1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 124 125 struct pagesets { 126 local_lock_t lock; 127 #if defined(CONFIG_DEBUG_INFO_BTF) && \ 128 !defined(CONFIG_DEBUG_LOCK_ALLOC) && \ 129 !defined(CONFIG_PAHOLE_HAS_ZEROSIZE_PERCPU_SUPPORT) 130 /* 131 * pahole 1.21 and earlier gets confused by zero-sized per-CPU 132 * variables and produces invalid BTF. Ensure that 133 * sizeof(struct pagesets) != 0 for older versions of pahole. 134 */ 135 char __pahole_hack; 136 #warning "pahole too old to support zero-sized struct pagesets" 137 #endif 138 }; 139 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 140 .lock = INIT_LOCAL_LOCK(lock), 141 }; 142 143 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 144 DEFINE_PER_CPU(int, numa_node); 145 EXPORT_PER_CPU_SYMBOL(numa_node); 146 #endif 147 148 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 149 150 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 151 /* 152 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 153 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 154 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 155 * defined in <linux/topology.h>. 156 */ 157 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 158 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 159 #endif 160 161 /* work_structs for global per-cpu drains */ 162 struct pcpu_drain { 163 struct zone *zone; 164 struct work_struct work; 165 }; 166 static DEFINE_MUTEX(pcpu_drain_mutex); 167 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 168 169 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 170 volatile unsigned long latent_entropy __latent_entropy; 171 EXPORT_SYMBOL(latent_entropy); 172 #endif 173 174 /* 175 * Array of node states. 176 */ 177 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 178 [N_POSSIBLE] = NODE_MASK_ALL, 179 [N_ONLINE] = { { [0] = 1UL } }, 180 #ifndef CONFIG_NUMA 181 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 182 #ifdef CONFIG_HIGHMEM 183 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 184 #endif 185 [N_MEMORY] = { { [0] = 1UL } }, 186 [N_CPU] = { { [0] = 1UL } }, 187 #endif /* NUMA */ 188 }; 189 EXPORT_SYMBOL(node_states); 190 191 atomic_long_t _totalram_pages __read_mostly; 192 EXPORT_SYMBOL(_totalram_pages); 193 unsigned long totalreserve_pages __read_mostly; 194 unsigned long totalcma_pages __read_mostly; 195 196 int percpu_pagelist_high_fraction; 197 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 198 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 199 EXPORT_SYMBOL(init_on_alloc); 200 201 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 202 EXPORT_SYMBOL(init_on_free); 203 204 static bool _init_on_alloc_enabled_early __read_mostly 205 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 206 static int __init early_init_on_alloc(char *buf) 207 { 208 209 return kstrtobool(buf, &_init_on_alloc_enabled_early); 210 } 211 early_param("init_on_alloc", early_init_on_alloc); 212 213 static bool _init_on_free_enabled_early __read_mostly 214 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 215 static int __init early_init_on_free(char *buf) 216 { 217 return kstrtobool(buf, &_init_on_free_enabled_early); 218 } 219 early_param("init_on_free", early_init_on_free); 220 221 /* 222 * A cached value of the page's pageblock's migratetype, used when the page is 223 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 224 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 225 * Also the migratetype set in the page does not necessarily match the pcplist 226 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 227 * other index - this ensures that it will be put on the correct CMA freelist. 228 */ 229 static inline int get_pcppage_migratetype(struct page *page) 230 { 231 return page->index; 232 } 233 234 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 235 { 236 page->index = migratetype; 237 } 238 239 #ifdef CONFIG_PM_SLEEP 240 /* 241 * The following functions are used by the suspend/hibernate code to temporarily 242 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 243 * while devices are suspended. To avoid races with the suspend/hibernate code, 244 * they should always be called with system_transition_mutex held 245 * (gfp_allowed_mask also should only be modified with system_transition_mutex 246 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 247 * with that modification). 248 */ 249 250 static gfp_t saved_gfp_mask; 251 252 void pm_restore_gfp_mask(void) 253 { 254 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 255 if (saved_gfp_mask) { 256 gfp_allowed_mask = saved_gfp_mask; 257 saved_gfp_mask = 0; 258 } 259 } 260 261 void pm_restrict_gfp_mask(void) 262 { 263 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 264 WARN_ON(saved_gfp_mask); 265 saved_gfp_mask = gfp_allowed_mask; 266 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 267 } 268 269 bool pm_suspended_storage(void) 270 { 271 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 272 return false; 273 return true; 274 } 275 #endif /* CONFIG_PM_SLEEP */ 276 277 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 278 unsigned int pageblock_order __read_mostly; 279 #endif 280 281 static void __free_pages_ok(struct page *page, unsigned int order, 282 fpi_t fpi_flags); 283 284 /* 285 * results with 256, 32 in the