1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/highmem.h> 20 #include <linux/swap.h> 21 #include <linux/interrupt.h> 22 #include <linux/pagemap.h> 23 #include <linux/jiffies.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/topology.h> 36 #include <linux/sysctl.h> 37 #include <linux/cpu.h> 38 #include <linux/cpuset.h> 39 #include <linux/memory_hotplug.h> 40 #include <linux/nodemask.h> 41 #include <linux/vmalloc.h> 42 #include <linux/vmstat.h> 43 #include <linux/mempolicy.h> 44 #include <linux/memremap.h> 45 #include <linux/stop_machine.h> 46 #include <linux/random.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 int _node_numa_mem_[MAX_NUMNODES]; 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 DEFINE_MUTEX(pcpu_drain_mutex); 107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 139 /* 140 * A cached value of the page's pageblock's migratetype, used when the page is 141 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 142 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 143 * Also the migratetype set in the page does not necessarily match the pcplist 144 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 145 * other index - this ensures that it will be put on the correct CMA freelist. 146 */ 147 static inline int get_pcppage_migratetype(struct page *page) 148 { 149 return page->index; 150 } 151 152 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 153 { 154 page->index = migratetype; 155 } 156 157 #ifdef CONFIG_PM_SLEEP 158 /* 159 * The following functions are used by the suspend/hibernate code to temporarily 160 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 161 * while devices are suspended. To avoid races with the suspend/hibernate code, 162 * they should always be called with system_transition_mutex held 163 * (gfp_allowed_mask also should only be modified with system_transition_mutex 164 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 165 * with that modification). 166 */ 167 168 static gfp_t saved_gfp_mask; 169 170 void pm_restore_gfp_mask(void) 171 { 172 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 173 if (saved_gfp_mask) { 174 gfp_allowed_mask = saved_gfp_mask; 175 saved_gfp_mask = 0; 176 } 177 } 178 179 void pm_restrict_gfp_mask(void) 180 { 181 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 182 WARN_ON(saved_gfp_mask); 183 saved_gfp_mask = gfp_allowed_mask; 184 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 185 } 186 187 bool pm_suspended_storage(void) 188 { 189 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 190 return false; 191 return true; 192 } 193 #endif /* CONFIG_PM_SLEEP */ 194 195 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 196 unsigned int pageblock_order __read_mostly; 197 #endif 198 199 static void __free_pages_ok(struct page *page, unsigned int order); 200 201 /* 202 * results with 256, 32 in the lowmem_reserve sysctl: 203 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 204 * 1G machine -> (16M dma, 784M normal, 224M high) 205 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 206 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 207 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 208 * 209 * TBD: should special case ZONE_DMA32 machines here - in those we normally 210 * don't need any ZONE_NORMAL reservation 211 */ 212 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 213 #ifdef CONFIG_ZONE_DMA 214 [ZONE_DMA] = 256, 215 #endif 216 #ifdef CONFIG_ZONE_DMA32 217 [ZONE_DMA32] = 256, 218 #endif 219 [ZONE_NORMAL] = 32, 220 #ifdef CONFIG_HIGHMEM 221 [ZONE_HIGHMEM] = 0, 222 #endif 223 [ZONE_MOVABLE] = 0, 224 }; 225 226 EXPORT_SYMBOL(totalram_pages); 227 228 static char * const zone_names[MAX_NR_ZONES] = { 229 #ifdef CONFIG_ZONE_DMA 230 "DMA", 231 #endif 232 #ifdef CONFIG_ZONE_DMA32 233 "DMA32", 234 #endif 235 "Normal", 236 #ifdef CONFIG_HIGHMEM 237 "HighMem", 238 #endif 239 "Movable", 240 #ifdef CONFIG_ZONE_DEVICE 241 "Device", 242 #endif 243 }; 244 245 const char * const migratetype_names[MIGRATE_TYPES] = { 246 "Unmovable", 247 "Movable", 248 "Reclaimable", 249 "HighAtomic", 250 #ifdef CONFIG_CMA 251 "CMA", 252 #endif 253 #ifdef CONFIG_MEMORY_ISOLATION 254 "Isolate", 255 #endif 256 }; 257 258 compound_page_dtor * const compound_page_dtors[] = { 259 NULL, 260 free_compound_page, 261 #ifdef CONFIG_HUGETLB_PAGE 262 free_huge_page, 263 #endif 264 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 265 free_transhuge_page, 266 #endif 267 }; 268 269 int min_free_kbytes = 1024; 270 int user_min_free_kbytes = -1; 271 #ifdef CONFIG_DISCONTIGMEM 272 /* 273 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 274 * are not on separate NUMA nodes. Functionally this works but with 275 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 276 * quite small. By default, do not boost watermarks on discontigmem as in 277 * many cases very high-order allocations like THP are likely to be 278 * unsupported and the premature reclaim offsets the advantage of long-term 279 * fragmentation avoidance. 280 */ 281 int watermark_boost_factor __read_mostly; 282 #else 283 int watermark_boost_factor __read_mostly = 15000; 284 #endif 285 int watermark_scale_factor = 10; 286 287 static unsigned long nr_kernel_pages __initdata; 288 static unsigned long nr_all_pages __initdata; 289 static unsigned long dma_reserve __initdata; 290 291 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 292 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 293 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 294 static unsigned long required_kernelcore __initdata; 295 static unsigned long required_kernelcore_percent __initdata; 296 static unsigned long required_movablecore __initdata; 297 static unsigned long required_movablecore_percent __initdata; 298 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 299 static bool mirrored_kernelcore __meminitdata; 300 301 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 302 int movable_zone; 303 EXPORT_SYMBOL(movable_zone); 304 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 305 306 #if MAX_NUMNODES > 1 307 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 308 unsigned int nr_online_nodes __read_mostly = 1; 309 EXPORT_SYMBOL(nr_node_ids); 310 EXPORT_SYMBOL(nr_online_nodes); 311 #endif 312 313 int page_group_by_mobility_disabled __read_mostly; 314 315 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 316 /* 317 * During boot we initialize deferred pages on-demand, as needed, but once 318 * page_alloc_init_late() has finished, the deferred pages are all initialized, 319 * and we can permanently disable that path. 320 */ 321 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 322 323 /* 324 * Calling kasan_free_pages() only after deferred memory initialization 325 * has completed. Poisoning pages during deferred memory init will greatly 326 * lengthen the process and cause problem in large memory systems as the 327 * deferred pages initialization is done with interrupt disabled. 328 * 329 * Assuming that there will be no reference to those newly initialized 330 * pages before they are ever allocated, this should have no effect on 331 * KASAN memory tracking as the poison will be properly inserted at page 332 * allocation time. The only corner case is when pages are allocated by 333 * on-demand allocation and then freed again before the deferred pages 334 * initialization is done, but this is not likely to happen. 335 */ 336 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 337 { 338 if (!static_branch_unlikely(&deferred_pages)) 339 kasan_free_pages(page, order); 340 } 341 342 /* Returns true if the struct page for the pfn is uninitialised */ 343 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 344 { 345 int nid = early_pfn_to_nid(pfn); 346 347 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 348 return true; 349 350 return false; 351 } 352 353 /* 354 * Returns true when the remaining initialisation should be deferred until 355 * later in the boot cycle when it can be parallelised. 356 */ 357 static bool __meminit 358 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 359 { 360 static unsigned long prev_end_pfn, nr_initialised; 361 362 /* 363 * prev_end_pfn static that contains the end of previous zone 364 * No need to protect because called very early in boot before smp_init. 365 */ 366 if (prev_end_pfn != end_pfn) { 367 prev_end_pfn = end_pfn; 368 nr_initialised = 0; 369 } 370 371 /* Always populate low zones for address-constrained allocations */ 372 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 373 return false; 374 375 /* 376 * We start only with one section of pages, more pages are added as 377 * needed until the rest of deferred pages are initialized. 378 */ 379 nr_initialised++; 380 if ((nr_initialised > PAGES_PER_SECTION) && 381 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 382 NODE_DATA(nid)->first_deferred_pfn = pfn; 383 return true; 384 } 385 return false; 386 } 387 #else 388 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 389 390 static inline bool early_page_uninitialised(unsigned long pfn) 391 { 392 return false; 393 } 394 395 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 396 { 397 return false; 398 } 399 #endif 400 401 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 402 static inline unsigned long *get_pageblock_bitmap(struct page *page, 403 unsigned long pfn) 404 { 405 #ifdef CONFIG_SPARSEMEM 406 return __pfn_to_section(pfn)->pageblock_flags; 407 #else 408 return page_zone(page)->pageblock_flags; 409 #endif /* CONFIG_SPARSEMEM */ 410 } 411 412 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 413 { 414 #ifdef CONFIG_SPARSEMEM 415 pfn &= (PAGES_PER_SECTION-1); 416 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 417 #else 418 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 419 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 420 #endif /* CONFIG_SPARSEMEM */ 421 } 422 423 /** 424 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 425 * @page: The page within the block of interest 426 * @pfn: The target page frame number 427 * @end_bitidx: The last bit of interest to retrieve 428 * @mask: mask of bits that the caller is interested in 429 * 430 * Return: pageblock_bits flags 431 */ 432 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 433 unsigned long pfn, 434 unsigned long end_bitidx, 435 unsigned long mask) 436 { 437 unsigned long *bitmap; 438 unsigned long bitidx, word_bitidx; 439 unsigned long word; 440 441 bitmap = get_pageblock_bitmap(page, pfn); 442 bitidx = pfn_to_bitidx(page, pfn); 443 word_bitidx = bitidx / BITS_PER_LONG; 444 bitidx &= (BITS_PER_LONG-1); 445 446 word = bitmap[word_bitidx]; 447 bitidx += end_bitidx; 448 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 449 } 450 451 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 452 unsigned long end_bitidx, 453 unsigned long mask) 454 { 455 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 456 } 457 458 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 459 { 460 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 461 } 462 463 /** 464 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 465 * @page: The page within the block of interest 466 * @flags: The flags to set 467 * @pfn: The target page frame number 468 * @end_bitidx: The last bit of interest 469 * @mask: mask of bits that the caller is interested in 470 */ 471 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 472 unsigned long pfn, 473 unsigned long end_bitidx, 474 unsigned long mask) 475 { 476 unsigned long *bitmap; 477 unsigned long bitidx, word_bitidx; 478 unsigned long old_word, word; 479 480 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 481 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 482 483 bitmap = get_pageblock_bitmap(page, pfn); 484 bitidx = pfn_to_bitidx(page, pfn); 485 word_bitidx = bitidx / BITS_PER_LONG; 486 bitidx &= (BITS_PER_LONG-1); 487 488 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 489 490 bitidx += end_bitidx; 491 mask <<= (BITS_PER_LONG - bitidx - 1); 492 flags <<= (BITS_PER_LONG - bitidx - 1); 493 494 word = READ_ONCE(bitmap[word_bitidx]); 495 for (;;) { 496 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 497 if (word == old_word) 498 break; 499 word = old_word; 500 } 501 } 502 503 void set_pageblock_migratetype(struct page *page, int migratetype) 504 { 505 if (unlikely(page_group_by_mobility_disabled && 506 migratetype < MIGRATE_PCPTYPES)) 507 migratetype = MIGRATE_UNMOVABLE; 508 509 set_pageblock_flags_group(page, (unsigned long)migratetype, 510 PB_migrate, PB_migrate_end); 511 } 512 513 #ifdef CONFIG_DEBUG_VM 514 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 515 { 516 int ret = 0; 517 unsigned seq; 518 unsigned long pfn = page_to_pfn(page); 519 unsigned long sp, start_pfn; 520 521 do { 522 seq = zone_span_seqbegin(zone); 523 start_pfn = zone->zone_start_pfn; 524 sp = zone->spanned_pages; 525 if (!zone_spans_pfn(zone, pfn)) 526 ret = 1; 527 } while (zone_span_seqretry(zone, seq)); 528 529 if (ret) 530 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 531 pfn, zone_to_nid(zone), zone->name, 532 start_pfn, start_pfn + sp); 533 534 return ret; 535 } 536 537 static int page_is_consistent(struct zone *zone, struct page *page) 538 { 539 if (!pfn_valid_within(page_to_pfn(page))) 540 return 0; 541 if (zone != page_zone(page)) 542 return 0; 543 544 return 1; 545 } 546 /* 547 * Temporary debugging check for pages not lying within a given zone. 548 */ 549 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 550 { 551 if (page_outside_zone_boundaries(zone, page)) 552 return 1; 553 if (!page_is_consistent(zone, page)) 554 return 1; 555 556 return 0; 557 } 558 #else 559 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 560 { 561 return 0; 562 } 563 #endif 564 565 static void bad_page(struct page *page, const char *reason, 566 unsigned long bad_flags) 567 { 568 static unsigned long resume; 569 static unsigned long nr_shown; 570 static unsigned long nr_unshown; 571 572 /* 573 * Allow a burst of 60 reports, then keep quiet for that minute; 574 * or allow a steady drip of one report per second. 575 */ 576 if (nr_shown == 60) { 577 if (time_before(jiffies, resume)) { 578 nr_unshown++; 579 goto out; 580 } 581 if (nr_unshown) { 582 pr_alert( 583 "BUG: Bad page state: %lu messages suppressed\n", 584 nr_unshown); 585 nr_unshown = 0; 586 } 587 nr_shown = 0; 588 } 589 if (nr_shown++ == 0) 590 resume = jiffies + 60 * HZ; 591 592 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 593 current->comm, page_to_pfn(page)); 594 __dump_page(page, reason); 595 bad_flags &= page->flags; 596 if (bad_flags) 597 pr_alert("bad because of flags: %#lx(%pGp)\n", 598 bad_flags, &bad_flags); 599 dump_page_owner(page); 600 601 print_modules(); 602 dump_stack(); 603 out: 604 /* Leave bad fields for debug, except PageBuddy could make trouble */ 605 page_mapcount_reset(page); /* remove PageBuddy */ 606 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 607 } 608 609 /* 610 * Higher-order pages are called "compound pages". They are structured thusly: 611 * 612 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 613 * 614 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 615 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 616 * 617 * The first tail page's ->compound_dtor holds the offset in array of compound 618 * page destructors. See compound_page_dtors. 619 * 620 * The first tail page's ->compound_order holds the order of allocation. 621 * This usage means that zero-order pages may not be compound. 622 */ 623 624 void free_compound_page(struct page *page) 625 { 626 __free_pages_ok(page, compound_order(page)); 627 } 628 629 void prep_compound_page(struct page *page, unsigned int order) 630 { 631 int i; 632 int nr_pages = 1 << order; 633 634 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 635 set_compound_order(page, order); 636 __SetPageHead(page); 637 for (i = 1; i < nr_pages; i++) { 638 struct page *p = page + i; 639 set_page_count(p, 0); 640 p->mapping = TAIL_MAPPING; 641 set_compound_head(p, page); 642 } 643 atomic_set(compound_mapcount_ptr(page), -1); 644 } 645 646 #ifdef CONFIG_DEBUG_PAGEALLOC 647 unsigned int _debug_guardpage_minorder; 648 bool _debug_pagealloc_enabled __read_mostly 649 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 650 EXPORT_SYMBOL(_debug_pagealloc_enabled); 651 bool _debug_guardpage_enabled __read_mostly; 652 653 static int __init early_debug_pagealloc(char *buf) 654 { 655 if (!buf) 656 return -EINVAL; 657 return kstrtobool(buf, &_debug_pagealloc_enabled); 658 } 659 early_param("debug_pagealloc", early_debug_pagealloc); 660 661 static bool need_debug_guardpage(void) 662 { 663 /* If we don't use debug_pagealloc, we don't need guard page */ 664 if (!debug_pagealloc_enabled()) 665 return false; 666 667 if (!debug_guardpage_minorder()) 668 return false; 669 670 return true; 671 } 672 673 static void init_debug_guardpage(void) 674 { 675 if (!debug_pagealloc_enabled()) 676 return; 677 678 if (!debug_guardpage_minorder()) 679 return; 680 681 _debug_guardpage_enabled = true; 682 } 683 684 struct page_ext_operations debug_guardpage_ops = { 685 .need = need_debug_guardpage, 686 .init = init_debug_guardpage, 687 }; 688 689 static int __init debug_guardpage_minorder_setup(char *buf) 690 { 691 unsigned long res; 692 693 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 694 pr_err("Bad debug_guardpage_minorder value\n"); 695 return 0; 696 } 697 _debug_guardpage_minorder = res; 698 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 699 return 0; 700 } 701 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 702 703 static inline bool set_page_guard(struct zone *zone, struct page *page, 704 unsigned int order, int migratetype) 705 { 706 struct page_ext *page_ext; 707 708 if (!debug_guardpage_enabled()) 709 return false; 710 711 if (order >= debug_guardpage_minorder()) 712 return false; 713 714 page_ext = lookup_page_ext(page); 715 if (unlikely(!page_ext)) 716 return false; 717 718 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 719 720 INIT_LIST_HEAD(&page->lru); 721 set_page_private(page, order); 722 /* Guard pages are not available for any usage */ 723 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 724 725 return true; 726 } 727 728 static inline void clear_page_guard(struct zone *zone, struct page *page, 729 unsigned int order, int migratetype) 730 { 731 struct page_ext *page_ext; 732 733 if (!debug_guardpage_enabled()) 734 return; 735 736 page_ext = lookup_page_ext(page); 737 if (unlikely(!page_ext)) 738 return; 739 740 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 741 742 set_page_private(page, 0); 743 if (!is_migrate_isolate(migratetype)) 744 __mod_zone_freepage_state(zone, (1 << order), migratetype); 745 } 746 #else 747 struct page_ext_operations debug_guardpage_ops; 748 static inline bool set_page_guard(struct zone *zone, struct page *page, 749 unsigned int order, int migratetype) { return false; } 750 static inline void clear_page_guard(struct zone *zone, struct page *page, 751 unsigned int order, int migratetype) {} 752 #endif 753 754 static inline void set_page_order(struct page *page, unsigned int order) 755 { 756 set_page_private(page, order); 757 __SetPageBuddy(page); 758 } 759 760 /* 761 * This function checks whether a page is free && is the buddy 762 * we can coalesce a page and its buddy if 763 * (a) the buddy is not in a hole (check before calling!) && 764 * (b) the buddy is in the buddy system && 765 * (c) a page and its buddy have the same order && 766 * (d) a page and its buddy are in the same zone. 767 * 768 * For recording whether a page is in the buddy system, we set PageBuddy. 769 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 770 * 771 * For recording page's order, we use page_private(page). 772 */ 773 static inline int page_is_buddy(struct page *page, struct page *buddy, 774 unsigned int order) 775 { 776 if (page_is_guard(buddy) && page_order(buddy) == order) { 777 if (page_zone_id(page) != page_zone_id(buddy)) 778 return 0; 779 780 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 781 782 return 1; 783 } 784 785 if (PageBuddy(buddy) && page_order(buddy) == order) { 786 /* 787 * zone check is done late to avoid uselessly 788 * calculating zone/node ids for pages that could 789 * never merge. 790 */ 791 if (page_zone_id(page) != page_zone_id(buddy)) 792 return 0; 793 794 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 795 796 return 1; 797 } 798 return 0; 799 } 800 801 #ifdef CONFIG_COMPACTION 802 static inline struct capture_control *task_capc(struct zone *zone) 803 { 804 struct capture_control *capc = current->capture_control; 805 806 return capc && 807 !(current->flags & PF_KTHREAD) && 808 !capc->page && 809 capc->cc->zone == zone && 810 capc->cc->direct_compaction ? capc : NULL; 811 } 812 813 static inline bool 814 compaction_capture(struct capture_control *capc, struct page *page, 815 int order, int migratetype) 816 { 817 if (!capc || order != capc->cc->order) 818 return false; 819 820 /* Do not accidentally pollute CMA or isolated regions*/ 821 if (is_migrate_cma(migratetype) || 822 is_migrate_isolate(migratetype)) 823 return false; 824 825 /* 826 * Do not let lower order allocations polluate a movable pageblock. 827 * This might let an unmovable request use a reclaimable pageblock 828 * and vice-versa but no more than normal fallback logic which can 829 * have trouble finding a high-order free page. 830 */ 831 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 832 return false; 833 834 capc->page = page; 835 return true; 836 } 837 838 #else 839 static inline struct capture_control *task_capc(struct zone *zone) 840 { 841 return NULL; 842 } 843 844 static inline bool 845 compaction_capture(struct capture_control *capc, struct page *page, 846 int order, int migratetype) 847 { 848 return false; 849 } 850 #endif /* CONFIG_COMPACTION */ 851 852 /* 853 * Freeing function for a buddy system allocator. 854 * 855 * The concept of a buddy system is to maintain direct-mapped table 856 * (containing bit values) for memory blocks of various "orders". 857 * The bottom level table contains the map for the smallest allocatable 858 * units of memory (here, pages), and each level above it describes 859 * pairs of units from the levels below, hence, "buddies". 860 * At a high level, all that happens here is marking the table entry 861 * at the bottom level available, and propagating the changes upward 862 * as necessary, plus some accounting needed to play nicely with other 863 * parts of the VM system. 864 * At each level, we keep a list of pages, which are heads of continuous 865 * free pages of length of (1 << order) and marked with PageBuddy. 866 * Page's order is recorded in page_private(page) field. 867 * So when we are allocating or freeing one, we can derive the state of the 868 * other. That is, if we allocate a small block, and both were 869 * free, the remainder of the region must be split into blocks. 870 * If a block is freed, and its buddy is also free, then this 871 * triggers coalescing into a block of larger size. 872 * 873 * -- nyc 874 */ 875 876 static inline void __free_one_page(struct page *page, 877 unsigned long pfn, 878 struct zone *zone, unsigned int order, 879 int migratetype) 880 { 881 unsigned long combined_pfn; 882 unsigned long uninitialized_var(buddy_pfn); 883 struct page *buddy; 884 unsigned int max_order; 885 struct capture_control *capc = task_capc(zone); 886 887 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 888 889 VM_BUG_ON(!zone_is_initialized(zone)); 890 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 891 892 VM_BUG_ON(migratetype == -1); 893 if (likely(!is_migrate_isolate(migratetype))) 894 __mod_zone_freepage_state(zone, 1 << order, migratetype); 895 896 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 897 VM_BUG_ON_PAGE(bad_range(zone, page), page); 898 899 continue_merging: 900 while (order < max_order - 1) { 901 if (compaction_capture(capc, page, order, migratetype)) { 902 __mod_zone_freepage_state(zone, -(1 << order), 903 migratetype); 904 return; 905 } 906 buddy_pfn = __find_buddy_pfn(pfn, order); 907 buddy = page + (buddy_pfn - pfn); 908 909 if (!pfn_valid_within(buddy_pfn)) 910 goto done_merging; 911 if (!page_is_buddy(page, buddy, order)) 912 goto done_merging; 913 /* 914 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 915 * merge with it and move up one order. 916 */ 917 if (page_is_guard(buddy)) 918 clear_page_guard(zone, buddy, order, migratetype); 919 else 920 del_page_from_free_area(buddy, &zone->free_area[order]); 921 combined_pfn = buddy_pfn & pfn; 922 page = page + (combined_pfn - pfn); 923 pfn = combined_pfn; 924 order++; 925 } 926 if (max_order < MAX_ORDER) { 927 /* If we are here, it means order is >= pageblock_order. 928 * We want to prevent merge between freepages on isolate 929 * pageblock and normal pageblock. Without this, pageblock 930 * isolation could cause incorrect freepage or CMA accounting. 931 * 932 * We don't want to hit this code for the more frequent 933 * low-order merging. 934 */ 935 if (unlikely(has_isolate_pageblock(zone))) { 936 int buddy_mt; 937 938 buddy_pfn = __find_buddy_pfn(pfn, order); 939 buddy = page + (buddy_pfn - pfn); 940 buddy_mt = get_pageblock_migratetype(buddy); 941 942 if (migratetype != buddy_mt 943 && (is_migrate_isolate(migratetype) || 944 is_migrate_isolate(buddy_mt))) 945 goto done_merging; 946 } 947 max_order++; 948 goto continue_merging; 949 } 950 951 done_merging: 952 set_page_order(page, order); 953 954 /* 955 * If this is not the largest possible page, check if the buddy 956 * of the next-highest order is free. If it is, it's possible 957 * that pages are being freed that will coalesce soon. In case, 958 * that is happening, add the free page to the tail of the list 959 * so it's less likely to be used soon and more likely to be merged 960 * as a higher order page 961 */ 962 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 963 && !is_shuffle_order(order)) { 964 struct page *higher_page, *higher_buddy; 965 combined_pfn = buddy_pfn & pfn; 966 higher_page = page + (combined_pfn - pfn); 967 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 968 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 969 if (pfn_valid_within(buddy_pfn) && 970 page_is_buddy(higher_page, higher_buddy, order + 1)) { 971 add_to_free_area_tail(page, &zone->free_area[order], 972 migratetype); 973 return; 974 } 975 } 976 977 if (is_shuffle_order(order)) 978 add_to_free_area_random(page, &zone->free_area[order], 979 migratetype); 980 else 981 add_to_free_area(page, &zone->free_area[order], migratetype); 982 983 } 984 985 /* 986 * A bad page could be due to a number of fields. Instead of multiple branches, 987 * try and check multiple fields with one check. The caller must do a detailed 988 * check if necessary. 989 */ 990 static inline bool page_expected_state(struct page *page, 991 unsigned long check_flags) 992 { 993 if (unlikely(atomic_read(&page->_mapcount) != -1)) 994 return false; 995 996 if (unlikely((unsigned long)page->mapping | 997 page_ref_count(page) | 998 #ifdef CONFIG_MEMCG 999 (unsigned long)page->mem_cgroup | 1000 #endif 1001 (page->flags & check_flags))) 1002 return false; 1003 1004 return true; 1005 } 1006 1007 static void free_pages_check_bad(struct page *page) 1008 { 1009 const char *bad_reason; 1010 unsigned long bad_flags; 1011 1012 bad_reason = NULL; 1013 bad_flags = 0; 1014 1015 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1016 bad_reason = "nonzero mapcount"; 1017 if (unlikely(page->mapping != NULL)) 1018 bad_reason = "non-NULL mapping"; 1019 if (unlikely(page_ref_count(page) != 0)) 1020 bad_reason = "nonzero _refcount"; 1021 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1022 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1023 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1024 } 1025 #ifdef CONFIG_MEMCG 1026 if (unlikely(page->mem_cgroup)) 1027 bad_reason = "page still charged to cgroup"; 1028 #endif 1029 bad_page(page, bad_reason, bad_flags); 1030 } 1031 1032 static inline int free_pages_check(struct page *page) 1033 { 1034 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1035 return 0; 1036 1037 /* Something has gone sideways, find it */ 1038 free_pages_check_bad(page); 1039 return 1; 1040 } 1041 1042 static int free_tail_pages_check(struct page *head_page, struct page *page) 1043 { 1044 int ret = 1; 1045 1046 /* 1047 * We rely page->lru.next never has bit 0 set, unless the page 1048 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1049 */ 1050 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1051 1052 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1053 ret = 0; 1054 goto out; 1055 } 1056 switch (page - head_page) { 1057 case 1: 1058 /* the first tail page: ->mapping may be compound_mapcount() */ 1059 if (unlikely(compound_mapcount(page))) { 1060 bad_page(page, "nonzero compound_mapcount", 0); 1061 goto out; 1062 } 1063 break; 1064 case 2: 1065 /* 1066 * the second tail page: ->mapping is 1067 * deferred_list.next -- ignore value. 1068 */ 1069 break; 1070 default: 1071 if (page->mapping != TAIL_MAPPING) { 1072 bad_page(page, "corrupted mapping in tail page", 0); 1073 goto out; 1074 } 1075 break; 1076 } 1077 if (unlikely(!PageTail(page))) { 1078 bad_page(page, "PageTail not set", 0); 1079 goto out; 1080 } 1081 if (unlikely(compound_head(page) != head_page)) { 1082 bad_page(page, "compound_head not consistent", 0); 1083 goto out; 1084 } 1085 ret = 0; 1086 out: 1087 page->mapping = NULL; 1088 clear_compound_head(page); 1089 return ret; 1090 } 1091 1092 static __always_inline bool free_pages_prepare(struct page *page, 1093 unsigned int order, bool check_free) 1094 { 1095 int bad = 0; 1096 1097 VM_BUG_ON_PAGE(PageTail(page), page); 1098 1099 trace_mm_page_free(page, order); 1100 1101 /* 1102 * Check tail pages before head page information is cleared to 1103 * avoid checking PageCompound for order-0 pages. 1104 */ 1105 if (unlikely(order)) { 1106 bool compound = PageCompound(page); 1107 int i; 1108 1109 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1110 1111 if (compound) 1112 ClearPageDoubleMap(page); 1113 for (i = 1; i < (1 << order); i++) { 1114 if (compound) 1115 bad += free_tail_pages_check(page, page + i); 1116 if (unlikely(free_pages_check(page + i))) { 1117 bad++; 1118 continue; 1119 } 1120 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1121 } 1122 } 1123 if (PageMappingFlags(page)) 1124 page->mapping = NULL; 1125 if (memcg_kmem_enabled() && PageKmemcg(page)) 1126 __memcg_kmem_uncharge(page, order); 1127 if (check_free) 1128 bad += free_pages_check(page); 1129 if (bad) 1130 return false; 1131 1132 page_cpupid_reset_last(page); 1133 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1134 reset_page_owner(page, order); 1135 1136 if (!PageHighMem(page)) { 1137 debug_check_no_locks_freed(page_address(page), 1138 PAGE_SIZE << order); 1139 debug_check_no_obj_freed(page_address(page), 1140 PAGE_SIZE << order); 1141 } 1142 arch_free_page(page, order); 1143 kernel_poison_pages(page, 1 << order, 0); 1144 if (debug_pagealloc_enabled()) 1145 kernel_map_pages(page, 1 << order, 0); 1146 1147 kasan_free_nondeferred_pages(page, order); 1148 1149 return true; 1150 } 1151 1152 #ifdef CONFIG_DEBUG_VM 1153 static inline bool free_pcp_prepare(struct page *page) 1154 { 1155 return free_pages_prepare(page, 0, true); 1156 } 1157 1158 static inline bool bulkfree_pcp_prepare(struct page *page) 1159 { 1160 return false; 1161 } 1162 #else 1163 static bool free_pcp_prepare(struct page *page) 1164 { 1165 return free_pages_prepare(page, 0, false); 1166 } 1167 1168 static bool bulkfree_pcp_prepare(struct page *page) 1169 { 1170 return free_pages_check(page); 1171 } 1172 #endif /* CONFIG_DEBUG_VM */ 1173 1174 static inline void prefetch_buddy(struct page *page) 1175 { 1176 unsigned long pfn = page_to_pfn(page); 1177 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1178 struct page *buddy = page + (buddy_pfn - pfn); 1179 1180 prefetch(buddy); 1181 } 1182 1183 /* 1184 * Frees a number of pages from the PCP lists 1185 * Assumes all pages on list are in same zone, and of same order. 1186 * count is the number of pages to free. 1187 * 1188 * If the zone was previously in an "all pages pinned" state then look to 1189 * see if this freeing clears that state. 1190 * 1191 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1192 * pinned" detection logic. 