeof(arch_zone_highest_possible_pfn));
7243 
7244 	start_pfn = find_min_pfn_with_active_regions();
7245 
7246 	for (i = 0; i < MAX_NR_ZONES; i++) {
7247 		if (i == ZONE_MOVABLE)
7248 			continue;
7249 
7250 		end_pfn = max(max_zone_pfn[i], start_pfn);
7251 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7252 		arch_zone_highest_possible_pfn[i] = end_pfn;
7253 
7254 		start_pfn = end_pfn;
7255 	}
7256 
7257 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7258 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7259 	find_zone_movable_pfns_for_nodes();
7260 
7261 	/* Print out the zone ranges */
7262 	pr_info("Zone ranges:\n");
7263 	for (i = 0; i < MAX_NR_ZONES; i++) {
7264 		if (i == ZONE_MOVABLE)
7265 			continue;
7266 		pr_info("  %-8s ", zone_names[i]);
7267 		if (arch_zone_lowest_possible_pfn[i] ==
7268 				arch_zone_highest_possible_pfn[i])
7269 			pr_cont("empty\n");
7270 		else
7271 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7272 				(u64)arch_zone_lowest_possible_pfn[i]
7273 					<< PAGE_SHIFT,
7274 				((u64)arch_zone_highest_possible_pfn[i]
7275 					<< PAGE_SHIFT) - 1);
7276 	}
7277 
7278 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7279 	pr_info("Movable zone start for each node\n");
7280 	for (i = 0; i < MAX_NUMNODES; i++) {
7281 		if (zone_movable_pfn[i])
7282 			pr_info("  Node %d: %#018Lx\n", i,
7283 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7284 	}
7285 
7286 	/* Print out the early node map */
7287 	pr_info("Early memory node ranges\n");
7288 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
7289 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7290 			(u64)start_pfn << PAGE_SHIFT,
7291 			((u64)end_pfn << PAGE_SHIFT) - 1);
7292 
7293 	/* Initialise every node */
7294 	mminit_verify_pageflags_layout();
7295 	setup_nr_node_ids();
7296 	zero_resv_unavail();
7297 	for_each_online_node(nid) {
7298 		pg_data_t *pgdat = NODE_DATA(nid);
7299 		free_area_init_node(nid, NULL,
7300 				find_min_pfn_for_node(nid), NULL);
7301 
7302 		/* Any memory on that node */
7303 		if (pgdat->node_present_pages)
7304 			node_set_state(nid, N_MEMORY);
7305 		check_for_memory(pgdat, nid);
7306 	}
7307 }
7308 
7309 static int __init cmdline_parse_core(char *p, unsigned long *core,
7310 				     unsigned long *percent)
7311 {
7312 	unsigned long long coremem;
7313 	char *endptr;
7314 
7315 	if (!p)
7316 		return -EINVAL;
7317 
7318 	/* Value may be a percentage of total memory, otherwise bytes */
7319 	coremem = simple_strtoull(p, &endptr, 0);
7320 	if (*endptr == '%') {
7321 		/* Paranoid check for percent values greater than 100 */
7322 		WARN_ON(coremem > 100);
7323 
7324 		*percent = coremem;
7325 	} else {
7326 		coremem = memparse(p, &p);
7327 		/* Paranoid check that UL is enough for the coremem value */
7328 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7329 
7330 		*core = coremem >> PAGE_SHIFT;
7331 		*percent = 0UL;
7332 	}
7333 	return 0;
7334 }
7335 
7336 /*
7337  * kernelcore=size sets the amount of memory for use for allocations that
7338  * cannot be reclaimed or migrated.
7339  */
7340 static int __init cmdline_parse_kernelcore(char *p)
7341 {
7342 	/* parse kernelcore=mirror */
7343 	if (parse_option_str(p, "mirror")) {
7344 		mirrored_kernelcore = true;
7345 		return 0;
7346 	}
7347 
7348 	return cmdline_parse_core(p, &required_kernelcore,
7349 				  &required_kernelcore_percent);
7350 }
7351 
7352 /*
7353  * movablecore=size sets the amount of memory for use for allocations that
7354  * can be reclaimed or migrated.
7355  */
7356 static int __init cmdline_parse_movablecore(char *p)
7357 {
7358 	return cmdline_parse_core(p, &required_movablecore,
7359 				  &required_movablecore_percent);
7360 }
7361 
7362 early_param("kernelcore", cmdline_parse_kernelcore);
7363 early_param("movablecore", cmdline_parse_movablecore);
7364 
7365 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7366 
7367 void adjust_managed_page_count(struct page *page, long count)
7368 {
7369 	atomic_long_add(count, &page_zone(page)->managed_pages);
7370 	totalram_pages_add(count);
7371 #ifdef CONFIG_HIGHMEM
7372 	if (PageHighMem(page))
7373 		totalhigh_pages_add(count);
7374 #endif
7375 }
7376 EXPORT_SYMBOL(adjust_managed_page_count);
7377 
7378 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7379 {
7380 	void *pos;
7381 	unsigned long pages = 0;
7382 
7383 	start = (void *)PAGE_ALIGN((unsigned long)start);
7384 	end = (void *)((unsigned long)end & PAGE_MASK);
7385 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7386 		struct page *page = virt_to_page(pos);
7387 		void *direct_map_addr;
7388 
7389 		/*
7390 		 * 'direct_map_addr' might be different from 'pos'
7391 		 * because some architectures' virt_to_page()
7392 		 * work with aliases.  Getting the direct map
7393 		 * address ensures that we get a _writeable_
7394 		 * alias for the memset().
