xref: /openbmc/linux/mm/page_alloc.c (revision 1c2dd16a)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 
69 #include <asm/sections.h>
70 #include <asm/tlbflush.h>
71 #include <asm/div64.h>
72 #include "internal.h"
73 
74 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
75 static DEFINE_MUTEX(pcp_batch_high_lock);
76 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
77 
78 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
79 DEFINE_PER_CPU(int, numa_node);
80 EXPORT_PER_CPU_SYMBOL(numa_node);
81 #endif
82 
83 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
84 /*
85  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
86  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
87  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
88  * defined in <linux/topology.h>.
89  */
90 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
91 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
92 int _node_numa_mem_[MAX_NUMNODES];
93 #endif
94 
95 /* work_structs for global per-cpu drains */
96 DEFINE_MUTEX(pcpu_drain_mutex);
97 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
98 
99 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
100 volatile unsigned long latent_entropy __latent_entropy;
101 EXPORT_SYMBOL(latent_entropy);
102 #endif
103 
104 /*
105  * Array of node states.
106  */
107 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
108 	[N_POSSIBLE] = NODE_MASK_ALL,
109 	[N_ONLINE] = { { [0] = 1UL } },
110 #ifndef CONFIG_NUMA
111 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
112 #ifdef CONFIG_HIGHMEM
113 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
114 #endif
115 #ifdef CONFIG_MOVABLE_NODE
116 	[N_MEMORY] = { { [0] = 1UL } },
117 #endif
118 	[N_CPU] = { { [0] = 1UL } },
119 #endif	/* NUMA */
120 };
121 EXPORT_SYMBOL(node_states);
122 
123 /* Protect totalram_pages and zone->managed_pages */
124 static DEFINE_SPINLOCK(managed_page_count_lock);
125 
126 unsigned long totalram_pages __read_mostly;
127 unsigned long totalreserve_pages __read_mostly;
128 unsigned long totalcma_pages __read_mostly;
129 
130 int percpu_pagelist_fraction;
131 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
132 
133 /*
134  * A cached value of the page's pageblock's migratetype, used when the page is
135  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
136  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
137  * Also the migratetype set in the page does not necessarily match the pcplist
138  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
139  * other index - this ensures that it will be put on the correct CMA freelist.
140  */
141 static inline int get_pcppage_migratetype(struct page *page)
142 {
143 	return page->index;
144 }
145 
146 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
147 {
148 	page->index = migratetype;
149 }
150 
151 #ifdef CONFIG_PM_SLEEP
152 /*
153  * The following functions are used by the suspend/hibernate code to temporarily
154  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
155  * while devices are suspended.  To avoid races with the suspend/hibernate code,
156  * they should always be called with pm_mutex held (gfp_allowed_mask also should
157  * only be modified with pm_mutex held, unless the suspend/hibernate code is
158  * guaranteed not to run in parallel with that modification).
159  */
160 
161 static gfp_t saved_gfp_mask;
162 
163 void pm_restore_gfp_mask(void)
164 {
165 	WARN_ON(!mutex_is_locked(&pm_mutex));
166 	if (saved_gfp_mask) {
167 		gfp_allowed_mask = saved_gfp_mask;
168 		saved_gfp_mask = 0;
169 	}
170 }
171 
172 void pm_restrict_gfp_mask(void)
173 {
174 	WARN_ON(!mutex_is_locked(&pm_mutex));
175 	WARN_ON(saved_gfp_mask);
176 	saved_gfp_mask = gfp_allowed_mask;
177 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
178 }
179 
180 bool pm_suspended_storage(void)
181 {
182 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
183 		return false;
184 	return true;
185 }
186 #endif /* CONFIG_PM_SLEEP */
187 
188 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
189 unsigned int pageblock_order __read_mostly;
190 #endif
191 
192 static void __free_pages_ok(struct page *page, unsigned int order);
193 
194 /*
195  * results with 256, 32 in the lowmem_reserve sysctl:
196  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
197  *	1G machine -> (16M dma, 784M normal, 224M high)
198  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
199  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
200  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
201  *
202  * TBD: should special case ZONE_DMA32 machines here - in those we normally
203  * don't need any ZONE_NORMAL reservation
204  */
205 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
206 #ifdef CONFIG_ZONE_DMA
207 	 256,
208 #endif
209 #ifdef CONFIG_ZONE_DMA32
210 	 256,
211 #endif
212 #ifdef CONFIG_HIGHMEM
213 	 32,
214 #endif
215 	 32,
216 };
217 
218 EXPORT_SYMBOL(totalram_pages);
219 
220 static char * const zone_names[MAX_NR_ZONES] = {
221 #ifdef CONFIG_ZONE_DMA
222 	 "DMA",
223 #endif
224 #ifdef CONFIG_ZONE_DMA32
225 	 "DMA32",
226 #endif
227 	 "Normal",
228 #ifdef CONFIG_HIGHMEM
229 	 "HighMem",
230 #endif
231 	 "Movable",
232 #ifdef CONFIG_ZONE_DEVICE
233 	 "Device",
234 #endif
235 };
236 
237 char * const migratetype_names[MIGRATE_TYPES] = {
238 	"Unmovable",
239 	"Movable",
240 	"Reclaimable",
241 	"HighAtomic",
242 #ifdef CONFIG_CMA
243 	"CMA",
244 #endif
245 #ifdef CONFIG_MEMORY_ISOLATION
246 	"Isolate",
247 #endif
248 };
249 
250 compound_page_dtor * const compound_page_dtors[] = {
251 	NULL,
252 	free_compound_page,
253 #ifdef CONFIG_HUGETLB_PAGE
254 	free_huge_page,
255 #endif
256 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
257 	free_transhuge_page,
258 #endif
259 };
260 
261 int min_free_kbytes = 1024;
262 int user_min_free_kbytes = -1;
263 int watermark_scale_factor = 10;
264 
265 static unsigned long __meminitdata nr_kernel_pages;
266 static unsigned long __meminitdata nr_all_pages;
267 static unsigned long __meminitdata dma_reserve;
268 
269 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
270 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
271 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __initdata required_kernelcore;
273 static unsigned long __initdata required_movablecore;
274 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
275 static bool mirrored_kernelcore;
276 
277 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
278 int movable_zone;
279 EXPORT_SYMBOL(movable_zone);
280 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
281 
282 #if MAX_NUMNODES > 1
283 int nr_node_ids __read_mostly = MAX_NUMNODES;
284 int nr_online_nodes __read_mostly = 1;
285 EXPORT_SYMBOL(nr_node_ids);
286 EXPORT_SYMBOL(nr_online_nodes);
287 #endif
288 
289 int page_group_by_mobility_disabled __read_mostly;
290 
291 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
292 static inline void reset_deferred_meminit(pg_data_t *pgdat)
293 {
294 	pgdat->first_deferred_pfn = ULONG_MAX;
295 }
296 
297 /* Returns true if the struct page for the pfn is uninitialised */
298 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
299 {
300 	int nid = early_pfn_to_nid(pfn);
301 
302 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
303 		return true;
304 
305 	return false;
306 }
307 
308 /*
309  * Returns false when the remaining initialisation should be deferred until
310  * later in the boot cycle when it can be parallelised.
311  */
312 static inline bool update_defer_init(pg_data_t *pgdat,
313 				unsigned long pfn, unsigned long zone_end,
314 				unsigned long *nr_initialised)
315 {
316 	unsigned long max_initialise;
317 
318 	/* Always populate low zones for address-contrained allocations */
319 	if (zone_end < pgdat_end_pfn(pgdat))
320 		return true;
321 	/*
322 	 * Initialise at least 2G of a node but also take into account that
323 	 * two large system hashes that can take up 1GB for 0.25TB/node.
324 	 */
325 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
326 		(pgdat->node_spanned_pages >> 8));
327 
328 	(*nr_initialised)++;
329 	if ((*nr_initialised > max_initialise) &&
330 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
331 		pgdat->first_deferred_pfn = pfn;
332 		return false;
333 	}
334 
335 	return true;
336 }
337 #else
338 static inline void reset_deferred_meminit(pg_data_t *pgdat)
339 {
340 }
341 
342 static inline bool early_page_uninitialised(unsigned long pfn)
343 {
344 	return false;
345 }
346 
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 				unsigned long pfn, unsigned long zone_end,
349 				unsigned long *nr_initialised)
350 {
351 	return true;
352 }
353 #endif
354 
355 /* Return a pointer to the bitmap storing bits affecting a block of pages */
356 static inline unsigned long *get_pageblock_bitmap(struct page *page,
357 							unsigned long pfn)
358 {
359 #ifdef CONFIG_SPARSEMEM
360 	return __pfn_to_section(pfn)->pageblock_flags;
361 #else
362 	return page_zone(page)->pageblock_flags;
363 #endif /* CONFIG_SPARSEMEM */
364 }
365 
366 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
367 {
368 #ifdef CONFIG_SPARSEMEM
369 	pfn &= (PAGES_PER_SECTION-1);
370 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
371 #else
372 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
373 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
374 #endif /* CONFIG_SPARSEMEM */
375 }
376 
377 /**
378  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
379  * @page: The page within the block of interest
380  * @pfn: The target page frame number
381  * @end_bitidx: The last bit of interest to retrieve
382  * @mask: mask of bits that the caller is interested in
383  *
384  * Return: pageblock_bits flags
385  */
386 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
387 					unsigned long pfn,
388 					unsigned long end_bitidx,
389 					unsigned long mask)
390 {
391 	unsigned long *bitmap;
392 	unsigned long bitidx, word_bitidx;
393 	unsigned long word;
394 
395 	bitmap = get_pageblock_bitmap(page, pfn);
396 	bitidx = pfn_to_bitidx(page, pfn);
397 	word_bitidx = bitidx / BITS_PER_LONG;
398 	bitidx &= (BITS_PER_LONG-1);
399 
400 	word = bitmap[word_bitidx];
401 	bitidx += end_bitidx;
402 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
403 }
404 
405 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
406 					unsigned long end_bitidx,
407 					unsigned long mask)
408 {
409 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
410 }
411 
412 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
413 {
414 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
415 }
416 
417 /**
418  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
419  * @page: The page within the block of interest
420  * @flags: The flags to set
421  * @pfn: The target page frame number
422  * @end_bitidx: The last bit of interest
423  * @mask: mask of bits that the caller is interested in
424  */
425 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
426 					unsigned long pfn,
427 					unsigned long end_bitidx,
428 					unsigned long mask)
429 {
430 	unsigned long *bitmap;
431 	unsigned long bitidx, word_bitidx;
432 	unsigned long old_word, word;
433 
434 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
435 
436 	bitmap = get_pageblock_bitmap(page, pfn);
437 	bitidx = pfn_to_bitidx(page, pfn);
438 	word_bitidx = bitidx / BITS_PER_LONG;
439 	bitidx &= (BITS_PER_LONG-1);
440 
441 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
442 
443 	bitidx += end_bitidx;
444 	mask <<= (BITS_PER_LONG - bitidx - 1);
445 	flags <<= (BITS_PER_LONG - bitidx - 1);
446 
447 	word = READ_ONCE(bitmap[word_bitidx]);
448 	for (;;) {
449 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
450 		if (word == old_word)
451 			break;
452 		word = old_word;
453 	}
454 }
455 
456 void set_pageblock_migratetype(struct page *page, int migratetype)
457 {
458 	if (unlikely(page_group_by_mobility_disabled &&
459 		     migratetype < MIGRATE_PCPTYPES))
460 		migratetype = MIGRATE_UNMOVABLE;
461 
462 	set_pageblock_flags_group(page, (unsigned long)migratetype,
463 					PB_migrate, PB_migrate_end);
464 }
465 
466 #ifdef CONFIG_DEBUG_VM
467 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
468 {
469 	int ret = 0;
470 	unsigned seq;
471 	unsigned long pfn = page_to_pfn(page);
472 	unsigned long sp, start_pfn;
473 
474 	do {
475 		seq = zone_span_seqbegin(zone);
476 		start_pfn = zone->zone_start_pfn;
477 		sp = zone->spanned_pages;
478 		if (!zone_spans_pfn(zone, pfn))
479 			ret = 1;
480 	} while (zone_span_seqretry(zone, seq));
481 
482 	if (ret)
483 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
484 			pfn, zone_to_nid(zone), zone->name,
485 			start_pfn, start_pfn + sp);
486 
487 	return ret;
488 }
489 
490 static int page_is_consistent(struct zone *zone, struct page *page)
491 {
492 	if (!pfn_valid_within(page_to_pfn(page)))
493 		return 0;
494 	if (zone != page_zone(page))
495 		return 0;
496 
497 	return 1;
498 }
499 /*
500  * Temporary debugging check for pages not lying within a given zone.
501  */
502 static int bad_range(struct zone *zone, struct page *page)
503 {
504 	if (page_outside_zone_boundaries(zone, page))
505 		return 1;
506 	if (!page_is_consistent(zone, page))
507 		return 1;
508 
509 	return 0;
510 }
511 #else
512 static inline int bad_range(struct zone *zone, struct page *page)
513 {
514 	return 0;
515 }
516 #endif
517 
518 static void bad_page(struct page *page, const char *reason,
519 		unsigned long bad_flags)
520 {
521 	static unsigned long resume;
522 	static unsigned long nr_shown;
523 	static unsigned long nr_unshown;
524 
525 	/*
526 	 * Allow a burst of 60 reports, then keep quiet for that minute;
527 	 * or allow a steady drip of one report per second.
528 	 */
529 	if (nr_shown == 60) {
530 		if (time_before(jiffies, resume)) {
531 			nr_unshown++;
532 			goto out;
533 		}
534 		if (nr_unshown) {
535 			pr_alert(
536 			      "BUG: Bad page state: %lu messages suppressed\n",
537 				nr_unshown);
538 			nr_unshown = 0;
539 		}
540 		nr_shown = 0;
541 	}
542 	if (nr_shown++ == 0)
543 		resume = jiffies + 60 * HZ;
544 
545 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
546 		current->comm, page_to_pfn(page));
547 	__dump_page(page, reason);
548 	bad_flags &= page->flags;
549 	if (bad_flags)
550 		pr_alert("bad because of flags: %#lx(%pGp)\n",
551 						bad_flags, &bad_flags);
552 	dump_page_owner(page);
553 
554 	print_modules();
555 	dump_stack();
556 out:
557 	/* Leave bad fields for debug, except PageBuddy could make trouble */
558 	page_mapcount_reset(page); /* remove PageBuddy */
559 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
560 }
561 
562 /*
563  * Higher-order pages are called "compound pages".  They are structured thusly:
564  *
565  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
566  *
567  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
568  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
569  *
570  * The first tail page's ->compound_dtor holds the offset in array of compound
571  * page destructors. See compound_page_dtors.
572  *
573  * The first tail page's ->compound_order holds the order of allocation.
574  * This usage means that zero-order pages may not be compound.
575  */
576 
577 void free_compound_page(struct page *page)
578 {
579 	__free_pages_ok(page, compound_order(page));
580 }
581 
582 void prep_compound_page(struct page *page, unsigned int order)
583 {
584 	int i;
585 	int nr_pages = 1 << order;
586 
587 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
588 	set_compound_order(page, order);
589 	__SetPageHead(page);
590 	for (i = 1; i < nr_pages; i++) {
591 		struct page *p = page + i;
592 		set_page_count(p, 0);
593 		p->mapping = TAIL_MAPPING;
594 		set_compound_head(p, page);
595 	}
596 	atomic_set(compound_mapcount_ptr(page), -1);
597 }
598 
599 #ifdef CONFIG_DEBUG_PAGEALLOC
600 unsigned int _debug_guardpage_minorder;
601 bool _debug_pagealloc_enabled __read_mostly
602 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
603 EXPORT_SYMBOL(_debug_pagealloc_enabled);
604 bool _debug_guardpage_enabled __read_mostly;
605 
606 static int __init early_debug_pagealloc(char *buf)
607 {
608 	if (!buf)
609 		return -EINVAL;
610 	return kstrtobool(buf, &_debug_pagealloc_enabled);
611 }
612 early_param("debug_pagealloc", early_debug_pagealloc);
613 
614 static bool need_debug_guardpage(void)
615 {
616 	/* If we don't use debug_pagealloc, we don't need guard page */
617 	if (!debug_pagealloc_enabled())
618 		return false;
619 
620 	if (!debug_guardpage_minorder())
621 		return false;
622 
623 	return true;
624 }
625 
626 static void init_debug_guardpage(void)
627 {
628 	if (!debug_pagealloc_enabled())
629 		return;
630 
631 	if (!debug_guardpage_minorder())
632 		return;
633 
634 	_debug_guardpage_enabled = true;
635 }
636 
637 struct page_ext_operations debug_guardpage_ops = {
638 	.need = need_debug_guardpage,
639 	.init = init_debug_guardpage,
640 };
641 
642 static int __init debug_guardpage_minorder_setup(char *buf)
643 {
644 	unsigned long res;
645 
646 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
647 		pr_err("Bad debug_guardpage_minorder value\n");
648 		return 0;
649 	}
650 	_debug_guardpage_minorder = res;
651 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
652 	return 0;
653 }
654 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
655 
656 static inline bool set_page_guard(struct zone *zone, struct page *page,
657 				unsigned int order, int migratetype)
658 {
659 	struct page_ext *page_ext;
660 
661 	if (!debug_guardpage_enabled())
662 		return false;
663 
664 	if (order >= debug_guardpage_minorder())
665 		return false;
666 
667 	page_ext = lookup_page_ext(page);
668 	if (unlikely(!page_ext))
669 		return false;
670 
671 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
672 
673 	INIT_LIST_HEAD(&page->lru);
674 	set_page_private(page, order);
675 	/* Guard pages are not available for any usage */
676 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
677 
678 	return true;
679 }
680 
681 static inline void clear_page_guard(struct zone *zone, struct page *page,
682 				unsigned int order, int migratetype)
683 {
684 	struct page_ext *page_ext;
685 
686 	if (!debug_guardpage_enabled())
687 		return;
688 
689 	page_ext = lookup_page_ext(page);
690 	if (unlikely(!page_ext))
691 		return;
692 
693 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
694 
695 	set_page_private(page, 0);
696 	if (!is_migrate_isolate(migratetype))
697 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
698 }
699 #else
700 struct page_ext_operations debug_guardpage_ops;
701 static inline bool set_page_guard(struct zone *zone, struct page *page,
702 			unsigned int order, int migratetype) { return false; }
703 static inline void clear_page_guard(struct zone *zone, struct page *page,
704 				unsigned int order, int migratetype) {}
705 #endif
706 
707 static inline void set_page_order(struct page *page, unsigned int order)
708 {
709 	set_page_private(page, order);
710 	__SetPageBuddy(page);
711 }
712 
713 static inline void rmv_page_order(struct page *page)
714 {
715 	__ClearPageBuddy(page);
716 	set_page_private(page, 0);
717 }
718 
719 /*
720  * This function checks whether a page is free && is the buddy
721  * we can do coalesce a page and its buddy if
722  * (a) the buddy is not in a hole (check before calling!) &&
723  * (b) the buddy is in the buddy system &&
724  * (c) a page and its buddy have the same order &&
725  * (d) a page and its buddy are in the same zone.
726  *
727  * For recording whether a page is in the buddy system, we set ->_mapcount
728  * PAGE_BUDDY_MAPCOUNT_VALUE.
729  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
730  * serialized by zone->lock.
731  *
732  * For recording page's order, we use page_private(page).
733  */
734 static inline int page_is_buddy(struct page *page, struct page *buddy,
735 							unsigned int order)
736 {
737 	if (page_is_guard(buddy) && page_order(buddy) == order) {
738 		if (page_zone_id(page) != page_zone_id(buddy))
739 			return 0;
740 
741 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
742 
743 		return 1;
744 	}
745 
746 	if (PageBuddy(buddy) && page_order(buddy) == order) {
747 		/*
748 		 * zone check is done late to avoid uselessly
749 		 * calculating zone/node ids for pages that could
750 		 * never merge.
751 		 */
752 		if (page_zone_id(page) != page_zone_id(buddy))
753 			return 0;
754 
755 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
756 
757 		return 1;
758 	}
759 	return 0;
760 }
761 
762 /*
763  * Freeing function for a buddy system allocator.
764  *
765  * The concept of a buddy system is to maintain direct-mapped table
766  * (containing bit values) for memory blocks of various "orders".
767  * The bottom level table contains the map for the smallest allocatable
768  * units of memory (here, pages), and each level above it describes
769  * pairs of units from the levels below, hence, "buddies".
770  * At a high level, all that happens here is marking the table entry
771  * at the bottom level available, and propagating the changes upward
772  * as necessary, plus some accounting needed to play nicely with other
773  * parts of the VM system.
774  * At each level, we keep a list of pages, which are heads of continuous
775  * free pages of length of (1 << order) and marked with _mapcount
776  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
777  * field.
778  * So when we are allocating or freeing one, we can derive the state of the
779  * other.  That is, if we allocate a small block, and both were
780  * free, the remainder of the region must be split into blocks.
781  * If a block is freed, and its buddy is also free, then this
782  * triggers coalescing into a block of larger size.
783  *
784  * -- nyc
785  */
786 
787 static inline void __free_one_page(struct page *page,
788 		unsigned long pfn,
789 		struct zone *zone, unsigned int order,
790 		int migratetype)
791 {
792 	unsigned long combined_pfn;
793 	unsigned long uninitialized_var(buddy_pfn);
794 	struct page *buddy;
795 	unsigned int max_order;
796 
797 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
798 
799 	VM_BUG_ON(!zone_is_initialized(zone));
800 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
801 
802 	VM_BUG_ON(migratetype == -1);
803 	if (likely(!is_migrate_isolate(migratetype)))
804 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
805 
806 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
807 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
808 
809 continue_merging:
810 	while (order < max_order - 1) {
811 		buddy_pfn = __find_buddy_pfn(pfn, order);
812 		buddy = page + (buddy_pfn - pfn);
813 
814 		if (!pfn_valid_within(buddy_pfn))
815 			goto done_merging;
816 		if (!page_is_buddy(page, buddy, order))
817 			goto done_merging;
818 		/*
819 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
820 		 * merge with it and move up one order.
821 		 */
822 		if (page_is_guard(buddy)) {
823 			clear_page_guard(zone, buddy, order, migratetype);
824 		} else {
825 			list_del(&buddy->lru);
826 			zone->free_area[order].nr_free--;
827 			rmv_page_order(buddy);
828 		}
829 		combined_pfn = buddy_pfn & pfn;
830 		page = page + (combined_pfn - pfn);
831 		pfn = combined_pfn;
832 		order++;
833 	}
834 	if (max_order < MAX_ORDER) {
835 		/* If we are here, it means order is >= pageblock_order.
836 		 * We want to prevent merge between freepages on isolate
837 		 * pageblock and normal pageblock. Without this, pageblock
838 		 * isolation could cause incorrect freepage or CMA accounting.
839 		 *
840 		 * We don't want to hit this code for the more frequent
841 		 * low-order merging.
842 		 */
843 		if (unlikely(has_isolate_pageblock(zone))) {
844 			int buddy_mt;
845 
846 			buddy_pfn = __find_buddy_pfn(pfn, order);
847 			buddy = page + (buddy_pfn - pfn);
848 			buddy_mt = get_pageblock_migratetype(buddy);
849 
850 			if (migratetype != buddy_mt
851 					&& (is_migrate_isolate(migratetype) ||
852 						is_migrate_isolate(buddy_mt)))
853 				goto done_merging;
854 		}
855 		max_order++;
856 		goto continue_merging;
857 	}
858 
859 done_merging:
860 	set_page_order(page, order);
861 
862 	/*
863 	 * If this is not the largest possible page, check if the buddy
864 	 * of the next-highest order is free. If it is, it's possible
865 	 * that pages are being freed that will coalesce soon. In case,
866 	 * that is happening, add the free page to the tail of the list
867 	 * so it's less likely to be used soon and more likely to be merged
868 	 * as a higher order page
869 	 */
870 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
871 		struct page *higher_page, *higher_buddy;
872 		combined_pfn = buddy_pfn & pfn;
873 		higher_page = page + (combined_pfn - pfn);
874 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
875 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
876 		if (pfn_valid_within(buddy_pfn) &&
877 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
878 			list_add_tail(&page->lru,
879 				&zone->free_area[order].free_list[migratetype]);
880 			goto out;
881 		}
882 	}
883 
884 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
885 out:
886 	zone->free_area[order].nr_free++;
887 }
888 
889 /*
890  * A bad page could be due to a number of fields. Instead of multiple branches,
891  * try and check multiple fields with one check. The caller must do a detailed
892  * check if necessary.
893  */
894 static inline bool page_expected_state(struct page *page,
895 					unsigned long check_flags)
896 {
897 	if (unlikely(atomic_read(&page->_mapcount) != -1))
898 		return false;
899 
900 	if (unlikely((unsigned long)page->mapping |
901 			page_ref_count(page) |
902 #ifdef CONFIG_MEMCG
903 			(unsigned long)page->mem_cgroup |
904 #endif
905 			(page->flags & check_flags)))
906 		return false;
907 
908 	return true;
909 }
910 
911 static void free_pages_check_bad(struct page *page)
912 {
913 	const char *bad_reason;
914 	unsigned long bad_flags;
915 
916 	bad_reason = NULL;
917 	bad_flags = 0;
918 
919 	if (unlikely(atomic_read(&page->_mapcount) != -1))
920 		bad_reason = "nonzero mapcount";
921 	if (unlikely(page->mapping != NULL))
922 		bad_reason = "non-NULL mapping";
923 	if (unlikely(page_ref_count(page) != 0))
924 		bad_reason = "nonzero _refcount";
925 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
926 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
927 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
928 	}
929 #ifdef CONFIG_MEMCG
930 	if (unlikely(page->mem_cgroup))
931 		bad_reason = "page still charged to cgroup";
932 #endif
933 	bad_page(page, bad_reason, bad_flags);
934 }
935 
936 static inline int free_pages_check(struct page *page)
937 {
938 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
939 		return 0;
940 
941 	/* Something has gone sideways, find it */
942 	free_pages_check_bad(page);
943 	return 1;
944 }
945 
946 static int free_tail_pages_check(struct page *head_page, struct page *page)
947 {
948 	int ret = 1;
949 
950 	/*
951 	 * We rely page->lru.next never has bit 0 set, unless the page
952 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
953 	 */
954 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
955 
956 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
957 		ret = 0;
958 		goto out;
959 	}
960 	switch (page - head_page) {
961 	case 1:
962 		/* the first tail page: ->mapping is compound_mapcount() */
963 		if (unlikely(compound_mapcount(page))) {
964 			bad_page(page, "nonzero compound_mapcount", 0);
965 			goto out;
966 		}
967 		break;
968 	case 2:
969 		/*
970 		 * the second tail page: ->mapping is
971 		 * page_deferred_list().next -- ignore value.
972 		 */
973 		break;
974 	default:
975 		if (page->mapping != TAIL_MAPPING) {
976 			bad_page(page, "corrupted mapping in tail page", 0);
977 			goto out;
978 		}
979 		break;
980 	}
981 	if (unlikely(!PageTail(page))) {
982 		bad_page(page, "PageTail not set", 0);
983 		goto out;
984 	}
985 	if (unlikely(compound_head(page) != head_page)) {
986 		bad_page(page, "compound_head not consistent", 0);
987 		goto out;
988 	}
989 	ret = 0;
990 out:
991 	page->mapping = NULL;
992 	clear_compound_head(page);
993 	return ret;
994 }
995 
996 static __always_inline bool free_pages_prepare(struct page *page,
997 					unsigned int order, bool check_free)
998 {
999 	int bad = 0;
1000 
1001 	VM_BUG_ON_PAGE(PageTail(page), page);
1002 
1003 	trace_mm_page_free(page, order);
1004 	kmemcheck_free_shadow(page, order);
1005 
1006 	/*
1007 	 * Check tail pages before head page information is cleared to
1008 	 * avoid checking PageCompound for order-0 pages.
1009 	 */
1010 	if (unlikely(order)) {
1011 		bool compound = PageCompound(page);
1012 		int i;
1013 
1014 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1015 
1016 		if (compound)
1017 			ClearPageDoubleMap(page);
1018 		for (i = 1; i < (1 << order); i++) {
1019 			if (compound)
1020 				bad += free_tail_pages_check(page, page + i);
1021 			if (unlikely(free_pages_check(page + i))) {
1022 				bad++;
1023 				continue;
1024 			}
1025 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1026 		}
1027 	}
1028 	if (PageMappingFlags(page))
1029 		page->mapping = NULL;
1030 	if (memcg_kmem_enabled() && PageKmemcg(page))
1031 		memcg_kmem_uncharge(page, order);
1032 	if (check_free)
1033 		bad += free_pages_check(page);
1034 	if (bad)
1035 		return false;
1036 
1037 	page_cpupid_reset_last(page);
1038 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1039 	reset_page_owner(page, order);
1040 
1041 	if (!PageHighMem(page)) {
1042 		debug_check_no_locks_freed(page_address(page),
1043 					   PAGE_SIZE << order);
1044 		debug_check_no_obj_freed(page_address(page),
1045 					   PAGE_SIZE << order);
1046 	}
1047 	arch_free_page(page, order);
1048 	kernel_poison_pages(page, 1 << order, 0);
1049 	kernel_map_pages(page, 1 << order, 0);
1050 	kasan_free_pages(page, order);
1051 
1052 	return true;
1053 }
1054 
1055 #ifdef CONFIG_DEBUG_VM
1056 static inline bool free_pcp_prepare(struct page *page)
1057 {
1058 	return free_pages_prepare(page, 0, true);
1059 }
1060 
1061 static inline bool bulkfree_pcp_prepare(struct page *page)
1062 {
1063 	return false;
1064 }
1065 #else
1066 static bool free_pcp_prepare(struct page *page)
1067 {
1068 	return free_pages_prepare(page, 0, false);
1069 }
1070 
1071 static bool bulkfree_pcp_prepare(struct page *page)
1072 {
1073 	return free_pages_check(page);
1074 }
1075 #endif /* CONFIG_DEBUG_VM */
1076 
1077 /*
1078  * Frees a number of pages from the PCP lists
1079  * Assumes all pages on list are in same zone, and of same order.