1193 */ 1194 static void free_pcppages_bulk(struct zone *zone, int count, 1195 struct per_cpu_pages *pcp) 1196 { 1197 int migratetype = 0; 1198 int batch_free = 0; 1199 int prefetch_nr = 0; 1200 bool isolated_pageblocks; 1201 struct page *page, *tmp; 1202 LIST_HEAD(head); 1203 1204 while (count) { 1205 struct list_head *list; 1206 1207 /* 1208 * Remove pages from lists in a round-robin fashion. A 1209 * batch_free count is maintained that is incremented when an 1210 * empty list is encountered. This is so more pages are freed 1211 * off fuller lists instead of spinning excessively around empty 1212 * lists 1213 */ 1214 do { 1215 batch_free++; 1216 if (++migratetype == MIGRATE_PCPTYPES) 1217 migratetype = 0; 1218 list = &pcp->lists[migratetype]; 1219 } while (list_empty(list)); 1220 1221 /* This is the only non-empty list. Free them all. */ 1222 if (batch_free == MIGRATE_PCPTYPES) 1223 batch_free = count; 1224 1225 do { 1226 page = list_last_entry(list, struct page, lru); 1227 /* must delete to avoid corrupting pcp list */ 1228 list_del(&page->lru); 1229 pcp->count--; 1230 1231 if (bulkfree_pcp_prepare(page)) 1232 continue; 1233 1234 list_add_tail(&page->lru, &head); 1235 1236 /* 1237 * We are going to put the page back to the global 1238 * pool, prefetch its buddy to speed up later access 1239 * under zone->lock. It is believed the overhead of 1240 * an additional test and calculating buddy_pfn here 1241 * can be offset by reduced memory latency later. To 1242 * avoid excessive prefetching due to large count, only 1243 * prefetch buddy for the first pcp->batch nr of pages. 1244 */ 1245 if (prefetch_nr++ < pcp->batch) 1246 prefetch_buddy(page); 1247 } while (--count && --batch_free && !list_empty(list)); 1248 } 1249 1250 spin_lock(&zone->lock); 1251 isolated_pageblocks = has_isolate_pageblock(zone); 1252 1253 /* 1254 * Use safe version since after __free_one_page(), 1255 * page->lru.next will not point to original list. 1256 */ 1257 list_for_each_entry_safe(page, tmp, &head, lru) { 1258 int mt = get_pcppage_migratetype(page); 1259 /* MIGRATE_ISOLATE page should not go to pcplists */ 1260 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1261 /* Pageblock could have been isolated meanwhile */ 1262 if (unlikely(isolated_pageblocks)) 1263 mt = get_pageblock_migratetype(page); 1264 1265 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1266 trace_mm_page_pcpu_drain(page, 0, mt); 1267 } 1268 spin_unlock(&zone->lock); 1269 } 1270 1271 static void free_one_page(struct zone *zone, 1272 struct page *page, unsigned long pfn, 1273 unsigned int order, 1274 int migratetype) 1275 { 1276 spin_lock(&zone->lock); 1277 if (unlikely(has_isolate_pageblock(zone) || 1278 is_migrate_isolate(migratetype))) { 1279 migratetype = get_pfnblock_migratetype(page, pfn); 1280 } 1281 __free_one_page(page, pfn, zone, order, migratetype); 1282 spin_unlock(&zone->lock); 1283 } 1284 1285 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1286 unsigned long zone, int nid) 1287 { 1288 mm_zero_struct_page(page); 1289 set_page_links(page, zone, nid, pfn); 1290 init_page_count(page); 1291 page_mapcount_reset(page); 1292 page_cpupid_reset_last(page); 1293 page_kasan_tag_reset(page); 1294 1295 INIT_LIST_HEAD(&page->lru); 1296 #ifdef WANT_PAGE_VIRTUAL 1297 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1298 if (!is_highmem_idx(zone)) 1299 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1300 #endif 1301 } 1302 1303 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1304 static void __meminit init_reserved_page(unsigned long pfn) 1305 { 1306 pg_data_t *pgdat; 1307 int nid, zid; 1308 1309 if (!early_page_uninitialised(pfn)) 1310 return; 1311 1312 nid = early_pfn_to_nid(pfn); 1313 pgdat = NODE_DATA(nid); 1314 1315 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1316 struct zone *zone = &pgdat->node_zones[zid]; 1317 1318 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1319 break; 1320 } 1321 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1322 } 1323 #else 1324 static inline void init_reserved_page(unsigned long pfn) 1325 { 1326 } 1327 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1328 1329 /* 1330 * Initialised pages do not have PageReserved set. This function is 1331 * called for each range allocated by the bootmem allocator and 1332 * marks the pages PageReserved. The remaining valid pages are later 1333 * sent to the buddy page allocator. 1334 */ 1335 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1336 { 1337 unsigned long start_pfn = PFN_DOWN(start); 1338 unsigned long end_pfn = PFN_UP(end); 1339 1340 for (; start_pfn < end_pfn; start_pfn++) { 1341 if (pfn_valid(start_pfn)) { 1342 struct page *page = pfn_to_page(start_pfn); 1343 1344 init_reserved_page(start_pfn); 1345 1346 /* Avoid false-positive PageTail() */ 1347 INIT_LIST_HEAD(&page->lru); 1348 1349 /* 1350 * no need for atomic set_bit because the struct 1351 * page is not visible yet so nobody should 1352 * access it yet. 1353 */ 1354 __SetPageReserved(page); 1355 } 1356 } 1357 } 1358 1359 static void __free_pages_ok(struct page *page, unsigned int order) 1360 { 1361 unsigned long flags; 1362 int migratetype; 1363 unsigned long pfn = page_to_pfn(page); 1364 1365 if (!free_pages_prepare(page, order, true)) 1366 return; 1367 1368 migratetype = get_pfnblock_migratetype(page, pfn); 1369 local_irq_save(flags); 1370 __count_vm_events(PGFREE, 1 << order); 1371 free_one_page(page_zone(page), page, pfn, order, migratetype); 1372 local_irq_restore(flags); 1373 } 1374 1375 void __free_pages_core(struct page *page, unsigned int order) 1376 { 1377 unsigned int nr_pages = 1 << order; 1378 struct page *p = page; 1379 unsigned int loop; 1380 1381 prefetchw(p); 1382 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1383 prefetchw(p + 1); 1384 __ClearPageReserved(p); 1385 set_page_count(p, 0); 1386 } 1387 __ClearPageReserved(p); 1388 set_page_count(p, 0); 1389 1390 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1391 set_page_refcounted(page); 1392 __free_pages(page, order); 1393 } 1394 1395 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1396 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1397 1398 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1399 1400 int __meminit early_pfn_to_nid(unsigned long pfn) 1401 { 1402 static DEFINE_SPINLOCK(early_pfn_lock); 1403 int nid; 1404 1405 spin_lock(&early_pfn_lock); 1406 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1407 if (nid < 0) 1408 nid = first_online_node; 1409 spin_unlock(&early_pfn_lock); 1410 1411 return nid; 1412 } 1413 #endif 1414 1415 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1416 /* Only safe to use early in boot when initialisation is single-threaded */ 1417 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1418 { 1419 int nid; 1420 1421 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1422 if (nid >= 0 && nid != node) 1423 return false; 1424 return true; 1425 } 1426 1427 #else 1428 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1429 { 1430 return true; 1431 } 1432 #endif 1433 1434 1435 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1436 unsigned int order) 1437 { 1438 if (early_page_uninitialised(pfn)) 1439 return; 1440 __free_pages_core(page, order); 1441 } 1442 1443 /* 1444 * Check that the whole (or subset of) a pageblock given by the interval of 1445 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1446 * with the migration of free compaction scanner. The scanners then need to 1447 * use only pfn_valid_within() check for arches that allow holes within 1448 * pageblocks. 1449 * 1450 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1451 * 1452 * It's possible on some configurations to have a setup like node0 node1 node0 1453 * i.e. it's possible that all pages within a zones range of pages do not 1454 * belong to a single zone. We assume that a border between node0 and node1 1455 * can occur within a single pageblock, but not a node0 node1 node0 1456 * interleaving within a single pageblock. It is therefore sufficient to check 1457 * the first and last page of a pageblock and avoid checking each individual 1458 * page in a pageblock. 1459 */ 1460 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1461 unsigned long end_pfn, struct zone *zone) 1462 { 1463 struct page *start_page; 1464 struct page *end_page; 1465 1466 /* end_pfn is one past the range we are checking */ 1467 end_pfn--; 1468 1469 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1470 return NULL; 1471 1472 start_page = pfn_to_online_page(start_pfn); 1473 if (!start_page) 1474 return NULL; 1475 1476 if (page_zone(start_page) != zone) 1477 return NULL; 1478 1479 end_page = pfn_to_page(end_pfn); 1480 1481 /* This gives a shorter code than deriving page_zone(end_page) */ 1482 if (page_zone_id(start_page) != page_zone_id(end_page)) 1483 return NULL; 1484 1485 return start_page; 1486 } 1487 1488 void set_zone_contiguous(struct zone *zone) 1489 { 1490 unsigned long block_start_pfn = zone->zone_start_pfn; 1491 unsigned long block_end_pfn; 1492 1493 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1494 for (; block_start_pfn < zone_end_pfn(zone); 1495 block_start_pfn = block_end_pfn, 1496 block_end_pfn += pageblock_nr_pages) { 1497 1498 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1499 1500 if (!__pageblock_pfn_to_page(block_start_pfn, 1501 block_end_pfn, zone)) 1502 return; 1503 } 1504 1505 /* We confirm that there is no hole */ 1506 zone->contiguous = true; 1507 } 1508 1509 void clear_zone_contiguous(struct zone *zone) 1510 { 1511 zone->contiguous = false; 1512 } 1513 1514 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1515 static void __init deferred_free_range(unsigned long pfn, 1516 unsigned long nr_pages) 1517 { 1518 struct page *page; 1519 unsigned long i; 1520 1521 if (!nr_pages) 1522 return; 1523 1524 page = pfn_to_page(pfn); 1525 1526 /* Free a large naturally-aligned chunk if possible */ 1527 if (nr_pages == pageblock_nr_pages && 1528 (pfn & (pageblock_nr_pages - 1)) == 0) { 1529 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1530 __free_pages_core(page, pageblock_order); 1531 return; 1532 } 1533 1534 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1535 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1536 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1537 __free_pages_core(page, 0); 1538 } 1539 } 1540 1541 /* Completion tracking for deferred_init_memmap() threads */ 1542 static atomic_t pgdat_init_n_undone __initdata; 1543 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1544 1545 static inline void __init pgdat_init_report_one_done(void) 1546 { 1547 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1548 complete(&pgdat_init_all_done_comp); 1549 } 1550 1551 /* 1552 * Returns true if page needs to be initialized or freed to buddy allocator. 1553 * 1554 * First we check if pfn is valid on architectures where it is possible to have 1555 * holes within pageblock_nr_pages. On systems where it is not possible, this 1556 * function is optimized out. 1557 * 1558 * Then, we check if a current large page is valid by only checking the validity 1559 * of the head pfn. 1560 */ 1561 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1562 { 1563 if (!pfn_valid_within(pfn)) 1564 return false; 1565 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1566 return false; 1567 return true; 1568 } 1569 1570 /* 1571 * Free pages to buddy allocator. Try to free aligned pages in 1572 * pageblock_nr_pages sizes. 1573 */ 1574 static void __init deferred_free_pages(unsigned long pfn, 1575 unsigned long end_pfn) 1576 { 1577 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1578 unsigned long nr_free = 0; 1579 1580 for (; pfn < end_pfn; pfn++) { 1581 if (!deferred_pfn_valid(pfn)) { 1582 deferred_free_range(pfn - nr_free, nr_free); 1583 nr_free = 0; 1584 } else if (!(pfn & nr_pgmask)) { 1585 deferred_free_range(pfn - nr_free, nr_free); 1586 nr_free = 1; 1587 touch_nmi_watchdog(); 1588 } else { 1589 nr_free++; 1590 } 1591 } 1592 /* Free the last block of pages to allocator */ 1593 deferred_free_range(pfn - nr_free, nr_free); 1594 } 1595 1596 /* 1597 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1598 * by performing it only once every pageblock_nr_pages. 1599 * Return number of pages initialized. 1600 */ 1601 static unsigned long __init deferred_init_pages(struct zone *zone, 1602 unsigned long pfn, 1603 unsigned long end_pfn) 1604 { 1605 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1606 int nid = zone_to_nid(zone); 1607 unsigned long nr_pages = 0; 1608 int zid = zone_idx(zone); 1609 struct page *page = NULL; 1610 1611 for (; pfn < end_pfn; pfn++) { 1612 if (!deferred_pfn_valid(pfn)) { 1613 page = NULL; 1614 continue; 1615 } else if (!page || !(pfn & nr_pgmask)) { 1616 page = pfn_to_page(pfn); 1617 touch_nmi_watchdog(); 1618 } else { 1619 page++; 1620 } 1621 __init_single_page(page, pfn, zid, nid); 1622 nr_pages++; 1623 } 1624 return (nr_pages); 1625 } 1626 1627 /* 1628 * This function is meant to pre-load the iterator for the zone init. 1629 * Specifically it walks through the ranges until we are caught up to the 1630 * first_init_pfn value and exits there. If we never encounter the value we 1631 * return false indicating there are no valid ranges left. 1632 */ 1633 static bool __init 1634 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1635 unsigned long *spfn, unsigned long *epfn, 1636 unsigned long first_init_pfn) 1637 { 1638 u64 j; 1639 1640 /* 1641 * Start out by walking through the ranges in this zone that have 1642 * already been initialized. We don't need to do anything with them 1643 * so we just need to flush them out of the system. 1644 */ 1645 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1646 if (*epfn <= first_init_pfn) 1647 continue; 1648 if (*spfn < first_init_pfn) 1649 *spfn = first_init_pfn; 1650 *i = j; 1651 return true; 1652 } 1653 1654 return false; 1655 } 1656 1657 /* 1658 * Initialize and free pages. We do it in two loops: first we initialize 1659 * struct page, then free to buddy allocator, because while we are 1660 * freeing pages we can access pages that are ahead (computing buddy 1661 * page in __free_one_page()). 1662 * 1663 * In order to try and keep some memory in the cache we have the loop 1664 * broken along max page order boundaries. This way we will not cause 1665 * any issues with the buddy page computation. 1666 */ 1667 static unsigned long __init 1668 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1669 unsigned long *end_pfn) 1670 { 1671 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1672 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1673 unsigned long nr_pages = 0; 1674 u64 j = *i; 1675 1676 /* First we loop through and initialize the page values */ 1677 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1678 unsigned long t; 1679 1680 if (mo_pfn <= *start_pfn) 1681 break; 1682 1683 t = min(mo_pfn, *end_pfn); 1684 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1685 1686 if (mo_pfn < *end_pfn) { 1687 *start_pfn = mo_pfn; 1688 break; 1689 } 1690 } 1691 1692 /* Reset values and now loop through freeing pages as needed */ 1693 swap(j, *i); 1694 1695 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1696 unsigned long t; 1697 1698 if (mo_pfn <= spfn) 1699 break; 1700 1701 t = min(mo_pfn, epfn); 1702 deferred_free_pages(spfn, t); 1703 1704 if (mo_pfn <= epfn) 1705 break; 1706 } 1707 1708 return nr_pages; 1709 } 1710 1711 /* Initialise remaining memory on a node */ 1712 static int __init deferred_init_memmap(void *data) 1713 { 1714 pg_data_t *pgdat = data; 1715 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1716 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1717 unsigned long first_init_pfn, flags; 1718 unsigned long start = jiffies; 1719 struct zone *zone; 1720 int zid; 1721 u64 i; 1722 1723 /* Bind memory initialisation thread to a local node if possible */ 1724 if (!cpumask_empty(cpumask)) 1725 set_cpus_allowed_ptr(current, cpumask); 1726 1727 pgdat_resize_lock(pgdat, &flags); 1728 first_init_pfn = pgdat->first_deferred_pfn; 1729 if (first_init_pfn == ULONG_MAX) { 1730 pgdat_resize_unlock(pgdat, &flags); 1731 pgdat_init_report_one_done(); 1732 return 0; 1733 } 1734 1735 /* Sanity check boundaries */ 1736 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1737 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1738 pgdat->first_deferred_pfn = ULONG_MAX; 1739 1740 /* Only the highest zone is deferred so find it */ 1741 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1742 zone = pgdat->node_zones + zid; 1743 if (first_init_pfn < zone_end_pfn(zone)) 1744 break; 1745 } 1746 1747 /* If the zone is empty somebody else may have cleared out the zone */ 1748 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1749 first_init_pfn)) 1750 goto zone_empty; 1751 1752 /* 1753 * Initialize and free pages in MAX_ORDER sized increments so 1754 * that we can avoid introducing any issues with the buddy 1755 * allocator. 1756 */ 1757 while (spfn < epfn) 1758 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1759 zone_empty: 1760 pgdat_resize_unlock(pgdat, &flags); 1761 1762 /* Sanity check that the next zone really is unpopulated */ 1763 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1764 1765 pr_info("node %d initialised, %lu pages in %ums\n", 1766 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1767 1768 pgdat_init_report_one_done(); 1769 return 0; 1770 } 1771 1772 /* 1773 * If this zone has deferred pages, try to grow it by initializing enough 1774 * deferred pages to satisfy the allocation specified by order, rounded up to 1775 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1776 * of SECTION_SIZE bytes by initializing struct pages in increments of 1777 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1778 * 1779 * Return true when zone was grown, otherwise return false. We return true even 1780 * when we grow less than requested, to let the caller decide if there are 1781 * enough pages to satisfy the allocation. 1782 * 1783 * Note: We use noinline because this function is needed only during boot, and 1784 * it is called from a __ref function _deferred_grow_zone. This way we are 1785 * making sure that it is not inlined into permanent text section. 1786 */ 1787 static noinline bool __init 1788 deferred_grow_zone(struct zone *zone, unsigned int order) 1789 { 1790 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1791 pg_data_t *pgdat = zone->zone_pgdat; 1792 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1793 unsigned long spfn, epfn, flags; 1794 unsigned long nr_pages = 0; 1795 u64 i; 1796 1797 /* Only the last zone may have deferred pages */ 1798 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1799 return false; 1800 1801 pgdat_resize_lock(pgdat, &flags); 1802 1803 /* 1804 * If deferred pages have been initialized while we were waiting for 1805 * the lock, return true, as the zone was grown. The caller will retry 1806 * this zone. We won't return to this function since the caller also 1807 * has this static branch. 1808 */ 1809 if (!static_branch_unlikely(&deferred_pages)) { 1810 pgdat_resize_unlock(pgdat, &flags); 1811 return true; 1812 } 1813 1814 /* 1815 * If someone grew this zone while we were waiting for spinlock, return 1816 * true, as there might be enough pages already. 1817 */ 1818 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1819 pgdat_resize_unlock(pgdat, &flags); 1820 return true; 1821 } 1822 1823 /* If the zone is empty somebody else may have cleared out the zone */ 1824 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1825 first_deferred_pfn)) { 1826 pgdat->first_deferred_pfn = ULONG_MAX; 1827 pgdat_resize_unlock(pgdat, &flags); 1828 return true; 1829 } 1830 1831 /* 1832 * Initialize and free pages in MAX_ORDER sized increments so 1833 * that we can avoid introducing any issues with the buddy 1834 * allocator. 1835 */ 1836 while (spfn < epfn) { 1837 /* update our first deferred PFN for this section */ 1838 first_deferred_pfn = spfn; 1839 1840 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1841 1842 /* We should only stop along section boundaries */ 1843 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1844 continue; 1845 1846 /* If our quota has been met we can stop here */ 1847 if (nr_pages >= nr_pages_needed) 1848 break; 1849 } 1850 1851 pgdat->first_deferred_pfn = spfn; 1852 pgdat_resize_unlock(pgdat, &flags); 1853 1854 return nr_pages > 0; 1855 } 1856 1857 /* 1858 * deferred_grow_zone() is __init, but it is called from 1859 * get_page_from_freelist() during early boot until deferred_pages permanently 1860 * disables this call. This is why we have refdata wrapper to avoid warning, 1861 * and to ensure that the function body gets unloaded. 1862 */ 1863 static bool __ref 1864 _deferred_grow_zone(struct zone *zone, unsigned int order) 1865 { 1866 return deferred_grow_zone(zone, order); 1867 } 1868 1869 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1870 1871 void __init page_alloc_init_late(void) 1872 { 1873 struct zone *zone; 1874 int nid; 1875 1876 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1877 1878 /* There will be num_node_state(N_MEMORY) threads */ 1879 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1880 for_each_node_state(nid, N_MEMORY) { 1881 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1882 } 1883 1884 /* Block until all are initialised */ 1885 wait_for_completion(&pgdat_init_all_done_comp); 1886 1887 /* 1888 * We initialized the rest of the deferred pages. Permanently disable 1889 * on-demand struct page initialization. 1890 */ 1891 static_branch_disable(&deferred_pages); 1892 1893 /* Reinit limits that are based on free pages after the kernel is up */ 1894 files_maxfiles_init(); 1895 #endif 1896 1897 /* Discard memblock private memory */ 1898 memblock_discard(); 1899 1900 for_each_node_state(nid, N_MEMORY) 1901 shuffle_free_memory(NODE_DATA(nid)); 1902 1903 for_each_populated_zone(zone) 1904 set_zone_contiguous(zone); 1905 } 1906 1907 #ifdef CONFIG_CMA 1908 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1909 void __init init_cma_reserved_pageblock(struct page *page) 1910 { 1911 unsigned i = pageblock_nr_pages; 1912 struct page *p = page; 1913 1914 do { 1915 __ClearPageReserved(p); 1916 set_page_count(p, 0); 1917 } while (++p, --i); 1918 1919 set_pageblock_migratetype(page, MIGRATE_CMA); 1920 1921 if (pageblock_order >= MAX_ORDER) { 1922 i = pageblock_nr_pages; 1923 p = page; 1924 do { 1925 set_page_refcounted(p); 1926 __free_pages(p, MAX_ORDER - 1); 1927 p += MAX_ORDER_NR_PAGES; 1928 } while (i -= MAX_ORDER_NR_PAGES); 1929 } else { 1930 set_page_refcounted(page); 1931 __free_pages(page, pageblock_order); 1932 } 1933 1934 adjust_managed_page_count(page, pageblock_nr_pages); 1935 } 1936 #endif 1937 1938 /* 1939 * The order of subdivision here is critical for the IO subsystem. 1940 * Please do not alter this order without good reasons and regression 1941 * testing. Specifically, as large blocks of memory are subdivided, 1942 * the order in which smaller blocks are delivered depends on the order 1943 * they're subdivided in this function. This is the primary factor 1944 * influencing the order in which pages are delivered to the IO 1945 * subsystem according to empirical testing, and this is also justified 1946 * by considering the behavior of a buddy system containing a single 1947 * large block of memory acted on by a series of small allocations. 1948 * This behavior is a critical factor in sglist merging's success. 1949 * 1950 * -- nyc 1951 */ 1952 static inline void expand(struct zone *zone, struct page *page, 1953 int low, int high, struct free_area *area, 1954 int migratetype) 1955 { 1956 unsigned long size = 1 << high; 1957 1958 while (high > low) { 1959 area--; 1960 high--; 1961 size >>= 1; 1962 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1963 1964 /* 1965 * Mark as guard pages (or page), that will allow to 1966 * merge back to allocator when buddy will be freed. 1967 * Corresponding page table entries will not be touched, 1968 * pages will stay not present in virtual address space 1969 */ 1970 if (set_page_guard(zone, &page[size], high, migratetype)) 1971 continue; 1972 1973 add_to_free_area(&page[size], area, migratetype); 1974 set_page_order(&page[size], high); 1975 } 1976 } 1977 1978 static void check_new_page_bad(struct page *page) 1979 { 1980 const char *bad_reason = NULL; 1981 unsigned long bad_flags = 0; 1982 1983 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1984 bad_reason = "nonzero mapcount"; 1985 if (unlikely(page->mapping != NULL)) 1986 bad_reason = "non-NULL mapping"; 1987 if (unlikely(page_ref_count(page) != 0)) 1988 bad_reason = "nonzero _refcount"; 1989 if (unlikely(page->flags & __PG_HWPOISON)) { 1990 bad_reason = "HWPoisoned (hardware-corrupted)"; 1991 bad_flags = __PG_HWPOISON; 1992 /* Don't complain about hwpoisoned pages */ 1993 page_mapcount_reset(page); /* remove PageBuddy */ 1994 return; 1995 } 1996 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1997 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1998 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1999 } 2000 #ifdef CONFIG_MEMCG 2001 if (unlikely(page->mem_cgroup)) 2002 bad_reason = "page still charged to cgroup"; 2003 #endif 2004 bad_page(page, bad_reason, bad_flags); 2005 } 2006 2007 /* 2008 * This page is about to be returned from the page allocator 2009 */ 2010 static inline int check_new_page(struct page *page) 2011 { 2012 if (likely(page_expected_state(page, 2013 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2014 return 0; 2015 2016 check_new_page_bad(page); 2017 return 1; 2018 } 2019 2020 static inline bool free_pages_prezeroed(void) 2021 { 2022 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2023 page_poisoning_enabled(); 2024 } 2025 2026 #ifdef CONFIG_DEBUG_VM 2027 static bool check_pcp_refill(struct page *page) 2028 { 2029 return false; 2030 } 2031 2032 static bool check_new_pcp(struct page *page) 2033 { 2034 return check_new_page(page); 2035 } 2036 #else 2037 static bool check_pcp_refill(struct page *page) 2038 { 2039 return check_new_page(page); 2040 } 2041 static bool check_new_pcp(struct page *page) 2042 { 2043 return false; 2044 } 2045 #endif /* CONFIG_DEBUG_VM */ 2046 2047 static bool check_new_pages(struct page *page, unsigned int order) 2048 { 2049 int i; 2050 for (i = 0; i < (1 << order); i++) { 2051 struct page *p = page + i; 2052 2053 if (unlikely(check_new_page(p))) 2054 return true; 2055 } 2056 2057 return false; 2058 } 2059 2060 inline void post_alloc_hook(struct page *page, unsigned int order, 2061 gfp_t gfp_flags) 2062 { 2063 set_page_private(page, 0); 2064 set_page_refcounted(page); 2065 2066 arch_alloc_page(page, order); 2067 if (debug_pagealloc_enabled()) 2068 kernel_map_pages(page, 1 << order, 1); 2069 kasan_alloc_pages(page, order); 2070 kernel_poison_pages(page, 1 << order, 1); 2071 set_page_owner(page, order, gfp_flags); 2072 } 2073 2074 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2075 unsigned int alloc_flags) 2076 { 2077 int i; 2078 2079 post_alloc_hook(page, order, gfp_flags); 2080 2081 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 2082 for (i = 0; i < (1 << order); i++) 2083 clear_highpage(page + i); 2084 2085 if (order && (gfp_flags & __GFP_COMP)) 2086 prep_compound_page(page, order); 2087 2088 /* 2089 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2090 * allocate the page. The expectation is that the caller is taking 2091 * steps that will free more memory. The caller should avoid the page 2092 * being used for !PFMEMALLOC purposes. 2093 */ 2094 if (alloc_flags & ALLOC_NO_WATERMARKS) 2095 set_page_pfmemalloc(page); 2096 else 2097 clear_page_pfmemalloc(page); 2098 } 2099 2100 /* 2101 * Go through the free lists for the given migratetype and remove 2102 * the smallest available page from the freelists 2103 */ 2104 static __always_inline 2105 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2106 int migratetype) 2107 { 2108 unsigned int current_order; 2109 struct free_area *area; 2110 struct page *page; 2111 2112 /* Find a page of the appropriate size in the preferred list */ 2113 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2114 area = &(zone->free_area[current_order]); 2115 page = get_page_from_free_area(area, migratetype); 2116 if (!page) 2117 continue; 2118 del_page_from_free_area(page, area); 2119 expand(zone, page, order, current_order, area, migratetype); 2120 set_pcppage_migratetype(page, migratetype); 2121 return page; 2122 } 2123 2124 return NULL; 2125 } 2126 2127 2128 /* 2129 * This array describes the order lists are fallen back to when 2130 * the free lists for the desirable migrate type are depleted 2131 */ 2132 static int fallbacks[MIGRATE_TYPES][4] = { 2133 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2134 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2135 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2136 #ifdef CONFIG_CMA 2137 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2138 #endif 2139 #ifdef CONFIG_MEMORY_ISOLATION 2140 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2141 #endif 2142 }; 2143 2144 #ifdef CONFIG_CMA 2145 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2146 unsigned int order) 2147 { 2148 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2149 } 2150 #else 2151 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2152 unsigned int order) { return NULL; } 2153 #endif 2154 2155 /* 2156 * Move the free pages in a range to the free lists of the requested type. 2157 * Note that start_page and end_pages are not aligned on a pageblock 2158 * boundary. If alignment is required, use move_freepages_block() 2159 */ 2160 static int move_freepages(struct zone *zone, 2161 struct page *start_page, struct page *end_page, 2162 int migratetype, int *num_movable) 2163 { 2164 struct page *page; 2165 unsigned int order; 2166 int pages_moved = 0; 2167 2168 #ifndef CONFIG_HOLES_IN_ZONE 2169 /* 2170 * page_zone is not safe to call in this context when 2171 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 2172 * anyway as we check zone boundaries in move_freepages_block(). 2173 * Remove at a later date when no bug reports exist related to 2174 * grouping pages by mobility 2175 */ 2176 VM_BUG_ON(pfn_valid(page_to_pfn(start_page)) && 2177 pfn_valid(page_to_pfn(end_page)) && 2178 page_zone(start_page) != page_zone(end_page)); 2179 #endif 2180 for (page = start_page; page <= end_page;) { 2181 if (!pfn_valid_within(page_to_pfn(page))) { 2182 page++; 2183 continue; 2184 } 2185 2186 /* Make sure we are not inadvertently changing nodes */ 2187 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2188 2189 if (!PageBuddy(page)) { 2190 /* 2191 * We assume that pages that could be isolated for 2192 * migration are movable. But we don't actually try 2193 * isolating, as that would be expensive. 2194 */ 2195 if (num_movable && 2196 (PageLRU(page) || __PageMovable(page))) 2197 (*num_movable)++; 2198 2199 page++; 2200 continue; 2201 } 2202 2203 order = page_order(page); 2204 move_to_free_area(page, &zone->free_area[order], migratetype); 2205 page += 1 << order; 2206 pages_moved += 1 << order; 2207 } 2208 2209 return pages_moved; 2210 } 2211 2212 int move_freepages_block(struct zone *zone, struct page *page, 2213 int migratetype, int *num_movable) 2214 { 2215 unsigned long start_pfn, end_pfn; 2216 struct page *start_page, *end_page; 2217 2218 if (num_movable) 2219 *num_movable = 0; 2220 2221 start_pfn = page_to_pfn(page); 2222 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2223 start_page = pfn_to_page(start_pfn); 2224 end_page = start_page + pageblock_nr_pages - 1; 2225 end_pfn = start_pfn + pageblock_nr_pages - 1; 2226 2227 /* Do not cross zone boundaries */ 2228 if (!zone_spans_pfn(zone, start_pfn)) 2229 start_page = page; 2230 if (!zone_spans_pfn(zone, end_pfn)) 2231 return 0; 2232 2233 return move_freepages(zone, start_page, end_page, migratetype, 2234 num_movable); 2235 } 2236 2237 static void change_pageblock_range(struct page *pageblock_page, 2238 int start_order, int migratetype) 2239 { 2240 int nr_pageblocks = 1 << (start_order - pageblock_order); 2241 2242 while (nr_pageblocks--) { 2243 set_pageblock_migratetype(pageblock_page, migratetype); 2244 pageblock_page += pageblock_nr_pages; 2245 } 2246 } 2247 2248 /* 2249 * When we are falling back to another migratetype during allocation, try to 2250 * steal extra free pages from the same pageblocks to satisfy further 2251 * allocations, instead of polluting multiple pageblocks. 