xref: /openbmc/linux/mm/page_alloc.c (revision 19b438592238b3b40c3f945bb5f9c4ca971c0c45)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 #include <asm/sections.h>
76 #include <asm/tlbflush.h>
77 #include <asm/div64.h>
78 #include "internal.h"
79 #include "shuffle.h"
80 #include "page_reporting.h"
81 
82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
83 typedef int __bitwise fpi_t;
84 
85 /* No special request */
86 #define FPI_NONE		((__force fpi_t)0)
87 
88 /*
89  * Skip free page reporting notification for the (possibly merged) page.
90  * This does not hinder free page reporting from grabbing the page,
91  * reporting it and marking it "reported" -  it only skips notifying
92  * the free page reporting infrastructure about a newly freed page. For
93  * example, used when temporarily pulling a page from a freelist and
94  * putting it back unmodified.
95  */
96 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
97 
98 /*
99  * Place the (possibly merged) page to the tail of the freelist. Will ignore
100  * page shuffling (relevant code - e.g., memory onlining - is expected to
101  * shuffle the whole zone).
102  *
103  * Note: No code should rely on this flag for correctness - it's purely
104  *       to allow for optimizations when handing back either fresh pages
105  *       (memory onlining) or untouched pages (page isolation, free page
106  *       reporting).
107  */
108 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
109 
110 /*
111  * Don't poison memory with KASAN (only for the tag-based modes).
112  * During boot, all non-reserved memblock memory is exposed to page_alloc.
113  * Poisoning all that memory lengthens boot time, especially on systems with
114  * large amount of RAM. This flag is used to skip that poisoning.
115  * This is only done for the tag-based KASAN modes, as those are able to
116  * detect memory corruptions with the memory tags assigned by default.
117  * All memory allocated normally after boot gets poisoned as usual.
118  */
119 #define FPI_SKIP_KASAN_POISON	((__force fpi_t)BIT(2))
120 
121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
122 static DEFINE_MUTEX(pcp_batch_high_lock);
123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8)
124 
125 struct pagesets {
126 	local_lock_t lock;
127 #if defined(CONFIG_DEBUG_INFO_BTF) &&				\
128 	!defined(CONFIG_DEBUG_LOCK_ALLOC) &&			\
129 	!defined(CONFIG_PAHOLE_HAS_ZEROSIZE_PERCPU_SUPPORT)
130 	/*
131 	 * pahole 1.21 and earlier gets confused by zero-sized per-CPU
132 	 * variables and produces invalid BTF. Ensure that
133 	 * sizeof(struct pagesets) != 0 for older versions of pahole.
134 	 */
135 	char __pahole_hack;
136 	#warning "pahole too old to support zero-sized struct pagesets"
137 #endif
138 };
139 static DEFINE_PER_CPU(struct pagesets, pagesets) = {
140 	.lock = INIT_LOCAL_LOCK(lock),
141 };
142 
143 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
144 DEFINE_PER_CPU(int, numa_node);
145 EXPORT_PER_CPU_SYMBOL(numa_node);
146 #endif
147 
148 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
149 
150 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
151 /*
152  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
153  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
154  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
155  * defined in <linux/topology.h>.
156  */
157 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
158 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
159 #endif
160 
161 /* work_structs for global per-cpu drains */
162 struct pcpu_drain {
163 	struct zone *zone;
164 	struct work_struct work;
165 };
166 static DEFINE_MUTEX(pcpu_drain_mutex);
167 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
168 
169 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
170 volatile unsigned long latent_entropy __latent_entropy;
171 EXPORT_SYMBOL(latent_entropy);
172 #endif
173 
174 /*
175  * Array of node states.
176  */
177 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
178 	[N_POSSIBLE] = NODE_MASK_ALL,
179 	[N_ONLINE] = { { [0] = 1UL } },
180 #ifndef CONFIG_NUMA
181 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
182 #ifdef CONFIG_HIGHMEM
183 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
184 #endif
185 	[N_MEMORY] = { { [0] = 1UL } },
186 	[N_CPU] = { { [0] = 1UL } },
187 #endif	/* NUMA */
188 };
189 EXPORT_SYMBOL(node_states);
190 
191 atomic_long_t _totalram_pages __read_mostly;
192 EXPORT_SYMBOL(_totalram_pages);
193 unsigned long totalreserve_pages __read_mostly;
194 unsigned long totalcma_pages __read_mostly;
195 
196 int percpu_pagelist_high_fraction;
197 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
198 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc);
199 EXPORT_SYMBOL(init_on_alloc);
200 
201 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free);
202 EXPORT_SYMBOL(init_on_free);
203 
204 static bool _init_on_alloc_enabled_early __read_mostly
205 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
206 static int __init early_init_on_alloc(char *buf)
207 {
208 
209 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
210 }
211 early_param("init_on_alloc", early_init_on_alloc);
212 
213 static bool _init_on_free_enabled_early __read_mostly
214 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
215 static int __init early_init_on_free(char *buf)
216 {
217 	return kstrtobool(buf, &_init_on_free_enabled_early);
218 }
219 early_param("init_on_free", early_init_on_free);
220 
221 /*
222  * A cached value of the page's pageblock's migratetype, used when the page is
223  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
224  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
225  * Also the migratetype set in the page does not necessarily match the pcplist
226  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
227  * other index - this ensures that it will be put on the correct CMA freelist.
228  */
229 static inline int get_pcppage_migratetype(struct page *page)
230 {
231 	return page->index;
232 }
233 
234 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
235 {
236 	page->index = migratetype;
237 }
238 
239 #ifdef CONFIG_PM_SLEEP
240 /*
241  * The following functions are used by the suspend/hibernate code to temporarily
242  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
243  * while devices are suspended.  To avoid races with the suspend/hibernate code,
244  * they should always be called with system_transition_mutex held
245  * (gfp_allowed_mask also should only be modified with system_transition_mutex
246  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
247  * with that modification).
248  */
249 
250 static gfp_t saved_gfp_mask;
251 
252 void pm_restore_gfp_mask(void)
253 {
254 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
255 	if (saved_gfp_mask) {
256 		gfp_allowed_mask = saved_gfp_mask;
257 		saved_gfp_mask = 0;
258 	}
259 }
260 
261 void pm_restrict_gfp_mask(void)
262 {
263 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
264 	WARN_ON(saved_gfp_mask);
265 	saved_gfp_mask = gfp_allowed_mask;
266 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
267 }
268 
269 bool pm_suspended_storage(void)
270 {
271 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
272 		return false;
273 	return true;
274 }
275 #endif /* CONFIG_PM_SLEEP */
276 
277 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
278 unsigned int pageblock_order __read_mostly;
279 #endif
280 
281 static void __free_pages_ok(struct page *page, unsigned int order,
282 			    fpi_t fpi_flags);
283 
284 /*
285  * results with 256, 32 in the lowmem_reserve sysctl:
286  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
287  *	1G machine -> (16M dma, 784M normal, 224M high)
288  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
289  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
290  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
291  *
292  * TBD: should special case ZONE_DMA32 machines here - in those we normally
293  * don't need any ZONE_NORMAL reservation
294  */
295 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
296 #ifdef CONFIG_ZONE_DMA
297 	[ZONE_DMA] = 256,
298 #endif
299 #ifdef CONFIG_ZONE_DMA32
300 	[ZONE_DMA32] = 256,
301 #endif
302 	[ZONE_NORMAL] = 32,
303 #ifdef CONFIG_HIGHMEM
304 	[ZONE_HIGHMEM] = 0,
305 #endif
306 	[ZONE_MOVABLE] = 0,
307 };
308 
309 static char * const zone_names[MAX_NR_ZONES] = {
310 #ifdef CONFIG_ZONE_DMA
311 	 "DMA",
312 #endif
313 #ifdef CONFIG_ZONE_DMA32
314 	 "DMA32",
315 #endif
316 	 "Normal",
317 #ifdef CONFIG_HIGHMEM
318 	 "HighMem",
319 #endif
320 	 "Movable",
321 #ifdef CONFIG_ZONE_DEVICE
322 	 "Device",
323 #endif
324 };
325 
326 const char * const migratetype_names[MIGRATE_TYPES] = {
327 	"Unmovable",
328 	"Movable",
329 	"Reclaimable",
330 	"HighAtomic",
331 #ifdef CONFIG_CMA
332 	"CMA",
333 #endif
334 #ifdef CONFIG_MEMORY_ISOLATION
335 	"Isolate",
336 #endif
337 };
338 
339 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
340 	[NULL_COMPOUND_DTOR] = NULL,
341 	[COMPOUND_PAGE_DTOR] = free_compound_page,
342 #ifdef CONFIG_HUGETLB_PAGE
343 	[HUGETLB_PAGE_DTOR] = free_huge_page,
344 #endif
345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
346 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
347 #endif
348 };
349 
350 int min_free_kbytes = 1024;
351 int user_min_free_kbytes = -1;
352 int watermark_boost_factor __read_mostly = 15000;
353 int watermark_scale_factor = 10;
354 
355 static unsigned long nr_kernel_pages __initdata;
356 static unsigned long nr_all_pages __initdata;
357 static unsigned long dma_reserve __initdata;
358 
359 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
360 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
361 static unsigned long required_kernelcore __initdata;
362 static unsigned long required_kernelcore_percent __initdata;
363 static unsigned long required_movablecore __initdata;
364 static unsigned long required_movablecore_percent __initdata;
365 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
366 static bool mirrored_kernelcore __meminitdata;
367 
368 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
369 int movable_zone;
370 EXPORT_SYMBOL(movable_zone);
371 
372 #if MAX_NUMNODES > 1
373 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
374 unsigned int nr_online_nodes __read_mostly = 1;
375 EXPORT_SYMBOL(nr_node_ids);
376 EXPORT_SYMBOL(nr_online_nodes);
377 #endif
378 
379 int page_group_by_mobility_disabled __read_mostly;
380 
381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
382 /*
383  * During boot we initialize deferred pages on-demand, as needed, but once
384  * page_alloc_init_late() has finished, the deferred pages are all initialized,
385  * and we can permanently disable that path.
386  */
387 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
388 
389 /*
390  * Calling kasan_poison_pages() only after deferred memory initialization
391  * has completed. Poisoning pages during deferred memory init will greatly
392  * lengthen the process and cause problem in large memory systems as the
393  * deferred pages initialization is done with interrupt disabled.
394  *
395  * Assuming that there will be no reference to those newly initialized
396  * pages before they are ever allocated, this should have no effect on
397  * KASAN memory tracking as the poison will be properly inserted at page
398  * allocation time. The only corner case is when pages are allocated by
399  * on-demand allocation and then freed again before the deferred pages
400  * initialization is done, but this is not likely to happen.
401  */
402 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
403 {
404 	return static_branch_unlikely(&deferred_pages) ||
405 	       (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
406 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
407 	       PageSkipKASanPoison(page);
408 }
409 
410 /* Returns true if the struct page for the pfn is uninitialised */
411 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
412 {
413 	int nid = early_pfn_to_nid(pfn);
414 
415 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
416 		return true;
417 
418 	return false;
419 }
420 
421 /*
422  * Returns true when the remaining initialisation should be deferred until
423  * later in the boot cycle when it can be parallelised.
424  */
425 static bool __meminit
426 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
427 {
428 	static unsigned long prev_end_pfn, nr_initialised;
429 
430 	/*
431 	 * prev_end_pfn static that contains the end of previous zone
432 	 * No need to protect because called very early in boot before smp_init.
433 	 */
434 	if (prev_end_pfn != end_pfn) {
435 		prev_end_pfn = end_pfn;
436 		nr_initialised = 0;
437 	}
438 
439 	/* Always populate low zones for address-constrained allocations */
440 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
441 		return false;
442 
443 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
444 		return true;
445 	/*
446 	 * We start only with one section of pages, more pages are added as
447 	 * needed until the rest of deferred pages are initialized.
448 	 */
449 	nr_initialised++;
450 	if ((nr_initialised > PAGES_PER_SECTION) &&
451 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
452 		NODE_DATA(nid)->first_deferred_pfn = pfn;
453 		return true;
454 	}
455 	return false;
456 }
457 #else
458 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags)
459 {
460 	return (!IS_ENABLED(CONFIG_KASAN_GENERIC) &&
461 		(fpi_flags & FPI_SKIP_KASAN_POISON)) ||
462 	       PageSkipKASanPoison(page);
463 }
464 
465 static inline bool early_page_uninitialised(unsigned long pfn)
466 {
467 	return false;
468 }
469 
470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
471 {
472 	return false;
473 }
474 #endif
475 
476 /* Return a pointer to the bitmap storing bits affecting a block of pages */
477 static inline unsigned long *get_pageblock_bitmap(const struct page *page,
478 							unsigned long pfn)
479 {
480 #ifdef CONFIG_SPARSEMEM
481 	return section_to_usemap(__pfn_to_section(pfn));
482 #else
483 	return page_zone(page)->pageblock_flags;
484 #endif /* CONFIG_SPARSEMEM */
485 }
486 
487 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn)
488 {
489 #ifdef CONFIG_SPARSEMEM
490 	pfn &= (PAGES_PER_SECTION-1);
491 #else
492 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
493 #endif /* CONFIG_SPARSEMEM */
494 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
495 }
496 
497 static __always_inline
498 unsigned long __get_pfnblock_flags_mask(const struct page *page,
499 					unsigned long pfn,
500 					unsigned long mask)
501 {
502 	unsigned long *bitmap;
503 	unsigned long bitidx, word_bitidx;
504 	unsigned long word;
505 
506 	bitmap = get_pageblock_bitmap(page, pfn);
507 	bitidx = pfn_to_bitidx(page, pfn);
508 	word_bitidx = bitidx / BITS_PER_LONG;
509 	bitidx &= (BITS_PER_LONG-1);
510 
511 	word = bitmap[word_bitidx];
512 	return (word >> bitidx) & mask;
513 }
514 
515 /**
516  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
517  * @page: The page within the block of interest
518  * @pfn: The target page frame number
519  * @mask: mask of bits that the caller is interested in
520  *
521  * Return: pageblock_bits flags
522  */
523 unsigned long get_pfnblock_flags_mask(const struct page *page,
524 					unsigned long pfn, unsigned long mask)
525 {
526 	return __get_pfnblock_flags_mask(page, pfn, mask);
527 }
528 
529 static __always_inline int get_pfnblock_migratetype(const struct page *page,
530 					unsigned long pfn)
531 {
532 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
533 }
534 
535 /**
536  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
537  * @page: The page within the block of interest
538  * @flags: The flags to set
539  * @pfn: The target page frame number
540  * @mask: mask of bits that the caller is interested in
541  */
542 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
543 					unsigned long pfn,
544 					unsigned long mask)
545 {
546 	unsigned long *bitmap;
547 	unsigned long bitidx, word_bitidx;
548 	unsigned long old_word, word;
549 
550 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
551 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
552 
553 	bitmap = get_pageblock_bitmap(page, pfn);
554 	bitidx = pfn_to_bitidx(page, pfn);
555 	word_bitidx = bitidx / BITS_PER_LONG;
556 	bitidx &= (BITS_PER_LONG-1);
557 
558 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
559 
560 	mask <<= bitidx;
561 	flags <<= bitidx;
562 
563 	word = READ_ONCE(bitmap[word_bitidx]);
564 	for (;;) {
565 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
566 		if (word == old_word)
567 			break;
568 		word = old_word;
569 	}
570 }
571 
572 void set_pageblock_migratetype(struct page *page, int migratetype)
573 {
574 	if (unlikely(page_group_by_mobility_disabled &&
575 		     migratetype < MIGRATE_PCPTYPES))
576 		migratetype = MIGRATE_UNMOVABLE;
577 
578 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
579 				page_to_pfn(page), MIGRATETYPE_MASK);
580 }
581 
582 #ifdef CONFIG_DEBUG_VM
583 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
584 {
585 	int ret = 0;
586 	unsigned seq;
587 	unsigned long pfn = page_to_pfn(page);
588 	unsigned long sp, start_pfn;
589 
590 	do {
591 		seq = zone_span_seqbegin(zone);
592 		start_pfn = zone->zone_start_pfn;
593 		sp = zone->spanned_pages;
594 		if (!zone_spans_pfn(zone, pfn))
595 			ret = 1;
596 	} while (zone_span_seqretry(zone, seq));
597 
598 	if (ret)
599 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
600 			pfn, zone_to_nid(zone), zone->name,
601 			start_pfn, start_pfn + sp);
602 
603 	return ret;
604 }
605 
606 static int page_is_consistent(struct zone *zone, struct page *page)
607 {
608 	if (!pfn_valid_within(page_to_pfn(page)))
609 		return 0;
610 	if (zone != page_zone(page))
611 		return 0;
612 
613 	return 1;
614 }
615 /*
616  * Temporary debugging check for pages not lying within a given zone.
617  */
618 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
619 {
620 	if (page_outside_zone_boundaries(zone, page))
621 		return 1;
622 	if (!page_is_consistent(zone, page))
623 		return 1;
624 
625 	return 0;
626 }
627 #else
628 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
629 {
630 	return 0;
631 }
632 #endif
633 
634 static void bad_page(struct page *page, const char *reason)
635 {
636 	static unsigned long resume;
637 	static unsigned long nr_shown;
638 	static unsigned long nr_unshown;
639 
640 	/*
641 	 * Allow a burst of 60 reports, then keep quiet for that minute;
642 	 * or allow a steady drip of one report per second.
643 	 */
644 	if (nr_shown == 60) {
645 		if (time_before(jiffies, resume)) {
646 			nr_unshown++;
647 			goto out;
648 		}
649 		if (nr_unshown) {
650 			pr_alert(
651 			      "BUG: Bad page state: %lu messages suppressed\n",
652 				nr_unshown);
653 			nr_unshown = 0;
654 		}
655 		nr_shown = 0;
656 	}
657 	if (nr_shown++ == 0)
658 		resume = jiffies + 60 * HZ;
659 
660 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
661 		current->comm, page_to_pfn(page));
662 	dump_page(page, reason);
663 
664 	print_modules();
665 	dump_stack();
666 out:
667 	/* Leave bad fields for debug, except PageBuddy could make trouble */
668 	page_mapcount_reset(page); /* remove PageBuddy */
669 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
670 }
671 
672 static inline unsigned int order_to_pindex(int migratetype, int order)
673 {
674 	int base = order;
675 
676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
677 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
678 		VM_BUG_ON(order != pageblock_order);
679 		base = PAGE_ALLOC_COSTLY_ORDER + 1;
680 	}
681 #else
682 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
683 #endif
684 
685 	return (MIGRATE_PCPTYPES * base) + migratetype;
686 }
687 
688 static inline int pindex_to_order(unsigned int pindex)
689 {
690 	int order = pindex / MIGRATE_PCPTYPES;
691 
692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
693 	if (order > PAGE_ALLOC_COSTLY_ORDER) {
694 		order = pageblock_order;
695 		VM_BUG_ON(order != pageblock_order);
696 	}
697 #else
698 	VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER);
699 #endif
700 
701 	return order;
702 }
703 
704 static inline bool pcp_allowed_order(unsigned int order)
705 {
706 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
707 		return true;
708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
709 	if (order == pageblock_order)
710 		return true;
711 #endif
712 	return false;
713 }
714 
715 static inline void free_the_page(struct page *page, unsigned int order)
716 {
717 	if (pcp_allowed_order(order))		/* Via pcp? */
718 		free_unref_page(page, order);
719 	else
720 		__free_pages_ok(page, order, FPI_NONE);
721 }
722 
723 /*
724  * Higher-order pages are called "compound pages".  They are structured thusly:
725  *
726  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
727  *
728  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
729  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
730  *
731  * The first tail page's ->compound_dtor holds the offset in array of compound
732  * page destructors. See compound_page_dtors.
733  *
734  * The first tail page's ->compound_order holds the order of allocation.
735  * This usage means that zero-order pages may not be compound.
736  */
737 
738 void free_compound_page(struct page *page)
739 {
740 	mem_cgroup_uncharge(page);
741 	free_the_page(page, compound_order(page));
742 }
743 
744 void prep_compound_page(struct page *page, unsigned int order)
745 {
746 	int i;
747 	int nr_pages = 1 << order;
748 
749 	__SetPageHead(page);
750 	for (i = 1; i < nr_pages; i++) {
751 		struct page *p = page + i;
752 		set_page_count(p, 0);
753 		p->mapping = TAIL_MAPPING;
754 		set_compound_head(p, page);
755 	}
756 
757 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
758 	set_compound_order(page, order);
759 	atomic_set(compound_mapcount_ptr(page), -1);
760 	if (hpage_pincount_available(page))
761 		atomic_set(compound_pincount_ptr(page), 0);
762 }
763 
764 #ifdef CONFIG_DEBUG_PAGEALLOC
765 unsigned int _debug_guardpage_minorder;
766 
767 bool _debug_pagealloc_enabled_early __read_mostly
768 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
769 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
770 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
771 EXPORT_SYMBOL(_debug_pagealloc_enabled);
772 
773 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
774 
775 static int __init early_debug_pagealloc(char *buf)
776 {
777 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
778 }
779 early_param("debug_pagealloc", early_debug_pagealloc);
780 
781 static int __init debug_guardpage_minorder_setup(char *buf)
782 {
783 	unsigned long res;
784 
785 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
786 		pr_err("Bad debug_guardpage_minorder value\n");
787 		return 0;
788 	}
789 	_debug_guardpage_minorder = res;
790 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
791 	return 0;
792 }
793 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
794 
795 static inline bool set_page_guard(struct zone *zone, struct page *page,
796 				unsigned int order, int migratetype)
797 {
798 	if (!debug_guardpage_enabled())
799 		return false;
800 
801 	if (order >= debug_guardpage_minorder())
802 		return false;
803 
804 	__SetPageGuard(page);
805 	INIT_LIST_HEAD(&page->lru);
806 	set_page_private(page, order);
807 	/* Guard pages are not available for any usage */
808 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
809 
810 	return true;
811 }
812 
813 static inline void clear_page_guard(struct zone *zone, struct page *page,
814 				unsigned int order, int migratetype)
815 {
816 	if (!debug_guardpage_enabled())
817 		return;
818 
819 	__ClearPageGuard(page);
820 
821 	set_page_private(page, 0);
822 	if (!is_migrate_isolate(migratetype))
823 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
824 }
825 #else
826 static inline bool set_page_guard(struct zone *zone, struct page *page,
827 			unsigned int order, int migratetype) { return false; }
828 static inline void clear_page_guard(struct zone *zone, struct page *page,
829 				unsigned int order, int migratetype) {}
830 #endif
831 
832 /*
833  * Enable static keys related to various memory debugging and hardening options.
834  * Some override others, and depend on early params that are evaluated in the
835  * order of appearance. So we need to first gather the full picture of what was
836  * enabled, and then make decisions.
837  */
838 void init_mem_debugging_and_hardening(void)
839 {
840 	bool page_poisoning_requested = false;
841 
842 #ifdef CONFIG_PAGE_POISONING
843 	/*
844 	 * Page poisoning is debug page alloc for some arches. If
845 	 * either of those options are enabled, enable poisoning.
846 	 */
847 	if (page_poisoning_enabled() ||
848 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
849 	      debug_pagealloc_enabled())) {
850 		static_branch_enable(&_page_poisoning_enabled);
851 		page_poisoning_requested = true;
852 	}
853 #endif
854 
855 	if (_init_on_alloc_enabled_early) {
856 		if (page_poisoning_requested)
857 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
858 				"will take precedence over init_on_alloc\n");
859 		else
860 			static_branch_enable(&init_on_alloc);
861 	}
862 	if (_init_on_free_enabled_early) {
863 		if (page_poisoning_requested)
864 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
865 				"will take precedence over init_on_free\n");
866 		else
867 			static_branch_enable(&init_on_free);
868 	}
869 
870 #ifdef CONFIG_DEBUG_PAGEALLOC
871 	if (!debug_pagealloc_enabled())
872 		return;
873 
874 	static_branch_enable(&_debug_pagealloc_enabled);
875 
876 	if (!debug_guardpage_minorder())
877 		return;
878 
879 	static_branch_enable(&_debug_guardpage_enabled);
880 #endif
881 }
882 
883 static inline void set_buddy_order(struct page *page, unsigned int order)
884 {
885 	set_page_private(page, order);
886 	__SetPageBuddy(page);
887 }
888 
889 /*
890  * This function checks whether a page is free && is the buddy
891  * we can coalesce a page and its buddy if
892  * (a) the buddy is not in a hole (check before calling!) &&
893  * (b) the buddy is in the buddy system &&
894  * (c) a page and its buddy have the same order &&
895  * (d) a page and its buddy are in the same zone.
896  *
897  * For recording whether a page is in the buddy system, we set PageBuddy.
898  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
899  *
900  * For recording page's order, we use page_private(page).
901  */
902 static inline bool page_is_buddy(struct page *page, struct page *buddy,
903 							unsigned int order)
904 {
905 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
906 		return false;
907 
908 	if (buddy_order(buddy) != order)
909 		return false;
910 
911 	/*
912 	 * zone check is done late to avoid uselessly calculating
913 	 * zone/node ids for pages that could never merge.
914 	 */
915 	if (page_zone_id(page) != page_zone_id(buddy))
916 		return false;
917 
918 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
919 
920 	return true;
921 }
922 
923 #ifdef CONFIG_COMPACTION
924 static inline struct capture_control *task_capc(struct zone *zone)
925 {
926 	struct capture_control *capc = current->capture_control;
927 
928 	return unlikely(capc) &&
929 		!(current->flags & PF_KTHREAD) &&
930 		!capc->page &&
931 		capc->cc->zone == zone ? capc : NULL;
932 }
933 
934 static inline bool
935 compaction_capture(struct capture_control *capc, struct page *page,
936 		   int order, int migratetype)
937 {
938 	if (!capc || order != capc->cc->order)
939 		return false;
940 
941 	/* Do not accidentally pollute CMA or isolated regions*/
942 	if (is_migrate_cma(migratetype) ||
943 	    is_migrate_isolate(migratetype))
944 		return false;
945 
946 	/*
947 	 * Do not let lower order allocations pollute a movable pageblock.
948 	 * This might let an unmovable request use a reclaimable pageblock
949 	 * and vice-versa but no more than normal fallback logic which can
950 	 * have trouble finding a high-order free page.
951 	 */
952 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
953 		return false;
954 
955 	capc->page = page;
956 	return true;
957 }
958 
959 #else
960 static inline struct capture_control *task_capc(struct zone *zone)
961 {
962 	return NULL;
963 }
964 
965 static inline bool
966 compaction_capture(struct capture_control *capc, struct page *page,
967 		   int order, int migratetype)
968 {
969 	return false;
970 }
971 #endif /* CONFIG_COMPACTION */
972 
973 /* Used for pages not on another list */
974 static inline void add_to_free_list(struct page *page, struct zone *zone,
975 				    unsigned int order, int migratetype)
976 {
977 	struct free_area *area = &zone->free_area[order];
978 
979 	list_add(&page->lru, &area->free_list[migratetype]);
980 	area->nr_free++;
981 }
982 
983 /* Used for pages not on another list */
984 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
985 					 unsigned int order, int migratetype)
986 {
987 	struct free_area *area = &zone->free_area[order];
988 
989 	list_add_tail(&page->lru, &area->free_list[migratetype]);
990 	area->nr_free++;
991 }
992 
993 /*
994  * Used for pages which are on another list. Move the pages to the tail
995  * of the list - so the moved pages won't immediately be considered for
996  * allocation again (e.g., optimization for memory onlining).
997  */
998 static inline void move_to_free_list(struct page *page, struct zone *zone,
999 				     unsigned int order, int migratetype)
1000 {
1001 	struct free_area *area = &zone->free_area[order];
1002 
1003 	list_move_tail(&page->lru, &area->free_list[migratetype]);
1004 }
1005 
1006 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
1007 					   unsigned int order)
1008 {
1009 	/* clear reported state and update reported page count */
1010 	if (page_reported(page))
1011 		__ClearPageReported(page);
1012 
1013 	list_del(&page->lru);
1014 	__ClearPageBuddy(page);
1015 	set_page_private(page, 0);
1016 	zone->free_area[order].nr_free--;
1017 }
1018 
1019 /*
1020  * If this is not the largest possible page, check if the buddy
1021  * of the next-highest order is free. If it is, it's possible
1022  * that pages are being freed that will coalesce soon. In case,
1023  * that is happening, add the free page to the tail of the list
1024  * so it's less likely to be used soon and more likely to be merged
1025  * as a higher order page
1026  */
1027 static inline bool
1028 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
1029 		   struct page *page, unsigned int order)
1030 {
1031 	struct page *higher_page, *higher_buddy;
1032 	unsigned long combined_pfn;
1033 
1034 	if (order >= MAX_ORDER - 2)
1035 		return false;
1036 
1037 	if (!pfn_valid_within(buddy_pfn))
1038 		return false;
1039 
1040 	combined_pfn = buddy_pfn & pfn;
1041 	higher_page = page + (combined_pfn - pfn);
1042 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
1043 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
1044 
1045 	return pfn_valid_within(buddy_pfn) &&
1046 	       page_is_buddy(higher_page, higher_buddy, order + 1);
1047 }
1048 
1049 /*
1050  * Freeing function for a buddy system allocator.
1051  *
1052  * The concept of a buddy system is to maintain direct-mapped table
1053  * (containing bit values) for memory blocks of various "orders".
1054  * The bottom level table contains the map for the smallest allocatable
1055  * units of memory (here, pages), and each level above it describes
1056  * pairs of units from the levels below, hence, "buddies".
1057  * At a high level, all that happens here is marking the table entry
1058  * at the bottom level available, and propagating the changes upward
1059  * as necessary, plus some accounting needed to play nicely with other
1060  * parts of the VM system.
1061  * At each level, we keep a list of pages, which are heads of continuous
1062  * free pages of length of (1 << order) and marked with PageBuddy.
1063  * Page's order is recorded in page_private(page) field.
1064  * So when we are allocating or freeing one, we can derive the state of the
1065  * other.  That is, if we allocate a small block, and both were
1066  * free, the remainder of the region must be split into blocks.
1067  * If a block is freed, and its buddy is also free, then this
1068  * triggers coalescing into a block of larger size.
1069  *
1070  * -- nyc
1071  */
1072 
1073 static inline void __free_one_page(struct page *page,
1074 		unsigned long pfn,
1075 		struct zone *zone, unsigned int order,
1076 		int migratetype, fpi_t fpi_flags)
1077 {
1078 	struct capture_control *capc = task_capc(zone);
1079 	unsigned long buddy_pfn;
1080 	unsigned long combined_pfn;
1081 	unsigned int max_order;
1082 	struct page *buddy;
1083 	bool to_tail;
1084 
1085 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1086 
1087 	VM_BUG_ON(!zone_is_initialized(zone));
1088 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1089 
1090 	VM_BUG_ON(migratetype == -1);
1091 	if (likely(!is_migrate_isolate(migratetype)))
1092 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1093 
1094 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1095 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1096 
1097 continue_merging:
1098 	while (order < max_order) {
1099 		if (compaction_capture(capc, page, order, migratetype)) {
1100 			__mod_zone_freepage_state(zone, -(1 << order),
1101 								migratetype);
1102 			return;
1103 		}
1104 		buddy_pfn = __find_buddy_pfn(pfn, order);
1105 		buddy = page + (buddy_pfn - pfn);
1106 
1107 		if (!pfn_valid_within(buddy_pfn))
1108 			goto done_merging;
1109 		if (!page_is_buddy(page, buddy, order))
1110 			goto done_merging;
1111 		/*
1112 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1113 		 * merge with it and move up one order.
1114 		 */
1115 		if (page_is_guard(buddy))
1116 			clear_page_guard(zone, buddy, order, migratetype);
1117 		else
1118 			del_page_from_free_list(buddy, zone, order);
1119 		combined_pfn = buddy_pfn & pfn;
1120 		page = page + (combined_pfn - pfn);
1121 		pfn = combined_pfn;
1122 		order++;
1123 	}
1124 	if (order < MAX_ORDER - 1) {
1125 		/* If we are here, it means order is >= pageblock_order.
1126 		 * We want to prevent merge between freepages on isolate
1127 		 * pageblock and normal pageblock. Without this, pageblock
1128 		 * isolation could cause incorrect freepage or CMA accounting.
1129 		 *
1130 		 * We don't want to hit this code for the more frequent
1131 		 * low-order merging.
1132 		 */
1133 		if (unlikely(has_isolate_pageblock(zone))) {
1134 			int buddy_mt;
1135 
1136 			buddy_pfn = __find_buddy_pfn(pfn, order);
1137 			buddy = page + (buddy_pfn - pfn);
1138 			buddy_mt = get_pageblock_migratetype(buddy);
1139 
1140 			if (migratetype != buddy_mt
1141 					&& (is_migrate_isolate(migratetype) ||
1142 						is_migrate_isolate(buddy_mt)))
1143 				goto done_merging;
1144 		}
1145 		max_order = order + 1;
1146 		goto continue_merging;
1147 	}
1148 
1149 done_merging:
1150 	set_buddy_order(page, order);
1151 
1152 	if (fpi_flags & FPI_TO_TAIL)
1153 		to_tail = true;
1154 	else if (is_shuffle_order(order))
1155 		to_tail = shuffle_pick_tail();
1156 	else
1157 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1158 
1159 	if (to_tail)
1160 		add_to_free_list_tail(page, zone, order, migratetype);
1161 	else
1162 		add_to_free_list(page, zone, order, migratetype);
1163 
1164 	/* Notify page reporting subsystem of freed page */
1165 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1166 		page_reporting_notify_free(order);
1167 }
1168 
1169 /*
1170  * A bad page could be due to a number of fields. Instead of multiple branches,
1171  * try and check multiple fields with one check. The caller must do a detailed
1172  * check if necessary.
1173  */
1174 static inline bool page_expected_state(struct page *page,
1175 					unsigned long check_flags)
1176 {
1177 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1178 		return false;
1179 
1180 	if (unlikely((unsigned long)page->mapping |
1181 			page_ref_count(page) |
1182 #ifdef CONFIG_MEMCG
1183 			page->memcg_data |
1184 #endif
1185 			(page->flags & check_flags)))
1186 		return false;
1187 
1188 	return true;
1189 }
1190 
1191 static const char *page_bad_reason(struct page *page, unsigned long flags)
1192 {
1193 	const char *bad_reason = NULL;
1194 
1195 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1196 		bad_reason = "nonzero mapcount";
1197 	if (unlikely(page->mapping != NULL))
1198 		bad_reason = "non-NULL mapping";
1199 	if (unlikely(page_ref_count(page) != 0))
1200 		bad_reason = "nonzero _refcount";
1201 	if (unlikely(page->flags & flags)) {
1202 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1203 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1204 		else
1205 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1206 	}
1207 #ifdef CONFIG_MEMCG
1208 	if (unlikely(page->memcg_data))
1209 		bad_reason = "page still charged to cgroup";
1210 #endif
1211 	return bad_reason;
1212 }
1213 
1214 static void check_free_page_bad(struct page *page)
1215 {
1216 	bad_page(page,
1217 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1218 }
1219 
1220 static inline int check_free_page(struct page *page)
1221 {
1222 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1223 		return 0;
1224 
1225 	/* Something has gone sideways, find it */
1226 	check_free_page_bad(page);
1227 	return 1;
1228 }
1229 
1230 static int free_tail_pages_check(struct page *head_page, struct page *page)
1231 {
1232 	int ret = 1;
1233 
1234 	/*
1235 	 * We rely page->lru.next never has bit 0 set, unless the page
1236 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1237 	 */
1238 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1239 
1240 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1241 		ret = 0;
1242 		goto out;
1243 	}
1244 	switch (page - head_page) {
1245 	case 1:
1246 		/* the first tail page: ->mapping may be compound_mapcount() */
1247 		if (unlikely(compound_mapcount(page))) {
1248 			bad_page(page, "nonzero compound_mapcount");
1249 			goto out;
1250 		}
1251 		break;
1252 	case 2:
1253 		/*
1254 		 * the second tail page: ->mapping is
1255 		 * deferred_list.next -- ignore value.
1256 		 */
1257 		break;
1258 	default:
1259 		if (page->mapping != TAIL_MAPPING) {
1260 			bad_page(page, "corrupted mapping in tail page");
1261 			goto out;
1262 		}
1263 		break;
1264 	}
1265 	if (unlikely(!PageTail(page))) {
1266 		bad_page(page, "PageTail not set");
1267 		goto out;
1268 	}
1269 	if (unlikely(compound_head(page) != head_page)) {
1270 		bad_page(page, "compound_head not consistent");
1271 		goto out;
1272 	}
1273 	ret = 0;
1274 out:
1275 	page->mapping = NULL;
1276 	clear_compound_head(page);
1277 	return ret;
1278 }
1279 
1280 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags)
1281 {
1282 	int i;
1283 
1284 	if (zero_tags) {
1285 		for (i = 0; i < numpages; i++)
1286 			tag_clear_highpage(page + i);
1287 		return;
1288 	}
1289 
1290 	/* s390's use of memset() could override KASAN redzones. */
1291 	kasan_disable_current();
1292 	for (i = 0; i < numpages; i++) {
1293 		u8 tag = page_kasan_tag(page + i);
1294 		page_kasan_tag_reset(page + i);
1295 		clear_highpage(page + i);
1296 		page_kasan_tag_set(page + i, tag);
1297 	}
1298 	kasan_enable_current();
1299 }
1300 
1301 static __always_inline bool free_pages_prepare(struct page *page,
1302 			unsigned int order, bool check_free, fpi_t fpi_flags)
1303 {
1304 	int bad = 0;
1305 	bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags);
1306 
1307 	VM_BUG_ON_PAGE(PageTail(page), page);
1308 
1309 	trace_mm_page_free(page, order);
1310 
1311 	if (unlikely(PageHWPoison(page)) && !order) {
1312 		/*
1313 		 * Do not let hwpoison pages hit pcplists/buddy
1314 		 * Untie memcg state and reset page's owner
1315 		 */
1316 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1317 			__memcg_kmem_uncharge_page(page, order);
1318 		reset_page_owner(page, order);
1319 		return false;
1320 	}
1321 
1322 	/*
1323 	 * Check tail pages before head page information is cleared to
1324 	 * avoid checking PageCompound for order-0 pages.