lowmem_reserve sysctl: 286 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 287 * 1G machine -> (16M dma, 784M normal, 224M high) 288 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 289 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 290 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 291 * 292 * TBD: should special case ZONE_DMA32 machines here - in those we normally 293 * don't need any ZONE_NORMAL reservation 294 */ 295 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 296 #ifdef CONFIG_ZONE_DMA 297 [ZONE_DMA] = 256, 298 #endif 299 #ifdef CONFIG_ZONE_DMA32 300 [ZONE_DMA32] = 256, 301 #endif 302 [ZONE_NORMAL] = 32, 303 #ifdef CONFIG_HIGHMEM 304 [ZONE_HIGHMEM] = 0, 305 #endif 306 [ZONE_MOVABLE] = 0, 307 }; 308 309 static char * const zone_names[MAX_NR_ZONES] = { 310 #ifdef CONFIG_ZONE_DMA 311 "DMA", 312 #endif 313 #ifdef CONFIG_ZONE_DMA32 314 "DMA32", 315 #endif 316 "Normal", 317 #ifdef CONFIG_HIGHMEM 318 "HighMem", 319 #endif 320 "Movable", 321 #ifdef CONFIG_ZONE_DEVICE 322 "Device", 323 #endif 324 }; 325 326 const char * const migratetype_names[MIGRATE_TYPES] = { 327 "Unmovable", 328 "Movable", 329 "Reclaimable", 330 "HighAtomic", 331 #ifdef CONFIG_CMA 332 "CMA", 333 #endif 334 #ifdef CONFIG_MEMORY_ISOLATION 335 "Isolate", 336 #endif 337 }; 338 339 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 340 [NULL_COMPOUND_DTOR] = NULL, 341 [COMPOUND_PAGE_DTOR] = free_compound_page, 342 #ifdef CONFIG_HUGETLB_PAGE 343 [HUGETLB_PAGE_DTOR] = free_huge_page, 344 #endif 345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 346 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 347 #endif 348 }; 349 350 int min_free_kbytes = 1024; 351 int user_min_free_kbytes = -1; 352 int watermark_boost_factor __read_mostly = 15000; 353 int watermark_scale_factor = 10; 354 355 static unsigned long nr_kernel_pages __initdata; 356 static unsigned long nr_all_pages __initdata; 357 static unsigned long dma_reserve __initdata; 358 359 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 360 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 361 static unsigned long required_kernelcore __initdata; 362 static unsigned long required_kernelcore_percent __initdata; 363 static unsigned long required_movablecore __initdata; 364 static unsigned long required_movablecore_percent __initdata; 365 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 366 static bool mirrored_kernelcore __meminitdata; 367 368 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 369 int movable_zone; 370 EXPORT_SYMBOL(movable_zone); 371 372 #if MAX_NUMNODES > 1 373 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 374 unsigned int nr_online_nodes __read_mostly = 1; 375 EXPORT_SYMBOL(nr_node_ids); 376 EXPORT_SYMBOL(nr_online_nodes); 377 #endif 378 379 int page_group_by_mobility_disabled __read_mostly; 380 381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 382 /* 383 * During boot we initialize deferred pages on-demand, as needed, but once 384 * page_alloc_init_late() has finished, the deferred pages are all initialized, 385 * and we can permanently disable that path. 386 */ 387 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 388 389 /* 390 * Calling kasan_poison_pages() only after deferred memory initialization 391 * has completed. Poisoning pages during deferred memory init will greatly 392 * lengthen the process and cause problem in large memory systems as the 393 * deferred pages initialization is done with interrupt disabled. 394 * 395 * Assuming that there will be no reference to those newly initialized 396 * pages before they are ever allocated, this should have no effect on 397 * KASAN memory tracking as the poison will be properly inserted at page 398 * allocation time. The only corner case is when pages are allocated by 399 * on-demand allocation and then freed again before the deferred pages 400 * initialization is done, but this is not likely to happen. 401 */ 402 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 403 { 404 return static_branch_unlikely(&deferred_pages) || 405 (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 406 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 407 PageSkipKASanPoison(page); 408 } 409 410 /* Returns true if the struct page for the pfn is uninitialised */ 411 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 412 { 413 int nid = early_pfn_to_nid(pfn); 414 415 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 416 return true; 417 418 return false; 419 } 420 421 /* 422 * Returns true when the remaining initialisation should be deferred until 423 * later in the boot cycle when it can be parallelised. 424 */ 425 static bool __meminit 426 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 427 { 428 static unsigned long prev_end_pfn, nr_initialised; 429 430 /* 431 * prev_end_pfn static that contains the end of previous zone 432 * No need to protect because called very early in boot before smp_init. 433 */ 434 if (prev_end_pfn != end_pfn) { 435 prev_end_pfn = end_pfn; 436 nr_initialised = 0; 437 } 438 439 /* Always populate low zones for address-constrained allocations */ 440 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 441 return false; 442 443 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 444 return true; 445 /* 446 * We start only with one section of pages, more pages are added as 447 * needed until the rest of deferred pages are initialized. 