2252 * 2253 * If we are stealing a relatively large buddy page, it is likely there will 2254 * be more free pages in the pageblock, so try to steal them all. For 2255 * reclaimable and unmovable allocations, we steal regardless of page size, 2256 * as fragmentation caused by those allocations polluting movable pageblocks 2257 * is worse than movable allocations stealing from unmovable and reclaimable 2258 * pageblocks. 2259 */ 2260 static bool can_steal_fallback(unsigned int order, int start_mt) 2261 { 2262 /* 2263 * Leaving this order check is intended, although there is 2264 * relaxed order check in next check. The reason is that 2265 * we can actually steal whole pageblock if this condition met, 2266 * but, below check doesn't guarantee it and that is just heuristic 2267 * so could be changed anytime. 2268 */ 2269 if (order >= pageblock_order) 2270 return true; 2271 2272 if (order >= pageblock_order / 2 || 2273 start_mt == MIGRATE_RECLAIMABLE || 2274 start_mt == MIGRATE_UNMOVABLE || 2275 page_group_by_mobility_disabled) 2276 return true; 2277 2278 return false; 2279 } 2280 2281 static inline void boost_watermark(struct zone *zone) 2282 { 2283 unsigned long max_boost; 2284 2285 if (!watermark_boost_factor) 2286 return; 2287 2288 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2289 watermark_boost_factor, 10000); 2290 2291 /* 2292 * high watermark may be uninitialised if fragmentation occurs 2293 * very early in boot so do not boost. We do not fall 2294 * through and boost by pageblock_nr_pages as failing 2295 * allocations that early means that reclaim is not going 2296 * to help and it may even be impossible to reclaim the 2297 * boosted watermark resulting in a hang. 2298 */ 2299 if (!max_boost) 2300 return; 2301 2302 max_boost = max(pageblock_nr_pages, max_boost); 2303 2304 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2305 max_boost); 2306 } 2307 2308 /* 2309 * This function implements actual steal behaviour. If order is large enough, 2310 * we can steal whole pageblock. If not, we first move freepages in this 2311 * pageblock to our migratetype and determine how many already-allocated pages 2312 * are there in the pageblock with a compatible migratetype. If at least half 2313 * of pages are free or compatible, we can change migratetype of the pageblock 2314 * itself, so pages freed in the future will be put on the correct free list. 2315 */ 2316 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2317 unsigned int alloc_flags, int start_type, bool whole_block) 2318 { 2319 unsigned int current_order = page_order(page); 2320 struct free_area *area; 2321 int free_pages, movable_pages, alike_pages; 2322 int old_block_type; 2323 2324 old_block_type = get_pageblock_migratetype(page); 2325 2326 /* 2327 * This can happen due to races and we want to prevent broken 2328 * highatomic accounting. 2329 */ 2330 if (is_migrate_highatomic(old_block_type)) 2331 goto single_page; 2332 2333 /* Take ownership for orders >= pageblock_order */ 2334 if (current_order >= pageblock_order) { 2335 change_pageblock_range(page, current_order, start_type); 2336 goto single_page; 2337 } 2338 2339 /* 2340 * Boost watermarks to increase reclaim pressure to reduce the 2341 * likelihood of future fallbacks. Wake kswapd now as the node 2342 * may be balanced overall and kswapd will not wake naturally. 2343 */ 2344 boost_watermark(zone); 2345 if (alloc_flags & ALLOC_KSWAPD) 2346 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2347 2348 /* We are not allowed to try stealing from the whole block */ 2349 if (!whole_block) 2350 goto single_page; 2351 2352 free_pages = move_freepages_block(zone, page, start_type, 2353 &movable_pages); 2354 /* 2355 * Determine how many pages are compatible with our allocation. 2356 * For movable allocation, it's the number of movable pages which 2357 * we just obtained. For other types it's a bit more tricky. 2358 */ 2359 if (start_type == MIGRATE_MOVABLE) { 2360 alike_pages = movable_pages; 2361 } else { 2362 /* 2363 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2364 * to MOVABLE pageblock, consider all non-movable pages as 2365 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2366 * vice versa, be conservative since we can't distinguish the 2367 * exact migratetype of non-movable pages. 2368 */ 2369 if (old_block_type == MIGRATE_MOVABLE) 2370 alike_pages = pageblock_nr_pages 2371 - (free_pages + movable_pages); 2372 else 2373 alike_pages = 0; 2374 } 2375 2376 /* moving whole block can fail due to zone boundary conditions */ 2377 if (!free_pages) 2378 goto single_page; 2379 2380 /* 2381 * If a sufficient number of pages in the block are either free or of 2382 * comparable migratability as our allocation, claim the whole block. 2383 */ 2384 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2385 page_group_by_mobility_disabled) 2386 set_pageblock_migratetype(page, start_type); 2387 2388 return; 2389 2390 single_page: 2391 area = &zone->free_area[current_order]; 2392 move_to_free_area(page, area, start_type); 2393 } 2394 2395 /* 2396 * Check whether there is a suitable fallback freepage with requested order. 2397 * If only_stealable is true, this function returns fallback_mt only if 2398 * we can steal other freepages all together. This would help to reduce 2399 * fragmentation due to mixed migratetype pages in one pageblock. 2400 */ 2401 int find_suitable_fallback(struct free_area *area, unsigned int order, 2402 int migratetype, bool only_stealable, bool *can_steal) 2403 { 2404 int i; 2405 int fallback_mt; 2406 2407 if (area->nr_free == 0) 2408 return -1; 2409 2410 *can_steal = false; 2411 for (i = 0;; i++) { 2412 fallback_mt = fallbacks[migratetype][i]; 2413 if (fallback_mt == MIGRATE_TYPES) 2414 break; 2415 2416 if (free_area_empty(area, fallback_mt)) 2417 continue; 2418 2419 if (can_steal_fallback(order, migratetype)) 2420 *can_steal = true; 2421 2422 if (!only_stealable) 2423 return fallback_mt; 2424 2425 if (*can_steal) 2426 return fallback_mt; 2427 } 2428 2429 return -1; 2430 } 2431 2432 /* 2433 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2434 * there are no empty page blocks that contain a page with a suitable order 2435 */ 2436 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2437 unsigned int alloc_order) 2438 { 2439 int mt; 2440 unsigned long max_managed, flags; 2441 2442 /* 2443 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2444 * Check is race-prone but harmless. 2445 */ 2446 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2447 if (zone->nr_reserved_highatomic >= max_managed) 2448 return; 2449 2450 spin_lock_irqsave(&zone->lock, flags); 2451 2452 /* Recheck the nr_reserved_highatomic limit under the lock */ 2453 if (zone->nr_reserved_highatomic >= max_managed) 2454 goto out_unlock; 2455 2456 /* Yoink! */ 2457 mt = get_pageblock_migratetype(page); 2458 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2459 && !is_migrate_cma(mt)) { 2460 zone->nr_reserved_highatomic += pageblock_nr_pages; 2461 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2462 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2463 } 2464 2465 out_unlock: 2466 spin_unlock_irqrestore(&zone->lock, flags); 2467 } 2468 2469 /* 2470 * Used when an allocation is about to fail under memory pressure. This 2471 * potentially hurts the reliability of high-order allocations when under 2472 * intense memory pressure but failed atomic allocations should be easier 2473 * to recover from than an OOM. 2474 * 2475 * If @force is true, try to unreserve a pageblock even though highatomic 2476 * pageblock is exhausted. 2477 */ 2478 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2479 bool force) 2480 { 2481 struct zonelist *zonelist = ac->zonelist; 2482 unsigned long flags; 2483 struct zoneref *z; 2484 struct zone *zone; 2485 struct page *page; 2486 int order; 2487 bool ret; 2488 2489 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2490 ac->nodemask) { 2491 /* 2492 * Preserve at least one pageblock unless memory pressure 2493 * is really high. 2494 */ 2495 if (!force && zone->nr_reserved_highatomic <= 2496 pageblock_nr_pages) 2497 continue; 2498 2499 spin_lock_irqsave(&zone->lock, flags); 2500 for (order = 0; order < MAX_ORDER; order++) { 2501 struct free_area *area = &(zone->free_area[order]); 2502 2503 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2504 if (!page) 2505 continue; 2506 2507 /* 2508 * In page freeing path, migratetype change is racy so 2509 * we can counter several free pages in a pageblock 2510 * in this loop althoug we changed the pageblock type 2511 * from highatomic to ac->migratetype. So we should 2512 * adjust the count once. 2513 */ 2514 if (is_migrate_highatomic_page(page)) { 2515 /* 2516 * It should never happen but changes to 2517 * locking could inadvertently allow a per-cpu 2518 * drain to add pages to MIGRATE_HIGHATOMIC 2519 * while unreserving so be safe and watch for 2520 * underflows. 2521 */ 2522 zone->nr_reserved_highatomic -= min( 2523 pageblock_nr_pages, 2524 zone->nr_reserved_highatomic); 2525 } 2526 2527 /* 2528 * Convert to ac->migratetype and avoid the normal 2529 * pageblock stealing heuristics. Minimally, the caller 2530 * is doing the work and needs the pages. More 2531 * importantly, if the block was always converted to 2532 * MIGRATE_UNMOVABLE or another type then the number 2533 * of pageblocks that cannot be completely freed 2534 * may increase. 2535 */ 2536 set_pageblock_migratetype(page, ac->migratetype); 2537 ret = move_freepages_block(zone, page, ac->migratetype, 2538 NULL); 2539 if (ret) { 2540 spin_unlock_irqrestore(&zone->lock, flags); 2541 return ret; 2542 } 2543 } 2544 spin_unlock_irqrestore(&zone->lock, flags); 2545 } 2546 2547 return false; 2548 } 2549 2550 /* 2551 * Try finding a free buddy page on the fallback list and put it on the free 2552 * list of requested migratetype, possibly along with other pages from the same 2553 * block, depending on fragmentation avoidance heuristics. Returns true if 2554 * fallback was found so that __rmqueue_smallest() can grab it. 2555 * 2556 * The use of signed ints for order and current_order is a deliberate 2557 * deviation from the rest of this file, to make the for loop 2558 * condition simpler. 2559 */ 2560 static __always_inline bool 2561 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2562 unsigned int alloc_flags) 2563 { 2564 struct free_area *area; 2565 int current_order; 2566 int min_order = order; 2567 struct page *page; 2568 int fallback_mt; 2569 bool can_steal; 2570 2571 /* 2572 * Do not steal pages from freelists belonging to other pageblocks 2573 * i.e. orders < pageblock_order. If there are no local zones free, 2574 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2575 */ 2576 if (alloc_flags & ALLOC_NOFRAGMENT) 2577 min_order = pageblock_order; 2578 2579 /* 2580 * Find the largest available free page in the other list. This roughly 2581 * approximates finding the pageblock with the most free pages, which 2582 * would be too costly to do exactly. 2583 */ 2584 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2585 --current_order) { 2586 area = &(zone->free_area[current_order]); 2587 fallback_mt = find_suitable_fallback(area, current_order, 2588 start_migratetype, false, &can_steal); 2589 if (fallback_mt == -1) 2590 continue; 2591 2592 /* 2593 * We cannot steal all free pages from the pageblock and the 2594 * requested migratetype is movable. In that case it's better to 2595 * steal and split the smallest available page instead of the 2596 * largest available page, because even if the next movable 2597 * allocation falls back into a different pageblock than this 2598 * one, it won't cause permanent fragmentation. 2599 */ 2600 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2601 && current_order > order) 2602 goto find_smallest; 2603 2604 goto do_steal; 2605 } 2606 2607 return false; 2608 2609 find_smallest: 2610 for (current_order = order; current_order < MAX_ORDER; 2611 current_order++) { 2612 area = &(zone->free_area[current_order]); 2613 fallback_mt = find_suitable_fallback(area, current_order, 2614 start_migratetype, false, &can_steal); 2615 if (fallback_mt != -1) 2616 break; 2617 } 2618 2619 /* 2620 * This should not happen - we already found a suitable fallback 2621 * when looking for the largest page. 2622 */ 2623 VM_BUG_ON(current_order == MAX_ORDER); 2624 2625 do_steal: 2626 page = get_page_from_free_area(area, fallback_mt); 2627 2628 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2629 can_steal); 2630 2631 trace_mm_page_alloc_extfrag(page, order, current_order, 2632 start_migratetype, fallback_mt); 2633 2634 return true; 2635 2636 } 2637 2638 /* 2639 * Do the hard work of removing an element from the buddy allocator. 2640 * Call me with the zone->lock already held. 2641 */ 2642 static __always_inline struct page * 2643 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2644 unsigned int alloc_flags) 2645 { 2646 struct page *page; 2647 2648 retry: 2649 page = __rmqueue_smallest(zone, order, migratetype); 2650 if (unlikely(!page)) { 2651 if (migratetype == MIGRATE_MOVABLE) 2652 page = __rmqueue_cma_fallback(zone, order); 2653 2654 if (!page && __rmqueue_fallback(zone, order, migratetype, 2655 alloc_flags)) 2656 goto retry; 2657 } 2658 2659 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2660 return page; 2661 } 2662 2663 /* 2664 * Obtain a specified number of elements from the buddy allocator, all under 2665 * a single hold of the lock, for efficiency. Add them to the supplied list. 2666 * Returns the number of new pages which were placed at *list. 2667 */ 2668 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2669 unsigned long count, struct list_head *list, 2670 int migratetype, unsigned int alloc_flags) 2671 { 2672 int i, alloced = 0; 2673 2674 spin_lock(&zone->lock); 2675 for (i = 0; i < count; ++i) { 2676 struct page *page = __rmqueue(zone, order, migratetype, 2677 alloc_flags); 2678 if (unlikely(page == NULL)) 2679 break; 2680 2681 if (unlikely(check_pcp_refill(page))) 2682 continue; 2683 2684 /* 2685 * Split buddy pages returned by expand() are received here in 2686 * physical page order. The page is added to the tail of 2687 * caller's list. From the callers perspective, the linked list 2688 * is ordered by page number under some conditions. This is 2689 * useful for IO devices that can forward direction from the 2690 * head, thus also in the physical page order. This is useful 2691 * for IO devices that can merge IO requests if the physical 2692 * pages are ordered properly. 2693 */ 2694 list_add_tail(&page->lru, list); 2695 alloced++; 2696 if (is_migrate_cma(get_pcppage_migratetype(page))) 2697 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2698 -(1 << order)); 2699 } 2700 2701 /* 2702 * i pages were removed from the buddy list even if some leak due 2703 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2704 * on i. Do not confuse with 'alloced' which is the number of 2705 * pages added to the pcp list. 2706 */ 2707 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2708 spin_unlock(&zone->lock); 2709 return alloced; 2710 } 2711 2712 #ifdef CONFIG_NUMA 2713 /* 2714 * Called from the vmstat counter updater to drain pagesets of this 2715 * currently executing processor on remote nodes after they have 2716 * expired. 2717 * 2718 * Note that this function must be called with the thread pinned to 2719 * a single processor. 2720 */ 2721 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2722 { 2723 unsigned long flags; 2724 int to_drain, batch; 2725 2726 local_irq_save(flags); 2727 batch = READ_ONCE(pcp->batch); 2728 to_drain = min(pcp->count, batch); 2729 if (to_drain > 0) 2730 free_pcppages_bulk(zone, to_drain, pcp); 2731 local_irq_restore(flags); 2732 } 2733 #endif 2734 2735 /* 2736 * Drain pcplists of the indicated processor and zone. 2737 * 2738 * The processor must either be the current processor and the 2739 * thread pinned to the current processor or a processor that 2740 * is not online. 2741 */ 2742 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2743 { 2744 unsigned long flags; 2745 struct per_cpu_pageset *pset; 2746 struct per_cpu_pages *pcp; 2747 2748 local_irq_save(flags); 2749 pset = per_cpu_ptr(zone->pageset, cpu); 2750 2751 pcp = &pset->pcp; 2752 if (pcp->count) 2753 free_pcppages_bulk(zone, pcp->count, pcp); 2754 local_irq_restore(flags); 2755 } 2756 2757 /* 2758 * Drain pcplists of all zones on the indicated processor. 2759 * 2760 * The processor must either be the current processor and the 2761 * thread pinned to the current processor or a processor that 2762 * is not online. 2763 */ 2764 static void drain_pages(unsigned int cpu) 2765 { 2766 struct zone *zone; 2767 2768 for_each_populated_zone(zone) { 2769 drain_pages_zone(cpu, zone); 2770 } 2771 } 2772 2773 /* 2774 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2775 * 2776 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2777 * the single zone's pages. 2778 */ 2779 void drain_local_pages(struct zone *zone) 2780 { 2781 int cpu = smp_processor_id(); 2782 2783 if (zone) 2784 drain_pages_zone(cpu, zone); 2785 else 2786 drain_pages(cpu); 2787 } 2788 2789 static void drain_local_pages_wq(struct work_struct *work) 2790 { 2791 struct pcpu_drain *drain; 2792 2793 drain = container_of(work, struct pcpu_drain, work); 2794 2795 /* 2796 * drain_all_pages doesn't use proper cpu hotplug protection so 2797 * we can race with cpu offline when the WQ can move this from 2798 * a cpu pinned worker to an unbound one. We can operate on a different 2799 * cpu which is allright but we also have to make sure to not move to 2800 * a different one. 2801 */ 2802 preempt_disable(); 2803 drain_local_pages(drain->zone); 2804 preempt_enable(); 2805 } 2806 2807 /* 2808 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2809 * 2810 * When zone parameter is non-NULL, spill just the single zone's pages. 2811 * 2812 * Note that this can be extremely slow as the draining happens in a workqueue. 2813 */ 2814 void drain_all_pages(struct zone *zone) 2815 { 2816 int cpu; 2817 2818 /* 2819 * Allocate in the BSS so we wont require allocation in 2820 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2821 */ 2822 static cpumask_t cpus_with_pcps; 2823 2824 /* 2825 * Make sure nobody triggers this path before mm_percpu_wq is fully 2826 * initialized. 2827 */ 2828 if (WARN_ON_ONCE(!mm_percpu_wq)) 2829 return; 2830 2831 /* 2832 * Do not drain if one is already in progress unless it's specific to 2833 * a zone. Such callers are primarily CMA and memory hotplug and need 2834 * the drain to be complete when the call returns. 2835 */ 2836 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2837 if (!zone) 2838 return; 2839 mutex_lock(&pcpu_drain_mutex); 2840 } 2841 2842 /* 2843 * We don't care about racing with CPU hotplug event 2844 * as offline notification will cause the notified 2845 * cpu to drain that CPU pcps and on_each_cpu_mask 2846 * disables preemption as part of its processing 2847 */ 2848 for_each_online_cpu(cpu) { 2849 struct per_cpu_pageset *pcp; 2850 struct zone *z; 2851 bool has_pcps = false; 2852 2853 if (zone) { 2854 pcp = per_cpu_ptr(zone->pageset, cpu); 2855 if (pcp->pcp.count) 2856 has_pcps = true; 2857 } else { 2858 for_each_populated_zone(z) { 2859 pcp = per_cpu_ptr(z->pageset, cpu); 2860 if (pcp->pcp.count) { 2861 has_pcps = true; 2862 break; 2863 } 2864 } 2865 } 2866 2867 if (has_pcps) 2868 cpumask_set_cpu(cpu, &cpus_with_pcps); 2869 else 2870 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2871 } 2872 2873 for_each_cpu(cpu, &cpus_with_pcps) { 2874 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2875 2876 drain->zone = zone; 2877 INIT_WORK(&drain->work, drain_local_pages_wq); 2878 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2879 } 2880 for_each_cpu(cpu, &cpus_with_pcps) 2881 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2882 2883 mutex_unlock(&pcpu_drain_mutex); 2884 } 2885 2886 #ifdef CONFIG_HIBERNATION 2887 2888 /* 2889 * Touch the watchdog for every WD_PAGE_COUNT pages. 2890 */ 2891 #define WD_PAGE_COUNT (128*1024) 2892 2893 void mark_free_pages(struct zone *zone) 2894 { 2895 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2896 unsigned long flags; 2897 unsigned int order, t; 2898 struct page *page; 2899 2900 if (zone_is_empty(zone)) 2901 return; 2902 2903 spin_lock_irqsave(&zone->lock, flags); 2904 2905 max_zone_pfn = zone_end_pfn(zone); 2906 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2907 if (pfn_valid(pfn)) { 2908 page = pfn_to_page(pfn); 2909 2910 if (!--page_count) { 2911 touch_nmi_watchdog(); 2912 page_count = WD_PAGE_COUNT; 2913 } 2914 2915 if (page_zone(page) != zone) 2916 continue; 2917 2918 if (!swsusp_page_is_forbidden(page)) 2919 swsusp_unset_page_free(page); 2920 } 2921 2922 for_each_migratetype_order(order, t) { 2923 list_for_each_entry(page, 2924 &zone->free_area[order].free_list[t], lru) { 2925 unsigned long i; 2926 2927 pfn = page_to_pfn(page); 2928 for (i = 0; i < (1UL << order); i++) { 2929 if (!--page_count) { 2930 touch_nmi_watchdog(); 2931 page_count = WD_PAGE_COUNT; 2932 } 2933 swsusp_set_page_free(pfn_to_page(pfn + i)); 2934 } 2935 } 2936 } 2937 spin_unlock_irqrestore(&zone->lock, flags); 2938 } 2939 #endif /* CONFIG_PM */ 2940 2941 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2942 { 2943 int migratetype; 2944 2945 if (!free_pcp_prepare(page)) 2946 return false; 2947 2948 migratetype = get_pfnblock_migratetype(page, pfn); 2949 set_pcppage_migratetype(page, migratetype); 2950 return true; 2951 } 2952 2953 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2954 { 2955 struct zone *zone = page_zone(page); 2956 struct per_cpu_pages *pcp; 2957 int migratetype; 2958 2959 migratetype = get_pcppage_migratetype(page); 2960 __count_vm_event(PGFREE); 2961 2962 /* 2963 * We only track unmovable, reclaimable and movable on pcp lists. 2964 * Free ISOLATE pages back to the allocator because they are being 2965 * offlined but treat HIGHATOMIC as movable pages so we can get those 2966 * areas back if necessary. Otherwise, we may have to free 2967 * excessively into the page allocator 2968 */ 2969 if (migratetype >= MIGRATE_PCPTYPES) { 2970 if (unlikely(is_migrate_isolate(migratetype))) { 2971 free_one_page(zone, page, pfn, 0, migratetype); 2972 return; 2973 } 2974 migratetype = MIGRATE_MOVABLE; 2975 } 2976 2977 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2978 list_add(&page->lru, &pcp->lists[migratetype]); 2979 pcp->count++; 2980 if (pcp->count >= pcp->high) { 2981 unsigned long batch = READ_ONCE(pcp->batch); 2982 free_pcppages_bulk(zone, batch, pcp); 2983 } 2984 } 2985 2986 /* 2987 * Free a 0-order page 2988 */ 2989 void free_unref_page(struct page *page) 2990 { 2991 unsigned long flags; 2992 unsigned long pfn = page_to_pfn(page); 2993 2994 if (!free_unref_page_prepare(page, pfn)) 2995 return; 2996 2997 local_irq_save(flags); 2998 free_unref_page_commit(page, pfn); 2999 local_irq_restore(flags); 3000 } 3001 3002 /* 3003 * Free a list of 0-order pages 3004 */ 3005 void free_unref_page_list(struct list_head *list) 3006 { 3007 struct page *page, *next; 3008 unsigned long flags, pfn; 3009 int batch_count = 0; 3010 3011 /* Prepare pages for freeing */ 3012 list_for_each_entry_safe(page, next, list, lru) { 3013 pfn = page_to_pfn(page); 3014 if (!free_unref_page_prepare(page, pfn)) 3015 list_del(&page->lru); 3016 set_page_private(page, pfn); 3017 } 3018 3019 local_irq_save(flags); 3020 list_for_each_entry_safe(page, next, list, lru) { 3021 unsigned long pfn = page_private(page); 3022 3023 set_page_private(page, 0); 3024 trace_mm_page_free_batched(page); 3025 free_unref_page_commit(page, pfn); 3026 3027 /* 3028 * Guard against excessive IRQ disabled times when we get 3029 * a large list of pages to free. 3030 */ 3031 if (++batch_count == SWAP_CLUSTER_MAX) { 3032 local_irq_restore(flags); 3033 batch_count = 0; 3034 local_irq_save(flags); 3035 } 3036 } 3037 local_irq_restore(flags); 3038 } 3039 3040 /* 3041 * split_page takes a non-compound higher-order page, and splits it into 3042 * n (1<<order) sub-pages: page[0..n] 3043 * Each sub-page must be freed individually. 3044 * 3045 * Note: this is probably too low level an operation for use in drivers. 3046 * Please consult with lkml before using this in your driver. 3047 */ 3048 void split_page(struct page *page, unsigned int order) 3049 { 3050 int i; 3051 3052 VM_BUG_ON_PAGE(PageCompound(page), page); 3053 VM_BUG_ON_PAGE(!page_count(page), page); 3054 3055 for (i = 1; i < (1 << order); i++) 3056 set_page_refcounted(page + i); 3057 split_page_owner(page, order); 3058 } 3059 EXPORT_SYMBOL_GPL(split_page); 3060 3061 int __isolate_free_page(struct page *page, unsigned int order) 3062 { 3063 struct free_area *area = &page_zone(page)->free_area[order]; 3064 unsigned long watermark; 3065 struct zone *zone; 3066 int mt; 3067 3068 BUG_ON(!PageBuddy(page)); 3069 3070 zone = page_zone(page); 3071 mt = get_pageblock_migratetype(page); 3072 3073 if (!is_migrate_isolate(mt)) { 3074 /* 3075 * Obey watermarks as if the page was being allocated. We can 3076 * emulate a high-order watermark check with a raised order-0 3077 * watermark, because we already know our high-order page 3078 * exists. 3079 */ 3080 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3081 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3082 return 0; 3083 3084 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3085 } 3086 3087 /* Remove page from free list */ 3088 3089 del_page_from_free_area(page, area); 3090 3091 /* 3092 * Set the pageblock if the isolated page is at least half of a 3093 * pageblock 3094 */ 3095 if (order >= pageblock_order - 1) { 3096 struct page *endpage = page + (1 << order) - 1; 3097 for (; page < endpage; page += pageblock_nr_pages) { 3098 int mt = get_pageblock_migratetype(page); 3099 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3100 && !is_migrate_highatomic(mt)) 3101 set_pageblock_migratetype(page, 3102 MIGRATE_MOVABLE); 3103 } 3104 } 3105 3106 3107 return 1UL << order; 3108 } 3109 3110 /* 3111 * Update NUMA hit/miss statistics 3112 * 3113 * Must be called with interrupts disabled. 3114 */ 3115 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3116 { 3117 #ifdef CONFIG_NUMA 3118 enum numa_stat_item local_stat = NUMA_LOCAL; 3119 3120 /* skip numa counters update if numa stats is disabled */ 3121 if (!static_branch_likely(&vm_numa_stat_key)) 3122 return; 3123 3124 if (zone_to_nid(z) != numa_node_id()) 3125 local_stat = NUMA_OTHER; 3126 3127 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3128 __inc_numa_state(z, NUMA_HIT); 3129 else { 3130 __inc_numa_state(z, NUMA_MISS); 3131 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3132 } 3133 __inc_numa_state(z, local_stat); 3134 #endif 3135 } 3136 3137 /* Remove page from the per-cpu list, caller must protect the list */ 3138 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3139 unsigned int alloc_flags, 3140 struct per_cpu_pages *pcp, 3141 struct list_head *list) 3142 { 3143 struct page *page; 3144 3145 do { 3146 if (list_empty(list)) { 3147 pcp->count += rmqueue_bulk(zone, 0, 3148 pcp->batch, list, 3149 migratetype, alloc_flags); 3150 if (unlikely(list_empty(list))) 3151 return NULL; 3152 } 3153 3154 page = list_first_entry(list, struct page, lru); 3155 list_del(&page->lru); 3156 pcp->count--; 3157 } while (check_new_pcp(page)); 3158 3159 return page; 3160 } 3161 3162 /* Lock and remove page from the per-cpu list */ 3163 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3164 struct zone *zone, gfp_t gfp_flags, 3165 int migratetype, unsigned int alloc_flags) 3166 { 3167 struct per_cpu_pages *pcp; 3168 struct list_head *list; 3169 struct page *page; 3170 unsigned long flags; 3171 3172 local_irq_save(flags); 3173 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3174 list = &pcp->lists[migratetype]; 3175 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3176 if (page) { 3177 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3178 zone_statistics(preferred_zone, zone); 3179 } 3180 local_irq_restore(flags); 3181 return page; 3182 } 3183 3184 /* 3185 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3186 */ 3187 static inline 3188 struct page *rmqueue(struct zone *preferred_zone, 3189 struct zone *zone, unsigned int order, 3190 gfp_t gfp_flags, unsigned int alloc_flags, 3191 int migratetype) 3192 { 3193 unsigned long flags; 3194 struct page *page; 3195 3196 if (likely(order == 0)) { 3197 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3198 migratetype, alloc_flags); 3199 goto out; 3200 } 3201 3202 /* 3203 * We most definitely don't want callers attempting to 3204 * allocate greater than order-1 page units with __GFP_NOFAIL. 3205 */ 3206 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3207 spin_lock_irqsave(&zone->lock, flags); 3208 3209 do { 3210 page = NULL; 3211 if (alloc_flags & ALLOC_HARDER) { 3212 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3213 if (page) 3214 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3215 } 3216 if (!page) 3217 page = __rmqueue(zone, order, migratetype, alloc_flags); 3218 } while (page && check_new_pages(page, order)); 3219 spin_unlock(&zone->lock); 3220 if (!page) 3221 goto failed; 3222 __mod_zone_freepage_state(zone, -(1 << order), 3223 get_pcppage_migratetype(page)); 3224 3225 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3226 zone_statistics(preferred_zone, zone); 3227 local_irq_restore(flags); 3228 3229 out: 3230 /* Separate test+clear to avoid unnecessary atomics */ 3231 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3232 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3233 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3234 } 3235 3236 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3237 return page; 3238 3239 failed: 3240 local_irq_restore(flags); 3241 return NULL; 3242 } 3243 3244 #ifdef CONFIG_FAIL_PAGE_ALLOC 3245 3246 static struct { 3247 struct fault_attr attr; 3248 3249 bool ignore_gfp_highmem; 3250 bool ignore_gfp_reclaim; 3251 u32 min_order; 3252 } fail_page_alloc = { 3253 .attr = FAULT_ATTR_INITIALIZER, 3254 .ignore_gfp_reclaim = true, 3255 .ignore_gfp_highmem = true, 3256 .min_order = 1, 3257 }; 3258 3259 static int __init setup_fail_page_alloc(char *str) 3260 { 3261 return setup_fault_attr(&fail_page_alloc.attr, str); 3262 } 3263 __setup("fail_page_alloc=", setup_fail_page_alloc); 3264 3265 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3266 { 3267 if (order < fail_page_alloc.min_order) 3268 return false; 3269 if (gfp_mask & __GFP_NOFAIL) 3270 return false; 3271 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3272 return false; 3273 if (fail_page_alloc.ignore_gfp_reclaim && 3274 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3275 return false; 3276 3277 return should_fail(&fail_page_alloc.attr, 1 << order); 3278 } 3279 3280 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3281 3282 static int __init fail_page_alloc_debugfs(void) 3283 { 3284 umode_t mode = S_IFREG | 0600; 3285 struct dentry *dir; 3286 3287 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3288 &fail_page_alloc.attr); 3289 3290 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3291 &fail_page_alloc.ignore_gfp_reclaim); 3292 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3293 &fail_page_alloc.ignore_gfp_highmem); 3294 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3295 3296 return 0; 3297 } 3298 3299 late_initcall(fail_page_alloc_debugfs); 3300 3301 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3302 3303 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3304 3305 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3306 { 3307 return false; 3308 } 3309 3310 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3311 3312 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3313 { 3314 return __should_fail_alloc_page(gfp_mask, order); 3315 } 3316 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3317 3318 /* 3319 * Return true if free base pages are above 'mark'. For high-order checks it 3320 * will return true of the order-0 watermark is reached and there is at least 3321 * one free page of a suitable size. Checking now avoids taking the zone lock 3322 * to check in the allocation paths if no pages are free. 3323 */ 3324 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3325 int classzone_idx, unsigned int alloc_flags, 3326 long free_pages) 3327 { 3328 long min = mark; 3329 int o; 3330 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3331 3332 /* free_pages may go negative - that's OK */ 3333 free_pages -= (1 << order) - 1; 3334 3335 if (alloc_flags & ALLOC_HIGH) 3336 min -= min / 2; 3337 3338 /* 3339 * If the caller does not have rights to ALLOC_HARDER then subtract 3340 * the high-atomic reserves. This will over-estimate the size of the 3341 * atomic reserve but it avoids a search. 