1080  * count is the number of pages to free.
1081  *
1082  * If the zone was previously in an "all pages pinned" state then look to
1083  * see if this freeing clears that state.
1084  *
1085  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1086  * pinned" detection logic.
1087  */
1088 static void free_pcppages_bulk(struct zone *zone, int count,
1089 					struct per_cpu_pages *pcp)
1090 {
1091 	int migratetype = 0;
1092 	int batch_free = 0;
1093 	unsigned long nr_scanned;
1094 	bool isolated_pageblocks;
1095 
1096 	spin_lock(&zone->lock);
1097 	isolated_pageblocks = has_isolate_pageblock(zone);
1098 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1099 	if (nr_scanned)
1100 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1101 
1102 	while (count) {
1103 		struct page *page;
1104 		struct list_head *list;
1105 
1106 		/*
1107 		 * Remove pages from lists in a round-robin fashion. A
1108 		 * batch_free count is maintained that is incremented when an
1109 		 * empty list is encountered.  This is so more pages are freed
1110 		 * off fuller lists instead of spinning excessively around empty
1111 		 * lists
1112 		 */
1113 		do {
1114 			batch_free++;
1115 			if (++migratetype == MIGRATE_PCPTYPES)
1116 				migratetype = 0;
1117 			list = &pcp->lists[migratetype];
1118 		} while (list_empty(list));
1119 
1120 		/* This is the only non-empty list. Free them all. */
1121 		if (batch_free == MIGRATE_PCPTYPES)
1122 			batch_free = count;
1123 
1124 		do {
1125 			int mt;	/* migratetype of the to-be-freed page */
1126 
1127 			page = list_last_entry(list, struct page, lru);
1128 			/* must delete as __free_one_page list manipulates */
1129 			list_del(&page->lru);
1130 
1131 			mt = get_pcppage_migratetype(page);
1132 			/* MIGRATE_ISOLATE page should not go to pcplists */
1133 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1134 			/* Pageblock could have been isolated meanwhile */
1135 			if (unlikely(isolated_pageblocks))
1136 				mt = get_pageblock_migratetype(page);
1137 
1138 			if (bulkfree_pcp_prepare(page))
1139 				continue;
1140 
1141 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1142 			trace_mm_page_pcpu_drain(page, 0, mt);
1143 		} while (--count && --batch_free && !list_empty(list));
1144 	}
1145 	spin_unlock(&zone->lock);
1146 }
1147 
1148 static void free_one_page(struct zone *zone,
1149 				struct page *page, unsigned long pfn,
1150 				unsigned int order,
1151 				int migratetype)
1152 {
1153 	unsigned long nr_scanned;
1154 	spin_lock(&zone->lock);
1155 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1156 	if (nr_scanned)
1157 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1158 
1159 	if (unlikely(has_isolate_pageblock(zone) ||
1160 		is_migrate_isolate(migratetype))) {
1161 		migratetype = get_pfnblock_migratetype(page, pfn);
1162 	}
1163 	__free_one_page(page, pfn, zone, order, migratetype);
1164 	spin_unlock(&zone->lock);
1165 }
1166 
1167 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1168 				unsigned long zone, int nid)
1169 {
1170 	set_page_links(page, zone, nid, pfn);
1171 	init_page_count(page);
1172 	page_mapcount_reset(page);
1173 	page_cpupid_reset_last(page);
1174 
1175 	INIT_LIST_HEAD(&page->lru);
1176 #ifdef WANT_PAGE_VIRTUAL
1177 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1178 	if (!is_highmem_idx(zone))
1179 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1180 #endif
1181 }
1182 
1183 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1184 					int nid)
1185 {
1186 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1187 }
1188 
1189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1190 static void init_reserved_page(unsigned long pfn)
1191 {
1192 	pg_data_t *pgdat;
1193 	int nid, zid;
1194 
1195 	if (!early_page_uninitialised(pfn))
1196 		return;
1197 
1198 	nid = early_pfn_to_nid(pfn);
1199 	pgdat = NODE_DATA(nid);
1200 
1201 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1202 		struct zone *zone = &pgdat->node_zones[zid];
1203 
1204 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1205 			break;
1206 	}
1207 	__init_single_pfn(pfn, zid, nid);
1208 }
1209 #else
1210 static inline void init_reserved_page(unsigned long pfn)
1211 {
1212 }
1213 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1214 
1215 /*
1216  * Initialised pages do not have PageReserved set. This function is
1217  * called for each range allocated by the bootmem allocator and
1218  * marks the pages PageReserved. The remaining valid pages are later
1219  * sent to the buddy page allocator.
1220  */
1221 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1222 {
1223 	unsigned long start_pfn = PFN_DOWN(start);
1224 	unsigned long end_pfn = PFN_UP(end);
1225 
1226 	for (; start_pfn < end_pfn; start_pfn++) {
1227 		if (pfn_valid(start_pfn)) {
1228 			struct page *page = pfn_to_page(start_pfn);
1229 
1230 			init_reserved_page(start_pfn);
1231 
1232 			/* Avoid false-positive PageTail() */
1233 			INIT_LIST_HEAD(&page->lru);
1234 
1235 			SetPageReserved(page);
1236 		}
1237 	}
1238 }
1239 
1240 static void __free_pages_ok(struct page *page, unsigned int order)
1241 {
1242 	unsigned long flags;
1243 	int migratetype;
1244 	unsigned long pfn = page_to_pfn(page);
1245 
1246 	if (!free_pages_prepare(page, order, true))
1247 		return;
1248 
1249 	migratetype = get_pfnblock_migratetype(page, pfn);
1250 	local_irq_save(flags);
1251 	__count_vm_events(PGFREE, 1 << order);
1252 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1253 	local_irq_restore(flags);
1254 }
1255 
1256 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1257 {
1258 	unsigned int nr_pages = 1 << order;
1259 	struct page *p = page;
1260 	unsigned int loop;
1261 
1262 	prefetchw(p);
1263 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1264 		prefetchw(p + 1);
1265 		__ClearPageReserved(p);
1266 		set_page_count(p, 0);
1267 	}
1268 	__ClearPageReserved(p);
1269 	set_page_count(p, 0);
1270 
1271 	page_zone(page)->managed_pages += nr_pages;
1272 	set_page_refcounted(page);
1273 	__free_pages(page, order);
1274 }
1275 
1276 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1277 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1278 
1279 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1280 
1281 int __meminit early_pfn_to_nid(unsigned long pfn)
1282 {
1283 	static DEFINE_SPINLOCK(early_pfn_lock);
1284 	int nid;
1285 
1286 	spin_lock(&early_pfn_lock);
1287 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1288 	if (nid < 0)
1289 		nid = first_online_node;
1290 	spin_unlock(&early_pfn_lock);
1291 
1292 	return nid;
1293 }
1294 #endif
1295 
1296 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1297 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1298 					struct mminit_pfnnid_cache *state)
1299 {
1300 	int nid;
1301 
1302 	nid = __early_pfn_to_nid(pfn, state);
1303 	if (nid >= 0 && nid != node)
1304 		return false;
1305 	return true;
1306 }
1307 
1308 /* Only safe to use early in boot when initialisation is single-threaded */
1309 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1310 {
1311 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1312 }
1313 
1314 #else
1315 
1316 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1317 {
1318 	return true;
1319 }
1320 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1321 					struct mminit_pfnnid_cache *state)
1322 {
1323 	return true;
1324 }
1325 #endif
1326 
1327 
1328 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1329 							unsigned int order)
1330 {
1331 	if (early_page_uninitialised(pfn))
1332 		return;
1333 	return __free_pages_boot_core(page, order);
1334 }
1335 
1336 /*
1337  * Check that the whole (or subset of) a pageblock given by the interval of
1338  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1339  * with the migration of free compaction scanner. The scanners then need to
1340  * use only pfn_valid_within() check for arches that allow holes within
1341  * pageblocks.
1342  *
1343  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1344  *
1345  * It's possible on some configurations to have a setup like node0 node1 node0
1346  * i.e. it's possible that all pages within a zones range of pages do not
1347  * belong to a single zone. We assume that a border between node0 and node1
1348  * can occur within a single pageblock, but not a node0 node1 node0
1349  * interleaving within a single pageblock. It is therefore sufficient to check
1350  * the first and last page of a pageblock and avoid checking each individual
1351  * page in a pageblock.
1352  */
1353 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1354 				     unsigned long end_pfn, struct zone *zone)
1355 {
1356 	struct page *start_page;
1357 	struct page *end_page;
1358 
1359 	/* end_pfn is one past the range we are checking */
1360 	end_pfn--;
1361 
1362 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1363 		return NULL;
1364 
1365 	start_page = pfn_to_page(start_pfn);
1366 
1367 	if (page_zone(start_page) != zone)
1368 		return NULL;
1369 
1370 	end_page = pfn_to_page(end_pfn);
1371 
1372 	/* This gives a shorter code than deriving page_zone(end_page) */
1373 	if (page_zone_id(start_page) != page_zone_id(end_page))
1374 		return NULL;
1375 
1376 	return start_page;
1377 }
1378 
1379 void set_zone_contiguous(struct zone *zone)
1380 {
1381 	unsigned long block_start_pfn = zone->zone_start_pfn;
1382 	unsigned long block_end_pfn;
1383 
1384 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1385 	for (; block_start_pfn < zone_end_pfn(zone);
1386 			block_start_pfn = block_end_pfn,
1387 			 block_end_pfn += pageblock_nr_pages) {
1388 
1389 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1390 
1391 		if (!__pageblock_pfn_to_page(block_start_pfn,
1392 					     block_end_pfn, zone))
1393 			return;
1394 	}
1395 
1396 	/* We confirm that there is no hole */
1397 	zone->contiguous = true;
1398 }
1399 
1400 void clear_zone_contiguous(struct zone *zone)
1401 {
1402 	zone->contiguous = false;
1403 }
1404 
1405 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1406 static void __init deferred_free_range(struct page *page,
1407 					unsigned long pfn, int nr_pages)
1408 {
1409 	int i;
1410 
1411 	if (!page)
1412 		return;
1413 
1414 	/* Free a large naturally-aligned chunk if possible */
1415 	if (nr_pages == pageblock_nr_pages &&
1416 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1417 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1418 		__free_pages_boot_core(page, pageblock_order);
1419 		return;
1420 	}
1421 
1422 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1423 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1424 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1425 		__free_pages_boot_core(page, 0);
1426 	}
1427 }
1428 
1429 /* Completion tracking for deferred_init_memmap() threads */
1430 static atomic_t pgdat_init_n_undone __initdata;
1431 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1432 
1433 static inline void __init pgdat_init_report_one_done(void)
1434 {
1435 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1436 		complete(&pgdat_init_all_done_comp);
1437 }
1438 
1439 /* Initialise remaining memory on a node */
1440 static int __init deferred_init_memmap(void *data)
1441 {
1442 	pg_data_t *pgdat = data;
1443 	int nid = pgdat->node_id;
1444 	struct mminit_pfnnid_cache nid_init_state = { };
1445 	unsigned long start = jiffies;
1446 	unsigned long nr_pages = 0;
1447 	unsigned long walk_start, walk_end;
1448 	int i, zid;
1449 	struct zone *zone;
1450 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1451 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1452 
1453 	if (first_init_pfn == ULONG_MAX) {
1454 		pgdat_init_report_one_done();
1455 		return 0;
1456 	}
1457 
1458 	/* Bind memory initialisation thread to a local node if possible */
1459 	if (!cpumask_empty(cpumask))
1460 		set_cpus_allowed_ptr(current, cpumask);
1461 
1462 	/* Sanity check boundaries */
1463 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1464 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1465 	pgdat->first_deferred_pfn = ULONG_MAX;
1466 
1467 	/* Only the highest zone is deferred so find it */
1468 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1469 		zone = pgdat->node_zones + zid;
1470 		if (first_init_pfn < zone_end_pfn(zone))
1471 			break;
1472 	}
1473 
1474 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1475 		unsigned long pfn, end_pfn;
1476 		struct page *page = NULL;
1477 		struct page *free_base_page = NULL;
1478 		unsigned long free_base_pfn = 0;
1479 		int nr_to_free = 0;
1480 
1481 		end_pfn = min(walk_end, zone_end_pfn(zone));
1482 		pfn = first_init_pfn;
1483 		if (pfn < walk_start)
1484 			pfn = walk_start;
1485 		if (pfn < zone->zone_start_pfn)
1486 			pfn = zone->zone_start_pfn;
1487 
1488 		for (; pfn < end_pfn; pfn++) {
1489 			if (!pfn_valid_within(pfn))
1490 				goto free_range;
1491 
1492 			/*
1493 			 * Ensure pfn_valid is checked every
1494 			 * pageblock_nr_pages for memory holes
1495 			 */
1496 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1497 				if (!pfn_valid(pfn)) {
1498 					page = NULL;
1499 					goto free_range;
1500 				}
1501 			}
1502 
1503 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1504 				page = NULL;
1505 				goto free_range;
1506 			}
1507 
1508 			/* Minimise pfn page lookups and scheduler checks */
1509 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1510 				page++;
1511 			} else {
1512 				nr_pages += nr_to_free;
1513 				deferred_free_range(free_base_page,
1514 						free_base_pfn, nr_to_free);
1515 				free_base_page = NULL;
1516 				free_base_pfn = nr_to_free = 0;
1517 
1518 				page = pfn_to_page(pfn);
1519 				cond_resched();
1520 			}
1521 
1522 			if (page->flags) {
1523 				VM_BUG_ON(page_zone(page) != zone);
1524 				goto free_range;
1525 			}
1526 
1527 			__init_single_page(page, pfn, zid, nid);
1528 			if (!free_base_page) {
1529 				free_base_page = page;
1530 				free_base_pfn = pfn;
1531 				nr_to_free = 0;
1532 			}
1533 			nr_to_free++;
1534 
1535 			/* Where possible, batch up pages for a single free */
1536 			continue;
1537 free_range:
1538 			/* Free the current block of pages to allocator */
1539 			nr_pages += nr_to_free;
1540 			deferred_free_range(free_base_page, free_base_pfn,
1541 								nr_to_free);
1542 			free_base_page = NULL;
1543 			free_base_pfn = nr_to_free = 0;
1544 		}
1545 		/* Free the last block of pages to allocator */
1546 		nr_pages += nr_to_free;
1547 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1548 
1549 		first_init_pfn = max(end_pfn, first_init_pfn);
1550 	}
1551 
1552 	/* Sanity check that the next zone really is unpopulated */
1553 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1554 
1555 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1556 					jiffies_to_msecs(jiffies - start));
1557 
1558 	pgdat_init_report_one_done();
1559 	return 0;
1560 }
1561 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1562 
1563 void __init page_alloc_init_late(void)
1564 {
1565 	struct zone *zone;
1566 
1567 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1568 	int nid;
1569 
1570 	/* There will be num_node_state(N_MEMORY) threads */
1571 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1572 	for_each_node_state(nid, N_MEMORY) {
1573 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1574 	}
1575 
1576 	/* Block until all are initialised */
1577 	wait_for_completion(&pgdat_init_all_done_comp);
1578 
1579 	/* Reinit limits that are based on free pages after the kernel is up */
1580 	files_maxfiles_init();
1581 #endif
1582 
1583 	for_each_populated_zone(zone)
1584 		set_zone_contiguous(zone);
1585 }
1586 
1587 #ifdef CONFIG_CMA
1588 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1589 void __init init_cma_reserved_pageblock(struct page *page)
1590 {
1591 	unsigned i = pageblock_nr_pages;
1592 	struct page *p = page;
1593 
1594 	do {
1595 		__ClearPageReserved(p);
1596 		set_page_count(p, 0);
1597 	} while (++p, --i);
1598 
1599 	set_pageblock_migratetype(page, MIGRATE_CMA);
1600 
1601 	if (pageblock_order >= MAX_ORDER) {
1602 		i = pageblock_nr_pages;
1603 		p = page;
1604 		do {
1605 			set_page_refcounted(p);
1606 			__free_pages(p, MAX_ORDER - 1);
1607 			p += MAX_ORDER_NR_PAGES;
1608 		} while (i -= MAX_ORDER_NR_PAGES);
1609 	} else {
1610 		set_page_refcounted(page);
1611 		__free_pages(page, pageblock_order);
1612 	}
1613 
1614 	adjust_managed_page_count(page, pageblock_nr_pages);
1615 }
1616 #endif
1617 
1618 /*
1619  * The order of subdivision here is critical for the IO subsystem.
1620  * Please do not alter this order without good reasons and regression
1621  * testing. Specifically, as large blocks of memory are subdivided,
1622  * the order in which smaller blocks are delivered depends on the order
1623  * they're subdivided in this function. This is the primary factor
1624  * influencing the order in which pages are delivered to the IO
1625  * subsystem according to empirical testing, and this is also justified
1626  * by considering the behavior of a buddy system containing a single
1627  * large block of memory acted on by a series of small allocations.
1628  * This behavior is a critical factor in sglist merging's success.
1629  *
1630  * -- nyc
1631  */
1632 static inline void expand(struct zone *zone, struct page *page,
1633 	int low, int high, struct free_area *area,
1634 	int migratetype)
1635 {
1636 	unsigned long size = 1 << high;
1637 
1638 	while (high > low) {
1639 		area--;
1640 		high--;
1641 		size >>= 1;
1642 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1643 
1644 		/*
1645 		 * Mark as guard pages (or page), that will allow to
1646 		 * merge back to allocator when buddy will be freed.
1647 		 * Corresponding page table entries will not be touched,
1648 		 * pages will stay not present in virtual address space
1649 		 */
1650 		if (set_page_guard(zone, &page[size], high, migratetype))
1651 			continue;
1652 
1653 		list_add(&page[size].lru, &area->free_list[migratetype]);
1654 		area->nr_free++;
1655 		set_page_order(&page[size], high);
1656 	}
1657 }
1658 
1659 static void check_new_page_bad(struct page *page)
1660 {
1661 	const char *bad_reason = NULL;
1662 	unsigned long bad_flags = 0;
1663 
1664 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1665 		bad_reason = "nonzero mapcount";
1666 	if (unlikely(page->mapping != NULL))
1667 		bad_reason = "non-NULL mapping";
1668 	if (unlikely(page_ref_count(page) != 0))
1669 		bad_reason = "nonzero _count";
1670 	if (unlikely(page->flags & __PG_HWPOISON)) {
1671 		bad_reason = "HWPoisoned (hardware-corrupted)";
1672 		bad_flags = __PG_HWPOISON;
1673 		/* Don't complain about hwpoisoned pages */
1674 		page_mapcount_reset(page); /* remove PageBuddy */
1675 		return;
1676 	}
1677 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1678 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1679 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1680 	}
1681 #ifdef CONFIG_MEMCG
1682 	if (unlikely(page->mem_cgroup))
1683 		bad_reason = "page still charged to cgroup";
1684 #endif
1685 	bad_page(page, bad_reason, bad_flags);
1686 }
1687 
1688 /*
1689  * This page is about to be returned from the page allocator
1690  */
1691 static inline int check_new_page(struct page *page)
1692 {
1693 	if (likely(page_expected_state(page,
1694 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1695 		return 0;
1696 
1697 	check_new_page_bad(page);
1698 	return 1;
1699 }
1700 
1701 static inline bool free_pages_prezeroed(bool poisoned)
1702 {
1703 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1704 		page_poisoning_enabled() && poisoned;
1705 }
1706 
1707 #ifdef CONFIG_DEBUG_VM
1708 static bool check_pcp_refill(struct page *page)
1709 {
1710 	return false;
1711 }
1712 
1713 static bool check_new_pcp(struct page *page)
1714 {
1715 	return check_new_page(page);
1716 }
1717 #else
1718 static bool check_pcp_refill(struct page *page)
1719 {
1720 	return check_new_page(page);
1721 }
1722 static bool check_new_pcp(struct page *page)
1723 {
1724 	return false;
1725 }
1726 #endif /* CONFIG_DEBUG_VM */
1727 
1728 static bool check_new_pages(struct page *page, unsigned int order)
1729 {
1730 	int i;
1731 	for (i = 0; i < (1 << order); i++) {
1732 		struct page *p = page + i;
1733 
1734 		if (unlikely(check_new_page(p)))
1735 			return true;
1736 	}
1737 
1738 	return false;
1739 }
1740 
1741 inline void post_alloc_hook(struct page *page, unsigned int order,
1742 				gfp_t gfp_flags)
1743 {
1744 	set_page_private(page, 0);
1745 	set_page_refcounted(page);
1746 
1747 	arch_alloc_page(page, order);
1748 	kernel_map_pages(page, 1 << order, 1);
1749 	kernel_poison_pages(page, 1 << order, 1);
1750 	kasan_alloc_pages(page, order);
1751 	set_page_owner(page, order, gfp_flags);
1752 }
1753 
1754 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1755 							unsigned int alloc_flags)
1756 {
1757 	int i;
1758 	bool poisoned = true;
1759 
1760 	for (i = 0; i < (1 << order); i++) {
1761 		struct page *p = page + i;
1762 		if (poisoned)
1763 			poisoned &= page_is_poisoned(p);
1764 	}
1765 
1766 	post_alloc_hook(page, order, gfp_flags);
1767 
1768 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1769 		for (i = 0; i < (1 << order); i++)
1770 			clear_highpage(page + i);
1771 
1772 	if (order && (gfp_flags & __GFP_COMP))
1773 		prep_compound_page(page, order);
1774 
1775 	/*
1776 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1777 	 * allocate the page. The expectation is that the caller is taking
1778 	 * steps that will free more memory. The caller should avoid the page
1779 	 * being used for !PFMEMALLOC purposes.
1780 	 */
1781 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1782 		set_page_pfmemalloc(page);
1783 	else
1784 		clear_page_pfmemalloc(page);
1785 }
1786 
1787 /*
1788  * Go through the free lists for the given migratetype and remove
1789  * the smallest available page from the freelists
1790  */
1791 static inline
1792 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1793 						int migratetype)
1794 {
1795 	unsigned int current_order;
1796 	struct free_area *area;
1797 	struct page *page;
1798 
1799 	/* Find a page of the appropriate size in the preferred list */
1800 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1801 		area = &(zone->free_area[current_order]);
1802 		page = list_first_entry_or_null(&area->free_list[migratetype],
1803 							struct page, lru);
1804 		if (!page)
1805 			continue;
1806 		list_del(&page->lru);
1807 		rmv_page_order(page);
1808 		area->nr_free--;
1809 		expand(zone, page, order, current_order, area, migratetype);
1810 		set_pcppage_migratetype(page, migratetype);
1811 		return page;
1812 	}
1813 
1814 	return NULL;
1815 }
1816 
1817 
1818 /*
1819  * This array describes the order lists are fallen back to when
1820  * the free lists for the desirable migrate type are depleted
1821  */
1822 static int fallbacks[MIGRATE_TYPES][4] = {
1823 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1824 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1825 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1826 #ifdef CONFIG_CMA
1827 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1828 #endif
1829 #ifdef CONFIG_MEMORY_ISOLATION
1830 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1831 #endif
1832 };
1833 
1834 #ifdef CONFIG_CMA
1835 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1836 					unsigned int order)
1837 {
1838 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1839 }
1840 #else
1841 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1842 					unsigned int order) { return NULL; }
1843 #endif
1844 
1845 /*
1846  * Move the free pages in a range to the free lists of the requested type.
1847  * Note that start_page and end_pages are not aligned on a pageblock
1848  * boundary. If alignment is required, use move_freepages_block()
1849  */
1850 int move_freepages(struct zone *zone,
1851 			  struct page *start_page, struct page *end_page,
1852 			  int migratetype)
1853 {
1854 	struct page *page;
1855 	unsigned int order;
1856 	int pages_moved = 0;
1857 
1858 #ifndef CONFIG_HOLES_IN_ZONE
1859 	/*
1860 	 * page_zone is not safe to call in this context when
1861 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1862 	 * anyway as we check zone boundaries in move_freepages_block().
1863 	 * Remove at a later date when no bug reports exist related to
1864 	 * grouping pages by mobility
1865 	 */
1866 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1867 #endif
1868 
1869 	for (page = start_page; page <= end_page;) {
1870 		if (!pfn_valid_within(page_to_pfn(page))) {
1871 			page++;
1872 			continue;
1873 		}
1874 
1875 		/* Make sure we are not inadvertently changing nodes */
1876 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1877 
1878 		if (!PageBuddy(page)) {
1879 			page++;
1880 			continue;
1881 		}
1882 
1883 		order = page_order(page);
1884 		list_move(&page->lru,
1885 			  &zone->free_area[order].free_list[migratetype]);
1886 		page += 1 << order;
1887 		pages_moved += 1 << order;
1888 	}
1889 
1890 	return pages_moved;
1891 }
1892 
1893 int move_freepages_block(struct zone *zone, struct page *page,
1894 				int migratetype)
1895 {
1896 	unsigned long start_pfn, end_pfn;
1897 	struct page *start_page, *end_page;
1898 
1899 	start_pfn = page_to_pfn(page);
1900 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1901 	start_page = pfn_to_page(start_pfn);
1902 	end_page = start_page + pageblock_nr_pages - 1;
1903 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1904 
1905 	/* Do not cross zone boundaries */
1906 	if (!zone_spans_pfn(zone, start_pfn))
1907 		start_page = page;
1908 	if (!zone_spans_pfn(zone, end_pfn))
1909 		return 0;
1910 
1911 	return move_freepages(zone, start_page, end_page, migratetype);
1912 }
1913 
1914 static void change_pageblock_range(struct page *pageblock_page,
1915 					int start_order, int migratetype)
1916 {
1917 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1918 
1919 	while (nr_pageblocks--) {
1920 		set_pageblock_migratetype(pageblock_page, migratetype);
1921 		pageblock_page += pageblock_nr_pages;
1922 	}
1923 }
1924 
1925 /*
1926  * When we are falling back to another migratetype during allocation, try to
1927  * steal extra free pages from the same pageblocks to satisfy further
1928  * allocations, instead of polluting multiple pageblocks.
1929  *
1930  * If we are stealing a relatively large buddy page, it is likely there will
1931  * be more free pages in the pageblock, so try to steal them all. For
1932  * reclaimable and unmovable allocations, we steal regardless of page size,
1933  * as fragmentation caused by those allocations polluting movable pageblocks
1934  * is worse than movable allocations stealing from unmovable and reclaimable
1935  * pageblocks.
1936  */
1937 static bool can_steal_fallback(unsigned int order, int start_mt)
1938 {
1939 	/*
1940 	 * Leaving this order check is intended, although there is
1941 	 * relaxed order check in next check. The reason is that
1942 	 * we can actually steal whole pageblock if this condition met,
1943 	 * but, below check doesn't guarantee it and that is just heuristic
1944 	 * so could be changed anytime.
1945 	 */
1946 	if (order >= pageblock_order)
1947 		return true;
1948 
1949 	if (order >= pageblock_order / 2 ||
1950 		start_mt == MIGRATE_RECLAIMABLE ||
1951 		start_mt == MIGRATE_UNMOVABLE ||
1952 		page_group_by_mobility_disabled)
1953 		return true;
1954 
1955 	return false;
1956 }
1957 
1958 /*
1959  * This function implements actual steal behaviour. If order is large enough,
1960  * we can steal whole pageblock. If not, we first move freepages in this
1961  * pageblock and check whether half of pages are moved or not. If half of
1962  * pages are moved, we can change migratetype of pageblock and permanently
1963  * use it's pages as requested migratetype in the future.
1964  */
1965 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1966 							  int start_type)
1967 {
1968 	unsigned int current_order = page_order(page);
1969 	int pages;
1970 
1971 	/* Take ownership for orders >= pageblock_order */
1972 	if (current_order >= pageblock_order) {
1973 		change_pageblock_range(page, current_order, start_type);
1974 		return;
1975 	}
1976 
1977 	pages = move_freepages_block(zone, page, start_type);
1978 
1979 	/* Claim the whole block if over half of it is free */
1980 	if (pages >= (1 << (pageblock_order-1)) ||
1981 			page_group_by_mobility_disabled)
1982 		set_pageblock_migratetype(page, start_type);
1983 }
1984 
1985 /*
1986  * Check whether there is a suitable fallback freepage with requested order.
1987  * If only_stealable is true, this function returns fallback_mt only if
1988  * we can steal other freepages all together. This would help to reduce
1989  * fragmentation due to mixed migratetype pages in one pageblock.
1990  */
1991 int find_suitable_fallback(struct free_area *area, unsigned int order,
1992 			int migratetype, bool only_stealable, bool *can_steal)
1993 {
1994 	int i;
1995 	int fallback_mt;
1996 
1997 	if (area->nr_free == 0)
1998 		return -1;
1999 
2000 	*can_steal = false;
2001 	for (i = 0;; i++) {
2002 		fallback_mt = fallbacks[migratetype][i];
2003 		if (fallback_mt == MIGRATE_TYPES)
2004 			break;
2005 
2006 		if (list_empty(&area->free_list[fallback_mt]))
2007 			continue;
2008 
2009 		if (can_steal_fallback(order, migratetype))
2010 			*can_steal = true;
2011 
2012 		if (!only_stealable)
2013 			return fallback_mt;
2014 
2015 		if (*can_steal)
2016 			return fallback_mt;
2017 	}
2018 
2019 	return -1;
2020 }
2021 
2022 /*
2023  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2024  * there are no empty page blocks that contain a page with a suitable order
2025  */
2026 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2027 				unsigned int alloc_order)
2028 {
2029 	int mt;
2030 	unsigned long max_managed, flags;
2031 
2032 	/*
2033 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2034 	 * Check is race-prone but harmless.