448 */ 449 nr_initialised++; 450 if ((nr_initialised > PAGES_PER_SECTION) && 451 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 452 NODE_DATA(nid)->first_deferred_pfn = pfn; 453 return true; 454 } 455 return false; 456 } 457 #else 458 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 459 { 460 return (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 461 (fpi_flags & FPI_SKIP_KASAN_POISON)) || 462 PageSkipKASanPoison(page); 463 } 464 465 static inline bool early_page_uninitialised(unsigned long pfn) 466 { 467 return false; 468 } 469 470 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 471 { 472 return false; 473 } 474 #endif 475 476 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 477 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 478 unsigned long pfn) 479 { 480 #ifdef CONFIG_SPARSEMEM 481 return section_to_usemap(__pfn_to_section(pfn)); 482 #else 483 return page_zone(page)->pageblock_flags; 484 #endif /* CONFIG_SPARSEMEM */ 485 } 486 487 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 488 { 489 #ifdef CONFIG_SPARSEMEM 490 pfn &= (PAGES_PER_SECTION-1); 491 #else 492 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 493 #endif /* CONFIG_SPARSEMEM */ 494 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 495 } 496 497 static __always_inline 498 unsigned long __get_pfnblock_flags_mask(const struct page *page, 499 unsigned long pfn, 500 unsigned long mask) 501 { 502 unsigned long *bitmap; 503 unsigned long bitidx, word_bitidx; 504 unsigned long word; 505 506 bitmap = get_pageblock_bitmap(page, pfn); 507 bitidx = pfn_to_bitidx(page, pfn); 508 word_bitidx = bitidx / BITS_PER_LONG; 509 bitidx &= (BITS_PER_LONG-1); 510 511 word = bitmap[word_bitidx]; 512 return (word >> bitidx) & mask; 513 } 514 515 /** 516 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 517 * @page: The page within the block of interest 518 * @pfn: The target page frame number 519 * @mask: mask of bits that the caller is interested in 520 * 521 * Return: pageblock_bits flags 522 */ 523 unsigned long get_pfnblock_flags_mask(const struct page *page, 524 unsigned long pfn, unsigned long mask) 525 { 526 return __get_pfnblock_flags_mask(page, pfn, mask); 527 } 528 529 static __always_inline int get_pfnblock_migratetype(const struct page *page, 530 unsigned long pfn) 531 { 532 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 533 } 534 535 /** 536 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 537 * @page: The page within the block of interest 538 * @flags: The flags to set 539 * @pfn: The target page frame number 540 * @mask: mask of bits that the caller is interested in 541 */ 542 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 543 unsigned long pfn, 544 unsigned long mask) 545 { 546 unsigned long *bitmap; 547 unsigned long bitidx, word_bitidx; 548 unsigned long old_word, word; 549 550 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 551 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 552 553 bitmap = get_pageblock_bitmap(page, pfn); 554 bitidx = pfn_to_bitidx(page, pfn); 555 word_bitidx = bitidx / BITS_PER_LONG; 556 bitidx &= (BITS_PER_LONG-1); 557 558 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 559 560 mask <<= bitidx; 561 flags <<= bitidx; 562 563 word = READ_ONCE(bitmap[word_bitidx]); 564 for (;;) { 565 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 566 if (word == old_word) 567 break; 568 word = old_word; 569 } 570 } 571 572 void set_pageblock_migratetype(struct page *page, int migratetype) 573 { 574 if (unlikely(page_group_by_mobility_disabled && 575 migratetype < MIGRATE_PCPTYPES)) 576 migratetype = MIGRATE_UNMOVABLE; 577 578 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 579 page_to_pfn(page), MIGRATETYPE_MASK); 580 } 581 582 #ifdef CONFIG_DEBUG_VM 583 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 584 { 585 int ret = 0; 586 unsigned seq; 587 unsigned long pfn = page_to_pfn(page); 588 unsigned long sp, start_pfn; 589 590 do { 591 seq = zone_span_seqbegin(zone); 592 start_pfn = zone->zone_start_pfn; 593 sp = zone->spanned_pages; 594 if (!zone_spans_pfn(zone, pfn)) 595 ret = 1; 596 } while (zone_span_seqretry(zone, seq)); 597 598 if (ret) 599 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 600 pfn, zone_to_nid(zone), zone->name, 601 start_pfn, start_pfn + sp); 602 603 return ret; 604 } 605 606 static int page_is_consistent(struct zone *zone, struct page *page) 607 { 608 if (!pfn_valid_within(page_to_pfn(page))) 609 return 0; 610 if (zone != page_zone(page)) 611 return 0; 612 613 return 1; 614 } 615 /* 616 * Temporary debugging check for pages not lying within a given zone. 617 */ 618 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 619 { 620 if (page_outside_zone_boundaries(zone, page)) 621 return 1; 622 if (!page_is_consistent(zone, page)) 623 return 1; 624 625 return 0; 626 } 627 #else 628 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 629 { 630 return 0; 631 } 632 #endif 633 634 static void bad_page(struct page *page, const char *reason) 635 { 636 static unsigned long resume; 637 static unsigned long nr_shown; 638 static unsigned long nr_unshown; 639 640 /* 641 * Allow a burst of 60 reports, then keep quiet for that minute; 642 * or allow a steady drip of one report per second. 