3342 */ 3343 if (likely(!alloc_harder)) { 3344 free_pages -= z->nr_reserved_highatomic; 3345 } else { 3346 /* 3347 * OOM victims can try even harder than normal ALLOC_HARDER 3348 * users on the grounds that it's definitely going to be in 3349 * the exit path shortly and free memory. Any allocation it 3350 * makes during the free path will be small and short-lived. 3351 */ 3352 if (alloc_flags & ALLOC_OOM) 3353 min -= min / 2; 3354 else 3355 min -= min / 4; 3356 } 3357 3358 3359 #ifdef CONFIG_CMA 3360 /* If allocation can't use CMA areas don't use free CMA pages */ 3361 if (!(alloc_flags & ALLOC_CMA)) 3362 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3363 #endif 3364 3365 /* 3366 * Check watermarks for an order-0 allocation request. If these 3367 * are not met, then a high-order request also cannot go ahead 3368 * even if a suitable page happened to be free. 3369 */ 3370 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3371 return false; 3372 3373 /* If this is an order-0 request then the watermark is fine */ 3374 if (!order) 3375 return true; 3376 3377 /* For a high-order request, check at least one suitable page is free */ 3378 for (o = order; o < MAX_ORDER; o++) { 3379 struct free_area *area = &z->free_area[o]; 3380 int mt; 3381 3382 if (!area->nr_free) 3383 continue; 3384 3385 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3386 if (!free_area_empty(area, mt)) 3387 return true; 3388 } 3389 3390 #ifdef CONFIG_CMA 3391 if ((alloc_flags & ALLOC_CMA) && 3392 !free_area_empty(area, MIGRATE_CMA)) { 3393 return true; 3394 } 3395 #endif 3396 if (alloc_harder && 3397 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3398 return true; 3399 } 3400 return false; 3401 } 3402 3403 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3404 int classzone_idx, unsigned int alloc_flags) 3405 { 3406 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3407 zone_page_state(z, NR_FREE_PAGES)); 3408 } 3409 3410 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3411 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3412 { 3413 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3414 long cma_pages = 0; 3415 3416 #ifdef CONFIG_CMA 3417 /* If allocation can't use CMA areas don't use free CMA pages */ 3418 if (!(alloc_flags & ALLOC_CMA)) 3419 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3420 #endif 3421 3422 /* 3423 * Fast check for order-0 only. If this fails then the reserves 3424 * need to be calculated. There is a corner case where the check 3425 * passes but only the high-order atomic reserve are free. If 3426 * the caller is !atomic then it'll uselessly search the free 3427 * list. That corner case is then slower but it is harmless. 3428 */ 3429 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3430 return true; 3431 3432 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3433 free_pages); 3434 } 3435 3436 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3437 unsigned long mark, int classzone_idx) 3438 { 3439 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3440 3441 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3442 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3443 3444 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3445 free_pages); 3446 } 3447 3448 #ifdef CONFIG_NUMA 3449 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3450 { 3451 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3452 RECLAIM_DISTANCE; 3453 } 3454 #else /* CONFIG_NUMA */ 3455 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3456 { 3457 return true; 3458 } 3459 #endif /* CONFIG_NUMA */ 3460 3461 /* 3462 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3463 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3464 * premature use of a lower zone may cause lowmem pressure problems that 3465 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3466 * probably too small. It only makes sense to spread allocations to avoid 3467 * fragmentation between the Normal and DMA32 zones. 3468 */ 3469 static inline unsigned int 3470 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3471 { 3472 unsigned int alloc_flags = 0; 3473 3474 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3475 alloc_flags |= ALLOC_KSWAPD; 3476 3477 #ifdef CONFIG_ZONE_DMA32 3478 if (!zone) 3479 return alloc_flags; 3480 3481 if (zone_idx(zone) != ZONE_NORMAL) 3482 return alloc_flags; 3483 3484 /* 3485 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3486 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3487 * on UMA that if Normal is populated then so is DMA32. 3488 */ 3489 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3490 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3491 return alloc_flags; 3492 3493 alloc_flags |= ALLOC_NOFRAGMENT; 3494 #endif /* CONFIG_ZONE_DMA32 */ 3495 return alloc_flags; 3496 } 3497 3498 /* 3499 * get_page_from_freelist goes through the zonelist trying to allocate 3500 * a page. 3501 */ 3502 static struct page * 3503 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3504 const struct alloc_context *ac) 3505 { 3506 struct zoneref *z; 3507 struct zone *zone; 3508 struct pglist_data *last_pgdat_dirty_limit = NULL; 3509 bool no_fallback; 3510 3511 retry: 3512 /* 3513 * Scan zonelist, looking for a zone with enough free. 3514 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3515 */ 3516 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3517 z = ac->preferred_zoneref; 3518 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3519 ac->nodemask) { 3520 struct page *page; 3521 unsigned long mark; 3522 3523 if (cpusets_enabled() && 3524 (alloc_flags & ALLOC_CPUSET) && 3525 !__cpuset_zone_allowed(zone, gfp_mask)) 3526 continue; 3527 /* 3528 * When allocating a page cache page for writing, we 3529 * want to get it from a node that is within its dirty 3530 * limit, such that no single node holds more than its 3531 * proportional share of globally allowed dirty pages. 3532 * The dirty limits take into account the node's 3533 * lowmem reserves and high watermark so that kswapd 3534 * should be able to balance it without having to 3535 * write pages from its LRU list. 3536 * 3537 * XXX: For now, allow allocations to potentially 3538 * exceed the per-node dirty limit in the slowpath 3539 * (spread_dirty_pages unset) before going into reclaim, 3540 * which is important when on a NUMA setup the allowed 3541 * nodes are together not big enough to reach the 3542 * global limit. The proper fix for these situations 3543 * will require awareness of nodes in the 3544 * dirty-throttling and the flusher threads. 3545 */ 3546 if (ac->spread_dirty_pages) { 3547 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3548 continue; 3549 3550 if (!node_dirty_ok(zone->zone_pgdat)) { 3551 last_pgdat_dirty_limit = zone->zone_pgdat; 3552 continue; 3553 } 3554 } 3555 3556 if (no_fallback && nr_online_nodes > 1 && 3557 zone != ac->preferred_zoneref->zone) { 3558 int local_nid; 3559 3560 /* 3561 * If moving to a remote node, retry but allow 3562 * fragmenting fallbacks. Locality is more important 3563 * than fragmentation avoidance. 3564 */ 3565 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3566 if (zone_to_nid(zone) != local_nid) { 3567 alloc_flags &= ~ALLOC_NOFRAGMENT; 3568 goto retry; 3569 } 3570 } 3571 3572 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3573 if (!zone_watermark_fast(zone, order, mark, 3574 ac_classzone_idx(ac), alloc_flags)) { 3575 int ret; 3576 3577 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3578 /* 3579 * Watermark failed for this zone, but see if we can 3580 * grow this zone if it contains deferred pages. 3581 */ 3582 if (static_branch_unlikely(&deferred_pages)) { 3583 if (_deferred_grow_zone(zone, order)) 3584 goto try_this_zone; 3585 } 3586 #endif 3587 /* Checked here to keep the fast path fast */ 3588 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3589 if (alloc_flags & ALLOC_NO_WATERMARKS) 3590 goto try_this_zone; 3591 3592 if (node_reclaim_mode == 0 || 3593 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3594 continue; 3595 3596 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3597 switch (ret) { 3598 case NODE_RECLAIM_NOSCAN: 3599 /* did not scan */ 3600 continue; 3601 case NODE_RECLAIM_FULL: 3602 /* scanned but unreclaimable */ 3603 continue; 3604 default: 3605 /* did we reclaim enough */ 3606 if (zone_watermark_ok(zone, order, mark, 3607 ac_classzone_idx(ac), alloc_flags)) 3608 goto try_this_zone; 3609 3610 continue; 3611 } 3612 } 3613 3614 try_this_zone: 3615 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3616 gfp_mask, alloc_flags, ac->migratetype); 3617 if (page) { 3618 prep_new_page(page, order, gfp_mask, alloc_flags); 3619 3620 /* 3621 * If this is a high-order atomic allocation then check 3622 * if the pageblock should be reserved for the future 3623 */ 3624 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3625 reserve_highatomic_pageblock(page, zone, order); 3626 3627 return page; 3628 } else { 3629 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3630 /* Try again if zone has deferred pages */ 3631 if (static_branch_unlikely(&deferred_pages)) { 3632 if (_deferred_grow_zone(zone, order)) 3633 goto try_this_zone; 3634 } 3635 #endif 3636 } 3637 } 3638 3639 /* 3640 * It's possible on a UMA machine to get through all zones that are 3641 * fragmented. If avoiding fragmentation, reset and try again. 3642 */ 3643 if (no_fallback) { 3644 alloc_flags &= ~ALLOC_NOFRAGMENT; 3645 goto retry; 3646 } 3647 3648 return NULL; 3649 } 3650 3651 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3652 { 3653 unsigned int filter = SHOW_MEM_FILTER_NODES; 3654 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3655 3656 if (!__ratelimit(&show_mem_rs)) 3657 return; 3658 3659 /* 3660 * This documents exceptions given to allocations in certain 3661 * contexts that are allowed to allocate outside current's set 3662 * of allowed nodes. 3663 */ 3664 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3665 if (tsk_is_oom_victim(current) || 3666 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3667 filter &= ~SHOW_MEM_FILTER_NODES; 3668 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3669 filter &= ~SHOW_MEM_FILTER_NODES; 3670 3671 show_mem(filter, nodemask); 3672 } 3673 3674 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3675 { 3676 struct va_format vaf; 3677 va_list args; 3678 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3679 DEFAULT_RATELIMIT_BURST); 3680 3681 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3682 return; 3683 3684 va_start(args, fmt); 3685 vaf.fmt = fmt; 3686 vaf.va = &args; 3687 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3688 current->comm, &vaf, gfp_mask, &gfp_mask, 3689 nodemask_pr_args(nodemask)); 3690 va_end(args); 3691 3692 cpuset_print_current_mems_allowed(); 3693 pr_cont("\n"); 3694 dump_stack(); 3695 warn_alloc_show_mem(gfp_mask, nodemask); 3696 } 3697 3698 static inline struct page * 3699 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3700 unsigned int alloc_flags, 3701 const struct alloc_context *ac) 3702 { 3703 struct page *page; 3704 3705 page = get_page_from_freelist(gfp_mask, order, 3706 alloc_flags|ALLOC_CPUSET, ac); 3707 /* 3708 * fallback to ignore cpuset restriction if our nodes 3709 * are depleted 3710 */ 3711 if (!page) 3712 page = get_page_from_freelist(gfp_mask, order, 3713 alloc_flags, ac); 3714 3715 return page; 3716 } 3717 3718 static inline struct page * 3719 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3720 const struct alloc_context *ac, unsigned long *did_some_progress) 3721 { 3722 struct oom_control oc = { 3723 .zonelist = ac->zonelist, 3724 .nodemask = ac->nodemask, 3725 .memcg = NULL, 3726 .gfp_mask = gfp_mask, 3727 .order = order, 3728 }; 3729 struct page *page; 3730 3731 *did_some_progress = 0; 3732 3733 /* 3734 * Acquire the oom lock. If that fails, somebody else is 3735 * making progress for us. 3736 */ 3737 if (!mutex_trylock(&oom_lock)) { 3738 *did_some_progress = 1; 3739 schedule_timeout_uninterruptible(1); 3740 return NULL; 3741 } 3742 3743 /* 3744 * Go through the zonelist yet one more time, keep very high watermark 3745 * here, this is only to catch a parallel oom killing, we must fail if 3746 * we're still under heavy pressure. But make sure that this reclaim 3747 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3748 * allocation which will never fail due to oom_lock already held. 3749 */ 3750 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3751 ~__GFP_DIRECT_RECLAIM, order, 3752 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3753 if (page) 3754 goto out; 3755 3756 /* Coredumps can quickly deplete all memory reserves */ 3757 if (current->flags & PF_DUMPCORE) 3758 goto out; 3759 /* The OOM killer will not help higher order allocs */ 3760 if (order > PAGE_ALLOC_COSTLY_ORDER) 3761 goto out; 3762 /* 3763 * We have already exhausted all our reclaim opportunities without any 3764 * success so it is time to admit defeat. We will skip the OOM killer 3765 * because it is very likely that the caller has a more reasonable 3766 * fallback than shooting a random task. 3767 */ 3768 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3769 goto out; 3770 /* The OOM killer does not needlessly kill tasks for lowmem */ 3771 if (ac->high_zoneidx < ZONE_NORMAL) 3772 goto out; 3773 if (pm_suspended_storage()) 3774 goto out; 3775 /* 3776 * XXX: GFP_NOFS allocations should rather fail than rely on 3777 * other request to make a forward progress. 3778 * We are in an unfortunate situation where out_of_memory cannot 3779 * do much for this context but let's try it to at least get 3780 * access to memory reserved if the current task is killed (see 3781 * out_of_memory). Once filesystems are ready to handle allocation 3782 * failures more gracefully we should just bail out here. 3783 */ 3784 3785 /* The OOM killer may not free memory on a specific node */ 3786 if (gfp_mask & __GFP_THISNODE) 3787 goto out; 3788 3789 /* Exhausted what can be done so it's blame time */ 3790 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3791 *did_some_progress = 1; 3792 3793 /* 3794 * Help non-failing allocations by giving them access to memory 3795 * reserves 3796 */ 3797 if (gfp_mask & __GFP_NOFAIL) 3798 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3799 ALLOC_NO_WATERMARKS, ac); 3800 } 3801 out: 3802 mutex_unlock(&oom_lock); 3803 return page; 3804 } 3805 3806 /* 3807 * Maximum number of compaction retries wit a progress before OOM 3808 * killer is consider as the only way to move forward. 3809 */ 3810 #define MAX_COMPACT_RETRIES 16 3811 3812 #ifdef CONFIG_COMPACTION 3813 /* Try memory compaction for high-order allocations before reclaim */ 3814 static struct page * 3815 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3816 unsigned int alloc_flags, const struct alloc_context *ac, 3817 enum compact_priority prio, enum compact_result *compact_result) 3818 { 3819 struct page *page = NULL; 3820 unsigned long pflags; 3821 unsigned int noreclaim_flag; 3822 3823 if (!order) 3824 return NULL; 3825 3826 psi_memstall_enter(&pflags); 3827 noreclaim_flag = memalloc_noreclaim_save(); 3828 3829 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3830 prio, &page); 3831 3832 memalloc_noreclaim_restore(noreclaim_flag); 3833 psi_memstall_leave(&pflags); 3834 3835 /* 3836 * At least in one zone compaction wasn't deferred or skipped, so let's 3837 * count a compaction stall 3838 */ 3839 count_vm_event(COMPACTSTALL); 3840 3841 /* Prep a captured page if available */ 3842 if (page) 3843 prep_new_page(page, order, gfp_mask, alloc_flags); 3844 3845 /* Try get a page from the freelist if available */ 3846 if (!page) 3847 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3848 3849 if (page) { 3850 struct zone *zone = page_zone(page); 3851 3852 zone->compact_blockskip_flush = false; 3853 compaction_defer_reset(zone, order, true); 3854 count_vm_event(COMPACTSUCCESS); 3855 return page; 3856 } 3857 3858 /* 3859 * It's bad if compaction run occurs and fails. The most likely reason 3860 * is that pages exist, but not enough to satisfy watermarks. 3861 */ 3862 count_vm_event(COMPACTFAIL); 3863 3864 cond_resched(); 3865 3866 return NULL; 3867 } 3868 3869 static inline bool 3870 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3871 enum compact_result compact_result, 3872 enum compact_priority *compact_priority, 3873 int *compaction_retries) 3874 { 3875 int max_retries = MAX_COMPACT_RETRIES; 3876 int min_priority; 3877 bool ret = false; 3878 int retries = *compaction_retries; 3879 enum compact_priority priority = *compact_priority; 3880 3881 if (!order) 3882 return false; 3883 3884 if (compaction_made_progress(compact_result)) 3885 (*compaction_retries)++; 3886 3887 /* 3888 * compaction considers all the zone as desperately out of memory 3889 * so it doesn't really make much sense to retry except when the 3890 * failure could be caused by insufficient priority 3891 */ 3892 if (compaction_failed(compact_result)) 3893 goto check_priority; 3894 3895 /* 3896 * make sure the compaction wasn't deferred or didn't bail out early 3897 * due to locks contention before we declare that we should give up. 3898 * But do not retry if the given zonelist is not suitable for 3899 * compaction. 3900 */ 3901 if (compaction_withdrawn(compact_result)) { 3902 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3903 goto out; 3904 } 3905 3906 /* 3907 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3908 * costly ones because they are de facto nofail and invoke OOM 3909 * killer to move on while costly can fail and users are ready 3910 * to cope with that. 1/4 retries is rather arbitrary but we 3911 * would need much more detailed feedback from compaction to 3912 * make a better decision. 3913 */ 3914 if (order > PAGE_ALLOC_COSTLY_ORDER) 3915 max_retries /= 4; 3916 if (*compaction_retries <= max_retries) { 3917 ret = true; 3918 goto out; 3919 } 3920 3921 /* 3922 * Make sure there are attempts at the highest priority if we exhausted 3923 * all retries or failed at the lower priorities. 3924 */ 3925 check_priority: 3926 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3927 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3928 3929 if (*compact_priority > min_priority) { 3930 (*compact_priority)--; 3931 *compaction_retries = 0; 3932 ret = true; 3933 } 3934 out: 3935 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3936 return ret; 3937 } 3938 #else 3939 static inline struct page * 3940 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3941 unsigned int alloc_flags, const struct alloc_context *ac, 3942 enum compact_priority prio, enum compact_result *compact_result) 3943 { 3944 *compact_result = COMPACT_SKIPPED; 3945 return NULL; 3946 } 3947 3948 static inline bool 3949 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3950 enum compact_result compact_result, 3951 enum compact_priority *compact_priority, 3952 int *compaction_retries) 3953 { 3954 struct zone *zone; 3955 struct zoneref *z; 3956 3957 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3958 return false; 3959 3960 /* 3961 * There are setups with compaction disabled which would prefer to loop 3962 * inside the allocator rather than hit the oom killer prematurely. 3963 * Let's give them a good hope and keep retrying while the order-0 3964 * watermarks are OK. 3965 */ 3966 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3967 ac->nodemask) { 3968 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3969 ac_classzone_idx(ac), alloc_flags)) 3970 return true; 3971 } 3972 return false; 3973 } 3974 #endif /* CONFIG_COMPACTION */ 3975 3976 #ifdef CONFIG_LOCKDEP 3977 static struct lockdep_map __fs_reclaim_map = 3978 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3979 3980 static bool __need_fs_reclaim(gfp_t gfp_mask) 3981 { 3982 gfp_mask = current_gfp_context(gfp_mask); 3983 3984 /* no reclaim without waiting on it */ 3985 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3986 return false; 3987 3988 /* this guy won't enter reclaim */ 3989 if (current->flags & PF_MEMALLOC) 3990 return false; 3991 3992 /* We're only interested __GFP_FS allocations for now */ 3993 if (!(gfp_mask & __GFP_FS)) 3994 return false; 3995 3996 if (gfp_mask & __GFP_NOLOCKDEP) 3997 return false; 3998 3999 return true; 4000 } 4001 4002 void __fs_reclaim_acquire(void) 4003 { 4004 lock_map_acquire(&__fs_reclaim_map); 4005 } 4006 4007 void __fs_reclaim_release(void) 4008 { 4009 lock_map_release(&__fs_reclaim_map); 4010 } 4011 4012 void fs_reclaim_acquire(gfp_t gfp_mask) 4013 { 4014 if (__need_fs_reclaim(gfp_mask)) 4015 __fs_reclaim_acquire(); 4016 } 4017 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4018 4019 void fs_reclaim_release(gfp_t gfp_mask) 4020 { 4021 if (__need_fs_reclaim(gfp_mask)) 4022 __fs_reclaim_release(); 4023 } 4024 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4025 #endif 4026 4027 /* Perform direct synchronous page reclaim */ 4028 static int 4029 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4030 const struct alloc_context *ac) 4031 { 4032 struct reclaim_state reclaim_state; 4033 int progress; 4034 unsigned int noreclaim_flag; 4035 unsigned long pflags; 4036 4037 cond_resched(); 4038 4039 /* We now go into synchronous reclaim */ 4040 cpuset_memory_pressure_bump(); 4041 psi_memstall_enter(&pflags); 4042 fs_reclaim_acquire(gfp_mask); 4043 noreclaim_flag = memalloc_noreclaim_save(); 4044 reclaim_state.reclaimed_slab = 0; 4045 current->reclaim_state = &reclaim_state; 4046 4047 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4048 ac->nodemask); 4049 4050 current->reclaim_state = NULL; 4051 memalloc_noreclaim_restore(noreclaim_flag); 4052 fs_reclaim_release(gfp_mask); 4053 psi_memstall_leave(&pflags); 4054 4055 cond_resched(); 4056 4057 return progress; 4058 } 4059 4060 /* The really slow allocator path where we enter direct reclaim */ 4061 static inline struct page * 4062 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4063 unsigned int alloc_flags, const struct alloc_context *ac, 4064 unsigned long *did_some_progress) 4065 { 4066 struct page *page = NULL; 4067 bool drained = false; 4068 4069 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4070 if (unlikely(!(*did_some_progress))) 4071 return NULL; 4072 4073 retry: 4074 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4075 4076 /* 4077 * If an allocation failed after direct reclaim, it could be because 4078 * pages are pinned on the per-cpu lists or in high alloc reserves. 4079 * Shrink them them and try again 4080 */ 4081 if (!page && !drained) { 4082 unreserve_highatomic_pageblock(ac, false); 4083 drain_all_pages(NULL); 4084 drained = true; 4085 goto retry; 4086 } 4087 4088 return page; 4089 } 4090 4091 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4092 const struct alloc_context *ac) 4093 { 4094 struct zoneref *z; 4095 struct zone *zone; 4096 pg_data_t *last_pgdat = NULL; 4097 enum zone_type high_zoneidx = ac->high_zoneidx; 4098 4099 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4100 ac->nodemask) { 4101 if (last_pgdat != zone->zone_pgdat) 4102 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4103 last_pgdat = zone->zone_pgdat; 4104 } 4105 } 4106 4107 static inline unsigned int 4108 gfp_to_alloc_flags(gfp_t gfp_mask) 4109 { 4110 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4111 4112 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4113 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4114 4115 /* 4116 * The caller may dip into page reserves a bit more if the caller 4117 * cannot run direct reclaim, or if the caller has realtime scheduling 4118 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4119 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4120 */ 4121 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4122 4123 if (gfp_mask & __GFP_ATOMIC) { 4124 /* 4125 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4126 * if it can't schedule. 4127 */ 4128 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4129 alloc_flags |= ALLOC_HARDER; 4130 /* 4131 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4132 * comment for __cpuset_node_allowed(). 4133 */ 4134 alloc_flags &= ~ALLOC_CPUSET; 4135 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4136 alloc_flags |= ALLOC_HARDER; 4137 4138 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4139 alloc_flags |= ALLOC_KSWAPD; 4140 4141 #ifdef CONFIG_CMA 4142 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4143 alloc_flags |= ALLOC_CMA; 4144 #endif 4145 return alloc_flags; 4146 } 4147 4148 static bool oom_reserves_allowed(struct task_struct *tsk) 4149 { 4150 if (!tsk_is_oom_victim(tsk)) 4151 return false; 4152 4153 /* 4154 * !MMU doesn't have oom reaper so give access to memory reserves 4155 * only to the thread with TIF_MEMDIE set 4156 */ 4157 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4158 return false; 4159 4160 return true; 4161 } 4162 4163 /* 4164 * Distinguish requests which really need access to full memory 4165 * reserves from oom victims which can live with a portion of it 4166 */ 4167 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4168 { 4169 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4170 return 0; 4171 if (gfp_mask & __GFP_MEMALLOC) 4172 return ALLOC_NO_WATERMARKS; 4173 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4174 return ALLOC_NO_WATERMARKS; 4175 if (!in_interrupt()) { 4176 if (current->flags & PF_MEMALLOC) 4177 return ALLOC_NO_WATERMARKS; 4178 else if (oom_reserves_allowed(current)) 4179 return ALLOC_OOM; 4180 } 4181 4182 return 0; 4183 } 4184 4185 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4186 { 4187 return !!__gfp_pfmemalloc_flags(gfp_mask); 4188 } 4189 4190 /* 4191 * Checks whether it makes sense to retry the reclaim to make a forward progress 4192 * for the given allocation request. 4193 * 4194 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4195 * without success, or when we couldn't even meet the watermark if we 4196 * reclaimed all remaining pages on the LRU lists. 4197 * 4198 * Returns true if a retry is viable or false to enter the oom path. 4199 */ 4200 static inline bool 4201 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4202 struct alloc_context *ac, int alloc_flags, 4203 bool did_some_progress, int *no_progress_loops) 4204 { 4205 struct zone *zone; 4206 struct zoneref *z; 4207 bool ret = false; 4208 4209 /* 4210 * Costly allocations might have made a progress but this doesn't mean 4211 * their order will become available due to high fragmentation so 4212 * always increment the no progress counter for them 4213 */ 4214 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4215 *no_progress_loops = 0; 4216 else 4217 (*no_progress_loops)++; 4218 4219 /* 4220 * Make sure we converge to OOM if we cannot make any progress 4221 * several times in the row. 4222 */ 4223 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4224 /* Before OOM, exhaust highatomic_reserve */ 4225 return unreserve_highatomic_pageblock(ac, true); 4226 } 4227 4228 /* 4229 * Keep reclaiming pages while there is a chance this will lead 4230 * somewhere. If none of the target zones can satisfy our allocation 4231 * request even if all reclaimable pages are considered then we are 4232 * screwed and have to go OOM. 4233 */ 4234 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4235 ac->nodemask) { 4236 unsigned long available; 4237 unsigned long reclaimable; 4238 unsigned long min_wmark = min_wmark_pages(zone); 4239 bool wmark; 4240 4241 available = reclaimable = zone_reclaimable_pages(zone); 4242 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4243 4244 /* 4245 * Would the allocation succeed if we reclaimed all 4246 * reclaimable pages? 4247 */ 4248 wmark = __zone_watermark_ok(zone, order, min_wmark, 4249 ac_classzone_idx(ac), alloc_flags, available); 4250 trace_reclaim_retry_zone(z, order, reclaimable, 4251 available, min_wmark, *no_progress_loops, wmark); 4252 if (wmark) { 4253 /* 4254 * If we didn't make any progress and have a lot of 4255 * dirty + writeback pages then we should wait for 4256 * an IO to complete to slow down the reclaim and 4257 * prevent from pre mature OOM 4258 */ 4259 if (!did_some_progress) { 4260 unsigned long write_pending; 4261 4262 write_pending = zone_page_state_snapshot(zone, 4263 NR_ZONE_WRITE_PENDING); 4264 4265 if (2 * write_pending > reclaimable) { 4266 congestion_wait(BLK_RW_ASYNC, HZ/10); 4267 return true; 4268 } 4269 } 4270 4271 ret = true; 4272 goto out; 4273 } 4274 } 4275 4276 out: 4277 /* 4278 * Memory allocation/reclaim might be called from a WQ context and the 4279 * current implementation of the WQ concurrency control doesn't 4280 * recognize that a particular WQ is congested if the worker thread is 4281 * looping without ever sleeping. Therefore we have to do a short sleep 4282 * here rather than calling cond_resched(). 4283 */ 4284 if (current->flags & PF_WQ_WORKER) 4285 schedule_timeout_uninterruptible(1); 4286 else 4287 cond_resched(); 4288 return ret; 4289 } 4290 4291 static inline bool 4292 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4293 { 4294 /* 4295 * It's possible that cpuset's mems_allowed and the nodemask from 4296 * mempolicy don't intersect. This should be normally dealt with by 4297 * policy_nodemask(), but it's possible to race with cpuset update in 4298 * such a way the check therein was true, and then it became false 4299 * before we got our cpuset_mems_cookie here. 4300 * This assumes that for all allocations, ac->nodemask can come only 4301 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4302 * when it does not intersect with the cpuset restrictions) or the 4303 * caller can deal with a violated nodemask. 4304 */ 4305 if (cpusets_enabled() && ac->nodemask && 4306 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4307 ac->nodemask = NULL; 4308 return true; 4309 } 4310 4311 /* 4312 * When updating a task's mems_allowed or mempolicy nodemask, it is 4313 * possible to race with parallel threads in such a way that our 4314 * allocation can fail while the mask is being updated. If we are about 4315 * to fail, check if the cpuset changed during allocation and if so, 4316 * retry. 4317 */ 4318 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4319 return true; 4320 4321 return false; 4322 } 4323 4324 static inline struct page * 4325 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4326 struct alloc_context *ac) 4327 { 4328 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4329 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4330 struct page *page = NULL; 4331 unsigned int alloc_flags; 4332 unsigned long did_some_progress; 4333 enum compact_priority compact_priority; 4334 enum compact_result compact_result; 4335 int compaction_retries; 4336 int no_progress_loops; 4337 unsigned int cpuset_mems_cookie; 4338 int reserve_flags; 4339 4340 /* 4341 * We also sanity check to catch abuse of atomic reserves being used by 4342 * callers that are not in atomic context. 4343 */ 4344 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4345 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4346 gfp_mask &= ~__GFP_ATOMIC; 4347 4348 retry_cpuset: 4349 compaction_retries = 0; 4350 no_progress_loops = 0; 4351 compact_priority = DEF_COMPACT_PRIORITY; 4352 cpuset_mems_cookie = read_mems_allowed_begin(); 4353 4354 /* 4355 * The fast path uses conservative alloc_flags to succeed only until 4356 * kswapd needs to be woken up, and to avoid the cost of setting up 4357 * alloc_flags precisely. So we do that now. 4358 */ 4359 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4360 4361 /* 4362 * We need to recalculate the starting point for the zonelist iterator 4363 * because we might have used different nodemask in the fast path, or 4364 * there was a cpuset modification and we are retrying - otherwise we 4365 * could end up iterating over non-eligible zones endlessly. 