1325 	 */
1326 	if (unlikely(order)) {
1327 		bool compound = PageCompound(page);
1328 		int i;
1329 
1330 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1331 
1332 		if (compound)
1333 			ClearPageDoubleMap(page);
1334 		for (i = 1; i < (1 << order); i++) {
1335 			if (compound)
1336 				bad += free_tail_pages_check(page, page + i);
1337 			if (unlikely(check_free_page(page + i))) {
1338 				bad++;
1339 				continue;
1340 			}
1341 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1342 		}
1343 	}
1344 	if (PageMappingFlags(page))
1345 		page->mapping = NULL;
1346 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1347 		__memcg_kmem_uncharge_page(page, order);
1348 	if (check_free)
1349 		bad += check_free_page(page);
1350 	if (bad)
1351 		return false;
1352 
1353 	page_cpupid_reset_last(page);
1354 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1355 	reset_page_owner(page, order);
1356 
1357 	if (!PageHighMem(page)) {
1358 		debug_check_no_locks_freed(page_address(page),
1359 					   PAGE_SIZE << order);
1360 		debug_check_no_obj_freed(page_address(page),
1361 					   PAGE_SIZE << order);
1362 	}
1363 
1364 	kernel_poison_pages(page, 1 << order);
1365 
1366 	/*
1367 	 * As memory initialization might be integrated into KASAN,
1368 	 * kasan_free_pages and kernel_init_free_pages must be
1369 	 * kept together to avoid discrepancies in behavior.
1370 	 *
1371 	 * With hardware tag-based KASAN, memory tags must be set before the
1372 	 * page becomes unavailable via debug_pagealloc or arch_free_page.
1373 	 */
1374 	if (kasan_has_integrated_init()) {
1375 		if (!skip_kasan_poison)
1376 			kasan_free_pages(page, order);
1377 	} else {
1378 		bool init = want_init_on_free();
1379 
1380 		if (init)
1381 			kernel_init_free_pages(page, 1 << order, false);
1382 		if (!skip_kasan_poison)
1383 			kasan_poison_pages(page, order, init);
1384 	}
1385 
1386 	/*
1387 	 * arch_free_page() can make the page's contents inaccessible.  s390
1388 	 * does this.  So nothing which can access the page's contents should
1389 	 * happen after this.
1390 	 */
1391 	arch_free_page(page, order);
1392 
1393 	debug_pagealloc_unmap_pages(page, 1 << order);
1394 
1395 	return true;
1396 }
1397 
1398 #ifdef CONFIG_DEBUG_VM
1399 /*
1400  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1401  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1402  * moved from pcp lists to free lists.
1403  */
1404 static bool free_pcp_prepare(struct page *page, unsigned int order)
1405 {
1406 	return free_pages_prepare(page, order, true, FPI_NONE);
1407 }
1408 
1409 static bool bulkfree_pcp_prepare(struct page *page)
1410 {
1411 	if (debug_pagealloc_enabled_static())
1412 		return check_free_page(page);
1413 	else
1414 		return false;
1415 }
1416 #else
1417 /*
1418  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1419  * moving from pcp lists to free list in order to reduce overhead. With
1420  * debug_pagealloc enabled, they are checked also immediately when being freed
1421  * to the pcp lists.
1422  */
1423 static bool free_pcp_prepare(struct page *page, unsigned int order)
1424 {
1425 	if (debug_pagealloc_enabled_static())
1426 		return free_pages_prepare(page, order, true, FPI_NONE);
1427 	else
1428 		return free_pages_prepare(page, order, false, FPI_NONE);
1429 }
1430 
1431 static bool bulkfree_pcp_prepare(struct page *page)
1432 {
1433 	return check_free_page(page);
1434 }
1435 #endif /* CONFIG_DEBUG_VM */
1436 
1437 static inline void prefetch_buddy(struct page *page)
1438 {
1439 	unsigned long pfn = page_to_pfn(page);
1440 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1441 	struct page *buddy = page + (buddy_pfn - pfn);
1442 
1443 	prefetch(buddy);
1444 }
1445 
1446 /*
1447  * Frees a number of pages from the PCP lists
1448  * Assumes all pages on list are in same zone, and of same order.
1449  * count is the number of pages to free.
1450  *
1451  * If the zone was previously in an "all pages pinned" state then look to
1452  * see if this freeing clears that state.
1453  *
1454  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1455  * pinned" detection logic.
1456  */
1457 static void free_pcppages_bulk(struct zone *zone, int count,
1458 					struct per_cpu_pages *pcp)
1459 {
1460 	int pindex = 0;
1461 	int batch_free = 0;
1462 	int nr_freed = 0;
1463 	unsigned int order;
1464 	int prefetch_nr = READ_ONCE(pcp->batch);
1465 	bool isolated_pageblocks;
1466 	struct page *page, *tmp;
1467 	LIST_HEAD(head);
1468 
1469 	/*
1470 	 * Ensure proper count is passed which otherwise would stuck in the
1471 	 * below while (list_empty(list)) loop.
1472 	 */
1473 	count = min(pcp->count, count);
1474 	while (count > 0) {
1475 		struct list_head *list;
1476 
1477 		/*
1478 		 * Remove pages from lists in a round-robin fashion. A
1479 		 * batch_free count is maintained that is incremented when an
1480 		 * empty list is encountered.  This is so more pages are freed
1481 		 * off fuller lists instead of spinning excessively around empty
1482 		 * lists
1483 		 */
1484 		do {
1485 			batch_free++;
1486 			if (++pindex == NR_PCP_LISTS)
1487 				pindex = 0;
1488 			list = &pcp->lists[pindex];
1489 		} while (list_empty(list));
1490 
1491 		/* This is the only non-empty list. Free them all. */
1492 		if (batch_free == NR_PCP_LISTS)
1493 			batch_free = count;
1494 
1495 		order = pindex_to_order(pindex);
1496 		BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH));
1497 		do {
1498 			page = list_last_entry(list, struct page, lru);
1499 			/* must delete to avoid corrupting pcp list */
1500 			list_del(&page->lru);
1501 			nr_freed += 1 << order;
1502 			count -= 1 << order;
1503 
1504 			if (bulkfree_pcp_prepare(page))
1505 				continue;
1506 
1507 			/* Encode order with the migratetype */
1508 			page->index <<= NR_PCP_ORDER_WIDTH;
1509 			page->index |= order;
1510 
1511 			list_add_tail(&page->lru, &head);
1512 
1513 			/*
1514 			 * We are going to put the page back to the global
1515 			 * pool, prefetch its buddy to speed up later access
1516 			 * under zone->lock. It is believed the overhead of
1517 			 * an additional test and calculating buddy_pfn here
1518 			 * can be offset by reduced memory latency later. To
1519 			 * avoid excessive prefetching due to large count, only
1520 			 * prefetch buddy for the first pcp->batch nr of pages.
1521 			 */
1522 			if (prefetch_nr) {
1523 				prefetch_buddy(page);
1524 				prefetch_nr--;
1525 			}
1526 		} while (count > 0 && --batch_free && !list_empty(list));
1527 	}
1528 	pcp->count -= nr_freed;
1529 
1530 	/*
1531 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
1532 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
1533 	 */
1534 	spin_lock(&zone->lock);
1535 	isolated_pageblocks = has_isolate_pageblock(zone);
1536 
1537 	/*
1538 	 * Use safe version since after __free_one_page(),
1539 	 * page->lru.next will not point to original list.
1540 	 */
1541 	list_for_each_entry_safe(page, tmp, &head, lru) {
1542 		int mt = get_pcppage_migratetype(page);
1543 
1544 		/* mt has been encoded with the order (see above) */
1545 		order = mt & NR_PCP_ORDER_MASK;
1546 		mt >>= NR_PCP_ORDER_WIDTH;
1547 
1548 		/* MIGRATE_ISOLATE page should not go to pcplists */
1549 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1550 		/* Pageblock could have been isolated meanwhile */
1551 		if (unlikely(isolated_pageblocks))
1552 			mt = get_pageblock_migratetype(page);
1553 
1554 		__free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE);
1555 		trace_mm_page_pcpu_drain(page, order, mt);
1556 	}
1557 	spin_unlock(&zone->lock);
1558 }
1559 
1560 static void free_one_page(struct zone *zone,
1561 				struct page *page, unsigned long pfn,
1562 				unsigned int order,
1563 				int migratetype, fpi_t fpi_flags)
1564 {
1565 	unsigned long flags;
1566 
1567 	spin_lock_irqsave(&zone->lock, flags);
1568 	if (unlikely(has_isolate_pageblock(zone) ||
1569 		is_migrate_isolate(migratetype))) {
1570 		migratetype = get_pfnblock_migratetype(page, pfn);
1571 	}
1572 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1573 	spin_unlock_irqrestore(&zone->lock, flags);
1574 }
1575 
1576 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1577 				unsigned long zone, int nid)
1578 {
1579 	mm_zero_struct_page(page);
1580 	set_page_links(page, zone, nid, pfn);
1581 	init_page_count(page);
1582 	page_mapcount_reset(page);
1583 	page_cpupid_reset_last(page);
1584 	page_kasan_tag_reset(page);
1585 
1586 	INIT_LIST_HEAD(&page->lru);
1587 #ifdef WANT_PAGE_VIRTUAL
1588 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1589 	if (!is_highmem_idx(zone))
1590 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1591 #endif
1592 }
1593 
1594 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1595 static void __meminit init_reserved_page(unsigned long pfn)
1596 {
1597 	pg_data_t *pgdat;
1598 	int nid, zid;
1599 
1600 	if (!early_page_uninitialised(pfn))
1601 		return;
1602 
1603 	nid = early_pfn_to_nid(pfn);
1604 	pgdat = NODE_DATA(nid);
1605 
1606 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1607 		struct zone *zone = &pgdat->node_zones[zid];
1608 
1609 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1610 			break;
1611 	}
1612 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1613 }
1614 #else
1615 static inline void init_reserved_page(unsigned long pfn)
1616 {
1617 }
1618 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1619 
1620 /*
1621  * Initialised pages do not have PageReserved set. This function is
1622  * called for each range allocated by the bootmem allocator and
1623  * marks the pages PageReserved. The remaining valid pages are later
1624  * sent to the buddy page allocator.
1625  */
1626 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1627 {
1628 	unsigned long start_pfn = PFN_DOWN(start);
1629 	unsigned long end_pfn = PFN_UP(end);
1630 
1631 	for (; start_pfn < end_pfn; start_pfn++) {
1632 		if (pfn_valid(start_pfn)) {
1633 			struct page *page = pfn_to_page(start_pfn);
1634 
1635 			init_reserved_page(start_pfn);
1636 
1637 			/* Avoid false-positive PageTail() */
1638 			INIT_LIST_HEAD(&page->lru);
1639 
1640 			/*
1641 			 * no need for atomic set_bit because the struct
1642 			 * page is not visible yet so nobody should
1643 			 * access it yet.
1644 			 */
1645 			__SetPageReserved(page);
1646 		}
1647 	}
1648 }
1649 
1650 static void __free_pages_ok(struct page *page, unsigned int order,
1651 			    fpi_t fpi_flags)
1652 {
1653 	unsigned long flags;
1654 	int migratetype;
1655 	unsigned long pfn = page_to_pfn(page);
1656 	struct zone *zone = page_zone(page);
1657 
1658 	if (!free_pages_prepare(page, order, true, fpi_flags))
1659 		return;
1660 
1661 	migratetype = get_pfnblock_migratetype(page, pfn);
1662 
1663 	spin_lock_irqsave(&zone->lock, flags);
1664 	if (unlikely(has_isolate_pageblock(zone) ||
1665 		is_migrate_isolate(migratetype))) {
1666 		migratetype = get_pfnblock_migratetype(page, pfn);
1667 	}
1668 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1669 	spin_unlock_irqrestore(&zone->lock, flags);
1670 
1671 	__count_vm_events(PGFREE, 1 << order);
1672 }
1673 
1674 void __free_pages_core(struct page *page, unsigned int order)
1675 {
1676 	unsigned int nr_pages = 1 << order;
1677 	struct page *p = page;
1678 	unsigned int loop;
1679 
1680 	/*
1681 	 * When initializing the memmap, __init_single_page() sets the refcount
1682 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1683 	 * refcount of all involved pages to 0.
1684 	 */
1685 	prefetchw(p);
1686 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1687 		prefetchw(p + 1);
1688 		__ClearPageReserved(p);
1689 		set_page_count(p, 0);
1690 	}
1691 	__ClearPageReserved(p);
1692 	set_page_count(p, 0);
1693 
1694 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1695 
1696 	/*
1697 	 * Bypass PCP and place fresh pages right to the tail, primarily
1698 	 * relevant for memory onlining.
1699 	 */
1700 	__free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON);
1701 }
1702 
1703 #ifdef CONFIG_NUMA
1704 
1705 /*
1706  * During memory init memblocks map pfns to nids. The search is expensive and
1707  * this caches recent lookups. The implementation of __early_pfn_to_nid
1708  * treats start/end as pfns.
1709  */
1710 struct mminit_pfnnid_cache {
1711 	unsigned long last_start;
1712 	unsigned long last_end;
1713 	int last_nid;
1714 };
1715 
1716 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1717 
1718 /*
1719  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1720  */
1721 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1722 					struct mminit_pfnnid_cache *state)
1723 {
1724 	unsigned long start_pfn, end_pfn;
1725 	int nid;
1726 
1727 	if (state->last_start <= pfn && pfn < state->last_end)
1728 		return state->last_nid;
1729 
1730 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1731 	if (nid != NUMA_NO_NODE) {
1732 		state->last_start = start_pfn;
1733 		state->last_end = end_pfn;
1734 		state->last_nid = nid;
1735 	}
1736 
1737 	return nid;
1738 }
1739 
1740 int __meminit early_pfn_to_nid(unsigned long pfn)
1741 {
1742 	static DEFINE_SPINLOCK(early_pfn_lock);
1743 	int nid;
1744 
1745 	spin_lock(&early_pfn_lock);
1746 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1747 	if (nid < 0)
1748 		nid = first_online_node;
1749 	spin_unlock(&early_pfn_lock);
1750 
1751 	return nid;
1752 }
1753 #endif /* CONFIG_NUMA */
1754 
1755 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1756 							unsigned int order)
1757 {
1758 	if (early_page_uninitialised(pfn))
1759 		return;
1760 	__free_pages_core(page, order);
1761 }
1762 
1763 /*
1764  * Check that the whole (or subset of) a pageblock given by the interval of
1765  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1766  * with the migration of free compaction scanner. The scanners then need to
1767  * use only pfn_valid_within() check for arches that allow holes within
1768  * pageblocks.
1769  *
1770  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1771  *
1772  * It's possible on some configurations to have a setup like node0 node1 node0
1773  * i.e. it's possible that all pages within a zones range of pages do not
1774  * belong to a single zone. We assume that a border between node0 and node1
1775  * can occur within a single pageblock, but not a node0 node1 node0
1776  * interleaving within a single pageblock. It is therefore sufficient to check
1777  * the first and last page of a pageblock and avoid checking each individual
1778  * page in a pageblock.
1779  */
1780 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1781 				     unsigned long end_pfn, struct zone *zone)
1782 {
1783 	struct page *start_page;
1784 	struct page *end_page;
1785 
1786 	/* end_pfn is one past the range we are checking */
1787 	end_pfn--;
1788 
1789 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1790 		return NULL;
1791 
1792 	start_page = pfn_to_online_page(start_pfn);
1793 	if (!start_page)
1794 		return NULL;
1795 
1796 	if (page_zone(start_page) != zone)
1797 		return NULL;
1798 
1799 	end_page = pfn_to_page(end_pfn);
1800 
1801 	/* This gives a shorter code than deriving page_zone(end_page) */
1802 	if (page_zone_id(start_page) != page_zone_id(end_page))
1803 		return NULL;
1804 
1805 	return start_page;
1806 }
1807 
1808 void set_zone_contiguous(struct zone *zone)
1809 {
1810 	unsigned long block_start_pfn = zone->zone_start_pfn;
1811 	unsigned long block_end_pfn;
1812 
1813 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1814 	for (; block_start_pfn < zone_end_pfn(zone);
1815 			block_start_pfn = block_end_pfn,
1816 			 block_end_pfn += pageblock_nr_pages) {
1817 
1818 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1819 
1820 		if (!__pageblock_pfn_to_page(block_start_pfn,
1821 					     block_end_pfn, zone))
1822 			return;
1823 		cond_resched();
1824 	}
1825 
1826 	/* We confirm that there is no hole */
1827 	zone->contiguous = true;
1828 }
1829 
1830 void clear_zone_contiguous(struct zone *zone)
1831 {
1832 	zone->contiguous = false;
1833 }
1834 
1835 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1836 static void __init deferred_free_range(unsigned long pfn,
1837 				       unsigned long nr_pages)
1838 {
1839 	struct page *page;
1840 	unsigned long i;
1841 
1842 	if (!nr_pages)
1843 		return;
1844 
1845 	page = pfn_to_page(pfn);
1846 
1847 	/* Free a large naturally-aligned chunk if possible */
1848 	if (nr_pages == pageblock_nr_pages &&
1849 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1850 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1851 		__free_pages_core(page, pageblock_order);
1852 		return;
1853 	}
1854 
1855 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1856 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1857 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1858 		__free_pages_core(page, 0);
1859 	}
1860 }
1861 
1862 /* Completion tracking for deferred_init_memmap() threads */
1863 static atomic_t pgdat_init_n_undone __initdata;
1864 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1865 
1866 static inline void __init pgdat_init_report_one_done(void)
1867 {
1868 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1869 		complete(&pgdat_init_all_done_comp);
1870 }
1871 
1872 /*
1873  * Returns true if page needs to be initialized or freed to buddy allocator.
1874  *
1875  * First we check if pfn is valid on architectures where it is possible to have
1876  * holes within pageblock_nr_pages. On systems where it is not possible, this
1877  * function is optimized out.
1878  *
1879  * Then, we check if a current large page is valid by only checking the validity
1880  * of the head pfn.
1881  */
1882 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1883 {
1884 	if (!pfn_valid_within(pfn))
1885 		return false;
1886 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1887 		return false;
1888 	return true;
1889 }
1890 
1891 /*
1892  * Free pages to buddy allocator. Try to free aligned pages in
1893  * pageblock_nr_pages sizes.
1894  */
1895 static void __init deferred_free_pages(unsigned long pfn,
1896 				       unsigned long end_pfn)
1897 {
1898 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1899 	unsigned long nr_free = 0;
1900 
1901 	for (; pfn < end_pfn; pfn++) {
1902 		if (!deferred_pfn_valid(pfn)) {
1903 			deferred_free_range(pfn - nr_free, nr_free);
1904 			nr_free = 0;
1905 		} else if (!(pfn & nr_pgmask)) {
1906 			deferred_free_range(pfn - nr_free, nr_free);
1907 			nr_free = 1;
1908 		} else {
1909 			nr_free++;
1910 		}
1911 	}
1912 	/* Free the last block of pages to allocator */
1913 	deferred_free_range(pfn - nr_free, nr_free);
1914 }
1915 
1916 /*
1917  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1918  * by performing it only once every pageblock_nr_pages.
1919  * Return number of pages initialized.
1920  */
1921 static unsigned long  __init deferred_init_pages(struct zone *zone,
1922 						 unsigned long pfn,
1923 						 unsigned long end_pfn)
1924 {
1925 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1926 	int nid = zone_to_nid(zone);
1927 	unsigned long nr_pages = 0;
1928 	int zid = zone_idx(zone);
1929 	struct page *page = NULL;
1930 
1931 	for (; pfn < end_pfn; pfn++) {
1932 		if (!deferred_pfn_valid(pfn)) {
1933 			page = NULL;
1934 			continue;
1935 		} else if (!page || !(pfn & nr_pgmask)) {
1936 			page = pfn_to_page(pfn);
1937 		} else {
1938 			page++;
1939 		}
1940 		__init_single_page(page, pfn, zid, nid);
1941 		nr_pages++;
1942 	}
1943 	return (nr_pages);
1944 }
1945 
1946 /*
1947  * This function is meant to pre-load the iterator for the zone init.
1948  * Specifically it walks through the ranges until we are caught up to the
1949  * first_init_pfn value and exits there. If we never encounter the value we
1950  * return false indicating there are no valid ranges left.
1951  */
1952 static bool __init
1953 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1954 				    unsigned long *spfn, unsigned long *epfn,
1955 				    unsigned long first_init_pfn)
1956 {
1957 	u64 j;
1958 
1959 	/*
1960 	 * Start out by walking through the ranges in this zone that have
1961 	 * already been initialized. We don't need to do anything with them
1962 	 * so we just need to flush them out of the system.
1963 	 */
1964 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1965 		if (*epfn <= first_init_pfn)
1966 			continue;
1967 		if (*spfn < first_init_pfn)
1968 			*spfn = first_init_pfn;
1969 		*i = j;
1970 		return true;
1971 	}
1972 
1973 	return false;
1974 }
1975 
1976 /*
1977  * Initialize and free pages. We do it in two loops: first we initialize
1978  * struct page, then free to buddy allocator, because while we are
1979  * freeing pages we can access pages that are ahead (computing buddy
1980  * page in __free_one_page()).
1981  *
1982  * In order to try and keep some memory in the cache we have the loop
1983  * broken along max page order boundaries. This way we will not cause
1984  * any issues with the buddy page computation.
1985  */
1986 static unsigned long __init
1987 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1988 		       unsigned long *end_pfn)
1989 {
1990 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1991 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1992 	unsigned long nr_pages = 0;
1993 	u64 j = *i;
1994 
1995 	/* First we loop through and initialize the page values */
1996 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1997 		unsigned long t;
1998 
1999 		if (mo_pfn <= *start_pfn)
2000 			break;
2001 
2002 		t = min(mo_pfn, *end_pfn);
2003 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
2004 
2005 		if (mo_pfn < *end_pfn) {
2006 			*start_pfn = mo_pfn;
2007 			break;
2008 		}
2009 	}
2010 
2011 	/* Reset values and now loop through freeing pages as needed */
2012 	swap(j, *i);
2013 
2014 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
2015 		unsigned long t;
2016 
2017 		if (mo_pfn <= spfn)
2018 			break;
2019 
2020 		t = min(mo_pfn, epfn);
2021 		deferred_free_pages(spfn, t);
2022 
2023 		if (mo_pfn <= epfn)
2024 			break;
2025 	}
2026 
2027 	return nr_pages;
2028 }
2029 
2030 static void __init
2031 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
2032 			   void *arg)
2033 {
2034 	unsigned long spfn, epfn;
2035 	struct zone *zone = arg;
2036 	u64 i;
2037 
2038 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
2039 
2040 	/*
2041 	 * Initialize and free pages in MAX_ORDER sized increments so that we
2042 	 * can avoid introducing any issues with the buddy allocator.
2043 	 */
2044 	while (spfn < end_pfn) {
2045 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
2046 		cond_resched();
2047 	}
2048 }
2049 
2050 /* An arch may override for more concurrency. */
2051 __weak int __init
2052 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
2053 {
2054 	return 1;
2055 }
2056 
2057 /* Initialise remaining memory on a node */
2058 static int __init deferred_init_memmap(void *data)
2059 {
2060 	pg_data_t *pgdat = data;
2061 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2062 	unsigned long spfn = 0, epfn = 0;
2063 	unsigned long first_init_pfn, flags;
2064 	unsigned long start = jiffies;
2065 	struct zone *zone;
2066 	int zid, max_threads;
2067 	u64 i;
2068 
2069 	/* Bind memory initialisation thread to a local node if possible */
2070 	if (!cpumask_empty(cpumask))
2071 		set_cpus_allowed_ptr(current, cpumask);
2072 
2073 	pgdat_resize_lock(pgdat, &flags);
2074 	first_init_pfn = pgdat->first_deferred_pfn;
2075 	if (first_init_pfn == ULONG_MAX) {
2076 		pgdat_resize_unlock(pgdat, &flags);
2077 		pgdat_init_report_one_done();
2078 		return 0;
2079 	}
2080 
2081 	/* Sanity check boundaries */
2082 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
2083 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
2084 	pgdat->first_deferred_pfn = ULONG_MAX;
2085 
2086 	/*
2087 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
2088 	 * interrupt thread must allocate this early in boot, zone must be
2089 	 * pre-grown prior to start of deferred page initialization.
2090 	 */
2091 	pgdat_resize_unlock(pgdat, &flags);
2092 
2093 	/* Only the highest zone is deferred so find it */
2094 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
2095 		zone = pgdat->node_zones + zid;
2096 		if (first_init_pfn < zone_end_pfn(zone))
2097 			break;
2098 	}
2099 
2100 	/* If the zone is empty somebody else may have cleared out the zone */
2101 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2102 						 first_init_pfn))
2103 		goto zone_empty;
2104 
2105 	max_threads = deferred_page_init_max_threads(cpumask);
2106 
2107 	while (spfn < epfn) {
2108 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
2109 		struct padata_mt_job job = {
2110 			.thread_fn   = deferred_init_memmap_chunk,
2111 			.fn_arg      = zone,
2112 			.start       = spfn,
2113 			.size        = epfn_align - spfn,
2114 			.align       = PAGES_PER_SECTION,
2115 			.min_chunk   = PAGES_PER_SECTION,
2116 			.max_threads = max_threads,
2117 		};
2118 
2119 		padata_do_multithreaded(&job);
2120 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2121 						    epfn_align);
2122 	}
2123 zone_empty:
2124 	/* Sanity check that the next zone really is unpopulated */
2125 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
2126 
2127 	pr_info("node %d deferred pages initialised in %ums\n",
2128 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
2129 
2130 	pgdat_init_report_one_done();
2131 	return 0;
2132 }
2133 
2134 /*
2135  * If this zone has deferred pages, try to grow it by initializing enough
2136  * deferred pages to satisfy the allocation specified by order, rounded up to
2137  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2138  * of SECTION_SIZE bytes by initializing struct pages in increments of
2139  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2140  *
2141  * Return true when zone was grown, otherwise return false. We return true even
2142  * when we grow less than requested, to let the caller decide if there are
2143  * enough pages to satisfy the allocation.
2144  *
2145  * Note: We use noinline because this function is needed only during boot, and
2146  * it is called from a __ref function _deferred_grow_zone. This way we are
2147  * making sure that it is not inlined into permanent text section.
2148  */
2149 static noinline bool __init
2150 deferred_grow_zone(struct zone *zone, unsigned int order)
2151 {
2152 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2153 	pg_data_t *pgdat = zone->zone_pgdat;
2154 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2155 	unsigned long spfn, epfn, flags;
2156 	unsigned long nr_pages = 0;
2157 	u64 i;
2158 
2159 	/* Only the last zone may have deferred pages */
2160 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2161 		return false;
2162 
2163 	pgdat_resize_lock(pgdat, &flags);
2164 
2165 	/*
2166 	 * If someone grew this zone while we were waiting for spinlock, return
2167 	 * true, as there might be enough pages already.
2168 	 */
2169 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2170 		pgdat_resize_unlock(pgdat, &flags);
2171 		return true;
2172 	}
2173 
2174 	/* If the zone is empty somebody else may have cleared out the zone */
2175 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2176 						 first_deferred_pfn)) {
2177 		pgdat->first_deferred_pfn = ULONG_MAX;
2178 		pgdat_resize_unlock(pgdat, &flags);
2179 		/* Retry only once. */
2180 		return first_deferred_pfn != ULONG_MAX;
2181 	}
2182 
2183 	/*
2184 	 * Initialize and free pages in MAX_ORDER sized increments so
2185 	 * that we can avoid introducing any issues with the buddy
2186 	 * allocator.
2187 	 */
2188 	while (spfn < epfn) {
2189 		/* update our first deferred PFN for this section */
2190 		first_deferred_pfn = spfn;
2191 
2192 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2193 		touch_nmi_watchdog();
2194 
2195 		/* We should only stop along section boundaries */
2196 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2197 			continue;
2198 
2199 		/* If our quota has been met we can stop here */
2200 		if (nr_pages >= nr_pages_needed)
2201 			break;
2202 	}
2203 
2204 	pgdat->first_deferred_pfn = spfn;
2205 	pgdat_resize_unlock(pgdat, &flags);
2206 
2207 	return nr_pages > 0;
2208 }
2209 
2210 /*
2211  * deferred_grow_zone() is __init, but it is called from
2212  * get_page_from_freelist() during early boot until deferred_pages permanently
2213  * disables this call. This is why we have refdata wrapper to avoid warning,
2214  * and to ensure that the function body gets unloaded.
2215  */
2216 static bool __ref
2217 _deferred_grow_zone(struct zone *zone, unsigned int order)
2218 {
2219 	return deferred_grow_zone(zone, order);
2220 }
2221 
2222 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2223 
2224 void __init page_alloc_init_late(void)
2225 {
2226 	struct zone *zone;
2227 	int nid;
2228 
2229 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2230 
2231 	/* There will be num_node_state(N_MEMORY) threads */
2232 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2233 	for_each_node_state(nid, N_MEMORY) {
2234 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2235 	}
2236 
2237 	/* Block until all are initialised */
2238 	wait_for_completion(&pgdat_init_all_done_comp);
2239 
2240 	/*
2241 	 * We initialized the rest of the deferred pages.  Permanently disable
2242 	 * on-demand struct page initialization.
2243 	 */
2244 	static_branch_disable(&deferred_pages);
2245 
2246 	/* Reinit limits that are based on free pages after the kernel is up */
2247 	files_maxfiles_init();
2248 #endif
2249 
2250 	buffer_init();
2251 
2252 	/* Discard memblock private memory */
2253 	memblock_discard();
2254 
2255 	for_each_node_state(nid, N_MEMORY)
2256 		shuffle_free_memory(NODE_DATA(nid));
2257 
2258 	for_each_populated_zone(zone)
2259 		set_zone_contiguous(zone);
2260 }
2261 
2262 #ifdef CONFIG_CMA
2263 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2264 void __init init_cma_reserved_pageblock(struct page *page)
2265 {
2266 	unsigned i = pageblock_nr_pages;
2267 	struct page *p = page;
2268 
2269 	do {
2270 		__ClearPageReserved(p);
2271 		set_page_count(p, 0);
2272 	} while (++p, --i);
2273 
2274 	set_pageblock_migratetype(page, MIGRATE_CMA);
2275 
2276 	if (pageblock_order >= MAX_ORDER) {
2277 		i = pageblock_nr_pages;
2278 		p = page;
2279 		do {
2280 			set_page_refcounted(p);
2281 			__free_pages(p, MAX_ORDER - 1);
2282 			p += MAX_ORDER_NR_PAGES;
2283 		} while (i -= MAX_ORDER_NR_PAGES);
2284 	} else {
2285 		set_page_refcounted(page);
2286 		__free_pages(page, pageblock_order);
2287 	}
2288 
2289 	adjust_managed_page_count(page, pageblock_nr_pages);
2290 	page_zone(page)->cma_pages += pageblock_nr_pages;
2291 }
2292 #endif
2293 
2294 /*
2295  * The order of subdivision here is critical for the IO subsystem.
2296  * Please do not alter this order without good reasons and regression
2297  * testing. Specifically, as large blocks of memory are subdivided,
2298  * the order in which smaller blocks are delivered depends on the order
2299  * they're subdivided in this function. This is the primary factor
2300  * influencing the order in which pages are delivered to the IO
2301  * subsystem according to empirical testing, and this is also justified
2302  * by considering the behavior of a buddy system containing a single
2303  * large block of memory acted on by a series of small allocations.
2304  * This behavior is a critical factor in sglist merging's success.
2305  *
2306  * -- nyc
2307  */
2308 static inline void expand(struct zone *zone, struct page *page,
2309 	int low, int high, int migratetype)
2310 {
2311 	unsigned long size = 1 << high;
2312 
2313 	while (high > low) {
2314 		high--;
2315 		size >>= 1;
2316 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2317 
2318 		/*
2319 		 * Mark as guard pages (or page), that will allow to
2320 		 * merge back to allocator when buddy will be freed.
2321 		 * Corresponding page table entries will not be touched,
2322 		 * pages will stay not present in virtual address space
2323 		 */
2324 		if (set_page_guard(zone, &page[size], high, migratetype))
2325 			continue;
2326 
2327 		add_to_free_list(&page[size], zone, high, migratetype);
2328 		set_buddy_order(&page[size], high);
2329 	}
2330 }
2331 
2332 static void check_new_page_bad(struct page *page)
2333 {
2334 	if (unlikely(page->flags & __PG_HWPOISON)) {
2335 		/* Don't complain about hwpoisoned pages */
2336 		page_mapcount_reset(page); /* remove PageBuddy */
2337 		return;
2338 	}
2339 
2340 	bad_page(page,
2341 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2342 }
2343 
2344 /*
2345  * This page is about to be returned from the page allocator
2346  */
2347 static inline int check_new_page(struct page *page)
2348 {
2349 	if (likely(page_expected_state(page,
2350 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2351 		return 0;
2352 
2353 	check_new_page_bad(page);
2354 	return 1;
2355 }
2356 
2357 #ifdef CONFIG_DEBUG_VM
2358 /*
2359  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2360  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2361  * also checked when pcp lists are refilled from the free lists.
2362  */
2363 static inline bool check_pcp_refill(struct page *page)
2364 {
2365 	if (debug_pagealloc_enabled_static())
2366 		return check_new_page(page);
2367 	else
2368 		return false;
2369 }
2370 
2371 static inline bool check_new_pcp(struct page *page)
2372 {
2373 	return check_new_page(page);
2374 }
2375 #else
2376 /*
2377  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2378  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2379  * enabled, they are also checked when being allocated from the pcp lists.
2380  */
2381 static inline bool check_pcp_refill(struct page *page)
2382 {
2383 	return check_new_page(page);
2384 }
2385 static inline bool check_new_pcp(struct page *page)
2386 {
2387 	if (debug_pagealloc_enabled_static())
2388 		return check_new_page(page);
2389 	else
2390 		return false;
2391 }
2392 #endif /* CONFIG_DEBUG_VM */
2393 
2394 static bool check_new_pages(struct page *page, unsigned int order)
2395 {
2396 	int i;
2397 	for (i = 0; i < (1 << order); i++) {
2398 		struct page *p = page + i;
2399 
2400 		if (unlikely(check_new_page(p)))
2401 			return true;
2402 	}
2403 
2404 	return false;
2405 }
2406 
2407 inline void post_alloc_hook(struct page *page, unsigned int order,
2408 				gfp_t gfp_flags)
2409 {
2410 	set_page_private(page, 0);
2411 	set_page_refcounted(page);
2412 
2413 	arch_alloc_page(page, order);
2414 	debug_pagealloc_map_pages(page, 1 << order);
2415 
2416 	/*
2417 	 * Page unpoisoning must happen before memory initialization.
2418 	 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO
2419 	 * allocations and the page unpoisoning code will complain.
2420 	 */
2421 	kernel_unpoison_pages(page, 1 << order);
2422 
2423 	/*
2424 	 * As memory initialization might be integrated into KASAN,
2425 	 * kasan_alloc_pages and kernel_init_free_pages must be
2426 	 * kept together to avoid discrepancies in behavior.
2427 	 */
2428 	if (kasan_has_integrated_init()) {
2429 		kasan_alloc_pages(page, order, gfp_flags);
2430 	} else {
2431 		bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags);
2432 
2433 		kasan_unpoison_pages(page, order, init);
2434 		if (init)
2435 			kernel_init_free_pages(page, 1 << order,
2436 					       gfp_flags & __GFP_ZEROTAGS);
2437 	}
2438 
2439 	set_page_owner(page, order, gfp_flags);
2440 }
2441 
2442 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2443 							unsigned int alloc_flags)
2444 {
2445 	post_alloc_hook(page, order, gfp_flags);
2446 
2447 	if (order && (gfp_flags & __GFP_COMP))
2448 		prep_compound_page(page, order);
2449 
2450 	/*
2451 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2452 	 * allocate the page. The expectation is that the caller is taking
2453 	 * steps that will free more memory. The caller should avoid the page
2454 	 * being used for !PFMEMALLOC purposes.