2035 	 */
2036 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2037 	if (zone->nr_reserved_highatomic >= max_managed)
2038 		return;
2039 
2040 	spin_lock_irqsave(&zone->lock, flags);
2041 
2042 	/* Recheck the nr_reserved_highatomic limit under the lock */
2043 	if (zone->nr_reserved_highatomic >= max_managed)
2044 		goto out_unlock;
2045 
2046 	/* Yoink! */
2047 	mt = get_pageblock_migratetype(page);
2048 	if (mt != MIGRATE_HIGHATOMIC &&
2049 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2050 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2051 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2052 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2053 	}
2054 
2055 out_unlock:
2056 	spin_unlock_irqrestore(&zone->lock, flags);
2057 }
2058 
2059 /*
2060  * Used when an allocation is about to fail under memory pressure. This
2061  * potentially hurts the reliability of high-order allocations when under
2062  * intense memory pressure but failed atomic allocations should be easier
2063  * to recover from than an OOM.
2064  *
2065  * If @force is true, try to unreserve a pageblock even though highatomic
2066  * pageblock is exhausted.
2067  */
2068 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2069 						bool force)
2070 {
2071 	struct zonelist *zonelist = ac->zonelist;
2072 	unsigned long flags;
2073 	struct zoneref *z;
2074 	struct zone *zone;
2075 	struct page *page;
2076 	int order;
2077 	bool ret;
2078 
2079 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2080 								ac->nodemask) {
2081 		/*
2082 		 * Preserve at least one pageblock unless memory pressure
2083 		 * is really high.
2084 		 */
2085 		if (!force && zone->nr_reserved_highatomic <=
2086 					pageblock_nr_pages)
2087 			continue;
2088 
2089 		spin_lock_irqsave(&zone->lock, flags);
2090 		for (order = 0; order < MAX_ORDER; order++) {
2091 			struct free_area *area = &(zone->free_area[order]);
2092 
2093 			page = list_first_entry_or_null(
2094 					&area->free_list[MIGRATE_HIGHATOMIC],
2095 					struct page, lru);
2096 			if (!page)
2097 				continue;
2098 
2099 			/*
2100 			 * In page freeing path, migratetype change is racy so
2101 			 * we can counter several free pages in a pageblock
2102 			 * in this loop althoug we changed the pageblock type
2103 			 * from highatomic to ac->migratetype. So we should
2104 			 * adjust the count once.
2105 			 */
2106 			if (get_pageblock_migratetype(page) ==
2107 							MIGRATE_HIGHATOMIC) {
2108 				/*
2109 				 * It should never happen but changes to
2110 				 * locking could inadvertently allow a per-cpu
2111 				 * drain to add pages to MIGRATE_HIGHATOMIC
2112 				 * while unreserving so be safe and watch for
2113 				 * underflows.
2114 				 */
2115 				zone->nr_reserved_highatomic -= min(
2116 						pageblock_nr_pages,
2117 						zone->nr_reserved_highatomic);
2118 			}
2119 
2120 			/*
2121 			 * Convert to ac->migratetype and avoid the normal
2122 			 * pageblock stealing heuristics. Minimally, the caller
2123 			 * is doing the work and needs the pages. More
2124 			 * importantly, if the block was always converted to
2125 			 * MIGRATE_UNMOVABLE or another type then the number
2126 			 * of pageblocks that cannot be completely freed
2127 			 * may increase.
2128 			 */
2129 			set_pageblock_migratetype(page, ac->migratetype);
2130 			ret = move_freepages_block(zone, page, ac->migratetype);
2131 			if (ret) {
2132 				spin_unlock_irqrestore(&zone->lock, flags);
2133 				return ret;
2134 			}
2135 		}
2136 		spin_unlock_irqrestore(&zone->lock, flags);
2137 	}
2138 
2139 	return false;
2140 }
2141 
2142 /* Remove an element from the buddy allocator from the fallback list */
2143 static inline struct page *
2144 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2145 {
2146 	struct free_area *area;
2147 	unsigned int current_order;
2148 	struct page *page;
2149 	int fallback_mt;
2150 	bool can_steal;
2151 
2152 	/* Find the largest possible block of pages in the other list */
2153 	for (current_order = MAX_ORDER-1;
2154 				current_order >= order && current_order <= MAX_ORDER-1;
2155 				--current_order) {
2156 		area = &(zone->free_area[current_order]);
2157 		fallback_mt = find_suitable_fallback(area, current_order,
2158 				start_migratetype, false, &can_steal);
2159 		if (fallback_mt == -1)
2160 			continue;
2161 
2162 		page = list_first_entry(&area->free_list[fallback_mt],
2163 						struct page, lru);
2164 		if (can_steal &&
2165 			get_pageblock_migratetype(page) != MIGRATE_HIGHATOMIC)
2166 			steal_suitable_fallback(zone, page, start_migratetype);
2167 
2168 		/* Remove the page from the freelists */
2169 		area->nr_free--;
2170 		list_del(&page->lru);
2171 		rmv_page_order(page);
2172 
2173 		expand(zone, page, order, current_order, area,
2174 					start_migratetype);
2175 		/*
2176 		 * The pcppage_migratetype may differ from pageblock's
2177 		 * migratetype depending on the decisions in
2178 		 * find_suitable_fallback(). This is OK as long as it does not
2179 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2180 		 * fallback only via special __rmqueue_cma_fallback() function
2181 		 */
2182 		set_pcppage_migratetype(page, start_migratetype);
2183 
2184 		trace_mm_page_alloc_extfrag(page, order, current_order,
2185 			start_migratetype, fallback_mt);
2186 
2187 		return page;
2188 	}
2189 
2190 	return NULL;
2191 }
2192 
2193 /*
2194  * Do the hard work of removing an element from the buddy allocator.
2195  * Call me with the zone->lock already held.
2196  */
2197 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2198 				int migratetype)
2199 {
2200 	struct page *page;
2201 
2202 	page = __rmqueue_smallest(zone, order, migratetype);
2203 	if (unlikely(!page)) {
2204 		if (migratetype == MIGRATE_MOVABLE)
2205 			page = __rmqueue_cma_fallback(zone, order);
2206 
2207 		if (!page)
2208 			page = __rmqueue_fallback(zone, order, migratetype);
2209 	}
2210 
2211 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2212 	return page;
2213 }
2214 
2215 /*
2216  * Obtain a specified number of elements from the buddy allocator, all under
2217  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2218  * Returns the number of new pages which were placed at *list.
2219  */
2220 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2221 			unsigned long count, struct list_head *list,
2222 			int migratetype, bool cold)
2223 {
2224 	int i, alloced = 0;
2225 
2226 	spin_lock(&zone->lock);
2227 	for (i = 0; i < count; ++i) {
2228 		struct page *page = __rmqueue(zone, order, migratetype);
2229 		if (unlikely(page == NULL))
2230 			break;
2231 
2232 		if (unlikely(check_pcp_refill(page)))
2233 			continue;
2234 
2235 		/*
2236 		 * Split buddy pages returned by expand() are received here
2237 		 * in physical page order. The page is added to the callers and
2238 		 * list and the list head then moves forward. From the callers
2239 		 * perspective, the linked list is ordered by page number in
2240 		 * some conditions. This is useful for IO devices that can
2241 		 * merge IO requests if the physical pages are ordered
2242 		 * properly.
2243 		 */
2244 		if (likely(!cold))
2245 			list_add(&page->lru, list);
2246 		else
2247 			list_add_tail(&page->lru, list);
2248 		list = &page->lru;
2249 		alloced++;
2250 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2251 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2252 					      -(1 << order));
2253 	}
2254 
2255 	/*
2256 	 * i pages were removed from the buddy list even if some leak due
2257 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2258 	 * on i. Do not confuse with 'alloced' which is the number of
2259 	 * pages added to the pcp list.
2260 	 */
2261 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2262 	spin_unlock(&zone->lock);
2263 	return alloced;
2264 }
2265 
2266 #ifdef CONFIG_NUMA
2267 /*
2268  * Called from the vmstat counter updater to drain pagesets of this
2269  * currently executing processor on remote nodes after they have
2270  * expired.
2271  *
2272  * Note that this function must be called with the thread pinned to
2273  * a single processor.
2274  */
2275 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2276 {
2277 	unsigned long flags;
2278 	int to_drain, batch;
2279 
2280 	local_irq_save(flags);
2281 	batch = READ_ONCE(pcp->batch);
2282 	to_drain = min(pcp->count, batch);
2283 	if (to_drain > 0) {
2284 		free_pcppages_bulk(zone, to_drain, pcp);
2285 		pcp->count -= to_drain;
2286 	}
2287 	local_irq_restore(flags);
2288 }
2289 #endif
2290 
2291 /*
2292  * Drain pcplists of the indicated processor and zone.
2293  *
2294  * The processor must either be the current processor and the
2295  * thread pinned to the current processor or a processor that
2296  * is not online.
2297  */
2298 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2299 {
2300 	unsigned long flags;
2301 	struct per_cpu_pageset *pset;
2302 	struct per_cpu_pages *pcp;
2303 
2304 	local_irq_save(flags);
2305 	pset = per_cpu_ptr(zone->pageset, cpu);
2306 
2307 	pcp = &pset->pcp;
2308 	if (pcp->count) {
2309 		free_pcppages_bulk(zone, pcp->count, pcp);
2310 		pcp->count = 0;
2311 	}
2312 	local_irq_restore(flags);
2313 }
2314 
2315 /*
2316  * Drain pcplists of all zones on the indicated processor.
2317  *
2318  * The processor must either be the current processor and the
2319  * thread pinned to the current processor or a processor that
2320  * is not online.
2321  */
2322 static void drain_pages(unsigned int cpu)
2323 {
2324 	struct zone *zone;
2325 
2326 	for_each_populated_zone(zone) {
2327 		drain_pages_zone(cpu, zone);
2328 	}
2329 }
2330 
2331 /*
2332  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2333  *
2334  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2335  * the single zone's pages.
2336  */
2337 void drain_local_pages(struct zone *zone)
2338 {
2339 	int cpu = smp_processor_id();
2340 
2341 	if (zone)
2342 		drain_pages_zone(cpu, zone);
2343 	else
2344 		drain_pages(cpu);
2345 }
2346 
2347 static void drain_local_pages_wq(struct work_struct *work)
2348 {
2349 	/*
2350 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2351 	 * we can race with cpu offline when the WQ can move this from
2352 	 * a cpu pinned worker to an unbound one. We can operate on a different
2353 	 * cpu which is allright but we also have to make sure to not move to
2354 	 * a different one.
2355 	 */
2356 	preempt_disable();
2357 	drain_local_pages(NULL);
2358 	preempt_enable();
2359 }
2360 
2361 /*
2362  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2363  *
2364  * When zone parameter is non-NULL, spill just the single zone's pages.
2365  *
2366  * Note that this can be extremely slow as the draining happens in a workqueue.
2367  */
2368 void drain_all_pages(struct zone *zone)
2369 {
2370 	int cpu;
2371 
2372 	/*
2373 	 * Allocate in the BSS so we wont require allocation in
2374 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2375 	 */
2376 	static cpumask_t cpus_with_pcps;
2377 
2378 	/*
2379 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2380 	 * initialized.
2381 	 */
2382 	if (WARN_ON_ONCE(!mm_percpu_wq))
2383 		return;
2384 
2385 	/* Workqueues cannot recurse */
2386 	if (current->flags & PF_WQ_WORKER)
2387 		return;
2388 
2389 	/*
2390 	 * Do not drain if one is already in progress unless it's specific to
2391 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2392 	 * the drain to be complete when the call returns.
2393 	 */
2394 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2395 		if (!zone)
2396 			return;
2397 		mutex_lock(&pcpu_drain_mutex);
2398 	}
2399 
2400 	/*
2401 	 * We don't care about racing with CPU hotplug event
2402 	 * as offline notification will cause the notified
2403 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2404 	 * disables preemption as part of its processing
2405 	 */
2406 	for_each_online_cpu(cpu) {
2407 		struct per_cpu_pageset *pcp;
2408 		struct zone *z;
2409 		bool has_pcps = false;
2410 
2411 		if (zone) {
2412 			pcp = per_cpu_ptr(zone->pageset, cpu);
2413 			if (pcp->pcp.count)
2414 				has_pcps = true;
2415 		} else {
2416 			for_each_populated_zone(z) {
2417 				pcp = per_cpu_ptr(z->pageset, cpu);
2418 				if (pcp->pcp.count) {
2419 					has_pcps = true;
2420 					break;
2421 				}
2422 			}
2423 		}
2424 
2425 		if (has_pcps)
2426 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2427 		else
2428 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2429 	}
2430 
2431 	for_each_cpu(cpu, &cpus_with_pcps) {
2432 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2433 		INIT_WORK(work, drain_local_pages_wq);
2434 		queue_work_on(cpu, mm_percpu_wq, work);
2435 	}
2436 	for_each_cpu(cpu, &cpus_with_pcps)
2437 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2438 
2439 	mutex_unlock(&pcpu_drain_mutex);
2440 }
2441 
2442 #ifdef CONFIG_HIBERNATION
2443 
2444 void mark_free_pages(struct zone *zone)
2445 {
2446 	unsigned long pfn, max_zone_pfn;
2447 	unsigned long flags;
2448 	unsigned int order, t;
2449 	struct page *page;
2450 
2451 	if (zone_is_empty(zone))
2452 		return;
2453 
2454 	spin_lock_irqsave(&zone->lock, flags);
2455 
2456 	max_zone_pfn = zone_end_pfn(zone);
2457 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2458 		if (pfn_valid(pfn)) {
2459 			page = pfn_to_page(pfn);
2460 
2461 			if (page_zone(page) != zone)
2462 				continue;
2463 
2464 			if (!swsusp_page_is_forbidden(page))
2465 				swsusp_unset_page_free(page);
2466 		}
2467 
2468 	for_each_migratetype_order(order, t) {
2469 		list_for_each_entry(page,
2470 				&zone->free_area[order].free_list[t], lru) {
2471 			unsigned long i;
2472 
2473 			pfn = page_to_pfn(page);
2474 			for (i = 0; i < (1UL << order); i++)
2475 				swsusp_set_page_free(pfn_to_page(pfn + i));
2476 		}
2477 	}
2478 	spin_unlock_irqrestore(&zone->lock, flags);
2479 }
2480 #endif /* CONFIG_PM */
2481 
2482 /*
2483  * Free a 0-order page
2484  * cold == true ? free a cold page : free a hot page
2485  */
2486 void free_hot_cold_page(struct page *page, bool cold)
2487 {
2488 	struct zone *zone = page_zone(page);
2489 	struct per_cpu_pages *pcp;
2490 	unsigned long flags;
2491 	unsigned long pfn = page_to_pfn(page);
2492 	int migratetype;
2493 
2494 	if (!free_pcp_prepare(page))
2495 		return;
2496 
2497 	migratetype = get_pfnblock_migratetype(page, pfn);
2498 	set_pcppage_migratetype(page, migratetype);
2499 	local_irq_save(flags);
2500 	__count_vm_event(PGFREE);
2501 
2502 	/*
2503 	 * We only track unmovable, reclaimable and movable on pcp lists.
2504 	 * Free ISOLATE pages back to the allocator because they are being
2505 	 * offlined but treat RESERVE as movable pages so we can get those
2506 	 * areas back if necessary. Otherwise, we may have to free
2507 	 * excessively into the page allocator
2508 	 */
2509 	if (migratetype >= MIGRATE_PCPTYPES) {
2510 		if (unlikely(is_migrate_isolate(migratetype))) {
2511 			free_one_page(zone, page, pfn, 0, migratetype);
2512 			goto out;
2513 		}
2514 		migratetype = MIGRATE_MOVABLE;
2515 	}
2516 
2517 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2518 	if (!cold)
2519 		list_add(&page->lru, &pcp->lists[migratetype]);
2520 	else
2521 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2522 	pcp->count++;
2523 	if (pcp->count >= pcp->high) {
2524 		unsigned long batch = READ_ONCE(pcp->batch);
2525 		free_pcppages_bulk(zone, batch, pcp);
2526 		pcp->count -= batch;
2527 	}
2528 
2529 out:
2530 	local_irq_restore(flags);
2531 }
2532 
2533 /*
2534  * Free a list of 0-order pages
2535  */
2536 void free_hot_cold_page_list(struct list_head *list, bool cold)
2537 {
2538 	struct page *page, *next;
2539 
2540 	list_for_each_entry_safe(page, next, list, lru) {
2541 		trace_mm_page_free_batched(page, cold);
2542 		free_hot_cold_page(page, cold);
2543 	}
2544 }
2545 
2546 /*
2547  * split_page takes a non-compound higher-order page, and splits it into
2548  * n (1<<order) sub-pages: page[0..n]
2549  * Each sub-page must be freed individually.
2550  *
2551  * Note: this is probably too low level an operation for use in drivers.
2552  * Please consult with lkml before using this in your driver.
2553  */
2554 void split_page(struct page *page, unsigned int order)
2555 {
2556 	int i;
2557 
2558 	VM_BUG_ON_PAGE(PageCompound(page), page);
2559 	VM_BUG_ON_PAGE(!page_count(page), page);
2560 
2561 #ifdef CONFIG_KMEMCHECK
2562 	/*
2563 	 * Split shadow pages too, because free(page[0]) would
2564 	 * otherwise free the whole shadow.
2565 	 */
2566 	if (kmemcheck_page_is_tracked(page))
2567 		split_page(virt_to_page(page[0].shadow), order);
2568 #endif
2569 
2570 	for (i = 1; i < (1 << order); i++)
2571 		set_page_refcounted(page + i);
2572 	split_page_owner(page, order);
2573 }
2574 EXPORT_SYMBOL_GPL(split_page);
2575 
2576 int __isolate_free_page(struct page *page, unsigned int order)
2577 {
2578 	unsigned long watermark;
2579 	struct zone *zone;
2580 	int mt;
2581 
2582 	BUG_ON(!PageBuddy(page));
2583 
2584 	zone = page_zone(page);
2585 	mt = get_pageblock_migratetype(page);
2586 
2587 	if (!is_migrate_isolate(mt)) {
2588 		/*
2589 		 * Obey watermarks as if the page was being allocated. We can
2590 		 * emulate a high-order watermark check with a raised order-0
2591 		 * watermark, because we already know our high-order page
2592 		 * exists.
2593 		 */
2594 		watermark = min_wmark_pages(zone) + (1UL << order);
2595 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2596 			return 0;
2597 
2598 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2599 	}
2600 
2601 	/* Remove page from free list */
2602 	list_del(&page->lru);
2603 	zone->free_area[order].nr_free--;
2604 	rmv_page_order(page);
2605 
2606 	/*
2607 	 * Set the pageblock if the isolated page is at least half of a
2608 	 * pageblock
2609 	 */
2610 	if (order >= pageblock_order - 1) {
2611 		struct page *endpage = page + (1 << order) - 1;
2612 		for (; page < endpage; page += pageblock_nr_pages) {
2613 			int mt = get_pageblock_migratetype(page);
2614 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2615 				&& mt != MIGRATE_HIGHATOMIC)
2616 				set_pageblock_migratetype(page,
2617 							  MIGRATE_MOVABLE);
2618 		}
2619 	}
2620 
2621 
2622 	return 1UL << order;
2623 }
2624 
2625 /*
2626  * Update NUMA hit/miss statistics
2627  *
2628  * Must be called with interrupts disabled.
2629  */
2630 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2631 {
2632 #ifdef CONFIG_NUMA
2633 	enum zone_stat_item local_stat = NUMA_LOCAL;
2634 
2635 	if (z->node != numa_node_id())
2636 		local_stat = NUMA_OTHER;
2637 
2638 	if (z->node == preferred_zone->node)
2639 		__inc_zone_state(z, NUMA_HIT);
2640 	else {
2641 		__inc_zone_state(z, NUMA_MISS);
2642 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2643 	}
2644 	__inc_zone_state(z, local_stat);
2645 #endif
2646 }
2647 
2648 /* Remove page from the per-cpu list, caller must protect the list */
2649 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2650 			bool cold, struct per_cpu_pages *pcp,
2651 			struct list_head *list)
2652 {
2653 	struct page *page;
2654 
2655 	do {
2656 		if (list_empty(list)) {
2657 			pcp->count += rmqueue_bulk(zone, 0,
2658 					pcp->batch, list,
2659 					migratetype, cold);
2660 			if (unlikely(list_empty(list)))
2661 				return NULL;
2662 		}
2663 
2664 		if (cold)
2665 			page = list_last_entry(list, struct page, lru);
2666 		else
2667 			page = list_first_entry(list, struct page, lru);
2668 
2669 		list_del(&page->lru);
2670 		pcp->count--;
2671 	} while (check_new_pcp(page));
2672 
2673 	return page;
2674 }
2675 
2676 /* Lock and remove page from the per-cpu list */
2677 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2678 			struct zone *zone, unsigned int order,
2679 			gfp_t gfp_flags, int migratetype)
2680 {
2681 	struct per_cpu_pages *pcp;
2682 	struct list_head *list;
2683 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2684 	struct page *page;
2685 	unsigned long flags;
2686 
2687 	local_irq_save(flags);
2688 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2689 	list = &pcp->lists[migratetype];
2690 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2691 	if (page) {
2692 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2693 		zone_statistics(preferred_zone, zone);
2694 	}
2695 	local_irq_restore(flags);
2696 	return page;
2697 }
2698 
2699 /*
2700  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2701  */
2702 static inline
2703 struct page *rmqueue(struct zone *preferred_zone,
2704 			struct zone *zone, unsigned int order,
2705 			gfp_t gfp_flags, unsigned int alloc_flags,
2706 			int migratetype)
2707 {
2708 	unsigned long flags;
2709 	struct page *page;
2710 
2711 	if (likely(order == 0)) {
2712 		page = rmqueue_pcplist(preferred_zone, zone, order,
2713 				gfp_flags, migratetype);
2714 		goto out;
2715 	}
2716 
2717 	/*
2718 	 * We most definitely don't want callers attempting to
2719 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2720 	 */
2721 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2722 	spin_lock_irqsave(&zone->lock, flags);
2723 
2724 	do {
2725 		page = NULL;
2726 		if (alloc_flags & ALLOC_HARDER) {
2727 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2728 			if (page)
2729 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2730 		}
2731 		if (!page)
2732 			page = __rmqueue(zone, order, migratetype);
2733 	} while (page && check_new_pages(page, order));
2734 	spin_unlock(&zone->lock);
2735 	if (!page)
2736 		goto failed;
2737 	__mod_zone_freepage_state(zone, -(1 << order),
2738 				  get_pcppage_migratetype(page));
2739 
2740 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2741 	zone_statistics(preferred_zone, zone);
2742 	local_irq_restore(flags);
2743 
2744 out:
2745 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2746 	return page;
2747 
2748 failed:
2749 	local_irq_restore(flags);
2750 	return NULL;
2751 }
2752 
2753 #ifdef CONFIG_FAIL_PAGE_ALLOC
2754 
2755 static struct {
2756 	struct fault_attr attr;
2757 
2758 	bool ignore_gfp_highmem;
2759 	bool ignore_gfp_reclaim;
2760 	u32 min_order;
2761 } fail_page_alloc = {
2762 	.attr = FAULT_ATTR_INITIALIZER,
2763 	.ignore_gfp_reclaim = true,
2764 	.ignore_gfp_highmem = true,
2765 	.min_order = 1,
2766 };
2767 
2768 static int __init setup_fail_page_alloc(char *str)
2769 {
2770 	return setup_fault_attr(&fail_page_alloc.attr, str);
2771 }
2772 __setup("fail_page_alloc=", setup_fail_page_alloc);
2773 
2774 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2775 {
2776 	if (order < fail_page_alloc.min_order)
2777 		return false;
2778 	if (gfp_mask & __GFP_NOFAIL)
2779 		return false;
2780 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2781 		return false;
2782 	if (fail_page_alloc.ignore_gfp_reclaim &&
2783 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2784 		return false;
2785 
2786 	return should_fail(&fail_page_alloc.attr, 1 << order);
2787 }
2788 
2789 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2790 
2791 static int __init fail_page_alloc_debugfs(void)
2792 {
2793 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2794 	struct dentry *dir;
2795 
2796 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2797 					&fail_page_alloc.attr);
2798 	if (IS_ERR(dir))
2799 		return PTR_ERR(dir);
2800 
2801 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2802 				&fail_page_alloc.ignore_gfp_reclaim))
2803 		goto fail;
2804 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2805 				&fail_page_alloc.ignore_gfp_highmem))
2806 		goto fail;
2807 	if (!debugfs_create_u32("min-order", mode, dir,
2808 				&fail_page_alloc.min_order))
2809 		goto fail;
2810 
2811 	return 0;
2812 fail:
2813 	debugfs_remove_recursive(dir);
2814 
2815 	return -ENOMEM;
2816 }
2817 
2818 late_initcall(fail_page_alloc_debugfs);
2819 
2820 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2821 
2822 #else /* CONFIG_FAIL_PAGE_ALLOC */
2823 
2824 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2825 {
2826 	return false;
2827 }
2828 
2829 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2830 
2831 /*
2832  * Return true if free base pages are above 'mark'. For high-order checks it
2833  * will return true of the order-0 watermark is reached and there is at least
2834  * one free page of a suitable size. Checking now avoids taking the zone lock
2835  * to check in the allocation paths if no pages are free.
2836  */
2837 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2838 			 int classzone_idx, unsigned int alloc_flags,
2839 			 long free_pages)
2840 {
2841 	long min = mark;
2842 	int o;
2843 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2844 
2845 	/* free_pages may go negative - that's OK */
2846 	free_pages -= (1 << order) - 1;
2847 
2848 	if (alloc_flags & ALLOC_HIGH)
2849 		min -= min / 2;
2850 
2851 	/*
2852 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2853 	 * the high-atomic reserves. This will over-estimate the size of the
2854 	 * atomic reserve but it avoids a search.
2855 	 */
2856 	if (likely(!alloc_harder))
2857 		free_pages -= z->nr_reserved_highatomic;
2858 	else
2859 		min -= min / 4;
2860 
2861 #ifdef CONFIG_CMA
2862 	/* If allocation can't use CMA areas don't use free CMA pages */
2863 	if (!(alloc_flags & ALLOC_CMA))
2864 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2865 #endif
2866 
2867 	/*
2868 	 * Check watermarks for an order-0 allocation request. If these
2869 	 * are not met, then a high-order request also cannot go ahead
2870 	 * even if a suitable page happened to be free.
2871 	 */
2872 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2873 		return false;
2874 
2875 	/* If this is an order-0 request then the watermark is fine */
2876 	if (!order)
2877 		return true;
2878 
2879 	/* For a high-order request, check at least one suitable page is free */
2880 	for (o = order; o < MAX_ORDER; o++) {
2881 		struct free_area *area = &z->free_area[o];
2882 		int mt;
2883 
2884 		if (!area->nr_free)
2885 			continue;
2886 
2887 		if (alloc_harder)
2888 			return true;
2889 
2890 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2891 			if (!list_empty(&area->free_list[mt]))
2892 				return true;
2893 		}
2894 
2895 #ifdef CONFIG_CMA
2896 		if ((alloc_flags & ALLOC_CMA) &&
2897 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2898 			return true;
2899 		}
2900 #endif
2901 	}
2902 	return false;
2903 }
2904 
2905 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2906 		      int classzone_idx, unsigned int alloc_flags)
2907 {
2908 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2909 					zone_page_state(z, NR_FREE_PAGES));
2910 }
2911 
2912 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2913 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2914 {
2915 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2916 	long cma_pages = 0;
2917 
2918 #ifdef CONFIG_CMA
2919 	/* If allocation can't use CMA areas don't use free CMA pages */
2920 	if (!(alloc_flags & ALLOC_CMA))
2921 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2922 #endif
2923 
2924 	/*
2925 	 * Fast check for order-0 only. If this fails then the reserves
2926 	 * need to be calculated. There is a corner case where the check
2927 	 * passes but only the high-order atomic reserve are free. If
2928 	 * the caller is !atomic then it'll uselessly search the free
2929 	 * list. That corner case is then slower but it is harmless.
2930 	 */
2931 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2932 		return true;
2933 
2934 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2935 					free_pages);
2936 }
2937 
2938 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2939 			unsigned long mark, int classzone_idx)
2940 {
2941 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2942 
2943 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2944 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2945 
2946 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2947 								free_pages);
2948 }
2949 
2950 #ifdef CONFIG_NUMA
2951 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2952 {
2953 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2954 				RECLAIM_DISTANCE;
2955 }
2956 #else	/* CONFIG_NUMA */
2957 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2958 {
2959 	return true;
2960 }
2961 #endif	/* CONFIG_NUMA */
2962 
2963 /*
2964  * get_page_from_freelist goes through the zonelist trying to allocate
2965  * a page.
2966  */
2967 static struct page *
2968 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2969 						const struct alloc_context *ac)
2970 {
2971 	struct zoneref *z = ac->preferred_zoneref;
2972 	struct zone *zone;
2973 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2974 
2975 	/*
2976 	 * Scan zonelist, looking for a zone with enough free.
2977 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2978 	 */
2979 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2980 								ac->nodemask) {
2981 		struct page *page;
2982 		unsigned long mark;
2983 
2984 		if (cpusets_enabled() &&
2985 			(alloc_flags & ALLOC_CPUSET) &&
2986 			!__cpuset_zone_allowed(zone, gfp_mask))
2987 				continue;
2988 		/*
2989 		 * When allocating a page cache page for writing, we
2990 		 * want to get it from a node that is within its dirty
2991 		 * limit, such that no single node holds more than its
2992 		 * proportional share of globally allowed dirty pages.