643 */ 644 if (nr_shown == 60) { 645 if (time_before(jiffies, resume)) { 646 nr_unshown++; 647 goto out; 648 } 649 if (nr_unshown) { 650 pr_alert( 651 "BUG: Bad page state: %lu messages suppressed\n", 652 nr_unshown); 653 nr_unshown = 0; 654 } 655 nr_shown = 0; 656 } 657 if (nr_shown++ == 0) 658 resume = jiffies + 60 * HZ; 659 660 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 661 current->comm, page_to_pfn(page)); 662 dump_page(page, reason); 663 664 print_modules(); 665 dump_stack(); 666 out: 667 /* Leave bad fields for debug, except PageBuddy could make trouble */ 668 page_mapcount_reset(page); /* remove PageBuddy */ 669 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 670 } 671 672 static inline unsigned int order_to_pindex(int migratetype, int order) 673 { 674 int base = order; 675 676 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 677 if (order > PAGE_ALLOC_COSTLY_ORDER) { 678 VM_BUG_ON(order != pageblock_order); 679 base = PAGE_ALLOC_COSTLY_ORDER + 1; 680 } 681 #else 682 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 683 #endif 684 685 return (MIGRATE_PCPTYPES * base) + migratetype; 686 } 687 688 static inline int pindex_to_order(unsigned int pindex) 689 { 690 int order = pindex / MIGRATE_PCPTYPES; 691 692 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 693 if (order > PAGE_ALLOC_COSTLY_ORDER) { 694 order = pageblock_order; 695 VM_BUG_ON(order != pageblock_order); 696 } 697 #else 698 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 699 #endif 700 701 return order; 702 } 703 704 static inline bool pcp_allowed_order(unsigned int order) 705 { 706 if (order <= PAGE_ALLOC_COSTLY_ORDER) 707 return true; 708 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 709 if (order == pageblock_order) 710 return true; 711 #endif 712 return false; 713 } 714 715 static inline void free_the_page(struct page *page, unsigned int order) 716 { 717 if (pcp_allowed_order(order)) /* Via pcp? */ 718 free_unref_page(page, order); 719 else 720 __free_pages_ok(page, order, FPI_NONE); 721 } 722 723 /* 724 * Higher-order pages are called "compound pages". They are structured thusly: 725 * 726 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 727 * 728 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 729 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 730 * 731 * The first tail page's ->compound_dtor holds the offset in array of compound 732 * page destructors. See compound_page_dtors. 733 * 734 * The first tail page's ->compound_order holds the order of allocation. 735 * This usage means that zero-order pages may not be compound. 736 */ 737 738 void free_compound_page(struct page *page) 739 { 740 mem_cgroup_uncharge(page); 741 free_the_page(page, compound_order(page)); 742 } 743 744 void prep_compound_page(struct page *page, unsigned int order) 745 { 746 int i; 747 int nr_pages = 1 << order; 748 749 __SetPageHead(page); 750 for (i = 1; i < nr_pages; i++) { 751 struct page *p = page + i; 752 set_page_count(p, 0); 753 p->mapping = TAIL_MAPPING; 754 set_compound_head(p, page); 755 } 756 757 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 758 set_compound_order(page, order); 759 atomic_set(compound_mapcount_ptr(page), -1); 760 if (hpage_pincount_available(page)) 761 atomic_set(compound_pincount_ptr(page), 0); 762 } 763 764 #ifdef CONFIG_DEBUG_PAGEALLOC 765 unsigned int _debug_guardpage_minorder; 766 767 bool _debug_pagealloc_enabled_early __read_mostly 768 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 769 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 770 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 771 EXPORT_SYMBOL(_debug_pagealloc_enabled); 772 773 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 774 775 static int __init early_debug_pagealloc(char *buf) 776 { 777 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 778 } 779 early_param("debug_pagealloc", early_debug_pagealloc); 780 781 static int __init debug_guardpage_minorder_setup(char *buf) 782 { 783 unsigned long res; 784 785 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 786 pr_err("Bad debug_guardpage_minorder value\n"); 787 return 0; 788 } 789 _debug_guardpage_minorder = res; 790 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 791 return 0; 792 } 793 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 794 795 static inline bool set_page_guard(struct zone *zone, struct page *page, 796 unsigned int order, int migratetype) 797 { 798 if (!debug_guardpage_enabled()) 799 return false; 800 801 if (order >= debug_guardpage_minorder()) 802 return false; 803 804 __SetPageGuard(page); 805 INIT_LIST_HEAD(&page->lru); 806 set_page_private(page, order); 807 /* Guard pages are not available for any usage */ 808 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 809 810 return true; 811 } 812 813 static inline void clear_page_guard(struct zone *zone, struct page *page, 814 unsigned int order, int migratetype) 815 { 816 if (!debug_guardpage_enabled()) 817 return; 818 819 __ClearPageGuard(page); 820 821 set_page_private(page, 0); 822 if (!is_migrate_isolate(migratetype)) 823 __mod_zone_freepage_state(zone, (1 << order), migratetype); 824 } 825 #else 826 static inline bool set_page_guard(struct zone *zone, struct page *page, 827 unsigned int order, int migratetype) { return false; } 828 static inline void clear_page_guard(struct zone *zone, struct page *page, 829 unsigned int order, int migratetype) {} 830 #endif 831 832 /* 833 * Enable static keys related to various memory debugging and hardening options. 