2455 	 */
2456 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2457 		set_page_pfmemalloc(page);
2458 	else
2459 		clear_page_pfmemalloc(page);
2460 }
2461 
2462 /*
2463  * Go through the free lists for the given migratetype and remove
2464  * the smallest available page from the freelists
2465  */
2466 static __always_inline
2467 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2468 						int migratetype)
2469 {
2470 	unsigned int current_order;
2471 	struct free_area *area;
2472 	struct page *page;
2473 
2474 	/* Find a page of the appropriate size in the preferred list */
2475 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2476 		area = &(zone->free_area[current_order]);
2477 		page = get_page_from_free_area(area, migratetype);
2478 		if (!page)
2479 			continue;
2480 		del_page_from_free_list(page, zone, current_order);
2481 		expand(zone, page, order, current_order, migratetype);
2482 		set_pcppage_migratetype(page, migratetype);
2483 		return page;
2484 	}
2485 
2486 	return NULL;
2487 }
2488 
2489 
2490 /*
2491  * This array describes the order lists are fallen back to when
2492  * the free lists for the desirable migrate type are depleted
2493  */
2494 static int fallbacks[MIGRATE_TYPES][3] = {
2495 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2496 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2497 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2498 #ifdef CONFIG_CMA
2499 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2500 #endif
2501 #ifdef CONFIG_MEMORY_ISOLATION
2502 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2503 #endif
2504 };
2505 
2506 #ifdef CONFIG_CMA
2507 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2508 					unsigned int order)
2509 {
2510 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2511 }
2512 #else
2513 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2514 					unsigned int order) { return NULL; }
2515 #endif
2516 
2517 /*
2518  * Move the free pages in a range to the freelist tail of the requested type.
2519  * Note that start_page and end_pages are not aligned on a pageblock
2520  * boundary. If alignment is required, use move_freepages_block()
2521  */
2522 static int move_freepages(struct zone *zone,
2523 			  unsigned long start_pfn, unsigned long end_pfn,
2524 			  int migratetype, int *num_movable)
2525 {
2526 	struct page *page;
2527 	unsigned long pfn;
2528 	unsigned int order;
2529 	int pages_moved = 0;
2530 
2531 	for (pfn = start_pfn; pfn <= end_pfn;) {
2532 		if (!pfn_valid_within(pfn)) {
2533 			pfn++;
2534 			continue;
2535 		}
2536 
2537 		page = pfn_to_page(pfn);
2538 		if (!PageBuddy(page)) {
2539 			/*
2540 			 * We assume that pages that could be isolated for
2541 			 * migration are movable. But we don't actually try
2542 			 * isolating, as that would be expensive.
2543 			 */
2544 			if (num_movable &&
2545 					(PageLRU(page) || __PageMovable(page)))
2546 				(*num_movable)++;
2547 			pfn++;
2548 			continue;
2549 		}
2550 
2551 		/* Make sure we are not inadvertently changing nodes */
2552 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2553 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2554 
2555 		order = buddy_order(page);
2556 		move_to_free_list(page, zone, order, migratetype);
2557 		pfn += 1 << order;
2558 		pages_moved += 1 << order;
2559 	}
2560 
2561 	return pages_moved;
2562 }
2563 
2564 int move_freepages_block(struct zone *zone, struct page *page,
2565 				int migratetype, int *num_movable)
2566 {
2567 	unsigned long start_pfn, end_pfn, pfn;
2568 
2569 	if (num_movable)
2570 		*num_movable = 0;
2571 
2572 	pfn = page_to_pfn(page);
2573 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2574 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2575 
2576 	/* Do not cross zone boundaries */
2577 	if (!zone_spans_pfn(zone, start_pfn))
2578 		start_pfn = pfn;
2579 	if (!zone_spans_pfn(zone, end_pfn))
2580 		return 0;
2581 
2582 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2583 								num_movable);
2584 }
2585 
2586 static void change_pageblock_range(struct page *pageblock_page,
2587 					int start_order, int migratetype)
2588 {
2589 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2590 
2591 	while (nr_pageblocks--) {
2592 		set_pageblock_migratetype(pageblock_page, migratetype);
2593 		pageblock_page += pageblock_nr_pages;
2594 	}
2595 }
2596 
2597 /*
2598  * When we are falling back to another migratetype during allocation, try to
2599  * steal extra free pages from the same pageblocks to satisfy further
2600  * allocations, instead of polluting multiple pageblocks.
2601  *
2602  * If we are stealing a relatively large buddy page, it is likely there will
2603  * be more free pages in the pageblock, so try to steal them all. For
2604  * reclaimable and unmovable allocations, we steal regardless of page size,
2605  * as fragmentation caused by those allocations polluting movable pageblocks
2606  * is worse than movable allocations stealing from unmovable and reclaimable
2607  * pageblocks.
2608  */
2609 static bool can_steal_fallback(unsigned int order, int start_mt)
2610 {
2611 	/*
2612 	 * Leaving this order check is intended, although there is
2613 	 * relaxed order check in next check. The reason is that
2614 	 * we can actually steal whole pageblock if this condition met,
2615 	 * but, below check doesn't guarantee it and that is just heuristic
2616 	 * so could be changed anytime.
2617 	 */
2618 	if (order >= pageblock_order)
2619 		return true;
2620 
2621 	if (order >= pageblock_order / 2 ||
2622 		start_mt == MIGRATE_RECLAIMABLE ||
2623 		start_mt == MIGRATE_UNMOVABLE ||
2624 		page_group_by_mobility_disabled)
2625 		return true;
2626 
2627 	return false;
2628 }
2629 
2630 static inline bool boost_watermark(struct zone *zone)
2631 {
2632 	unsigned long max_boost;
2633 
2634 	if (!watermark_boost_factor)
2635 		return false;
2636 	/*
2637 	 * Don't bother in zones that are unlikely to produce results.
2638 	 * On small machines, including kdump capture kernels running
2639 	 * in a small area, boosting the watermark can cause an out of
2640 	 * memory situation immediately.
2641 	 */
2642 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2643 		return false;
2644 
2645 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2646 			watermark_boost_factor, 10000);
2647 
2648 	/*
2649 	 * high watermark may be uninitialised if fragmentation occurs
2650 	 * very early in boot so do not boost. We do not fall
2651 	 * through and boost by pageblock_nr_pages as failing
2652 	 * allocations that early means that reclaim is not going
2653 	 * to help and it may even be impossible to reclaim the
2654 	 * boosted watermark resulting in a hang.
2655 	 */
2656 	if (!max_boost)
2657 		return false;
2658 
2659 	max_boost = max(pageblock_nr_pages, max_boost);
2660 
2661 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2662 		max_boost);
2663 
2664 	return true;
2665 }
2666 
2667 /*
2668  * This function implements actual steal behaviour. If order is large enough,
2669  * we can steal whole pageblock. If not, we first move freepages in this
2670  * pageblock to our migratetype and determine how many already-allocated pages
2671  * are there in the pageblock with a compatible migratetype. If at least half
2672  * of pages are free or compatible, we can change migratetype of the pageblock
2673  * itself, so pages freed in the future will be put on the correct free list.
2674  */
2675 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2676 		unsigned int alloc_flags, int start_type, bool whole_block)
2677 {
2678 	unsigned int current_order = buddy_order(page);
2679 	int free_pages, movable_pages, alike_pages;
2680 	int old_block_type;
2681 
2682 	old_block_type = get_pageblock_migratetype(page);
2683 
2684 	/*
2685 	 * This can happen due to races and we want to prevent broken
2686 	 * highatomic accounting.
2687 	 */
2688 	if (is_migrate_highatomic(old_block_type))
2689 		goto single_page;
2690 
2691 	/* Take ownership for orders >= pageblock_order */
2692 	if (current_order >= pageblock_order) {
2693 		change_pageblock_range(page, current_order, start_type);
2694 		goto single_page;
2695 	}
2696 
2697 	/*
2698 	 * Boost watermarks to increase reclaim pressure to reduce the
2699 	 * likelihood of future fallbacks. Wake kswapd now as the node
2700 	 * may be balanced overall and kswapd will not wake naturally.
2701 	 */
2702 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2703 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2704 
2705 	/* We are not allowed to try stealing from the whole block */
2706 	if (!whole_block)
2707 		goto single_page;
2708 
2709 	free_pages = move_freepages_block(zone, page, start_type,
2710 						&movable_pages);
2711 	/*
2712 	 * Determine how many pages are compatible with our allocation.
2713 	 * For movable allocation, it's the number of movable pages which
2714 	 * we just obtained. For other types it's a bit more tricky.
2715 	 */
2716 	if (start_type == MIGRATE_MOVABLE) {
2717 		alike_pages = movable_pages;
2718 	} else {
2719 		/*
2720 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2721 		 * to MOVABLE pageblock, consider all non-movable pages as
2722 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2723 		 * vice versa, be conservative since we can't distinguish the
2724 		 * exact migratetype of non-movable pages.
2725 		 */
2726 		if (old_block_type == MIGRATE_MOVABLE)
2727 			alike_pages = pageblock_nr_pages
2728 						- (free_pages + movable_pages);
2729 		else
2730 			alike_pages = 0;
2731 	}
2732 
2733 	/* moving whole block can fail due to zone boundary conditions */
2734 	if (!free_pages)
2735 		goto single_page;
2736 
2737 	/*
2738 	 * If a sufficient number of pages in the block are either free or of
2739 	 * comparable migratability as our allocation, claim the whole block.
2740 	 */
2741 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2742 			page_group_by_mobility_disabled)
2743 		set_pageblock_migratetype(page, start_type);
2744 
2745 	return;
2746 
2747 single_page:
2748 	move_to_free_list(page, zone, current_order, start_type);
2749 }
2750 
2751 /*
2752  * Check whether there is a suitable fallback freepage with requested order.
2753  * If only_stealable is true, this function returns fallback_mt only if
2754  * we can steal other freepages all together. This would help to reduce
2755  * fragmentation due to mixed migratetype pages in one pageblock.
2756  */
2757 int find_suitable_fallback(struct free_area *area, unsigned int order,
2758 			int migratetype, bool only_stealable, bool *can_steal)
2759 {
2760 	int i;
2761 	int fallback_mt;
2762 
2763 	if (area->nr_free == 0)
2764 		return -1;
2765 
2766 	*can_steal = false;
2767 	for (i = 0;; i++) {
2768 		fallback_mt = fallbacks[migratetype][i];
2769 		if (fallback_mt == MIGRATE_TYPES)
2770 			break;
2771 
2772 		if (free_area_empty(area, fallback_mt))
2773 			continue;
2774 
2775 		if (can_steal_fallback(order, migratetype))
2776 			*can_steal = true;
2777 
2778 		if (!only_stealable)
2779 			return fallback_mt;
2780 
2781 		if (*can_steal)
2782 			return fallback_mt;
2783 	}
2784 
2785 	return -1;
2786 }
2787 
2788 /*
2789  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2790  * there are no empty page blocks that contain a page with a suitable order
2791  */
2792 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2793 				unsigned int alloc_order)
2794 {
2795 	int mt;
2796 	unsigned long max_managed, flags;
2797 
2798 	/*
2799 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2800 	 * Check is race-prone but harmless.
2801 	 */
2802 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2803 	if (zone->nr_reserved_highatomic >= max_managed)
2804 		return;
2805 
2806 	spin_lock_irqsave(&zone->lock, flags);
2807 
2808 	/* Recheck the nr_reserved_highatomic limit under the lock */
2809 	if (zone->nr_reserved_highatomic >= max_managed)
2810 		goto out_unlock;
2811 
2812 	/* Yoink! */
2813 	mt = get_pageblock_migratetype(page);
2814 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2815 	    && !is_migrate_cma(mt)) {
2816 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2817 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2818 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2819 	}
2820 
2821 out_unlock:
2822 	spin_unlock_irqrestore(&zone->lock, flags);
2823 }
2824 
2825 /*
2826  * Used when an allocation is about to fail under memory pressure. This
2827  * potentially hurts the reliability of high-order allocations when under
2828  * intense memory pressure but failed atomic allocations should be easier
2829  * to recover from than an OOM.
2830  *
2831  * If @force is true, try to unreserve a pageblock even though highatomic
2832  * pageblock is exhausted.
2833  */
2834 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2835 						bool force)
2836 {
2837 	struct zonelist *zonelist = ac->zonelist;
2838 	unsigned long flags;
2839 	struct zoneref *z;
2840 	struct zone *zone;
2841 	struct page *page;
2842 	int order;
2843 	bool ret;
2844 
2845 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2846 								ac->nodemask) {
2847 		/*
2848 		 * Preserve at least one pageblock unless memory pressure
2849 		 * is really high.
2850 		 */
2851 		if (!force && zone->nr_reserved_highatomic <=
2852 					pageblock_nr_pages)
2853 			continue;
2854 
2855 		spin_lock_irqsave(&zone->lock, flags);
2856 		for (order = 0; order < MAX_ORDER; order++) {
2857 			struct free_area *area = &(zone->free_area[order]);
2858 
2859 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2860 			if (!page)
2861 				continue;
2862 
2863 			/*
2864 			 * In page freeing path, migratetype change is racy so
2865 			 * we can counter several free pages in a pageblock
2866 			 * in this loop although we changed the pageblock type
2867 			 * from highatomic to ac->migratetype. So we should
2868 			 * adjust the count once.
2869 			 */
2870 			if (is_migrate_highatomic_page(page)) {
2871 				/*
2872 				 * It should never happen but changes to
2873 				 * locking could inadvertently allow a per-cpu
2874 				 * drain to add pages to MIGRATE_HIGHATOMIC
2875 				 * while unreserving so be safe and watch for
2876 				 * underflows.
2877 				 */
2878 				zone->nr_reserved_highatomic -= min(
2879 						pageblock_nr_pages,
2880 						zone->nr_reserved_highatomic);
2881 			}
2882 
2883 			/*
2884 			 * Convert to ac->migratetype and avoid the normal
2885 			 * pageblock stealing heuristics. Minimally, the caller
2886 			 * is doing the work and needs the pages. More
2887 			 * importantly, if the block was always converted to
2888 			 * MIGRATE_UNMOVABLE or another type then the number
2889 			 * of pageblocks that cannot be completely freed
2890 			 * may increase.
2891 			 */
2892 			set_pageblock_migratetype(page, ac->migratetype);
2893 			ret = move_freepages_block(zone, page, ac->migratetype,
2894 									NULL);
2895 			if (ret) {
2896 				spin_unlock_irqrestore(&zone->lock, flags);
2897 				return ret;
2898 			}
2899 		}
2900 		spin_unlock_irqrestore(&zone->lock, flags);
2901 	}
2902 
2903 	return false;
2904 }
2905 
2906 /*
2907  * Try finding a free buddy page on the fallback list and put it on the free
2908  * list of requested migratetype, possibly along with other pages from the same
2909  * block, depending on fragmentation avoidance heuristics. Returns true if
2910  * fallback was found so that __rmqueue_smallest() can grab it.
2911  *
2912  * The use of signed ints for order and current_order is a deliberate
2913  * deviation from the rest of this file, to make the for loop
2914  * condition simpler.
2915  */
2916 static __always_inline bool
2917 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2918 						unsigned int alloc_flags)
2919 {
2920 	struct free_area *area;
2921 	int current_order;
2922 	int min_order = order;
2923 	struct page *page;
2924 	int fallback_mt;
2925 	bool can_steal;
2926 
2927 	/*
2928 	 * Do not steal pages from freelists belonging to other pageblocks
2929 	 * i.e. orders < pageblock_order. If there are no local zones free,
2930 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2931 	 */
2932 	if (alloc_flags & ALLOC_NOFRAGMENT)
2933 		min_order = pageblock_order;
2934 
2935 	/*
2936 	 * Find the largest available free page in the other list. This roughly
2937 	 * approximates finding the pageblock with the most free pages, which
2938 	 * would be too costly to do exactly.
2939 	 */
2940 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2941 				--current_order) {
2942 		area = &(zone->free_area[current_order]);
2943 		fallback_mt = find_suitable_fallback(area, current_order,
2944 				start_migratetype, false, &can_steal);
2945 		if (fallback_mt == -1)
2946 			continue;
2947 
2948 		/*
2949 		 * We cannot steal all free pages from the pageblock and the
2950 		 * requested migratetype is movable. In that case it's better to
2951 		 * steal and split the smallest available page instead of the
2952 		 * largest available page, because even if the next movable
2953 		 * allocation falls back into a different pageblock than this
2954 		 * one, it won't cause permanent fragmentation.
2955 		 */
2956 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2957 					&& current_order > order)
2958 			goto find_smallest;
2959 
2960 		goto do_steal;
2961 	}
2962 
2963 	return false;
2964 
2965 find_smallest:
2966 	for (current_order = order; current_order < MAX_ORDER;
2967 							current_order++) {
2968 		area = &(zone->free_area[current_order]);
2969 		fallback_mt = find_suitable_fallback(area, current_order,
2970 				start_migratetype, false, &can_steal);
2971 		if (fallback_mt != -1)
2972 			break;
2973 	}
2974 
2975 	/*
2976 	 * This should not happen - we already found a suitable fallback
2977 	 * when looking for the largest page.
2978 	 */
2979 	VM_BUG_ON(current_order == MAX_ORDER);
2980 
2981 do_steal:
2982 	page = get_page_from_free_area(area, fallback_mt);
2983 
2984 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2985 								can_steal);
2986 
2987 	trace_mm_page_alloc_extfrag(page, order, current_order,
2988 		start_migratetype, fallback_mt);
2989 
2990 	return true;
2991 
2992 }
2993 
2994 /*
2995  * Do the hard work of removing an element from the buddy allocator.
2996  * Call me with the zone->lock already held.
2997  */
2998 static __always_inline struct page *
2999 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
3000 						unsigned int alloc_flags)
3001 {
3002 	struct page *page;
3003 
3004 	if (IS_ENABLED(CONFIG_CMA)) {
3005 		/*
3006 		 * Balance movable allocations between regular and CMA areas by
3007 		 * allocating from CMA when over half of the zone's free memory
3008 		 * is in the CMA area.
3009 		 */
3010 		if (alloc_flags & ALLOC_CMA &&
3011 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
3012 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
3013 			page = __rmqueue_cma_fallback(zone, order);
3014 			if (page)
3015 				goto out;
3016 		}
3017 	}
3018 retry:
3019 	page = __rmqueue_smallest(zone, order, migratetype);
3020 	if (unlikely(!page)) {
3021 		if (alloc_flags & ALLOC_CMA)
3022 			page = __rmqueue_cma_fallback(zone, order);
3023 
3024 		if (!page && __rmqueue_fallback(zone, order, migratetype,
3025 								alloc_flags))
3026 			goto retry;
3027 	}
3028 out:
3029 	if (page)
3030 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
3031 	return page;
3032 }
3033 
3034 /*
3035  * Obtain a specified number of elements from the buddy allocator, all under
3036  * a single hold of the lock, for efficiency.  Add them to the supplied list.
3037  * Returns the number of new pages which were placed at *list.
3038  */
3039 static int rmqueue_bulk(struct zone *zone, unsigned int order,
3040 			unsigned long count, struct list_head *list,
3041 			int migratetype, unsigned int alloc_flags)
3042 {
3043 	int i, allocated = 0;
3044 
3045 	/*
3046 	 * local_lock_irq held so equivalent to spin_lock_irqsave for
3047 	 * both PREEMPT_RT and non-PREEMPT_RT configurations.
3048 	 */
3049 	spin_lock(&zone->lock);
3050 	for (i = 0; i < count; ++i) {
3051 		struct page *page = __rmqueue(zone, order, migratetype,
3052 								alloc_flags);
3053 		if (unlikely(page == NULL))
3054 			break;
3055 
3056 		if (unlikely(check_pcp_refill(page)))
3057 			continue;
3058 
3059 		/*
3060 		 * Split buddy pages returned by expand() are received here in
3061 		 * physical page order. The page is added to the tail of
3062 		 * caller's list. From the callers perspective, the linked list
3063 		 * is ordered by page number under some conditions. This is
3064 		 * useful for IO devices that can forward direction from the
3065 		 * head, thus also in the physical page order. This is useful
3066 		 * for IO devices that can merge IO requests if the physical
3067 		 * pages are ordered properly.
3068 		 */
3069 		list_add_tail(&page->lru, list);
3070 		allocated++;
3071 		if (is_migrate_cma(get_pcppage_migratetype(page)))
3072 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
3073 					      -(1 << order));
3074 	}
3075 
3076 	/*
3077 	 * i pages were removed from the buddy list even if some leak due
3078 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
3079 	 * on i. Do not confuse with 'allocated' which is the number of
3080 	 * pages added to the pcp list.
3081 	 */
3082 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
3083 	spin_unlock(&zone->lock);
3084 	return allocated;
3085 }
3086 
3087 #ifdef CONFIG_NUMA
3088 /*
3089  * Called from the vmstat counter updater to drain pagesets of this
3090  * currently executing processor on remote nodes after they have
3091  * expired.
3092  *
3093  * Note that this function must be called with the thread pinned to
3094  * a single processor.
3095  */
3096 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
3097 {
3098 	unsigned long flags;
3099 	int to_drain, batch;
3100 
3101 	local_lock_irqsave(&pagesets.lock, flags);
3102 	batch = READ_ONCE(pcp->batch);
3103 	to_drain = min(pcp->count, batch);
3104 	if (to_drain > 0)
3105 		free_pcppages_bulk(zone, to_drain, pcp);
3106 	local_unlock_irqrestore(&pagesets.lock, flags);
3107 }
3108 #endif
3109 
3110 /*
3111  * Drain pcplists of the indicated processor and zone.
3112  *
3113  * The processor must either be the current processor and the
3114  * thread pinned to the current processor or a processor that
3115  * is not online.
3116  */
3117 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
3118 {
3119 	unsigned long flags;
3120 	struct per_cpu_pages *pcp;
3121 
3122 	local_lock_irqsave(&pagesets.lock, flags);
3123 
3124 	pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3125 	if (pcp->count)
3126 		free_pcppages_bulk(zone, pcp->count, pcp);
3127 
3128 	local_unlock_irqrestore(&pagesets.lock, flags);
3129 }
3130 
3131 /*
3132  * Drain pcplists of all zones on the indicated processor.
3133  *
3134  * The processor must either be the current processor and the
3135  * thread pinned to the current processor or a processor that
3136  * is not online.
3137  */
3138 static void drain_pages(unsigned int cpu)
3139 {
3140 	struct zone *zone;
3141 
3142 	for_each_populated_zone(zone) {
3143 		drain_pages_zone(cpu, zone);
3144 	}
3145 }
3146 
3147 /*
3148  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3149  *
3150  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3151  * the single zone's pages.
3152  */
3153 void drain_local_pages(struct zone *zone)
3154 {
3155 	int cpu = smp_processor_id();
3156 
3157 	if (zone)
3158 		drain_pages_zone(cpu, zone);
3159 	else
3160 		drain_pages(cpu);
3161 }
3162 
3163 static void drain_local_pages_wq(struct work_struct *work)
3164 {
3165 	struct pcpu_drain *drain;
3166 
3167 	drain = container_of(work, struct pcpu_drain, work);
3168 
3169 	/*
3170 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3171 	 * we can race with cpu offline when the WQ can move this from
3172 	 * a cpu pinned worker to an unbound one. We can operate on a different
3173 	 * cpu which is alright but we also have to make sure to not move to
3174 	 * a different one.
3175 	 */
3176 	preempt_disable();
3177 	drain_local_pages(drain->zone);
3178 	preempt_enable();
3179 }
3180 
3181 /*
3182  * The implementation of drain_all_pages(), exposing an extra parameter to
3183  * drain on all cpus.
3184  *
3185  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3186  * not empty. The check for non-emptiness can however race with a free to
3187  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3188  * that need the guarantee that every CPU has drained can disable the
3189  * optimizing racy check.
3190  */
3191 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3192 {
3193 	int cpu;
3194 
3195 	/*
3196 	 * Allocate in the BSS so we wont require allocation in
3197 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3198 	 */
3199 	static cpumask_t cpus_with_pcps;
3200 
3201 	/*
3202 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3203 	 * initialized.
3204 	 */
3205 	if (WARN_ON_ONCE(!mm_percpu_wq))
3206 		return;
3207 
3208 	/*
3209 	 * Do not drain if one is already in progress unless it's specific to
3210 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3211 	 * the drain to be complete when the call returns.
3212 	 */
3213 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3214 		if (!zone)
3215 			return;
3216 		mutex_lock(&pcpu_drain_mutex);
3217 	}
3218 
3219 	/*
3220 	 * We don't care about racing with CPU hotplug event
3221 	 * as offline notification will cause the notified
3222 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3223 	 * disables preemption as part of its processing
3224 	 */
3225 	for_each_online_cpu(cpu) {
3226 		struct per_cpu_pages *pcp;
3227 		struct zone *z;
3228 		bool has_pcps = false;
3229 
3230 		if (force_all_cpus) {
3231 			/*
3232 			 * The pcp.count check is racy, some callers need a
3233 			 * guarantee that no cpu is missed.
3234 			 */
3235 			has_pcps = true;
3236 		} else if (zone) {
3237 			pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
3238 			if (pcp->count)
3239 				has_pcps = true;
3240 		} else {
3241 			for_each_populated_zone(z) {
3242 				pcp = per_cpu_ptr(z->per_cpu_pageset, cpu);
3243 				if (pcp->count) {
3244 					has_pcps = true;
3245 					break;
3246 				}
3247 			}
3248 		}
3249 
3250 		if (has_pcps)
3251 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3252 		else
3253 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3254 	}
3255 
3256 	for_each_cpu(cpu, &cpus_with_pcps) {
3257 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3258 
3259 		drain->zone = zone;
3260 		INIT_WORK(&drain->work, drain_local_pages_wq);
3261 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3262 	}
3263 	for_each_cpu(cpu, &cpus_with_pcps)
3264 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3265 
3266 	mutex_unlock(&pcpu_drain_mutex);
3267 }
3268 
3269 /*
3270  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3271  *
3272  * When zone parameter is non-NULL, spill just the single zone's pages.
3273  *
3274  * Note that this can be extremely slow as the draining happens in a workqueue.
3275  */
3276 void drain_all_pages(struct zone *zone)
3277 {
3278 	__drain_all_pages(zone, false);
3279 }
3280 
3281 #ifdef CONFIG_HIBERNATION
3282 
3283 /*
3284  * Touch the watchdog for every WD_PAGE_COUNT pages.
3285  */
3286 #define WD_PAGE_COUNT	(128*1024)
3287 
3288 void mark_free_pages(struct zone *zone)
3289 {
3290 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3291 	unsigned long flags;
3292 	unsigned int order, t;
3293 	struct page *page;
3294 
3295 	if (zone_is_empty(zone))
3296 		return;
3297 
3298 	spin_lock_irqsave(&zone->lock, flags);
3299 
3300 	max_zone_pfn = zone_end_pfn(zone);
3301 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3302 		if (pfn_valid(pfn)) {
3303 			page = pfn_to_page(pfn);
3304 
3305 			if (!--page_count) {
3306 				touch_nmi_watchdog();
3307 				page_count = WD_PAGE_COUNT;
3308 			}
3309 
3310 			if (page_zone(page) != zone)
3311 				continue;
3312 
3313 			if (!swsusp_page_is_forbidden(page))
3314 				swsusp_unset_page_free(page);
3315 		}
3316 
3317 	for_each_migratetype_order(order, t) {
3318 		list_for_each_entry(page,
3319 				&zone->free_area[order].free_list[t], lru) {
3320 			unsigned long i;
3321 
3322 			pfn = page_to_pfn(page);
3323 			for (i = 0; i < (1UL << order); i++) {
3324 				if (!--page_count) {
3325 					touch_nmi_watchdog();
3326 					page_count = WD_PAGE_COUNT;
3327 				}
3328 				swsusp_set_page_free(pfn_to_page(pfn + i));
3329 			}
3330 		}
3331 	}
3332 	spin_unlock_irqrestore(&zone->lock, flags);
3333 }
3334 #endif /* CONFIG_PM */
3335 
3336 static bool free_unref_page_prepare(struct page *page, unsigned long pfn,
3337 							unsigned int order)
3338 {
3339 	int migratetype;
3340 
3341 	if (!free_pcp_prepare(page, order))
3342 		return false;
3343 
3344 	migratetype = get_pfnblock_migratetype(page, pfn);
3345 	set_pcppage_migratetype(page, migratetype);
3346 	return true;
3347 }
3348 
3349 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch)
3350 {
3351 	int min_nr_free, max_nr_free;
3352 
3353 	/* Check for PCP disabled or boot pageset */
3354 	if (unlikely(high < batch))
3355 		return 1;
3356 
3357 	/* Leave at least pcp->batch pages on the list */
3358 	min_nr_free = batch;
3359 	max_nr_free = high - batch;
3360 
3361 	/*
3362 	 * Double the number of pages freed each time there is subsequent
3363 	 * freeing of pages without any allocation.
3364 	 */
3365 	batch <<= pcp->free_factor;
3366 	if (batch < max_nr_free)
3367 		pcp->free_factor++;
3368 	batch = clamp(batch, min_nr_free, max_nr_free);
3369 
3370 	return batch;
3371 }
3372 
3373 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone)
3374 {
3375 	int high = READ_ONCE(pcp->high);
3376 
3377 	if (unlikely(!high))
3378 		return 0;
3379 
3380 	if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags))
3381 		return high;
3382 
3383 	/*
3384 	 * If reclaim is active, limit the number of pages that can be
3385 	 * stored on pcp lists
3386 	 */
3387 	return min(READ_ONCE(pcp->batch) << 2, high);
3388 }
3389 
3390 static void free_unref_page_commit(struct page *page, unsigned long pfn,
3391 				   int migratetype, unsigned int order)
3392 {
3393 	struct zone *zone = page_zone(page);
3394 	struct per_cpu_pages *pcp;
3395 	int high;
3396 	int pindex;
3397 
3398 	__count_vm_event(PGFREE);
3399 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3400 	pindex = order_to_pindex(migratetype, order);
3401 	list_add(&page->lru, &pcp->lists[pindex]);
3402 	pcp->count += 1 << order;
3403 	high = nr_pcp_high(pcp, zone);
3404 	if (pcp->count >= high) {
3405 		int batch = READ_ONCE(pcp->batch);
3406 
3407 		free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp);
3408 	}
3409 }
3410 
3411 /*
3412  * Free a pcp page
3413  */
3414 void free_unref_page(struct page *page, unsigned int order)
3415 {
3416 	unsigned long flags;
3417 	unsigned long pfn = page_to_pfn(page);
3418 	int migratetype;
3419 
3420 	if (!free_unref_page_prepare(page, pfn, order))
3421 		return;
3422 
3423 	/*
3424 	 * We only track unmovable, reclaimable and movable on pcp lists.
3425 	 * Place ISOLATE pages on the isolated list because they are being
3426 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3427 	 * areas back if necessary. Otherwise, we may have to free
3428 	 * excessively into the page allocator
3429 	 */
3430 	migratetype = get_pcppage_migratetype(page);
3431 	if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3432 		if (unlikely(is_migrate_isolate(migratetype))) {
3433 			free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE);
3434 			return;
3435 		}
3436 		migratetype = MIGRATE_MOVABLE;
3437 	}
3438 
3439 	local_lock_irqsave(&pagesets.lock, flags);
3440 	free_unref_page_commit(page, pfn, migratetype, order);
3441 	local_unlock_irqrestore(&pagesets.lock, flags);
3442 }
3443 
3444 /*
3445  * Free a list of 0-order pages
3446  */
3447 void free_unref_page_list(struct list_head *list)
3448 {
3449 	struct page *page, *next;
3450 	unsigned long flags, pfn;
3451 	int batch_count = 0;
3452 	int migratetype;
3453 
3454 	/* Prepare pages for freeing */
3455 	list_for_each_entry_safe(page, next, list, lru) {
3456 		pfn = page_to_pfn(page);
3457 		if (!free_unref_page_prepare(page, pfn, 0))
3458 			list_del(&page->lru);
3459 
3460 		/*
3461 		 * Free isolated pages directly to the allocator, see
3462 		 * comment in free_unref_page.
3463 		 */
3464 		migratetype = get_pcppage_migratetype(page);
3465 		if (unlikely(migratetype >= MIGRATE_PCPTYPES)) {
3466 			if (unlikely(is_migrate_isolate(migratetype))) {
3467 				list_del(&page->lru);
3468 				free_one_page(page_zone(page), page, pfn, 0,
3469 							migratetype, FPI_NONE);
3470 				continue;
3471 			}
3472 
3473 			/*
3474 			 * Non-isolated types over MIGRATE_PCPTYPES get added
3475 			 * to the MIGRATE_MOVABLE pcp list.
3476 			 */
3477 			set_pcppage_migratetype(page, MIGRATE_MOVABLE);
3478 		}
3479 
3480 		set_page_private(page, pfn);
3481 	}
3482 
3483 	local_lock_irqsave(&pagesets.lock, flags);
3484 	list_for_each_entry_safe(page, next, list, lru) {
3485 		pfn = page_private(page);
3486 		set_page_private(page, 0);
3487 		migratetype = get_pcppage_migratetype(page);
3488 		trace_mm_page_free_batched(page);
3489 		free_unref_page_commit(page, pfn, migratetype, 0);
3490 
3491 		/*
3492 		 * Guard against excessive IRQ disabled times when we get
3493 		 * a large list of pages to free.
3494 		 */
3495 		if (++batch_count == SWAP_CLUSTER_MAX) {
3496 			local_unlock_irqrestore(&pagesets.lock, flags);
3497 			batch_count = 0;
3498 			local_lock_irqsave(&pagesets.lock, flags);
3499 		}
3500 	}
3501 	local_unlock_irqrestore(&pagesets.lock, flags);
3502 }
3503 
3504 /*
3505  * split_page takes a non-compound higher-order page, and splits it into
3506  * n (1<<order) sub-pages: page[0..n]
3507  * Each sub-page must be freed individually.
3508  *
3509  * Note: this is probably too low level an operation for use in drivers.
3510  * Please consult with lkml before using this in your driver.
3511  */
3512 void split_page(struct page *page, unsigned int order)
3513 {
3514 	int i;
3515 
3516 	VM_BUG_ON_PAGE(PageCompound(page), page);
3517 	VM_BUG_ON_PAGE(!page_count(page), page);
3518 
3519 	for (i = 1; i < (1 << order); i++)
3520 		set_page_refcounted(page + i);
3521 	split_page_owner(page, 1 << order);
3522 	split_page_memcg(page, 1 << order);
3523 }
3524 EXPORT_SYMBOL_GPL(split_page);
3525 
3526 int __isolate_free_page(struct page *page, unsigned int order)
3527 {
3528 	unsigned long watermark;
3529 	struct zone *zone;
3530 	int mt;
3531 
3532 	BUG_ON(!PageBuddy(page));
3533 
3534 	zone = page_zone(page);
3535 	mt = get_pageblock_migratetype(page);
3536 
3537 	if (!is_migrate_isolate(mt)) {
3538 		/*
3539 		 * Obey watermarks as if the page was being allocated. We can
3540 		 * emulate a high-order watermark check with a raised order-0
3541 		 * watermark, because we already know our high-order page
3542 		 * exists.
3543 		 */
3544 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3545 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3546 			return 0;
3547 
3548 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3549 	}
3550 
3551 	/* Remove page from free list */
3552 
3553 	del_page_from_free_list(page, zone, order);
3554 
3555 	/*
3556 	 * Set the pageblock if the isolated page is at least half of a
3557 	 * pageblock
3558 	 */
3559 	if (order >= pageblock_order - 1) {
3560 		struct page *endpage = page + (1 << order) - 1;
3561 		for (; page < endpage; page += pageblock_nr_pages) {
3562 			int mt = get_pageblock_migratetype(page);
3563 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3564 			    && !is_migrate_highatomic(mt))
3565 				set_pageblock_migratetype(page,
3566 							  MIGRATE_MOVABLE);
3567 		}
3568 	}
3569 
3570 
3571 	return 1UL << order;
3572 }
3573 
3574 /**
3575  * __putback_isolated_page - Return a now-isolated page back where we got it
3576  * @page: Page that was isolated
3577  * @order: Order of the isolated page
3578  * @mt: The page's pageblock's migratetype
3579  *
3580  * This function is meant to return a page pulled from the free lists via
3581  * __isolate_free_page back to the free lists they were pulled from.
3582  */
3583 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3584 {
3585 	struct zone *zone = page_zone(page);
3586 
3587 	/* zone lock should be held when this function is called */
3588 	lockdep_assert_held(&zone->lock);
3589 
3590 	/* Return isolated page to tail of freelist. */
3591 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3592 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3593 }
3594 
3595 /*
3596  * Update NUMA hit/miss statistics
3597  *
3598  * Must be called with interrupts disabled.
3599  */
3600 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
3601 				   long nr_account)
3602 {
3603 #ifdef CONFIG_NUMA
3604 	enum numa_stat_item local_stat = NUMA_LOCAL;
3605 
3606 	/* skip numa counters update if numa stats is disabled */
3607 	if (!static_branch_likely(&vm_numa_stat_key))
3608 		return;
3609 
3610 	if (zone_to_nid(z) != numa_node_id())
3611 		local_stat = NUMA_OTHER;
3612 
3613 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3614 		__count_numa_events(z, NUMA_HIT, nr_account);
3615 	else {
3616 		__count_numa_events(z, NUMA_MISS, nr_account);
3617 		__count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account);
3618 	}
3619 	__count_numa_events(z, local_stat, nr_account);
3620 #endif
3621 }
3622 
3623 /* Remove page from the per-cpu list, caller must protect the list */
3624 static inline
3625 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order,
3626 			int migratetype,
3627 			unsigned int alloc_flags,
3628 			struct per_cpu_pages *pcp,
3629 			struct list_head *list)
3630 {
3631 	struct page *page;
3632 
3633 	do {
3634 		if (list_empty(list)) {
3635 			int batch = READ_ONCE(pcp->batch);
3636 			int alloced;
3637 
3638 			/*
3639 			 * Scale batch relative to order if batch implies
3640 			 * free pages can be stored on the PCP. Batch can
3641 			 * be 1 for small zones or for boot pagesets which
3642 			 * should never store free pages as the pages may
3643 			 * belong to arbitrary zones.