7395 		 */
7396 		direct_map_addr = page_address(page);
7397 		if ((unsigned int)poison <= 0xFF)
7398 			memset(direct_map_addr, poison, PAGE_SIZE);
7399 
7400 		free_reserved_page(page);
7401 	}
7402 
7403 	if (pages && s)
7404 		pr_info("Freeing %s memory: %ldK\n",
7405 			s, pages << (PAGE_SHIFT - 10));
7406 
7407 	return pages;
7408 }
7409 
7410 #ifdef	CONFIG_HIGHMEM
7411 void free_highmem_page(struct page *page)
7412 {
7413 	__free_reserved_page(page);
7414 	totalram_pages_inc();
7415 	atomic_long_inc(&page_zone(page)->managed_pages);
7416 	totalhigh_pages_inc();
7417 }
7418 #endif
7419 
7420 
7421 void __init mem_init_print_info(const char *str)
7422 {
7423 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7424 	unsigned long init_code_size, init_data_size;
7425 
7426 	physpages = get_num_physpages();
7427 	codesize = _etext - _stext;
7428 	datasize = _edata - _sdata;
7429 	rosize = __end_rodata - __start_rodata;
7430 	bss_size = __bss_stop - __bss_start;
7431 	init_data_size = __init_end - __init_begin;
7432 	init_code_size = _einittext - _sinittext;
7433 
7434 	/*
7435 	 * Detect special cases and adjust section sizes accordingly:
7436 	 * 1) .init.* may be embedded into .data sections
7437 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7438 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7439 	 * 3) .rodata.* may be embedded into .text or .data sections.
7440 	 */
7441 #define adj_init_size(start, end, size, pos, adj) \
7442 	do { \
7443 		if (start <= pos && pos < end && size > adj) \
7444 			size -= adj; \
7445 	} while (0)
7446 
7447 	adj_init_size(__init_begin, __init_end, init_data_size,
7448 		     _sinittext, init_code_size);
7449 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7450 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7451 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7452 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7453 
7454 #undef	adj_init_size
7455 
7456 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7457 #ifdef	CONFIG_HIGHMEM
7458 		", %luK highmem"
7459 #endif
7460 		"%s%s)\n",
7461 		nr_free_pages() << (PAGE_SHIFT - 10),
7462 		physpages << (PAGE_SHIFT - 10),
7463 		codesize >> 10, datasize >> 10, rosize >> 10,
7464 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7465 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7466 		totalcma_pages << (PAGE_SHIFT - 10),
7467 #ifdef	CONFIG_HIGHMEM
7468 		totalhigh_pages() << (PAGE_SHIFT - 10),
7469 #endif
7470 		str ? ", " : "", str ? str : "");
7471 }
7472 
7473 /**
7474  * set_dma_reserve - set the specified number of pages reserved in the first zone
7475  * @new_dma_reserve: The number of pages to mark reserved
7476  *
7477  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7478  * In the DMA zone, a significant percentage may be consumed by kernel image
7479  * and other unfreeable allocations which can skew the watermarks badly. This
7480  * function may optionally be used to account for unfreeable pages in the
7481  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7482  * smaller per-cpu batchsize.
7483  */
7484 void __init set_dma_reserve(unsigned long new_dma_reserve)
7485 {
7486 	dma_reserve = new_dma_reserve;
7487 }
7488 
7489 void __init free_area_init(unsigned long *zones_size)
7490 {
7491 	zero_resv_unavail();
7492 	free_area_init_node(0, zones_size,
7493 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7494 }
7495 
7496 static int page_alloc_cpu_dead(unsigned int cpu)
7497 {
7498 
7499 	lru_add_drain_cpu(cpu);
7500 	drain_pages(cpu);
7501 
7502 	/*
7503 	 * Spill the event counters of the dead processor
7504 	 * into the current processors event counters.
7505 	 * This artificially elevates the count of the current
7506 	 * processor.
7507 	 */
7508 	vm_events_fold_cpu(cpu);
7509 
7510 	/*
7511 	 * Zero the differential counters of the dead processor
7512 	 * so that the vm statistics are consistent.
7513 	 *
7514 	 * This is only okay since the processor is dead and cannot
7515 	 * race with what we are doing.
7516 	 */
7517 	cpu_vm_stats_fold(cpu);
7518 	return 0;
7519 }
7520 
7521 void __init page_alloc_init(void)
7522 {
7523 	int ret;
7524 
7525 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7526 					"mm/page_alloc:dead", NULL,
7527 					page_alloc_cpu_dead);
7528 	WARN_ON(ret < 0);
7529 }
7530 
7531 /*
7532  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7533  *	or min_free_kbytes changes.
7534  */
7535 static void calculate_totalreserve_pages(void)
7536 {
7537 	struct pglist_data *pgdat;
7538 	unsigned long reserve_pages = 0;
7539 	enum zone_type i, j;
7540 
7541 	for_each_online_pgdat(pgdat) {
7542 
7543 		pgdat->totalreserve_pages = 0;
7544 
7545 		for (i = 0; i < MAX_NR_ZONES; i++) {
7546 			struct zone *zone = pgdat->node_zones + i;
7547 			long max = 0;
7548 			unsigned long managed_pages = zone_managed_pages(zone);
7549 
7550 			/* Find valid and maximum lowmem_reserve in the zone */
7551 			for (j = i; j < MAX_NR_ZONES; j++) {
7552 				if (zone->lowmem_reserve[j] > max)
7553 					max = zone->lowmem_reserve[j];
7554 			}
7555 
7556 			/* we treat the high watermark as reserved pages. */
7557 			max += high_wmark_pages(zone);
7558 
7559 			if (max > managed_pages)
7560 				max = managed_pages;
7561 
7562 			pgdat->totalreserve_pages += max;
7563 
7564 			reserve_pages += max;
7565 		}
7566 	}
7567 	totalreserve_pages = reserve_pages;
7568 }
7569 
7570 /*
7571  * setup_per_zone_lowmem_reserve - called whenever
7572  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7573  *	has a correct pages reserved value, so an adequate number of
7574  *	pages are left in the zone after a successful __alloc_pages().