834 * Some override others, and depend on early params that are evaluated in the 835 * order of appearance. So we need to first gather the full picture of what was 836 * enabled, and then make decisions. 837 */ 838 void init_mem_debugging_and_hardening(void) 839 { 840 bool page_poisoning_requested = false; 841 842 #ifdef CONFIG_PAGE_POISONING 843 /* 844 * Page poisoning is debug page alloc for some arches. If 845 * either of those options are enabled, enable poisoning. 846 */ 847 if (page_poisoning_enabled() || 848 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 849 debug_pagealloc_enabled())) { 850 static_branch_enable(&_page_poisoning_enabled); 851 page_poisoning_requested = true; 852 } 853 #endif 854 855 if (_init_on_alloc_enabled_early) { 856 if (page_poisoning_requested) 857 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 858 "will take precedence over init_on_alloc\n"); 859 else 860 static_branch_enable(&init_on_alloc); 861 } 862 if (_init_on_free_enabled_early) { 863 if (page_poisoning_requested) 864 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 865 "will take precedence over init_on_free\n"); 866 else 867 static_branch_enable(&init_on_free); 868 } 869 870 #ifdef CONFIG_DEBUG_PAGEALLOC 871 if (!debug_pagealloc_enabled()) 872 return; 873 874 static_branch_enable(&_debug_pagealloc_enabled); 875 876 if (!debug_guardpage_minorder()) 877 return; 878 879 static_branch_enable(&_debug_guardpage_enabled); 880 #endif 881 } 882 883 static inline void set_buddy_order(struct page *page, unsigned int order) 884 { 885 set_page_private(page, order); 886 __SetPageBuddy(page); 887 } 888 889 /* 890 * This function checks whether a page is free && is the buddy 891 * we can coalesce a page and its buddy if 892 * (a) the buddy is not in a hole (check before calling!) && 893 * (b) the buddy is in the buddy system && 894 * (c) a page and its buddy have the same order && 895 * (d) a page and its buddy are in the same zone. 896 * 897 * For recording whether a page is in the buddy system, we set PageBuddy. 898 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 899 * 900 * For recording page's order, we use page_private(page). 901 */ 902 static inline bool page_is_buddy(struct page *page, struct page *buddy, 903 unsigned int order) 904 { 905 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 906 return false; 907 908 if (buddy_order(buddy) != order) 909 return false; 910 911 /* 912 * zone check is done late to avoid uselessly calculating 913 * zone/node ids for pages that could never merge. 914 */ 915 if (page_zone_id(page) != page_zone_id(buddy)) 916 return false; 917 918 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 919 920 return true; 921 } 922 923 #ifdef CONFIG_COMPACTION 924 static inline struct capture_control *task_capc(struct zone *zone) 925 { 926 struct capture_control *capc = current->capture_control; 927 928 return unlikely(capc) && 929 !(current->flags & PF_KTHREAD) && 930 !capc->page && 931 capc->cc->zone == zone ? capc : NULL; 932 } 933 934 static inline bool 935 compaction_capture(struct capture_control *capc, struct page *page, 936 int order, int migratetype) 937 { 938 if (!capc || order != capc->cc->order) 939 return false; 940 941 /* Do not accidentally pollute CMA or isolated regions*/ 942 if (is_migrate_cma(migratetype) || 943 is_migrate_isolate(migratetype)) 944 return false; 945 946 /* 947 * Do not let lower order allocations pollute a movable pageblock. 948 * This might let an unmovable request use a reclaimable pageblock 949 * and vice-versa but no more than normal fallback logic which can 950 * have trouble finding a high-order free page. 951 */ 952 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 953 return false; 954 955 capc->page = page; 956 return true; 957 } 958 959 #else 960 static inline struct capture_control *task_capc(struct zone *zone) 961 { 962 return NULL; 963 } 964 965 static inline bool 966 compaction_capture(struct capture_control *capc, struct page *page, 967 int order, int migratetype) 968 { 969 return false; 970 } 971 #endif /* CONFIG_COMPACTION */ 972 973 /* Used for pages not on another list */ 974 static inline void add_to_free_list(struct page *page, struct zone *zone, 975 unsigned int order, int migratetype) 976 { 977 struct free_area *area = &zone->free_area[order]; 978 979 list_add(&page->lru, &area->free_list[migratetype]); 980 area->nr_free++; 981 } 982 983 /* Used for pages not on another list */ 984 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 985 unsigned int order, int migratetype) 986 { 987 struct free_area *area = &zone->free_area[order]; 988 989 list_add_tail(&page->lru, &area->free_list[migratetype]); 990 area->nr_free++; 991 } 992 993 /* 994 * Used for pages which are on another list. Move the pages to the tail 995 * of the list - so the moved pages won't immediately be considered for 996 * allocation again (e.g., optimization for memory onlining). 