3644 			 */
3645 			if (batch > 1)
3646 				batch = max(batch >> order, 2);
3647 			alloced = rmqueue_bulk(zone, order,
3648 					batch, list,
3649 					migratetype, alloc_flags);
3650 
3651 			pcp->count += alloced << order;
3652 			if (unlikely(list_empty(list)))
3653 				return NULL;
3654 		}
3655 
3656 		page = list_first_entry(list, struct page, lru);
3657 		list_del(&page->lru);
3658 		pcp->count -= 1 << order;
3659 	} while (check_new_pcp(page));
3660 
3661 	return page;
3662 }
3663 
3664 /* Lock and remove page from the per-cpu list */
3665 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3666 			struct zone *zone, unsigned int order,
3667 			gfp_t gfp_flags, int migratetype,
3668 			unsigned int alloc_flags)
3669 {
3670 	struct per_cpu_pages *pcp;
3671 	struct list_head *list;
3672 	struct page *page;
3673 	unsigned long flags;
3674 
3675 	local_lock_irqsave(&pagesets.lock, flags);
3676 
3677 	/*
3678 	 * On allocation, reduce the number of pages that are batch freed.
3679 	 * See nr_pcp_free() where free_factor is increased for subsequent
3680 	 * frees.
3681 	 */
3682 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
3683 	pcp->free_factor >>= 1;
3684 	list = &pcp->lists[order_to_pindex(migratetype, order)];
3685 	page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list);
3686 	local_unlock_irqrestore(&pagesets.lock, flags);
3687 	if (page) {
3688 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3689 		zone_statistics(preferred_zone, zone, 1);
3690 	}
3691 	return page;
3692 }
3693 
3694 /*
3695  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3696  */
3697 static inline
3698 struct page *rmqueue(struct zone *preferred_zone,
3699 			struct zone *zone, unsigned int order,
3700 			gfp_t gfp_flags, unsigned int alloc_flags,
3701 			int migratetype)
3702 {
3703 	unsigned long flags;
3704 	struct page *page;
3705 
3706 	if (likely(pcp_allowed_order(order))) {
3707 		/*
3708 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3709 		 * we need to skip it when CMA area isn't allowed.
3710 		 */
3711 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3712 				migratetype != MIGRATE_MOVABLE) {
3713 			page = rmqueue_pcplist(preferred_zone, zone, order,
3714 					gfp_flags, migratetype, alloc_flags);
3715 			goto out;
3716 		}
3717 	}
3718 
3719 	/*
3720 	 * We most definitely don't want callers attempting to
3721 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3722 	 */
3723 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3724 	spin_lock_irqsave(&zone->lock, flags);
3725 
3726 	do {
3727 		page = NULL;
3728 		/*
3729 		 * order-0 request can reach here when the pcplist is skipped
3730 		 * due to non-CMA allocation context. HIGHATOMIC area is
3731 		 * reserved for high-order atomic allocation, so order-0
3732 		 * request should skip it.
3733 		 */
3734 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3735 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3736 			if (page)
3737 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3738 		}
3739 		if (!page)
3740 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3741 	} while (page && check_new_pages(page, order));
3742 	if (!page)
3743 		goto failed;
3744 
3745 	__mod_zone_freepage_state(zone, -(1 << order),
3746 				  get_pcppage_migratetype(page));
3747 	spin_unlock_irqrestore(&zone->lock, flags);
3748 
3749 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3750 	zone_statistics(preferred_zone, zone, 1);
3751 
3752 out:
3753 	/* Separate test+clear to avoid unnecessary atomics */
3754 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3755 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3756 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3757 	}
3758 
3759 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3760 	return page;
3761 
3762 failed:
3763 	spin_unlock_irqrestore(&zone->lock, flags);
3764 	return NULL;
3765 }
3766 
3767 #ifdef CONFIG_FAIL_PAGE_ALLOC
3768 
3769 static struct {
3770 	struct fault_attr attr;
3771 
3772 	bool ignore_gfp_highmem;
3773 	bool ignore_gfp_reclaim;
3774 	u32 min_order;
3775 } fail_page_alloc = {
3776 	.attr = FAULT_ATTR_INITIALIZER,
3777 	.ignore_gfp_reclaim = true,
3778 	.ignore_gfp_highmem = true,
3779 	.min_order = 1,
3780 };
3781 
3782 static int __init setup_fail_page_alloc(char *str)
3783 {
3784 	return setup_fault_attr(&fail_page_alloc.attr, str);
3785 }
3786 __setup("fail_page_alloc=", setup_fail_page_alloc);
3787 
3788 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3789 {
3790 	if (order < fail_page_alloc.min_order)
3791 		return false;
3792 	if (gfp_mask & __GFP_NOFAIL)
3793 		return false;
3794 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3795 		return false;
3796 	if (fail_page_alloc.ignore_gfp_reclaim &&
3797 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3798 		return false;
3799 
3800 	return should_fail(&fail_page_alloc.attr, 1 << order);
3801 }
3802 
3803 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3804 
3805 static int __init fail_page_alloc_debugfs(void)
3806 {
3807 	umode_t mode = S_IFREG | 0600;
3808 	struct dentry *dir;
3809 
3810 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3811 					&fail_page_alloc.attr);
3812 
3813 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3814 			    &fail_page_alloc.ignore_gfp_reclaim);
3815 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3816 			    &fail_page_alloc.ignore_gfp_highmem);
3817 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3818 
3819 	return 0;
3820 }
3821 
3822 late_initcall(fail_page_alloc_debugfs);
3823 
3824 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3825 
3826 #else /* CONFIG_FAIL_PAGE_ALLOC */
3827 
3828 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3829 {
3830 	return false;
3831 }
3832 
3833 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3834 
3835 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3836 {
3837 	return __should_fail_alloc_page(gfp_mask, order);
3838 }
3839 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3840 
3841 static inline long __zone_watermark_unusable_free(struct zone *z,
3842 				unsigned int order, unsigned int alloc_flags)
3843 {
3844 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3845 	long unusable_free = (1 << order) - 1;
3846 
3847 	/*
3848 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3849 	 * the high-atomic reserves. This will over-estimate the size of the
3850 	 * atomic reserve but it avoids a search.
3851 	 */
3852 	if (likely(!alloc_harder))
3853 		unusable_free += z->nr_reserved_highatomic;
3854 
3855 #ifdef CONFIG_CMA
3856 	/* If allocation can't use CMA areas don't use free CMA pages */
3857 	if (!(alloc_flags & ALLOC_CMA))
3858 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3859 #endif
3860 
3861 	return unusable_free;
3862 }
3863 
3864 /*
3865  * Return true if free base pages are above 'mark'. For high-order checks it
3866  * will return true of the order-0 watermark is reached and there is at least
3867  * one free page of a suitable size. Checking now avoids taking the zone lock
3868  * to check in the allocation paths if no pages are free.
3869  */
3870 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3871 			 int highest_zoneidx, unsigned int alloc_flags,
3872 			 long free_pages)
3873 {
3874 	long min = mark;
3875 	int o;
3876 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3877 
3878 	/* free_pages may go negative - that's OK */
3879 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3880 
3881 	if (alloc_flags & ALLOC_HIGH)
3882 		min -= min / 2;
3883 
3884 	if (unlikely(alloc_harder)) {
3885 		/*
3886 		 * OOM victims can try even harder than normal ALLOC_HARDER
3887 		 * users on the grounds that it's definitely going to be in
3888 		 * the exit path shortly and free memory. Any allocation it
3889 		 * makes during the free path will be small and short-lived.
3890 		 */
3891 		if (alloc_flags & ALLOC_OOM)
3892 			min -= min / 2;
3893 		else
3894 			min -= min / 4;
3895 	}
3896 
3897 	/*
3898 	 * Check watermarks for an order-0 allocation request. If these
3899 	 * are not met, then a high-order request also cannot go ahead
3900 	 * even if a suitable page happened to be free.
3901 	 */
3902 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3903 		return false;
3904 
3905 	/* If this is an order-0 request then the watermark is fine */
3906 	if (!order)
3907 		return true;
3908 
3909 	/* For a high-order request, check at least one suitable page is free */
3910 	for (o = order; o < MAX_ORDER; o++) {
3911 		struct free_area *area = &z->free_area[o];
3912 		int mt;
3913 
3914 		if (!area->nr_free)
3915 			continue;
3916 
3917 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3918 			if (!free_area_empty(area, mt))
3919 				return true;
3920 		}
3921 
3922 #ifdef CONFIG_CMA
3923 		if ((alloc_flags & ALLOC_CMA) &&
3924 		    !free_area_empty(area, MIGRATE_CMA)) {
3925 			return true;
3926 		}
3927 #endif
3928 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3929 			return true;
3930 	}
3931 	return false;
3932 }
3933 
3934 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3935 		      int highest_zoneidx, unsigned int alloc_flags)
3936 {
3937 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3938 					zone_page_state(z, NR_FREE_PAGES));
3939 }
3940 
3941 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3942 				unsigned long mark, int highest_zoneidx,
3943 				unsigned int alloc_flags, gfp_t gfp_mask)
3944 {
3945 	long free_pages;
3946 
3947 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3948 
3949 	/*
3950 	 * Fast check for order-0 only. If this fails then the reserves
3951 	 * need to be calculated.
3952 	 */
3953 	if (!order) {
3954 		long fast_free;
3955 
3956 		fast_free = free_pages;
3957 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3958 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3959 			return true;
3960 	}
3961 
3962 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3963 					free_pages))
3964 		return true;
3965 	/*
3966 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3967 	 * when checking the min watermark. The min watermark is the
3968 	 * point where boosting is ignored so that kswapd is woken up
3969 	 * when below the low watermark.
3970 	 */
3971 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3972 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3973 		mark = z->_watermark[WMARK_MIN];
3974 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3975 					alloc_flags, free_pages);
3976 	}
3977 
3978 	return false;
3979 }
3980 
3981 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3982 			unsigned long mark, int highest_zoneidx)
3983 {
3984 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3985 
3986 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3987 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3988 
3989 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3990 								free_pages);
3991 }
3992 
3993 #ifdef CONFIG_NUMA
3994 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3995 {
3996 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3997 				node_reclaim_distance;
3998 }
3999 #else	/* CONFIG_NUMA */
4000 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
4001 {
4002 	return true;
4003 }
4004 #endif	/* CONFIG_NUMA */
4005 
4006 /*
4007  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
4008  * fragmentation is subtle. If the preferred zone was HIGHMEM then
4009  * premature use of a lower zone may cause lowmem pressure problems that
4010  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
4011  * probably too small. It only makes sense to spread allocations to avoid
4012  * fragmentation between the Normal and DMA32 zones.
4013  */
4014 static inline unsigned int
4015 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
4016 {
4017 	unsigned int alloc_flags;
4018 
4019 	/*
4020 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4021 	 * to save a branch.
4022 	 */
4023 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
4024 
4025 #ifdef CONFIG_ZONE_DMA32
4026 	if (!zone)
4027 		return alloc_flags;
4028 
4029 	if (zone_idx(zone) != ZONE_NORMAL)
4030 		return alloc_flags;
4031 
4032 	/*
4033 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
4034 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
4035 	 * on UMA that if Normal is populated then so is DMA32.
4036 	 */
4037 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
4038 	if (nr_online_nodes > 1 && !populated_zone(--zone))
4039 		return alloc_flags;
4040 
4041 	alloc_flags |= ALLOC_NOFRAGMENT;
4042 #endif /* CONFIG_ZONE_DMA32 */
4043 	return alloc_flags;
4044 }
4045 
4046 /* Must be called after current_gfp_context() which can change gfp_mask */
4047 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask,
4048 						  unsigned int alloc_flags)
4049 {
4050 #ifdef CONFIG_CMA
4051 	if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4052 		alloc_flags |= ALLOC_CMA;
4053 #endif
4054 	return alloc_flags;
4055 }
4056 
4057 /*
4058  * get_page_from_freelist goes through the zonelist trying to allocate
4059  * a page.
4060  */
4061 static struct page *
4062 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
4063 						const struct alloc_context *ac)
4064 {
4065 	struct zoneref *z;
4066 	struct zone *zone;
4067 	struct pglist_data *last_pgdat_dirty_limit = NULL;
4068 	bool no_fallback;
4069 
4070 retry:
4071 	/*
4072 	 * Scan zonelist, looking for a zone with enough free.
4073 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
4074 	 */
4075 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
4076 	z = ac->preferred_zoneref;
4077 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
4078 					ac->nodemask) {
4079 		struct page *page;
4080 		unsigned long mark;
4081 
4082 		if (cpusets_enabled() &&
4083 			(alloc_flags & ALLOC_CPUSET) &&
4084 			!__cpuset_zone_allowed(zone, gfp_mask))
4085 				continue;
4086 		/*
4087 		 * When allocating a page cache page for writing, we
4088 		 * want to get it from a node that is within its dirty
4089 		 * limit, such that no single node holds more than its
4090 		 * proportional share of globally allowed dirty pages.
4091 		 * The dirty limits take into account the node's
4092 		 * lowmem reserves and high watermark so that kswapd
4093 		 * should be able to balance it without having to
4094 		 * write pages from its LRU list.
4095 		 *
4096 		 * XXX: For now, allow allocations to potentially
4097 		 * exceed the per-node dirty limit in the slowpath
4098 		 * (spread_dirty_pages unset) before going into reclaim,
4099 		 * which is important when on a NUMA setup the allowed
4100 		 * nodes are together not big enough to reach the
4101 		 * global limit.  The proper fix for these situations
4102 		 * will require awareness of nodes in the
4103 		 * dirty-throttling and the flusher threads.
4104 		 */
4105 		if (ac->spread_dirty_pages) {
4106 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
4107 				continue;
4108 
4109 			if (!node_dirty_ok(zone->zone_pgdat)) {
4110 				last_pgdat_dirty_limit = zone->zone_pgdat;
4111 				continue;
4112 			}
4113 		}
4114 
4115 		if (no_fallback && nr_online_nodes > 1 &&
4116 		    zone != ac->preferred_zoneref->zone) {
4117 			int local_nid;
4118 
4119 			/*
4120 			 * If moving to a remote node, retry but allow
4121 			 * fragmenting fallbacks. Locality is more important
4122 			 * than fragmentation avoidance.
4123 			 */
4124 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
4125 			if (zone_to_nid(zone) != local_nid) {
4126 				alloc_flags &= ~ALLOC_NOFRAGMENT;
4127 				goto retry;
4128 			}
4129 		}
4130 
4131 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
4132 		if (!zone_watermark_fast(zone, order, mark,
4133 				       ac->highest_zoneidx, alloc_flags,
4134 				       gfp_mask)) {
4135 			int ret;
4136 
4137 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4138 			/*
4139 			 * Watermark failed for this zone, but see if we can
4140 			 * grow this zone if it contains deferred pages.
4141 			 */
4142 			if (static_branch_unlikely(&deferred_pages)) {
4143 				if (_deferred_grow_zone(zone, order))
4144 					goto try_this_zone;
4145 			}
4146 #endif
4147 			/* Checked here to keep the fast path fast */
4148 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
4149 			if (alloc_flags & ALLOC_NO_WATERMARKS)
4150 				goto try_this_zone;
4151 
4152 			if (!node_reclaim_enabled() ||
4153 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
4154 				continue;
4155 
4156 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
4157 			switch (ret) {
4158 			case NODE_RECLAIM_NOSCAN:
4159 				/* did not scan */
4160 				continue;
4161 			case NODE_RECLAIM_FULL:
4162 				/* scanned but unreclaimable */
4163 				continue;
4164 			default:
4165 				/* did we reclaim enough */
4166 				if (zone_watermark_ok(zone, order, mark,
4167 					ac->highest_zoneidx, alloc_flags))
4168 					goto try_this_zone;
4169 
4170 				continue;
4171 			}
4172 		}
4173 
4174 try_this_zone:
4175 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
4176 				gfp_mask, alloc_flags, ac->migratetype);
4177 		if (page) {
4178 			prep_new_page(page, order, gfp_mask, alloc_flags);
4179 
4180 			/*
4181 			 * If this is a high-order atomic allocation then check
4182 			 * if the pageblock should be reserved for the future
4183 			 */
4184 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
4185 				reserve_highatomic_pageblock(page, zone, order);
4186 
4187 			return page;
4188 		} else {
4189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
4190 			/* Try again if zone has deferred pages */
4191 			if (static_branch_unlikely(&deferred_pages)) {
4192 				if (_deferred_grow_zone(zone, order))
4193 					goto try_this_zone;
4194 			}
4195 #endif
4196 		}
4197 	}
4198 
4199 	/*
4200 	 * It's possible on a UMA machine to get through all zones that are
4201 	 * fragmented. If avoiding fragmentation, reset and try again.
4202 	 */
4203 	if (no_fallback) {
4204 		alloc_flags &= ~ALLOC_NOFRAGMENT;
4205 		goto retry;
4206 	}
4207 
4208 	return NULL;
4209 }
4210 
4211 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
4212 {
4213 	unsigned int filter = SHOW_MEM_FILTER_NODES;
4214 
4215 	/*
4216 	 * This documents exceptions given to allocations in certain
4217 	 * contexts that are allowed to allocate outside current's set
4218 	 * of allowed nodes.
4219 	 */
4220 	if (!(gfp_mask & __GFP_NOMEMALLOC))
4221 		if (tsk_is_oom_victim(current) ||
4222 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
4223 			filter &= ~SHOW_MEM_FILTER_NODES;
4224 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
4225 		filter &= ~SHOW_MEM_FILTER_NODES;
4226 
4227 	show_mem(filter, nodemask);
4228 }
4229 
4230 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
4231 {
4232 	struct va_format vaf;
4233 	va_list args;
4234 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4235 
4236 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
4237 		return;
4238 
4239 	va_start(args, fmt);
4240 	vaf.fmt = fmt;
4241 	vaf.va = &args;
4242 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4243 			current->comm, &vaf, gfp_mask, &gfp_mask,
4244 			nodemask_pr_args(nodemask));
4245 	va_end(args);
4246 
4247 	cpuset_print_current_mems_allowed();
4248 	pr_cont("\n");
4249 	dump_stack();
4250 	warn_alloc_show_mem(gfp_mask, nodemask);
4251 }
4252 
4253 static inline struct page *
4254 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4255 			      unsigned int alloc_flags,
4256 			      const struct alloc_context *ac)
4257 {
4258 	struct page *page;
4259 
4260 	page = get_page_from_freelist(gfp_mask, order,
4261 			alloc_flags|ALLOC_CPUSET, ac);
4262 	/*
4263 	 * fallback to ignore cpuset restriction if our nodes
4264 	 * are depleted
4265 	 */
4266 	if (!page)
4267 		page = get_page_from_freelist(gfp_mask, order,
4268 				alloc_flags, ac);
4269 
4270 	return page;
4271 }
4272 
4273 static inline struct page *
4274 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4275 	const struct alloc_context *ac, unsigned long *did_some_progress)
4276 {
4277 	struct oom_control oc = {
4278 		.zonelist = ac->zonelist,
4279 		.nodemask = ac->nodemask,
4280 		.memcg = NULL,
4281 		.gfp_mask = gfp_mask,
4282 		.order = order,
4283 	};
4284 	struct page *page;
4285 
4286 	*did_some_progress = 0;
4287 
4288 	/*
4289 	 * Acquire the oom lock.  If that fails, somebody else is
4290 	 * making progress for us.
4291 	 */
4292 	if (!mutex_trylock(&oom_lock)) {
4293 		*did_some_progress = 1;
4294 		schedule_timeout_uninterruptible(1);
4295 		return NULL;
4296 	}
4297 
4298 	/*
4299 	 * Go through the zonelist yet one more time, keep very high watermark
4300 	 * here, this is only to catch a parallel oom killing, we must fail if
4301 	 * we're still under heavy pressure. But make sure that this reclaim
4302 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4303 	 * allocation which will never fail due to oom_lock already held.
4304 	 */
4305 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4306 				      ~__GFP_DIRECT_RECLAIM, order,
4307 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4308 	if (page)
4309 		goto out;
4310 
4311 	/* Coredumps can quickly deplete all memory reserves */
4312 	if (current->flags & PF_DUMPCORE)
4313 		goto out;
4314 	/* The OOM killer will not help higher order allocs */
4315 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4316 		goto out;
4317 	/*
4318 	 * We have already exhausted all our reclaim opportunities without any
4319 	 * success so it is time to admit defeat. We will skip the OOM killer
4320 	 * because it is very likely that the caller has a more reasonable
4321 	 * fallback than shooting a random task.
4322 	 *
4323 	 * The OOM killer may not free memory on a specific node.
4324 	 */
4325 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4326 		goto out;
4327 	/* The OOM killer does not needlessly kill tasks for lowmem */
4328 	if (ac->highest_zoneidx < ZONE_NORMAL)
4329 		goto out;
4330 	if (pm_suspended_storage())
4331 		goto out;
4332 	/*
4333 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4334 	 * other request to make a forward progress.
4335 	 * We are in an unfortunate situation where out_of_memory cannot
4336 	 * do much for this context but let's try it to at least get
4337 	 * access to memory reserved if the current task is killed (see
4338 	 * out_of_memory). Once filesystems are ready to handle allocation
4339 	 * failures more gracefully we should just bail out here.
4340 	 */
4341 
4342 	/* Exhausted what can be done so it's blame time */
4343 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4344 		*did_some_progress = 1;
4345 
4346 		/*
4347 		 * Help non-failing allocations by giving them access to memory
4348 		 * reserves
4349 		 */
4350 		if (gfp_mask & __GFP_NOFAIL)
4351 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4352 					ALLOC_NO_WATERMARKS, ac);
4353 	}
4354 out:
4355 	mutex_unlock(&oom_lock);
4356 	return page;
4357 }
4358 
4359 /*
4360  * Maximum number of compaction retries with a progress before OOM
4361  * killer is consider as the only way to move forward.
4362  */
4363 #define MAX_COMPACT_RETRIES 16
4364 
4365 #ifdef CONFIG_COMPACTION
4366 /* Try memory compaction for high-order allocations before reclaim */
4367 static struct page *
4368 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4369 		unsigned int alloc_flags, const struct alloc_context *ac,
4370 		enum compact_priority prio, enum compact_result *compact_result)
4371 {
4372 	struct page *page = NULL;
4373 	unsigned long pflags;
4374 	unsigned int noreclaim_flag;
4375 
4376 	if (!order)
4377 		return NULL;
4378 
4379 	psi_memstall_enter(&pflags);
4380 	noreclaim_flag = memalloc_noreclaim_save();
4381 
4382 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4383 								prio, &page);
4384 
4385 	memalloc_noreclaim_restore(noreclaim_flag);
4386 	psi_memstall_leave(&pflags);
4387 
4388 	if (*compact_result == COMPACT_SKIPPED)
4389 		return NULL;
4390 	/*
4391 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4392 	 * count a compaction stall
4393 	 */
4394 	count_vm_event(COMPACTSTALL);
4395 
4396 	/* Prep a captured page if available */
4397 	if (page)
4398 		prep_new_page(page, order, gfp_mask, alloc_flags);
4399 
4400 	/* Try get a page from the freelist if available */
4401 	if (!page)
4402 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4403 
4404 	if (page) {
4405 		struct zone *zone = page_zone(page);
4406 
4407 		zone->compact_blockskip_flush = false;
4408 		compaction_defer_reset(zone, order, true);
4409 		count_vm_event(COMPACTSUCCESS);
4410 		return page;
4411 	}
4412 
4413 	/*
4414 	 * It's bad if compaction run occurs and fails. The most likely reason
4415 	 * is that pages exist, but not enough to satisfy watermarks.
4416 	 */
4417 	count_vm_event(COMPACTFAIL);
4418 
4419 	cond_resched();
4420 
4421 	return NULL;
4422 }
4423 
4424 static inline bool
4425 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4426 		     enum compact_result compact_result,
4427 		     enum compact_priority *compact_priority,
4428 		     int *compaction_retries)
4429 {
4430 	int max_retries = MAX_COMPACT_RETRIES;
4431 	int min_priority;
4432 	bool ret = false;
4433 	int retries = *compaction_retries;
4434 	enum compact_priority priority = *compact_priority;
4435 
4436 	if (!order)
4437 		return false;
4438 
4439 	if (fatal_signal_pending(current))
4440 		return false;
4441 
4442 	if (compaction_made_progress(compact_result))
4443 		(*compaction_retries)++;
4444 
4445 	/*
4446 	 * compaction considers all the zone as desperately out of memory
4447 	 * so it doesn't really make much sense to retry except when the
4448 	 * failure could be caused by insufficient priority
4449 	 */
4450 	if (compaction_failed(compact_result))
4451 		goto check_priority;
4452 
4453 	/*
4454 	 * compaction was skipped because there are not enough order-0 pages
4455 	 * to work with, so we retry only if it looks like reclaim can help.
4456 	 */
4457 	if (compaction_needs_reclaim(compact_result)) {
4458 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4459 		goto out;
4460 	}
4461 
4462 	/*
4463 	 * make sure the compaction wasn't deferred or didn't bail out early
4464 	 * due to locks contention before we declare that we should give up.
4465 	 * But the next retry should use a higher priority if allowed, so
4466 	 * we don't just keep bailing out endlessly.
4467 	 */
4468 	if (compaction_withdrawn(compact_result)) {
4469 		goto check_priority;
4470 	}
4471 
4472 	/*
4473 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4474 	 * costly ones because they are de facto nofail and invoke OOM
4475 	 * killer to move on while costly can fail and users are ready
4476 	 * to cope with that. 1/4 retries is rather arbitrary but we
4477 	 * would need much more detailed feedback from compaction to
4478 	 * make a better decision.
4479 	 */
4480 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4481 		max_retries /= 4;
4482 	if (*compaction_retries <= max_retries) {
4483 		ret = true;
4484 		goto out;
4485 	}
4486 
4487 	/*
4488 	 * Make sure there are attempts at the highest priority if we exhausted
4489 	 * all retries or failed at the lower priorities.
4490 	 */
4491 check_priority:
4492 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4493 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4494 
4495 	if (*compact_priority > min_priority) {
4496 		(*compact_priority)--;
4497 		*compaction_retries = 0;
4498 		ret = true;
4499 	}
4500 out:
4501 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4502 	return ret;
4503 }
4504 #else
4505 static inline struct page *
4506 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4507 		unsigned int alloc_flags, const struct alloc_context *ac,
4508 		enum compact_priority prio, enum compact_result *compact_result)
4509 {
4510 	*compact_result = COMPACT_SKIPPED;
4511 	return NULL;
4512 }
4513 
4514 static inline bool
4515 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4516 		     enum compact_result compact_result,
4517 		     enum compact_priority *compact_priority,
4518 		     int *compaction_retries)
4519 {
4520 	struct zone *zone;
4521 	struct zoneref *z;
4522 
4523 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4524 		return false;
4525 
4526 	/*
4527 	 * There are setups with compaction disabled which would prefer to loop
4528 	 * inside the allocator rather than hit the oom killer prematurely.
4529 	 * Let's give them a good hope and keep retrying while the order-0
4530 	 * watermarks are OK.
4531 	 */
4532 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4533 				ac->highest_zoneidx, ac->nodemask) {
4534 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4535 					ac->highest_zoneidx, alloc_flags))
4536 			return true;
4537 	}
4538 	return false;
4539 }
4540 #endif /* CONFIG_COMPACTION */
4541 
4542 #ifdef CONFIG_LOCKDEP
4543 static struct lockdep_map __fs_reclaim_map =
4544 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4545 
4546 static bool __need_reclaim(gfp_t gfp_mask)
4547 {
4548 	/* no reclaim without waiting on it */
4549 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4550 		return false;
4551 
4552 	/* this guy won't enter reclaim */
4553 	if (current->flags & PF_MEMALLOC)
4554 		return false;
4555 
4556 	if (gfp_mask & __GFP_NOLOCKDEP)
4557 		return false;
4558 
4559 	return true;
4560 }
4561 
4562 void __fs_reclaim_acquire(void)
4563 {
4564 	lock_map_acquire(&__fs_reclaim_map);
4565 }
4566 
4567 void __fs_reclaim_release(void)
4568 {
4569 	lock_map_release(&__fs_reclaim_map);
4570 }
4571 
4572 void fs_reclaim_acquire(gfp_t gfp_mask)
4573 {
4574 	gfp_mask = current_gfp_context(gfp_mask);
4575 
4576 	if (__need_reclaim(gfp_mask)) {
4577 		if (gfp_mask & __GFP_FS)
4578 			__fs_reclaim_acquire();
4579 
4580 #ifdef CONFIG_MMU_NOTIFIER
4581 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4582 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4583 #endif
4584 
4585 	}
4586 }
4587 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4588 
4589 void fs_reclaim_release(gfp_t gfp_mask)
4590 {
4591 	gfp_mask = current_gfp_context(gfp_mask);
4592 
4593 	if (__need_reclaim(gfp_mask)) {
4594 		if (gfp_mask & __GFP_FS)
4595 			__fs_reclaim_release();
4596 	}
4597 }
4598 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4599 #endif
4600 
4601 /* Perform direct synchronous page reclaim */
4602 static unsigned long
4603 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4604 					const struct alloc_context *ac)
4605 {
4606 	unsigned int noreclaim_flag;
4607 	unsigned long pflags, progress;
4608 
4609 	cond_resched();
4610 
4611 	/* We now go into synchronous reclaim */
4612 	cpuset_memory_pressure_bump();
4613 	psi_memstall_enter(&pflags);
4614 	fs_reclaim_acquire(gfp_mask);
4615 	noreclaim_flag = memalloc_noreclaim_save();
4616 
4617 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4618 								ac->nodemask);
4619 
4620 	memalloc_noreclaim_restore(noreclaim_flag);
4621 	fs_reclaim_release(gfp_mask);
4622 	psi_memstall_leave(&pflags);
4623 
4624 	cond_resched();
4625 
4626 	return progress;
4627 }
4628 
4629 /* The really slow allocator path where we enter direct reclaim */
4630 static inline struct page *
4631 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4632 		unsigned int alloc_flags, const struct alloc_context *ac,
4633 		unsigned long *did_some_progress)
4634 {
4635 	struct page *page = NULL;
4636 	bool drained = false;
4637 
4638 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4639 	if (unlikely(!(*did_some_progress)))
4640 		return NULL;
4641 
4642 retry:
4643 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4644 
4645 	/*
4646 	 * If an allocation failed after direct reclaim, it could be because
4647 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4648 	 * Shrink them and try again
4649 	 */
4650 	if (!page && !drained) {
4651 		unreserve_highatomic_pageblock(ac, false);
4652 		drain_all_pages(NULL);
4653 		drained = true;
4654 		goto retry;
4655 	}
4656 
4657 	return page;
4658 }
4659 
4660 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4661 			     const struct alloc_context *ac)
4662 {
4663 	struct zoneref *z;
4664 	struct zone *zone;
4665 	pg_data_t *last_pgdat = NULL;
4666 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4667 
4668 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4669 					ac->nodemask) {
4670 		if (last_pgdat != zone->zone_pgdat)
4671 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4672 		last_pgdat = zone->zone_pgdat;
4673 	}
4674 }
4675 
4676 static inline unsigned int
4677 gfp_to_alloc_flags(gfp_t gfp_mask)
4678 {
4679 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4680 
4681 	/*
4682 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4683 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4684 	 * to save two branches.
4685 	 */
4686 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4687 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4688 
4689 	/*
4690 	 * The caller may dip into page reserves a bit more if the caller
4691 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4692 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4693 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4694 	 */
4695 	alloc_flags |= (__force int)
4696 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4697 
4698 	if (gfp_mask & __GFP_ATOMIC) {
4699 		/*
4700 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4701 		 * if it can't schedule.
4702 		 */
4703 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4704 			alloc_flags |= ALLOC_HARDER;
4705 		/*
4706 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4707 		 * comment for __cpuset_node_allowed().
4708 		 */
4709 		alloc_flags &= ~ALLOC_CPUSET;
4710 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4711 		alloc_flags |= ALLOC_HARDER;
4712 
4713 	alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags);
4714 
4715 	return alloc_flags;
4716 }
4717 
4718 static bool oom_reserves_allowed(struct task_struct *tsk)
4719 {
4720 	if (!tsk_is_oom_victim(tsk))
4721 		return false;
4722 
4723 	/*
4724 	 * !MMU doesn't have oom reaper so give access to memory reserves
4725 	 * only to the thread with TIF_MEMDIE set
4726 	 */
4727 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4728 		return false;
4729 
4730 	return true;
4731 }
4732 
4733 /*
4734  * Distinguish requests which really need access to full memory
4735  * reserves from oom victims which can live with a portion of it
4736  */
4737 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4738 {
4739 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4740 		return 0;
4741 	if (gfp_mask & __GFP_MEMALLOC)
4742 		return ALLOC_NO_WATERMARKS;
4743 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4744 		return ALLOC_NO_WATERMARKS;
4745 	if (!in_interrupt()) {
4746 		if (current->flags & PF_MEMALLOC)
4747 			return ALLOC_NO_WATERMARKS;
4748 		else if (oom_reserves_allowed(current))
4749 			return ALLOC_OOM;
4750 	}
4751 
4752 	return 0;
4753 }
4754 
4755 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4756 {
4757 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4758 }
4759 
4760 /*
4761  * Checks whether it makes sense to retry the reclaim to make a forward progress
4762  * for the given allocation request.
4763  *
4764  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4765  * without success, or when we couldn't even meet the watermark if we
4766  * reclaimed all remaining pages on the LRU lists.
4767  *
4768  * Returns true if a retry is viable or false to enter the oom path.
4769  */
4770 static inline bool
4771 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4772 		     struct alloc_context *ac, int alloc_flags,
4773 		     bool did_some_progress, int *no_progress_loops)
4774 {
4775 	struct zone *zone;
4776 	struct zoneref *z;
4777 	bool ret = false;
4778 
4779 	/*
4780 	 * Costly allocations might have made a progress but this doesn't mean
4781 	 * their order will become available due to high fragmentation so
4782 	 * always increment the no progress counter for them
4783 	 */
4784 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4785 		*no_progress_loops = 0;
4786 	else
4787 		(*no_progress_loops)++;
4788 
4789 	/*
4790 	 * Make sure we converge to OOM if we cannot make any progress
4791 	 * several times in the row.
4792 	 */
4793 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4794 		/* Before OOM, exhaust highatomic_reserve */
4795 		return unreserve_highatomic_pageblock(ac, true);
4796 	}
4797 
4798 	/*
4799 	 * Keep reclaiming pages while there is a chance this will lead
4800 	 * somewhere.  If none of the target zones can satisfy our allocation
4801 	 * request even if all reclaimable pages are considered then we are
4802 	 * screwed and have to go OOM.
4803 	 */
4804 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4805 				ac->highest_zoneidx, ac->nodemask) {
4806 		unsigned long available;
4807 		unsigned long reclaimable;
4808 		unsigned long min_wmark = min_wmark_pages(zone);
4809 		bool wmark;
4810 
4811 		available = reclaimable = zone_reclaimable_pages(zone);
4812 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4813 
4814 		/*
4815 		 * Would the allocation succeed if we reclaimed all
4816 		 * reclaimable pages?
4817 		 */
4818 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4819 				ac->highest_zoneidx, alloc_flags, available);
4820 		trace_reclaim_retry_zone(z, order, reclaimable,
4821 				available, min_wmark, *no_progress_loops, wmark);
4822 		if (wmark) {
4823 			/*
4824 			 * If we didn't make any progress and have a lot of
4825 			 * dirty + writeback pages then we should wait for
4826 			 * an IO to complete to slow down the reclaim and
4827 			 * prevent from pre mature OOM
4828 			 */
4829 			if (!did_some_progress) {
4830 				unsigned long write_pending;
4831 
4832 				write_pending = zone_page_state_snapshot(zone,
4833 							NR_ZONE_WRITE_PENDING);
4834 
4835 				if (2 * write_pending > reclaimable) {
4836 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4837 					return true;
4838 				}
4839 			}
4840 
4841 			ret = true;
4842 			goto out;
4843 		}
4844 	}
4845 
4846 out:
4847 	/*
4848 	 * Memory allocation/reclaim might be called from a WQ context and the
4849 	 * current implementation of the WQ concurrency control doesn't
4850 	 * recognize that a particular WQ is congested if the worker thread is
4851 	 * looping without ever sleeping. Therefore we have to do a short sleep
4852 	 * here rather than calling cond_resched().
4853 	 */
4854 	if (current->flags & PF_WQ_WORKER)
4855 		schedule_timeout_uninterruptible(1);
4856 	else
4857 		cond_resched();
4858 	return ret;
4859 }
4860 
4861 static inline bool
4862 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4863 {
4864 	/*
4865 	 * It's possible that cpuset's mems_allowed and the nodemask from
4866 	 * mempolicy don't intersect. This should be normally dealt with by
4867 	 * policy_nodemask(), but it's possible to race with cpuset update in
4868 	 * such a way the check therein was true, and then it became false
4869 	 * before we got our cpuset_mems_cookie here.
4870 	 * This assumes that for all allocations, ac->nodemask can come only
4871 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4872 	 * when it does not intersect with the cpuset restrictions) or the
4873 	 * caller can deal with a violated nodemask.
4874 	 */
4875 	if (cpusets_enabled() && ac->nodemask &&
4876 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4877 		ac->nodemask = NULL;
4878 		return true;
4879 	}
4880 
4881 	/*
4882 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4883 	 * possible to race with parallel threads in such a way that our
4884 	 * allocation can fail while the mask is being updated. If we are about
4885 	 * to fail, check if the cpuset changed during allocation and if so,
4886 	 * retry.