7575  */
7576 static void setup_per_zone_lowmem_reserve(void)
7577 {
7578 	struct pglist_data *pgdat;
7579 	enum zone_type j, idx;
7580 
7581 	for_each_online_pgdat(pgdat) {
7582 		for (j = 0; j < MAX_NR_ZONES; j++) {
7583 			struct zone *zone = pgdat->node_zones + j;
7584 			unsigned long managed_pages = zone_managed_pages(zone);
7585 
7586 			zone->lowmem_reserve[j] = 0;
7587 
7588 			idx = j;
7589 			while (idx) {
7590 				struct zone *lower_zone;
7591 
7592 				idx--;
7593 				lower_zone = pgdat->node_zones + idx;
7594 
7595 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7596 					sysctl_lowmem_reserve_ratio[idx] = 0;
7597 					lower_zone->lowmem_reserve[j] = 0;
7598 				} else {
7599 					lower_zone->lowmem_reserve[j] =
7600 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7601 				}
7602 				managed_pages += zone_managed_pages(lower_zone);
7603 			}
7604 		}
7605 	}
7606 
7607 	/* update totalreserve_pages */
7608 	calculate_totalreserve_pages();
7609 }
7610 
7611 static void __setup_per_zone_wmarks(void)
7612 {
7613 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7614 	unsigned long lowmem_pages = 0;
7615 	struct zone *zone;
7616 	unsigned long flags;
7617 
7618 	/* Calculate total number of !ZONE_HIGHMEM pages */
7619 	for_each_zone(zone) {
7620 		if (!is_highmem(zone))
7621 			lowmem_pages += zone_managed_pages(zone);
7622 	}
7623 
7624 	for_each_zone(zone) {
7625 		u64 tmp;
7626 
7627 		spin_lock_irqsave(&zone->lock, flags);
7628 		tmp = (u64)pages_min * zone_managed_pages(zone);
7629 		do_div(tmp, lowmem_pages);
7630 		if (is_highmem(zone)) {
7631 			/*
7632 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7633 			 * need highmem pages, so cap pages_min to a small
7634 			 * value here.
7635 			 *
7636 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7637 			 * deltas control async page reclaim, and so should
7638 			 * not be capped for highmem.
7639 			 */
7640 			unsigned long min_pages;
7641 
7642 			min_pages = zone_managed_pages(zone) / 1024;
7643 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7644 			zone->_watermark[WMARK_MIN] = min_pages;
7645 		} else {
7646 			/*
7647 			 * If it's a lowmem zone, reserve a number of pages
7648 			 * proportionate to the zone's size.
7649 			 */
7650 			zone->_watermark[WMARK_MIN] = tmp;
7651 		}
7652 
7653 		/*
7654 		 * Set the kswapd watermarks distance according to the
7655 		 * scale factor in proportion to available memory, but
7656 		 * ensure a minimum size on small systems.
7657 		 */
7658 		tmp = max_t(u64, tmp >> 2,
7659 			    mult_frac(zone_managed_pages(zone),
7660 				      watermark_scale_factor, 10000));
7661 
7662 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7663 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7664 		zone->watermark_boost = 0;
7665 
7666 		spin_unlock_irqrestore(&zone->lock, flags);
7667 	}
7668 
7669 	/* update totalreserve_pages */
7670 	calculate_totalreserve_pages();
7671 }
7672 
7673 /**
7674  * setup_per_zone_wmarks - called when min_free_kbytes changes
7675  * or when memory is hot-{added|removed}
7676  *
7677  * Ensures that the watermark[min,low,high] values for each zone are set
7678  * correctly with respect to min_free_kbytes.
7679  */
7680 void setup_per_zone_wmarks(void)
7681 {
7682 	static DEFINE_SPINLOCK(lock);
7683 
7684 	spin_lock(&lock);
7685 	__setup_per_zone_wmarks();
7686 	spin_unlock(&lock);
7687 }
7688 
7689 /*
7690  * Initialise min_free_kbytes.