4366 */ 4367 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4368 ac->high_zoneidx, ac->nodemask); 4369 if (!ac->preferred_zoneref->zone) 4370 goto nopage; 4371 4372 if (alloc_flags & ALLOC_KSWAPD) 4373 wake_all_kswapds(order, gfp_mask, ac); 4374 4375 /* 4376 * The adjusted alloc_flags might result in immediate success, so try 4377 * that first 4378 */ 4379 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4380 if (page) 4381 goto got_pg; 4382 4383 /* 4384 * For costly allocations, try direct compaction first, as it's likely 4385 * that we have enough base pages and don't need to reclaim. For non- 4386 * movable high-order allocations, do that as well, as compaction will 4387 * try prevent permanent fragmentation by migrating from blocks of the 4388 * same migratetype. 4389 * Don't try this for allocations that are allowed to ignore 4390 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4391 */ 4392 if (can_direct_reclaim && 4393 (costly_order || 4394 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4395 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4396 page = __alloc_pages_direct_compact(gfp_mask, order, 4397 alloc_flags, ac, 4398 INIT_COMPACT_PRIORITY, 4399 &compact_result); 4400 if (page) 4401 goto got_pg; 4402 4403 /* 4404 * Checks for costly allocations with __GFP_NORETRY, which 4405 * includes THP page fault allocations 4406 */ 4407 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4408 /* 4409 * If compaction is deferred for high-order allocations, 4410 * it is because sync compaction recently failed. If 4411 * this is the case and the caller requested a THP 4412 * allocation, we do not want to heavily disrupt the 4413 * system, so we fail the allocation instead of entering 4414 * direct reclaim. 4415 */ 4416 if (compact_result == COMPACT_DEFERRED) 4417 goto nopage; 4418 4419 /* 4420 * Looks like reclaim/compaction is worth trying, but 4421 * sync compaction could be very expensive, so keep 4422 * using async compaction. 4423 */ 4424 compact_priority = INIT_COMPACT_PRIORITY; 4425 } 4426 } 4427 4428 retry: 4429 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4430 if (alloc_flags & ALLOC_KSWAPD) 4431 wake_all_kswapds(order, gfp_mask, ac); 4432 4433 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4434 if (reserve_flags) 4435 alloc_flags = reserve_flags; 4436 4437 /* 4438 * Reset the nodemask and zonelist iterators if memory policies can be 4439 * ignored. These allocations are high priority and system rather than 4440 * user oriented. 4441 */ 4442 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4443 ac->nodemask = NULL; 4444 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4445 ac->high_zoneidx, ac->nodemask); 4446 } 4447 4448 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4449 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4450 if (page) 4451 goto got_pg; 4452 4453 /* Caller is not willing to reclaim, we can't balance anything */ 4454 if (!can_direct_reclaim) 4455 goto nopage; 4456 4457 /* Avoid recursion of direct reclaim */ 4458 if (current->flags & PF_MEMALLOC) 4459 goto nopage; 4460 4461 /* Try direct reclaim and then allocating */ 4462 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4463 &did_some_progress); 4464 if (page) 4465 goto got_pg; 4466 4467 /* Try direct compaction and then allocating */ 4468 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4469 compact_priority, &compact_result); 4470 if (page) 4471 goto got_pg; 4472 4473 /* Do not loop if specifically requested */ 4474 if (gfp_mask & __GFP_NORETRY) 4475 goto nopage; 4476 4477 /* 4478 * Do not retry costly high order allocations unless they are 4479 * __GFP_RETRY_MAYFAIL 4480 */ 4481 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4482 goto nopage; 4483 4484 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4485 did_some_progress > 0, &no_progress_loops)) 4486 goto retry; 4487 4488 /* 4489 * It doesn't make any sense to retry for the compaction if the order-0 4490 * reclaim is not able to make any progress because the current 4491 * implementation of the compaction depends on the sufficient amount 4492 * of free memory (see __compaction_suitable) 4493 */ 4494 if (did_some_progress > 0 && 4495 should_compact_retry(ac, order, alloc_flags, 4496 compact_result, &compact_priority, 4497 &compaction_retries)) 4498 goto retry; 4499 4500 4501 /* Deal with possible cpuset update races before we start OOM killing */ 4502 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4503 goto retry_cpuset; 4504 4505 /* Reclaim has failed us, start killing things */ 4506 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4507 if (page) 4508 goto got_pg; 4509 4510 /* Avoid allocations with no watermarks from looping endlessly */ 4511 if (tsk_is_oom_victim(current) && 4512 (alloc_flags == ALLOC_OOM || 4513 (gfp_mask & __GFP_NOMEMALLOC))) 4514 goto nopage; 4515 4516 /* Retry as long as the OOM killer is making progress */ 4517 if (did_some_progress) { 4518 no_progress_loops = 0; 4519 goto retry; 4520 } 4521 4522 nopage: 4523 /* Deal with possible cpuset update races before we fail */ 4524 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4525 goto retry_cpuset; 4526 4527 /* 4528 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4529 * we always retry 4530 */ 4531 if (gfp_mask & __GFP_NOFAIL) { 4532 /* 4533 * All existing users of the __GFP_NOFAIL are blockable, so warn 4534 * of any new users that actually require GFP_NOWAIT 4535 */ 4536 if (WARN_ON_ONCE(!can_direct_reclaim)) 4537 goto fail; 4538 4539 /* 4540 * PF_MEMALLOC request from this context is rather bizarre 4541 * because we cannot reclaim anything and only can loop waiting 4542 * for somebody to do a work for us 4543 */ 4544 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4545 4546 /* 4547 * non failing costly orders are a hard requirement which we 4548 * are not prepared for much so let's warn about these users 4549 * so that we can identify them and convert them to something 4550 * else. 4551 */ 4552 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4553 4554 /* 4555 * Help non-failing allocations by giving them access to memory 4556 * reserves but do not use ALLOC_NO_WATERMARKS because this 4557 * could deplete whole memory reserves which would just make 4558 * the situation worse 4559 */ 4560 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4561 if (page) 4562 goto got_pg; 4563 4564 cond_resched(); 4565 goto retry; 4566 } 4567 fail: 4568 warn_alloc(gfp_mask, ac->nodemask, 4569 "page allocation failure: order:%u", order); 4570 got_pg: 4571 return page; 4572 } 4573 4574 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4575 int preferred_nid, nodemask_t *nodemask, 4576 struct alloc_context *ac, gfp_t *alloc_mask, 4577 unsigned int *alloc_flags) 4578 { 4579 ac->high_zoneidx = gfp_zone(gfp_mask); 4580 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4581 ac->nodemask = nodemask; 4582 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4583 4584 if (cpusets_enabled()) { 4585 *alloc_mask |= __GFP_HARDWALL; 4586 if (!ac->nodemask) 4587 ac->nodemask = &cpuset_current_mems_allowed; 4588 else 4589 *alloc_flags |= ALLOC_CPUSET; 4590 } 4591 4592 fs_reclaim_acquire(gfp_mask); 4593 fs_reclaim_release(gfp_mask); 4594 4595 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4596 4597 if (should_fail_alloc_page(gfp_mask, order)) 4598 return false; 4599 4600 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4601 *alloc_flags |= ALLOC_CMA; 4602 4603 return true; 4604 } 4605 4606 /* Determine whether to spread dirty pages and what the first usable zone */ 4607 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4608 { 4609 /* Dirty zone balancing only done in the fast path */ 4610 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4611 4612 /* 4613 * The preferred zone is used for statistics but crucially it is 4614 * also used as the starting point for the zonelist iterator. It 4615 * may get reset for allocations that ignore memory policies. 4616 */ 4617 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4618 ac->high_zoneidx, ac->nodemask); 4619 } 4620 4621 /* 4622 * This is the 'heart' of the zoned buddy allocator. 4623 */ 4624 struct page * 4625 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4626 nodemask_t *nodemask) 4627 { 4628 struct page *page; 4629 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4630 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4631 struct alloc_context ac = { }; 4632 4633 /* 4634 * There are several places where we assume that the order value is sane 4635 * so bail out early if the request is out of bound. 4636 */ 4637 if (unlikely(order >= MAX_ORDER)) { 4638 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4639 return NULL; 4640 } 4641 4642 gfp_mask &= gfp_allowed_mask; 4643 alloc_mask = gfp_mask; 4644 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4645 return NULL; 4646 4647 finalise_ac(gfp_mask, &ac); 4648 4649 /* 4650 * Forbid the first pass from falling back to types that fragment 4651 * memory until all local zones are considered. 4652 */ 4653 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4654 4655 /* First allocation attempt */ 4656 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4657 if (likely(page)) 4658 goto out; 4659 4660 /* 4661 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4662 * resp. GFP_NOIO which has to be inherited for all allocation requests 4663 * from a particular context which has been marked by 4664 * memalloc_no{fs,io}_{save,restore}. 4665 */ 4666 alloc_mask = current_gfp_context(gfp_mask); 4667 ac.spread_dirty_pages = false; 4668 4669 /* 4670 * Restore the original nodemask if it was potentially replaced with 4671 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4672 */ 4673 if (unlikely(ac.nodemask != nodemask)) 4674 ac.nodemask = nodemask; 4675 4676 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4677 4678 out: 4679 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4680 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4681 __free_pages(page, order); 4682 page = NULL; 4683 } 4684 4685 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4686 4687 return page; 4688 } 4689 EXPORT_SYMBOL(__alloc_pages_nodemask); 4690 4691 /* 4692 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4693 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4694 * you need to access high mem. 4695 */ 4696 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4697 { 4698 struct page *page; 4699 4700 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4701 if (!page) 4702 return 0; 4703 return (unsigned long) page_address(page); 4704 } 4705 EXPORT_SYMBOL(__get_free_pages); 4706 4707 unsigned long get_zeroed_page(gfp_t gfp_mask) 4708 { 4709 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4710 } 4711 EXPORT_SYMBOL(get_zeroed_page); 4712 4713 static inline void free_the_page(struct page *page, unsigned int order) 4714 { 4715 if (order == 0) /* Via pcp? */ 4716 free_unref_page(page); 4717 else 4718 __free_pages_ok(page, order); 4719 } 4720 4721 void __free_pages(struct page *page, unsigned int order) 4722 { 4723 if (put_page_testzero(page)) 4724 free_the_page(page, order); 4725 } 4726 EXPORT_SYMBOL(__free_pages); 4727 4728 void free_pages(unsigned long addr, unsigned int order) 4729 { 4730 if (addr != 0) { 4731 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4732 __free_pages(virt_to_page((void *)addr), order); 4733 } 4734 } 4735 4736 EXPORT_SYMBOL(free_pages); 4737 4738 /* 4739 * Page Fragment: 4740 * An arbitrary-length arbitrary-offset area of memory which resides 4741 * within a 0 or higher order page. Multiple fragments within that page 4742 * are individually refcounted, in the page's reference counter. 4743 * 4744 * The page_frag functions below provide a simple allocation framework for 4745 * page fragments. This is used by the network stack and network device 4746 * drivers to provide a backing region of memory for use as either an 4747 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4748 */ 4749 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4750 gfp_t gfp_mask) 4751 { 4752 struct page *page = NULL; 4753 gfp_t gfp = gfp_mask; 4754 4755 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4756 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4757 __GFP_NOMEMALLOC; 4758 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4759 PAGE_FRAG_CACHE_MAX_ORDER); 4760 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4761 #endif 4762 if (unlikely(!page)) 4763 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4764 4765 nc->va = page ? page_address(page) : NULL; 4766 4767 return page; 4768 } 4769 4770 void __page_frag_cache_drain(struct page *page, unsigned int count) 4771 { 4772 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4773 4774 if (page_ref_sub_and_test(page, count)) 4775 free_the_page(page, compound_order(page)); 4776 } 4777 EXPORT_SYMBOL(__page_frag_cache_drain); 4778 4779 void *page_frag_alloc(struct page_frag_cache *nc, 4780 unsigned int fragsz, gfp_t gfp_mask) 4781 { 4782 unsigned int size = PAGE_SIZE; 4783 struct page *page; 4784 int offset; 4785 4786 if (unlikely(!nc->va)) { 4787 refill: 4788 page = __page_frag_cache_refill(nc, gfp_mask); 4789 if (!page) 4790 return NULL; 4791 4792 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4793 /* if size can vary use size else just use PAGE_SIZE */ 4794 size = nc->size; 4795 #endif 4796 /* Even if we own the page, we do not use atomic_set(). 4797 * This would break get_page_unless_zero() users. 4798 */ 4799 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4800 4801 /* reset page count bias and offset to start of new frag */ 4802 nc->pfmemalloc = page_is_pfmemalloc(page); 4803 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4804 nc->offset = size; 4805 } 4806 4807 offset = nc->offset - fragsz; 4808 if (unlikely(offset < 0)) { 4809 page = virt_to_page(nc->va); 4810 4811 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4812 goto refill; 4813 4814 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4815 /* if size can vary use size else just use PAGE_SIZE */ 4816 size = nc->size; 4817 #endif 4818 /* OK, page count is 0, we can safely set it */ 4819 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4820 4821 /* reset page count bias and offset to start of new frag */ 4822 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4823 offset = size - fragsz; 4824 } 4825 4826 nc->pagecnt_bias--; 4827 nc->offset = offset; 4828 4829 return nc->va + offset; 4830 } 4831 EXPORT_SYMBOL(page_frag_alloc); 4832 4833 /* 4834 * Frees a page fragment allocated out of either a compound or order 0 page. 4835 */ 4836 void page_frag_free(void *addr) 4837 { 4838 struct page *page = virt_to_head_page(addr); 4839 4840 if (unlikely(put_page_testzero(page))) 4841 free_the_page(page, compound_order(page)); 4842 } 4843 EXPORT_SYMBOL(page_frag_free); 4844 4845 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4846 size_t size) 4847 { 4848 if (addr) { 4849 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4850 unsigned long used = addr + PAGE_ALIGN(size); 4851 4852 split_page(virt_to_page((void *)addr), order); 4853 while (used < alloc_end) { 4854 free_page(used); 4855 used += PAGE_SIZE; 4856 } 4857 } 4858 return (void *)addr; 4859 } 4860 4861 /** 4862 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4863 * @size: the number of bytes to allocate 4864 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4865 * 4866 * This function is similar to alloc_pages(), except that it allocates the 4867 * minimum number of pages to satisfy the request. alloc_pages() can only 4868 * allocate memory in power-of-two pages. 4869 * 4870 * This function is also limited by MAX_ORDER. 4871 * 4872 * Memory allocated by this function must be released by free_pages_exact(). 4873 * 4874 * Return: pointer to the allocated area or %NULL in case of error. 4875 */ 4876 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4877 { 4878 unsigned int order = get_order(size); 4879 unsigned long addr; 4880 4881 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4882 gfp_mask &= ~__GFP_COMP; 4883 4884 addr = __get_free_pages(gfp_mask, order); 4885 return make_alloc_exact(addr, order, size); 4886 } 4887 EXPORT_SYMBOL(alloc_pages_exact); 4888 4889 /** 4890 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4891 * pages on a node. 4892 * @nid: the preferred node ID where memory should be allocated 4893 * @size: the number of bytes to allocate 4894 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4895 * 4896 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4897 * back. 4898 * 4899 * Return: pointer to the allocated area or %NULL in case of error. 4900 */ 4901 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4902 { 4903 unsigned int order = get_order(size); 4904 struct page *p; 4905 4906 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4907 gfp_mask &= ~__GFP_COMP; 4908 4909 p = alloc_pages_node(nid, gfp_mask, order); 4910 if (!p) 4911 return NULL; 4912 return make_alloc_exact((unsigned long)page_address(p), order, size); 4913 } 4914 4915 /** 4916 * free_pages_exact - release memory allocated via alloc_pages_exact() 4917 * @virt: the value returned by alloc_pages_exact. 4918 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4919 * 4920 * Release the memory allocated by a previous call to alloc_pages_exact. 4921 */ 4922 void free_pages_exact(void *virt, size_t size) 4923 { 4924 unsigned long addr = (unsigned long)virt; 4925 unsigned long end = addr + PAGE_ALIGN(size); 4926 4927 while (addr < end) { 4928 free_page(addr); 4929 addr += PAGE_SIZE; 4930 } 4931 } 4932 EXPORT_SYMBOL(free_pages_exact); 4933 4934 /** 4935 * nr_free_zone_pages - count number of pages beyond high watermark 4936 * @offset: The zone index of the highest zone 4937 * 4938 * nr_free_zone_pages() counts the number of pages which are beyond the 4939 * high watermark within all zones at or below a given zone index. For each 4940 * zone, the number of pages is calculated as: 4941 * 4942 * nr_free_zone_pages = managed_pages - high_pages 4943 * 4944 * Return: number of pages beyond high watermark. 4945 */ 4946 static unsigned long nr_free_zone_pages(int offset) 4947 { 4948 struct zoneref *z; 4949 struct zone *zone; 4950 4951 /* Just pick one node, since fallback list is circular */ 4952 unsigned long sum = 0; 4953 4954 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4955 4956 for_each_zone_zonelist(zone, z, zonelist, offset) { 4957 unsigned long size = zone_managed_pages(zone); 4958 unsigned long high = high_wmark_pages(zone); 4959 if (size > high) 4960 sum += size - high; 4961 } 4962 4963 return sum; 4964 } 4965 4966 /** 4967 * nr_free_buffer_pages - count number of pages beyond high watermark 4968 * 4969 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4970 * watermark within ZONE_DMA and ZONE_NORMAL. 4971 * 4972 * Return: number of pages beyond high watermark within ZONE_DMA and 4973 * ZONE_NORMAL. 4974 */ 4975 unsigned long nr_free_buffer_pages(void) 4976 { 4977 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4978 } 4979 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4980 4981 /** 4982 * nr_free_pagecache_pages - count number of pages beyond high watermark 4983 * 4984 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4985 * high watermark within all zones. 4986 * 4987 * Return: number of pages beyond high watermark within all zones. 4988 */ 4989 unsigned long nr_free_pagecache_pages(void) 4990 { 4991 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4992 } 4993 4994 static inline void show_node(struct zone *zone) 4995 { 4996 if (IS_ENABLED(CONFIG_NUMA)) 4997 printk("Node %d ", zone_to_nid(zone)); 4998 } 4999 5000 long si_mem_available(void) 5001 { 5002 long available; 5003 unsigned long pagecache; 5004 unsigned long wmark_low = 0; 5005 unsigned long pages[NR_LRU_LISTS]; 5006 unsigned long reclaimable; 5007 struct zone *zone; 5008 int lru; 5009 5010 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5011 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5012 5013 for_each_zone(zone) 5014 wmark_low += low_wmark_pages(zone); 5015 5016 /* 5017 * Estimate the amount of memory available for userspace allocations, 5018 * without causing swapping. 5019 */ 5020 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5021 5022 /* 5023 * Not all the page cache can be freed, otherwise the system will 5024 * start swapping. Assume at least half of the page cache, or the 5025 * low watermark worth of cache, needs to stay. 5026 */ 5027 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5028 pagecache -= min(pagecache / 2, wmark_low); 5029 available += pagecache; 5030 5031 /* 5032 * Part of the reclaimable slab and other kernel memory consists of 5033 * items that are in use, and cannot be freed. Cap this estimate at the 5034 * low watermark. 5035 */ 5036 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5037 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5038 available += reclaimable - min(reclaimable / 2, wmark_low); 5039 5040 if (available < 0) 5041 available = 0; 5042 return available; 5043 } 5044 EXPORT_SYMBOL_GPL(si_mem_available); 5045 5046 void si_meminfo(struct sysinfo *val) 5047 { 5048 val->totalram = totalram_pages(); 5049 val->sharedram = global_node_page_state(NR_SHMEM); 5050 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5051 val->bufferram = nr_blockdev_pages(); 5052 val->totalhigh = totalhigh_pages(); 5053 val->freehigh = nr_free_highpages(); 5054 val->mem_unit = PAGE_SIZE; 5055 } 5056 5057 EXPORT_SYMBOL(si_meminfo); 5058 5059 #ifdef CONFIG_NUMA 5060 void si_meminfo_node(struct sysinfo *val, int nid) 5061 { 5062 int zone_type; /* needs to be signed */ 5063 unsigned long managed_pages = 0; 5064 unsigned long managed_highpages = 0; 5065 unsigned long free_highpages = 0; 5066 pg_data_t *pgdat = NODE_DATA(nid); 5067 5068 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5069 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5070 val->totalram = managed_pages; 5071 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5072 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5073 #ifdef CONFIG_HIGHMEM 5074 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5075 struct zone *zone = &pgdat->node_zones[zone_type]; 5076 5077 if (is_highmem(zone)) { 5078 managed_highpages += zone_managed_pages(zone); 5079 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5080 } 5081 } 5082 val->totalhigh = managed_highpages; 5083 val->freehigh = free_highpages; 5084 #else 5085 val->totalhigh = managed_highpages; 5086 val->freehigh = free_highpages; 5087 #endif 5088 val->mem_unit = PAGE_SIZE; 5089 } 5090 #endif 5091 5092 /* 5093 * Determine whether the node should be displayed or not, depending on whether 5094 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5095 */ 5096 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5097 { 5098 if (!(flags & SHOW_MEM_FILTER_NODES)) 5099 return false; 5100 5101 /* 5102 * no node mask - aka implicit memory numa policy. Do not bother with 5103 * the synchronization - read_mems_allowed_begin - because we do not 5104 * have to be precise here. 5105 */ 5106 if (!nodemask) 5107 nodemask = &cpuset_current_mems_allowed; 5108 5109 return !node_isset(nid, *nodemask); 5110 } 5111 5112 #define K(x) ((x) << (PAGE_SHIFT-10)) 5113 5114 static void show_migration_types(unsigned char type) 5115 { 5116 static const char types[MIGRATE_TYPES] = { 5117 [MIGRATE_UNMOVABLE] = 'U', 5118 [MIGRATE_MOVABLE] = 'M', 5119 [MIGRATE_RECLAIMABLE] = 'E', 5120 [MIGRATE_HIGHATOMIC] = 'H', 5121 #ifdef CONFIG_CMA 5122 [MIGRATE_CMA] = 'C', 5123 #endif 5124 #ifdef CONFIG_MEMORY_ISOLATION 5125 [MIGRATE_ISOLATE] = 'I', 5126 #endif 5127 }; 5128 char tmp[MIGRATE_TYPES + 1]; 5129 char *p = tmp; 5130 int i; 5131 5132 for (i = 0; i < MIGRATE_TYPES; i++) { 5133 if (type & (1 << i)) 5134 *p++ = types[i]; 5135 } 5136 5137 *p = '\0'; 5138 printk(KERN_CONT "(%s) ", tmp); 5139 } 5140 5141 /* 5142 * Show free area list (used inside shift_scroll-lock stuff) 5143 * We also calculate the percentage fragmentation. We do this by counting the 5144 * memory on each free list with the exception of the first item on the list. 5145 * 5146 * Bits in @filter: 5147 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5148 * cpuset. 5149 */ 5150 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5151 { 5152 unsigned long free_pcp = 0; 5153 int cpu; 5154 struct zone *zone; 5155 pg_data_t *pgdat; 5156 5157 for_each_populated_zone(zone) { 5158 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5159 continue; 5160 5161 for_each_online_cpu(cpu) 5162 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5163 } 5164 5165 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5166 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5167 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5168 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5169 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5170 " free:%lu free_pcp:%lu free_cma:%lu\n", 5171 global_node_page_state(NR_ACTIVE_ANON), 5172 global_node_page_state(NR_INACTIVE_ANON), 5173 global_node_page_state(NR_ISOLATED_ANON), 5174 global_node_page_state(NR_ACTIVE_FILE), 5175 global_node_page_state(NR_INACTIVE_FILE), 5176 global_node_page_state(NR_ISOLATED_FILE), 5177 global_node_page_state(NR_UNEVICTABLE), 5178 global_node_page_state(NR_FILE_DIRTY), 5179 global_node_page_state(NR_WRITEBACK), 5180 global_node_page_state(NR_UNSTABLE_NFS), 5181 global_node_page_state(NR_SLAB_RECLAIMABLE), 5182 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5183 global_node_page_state(NR_FILE_MAPPED), 5184 global_node_page_state(NR_SHMEM), 5185 global_zone_page_state(NR_PAGETABLE), 5186 global_zone_page_state(NR_BOUNCE), 5187 global_zone_page_state(NR_FREE_PAGES), 5188 free_pcp, 5189 global_zone_page_state(NR_FREE_CMA_PAGES)); 5190 5191 for_each_online_pgdat(pgdat) { 5192 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5193 continue; 5194 5195 printk("Node %d" 5196 " active_anon:%lukB" 5197 " inactive_anon:%lukB" 5198 " active_file:%lukB" 5199 " inactive_file:%lukB" 5200 " unevictable:%lukB" 5201 " isolated(anon):%lukB" 5202 " isolated(file):%lukB" 5203 " mapped:%lukB" 5204 " dirty:%lukB" 5205 " writeback:%lukB" 5206 " shmem:%lukB" 5207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5208 " shmem_thp: %lukB" 5209 " shmem_pmdmapped: %lukB" 5210 " anon_thp: %lukB" 5211 #endif 5212 " writeback_tmp:%lukB" 5213 " unstable:%lukB" 5214 " all_unreclaimable? %s" 5215 "\n", 5216 pgdat->node_id, 5217 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5218 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5219 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5220 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5221 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5222 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5223 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5224 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5225 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5226 K(node_page_state(pgdat, NR_WRITEBACK)), 5227 K(node_page_state(pgdat, NR_SHMEM)), 5228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5229 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5230 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5231 * HPAGE_PMD_NR), 5232 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5233 #endif 5234 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5235 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5236 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5237 "yes" : "no"); 5238 } 5239 5240 for_each_populated_zone(zone) { 5241 int i; 5242 5243 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5244 continue; 5245 5246 free_pcp = 0; 5247 for_each_online_cpu(cpu) 5248 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5249 5250 show_node(zone); 5251 printk(KERN_CONT 5252 "%s" 5253 " free:%lukB" 5254 " min:%lukB" 5255 " low:%lukB" 5256 " high:%lukB" 5257 " active_anon:%lukB" 5258 " inactive_anon:%lukB" 5259 " active_file:%lukB" 5260 " inactive_file:%lukB" 5261 " unevictable:%lukB" 5262 " writepending:%lukB" 5263 " present:%lukB" 5264 " managed:%lukB" 5265 " mlocked:%lukB" 5266 " kernel_stack:%lukB" 5267 " pagetables:%lukB" 5268 " bounce:%lukB" 5269 " free_pcp:%lukB" 5270 " local_pcp:%ukB" 5271 " free_cma:%lukB" 5272 "\n", 5273 zone->name, 5274 K(zone_page_state(zone, NR_FREE_PAGES)), 5275 K(min_wmark_pages(zone)), 5276 K(low_wmark_pages(zone)), 5277 K(high_wmark_pages(zone)), 5278 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5279 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5280 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5281 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5282 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5283 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5284 K(zone->present_pages), 5285 K(zone_managed_pages(zone)), 5286 K(zone_page_state(zone, NR_MLOCK)), 5287 zone_page_state(zone, NR_KERNEL_STACK_KB), 5288 K(zone_page_state(zone, NR_PAGETABLE)), 5289 K(zone_page_state(zone, NR_BOUNCE)), 5290 K(free_pcp), 5291 K(this_cpu_read(zone->pageset->pcp.count)), 5292 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5293 printk("lowmem_reserve[]:"); 5294 for (i = 0; i < MAX_NR_ZONES; i++) 5295 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5296 printk(KERN_CONT "\n"); 5297 } 5298 5299 for_each_populated_zone(zone) { 5300 unsigned int order; 5301 unsigned long nr[MAX_ORDER], flags, total = 0; 5302 unsigned char types[MAX_ORDER]; 5303 5304 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5305 continue; 5306 show_node(zone); 5307 printk(KERN_CONT "%s: ", zone->name); 5308 5309 spin_lock_irqsave(&zone->lock, flags); 5310 for (order = 0; order < MAX_ORDER; order++) { 5311 struct free_area *area = &zone->free_area[order]; 5312 int type; 5313 5314 nr[order] = area->nr_free; 5315 total += nr[order] << order; 5316 5317 types[order] = 0; 5318 for (type = 0; type < MIGRATE_TYPES; type++) { 5319 if (!free_area_empty(area, type)) 5320 types[order] |= 1 << type; 5321 } 5322 } 5323 spin_unlock_irqrestore(&zone->lock, flags); 5324 for (order = 0; order < MAX_ORDER; order++) { 5325 printk(KERN_CONT "%lu*%lukB ", 5326 nr[order], K(1UL) << order); 5327 if (nr[order]) 5328 show_migration_types(types[order]); 5329 } 5330 printk(KERN_CONT "= %lukB\n", K(total)); 5331 } 5332 5333 hugetlb_show_meminfo(); 5334 5335 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5336 5337 show_swap_cache_info(); 5338 } 5339 5340 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5341 { 5342 zoneref->zone = zone; 5343 zoneref->zone_idx = zone_idx(zone); 5344 } 5345 5346 /* 5347 * Builds allocation fallback zone lists. 5348 * 5349 * Add all populated zones of a node to the zonelist. 5350 */ 5351 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5352 { 5353 struct zone *zone; 5354 enum zone_type zone_type = MAX_NR_ZONES; 5355 int nr_zones = 0; 5356 5357 do { 5358 zone_type--; 5359 zone = pgdat->node_zones + zone_type; 5360 if (managed_zone(zone)) { 5361 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5362 check_highest_zone(zone_type); 5363 } 5364 } while (zone_type); 5365 5366 return nr_zones; 5367 } 5368 5369 #ifdef CONFIG_NUMA 5370 5371 static int __parse_numa_zonelist_order(char *s) 5372 { 5373 /* 5374 * We used to support different zonlists modes but they turned 5375 * out to be just not useful. Let's keep the warning in place 5376 * if somebody still use the cmd line parameter so that we do 5377 * not fail it silently 5378 */ 5379 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5380 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5381 return -EINVAL; 5382 } 5383 return 0; 5384 } 5385 5386 static __init int setup_numa_zonelist_order(char *s) 5387 { 5388 if (!s) 5389 return 0; 5390 5391 return __parse_numa_zonelist_order(s); 5392 } 5393 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5394 5395 char numa_zonelist_order[] = "Node"; 5396 5397 /* 5398 * sysctl handler for numa_zonelist_order 5399 */ 5400 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5401 void __user *buffer, size_t *length, 5402 loff_t *ppos) 5403 { 5404 char *str; 5405 int ret; 5406 5407 if (!write) 5408 return proc_dostring(table, write, buffer, length, ppos); 5409 str = memdup_user_nul(buffer, 16); 5410 if (IS_ERR(str)) 5411 return PTR_ERR(str); 5412 5413 ret = __parse_numa_zonelist_order(str); 5414 kfree(str); 5415 return ret; 5416 } 5417 5418 5419 #define MAX_NODE_LOAD (nr_online_nodes) 5420 static int node_load[MAX_NUMNODES]; 5421 5422 /** 5423 * find_next_best_node - find the next node that should appear in a given node's fallback list 5424 * @node: node whose fallback list we're appending 5425 * @used_node_mask: nodemask_t of already used nodes 5426 * 5427 * We use a number of factors to determine which is the next node that should 5428 * appear on a given node's fallback list. The node should not have appeared 5429 * already in @node's fallback list, and it should be the next closest node 5430 * according to the distance array (which contains arbitrary distance values 5431 * from each node to each node in the system), and should also prefer nodes 5432 * with no CPUs, since presumably they'll have very little allocation pressure 5433 * on them otherwise. 