2993 		 * The dirty limits take into account the node's
2994 		 * lowmem reserves and high watermark so that kswapd
2995 		 * should be able to balance it without having to
2996 		 * write pages from its LRU list.
2997 		 *
2998 		 * XXX: For now, allow allocations to potentially
2999 		 * exceed the per-node dirty limit in the slowpath
3000 		 * (spread_dirty_pages unset) before going into reclaim,
3001 		 * which is important when on a NUMA setup the allowed
3002 		 * nodes are together not big enough to reach the
3003 		 * global limit.  The proper fix for these situations
3004 		 * will require awareness of nodes in the
3005 		 * dirty-throttling and the flusher threads.
3006 		 */
3007 		if (ac->spread_dirty_pages) {
3008 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3009 				continue;
3010 
3011 			if (!node_dirty_ok(zone->zone_pgdat)) {
3012 				last_pgdat_dirty_limit = zone->zone_pgdat;
3013 				continue;
3014 			}
3015 		}
3016 
3017 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3018 		if (!zone_watermark_fast(zone, order, mark,
3019 				       ac_classzone_idx(ac), alloc_flags)) {
3020 			int ret;
3021 
3022 			/* Checked here to keep the fast path fast */
3023 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3024 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3025 				goto try_this_zone;
3026 
3027 			if (node_reclaim_mode == 0 ||
3028 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3029 				continue;
3030 
3031 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3032 			switch (ret) {
3033 			case NODE_RECLAIM_NOSCAN:
3034 				/* did not scan */
3035 				continue;
3036 			case NODE_RECLAIM_FULL:
3037 				/* scanned but unreclaimable */
3038 				continue;
3039 			default:
3040 				/* did we reclaim enough */
3041 				if (zone_watermark_ok(zone, order, mark,
3042 						ac_classzone_idx(ac), alloc_flags))
3043 					goto try_this_zone;
3044 
3045 				continue;
3046 			}
3047 		}
3048 
3049 try_this_zone:
3050 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3051 				gfp_mask, alloc_flags, ac->migratetype);
3052 		if (page) {
3053 			prep_new_page(page, order, gfp_mask, alloc_flags);
3054 
3055 			/*
3056 			 * If this is a high-order atomic allocation then check
3057 			 * if the pageblock should be reserved for the future
3058 			 */
3059 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3060 				reserve_highatomic_pageblock(page, zone, order);
3061 
3062 			return page;
3063 		}
3064 	}
3065 
3066 	return NULL;
3067 }
3068 
3069 /*
3070  * Large machines with many possible nodes should not always dump per-node
3071  * meminfo in irq context.
3072  */
3073 static inline bool should_suppress_show_mem(void)
3074 {
3075 	bool ret = false;
3076 
3077 #if NODES_SHIFT > 8
3078 	ret = in_interrupt();
3079 #endif
3080 	return ret;
3081 }
3082 
3083 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3084 {
3085 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3086 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3087 
3088 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3089 		return;
3090 
3091 	/*
3092 	 * This documents exceptions given to allocations in certain
3093 	 * contexts that are allowed to allocate outside current's set
3094 	 * of allowed nodes.
3095 	 */
3096 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3097 		if (test_thread_flag(TIF_MEMDIE) ||
3098 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3099 			filter &= ~SHOW_MEM_FILTER_NODES;
3100 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3101 		filter &= ~SHOW_MEM_FILTER_NODES;
3102 
3103 	show_mem(filter, nodemask);
3104 }
3105 
3106 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3107 {
3108 	struct va_format vaf;
3109 	va_list args;
3110 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3111 				      DEFAULT_RATELIMIT_BURST);
3112 
3113 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
3114 	    debug_guardpage_minorder() > 0)
3115 		return;
3116 
3117 	pr_warn("%s: ", current->comm);
3118 
3119 	va_start(args, fmt);
3120 	vaf.fmt = fmt;
3121 	vaf.va = &args;
3122 	pr_cont("%pV", &vaf);
3123 	va_end(args);
3124 
3125 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3126 	if (nodemask)
3127 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3128 	else
3129 		pr_cont("(null)\n");
3130 
3131 	cpuset_print_current_mems_allowed();
3132 
3133 	dump_stack();
3134 	warn_alloc_show_mem(gfp_mask, nodemask);
3135 }
3136 
3137 static inline struct page *
3138 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3139 			      unsigned int alloc_flags,
3140 			      const struct alloc_context *ac)
3141 {
3142 	struct page *page;
3143 
3144 	page = get_page_from_freelist(gfp_mask, order,
3145 			alloc_flags|ALLOC_CPUSET, ac);
3146 	/*
3147 	 * fallback to ignore cpuset restriction if our nodes
3148 	 * are depleted
3149 	 */
3150 	if (!page)
3151 		page = get_page_from_freelist(gfp_mask, order,
3152 				alloc_flags, ac);
3153 
3154 	return page;
3155 }
3156 
3157 static inline struct page *
3158 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3159 	const struct alloc_context *ac, unsigned long *did_some_progress)
3160 {
3161 	struct oom_control oc = {
3162 		.zonelist = ac->zonelist,
3163 		.nodemask = ac->nodemask,
3164 		.memcg = NULL,
3165 		.gfp_mask = gfp_mask,
3166 		.order = order,
3167 	};
3168 	struct page *page;
3169 
3170 	*did_some_progress = 0;
3171 
3172 	/*
3173 	 * Acquire the oom lock.  If that fails, somebody else is
3174 	 * making progress for us.
3175 	 */
3176 	if (!mutex_trylock(&oom_lock)) {
3177 		*did_some_progress = 1;
3178 		schedule_timeout_uninterruptible(1);
3179 		return NULL;
3180 	}
3181 
3182 	/*
3183 	 * Go through the zonelist yet one more time, keep very high watermark
3184 	 * here, this is only to catch a parallel oom killing, we must fail if
3185 	 * we're still under heavy pressure.
3186 	 */
3187 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3188 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3189 	if (page)
3190 		goto out;
3191 
3192 	/* Coredumps can quickly deplete all memory reserves */
3193 	if (current->flags & PF_DUMPCORE)
3194 		goto out;
3195 	/* The OOM killer will not help higher order allocs */
3196 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3197 		goto out;
3198 	/* The OOM killer does not needlessly kill tasks for lowmem */
3199 	if (ac->high_zoneidx < ZONE_NORMAL)
3200 		goto out;
3201 	if (pm_suspended_storage())
3202 		goto out;
3203 	/*
3204 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3205 	 * other request to make a forward progress.
3206 	 * We are in an unfortunate situation where out_of_memory cannot
3207 	 * do much for this context but let's try it to at least get
3208 	 * access to memory reserved if the current task is killed (see
3209 	 * out_of_memory). Once filesystems are ready to handle allocation
3210 	 * failures more gracefully we should just bail out here.
3211 	 */
3212 
3213 	/* The OOM killer may not free memory on a specific node */
3214 	if (gfp_mask & __GFP_THISNODE)
3215 		goto out;
3216 
3217 	/* Exhausted what can be done so it's blamo time */
3218 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3219 		*did_some_progress = 1;
3220 
3221 		/*
3222 		 * Help non-failing allocations by giving them access to memory
3223 		 * reserves
3224 		 */
3225 		if (gfp_mask & __GFP_NOFAIL)
3226 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3227 					ALLOC_NO_WATERMARKS, ac);
3228 	}
3229 out:
3230 	mutex_unlock(&oom_lock);
3231 	return page;
3232 }
3233 
3234 /*
3235  * Maximum number of compaction retries wit a progress before OOM
3236  * killer is consider as the only way to move forward.
3237  */
3238 #define MAX_COMPACT_RETRIES 16
3239 
3240 #ifdef CONFIG_COMPACTION
3241 /* Try memory compaction for high-order allocations before reclaim */
3242 static struct page *
3243 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3244 		unsigned int alloc_flags, const struct alloc_context *ac,
3245 		enum compact_priority prio, enum compact_result *compact_result)
3246 {
3247 	struct page *page;
3248 
3249 	if (!order)
3250 		return NULL;
3251 
3252 	current->flags |= PF_MEMALLOC;
3253 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3254 									prio);
3255 	current->flags &= ~PF_MEMALLOC;
3256 
3257 	if (*compact_result <= COMPACT_INACTIVE)
3258 		return NULL;
3259 
3260 	/*
3261 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3262 	 * count a compaction stall
3263 	 */
3264 	count_vm_event(COMPACTSTALL);
3265 
3266 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3267 
3268 	if (page) {
3269 		struct zone *zone = page_zone(page);
3270 
3271 		zone->compact_blockskip_flush = false;
3272 		compaction_defer_reset(zone, order, true);
3273 		count_vm_event(COMPACTSUCCESS);
3274 		return page;
3275 	}
3276 
3277 	/*
3278 	 * It's bad if compaction run occurs and fails. The most likely reason
3279 	 * is that pages exist, but not enough to satisfy watermarks.
3280 	 */
3281 	count_vm_event(COMPACTFAIL);
3282 
3283 	cond_resched();
3284 
3285 	return NULL;
3286 }
3287 
3288 static inline bool
3289 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3290 		     enum compact_result compact_result,
3291 		     enum compact_priority *compact_priority,
3292 		     int *compaction_retries)
3293 {
3294 	int max_retries = MAX_COMPACT_RETRIES;
3295 	int min_priority;
3296 	bool ret = false;
3297 	int retries = *compaction_retries;
3298 	enum compact_priority priority = *compact_priority;
3299 
3300 	if (!order)
3301 		return false;
3302 
3303 	if (compaction_made_progress(compact_result))
3304 		(*compaction_retries)++;
3305 
3306 	/*
3307 	 * compaction considers all the zone as desperately out of memory
3308 	 * so it doesn't really make much sense to retry except when the
3309 	 * failure could be caused by insufficient priority
3310 	 */
3311 	if (compaction_failed(compact_result))
3312 		goto check_priority;
3313 
3314 	/*
3315 	 * make sure the compaction wasn't deferred or didn't bail out early
3316 	 * due to locks contention before we declare that we should give up.
3317 	 * But do not retry if the given zonelist is not suitable for
3318 	 * compaction.
3319 	 */
3320 	if (compaction_withdrawn(compact_result)) {
3321 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3322 		goto out;
3323 	}
3324 
3325 	/*
3326 	 * !costly requests are much more important than __GFP_REPEAT
3327 	 * costly ones because they are de facto nofail and invoke OOM
3328 	 * killer to move on while costly can fail and users are ready
3329 	 * to cope with that. 1/4 retries is rather arbitrary but we
3330 	 * would need much more detailed feedback from compaction to
3331 	 * make a better decision.
3332 	 */
3333 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3334 		max_retries /= 4;
3335 	if (*compaction_retries <= max_retries) {
3336 		ret = true;
3337 		goto out;
3338 	}
3339 
3340 	/*
3341 	 * Make sure there are attempts at the highest priority if we exhausted
3342 	 * all retries or failed at the lower priorities.
3343 	 */
3344 check_priority:
3345 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3346 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3347 
3348 	if (*compact_priority > min_priority) {
3349 		(*compact_priority)--;
3350 		*compaction_retries = 0;
3351 		ret = true;
3352 	}
3353 out:
3354 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3355 	return ret;
3356 }
3357 #else
3358 static inline struct page *
3359 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3360 		unsigned int alloc_flags, const struct alloc_context *ac,
3361 		enum compact_priority prio, enum compact_result *compact_result)
3362 {
3363 	*compact_result = COMPACT_SKIPPED;
3364 	return NULL;
3365 }
3366 
3367 static inline bool
3368 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3369 		     enum compact_result compact_result,
3370 		     enum compact_priority *compact_priority,
3371 		     int *compaction_retries)
3372 {
3373 	struct zone *zone;
3374 	struct zoneref *z;
3375 
3376 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3377 		return false;
3378 
3379 	/*
3380 	 * There are setups with compaction disabled which would prefer to loop
3381 	 * inside the allocator rather than hit the oom killer prematurely.
3382 	 * Let's give them a good hope and keep retrying while the order-0
3383 	 * watermarks are OK.
3384 	 */
3385 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3386 					ac->nodemask) {
3387 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3388 					ac_classzone_idx(ac), alloc_flags))
3389 			return true;
3390 	}
3391 	return false;
3392 }
3393 #endif /* CONFIG_COMPACTION */
3394 
3395 /* Perform direct synchronous page reclaim */
3396 static int
3397 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3398 					const struct alloc_context *ac)
3399 {
3400 	struct reclaim_state reclaim_state;
3401 	int progress;
3402 
3403 	cond_resched();
3404 
3405 	/* We now go into synchronous reclaim */
3406 	cpuset_memory_pressure_bump();
3407 	current->flags |= PF_MEMALLOC;
3408 	lockdep_set_current_reclaim_state(gfp_mask);
3409 	reclaim_state.reclaimed_slab = 0;
3410 	current->reclaim_state = &reclaim_state;
3411 
3412 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3413 								ac->nodemask);
3414 
3415 	current->reclaim_state = NULL;
3416 	lockdep_clear_current_reclaim_state();
3417 	current->flags &= ~PF_MEMALLOC;
3418 
3419 	cond_resched();
3420 
3421 	return progress;
3422 }
3423 
3424 /* The really slow allocator path where we enter direct reclaim */
3425 static inline struct page *
3426 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3427 		unsigned int alloc_flags, const struct alloc_context *ac,
3428 		unsigned long *did_some_progress)
3429 {
3430 	struct page *page = NULL;
3431 	bool drained = false;
3432 
3433 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3434 	if (unlikely(!(*did_some_progress)))
3435 		return NULL;
3436 
3437 retry:
3438 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3439 
3440 	/*
3441 	 * If an allocation failed after direct reclaim, it could be because
3442 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3443 	 * Shrink them them and try again
3444 	 */
3445 	if (!page && !drained) {
3446 		unreserve_highatomic_pageblock(ac, false);
3447 		drain_all_pages(NULL);
3448 		drained = true;
3449 		goto retry;
3450 	}
3451 
3452 	return page;
3453 }
3454 
3455 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3456 {
3457 	struct zoneref *z;
3458 	struct zone *zone;
3459 	pg_data_t *last_pgdat = NULL;
3460 
3461 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3462 					ac->high_zoneidx, ac->nodemask) {
3463 		if (last_pgdat != zone->zone_pgdat)
3464 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3465 		last_pgdat = zone->zone_pgdat;
3466 	}
3467 }
3468 
3469 static inline unsigned int
3470 gfp_to_alloc_flags(gfp_t gfp_mask)
3471 {
3472 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3473 
3474 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3475 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3476 
3477 	/*
3478 	 * The caller may dip into page reserves a bit more if the caller
3479 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3480 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3481 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3482 	 */
3483 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3484 
3485 	if (gfp_mask & __GFP_ATOMIC) {
3486 		/*
3487 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3488 		 * if it can't schedule.
3489 		 */
3490 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3491 			alloc_flags |= ALLOC_HARDER;
3492 		/*
3493 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3494 		 * comment for __cpuset_node_allowed().
3495 		 */
3496 		alloc_flags &= ~ALLOC_CPUSET;
3497 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3498 		alloc_flags |= ALLOC_HARDER;
3499 
3500 #ifdef CONFIG_CMA
3501 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3502 		alloc_flags |= ALLOC_CMA;
3503 #endif
3504 	return alloc_flags;
3505 }
3506 
3507 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3508 {
3509 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3510 		return false;
3511 
3512 	if (gfp_mask & __GFP_MEMALLOC)
3513 		return true;
3514 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3515 		return true;
3516 	if (!in_interrupt() &&
3517 			((current->flags & PF_MEMALLOC) ||
3518 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3519 		return true;
3520 
3521 	return false;
3522 }
3523 
3524 /*
3525  * Maximum number of reclaim retries without any progress before OOM killer
3526  * is consider as the only way to move forward.
3527  */
3528 #define MAX_RECLAIM_RETRIES 16
3529 
3530 /*
3531  * Checks whether it makes sense to retry the reclaim to make a forward progress
3532  * for the given allocation request.
3533  * The reclaim feedback represented by did_some_progress (any progress during
3534  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3535  * any progress in a row) is considered as well as the reclaimable pages on the
3536  * applicable zone list (with a backoff mechanism which is a function of
3537  * no_progress_loops).
3538  *
3539  * Returns true if a retry is viable or false to enter the oom path.
3540  */
3541 static inline bool
3542 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3543 		     struct alloc_context *ac, int alloc_flags,
3544 		     bool did_some_progress, int *no_progress_loops)
3545 {
3546 	struct zone *zone;
3547 	struct zoneref *z;
3548 
3549 	/*
3550 	 * Costly allocations might have made a progress but this doesn't mean
3551 	 * their order will become available due to high fragmentation so
3552 	 * always increment the no progress counter for them
3553 	 */
3554 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3555 		*no_progress_loops = 0;
3556 	else
3557 		(*no_progress_loops)++;
3558 
3559 	/*
3560 	 * Make sure we converge to OOM if we cannot make any progress
3561 	 * several times in the row.
3562 	 */
3563 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3564 		/* Before OOM, exhaust highatomic_reserve */
3565 		return unreserve_highatomic_pageblock(ac, true);
3566 	}
3567 
3568 	/*
3569 	 * Keep reclaiming pages while there is a chance this will lead
3570 	 * somewhere.  If none of the target zones can satisfy our allocation
3571 	 * request even if all reclaimable pages are considered then we are
3572 	 * screwed and have to go OOM.
3573 	 */
3574 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3575 					ac->nodemask) {
3576 		unsigned long available;
3577 		unsigned long reclaimable;
3578 		unsigned long min_wmark = min_wmark_pages(zone);
3579 		bool wmark;
3580 
3581 		available = reclaimable = zone_reclaimable_pages(zone);
3582 		available -= DIV_ROUND_UP((*no_progress_loops) * available,
3583 					  MAX_RECLAIM_RETRIES);
3584 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3585 
3586 		/*
3587 		 * Would the allocation succeed if we reclaimed the whole
3588 		 * available?
3589 		 */
3590 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3591 				ac_classzone_idx(ac), alloc_flags, available);
3592 		trace_reclaim_retry_zone(z, order, reclaimable,
3593 				available, min_wmark, *no_progress_loops, wmark);
3594 		if (wmark) {
3595 			/*
3596 			 * If we didn't make any progress and have a lot of
3597 			 * dirty + writeback pages then we should wait for
3598 			 * an IO to complete to slow down the reclaim and
3599 			 * prevent from pre mature OOM
3600 			 */
3601 			if (!did_some_progress) {
3602 				unsigned long write_pending;
3603 
3604 				write_pending = zone_page_state_snapshot(zone,
3605 							NR_ZONE_WRITE_PENDING);
3606 
3607 				if (2 * write_pending > reclaimable) {
3608 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3609 					return true;
3610 				}
3611 			}
3612 
3613 			/*
3614 			 * Memory allocation/reclaim might be called from a WQ
3615 			 * context and the current implementation of the WQ
3616 			 * concurrency control doesn't recognize that
3617 			 * a particular WQ is congested if the worker thread is
3618 			 * looping without ever sleeping. Therefore we have to
3619 			 * do a short sleep here rather than calling
3620 			 * cond_resched().
3621 			 */
3622 			if (current->flags & PF_WQ_WORKER)
3623 				schedule_timeout_uninterruptible(1);
3624 			else
3625 				cond_resched();
3626 
3627 			return true;
3628 		}
3629 	}
3630 
3631 	return false;
3632 }
3633 
3634 static inline struct page *
3635 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3636 						struct alloc_context *ac)
3637 {
3638 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3639 	struct page *page = NULL;
3640 	unsigned int alloc_flags;
3641 	unsigned long did_some_progress;
3642 	enum compact_priority compact_priority;
3643 	enum compact_result compact_result;
3644 	int compaction_retries;
3645 	int no_progress_loops;
3646 	unsigned long alloc_start = jiffies;
3647 	unsigned int stall_timeout = 10 * HZ;
3648 	unsigned int cpuset_mems_cookie;
3649 
3650 	/*
3651 	 * In the slowpath, we sanity check order to avoid ever trying to
3652 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3653 	 * be using allocators in order of preference for an area that is
3654 	 * too large.
3655 	 */
3656 	if (order >= MAX_ORDER) {
3657 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3658 		return NULL;
3659 	}
3660 
3661 	/*
3662 	 * We also sanity check to catch abuse of atomic reserves being used by
3663 	 * callers that are not in atomic context.
3664 	 */
3665 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3666 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3667 		gfp_mask &= ~__GFP_ATOMIC;
3668 
3669 retry_cpuset:
3670 	compaction_retries = 0;
3671 	no_progress_loops = 0;
3672 	compact_priority = DEF_COMPACT_PRIORITY;
3673 	cpuset_mems_cookie = read_mems_allowed_begin();
3674 
3675 	/*
3676 	 * The fast path uses conservative alloc_flags to succeed only until
3677 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3678 	 * alloc_flags precisely. So we do that now.
3679 	 */
3680 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3681 
3682 	/*
3683 	 * We need to recalculate the starting point for the zonelist iterator
3684 	 * because we might have used different nodemask in the fast path, or
3685 	 * there was a cpuset modification and we are retrying - otherwise we
3686 	 * could end up iterating over non-eligible zones endlessly.
3687 	 */
3688 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3689 					ac->high_zoneidx, ac->nodemask);
3690 	if (!ac->preferred_zoneref->zone)
3691 		goto nopage;
3692 
3693 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3694 		wake_all_kswapds(order, ac);
3695 
3696 	/*
3697 	 * The adjusted alloc_flags might result in immediate success, so try
3698 	 * that first
3699 	 */
3700 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3701 	if (page)
3702 		goto got_pg;
3703 
3704 	/*
3705 	 * For costly allocations, try direct compaction first, as it's likely
3706 	 * that we have enough base pages and don't need to reclaim. Don't try
3707 	 * that for allocations that are allowed to ignore watermarks, as the
3708 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3709 	 */
3710 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3711 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3712 		page = __alloc_pages_direct_compact(gfp_mask, order,
3713 						alloc_flags, ac,
3714 						INIT_COMPACT_PRIORITY,
3715 						&compact_result);
3716 		if (page)
3717 			goto got_pg;
3718 
3719 		/*
3720 		 * Checks for costly allocations with __GFP_NORETRY, which
3721 		 * includes THP page fault allocations
3722 		 */
3723 		if (gfp_mask & __GFP_NORETRY) {
3724 			/*
3725 			 * If compaction is deferred for high-order allocations,
3726 			 * it is because sync compaction recently failed. If
3727 			 * this is the case and the caller requested a THP
3728 			 * allocation, we do not want to heavily disrupt the
3729 			 * system, so we fail the allocation instead of entering
3730 			 * direct reclaim.
3731 			 */
3732 			if (compact_result == COMPACT_DEFERRED)
3733 				goto nopage;
3734 
3735 			/*
3736 			 * Looks like reclaim/compaction is worth trying, but
3737 			 * sync compaction could be very expensive, so keep
3738 			 * using async compaction.
3739 			 */
3740 			compact_priority = INIT_COMPACT_PRIORITY;
3741 		}
3742 	}
3743 
3744 retry:
3745 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3746 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3747 		wake_all_kswapds(order, ac);
3748 
3749 	if (gfp_pfmemalloc_allowed(gfp_mask))
3750 		alloc_flags = ALLOC_NO_WATERMARKS;
3751 
3752 	/*
3753 	 * Reset the zonelist iterators if memory policies can be ignored.
3754 	 * These allocations are high priority and system rather than user
3755 	 * orientated.
3756 	 */
3757 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3758 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3759 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3760 					ac->high_zoneidx, ac->nodemask);
3761 	}
3762 
3763 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3764 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3765 	if (page)
3766 		goto got_pg;
3767 
3768 	/* Caller is not willing to reclaim, we can't balance anything */
3769 	if (!can_direct_reclaim)
3770 		goto nopage;
3771 
3772 	/* Make sure we know about allocations which stall for too long */
3773 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3774 		warn_alloc(gfp_mask, ac->nodemask,
3775 			"page allocation stalls for %ums, order:%u",
3776 			jiffies_to_msecs(jiffies-alloc_start), order);
3777 		stall_timeout += 10 * HZ;
3778 	}
3779 
3780 	/* Avoid recursion of direct reclaim */
3781 	if (current->flags & PF_MEMALLOC)
3782 		goto nopage;
3783 
3784 	/* Try direct reclaim and then allocating */
3785 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3786 							&did_some_progress);
3787 	if (page)
3788 		goto got_pg;
3789 
3790 	/* Try direct compaction and then allocating */
3791 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3792 					compact_priority, &compact_result);
3793 	if (page)
3794 		goto got_pg;
3795 
3796 	/* Do not loop if specifically requested */
3797 	if (gfp_mask & __GFP_NORETRY)
3798 		goto nopage;
3799 
3800 	/*
3801 	 * Do not retry costly high order allocations unless they are
3802 	 * __GFP_REPEAT
3803 	 */
3804 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3805 		goto nopage;
3806 
3807 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3808 				 did_some_progress > 0, &no_progress_loops))
3809 		goto retry;
3810 
3811 	/*
3812 	 * It doesn't make any sense to retry for the compaction if the order-0
3813 	 * reclaim is not able to make any progress because the current
3814 	 * implementation of the compaction depends on the sufficient amount
3815 	 * of free memory (see __compaction_suitable)
3816 	 */
3817 	if (did_some_progress > 0 &&
3818 			should_compact_retry(ac, order, alloc_flags,
3819 				compact_result, &compact_priority,
3820 				&compaction_retries))
3821 		goto retry;
3822 
3823 	/*
3824 	 * It's possible we raced with cpuset update so the OOM would be
3825 	 * premature (see below the nopage: label for full explanation).
3826 	 */
3827 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3828 		goto retry_cpuset;
3829 
3830 	/* Reclaim has failed us, start killing things */
3831 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3832 	if (page)
3833 		goto got_pg;
3834 
3835 	/* Avoid allocations with no watermarks from looping endlessly */
3836 	if (test_thread_flag(TIF_MEMDIE))
3837 		goto nopage;
3838 
3839 	/* Retry as long as the OOM killer is making progress */
3840 	if (did_some_progress) {
3841 		no_progress_loops = 0;
3842 		goto retry;
3843 	}
3844 
3845 nopage:
3846 	/*
3847 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3848 	 * possible to race with parallel threads in such a way that our
3849 	 * allocation can fail while the mask is being updated. If we are about
3850 	 * to fail, check if the cpuset changed during allocation and if so,
3851 	 * retry.
3852 	 */
3853 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3854 		goto retry_cpuset;
3855 
3856 	/*
3857 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3858 	 * we always retry
3859 	 */
3860 	if (gfp_mask & __GFP_NOFAIL) {
3861 		/*
3862 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3863 		 * of any new users that actually require GFP_NOWAIT
3864 		 */
3865 		if (WARN_ON_ONCE(!can_direct_reclaim))
3866 			goto fail;
3867 
3868 		/*
3869 		 * PF_MEMALLOC request from this context is rather bizarre
3870 		 * because we cannot reclaim anything and only can loop waiting
3871 		 * for somebody to do a work for us
3872 		 */
3873 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3874 
3875 		/*
3876 		 * non failing costly orders are a hard requirement which we
3877 		 * are not prepared for much so let's warn about these users
3878 		 * so that we can identify them and convert them to something
3879 		 * else.
3880 		 */
3881 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3882 
3883 		/*
3884 		 * Help non-failing allocations by giving them access to memory
3885 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
3886 		 * could deplete whole memory reserves which would just make
3887 		 * the situation worse
3888 		 */
3889 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3890 		if (page)
3891 			goto got_pg;
3892 
3893 		cond_resched();
3894 		goto retry;
3895 	}
3896 fail:
3897 	warn_alloc(gfp_mask, ac->nodemask,
3898 			"page allocation failure: order:%u", order);
3899 got_pg:
3900 	return page;
3901 }
3902 
3903 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3904 		struct zonelist *zonelist, nodemask_t *nodemask,
3905 		struct alloc_context *ac, gfp_t *alloc_mask,
3906 		unsigned int *alloc_flags)
3907 {
3908 	ac->high_zoneidx = gfp_zone(gfp_mask);
3909 	ac->zonelist = zonelist;
3910 	ac->nodemask = nodemask;
3911 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3912 
3913 	if (cpusets_enabled()) {
3914 		*alloc_mask |= __GFP_HARDWALL;
3915 		if (!ac->nodemask)
3916 			ac->nodemask = &cpuset_current_mems_allowed;
3917 		else
3918 			*alloc_flags |= ALLOC_CPUSET;
3919 	}
3920 
3921 	lockdep_trace_alloc(gfp_mask);
3922 
3923 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3924 
3925 	if (should_fail_alloc_page(gfp_mask, order))
3926 		return false;
3927 
3928 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3929 		*alloc_flags |= ALLOC_CMA;
3930 
3931 	return true;
3932 }
3933 
3934 /* Determine whether to spread dirty pages and what the first usable zone */
3935 static inline void finalise_ac(gfp_t gfp_mask,
3936 		unsigned int order, struct alloc_context *ac)
3937 {
3938 	/* Dirty zone balancing only done in the fast path */
3939 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3940 
3941 	/*
3942 	 * The preferred zone is used for statistics but crucially it is
3943 	 * also used as the starting point for the zonelist iterator. It
3944 	 * may get reset for allocations that ignore memory policies.
3945 	 */
3946 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3947 					ac->high_zoneidx, ac->nodemask);
3948 }
3949 
3950 /*
3951  * This is the 'heart' of the zoned buddy allocator.