7691  *
7692  * For small machines we want it small (128k min).  For large machines
7693  * we want it large (64MB max).  But it is not linear, because network
7694  * bandwidth does not increase linearly with machine size.  We use
7695  *
7696  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7697  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7698  *
7699  * which yields
7700  *
7701  * 16MB:	512k
7702  * 32MB:	724k
7703  * 64MB:	1024k
7704  * 128MB:	1448k
7705  * 256MB:	2048k
7706  * 512MB:	2896k
7707  * 1024MB:	4096k
7708  * 2048MB:	5792k
7709  * 4096MB:	8192k
7710  * 8192MB:	11584k
7711  * 16384MB:	16384k
7712  */
7713 int __meminit init_per_zone_wmark_min(void)
7714 {
7715 	unsigned long lowmem_kbytes;
7716 	int new_min_free_kbytes;
7717 
7718 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7719 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7720 
7721 	if (new_min_free_kbytes > user_min_free_kbytes) {
7722 		min_free_kbytes = new_min_free_kbytes;
7723 		if (min_free_kbytes < 128)
7724 			min_free_kbytes = 128;
7725 		if (min_free_kbytes > 65536)
7726 			min_free_kbytes = 65536;
7727 	} else {
7728 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7729 				new_min_free_kbytes, user_min_free_kbytes);
7730 	}
7731 	setup_per_zone_wmarks();
7732 	refresh_zone_stat_thresholds();
7733 	setup_per_zone_lowmem_reserve();
7734 
7735 #ifdef CONFIG_NUMA
7736 	setup_min_unmapped_ratio();
7737 	setup_min_slab_ratio();
7738 #endif
7739 
7740 	return 0;
7741 }
7742 core_initcall(init_per_zone_wmark_min)
7743 
7744 /*
7745  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7746  *	that we can call two helper functions whenever min_free_kbytes
7747  *	changes.
7748  */
7749 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7750 	void __user *buffer, size_t *length, loff_t *ppos)
7751 {
7752 	int rc;
7753 
7754 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7755 	if (rc)
7756 		return rc;
7757 
7758 	if (write) {
7759 		user_min_free_kbytes = min_free_kbytes;
7760 		setup_per_zone_wmarks();
7761 	}
7762 	return 0;
7763 }
7764 
7765 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7766 	void __user *buffer, size_t *length, loff_t *ppos)
7767 {
7768 	int rc;
7769 
7770 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7771 	if (rc)
7772 		return rc;
7773 
7774 	return 0;
7775 }
7776 
7777 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7778 	void __user *buffer, size_t *length, loff_t *ppos)
7779 {
7780 	int rc;
7781 
7782 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7783 	if (rc)
7784 		return rc;
7785 
7786 	if (write)
7787 		setup_per_zone_wmarks();
7788 
7789 	return 0;
7790 }
7791 
7792 #ifdef CONFIG_NUMA
7793 static void setup_min_unmapped_ratio(void)
7794 {
7795 	pg_data_t *pgdat;
7796 	struct zone *zone;
7797 
7798 	for_each_online_pgdat(pgdat)
7799 		pgdat->min_unmapped_pages = 0;
7800 
7801 	for_each_zone(zone)
7802 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7803 						         sysctl_min_unmapped_ratio) / 100;
7804 }
7805 
7806 
7807 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7808 	void __user *buffer, size_t *length, loff_t *ppos)
7809 {
7810 	int rc;
7811 
7812 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7813 	if (rc)
7814 		return rc;
7815 
7816 	setup_min_unmapped_ratio();
7817 
7818 	return 0;
7819 }
7820 
7821 static void setup_min_slab_ratio(void)
7822 {
7823 	pg_data_t *pgdat;
7824 	struct zone *zone;
7825 
7826 	for_each_online_pgdat(pgdat)
7827 		pgdat->min_slab_pages = 0;
7828 
7829 	for_each_zone(zone)
7830 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7831 						     sysctl_min_slab_ratio) / 100;
7832 }
7833 
7834 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7835 	void __user *buffer, size_t *length, loff_t *ppos)
7836 {
7837 	int rc;
7838 
7839 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7840 	if (rc)
7841 		return rc;
7842 
7843 	setup_min_slab_ratio();
7844 
7845 	return 0;
7846 }
7847 #endif
7848 
7849 /*
7850  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7851  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7852  *	whenever sysctl_lowmem_reserve_ratio changes.
7853  *
7854  * The reserve ratio obviously has absolutely no relation with the
7855  * minimum watermarks. The lowmem reserve ratio can only make sense
7856  * if in function of the boot time zone sizes.
7857  */
7858 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7859 	void __user *buffer, size_t *length, loff_t *ppos)
7860 {
7861 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7862 	setup_per_zone_lowmem_reserve();
7863 	return 0;
7864 }
7865 
7866 /*
7867  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7868  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7869  * pagelist can have before it gets flushed back to buddy allocator.
7870  */
7871 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7872 	void __user *buffer, size_t *length, loff_t *ppos)
7873 {
7874 	struct zone *zone;
7875 	int old_percpu_pagelist_fraction;
7876 	int ret;
7877 
7878 	mutex_lock(&pcp_batch_high_lock);
7879 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7880 
7881 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7882 	if (!write || ret < 0)
7883 		goto out;
7884 
7885 	/* Sanity checking to avoid pcp imbalance */
7886 	if (percpu_pagelist_fraction &&
7887 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7888 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7889 		ret = -EINVAL;
7890 		goto out;
7891 	}
7892 
7893 	/* No change? */
7894 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7895 		goto out;
7896 
7897 	for_each_populated_zone(zone) {
7898 		unsigned int cpu;
7899 
7900 		for_each_possible_cpu(cpu)
7901 			pageset_set_high_and_batch(zone,
7902 					per_cpu_ptr(zone->pageset, cpu));
7903 	}
7904 out:
7905 	mutex_unlock(&pcp_batch_high_lock);
7906 	return ret;
7907 }
7908 
7909 #ifdef CONFIG_NUMA
7910 int hashdist = HASHDIST_DEFAULT;
7911 
7912 static int __init set_hashdist(char *str)
7913 {
7914 	if (!str)
7915 		return 0;
7916 	hashdist = simple_strtoul(str, &str, 0);
7917 	return 1;
7918 }
7919 __setup("hashdist=", set_hashdist);
7920 #endif
7921 
7922 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7923 /*
7924  * Returns the number of pages that arch has reserved but
7925  * is not known to alloc_large_system_hash().