5434 * 5435 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5436 */ 5437 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5438 { 5439 int n, val; 5440 int min_val = INT_MAX; 5441 int best_node = NUMA_NO_NODE; 5442 const struct cpumask *tmp = cpumask_of_node(0); 5443 5444 /* Use the local node if we haven't already */ 5445 if (!node_isset(node, *used_node_mask)) { 5446 node_set(node, *used_node_mask); 5447 return node; 5448 } 5449 5450 for_each_node_state(n, N_MEMORY) { 5451 5452 /* Don't want a node to appear more than once */ 5453 if (node_isset(n, *used_node_mask)) 5454 continue; 5455 5456 /* Use the distance array to find the distance */ 5457 val = node_distance(node, n); 5458 5459 /* Penalize nodes under us ("prefer the next node") */ 5460 val += (n < node); 5461 5462 /* Give preference to headless and unused nodes */ 5463 tmp = cpumask_of_node(n); 5464 if (!cpumask_empty(tmp)) 5465 val += PENALTY_FOR_NODE_WITH_CPUS; 5466 5467 /* Slight preference for less loaded node */ 5468 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5469 val += node_load[n]; 5470 5471 if (val < min_val) { 5472 min_val = val; 5473 best_node = n; 5474 } 5475 } 5476 5477 if (best_node >= 0) 5478 node_set(best_node, *used_node_mask); 5479 5480 return best_node; 5481 } 5482 5483 5484 /* 5485 * Build zonelists ordered by node and zones within node. 5486 * This results in maximum locality--normal zone overflows into local 5487 * DMA zone, if any--but risks exhausting DMA zone. 5488 */ 5489 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5490 unsigned nr_nodes) 5491 { 5492 struct zoneref *zonerefs; 5493 int i; 5494 5495 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5496 5497 for (i = 0; i < nr_nodes; i++) { 5498 int nr_zones; 5499 5500 pg_data_t *node = NODE_DATA(node_order[i]); 5501 5502 nr_zones = build_zonerefs_node(node, zonerefs); 5503 zonerefs += nr_zones; 5504 } 5505 zonerefs->zone = NULL; 5506 zonerefs->zone_idx = 0; 5507 } 5508 5509 /* 5510 * Build gfp_thisnode zonelists 5511 */ 5512 static void build_thisnode_zonelists(pg_data_t *pgdat) 5513 { 5514 struct zoneref *zonerefs; 5515 int nr_zones; 5516 5517 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5518 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5519 zonerefs += nr_zones; 5520 zonerefs->zone = NULL; 5521 zonerefs->zone_idx = 0; 5522 } 5523 5524 /* 5525 * Build zonelists ordered by zone and nodes within zones. 5526 * This results in conserving DMA zone[s] until all Normal memory is 5527 * exhausted, but results in overflowing to remote node while memory 5528 * may still exist in local DMA zone. 5529 */ 5530 5531 static void build_zonelists(pg_data_t *pgdat) 5532 { 5533 static int node_order[MAX_NUMNODES]; 5534 int node, load, nr_nodes = 0; 5535 nodemask_t used_mask; 5536 int local_node, prev_node; 5537 5538 /* NUMA-aware ordering of nodes */ 5539 local_node = pgdat->node_id; 5540 load = nr_online_nodes; 5541 prev_node = local_node; 5542 nodes_clear(used_mask); 5543 5544 memset(node_order, 0, sizeof(node_order)); 5545 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5546 /* 5547 * We don't want to pressure a particular node. 5548 * So adding penalty to the first node in same 5549 * distance group to make it round-robin. 5550 */ 5551 if (node_distance(local_node, node) != 5552 node_distance(local_node, prev_node)) 5553 node_load[node] = load; 5554 5555 node_order[nr_nodes++] = node; 5556 prev_node = node; 5557 load--; 5558 } 5559 5560 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5561 build_thisnode_zonelists(pgdat); 5562 } 5563 5564 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5565 /* 5566 * Return node id of node used for "local" allocations. 5567 * I.e., first node id of first zone in arg node's generic zonelist. 5568 * Used for initializing percpu 'numa_mem', which is used primarily 5569 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5570 */ 5571 int local_memory_node(int node) 5572 { 5573 struct zoneref *z; 5574 5575 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5576 gfp_zone(GFP_KERNEL), 5577 NULL); 5578 return zone_to_nid(z->zone); 5579 } 5580 #endif 5581 5582 static void setup_min_unmapped_ratio(void); 5583 static void setup_min_slab_ratio(void); 5584 #else /* CONFIG_NUMA */ 5585 5586 static void build_zonelists(pg_data_t *pgdat) 5587 { 5588 int node, local_node; 5589 struct zoneref *zonerefs; 5590 int nr_zones; 5591 5592 local_node = pgdat->node_id; 5593 5594 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5595 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5596 zonerefs += nr_zones; 5597 5598 /* 5599 * Now we build the zonelist so that it contains the zones 5600 * of all the other nodes. 5601 * We don't want to pressure a particular node, so when 5602 * building the zones for node N, we make sure that the 5603 * zones coming right after the local ones are those from 5604 * node N+1 (modulo N) 5605 */ 5606 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5607 if (!node_online(node)) 5608 continue; 5609 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5610 zonerefs += nr_zones; 5611 } 5612 for (node = 0; node < local_node; node++) { 5613 if (!node_online(node)) 5614 continue; 5615 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5616 zonerefs += nr_zones; 5617 } 5618 5619 zonerefs->zone = NULL; 5620 zonerefs->zone_idx = 0; 5621 } 5622 5623 #endif /* CONFIG_NUMA */ 5624 5625 /* 5626 * Boot pageset table. One per cpu which is going to be used for all 5627 * zones and all nodes. The parameters will be set in such a way 5628 * that an item put on a list will immediately be handed over to 5629 * the buddy list. This is safe since pageset manipulation is done 5630 * with interrupts disabled. 5631 * 5632 * The boot_pagesets must be kept even after bootup is complete for 5633 * unused processors and/or zones. They do play a role for bootstrapping 5634 * hotplugged processors. 5635 * 5636 * zoneinfo_show() and maybe other functions do 5637 * not check if the processor is online before following the pageset pointer. 5638 * Other parts of the kernel may not check if the zone is available. 5639 */ 5640 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5641 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5642 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5643 5644 static void __build_all_zonelists(void *data) 5645 { 5646 int nid; 5647 int __maybe_unused cpu; 5648 pg_data_t *self = data; 5649 static DEFINE_SPINLOCK(lock); 5650 5651 spin_lock(&lock); 5652 5653 #ifdef CONFIG_NUMA 5654 memset(node_load, 0, sizeof(node_load)); 5655 #endif 5656 5657 /* 5658 * This node is hotadded and no memory is yet present. So just 5659 * building zonelists is fine - no need to touch other nodes. 5660 */ 5661 if (self && !node_online(self->node_id)) { 5662 build_zonelists(self); 5663 } else { 5664 for_each_online_node(nid) { 5665 pg_data_t *pgdat = NODE_DATA(nid); 5666 5667 build_zonelists(pgdat); 5668 } 5669 5670 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5671 /* 5672 * We now know the "local memory node" for each node-- 5673 * i.e., the node of the first zone in the generic zonelist. 5674 * Set up numa_mem percpu variable for on-line cpus. During 5675 * boot, only the boot cpu should be on-line; we'll init the 5676 * secondary cpus' numa_mem as they come on-line. During 5677 * node/memory hotplug, we'll fixup all on-line cpus. 5678 */ 5679 for_each_online_cpu(cpu) 5680 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5681 #endif 5682 } 5683 5684 spin_unlock(&lock); 5685 } 5686 5687 static noinline void __init 5688 build_all_zonelists_init(void) 5689 { 5690 int cpu; 5691 5692 __build_all_zonelists(NULL); 5693 5694 /* 5695 * Initialize the boot_pagesets that are going to be used 5696 * for bootstrapping processors. The real pagesets for 5697 * each zone will be allocated later when the per cpu 5698 * allocator is available. 5699 * 5700 * boot_pagesets are used also for bootstrapping offline 5701 * cpus if the system is already booted because the pagesets 5702 * are needed to initialize allocators on a specific cpu too. 5703 * F.e. the percpu allocator needs the page allocator which 5704 * needs the percpu allocator in order to allocate its pagesets 5705 * (a chicken-egg dilemma). 5706 */ 5707 for_each_possible_cpu(cpu) 5708 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5709 5710 mminit_verify_zonelist(); 5711 cpuset_init_current_mems_allowed(); 5712 } 5713 5714 /* 5715 * unless system_state == SYSTEM_BOOTING. 5716 * 5717 * __ref due to call of __init annotated helper build_all_zonelists_init 5718 * [protected by SYSTEM_BOOTING]. 5719 */ 5720 void __ref build_all_zonelists(pg_data_t *pgdat) 5721 { 5722 if (system_state == SYSTEM_BOOTING) { 5723 build_all_zonelists_init(); 5724 } else { 5725 __build_all_zonelists(pgdat); 5726 /* cpuset refresh routine should be here */ 5727 } 5728 vm_total_pages = nr_free_pagecache_pages(); 5729 /* 5730 * Disable grouping by mobility if the number of pages in the 5731 * system is too low to allow the mechanism to work. It would be 5732 * more accurate, but expensive to check per-zone. This check is 5733 * made on memory-hotadd so a system can start with mobility 5734 * disabled and enable it later 5735 */ 5736 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5737 page_group_by_mobility_disabled = 1; 5738 else 5739 page_group_by_mobility_disabled = 0; 5740 5741 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5742 nr_online_nodes, 5743 page_group_by_mobility_disabled ? "off" : "on", 5744 vm_total_pages); 5745 #ifdef CONFIG_NUMA 5746 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5747 #endif 5748 } 5749 5750 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5751 static bool __meminit 5752 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5753 { 5754 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5755 static struct memblock_region *r; 5756 5757 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5758 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5759 for_each_memblock(memory, r) { 5760 if (*pfn < memblock_region_memory_end_pfn(r)) 5761 break; 5762 } 5763 } 5764 if (*pfn >= memblock_region_memory_base_pfn(r) && 5765 memblock_is_mirror(r)) { 5766 *pfn = memblock_region_memory_end_pfn(r); 5767 return true; 5768 } 5769 } 5770 #endif 5771 return false; 5772 } 5773 5774 /* 5775 * Initially all pages are reserved - free ones are freed 5776 * up by memblock_free_all() once the early boot process is 5777 * done. Non-atomic initialization, single-pass. 5778 */ 5779 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5780 unsigned long start_pfn, enum memmap_context context, 5781 struct vmem_altmap *altmap) 5782 { 5783 unsigned long pfn, end_pfn = start_pfn + size; 5784 struct page *page; 5785 5786 if (highest_memmap_pfn < end_pfn - 1) 5787 highest_memmap_pfn = end_pfn - 1; 5788 5789 #ifdef CONFIG_ZONE_DEVICE 5790 /* 5791 * Honor reservation requested by the driver for this ZONE_DEVICE 5792 * memory. We limit the total number of pages to initialize to just 5793 * those that might contain the memory mapping. We will defer the 5794 * ZONE_DEVICE page initialization until after we have released 5795 * the hotplug lock. 5796 */ 5797 if (zone == ZONE_DEVICE) { 5798 if (!altmap) 5799 return; 5800 5801 if (start_pfn == altmap->base_pfn) 5802 start_pfn += altmap->reserve; 5803 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5804 } 5805 #endif 5806 5807 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5808 /* 5809 * There can be holes in boot-time mem_map[]s handed to this 5810 * function. They do not exist on hotplugged memory. 5811 */ 5812 if (context == MEMMAP_EARLY) { 5813 if (!early_pfn_valid(pfn)) 5814 continue; 5815 if (!early_pfn_in_nid(pfn, nid)) 5816 continue; 5817 if (overlap_memmap_init(zone, &pfn)) 5818 continue; 5819 if (defer_init(nid, pfn, end_pfn)) 5820 break; 5821 } 5822 5823 page = pfn_to_page(pfn); 5824 __init_single_page(page, pfn, zone, nid); 5825 if (context == MEMMAP_HOTPLUG) 5826 __SetPageReserved(page); 5827 5828 /* 5829 * Mark the block movable so that blocks are reserved for 5830 * movable at startup. This will force kernel allocations 5831 * to reserve their blocks rather than leaking throughout 5832 * the address space during boot when many long-lived 5833 * kernel allocations are made. 5834 * 5835 * bitmap is created for zone's valid pfn range. but memmap 5836 * can be created for invalid pages (for alignment) 5837 * check here not to call set_pageblock_migratetype() against 5838 * pfn out of zone. 5839 */ 5840 if (!(pfn & (pageblock_nr_pages - 1))) { 5841 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5842 cond_resched(); 5843 } 5844 } 5845 } 5846 5847 #ifdef CONFIG_ZONE_DEVICE 5848 void __ref memmap_init_zone_device(struct zone *zone, 5849 unsigned long start_pfn, 5850 unsigned long size, 5851 struct dev_pagemap *pgmap) 5852 { 5853 unsigned long pfn, end_pfn = start_pfn + size; 5854 struct pglist_data *pgdat = zone->zone_pgdat; 5855 unsigned long zone_idx = zone_idx(zone); 5856 unsigned long start = jiffies; 5857 int nid = pgdat->node_id; 5858 5859 if (WARN_ON_ONCE(!pgmap || !is_dev_zone(zone))) 5860 return; 5861 5862 /* 5863 * The call to memmap_init_zone should have already taken care 5864 * of the pages reserved for the memmap, so we can just jump to 5865 * the end of that region and start processing the device pages. 5866 */ 5867 if (pgmap->altmap_valid) { 5868 struct vmem_altmap *altmap = &pgmap->altmap; 5869 5870 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5871 size = end_pfn - start_pfn; 5872 } 5873 5874 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5875 struct page *page = pfn_to_page(pfn); 5876 5877 __init_single_page(page, pfn, zone_idx, nid); 5878 5879 /* 5880 * Mark page reserved as it will need to wait for onlining 5881 * phase for it to be fully associated with a zone. 5882 * 5883 * We can use the non-atomic __set_bit operation for setting 5884 * the flag as we are still initializing the pages. 5885 */ 5886 __SetPageReserved(page); 5887 5888 /* 5889 * ZONE_DEVICE pages union ->lru with a ->pgmap back 5890 * pointer and hmm_data. It is a bug if a ZONE_DEVICE 5891 * page is ever freed or placed on a driver-private list. 5892 */ 5893 page->pgmap = pgmap; 5894 page->hmm_data = 0; 5895 5896 /* 5897 * Mark the block movable so that blocks are reserved for 5898 * movable at startup. This will force kernel allocations 5899 * to reserve their blocks rather than leaking throughout 5900 * the address space during boot when many long-lived 5901 * kernel allocations are made. 5902 * 5903 * bitmap is created for zone's valid pfn range. but memmap 5904 * can be created for invalid pages (for alignment) 5905 * check here not to call set_pageblock_migratetype() against 5906 * pfn out of zone. 5907 * 5908 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5909 * because this is done early in sparse_add_one_section 5910 */ 5911 if (!(pfn & (pageblock_nr_pages - 1))) { 5912 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5913 cond_resched(); 5914 } 5915 } 5916 5917 pr_info("%s initialised, %lu pages in %ums\n", dev_name(pgmap->dev), 5918 size, jiffies_to_msecs(jiffies - start)); 5919 } 5920 5921 #endif 5922 static void __meminit zone_init_free_lists(struct zone *zone) 5923 { 5924 unsigned int order, t; 5925 for_each_migratetype_order(order, t) { 5926 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5927 zone->free_area[order].nr_free = 0; 5928 } 5929 } 5930 5931 void __meminit __weak memmap_init(unsigned long size, int nid, 5932 unsigned long zone, unsigned long start_pfn) 5933 { 5934 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 5935 } 5936 5937 static int zone_batchsize(struct zone *zone) 5938 { 5939 #ifdef CONFIG_MMU 5940 int batch; 5941 5942 /* 5943 * The per-cpu-pages pools are set to around 1000th of the 5944 * size of the zone. 5945 */ 5946 batch = zone_managed_pages(zone) / 1024; 5947 /* But no more than a meg. */ 5948 if (batch * PAGE_SIZE > 1024 * 1024) 5949 batch = (1024 * 1024) / PAGE_SIZE; 5950 batch /= 4; /* We effectively *= 4 below */ 5951 if (batch < 1) 5952 batch = 1; 5953 5954 /* 5955 * Clamp the batch to a 2^n - 1 value. Having a power 5956 * of 2 value was found to be more likely to have 5957 * suboptimal cache aliasing properties in some cases. 5958 * 5959 * For example if 2 tasks are alternately allocating 5960 * batches of pages, one task can end up with a lot 5961 * of pages of one half of the possible page colors 5962 * and the other with pages of the other colors. 5963 */ 5964 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5965 5966 return batch; 5967 5968 #else 5969 /* The deferral and batching of frees should be suppressed under NOMMU 5970 * conditions. 5971 * 5972 * The problem is that NOMMU needs to be able to allocate large chunks 5973 * of contiguous memory as there's no hardware page translation to 5974 * assemble apparent contiguous memory from discontiguous pages. 5975 * 5976 * Queueing large contiguous runs of pages for batching, however, 5977 * causes the pages to actually be freed in smaller chunks. As there 5978 * can be a significant delay between the individual batches being 5979 * recycled, this leads to the once large chunks of space being 5980 * fragmented and becoming unavailable for high-order allocations. 5981 */ 5982 return 0; 5983 #endif 5984 } 5985 5986 /* 5987 * pcp->high and pcp->batch values are related and dependent on one another: 5988 * ->batch must never be higher then ->high. 5989 * The following function updates them in a safe manner without read side 5990 * locking. 5991 * 5992 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5993 * those fields changing asynchronously (acording the the above rule). 5994 * 5995 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5996 * outside of boot time (or some other assurance that no concurrent updaters 5997 * exist). 5998 */ 5999 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6000 unsigned long batch) 6001 { 6002 /* start with a fail safe value for batch */ 6003 pcp->batch = 1; 6004 smp_wmb(); 6005 6006 /* Update high, then batch, in order */ 6007 pcp->high = high; 6008 smp_wmb(); 6009 6010 pcp->batch = batch; 6011 } 6012 6013 /* a companion to pageset_set_high() */ 6014 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6015 { 6016 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6017 } 6018 6019 static void pageset_init(struct per_cpu_pageset *p) 6020 { 6021 struct per_cpu_pages *pcp; 6022 int migratetype; 6023 6024 memset(p, 0, sizeof(*p)); 6025 6026 pcp = &p->pcp; 6027 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6028 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6029 } 6030 6031 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6032 { 6033 pageset_init(p); 6034 pageset_set_batch(p, batch); 6035 } 6036 6037 /* 6038 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6039 * to the value high for the pageset p. 6040 */ 6041 static void pageset_set_high(struct per_cpu_pageset *p, 6042 unsigned long high) 6043 { 6044 unsigned long batch = max(1UL, high / 4); 6045 if ((high / 4) > (PAGE_SHIFT * 8)) 6046 batch = PAGE_SHIFT * 8; 6047 6048 pageset_update(&p->pcp, high, batch); 6049 } 6050 6051 static void pageset_set_high_and_batch(struct zone *zone, 6052 struct per_cpu_pageset *pcp) 6053 { 6054 if (percpu_pagelist_fraction) 6055 pageset_set_high(pcp, 6056 (zone_managed_pages(zone) / 6057 percpu_pagelist_fraction)); 6058 else 6059 pageset_set_batch(pcp, zone_batchsize(zone)); 6060 } 6061 6062 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6063 { 6064 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6065 6066 pageset_init(pcp); 6067 pageset_set_high_and_batch(zone, pcp); 6068 } 6069 6070 void __meminit setup_zone_pageset(struct zone *zone) 6071 { 6072 int cpu; 6073 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6074 for_each_possible_cpu(cpu) 6075 zone_pageset_init(zone, cpu); 6076 } 6077 6078 /* 6079 * Allocate per cpu pagesets and initialize them. 6080 * Before this call only boot pagesets were available. 6081 */ 6082 void __init setup_per_cpu_pageset(void) 6083 { 6084 struct pglist_data *pgdat; 6085 struct zone *zone; 6086 6087 for_each_populated_zone(zone) 6088 setup_zone_pageset(zone); 6089 6090 for_each_online_pgdat(pgdat) 6091 pgdat->per_cpu_nodestats = 6092 alloc_percpu(struct per_cpu_nodestat); 6093 } 6094 6095 static __meminit void zone_pcp_init(struct zone *zone) 6096 { 6097 /* 6098 * per cpu subsystem is not up at this point. The following code 6099 * relies on the ability of the linker to provide the 6100 * offset of a (static) per cpu variable into the per cpu area. 6101 */ 6102 zone->pageset = &boot_pageset; 6103 6104 if (populated_zone(zone)) 6105 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6106 zone->name, zone->present_pages, 6107 zone_batchsize(zone)); 6108 } 6109 6110 void __meminit init_currently_empty_zone(struct zone *zone, 6111 unsigned long zone_start_pfn, 6112 unsigned long size) 6113 { 6114 struct pglist_data *pgdat = zone->zone_pgdat; 6115 int zone_idx = zone_idx(zone) + 1; 6116 6117 if (zone_idx > pgdat->nr_zones) 6118 pgdat->nr_zones = zone_idx; 6119 6120 zone->zone_start_pfn = zone_start_pfn; 6121 6122 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6123 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6124 pgdat->node_id, 6125 (unsigned long)zone_idx(zone), 6126 zone_start_pfn, (zone_start_pfn + size)); 6127 6128 zone_init_free_lists(zone); 6129 zone->initialized = 1; 6130 } 6131 6132 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6133 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6134 6135 /* 6136 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6137 */ 6138 int __meminit __early_pfn_to_nid(unsigned long pfn, 6139 struct mminit_pfnnid_cache *state) 6140 { 6141 unsigned long start_pfn, end_pfn; 6142 int nid; 6143 6144 if (state->last_start <= pfn && pfn < state->last_end) 6145 return state->last_nid; 6146 6147 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6148 if (nid != NUMA_NO_NODE) { 6149 state->last_start = start_pfn; 6150 state->last_end = end_pfn; 6151 state->last_nid = nid; 6152 } 6153 6154 return nid; 6155 } 6156 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6157 6158 /** 6159 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6160 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6161 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6162 * 6163 * If an architecture guarantees that all ranges registered contain no holes 6164 * and may be freed, this this function may be used instead of calling 6165 * memblock_free_early_nid() manually. 6166 */ 6167 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6168 { 6169 unsigned long start_pfn, end_pfn; 6170 int i, this_nid; 6171 6172 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6173 start_pfn = min(start_pfn, max_low_pfn); 6174 end_pfn = min(end_pfn, max_low_pfn); 6175 6176 if (start_pfn < end_pfn) 6177 memblock_free_early_nid(PFN_PHYS(start_pfn), 6178 (end_pfn - start_pfn) << PAGE_SHIFT, 6179 this_nid); 6180 } 6181 } 6182 6183 /** 6184 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6185 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6186 * 6187 * If an architecture guarantees that all ranges registered contain no holes and may 6188 * be freed, this function may be used instead of calling memory_present() manually. 6189 */ 6190 void __init sparse_memory_present_with_active_regions(int nid) 6191 { 6192 unsigned long start_pfn, end_pfn; 6193 int i, this_nid; 6194 6195 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6196 memory_present(this_nid, start_pfn, end_pfn); 6197 } 6198 6199 /** 6200 * get_pfn_range_for_nid - Return the start and end page frames for a node 6201 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6202 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6203 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6204 * 6205 * It returns the start and end page frame of a node based on information 6206 * provided by memblock_set_node(). If called for a node 6207 * with no available memory, a warning is printed and the start and end 6208 * PFNs will be 0. 6209 */ 6210 void __init get_pfn_range_for_nid(unsigned int nid, 6211 unsigned long *start_pfn, unsigned long *end_pfn) 6212 { 6213 unsigned long this_start_pfn, this_end_pfn; 6214 int i; 6215 6216 *start_pfn = -1UL; 6217 *end_pfn = 0; 6218 6219 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6220 *start_pfn = min(*start_pfn, this_start_pfn); 6221 *end_pfn = max(*end_pfn, this_end_pfn); 6222 } 6223 6224 if (*start_pfn == -1UL) 6225 *start_pfn = 0; 6226 } 6227 6228 /* 6229 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6230 * assumption is made that zones within a node are ordered in monotonic 6231 * increasing memory addresses so that the "highest" populated zone is used 6232 */ 6233 static void __init find_usable_zone_for_movable(void) 6234 { 6235 int zone_index; 6236 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6237 if (zone_index == ZONE_MOVABLE) 6238 continue; 6239 6240 if (arch_zone_highest_possible_pfn[zone_index] > 6241 arch_zone_lowest_possible_pfn[zone_index]) 6242 break; 6243 } 6244 6245 VM_BUG_ON(zone_index == -1); 6246 movable_zone = zone_index; 6247 } 6248 6249 /* 6250 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6251 * because it is sized independent of architecture. Unlike the other zones, 6252 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6253 * in each node depending on the size of each node and how evenly kernelcore 6254 * is distributed. This helper function adjusts the zone ranges 6255 * provided by the architecture for a given node by using the end of the 6256 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6257 * zones within a node are in order of monotonic increases memory addresses 6258 */ 6259 static void __init adjust_zone_range_for_zone_movable(int nid, 6260 unsigned long zone_type, 6261 unsigned long node_start_pfn, 6262 unsigned long node_end_pfn, 6263 unsigned long *zone_start_pfn, 6264 unsigned long *zone_end_pfn) 6265 { 6266 /* Only adjust if ZONE_MOVABLE is on this node */ 6267 if (zone_movable_pfn[nid]) { 6268 /* Size ZONE_MOVABLE */ 6269 if (zone_type == ZONE_MOVABLE) { 6270 *zone_start_pfn = zone_movable_pfn[nid]; 6271 *zone_end_pfn = min(node_end_pfn, 6272 arch_zone_highest_possible_pfn[movable_zone]); 6273 6274 /* Adjust for ZONE_MOVABLE starting within this range */ 6275 } else if (!mirrored_kernelcore && 6276 *zone_start_pfn < zone_movable_pfn[nid] && 6277 *zone_end_pfn > zone_movable_pfn[nid]) { 6278 *zone_end_pfn = zone_movable_pfn[nid]; 6279 6280 /* Check if this whole range is within ZONE_MOVABLE */ 6281 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6282 *zone_start_pfn = *zone_end_pfn; 6283 } 6284 } 6285 6286 /* 6287 * Return the number of pages a zone spans in a node, including holes 6288 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6289 */ 6290 static unsigned long __init zone_spanned_pages_in_node(int nid, 6291 unsigned long zone_type, 6292 unsigned long node_start_pfn, 6293 unsigned long node_end_pfn, 6294 unsigned long *zone_start_pfn, 6295 unsigned long *zone_end_pfn, 6296 unsigned long *ignored) 6297 { 6298 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6299 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6300 /* When hotadd a new node from cpu_up(), the node should be empty */ 6301 if (!node_start_pfn && !node_end_pfn) 6302 return 0; 6303 6304 /* Get the start and end of the zone */ 6305 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6306 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6307 adjust_zone_range_for_zone_movable(nid, zone_type, 6308 node_start_pfn, node_end_pfn, 6309 zone_start_pfn, zone_end_pfn); 6310 6311 /* Check that this node has pages within the zone's required range */ 6312 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6313 return 0; 6314 6315 /* Move the zone boundaries inside the node if necessary */ 6316 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6317 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6318 6319 /* Return the spanned pages */ 6320 return *zone_end_pfn - *zone_start_pfn; 6321 } 6322 6323 /* 6324 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6325 * then all holes in the requested range will be accounted for. 6326 */ 6327 unsigned long __init __absent_pages_in_range(int nid, 6328 unsigned long range_start_pfn, 6329 unsigned long range_end_pfn) 6330 { 6331 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6332 unsigned long start_pfn, end_pfn; 6333 int i; 6334 6335 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6336 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6337 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6338 nr_absent -= end_pfn - start_pfn; 6339 } 6340 return nr_absent; 6341 } 6342 6343 /** 6344 * absent_pages_in_range - Return number of page frames in holes within a range 6345 * @start_pfn: The start PFN to start searching for holes 6346 * @end_pfn: The end PFN to stop searching for holes 6347 * 6348 * Return: the number of pages frames in memory holes within a range. 6349 */ 6350 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6351 unsigned long end_pfn) 6352 { 6353 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6354 } 6355 6356 /* Return the number of page frames in holes in a zone on a node */ 6357 static unsigned long __init zone_absent_pages_in_node(int nid, 6358 unsigned long zone_type, 6359 unsigned long node_start_pfn, 6360 unsigned long node_end_pfn, 6361 unsigned long *ignored) 6362 { 6363 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6364 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6365 unsigned long zone_start_pfn, zone_end_pfn; 6366 unsigned long nr_absent; 6367 6368 /* When hotadd a new node from cpu_up(), the node should be empty */ 6369 if (!node_start_pfn && !node_end_pfn) 6370 return 0; 6371 6372 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6373 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6374 6375 adjust_zone_range_for_zone_movable(nid, zone_type, 6376 node_start_pfn, node_end_pfn, 6377 &zone_start_pfn, &zone_end_pfn); 6378 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6379 6380 /* 6381 * ZONE_MOVABLE handling. 6382 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6383 * and vice versa. 