4887 	 */
4888 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4889 		return true;
4890 
4891 	return false;
4892 }
4893 
4894 static inline struct page *
4895 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4896 						struct alloc_context *ac)
4897 {
4898 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4899 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4900 	struct page *page = NULL;
4901 	unsigned int alloc_flags;
4902 	unsigned long did_some_progress;
4903 	enum compact_priority compact_priority;
4904 	enum compact_result compact_result;
4905 	int compaction_retries;
4906 	int no_progress_loops;
4907 	unsigned int cpuset_mems_cookie;
4908 	int reserve_flags;
4909 
4910 	/*
4911 	 * We also sanity check to catch abuse of atomic reserves being used by
4912 	 * callers that are not in atomic context.
4913 	 */
4914 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4915 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4916 		gfp_mask &= ~__GFP_ATOMIC;
4917 
4918 retry_cpuset:
4919 	compaction_retries = 0;
4920 	no_progress_loops = 0;
4921 	compact_priority = DEF_COMPACT_PRIORITY;
4922 	cpuset_mems_cookie = read_mems_allowed_begin();
4923 
4924 	/*
4925 	 * The fast path uses conservative alloc_flags to succeed only until
4926 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4927 	 * alloc_flags precisely. So we do that now.
4928 	 */
4929 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4930 
4931 	/*
4932 	 * We need to recalculate the starting point for the zonelist iterator
4933 	 * because we might have used different nodemask in the fast path, or
4934 	 * there was a cpuset modification and we are retrying - otherwise we
4935 	 * could end up iterating over non-eligible zones endlessly.
4936 	 */
4937 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4938 					ac->highest_zoneidx, ac->nodemask);
4939 	if (!ac->preferred_zoneref->zone)
4940 		goto nopage;
4941 
4942 	if (alloc_flags & ALLOC_KSWAPD)
4943 		wake_all_kswapds(order, gfp_mask, ac);
4944 
4945 	/*
4946 	 * The adjusted alloc_flags might result in immediate success, so try
4947 	 * that first
4948 	 */
4949 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4950 	if (page)
4951 		goto got_pg;
4952 
4953 	/*
4954 	 * For costly allocations, try direct compaction first, as it's likely
4955 	 * that we have enough base pages and don't need to reclaim. For non-
4956 	 * movable high-order allocations, do that as well, as compaction will
4957 	 * try prevent permanent fragmentation by migrating from blocks of the
4958 	 * same migratetype.
4959 	 * Don't try this for allocations that are allowed to ignore
4960 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4961 	 */
4962 	if (can_direct_reclaim &&
4963 			(costly_order ||
4964 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4965 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4966 		page = __alloc_pages_direct_compact(gfp_mask, order,
4967 						alloc_flags, ac,
4968 						INIT_COMPACT_PRIORITY,
4969 						&compact_result);
4970 		if (page)
4971 			goto got_pg;
4972 
4973 		/*
4974 		 * Checks for costly allocations with __GFP_NORETRY, which
4975 		 * includes some THP page fault allocations
4976 		 */
4977 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4978 			/*
4979 			 * If allocating entire pageblock(s) and compaction
4980 			 * failed because all zones are below low watermarks
4981 			 * or is prohibited because it recently failed at this
4982 			 * order, fail immediately unless the allocator has
4983 			 * requested compaction and reclaim retry.
4984 			 *
4985 			 * Reclaim is
4986 			 *  - potentially very expensive because zones are far
4987 			 *    below their low watermarks or this is part of very
4988 			 *    bursty high order allocations,
4989 			 *  - not guaranteed to help because isolate_freepages()
4990 			 *    may not iterate over freed pages as part of its
4991 			 *    linear scan, and
4992 			 *  - unlikely to make entire pageblocks free on its
4993 			 *    own.
4994 			 */
4995 			if (compact_result == COMPACT_SKIPPED ||
4996 			    compact_result == COMPACT_DEFERRED)
4997 				goto nopage;
4998 
4999 			/*
5000 			 * Looks like reclaim/compaction is worth trying, but
5001 			 * sync compaction could be very expensive, so keep
5002 			 * using async compaction.
5003 			 */
5004 			compact_priority = INIT_COMPACT_PRIORITY;
5005 		}
5006 	}
5007 
5008 retry:
5009 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
5010 	if (alloc_flags & ALLOC_KSWAPD)
5011 		wake_all_kswapds(order, gfp_mask, ac);
5012 
5013 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
5014 	if (reserve_flags)
5015 		alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags);
5016 
5017 	/*
5018 	 * Reset the nodemask and zonelist iterators if memory policies can be
5019 	 * ignored. These allocations are high priority and system rather than
5020 	 * user oriented.
5021 	 */
5022 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
5023 		ac->nodemask = NULL;
5024 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5025 					ac->highest_zoneidx, ac->nodemask);
5026 	}
5027 
5028 	/* Attempt with potentially adjusted zonelist and alloc_flags */
5029 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
5030 	if (page)
5031 		goto got_pg;
5032 
5033 	/* Caller is not willing to reclaim, we can't balance anything */
5034 	if (!can_direct_reclaim)
5035 		goto nopage;
5036 
5037 	/* Avoid recursion of direct reclaim */
5038 	if (current->flags & PF_MEMALLOC)
5039 		goto nopage;
5040 
5041 	/* Try direct reclaim and then allocating */
5042 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
5043 							&did_some_progress);
5044 	if (page)
5045 		goto got_pg;
5046 
5047 	/* Try direct compaction and then allocating */
5048 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
5049 					compact_priority, &compact_result);
5050 	if (page)
5051 		goto got_pg;
5052 
5053 	/* Do not loop if specifically requested */
5054 	if (gfp_mask & __GFP_NORETRY)
5055 		goto nopage;
5056 
5057 	/*
5058 	 * Do not retry costly high order allocations unless they are
5059 	 * __GFP_RETRY_MAYFAIL
5060 	 */
5061 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
5062 		goto nopage;
5063 
5064 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
5065 				 did_some_progress > 0, &no_progress_loops))
5066 		goto retry;
5067 
5068 	/*
5069 	 * It doesn't make any sense to retry for the compaction if the order-0
5070 	 * reclaim is not able to make any progress because the current
5071 	 * implementation of the compaction depends on the sufficient amount
5072 	 * of free memory (see __compaction_suitable)
5073 	 */
5074 	if (did_some_progress > 0 &&
5075 			should_compact_retry(ac, order, alloc_flags,
5076 				compact_result, &compact_priority,
5077 				&compaction_retries))
5078 		goto retry;
5079 
5080 
5081 	/* Deal with possible cpuset update races before we start OOM killing */
5082 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5083 		goto retry_cpuset;
5084 
5085 	/* Reclaim has failed us, start killing things */
5086 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
5087 	if (page)
5088 		goto got_pg;
5089 
5090 	/* Avoid allocations with no watermarks from looping endlessly */
5091 	if (tsk_is_oom_victim(current) &&
5092 	    (alloc_flags & ALLOC_OOM ||
5093 	     (gfp_mask & __GFP_NOMEMALLOC)))
5094 		goto nopage;
5095 
5096 	/* Retry as long as the OOM killer is making progress */
5097 	if (did_some_progress) {
5098 		no_progress_loops = 0;
5099 		goto retry;
5100 	}
5101 
5102 nopage:
5103 	/* Deal with possible cpuset update races before we fail */
5104 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
5105 		goto retry_cpuset;
5106 
5107 	/*
5108 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
5109 	 * we always retry
5110 	 */
5111 	if (gfp_mask & __GFP_NOFAIL) {
5112 		/*
5113 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
5114 		 * of any new users that actually require GFP_NOWAIT
5115 		 */
5116 		if (WARN_ON_ONCE(!can_direct_reclaim))
5117 			goto fail;
5118 
5119 		/*
5120 		 * PF_MEMALLOC request from this context is rather bizarre
5121 		 * because we cannot reclaim anything and only can loop waiting
5122 		 * for somebody to do a work for us
5123 		 */
5124 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
5125 
5126 		/*
5127 		 * non failing costly orders are a hard requirement which we
5128 		 * are not prepared for much so let's warn about these users
5129 		 * so that we can identify them and convert them to something
5130 		 * else.
5131 		 */
5132 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
5133 
5134 		/*
5135 		 * Help non-failing allocations by giving them access to memory
5136 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
5137 		 * could deplete whole memory reserves which would just make
5138 		 * the situation worse
5139 		 */
5140 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
5141 		if (page)
5142 			goto got_pg;
5143 
5144 		cond_resched();
5145 		goto retry;
5146 	}
5147 fail:
5148 	warn_alloc(gfp_mask, ac->nodemask,
5149 			"page allocation failure: order:%u", order);
5150 got_pg:
5151 	return page;
5152 }
5153 
5154 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
5155 		int preferred_nid, nodemask_t *nodemask,
5156 		struct alloc_context *ac, gfp_t *alloc_gfp,
5157 		unsigned int *alloc_flags)
5158 {
5159 	ac->highest_zoneidx = gfp_zone(gfp_mask);
5160 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
5161 	ac->nodemask = nodemask;
5162 	ac->migratetype = gfp_migratetype(gfp_mask);
5163 
5164 	if (cpusets_enabled()) {
5165 		*alloc_gfp |= __GFP_HARDWALL;
5166 		/*
5167 		 * When we are in the interrupt context, it is irrelevant
5168 		 * to the current task context. It means that any node ok.
5169 		 */
5170 		if (!in_interrupt() && !ac->nodemask)
5171 			ac->nodemask = &cpuset_current_mems_allowed;
5172 		else
5173 			*alloc_flags |= ALLOC_CPUSET;
5174 	}
5175 
5176 	fs_reclaim_acquire(gfp_mask);
5177 	fs_reclaim_release(gfp_mask);
5178 
5179 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
5180 
5181 	if (should_fail_alloc_page(gfp_mask, order))
5182 		return false;
5183 
5184 	*alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags);
5185 
5186 	/* Dirty zone balancing only done in the fast path */
5187 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
5188 
5189 	/*
5190 	 * The preferred zone is used for statistics but crucially it is
5191 	 * also used as the starting point for the zonelist iterator. It
5192 	 * may get reset for allocations that ignore memory policies.
5193 	 */
5194 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5195 					ac->highest_zoneidx, ac->nodemask);
5196 
5197 	return true;
5198 }
5199 
5200 /*
5201  * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array
5202  * @gfp: GFP flags for the allocation
5203  * @preferred_nid: The preferred NUMA node ID to allocate from
5204  * @nodemask: Set of nodes to allocate from, may be NULL
5205  * @nr_pages: The number of pages desired on the list or array
5206  * @page_list: Optional list to store the allocated pages
5207  * @page_array: Optional array to store the pages
5208  *
5209  * This is a batched version of the page allocator that attempts to
5210  * allocate nr_pages quickly. Pages are added to page_list if page_list
5211  * is not NULL, otherwise it is assumed that the page_array is valid.
5212  *
5213  * For lists, nr_pages is the number of pages that should be allocated.
5214  *
5215  * For arrays, only NULL elements are populated with pages and nr_pages
5216  * is the maximum number of pages that will be stored in the array.
5217  *
5218  * Returns the number of pages on the list or array.
5219  */
5220 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid,
5221 			nodemask_t *nodemask, int nr_pages,
5222 			struct list_head *page_list,
5223 			struct page **page_array)
5224 {
5225 	struct page *page;
5226 	unsigned long flags;
5227 	struct zone *zone;
5228 	struct zoneref *z;
5229 	struct per_cpu_pages *pcp;
5230 	struct list_head *pcp_list;
5231 	struct alloc_context ac;
5232 	gfp_t alloc_gfp;
5233 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5234 	int nr_populated = 0, nr_account = 0;
5235 
5236 	if (unlikely(nr_pages <= 0))
5237 		return 0;
5238 
5239 	/*
5240 	 * Skip populated array elements to determine if any pages need
5241 	 * to be allocated before disabling IRQs.
5242 	 */
5243 	while (page_array && nr_populated < nr_pages && page_array[nr_populated])
5244 		nr_populated++;
5245 
5246 	/* Already populated array? */
5247 	if (unlikely(page_array && nr_pages - nr_populated == 0))
5248 		return nr_populated;
5249 
5250 	/* Use the single page allocator for one page. */
5251 	if (nr_pages - nr_populated == 1)
5252 		goto failed;
5253 
5254 	/* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */
5255 	gfp &= gfp_allowed_mask;
5256 	alloc_gfp = gfp;
5257 	if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags))
5258 		return 0;
5259 	gfp = alloc_gfp;
5260 
5261 	/* Find an allowed local zone that meets the low watermark. */
5262 	for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) {
5263 		unsigned long mark;
5264 
5265 		if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) &&
5266 		    !__cpuset_zone_allowed(zone, gfp)) {
5267 			continue;
5268 		}
5269 
5270 		if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone &&
5271 		    zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) {
5272 			goto failed;
5273 		}
5274 
5275 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages;
5276 		if (zone_watermark_fast(zone, 0,  mark,
5277 				zonelist_zone_idx(ac.preferred_zoneref),
5278 				alloc_flags, gfp)) {
5279 			break;
5280 		}
5281 	}
5282 
5283 	/*
5284 	 * If there are no allowed local zones that meets the watermarks then
5285 	 * try to allocate a single page and reclaim if necessary.
5286 	 */
5287 	if (unlikely(!zone))
5288 		goto failed;
5289 
5290 	/* Attempt the batch allocation */
5291 	local_lock_irqsave(&pagesets.lock, flags);
5292 	pcp = this_cpu_ptr(zone->per_cpu_pageset);
5293 	pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)];
5294 
5295 	while (nr_populated < nr_pages) {
5296 
5297 		/* Skip existing pages */
5298 		if (page_array && page_array[nr_populated]) {
5299 			nr_populated++;
5300 			continue;
5301 		}
5302 
5303 		page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags,
5304 								pcp, pcp_list);
5305 		if (unlikely(!page)) {
5306 			/* Try and get at least one page */
5307 			if (!nr_populated)
5308 				goto failed_irq;
5309 			break;
5310 		}
5311 		nr_account++;
5312 
5313 		prep_new_page(page, 0, gfp, 0);
5314 		if (page_list)
5315 			list_add(&page->lru, page_list);
5316 		else
5317 			page_array[nr_populated] = page;
5318 		nr_populated++;
5319 	}
5320 
5321 	local_unlock_irqrestore(&pagesets.lock, flags);
5322 
5323 	__count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account);
5324 	zone_statistics(ac.preferred_zoneref->zone, zone, nr_account);
5325 
5326 	return nr_populated;
5327 
5328 failed_irq:
5329 	local_unlock_irqrestore(&pagesets.lock, flags);
5330 
5331 failed:
5332 	page = __alloc_pages(gfp, 0, preferred_nid, nodemask);
5333 	if (page) {
5334 		if (page_list)
5335 			list_add(&page->lru, page_list);
5336 		else
5337 			page_array[nr_populated] = page;
5338 		nr_populated++;
5339 	}
5340 
5341 	return nr_populated;
5342 }
5343 EXPORT_SYMBOL_GPL(__alloc_pages_bulk);
5344 
5345 /*
5346  * This is the 'heart' of the zoned buddy allocator.
5347  */
5348 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid,
5349 							nodemask_t *nodemask)
5350 {
5351 	struct page *page;
5352 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5353 	gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */
5354 	struct alloc_context ac = { };
5355 
5356 	/*
5357 	 * There are several places where we assume that the order value is sane
5358 	 * so bail out early if the request is out of bound.
5359 	 */
5360 	if (unlikely(order >= MAX_ORDER)) {
5361 		WARN_ON_ONCE(!(gfp & __GFP_NOWARN));
5362 		return NULL;
5363 	}
5364 
5365 	gfp &= gfp_allowed_mask;
5366 	/*
5367 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5368 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5369 	 * from a particular context which has been marked by
5370 	 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures
5371 	 * movable zones are not used during allocation.
5372 	 */
5373 	gfp = current_gfp_context(gfp);
5374 	alloc_gfp = gfp;
5375 	if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac,
5376 			&alloc_gfp, &alloc_flags))
5377 		return NULL;
5378 
5379 	/*
5380 	 * Forbid the first pass from falling back to types that fragment
5381 	 * memory until all local zones are considered.
5382 	 */
5383 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp);
5384 
5385 	/* First allocation attempt */
5386 	page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac);
5387 	if (likely(page))
5388 		goto out;
5389 
5390 	alloc_gfp = gfp;
5391 	ac.spread_dirty_pages = false;
5392 
5393 	/*
5394 	 * Restore the original nodemask if it was potentially replaced with
5395 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5396 	 */
5397 	ac.nodemask = nodemask;
5398 
5399 	page = __alloc_pages_slowpath(alloc_gfp, order, &ac);
5400 
5401 out:
5402 	if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page &&
5403 	    unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) {
5404 		__free_pages(page, order);
5405 		page = NULL;
5406 	}
5407 
5408 	trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype);
5409 
5410 	return page;
5411 }
5412 EXPORT_SYMBOL(__alloc_pages);
5413 
5414 /*
5415  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5416  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5417  * you need to access high mem.
5418  */
5419 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5420 {
5421 	struct page *page;
5422 
5423 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5424 	if (!page)
5425 		return 0;
5426 	return (unsigned long) page_address(page);
5427 }
5428 EXPORT_SYMBOL(__get_free_pages);
5429 
5430 unsigned long get_zeroed_page(gfp_t gfp_mask)
5431 {
5432 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5433 }
5434 EXPORT_SYMBOL(get_zeroed_page);
5435 
5436 /**
5437  * __free_pages - Free pages allocated with alloc_pages().
5438  * @page: The page pointer returned from alloc_pages().
5439  * @order: The order of the allocation.
5440  *
5441  * This function can free multi-page allocations that are not compound
5442  * pages.  It does not check that the @order passed in matches that of
5443  * the allocation, so it is easy to leak memory.  Freeing more memory
5444  * than was allocated will probably emit a warning.
5445  *
5446  * If the last reference to this page is speculative, it will be released
5447  * by put_page() which only frees the first page of a non-compound
5448  * allocation.  To prevent the remaining pages from being leaked, we free
5449  * the subsequent pages here.  If you want to use the page's reference
5450  * count to decide when to free the allocation, you should allocate a
5451  * compound page, and use put_page() instead of __free_pages().
5452  *
5453  * Context: May be called in interrupt context or while holding a normal
5454  * spinlock, but not in NMI context or while holding a raw spinlock.
5455  */
5456 void __free_pages(struct page *page, unsigned int order)
5457 {
5458 	if (put_page_testzero(page))
5459 		free_the_page(page, order);
5460 	else if (!PageHead(page))
5461 		while (order-- > 0)
5462 			free_the_page(page + (1 << order), order);
5463 }
5464 EXPORT_SYMBOL(__free_pages);
5465 
5466 void free_pages(unsigned long addr, unsigned int order)
5467 {
5468 	if (addr != 0) {
5469 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5470 		__free_pages(virt_to_page((void *)addr), order);
5471 	}
5472 }
5473 
5474 EXPORT_SYMBOL(free_pages);
5475 
5476 /*
5477  * Page Fragment:
5478  *  An arbitrary-length arbitrary-offset area of memory which resides
5479  *  within a 0 or higher order page.  Multiple fragments within that page
5480  *  are individually refcounted, in the page's reference counter.
5481  *
5482  * The page_frag functions below provide a simple allocation framework for
5483  * page fragments.  This is used by the network stack and network device
5484  * drivers to provide a backing region of memory for use as either an
5485  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5486  */
5487 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5488 					     gfp_t gfp_mask)
5489 {
5490 	struct page *page = NULL;
5491 	gfp_t gfp = gfp_mask;
5492 
5493 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5494 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5495 		    __GFP_NOMEMALLOC;
5496 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5497 				PAGE_FRAG_CACHE_MAX_ORDER);
5498 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5499 #endif
5500 	if (unlikely(!page))
5501 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5502 
5503 	nc->va = page ? page_address(page) : NULL;
5504 
5505 	return page;
5506 }
5507 
5508 void __page_frag_cache_drain(struct page *page, unsigned int count)
5509 {
5510 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5511 
5512 	if (page_ref_sub_and_test(page, count))
5513 		free_the_page(page, compound_order(page));
5514 }
5515 EXPORT_SYMBOL(__page_frag_cache_drain);
5516 
5517 void *page_frag_alloc_align(struct page_frag_cache *nc,
5518 		      unsigned int fragsz, gfp_t gfp_mask,
5519 		      unsigned int align_mask)
5520 {
5521 	unsigned int size = PAGE_SIZE;
5522 	struct page *page;
5523 	int offset;
5524 
5525 	if (unlikely(!nc->va)) {
5526 refill:
5527 		page = __page_frag_cache_refill(nc, gfp_mask);
5528 		if (!page)
5529 			return NULL;
5530 
5531 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5532 		/* if size can vary use size else just use PAGE_SIZE */
5533 		size = nc->size;
5534 #endif
5535 		/* Even if we own the page, we do not use atomic_set().
5536 		 * This would break get_page_unless_zero() users.
5537 		 */
5538 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5539 
5540 		/* reset page count bias and offset to start of new frag */
5541 		nc->pfmemalloc = page_is_pfmemalloc(page);
5542 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5543 		nc->offset = size;
5544 	}
5545 
5546 	offset = nc->offset - fragsz;
5547 	if (unlikely(offset < 0)) {
5548 		page = virt_to_page(nc->va);
5549 
5550 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5551 			goto refill;
5552 
5553 		if (unlikely(nc->pfmemalloc)) {
5554 			free_the_page(page, compound_order(page));
5555 			goto refill;
5556 		}
5557 
5558 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5559 		/* if size can vary use size else just use PAGE_SIZE */
5560 		size = nc->size;
5561 #endif
5562 		/* OK, page count is 0, we can safely set it */
5563 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5564 
5565 		/* reset page count bias and offset to start of new frag */
5566 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5567 		offset = size - fragsz;
5568 	}
5569 
5570 	nc->pagecnt_bias--;
5571 	offset &= align_mask;
5572 	nc->offset = offset;
5573 
5574 	return nc->va + offset;
5575 }
5576 EXPORT_SYMBOL(page_frag_alloc_align);
5577 
5578 /*
5579  * Frees a page fragment allocated out of either a compound or order 0 page.
5580  */
5581 void page_frag_free(void *addr)
5582 {
5583 	struct page *page = virt_to_head_page(addr);
5584 
5585 	if (unlikely(put_page_testzero(page)))
5586 		free_the_page(page, compound_order(page));
5587 }
5588 EXPORT_SYMBOL(page_frag_free);
5589 
5590 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5591 		size_t size)
5592 {
5593 	if (addr) {
5594 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5595 		unsigned long used = addr + PAGE_ALIGN(size);
5596 
5597 		split_page(virt_to_page((void *)addr), order);
5598 		while (used < alloc_end) {
5599 			free_page(used);
5600 			used += PAGE_SIZE;
5601 		}
5602 	}
5603 	return (void *)addr;
5604 }
5605 
5606 /**
5607  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5608  * @size: the number of bytes to allocate
5609  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5610  *
5611  * This function is similar to alloc_pages(), except that it allocates the
5612  * minimum number of pages to satisfy the request.  alloc_pages() can only
5613  * allocate memory in power-of-two pages.
5614  *
5615  * This function is also limited by MAX_ORDER.
5616  *
5617  * Memory allocated by this function must be released by free_pages_exact().
5618  *
5619  * Return: pointer to the allocated area or %NULL in case of error.
5620  */
5621 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5622 {
5623 	unsigned int order = get_order(size);
5624 	unsigned long addr;
5625 
5626 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5627 		gfp_mask &= ~__GFP_COMP;
5628 
5629 	addr = __get_free_pages(gfp_mask, order);
5630 	return make_alloc_exact(addr, order, size);
5631 }
5632 EXPORT_SYMBOL(alloc_pages_exact);
5633 
5634 /**
5635  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5636  *			   pages on a node.
5637  * @nid: the preferred node ID where memory should be allocated
5638  * @size: the number of bytes to allocate
5639  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5640  *
5641  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5642  * back.
5643  *
5644  * Return: pointer to the allocated area or %NULL in case of error.
5645  */
5646 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5647 {
5648 	unsigned int order = get_order(size);
5649 	struct page *p;
5650 
5651 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5652 		gfp_mask &= ~__GFP_COMP;
5653 
5654 	p = alloc_pages_node(nid, gfp_mask, order);
5655 	if (!p)
5656 		return NULL;
5657 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5658 }
5659 
5660 /**
5661  * free_pages_exact - release memory allocated via alloc_pages_exact()
5662  * @virt: the value returned by alloc_pages_exact.
5663  * @size: size of allocation, same value as passed to alloc_pages_exact().
5664  *
5665  * Release the memory allocated by a previous call to alloc_pages_exact.
5666  */
5667 void free_pages_exact(void *virt, size_t size)
5668 {
5669 	unsigned long addr = (unsigned long)virt;
5670 	unsigned long end = addr + PAGE_ALIGN(size);
5671 
5672 	while (addr < end) {
5673 		free_page(addr);
5674 		addr += PAGE_SIZE;
5675 	}
5676 }
5677 EXPORT_SYMBOL(free_pages_exact);
5678 
5679 /**
5680  * nr_free_zone_pages - count number of pages beyond high watermark
5681  * @offset: The zone index of the highest zone
5682  *
5683  * nr_free_zone_pages() counts the number of pages which are beyond the
5684  * high watermark within all zones at or below a given zone index.  For each
5685  * zone, the number of pages is calculated as:
5686  *
5687  *     nr_free_zone_pages = managed_pages - high_pages
5688  *
5689  * Return: number of pages beyond high watermark.
5690  */
5691 static unsigned long nr_free_zone_pages(int offset)
5692 {
5693 	struct zoneref *z;
5694 	struct zone *zone;
5695 
5696 	/* Just pick one node, since fallback list is circular */
5697 	unsigned long sum = 0;
5698 
5699 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5700 
5701 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5702 		unsigned long size = zone_managed_pages(zone);
5703 		unsigned long high = high_wmark_pages(zone);
5704 		if (size > high)
5705 			sum += size - high;
5706 	}
5707 
5708 	return sum;
5709 }
5710 
5711 /**
5712  * nr_free_buffer_pages - count number of pages beyond high watermark
5713  *
5714  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5715  * watermark within ZONE_DMA and ZONE_NORMAL.
5716  *
5717  * Return: number of pages beyond high watermark within ZONE_DMA and
5718  * ZONE_NORMAL.
5719  */
5720 unsigned long nr_free_buffer_pages(void)
5721 {
5722 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5723 }
5724 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5725 
5726 static inline void show_node(struct zone *zone)
5727 {
5728 	if (IS_ENABLED(CONFIG_NUMA))
5729 		printk("Node %d ", zone_to_nid(zone));
5730 }
5731 
5732 long si_mem_available(void)
5733 {
5734 	long available;
5735 	unsigned long pagecache;
5736 	unsigned long wmark_low = 0;
5737 	unsigned long pages[NR_LRU_LISTS];
5738 	unsigned long reclaimable;
5739 	struct zone *zone;
5740 	int lru;
5741 
5742 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5743 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5744 
5745 	for_each_zone(zone)
5746 		wmark_low += low_wmark_pages(zone);
5747 
5748 	/*
5749 	 * Estimate the amount of memory available for userspace allocations,
5750 	 * without causing swapping.
5751 	 */
5752 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5753 
5754 	/*
5755 	 * Not all the page cache can be freed, otherwise the system will
5756 	 * start swapping. Assume at least half of the page cache, or the
5757 	 * low watermark worth of cache, needs to stay.
5758 	 */
5759 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5760 	pagecache -= min(pagecache / 2, wmark_low);
5761 	available += pagecache;
5762 
5763 	/*
5764 	 * Part of the reclaimable slab and other kernel memory consists of
5765 	 * items that are in use, and cannot be freed. Cap this estimate at the
5766 	 * low watermark.
5767 	 */
5768 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5769 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5770 	available += reclaimable - min(reclaimable / 2, wmark_low);
5771 
5772 	if (available < 0)
5773 		available = 0;
5774 	return available;
5775 }
5776 EXPORT_SYMBOL_GPL(si_mem_available);
5777 
5778 void si_meminfo(struct sysinfo *val)
5779 {
5780 	val->totalram = totalram_pages();
5781 	val->sharedram = global_node_page_state(NR_SHMEM);
5782 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5783 	val->bufferram = nr_blockdev_pages();
5784 	val->totalhigh = totalhigh_pages();
5785 	val->freehigh = nr_free_highpages();
5786 	val->mem_unit = PAGE_SIZE;
5787 }
5788 
5789 EXPORT_SYMBOL(si_meminfo);
5790 
5791 #ifdef CONFIG_NUMA
5792 void si_meminfo_node(struct sysinfo *val, int nid)
5793 {
5794 	int zone_type;		/* needs to be signed */
5795 	unsigned long managed_pages = 0;
5796 	unsigned long managed_highpages = 0;
5797 	unsigned long free_highpages = 0;
5798 	pg_data_t *pgdat = NODE_DATA(nid);
5799 
5800 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5801 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5802 	val->totalram = managed_pages;
5803 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5804 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5805 #ifdef CONFIG_HIGHMEM
5806 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5807 		struct zone *zone = &pgdat->node_zones[zone_type];
5808 
5809 		if (is_highmem(zone)) {
5810 			managed_highpages += zone_managed_pages(zone);
5811 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5812 		}
5813 	}
5814 	val->totalhigh = managed_highpages;
5815 	val->freehigh = free_highpages;
5816 #else
5817 	val->totalhigh = managed_highpages;
5818 	val->freehigh = free_highpages;
5819 #endif
5820 	val->mem_unit = PAGE_SIZE;
5821 }
5822 #endif
5823 
5824 /*
5825  * Determine whether the node should be displayed or not, depending on whether
5826  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5827  */
5828 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5829 {
5830 	if (!(flags & SHOW_MEM_FILTER_NODES))
5831 		return false;
5832 
5833 	/*
5834 	 * no node mask - aka implicit memory numa policy. Do not bother with
5835 	 * the synchronization - read_mems_allowed_begin - because we do not
5836 	 * have to be precise here.
5837 	 */
5838 	if (!nodemask)
5839 		nodemask = &cpuset_current_mems_allowed;
5840 
5841 	return !node_isset(nid, *nodemask);
5842 }
5843 
5844 #define K(x) ((x) << (PAGE_SHIFT-10))
5845 
5846 static void show_migration_types(unsigned char type)
5847 {
5848 	static const char types[MIGRATE_TYPES] = {
5849 		[MIGRATE_UNMOVABLE]	= 'U',
5850 		[MIGRATE_MOVABLE]	= 'M',
5851 		[MIGRATE_RECLAIMABLE]	= 'E',
5852 		[MIGRATE_HIGHATOMIC]	= 'H',
5853 #ifdef CONFIG_CMA
5854 		[MIGRATE_CMA]		= 'C',
5855 #endif
5856 #ifdef CONFIG_MEMORY_ISOLATION
5857 		[MIGRATE_ISOLATE]	= 'I',
5858 #endif
5859 	};
5860 	char tmp[MIGRATE_TYPES + 1];
5861 	char *p = tmp;
5862 	int i;
5863 
5864 	for (i = 0; i < MIGRATE_TYPES; i++) {
5865 		if (type & (1 << i))
5866 			*p++ = types[i];
5867 	}
5868 
5869 	*p = '\0';
5870 	printk(KERN_CONT "(%s) ", tmp);
5871 }
5872 
5873 /*
5874  * Show free area list (used inside shift_scroll-lock stuff)
5875  * We also calculate the percentage fragmentation. We do this by counting the
5876  * memory on each free list with the exception of the first item on the list.
5877  *
5878  * Bits in @filter:
5879  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5880  *   cpuset.
5881  */
5882 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5883 {
5884 	unsigned long free_pcp = 0;
5885 	int cpu;
5886 	struct zone *zone;
5887 	pg_data_t *pgdat;
5888 
5889 	for_each_populated_zone(zone) {
5890 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5891 			continue;
5892 
5893 		for_each_online_cpu(cpu)
5894 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5895 	}
5896 
5897 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5898 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5899 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5900 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5901 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5902 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5903 		global_node_page_state(NR_ACTIVE_ANON),
5904 		global_node_page_state(NR_INACTIVE_ANON),
5905 		global_node_page_state(NR_ISOLATED_ANON),
5906 		global_node_page_state(NR_ACTIVE_FILE),
5907 		global_node_page_state(NR_INACTIVE_FILE),
5908 		global_node_page_state(NR_ISOLATED_FILE),
5909 		global_node_page_state(NR_UNEVICTABLE),
5910 		global_node_page_state(NR_FILE_DIRTY),
5911 		global_node_page_state(NR_WRITEBACK),
5912 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5913 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5914 		global_node_page_state(NR_FILE_MAPPED),
5915 		global_node_page_state(NR_SHMEM),
5916 		global_node_page_state(NR_PAGETABLE),
5917 		global_zone_page_state(NR_BOUNCE),
5918 		global_zone_page_state(NR_FREE_PAGES),
5919 		free_pcp,
5920 		global_zone_page_state(NR_FREE_CMA_PAGES));
5921 
5922 	for_each_online_pgdat(pgdat) {
5923 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5924 			continue;
5925 
5926 		printk("Node %d"
5927 			" active_anon:%lukB"
5928 			" inactive_anon:%lukB"
5929 			" active_file:%lukB"
5930 			" inactive_file:%lukB"
5931 			" unevictable:%lukB"
5932 			" isolated(anon):%lukB"
5933 			" isolated(file):%lukB"
5934 			" mapped:%lukB"
5935 			" dirty:%lukB"
5936 			" writeback:%lukB"
5937 			" shmem:%lukB"
5938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5939 			" shmem_thp: %lukB"
5940 			" shmem_pmdmapped: %lukB"
5941 			" anon_thp: %lukB"
5942 #endif
5943 			" writeback_tmp:%lukB"
5944 			" kernel_stack:%lukB"
5945 #ifdef CONFIG_SHADOW_CALL_STACK
5946 			" shadow_call_stack:%lukB"
5947 #endif
5948 			" pagetables:%lukB"
5949 			" all_unreclaimable? %s"
5950 			"\n",
5951 			pgdat->node_id,
5952 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5953 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5954 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5955 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5956 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5957 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5958 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5959 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5960 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5961 			K(node_page_state(pgdat, NR_WRITEBACK)),
5962 			K(node_page_state(pgdat, NR_SHMEM)),
5963 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5964 			K(node_page_state(pgdat, NR_SHMEM_THPS)),
5965 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)),
5966 			K(node_page_state(pgdat, NR_ANON_THPS)),
5967 #endif
5968 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5969 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5970 #ifdef CONFIG_SHADOW_CALL_STACK
5971 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5972 #endif
5973 			K(node_page_state(pgdat, NR_PAGETABLE)),
5974 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5975 				"yes" : "no");
5976 	}
5977 
5978 	for_each_populated_zone(zone) {
5979 		int i;
5980 
5981 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5982 			continue;
5983 
5984 		free_pcp = 0;
5985 		for_each_online_cpu(cpu)
5986 			free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count;
5987 
5988 		show_node(zone);
5989 		printk(KERN_CONT
5990 			"%s"
5991 			" free:%lukB"
5992 			" min:%lukB"
5993 			" low:%lukB"
5994 			" high:%lukB"
5995 			" reserved_highatomic:%luKB"
5996 			" active_anon:%lukB"
5997 			" inactive_anon:%lukB"
5998 			" active_file:%lukB"
5999 			" inactive_file:%lukB"
6000 			" unevictable:%lukB"
6001 			" writepending:%lukB"
6002 			" present:%lukB"
6003 			" managed:%lukB"
6004 			" mlocked:%lukB"
6005 			" bounce:%lukB"
6006 			" free_pcp:%lukB"
6007 			" local_pcp:%ukB"
6008 			" free_cma:%lukB"
6009 			"\n",
6010 			zone->name,
6011 			K(zone_page_state(zone, NR_FREE_PAGES)),
6012 			K(min_wmark_pages(zone)),
6013 			K(low_wmark_pages(zone)),
6014 			K(high_wmark_pages(zone)),
6015 			K(zone->nr_reserved_highatomic),
6016 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
6017 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
6018 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
6019 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
6020 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
6021 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
6022 			K(zone->present_pages),
6023 			K(zone_managed_pages(zone)),
6024 			K(zone_page_state(zone, NR_MLOCK)),
6025 			K(zone_page_state(zone, NR_BOUNCE)),
6026 			K(free_pcp),
6027 			K(this_cpu_read(zone->per_cpu_pageset->count)),
6028 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
6029 		printk("lowmem_reserve[]:");
6030 		for (i = 0; i < MAX_NR_ZONES; i++)
6031 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
6032 		printk(KERN_CONT "\n");
6033 	}
6034 
6035 	for_each_populated_zone(zone) {
6036 		unsigned int order;
6037 		unsigned long nr[MAX_ORDER], flags, total = 0;
6038 		unsigned char types[MAX_ORDER];
6039 
6040 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
6041 			continue;
6042 		show_node(zone);
6043 		printk(KERN_CONT "%s: ", zone->name);
6044 
6045 		spin_lock_irqsave(&zone->lock, flags);
6046 		for (order = 0; order < MAX_ORDER; order++) {
6047 			struct free_area *area = &zone->free_area[order];
6048 			int type;
6049 
6050 			nr[order] = area->nr_free;
6051 			total += nr[order] << order;
6052 
6053 			types[order] = 0;
6054 			for (type = 0; type < MIGRATE_TYPES; type++) {
6055 				if (!free_area_empty(area, type))
6056 					types[order] |= 1 << type;
6057 			}
6058 		}
6059 		spin_unlock_irqrestore(&zone->lock, flags);
6060 		for (order = 0; order < MAX_ORDER; order++) {
6061 			printk(KERN_CONT "%lu*%lukB ",
6062 			       nr[order], K(1UL) << order);
6063 			if (nr[order])
6064 				show_migration_types(types[order]);
6065 		}
6066 		printk(KERN_CONT "= %lukB\n", K(total));
6067 	}
6068 
6069 	hugetlb_show_meminfo();
6070 
6071 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
6072 
6073 	show_swap_cache_info();
6074 }
6075 
6076 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
6077 {
6078 	zoneref->zone = zone;
6079 	zoneref->zone_idx = zone_idx(zone);
6080 }
6081 
6082 /*
6083  * Builds allocation fallback zone lists.