3952  */
3953 struct page *
3954 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3955 			struct zonelist *zonelist, nodemask_t *nodemask)
3956 {
3957 	struct page *page;
3958 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3959 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3960 	struct alloc_context ac = { };
3961 
3962 	gfp_mask &= gfp_allowed_mask;
3963 	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
3964 		return NULL;
3965 
3966 	finalise_ac(gfp_mask, order, &ac);
3967 
3968 	/* First allocation attempt */
3969 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3970 	if (likely(page))
3971 		goto out;
3972 
3973 	/*
3974 	 * Runtime PM, block IO and its error handling path can deadlock
3975 	 * because I/O on the device might not complete.
3976 	 */
3977 	alloc_mask = memalloc_noio_flags(gfp_mask);
3978 	ac.spread_dirty_pages = false;
3979 
3980 	/*
3981 	 * Restore the original nodemask if it was potentially replaced with
3982 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3983 	 */
3984 	if (unlikely(ac.nodemask != nodemask))
3985 		ac.nodemask = nodemask;
3986 
3987 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3988 
3989 out:
3990 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3991 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3992 		__free_pages(page, order);
3993 		page = NULL;
3994 	}
3995 
3996 	if (kmemcheck_enabled && page)
3997 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3998 
3999 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4000 
4001 	return page;
4002 }
4003 EXPORT_SYMBOL(__alloc_pages_nodemask);
4004 
4005 /*
4006  * Common helper functions.
4007  */
4008 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4009 {
4010 	struct page *page;
4011 
4012 	/*
4013 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4014 	 * a highmem page
4015 	 */
4016 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4017 
4018 	page = alloc_pages(gfp_mask, order);
4019 	if (!page)
4020 		return 0;
4021 	return (unsigned long) page_address(page);
4022 }
4023 EXPORT_SYMBOL(__get_free_pages);
4024 
4025 unsigned long get_zeroed_page(gfp_t gfp_mask)
4026 {
4027 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4028 }
4029 EXPORT_SYMBOL(get_zeroed_page);
4030 
4031 void __free_pages(struct page *page, unsigned int order)
4032 {
4033 	if (put_page_testzero(page)) {
4034 		if (order == 0)
4035 			free_hot_cold_page(page, false);
4036 		else
4037 			__free_pages_ok(page, order);
4038 	}
4039 }
4040 
4041 EXPORT_SYMBOL(__free_pages);
4042 
4043 void free_pages(unsigned long addr, unsigned int order)
4044 {
4045 	if (addr != 0) {
4046 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4047 		__free_pages(virt_to_page((void *)addr), order);
4048 	}
4049 }
4050 
4051 EXPORT_SYMBOL(free_pages);
4052 
4053 /*
4054  * Page Fragment:
4055  *  An arbitrary-length arbitrary-offset area of memory which resides
4056  *  within a 0 or higher order page.  Multiple fragments within that page
4057  *  are individually refcounted, in the page's reference counter.
4058  *
4059  * The page_frag functions below provide a simple allocation framework for
4060  * page fragments.  This is used by the network stack and network device
4061  * drivers to provide a backing region of memory for use as either an
4062  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4063  */
4064 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4065 					     gfp_t gfp_mask)
4066 {
4067 	struct page *page = NULL;
4068 	gfp_t gfp = gfp_mask;
4069 
4070 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4071 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4072 		    __GFP_NOMEMALLOC;
4073 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4074 				PAGE_FRAG_CACHE_MAX_ORDER);
4075 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4076 #endif
4077 	if (unlikely(!page))
4078 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4079 
4080 	nc->va = page ? page_address(page) : NULL;
4081 
4082 	return page;
4083 }
4084 
4085 void __page_frag_cache_drain(struct page *page, unsigned int count)
4086 {
4087 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4088 
4089 	if (page_ref_sub_and_test(page, count)) {
4090 		unsigned int order = compound_order(page);
4091 
4092 		if (order == 0)
4093 			free_hot_cold_page(page, false);
4094 		else
4095 			__free_pages_ok(page, order);
4096 	}
4097 }
4098 EXPORT_SYMBOL(__page_frag_cache_drain);
4099 
4100 void *page_frag_alloc(struct page_frag_cache *nc,
4101 		      unsigned int fragsz, gfp_t gfp_mask)
4102 {
4103 	unsigned int size = PAGE_SIZE;
4104 	struct page *page;
4105 	int offset;
4106 
4107 	if (unlikely(!nc->va)) {
4108 refill:
4109 		page = __page_frag_cache_refill(nc, gfp_mask);
4110 		if (!page)
4111 			return NULL;
4112 
4113 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4114 		/* if size can vary use size else just use PAGE_SIZE */
4115 		size = nc->size;
4116 #endif
4117 		/* Even if we own the page, we do not use atomic_set().
4118 		 * This would break get_page_unless_zero() users.
4119 		 */
4120 		page_ref_add(page, size - 1);
4121 
4122 		/* reset page count bias and offset to start of new frag */
4123 		nc->pfmemalloc = page_is_pfmemalloc(page);
4124 		nc->pagecnt_bias = size;
4125 		nc->offset = size;
4126 	}
4127 
4128 	offset = nc->offset - fragsz;
4129 	if (unlikely(offset < 0)) {
4130 		page = virt_to_page(nc->va);
4131 
4132 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4133 			goto refill;
4134 
4135 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4136 		/* if size can vary use size else just use PAGE_SIZE */
4137 		size = nc->size;
4138 #endif
4139 		/* OK, page count is 0, we can safely set it */
4140 		set_page_count(page, size);
4141 
4142 		/* reset page count bias and offset to start of new frag */
4143 		nc->pagecnt_bias = size;
4144 		offset = size - fragsz;
4145 	}
4146 
4147 	nc->pagecnt_bias--;
4148 	nc->offset = offset;
4149 
4150 	return nc->va + offset;
4151 }
4152 EXPORT_SYMBOL(page_frag_alloc);
4153 
4154 /*
4155  * Frees a page fragment allocated out of either a compound or order 0 page.
4156  */
4157 void page_frag_free(void *addr)
4158 {
4159 	struct page *page = virt_to_head_page(addr);
4160 
4161 	if (unlikely(put_page_testzero(page)))
4162 		__free_pages_ok(page, compound_order(page));
4163 }
4164 EXPORT_SYMBOL(page_frag_free);
4165 
4166 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4167 		size_t size)
4168 {
4169 	if (addr) {
4170 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4171 		unsigned long used = addr + PAGE_ALIGN(size);
4172 
4173 		split_page(virt_to_page((void *)addr), order);
4174 		while (used < alloc_end) {
4175 			free_page(used);
4176 			used += PAGE_SIZE;
4177 		}
4178 	}
4179 	return (void *)addr;
4180 }
4181 
4182 /**
4183  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4184  * @size: the number of bytes to allocate
4185  * @gfp_mask: GFP flags for the allocation
4186  *
4187  * This function is similar to alloc_pages(), except that it allocates the
4188  * minimum number of pages to satisfy the request.  alloc_pages() can only
4189  * allocate memory in power-of-two pages.
4190  *
4191  * This function is also limited by MAX_ORDER.
4192  *
4193  * Memory allocated by this function must be released by free_pages_exact().
4194  */
4195 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4196 {
4197 	unsigned int order = get_order(size);
4198 	unsigned long addr;
4199 
4200 	addr = __get_free_pages(gfp_mask, order);
4201 	return make_alloc_exact(addr, order, size);
4202 }
4203 EXPORT_SYMBOL(alloc_pages_exact);
4204 
4205 /**
4206  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4207  *			   pages on a node.
4208  * @nid: the preferred node ID where memory should be allocated
4209  * @size: the number of bytes to allocate
4210  * @gfp_mask: GFP flags for the allocation
4211  *
4212  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4213  * back.
4214  */
4215 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4216 {
4217 	unsigned int order = get_order(size);
4218 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4219 	if (!p)
4220 		return NULL;
4221 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4222 }
4223 
4224 /**
4225  * free_pages_exact - release memory allocated via alloc_pages_exact()
4226  * @virt: the value returned by alloc_pages_exact.
4227  * @size: size of allocation, same value as passed to alloc_pages_exact().
4228  *
4229  * Release the memory allocated by a previous call to alloc_pages_exact.
4230  */
4231 void free_pages_exact(void *virt, size_t size)
4232 {
4233 	unsigned long addr = (unsigned long)virt;
4234 	unsigned long end = addr + PAGE_ALIGN(size);
4235 
4236 	while (addr < end) {
4237 		free_page(addr);
4238 		addr += PAGE_SIZE;
4239 	}
4240 }
4241 EXPORT_SYMBOL(free_pages_exact);
4242 
4243 /**
4244  * nr_free_zone_pages - count number of pages beyond high watermark
4245  * @offset: The zone index of the highest zone
4246  *
4247  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4248  * high watermark within all zones at or below a given zone index.  For each
4249  * zone, the number of pages is calculated as:
4250  *
4251  *     nr_free_zone_pages = managed_pages - high_pages
4252  */
4253 static unsigned long nr_free_zone_pages(int offset)
4254 {
4255 	struct zoneref *z;
4256 	struct zone *zone;
4257 
4258 	/* Just pick one node, since fallback list is circular */
4259 	unsigned long sum = 0;
4260 
4261 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4262 
4263 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4264 		unsigned long size = zone->managed_pages;
4265 		unsigned long high = high_wmark_pages(zone);
4266 		if (size > high)
4267 			sum += size - high;
4268 	}
4269 
4270 	return sum;
4271 }
4272 
4273 /**
4274  * nr_free_buffer_pages - count number of pages beyond high watermark
4275  *
4276  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4277  * watermark within ZONE_DMA and ZONE_NORMAL.
4278  */
4279 unsigned long nr_free_buffer_pages(void)
4280 {
4281 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4282 }
4283 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4284 
4285 /**
4286  * nr_free_pagecache_pages - count number of pages beyond high watermark
4287  *
4288  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4289  * high watermark within all zones.
4290  */
4291 unsigned long nr_free_pagecache_pages(void)
4292 {
4293 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4294 }
4295 
4296 static inline void show_node(struct zone *zone)
4297 {
4298 	if (IS_ENABLED(CONFIG_NUMA))
4299 		printk("Node %d ", zone_to_nid(zone));
4300 }
4301 
4302 long si_mem_available(void)
4303 {
4304 	long available;
4305 	unsigned long pagecache;
4306 	unsigned long wmark_low = 0;
4307 	unsigned long pages[NR_LRU_LISTS];
4308 	struct zone *zone;
4309 	int lru;
4310 
4311 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4312 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4313 
4314 	for_each_zone(zone)
4315 		wmark_low += zone->watermark[WMARK_LOW];
4316 
4317 	/*
4318 	 * Estimate the amount of memory available for userspace allocations,
4319 	 * without causing swapping.
4320 	 */
4321 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4322 
4323 	/*
4324 	 * Not all the page cache can be freed, otherwise the system will
4325 	 * start swapping. Assume at least half of the page cache, or the
4326 	 * low watermark worth of cache, needs to stay.
4327 	 */
4328 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4329 	pagecache -= min(pagecache / 2, wmark_low);
4330 	available += pagecache;
4331 
4332 	/*
4333 	 * Part of the reclaimable slab consists of items that are in use,
4334 	 * and cannot be freed. Cap this estimate at the low watermark.
4335 	 */
4336 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4337 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4338 
4339 	if (available < 0)
4340 		available = 0;
4341 	return available;
4342 }
4343 EXPORT_SYMBOL_GPL(si_mem_available);
4344 
4345 void si_meminfo(struct sysinfo *val)
4346 {
4347 	val->totalram = totalram_pages;
4348 	val->sharedram = global_node_page_state(NR_SHMEM);
4349 	val->freeram = global_page_state(NR_FREE_PAGES);
4350 	val->bufferram = nr_blockdev_pages();
4351 	val->totalhigh = totalhigh_pages;
4352 	val->freehigh = nr_free_highpages();
4353 	val->mem_unit = PAGE_SIZE;
4354 }
4355 
4356 EXPORT_SYMBOL(si_meminfo);
4357 
4358 #ifdef CONFIG_NUMA
4359 void si_meminfo_node(struct sysinfo *val, int nid)
4360 {
4361 	int zone_type;		/* needs to be signed */
4362 	unsigned long managed_pages = 0;
4363 	unsigned long managed_highpages = 0;
4364 	unsigned long free_highpages = 0;
4365 	pg_data_t *pgdat = NODE_DATA(nid);
4366 
4367 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4368 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4369 	val->totalram = managed_pages;
4370 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4371 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4372 #ifdef CONFIG_HIGHMEM
4373 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4374 		struct zone *zone = &pgdat->node_zones[zone_type];
4375 
4376 		if (is_highmem(zone)) {
4377 			managed_highpages += zone->managed_pages;
4378 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4379 		}
4380 	}
4381 	val->totalhigh = managed_highpages;
4382 	val->freehigh = free_highpages;
4383 #else
4384 	val->totalhigh = managed_highpages;
4385 	val->freehigh = free_highpages;
4386 #endif
4387 	val->mem_unit = PAGE_SIZE;
4388 }
4389 #endif
4390 
4391 /*
4392  * Determine whether the node should be displayed or not, depending on whether
4393  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4394  */
4395 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4396 {
4397 	if (!(flags & SHOW_MEM_FILTER_NODES))
4398 		return false;
4399 
4400 	/*
4401 	 * no node mask - aka implicit memory numa policy. Do not bother with
4402 	 * the synchronization - read_mems_allowed_begin - because we do not
4403 	 * have to be precise here.
4404 	 */
4405 	if (!nodemask)
4406 		nodemask = &cpuset_current_mems_allowed;
4407 
4408 	return !node_isset(nid, *nodemask);
4409 }
4410 
4411 #define K(x) ((x) << (PAGE_SHIFT-10))
4412 
4413 static void show_migration_types(unsigned char type)
4414 {
4415 	static const char types[MIGRATE_TYPES] = {
4416 		[MIGRATE_UNMOVABLE]	= 'U',
4417 		[MIGRATE_MOVABLE]	= 'M',
4418 		[MIGRATE_RECLAIMABLE]	= 'E',
4419 		[MIGRATE_HIGHATOMIC]	= 'H',
4420 #ifdef CONFIG_CMA
4421 		[MIGRATE_CMA]		= 'C',
4422 #endif
4423 #ifdef CONFIG_MEMORY_ISOLATION
4424 		[MIGRATE_ISOLATE]	= 'I',
4425 #endif
4426 	};
4427 	char tmp[MIGRATE_TYPES + 1];
4428 	char *p = tmp;
4429 	int i;
4430 
4431 	for (i = 0; i < MIGRATE_TYPES; i++) {
4432 		if (type & (1 << i))
4433 			*p++ = types[i];
4434 	}
4435 
4436 	*p = '\0';
4437 	printk(KERN_CONT "(%s) ", tmp);
4438 }
4439 
4440 /*
4441  * Show free area list (used inside shift_scroll-lock stuff)
4442  * We also calculate the percentage fragmentation. We do this by counting the
4443  * memory on each free list with the exception of the first item on the list.
4444  *
4445  * Bits in @filter:
4446  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4447  *   cpuset.
4448  */
4449 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4450 {
4451 	unsigned long free_pcp = 0;
4452 	int cpu;
4453 	struct zone *zone;
4454 	pg_data_t *pgdat;
4455 
4456 	for_each_populated_zone(zone) {
4457 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4458 			continue;
4459 
4460 		for_each_online_cpu(cpu)
4461 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4462 	}
4463 
4464 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4465 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4466 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4467 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4468 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4469 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4470 		global_node_page_state(NR_ACTIVE_ANON),
4471 		global_node_page_state(NR_INACTIVE_ANON),
4472 		global_node_page_state(NR_ISOLATED_ANON),
4473 		global_node_page_state(NR_ACTIVE_FILE),
4474 		global_node_page_state(NR_INACTIVE_FILE),
4475 		global_node_page_state(NR_ISOLATED_FILE),
4476 		global_node_page_state(NR_UNEVICTABLE),
4477 		global_node_page_state(NR_FILE_DIRTY),
4478 		global_node_page_state(NR_WRITEBACK),
4479 		global_node_page_state(NR_UNSTABLE_NFS),
4480 		global_page_state(NR_SLAB_RECLAIMABLE),
4481 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4482 		global_node_page_state(NR_FILE_MAPPED),
4483 		global_node_page_state(NR_SHMEM),
4484 		global_page_state(NR_PAGETABLE),
4485 		global_page_state(NR_BOUNCE),
4486 		global_page_state(NR_FREE_PAGES),
4487 		free_pcp,
4488 		global_page_state(NR_FREE_CMA_PAGES));
4489 
4490 	for_each_online_pgdat(pgdat) {
4491 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4492 			continue;
4493 
4494 		printk("Node %d"
4495 			" active_anon:%lukB"
4496 			" inactive_anon:%lukB"
4497 			" active_file:%lukB"
4498 			" inactive_file:%lukB"
4499 			" unevictable:%lukB"
4500 			" isolated(anon):%lukB"
4501 			" isolated(file):%lukB"
4502 			" mapped:%lukB"
4503 			" dirty:%lukB"
4504 			" writeback:%lukB"
4505 			" shmem:%lukB"
4506 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4507 			" shmem_thp: %lukB"
4508 			" shmem_pmdmapped: %lukB"
4509 			" anon_thp: %lukB"
4510 #endif
4511 			" writeback_tmp:%lukB"
4512 			" unstable:%lukB"
4513 			" pages_scanned:%lu"
4514 			" all_unreclaimable? %s"
4515 			"\n",
4516 			pgdat->node_id,
4517 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4518 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4519 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4520 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4521 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4522 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4523 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4524 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4525 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4526 			K(node_page_state(pgdat, NR_WRITEBACK)),
4527 			K(node_page_state(pgdat, NR_SHMEM)),
4528 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4529 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4530 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4531 					* HPAGE_PMD_NR),
4532 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4533 #endif
4534 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4535 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4536 			node_page_state(pgdat, NR_PAGES_SCANNED),
4537 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4538 	}
4539 
4540 	for_each_populated_zone(zone) {
4541 		int i;
4542 
4543 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4544 			continue;
4545 
4546 		free_pcp = 0;
4547 		for_each_online_cpu(cpu)
4548 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4549 
4550 		show_node(zone);
4551 		printk(KERN_CONT
4552 			"%s"
4553 			" free:%lukB"
4554 			" min:%lukB"
4555 			" low:%lukB"
4556 			" high:%lukB"
4557 			" active_anon:%lukB"
4558 			" inactive_anon:%lukB"
4559 			" active_file:%lukB"
4560 			" inactive_file:%lukB"
4561 			" unevictable:%lukB"
4562 			" writepending:%lukB"
4563 			" present:%lukB"
4564 			" managed:%lukB"
4565 			" mlocked:%lukB"
4566 			" slab_reclaimable:%lukB"
4567 			" slab_unreclaimable:%lukB"
4568 			" kernel_stack:%lukB"
4569 			" pagetables:%lukB"
4570 			" bounce:%lukB"
4571 			" free_pcp:%lukB"
4572 			" local_pcp:%ukB"
4573 			" free_cma:%lukB"
4574 			"\n",
4575 			zone->name,
4576 			K(zone_page_state(zone, NR_FREE_PAGES)),
4577 			K(min_wmark_pages(zone)),
4578 			K(low_wmark_pages(zone)),
4579 			K(high_wmark_pages(zone)),
4580 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4581 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4582 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4583 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4584 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4585 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4586 			K(zone->present_pages),
4587 			K(zone->managed_pages),
4588 			K(zone_page_state(zone, NR_MLOCK)),
4589 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4590 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4591 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4592 			K(zone_page_state(zone, NR_PAGETABLE)),
4593 			K(zone_page_state(zone, NR_BOUNCE)),
4594 			K(free_pcp),
4595 			K(this_cpu_read(zone->pageset->pcp.count)),
4596 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4597 		printk("lowmem_reserve[]:");
4598 		for (i = 0; i < MAX_NR_ZONES; i++)
4599 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4600 		printk(KERN_CONT "\n");
4601 	}
4602 
4603 	for_each_populated_zone(zone) {
4604 		unsigned int order;
4605 		unsigned long nr[MAX_ORDER], flags, total = 0;
4606 		unsigned char types[MAX_ORDER];
4607 
4608 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4609 			continue;
4610 		show_node(zone);
4611 		printk(KERN_CONT "%s: ", zone->name);
4612 
4613 		spin_lock_irqsave(&zone->lock, flags);
4614 		for (order = 0; order < MAX_ORDER; order++) {
4615 			struct free_area *area = &zone->free_area[order];
4616 			int type;
4617 
4618 			nr[order] = area->nr_free;
4619 			total += nr[order] << order;
4620 
4621 			types[order] = 0;
4622 			for (type = 0; type < MIGRATE_TYPES; type++) {
4623 				if (!list_empty(&area->free_list[type]))
4624 					types[order] |= 1 << type;
4625 			}
4626 		}
4627 		spin_unlock_irqrestore(&zone->lock, flags);
4628 		for (order = 0; order < MAX_ORDER; order++) {
4629 			printk(KERN_CONT "%lu*%lukB ",
4630 			       nr[order], K(1UL) << order);
4631 			if (nr[order])
4632 				show_migration_types(types[order]);
4633 		}
4634 		printk(KERN_CONT "= %lukB\n", K(total));
4635 	}
4636 
4637 	hugetlb_show_meminfo();
4638 
4639 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4640 
4641 	show_swap_cache_info();
4642 }
4643 
4644 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4645 {
4646 	zoneref->zone = zone;
4647 	zoneref->zone_idx = zone_idx(zone);
4648 }
4649 
4650 /*
4651  * Builds allocation fallback zone lists.
4652  *
4653  * Add all populated zones of a node to the zonelist.
4654  */
4655 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4656 				int nr_zones)
4657 {
4658 	struct zone *zone;
4659 	enum zone_type zone_type = MAX_NR_ZONES;
4660 
4661 	do {
4662 		zone_type--;
4663 		zone = pgdat->node_zones + zone_type;
4664 		if (managed_zone(zone)) {
4665 			zoneref_set_zone(zone,
4666 				&zonelist->_zonerefs[nr_zones++]);
4667 			check_highest_zone(zone_type);
4668 		}
4669 	} while (zone_type);
4670 
4671 	return nr_zones;
4672 }
4673 
4674 
4675 /*
4676  *  zonelist_order:
4677  *  0 = automatic detection of better ordering.
4678  *  1 = order by ([node] distance, -zonetype)
4679  *  2 = order by (-zonetype, [node] distance)
4680  *
4681  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4682  *  the same zonelist. So only NUMA can configure this param.
4683  */
4684 #define ZONELIST_ORDER_DEFAULT  0
4685 #define ZONELIST_ORDER_NODE     1
4686 #define ZONELIST_ORDER_ZONE     2
4687 
4688 /* zonelist order in the kernel.
4689  * set_zonelist_order() will set this to NODE or ZONE.
4690  */
4691 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4692 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4693 
4694 
4695 #ifdef CONFIG_NUMA
4696 /* The value user specified ....changed by config */
4697 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4698 /* string for sysctl */
4699 #define NUMA_ZONELIST_ORDER_LEN	16
4700 char numa_zonelist_order[16] = "default";
4701 
4702 /*
4703  * interface for configure zonelist ordering.
4704  * command line option "numa_zonelist_order"
4705  *	= "[dD]efault	- default, automatic configuration.
4706  *	= "[nN]ode 	- order by node locality, then by zone within node
4707  *	= "[zZ]one      - order by zone, then by locality within zone
4708  */
4709 
4710 static int __parse_numa_zonelist_order(char *s)
4711 {
4712 	if (*s == 'd' || *s == 'D') {
4713 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4714 	} else if (*s == 'n' || *s == 'N') {
4715 		user_zonelist_order = ZONELIST_ORDER_NODE;
4716 	} else if (*s == 'z' || *s == 'Z') {
4717 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4718 	} else {
4719 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4720 		return -EINVAL;
4721 	}
4722 	return 0;
4723 }
4724 
4725 static __init int setup_numa_zonelist_order(char *s)
4726 {
4727 	int ret;
4728 
4729 	if (!s)
4730 		return 0;
4731 
4732 	ret = __parse_numa_zonelist_order(s);
4733 	if (ret == 0)
4734 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4735 
4736 	return ret;
4737 }
4738 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4739 
4740 /*
4741  * sysctl handler for numa_zonelist_order
4742  */
4743 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4744 		void __user *buffer, size_t *length,
4745 		loff_t *ppos)
4746 {
4747 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4748 	int ret;
4749 	static DEFINE_MUTEX(zl_order_mutex);
4750 
4751 	mutex_lock(&zl_order_mutex);
4752 	if (write) {
4753 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4754 			ret = -EINVAL;
4755 			goto out;
4756 		}
4757 		strcpy(saved_string, (char *)table->data);
4758 	}
4759 	ret = proc_dostring(table, write, buffer, length, ppos);
4760 	if (ret)
4761 		goto out;
4762 	if (write) {
4763 		int oldval = user_zonelist_order;
4764 
4765 		ret = __parse_numa_zonelist_order((char *)table->data);
4766 		if (ret) {
4767 			/*
4768 			 * bogus value.  restore saved string
4769 			 */
4770 			strncpy((char *)table->data, saved_string,
4771 				NUMA_ZONELIST_ORDER_LEN);
4772 			user_zonelist_order = oldval;
4773 		} else if (oldval != user_zonelist_order) {
4774 			mutex_lock(&zonelists_mutex);
4775 			build_all_zonelists(NULL, NULL);
4776 			mutex_unlock(&zonelists_mutex);
4777 		}
4778 	}
4779 out:
4780 	mutex_unlock(&zl_order_mutex);
4781 	return ret;
4782 }
4783 
4784 
4785 #define MAX_NODE_LOAD (nr_online_nodes)
4786 static int node_load[MAX_NUMNODES];
4787 
4788 /**
4789  * find_next_best_node - find the next node that should appear in a given node's fallback list
4790  * @node: node whose fallback list we're appending
4791  * @used_node_mask: nodemask_t of already used nodes
4792  *
4793  * We use a number of factors to determine which is the next node that should
4794  * appear on a given node's fallback list.  The node should not have appeared
4795  * already in @node's fallback list, and it should be the next closest node
4796  * according to the distance array (which contains arbitrary distance values
4797  * from each node to each node in the system), and should also prefer nodes
4798  * with no CPUs, since presumably they'll have very little allocation pressure
4799  * on them otherwise.
4800  * It returns -1 if no node is found.
4801  */
4802 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4803 {
4804 	int n, val;
4805 	int min_val = INT_MAX;
4806 	int best_node = NUMA_NO_NODE;
4807 	const struct cpumask *tmp = cpumask_of_node(0);
4808 
4809 	/* Use the local node if we haven't already */
4810 	if (!node_isset(node, *used_node_mask)) {
4811 		node_set(node, *used_node_mask);
4812 		return node;
4813 	}
4814 
4815 	for_each_node_state(n, N_MEMORY) {
4816 
4817 		/* Don't want a node to appear more than once */
4818 		if (node_isset(n, *used_node_mask))
4819 			continue;
4820 
4821 		/* Use the distance array to find the distance */
4822 		val = node_distance(node, n);
4823 
4824 		/* Penalize nodes under us ("prefer the next node") */
4825 		val += (n < node);
4826 
4827 		/* Give preference to headless and unused nodes */
4828 		tmp = cpumask_of_node(n);
4829 		if (!cpumask_empty(tmp))
4830 			val += PENALTY_FOR_NODE_WITH_CPUS;
4831 
4832 		/* Slight preference for less loaded node */
4833 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4834 		val += node_load[n];
4835 
4836 		if (val < min_val) {
4837 			min_val = val;
4838 			best_node = n;
4839 		}
4840 	}
4841 
4842 	if (best_node >= 0)
4843 		node_set(best_node, *used_node_mask);
4844 
4845 	return best_node;
4846 }
4847 
4848 
4849 /*
4850  * Build zonelists ordered by node and zones within node.
4851  * This results in maximum locality--normal zone overflows into local
4852  * DMA zone, if any--but risks exhausting DMA zone.
4853  */
4854 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4855 {
4856 	int j;
4857 	struct zonelist *zonelist;
4858 
4859 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4860 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4861 		;
4862 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4863 	zonelist->_zonerefs[j].zone = NULL;
4864 	zonelist->_zonerefs[j].zone_idx = 0;
4865 }
4866 
4867 /*
4868  * Build gfp_thisnode zonelists
4869  */
4870 static void build_thisnode_zonelists(pg_data_t *pgdat)
4871 {
4872 	int j;
4873 	struct zonelist *zonelist;
4874 
4875 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4876 	j = build_zonelists_node(pgdat, zonelist, 0);
4877 	zonelist->_zonerefs[j].zone = NULL;
4878 	zonelist->_zonerefs[j].zone_idx = 0;
4879 }
4880 
4881 /*
4882  * Build zonelists ordered by zone and nodes within zones.
4883  * This results in conserving DMA zone[s] until all Normal memory is
4884  * exhausted, but results in overflowing to remote node while memory
4885  * may still exist in local DMA zone.
4886  */
4887 static int node_order[MAX_NUMNODES];
4888 
4889 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4890 {
4891 	int pos, j, node;
4892 	int zone_type;		/* needs to be signed */
4893 	struct zone *z;
4894 	struct zonelist *zonelist;
4895 
4896 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4897 	pos = 0;
4898 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4899 		for (j = 0; j < nr_nodes; j++) {
4900 			node = node_order[j];
4901 			z = &NODE_DATA(node)->node_zones[zone_type];
4902 			if (managed_zone(z)) {
4903 				zoneref_set_zone(z,
4904 					&zonelist->_zonerefs[pos++]);
4905 				check_highest_zone(zone_type);
4906 			}
4907 		}
4908 	}
4909 	zonelist->_zonerefs[pos].zone = NULL;
4910 	zonelist->_zonerefs[pos].zone_idx = 0;
4911 }
4912 
4913 #if defined(CONFIG_64BIT)
4914 /*
4915  * Devices that require DMA32/DMA are relatively rare and do not justify a
4916  * penalty to every machine in case the specialised case applies. Default
4917  * to Node-ordering on 64-bit NUMA machines
4918  */
4919 static int default_zonelist_order(void)
4920 {
4921 	return ZONELIST_ORDER_NODE;
4922 }
4923 #else
4924 /*
4925  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4926  * by the kernel. If processes running on node 0 deplete the low memory zone
4927  * then reclaim will occur more frequency increasing stalls and potentially
4928  * be easier to OOM if a large percentage of the zone is under writeback or
4929  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4930  * Hence, default to zone ordering on 32-bit.