6384 */ 6385 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6386 unsigned long start_pfn, end_pfn; 6387 struct memblock_region *r; 6388 6389 for_each_memblock(memory, r) { 6390 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6391 zone_start_pfn, zone_end_pfn); 6392 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6393 zone_start_pfn, zone_end_pfn); 6394 6395 if (zone_type == ZONE_MOVABLE && 6396 memblock_is_mirror(r)) 6397 nr_absent += end_pfn - start_pfn; 6398 6399 if (zone_type == ZONE_NORMAL && 6400 !memblock_is_mirror(r)) 6401 nr_absent += end_pfn - start_pfn; 6402 } 6403 } 6404 6405 return nr_absent; 6406 } 6407 6408 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6409 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6410 unsigned long zone_type, 6411 unsigned long node_start_pfn, 6412 unsigned long node_end_pfn, 6413 unsigned long *zone_start_pfn, 6414 unsigned long *zone_end_pfn, 6415 unsigned long *zones_size) 6416 { 6417 unsigned int zone; 6418 6419 *zone_start_pfn = node_start_pfn; 6420 for (zone = 0; zone < zone_type; zone++) 6421 *zone_start_pfn += zones_size[zone]; 6422 6423 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6424 6425 return zones_size[zone_type]; 6426 } 6427 6428 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6429 unsigned long zone_type, 6430 unsigned long node_start_pfn, 6431 unsigned long node_end_pfn, 6432 unsigned long *zholes_size) 6433 { 6434 if (!zholes_size) 6435 return 0; 6436 6437 return zholes_size[zone_type]; 6438 } 6439 6440 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6441 6442 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6443 unsigned long node_start_pfn, 6444 unsigned long node_end_pfn, 6445 unsigned long *zones_size, 6446 unsigned long *zholes_size) 6447 { 6448 unsigned long realtotalpages = 0, totalpages = 0; 6449 enum zone_type i; 6450 6451 for (i = 0; i < MAX_NR_ZONES; i++) { 6452 struct zone *zone = pgdat->node_zones + i; 6453 unsigned long zone_start_pfn, zone_end_pfn; 6454 unsigned long size, real_size; 6455 6456 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6457 node_start_pfn, 6458 node_end_pfn, 6459 &zone_start_pfn, 6460 &zone_end_pfn, 6461 zones_size); 6462 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6463 node_start_pfn, node_end_pfn, 6464 zholes_size); 6465 if (size) 6466 zone->zone_start_pfn = zone_start_pfn; 6467 else 6468 zone->zone_start_pfn = 0; 6469 zone->spanned_pages = size; 6470 zone->present_pages = real_size; 6471 6472 totalpages += size; 6473 realtotalpages += real_size; 6474 } 6475 6476 pgdat->node_spanned_pages = totalpages; 6477 pgdat->node_present_pages = realtotalpages; 6478 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6479 realtotalpages); 6480 } 6481 6482 #ifndef CONFIG_SPARSEMEM 6483 /* 6484 * Calculate the size of the zone->blockflags rounded to an unsigned long 6485 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6486 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6487 * round what is now in bits to nearest long in bits, then return it in 6488 * bytes. 6489 */ 6490 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6491 { 6492 unsigned long usemapsize; 6493 6494 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6495 usemapsize = roundup(zonesize, pageblock_nr_pages); 6496 usemapsize = usemapsize >> pageblock_order; 6497 usemapsize *= NR_PAGEBLOCK_BITS; 6498 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6499 6500 return usemapsize / 8; 6501 } 6502 6503 static void __ref setup_usemap(struct pglist_data *pgdat, 6504 struct zone *zone, 6505 unsigned long zone_start_pfn, 6506 unsigned long zonesize) 6507 { 6508 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6509 zone->pageblock_flags = NULL; 6510 if (usemapsize) { 6511 zone->pageblock_flags = 6512 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6513 pgdat->node_id); 6514 if (!zone->pageblock_flags) 6515 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6516 usemapsize, zone->name, pgdat->node_id); 6517 } 6518 } 6519 #else 6520 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6521 unsigned long zone_start_pfn, unsigned long zonesize) {} 6522 #endif /* CONFIG_SPARSEMEM */ 6523 6524 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6525 6526 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6527 void __init set_pageblock_order(void) 6528 { 6529 unsigned int order; 6530 6531 /* Check that pageblock_nr_pages has not already been setup */ 6532 if (pageblock_order) 6533 return; 6534 6535 if (HPAGE_SHIFT > PAGE_SHIFT) 6536 order = HUGETLB_PAGE_ORDER; 6537 else 6538 order = MAX_ORDER - 1; 6539 6540 /* 6541 * Assume the largest contiguous order of interest is a huge page. 6542 * This value may be variable depending on boot parameters on IA64 and 6543 * powerpc. 6544 */ 6545 pageblock_order = order; 6546 } 6547 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6548 6549 /* 6550 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6551 * is unused as pageblock_order is set at compile-time. See 6552 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6553 * the kernel config 6554 */ 6555 void __init set_pageblock_order(void) 6556 { 6557 } 6558 6559 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6560 6561 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6562 unsigned long present_pages) 6563 { 6564 unsigned long pages = spanned_pages; 6565 6566 /* 6567 * Provide a more accurate estimation if there are holes within 6568 * the zone and SPARSEMEM is in use. If there are holes within the 6569 * zone, each populated memory region may cost us one or two extra 6570 * memmap pages due to alignment because memmap pages for each 6571 * populated regions may not be naturally aligned on page boundary. 6572 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6573 */ 6574 if (spanned_pages > present_pages + (present_pages >> 4) && 6575 IS_ENABLED(CONFIG_SPARSEMEM)) 6576 pages = present_pages; 6577 6578 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6579 } 6580 6581 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6582 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6583 { 6584 spin_lock_init(&pgdat->split_queue_lock); 6585 INIT_LIST_HEAD(&pgdat->split_queue); 6586 pgdat->split_queue_len = 0; 6587 } 6588 #else 6589 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6590 #endif 6591 6592 #ifdef CONFIG_COMPACTION 6593 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6594 { 6595 init_waitqueue_head(&pgdat->kcompactd_wait); 6596 } 6597 #else 6598 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6599 #endif 6600 6601 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6602 { 6603 pgdat_resize_init(pgdat); 6604 6605 pgdat_init_split_queue(pgdat); 6606 pgdat_init_kcompactd(pgdat); 6607 6608 init_waitqueue_head(&pgdat->kswapd_wait); 6609 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6610 6611 pgdat_page_ext_init(pgdat); 6612 spin_lock_init(&pgdat->lru_lock); 6613 lruvec_init(node_lruvec(pgdat)); 6614 } 6615 6616 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6617 unsigned long remaining_pages) 6618 { 6619 atomic_long_set(&zone->managed_pages, remaining_pages); 6620 zone_set_nid(zone, nid); 6621 zone->name = zone_names[idx]; 6622 zone->zone_pgdat = NODE_DATA(nid); 6623 spin_lock_init(&zone->lock); 6624 zone_seqlock_init(zone); 6625 zone_pcp_init(zone); 6626 } 6627 6628 /* 6629 * Set up the zone data structures 6630 * - init pgdat internals 6631 * - init all zones belonging to this node 6632 * 6633 * NOTE: this function is only called during memory hotplug 6634 */ 6635 #ifdef CONFIG_MEMORY_HOTPLUG 6636 void __ref free_area_init_core_hotplug(int nid) 6637 { 6638 enum zone_type z; 6639 pg_data_t *pgdat = NODE_DATA(nid); 6640 6641 pgdat_init_internals(pgdat); 6642 for (z = 0; z < MAX_NR_ZONES; z++) 6643 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6644 } 6645 #endif 6646 6647 /* 6648 * Set up the zone data structures: 6649 * - mark all pages reserved 6650 * - mark all memory queues empty 6651 * - clear the memory bitmaps 6652 * 6653 * NOTE: pgdat should get zeroed by caller. 6654 * NOTE: this function is only called during early init. 6655 */ 6656 static void __init free_area_init_core(struct pglist_data *pgdat) 6657 { 6658 enum zone_type j; 6659 int nid = pgdat->node_id; 6660 6661 pgdat_init_internals(pgdat); 6662 pgdat->per_cpu_nodestats = &boot_nodestats; 6663 6664 for (j = 0; j < MAX_NR_ZONES; j++) { 6665 struct zone *zone = pgdat->node_zones + j; 6666 unsigned long size, freesize, memmap_pages; 6667 unsigned long zone_start_pfn = zone->zone_start_pfn; 6668 6669 size = zone->spanned_pages; 6670 freesize = zone->present_pages; 6671 6672 /* 6673 * Adjust freesize so that it accounts for how much memory 6674 * is used by this zone for memmap. This affects the watermark 6675 * and per-cpu initialisations 6676 */ 6677 memmap_pages = calc_memmap_size(size, freesize); 6678 if (!is_highmem_idx(j)) { 6679 if (freesize >= memmap_pages) { 6680 freesize -= memmap_pages; 6681 if (memmap_pages) 6682 printk(KERN_DEBUG 6683 " %s zone: %lu pages used for memmap\n", 6684 zone_names[j], memmap_pages); 6685 } else 6686 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6687 zone_names[j], memmap_pages, freesize); 6688 } 6689 6690 /* Account for reserved pages */ 6691 if (j == 0 && freesize > dma_reserve) { 6692 freesize -= dma_reserve; 6693 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6694 zone_names[0], dma_reserve); 6695 } 6696 6697 if (!is_highmem_idx(j)) 6698 nr_kernel_pages += freesize; 6699 /* Charge for highmem memmap if there are enough kernel pages */ 6700 else if (nr_kernel_pages > memmap_pages * 2) 6701 nr_kernel_pages -= memmap_pages; 6702 nr_all_pages += freesize; 6703 6704 /* 6705 * Set an approximate value for lowmem here, it will be adjusted 6706 * when the bootmem allocator frees pages into the buddy system. 6707 * And all highmem pages will be managed by the buddy system. 6708 */ 6709 zone_init_internals(zone, j, nid, freesize); 6710 6711 if (!size) 6712 continue; 6713 6714 set_pageblock_order(); 6715 setup_usemap(pgdat, zone, zone_start_pfn, size); 6716 init_currently_empty_zone(zone, zone_start_pfn, size); 6717 memmap_init(size, nid, j, zone_start_pfn); 6718 } 6719 } 6720 6721 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6722 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6723 { 6724 unsigned long __maybe_unused start = 0; 6725 unsigned long __maybe_unused offset = 0; 6726 6727 /* Skip empty nodes */ 6728 if (!pgdat->node_spanned_pages) 6729 return; 6730 6731 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6732 offset = pgdat->node_start_pfn - start; 6733 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6734 if (!pgdat->node_mem_map) { 6735 unsigned long size, end; 6736 struct page *map; 6737 6738 /* 6739 * The zone's endpoints aren't required to be MAX_ORDER 6740 * aligned but the node_mem_map endpoints must be in order 6741 * for the buddy allocator to function correctly. 6742 */ 6743 end = pgdat_end_pfn(pgdat); 6744 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6745 size = (end - start) * sizeof(struct page); 6746 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6747 pgdat->node_id); 6748 if (!map) 6749 panic("Failed to allocate %ld bytes for node %d memory map\n", 6750 size, pgdat->node_id); 6751 pgdat->node_mem_map = map + offset; 6752 } 6753 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6754 __func__, pgdat->node_id, (unsigned long)pgdat, 6755 (unsigned long)pgdat->node_mem_map); 6756 #ifndef CONFIG_NEED_MULTIPLE_NODES 6757 /* 6758 * With no DISCONTIG, the global mem_map is just set as node 0's 6759 */ 6760 if (pgdat == NODE_DATA(0)) { 6761 mem_map = NODE_DATA(0)->node_mem_map; 6762 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6763 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6764 mem_map -= offset; 6765 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6766 } 6767 #endif 6768 } 6769 #else 6770 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6771 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6772 6773 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6774 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6775 { 6776 pgdat->first_deferred_pfn = ULONG_MAX; 6777 } 6778 #else 6779 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6780 #endif 6781 6782 void __init free_area_init_node(int nid, unsigned long *zones_size, 6783 unsigned long node_start_pfn, 6784 unsigned long *zholes_size) 6785 { 6786 pg_data_t *pgdat = NODE_DATA(nid); 6787 unsigned long start_pfn = 0; 6788 unsigned long end_pfn = 0; 6789 6790 /* pg_data_t should be reset to zero when it's allocated */ 6791 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6792 6793 pgdat->node_id = nid; 6794 pgdat->node_start_pfn = node_start_pfn; 6795 pgdat->per_cpu_nodestats = NULL; 6796 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6797 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6798 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6799 (u64)start_pfn << PAGE_SHIFT, 6800 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6801 #else 6802 start_pfn = node_start_pfn; 6803 #endif 6804 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6805 zones_size, zholes_size); 6806 6807 alloc_node_mem_map(pgdat); 6808 pgdat_set_deferred_range(pgdat); 6809 6810 free_area_init_core(pgdat); 6811 } 6812 6813 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6814 /* 6815 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6816 * pages zeroed 6817 */ 6818 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6819 { 6820 unsigned long pfn; 6821 u64 pgcnt = 0; 6822 6823 for (pfn = spfn; pfn < epfn; pfn++) { 6824 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6825 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6826 + pageblock_nr_pages - 1; 6827 continue; 6828 } 6829 mm_zero_struct_page(pfn_to_page(pfn)); 6830 pgcnt++; 6831 } 6832 6833 return pgcnt; 6834 } 6835 6836 /* 6837 * Only struct pages that are backed by physical memory are zeroed and 6838 * initialized by going through __init_single_page(). But, there are some 6839 * struct pages which are reserved in memblock allocator and their fields 6840 * may be accessed (for example page_to_pfn() on some configuration accesses 6841 * flags). We must explicitly zero those struct pages. 6842 * 6843 * This function also addresses a similar issue where struct pages are left 6844 * uninitialized because the physical address range is not covered by 6845 * memblock.memory or memblock.reserved. That could happen when memblock 6846 * layout is manually configured via memmap=. 6847 */ 6848 void __init zero_resv_unavail(void) 6849 { 6850 phys_addr_t start, end; 6851 u64 i, pgcnt; 6852 phys_addr_t next = 0; 6853 6854 /* 6855 * Loop through unavailable ranges not covered by memblock.memory. 6856 */ 6857 pgcnt = 0; 6858 for_each_mem_range(i, &memblock.memory, NULL, 6859 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6860 if (next < start) 6861 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6862 next = end; 6863 } 6864 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6865 6866 /* 6867 * Struct pages that do not have backing memory. This could be because 6868 * firmware is using some of this memory, or for some other reasons. 6869 */ 6870 if (pgcnt) 6871 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6872 } 6873 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6874 6875 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6876 6877 #if MAX_NUMNODES > 1 6878 /* 6879 * Figure out the number of possible node ids. 6880 */ 6881 void __init setup_nr_node_ids(void) 6882 { 6883 unsigned int highest; 6884 6885 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6886 nr_node_ids = highest + 1; 6887 } 6888 #endif 6889 6890 /** 6891 * node_map_pfn_alignment - determine the maximum internode alignment 6892 * 6893 * This function should be called after node map is populated and sorted. 6894 * It calculates the maximum power of two alignment which can distinguish 6895 * all the nodes. 6896 * 6897 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6898 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6899 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6900 * shifted, 1GiB is enough and this function will indicate so. 6901 * 6902 * This is used to test whether pfn -> nid mapping of the chosen memory 6903 * model has fine enough granularity to avoid incorrect mapping for the 6904 * populated node map. 6905 * 6906 * Return: the determined alignment in pfn's. 0 if there is no alignment 6907 * requirement (single node). 6908 */ 6909 unsigned long __init node_map_pfn_alignment(void) 6910 { 6911 unsigned long accl_mask = 0, last_end = 0; 6912 unsigned long start, end, mask; 6913 int last_nid = NUMA_NO_NODE; 6914 int i, nid; 6915 6916 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6917 if (!start || last_nid < 0 || last_nid == nid) { 6918 last_nid = nid; 6919 last_end = end; 6920 continue; 6921 } 6922 6923 /* 6924 * Start with a mask granular enough to pin-point to the 6925 * start pfn and tick off bits one-by-one until it becomes 6926 * too coarse to separate the current node from the last. 6927 */ 6928 mask = ~((1 << __ffs(start)) - 1); 6929 while (mask && last_end <= (start & (mask << 1))) 6930 mask <<= 1; 6931 6932 /* accumulate all internode masks */ 6933 accl_mask |= mask; 6934 } 6935 6936 /* convert mask to number of pages */ 6937 return ~accl_mask + 1; 6938 } 6939 6940 /* Find the lowest pfn for a node */ 6941 static unsigned long __init find_min_pfn_for_node(int nid) 6942 { 6943 unsigned long min_pfn = ULONG_MAX; 6944 unsigned long start_pfn; 6945 int i; 6946 6947 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6948 min_pfn = min(min_pfn, start_pfn); 6949 6950 if (min_pfn == ULONG_MAX) { 6951 pr_warn("Could not find start_pfn for node %d\n", nid); 6952 return 0; 6953 } 6954 6955 return min_pfn; 6956 } 6957 6958 /** 6959 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6960 * 6961 * Return: the minimum PFN based on information provided via 6962 * memblock_set_node(). 6963 */ 6964 unsigned long __init find_min_pfn_with_active_regions(void) 6965 { 6966 return find_min_pfn_for_node(MAX_NUMNODES); 6967 } 6968 6969 /* 6970 * early_calculate_totalpages() 6971 * Sum pages in active regions for movable zone. 6972 * Populate N_MEMORY for calculating usable_nodes. 6973 */ 6974 static unsigned long __init early_calculate_totalpages(void) 6975 { 6976 unsigned long totalpages = 0; 6977 unsigned long start_pfn, end_pfn; 6978 int i, nid; 6979 6980 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6981 unsigned long pages = end_pfn - start_pfn; 6982 6983 totalpages += pages; 6984 if (pages) 6985 node_set_state(nid, N_MEMORY); 6986 } 6987 return totalpages; 6988 } 6989 6990 /* 6991 * Find the PFN the Movable zone begins in each node. Kernel memory 6992 * is spread evenly between nodes as long as the nodes have enough 6993 * memory. When they don't, some nodes will have more kernelcore than 6994 * others 6995 */ 6996 static void __init find_zone_movable_pfns_for_nodes(void) 6997 { 6998 int i, nid; 6999 unsigned long usable_startpfn; 7000 unsigned long kernelcore_node, kernelcore_remaining; 7001 /* save the state before borrow the nodemask */ 7002 nodemask_t saved_node_state = node_states[N_MEMORY]; 7003 unsigned long totalpages = early_calculate_totalpages(); 7004 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7005 struct memblock_region *r; 7006 7007 /* Need to find movable_zone earlier when movable_node is specified. */ 7008 find_usable_zone_for_movable(); 7009 7010 /* 7011 * If movable_node is specified, ignore kernelcore and movablecore 7012 * options. 7013 */ 7014 if (movable_node_is_enabled()) { 7015 for_each_memblock(memory, r) { 7016 if (!memblock_is_hotpluggable(r)) 7017 continue; 7018 7019 nid = r->nid; 7020 7021 usable_startpfn = PFN_DOWN(r->base); 7022 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7023 min(usable_startpfn, zone_movable_pfn[nid]) : 7024 usable_startpfn; 7025 } 7026 7027 goto out2; 7028 } 7029 7030 /* 7031 * If kernelcore=mirror is specified, ignore movablecore option 7032 */ 7033 if (mirrored_kernelcore) { 7034 bool mem_below_4gb_not_mirrored = false; 7035 7036 for_each_memblock(memory, r) { 7037 if (memblock_is_mirror(r)) 7038 continue; 7039 7040 nid = r->nid; 7041 7042 usable_startpfn = memblock_region_memory_base_pfn(r); 7043 7044 if (usable_startpfn < 0x100000) { 7045 mem_below_4gb_not_mirrored = true; 7046 continue; 7047 } 7048 7049 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7050 min(usable_startpfn, zone_movable_pfn[nid]) : 7051 usable_startpfn; 7052 } 7053 7054 if (mem_below_4gb_not_mirrored) 7055 pr_warn("This configuration results in unmirrored kernel memory."); 7056 7057 goto out2; 7058 } 7059 7060 /* 7061 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7062 * amount of necessary memory. 7063 */ 7064 if (required_kernelcore_percent) 7065 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7066 10000UL; 7067 if (required_movablecore_percent) 7068 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7069 10000UL; 7070 7071 /* 7072 * If movablecore= was specified, calculate what size of 7073 * kernelcore that corresponds so that memory usable for 7074 * any allocation type is evenly spread. If both kernelcore 7075 * and movablecore are specified, then the value of kernelcore 7076 * will be used for required_kernelcore if it's greater than 7077 * what movablecore would have allowed. 7078 */ 7079 if (required_movablecore) { 7080 unsigned long corepages; 7081 7082 /* 7083 * Round-up so that ZONE_MOVABLE is at least as large as what 7084 * was requested by the user 7085 */ 7086 required_movablecore = 7087 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7088 required_movablecore = min(totalpages, required_movablecore); 7089 corepages = totalpages - required_movablecore; 7090 7091 required_kernelcore = max(required_kernelcore, corepages); 7092 } 7093 7094 /* 7095 * If kernelcore was not specified or kernelcore size is larger 7096 * than totalpages, there is no ZONE_MOVABLE. 7097 */ 7098 if (!required_kernelcore || required_kernelcore >= totalpages) 7099 goto out; 7100 7101 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7102 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7103 7104 restart: 7105 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7106 kernelcore_node = required_kernelcore / usable_nodes; 7107 for_each_node_state(nid, N_MEMORY) { 7108 unsigned long start_pfn, end_pfn; 7109 7110 /* 7111 * Recalculate kernelcore_node if the division per node 7112 * now exceeds what is necessary to satisfy the requested 7113 * amount of memory for the kernel 7114 */ 7115 if (required_kernelcore < kernelcore_node) 7116 kernelcore_node = required_kernelcore / usable_nodes; 7117 7118 /* 7119 * As the map is walked, we track how much memory is usable 7120 * by the kernel using kernelcore_remaining. When it is 7121 * 0, the rest of the node is usable by ZONE_MOVABLE 7122 */ 7123 kernelcore_remaining = kernelcore_node; 7124 7125 /* Go through each range of PFNs within this node */ 7126 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7127 unsigned long size_pages; 7128 7129 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7130 if (start_pfn >= end_pfn) 7131 continue; 7132 7133 /* Account for what is only usable for kernelcore */ 7134 if (start_pfn < usable_startpfn) { 7135 unsigned long kernel_pages; 7136 kernel_pages = min(end_pfn, usable_startpfn) 7137 - start_pfn; 7138 7139 kernelcore_remaining -= min(kernel_pages, 7140 kernelcore_remaining); 7141 required_kernelcore -= min(kernel_pages, 7142 required_kernelcore); 7143 7144 /* Continue if range is now fully accounted */ 7145 if (end_pfn <= usable_startpfn) { 7146 7147 /* 7148 * Push zone_movable_pfn to the end so 7149 * that if we have to rebalance 7150 * kernelcore across nodes, we will 7151 * not double account here 7152 */ 7153 zone_movable_pfn[nid] = end_pfn; 7154 continue; 7155 } 7156 start_pfn = usable_startpfn; 7157 } 7158 7159 /* 7160 * The usable PFN range for ZONE_MOVABLE is from 7161 * start_pfn->end_pfn. Calculate size_pages as the 7162 * number of pages used as kernelcore 7163 */ 7164 size_pages = end_pfn - start_pfn; 7165 if (size_pages > kernelcore_remaining) 7166 size_pages = kernelcore_remaining; 7167 zone_movable_pfn[nid] = start_pfn + size_pages; 7168 7169 /* 7170 * Some kernelcore has been met, update counts and 7171 * break if the kernelcore for this node has been 7172 * satisfied 7173 */ 7174 required_kernelcore -= min(required_kernelcore, 7175 size_pages); 7176 kernelcore_remaining -= size_pages; 7177 if (!kernelcore_remaining) 7178 break; 7179 } 7180 } 7181 7182 /* 7183 * If there is still required_kernelcore, we do another pass with one 7184 * less node in the count. This will push zone_movable_pfn[nid] further 7185 * along on the nodes that still have memory until kernelcore is 7186 * satisfied 7187 */ 7188 usable_nodes--; 7189 if (usable_nodes && required_kernelcore > usable_nodes) 7190 goto restart; 7191 7192 out2: 7193 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7194 for (nid = 0; nid < MAX_NUMNODES; nid++) 7195 zone_movable_pfn[nid] = 7196 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7197 7198 out: 7199 /* restore the node_state */ 7200 node_states[N_MEMORY] = saved_node_state; 7201 } 7202 7203 /* Any regular or high memory on that node ? */ 7204 static void check_for_memory(pg_data_t *pgdat, int nid) 7205 { 7206 enum zone_type zone_type; 7207 7208 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7209 struct zone *zone = &pgdat->node_zones[zone_type]; 7210 if (populated_zone(zone)) { 7211 if (IS_ENABLED(CONFIG_HIGHMEM)) 7212 node_set_state(nid, N_HIGH_MEMORY); 7213 if (zone_type <= ZONE_NORMAL) 7214 node_set_state(nid, N_NORMAL_MEMORY); 7215 break; 7216 } 7217 } 7218 } 7219 7220 /** 7221 * free_area_init_nodes - Initialise all pg_data_t and zone data 7222 * @max_zone_pfn: an array of max PFNs for each zone 7223 * 7224 * This will call free_area_init_node() for each active node in the system. 7225 * Using the page ranges provided by memblock_set_node(), the size of each 7226 * zone in each node and their holes is calculated. If the maximum PFN 7227 * between two adjacent zones match, it is assumed that the zone is empty. 7228 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7229 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7230 * starts where the previous one ended. For example, ZONE_DMA32 starts 7231 * at arch_max_dma_pfn. 7232 */ 7233 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7234 { 7235 unsigned long start_pfn, end_pfn; 7236 int i, nid; 7237 7238 /* Record where the zone boundaries are */ 7239 memset(arch_zone_lowest_possible_pfn, 0, 7240 sizeof(arch_zone_lowest_possible_pfn)); 7241 memset(arch_zone_highest_possible_pfn, 0, 7242 sizeof(arch_zone_highest_possible_pfn)); 7243 7244 start_pfn = find_min_pfn_with_active_regions(); 7245 7246 for (i = 0; i < MAX_NR_ZONES; i++) { 7247 if (i == ZONE_MOVABLE) 7248 continue; 7249 7250 end_pfn = max(max_zone_pfn[i], start_pfn); 7251 arch_zone_lowest_possible_pfn[i] = start_pfn; 7252 arch_zone_highest_possible_pfn[i] = end_pfn; 7253 7254 start_pfn = end_pfn; 7255 } 7256 7257 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7258 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7259 find_zone_movable_pfns_for_nodes(); 7260 7261 /* Print out the zone ranges */ 7262 pr_info("Zone ranges:\n"); 7263 for (i = 0; i < MAX_NR_ZONES; i++) { 7264 if (i == ZONE_MOVABLE) 7265 continue; 7266 pr_info(" %-8s ", zone_names[i]); 7267 if (arch_zone_lowest_possible_pfn[i] == 7268 arch_zone_highest_possible_pfn[i]) 7269 pr_cont("empty\n"); 7270 else 7271 pr_cont("[mem %#018Lx-%#018Lx]\n", 7272 (u64)arch_zone_lowest_possible_pfn[i] 7273 << PAGE_SHIFT, 7274 ((u64)arch_zone_highest_possible_pfn[i] 7275 << PAGE_SHIFT) - 1); 7276 } 7277 7278 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7279 pr_info("Movable zone start for each node\n"); 7280 for (i = 0; i < MAX_NUMNODES; i++) { 7281 if (zone_movable_pfn[i]) 7282 pr_info(" Node %d: %#018Lx\n", i, 7283 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7284 } 7285 7286 /* Print out the early node map */ 7287 pr_info("Early memory node ranges\n"); 7288 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 7289 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7290 (u64)start_pfn << PAGE_SHIFT, 7291 ((u64)end_pfn << PAGE_SHIFT) - 1); 7292 7293 /* Initialise every node */ 7294 mminit_verify_pageflags_layout(); 7295 setup_nr_node_ids(); 7296 zero_resv_unavail(); 7297 for_each_online_node(nid) { 7298 pg_data_t *pgdat = NODE_DATA(nid); 7299 free_area_init_node(nid, NULL, 7300 find_min_pfn_for_node(nid), NULL); 7301 7302 /* Any memory on that node */ 7303 if (pgdat->node_present_pages) 7304 node_set_state(nid, N_MEMORY); 7305 check_for_memory(pgdat, nid); 7306 } 7307 } 7308 7309 static int __init cmdline_parse_core(char *p, unsigned long *core, 7310 unsigned long *percent) 7311 { 7312 unsigned long long coremem; 7313 char *endptr; 7314 7315 if (!p) 7316 return -EINVAL; 7317 7318 /* Value may be a percentage of total memory, otherwise bytes */ 7319 coremem = simple_strtoull(p, &endptr, 0); 7320 if (*endptr == '%') { 7321 /* Paranoid check for percent values greater than 100 */ 7322 WARN_ON(coremem > 100); 7323 7324 *percent = coremem; 7325 } else { 7326 coremem = memparse(p, &p); 7327 /* Paranoid check that UL is enough for the coremem value */ 7328 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7329 7330 *core = coremem >> PAGE_SHIFT; 7331 *percent = 0UL; 7332 } 7333 return 0; 7334 } 7335 7336 /* 7337 * kernelcore=size sets the amount of memory for use for allocations that 7338 * cannot be reclaimed or migrated. 7339 */ 7340 static int __init cmdline_parse_kernelcore(char *p) 7341 { 7342 /* parse kernelcore=mirror */ 7343 if (parse_option_str(p, "mirror")) { 7344 mirrored_kernelcore = true; 7345 return 0; 7346 } 7347 7348 return cmdline_parse_core(p, &required_kernelcore, 7349 &required_kernelcore_percent); 7350 } 7351 7352 /* 7353 * movablecore=size sets the amount of memory for use for allocations that 7354 * can be reclaimed or migrated. 7355 */ 7356 static int __init cmdline_parse_movablecore(char *p) 7357 { 7358 return cmdline_parse_core(p, &required_movablecore, 7359 &required_movablecore_percent); 7360 } 7361 7362 early_param("kernelcore", cmdline_parse_kernelcore); 7363 early_param("movablecore", cmdline_parse_movablecore); 7364 7365 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7366 7367 void adjust_managed_page_count(struct page *page, long count) 7368 { 7369 atomic_long_add(count, &page_zone(page)->managed_pages); 7370 totalram_pages_add(count); 7371 #ifdef CONFIG_HIGHMEM 7372 if (PageHighMem(page)) 7373 totalhigh_pages_add(count); 7374 #endif 7375 } 7376 EXPORT_SYMBOL(adjust_managed_page_count); 7377 7378 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7379 { 7380 void *pos; 7381 unsigned long pages = 0; 7382 7383 start = (void *)PAGE_ALIGN((unsigned long)start); 7384 end = (void *)((unsigned long)end & PAGE_MASK); 7385 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7386 struct page *page = virt_to_page(pos); 7387 void *direct_map_addr; 7388 7389 /* 7390 * 'direct_map_addr' might be different from 'pos' 7391 * because some architectures' virt_to_page() 7392 * work with aliases. Getting the direct map 7393 * address ensures that we get a _writeable_ 7394 * alias for the memset(). 7395 */ 7396 direct_map_addr = page_address(page); 7397 if ((unsigned int)poison <= 0xFF) 7398 memset(direct_map_addr, poison, PAGE_SIZE); 7399 7400 free_reserved_page(page); 7401 } 7402 7403 if (pages && s) 7404 pr_info("Freeing %s memory: %ldK\n", 7405 s, pages << (PAGE_SHIFT - 10)); 7406 7407 return pages; 7408 } 7409 7410 #ifdef CONFIG_HIGHMEM 7411 void free_highmem_page(struct page *page) 7412 { 7413 __free_reserved_page(page); 7414 totalram_pages_inc(); 7415 atomic_long_inc(&page_zone(page)->managed_pages); 7416 totalhigh_pages_inc(); 7417 } 7418 #endif 7419 7420 7421 void __init mem_init_print_info(const char *str) 7422 { 7423 unsigned long physpages, codesize, datasize, rosize, bss_size; 7424 unsigned long init_code_size, init_data_size; 7425 7426 physpages = get_num_physpages(); 7427 codesize = _etext - _stext; 7428 datasize = _edata - _sdata; 7429 rosize = __end_rodata - __start_rodata; 7430 bss_size = __bss_stop - __bss_start; 7431 init_data_size = __init_end - __init_begin; 7432 init_code_size = _einittext - _sinittext; 7433 7434 /* 7435 * Detect special cases and adjust section sizes accordingly: 7436 * 1) .init.* may be embedded into .data sections 7437 * 2) .init.text.* may be out of [__init_begin, __init_end], 7438 * please refer to arch/tile/kernel/vmlinux.lds.S. 7439 * 3) .rodata.* may be embedded into .text or .data sections. 