6084  *
6085  * Add all populated zones of a node to the zonelist.
6086  */
6087 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
6088 {
6089 	struct zone *zone;
6090 	enum zone_type zone_type = MAX_NR_ZONES;
6091 	int nr_zones = 0;
6092 
6093 	do {
6094 		zone_type--;
6095 		zone = pgdat->node_zones + zone_type;
6096 		if (managed_zone(zone)) {
6097 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
6098 			check_highest_zone(zone_type);
6099 		}
6100 	} while (zone_type);
6101 
6102 	return nr_zones;
6103 }
6104 
6105 #ifdef CONFIG_NUMA
6106 
6107 static int __parse_numa_zonelist_order(char *s)
6108 {
6109 	/*
6110 	 * We used to support different zonelists modes but they turned
6111 	 * out to be just not useful. Let's keep the warning in place
6112 	 * if somebody still use the cmd line parameter so that we do
6113 	 * not fail it silently
6114 	 */
6115 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
6116 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
6117 		return -EINVAL;
6118 	}
6119 	return 0;
6120 }
6121 
6122 char numa_zonelist_order[] = "Node";
6123 
6124 /*
6125  * sysctl handler for numa_zonelist_order
6126  */
6127 int numa_zonelist_order_handler(struct ctl_table *table, int write,
6128 		void *buffer, size_t *length, loff_t *ppos)
6129 {
6130 	if (write)
6131 		return __parse_numa_zonelist_order(buffer);
6132 	return proc_dostring(table, write, buffer, length, ppos);
6133 }
6134 
6135 
6136 #define MAX_NODE_LOAD (nr_online_nodes)
6137 static int node_load[MAX_NUMNODES];
6138 
6139 /**
6140  * find_next_best_node - find the next node that should appear in a given node's fallback list
6141  * @node: node whose fallback list we're appending
6142  * @used_node_mask: nodemask_t of already used nodes
6143  *
6144  * We use a number of factors to determine which is the next node that should
6145  * appear on a given node's fallback list.  The node should not have appeared
6146  * already in @node's fallback list, and it should be the next closest node
6147  * according to the distance array (which contains arbitrary distance values
6148  * from each node to each node in the system), and should also prefer nodes
6149  * with no CPUs, since presumably they'll have very little allocation pressure
6150  * on them otherwise.
6151  *
6152  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
6153  */
6154 static int find_next_best_node(int node, nodemask_t *used_node_mask)
6155 {
6156 	int n, val;
6157 	int min_val = INT_MAX;
6158 	int best_node = NUMA_NO_NODE;
6159 
6160 	/* Use the local node if we haven't already */
6161 	if (!node_isset(node, *used_node_mask)) {
6162 		node_set(node, *used_node_mask);
6163 		return node;
6164 	}
6165 
6166 	for_each_node_state(n, N_MEMORY) {
6167 
6168 		/* Don't want a node to appear more than once */
6169 		if (node_isset(n, *used_node_mask))
6170 			continue;
6171 
6172 		/* Use the distance array to find the distance */
6173 		val = node_distance(node, n);
6174 
6175 		/* Penalize nodes under us ("prefer the next node") */
6176 		val += (n < node);
6177 
6178 		/* Give preference to headless and unused nodes */
6179 		if (!cpumask_empty(cpumask_of_node(n)))
6180 			val += PENALTY_FOR_NODE_WITH_CPUS;
6181 
6182 		/* Slight preference for less loaded node */
6183 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
6184 		val += node_load[n];
6185 
6186 		if (val < min_val) {
6187 			min_val = val;
6188 			best_node = n;
6189 		}
6190 	}
6191 
6192 	if (best_node >= 0)
6193 		node_set(best_node, *used_node_mask);
6194 
6195 	return best_node;
6196 }
6197 
6198 
6199 /*
6200  * Build zonelists ordered by node and zones within node.
6201  * This results in maximum locality--normal zone overflows into local
6202  * DMA zone, if any--but risks exhausting DMA zone.
6203  */
6204 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
6205 		unsigned nr_nodes)
6206 {
6207 	struct zoneref *zonerefs;
6208 	int i;
6209 
6210 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6211 
6212 	for (i = 0; i < nr_nodes; i++) {
6213 		int nr_zones;
6214 
6215 		pg_data_t *node = NODE_DATA(node_order[i]);
6216 
6217 		nr_zones = build_zonerefs_node(node, zonerefs);
6218 		zonerefs += nr_zones;
6219 	}
6220 	zonerefs->zone = NULL;
6221 	zonerefs->zone_idx = 0;
6222 }
6223 
6224 /*
6225  * Build gfp_thisnode zonelists
6226  */
6227 static void build_thisnode_zonelists(pg_data_t *pgdat)
6228 {
6229 	struct zoneref *zonerefs;
6230 	int nr_zones;
6231 
6232 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
6233 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6234 	zonerefs += nr_zones;
6235 	zonerefs->zone = NULL;
6236 	zonerefs->zone_idx = 0;
6237 }
6238 
6239 /*
6240  * Build zonelists ordered by zone and nodes within zones.
6241  * This results in conserving DMA zone[s] until all Normal memory is
6242  * exhausted, but results in overflowing to remote node while memory
6243  * may still exist in local DMA zone.
6244  */
6245 
6246 static void build_zonelists(pg_data_t *pgdat)
6247 {
6248 	static int node_order[MAX_NUMNODES];
6249 	int node, load, nr_nodes = 0;
6250 	nodemask_t used_mask = NODE_MASK_NONE;
6251 	int local_node, prev_node;
6252 
6253 	/* NUMA-aware ordering of nodes */
6254 	local_node = pgdat->node_id;
6255 	load = nr_online_nodes;
6256 	prev_node = local_node;
6257 
6258 	memset(node_order, 0, sizeof(node_order));
6259 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
6260 		/*
6261 		 * We don't want to pressure a particular node.
6262 		 * So adding penalty to the first node in same
6263 		 * distance group to make it round-robin.
6264 		 */
6265 		if (node_distance(local_node, node) !=
6266 		    node_distance(local_node, prev_node))
6267 			node_load[node] = load;
6268 
6269 		node_order[nr_nodes++] = node;
6270 		prev_node = node;
6271 		load--;
6272 	}
6273 
6274 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
6275 	build_thisnode_zonelists(pgdat);
6276 }
6277 
6278 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6279 /*
6280  * Return node id of node used for "local" allocations.
6281  * I.e., first node id of first zone in arg node's generic zonelist.
6282  * Used for initializing percpu 'numa_mem', which is used primarily
6283  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
6284  */
6285 int local_memory_node(int node)
6286 {
6287 	struct zoneref *z;
6288 
6289 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
6290 				   gfp_zone(GFP_KERNEL),
6291 				   NULL);
6292 	return zone_to_nid(z->zone);
6293 }
6294 #endif
6295 
6296 static void setup_min_unmapped_ratio(void);
6297 static void setup_min_slab_ratio(void);
6298 #else	/* CONFIG_NUMA */
6299 
6300 static void build_zonelists(pg_data_t *pgdat)
6301 {
6302 	int node, local_node;
6303 	struct zoneref *zonerefs;
6304 	int nr_zones;
6305 
6306 	local_node = pgdat->node_id;
6307 
6308 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6309 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6310 	zonerefs += nr_zones;
6311 
6312 	/*
6313 	 * Now we build the zonelist so that it contains the zones
6314 	 * of all the other nodes.
6315 	 * We don't want to pressure a particular node, so when
6316 	 * building the zones for node N, we make sure that the
6317 	 * zones coming right after the local ones are those from
6318 	 * node N+1 (modulo N)
6319 	 */
6320 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6321 		if (!node_online(node))
6322 			continue;
6323 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6324 		zonerefs += nr_zones;
6325 	}
6326 	for (node = 0; node < local_node; node++) {
6327 		if (!node_online(node))
6328 			continue;
6329 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6330 		zonerefs += nr_zones;
6331 	}
6332 
6333 	zonerefs->zone = NULL;
6334 	zonerefs->zone_idx = 0;
6335 }
6336 
6337 #endif	/* CONFIG_NUMA */
6338 
6339 /*
6340  * Boot pageset table. One per cpu which is going to be used for all
6341  * zones and all nodes. The parameters will be set in such a way
6342  * that an item put on a list will immediately be handed over to
6343  * the buddy list. This is safe since pageset manipulation is done
6344  * with interrupts disabled.
6345  *
6346  * The boot_pagesets must be kept even after bootup is complete for
6347  * unused processors and/or zones. They do play a role for bootstrapping
6348  * hotplugged processors.
6349  *
6350  * zoneinfo_show() and maybe other functions do
6351  * not check if the processor is online before following the pageset pointer.
6352  * Other parts of the kernel may not check if the zone is available.
6353  */
6354 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats);
6355 /* These effectively disable the pcplists in the boot pageset completely */
6356 #define BOOT_PAGESET_HIGH	0
6357 #define BOOT_PAGESET_BATCH	1
6358 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset);
6359 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats);
6360 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6361 
6362 static void __build_all_zonelists(void *data)
6363 {
6364 	int nid;
6365 	int __maybe_unused cpu;
6366 	pg_data_t *self = data;
6367 	static DEFINE_SPINLOCK(lock);
6368 
6369 	spin_lock(&lock);
6370 
6371 #ifdef CONFIG_NUMA
6372 	memset(node_load, 0, sizeof(node_load));
6373 #endif
6374 
6375 	/*
6376 	 * This node is hotadded and no memory is yet present.   So just
6377 	 * building zonelists is fine - no need to touch other nodes.
6378 	 */
6379 	if (self && !node_online(self->node_id)) {
6380 		build_zonelists(self);
6381 	} else {
6382 		for_each_online_node(nid) {
6383 			pg_data_t *pgdat = NODE_DATA(nid);
6384 
6385 			build_zonelists(pgdat);
6386 		}
6387 
6388 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6389 		/*
6390 		 * We now know the "local memory node" for each node--
6391 		 * i.e., the node of the first zone in the generic zonelist.
6392 		 * Set up numa_mem percpu variable for on-line cpus.  During
6393 		 * boot, only the boot cpu should be on-line;  we'll init the
6394 		 * secondary cpus' numa_mem as they come on-line.  During
6395 		 * node/memory hotplug, we'll fixup all on-line cpus.
6396 		 */
6397 		for_each_online_cpu(cpu)
6398 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6399 #endif
6400 	}
6401 
6402 	spin_unlock(&lock);
6403 }
6404 
6405 static noinline void __init
6406 build_all_zonelists_init(void)
6407 {
6408 	int cpu;
6409 
6410 	__build_all_zonelists(NULL);
6411 
6412 	/*
6413 	 * Initialize the boot_pagesets that are going to be used
6414 	 * for bootstrapping processors. The real pagesets for
6415 	 * each zone will be allocated later when the per cpu
6416 	 * allocator is available.
6417 	 *
6418 	 * boot_pagesets are used also for bootstrapping offline
6419 	 * cpus if the system is already booted because the pagesets
6420 	 * are needed to initialize allocators on a specific cpu too.
6421 	 * F.e. the percpu allocator needs the page allocator which
6422 	 * needs the percpu allocator in order to allocate its pagesets
6423 	 * (a chicken-egg dilemma).
6424 	 */
6425 	for_each_possible_cpu(cpu)
6426 		per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu));
6427 
6428 	mminit_verify_zonelist();
6429 	cpuset_init_current_mems_allowed();
6430 }
6431 
6432 /*
6433  * unless system_state == SYSTEM_BOOTING.
6434  *
6435  * __ref due to call of __init annotated helper build_all_zonelists_init
6436  * [protected by SYSTEM_BOOTING].
6437  */
6438 void __ref build_all_zonelists(pg_data_t *pgdat)
6439 {
6440 	unsigned long vm_total_pages;
6441 
6442 	if (system_state == SYSTEM_BOOTING) {
6443 		build_all_zonelists_init();
6444 	} else {
6445 		__build_all_zonelists(pgdat);
6446 		/* cpuset refresh routine should be here */
6447 	}
6448 	/* Get the number of free pages beyond high watermark in all zones. */
6449 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6450 	/*
6451 	 * Disable grouping by mobility if the number of pages in the
6452 	 * system is too low to allow the mechanism to work. It would be
6453 	 * more accurate, but expensive to check per-zone. This check is
6454 	 * made on memory-hotadd so a system can start with mobility
6455 	 * disabled and enable it later
6456 	 */
6457 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6458 		page_group_by_mobility_disabled = 1;
6459 	else
6460 		page_group_by_mobility_disabled = 0;
6461 
6462 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6463 		nr_online_nodes,
6464 		page_group_by_mobility_disabled ? "off" : "on",
6465 		vm_total_pages);
6466 #ifdef CONFIG_NUMA
6467 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6468 #endif
6469 }
6470 
6471 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6472 static bool __meminit
6473 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6474 {
6475 	static struct memblock_region *r;
6476 
6477 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6478 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6479 			for_each_mem_region(r) {
6480 				if (*pfn < memblock_region_memory_end_pfn(r))
6481 					break;
6482 			}
6483 		}
6484 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6485 		    memblock_is_mirror(r)) {
6486 			*pfn = memblock_region_memory_end_pfn(r);
6487 			return true;
6488 		}
6489 	}
6490 	return false;
6491 }
6492 
6493 /*
6494  * Initially all pages are reserved - free ones are freed
6495  * up by memblock_free_all() once the early boot process is
6496  * done. Non-atomic initialization, single-pass.
6497  *
6498  * All aligned pageblocks are initialized to the specified migratetype
6499  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6500  * zone stats (e.g., nr_isolate_pageblock) are touched.
6501  */
6502 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone,
6503 		unsigned long start_pfn, unsigned long zone_end_pfn,
6504 		enum meminit_context context,
6505 		struct vmem_altmap *altmap, int migratetype)
6506 {
6507 	unsigned long pfn, end_pfn = start_pfn + size;
6508 	struct page *page;
6509 
6510 	if (highest_memmap_pfn < end_pfn - 1)
6511 		highest_memmap_pfn = end_pfn - 1;
6512 
6513 #ifdef CONFIG_ZONE_DEVICE
6514 	/*
6515 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6516 	 * memory. We limit the total number of pages to initialize to just
6517 	 * those that might contain the memory mapping. We will defer the
6518 	 * ZONE_DEVICE page initialization until after we have released
6519 	 * the hotplug lock.
6520 	 */
6521 	if (zone == ZONE_DEVICE) {
6522 		if (!altmap)
6523 			return;
6524 
6525 		if (start_pfn == altmap->base_pfn)
6526 			start_pfn += altmap->reserve;
6527 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6528 	}
6529 #endif
6530 
6531 	for (pfn = start_pfn; pfn < end_pfn; ) {
6532 		/*
6533 		 * There can be holes in boot-time mem_map[]s handed to this
6534 		 * function.  They do not exist on hotplugged memory.
6535 		 */
6536 		if (context == MEMINIT_EARLY) {
6537 			if (overlap_memmap_init(zone, &pfn))
6538 				continue;
6539 			if (defer_init(nid, pfn, zone_end_pfn))
6540 				break;
6541 		}
6542 
6543 		page = pfn_to_page(pfn);
6544 		__init_single_page(page, pfn, zone, nid);
6545 		if (context == MEMINIT_HOTPLUG)
6546 			__SetPageReserved(page);
6547 
6548 		/*
6549 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6550 		 * such that unmovable allocations won't be scattered all
6551 		 * over the place during system boot.
6552 		 */
6553 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6554 			set_pageblock_migratetype(page, migratetype);
6555 			cond_resched();
6556 		}
6557 		pfn++;
6558 	}
6559 }
6560 
6561 #ifdef CONFIG_ZONE_DEVICE
6562 void __ref memmap_init_zone_device(struct zone *zone,
6563 				   unsigned long start_pfn,
6564 				   unsigned long nr_pages,
6565 				   struct dev_pagemap *pgmap)
6566 {
6567 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6568 	struct pglist_data *pgdat = zone->zone_pgdat;
6569 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6570 	unsigned long zone_idx = zone_idx(zone);
6571 	unsigned long start = jiffies;
6572 	int nid = pgdat->node_id;
6573 
6574 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6575 		return;
6576 
6577 	/*
6578 	 * The call to memmap_init should have already taken care
6579 	 * of the pages reserved for the memmap, so we can just jump to
6580 	 * the end of that region and start processing the device pages.
6581 	 */
6582 	if (altmap) {
6583 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6584 		nr_pages = end_pfn - start_pfn;
6585 	}
6586 
6587 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6588 		struct page *page = pfn_to_page(pfn);
6589 
6590 		__init_single_page(page, pfn, zone_idx, nid);
6591 
6592 		/*
6593 		 * Mark page reserved as it will need to wait for onlining
6594 		 * phase for it to be fully associated with a zone.
6595 		 *
6596 		 * We can use the non-atomic __set_bit operation for setting
6597 		 * the flag as we are still initializing the pages.
6598 		 */
6599 		__SetPageReserved(page);
6600 
6601 		/*
6602 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6603 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6604 		 * ever freed or placed on a driver-private list.
6605 		 */
6606 		page->pgmap = pgmap;
6607 		page->zone_device_data = NULL;
6608 
6609 		/*
6610 		 * Mark the block movable so that blocks are reserved for
6611 		 * movable at startup. This will force kernel allocations
6612 		 * to reserve their blocks rather than leaking throughout
6613 		 * the address space during boot when many long-lived
6614 		 * kernel allocations are made.
6615 		 *
6616 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6617 		 * because this is done early in section_activate()
6618 		 */
6619 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6620 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6621 			cond_resched();
6622 		}
6623 	}
6624 
6625 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6626 		nr_pages, jiffies_to_msecs(jiffies - start));
6627 }
6628 
6629 #endif
6630 static void __meminit zone_init_free_lists(struct zone *zone)
6631 {
6632 	unsigned int order, t;
6633 	for_each_migratetype_order(order, t) {
6634 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6635 		zone->free_area[order].nr_free = 0;
6636 	}
6637 }
6638 
6639 #if !defined(CONFIG_FLATMEM)
6640 /*
6641  * Only struct pages that correspond to ranges defined by memblock.memory
6642  * are zeroed and initialized by going through __init_single_page() during
6643  * memmap_init_zone_range().
6644  *
6645  * But, there could be struct pages that correspond to holes in
6646  * memblock.memory. This can happen because of the following reasons:
6647  * - physical memory bank size is not necessarily the exact multiple of the
6648  *   arbitrary section size
6649  * - early reserved memory may not be listed in memblock.memory
6650  * - memory layouts defined with memmap= kernel parameter may not align
6651  *   nicely with memmap sections
6652  *
6653  * Explicitly initialize those struct pages so that:
6654  * - PG_Reserved is set
6655  * - zone and node links point to zone and node that span the page if the
6656  *   hole is in the middle of a zone
6657  * - zone and node links point to adjacent zone/node if the hole falls on
6658  *   the zone boundary; the pages in such holes will be prepended to the
6659  *   zone/node above the hole except for the trailing pages in the last
6660  *   section that will be appended to the zone/node below.
6661  */
6662 static void __init init_unavailable_range(unsigned long spfn,
6663 					  unsigned long epfn,
6664 					  int zone, int node)
6665 {
6666 	unsigned long pfn;
6667 	u64 pgcnt = 0;
6668 
6669 	for (pfn = spfn; pfn < epfn; pfn++) {
6670 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6671 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6672 				+ pageblock_nr_pages - 1;
6673 			continue;
6674 		}
6675 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6676 		__SetPageReserved(pfn_to_page(pfn));
6677 		pgcnt++;
6678 	}
6679 
6680 	if (pgcnt)
6681 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6682 			node, zone_names[zone], pgcnt);
6683 }
6684 #else
6685 static inline void init_unavailable_range(unsigned long spfn,
6686 					  unsigned long epfn,
6687 					  int zone, int node)
6688 {
6689 }
6690 #endif
6691 
6692 static void __init memmap_init_zone_range(struct zone *zone,
6693 					  unsigned long start_pfn,
6694 					  unsigned long end_pfn,
6695 					  unsigned long *hole_pfn)
6696 {
6697 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6698 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6699 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6700 
6701 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6702 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6703 
6704 	if (start_pfn >= end_pfn)
6705 		return;
6706 
6707 	memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn,
6708 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6709 
6710 	if (*hole_pfn < start_pfn)
6711 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6712 
6713 	*hole_pfn = end_pfn;
6714 }
6715 
6716 static void __init memmap_init(void)
6717 {
6718 	unsigned long start_pfn, end_pfn;
6719 	unsigned long hole_pfn = 0;
6720 	int i, j, zone_id, nid;
6721 
6722 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6723 		struct pglist_data *node = NODE_DATA(nid);
6724 
6725 		for (j = 0; j < MAX_NR_ZONES; j++) {
6726 			struct zone *zone = node->node_zones + j;
6727 
6728 			if (!populated_zone(zone))
6729 				continue;
6730 
6731 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6732 					       &hole_pfn);
6733 			zone_id = j;
6734 		}
6735 	}
6736 
6737 #ifdef CONFIG_SPARSEMEM
6738 	/*
6739 	 * Initialize the memory map for hole in the range [memory_end,
6740 	 * section_end].
6741 	 * Append the pages in this hole to the highest zone in the last
6742 	 * node.
6743 	 * The call to init_unavailable_range() is outside the ifdef to
6744 	 * silence the compiler warining about zone_id set but not used;
6745 	 * for FLATMEM it is a nop anyway
6746 	 */
6747 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6748 	if (hole_pfn < end_pfn)
6749 #endif
6750 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6751 }
6752 
6753 static int zone_batchsize(struct zone *zone)
6754 {
6755 #ifdef CONFIG_MMU
6756 	int batch;
6757 
6758 	/*
6759 	 * The number of pages to batch allocate is either ~0.1%
6760 	 * of the zone or 1MB, whichever is smaller. The batch
6761 	 * size is striking a balance between allocation latency
6762 	 * and zone lock contention.
6763 	 */
6764 	batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE);
6765 	batch /= 4;		/* We effectively *= 4 below */
6766 	if (batch < 1)
6767 		batch = 1;
6768 
6769 	/*
6770 	 * Clamp the batch to a 2^n - 1 value. Having a power
6771 	 * of 2 value was found to be more likely to have
6772 	 * suboptimal cache aliasing properties in some cases.
6773 	 *
6774 	 * For example if 2 tasks are alternately allocating
6775 	 * batches of pages, one task can end up with a lot
6776 	 * of pages of one half of the possible page colors
6777 	 * and the other with pages of the other colors.
6778 	 */
6779 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6780 
6781 	return batch;
6782 
6783 #else
6784 	/* The deferral and batching of frees should be suppressed under NOMMU
6785 	 * conditions.
6786 	 *
6787 	 * The problem is that NOMMU needs to be able to allocate large chunks
6788 	 * of contiguous memory as there's no hardware page translation to
6789 	 * assemble apparent contiguous memory from discontiguous pages.
6790 	 *
6791 	 * Queueing large contiguous runs of pages for batching, however,
6792 	 * causes the pages to actually be freed in smaller chunks.  As there
6793 	 * can be a significant delay between the individual batches being
6794 	 * recycled, this leads to the once large chunks of space being
6795 	 * fragmented and becoming unavailable for high-order allocations.
6796 	 */
6797 	return 0;
6798 #endif
6799 }
6800 
6801 static int zone_highsize(struct zone *zone, int batch, int cpu_online)
6802 {
6803 #ifdef CONFIG_MMU
6804 	int high;
6805 	int nr_split_cpus;
6806 	unsigned long total_pages;
6807 
6808 	if (!percpu_pagelist_high_fraction) {
6809 		/*
6810 		 * By default, the high value of the pcp is based on the zone
6811 		 * low watermark so that if they are full then background
6812 		 * reclaim will not be started prematurely.
6813 		 */
6814 		total_pages = low_wmark_pages(zone);
6815 	} else {
6816 		/*
6817 		 * If percpu_pagelist_high_fraction is configured, the high
6818 		 * value is based on a fraction of the managed pages in the
6819 		 * zone.
6820 		 */
6821 		total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction;
6822 	}
6823 
6824 	/*
6825 	 * Split the high value across all online CPUs local to the zone. Note
6826 	 * that early in boot that CPUs may not be online yet and that during
6827 	 * CPU hotplug that the cpumask is not yet updated when a CPU is being
6828 	 * onlined. For memory nodes that have no CPUs, split pcp->high across
6829 	 * all online CPUs to mitigate the risk that reclaim is triggered
6830 	 * prematurely due to pages stored on pcp lists.
6831 	 */
6832 	nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online;
6833 	if (!nr_split_cpus)
6834 		nr_split_cpus = num_online_cpus();
6835 	high = total_pages / nr_split_cpus;
6836 
6837 	/*
6838 	 * Ensure high is at least batch*4. The multiple is based on the
6839 	 * historical relationship between high and batch.
6840 	 */
6841 	high = max(high, batch << 2);
6842 
6843 	return high;
6844 #else
6845 	return 0;
6846 #endif
6847 }
6848 
6849 /*
6850  * pcp->high and pcp->batch values are related and generally batch is lower
6851  * than high. They are also related to pcp->count such that count is lower
6852  * than high, and as soon as it reaches high, the pcplist is flushed.
6853  *
6854  * However, guaranteeing these relations at all times would require e.g. write
6855  * barriers here but also careful usage of read barriers at the read side, and
6856  * thus be prone to error and bad for performance. Thus the update only prevents
6857  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6858  * can cope with those fields changing asynchronously, and fully trust only the
6859  * pcp->count field on the local CPU with interrupts disabled.
6860  *
6861  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6862  * outside of boot time (or some other assurance that no concurrent updaters
6863  * exist).
6864  */
6865 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6866 		unsigned long batch)
6867 {
6868 	WRITE_ONCE(pcp->batch, batch);
6869 	WRITE_ONCE(pcp->high, high);
6870 }
6871 
6872 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats)
6873 {
6874 	int pindex;
6875 
6876 	memset(pcp, 0, sizeof(*pcp));
6877 	memset(pzstats, 0, sizeof(*pzstats));
6878 
6879 	for (pindex = 0; pindex < NR_PCP_LISTS; pindex++)
6880 		INIT_LIST_HEAD(&pcp->lists[pindex]);
6881 
6882 	/*
6883 	 * Set batch and high values safe for a boot pageset. A true percpu
6884 	 * pageset's initialization will update them subsequently. Here we don't
6885 	 * need to be as careful as pageset_update() as nobody can access the
6886 	 * pageset yet.
6887 	 */
6888 	pcp->high = BOOT_PAGESET_HIGH;
6889 	pcp->batch = BOOT_PAGESET_BATCH;
6890 	pcp->free_factor = 0;
6891 }
6892 
6893 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6894 		unsigned long batch)
6895 {
6896 	struct per_cpu_pages *pcp;
6897 	int cpu;
6898 
6899 	for_each_possible_cpu(cpu) {
6900 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6901 		pageset_update(pcp, high, batch);
6902 	}
6903 }
6904 
6905 /*
6906  * Calculate and set new high and batch values for all per-cpu pagesets of a
6907  * zone based on the zone's size.
6908  */
6909 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online)
6910 {
6911 	int new_high, new_batch;
6912 
6913 	new_batch = max(1, zone_batchsize(zone));
6914 	new_high = zone_highsize(zone, new_batch, cpu_online);
6915 
6916 	if (zone->pageset_high == new_high &&
6917 	    zone->pageset_batch == new_batch)
6918 		return;
6919 
6920 	zone->pageset_high = new_high;
6921 	zone->pageset_batch = new_batch;
6922 
6923 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6924 }
6925 
6926 void __meminit setup_zone_pageset(struct zone *zone)
6927 {
6928 	int cpu;
6929 
6930 	/* Size may be 0 on !SMP && !NUMA */
6931 	if (sizeof(struct per_cpu_zonestat) > 0)
6932 		zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat);
6933 
6934 	zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages);
6935 	for_each_possible_cpu(cpu) {
6936 		struct per_cpu_pages *pcp;
6937 		struct per_cpu_zonestat *pzstats;
6938 
6939 		pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu);
6940 		pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
6941 		per_cpu_pages_init(pcp, pzstats);
6942 	}
6943 
6944 	zone_set_pageset_high_and_batch(zone, 0);
6945 }
6946 
6947 /*
6948  * Allocate per cpu pagesets and initialize them.
6949  * Before this call only boot pagesets were available.
6950  */
6951 void __init setup_per_cpu_pageset(void)
6952 {
6953 	struct pglist_data *pgdat;
6954 	struct zone *zone;
6955 	int __maybe_unused cpu;
6956 
6957 	for_each_populated_zone(zone)
6958 		setup_zone_pageset(zone);
6959 
6960 #ifdef CONFIG_NUMA
6961 	/*
6962 	 * Unpopulated zones continue using the boot pagesets.
6963 	 * The numa stats for these pagesets need to be reset.
6964 	 * Otherwise, they will end up skewing the stats of
6965 	 * the nodes these zones are associated with.
6966 	 */
6967 	for_each_possible_cpu(cpu) {
6968 		struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu);
6969 		memset(pzstats->vm_numa_event, 0,
6970 		       sizeof(pzstats->vm_numa_event));
6971 	}
6972 #endif
6973 
6974 	for_each_online_pgdat(pgdat)
6975 		pgdat->per_cpu_nodestats =
6976 			alloc_percpu(struct per_cpu_nodestat);
6977 }
6978 
6979 static __meminit void zone_pcp_init(struct zone *zone)
6980 {
6981 	/*
6982 	 * per cpu subsystem is not up at this point. The following code
6983 	 * relies on the ability of the linker to provide the
6984 	 * offset of a (static) per cpu variable into the per cpu area.
6985 	 */
6986 	zone->per_cpu_pageset = &boot_pageset;
6987 	zone->per_cpu_zonestats = &boot_zonestats;
6988 	zone->pageset_high = BOOT_PAGESET_HIGH;
6989 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6990 
6991 	if (populated_zone(zone))
6992 		pr_debug("  %s zone: %lu pages, LIFO batch:%u\n", zone->name,
6993 			 zone->present_pages, zone_batchsize(zone));
6994 }
6995 
6996 void __meminit init_currently_empty_zone(struct zone *zone,
6997 					unsigned long zone_start_pfn,
6998 					unsigned long size)
6999 {
7000 	struct pglist_data *pgdat = zone->zone_pgdat;
7001 	int zone_idx = zone_idx(zone) + 1;
7002 
7003 	if (zone_idx > pgdat->nr_zones)
7004 		pgdat->nr_zones = zone_idx;
7005 
7006 	zone->zone_start_pfn = zone_start_pfn;
7007 
7008 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
7009 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
7010 			pgdat->node_id,
7011 			(unsigned long)zone_idx(zone),
7012 			zone_start_pfn, (zone_start_pfn + size));
7013 
7014 	zone_init_free_lists(zone);
7015 	zone->initialized = 1;
7016 }
7017 
7018 /**
7019  * get_pfn_range_for_nid - Return the start and end page frames for a node
7020  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
7021  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
7022  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
7023  *
7024  * It returns the start and end page frame of a node based on information
7025  * provided by memblock_set_node(). If called for a node
7026  * with no available memory, a warning is printed and the start and end
7027  * PFNs will be 0.
7028  */
7029 void __init get_pfn_range_for_nid(unsigned int nid,
7030 			unsigned long *start_pfn, unsigned long *end_pfn)
7031 {
7032 	unsigned long this_start_pfn, this_end_pfn;
7033 	int i;
7034 
7035 	*start_pfn = -1UL;
7036 	*end_pfn = 0;
7037 
7038 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
7039 		*start_pfn = min(*start_pfn, this_start_pfn);
7040 		*end_pfn = max(*end_pfn, this_end_pfn);
7041 	}
7042 
7043 	if (*start_pfn == -1UL)
7044 		*start_pfn = 0;
7045 }
7046 
7047 /*
7048  * This finds a zone that can be used for ZONE_MOVABLE pages. The
7049  * assumption is made that zones within a node are ordered in monotonic
7050  * increasing memory addresses so that the "highest" populated zone is used
7051  */
7052 static void __init find_usable_zone_for_movable(void)
7053 {
7054 	int zone_index;
7055 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
7056 		if (zone_index == ZONE_MOVABLE)
7057 			continue;
7058 
7059 		if (arch_zone_highest_possible_pfn[zone_index] >
7060 				arch_zone_lowest_possible_pfn[zone_index])
7061 			break;
7062 	}
7063 
7064 	VM_BUG_ON(zone_index == -1);
7065 	movable_zone = zone_index;
7066 }
7067 
7068 /*
7069  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
7070  * because it is sized independent of architecture. Unlike the other zones,
7071  * the starting point for ZONE_MOVABLE is not fixed. It may be different
7072  * in each node depending on the size of each node and how evenly kernelcore
7073  * is distributed. This helper function adjusts the zone ranges
7074  * provided by the architecture for a given node by using the end of the
7075  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
7076  * zones within a node are in order of monotonic increases memory addresses
7077  */
7078 static void __init adjust_zone_range_for_zone_movable(int nid,
7079 					unsigned long zone_type,
7080 					unsigned long node_start_pfn,
7081 					unsigned long node_end_pfn,
7082 					unsigned long *zone_start_pfn,
7083 					unsigned long *zone_end_pfn)
7084 {
7085 	/* Only adjust if ZONE_MOVABLE is on this node */
7086 	if (zone_movable_pfn[nid]) {
7087 		/* Size ZONE_MOVABLE */
7088 		if (zone_type == ZONE_MOVABLE) {
7089 			*zone_start_pfn = zone_movable_pfn[nid];
7090 			*zone_end_pfn = min(node_end_pfn,
7091 				arch_zone_highest_possible_pfn[movable_zone]);
7092 
7093 		/* Adjust for ZONE_MOVABLE starting within this range */
7094 		} else if (!mirrored_kernelcore &&
7095 			*zone_start_pfn < zone_movable_pfn[nid] &&
7096 			*zone_end_pfn > zone_movable_pfn[nid]) {
7097 			*zone_end_pfn = zone_movable_pfn[nid];
7098 
7099 		/* Check if this whole range is within ZONE_MOVABLE */
7100 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
7101 			*zone_start_pfn = *zone_end_pfn;
7102 	}
7103 }
7104 
7105 /*
7106  * Return the number of pages a zone spans in a node, including holes
7107  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
7108  */
7109 static unsigned long __init zone_spanned_pages_in_node(int nid,
7110 					unsigned long zone_type,
7111 					unsigned long node_start_pfn,
7112 					unsigned long node_end_pfn,
7113 					unsigned long *zone_start_pfn,
7114 					unsigned long *zone_end_pfn)
7115 {
7116 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7117 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7118 	/* When hotadd a new node from cpu_up(), the node should be empty */
7119 	if (!node_start_pfn && !node_end_pfn)
7120 		return 0;
7121 
7122 	/* Get the start and end of the zone */
7123 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7124 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7125 	adjust_zone_range_for_zone_movable(nid, zone_type,
7126 				node_start_pfn, node_end_pfn,
7127 				zone_start_pfn, zone_end_pfn);
7128 
7129 	/* Check that this node has pages within the zone's required range */
7130 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
7131 		return 0;
7132 
7133 	/* Move the zone boundaries inside the node if necessary */
7134 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
7135 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
7136 
7137 	/* Return the spanned pages */
7138 	return *zone_end_pfn - *zone_start_pfn;
7139 }
7140 
7141 /*
7142  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
7143  * then all holes in the requested range will be accounted for.
7144  */
7145 unsigned long __init __absent_pages_in_range(int nid,
7146 				unsigned long range_start_pfn,
7147 				unsigned long range_end_pfn)
7148 {
7149 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
7150 	unsigned long start_pfn, end_pfn;
7151 	int i;
7152 
7153 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7154 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
7155 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
7156 		nr_absent -= end_pfn - start_pfn;
7157 	}
7158 	return nr_absent;
7159 }
7160 
7161 /**
7162  * absent_pages_in_range - Return number of page frames in holes within a range
7163  * @start_pfn: The start PFN to start searching for holes
7164  * @end_pfn: The end PFN to stop searching for holes
7165  *
7166  * Return: the number of pages frames in memory holes within a range.