4931  */
4932 static int default_zonelist_order(void)
4933 {
4934 	return ZONELIST_ORDER_ZONE;
4935 }
4936 #endif /* CONFIG_64BIT */
4937 
4938 static void set_zonelist_order(void)
4939 {
4940 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4941 		current_zonelist_order = default_zonelist_order();
4942 	else
4943 		current_zonelist_order = user_zonelist_order;
4944 }
4945 
4946 static void build_zonelists(pg_data_t *pgdat)
4947 {
4948 	int i, node, load;
4949 	nodemask_t used_mask;
4950 	int local_node, prev_node;
4951 	struct zonelist *zonelist;
4952 	unsigned int order = current_zonelist_order;
4953 
4954 	/* initialize zonelists */
4955 	for (i = 0; i < MAX_ZONELISTS; i++) {
4956 		zonelist = pgdat->node_zonelists + i;
4957 		zonelist->_zonerefs[0].zone = NULL;
4958 		zonelist->_zonerefs[0].zone_idx = 0;
4959 	}
4960 
4961 	/* NUMA-aware ordering of nodes */
4962 	local_node = pgdat->node_id;
4963 	load = nr_online_nodes;
4964 	prev_node = local_node;
4965 	nodes_clear(used_mask);
4966 
4967 	memset(node_order, 0, sizeof(node_order));
4968 	i = 0;
4969 
4970 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4971 		/*
4972 		 * We don't want to pressure a particular node.
4973 		 * So adding penalty to the first node in same
4974 		 * distance group to make it round-robin.
4975 		 */
4976 		if (node_distance(local_node, node) !=
4977 		    node_distance(local_node, prev_node))
4978 			node_load[node] = load;
4979 
4980 		prev_node = node;
4981 		load--;
4982 		if (order == ZONELIST_ORDER_NODE)
4983 			build_zonelists_in_node_order(pgdat, node);
4984 		else
4985 			node_order[i++] = node;	/* remember order */
4986 	}
4987 
4988 	if (order == ZONELIST_ORDER_ZONE) {
4989 		/* calculate node order -- i.e., DMA last! */
4990 		build_zonelists_in_zone_order(pgdat, i);
4991 	}
4992 
4993 	build_thisnode_zonelists(pgdat);
4994 }
4995 
4996 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4997 /*
4998  * Return node id of node used for "local" allocations.
4999  * I.e., first node id of first zone in arg node's generic zonelist.
5000  * Used for initializing percpu 'numa_mem', which is used primarily
5001  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5002  */
5003 int local_memory_node(int node)
5004 {
5005 	struct zoneref *z;
5006 
5007 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5008 				   gfp_zone(GFP_KERNEL),
5009 				   NULL);
5010 	return z->zone->node;
5011 }
5012 #endif
5013 
5014 static void setup_min_unmapped_ratio(void);
5015 static void setup_min_slab_ratio(void);
5016 #else	/* CONFIG_NUMA */
5017 
5018 static void set_zonelist_order(void)
5019 {
5020 	current_zonelist_order = ZONELIST_ORDER_ZONE;
5021 }
5022 
5023 static void build_zonelists(pg_data_t *pgdat)
5024 {
5025 	int node, local_node;
5026 	enum zone_type j;
5027 	struct zonelist *zonelist;
5028 
5029 	local_node = pgdat->node_id;
5030 
5031 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5032 	j = build_zonelists_node(pgdat, zonelist, 0);
5033 
5034 	/*
5035 	 * Now we build the zonelist so that it contains the zones
5036 	 * of all the other nodes.
5037 	 * We don't want to pressure a particular node, so when
5038 	 * building the zones for node N, we make sure that the
5039 	 * zones coming right after the local ones are those from
5040 	 * node N+1 (modulo N)
5041 	 */
5042 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5043 		if (!node_online(node))
5044 			continue;
5045 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5046 	}
5047 	for (node = 0; node < local_node; node++) {
5048 		if (!node_online(node))
5049 			continue;
5050 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5051 	}
5052 
5053 	zonelist->_zonerefs[j].zone = NULL;
5054 	zonelist->_zonerefs[j].zone_idx = 0;
5055 }
5056 
5057 #endif	/* CONFIG_NUMA */
5058 
5059 /*
5060  * Boot pageset table. One per cpu which is going to be used for all
5061  * zones and all nodes. The parameters will be set in such a way
5062  * that an item put on a list will immediately be handed over to
5063  * the buddy list. This is safe since pageset manipulation is done
5064  * with interrupts disabled.
5065  *
5066  * The boot_pagesets must be kept even after bootup is complete for
5067  * unused processors and/or zones. They do play a role for bootstrapping
5068  * hotplugged processors.
5069  *
5070  * zoneinfo_show() and maybe other functions do
5071  * not check if the processor is online before following the pageset pointer.
5072  * Other parts of the kernel may not check if the zone is available.
5073  */
5074 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5075 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5076 static void setup_zone_pageset(struct zone *zone);
5077 
5078 /*
5079  * Global mutex to protect against size modification of zonelists
5080  * as well as to serialize pageset setup for the new populated zone.
5081  */
5082 DEFINE_MUTEX(zonelists_mutex);
5083 
5084 /* return values int ....just for stop_machine() */
5085 static int __build_all_zonelists(void *data)
5086 {
5087 	int nid;
5088 	int cpu;
5089 	pg_data_t *self = data;
5090 
5091 #ifdef CONFIG_NUMA
5092 	memset(node_load, 0, sizeof(node_load));
5093 #endif
5094 
5095 	if (self && !node_online(self->node_id)) {
5096 		build_zonelists(self);
5097 	}
5098 
5099 	for_each_online_node(nid) {
5100 		pg_data_t *pgdat = NODE_DATA(nid);
5101 
5102 		build_zonelists(pgdat);
5103 	}
5104 
5105 	/*
5106 	 * Initialize the boot_pagesets that are going to be used
5107 	 * for bootstrapping processors. The real pagesets for
5108 	 * each zone will be allocated later when the per cpu
5109 	 * allocator is available.
5110 	 *
5111 	 * boot_pagesets are used also for bootstrapping offline
5112 	 * cpus if the system is already booted because the pagesets
5113 	 * are needed to initialize allocators on a specific cpu too.
5114 	 * F.e. the percpu allocator needs the page allocator which
5115 	 * needs the percpu allocator in order to allocate its pagesets
5116 	 * (a chicken-egg dilemma).
5117 	 */
5118 	for_each_possible_cpu(cpu) {
5119 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5120 
5121 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5122 		/*
5123 		 * We now know the "local memory node" for each node--
5124 		 * i.e., the node of the first zone in the generic zonelist.
5125 		 * Set up numa_mem percpu variable for on-line cpus.  During
5126 		 * boot, only the boot cpu should be on-line;  we'll init the
5127 		 * secondary cpus' numa_mem as they come on-line.  During
5128 		 * node/memory hotplug, we'll fixup all on-line cpus.
5129 		 */
5130 		if (cpu_online(cpu))
5131 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5132 #endif
5133 	}
5134 
5135 	return 0;
5136 }
5137 
5138 static noinline void __init
5139 build_all_zonelists_init(void)
5140 {
5141 	__build_all_zonelists(NULL);
5142 	mminit_verify_zonelist();
5143 	cpuset_init_current_mems_allowed();
5144 }
5145 
5146 /*
5147  * Called with zonelists_mutex held always
5148  * unless system_state == SYSTEM_BOOTING.
5149  *
5150  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5151  * [we're only called with non-NULL zone through __meminit paths] and
5152  * (2) call of __init annotated helper build_all_zonelists_init
5153  * [protected by SYSTEM_BOOTING].
5154  */
5155 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5156 {
5157 	set_zonelist_order();
5158 
5159 	if (system_state == SYSTEM_BOOTING) {
5160 		build_all_zonelists_init();
5161 	} else {
5162 #ifdef CONFIG_MEMORY_HOTPLUG
5163 		if (zone)
5164 			setup_zone_pageset(zone);
5165 #endif
5166 		/* we have to stop all cpus to guarantee there is no user
5167 		   of zonelist */
5168 		stop_machine(__build_all_zonelists, pgdat, NULL);
5169 		/* cpuset refresh routine should be here */
5170 	}
5171 	vm_total_pages = nr_free_pagecache_pages();
5172 	/*
5173 	 * Disable grouping by mobility if the number of pages in the
5174 	 * system is too low to allow the mechanism to work. It would be
5175 	 * more accurate, but expensive to check per-zone. This check is
5176 	 * made on memory-hotadd so a system can start with mobility
5177 	 * disabled and enable it later
5178 	 */
5179 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5180 		page_group_by_mobility_disabled = 1;
5181 	else
5182 		page_group_by_mobility_disabled = 0;
5183 
5184 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5185 		nr_online_nodes,
5186 		zonelist_order_name[current_zonelist_order],
5187 		page_group_by_mobility_disabled ? "off" : "on",
5188 		vm_total_pages);
5189 #ifdef CONFIG_NUMA
5190 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5191 #endif
5192 }
5193 
5194 /*
5195  * Initially all pages are reserved - free ones are freed
5196  * up by free_all_bootmem() once the early boot process is
5197  * done. Non-atomic initialization, single-pass.
5198  */
5199 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5200 		unsigned long start_pfn, enum memmap_context context)
5201 {
5202 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5203 	unsigned long end_pfn = start_pfn + size;
5204 	pg_data_t *pgdat = NODE_DATA(nid);
5205 	unsigned long pfn;
5206 	unsigned long nr_initialised = 0;
5207 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5208 	struct memblock_region *r = NULL, *tmp;
5209 #endif
5210 
5211 	if (highest_memmap_pfn < end_pfn - 1)
5212 		highest_memmap_pfn = end_pfn - 1;
5213 
5214 	/*
5215 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5216 	 * memory
5217 	 */
5218 	if (altmap && start_pfn == altmap->base_pfn)
5219 		start_pfn += altmap->reserve;
5220 
5221 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5222 		/*
5223 		 * There can be holes in boot-time mem_map[]s handed to this
5224 		 * function.  They do not exist on hotplugged memory.
5225 		 */
5226 		if (context != MEMMAP_EARLY)
5227 			goto not_early;
5228 
5229 		if (!early_pfn_valid(pfn)) {
5230 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5231 			/*
5232 			 * Skip to the pfn preceding the next valid one (or
5233 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5234 			 * on our next iteration of the loop.
5235 			 */
5236 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5237 #endif
5238 			continue;
5239 		}
5240 		if (!early_pfn_in_nid(pfn, nid))
5241 			continue;
5242 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5243 			break;
5244 
5245 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5246 		/*
5247 		 * Check given memblock attribute by firmware which can affect
5248 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5249 		 * mirrored, it's an overlapped memmap init. skip it.
5250 		 */
5251 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5252 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5253 				for_each_memblock(memory, tmp)
5254 					if (pfn < memblock_region_memory_end_pfn(tmp))
5255 						break;
5256 				r = tmp;
5257 			}
5258 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5259 			    memblock_is_mirror(r)) {
5260 				/* already initialized as NORMAL */
5261 				pfn = memblock_region_memory_end_pfn(r);
5262 				continue;
5263 			}
5264 		}
5265 #endif
5266 
5267 not_early:
5268 		/*
5269 		 * Mark the block movable so that blocks are reserved for
5270 		 * movable at startup. This will force kernel allocations
5271 		 * to reserve their blocks rather than leaking throughout
5272 		 * the address space during boot when many long-lived
5273 		 * kernel allocations are made.
5274 		 *
5275 		 * bitmap is created for zone's valid pfn range. but memmap
5276 		 * can be created for invalid pages (for alignment)
5277 		 * check here not to call set_pageblock_migratetype() against
5278 		 * pfn out of zone.
5279 		 */
5280 		if (!(pfn & (pageblock_nr_pages - 1))) {
5281 			struct page *page = pfn_to_page(pfn);
5282 
5283 			__init_single_page(page, pfn, zone, nid);
5284 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5285 		} else {
5286 			__init_single_pfn(pfn, zone, nid);
5287 		}
5288 	}
5289 }
5290 
5291 static void __meminit zone_init_free_lists(struct zone *zone)
5292 {
5293 	unsigned int order, t;
5294 	for_each_migratetype_order(order, t) {
5295 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5296 		zone->free_area[order].nr_free = 0;
5297 	}
5298 }
5299 
5300 #ifndef __HAVE_ARCH_MEMMAP_INIT
5301 #define memmap_init(size, nid, zone, start_pfn) \
5302 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5303 #endif
5304 
5305 static int zone_batchsize(struct zone *zone)
5306 {
5307 #ifdef CONFIG_MMU
5308 	int batch;
5309 
5310 	/*
5311 	 * The per-cpu-pages pools are set to around 1000th of the
5312 	 * size of the zone.  But no more than 1/2 of a meg.
5313 	 *
5314 	 * OK, so we don't know how big the cache is.  So guess.
5315 	 */
5316 	batch = zone->managed_pages / 1024;
5317 	if (batch * PAGE_SIZE > 512 * 1024)
5318 		batch = (512 * 1024) / PAGE_SIZE;
5319 	batch /= 4;		/* We effectively *= 4 below */
5320 	if (batch < 1)
5321 		batch = 1;
5322 
5323 	/*
5324 	 * Clamp the batch to a 2^n - 1 value. Having a power
5325 	 * of 2 value was found to be more likely to have
5326 	 * suboptimal cache aliasing properties in some cases.
5327 	 *
5328 	 * For example if 2 tasks are alternately allocating
5329 	 * batches of pages, one task can end up with a lot
5330 	 * of pages of one half of the possible page colors
5331 	 * and the other with pages of the other colors.
5332 	 */
5333 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5334 
5335 	return batch;
5336 
5337 #else
5338 	/* The deferral and batching of frees should be suppressed under NOMMU
5339 	 * conditions.
5340 	 *
5341 	 * The problem is that NOMMU needs to be able to allocate large chunks
5342 	 * of contiguous memory as there's no hardware page translation to
5343 	 * assemble apparent contiguous memory from discontiguous pages.
5344 	 *
5345 	 * Queueing large contiguous runs of pages for batching, however,
5346 	 * causes the pages to actually be freed in smaller chunks.  As there
5347 	 * can be a significant delay between the individual batches being
5348 	 * recycled, this leads to the once large chunks of space being
5349 	 * fragmented and becoming unavailable for high-order allocations.
5350 	 */
5351 	return 0;
5352 #endif
5353 }
5354 
5355 /*
5356  * pcp->high and pcp->batch values are related and dependent on one another:
5357  * ->batch must never be higher then ->high.
5358  * The following function updates them in a safe manner without read side
5359  * locking.
5360  *
5361  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5362  * those fields changing asynchronously (acording the the above rule).
5363  *
5364  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5365  * outside of boot time (or some other assurance that no concurrent updaters
5366  * exist).
5367  */
5368 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5369 		unsigned long batch)
5370 {
5371        /* start with a fail safe value for batch */
5372 	pcp->batch = 1;
5373 	smp_wmb();
5374 
5375        /* Update high, then batch, in order */
5376 	pcp->high = high;
5377 	smp_wmb();
5378 
5379 	pcp->batch = batch;
5380 }
5381 
5382 /* a companion to pageset_set_high() */
5383 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5384 {
5385 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5386 }
5387 
5388 static void pageset_init(struct per_cpu_pageset *p)
5389 {
5390 	struct per_cpu_pages *pcp;
5391 	int migratetype;
5392 
5393 	memset(p, 0, sizeof(*p));
5394 
5395 	pcp = &p->pcp;
5396 	pcp->count = 0;
5397 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5398 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5399 }
5400 
5401 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5402 {
5403 	pageset_init(p);
5404 	pageset_set_batch(p, batch);
5405 }
5406 
5407 /*
5408  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5409  * to the value high for the pageset p.
5410  */
5411 static void pageset_set_high(struct per_cpu_pageset *p,
5412 				unsigned long high)
5413 {
5414 	unsigned long batch = max(1UL, high / 4);
5415 	if ((high / 4) > (PAGE_SHIFT * 8))
5416 		batch = PAGE_SHIFT * 8;
5417 
5418 	pageset_update(&p->pcp, high, batch);
5419 }
5420 
5421 static void pageset_set_high_and_batch(struct zone *zone,
5422 				       struct per_cpu_pageset *pcp)
5423 {
5424 	if (percpu_pagelist_fraction)
5425 		pageset_set_high(pcp,
5426 			(zone->managed_pages /
5427 				percpu_pagelist_fraction));
5428 	else
5429 		pageset_set_batch(pcp, zone_batchsize(zone));
5430 }
5431 
5432 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5433 {
5434 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5435 
5436 	pageset_init(pcp);
5437 	pageset_set_high_and_batch(zone, pcp);
5438 }
5439 
5440 static void __meminit setup_zone_pageset(struct zone *zone)
5441 {
5442 	int cpu;
5443 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5444 	for_each_possible_cpu(cpu)
5445 		zone_pageset_init(zone, cpu);
5446 }
5447 
5448 /*
5449  * Allocate per cpu pagesets and initialize them.
5450  * Before this call only boot pagesets were available.
5451  */
5452 void __init setup_per_cpu_pageset(void)
5453 {
5454 	struct pglist_data *pgdat;
5455 	struct zone *zone;
5456 
5457 	for_each_populated_zone(zone)
5458 		setup_zone_pageset(zone);
5459 
5460 	for_each_online_pgdat(pgdat)
5461 		pgdat->per_cpu_nodestats =
5462 			alloc_percpu(struct per_cpu_nodestat);
5463 }
5464 
5465 static __meminit void zone_pcp_init(struct zone *zone)
5466 {
5467 	/*
5468 	 * per cpu subsystem is not up at this point. The following code
5469 	 * relies on the ability of the linker to provide the
5470 	 * offset of a (static) per cpu variable into the per cpu area.
5471 	 */
5472 	zone->pageset = &boot_pageset;
5473 
5474 	if (populated_zone(zone))
5475 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5476 			zone->name, zone->present_pages,
5477 					 zone_batchsize(zone));
5478 }
5479 
5480 int __meminit init_currently_empty_zone(struct zone *zone,
5481 					unsigned long zone_start_pfn,
5482 					unsigned long size)
5483 {
5484 	struct pglist_data *pgdat = zone->zone_pgdat;
5485 
5486 	pgdat->nr_zones = zone_idx(zone) + 1;
5487 
5488 	zone->zone_start_pfn = zone_start_pfn;
5489 
5490 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5491 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5492 			pgdat->node_id,
5493 			(unsigned long)zone_idx(zone),
5494 			zone_start_pfn, (zone_start_pfn + size));
5495 
5496 	zone_init_free_lists(zone);
5497 	zone->initialized = 1;
5498 
5499 	return 0;
5500 }
5501 
5502 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5503 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5504 
5505 /*
5506  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5507  */
5508 int __meminit __early_pfn_to_nid(unsigned long pfn,
5509 					struct mminit_pfnnid_cache *state)
5510 {
5511 	unsigned long start_pfn, end_pfn;
5512 	int nid;
5513 
5514 	if (state->last_start <= pfn && pfn < state->last_end)
5515 		return state->last_nid;
5516 
5517 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5518 	if (nid != -1) {
5519 		state->last_start = start_pfn;
5520 		state->last_end = end_pfn;
5521 		state->last_nid = nid;
5522 	}
5523 
5524 	return nid;
5525 }
5526 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5527 
5528 /**
5529  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5530  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5531  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5532  *
5533  * If an architecture guarantees that all ranges registered contain no holes
5534  * and may be freed, this this function may be used instead of calling
5535  * memblock_free_early_nid() manually.
5536  */
5537 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5538 {
5539 	unsigned long start_pfn, end_pfn;
5540 	int i, this_nid;
5541 
5542 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5543 		start_pfn = min(start_pfn, max_low_pfn);
5544 		end_pfn = min(end_pfn, max_low_pfn);
5545 
5546 		if (start_pfn < end_pfn)
5547 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5548 					(end_pfn - start_pfn) << PAGE_SHIFT,
5549 					this_nid);
5550 	}
5551 }
5552 
5553 /**
5554  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5555  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5556  *
5557  * If an architecture guarantees that all ranges registered contain no holes and may
5558  * be freed, this function may be used instead of calling memory_present() manually.
5559  */
5560 void __init sparse_memory_present_with_active_regions(int nid)
5561 {
5562 	unsigned long start_pfn, end_pfn;
5563 	int i, this_nid;
5564 
5565 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5566 		memory_present(this_nid, start_pfn, end_pfn);
5567 }
5568 
5569 /**
5570  * get_pfn_range_for_nid - Return the start and end page frames for a node
5571  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5572  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5573  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5574  *
5575  * It returns the start and end page frame of a node based on information
5576  * provided by memblock_set_node(). If called for a node
5577  * with no available memory, a warning is printed and the start and end
5578  * PFNs will be 0.
5579  */
5580 void __meminit get_pfn_range_for_nid(unsigned int nid,
5581 			unsigned long *start_pfn, unsigned long *end_pfn)
5582 {
5583 	unsigned long this_start_pfn, this_end_pfn;
5584 	int i;
5585 
5586 	*start_pfn = -1UL;
5587 	*end_pfn = 0;
5588 
5589 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5590 		*start_pfn = min(*start_pfn, this_start_pfn);
5591 		*end_pfn = max(*end_pfn, this_end_pfn);
5592 	}
5593 
5594 	if (*start_pfn == -1UL)
5595 		*start_pfn = 0;
5596 }
5597 
5598 /*
5599  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5600  * assumption is made that zones within a node are ordered in monotonic
5601  * increasing memory addresses so that the "highest" populated zone is used
5602  */
5603 static void __init find_usable_zone_for_movable(void)
5604 {
5605 	int zone_index;
5606 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5607 		if (zone_index == ZONE_MOVABLE)
5608 			continue;
5609 
5610 		if (arch_zone_highest_possible_pfn[zone_index] >
5611 				arch_zone_lowest_possible_pfn[zone_index])
5612 			break;
5613 	}
5614 
5615 	VM_BUG_ON(zone_index == -1);
5616 	movable_zone = zone_index;
5617 }
5618 
5619 /*
5620  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5621  * because it is sized independent of architecture. Unlike the other zones,
5622  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5623  * in each node depending on the size of each node and how evenly kernelcore
5624  * is distributed. This helper function adjusts the zone ranges
5625  * provided by the architecture for a given node by using the end of the
5626  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5627  * zones within a node are in order of monotonic increases memory addresses
5628  */
5629 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5630 					unsigned long zone_type,
5631 					unsigned long node_start_pfn,
5632 					unsigned long node_end_pfn,
5633 					unsigned long *zone_start_pfn,
5634 					unsigned long *zone_end_pfn)
5635 {
5636 	/* Only adjust if ZONE_MOVABLE is on this node */
5637 	if (zone_movable_pfn[nid]) {
5638 		/* Size ZONE_MOVABLE */
5639 		if (zone_type == ZONE_MOVABLE) {
5640 			*zone_start_pfn = zone_movable_pfn[nid];
5641 			*zone_end_pfn = min(node_end_pfn,
5642 				arch_zone_highest_possible_pfn[movable_zone]);
5643 
5644 		/* Adjust for ZONE_MOVABLE starting within this range */
5645 		} else if (!mirrored_kernelcore &&
5646 			*zone_start_pfn < zone_movable_pfn[nid] &&
5647 			*zone_end_pfn > zone_movable_pfn[nid]) {
5648 			*zone_end_pfn = zone_movable_pfn[nid];
5649 
5650 		/* Check if this whole range is within ZONE_MOVABLE */
5651 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5652 			*zone_start_pfn = *zone_end_pfn;
5653 	}
5654 }
5655 
5656 /*
5657  * Return the number of pages a zone spans in a node, including holes
5658  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5659  */
5660 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5661 					unsigned long zone_type,
5662 					unsigned long node_start_pfn,
5663 					unsigned long node_end_pfn,
5664 					unsigned long *zone_start_pfn,
5665 					unsigned long *zone_end_pfn,
5666 					unsigned long *ignored)
5667 {
5668 	/* When hotadd a new node from cpu_up(), the node should be empty */
5669 	if (!node_start_pfn && !node_end_pfn)
5670 		return 0;
5671 
5672 	/* Get the start and end of the zone */
5673 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5674 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5675 	adjust_zone_range_for_zone_movable(nid, zone_type,
5676 				node_start_pfn, node_end_pfn,
5677 				zone_start_pfn, zone_end_pfn);
5678 
5679 	/* Check that this node has pages within the zone's required range */
5680 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5681 		return 0;
5682 
5683 	/* Move the zone boundaries inside the node if necessary */
5684 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5685 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5686 
5687 	/* Return the spanned pages */
5688 	return *zone_end_pfn - *zone_start_pfn;
5689 }
5690 
5691 /*
5692  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5693  * then all holes in the requested range will be accounted for.
5694  */
5695 unsigned long __meminit __absent_pages_in_range(int nid,
5696 				unsigned long range_start_pfn,
5697 				unsigned long range_end_pfn)
5698 {
5699 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5700 	unsigned long start_pfn, end_pfn;
5701 	int i;
5702 
5703 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5704 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5705 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5706 		nr_absent -= end_pfn - start_pfn;
5707 	}
5708 	return nr_absent;
5709 }
5710 
5711 /**
5712  * absent_pages_in_range - Return number of page frames in holes within a range
5713  * @start_pfn: The start PFN to start searching for holes
5714  * @end_pfn: The end PFN to stop searching for holes
5715  *
5716  * It returns the number of pages frames in memory holes within a range.
5717  */
5718 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5719 							unsigned long end_pfn)
5720 {
5721 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5722 }
5723 
5724 /* Return the number of page frames in holes in a zone on a node */
5725 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5726 					unsigned long zone_type,
5727 					unsigned long node_start_pfn,
5728 					unsigned long node_end_pfn,
5729 					unsigned long *ignored)
5730 {
5731 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5732 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5733 	unsigned long zone_start_pfn, zone_end_pfn;
5734 	unsigned long nr_absent;
5735 
5736 	/* When hotadd a new node from cpu_up(), the node should be empty */
5737 	if (!node_start_pfn && !node_end_pfn)
5738 		return 0;
5739 
5740 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5741 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5742 
5743 	adjust_zone_range_for_zone_movable(nid, zone_type,
5744 			node_start_pfn, node_end_pfn,
5745 			&zone_start_pfn, &zone_end_pfn);
5746 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5747 
5748 	/*
5749 	 * ZONE_MOVABLE handling.
5750 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5751 	 * and vice versa.
5752 	 */
5753 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5754 		unsigned long start_pfn, end_pfn;
5755 		struct memblock_region *r;
5756 
5757 		for_each_memblock(memory, r) {
5758 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5759 					  zone_start_pfn, zone_end_pfn);
5760 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5761 					zone_start_pfn, zone_end_pfn);
5762 
5763 			if (zone_type == ZONE_MOVABLE &&
5764 			    memblock_is_mirror(r))
5765 				nr_absent += end_pfn - start_pfn;
5766 
5767 			if (zone_type == ZONE_NORMAL &&
5768 			    !memblock_is_mirror(r))
5769 				nr_absent += end_pfn - start_pfn;
5770 		}
5771 	}
5772 
5773 	return nr_absent;
5774 }
5775 
5776 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5777 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5778 					unsigned long zone_type,
5779 					unsigned long node_start_pfn,
5780 					unsigned long node_end_pfn,
5781 					unsigned long *zone_start_pfn,
5782 					unsigned long *zone_end_pfn,
5783 					unsigned long *zones_size)
5784 {
5785 	unsigned int zone;
5786 
5787 	*zone_start_pfn = node_start_pfn;
5788 	for (zone = 0; zone < zone_type; zone++)
5789 		*zone_start_pfn += zones_size[zone];
5790 
5791 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5792 
5793 	return zones_size[zone_type];
5794 }
5795 
5796 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5797 						unsigned long zone_type,
5798 						unsigned long node_start_pfn,
5799 						unsigned long node_end_pfn,
5800 						unsigned long *zholes_size)
5801 {
5802 	if (!zholes_size)
5803 		return 0;
5804 
5805 	return zholes_size[zone_type];
5806 }
5807 
5808 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5809 
5810 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5811 						unsigned long node_start_pfn,
5812 						unsigned long node_end_pfn,
5813 						unsigned long *zones_size,
5814 						unsigned long *zholes_size)
5815 {
5816 	unsigned long realtotalpages = 0, totalpages = 0;
5817 	enum zone_type i;
5818 
5819 	for (i = 0; i < MAX_NR_ZONES; i++) {
5820 		struct zone *zone = pgdat->node_zones + i;
5821 		unsigned long zone_start_pfn, zone_end_pfn;
5822 		unsigned long size, real_size;
5823 
5824 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5825 						  node_start_pfn,
5826 						  node_end_pfn,
5827 						  &zone_start_pfn,
5828 						  &zone_end_pfn,
5829 						  zones_size);
5830 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5831 						  node_start_pfn, node_end_pfn,
5832 						  zholes_size);
5833 		if (size)
5834 			zone->zone_start_pfn = zone_start_pfn;
5835 		else
5836 			zone->zone_start_pfn = 0;
5837 		zone->spanned_pages = size;
5838 		zone->present_pages = real_size;
5839 
5840 		totalpages += size;
5841 		realtotalpages += real_size;
5842 	}
5843 
5844 	pgdat->node_spanned_pages = totalpages;
5845 	pgdat->node_present_pages = realtotalpages;
5846 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5847 							realtotalpages);
5848 }
5849 
5850 #ifndef CONFIG_SPARSEMEM
5851 /*
5852  * Calculate the size of the zone->blockflags rounded to an unsigned long
5853  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5854  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5855  * round what is now in bits to nearest long in bits, then return it in
5856  * bytes.