7926  */
7927 static unsigned long __init arch_reserved_kernel_pages(void)
7928 {
7929 	return 0;
7930 }
7931 #endif
7932 
7933 /*
7934  * Adaptive scale is meant to reduce sizes of hash tables on large memory
7935  * machines. As memory size is increased the scale is also increased but at
7936  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
7937  * quadruples the scale is increased by one, which means the size of hash table
7938  * only doubles, instead of quadrupling as well.
7939  * Because 32-bit systems cannot have large physical memory, where this scaling
7940  * makes sense, it is disabled on such platforms.
7941  */
7942 #if __BITS_PER_LONG > 32
7943 #define ADAPT_SCALE_BASE	(64ul << 30)
7944 #define ADAPT_SCALE_SHIFT	2
7945 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
7946 #endif
7947 
7948 /*
7949  * allocate a large system hash table from bootmem
7950  * - it is assumed that the hash table must contain an exact power-of-2
7951  *   quantity of entries
7952  * - limit is the number of hash buckets, not the total allocation size
7953  */
7954 void *__init alloc_large_system_hash(const char *tablename,
7955 				     unsigned long bucketsize,
7956 				     unsigned long numentries,
7957 				     int scale,
7958 				     int flags,
7959 				     unsigned int *_hash_shift,
7960 				     unsigned int *_hash_mask,
7961 				     unsigned long low_limit,
7962 				     unsigned long high_limit)
7963 {
7964 	unsigned long long max = high_limit;
7965 	unsigned long log2qty, size;
7966 	void *table = NULL;
7967 	gfp_t gfp_flags;
7968 
7969 	/* allow the kernel cmdline to have a say */
7970 	if (!numentries) {
7971 		/* round applicable memory size up to nearest megabyte */
7972 		numentries = nr_kernel_pages;
7973 		numentries -= arch_reserved_kernel_pages();
7974 
7975 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7976 		if (PAGE_SHIFT < 20)
7977 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7978 
7979 #if __BITS_PER_LONG > 32
7980 		if (!high_limit) {
7981 			unsigned long adapt;
7982 
7983 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
7984 			     adapt <<= ADAPT_SCALE_SHIFT)
7985 				scale++;
7986 		}
7987 #endif
7988 
7989 		/* limit to 1 bucket per 2^scale bytes of low memory */
7990 		if (scale > PAGE_SHIFT)
7991 			numentries >>= (scale - PAGE_SHIFT);
7992 		else
7993 			numentries <<= (PAGE_SHIFT - scale);
7994 
7995 		/* Make sure we've got at least a 0-order allocation.. */
7996 		if (unlikely(flags & HASH_SMALL)) {
7997 			/* Makes no sense without HASH_EARLY */
7998 			WARN_ON(!(flags & HASH_EARLY));
7999 			if (!(numentries >> *_hash_shift)) {
8000 				numentries = 1UL << *_hash_shift;
8001 				BUG_ON(!numentries);
8002 			}
8003 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8004 			numentries = PAGE_SIZE / bucketsize;
8005 	}
8006 	numentries = roundup_pow_of_two(numentries);
8007 
8008 	/* limit allocation size to 1/16 total memory by default */
8009 	if (max == 0) {
8010 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8011 		do_div(max, bucketsize);
8012 	}
8013 	max = min(max, 0x80000000ULL);
8014 
8015 	if (numentries < low_limit)
8016 		numentries = low_limit;
8017 	if (numentries > max)
8018 		numentries = max;
8019 
8020 	log2qty = ilog2(numentries);
8021 
8022 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8023 	do {
8024 		size = bucketsize << log2qty;
8025 		if (flags & HASH_EARLY) {
8026 			if (flags & HASH_ZERO)
8027 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8028 			else
8029 				table = memblock_alloc_raw(size,
8030 							   SMP_CACHE_BYTES);
8031 		} else if (hashdist) {
8032 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8033 		} else {
8034 			/*
8035 			 * If bucketsize is not a power-of-two, we may free
8036 			 * some pages at the end of hash table which
8037 			 * alloc_pages_exact() automatically does
8038 			 */
8039 			if (get_order(size) < MAX_ORDER) {
8040 				table = alloc_pages_exact(size, gfp_flags);
8041 				kmemleak_alloc(table, size, 1, gfp_flags);
8042 			}
8043 		}
8044 	} while (!table && size > PAGE_SIZE && --log2qty);
8045 
8046 	if (!table)
8047 		panic("Failed to allocate %s hash table\n", tablename);
8048 
8049 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
8050 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
8051 
8052 	if (_hash_shift)
8053 		*_hash_shift = log2qty;
8054 	if (_hash_mask)
8055 		*_hash_mask = (1 << log2qty) - 1;
8056 
8057 	return table;
8058 }
8059 
8060 /*
8061  * This function checks whether pageblock includes unmovable pages or not.
8062  * If @count is not zero, it is okay to include less @count unmovable pages
8063  *
8064  * PageLRU check without isolation or lru_lock could race so that
8065  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8066  * check without lock_page also may miss some movable non-lru pages at
8067  * race condition. So you can't expect this function should be exact.
8068  */
8069 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
8070 			 int migratetype, int flags)
8071 {
8072 	unsigned long found;
8073 	unsigned long iter = 0;
8074 	unsigned long pfn = page_to_pfn(page);
8075 	const char *reason = "unmovable page";
8076 
8077 	/*
8078 	 * TODO we could make this much more efficient by not checking every
8079 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8080 	 * that the movable zone guarantees that pages are migratable but
8081 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8082 	 * can still lead to having bootmem allocations in zone_movable.