7167  */
7168 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
7169 							unsigned long end_pfn)
7170 {
7171 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
7172 }
7173 
7174 /* Return the number of page frames in holes in a zone on a node */
7175 static unsigned long __init zone_absent_pages_in_node(int nid,
7176 					unsigned long zone_type,
7177 					unsigned long node_start_pfn,
7178 					unsigned long node_end_pfn)
7179 {
7180 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
7181 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
7182 	unsigned long zone_start_pfn, zone_end_pfn;
7183 	unsigned long nr_absent;
7184 
7185 	/* When hotadd a new node from cpu_up(), the node should be empty */
7186 	if (!node_start_pfn && !node_end_pfn)
7187 		return 0;
7188 
7189 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
7190 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
7191 
7192 	adjust_zone_range_for_zone_movable(nid, zone_type,
7193 			node_start_pfn, node_end_pfn,
7194 			&zone_start_pfn, &zone_end_pfn);
7195 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
7196 
7197 	/*
7198 	 * ZONE_MOVABLE handling.
7199 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
7200 	 * and vice versa.
7201 	 */
7202 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
7203 		unsigned long start_pfn, end_pfn;
7204 		struct memblock_region *r;
7205 
7206 		for_each_mem_region(r) {
7207 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
7208 					  zone_start_pfn, zone_end_pfn);
7209 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
7210 					zone_start_pfn, zone_end_pfn);
7211 
7212 			if (zone_type == ZONE_MOVABLE &&
7213 			    memblock_is_mirror(r))
7214 				nr_absent += end_pfn - start_pfn;
7215 
7216 			if (zone_type == ZONE_NORMAL &&
7217 			    !memblock_is_mirror(r))
7218 				nr_absent += end_pfn - start_pfn;
7219 		}
7220 	}
7221 
7222 	return nr_absent;
7223 }
7224 
7225 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
7226 						unsigned long node_start_pfn,
7227 						unsigned long node_end_pfn)
7228 {
7229 	unsigned long realtotalpages = 0, totalpages = 0;
7230 	enum zone_type i;
7231 
7232 	for (i = 0; i < MAX_NR_ZONES; i++) {
7233 		struct zone *zone = pgdat->node_zones + i;
7234 		unsigned long zone_start_pfn, zone_end_pfn;
7235 		unsigned long spanned, absent;
7236 		unsigned long size, real_size;
7237 
7238 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
7239 						     node_start_pfn,
7240 						     node_end_pfn,
7241 						     &zone_start_pfn,
7242 						     &zone_end_pfn);
7243 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
7244 						   node_start_pfn,
7245 						   node_end_pfn);
7246 
7247 		size = spanned;
7248 		real_size = size - absent;
7249 
7250 		if (size)
7251 			zone->zone_start_pfn = zone_start_pfn;
7252 		else
7253 			zone->zone_start_pfn = 0;
7254 		zone->spanned_pages = size;
7255 		zone->present_pages = real_size;
7256 
7257 		totalpages += size;
7258 		realtotalpages += real_size;
7259 	}
7260 
7261 	pgdat->node_spanned_pages = totalpages;
7262 	pgdat->node_present_pages = realtotalpages;
7263 	pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages);
7264 }
7265 
7266 #ifndef CONFIG_SPARSEMEM
7267 /*
7268  * Calculate the size of the zone->blockflags rounded to an unsigned long
7269  * Start by making sure zonesize is a multiple of pageblock_order by rounding
7270  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
7271  * round what is now in bits to nearest long in bits, then return it in
7272  * bytes.
7273  */
7274 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
7275 {
7276 	unsigned long usemapsize;
7277 
7278 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
7279 	usemapsize = roundup(zonesize, pageblock_nr_pages);
7280 	usemapsize = usemapsize >> pageblock_order;
7281 	usemapsize *= NR_PAGEBLOCK_BITS;
7282 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
7283 
7284 	return usemapsize / 8;
7285 }
7286 
7287 static void __ref setup_usemap(struct zone *zone)
7288 {
7289 	unsigned long usemapsize = usemap_size(zone->zone_start_pfn,
7290 					       zone->spanned_pages);
7291 	zone->pageblock_flags = NULL;
7292 	if (usemapsize) {
7293 		zone->pageblock_flags =
7294 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
7295 					    zone_to_nid(zone));
7296 		if (!zone->pageblock_flags)
7297 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
7298 			      usemapsize, zone->name, zone_to_nid(zone));
7299 	}
7300 }
7301 #else
7302 static inline void setup_usemap(struct zone *zone) {}
7303 #endif /* CONFIG_SPARSEMEM */
7304 
7305 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
7306 
7307 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
7308 void __init set_pageblock_order(void)
7309 {
7310 	unsigned int order;
7311 
7312 	/* Check that pageblock_nr_pages has not already been setup */
7313 	if (pageblock_order)
7314 		return;
7315 
7316 	if (HPAGE_SHIFT > PAGE_SHIFT)
7317 		order = HUGETLB_PAGE_ORDER;
7318 	else
7319 		order = MAX_ORDER - 1;
7320 
7321 	/*
7322 	 * Assume the largest contiguous order of interest is a huge page.
7323 	 * This value may be variable depending on boot parameters on IA64 and
7324 	 * powerpc.
7325 	 */
7326 	pageblock_order = order;
7327 }
7328 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7329 
7330 /*
7331  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
7332  * is unused as pageblock_order is set at compile-time. See
7333  * include/linux/pageblock-flags.h for the values of pageblock_order based on
7334  * the kernel config
7335  */
7336 void __init set_pageblock_order(void)
7337 {
7338 }
7339 
7340 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7341 
7342 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7343 						unsigned long present_pages)
7344 {
7345 	unsigned long pages = spanned_pages;
7346 
7347 	/*
7348 	 * Provide a more accurate estimation if there are holes within
7349 	 * the zone and SPARSEMEM is in use. If there are holes within the
7350 	 * zone, each populated memory region may cost us one or two extra
7351 	 * memmap pages due to alignment because memmap pages for each
7352 	 * populated regions may not be naturally aligned on page boundary.
7353 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7354 	 */
7355 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7356 	    IS_ENABLED(CONFIG_SPARSEMEM))
7357 		pages = present_pages;
7358 
7359 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7360 }
7361 
7362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
7363 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7364 {
7365 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7366 
7367 	spin_lock_init(&ds_queue->split_queue_lock);
7368 	INIT_LIST_HEAD(&ds_queue->split_queue);
7369 	ds_queue->split_queue_len = 0;
7370 }
7371 #else
7372 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7373 #endif
7374 
7375 #ifdef CONFIG_COMPACTION
7376 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7377 {
7378 	init_waitqueue_head(&pgdat->kcompactd_wait);
7379 }
7380 #else
7381 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7382 #endif
7383 
7384 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7385 {
7386 	pgdat_resize_init(pgdat);
7387 
7388 	pgdat_init_split_queue(pgdat);
7389 	pgdat_init_kcompactd(pgdat);
7390 
7391 	init_waitqueue_head(&pgdat->kswapd_wait);
7392 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7393 
7394 	pgdat_page_ext_init(pgdat);
7395 	lruvec_init(&pgdat->__lruvec);
7396 }
7397 
7398 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7399 							unsigned long remaining_pages)
7400 {
7401 	atomic_long_set(&zone->managed_pages, remaining_pages);
7402 	zone_set_nid(zone, nid);
7403 	zone->name = zone_names[idx];
7404 	zone->zone_pgdat = NODE_DATA(nid);
7405 	spin_lock_init(&zone->lock);
7406 	zone_seqlock_init(zone);
7407 	zone_pcp_init(zone);
7408 }
7409 
7410 /*
7411  * Set up the zone data structures
7412  * - init pgdat internals
7413  * - init all zones belonging to this node
7414  *
7415  * NOTE: this function is only called during memory hotplug
7416  */
7417 #ifdef CONFIG_MEMORY_HOTPLUG
7418 void __ref free_area_init_core_hotplug(int nid)
7419 {
7420 	enum zone_type z;
7421 	pg_data_t *pgdat = NODE_DATA(nid);
7422 
7423 	pgdat_init_internals(pgdat);
7424 	for (z = 0; z < MAX_NR_ZONES; z++)
7425 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7426 }
7427 #endif
7428 
7429 /*
7430  * Set up the zone data structures:
7431  *   - mark all pages reserved
7432  *   - mark all memory queues empty
7433  *   - clear the memory bitmaps
7434  *
7435  * NOTE: pgdat should get zeroed by caller.
7436  * NOTE: this function is only called during early init.
7437  */
7438 static void __init free_area_init_core(struct pglist_data *pgdat)
7439 {
7440 	enum zone_type j;
7441 	int nid = pgdat->node_id;
7442 
7443 	pgdat_init_internals(pgdat);
7444 	pgdat->per_cpu_nodestats = &boot_nodestats;
7445 
7446 	for (j = 0; j < MAX_NR_ZONES; j++) {
7447 		struct zone *zone = pgdat->node_zones + j;
7448 		unsigned long size, freesize, memmap_pages;
7449 
7450 		size = zone->spanned_pages;
7451 		freesize = zone->present_pages;
7452 
7453 		/*
7454 		 * Adjust freesize so that it accounts for how much memory
7455 		 * is used by this zone for memmap. This affects the watermark
7456 		 * and per-cpu initialisations
7457 		 */
7458 		memmap_pages = calc_memmap_size(size, freesize);
7459 		if (!is_highmem_idx(j)) {
7460 			if (freesize >= memmap_pages) {
7461 				freesize -= memmap_pages;
7462 				if (memmap_pages)
7463 					pr_debug("  %s zone: %lu pages used for memmap\n",
7464 						 zone_names[j], memmap_pages);
7465 			} else
7466 				pr_warn("  %s zone: %lu memmap pages exceeds freesize %lu\n",
7467 					zone_names[j], memmap_pages, freesize);
7468 		}
7469 
7470 		/* Account for reserved pages */
7471 		if (j == 0 && freesize > dma_reserve) {
7472 			freesize -= dma_reserve;
7473 			pr_debug("  %s zone: %lu pages reserved\n", zone_names[0], dma_reserve);
7474 		}
7475 
7476 		if (!is_highmem_idx(j))
7477 			nr_kernel_pages += freesize;
7478 		/* Charge for highmem memmap if there are enough kernel pages */
7479 		else if (nr_kernel_pages > memmap_pages * 2)
7480 			nr_kernel_pages -= memmap_pages;
7481 		nr_all_pages += freesize;
7482 
7483 		/*
7484 		 * Set an approximate value for lowmem here, it will be adjusted
7485 		 * when the bootmem allocator frees pages into the buddy system.
7486 		 * And all highmem pages will be managed by the buddy system.
7487 		 */
7488 		zone_init_internals(zone, j, nid, freesize);
7489 
7490 		if (!size)
7491 			continue;
7492 
7493 		set_pageblock_order();
7494 		setup_usemap(zone);
7495 		init_currently_empty_zone(zone, zone->zone_start_pfn, size);
7496 	}
7497 }
7498 
7499 #ifdef CONFIG_FLATMEM
7500 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7501 {
7502 	unsigned long __maybe_unused start = 0;
7503 	unsigned long __maybe_unused offset = 0;
7504 
7505 	/* Skip empty nodes */
7506 	if (!pgdat->node_spanned_pages)
7507 		return;
7508 
7509 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7510 	offset = pgdat->node_start_pfn - start;
7511 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7512 	if (!pgdat->node_mem_map) {
7513 		unsigned long size, end;
7514 		struct page *map;
7515 
7516 		/*
7517 		 * The zone's endpoints aren't required to be MAX_ORDER
7518 		 * aligned but the node_mem_map endpoints must be in order
7519 		 * for the buddy allocator to function correctly.
7520 		 */
7521 		end = pgdat_end_pfn(pgdat);
7522 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7523 		size =  (end - start) * sizeof(struct page);
7524 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7525 					  pgdat->node_id);
7526 		if (!map)
7527 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7528 			      size, pgdat->node_id);
7529 		pgdat->node_mem_map = map + offset;
7530 	}
7531 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7532 				__func__, pgdat->node_id, (unsigned long)pgdat,
7533 				(unsigned long)pgdat->node_mem_map);
7534 #ifndef CONFIG_NUMA
7535 	/*
7536 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7537 	 */
7538 	if (pgdat == NODE_DATA(0)) {
7539 		mem_map = NODE_DATA(0)->node_mem_map;
7540 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7541 			mem_map -= offset;
7542 	}
7543 #endif
7544 }
7545 #else
7546 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7547 #endif /* CONFIG_FLATMEM */
7548 
7549 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7550 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7551 {
7552 	pgdat->first_deferred_pfn = ULONG_MAX;
7553 }
7554 #else
7555 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7556 #endif
7557 
7558 static void __init free_area_init_node(int nid)
7559 {
7560 	pg_data_t *pgdat = NODE_DATA(nid);
7561 	unsigned long start_pfn = 0;
7562 	unsigned long end_pfn = 0;
7563 
7564 	/* pg_data_t should be reset to zero when it's allocated */
7565 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7566 
7567 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7568 
7569 	pgdat->node_id = nid;
7570 	pgdat->node_start_pfn = start_pfn;
7571 	pgdat->per_cpu_nodestats = NULL;
7572 
7573 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7574 		(u64)start_pfn << PAGE_SHIFT,
7575 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7576 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7577 
7578 	alloc_node_mem_map(pgdat);
7579 	pgdat_set_deferred_range(pgdat);
7580 
7581 	free_area_init_core(pgdat);
7582 }
7583 
7584 void __init free_area_init_memoryless_node(int nid)
7585 {
7586 	free_area_init_node(nid);
7587 }
7588 
7589 #if MAX_NUMNODES > 1
7590 /*
7591  * Figure out the number of possible node ids.
7592  */
7593 void __init setup_nr_node_ids(void)
7594 {
7595 	unsigned int highest;
7596 
7597 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7598 	nr_node_ids = highest + 1;
7599 }
7600 #endif
7601 
7602 /**
7603  * node_map_pfn_alignment - determine the maximum internode alignment
7604  *
7605  * This function should be called after node map is populated and sorted.
7606  * It calculates the maximum power of two alignment which can distinguish
7607  * all the nodes.
7608  *
7609  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7610  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7611  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7612  * shifted, 1GiB is enough and this function will indicate so.
7613  *
7614  * This is used to test whether pfn -> nid mapping of the chosen memory
7615  * model has fine enough granularity to avoid incorrect mapping for the
7616  * populated node map.
7617  *
7618  * Return: the determined alignment in pfn's.  0 if there is no alignment
7619  * requirement (single node).
7620  */
7621 unsigned long __init node_map_pfn_alignment(void)
7622 {
7623 	unsigned long accl_mask = 0, last_end = 0;
7624 	unsigned long start, end, mask;
7625 	int last_nid = NUMA_NO_NODE;
7626 	int i, nid;
7627 
7628 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7629 		if (!start || last_nid < 0 || last_nid == nid) {
7630 			last_nid = nid;
7631 			last_end = end;
7632 			continue;
7633 		}
7634 
7635 		/*
7636 		 * Start with a mask granular enough to pin-point to the
7637 		 * start pfn and tick off bits one-by-one until it becomes
7638 		 * too coarse to separate the current node from the last.
7639 		 */
7640 		mask = ~((1 << __ffs(start)) - 1);
7641 		while (mask && last_end <= (start & (mask << 1)))
7642 			mask <<= 1;
7643 
7644 		/* accumulate all internode masks */
7645 		accl_mask |= mask;
7646 	}
7647 
7648 	/* convert mask to number of pages */
7649 	return ~accl_mask + 1;
7650 }
7651 
7652 /**
7653  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7654  *
7655  * Return: the minimum PFN based on information provided via
7656  * memblock_set_node().
7657  */
7658 unsigned long __init find_min_pfn_with_active_regions(void)
7659 {
7660 	return PHYS_PFN(memblock_start_of_DRAM());
7661 }
7662 
7663 /*
7664  * early_calculate_totalpages()
7665  * Sum pages in active regions for movable zone.
7666  * Populate N_MEMORY for calculating usable_nodes.
7667  */
7668 static unsigned long __init early_calculate_totalpages(void)
7669 {
7670 	unsigned long totalpages = 0;
7671 	unsigned long start_pfn, end_pfn;
7672 	int i, nid;
7673 
7674 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7675 		unsigned long pages = end_pfn - start_pfn;
7676 
7677 		totalpages += pages;
7678 		if (pages)
7679 			node_set_state(nid, N_MEMORY);
7680 	}
7681 	return totalpages;
7682 }
7683 
7684 /*
7685  * Find the PFN the Movable zone begins in each node. Kernel memory
7686  * is spread evenly between nodes as long as the nodes have enough
7687  * memory. When they don't, some nodes will have more kernelcore than
7688  * others
7689  */
7690 static void __init find_zone_movable_pfns_for_nodes(void)
7691 {
7692 	int i, nid;
7693 	unsigned long usable_startpfn;
7694 	unsigned long kernelcore_node, kernelcore_remaining;
7695 	/* save the state before borrow the nodemask */
7696 	nodemask_t saved_node_state = node_states[N_MEMORY];
7697 	unsigned long totalpages = early_calculate_totalpages();
7698 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7699 	struct memblock_region *r;
7700 
7701 	/* Need to find movable_zone earlier when movable_node is specified. */
7702 	find_usable_zone_for_movable();
7703 
7704 	/*
7705 	 * If movable_node is specified, ignore kernelcore and movablecore
7706 	 * options.
7707 	 */
7708 	if (movable_node_is_enabled()) {
7709 		for_each_mem_region(r) {
7710 			if (!memblock_is_hotpluggable(r))
7711 				continue;
7712 
7713 			nid = memblock_get_region_node(r);
7714 
7715 			usable_startpfn = PFN_DOWN(r->base);
7716 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7717 				min(usable_startpfn, zone_movable_pfn[nid]) :
7718 				usable_startpfn;
7719 		}
7720 
7721 		goto out2;
7722 	}
7723 
7724 	/*
7725 	 * If kernelcore=mirror is specified, ignore movablecore option
7726 	 */
7727 	if (mirrored_kernelcore) {
7728 		bool mem_below_4gb_not_mirrored = false;
7729 
7730 		for_each_mem_region(r) {
7731 			if (memblock_is_mirror(r))
7732 				continue;
7733 
7734 			nid = memblock_get_region_node(r);
7735 
7736 			usable_startpfn = memblock_region_memory_base_pfn(r);
7737 
7738 			if (usable_startpfn < 0x100000) {
7739 				mem_below_4gb_not_mirrored = true;
7740 				continue;
7741 			}
7742 
7743 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7744 				min(usable_startpfn, zone_movable_pfn[nid]) :
7745 				usable_startpfn;
7746 		}
7747 
7748 		if (mem_below_4gb_not_mirrored)
7749 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7750 
7751 		goto out2;
7752 	}
7753 
7754 	/*
7755 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7756 	 * amount of necessary memory.
7757 	 */
7758 	if (required_kernelcore_percent)
7759 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7760 				       10000UL;
7761 	if (required_movablecore_percent)
7762 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7763 					10000UL;
7764 
7765 	/*
7766 	 * If movablecore= was specified, calculate what size of
7767 	 * kernelcore that corresponds so that memory usable for
7768 	 * any allocation type is evenly spread. If both kernelcore
7769 	 * and movablecore are specified, then the value of kernelcore
7770 	 * will be used for required_kernelcore if it's greater than
7771 	 * what movablecore would have allowed.
7772 	 */
7773 	if (required_movablecore) {
7774 		unsigned long corepages;
7775 
7776 		/*
7777 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7778 		 * was requested by the user
7779 		 */
7780 		required_movablecore =
7781 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7782 		required_movablecore = min(totalpages, required_movablecore);
7783 		corepages = totalpages - required_movablecore;
7784 
7785 		required_kernelcore = max(required_kernelcore, corepages);
7786 	}
7787 
7788 	/*
7789 	 * If kernelcore was not specified or kernelcore size is larger
7790 	 * than totalpages, there is no ZONE_MOVABLE.
7791 	 */
7792 	if (!required_kernelcore || required_kernelcore >= totalpages)
7793 		goto out;
7794 
7795 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7796 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7797 
7798 restart:
7799 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7800 	kernelcore_node = required_kernelcore / usable_nodes;
7801 	for_each_node_state(nid, N_MEMORY) {
7802 		unsigned long start_pfn, end_pfn;
7803 
7804 		/*
7805 		 * Recalculate kernelcore_node if the division per node
7806 		 * now exceeds what is necessary to satisfy the requested
7807 		 * amount of memory for the kernel
7808 		 */
7809 		if (required_kernelcore < kernelcore_node)
7810 			kernelcore_node = required_kernelcore / usable_nodes;
7811 
7812 		/*
7813 		 * As the map is walked, we track how much memory is usable
7814 		 * by the kernel using kernelcore_remaining. When it is
7815 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7816 		 */
7817 		kernelcore_remaining = kernelcore_node;
7818 
7819 		/* Go through each range of PFNs within this node */
7820 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7821 			unsigned long size_pages;
7822 
7823 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7824 			if (start_pfn >= end_pfn)
7825 				continue;
7826 
7827 			/* Account for what is only usable for kernelcore */
7828 			if (start_pfn < usable_startpfn) {
7829 				unsigned long kernel_pages;
7830 				kernel_pages = min(end_pfn, usable_startpfn)
7831 								- start_pfn;
7832 
7833 				kernelcore_remaining -= min(kernel_pages,
7834 							kernelcore_remaining);
7835 				required_kernelcore -= min(kernel_pages,
7836 							required_kernelcore);
7837 
7838 				/* Continue if range is now fully accounted */
7839 				if (end_pfn <= usable_startpfn) {
7840 
7841 					/*
7842 					 * Push zone_movable_pfn to the end so
7843 					 * that if we have to rebalance
7844 					 * kernelcore across nodes, we will
7845 					 * not double account here
7846 					 */
7847 					zone_movable_pfn[nid] = end_pfn;
7848 					continue;
7849 				}
7850 				start_pfn = usable_startpfn;
7851 			}
7852 
7853 			/*
7854 			 * The usable PFN range for ZONE_MOVABLE is from
7855 			 * start_pfn->end_pfn. Calculate size_pages as the
7856 			 * number of pages used as kernelcore
7857 			 */
7858 			size_pages = end_pfn - start_pfn;
7859 			if (size_pages > kernelcore_remaining)
7860 				size_pages = kernelcore_remaining;
7861 			zone_movable_pfn[nid] = start_pfn + size_pages;
7862 
7863 			/*
7864 			 * Some kernelcore has been met, update counts and
7865 			 * break if the kernelcore for this node has been
7866 			 * satisfied
7867 			 */
7868 			required_kernelcore -= min(required_kernelcore,
7869 								size_pages);
7870 			kernelcore_remaining -= size_pages;
7871 			if (!kernelcore_remaining)
7872 				break;
7873 		}
7874 	}
7875 
7876 	/*
7877 	 * If there is still required_kernelcore, we do another pass with one
7878 	 * less node in the count. This will push zone_movable_pfn[nid] further
7879 	 * along on the nodes that still have memory until kernelcore is
7880 	 * satisfied
7881 	 */
7882 	usable_nodes--;
7883 	if (usable_nodes && required_kernelcore > usable_nodes)
7884 		goto restart;
7885 
7886 out2:
7887 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7888 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7889 		zone_movable_pfn[nid] =
7890 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7891 
7892 out:
7893 	/* restore the node_state */
7894 	node_states[N_MEMORY] = saved_node_state;
7895 }
7896 
7897 /* Any regular or high memory on that node ? */
7898 static void check_for_memory(pg_data_t *pgdat, int nid)
7899 {
7900 	enum zone_type zone_type;
7901 
7902 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7903 		struct zone *zone = &pgdat->node_zones[zone_type];
7904 		if (populated_zone(zone)) {
7905 			if (IS_ENABLED(CONFIG_HIGHMEM))
7906 				node_set_state(nid, N_HIGH_MEMORY);
7907 			if (zone_type <= ZONE_NORMAL)
7908 				node_set_state(nid, N_NORMAL_MEMORY);
7909 			break;
7910 		}
7911 	}
7912 }
7913 
7914 /*
7915  * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7916  * such cases we allow max_zone_pfn sorted in the descending order
7917  */
7918 bool __weak arch_has_descending_max_zone_pfns(void)
7919 {
7920 	return false;
7921 }
7922 
7923 /**
7924  * free_area_init - Initialise all pg_data_t and zone data
7925  * @max_zone_pfn: an array of max PFNs for each zone
7926  *
7927  * This will call free_area_init_node() for each active node in the system.
7928  * Using the page ranges provided by memblock_set_node(), the size of each
7929  * zone in each node and their holes is calculated. If the maximum PFN
7930  * between two adjacent zones match, it is assumed that the zone is empty.
7931  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7932  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7933  * starts where the previous one ended. For example, ZONE_DMA32 starts
7934  * at arch_max_dma_pfn.
7935  */
7936 void __init free_area_init(unsigned long *max_zone_pfn)
7937 {
7938 	unsigned long start_pfn, end_pfn;
7939 	int i, nid, zone;
7940 	bool descending;
7941 
7942 	/* Record where the zone boundaries are */
7943 	memset(arch_zone_lowest_possible_pfn, 0,
7944 				sizeof(arch_zone_lowest_possible_pfn));
7945 	memset(arch_zone_highest_possible_pfn, 0,
7946 				sizeof(arch_zone_highest_possible_pfn));
7947 
7948 	start_pfn = find_min_pfn_with_active_regions();
7949 	descending = arch_has_descending_max_zone_pfns();
7950 
7951 	for (i = 0; i < MAX_NR_ZONES; i++) {
7952 		if (descending)
7953 			zone = MAX_NR_ZONES - i - 1;
7954 		else
7955 			zone = i;
7956 
7957 		if (zone == ZONE_MOVABLE)
7958 			continue;
7959 
7960 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7961 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7962 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7963 
7964 		start_pfn = end_pfn;
7965 	}
7966 
7967 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7968 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7969 	find_zone_movable_pfns_for_nodes();
7970 
7971 	/* Print out the zone ranges */
7972 	pr_info("Zone ranges:\n");
7973 	for (i = 0; i < MAX_NR_ZONES; i++) {
7974 		if (i == ZONE_MOVABLE)
7975 			continue;
7976 		pr_info("  %-8s ", zone_names[i]);
7977 		if (arch_zone_lowest_possible_pfn[i] ==
7978 				arch_zone_highest_possible_pfn[i])
7979 			pr_cont("empty\n");
7980 		else
7981 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7982 				(u64)arch_zone_lowest_possible_pfn[i]
7983 					<< PAGE_SHIFT,
7984 				((u64)arch_zone_highest_possible_pfn[i]
7985 					<< PAGE_SHIFT) - 1);
7986 	}
7987 
7988 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7989 	pr_info("Movable zone start for each node\n");
7990 	for (i = 0; i < MAX_NUMNODES; i++) {
7991 		if (zone_movable_pfn[i])
7992 			pr_info("  Node %d: %#018Lx\n", i,
7993 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7994 	}
7995 
7996 	/*
7997 	 * Print out the early node map, and initialize the
7998 	 * subsection-map relative to active online memory ranges to
7999 	 * enable future "sub-section" extensions of the memory map.
8000 	 */
8001 	pr_info("Early memory node ranges\n");
8002 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
8003 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
8004 			(u64)start_pfn << PAGE_SHIFT,
8005 			((u64)end_pfn << PAGE_SHIFT) - 1);
8006 		subsection_map_init(start_pfn, end_pfn - start_pfn);
8007 	}
8008 
8009 	/* Initialise every node */
8010 	mminit_verify_pageflags_layout();
8011 	setup_nr_node_ids();
8012 	for_each_online_node(nid) {
8013 		pg_data_t *pgdat = NODE_DATA(nid);
8014 		free_area_init_node(nid);
8015 
8016 		/* Any memory on that node */
8017 		if (pgdat->node_present_pages)
8018 			node_set_state(nid, N_MEMORY);
8019 		check_for_memory(pgdat, nid);
8020 	}
8021 
8022 	memmap_init();
8023 }
8024 
8025 static int __init cmdline_parse_core(char *p, unsigned long *core,
8026 				     unsigned long *percent)
8027 {
8028 	unsigned long long coremem;
8029 	char *endptr;
8030 
8031 	if (!p)
8032 		return -EINVAL;
8033 
8034 	/* Value may be a percentage of total memory, otherwise bytes */
8035 	coremem = simple_strtoull(p, &endptr, 0);
8036 	if (*endptr == '%') {
8037 		/* Paranoid check for percent values greater than 100 */
8038 		WARN_ON(coremem > 100);
8039 
8040 		*percent = coremem;
8041 	} else {
8042 		coremem = memparse(p, &p);
8043 		/* Paranoid check that UL is enough for the coremem value */
8044 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
8045 
8046 		*core = coremem >> PAGE_SHIFT;
8047 		*percent = 0UL;
8048 	}
8049 	return 0;
8050 }
8051 
8052 /*
8053  * kernelcore=size sets the amount of memory for use for allocations that
8054  * cannot be reclaimed or migrated.
8055  */
8056 static int __init cmdline_parse_kernelcore(char *p)
8057 {
8058 	/* parse kernelcore=mirror */
8059 	if (parse_option_str(p, "mirror")) {
8060 		mirrored_kernelcore = true;
8061 		return 0;
8062 	}
8063 
8064 	return cmdline_parse_core(p, &required_kernelcore,
8065 				  &required_kernelcore_percent);
8066 }
8067 
8068 /*
8069  * movablecore=size sets the amount of memory for use for allocations that
8070  * can be reclaimed or migrated.
8071  */
8072 static int __init cmdline_parse_movablecore(char *p)
8073 {
8074 	return cmdline_parse_core(p, &required_movablecore,
8075 				  &required_movablecore_percent);
8076 }
8077 
8078 early_param("kernelcore", cmdline_parse_kernelcore);
8079 early_param("movablecore", cmdline_parse_movablecore);
8080 
8081 void adjust_managed_page_count(struct page *page, long count)
8082 {
8083 	atomic_long_add(count, &page_zone(page)->managed_pages);
8084 	totalram_pages_add(count);
8085 #ifdef CONFIG_HIGHMEM
8086 	if (PageHighMem(page))
8087 		totalhigh_pages_add(count);
8088 #endif
8089 }
8090 EXPORT_SYMBOL(adjust_managed_page_count);
8091 
8092 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
8093 {
8094 	void *pos;
8095 	unsigned long pages = 0;
8096 
8097 	start = (void *)PAGE_ALIGN((unsigned long)start);
8098 	end = (void *)((unsigned long)end & PAGE_MASK);
8099 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
8100 		struct page *page = virt_to_page(pos);
8101 		void *direct_map_addr;
8102 
8103 		/*
8104 		 * 'direct_map_addr' might be different from 'pos'
8105 		 * because some architectures' virt_to_page()
8106 		 * work with aliases.  Getting the direct map
8107 		 * address ensures that we get a _writeable_
8108 		 * alias for the memset().
8109 		 */
8110 		direct_map_addr = page_address(page);
8111 		/*
8112 		 * Perform a kasan-unchecked memset() since this memory
8113 		 * has not been initialized.
8114 		 */
8115 		direct_map_addr = kasan_reset_tag(direct_map_addr);
8116 		if ((unsigned int)poison <= 0xFF)
8117 			memset(direct_map_addr, poison, PAGE_SIZE);
8118 
8119 		free_reserved_page(page);
8120 	}
8121 
8122 	if (pages && s)
8123 		pr_info("Freeing %s memory: %ldK\n",
8124 			s, pages << (PAGE_SHIFT - 10));
8125 
8126 	return pages;
8127 }
8128 
8129 void __init mem_init_print_info(void)
8130 {
8131 	unsigned long physpages, codesize, datasize, rosize, bss_size;
8132 	unsigned long init_code_size, init_data_size;
8133 
8134 	physpages = get_num_physpages();
8135 	codesize = _etext - _stext;
8136 	datasize = _edata - _sdata;
8137 	rosize = __end_rodata - __start_rodata;
8138 	bss_size = __bss_stop - __bss_start;
8139 	init_data_size = __init_end - __init_begin;
8140 	init_code_size = _einittext - _sinittext;
8141 
8142 	/*
8143 	 * Detect special cases and adjust section sizes accordingly:
8144 	 * 1) .init.* may be embedded into .data sections
8145 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
8146 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
8147 	 * 3) .rodata.* may be embedded into .text or .data sections.
8148 	 */
8149 #define adj_init_size(start, end, size, pos, adj) \
8150 	do { \
8151 		if (start <= pos && pos < end && size > adj) \
8152 			size -= adj; \
8153 	} while (0)
8154 
8155 	adj_init_size(__init_begin, __init_end, init_data_size,
8156 		     _sinittext, init_code_size);
8157 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
8158 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
8159 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
8160 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
8161 
8162 #undef	adj_init_size
8163 
8164 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
8165 #ifdef	CONFIG_HIGHMEM
8166 		", %luK highmem"
8167 #endif
8168 		")\n",
8169 		nr_free_pages() << (PAGE_SHIFT - 10),
8170 		physpages << (PAGE_SHIFT - 10),
8171 		codesize >> 10, datasize >> 10, rosize >> 10,
8172 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
8173 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
8174 		totalcma_pages << (PAGE_SHIFT - 10)
8175 #ifdef	CONFIG_HIGHMEM
8176 		, totalhigh_pages() << (PAGE_SHIFT - 10)
8177 #endif
8178 		);
8179 }
8180 
8181 /**
8182  * set_dma_reserve - set the specified number of pages reserved in the first zone
8183  * @new_dma_reserve: The number of pages to mark reserved
8184  *
8185  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
8186  * In the DMA zone, a significant percentage may be consumed by kernel image
8187  * and other unfreeable allocations which can skew the watermarks badly. This
8188  * function may optionally be used to account for unfreeable pages in the
8189  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
8190  * smaller per-cpu batchsize.
8191  */
8192 void __init set_dma_reserve(unsigned long new_dma_reserve)
8193 {
8194 	dma_reserve = new_dma_reserve;
8195 }
8196 
8197 static int page_alloc_cpu_dead(unsigned int cpu)
8198 {
8199 	struct zone *zone;
8200 
8201 	lru_add_drain_cpu(cpu);
8202 	drain_pages(cpu);
8203 
8204 	/*
8205 	 * Spill the event counters of the dead processor
8206 	 * into the current processors event counters.
8207 	 * This artificially elevates the count of the current
8208 	 * processor.
8209 	 */
8210 	vm_events_fold_cpu(cpu);
8211 
8212 	/*
8213 	 * Zero the differential counters of the dead processor
8214 	 * so that the vm statistics are consistent.
8215 	 *
8216 	 * This is only okay since the processor is dead and cannot
8217 	 * race with what we are doing.
8218 	 */
8219 	cpu_vm_stats_fold(cpu);
8220 
8221 	for_each_populated_zone(zone)
8222 		zone_pcp_update(zone, 0);
8223 
8224 	return 0;
8225 }
8226 
8227 static int page_alloc_cpu_online(unsigned int cpu)
8228 {
8229 	struct zone *zone;
8230 
8231 	for_each_populated_zone(zone)
8232 		zone_pcp_update(zone, 1);
8233 	return 0;
8234 }
8235 
8236 #ifdef CONFIG_NUMA
8237 int hashdist = HASHDIST_DEFAULT;
8238 
8239 static int __init set_hashdist(char *str)
8240 {
8241 	if (!str)
8242 		return 0;
8243 	hashdist = simple_strtoul(str, &str, 0);
8244 	return 1;
8245 }
8246 __setup("hashdist=", set_hashdist);
8247 #endif
8248 
8249 void __init page_alloc_init(void)
8250 {
8251 	int ret;
8252 
8253 #ifdef CONFIG_NUMA
8254 	if (num_node_state(N_MEMORY) == 1)
8255 		hashdist = 0;
8256 #endif
8257 
8258 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC,
8259 					"mm/page_alloc:pcp",
8260 					page_alloc_cpu_online,
8261 					page_alloc_cpu_dead);
8262 	WARN_ON(ret < 0);
8263 }
8264 
8265 /*
8266  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
8267  *	or min_free_kbytes changes.
8268  */
8269 static void calculate_totalreserve_pages(void)
8270 {
8271 	struct pglist_data *pgdat;
8272 	unsigned long reserve_pages = 0;
8273 	enum zone_type i, j;
8274 
8275 	for_each_online_pgdat(pgdat) {
8276 
8277 		pgdat->totalreserve_pages = 0;
8278 
8279 		for (i = 0; i < MAX_NR_ZONES; i++) {
8280 			struct zone *zone = pgdat->node_zones + i;
8281 			long max = 0;
8282 			unsigned long managed_pages = zone_managed_pages(zone);
8283 
8284 			/* Find valid and maximum lowmem_reserve in the zone */
8285 			for (j = i; j < MAX_NR_ZONES; j++) {
8286 				if (zone->lowmem_reserve[j] > max)
8287 					max = zone->lowmem_reserve[j];
8288 			}
8289 
8290 			/* we treat the high watermark as reserved pages. */
8291 			max += high_wmark_pages(zone);
8292 
8293 			if (max > managed_pages)
8294 				max = managed_pages;
8295 
8296 			pgdat->totalreserve_pages += max;
8297 
8298 			reserve_pages += max;
8299 		}
8300 	}
8301 	totalreserve_pages = reserve_pages;
8302 }
8303 
8304 /*
8305  * setup_per_zone_lowmem_reserve - called whenever
8306  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
8307  *	has a correct pages reserved value, so an adequate number of
8308  *	pages are left in the zone after a successful __alloc_pages().