5857  */
5858 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5859 {
5860 	unsigned long usemapsize;
5861 
5862 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5863 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5864 	usemapsize = usemapsize >> pageblock_order;
5865 	usemapsize *= NR_PAGEBLOCK_BITS;
5866 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5867 
5868 	return usemapsize / 8;
5869 }
5870 
5871 static void __init setup_usemap(struct pglist_data *pgdat,
5872 				struct zone *zone,
5873 				unsigned long zone_start_pfn,
5874 				unsigned long zonesize)
5875 {
5876 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5877 	zone->pageblock_flags = NULL;
5878 	if (usemapsize)
5879 		zone->pageblock_flags =
5880 			memblock_virt_alloc_node_nopanic(usemapsize,
5881 							 pgdat->node_id);
5882 }
5883 #else
5884 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5885 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5886 #endif /* CONFIG_SPARSEMEM */
5887 
5888 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5889 
5890 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5891 void __paginginit set_pageblock_order(void)
5892 {
5893 	unsigned int order;
5894 
5895 	/* Check that pageblock_nr_pages has not already been setup */
5896 	if (pageblock_order)
5897 		return;
5898 
5899 	if (HPAGE_SHIFT > PAGE_SHIFT)
5900 		order = HUGETLB_PAGE_ORDER;
5901 	else
5902 		order = MAX_ORDER - 1;
5903 
5904 	/*
5905 	 * Assume the largest contiguous order of interest is a huge page.
5906 	 * This value may be variable depending on boot parameters on IA64 and
5907 	 * powerpc.
5908 	 */
5909 	pageblock_order = order;
5910 }
5911 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5912 
5913 /*
5914  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5915  * is unused as pageblock_order is set at compile-time. See
5916  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5917  * the kernel config
5918  */
5919 void __paginginit set_pageblock_order(void)
5920 {
5921 }
5922 
5923 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5924 
5925 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5926 						   unsigned long present_pages)
5927 {
5928 	unsigned long pages = spanned_pages;
5929 
5930 	/*
5931 	 * Provide a more accurate estimation if there are holes within
5932 	 * the zone and SPARSEMEM is in use. If there are holes within the
5933 	 * zone, each populated memory region may cost us one or two extra
5934 	 * memmap pages due to alignment because memmap pages for each
5935 	 * populated regions may not be naturally aligned on page boundary.
5936 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5937 	 */
5938 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5939 	    IS_ENABLED(CONFIG_SPARSEMEM))
5940 		pages = present_pages;
5941 
5942 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5943 }
5944 
5945 /*
5946  * Set up the zone data structures:
5947  *   - mark all pages reserved
5948  *   - mark all memory queues empty
5949  *   - clear the memory bitmaps
5950  *
5951  * NOTE: pgdat should get zeroed by caller.
5952  */
5953 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5954 {
5955 	enum zone_type j;
5956 	int nid = pgdat->node_id;
5957 	int ret;
5958 
5959 	pgdat_resize_init(pgdat);
5960 #ifdef CONFIG_NUMA_BALANCING
5961 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5962 	pgdat->numabalancing_migrate_nr_pages = 0;
5963 	pgdat->numabalancing_migrate_next_window = jiffies;
5964 #endif
5965 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5966 	spin_lock_init(&pgdat->split_queue_lock);
5967 	INIT_LIST_HEAD(&pgdat->split_queue);
5968 	pgdat->split_queue_len = 0;
5969 #endif
5970 	init_waitqueue_head(&pgdat->kswapd_wait);
5971 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5972 #ifdef CONFIG_COMPACTION
5973 	init_waitqueue_head(&pgdat->kcompactd_wait);
5974 #endif
5975 	pgdat_page_ext_init(pgdat);
5976 	spin_lock_init(&pgdat->lru_lock);
5977 	lruvec_init(node_lruvec(pgdat));
5978 
5979 	for (j = 0; j < MAX_NR_ZONES; j++) {
5980 		struct zone *zone = pgdat->node_zones + j;
5981 		unsigned long size, realsize, freesize, memmap_pages;
5982 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5983 
5984 		size = zone->spanned_pages;
5985 		realsize = freesize = zone->present_pages;
5986 
5987 		/*
5988 		 * Adjust freesize so that it accounts for how much memory
5989 		 * is used by this zone for memmap. This affects the watermark
5990 		 * and per-cpu initialisations
5991 		 */
5992 		memmap_pages = calc_memmap_size(size, realsize);
5993 		if (!is_highmem_idx(j)) {
5994 			if (freesize >= memmap_pages) {
5995 				freesize -= memmap_pages;
5996 				if (memmap_pages)
5997 					printk(KERN_DEBUG
5998 					       "  %s zone: %lu pages used for memmap\n",
5999 					       zone_names[j], memmap_pages);
6000 			} else
6001 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6002 					zone_names[j], memmap_pages, freesize);
6003 		}
6004 
6005 		/* Account for reserved pages */
6006 		if (j == 0 && freesize > dma_reserve) {
6007 			freesize -= dma_reserve;
6008 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6009 					zone_names[0], dma_reserve);
6010 		}
6011 
6012 		if (!is_highmem_idx(j))
6013 			nr_kernel_pages += freesize;
6014 		/* Charge for highmem memmap if there are enough kernel pages */
6015 		else if (nr_kernel_pages > memmap_pages * 2)
6016 			nr_kernel_pages -= memmap_pages;
6017 		nr_all_pages += freesize;
6018 
6019 		/*
6020 		 * Set an approximate value for lowmem here, it will be adjusted
6021 		 * when the bootmem allocator frees pages into the buddy system.
6022 		 * And all highmem pages will be managed by the buddy system.
6023 		 */
6024 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6025 #ifdef CONFIG_NUMA
6026 		zone->node = nid;
6027 #endif
6028 		zone->name = zone_names[j];
6029 		zone->zone_pgdat = pgdat;
6030 		spin_lock_init(&zone->lock);
6031 		zone_seqlock_init(zone);
6032 		zone_pcp_init(zone);
6033 
6034 		if (!size)
6035 			continue;
6036 
6037 		set_pageblock_order();
6038 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6039 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6040 		BUG_ON(ret);
6041 		memmap_init(size, nid, j, zone_start_pfn);
6042 	}
6043 }
6044 
6045 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6046 {
6047 	unsigned long __maybe_unused start = 0;
6048 	unsigned long __maybe_unused offset = 0;
6049 
6050 	/* Skip empty nodes */
6051 	if (!pgdat->node_spanned_pages)
6052 		return;
6053 
6054 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6055 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6056 	offset = pgdat->node_start_pfn - start;
6057 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6058 	if (!pgdat->node_mem_map) {
6059 		unsigned long size, end;
6060 		struct page *map;
6061 
6062 		/*
6063 		 * The zone's endpoints aren't required to be MAX_ORDER
6064 		 * aligned but the node_mem_map endpoints must be in order
6065 		 * for the buddy allocator to function correctly.
6066 		 */
6067 		end = pgdat_end_pfn(pgdat);
6068 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6069 		size =  (end - start) * sizeof(struct page);
6070 		map = alloc_remap(pgdat->node_id, size);
6071 		if (!map)
6072 			map = memblock_virt_alloc_node_nopanic(size,
6073 							       pgdat->node_id);
6074 		pgdat->node_mem_map = map + offset;
6075 	}
6076 #ifndef CONFIG_NEED_MULTIPLE_NODES
6077 	/*
6078 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6079 	 */
6080 	if (pgdat == NODE_DATA(0)) {
6081 		mem_map = NODE_DATA(0)->node_mem_map;
6082 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6083 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6084 			mem_map -= offset;
6085 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6086 	}
6087 #endif
6088 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6089 }
6090 
6091 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6092 		unsigned long node_start_pfn, unsigned long *zholes_size)
6093 {
6094 	pg_data_t *pgdat = NODE_DATA(nid);
6095 	unsigned long start_pfn = 0;
6096 	unsigned long end_pfn = 0;
6097 
6098 	/* pg_data_t should be reset to zero when it's allocated */
6099 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6100 
6101 	reset_deferred_meminit(pgdat);
6102 	pgdat->node_id = nid;
6103 	pgdat->node_start_pfn = node_start_pfn;
6104 	pgdat->per_cpu_nodestats = NULL;
6105 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6106 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6107 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6108 		(u64)start_pfn << PAGE_SHIFT,
6109 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6110 #else
6111 	start_pfn = node_start_pfn;
6112 #endif
6113 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6114 				  zones_size, zholes_size);
6115 
6116 	alloc_node_mem_map(pgdat);
6117 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6118 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6119 		nid, (unsigned long)pgdat,
6120 		(unsigned long)pgdat->node_mem_map);
6121 #endif
6122 
6123 	free_area_init_core(pgdat);
6124 }
6125 
6126 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6127 
6128 #if MAX_NUMNODES > 1
6129 /*
6130  * Figure out the number of possible node ids.
6131  */
6132 void __init setup_nr_node_ids(void)
6133 {
6134 	unsigned int highest;
6135 
6136 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6137 	nr_node_ids = highest + 1;
6138 }
6139 #endif
6140 
6141 /**
6142  * node_map_pfn_alignment - determine the maximum internode alignment
6143  *
6144  * This function should be called after node map is populated and sorted.
6145  * It calculates the maximum power of two alignment which can distinguish
6146  * all the nodes.
6147  *
6148  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6149  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6150  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6151  * shifted, 1GiB is enough and this function will indicate so.
6152  *
6153  * This is used to test whether pfn -> nid mapping of the chosen memory
6154  * model has fine enough granularity to avoid incorrect mapping for the
6155  * populated node map.
6156  *
6157  * Returns the determined alignment in pfn's.  0 if there is no alignment
6158  * requirement (single node).
6159  */
6160 unsigned long __init node_map_pfn_alignment(void)
6161 {
6162 	unsigned long accl_mask = 0, last_end = 0;
6163 	unsigned long start, end, mask;
6164 	int last_nid = -1;
6165 	int i, nid;
6166 
6167 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6168 		if (!start || last_nid < 0 || last_nid == nid) {
6169 			last_nid = nid;
6170 			last_end = end;
6171 			continue;
6172 		}
6173 
6174 		/*
6175 		 * Start with a mask granular enough to pin-point to the
6176 		 * start pfn and tick off bits one-by-one until it becomes
6177 		 * too coarse to separate the current node from the last.
6178 		 */
6179 		mask = ~((1 << __ffs(start)) - 1);
6180 		while (mask && last_end <= (start & (mask << 1)))
6181 			mask <<= 1;
6182 
6183 		/* accumulate all internode masks */
6184 		accl_mask |= mask;
6185 	}
6186 
6187 	/* convert mask to number of pages */
6188 	return ~accl_mask + 1;
6189 }
6190 
6191 /* Find the lowest pfn for a node */
6192 static unsigned long __init find_min_pfn_for_node(int nid)
6193 {
6194 	unsigned long min_pfn = ULONG_MAX;
6195 	unsigned long start_pfn;
6196 	int i;
6197 
6198 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6199 		min_pfn = min(min_pfn, start_pfn);
6200 
6201 	if (min_pfn == ULONG_MAX) {
6202 		pr_warn("Could not find start_pfn for node %d\n", nid);
6203 		return 0;
6204 	}
6205 
6206 	return min_pfn;
6207 }
6208 
6209 /**
6210  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6211  *
6212  * It returns the minimum PFN based on information provided via
6213  * memblock_set_node().
6214  */
6215 unsigned long __init find_min_pfn_with_active_regions(void)
6216 {
6217 	return find_min_pfn_for_node(MAX_NUMNODES);
6218 }
6219 
6220 /*
6221  * early_calculate_totalpages()
6222  * Sum pages in active regions for movable zone.
6223  * Populate N_MEMORY for calculating usable_nodes.
6224  */
6225 static unsigned long __init early_calculate_totalpages(void)
6226 {
6227 	unsigned long totalpages = 0;
6228 	unsigned long start_pfn, end_pfn;
6229 	int i, nid;
6230 
6231 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6232 		unsigned long pages = end_pfn - start_pfn;
6233 
6234 		totalpages += pages;
6235 		if (pages)
6236 			node_set_state(nid, N_MEMORY);
6237 	}
6238 	return totalpages;
6239 }
6240 
6241 /*
6242  * Find the PFN the Movable zone begins in each node. Kernel memory
6243  * is spread evenly between nodes as long as the nodes have enough
6244  * memory. When they don't, some nodes will have more kernelcore than
6245  * others
6246  */
6247 static void __init find_zone_movable_pfns_for_nodes(void)
6248 {
6249 	int i, nid;
6250 	unsigned long usable_startpfn;
6251 	unsigned long kernelcore_node, kernelcore_remaining;
6252 	/* save the state before borrow the nodemask */
6253 	nodemask_t saved_node_state = node_states[N_MEMORY];
6254 	unsigned long totalpages = early_calculate_totalpages();
6255 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6256 	struct memblock_region *r;
6257 
6258 	/* Need to find movable_zone earlier when movable_node is specified. */
6259 	find_usable_zone_for_movable();
6260 
6261 	/*
6262 	 * If movable_node is specified, ignore kernelcore and movablecore
6263 	 * options.
6264 	 */
6265 	if (movable_node_is_enabled()) {
6266 		for_each_memblock(memory, r) {
6267 			if (!memblock_is_hotpluggable(r))
6268 				continue;
6269 
6270 			nid = r->nid;
6271 
6272 			usable_startpfn = PFN_DOWN(r->base);
6273 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6274 				min(usable_startpfn, zone_movable_pfn[nid]) :
6275 				usable_startpfn;
6276 		}
6277 
6278 		goto out2;
6279 	}
6280 
6281 	/*
6282 	 * If kernelcore=mirror is specified, ignore movablecore option
6283 	 */
6284 	if (mirrored_kernelcore) {
6285 		bool mem_below_4gb_not_mirrored = false;
6286 
6287 		for_each_memblock(memory, r) {
6288 			if (memblock_is_mirror(r))
6289 				continue;
6290 
6291 			nid = r->nid;
6292 
6293 			usable_startpfn = memblock_region_memory_base_pfn(r);
6294 
6295 			if (usable_startpfn < 0x100000) {
6296 				mem_below_4gb_not_mirrored = true;
6297 				continue;
6298 			}
6299 
6300 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6301 				min(usable_startpfn, zone_movable_pfn[nid]) :
6302 				usable_startpfn;
6303 		}
6304 
6305 		if (mem_below_4gb_not_mirrored)
6306 			pr_warn("This configuration results in unmirrored kernel memory.");
6307 
6308 		goto out2;
6309 	}
6310 
6311 	/*
6312 	 * If movablecore=nn[KMG] was specified, calculate what size of
6313 	 * kernelcore that corresponds so that memory usable for
6314 	 * any allocation type is evenly spread. If both kernelcore
6315 	 * and movablecore are specified, then the value of kernelcore
6316 	 * will be used for required_kernelcore if it's greater than
6317 	 * what movablecore would have allowed.
6318 	 */
6319 	if (required_movablecore) {
6320 		unsigned long corepages;
6321 
6322 		/*
6323 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6324 		 * was requested by the user
6325 		 */
6326 		required_movablecore =
6327 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6328 		required_movablecore = min(totalpages, required_movablecore);
6329 		corepages = totalpages - required_movablecore;
6330 
6331 		required_kernelcore = max(required_kernelcore, corepages);
6332 	}
6333 
6334 	/*
6335 	 * If kernelcore was not specified or kernelcore size is larger
6336 	 * than totalpages, there is no ZONE_MOVABLE.
6337 	 */
6338 	if (!required_kernelcore || required_kernelcore >= totalpages)
6339 		goto out;
6340 
6341 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6342 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6343 
6344 restart:
6345 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6346 	kernelcore_node = required_kernelcore / usable_nodes;
6347 	for_each_node_state(nid, N_MEMORY) {
6348 		unsigned long start_pfn, end_pfn;
6349 
6350 		/*
6351 		 * Recalculate kernelcore_node if the division per node
6352 		 * now exceeds what is necessary to satisfy the requested
6353 		 * amount of memory for the kernel
6354 		 */
6355 		if (required_kernelcore < kernelcore_node)
6356 			kernelcore_node = required_kernelcore / usable_nodes;
6357 
6358 		/*
6359 		 * As the map is walked, we track how much memory is usable
6360 		 * by the kernel using kernelcore_remaining. When it is
6361 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6362 		 */
6363 		kernelcore_remaining = kernelcore_node;
6364 
6365 		/* Go through each range of PFNs within this node */
6366 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6367 			unsigned long size_pages;
6368 
6369 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6370 			if (start_pfn >= end_pfn)
6371 				continue;
6372 
6373 			/* Account for what is only usable for kernelcore */
6374 			if (start_pfn < usable_startpfn) {
6375 				unsigned long kernel_pages;
6376 				kernel_pages = min(end_pfn, usable_startpfn)
6377 								- start_pfn;
6378 
6379 				kernelcore_remaining -= min(kernel_pages,
6380 							kernelcore_remaining);
6381 				required_kernelcore -= min(kernel_pages,
6382 							required_kernelcore);
6383 
6384 				/* Continue if range is now fully accounted */
6385 				if (end_pfn <= usable_startpfn) {
6386 
6387 					/*
6388 					 * Push zone_movable_pfn to the end so
6389 					 * that if we have to rebalance
6390 					 * kernelcore across nodes, we will
6391 					 * not double account here
6392 					 */
6393 					zone_movable_pfn[nid] = end_pfn;
6394 					continue;
6395 				}
6396 				start_pfn = usable_startpfn;
6397 			}
6398 
6399 			/*
6400 			 * The usable PFN range for ZONE_MOVABLE is from
6401 			 * start_pfn->end_pfn. Calculate size_pages as the
6402 			 * number of pages used as kernelcore
6403 			 */
6404 			size_pages = end_pfn - start_pfn;
6405 			if (size_pages > kernelcore_remaining)
6406 				size_pages = kernelcore_remaining;
6407 			zone_movable_pfn[nid] = start_pfn + size_pages;
6408 
6409 			/*
6410 			 * Some kernelcore has been met, update counts and
6411 			 * break if the kernelcore for this node has been
6412 			 * satisfied
6413 			 */
6414 			required_kernelcore -= min(required_kernelcore,
6415 								size_pages);
6416 			kernelcore_remaining -= size_pages;
6417 			if (!kernelcore_remaining)
6418 				break;
6419 		}
6420 	}
6421 
6422 	/*
6423 	 * If there is still required_kernelcore, we do another pass with one
6424 	 * less node in the count. This will push zone_movable_pfn[nid] further
6425 	 * along on the nodes that still have memory until kernelcore is
6426 	 * satisfied
6427 	 */
6428 	usable_nodes--;
6429 	if (usable_nodes && required_kernelcore > usable_nodes)
6430 		goto restart;
6431 
6432 out2:
6433 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6434 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6435 		zone_movable_pfn[nid] =
6436 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6437 
6438 out:
6439 	/* restore the node_state */
6440 	node_states[N_MEMORY] = saved_node_state;
6441 }
6442 
6443 /* Any regular or high memory on that node ? */
6444 static void check_for_memory(pg_data_t *pgdat, int nid)
6445 {
6446 	enum zone_type zone_type;
6447 
6448 	if (N_MEMORY == N_NORMAL_MEMORY)
6449 		return;
6450 
6451 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6452 		struct zone *zone = &pgdat->node_zones[zone_type];
6453 		if (populated_zone(zone)) {
6454 			node_set_state(nid, N_HIGH_MEMORY);
6455 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6456 			    zone_type <= ZONE_NORMAL)
6457 				node_set_state(nid, N_NORMAL_MEMORY);
6458 			break;
6459 		}
6460 	}
6461 }
6462 
6463 /**
6464  * free_area_init_nodes - Initialise all pg_data_t and zone data
6465  * @max_zone_pfn: an array of max PFNs for each zone
6466  *
6467  * This will call free_area_init_node() for each active node in the system.
6468  * Using the page ranges provided by memblock_set_node(), the size of each
6469  * zone in each node and their holes is calculated. If the maximum PFN
6470  * between two adjacent zones match, it is assumed that the zone is empty.
6471  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6472  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6473  * starts where the previous one ended. For example, ZONE_DMA32 starts
6474  * at arch_max_dma_pfn.
6475  */
6476 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6477 {
6478 	unsigned long start_pfn, end_pfn;
6479 	int i, nid;
6480 
6481 	/* Record where the zone boundaries are */
6482 	memset(arch_zone_lowest_possible_pfn, 0,
6483 				sizeof(arch_zone_lowest_possible_pfn));
6484 	memset(arch_zone_highest_possible_pfn, 0,
6485 				sizeof(arch_zone_highest_possible_pfn));
6486 
6487 	start_pfn = find_min_pfn_with_active_regions();
6488 
6489 	for (i = 0; i < MAX_NR_ZONES; i++) {
6490 		if (i == ZONE_MOVABLE)
6491 			continue;
6492 
6493 		end_pfn = max(max_zone_pfn[i], start_pfn);
6494 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6495 		arch_zone_highest_possible_pfn[i] = end_pfn;
6496 
6497 		start_pfn = end_pfn;
6498 	}
6499 
6500 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6501 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6502 	find_zone_movable_pfns_for_nodes();
6503 
6504 	/* Print out the zone ranges */
6505 	pr_info("Zone ranges:\n");
6506 	for (i = 0; i < MAX_NR_ZONES; i++) {
6507 		if (i == ZONE_MOVABLE)
6508 			continue;
6509 		pr_info("  %-8s ", zone_names[i]);
6510 		if (arch_zone_lowest_possible_pfn[i] ==
6511 				arch_zone_highest_possible_pfn[i])
6512 			pr_cont("empty\n");
6513 		else
6514 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6515 				(u64)arch_zone_lowest_possible_pfn[i]
6516 					<< PAGE_SHIFT,
6517 				((u64)arch_zone_highest_possible_pfn[i]
6518 					<< PAGE_SHIFT) - 1);
6519 	}
6520 
6521 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6522 	pr_info("Movable zone start for each node\n");
6523 	for (i = 0; i < MAX_NUMNODES; i++) {
6524 		if (zone_movable_pfn[i])
6525 			pr_info("  Node %d: %#018Lx\n", i,
6526 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6527 	}
6528 
6529 	/* Print out the early node map */
6530 	pr_info("Early memory node ranges\n");
6531 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6532 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6533 			(u64)start_pfn << PAGE_SHIFT,
6534 			((u64)end_pfn << PAGE_SHIFT) - 1);
6535 
6536 	/* Initialise every node */
6537 	mminit_verify_pageflags_layout();
6538 	setup_nr_node_ids();
6539 	for_each_online_node(nid) {
6540 		pg_data_t *pgdat = NODE_DATA(nid);
6541 		free_area_init_node(nid, NULL,
6542 				find_min_pfn_for_node(nid), NULL);
6543 
6544 		/* Any memory on that node */
6545 		if (pgdat->node_present_pages)
6546 			node_set_state(nid, N_MEMORY);
6547 		check_for_memory(pgdat, nid);
6548 	}
6549 }
6550 
6551 static int __init cmdline_parse_core(char *p, unsigned long *core)
6552 {
6553 	unsigned long long coremem;
6554 	if (!p)
6555 		return -EINVAL;
6556 
6557 	coremem = memparse(p, &p);
6558 	*core = coremem >> PAGE_SHIFT;
6559 
6560 	/* Paranoid check that UL is enough for the coremem value */
6561 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6562 
6563 	return 0;
6564 }
6565 
6566 /*
6567  * kernelcore=size sets the amount of memory for use for allocations that
6568  * cannot be reclaimed or migrated.
6569  */
6570 static int __init cmdline_parse_kernelcore(char *p)
6571 {
6572 	/* parse kernelcore=mirror */
6573 	if (parse_option_str(p, "mirror")) {
6574 		mirrored_kernelcore = true;
6575 		return 0;
6576 	}
6577 
6578 	return cmdline_parse_core(p, &required_kernelcore);
6579 }
6580 
6581 /*
6582  * movablecore=size sets the amount of memory for use for allocations that
6583  * can be reclaimed or migrated.
6584  */
6585 static int __init cmdline_parse_movablecore(char *p)
6586 {
6587 	return cmdline_parse_core(p, &required_movablecore);
6588 }
6589 
6590 early_param("kernelcore", cmdline_parse_kernelcore);
6591 early_param("movablecore", cmdline_parse_movablecore);
6592 
6593 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6594 
6595 void adjust_managed_page_count(struct page *page, long count)
6596 {
6597 	spin_lock(&managed_page_count_lock);
6598 	page_zone(page)->managed_pages += count;
6599 	totalram_pages += count;
6600 #ifdef CONFIG_HIGHMEM
6601 	if (PageHighMem(page))
6602 		totalhigh_pages += count;
6603 #endif
6604 	spin_unlock(&managed_page_count_lock);
6605 }
6606 EXPORT_SYMBOL(adjust_managed_page_count);
6607 
6608 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6609 {
6610 	void *pos;
6611 	unsigned long pages = 0;
6612 
6613 	start = (void *)PAGE_ALIGN((unsigned long)start);
6614 	end = (void *)((unsigned long)end & PAGE_MASK);
6615 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6616 		if ((unsigned int)poison <= 0xFF)
6617 			memset(pos, poison, PAGE_SIZE);
6618 		free_reserved_page(virt_to_page(pos));
6619 	}
6620 
6621 	if (pages && s)
6622 		pr_info("Freeing %s memory: %ldK\n",
6623 			s, pages << (PAGE_SHIFT - 10));
6624 
6625 	return pages;
6626 }
6627 EXPORT_SYMBOL(free_reserved_area);
6628 
6629 #ifdef	CONFIG_HIGHMEM
6630 void free_highmem_page(struct page *page)
6631 {
6632 	__free_reserved_page(page);
6633 	totalram_pages++;
6634 	page_zone(page)->managed_pages++;
6635 	totalhigh_pages++;
6636 }
6637 #endif
6638 
6639 
6640 void __init mem_init_print_info(const char *str)
6641 {
6642 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6643 	unsigned long init_code_size, init_data_size;
6644 
6645 	physpages = get_num_physpages();
6646 	codesize = _etext - _stext;
6647 	datasize = _edata - _sdata;
6648 	rosize = __end_rodata - __start_rodata;
6649 	bss_size = __bss_stop - __bss_start;
6650 	init_data_size = __init_end - __init_begin;
6651 	init_code_size = _einittext - _sinittext;
6652 
6653 	/*
6654 	 * Detect special cases and adjust section sizes accordingly:
6655 	 * 1) .init.* may be embedded into .data sections
6656 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6657 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6658 	 * 3) .rodata.* may be embedded into .text or .data sections.
6659 	 */
6660 #define adj_init_size(start, end, size, pos, adj) \
6661 	do { \
6662 		if (start <= pos && pos < end && size > adj) \
6663 			size -= adj; \
6664 	} while (0)
6665 
6666 	adj_init_size(__init_begin, __init_end, init_data_size,
6667 		     _sinittext, init_code_size);
6668 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6669 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6670 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6671 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6672 
6673 #undef	adj_init_size
6674 
6675 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6676 #ifdef	CONFIG_HIGHMEM
6677 		", %luK highmem"
6678 #endif
6679 		"%s%s)\n",
6680 		nr_free_pages() << (PAGE_SHIFT - 10),
6681 		physpages << (PAGE_SHIFT - 10),
6682 		codesize >> 10, datasize >> 10, rosize >> 10,
6683 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6684 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6685 		totalcma_pages << (PAGE_SHIFT - 10),
6686 #ifdef	CONFIG_HIGHMEM
6687 		totalhigh_pages << (PAGE_SHIFT - 10),
6688 #endif
6689 		str ? ", " : "", str ? str : "");
6690 }
6691 
6692 /**
6693  * set_dma_reserve - set the specified number of pages reserved in the first zone
6694  * @new_dma_reserve: The number of pages to mark reserved
6695  *
6696  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6697  * In the DMA zone, a significant percentage may be consumed by kernel image
6698  * and other unfreeable allocations which can skew the watermarks badly. This
6699  * function may optionally be used to account for unfreeable pages in the
6700  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6701  * smaller per-cpu batchsize.
6702  */
6703 void __init set_dma_reserve(unsigned long new_dma_reserve)
6704 {
6705 	dma_reserve = new_dma_reserve;
6706 }
6707 
6708 void __init free_area_init(unsigned long *zones_size)
6709 {
6710 	free_area_init_node(0, zones_size,
6711 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6712 }
6713 
6714 static int page_alloc_cpu_dead(unsigned int cpu)
6715 {
6716 
6717 	lru_add_drain_cpu(cpu);
6718 	drain_pages(cpu);
6719 
6720 	/*
6721 	 * Spill the event counters of the dead processor
6722 	 * into the current processors event counters.
6723 	 * This artificially elevates the count of the current
6724 	 * processor.
6725 	 */
6726 	vm_events_fold_cpu(cpu);
6727 
6728 	/*
6729 	 * Zero the differential counters of the dead processor
6730 	 * so that the vm statistics are consistent.
6731 	 *
6732 	 * This is only okay since the processor is dead and cannot
6733 	 * race with what we are doing.