8083 	 */
8084 
8085 	if (is_migrate_cma_page(page)) {
8086 		/*
8087 		 * CMA allocations (alloc_contig_range) really need to mark
8088 		 * isolate CMA pageblocks even when they are not movable in fact
8089 		 * so consider them movable here.
8090 		 */
8091 		if (is_migrate_cma(migratetype))
8092 			return false;
8093 
8094 		reason = "CMA page";
8095 		goto unmovable;
8096 	}
8097 
8098 	for (found = 0; iter < pageblock_nr_pages; iter++) {
8099 		unsigned long check = pfn + iter;
8100 
8101 		if (!pfn_valid_within(check))
8102 			continue;
8103 
8104 		page = pfn_to_page(check);
8105 
8106 		if (PageReserved(page))
8107 			goto unmovable;
8108 
8109 		/*
8110 		 * If the zone is movable and we have ruled out all reserved
8111 		 * pages then it should be reasonably safe to assume the rest
8112 		 * is movable.
8113 		 */
8114 		if (zone_idx(zone) == ZONE_MOVABLE)
8115 			continue;
8116 
8117 		/*
8118 		 * Hugepages are not in LRU lists, but they're movable.
8119 		 * We need not scan over tail pages because we don't
8120 		 * handle each tail page individually in migration.
8121 		 */
8122 		if (PageHuge(page)) {
8123 			struct page *head = compound_head(page);
8124 			unsigned int skip_pages;
8125 
8126 			if (!hugepage_migration_supported(page_hstate(head)))
8127 				goto unmovable;
8128 
8129 			skip_pages = (1 << compound_order(head)) - (page - head);
8130 			iter += skip_pages - 1;
8131 			continue;
8132 		}
8133 
8134 		/*
8135 		 * We can't use page_count without pin a page
8136 		 * because another CPU can free compound page.
8137 		 * This check already skips compound tails of THP
8138 		 * because their page->_refcount is zero at all time.
8139 		 */
8140 		if (!page_ref_count(page)) {
8141 			if (PageBuddy(page))
8142 				iter += (1 << page_order(page)) - 1;
8143 			continue;
8144 		}
8145 
8146 		/*
8147 		 * The HWPoisoned page may be not in buddy system, and
8148 		 * page_count() is not 0.
8149 		 */
8150 		if ((flags & SKIP_HWPOISON) && PageHWPoison(page))
8151 			continue;
8152 
8153 		if (__PageMovable(page))
8154 			continue;
8155 
8156 		if (!PageLRU(page))
8157 			found++;
8158 		/*
8159 		 * If there are RECLAIMABLE pages, we need to check
8160 		 * it.  But now, memory offline itself doesn't call
8161 		 * shrink_node_slabs() and it still to be fixed.
8162 		 */
8163 		/*
8164 		 * If the page is not RAM, page_count()should be 0.
8165 		 * we don't need more check. This is an _used_ not-movable page.
8166 		 *
8167 		 * The problematic thing here is PG_reserved pages. PG_reserved
8168 		 * is set to both of a memory hole page and a _used_ kernel
8169 		 * page at boot.
8170 		 */
8171 		if (found > count)
8172 			goto unmovable;
8173 	}
8174 	return false;
8175 unmovable:
8176 	WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE);
8177 	if (flags & REPORT_FAILURE)
8178 		dump_page(pfn_to_page(pfn + iter), reason);
8179 	return true;
8180 }
8181 
8182 #ifdef CONFIG_CONTIG_ALLOC
8183 static unsigned long pfn_max_align_down(unsigned long pfn)
8184 {
8185 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8186 			     pageblock_nr_pages) - 1);
8187 }
8188 
8189 static unsigned long pfn_max_align_up(unsigned long pfn)
8190 {
8191 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8192 				pageblock_nr_pages));
8193 }
8194 
8195 /* [start, end) must belong to a single zone. */
8196 static int __alloc_contig_migrate_range(struct compact_control *cc,
8197 					unsigned long start, unsigned long end)
8198 {
8199 	/* This function is based on compact_zone() from compaction.c. */
8200 	unsigned long nr_reclaimed;
8201 	unsigned long pfn = start;
8202 	unsigned int tries = 0;
8203 	int ret = 0;
8204 
8205 	migrate_prep();
8206 
8207 	while (pfn < end || !list_empty(&cc->migratepages)) {
8208 		if (fatal_signal_pending(current)) {
8209 			ret = -EINTR;
8210 			break;
8211 		}
8212 
8213 		if (list_empty(&cc->migratepages)) {
8214 			cc->nr_migratepages = 0;
8215 			pfn = isolate_migratepages_range(cc, pfn, end);
8216 			if (!pfn) {
8217 				ret = -EINTR;
8218 				break;
8219 			}
8220 			tries = 0;
8221 		} else if (++tries == 5) {
8222 			ret = ret < 0 ? ret : -EBUSY;
8223 			break;
8224 		}
8225 
8226 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8227 							&cc->migratepages);
8228 		cc->nr_migratepages -= nr_reclaimed;
8229 
8230 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8231 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8232 	}
8233 	if (ret < 0) {
8234 		putback_movable_pages(&cc->migratepages);
8235 		return ret;
8236 	}
8237 	return 0;
8238 }
8239 
8240 /**
8241  * alloc_contig_range() -- tries to allocate given range of pages
8242  * @start:	start PFN to allocate
8243  * @end:	one-past-the-last PFN to allocate
8244  * @migratetype:	migratetype of the underlaying pageblocks (either
8245  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8246  *			in range must have the same migratetype and it must
8247  *			be either of the two.