8309  */
8310 static void setup_per_zone_lowmem_reserve(void)
8311 {
8312 	struct pglist_data *pgdat;
8313 	enum zone_type i, j;
8314 
8315 	for_each_online_pgdat(pgdat) {
8316 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
8317 			struct zone *zone = &pgdat->node_zones[i];
8318 			int ratio = sysctl_lowmem_reserve_ratio[i];
8319 			bool clear = !ratio || !zone_managed_pages(zone);
8320 			unsigned long managed_pages = 0;
8321 
8322 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
8323 				struct zone *upper_zone = &pgdat->node_zones[j];
8324 
8325 				managed_pages += zone_managed_pages(upper_zone);
8326 
8327 				if (clear)
8328 					zone->lowmem_reserve[j] = 0;
8329 				else
8330 					zone->lowmem_reserve[j] = managed_pages / ratio;
8331 			}
8332 		}
8333 	}
8334 
8335 	/* update totalreserve_pages */
8336 	calculate_totalreserve_pages();
8337 }
8338 
8339 static void __setup_per_zone_wmarks(void)
8340 {
8341 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8342 	unsigned long lowmem_pages = 0;
8343 	struct zone *zone;
8344 	unsigned long flags;
8345 
8346 	/* Calculate total number of !ZONE_HIGHMEM pages */
8347 	for_each_zone(zone) {
8348 		if (!is_highmem(zone))
8349 			lowmem_pages += zone_managed_pages(zone);
8350 	}
8351 
8352 	for_each_zone(zone) {
8353 		u64 tmp;
8354 
8355 		spin_lock_irqsave(&zone->lock, flags);
8356 		tmp = (u64)pages_min * zone_managed_pages(zone);
8357 		do_div(tmp, lowmem_pages);
8358 		if (is_highmem(zone)) {
8359 			/*
8360 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8361 			 * need highmem pages, so cap pages_min to a small
8362 			 * value here.
8363 			 *
8364 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8365 			 * deltas control async page reclaim, and so should
8366 			 * not be capped for highmem.
8367 			 */
8368 			unsigned long min_pages;
8369 
8370 			min_pages = zone_managed_pages(zone) / 1024;
8371 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8372 			zone->_watermark[WMARK_MIN] = min_pages;
8373 		} else {
8374 			/*
8375 			 * If it's a lowmem zone, reserve a number of pages
8376 			 * proportionate to the zone's size.
8377 			 */
8378 			zone->_watermark[WMARK_MIN] = tmp;
8379 		}
8380 
8381 		/*
8382 		 * Set the kswapd watermarks distance according to the
8383 		 * scale factor in proportion to available memory, but
8384 		 * ensure a minimum size on small systems.
8385 		 */
8386 		tmp = max_t(u64, tmp >> 2,
8387 			    mult_frac(zone_managed_pages(zone),
8388 				      watermark_scale_factor, 10000));
8389 
8390 		zone->watermark_boost = 0;
8391 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8392 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8393 
8394 		spin_unlock_irqrestore(&zone->lock, flags);
8395 	}
8396 
8397 	/* update totalreserve_pages */
8398 	calculate_totalreserve_pages();
8399 }
8400 
8401 /**
8402  * setup_per_zone_wmarks - called when min_free_kbytes changes
8403  * or when memory is hot-{added|removed}
8404  *
8405  * Ensures that the watermark[min,low,high] values for each zone are set
8406  * correctly with respect to min_free_kbytes.
8407  */
8408 void setup_per_zone_wmarks(void)
8409 {
8410 	struct zone *zone;
8411 	static DEFINE_SPINLOCK(lock);
8412 
8413 	spin_lock(&lock);
8414 	__setup_per_zone_wmarks();
8415 	spin_unlock(&lock);
8416 
8417 	/*
8418 	 * The watermark size have changed so update the pcpu batch
8419 	 * and high limits or the limits may be inappropriate.
8420 	 */
8421 	for_each_zone(zone)
8422 		zone_pcp_update(zone, 0);
8423 }
8424 
8425 /*
8426  * Initialise min_free_kbytes.
8427  *
8428  * For small machines we want it small (128k min).  For large machines
8429  * we want it large (256MB max).  But it is not linear, because network
8430  * bandwidth does not increase linearly with machine size.  We use
8431  *
8432  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8433  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8434  *
8435  * which yields
8436  *
8437  * 16MB:	512k
8438  * 32MB:	724k
8439  * 64MB:	1024k
8440  * 128MB:	1448k
8441  * 256MB:	2048k
8442  * 512MB:	2896k
8443  * 1024MB:	4096k
8444  * 2048MB:	5792k
8445  * 4096MB:	8192k
8446  * 8192MB:	11584k
8447  * 16384MB:	16384k
8448  */
8449 int __meminit init_per_zone_wmark_min(void)
8450 {
8451 	unsigned long lowmem_kbytes;
8452 	int new_min_free_kbytes;
8453 
8454 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8455 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8456 
8457 	if (new_min_free_kbytes > user_min_free_kbytes) {
8458 		min_free_kbytes = new_min_free_kbytes;
8459 		if (min_free_kbytes < 128)
8460 			min_free_kbytes = 128;
8461 		if (min_free_kbytes > 262144)
8462 			min_free_kbytes = 262144;
8463 	} else {
8464 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8465 				new_min_free_kbytes, user_min_free_kbytes);
8466 	}
8467 	setup_per_zone_wmarks();
8468 	refresh_zone_stat_thresholds();
8469 	setup_per_zone_lowmem_reserve();
8470 
8471 #ifdef CONFIG_NUMA
8472 	setup_min_unmapped_ratio();
8473 	setup_min_slab_ratio();
8474 #endif
8475 
8476 	khugepaged_min_free_kbytes_update();
8477 
8478 	return 0;
8479 }
8480 postcore_initcall(init_per_zone_wmark_min)
8481 
8482 /*
8483  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8484  *	that we can call two helper functions whenever min_free_kbytes
8485  *	changes.
8486  */
8487 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8488 		void *buffer, size_t *length, loff_t *ppos)
8489 {
8490 	int rc;
8491 
8492 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8493 	if (rc)
8494 		return rc;
8495 
8496 	if (write) {
8497 		user_min_free_kbytes = min_free_kbytes;
8498 		setup_per_zone_wmarks();
8499 	}
8500 	return 0;
8501 }
8502 
8503 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8504 		void *buffer, size_t *length, loff_t *ppos)
8505 {
8506 	int rc;
8507 
8508 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8509 	if (rc)
8510 		return rc;
8511 
8512 	if (write)
8513 		setup_per_zone_wmarks();
8514 
8515 	return 0;
8516 }
8517 
8518 #ifdef CONFIG_NUMA
8519 static void setup_min_unmapped_ratio(void)
8520 {
8521 	pg_data_t *pgdat;
8522 	struct zone *zone;
8523 
8524 	for_each_online_pgdat(pgdat)
8525 		pgdat->min_unmapped_pages = 0;
8526 
8527 	for_each_zone(zone)
8528 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8529 						         sysctl_min_unmapped_ratio) / 100;
8530 }
8531 
8532 
8533 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8534 		void *buffer, size_t *length, loff_t *ppos)
8535 {
8536 	int rc;
8537 
8538 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8539 	if (rc)
8540 		return rc;
8541 
8542 	setup_min_unmapped_ratio();
8543 
8544 	return 0;
8545 }
8546 
8547 static void setup_min_slab_ratio(void)
8548 {
8549 	pg_data_t *pgdat;
8550 	struct zone *zone;
8551 
8552 	for_each_online_pgdat(pgdat)
8553 		pgdat->min_slab_pages = 0;
8554 
8555 	for_each_zone(zone)
8556 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8557 						     sysctl_min_slab_ratio) / 100;
8558 }
8559 
8560 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8561 		void *buffer, size_t *length, loff_t *ppos)
8562 {
8563 	int rc;
8564 
8565 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8566 	if (rc)
8567 		return rc;
8568 
8569 	setup_min_slab_ratio();
8570 
8571 	return 0;
8572 }
8573 #endif
8574 
8575 /*
8576  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8577  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8578  *	whenever sysctl_lowmem_reserve_ratio changes.
8579  *
8580  * The reserve ratio obviously has absolutely no relation with the
8581  * minimum watermarks. The lowmem reserve ratio can only make sense
8582  * if in function of the boot time zone sizes.
8583  */
8584 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8585 		void *buffer, size_t *length, loff_t *ppos)
8586 {
8587 	int i;
8588 
8589 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8590 
8591 	for (i = 0; i < MAX_NR_ZONES; i++) {
8592 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8593 			sysctl_lowmem_reserve_ratio[i] = 0;
8594 	}
8595 
8596 	setup_per_zone_lowmem_reserve();
8597 	return 0;
8598 }
8599 
8600 /*
8601  * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each
8602  * cpu. It is the fraction of total pages in each zone that a hot per cpu
8603  * pagelist can have before it gets flushed back to buddy allocator.
8604  */
8605 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table,
8606 		int write, void *buffer, size_t *length, loff_t *ppos)
8607 {
8608 	struct zone *zone;
8609 	int old_percpu_pagelist_high_fraction;
8610 	int ret;
8611 
8612 	mutex_lock(&pcp_batch_high_lock);
8613 	old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction;
8614 
8615 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8616 	if (!write || ret < 0)
8617 		goto out;
8618 
8619 	/* Sanity checking to avoid pcp imbalance */
8620 	if (percpu_pagelist_high_fraction &&
8621 	    percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) {
8622 		percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction;
8623 		ret = -EINVAL;
8624 		goto out;
8625 	}
8626 
8627 	/* No change? */
8628 	if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction)
8629 		goto out;
8630 
8631 	for_each_populated_zone(zone)
8632 		zone_set_pageset_high_and_batch(zone, 0);
8633 out:
8634 	mutex_unlock(&pcp_batch_high_lock);
8635 	return ret;
8636 }
8637 
8638 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8639 /*
8640  * Returns the number of pages that arch has reserved but
8641  * is not known to alloc_large_system_hash().
8642  */
8643 static unsigned long __init arch_reserved_kernel_pages(void)
8644 {
8645 	return 0;
8646 }
8647 #endif
8648 
8649 /*
8650  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8651  * machines. As memory size is increased the scale is also increased but at
8652  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8653  * quadruples the scale is increased by one, which means the size of hash table
8654  * only doubles, instead of quadrupling as well.
8655  * Because 32-bit systems cannot have large physical memory, where this scaling
8656  * makes sense, it is disabled on such platforms.
8657  */
8658 #if __BITS_PER_LONG > 32
8659 #define ADAPT_SCALE_BASE	(64ul << 30)
8660 #define ADAPT_SCALE_SHIFT	2
8661 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8662 #endif
8663 
8664 /*
8665  * allocate a large system hash table from bootmem
8666  * - it is assumed that the hash table must contain an exact power-of-2
8667  *   quantity of entries
8668  * - limit is the number of hash buckets, not the total allocation size
8669  */
8670 void *__init alloc_large_system_hash(const char *tablename,
8671 				     unsigned long bucketsize,
8672 				     unsigned long numentries,
8673 				     int scale,
8674 				     int flags,
8675 				     unsigned int *_hash_shift,
8676 				     unsigned int *_hash_mask,
8677 				     unsigned long low_limit,
8678 				     unsigned long high_limit)
8679 {
8680 	unsigned long long max = high_limit;
8681 	unsigned long log2qty, size;
8682 	void *table = NULL;
8683 	gfp_t gfp_flags;
8684 	bool virt;
8685 	bool huge;
8686 
8687 	/* allow the kernel cmdline to have a say */
8688 	if (!numentries) {
8689 		/* round applicable memory size up to nearest megabyte */
8690 		numentries = nr_kernel_pages;
8691 		numentries -= arch_reserved_kernel_pages();
8692 
8693 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8694 		if (PAGE_SHIFT < 20)
8695 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8696 
8697 #if __BITS_PER_LONG > 32
8698 		if (!high_limit) {
8699 			unsigned long adapt;
8700 
8701 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8702 			     adapt <<= ADAPT_SCALE_SHIFT)
8703 				scale++;
8704 		}
8705 #endif
8706 
8707 		/* limit to 1 bucket per 2^scale bytes of low memory */
8708 		if (scale > PAGE_SHIFT)
8709 			numentries >>= (scale - PAGE_SHIFT);
8710 		else
8711 			numentries <<= (PAGE_SHIFT - scale);
8712 
8713 		/* Make sure we've got at least a 0-order allocation.. */
8714 		if (unlikely(flags & HASH_SMALL)) {
8715 			/* Makes no sense without HASH_EARLY */
8716 			WARN_ON(!(flags & HASH_EARLY));
8717 			if (!(numentries >> *_hash_shift)) {
8718 				numentries = 1UL << *_hash_shift;
8719 				BUG_ON(!numentries);
8720 			}
8721 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8722 			numentries = PAGE_SIZE / bucketsize;
8723 	}
8724 	numentries = roundup_pow_of_two(numentries);
8725 
8726 	/* limit allocation size to 1/16 total memory by default */
8727 	if (max == 0) {
8728 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8729 		do_div(max, bucketsize);
8730 	}
8731 	max = min(max, 0x80000000ULL);
8732 
8733 	if (numentries < low_limit)
8734 		numentries = low_limit;
8735 	if (numentries > max)
8736 		numentries = max;
8737 
8738 	log2qty = ilog2(numentries);
8739 
8740 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8741 	do {
8742 		virt = false;
8743 		size = bucketsize << log2qty;
8744 		if (flags & HASH_EARLY) {
8745 			if (flags & HASH_ZERO)
8746 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8747 			else
8748 				table = memblock_alloc_raw(size,
8749 							   SMP_CACHE_BYTES);
8750 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8751 			table = __vmalloc(size, gfp_flags);
8752 			virt = true;
8753 			huge = is_vm_area_hugepages(table);
8754 		} else {
8755 			/*
8756 			 * If bucketsize is not a power-of-two, we may free
8757 			 * some pages at the end of hash table which
8758 			 * alloc_pages_exact() automatically does
8759 			 */
8760 			table = alloc_pages_exact(size, gfp_flags);
8761 			kmemleak_alloc(table, size, 1, gfp_flags);
8762 		}
8763 	} while (!table && size > PAGE_SIZE && --log2qty);
8764 
8765 	if (!table)
8766 		panic("Failed to allocate %s hash table\n", tablename);
8767 
8768 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8769 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8770 		virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear");
8771 
8772 	if (_hash_shift)
8773 		*_hash_shift = log2qty;
8774 	if (_hash_mask)
8775 		*_hash_mask = (1 << log2qty) - 1;
8776 
8777 	return table;
8778 }
8779 
8780 /*
8781  * This function checks whether pageblock includes unmovable pages or not.
8782  *
8783  * PageLRU check without isolation or lru_lock could race so that
8784  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8785  * check without lock_page also may miss some movable non-lru pages at
8786  * race condition. So you can't expect this function should be exact.
8787  *
8788  * Returns a page without holding a reference. If the caller wants to
8789  * dereference that page (e.g., dumping), it has to make sure that it
8790  * cannot get removed (e.g., via memory unplug) concurrently.
8791  *
8792  */
8793 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8794 				 int migratetype, int flags)
8795 {
8796 	unsigned long iter = 0;
8797 	unsigned long pfn = page_to_pfn(page);
8798 	unsigned long offset = pfn % pageblock_nr_pages;
8799 
8800 	if (is_migrate_cma_page(page)) {
8801 		/*
8802 		 * CMA allocations (alloc_contig_range) really need to mark
8803 		 * isolate CMA pageblocks even when they are not movable in fact
8804 		 * so consider them movable here.
8805 		 */
8806 		if (is_migrate_cma(migratetype))
8807 			return NULL;
8808 
8809 		return page;
8810 	}
8811 
8812 	for (; iter < pageblock_nr_pages - offset; iter++) {
8813 		if (!pfn_valid_within(pfn + iter))
8814 			continue;
8815 
8816 		page = pfn_to_page(pfn + iter);
8817 
8818 		/*
8819 		 * Both, bootmem allocations and memory holes are marked
8820 		 * PG_reserved and are unmovable. We can even have unmovable
8821 		 * allocations inside ZONE_MOVABLE, for example when
8822 		 * specifying "movablecore".
8823 		 */
8824 		if (PageReserved(page))
8825 			return page;
8826 
8827 		/*
8828 		 * If the zone is movable and we have ruled out all reserved
8829 		 * pages then it should be reasonably safe to assume the rest
8830 		 * is movable.
8831 		 */
8832 		if (zone_idx(zone) == ZONE_MOVABLE)
8833 			continue;
8834 
8835 		/*
8836 		 * Hugepages are not in LRU lists, but they're movable.
8837 		 * THPs are on the LRU, but need to be counted as #small pages.
8838 		 * We need not scan over tail pages because we don't
8839 		 * handle each tail page individually in migration.
8840 		 */
8841 		if (PageHuge(page) || PageTransCompound(page)) {
8842 			struct page *head = compound_head(page);
8843 			unsigned int skip_pages;
8844 
8845 			if (PageHuge(page)) {
8846 				if (!hugepage_migration_supported(page_hstate(head)))
8847 					return page;
8848 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8849 				return page;
8850 			}
8851 
8852 			skip_pages = compound_nr(head) - (page - head);
8853 			iter += skip_pages - 1;
8854 			continue;
8855 		}
8856 
8857 		/*
8858 		 * We can't use page_count without pin a page
8859 		 * because another CPU can free compound page.
8860 		 * This check already skips compound tails of THP
8861 		 * because their page->_refcount is zero at all time.
8862 		 */
8863 		if (!page_ref_count(page)) {
8864 			if (PageBuddy(page))
8865 				iter += (1 << buddy_order(page)) - 1;
8866 			continue;
8867 		}
8868 
8869 		/*
8870 		 * The HWPoisoned page may be not in buddy system, and
8871 		 * page_count() is not 0.
8872 		 */
8873 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8874 			continue;
8875 
8876 		/*
8877 		 * We treat all PageOffline() pages as movable when offlining
8878 		 * to give drivers a chance to decrement their reference count
8879 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8880 		 * can be offlined as there are no direct references anymore.
8881 		 * For actually unmovable PageOffline() where the driver does
8882 		 * not support this, we will fail later when trying to actually
8883 		 * move these pages that still have a reference count > 0.
8884 		 * (false negatives in this function only)
8885 		 */
8886 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8887 			continue;
8888 
8889 		if (__PageMovable(page) || PageLRU(page))
8890 			continue;
8891 
8892 		/*
8893 		 * If there are RECLAIMABLE pages, we need to check
8894 		 * it.  But now, memory offline itself doesn't call
8895 		 * shrink_node_slabs() and it still to be fixed.
8896 		 */
8897 		return page;
8898 	}
8899 	return NULL;
8900 }
8901 
8902 #ifdef CONFIG_CONTIG_ALLOC
8903 static unsigned long pfn_max_align_down(unsigned long pfn)
8904 {
8905 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8906 			     pageblock_nr_pages) - 1);
8907 }
8908 
8909 static unsigned long pfn_max_align_up(unsigned long pfn)
8910 {
8911 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8912 				pageblock_nr_pages));
8913 }
8914 
8915 #if defined(CONFIG_DYNAMIC_DEBUG) || \
8916 	(defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE))
8917 /* Usage: See admin-guide/dynamic-debug-howto.rst */
8918 static void alloc_contig_dump_pages(struct list_head *page_list)
8919 {
8920 	DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure");
8921 
8922 	if (DYNAMIC_DEBUG_BRANCH(descriptor)) {
8923 		struct page *page;
8924 
8925 		dump_stack();
8926 		list_for_each_entry(page, page_list, lru)
8927 			dump_page(page, "migration failure");
8928 	}
8929 }
8930 #else
8931 static inline void alloc_contig_dump_pages(struct list_head *page_list)
8932 {
8933 }
8934 #endif
8935 
8936 /* [start, end) must belong to a single zone. */
8937 static int __alloc_contig_migrate_range(struct compact_control *cc,
8938 					unsigned long start, unsigned long end)
8939 {
8940 	/* This function is based on compact_zone() from compaction.c. */
8941 	unsigned int nr_reclaimed;
8942 	unsigned long pfn = start;
8943 	unsigned int tries = 0;
8944 	int ret = 0;
8945 	struct migration_target_control mtc = {
8946 		.nid = zone_to_nid(cc->zone),
8947 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8948 	};
8949 
8950 	lru_cache_disable();
8951 
8952 	while (pfn < end || !list_empty(&cc->migratepages)) {
8953 		if (fatal_signal_pending(current)) {
8954 			ret = -EINTR;
8955 			break;
8956 		}
8957 
8958 		if (list_empty(&cc->migratepages)) {
8959 			cc->nr_migratepages = 0;
8960 			ret = isolate_migratepages_range(cc, pfn, end);
8961 			if (ret && ret != -EAGAIN)
8962 				break;
8963 			pfn = cc->migrate_pfn;
8964 			tries = 0;
8965 		} else if (++tries == 5) {
8966 			ret = -EBUSY;
8967 			break;
8968 		}
8969 
8970 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8971 							&cc->migratepages);
8972 		cc->nr_migratepages -= nr_reclaimed;
8973 
8974 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8975 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8976 
8977 		/*
8978 		 * On -ENOMEM, migrate_pages() bails out right away. It is pointless
8979 		 * to retry again over this error, so do the same here.
8980 		 */
8981 		if (ret == -ENOMEM)
8982 			break;
8983 	}
8984 
8985 	lru_cache_enable();
8986 	if (ret < 0) {
8987 		if (ret == -EBUSY)
8988 			alloc_contig_dump_pages(&cc->migratepages);
8989 		putback_movable_pages(&cc->migratepages);
8990 		return ret;
8991 	}
8992 	return 0;
8993 }
8994 
8995 /**
8996  * alloc_contig_range() -- tries to allocate given range of pages
8997  * @start:	start PFN to allocate
8998  * @end:	one-past-the-last PFN to allocate
8999  * @migratetype:	migratetype of the underlying pageblocks (either
9000  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
9001  *			in range must have the same migratetype and it must
9002  *			be either of the two.
9003  * @gfp_mask:	GFP mask to use during compaction
9004  *
9005  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
9006  * aligned.  The PFN range must belong to a single zone.
9007  *
9008  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
9009  * pageblocks in the range.  Once isolated, the pageblocks should not
9010  * be modified by others.
9011  *
9012  * Return: zero on success or negative error code.  On success all
9013  * pages which PFN is in [start, end) are allocated for the caller and
9014  * need to be freed with free_contig_range().
9015  */
9016 int alloc_contig_range(unsigned long start, unsigned long end,
9017 		       unsigned migratetype, gfp_t gfp_mask)
9018 {
9019 	unsigned long outer_start, outer_end;
9020 	unsigned int order;
9021 	int ret = 0;
9022 
9023 	struct compact_control cc = {
9024 		.nr_migratepages = 0,
9025 		.order = -1,
9026 		.zone = page_zone(pfn_to_page(start)),
9027 		.mode = MIGRATE_SYNC,
9028 		.ignore_skip_hint = true,
9029 		.no_set_skip_hint = true,
9030 		.gfp_mask = current_gfp_context(gfp_mask),
9031 		.alloc_contig = true,
9032 	};
9033 	INIT_LIST_HEAD(&cc.migratepages);
9034 
9035 	/*
9036 	 * What we do here is we mark all pageblocks in range as
9037 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
9038 	 * have different sizes, and due to the way page allocator
9039 	 * work, we align the range to biggest of the two pages so
9040 	 * that page allocator won't try to merge buddies from
9041 	 * different pageblocks and change MIGRATE_ISOLATE to some
9042 	 * other migration type.
9043 	 *
9044 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
9045 	 * migrate the pages from an unaligned range (ie. pages that
9046 	 * we are interested in).  This will put all the pages in
9047 	 * range back to page allocator as MIGRATE_ISOLATE.
9048 	 *
9049 	 * When this is done, we take the pages in range from page
9050 	 * allocator removing them from the buddy system.  This way
9051 	 * page allocator will never consider using them.
9052 	 *
9053 	 * This lets us mark the pageblocks back as
9054 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
9055 	 * aligned range but not in the unaligned, original range are
9056 	 * put back to page allocator so that buddy can use them.
9057 	 */
9058 
9059 	ret = start_isolate_page_range(pfn_max_align_down(start),
9060 				       pfn_max_align_up(end), migratetype, 0);
9061 	if (ret)
9062 		return ret;
9063 
9064 	drain_all_pages(cc.zone);
9065 
9066 	/*
9067 	 * In case of -EBUSY, we'd like to know which page causes problem.
9068 	 * So, just fall through. test_pages_isolated() has a tracepoint
9069 	 * which will report the busy page.
9070 	 *
9071 	 * It is possible that busy pages could become available before
9072 	 * the call to test_pages_isolated, and the range will actually be
9073 	 * allocated.  So, if we fall through be sure to clear ret so that
9074 	 * -EBUSY is not accidentally used or returned to caller.
9075 	 */
9076 	ret = __alloc_contig_migrate_range(&cc, start, end);
9077 	if (ret && ret != -EBUSY)
9078 		goto done;
9079 	ret = 0;
9080 
9081 	/*
9082 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
9083 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
9084 	 * more, all pages in [start, end) are free in page allocator.
9085 	 * What we are going to do is to allocate all pages from
9086 	 * [start, end) (that is remove them from page allocator).
9087 	 *
9088 	 * The only problem is that pages at the beginning and at the
9089 	 * end of interesting range may be not aligned with pages that
9090 	 * page allocator holds, ie. they can be part of higher order
9091 	 * pages.  Because of this, we reserve the bigger range and
9092 	 * once this is done free the pages we are not interested in.
9093 	 *
9094 	 * We don't have to hold zone->lock here because the pages are
9095 	 * isolated thus they won't get removed from buddy.
9096 	 */
9097 
9098 	order = 0;
9099 	outer_start = start;
9100 	while (!PageBuddy(pfn_to_page(outer_start))) {
9101 		if (++order >= MAX_ORDER) {
9102 			outer_start = start;
9103 			break;
9104 		}
9105 		outer_start &= ~0UL << order;
9106 	}
9107 
9108 	if (outer_start != start) {
9109 		order = buddy_order(pfn_to_page(outer_start));
9110 
9111 		/*
9112 		 * outer_start page could be small order buddy page and
9113 		 * it doesn't include start page. Adjust outer_start
9114 		 * in this case to report failed page properly
9115 		 * on tracepoint in test_pages_isolated()
9116 		 */
9117 		if (outer_start + (1UL << order) <= start)
9118 			outer_start = start;
9119 	}
9120 
9121 	/* Make sure the range is really isolated. */
9122 	if (test_pages_isolated(outer_start, end, 0)) {
9123 		ret = -EBUSY;
9124 		goto done;
9125 	}
9126 
9127 	/* Grab isolated pages from freelists. */
9128 	outer_end = isolate_freepages_range(&cc, outer_start, end);
9129 	if (!outer_end) {
9130 		ret = -EBUSY;
9131 		goto done;
9132 	}
9133 
9134 	/* Free head and tail (if any) */
9135 	if (start != outer_start)
9136 		free_contig_range(outer_start, start - outer_start);
9137 	if (end != outer_end)
9138 		free_contig_range(end, outer_end - end);
9139 
9140 done:
9141 	undo_isolate_page_range(pfn_max_align_down(start),
9142 				pfn_max_align_up(end), migratetype);
9143 	return ret;
9144 }
9145 EXPORT_SYMBOL(alloc_contig_range);
9146 
9147 static int __alloc_contig_pages(unsigned long start_pfn,
9148 				unsigned long nr_pages, gfp_t gfp_mask)
9149 {
9150 	unsigned long end_pfn = start_pfn + nr_pages;
9151 
9152 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
9153 				  gfp_mask);
9154 }
9155 
9156 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
9157 				   unsigned long nr_pages)
9158 {
9159 	unsigned long i, end_pfn = start_pfn + nr_pages;
9160 	struct page *page;
9161 
9162 	for (i = start_pfn; i < end_pfn; i++) {
9163 		page = pfn_to_online_page(i);
9164 		if (!page)
9165 			return false;
9166 
9167 		if (page_zone(page) != z)
9168 			return false;
9169 
9170 		if (PageReserved(page))
9171 			return false;
9172 	}
9173 	return true;
9174 }
9175 
9176 static bool zone_spans_last_pfn(const struct zone *zone,
9177 				unsigned long start_pfn, unsigned long nr_pages)
9178 {
9179 	unsigned long last_pfn = start_pfn + nr_pages - 1;
9180 
9181 	return zone_spans_pfn(zone, last_pfn);
9182 }
9183 
9184 /**
9185  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
9186  * @nr_pages:	Number of contiguous pages to allocate
9187  * @gfp_mask:	GFP mask to limit search and used during compaction
9188  * @nid:	Target node
9189  * @nodemask:	Mask for other possible nodes
9190  *
9191  * This routine is a wrapper around alloc_contig_range(). It scans over zones
9192  * on an applicable zonelist to find a contiguous pfn range which can then be
9193  * tried for allocation with alloc_contig_range(). This routine is intended
9194  * for allocation requests which can not be fulfilled with the buddy allocator.
9195  *
9196  * The allocated memory is always aligned to a page boundary. If nr_pages is a
9197  * power of two then the alignment is guaranteed to be to the given nr_pages
9198  * (e.g. 1GB request would be aligned to 1GB).
9199  *
9200  * Allocated pages can be freed with free_contig_range() or by manually calling
9201  * __free_page() on each allocated page.
9202  *
9203  * Return: pointer to contiguous pages on success, or NULL if not successful.
9204  */
9205 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
9206 				int nid, nodemask_t *nodemask)
9207 {
9208 	unsigned long ret, pfn, flags;
9209 	struct zonelist *zonelist;
9210 	struct zone *zone;
9211 	struct zoneref *z;
9212 
9213 	zonelist = node_zonelist(nid, gfp_mask);
9214 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
9215 					gfp_zone(gfp_mask), nodemask) {
9216 		spin_lock_irqsave(&zone->lock, flags);
9217 
9218 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
9219 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
9220 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
9221 				/*
9222 				 * We release the zone lock here because
9223 				 * alloc_contig_range() will also lock the zone
9224 				 * at some point. If there's an allocation
9225 				 * spinning on this lock, it may win the race
9226 				 * and cause alloc_contig_range() to fail...
9227 				 */
9228 				spin_unlock_irqrestore(&zone->lock, flags);
9229 				ret = __alloc_contig_pages(pfn, nr_pages,
9230 							gfp_mask);
9231 				if (!ret)
9232 					return pfn_to_page(pfn);
9233 				spin_lock_irqsave(&zone->lock, flags);
9234 			}
9235 			pfn += nr_pages;
9236 		}
9237 		spin_unlock_irqrestore(&zone->lock, flags);
9238 	}
9239 	return NULL;
9240 }
9241 #endif /* CONFIG_CONTIG_ALLOC */
9242 
9243 void free_contig_range(unsigned long pfn, unsigned long nr_pages)
9244 {
9245 	unsigned long count = 0;
9246 
9247 	for (; nr_pages--; pfn++) {
9248 		struct page *page = pfn_to_page(pfn);
9249 
9250 		count += page_count(page) != 1;
9251 		__free_page(page);
9252 	}
9253 	WARN(count != 0, "%lu pages are still in use!\n", count);
9254 }
9255 EXPORT_SYMBOL(free_contig_range);
9256 
9257 /*
9258  * The zone indicated has a new number of managed_pages; batch sizes and percpu
9259  * page high values need to be recalculated.
9260  */
9261 void zone_pcp_update(struct zone *zone, int cpu_online)
9262 {
9263 	mutex_lock(&pcp_batch_high_lock);
9264 	zone_set_pageset_high_and_batch(zone, cpu_online);
9265 	mutex_unlock(&pcp_batch_high_lock);
9266 }
9267 
9268 /*
9269  * Effectively disable pcplists for the zone by setting the high limit to 0
9270  * and draining all cpus. A concurrent page freeing on another CPU that's about
9271  * to put the page on pcplist will either finish before the drain and the page
9272  * will be drained, or observe the new high limit and skip the pcplist.
9273  *
9274  * Must be paired with a call to zone_pcp_enable().
9275  */
9276 void zone_pcp_disable(struct zone *zone)
9277 {
9278 	mutex_lock(&pcp_batch_high_lock);
9279 	__zone_set_pageset_high_and_batch(zone, 0, 1);
9280 	__drain_all_pages(zone, true);
9281 }
9282 
9283 void zone_pcp_enable(struct zone *zone)
9284 {
9285 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
9286 	mutex_unlock(&pcp_batch_high_lock);
9287 }
9288 
9289 void zone_pcp_reset(struct zone *zone)
9290 {
9291 	int cpu;
9292 	struct per_cpu_zonestat *pzstats;
9293 
9294 	if (zone->per_cpu_pageset != &boot_pageset) {
9295 		for_each_online_cpu(cpu) {
9296 			pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu);
9297 			drain_zonestat(zone, pzstats);
9298 		}
9299 		free_percpu(zone->per_cpu_pageset);
9300 		free_percpu(zone->per_cpu_zonestats);
9301 		zone->per_cpu_pageset = &boot_pageset;
9302 		zone->per_cpu_zonestats = &boot_zonestats;
9303 	}
9304 }
9305 
9306 #ifdef CONFIG_MEMORY_HOTREMOVE
9307 /*
9308  * All pages in the range must be in a single zone, must not contain holes,
9309  * must span full sections, and must be isolated before calling this function.
9310  */
9311 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
9312 {
9313 	unsigned long pfn = start_pfn;
9314 	struct page *page;
9315 	struct zone *zone;
9316 	unsigned int order;
9317 	unsigned long flags;
9318 
9319 	offline_mem_sections(pfn, end_pfn);
9320 	zone = page_zone(pfn_to_page(pfn));
9321 	spin_lock_irqsave(&zone->lock, flags);
9322 	while (pfn < end_pfn) {
9323 		page = pfn_to_page(pfn);
9324 		/*
9325 		 * The HWPoisoned page may be not in buddy system, and
9326 		 * page_count() is not 0.
9327 		 */
9328 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
9329 			pfn++;
9330 			continue;
9331 		}
9332 		/*
9333 		 * At this point all remaining PageOffline() pages have a
9334 		 * reference count of 0 and can simply be skipped.
9335 		 */
9336 		if (PageOffline(page)) {
9337 			BUG_ON(page_count(page));
9338 			BUG_ON(PageBuddy(page));
9339 			pfn++;
9340 			continue;
9341 		}
9342 
9343 		BUG_ON(page_count(page));
9344 		BUG_ON(!PageBuddy(page));
9345 		order = buddy_order(page);
9346 		del_page_from_free_list(page, zone, order);
9347 		pfn += (1 << order);
9348 	}
9349 	spin_unlock_irqrestore(&zone->lock, flags);
9350 }
9351 #endif
9352 
9353 bool is_free_buddy_page(struct page *page)
9354 {
9355 	struct zone *zone = page_zone(page);
9356 	unsigned long pfn = page_to_pfn(page);
9357 	unsigned long flags;
9358 	unsigned int order;
9359 
9360 	spin_lock_irqsave(&zone->lock, flags);
9361 	for (order = 0; order < MAX_ORDER; order++) {
9362 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9363 
9364 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
9365 			break;
9366 	}
9367 	spin_unlock_irqrestore(&zone->lock, flags);
9368 
9369 	return order < MAX_ORDER;
9370 }
9371 
9372 #ifdef CONFIG_MEMORY_FAILURE
9373 /*
9374  * Break down a higher-order page in sub-pages, and keep our target out of
9375  * buddy allocator.
9376  */
9377 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9378 				   struct page *target, int low, int high,
9379 				   int migratetype)
9380 {
9381 	unsigned long size = 1 << high;
9382 	struct page *current_buddy, *next_page;
9383 
9384 	while (high > low) {
9385 		high--;
9386 		size >>= 1;
9387 
9388 		if (target >= &page[size]) {
9389 			next_page = page + size;
9390 			current_buddy = page;
9391 		} else {
9392 			next_page = page;
9393 			current_buddy = page + size;
9394 		}
9395 
9396 		if (set_page_guard(zone, current_buddy, high, migratetype))
9397 			continue;
9398 
9399 		if (current_buddy != target) {
9400 			add_to_free_list(current_buddy, zone, high, migratetype);
9401 			set_buddy_order(current_buddy, high);
9402 			page = next_page;
9403 		}
9404 	}
9405 }
9406 
9407 /*
9408  * Take a page that will be marked as poisoned off the buddy allocator.
9409  */
9410 bool take_page_off_buddy(struct page *page)
9411 {
9412 	struct zone *zone = page_zone(page);
9413 	unsigned long pfn = page_to_pfn(page);
9414 	unsigned long flags;
9415 	unsigned int order;
9416 	bool ret = false;
9417 
9418 	spin_lock_irqsave(&zone->lock, flags);
9419 	for (order = 0; order < MAX_ORDER; order++) {
9420 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9421 		int page_order = buddy_order(page_head);
9422 
9423 		if (PageBuddy(page_head) && page_order >= order) {
9424 			unsigned long pfn_head = page_to_pfn(page_head);
9425 			int migratetype = get_pfnblock_migratetype(page_head,
9426 								   pfn_head);
9427 
9428 			del_page_from_free_list(page_head, zone, page_order);
9429 			break_down_buddy_pages(zone, page_head, page, 0,
9430 						page_order, migratetype);
9431 			if (!is_migrate_isolate(migratetype))
9432 				__mod_zone_freepage_state(zone, -1, migratetype);
9433 			ret = true;
9434 			break;
9435 		}
9436 		if (page_count(page_head) > 0)
9437 			break;
9438 	}
9439 	spin_unlock_irqrestore(&zone->lock, flags);
9440 	return ret;
9441 }
9442 #endif
9443