997 */ 998 static inline void move_to_free_list(struct page *page, struct zone *zone, 999 unsigned int order, int migratetype) 1000 { 1001 struct free_area *area = &zone->free_area[order]; 1002 1003 list_move_tail(&page->lru, &area->free_list[migratetype]); 1004 } 1005 1006 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1007 unsigned int order) 1008 { 1009 /* clear reported state and update reported page count */ 1010 if (page_reported(page)) 1011 __ClearPageReported(page); 1012 1013 list_del(&page->lru); 1014 __ClearPageBuddy(page); 1015 set_page_private(page, 0); 1016 zone->free_area[order].nr_free--; 1017 } 1018 1019 /* 1020 * If this is not the largest possible page, check if the buddy 1021 * of the next-highest order is free. If it is, it's possible 1022 * that pages are being freed that will coalesce soon. In case, 1023 * that is happening, add the free page to the tail of the list 1024 * so it's less likely to be used soon and more likely to be merged 1025 * as a higher order page 1026 */ 1027 static inline bool 1028 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1029 struct page *page, unsigned int order) 1030 { 1031 struct page *higher_page, *higher_buddy; 1032 unsigned long combined_pfn; 1033 1034 if (order >= MAX_ORDER - 2) 1035 return false; 1036 1037 if (!pfn_valid_within(buddy_pfn)) 1038 return false; 1039 1040 combined_pfn = buddy_pfn & pfn; 1041 higher_page = page + (combined_pfn - pfn); 1042 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1043 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1044 1045 return pfn_valid_within(buddy_pfn) && 1046 page_is_buddy(higher_page, higher_buddy, order + 1); 1047 } 1048 1049 /* 1050 * Freeing function for a buddy system allocator. 1051 * 1052 * The concept of a buddy system is to maintain direct-mapped table 1053 * (containing bit values) for memory blocks of various "orders". 1054 * The bottom level table contains the map for the smallest allocatable 1055 * units of memory (here, pages), and each level above it describes 1056 * pairs of units from the levels below, hence, "buddies". 1057 * At a high level, all that happens here is marking the table entry 1058 * at the bottom level available, and propagating the changes upward 1059 * as necessary, plus some accounting needed to play nicely with other 1060 * parts of the VM system. 1061 * At each level, we keep a list of pages, which are heads of continuous 1062 * free pages of length of (1 << order) and marked with PageBuddy. 1063 * Page's order is recorded in page_private(page) field. 1064 * So when we are allocating or freeing one, we can derive the state of the 1065 * other. That is, if we allocate a small block, and both were 1066 * free, the remainder of the region must be split into blocks. 1067 * If a block is freed, and its buddy is also free, then this 1068 * triggers coalescing into a block of larger size. 1069 * 1070 * -- nyc 1071 */ 1072 1073 static inline void __free_one_page(struct page *page, 1074 unsigned long pfn, 1075 struct zone *zone, unsigned int order, 1076 int migratetype, fpi_t fpi_flags) 1077 { 1078 struct capture_control *capc = task_capc(zone); 1079 unsigned long buddy_pfn; 1080 unsigned long combined_pfn; 1081 unsigned int max_order; 1082 struct page *buddy; 1083 bool to_tail; 1084 1085 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1086 1087 VM_BUG_ON(!zone_is_initialized(zone)); 1088 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1089 1090 VM_BUG_ON(migratetype == -1); 1091 if (likely(!is_migrate_isolate(migratetype))) 1092 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1093 1094 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1095 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1096 1097 continue_merging: 1098 while (order < max_order) { 1099 if (compaction_capture(capc, page, order, migratetype)) { 1100 __mod_zone_freepage_state(zone, -(1 << order), 1101 migratetype); 1102 return; 1103 } 1104 buddy_pfn = __find_buddy_pfn(pfn, order); 1105 buddy = page + (buddy_pfn - pfn); 1106 1107 if (!pfn_valid_within(buddy_pfn)) 1108 goto done_merging; 1109 if (!page_is_buddy(page, buddy, order)) 1110 goto done_merging; 1111 /* 1112 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1113 * merge with it and move up one order. 1114 */ 1115 if (page_is_guard(buddy)) 1116 clear_page_guard(zone, buddy, order, migratetype); 1117 else 1118 del_page_from_free_list(buddy, zone, order); 1119 combined_pfn = buddy_pfn & pfn; 1120 page = page + (combined_pfn - pfn); 1121 pfn = combined_pfn; 1122 order++; 1123 } 1124 if (order < MAX_ORDER - 1) { 1125 /* If we are here, it means order is >= pageblock_order. 1126 * We want to prevent merge between freepages on isolate 1127 * pageblock and normal pageblock. Without this, pageblock 1128 * isolation could cause incorrect freepage or CMA accounting. 1129 * 1130 * We don't want to hit this code for the more frequent 1131 * low-order merging. 