6734 	 */
6735 	cpu_vm_stats_fold(cpu);
6736 	return 0;
6737 }
6738 
6739 void __init page_alloc_init(void)
6740 {
6741 	int ret;
6742 
6743 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6744 					"mm/page_alloc:dead", NULL,
6745 					page_alloc_cpu_dead);
6746 	WARN_ON(ret < 0);
6747 }
6748 
6749 /*
6750  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6751  *	or min_free_kbytes changes.
6752  */
6753 static void calculate_totalreserve_pages(void)
6754 {
6755 	struct pglist_data *pgdat;
6756 	unsigned long reserve_pages = 0;
6757 	enum zone_type i, j;
6758 
6759 	for_each_online_pgdat(pgdat) {
6760 
6761 		pgdat->totalreserve_pages = 0;
6762 
6763 		for (i = 0; i < MAX_NR_ZONES; i++) {
6764 			struct zone *zone = pgdat->node_zones + i;
6765 			long max = 0;
6766 
6767 			/* Find valid and maximum lowmem_reserve in the zone */
6768 			for (j = i; j < MAX_NR_ZONES; j++) {
6769 				if (zone->lowmem_reserve[j] > max)
6770 					max = zone->lowmem_reserve[j];
6771 			}
6772 
6773 			/* we treat the high watermark as reserved pages. */
6774 			max += high_wmark_pages(zone);
6775 
6776 			if (max > zone->managed_pages)
6777 				max = zone->managed_pages;
6778 
6779 			pgdat->totalreserve_pages += max;
6780 
6781 			reserve_pages += max;
6782 		}
6783 	}
6784 	totalreserve_pages = reserve_pages;
6785 }
6786 
6787 /*
6788  * setup_per_zone_lowmem_reserve - called whenever
6789  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6790  *	has a correct pages reserved value, so an adequate number of
6791  *	pages are left in the zone after a successful __alloc_pages().
6792  */
6793 static void setup_per_zone_lowmem_reserve(void)
6794 {
6795 	struct pglist_data *pgdat;
6796 	enum zone_type j, idx;
6797 
6798 	for_each_online_pgdat(pgdat) {
6799 		for (j = 0; j < MAX_NR_ZONES; j++) {
6800 			struct zone *zone = pgdat->node_zones + j;
6801 			unsigned long managed_pages = zone->managed_pages;
6802 
6803 			zone->lowmem_reserve[j] = 0;
6804 
6805 			idx = j;
6806 			while (idx) {
6807 				struct zone *lower_zone;
6808 
6809 				idx--;
6810 
6811 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6812 					sysctl_lowmem_reserve_ratio[idx] = 1;
6813 
6814 				lower_zone = pgdat->node_zones + idx;
6815 				lower_zone->lowmem_reserve[j] = managed_pages /
6816 					sysctl_lowmem_reserve_ratio[idx];
6817 				managed_pages += lower_zone->managed_pages;
6818 			}
6819 		}
6820 	}
6821 
6822 	/* update totalreserve_pages */
6823 	calculate_totalreserve_pages();
6824 }
6825 
6826 static void __setup_per_zone_wmarks(void)
6827 {
6828 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6829 	unsigned long lowmem_pages = 0;
6830 	struct zone *zone;
6831 	unsigned long flags;
6832 
6833 	/* Calculate total number of !ZONE_HIGHMEM pages */
6834 	for_each_zone(zone) {
6835 		if (!is_highmem(zone))
6836 			lowmem_pages += zone->managed_pages;
6837 	}
6838 
6839 	for_each_zone(zone) {
6840 		u64 tmp;
6841 
6842 		spin_lock_irqsave(&zone->lock, flags);
6843 		tmp = (u64)pages_min * zone->managed_pages;
6844 		do_div(tmp, lowmem_pages);
6845 		if (is_highmem(zone)) {
6846 			/*
6847 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6848 			 * need highmem pages, so cap pages_min to a small
6849 			 * value here.
6850 			 *
6851 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6852 			 * deltas control asynch page reclaim, and so should
6853 			 * not be capped for highmem.
6854 			 */
6855 			unsigned long min_pages;
6856 
6857 			min_pages = zone->managed_pages / 1024;
6858 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6859 			zone->watermark[WMARK_MIN] = min_pages;
6860 		} else {
6861 			/*
6862 			 * If it's a lowmem zone, reserve a number of pages
6863 			 * proportionate to the zone's size.
6864 			 */
6865 			zone->watermark[WMARK_MIN] = tmp;
6866 		}
6867 
6868 		/*
6869 		 * Set the kswapd watermarks distance according to the
6870 		 * scale factor in proportion to available memory, but
6871 		 * ensure a minimum size on small systems.
6872 		 */
6873 		tmp = max_t(u64, tmp >> 2,
6874 			    mult_frac(zone->managed_pages,
6875 				      watermark_scale_factor, 10000));
6876 
6877 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6878 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6879 
6880 		spin_unlock_irqrestore(&zone->lock, flags);
6881 	}
6882 
6883 	/* update totalreserve_pages */
6884 	calculate_totalreserve_pages();
6885 }
6886 
6887 /**
6888  * setup_per_zone_wmarks - called when min_free_kbytes changes
6889  * or when memory is hot-{added|removed}
6890  *
6891  * Ensures that the watermark[min,low,high] values for each zone are set
6892  * correctly with respect to min_free_kbytes.
6893  */
6894 void setup_per_zone_wmarks(void)
6895 {
6896 	mutex_lock(&zonelists_mutex);
6897 	__setup_per_zone_wmarks();
6898 	mutex_unlock(&zonelists_mutex);
6899 }
6900 
6901 /*
6902  * Initialise min_free_kbytes.
6903  *
6904  * For small machines we want it small (128k min).  For large machines
6905  * we want it large (64MB max).  But it is not linear, because network
6906  * bandwidth does not increase linearly with machine size.  We use
6907  *
6908  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6909  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6910  *
6911  * which yields
6912  *
6913  * 16MB:	512k
6914  * 32MB:	724k
6915  * 64MB:	1024k
6916  * 128MB:	1448k
6917  * 256MB:	2048k
6918  * 512MB:	2896k
6919  * 1024MB:	4096k
6920  * 2048MB:	5792k
6921  * 4096MB:	8192k
6922  * 8192MB:	11584k
6923  * 16384MB:	16384k
6924  */
6925 int __meminit init_per_zone_wmark_min(void)
6926 {
6927 	unsigned long lowmem_kbytes;
6928 	int new_min_free_kbytes;
6929 
6930 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6931 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6932 
6933 	if (new_min_free_kbytes > user_min_free_kbytes) {
6934 		min_free_kbytes = new_min_free_kbytes;
6935 		if (min_free_kbytes < 128)
6936 			min_free_kbytes = 128;
6937 		if (min_free_kbytes > 65536)
6938 			min_free_kbytes = 65536;
6939 	} else {
6940 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6941 				new_min_free_kbytes, user_min_free_kbytes);
6942 	}
6943 	setup_per_zone_wmarks();
6944 	refresh_zone_stat_thresholds();
6945 	setup_per_zone_lowmem_reserve();
6946 
6947 #ifdef CONFIG_NUMA
6948 	setup_min_unmapped_ratio();
6949 	setup_min_slab_ratio();
6950 #endif
6951 
6952 	return 0;
6953 }
6954 core_initcall(init_per_zone_wmark_min)
6955 
6956 /*
6957  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6958  *	that we can call two helper functions whenever min_free_kbytes
6959  *	changes.
6960  */
6961 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6962 	void __user *buffer, size_t *length, loff_t *ppos)
6963 {
6964 	int rc;
6965 
6966 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6967 	if (rc)
6968 		return rc;
6969 
6970 	if (write) {
6971 		user_min_free_kbytes = min_free_kbytes;
6972 		setup_per_zone_wmarks();
6973 	}
6974 	return 0;
6975 }
6976 
6977 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6978 	void __user *buffer, size_t *length, loff_t *ppos)
6979 {
6980 	int rc;
6981 
6982 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6983 	if (rc)
6984 		return rc;
6985 
6986 	if (write)
6987 		setup_per_zone_wmarks();
6988 
6989 	return 0;
6990 }
6991 
6992 #ifdef CONFIG_NUMA
6993 static void setup_min_unmapped_ratio(void)
6994 {
6995 	pg_data_t *pgdat;
6996 	struct zone *zone;
6997 
6998 	for_each_online_pgdat(pgdat)
6999 		pgdat->min_unmapped_pages = 0;
7000 
7001 	for_each_zone(zone)
7002 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7003 				sysctl_min_unmapped_ratio) / 100;
7004 }
7005 
7006 
7007 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7008 	void __user *buffer, size_t *length, loff_t *ppos)
7009 {
7010 	int rc;
7011 
7012 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7013 	if (rc)
7014 		return rc;
7015 
7016 	setup_min_unmapped_ratio();
7017 
7018 	return 0;
7019 }
7020 
7021 static void setup_min_slab_ratio(void)
7022 {
7023 	pg_data_t *pgdat;
7024 	struct zone *zone;
7025 
7026 	for_each_online_pgdat(pgdat)
7027 		pgdat->min_slab_pages = 0;
7028 
7029 	for_each_zone(zone)
7030 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7031 				sysctl_min_slab_ratio) / 100;
7032 }
7033 
7034 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7035 	void __user *buffer, size_t *length, loff_t *ppos)
7036 {
7037 	int rc;
7038 
7039 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7040 	if (rc)
7041 		return rc;
7042 
7043 	setup_min_slab_ratio();
7044 
7045 	return 0;
7046 }
7047 #endif
7048 
7049 /*
7050  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7051  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7052  *	whenever sysctl_lowmem_reserve_ratio changes.
7053  *
7054  * The reserve ratio obviously has absolutely no relation with the
7055  * minimum watermarks. The lowmem reserve ratio can only make sense
7056  * if in function of the boot time zone sizes.
7057  */
7058 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7059 	void __user *buffer, size_t *length, loff_t *ppos)
7060 {
7061 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7062 	setup_per_zone_lowmem_reserve();
7063 	return 0;
7064 }
7065 
7066 /*
7067  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7068  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7069  * pagelist can have before it gets flushed back to buddy allocator.
7070  */
7071 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7072 	void __user *buffer, size_t *length, loff_t *ppos)
7073 {
7074 	struct zone *zone;
7075 	int old_percpu_pagelist_fraction;
7076 	int ret;
7077 
7078 	mutex_lock(&pcp_batch_high_lock);
7079 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7080 
7081 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7082 	if (!write || ret < 0)
7083 		goto out;
7084 
7085 	/* Sanity checking to avoid pcp imbalance */
7086 	if (percpu_pagelist_fraction &&
7087 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7088 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7089 		ret = -EINVAL;
7090 		goto out;
7091 	}
7092 
7093 	/* No change? */
7094 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7095 		goto out;
7096 
7097 	for_each_populated_zone(zone) {
7098 		unsigned int cpu;
7099 
7100 		for_each_possible_cpu(cpu)
7101 			pageset_set_high_and_batch(zone,
7102 					per_cpu_ptr(zone->pageset, cpu));
7103 	}
7104 out:
7105 	mutex_unlock(&pcp_batch_high_lock);
7106 	return ret;
7107 }
7108 
7109 #ifdef CONFIG_NUMA
7110 int hashdist = HASHDIST_DEFAULT;
7111 
7112 static int __init set_hashdist(char *str)
7113 {
7114 	if (!str)
7115 		return 0;
7116 	hashdist = simple_strtoul(str, &str, 0);
7117 	return 1;
7118 }
7119 __setup("hashdist=", set_hashdist);
7120 #endif
7121 
7122 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7123 /*
7124  * Returns the number of pages that arch has reserved but
7125  * is not known to alloc_large_system_hash().
7126  */
7127 static unsigned long __init arch_reserved_kernel_pages(void)
7128 {
7129 	return 0;
7130 }
7131 #endif
7132 
7133 /*
7134  * allocate a large system hash table from bootmem
7135  * - it is assumed that the hash table must contain an exact power-of-2
7136  *   quantity of entries
7137  * - limit is the number of hash buckets, not the total allocation size
7138  */
7139 void *__init alloc_large_system_hash(const char *tablename,
7140 				     unsigned long bucketsize,
7141 				     unsigned long numentries,
7142 				     int scale,
7143 				     int flags,
7144 				     unsigned int *_hash_shift,
7145 				     unsigned int *_hash_mask,
7146 				     unsigned long low_limit,
7147 				     unsigned long high_limit)
7148 {
7149 	unsigned long long max = high_limit;
7150 	unsigned long log2qty, size;
7151 	void *table = NULL;
7152 
7153 	/* allow the kernel cmdline to have a say */
7154 	if (!numentries) {
7155 		/* round applicable memory size up to nearest megabyte */
7156 		numentries = nr_kernel_pages;
7157 		numentries -= arch_reserved_kernel_pages();
7158 
7159 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7160 		if (PAGE_SHIFT < 20)
7161 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7162 
7163 		/* limit to 1 bucket per 2^scale bytes of low memory */
7164 		if (scale > PAGE_SHIFT)
7165 			numentries >>= (scale - PAGE_SHIFT);
7166 		else
7167 			numentries <<= (PAGE_SHIFT - scale);
7168 
7169 		/* Make sure we've got at least a 0-order allocation.. */
7170 		if (unlikely(flags & HASH_SMALL)) {
7171 			/* Makes no sense without HASH_EARLY */
7172 			WARN_ON(!(flags & HASH_EARLY));
7173 			if (!(numentries >> *_hash_shift)) {
7174 				numentries = 1UL << *_hash_shift;
7175 				BUG_ON(!numentries);
7176 			}
7177 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7178 			numentries = PAGE_SIZE / bucketsize;
7179 	}
7180 	numentries = roundup_pow_of_two(numentries);
7181 
7182 	/* limit allocation size to 1/16 total memory by default */
7183 	if (max == 0) {
7184 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7185 		do_div(max, bucketsize);
7186 	}
7187 	max = min(max, 0x80000000ULL);
7188 
7189 	if (numentries < low_limit)
7190 		numentries = low_limit;
7191 	if (numentries > max)
7192 		numentries = max;
7193 
7194 	log2qty = ilog2(numentries);
7195 
7196 	do {
7197 		size = bucketsize << log2qty;
7198 		if (flags & HASH_EARLY)
7199 			table = memblock_virt_alloc_nopanic(size, 0);
7200 		else if (hashdist)
7201 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7202 		else {
7203 			/*
7204 			 * If bucketsize is not a power-of-two, we may free
7205 			 * some pages at the end of hash table which
7206 			 * alloc_pages_exact() automatically does
7207 			 */
7208 			if (get_order(size) < MAX_ORDER) {
7209 				table = alloc_pages_exact(size, GFP_ATOMIC);
7210 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7211 			}
7212 		}
7213 	} while (!table && size > PAGE_SIZE && --log2qty);
7214 
7215 	if (!table)
7216 		panic("Failed to allocate %s hash table\n", tablename);
7217 
7218 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7219 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7220 
7221 	if (_hash_shift)
7222 		*_hash_shift = log2qty;
7223 	if (_hash_mask)
7224 		*_hash_mask = (1 << log2qty) - 1;
7225 
7226 	return table;
7227 }
7228 
7229 /*
7230  * This function checks whether pageblock includes unmovable pages or not.
7231  * If @count is not zero, it is okay to include less @count unmovable pages
7232  *
7233  * PageLRU check without isolation or lru_lock could race so that
7234  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7235  * check without lock_page also may miss some movable non-lru pages at
7236  * race condition. So you can't expect this function should be exact.
7237  */
7238 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7239 			 bool skip_hwpoisoned_pages)
7240 {
7241 	unsigned long pfn, iter, found;
7242 	int mt;
7243 
7244 	/*
7245 	 * For avoiding noise data, lru_add_drain_all() should be called
7246 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7247 	 */
7248 	if (zone_idx(zone) == ZONE_MOVABLE)
7249 		return false;
7250 	mt = get_pageblock_migratetype(page);
7251 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7252 		return false;
7253 
7254 	pfn = page_to_pfn(page);
7255 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7256 		unsigned long check = pfn + iter;
7257 
7258 		if (!pfn_valid_within(check))
7259 			continue;
7260 
7261 		page = pfn_to_page(check);
7262 
7263 		/*
7264 		 * Hugepages are not in LRU lists, but they're movable.
7265 		 * We need not scan over tail pages bacause we don't
7266 		 * handle each tail page individually in migration.
7267 		 */
7268 		if (PageHuge(page)) {
7269 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7270 			continue;
7271 		}
7272 
7273 		/*
7274 		 * We can't use page_count without pin a page
7275 		 * because another CPU can free compound page.
7276 		 * This check already skips compound tails of THP
7277 		 * because their page->_refcount is zero at all time.
7278 		 */
7279 		if (!page_ref_count(page)) {
7280 			if (PageBuddy(page))
7281 				iter += (1 << page_order(page)) - 1;
7282 			continue;
7283 		}
7284 
7285 		/*
7286 		 * The HWPoisoned page may be not in buddy system, and
7287 		 * page_count() is not 0.
7288 		 */
7289 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7290 			continue;
7291 
7292 		if (__PageMovable(page))
7293 			continue;
7294 
7295 		if (!PageLRU(page))
7296 			found++;
7297 		/*
7298 		 * If there are RECLAIMABLE pages, we need to check
7299 		 * it.  But now, memory offline itself doesn't call
7300 		 * shrink_node_slabs() and it still to be fixed.
7301 		 */
7302 		/*
7303 		 * If the page is not RAM, page_count()should be 0.
7304 		 * we don't need more check. This is an _used_ not-movable page.
7305 		 *
7306 		 * The problematic thing here is PG_reserved pages. PG_reserved
7307 		 * is set to both of a memory hole page and a _used_ kernel
7308 		 * page at boot.
7309 		 */
7310 		if (found > count)
7311 			return true;
7312 	}
7313 	return false;
7314 }
7315 
7316 bool is_pageblock_removable_nolock(struct page *page)
7317 {
7318 	struct zone *zone;
7319 	unsigned long pfn;
7320 
7321 	/*
7322 	 * We have to be careful here because we are iterating over memory
7323 	 * sections which are not zone aware so we might end up outside of
7324 	 * the zone but still within the section.
7325 	 * We have to take care about the node as well. If the node is offline
7326 	 * its NODE_DATA will be NULL - see page_zone.
7327 	 */
7328 	if (!node_online(page_to_nid(page)))
7329 		return false;
7330 
7331 	zone = page_zone(page);
7332 	pfn = page_to_pfn(page);
7333 	if (!zone_spans_pfn(zone, pfn))
7334 		return false;
7335 
7336 	return !has_unmovable_pages(zone, page, 0, true);
7337 }
7338 
7339 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7340 
7341 static unsigned long pfn_max_align_down(unsigned long pfn)
7342 {
7343 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7344 			     pageblock_nr_pages) - 1);
7345 }
7346 
7347 static unsigned long pfn_max_align_up(unsigned long pfn)
7348 {
7349 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7350 				pageblock_nr_pages));
7351 }
7352 
7353 /* [start, end) must belong to a single zone. */
7354 static int __alloc_contig_migrate_range(struct compact_control *cc,
7355 					unsigned long start, unsigned long end)
7356 {
7357 	/* This function is based on compact_zone() from compaction.c. */
7358 	unsigned long nr_reclaimed;
7359 	unsigned long pfn = start;
7360 	unsigned int tries = 0;
7361 	int ret = 0;
7362 
7363 	migrate_prep();
7364 
7365 	while (pfn < end || !list_empty(&cc->migratepages)) {
7366 		if (fatal_signal_pending(current)) {
7367 			ret = -EINTR;
7368 			break;
7369 		}
7370 
7371 		if (list_empty(&cc->migratepages)) {
7372 			cc->nr_migratepages = 0;
7373 			pfn = isolate_migratepages_range(cc, pfn, end);
7374 			if (!pfn) {
7375 				ret = -EINTR;
7376 				break;
7377 			}
7378 			tries = 0;
7379 		} else if (++tries == 5) {
7380 			ret = ret < 0 ? ret : -EBUSY;
7381 			break;
7382 		}
7383 
7384 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7385 							&cc->migratepages);
7386 		cc->nr_migratepages -= nr_reclaimed;
7387 
7388 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7389 				    NULL, 0, cc->mode, MR_CMA);
7390 	}
7391 	if (ret < 0) {
7392 		putback_movable_pages(&cc->migratepages);
7393 		return ret;
7394 	}
7395 	return 0;
7396 }
7397 
7398 /**
7399  * alloc_contig_range() -- tries to allocate given range of pages
7400  * @start:	start PFN to allocate
7401  * @end:	one-past-the-last PFN to allocate
7402  * @migratetype:	migratetype of the underlaying pageblocks (either
7403  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7404  *			in range must have the same migratetype and it must
7405  *			be either of the two.
7406  * @gfp_mask:	GFP mask to use during compaction
7407  *
7408  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7409  * aligned, however it's the caller's responsibility to guarantee that
7410  * we are the only thread that changes migrate type of pageblocks the
7411  * pages fall in.
7412  *
7413  * The PFN range must belong to a single zone.
7414  *
7415  * Returns zero on success or negative error code.  On success all
7416  * pages which PFN is in [start, end) are allocated for the caller and
7417  * need to be freed with free_contig_range().
7418  */
7419 int alloc_contig_range(unsigned long start, unsigned long end,
7420 		       unsigned migratetype, gfp_t gfp_mask)
7421 {
7422 	unsigned long outer_start, outer_end;
7423 	unsigned int order;
7424 	int ret = 0;
7425 
7426 	struct compact_control cc = {
7427 		.nr_migratepages = 0,
7428 		.order = -1,
7429 		.zone = page_zone(pfn_to_page(start)),
7430 		.mode = MIGRATE_SYNC,
7431 		.ignore_skip_hint = true,
7432 		.gfp_mask = memalloc_noio_flags(gfp_mask),
7433 	};
7434 	INIT_LIST_HEAD(&cc.migratepages);
7435 
7436 	/*
7437 	 * What we do here is we mark all pageblocks in range as
7438 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7439 	 * have different sizes, and due to the way page allocator
7440 	 * work, we align the range to biggest of the two pages so
7441 	 * that page allocator won't try to merge buddies from
7442 	 * different pageblocks and change MIGRATE_ISOLATE to some
7443 	 * other migration type.
7444 	 *
7445 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7446 	 * migrate the pages from an unaligned range (ie. pages that
7447 	 * we are interested in).  This will put all the pages in
7448 	 * range back to page allocator as MIGRATE_ISOLATE.
7449 	 *
7450 	 * When this is done, we take the pages in range from page
7451 	 * allocator removing them from the buddy system.  This way
7452 	 * page allocator will never consider using them.
7453 	 *
7454 	 * This lets us mark the pageblocks back as
7455 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7456 	 * aligned range but not in the unaligned, original range are
7457 	 * put back to page allocator so that buddy can use them.
7458 	 */
7459 
7460 	ret = start_isolate_page_range(pfn_max_align_down(start),
7461 				       pfn_max_align_up(end), migratetype,
7462 				       false);
7463 	if (ret)
7464 		return ret;
7465 
7466 	/*
7467 	 * In case of -EBUSY, we'd like to know which page causes problem.
7468 	 * So, just fall through. We will check it in test_pages_isolated().
7469 	 */
7470 	ret = __alloc_contig_migrate_range(&cc, start, end);
7471 	if (ret && ret != -EBUSY)
7472 		goto done;
7473 
7474 	/*
7475 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7476 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7477 	 * more, all pages in [start, end) are free in page allocator.
7478 	 * What we are going to do is to allocate all pages from
7479 	 * [start, end) (that is remove them from page allocator).
7480 	 *
7481 	 * The only problem is that pages at the beginning and at the
7482 	 * end of interesting range may be not aligned with pages that
7483 	 * page allocator holds, ie. they can be part of higher order
7484 	 * pages.  Because of this, we reserve the bigger range and
7485 	 * once this is done free the pages we are not interested in.
7486 	 *
7487 	 * We don't have to hold zone->lock here because the pages are
7488 	 * isolated thus they won't get removed from buddy.
7489 	 */
7490 
7491 	lru_add_drain_all();
7492 	drain_all_pages(cc.zone);
7493 
7494 	order = 0;
7495 	outer_start = start;
7496 	while (!PageBuddy(pfn_to_page(outer_start))) {
7497 		if (++order >= MAX_ORDER) {
7498 			outer_start = start;
7499 			break;
7500 		}
7501 		outer_start &= ~0UL << order;
7502 	}
7503 
7504 	if (outer_start != start) {
7505 		order = page_order(pfn_to_page(outer_start));
7506 
7507 		/*
7508 		 * outer_start page could be small order buddy page and
7509 		 * it doesn't include start page. Adjust outer_start
7510 		 * in this case to report failed page properly
7511 		 * on tracepoint in test_pages_isolated()
7512 		 */
7513 		if (outer_start + (1UL << order) <= start)
7514 			outer_start = start;
7515 	}
7516 
7517 	/* Make sure the range is really isolated. */
7518 	if (test_pages_isolated(outer_start, end, false)) {
7519 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7520 			__func__, outer_start, end);
7521 		ret = -EBUSY;
7522 		goto done;
7523 	}
7524 
7525 	/* Grab isolated pages from freelists. */
7526 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7527 	if (!outer_end) {
7528 		ret = -EBUSY;
7529 		goto done;
7530 	}
7531 
7532 	/* Free head and tail (if any) */
7533 	if (start != outer_start)
7534 		free_contig_range(outer_start, start - outer_start);
7535 	if (end != outer_end)
7536 		free_contig_range(end, outer_end - end);
7537 
7538 done:
7539 	undo_isolate_page_range(pfn_max_align_down(start),
7540 				pfn_max_align_up(end), migratetype);
7541 	return ret;
7542 }
7543 
7544 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7545 {
7546 	unsigned int count = 0;
7547 
7548 	for (; nr_pages--; pfn++) {
7549 		struct page *page = pfn_to_page(pfn);
7550 
7551 		count += page_count(page) != 1;
7552 		__free_page(page);
7553 	}
7554 	WARN(count != 0, "%d pages are still in use!\n", count);
7555 }
7556 #endif
7557 
7558 #ifdef CONFIG_MEMORY_HOTPLUG
7559 /*
7560  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7561  * page high values need to be recalulated.
7562  */
7563 void __meminit zone_pcp_update(struct zone *zone)
7564 {
7565 	unsigned cpu;
7566 	mutex_lock(&pcp_batch_high_lock);
7567 	for_each_possible_cpu(cpu)
7568 		pageset_set_high_and_batch(zone,
7569 				per_cpu_ptr(zone->pageset, cpu));
7570 	mutex_unlock(&pcp_batch_high_lock);
7571 }
7572 #endif
7573 
7574 void zone_pcp_reset(struct zone *zone)
7575 {
7576 	unsigned long flags;
7577 	int cpu;
7578 	struct per_cpu_pageset *pset;
7579 
7580 	/* avoid races with drain_pages()  */
7581 	local_irq_save(flags);
7582 	if (zone->pageset != &boot_pageset) {
7583 		for_each_online_cpu(cpu) {
7584 			pset = per_cpu_ptr(zone->pageset, cpu);
7585 			drain_zonestat(zone, pset);
7586 		}
7587 		free_percpu(zone->pageset);
7588 		zone->pageset = &boot_pageset;
7589 	}
7590 	local_irq_restore(flags);
7591 }
7592 
7593 #ifdef CONFIG_MEMORY_HOTREMOVE
7594 /*
7595  * All pages in the range must be in a single zone and isolated
7596  * before calling this.
7597  */
7598 void
7599 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7600 {
7601 	struct page *page;
7602 	struct zone *zone;
7603 	unsigned int order, i;
7604 	unsigned long pfn;
7605 	unsigned long flags;
7606 	/* find the first valid pfn */
7607 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7608 		if (pfn_valid(pfn))
7609 			break;
7610 	if (pfn == end_pfn)
7611 		return;
7612 	zone = page_zone(pfn_to_page(pfn));
7613 	spin_lock_irqsave(&zone->lock, flags);
7614 	pfn = start_pfn;
7615 	while (pfn < end_pfn) {
7616 		if (!pfn_valid(pfn)) {
7617 			pfn++;
7618 			continue;
7619 		}
7620 		page = pfn_to_page(pfn);
7621 		/*
7622 		 * The HWPoisoned page may be not in buddy system, and
7623 		 * page_count() is not 0.
7624 		 */
7625 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7626 			pfn++;
7627 			SetPageReserved(page);
7628 			continue;
7629 		}
7630 
7631 		BUG_ON(page_count(page));
7632 		BUG_ON(!PageBuddy(page));
7633 		order = page_order(page);
7634 #ifdef CONFIG_DEBUG_VM
7635 		pr_info("remove from free list %lx %d %lx\n",
7636 			pfn, 1 << order, end_pfn);
7637 #endif
7638 		list_del(&page->lru);
7639 		rmv_page_order(page);
7640 		zone->free_area[order].nr_free--;
7641 		for (i = 0; i < (1 << order); i++)
7642 			SetPageReserved((page+i));
7643 		pfn += (1 << order);
7644 	}
7645 	spin_unlock_irqrestore(&zone->lock, flags);
7646 }
7647 #endif
7648 
7649 bool is_free_buddy_page(struct page *page)
7650 {
7651 	struct zone *zone = page_zone(page);
7652 	unsigned long pfn = page_to_pfn(page);
7653 	unsigned long flags;
7654 	unsigned int order;
7655 
7656 	spin_lock_irqsave(&zone->lock, flags);
7657 	for (order = 0; order < MAX_ORDER; order++) {
7658 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7659 
7660 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7661 			break;
7662 	}
7663 	spin_unlock_irqrestore(&zone->lock, flags);
7664 
7665 	return order < MAX_ORDER;
7666 }
7667