8248  * @gfp_mask:	GFP mask to use during compaction
8249  *
8250  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8251  * aligned.  The PFN range must belong to a single zone.
8252  *
8253  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8254  * pageblocks in the range.  Once isolated, the pageblocks should not
8255  * be modified by others.
8256  *
8257  * Return: zero on success or negative error code.  On success all
8258  * pages which PFN is in [start, end) are allocated for the caller and
8259  * need to be freed with free_contig_range().
8260  */
8261 int alloc_contig_range(unsigned long start, unsigned long end,
8262 		       unsigned migratetype, gfp_t gfp_mask)
8263 {
8264 	unsigned long outer_start, outer_end;
8265 	unsigned int order;
8266 	int ret = 0;
8267 
8268 	struct compact_control cc = {
8269 		.nr_migratepages = 0,
8270 		.order = -1,
8271 		.zone = page_zone(pfn_to_page(start)),
8272 		.mode = MIGRATE_SYNC,
8273 		.ignore_skip_hint = true,
8274 		.no_set_skip_hint = true,
8275 		.gfp_mask = current_gfp_context(gfp_mask),
8276 	};
8277 	INIT_LIST_HEAD(&cc.migratepages);
8278 
8279 	/*
8280 	 * What we do here is we mark all pageblocks in range as
8281 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8282 	 * have different sizes, and due to the way page allocator
8283 	 * work, we align the range to biggest of the two pages so
8284 	 * that page allocator won't try to merge buddies from
8285 	 * different pageblocks and change MIGRATE_ISOLATE to some
8286 	 * other migration type.
8287 	 *
8288 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8289 	 * migrate the pages from an unaligned range (ie. pages that
8290 	 * we are interested in).  This will put all the pages in
8291 	 * range back to page allocator as MIGRATE_ISOLATE.
8292 	 *
8293 	 * When this is done, we take the pages in range from page
8294 	 * allocator removing them from the buddy system.  This way
8295 	 * page allocator will never consider using them.
8296 	 *
8297 	 * This lets us mark the pageblocks back as
8298 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8299 	 * aligned range but not in the unaligned, original range are
8300 	 * put back to page allocator so that buddy can use them.
8301 	 */
8302 
8303 	ret = start_isolate_page_range(pfn_max_align_down(start),
8304 				       pfn_max_align_up(end), migratetype, 0);
8305 	if (ret < 0)
8306 		return ret;
8307 
8308 	/*
8309 	 * In case of -EBUSY, we'd like to know which page causes problem.
8310 	 * So, just fall through. test_pages_isolated() has a tracepoint
8311 	 * which will report the busy page.
8312 	 *
8313 	 * It is possible that busy pages could become available before
8314 	 * the call to test_pages_isolated, and the range will actually be
8315 	 * allocated.  So, if we fall through be sure to clear ret so that
8316 	 * -EBUSY is not accidentally used or returned to caller.
8317 	 */
8318 	ret = __alloc_contig_migrate_range(&cc, start, end);
8319 	if (ret && ret != -EBUSY)
8320 		goto done;
8321 	ret =0;
8322 
8323 	/*
8324 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8325 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8326 	 * more, all pages in [start, end) are free in page allocator.
8327 	 * What we are going to do is to allocate all pages from
8328 	 * [start, end) (that is remove them from page allocator).
8329 	 *
8330 	 * The only problem is that pages at the beginning and at the
8331 	 * end of interesting range may be not aligned with pages that
8332 	 * page allocator holds, ie. they can be part of higher order
8333 	 * pages.  Because of this, we reserve the bigger range and
8334 	 * once this is done free the pages we are not interested in.
8335 	 *
8336 	 * We don't have to hold zone->lock here because the pages are
8337 	 * isolated thus they won't get removed from buddy.
8338 	 */
8339 
8340 	lru_add_drain_all();
8341 
8342 	order = 0;
8343 	outer_start = start;
8344 	while (!PageBuddy(pfn_to_page(outer_start))) {
8345 		if (++order >= MAX_ORDER) {
8346 			outer_start = start;
8347 			break;
8348 		}
8349 		outer_start &= ~0UL << order;
8350 	}
8351 
8352 	if (outer_start != start) {
8353 		order = page_order(pfn_to_page(outer_start));
8354 
8355 		/*
8356 		 * outer_start page could be small order buddy page and
8357 		 * it doesn't include start page. Adjust outer_start
8358 		 * in this case to report failed page properly
8359 		 * on tracepoint in test_pages_isolated()
8360 		 */
8361 		if (outer_start + (1UL << order) <= start)
8362 			outer_start = start;
8363 	}
8364 
8365 	/* Make sure the range is really isolated. */
8366 	if (test_pages_isolated(outer_start, end, false)) {
8367 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8368 			__func__, outer_start, end);
8369 		ret = -EBUSY;
8370 		goto done;
8371 	}
8372 
8373 	/* Grab isolated pages from freelists. */
8374 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8375 	if (!outer_end) {
8376 		ret = -EBUSY;
8377 		goto done;
8378 	}
8379 
8380 	/* Free head and tail (if any) */
8381 	if (start != outer_start)
8382 		free_contig_range(outer_start, start - outer_start);
8383 	if (end != outer_end)
8384 		free_contig_range(end, outer_end - end);
8385 
8386 done:
8387 	undo_isolate_page_range(pfn_max_align_down(start),
8388 				pfn_max_align_up(end), migratetype);
8389 	return ret;
8390 }
8391 #endif /* CONFIG_CONTIG_ALLOC */
8392 
8393 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8394 {
8395 	unsigned int count = 0;
8396 
8397 	for (; nr_pages--; pfn++) {
8398 		struct page *page = pfn_to_page(pfn);
8399 
8400 		count += page_count(page) != 1;
8401 		__free_page(page);
8402 	}
8403 	WARN(count != 0, "%d pages are still in use!\n", count);
8404 }
8405 
8406 #ifdef CONFIG_MEMORY_HOTPLUG
8407 /*
8408  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8409  * page high values need to be recalulated.