7440 */ 7441 #define adj_init_size(start, end, size, pos, adj) \ 7442 do { \ 7443 if (start <= pos && pos < end && size > adj) \ 7444 size -= adj; \ 7445 } while (0) 7446 7447 adj_init_size(__init_begin, __init_end, init_data_size, 7448 _sinittext, init_code_size); 7449 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7450 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7451 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7452 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7453 7454 #undef adj_init_size 7455 7456 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7457 #ifdef CONFIG_HIGHMEM 7458 ", %luK highmem" 7459 #endif 7460 "%s%s)\n", 7461 nr_free_pages() << (PAGE_SHIFT - 10), 7462 physpages << (PAGE_SHIFT - 10), 7463 codesize >> 10, datasize >> 10, rosize >> 10, 7464 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7465 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7466 totalcma_pages << (PAGE_SHIFT - 10), 7467 #ifdef CONFIG_HIGHMEM 7468 totalhigh_pages() << (PAGE_SHIFT - 10), 7469 #endif 7470 str ? ", " : "", str ? str : ""); 7471 } 7472 7473 /** 7474 * set_dma_reserve - set the specified number of pages reserved in the first zone 7475 * @new_dma_reserve: The number of pages to mark reserved 7476 * 7477 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7478 * In the DMA zone, a significant percentage may be consumed by kernel image 7479 * and other unfreeable allocations which can skew the watermarks badly. This 7480 * function may optionally be used to account for unfreeable pages in the 7481 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7482 * smaller per-cpu batchsize. 7483 */ 7484 void __init set_dma_reserve(unsigned long new_dma_reserve) 7485 { 7486 dma_reserve = new_dma_reserve; 7487 } 7488 7489 void __init free_area_init(unsigned long *zones_size) 7490 { 7491 zero_resv_unavail(); 7492 free_area_init_node(0, zones_size, 7493 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7494 } 7495 7496 static int page_alloc_cpu_dead(unsigned int cpu) 7497 { 7498 7499 lru_add_drain_cpu(cpu); 7500 drain_pages(cpu); 7501 7502 /* 7503 * Spill the event counters of the dead processor 7504 * into the current processors event counters. 7505 * This artificially elevates the count of the current 7506 * processor. 7507 */ 7508 vm_events_fold_cpu(cpu); 7509 7510 /* 7511 * Zero the differential counters of the dead processor 7512 * so that the vm statistics are consistent. 7513 * 7514 * This is only okay since the processor is dead and cannot 7515 * race with what we are doing. 7516 */ 7517 cpu_vm_stats_fold(cpu); 7518 return 0; 7519 } 7520 7521 void __init page_alloc_init(void) 7522 { 7523 int ret; 7524 7525 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7526 "mm/page_alloc:dead", NULL, 7527 page_alloc_cpu_dead); 7528 WARN_ON(ret < 0); 7529 } 7530 7531 /* 7532 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7533 * or min_free_kbytes changes. 7534 */ 7535 static void calculate_totalreserve_pages(void) 7536 { 7537 struct pglist_data *pgdat; 7538 unsigned long reserve_pages = 0; 7539 enum zone_type i, j; 7540 7541 for_each_online_pgdat(pgdat) { 7542 7543 pgdat->totalreserve_pages = 0; 7544 7545 for (i = 0; i < MAX_NR_ZONES; i++) { 7546 struct zone *zone = pgdat->node_zones + i; 7547 long max = 0; 7548 unsigned long managed_pages = zone_managed_pages(zone); 7549 7550 /* Find valid and maximum lowmem_reserve in the zone */ 7551 for (j = i; j < MAX_NR_ZONES; j++) { 7552 if (zone->lowmem_reserve[j] > max) 7553 max = zone->lowmem_reserve[j]; 7554 } 7555 7556 /* we treat the high watermark as reserved pages. */ 7557 max += high_wmark_pages(zone); 7558 7559 if (max > managed_pages) 7560 max = managed_pages; 7561 7562 pgdat->totalreserve_pages += max; 7563 7564 reserve_pages += max; 7565 } 7566 } 7567 totalreserve_pages = reserve_pages; 7568 } 7569 7570 /* 7571 * setup_per_zone_lowmem_reserve - called whenever 7572 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7573 * has a correct pages reserved value, so an adequate number of 7574 * pages are left in the zone after a successful __alloc_pages(). 7575 */ 7576 static void setup_per_zone_lowmem_reserve(void) 7577 { 7578 struct pglist_data *pgdat; 7579 enum zone_type j, idx; 7580 7581 for_each_online_pgdat(pgdat) { 7582 for (j = 0; j < MAX_NR_ZONES; j++) { 7583 struct zone *zone = pgdat->node_zones + j; 7584 unsigned long managed_pages = zone_managed_pages(zone); 7585 7586 zone->lowmem_reserve[j] = 0; 7587 7588 idx = j; 7589 while (idx) { 7590 struct zone *lower_zone; 7591 7592 idx--; 7593 lower_zone = pgdat->node_zones + idx; 7594 7595 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7596 sysctl_lowmem_reserve_ratio[idx] = 0; 7597 lower_zone->lowmem_reserve[j] = 0; 7598 } else { 7599 lower_zone->lowmem_reserve[j] = 7600 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7601 } 7602 managed_pages += zone_managed_pages(lower_zone); 7603 } 7604 } 7605 } 7606 7607 /* update totalreserve_pages */ 7608 calculate_totalreserve_pages(); 7609 } 7610 7611 static void __setup_per_zone_wmarks(void) 7612 { 7613 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7614 unsigned long lowmem_pages = 0; 7615 struct zone *zone; 7616 unsigned long flags; 7617 7618 /* Calculate total number of !ZONE_HIGHMEM pages */ 7619 for_each_zone(zone) { 7620 if (!is_highmem(zone)) 7621 lowmem_pages += zone_managed_pages(zone); 7622 } 7623 7624 for_each_zone(zone) { 7625 u64 tmp; 7626 7627 spin_lock_irqsave(&zone->lock, flags); 7628 tmp = (u64)pages_min * zone_managed_pages(zone); 7629 do_div(tmp, lowmem_pages); 7630 if (is_highmem(zone)) { 7631 /* 7632 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7633 * need highmem pages, so cap pages_min to a small 7634 * value here. 7635 * 7636 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7637 * deltas control async page reclaim, and so should 7638 * not be capped for highmem. 7639 */ 7640 unsigned long min_pages; 7641 7642 min_pages = zone_managed_pages(zone) / 1024; 7643 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7644 zone->_watermark[WMARK_MIN] = min_pages; 7645 } else { 7646 /* 7647 * If it's a lowmem zone, reserve a number of pages 7648 * proportionate to the zone's size. 7649 */ 7650 zone->_watermark[WMARK_MIN] = tmp; 7651 } 7652 7653 /* 7654 * Set the kswapd watermarks distance according to the 7655 * scale factor in proportion to available memory, but 7656 * ensure a minimum size on small systems. 7657 */ 7658 tmp = max_t(u64, tmp >> 2, 7659 mult_frac(zone_managed_pages(zone), 7660 watermark_scale_factor, 10000)); 7661 7662 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7663 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7664 zone->watermark_boost = 0; 7665 7666 spin_unlock_irqrestore(&zone->lock, flags); 7667 } 7668 7669 /* update totalreserve_pages */ 7670 calculate_totalreserve_pages(); 7671 } 7672 7673 /** 7674 * setup_per_zone_wmarks - called when min_free_kbytes changes 7675 * or when memory is hot-{added|removed} 7676 * 7677 * Ensures that the watermark[min,low,high] values for each zone are set 7678 * correctly with respect to min_free_kbytes. 7679 */ 7680 void setup_per_zone_wmarks(void) 7681 { 7682 static DEFINE_SPINLOCK(lock); 7683 7684 spin_lock(&lock); 7685 __setup_per_zone_wmarks(); 7686 spin_unlock(&lock); 7687 } 7688 7689 /* 7690 * Initialise min_free_kbytes. 7691 * 7692 * For small machines we want it small (128k min). For large machines 7693 * we want it large (64MB max). But it is not linear, because network 7694 * bandwidth does not increase linearly with machine size. We use 7695 * 7696 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7697 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7698 * 7699 * which yields 7700 * 7701 * 16MB: 512k 7702 * 32MB: 724k 7703 * 64MB: 1024k 7704 * 128MB: 1448k 7705 * 256MB: 2048k 7706 * 512MB: 2896k 7707 * 1024MB: 4096k 7708 * 2048MB: 5792k 7709 * 4096MB: 8192k 7710 * 8192MB: 11584k 7711 * 16384MB: 16384k 7712 */ 7713 int __meminit init_per_zone_wmark_min(void) 7714 { 7715 unsigned long lowmem_kbytes; 7716 int new_min_free_kbytes; 7717 7718 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7719 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7720 7721 if (new_min_free_kbytes > user_min_free_kbytes) { 7722 min_free_kbytes = new_min_free_kbytes; 7723 if (min_free_kbytes < 128) 7724 min_free_kbytes = 128; 7725 if (min_free_kbytes > 65536) 7726 min_free_kbytes = 65536; 7727 } else { 7728 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7729 new_min_free_kbytes, user_min_free_kbytes); 7730 } 7731 setup_per_zone_wmarks(); 7732 refresh_zone_stat_thresholds(); 7733 setup_per_zone_lowmem_reserve(); 7734 7735 #ifdef CONFIG_NUMA 7736 setup_min_unmapped_ratio(); 7737 setup_min_slab_ratio(); 7738 #endif 7739 7740 return 0; 7741 } 7742 core_initcall(init_per_zone_wmark_min) 7743 7744 /* 7745 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7746 * that we can call two helper functions whenever min_free_kbytes 7747 * changes. 7748 */ 7749 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7750 void __user *buffer, size_t *length, loff_t *ppos) 7751 { 7752 int rc; 7753 7754 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7755 if (rc) 7756 return rc; 7757 7758 if (write) { 7759 user_min_free_kbytes = min_free_kbytes; 7760 setup_per_zone_wmarks(); 7761 } 7762 return 0; 7763 } 7764 7765 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7766 void __user *buffer, size_t *length, loff_t *ppos) 7767 { 7768 int rc; 7769 7770 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7771 if (rc) 7772 return rc; 7773 7774 return 0; 7775 } 7776 7777 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7778 void __user *buffer, size_t *length, loff_t *ppos) 7779 { 7780 int rc; 7781 7782 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7783 if (rc) 7784 return rc; 7785 7786 if (write) 7787 setup_per_zone_wmarks(); 7788 7789 return 0; 7790 } 7791 7792 #ifdef CONFIG_NUMA 7793 static void setup_min_unmapped_ratio(void) 7794 { 7795 pg_data_t *pgdat; 7796 struct zone *zone; 7797 7798 for_each_online_pgdat(pgdat) 7799 pgdat->min_unmapped_pages = 0; 7800 7801 for_each_zone(zone) 7802 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7803 sysctl_min_unmapped_ratio) / 100; 7804 } 7805 7806 7807 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7808 void __user *buffer, size_t *length, loff_t *ppos) 7809 { 7810 int rc; 7811 7812 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7813 if (rc) 7814 return rc; 7815 7816 setup_min_unmapped_ratio(); 7817 7818 return 0; 7819 } 7820 7821 static void setup_min_slab_ratio(void) 7822 { 7823 pg_data_t *pgdat; 7824 struct zone *zone; 7825 7826 for_each_online_pgdat(pgdat) 7827 pgdat->min_slab_pages = 0; 7828 7829 for_each_zone(zone) 7830 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7831 sysctl_min_slab_ratio) / 100; 7832 } 7833 7834 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7835 void __user *buffer, size_t *length, loff_t *ppos) 7836 { 7837 int rc; 7838 7839 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7840 if (rc) 7841 return rc; 7842 7843 setup_min_slab_ratio(); 7844 7845 return 0; 7846 } 7847 #endif 7848 7849 /* 7850 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7851 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7852 * whenever sysctl_lowmem_reserve_ratio changes. 7853 * 7854 * The reserve ratio obviously has absolutely no relation with the 7855 * minimum watermarks. The lowmem reserve ratio can only make sense 7856 * if in function of the boot time zone sizes. 7857 */ 7858 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7859 void __user *buffer, size_t *length, loff_t *ppos) 7860 { 7861 proc_dointvec_minmax(table, write, buffer, length, ppos); 7862 setup_per_zone_lowmem_reserve(); 7863 return 0; 7864 } 7865 7866 /* 7867 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7868 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7869 * pagelist can have before it gets flushed back to buddy allocator. 7870 */ 7871 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7872 void __user *buffer, size_t *length, loff_t *ppos) 7873 { 7874 struct zone *zone; 7875 int old_percpu_pagelist_fraction; 7876 int ret; 7877 7878 mutex_lock(&pcp_batch_high_lock); 7879 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7880 7881 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7882 if (!write || ret < 0) 7883 goto out; 7884 7885 /* Sanity checking to avoid pcp imbalance */ 7886 if (percpu_pagelist_fraction && 7887 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7888 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7889 ret = -EINVAL; 7890 goto out; 7891 } 7892 7893 /* No change? */ 7894 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7895 goto out; 7896 7897 for_each_populated_zone(zone) { 7898 unsigned int cpu; 7899 7900 for_each_possible_cpu(cpu) 7901 pageset_set_high_and_batch(zone, 7902 per_cpu_ptr(zone->pageset, cpu)); 7903 } 7904 out: 7905 mutex_unlock(&pcp_batch_high_lock); 7906 return ret; 7907 } 7908 7909 #ifdef CONFIG_NUMA 7910 int hashdist = HASHDIST_DEFAULT; 7911 7912 static int __init set_hashdist(char *str) 7913 { 7914 if (!str) 7915 return 0; 7916 hashdist = simple_strtoul(str, &str, 0); 7917 return 1; 7918 } 7919 __setup("hashdist=", set_hashdist); 7920 #endif 7921 7922 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7923 /* 7924 * Returns the number of pages that arch has reserved but 7925 * is not known to alloc_large_system_hash(). 7926 */ 7927 static unsigned long __init arch_reserved_kernel_pages(void) 7928 { 7929 return 0; 7930 } 7931 #endif 7932 7933 /* 7934 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7935 * machines. As memory size is increased the scale is also increased but at 7936 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7937 * quadruples the scale is increased by one, which means the size of hash table 7938 * only doubles, instead of quadrupling as well. 7939 * Because 32-bit systems cannot have large physical memory, where this scaling 7940 * makes sense, it is disabled on such platforms. 7941 */ 7942 #if __BITS_PER_LONG > 32 7943 #define ADAPT_SCALE_BASE (64ul << 30) 7944 #define ADAPT_SCALE_SHIFT 2 7945 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7946 #endif 7947 7948 /* 7949 * allocate a large system hash table from bootmem 7950 * - it is assumed that the hash table must contain an exact power-of-2 7951 * quantity of entries 7952 * - limit is the number of hash buckets, not the total allocation size 7953 */ 7954 void *__init alloc_large_system_hash(const char *tablename, 7955 unsigned long bucketsize, 7956 unsigned long numentries, 7957 int scale, 7958 int flags, 7959 unsigned int *_hash_shift, 7960 unsigned int *_hash_mask, 7961 unsigned long low_limit, 7962 unsigned long high_limit) 7963 { 7964 unsigned long long max = high_limit; 7965 unsigned long log2qty, size; 7966 void *table = NULL; 7967 gfp_t gfp_flags; 7968 7969 /* allow the kernel cmdline to have a say */ 7970 if (!numentries) { 7971 /* round applicable memory size up to nearest megabyte */ 7972 numentries = nr_kernel_pages; 7973 numentries -= arch_reserved_kernel_pages(); 7974 7975 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7976 if (PAGE_SHIFT < 20) 7977 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7978 7979 #if __BITS_PER_LONG > 32 7980 if (!high_limit) { 7981 unsigned long adapt; 7982 7983 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7984 adapt <<= ADAPT_SCALE_SHIFT) 7985 scale++; 7986 } 7987 #endif 7988 7989 /* limit to 1 bucket per 2^scale bytes of low memory */ 7990 if (scale > PAGE_SHIFT) 7991 numentries >>= (scale - PAGE_SHIFT); 7992 else 7993 numentries <<= (PAGE_SHIFT - scale); 7994 7995 /* Make sure we've got at least a 0-order allocation.. */ 7996 if (unlikely(flags & HASH_SMALL)) { 7997 /* Makes no sense without HASH_EARLY */ 7998 WARN_ON(!(flags & HASH_EARLY)); 7999 if (!(numentries >> *_hash_shift)) { 8000 numentries = 1UL << *_hash_shift; 8001 BUG_ON(!numentries); 8002 } 8003 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8004 numentries = PAGE_SIZE / bucketsize; 8005 } 8006 numentries = roundup_pow_of_two(numentries); 8007 8008 /* limit allocation size to 1/16 total memory by default */ 8009 if (max == 0) { 8010 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8011 do_div(max, bucketsize); 8012 } 8013 max = min(max, 0x80000000ULL); 8014 8015 if (numentries < low_limit) 8016 numentries = low_limit; 8017 if (numentries > max) 8018 numentries = max; 8019 8020 log2qty = ilog2(numentries); 8021 8022 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8023 do { 8024 size = bucketsize << log2qty; 8025 if (flags & HASH_EARLY) { 8026 if (flags & HASH_ZERO) 8027 table = memblock_alloc(size, SMP_CACHE_BYTES); 8028 else 8029 table = memblock_alloc_raw(size, 8030 SMP_CACHE_BYTES); 8031 } else if (hashdist) { 8032 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8033 } else { 8034 /* 8035 * If bucketsize is not a power-of-two, we may free 8036 * some pages at the end of hash table which 8037 * alloc_pages_exact() automatically does 8038 */ 8039 if (get_order(size) < MAX_ORDER) { 8040 table = alloc_pages_exact(size, gfp_flags); 8041 kmemleak_alloc(table, size, 1, gfp_flags); 8042 } 8043 } 8044 } while (!table && size > PAGE_SIZE && --log2qty); 8045 8046 if (!table) 8047 panic("Failed to allocate %s hash table\n", tablename); 8048 8049 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 8050 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 8051 8052 if (_hash_shift) 8053 *_hash_shift = log2qty; 8054 if (_hash_mask) 8055 *_hash_mask = (1 << log2qty) - 1; 8056 8057 return table; 8058 } 8059 8060 /* 8061 * This function checks whether pageblock includes unmovable pages or not. 8062 * If @count is not zero, it is okay to include less @count unmovable pages 8063 * 8064 * PageLRU check without isolation or lru_lock could race so that 8065 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8066 * check without lock_page also may miss some movable non-lru pages at 8067 * race condition. So you can't expect this function should be exact. 8068 */ 8069 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8070 int migratetype, int flags) 8071 { 8072 unsigned long found; 8073 unsigned long iter = 0; 8074 unsigned long pfn = page_to_pfn(page); 8075 const char *reason = "unmovable page"; 8076 8077 /* 8078 * TODO we could make this much more efficient by not checking every 8079 * page in the range if we know all of them are in MOVABLE_ZONE and 8080 * that the movable zone guarantees that pages are migratable but 8081 * the later is not the case right now unfortunatelly. E.g. movablecore 8082 * can still lead to having bootmem allocations in zone_movable. 8083 */ 8084 8085 if (is_migrate_cma_page(page)) { 8086 /* 8087 * CMA allocations (alloc_contig_range) really need to mark 8088 * isolate CMA pageblocks even when they are not movable in fact 8089 * so consider them movable here. 8090 */ 8091 if (is_migrate_cma(migratetype)) 8092 return false; 8093 8094 reason = "CMA page"; 8095 goto unmovable; 8096 } 8097 8098 for (found = 0; iter < pageblock_nr_pages; iter++) { 8099 unsigned long check = pfn + iter; 8100 8101 if (!pfn_valid_within(check)) 8102 continue; 8103 8104 page = pfn_to_page(check); 8105 8106 if (PageReserved(page)) 8107 goto unmovable; 8108 8109 /* 8110 * If the zone is movable and we have ruled out all reserved 8111 * pages then it should be reasonably safe to assume the rest 8112 * is movable. 8113 */ 8114 if (zone_idx(zone) == ZONE_MOVABLE) 8115 continue; 8116 8117 /* 8118 * Hugepages are not in LRU lists, but they're movable. 8119 * We need not scan over tail pages because we don't 8120 * handle each tail page individually in migration. 8121 */ 8122 if (PageHuge(page)) { 8123 struct page *head = compound_head(page); 8124 unsigned int skip_pages; 8125 8126 if (!hugepage_migration_supported(page_hstate(head))) 8127 goto unmovable; 8128 8129 skip_pages = (1 << compound_order(head)) - (page - head); 8130 iter += skip_pages - 1; 8131 continue; 8132 } 8133 8134 /* 8135 * We can't use page_count without pin a page 8136 * because another CPU can free compound page. 8137 * This check already skips compound tails of THP 8138 * because their page->_refcount is zero at all time. 8139 */ 8140 if (!page_ref_count(page)) { 8141 if (PageBuddy(page)) 8142 iter += (1 << page_order(page)) - 1; 8143 continue; 8144 } 8145 8146 /* 8147 * The HWPoisoned page may be not in buddy system, and 8148 * page_count() is not 0. 8149 */ 8150 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8151 continue; 8152 8153 if (__PageMovable(page)) 8154 continue; 8155 8156 if (!PageLRU(page)) 8157 found++; 8158 /* 8159 * If there are RECLAIMABLE pages, we need to check 8160 * it. But now, memory offline itself doesn't call 8161 * shrink_node_slabs() and it still to be fixed. 8162 */ 8163 /* 8164 * If the page is not RAM, page_count()should be 0. 8165 * we don't need more check. This is an _used_ not-movable page. 8166 * 8167 * The problematic thing here is PG_reserved pages. PG_reserved 8168 * is set to both of a memory hole page and a _used_ kernel 8169 * page at boot. 8170 */ 8171 if (found > count) 8172 goto unmovable; 8173 } 8174 return false; 8175 unmovable: 8176 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8177 if (flags & REPORT_FAILURE) 8178 dump_page(pfn_to_page(pfn + iter), reason); 8179 return true; 8180 } 8181 8182 #ifdef CONFIG_CONTIG_ALLOC 8183 static unsigned long pfn_max_align_down(unsigned long pfn) 8184 { 8185 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8186 pageblock_nr_pages) - 1); 8187 } 8188 8189 static unsigned long pfn_max_align_up(unsigned long pfn) 8190 { 8191 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8192 pageblock_nr_pages)); 8193 } 8194 8195 /* [start, end) must belong to a single zone. */ 8196 static int __alloc_contig_migrate_range(struct compact_control *cc, 8197 unsigned long start, unsigned long end) 8198 { 8199 /* This function is based on compact_zone() from compaction.c. */ 8200 unsigned long nr_reclaimed; 8201 unsigned long pfn = start; 8202 unsigned int tries = 0; 8203 int ret = 0; 8204 8205 migrate_prep(); 8206 8207 while (pfn < end || !list_empty(&cc->migratepages)) { 8208 if (fatal_signal_pending(current)) { 8209 ret = -EINTR; 8210 break; 8211 } 8212 8213 if (list_empty(&cc->migratepages)) { 8214 cc->nr_migratepages = 0; 8215 pfn = isolate_migratepages_range(cc, pfn, end); 8216 if (!pfn) { 8217 ret = -EINTR; 8218 break; 8219 } 8220 tries = 0; 8221 } else if (++tries == 5) { 8222 ret = ret < 0 ? ret : -EBUSY; 8223 break; 8224 } 8225 8226 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8227 &cc->migratepages); 8228 cc->nr_migratepages -= nr_reclaimed; 8229 8230 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8231 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8232 } 8233 if (ret < 0) { 8234 putback_movable_pages(&cc->migratepages); 8235 return ret; 8236 } 8237 return 0; 8238 } 8239 8240 /** 8241 * alloc_contig_range() -- tries to allocate given range of pages 8242 * @start: start PFN to allocate 8243 * @end: one-past-the-last PFN to allocate 8244 * @migratetype: migratetype of the underlaying pageblocks (either 8245 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8246 * in range must have the same migratetype and it must 8247 * be either of the two. 8248 * @gfp_mask: GFP mask to use during compaction 8249 * 8250 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8251 * aligned. The PFN range must belong to a single zone. 8252 * 8253 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8254 * pageblocks in the range. Once isolated, the pageblocks should not 8255 * be modified by others. 8256 * 8257 * Return: zero on success or negative error code. On success all 8258 * pages which PFN is in [start, end) are allocated for the caller and 8259 * need to be freed with free_contig_range(). 8260 */ 8261 int alloc_contig_range(unsigned long start, unsigned long end, 8262 unsigned migratetype, gfp_t gfp_mask) 8263 { 8264 unsigned long outer_start, outer_end; 8265 unsigned int order; 8266 int ret = 0; 8267 8268 struct compact_control cc = { 8269 .nr_migratepages = 0, 8270 .order = -1, 8271 .zone = page_zone(pfn_to_page(start)), 8272 .mode = MIGRATE_SYNC, 8273 .ignore_skip_hint = true, 8274 .no_set_skip_hint = true, 8275 .gfp_mask = current_gfp_context(gfp_mask), 8276 }; 8277 INIT_LIST_HEAD(&cc.migratepages); 8278 8279 /* 8280 * What we do here is we mark all pageblocks in range as 8281 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8282 * have different sizes, and due to the way page allocator 8283 * work, we align the range to biggest of the two pages so 8284 * that page allocator won't try to merge buddies from 8285 * different pageblocks and change MIGRATE_ISOLATE to some 8286 * other migration type. 8287 * 8288 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8289 * migrate the pages from an unaligned range (ie. pages that 8290 * we are interested in). This will put all the pages in 8291 * range back to page allocator as MIGRATE_ISOLATE. 8292 * 8293 * When this is done, we take the pages in range from page 8294 * allocator removing them from the buddy system. This way 8295 * page allocator will never consider using them. 8296 * 8297 * This lets us mark the pageblocks back as 8298 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8299 * aligned range but not in the unaligned, original range are 8300 * put back to page allocator so that buddy can use them. 8301 */ 8302 8303 ret = start_isolate_page_range(pfn_max_align_down(start), 8304 pfn_max_align_up(end), migratetype, 0); 8305 if (ret < 0) 8306 return ret; 8307 8308 /* 8309 * In case of -EBUSY, we'd like to know which page causes problem. 8310 * So, just fall through. test_pages_isolated() has a tracepoint 8311 * which will report the busy page. 8312 * 8313 * It is possible that busy pages could become available before 8314 * the call to test_pages_isolated, and the range will actually be 8315 * allocated. So, if we fall through be sure to clear ret so that 8316 * -EBUSY is not accidentally used or returned to caller. 8317 */ 8318 ret = __alloc_contig_migrate_range(&cc, start, end); 8319 if (ret && ret != -EBUSY) 8320 goto done; 8321 ret =0; 8322 8323 /* 8324 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8325 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8326 * more, all pages in [start, end) are free in page allocator. 8327 * What we are going to do is to allocate all pages from 8328 * [start, end) (that is remove them from page allocator). 8329 * 8330 * The only problem is that pages at the beginning and at the 8331 * end of interesting range may be not aligned with pages that 8332 * page allocator holds, ie. they can be part of higher order 8333 * pages. Because of this, we reserve the bigger range and 8334 * once this is done free the pages we are not interested in. 8335 * 8336 * We don't have to hold zone->lock here because the pages are 8337 * isolated thus they won't get removed from buddy. 8338 */ 8339 8340 lru_add_drain_all(); 8341 8342 order = 0; 8343 outer_start = start; 8344 while (!PageBuddy(pfn_to_page(outer_start))) { 8345 if (++order >= MAX_ORDER) { 8346 outer_start = start; 8347 break; 8348 } 8349 outer_start &= ~0UL << order; 8350 } 8351 8352 if (outer_start != start) { 8353 order = page_order(pfn_to_page(outer_start)); 8354 8355 /* 8356 * outer_start page could be small order buddy page and 8357 * it doesn't include start page. Adjust outer_start 8358 * in this case to report failed page properly 8359 * on tracepoint in test_pages_isolated() 8360 */ 8361 if (outer_start + (1UL << order) <= start) 8362 outer_start = start; 8363 } 8364 8365 /* Make sure the range is really isolated. */ 8366 if (test_pages_isolated(outer_start, end, false)) { 8367 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8368 __func__, outer_start, end); 8369 ret = -EBUSY; 8370 goto done; 8371 } 8372 8373 /* Grab isolated pages from freelists. */ 8374 outer_end = isolate_freepages_range(&cc, outer_start, end); 8375 if (!outer_end) { 8376 ret = -EBUSY; 8377 goto done; 8378 } 8379 8380 /* Free head and tail (if any) */ 8381 if (start != outer_start) 8382 free_contig_range(outer_start, start - outer_start); 8383 if (end != outer_end) 8384 free_contig_range(end, outer_end - end); 8385 8386 done: 8387 undo_isolate_page_range(pfn_max_align_down(start), 8388 pfn_max_align_up(end), migratetype); 8389 return ret; 8390 } 8391 #endif /* CONFIG_CONTIG_ALLOC */ 8392 8393 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8394 { 8395 unsigned int count = 0; 8396 8397 for (; nr_pages--; pfn++) { 8398 struct page *page = pfn_to_page(pfn); 8399 8400 count += page_count(page) != 1; 8401 __free_page(page); 8402 } 8403 WARN(count != 0, "%d pages are still in use!\n", count); 8404 } 8405 8406 #ifdef CONFIG_MEMORY_HOTPLUG 8407 /* 8408 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8409 * page high values need to be recalulated. 8410 */ 8411 void __meminit zone_pcp_update(struct zone *zone) 8412 { 8413 unsigned cpu; 8414 mutex_lock(&pcp_batch_high_lock); 8415 for_each_possible_cpu(cpu) 8416 pageset_set_high_and_batch(zone, 8417 per_cpu_ptr(zone->pageset, cpu)); 8418 mutex_unlock(&pcp_batch_high_lock); 8419 } 8420 #endif 8421 8422 void zone_pcp_reset(struct zone *zone) 8423 { 8424 unsigned long flags; 8425 int cpu; 8426 struct per_cpu_pageset *pset; 8427 8428 /* avoid races with drain_pages() */ 8429 local_irq_save(flags); 8430 if (zone->pageset != &boot_pageset) { 8431 for_each_online_cpu(cpu) { 8432 pset = per_cpu_ptr(zone->pageset, cpu); 8433 drain_zonestat(zone, pset); 8434 } 8435 free_percpu(zone->pageset); 8436 zone->pageset = &boot_pageset; 8437 } 8438 local_irq_restore(flags); 8439 } 8440 8441 #ifdef CONFIG_MEMORY_HOTREMOVE 8442 /* 8443 * All pages in the range must be in a single zone and isolated 8444 * before calling this. 8445 */ 8446 unsigned long 8447 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8448 { 8449 struct page *page; 8450 struct zone *zone; 8451 unsigned int order, i; 8452 unsigned long pfn; 8453 unsigned long flags; 8454 unsigned long offlined_pages = 0; 8455 8456 /* find the first valid pfn */ 8457 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8458 if (pfn_valid(pfn)) 8459 break; 8460 if (pfn == end_pfn) 8461 return offlined_pages; 8462 8463 offline_mem_sections(pfn, end_pfn); 8464 zone = page_zone(pfn_to_page(pfn)); 8465 spin_lock_irqsave(&zone->lock, flags); 8466 pfn = start_pfn; 8467 while (pfn < end_pfn) { 8468 if (!pfn_valid(pfn)) { 8469 pfn++; 8470 continue; 8471 } 8472 page = pfn_to_page(pfn); 8473 /* 8474 * The HWPoisoned page may be not in buddy system, and 8475 * page_count() is not 0. 8476 */ 8477 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8478 pfn++; 8479 SetPageReserved(page); 8480 offlined_pages++; 8481 continue; 8482 } 8483 8484 BUG_ON(page_count(page)); 8485 BUG_ON(!PageBuddy(page)); 8486 order = page_order(page); 8487 offlined_pages += 1 << order; 8488 #ifdef CONFIG_DEBUG_VM 8489 pr_info("remove from free list %lx %d %lx\n", 8490 pfn, 1 << order, end_pfn); 8491 #endif 8492 del_page_from_free_area(page, &zone->free_area[order]); 8493 for (i = 0; i < (1 << order); i++) 8494 SetPageReserved((page+i)); 8495 pfn += (1 << order); 8496 } 8497 spin_unlock_irqrestore(&zone->lock, flags); 8498 8499 return offlined_pages; 8500 } 8501 #endif 8502 8503 bool is_free_buddy_page(struct page *page) 8504 { 8505 struct zone *zone = page_zone(page); 8506 unsigned long pfn = page_to_pfn(page); 8507 unsigned long flags; 8508 unsigned int order; 8509 8510 spin_lock_irqsave(&zone->lock, flags); 8511 for (order = 0; order < MAX_ORDER; order++) { 8512 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8513 8514 if (PageBuddy(page_head) && page_order(page_head) >= order) 8515 break; 8516 } 8517 spin_unlock_irqrestore(&zone->lock, flags); 8518 8519 return order < MAX_ORDER; 8520 } 8521 8522 #ifdef CONFIG_MEMORY_FAILURE 8523 /* 8524 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8525 * test is performed under the zone lock to prevent a race against page 8526 * allocation. 8527 */ 8528 bool set_hwpoison_free_buddy_page(struct page *page) 8529 { 8530 struct zone *zone = page_zone(page); 8531 unsigned long pfn = page_to_pfn(page); 8532 unsigned long flags; 8533 unsigned int order; 8534 bool hwpoisoned = false; 8535 8536 spin_lock_irqsave(&zone->lock, flags); 8537 for (order = 0; order < MAX_ORDER; order++) { 8538 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8539 8540 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8541 if (!TestSetPageHWPoison(page)) 8542 hwpoisoned = true; 8543 break; 8544 } 8545 } 8546 spin_unlock_irqrestore(&zone->lock, flags); 8547 8548 return hwpoisoned; 8549 } 8550 #endif 8551