1132 */ 1133 if (unlikely(has_isolate_pageblock(zone))) { 1134 int buddy_mt; 1135 1136 buddy_pfn = __find_buddy_pfn(pfn, order); 1137 buddy = page + (buddy_pfn - pfn); 1138 buddy_mt = get_pageblock_migratetype(buddy); 1139 1140 if (migratetype != buddy_mt 1141 && (is_migrate_isolate(migratetype) || 1142 is_migrate_isolate(buddy_mt))) 1143 goto done_merging; 1144 } 1145 max_order = order + 1; 1146 goto continue_merging; 1147 } 1148 1149 done_merging: 1150 set_buddy_order(page, order); 1151 1152 if (fpi_flags & FPI_TO_TAIL) 1153 to_tail = true; 1154 else if (is_shuffle_order(order)) 1155 to_tail = shuffle_pick_tail(); 1156 else 1157 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1158 1159 if (to_tail) 1160 add_to_free_list_tail(page, zone, order, migratetype); 1161 else 1162 add_to_free_list(page, zone, order, migratetype); 1163 1164 /* Notify page reporting subsystem of freed page */ 1165 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1166 page_reporting_notify_free(order); 1167 } 1168 1169 /* 1170 * A bad page could be due to a number of fields. Instead of multiple branches, 1171 * try and check multiple fields with one check. The caller must do a detailed 1172 * check if necessary. 1173 */ 1174 static inline bool page_expected_state(struct page *page, 1175 unsigned long check_flags) 1176 { 1177 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1178 return false; 1179 1180 if (unlikely((unsigned long)page->mapping | 1181 page_ref_count(page) | 1182 #ifdef CONFIG_MEMCG 1183 page->memcg_data | 1184 #endif 1185 (page->flags & check_flags))) 1186 return false; 1187 1188 return true; 1189 } 1190 1191 static const char *page_bad_reason(struct page *page, unsigned long flags) 1192 { 1193 const char *bad_reason = NULL; 1194 1195 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1196 bad_reason = "nonzero mapcount"; 1197 if (unlikely(page->mapping != NULL)) 1198 bad_reason = "non-NULL mapping"; 1199 if (unlikely(page_ref_count(page) != 0)) 1200 bad_reason = "nonzero _refcount"; 1201 if (unlikely(page->flags & flags)) { 1202 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1203 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1204 else 1205 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1206 } 1207 #ifdef CONFIG_MEMCG 1208 if (unlikely(page->memcg_data)) 1209 bad_reason = "page still charged to cgroup"; 1210 #endif 1211 return bad_reason; 1212 } 1213 1214 static void check_free_page_bad(struct page *page) 1215 { 1216 bad_page(page, 1217 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1218 } 1219 1220 static inline int check_free_page(struct page *page) 1221 { 1222 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1223 return 0; 1224 1225 /* Something has gone sideways, find it */ 1226 check_free_page_bad(page); 1227 return 1; 1228 } 1229 1230 static int free_tail_pages_check(struct page *head_page, struct page *page) 1231 { 1232 int ret = 1; 1233 1234 /* 1235 * We rely page->lru.next never has bit 0 set, unless the page 1236 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1237 */ 1238 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1239 1240 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1241 ret = 0; 1242 goto out; 1243 } 1244 switch (page - head_page) { 1245 case 1: 1246 /* the first tail page: ->mapping may be compound_mapcount() */ 1247 if (unlikely(compound_mapcount(page))) { 1248 bad_page(page, "nonzero compound_mapcount"); 1249 goto out; 1250 } 1251 break; 1252 case 2: 1253 /* 1254 * the second tail page: ->mapping is 1255 * deferred_list.next -- ignore value. 1256 */ 1257 break; 1258 default: 1259 if (page->mapping != TAIL_MAPPING) { 1260 bad_page(page, "corrupted mapping in tail page"); 1261 goto out; 1262 } 1263 break; 1264 } 1265 if (unlikely(!PageTail(page))) { 1266 bad_page(page, "PageTail not set"); 1267 goto out; 1268 } 1269 if (unlikely(compound_head(page) != head_page)) { 1270 bad_page(page, "compound_head not consistent"); 1271 goto out; 1272 } 1273 ret = 0; 1274 out: 1275 page->mapping = NULL; 1276 clear_compound_head(page); 1277 return ret; 1278 } 1279 1280 static void kernel_init_free_pages(struct page *page, int numpages, bool zero_tags) 1281 { 1282 int i; 1283 1284 if (zero_tags) { 1285 for (i = 0; i < numpages; i++) 1286 tag_clear_highpage(page + i); 1287 return; 1288 } 1289 1290 /* s390's use of memset() could override KASAN redzones. */ 1291 kasan_disable_current(); 1292 for (i = 0; i < numpages; i++) { 1293 u8 tag = page_kasan_tag(page + i); 1294 page_kasan_tag_reset(page + i); 1295 clear_highpage(page + i); 1296 page_kasan_tag_set(page + i, tag); 1297 } 1298 kasan_enable_current(); 1299 } 1300 1301 static __always_inline bool free_pages_prepare(struct page *page, 1302 unsigned int order, bool check_free, fpi_t fpi_flags) 1303 { 1304 int bad = 0; 1305 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1306 1307 VM_BUG_ON_PAGE(PageTail(page), page); 1308 1309 trace_mm_page_free(page, order); 1310 1311 if (unlikely(PageHWPoison(page)) && !order) { 1312 /* 1313 * Do not let hwpoison pages hit pcplists/buddy 1314 * Untie memcg state and reset page's owner 1315 */ 1316 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1317 __memcg_kmem_uncharge_page(page, order); 1318 reset_page_owner(page, order); 1319 return false; 1320 } 1321 1322 /* 1323 * Check tail pages before head page information is cleared to 1324 * avoid checking PageCompound for order-0 pages. 