8410  */
8411 void __meminit zone_pcp_update(struct zone *zone)
8412 {
8413 	unsigned cpu;
8414 	mutex_lock(&pcp_batch_high_lock);
8415 	for_each_possible_cpu(cpu)
8416 		pageset_set_high_and_batch(zone,
8417 				per_cpu_ptr(zone->pageset, cpu));
8418 	mutex_unlock(&pcp_batch_high_lock);
8419 }
8420 #endif
8421 
8422 void zone_pcp_reset(struct zone *zone)
8423 {
8424 	unsigned long flags;
8425 	int cpu;
8426 	struct per_cpu_pageset *pset;
8427 
8428 	/* avoid races with drain_pages()  */
8429 	local_irq_save(flags);
8430 	if (zone->pageset != &boot_pageset) {
8431 		for_each_online_cpu(cpu) {
8432 			pset = per_cpu_ptr(zone->pageset, cpu);
8433 			drain_zonestat(zone, pset);
8434 		}
8435 		free_percpu(zone->pageset);
8436 		zone->pageset = &boot_pageset;
8437 	}
8438 	local_irq_restore(flags);
8439 }
8440 
8441 #ifdef CONFIG_MEMORY_HOTREMOVE
8442 /*
8443  * All pages in the range must be in a single zone and isolated
8444  * before calling this.
8445  */
8446 unsigned long
8447 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8448 {
8449 	struct page *page;
8450 	struct zone *zone;
8451 	unsigned int order, i;
8452 	unsigned long pfn;
8453 	unsigned long flags;
8454 	unsigned long offlined_pages = 0;
8455 
8456 	/* find the first valid pfn */
8457 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8458 		if (pfn_valid(pfn))
8459 			break;
8460 	if (pfn == end_pfn)
8461 		return offlined_pages;
8462 
8463 	offline_mem_sections(pfn, end_pfn);
8464 	zone = page_zone(pfn_to_page(pfn));
8465 	spin_lock_irqsave(&zone->lock, flags);
8466 	pfn = start_pfn;
8467 	while (pfn < end_pfn) {
8468 		if (!pfn_valid(pfn)) {
8469 			pfn++;
8470 			continue;
8471 		}
8472 		page = pfn_to_page(pfn);
8473 		/*
8474 		 * The HWPoisoned page may be not in buddy system, and
8475 		 * page_count() is not 0.
8476 		 */
8477 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8478 			pfn++;
8479 			SetPageReserved(page);
8480 			offlined_pages++;
8481 			continue;
8482 		}
8483 
8484 		BUG_ON(page_count(page));
8485 		BUG_ON(!PageBuddy(page));
8486 		order = page_order(page);
8487 		offlined_pages += 1 << order;
8488 #ifdef CONFIG_DEBUG_VM
8489 		pr_info("remove from free list %lx %d %lx\n",
8490 			pfn, 1 << order, end_pfn);
8491 #endif
8492 		del_page_from_free_area(page, &zone->free_area[order]);
8493 		for (i = 0; i < (1 << order); i++)
8494 			SetPageReserved((page+i));
8495 		pfn += (1 << order);
8496 	}
8497 	spin_unlock_irqrestore(&zone->lock, flags);
8498 
8499 	return offlined_pages;
8500 }
8501 #endif
8502 
8503 bool is_free_buddy_page(struct page *page)
8504 {
8505 	struct zone *zone = page_zone(page);
8506 	unsigned long pfn = page_to_pfn(page);
8507 	unsigned long flags;
8508 	unsigned int order;
8509 
8510 	spin_lock_irqsave(&zone->lock, flags);
8511 	for (order = 0; order < MAX_ORDER; order++) {
8512 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8513 
8514 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8515 			break;
8516 	}
8517 	spin_unlock_irqrestore(&zone->lock, flags);
8518 
8519 	return order < MAX_ORDER;
8520 }
8521 
8522 #ifdef CONFIG_MEMORY_FAILURE
8523 /*
8524  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8525  * test is performed under the zone lock to prevent a race against page
8526  * allocation.
8527  */
8528 bool set_hwpoison_free_buddy_page(struct page *page)
8529 {
8530 	struct zone *zone = page_zone(page);
8531 	unsigned long pfn = page_to_pfn(page);
8532 	unsigned long flags;
8533 	unsigned int order;
8534 	bool hwpoisoned = false;
8535 
8536 	spin_lock_irqsave(&zone->lock, flags);
8537 	for (order = 0; order < MAX_ORDER; order++) {
8538 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8539 
8540 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8541 			if (!TestSetPageHWPoison(page))
8542 				hwpoisoned = true;
8543 			break;
8544 		}
8545 	}
8546 	spin_unlock_irqrestore(&zone->lock, flags);
8547 
8548 	return hwpoisoned;
8549 }
8550 #endif
8551