1325 */ 1326 if (unlikely(order)) { 1327 bool compound = PageCompound(page); 1328 int i; 1329 1330 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1331 1332 if (compound) 1333 ClearPageDoubleMap(page); 1334 for (i = 1; i < (1 << order); i++) { 1335 if (compound) 1336 bad += free_tail_pages_check(page, page + i); 1337 if (unlikely(check_free_page(page + i))) { 1338 bad++; 1339 continue; 1340 } 1341 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1342 } 1343 } 1344 if (PageMappingFlags(page)) 1345 page->mapping = NULL; 1346 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1347 __memcg_kmem_uncharge_page(page, order); 1348 if (check_free) 1349 bad += check_free_page(page); 1350 if (bad) 1351 return false; 1352 1353 page_cpupid_reset_last(page); 1354 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1355 reset_page_owner(page, order); 1356 1357 if (!PageHighMem(page)) { 1358 debug_check_no_locks_freed(page_address(page), 1359 PAGE_SIZE << order); 1360 debug_check_no_obj_freed(page_address(page), 1361 PAGE_SIZE << order); 1362 } 1363 1364 kernel_poison_pages(page, 1 << order); 1365 1366 /* 1367 * As memory initialization might be integrated into KASAN, 1368 * kasan_free_pages and kernel_init_free_pages must be 1369 * kept together to avoid discrepancies in behavior. 1370 * 1371 * With hardware tag-based KASAN, memory tags must be set before the 1372 * page becomes unavailable via debug_pagealloc or arch_free_page. 1373 */ 1374 if (kasan_has_integrated_init()) { 1375 if (!skip_kasan_poison) 1376 kasan_free_pages(page, order); 1377 } else { 1378 bool init = want_init_on_free(); 1379 1380 if (init) 1381 kernel_init_free_pages(page, 1 << order, false); 1382 if (!skip_kasan_poison) 1383 kasan_poison_pages(page, order, init); 1384 } 1385 1386 /* 1387 * arch_free_page() can make the page's contents inaccessible. s390 1388 * does this. So nothing which can access the page's contents should 1389 * happen after this. 1390 */ 1391 arch_free_page(page, order); 1392 1393 debug_pagealloc_unmap_pages(page, 1 << order); 1394 1395 return true; 1396 } 1397 1398 #ifdef CONFIG_DEBUG_VM 1399 /* 1400 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1401 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1402 * moved from pcp lists to free lists. 1403 */ 1404 static bool free_pcp_prepare(struct page *page, unsigned int order) 1405 { 1406 return free_pages_prepare(page, order, true, FPI_NONE); 1407 } 1408 1409 static bool bulkfree_pcp_prepare(struct page *page) 1410 { 1411 if (debug_pagealloc_enabled_static()) 1412 return check_free_page(page); 1413 else 1414 return false; 1415 } 1416 #else 1417 /* 1418 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1419 * moving from pcp lists to free list in order to reduce overhead. With 1420 * debug_pagealloc enabled, they are checked also immediately when being freed 1421 * to the pcp lists. 1422 */ 1423 static bool free_pcp_prepare(struct page *page, unsigned int order) 1424 { 1425 if (debug_pagealloc_enabled_static()) 1426 return free_pages_prepare(page, order, true, FPI_NONE); 1427 else 1428 return free_pages_prepare(page, order, false, FPI_NONE); 1429 } 1430 1431 static bool bulkfree_pcp_prepare(struct page *page) 1432 { 1433 return check_free_page(page); 1434 } 1435 #endif /* CONFIG_DEBUG_VM */ 1436 1437 static inline void prefetch_buddy(struct page *page) 1438 { 1439 unsigned long pfn = page_to_pfn(page); 1440 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1441 struct page *buddy = page + (buddy_pfn - pfn); 1442 1443 prefetch(buddy); 1444 } 1445 1446 /* 1447 * Frees a number of pages from the PCP lists 1448 * Assumes all pages on list are in same zone, and of same order. 1449 * count is the number of pages to free. 1450 * 1451 * If the zone was previously in an "all pages pinned" state then look to 1452 * see if this freeing clears that state. 1453 * 1454 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1455 * pinned" detection logic. 1456 */ 1457 static void free_pcppages_bulk(struct zone *zone, int count, 1458 struct per_cpu_pages *pcp) 1459 { 1460 int pindex = 0; 1461 int batch_free = 0; 1462 int nr_freed = 0; 1463 unsigned int order; 1464 int prefetch_nr = READ_ONCE(pcp->batch); 1465 bool isolated_pageblocks; 1466 struct page *page, *tmp; 1467 LIST_HEAD(head); 1468 1469 /* 1470 * Ensure proper count is passed which otherwise would stuck in the 1471 * below while (list_empty(list)) loop. 1472 */ 1473 count = min(pcp->count, count); 1474 while (count > 0) { 1475 struct list_head *list; 1476 1477 /* 1478 * Remove pages from lists in a round-robin fashion. A 1479 * batch_free count is maintained that is incremented when an 1480 * empty list is encountered. This is so more pages are freed 1481 * off fuller lists instead of spinning excessively around empty 1482 * lists 1483 */ 1484 do { 1485 batch_free++; 1486 if (++pindex == NR_PCP_LISTS) 1487 pindex = 0; 1488 list = &pcp->lists[pindex]; 1489 } while (list_empty(list)); 1490 1491 /* This is the only non-empty list. Free them all. */ 1492 if (batch_free == NR_PCP_LISTS) 1493 batch_free = count; 1494 1495 order = pindex_to_order(pindex); 1496 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1497 do { 1498 page = list_last_entry(list, struct page, lru); 1499 /* must delete to avoid corrupting pcp list */ 1500 list_del(&page->lru); 1501 nr_freed += 1 << order; 1502 count -= 1 << order; 1503 1504 if (bulkfree_pcp_prepare(page)) 1505 continue; 1506 1507 /* Encode order with the migratetype */ 1508 page->index <<= NR_PCP_ORDER_WIDTH; 1509 page->index |= order; 1510 1511 list_add_tail(&page->lru, &head); 1512 1513 /* 1514 * We are going to put the page back to the global 1515 * pool, prefetch its buddy to speed up later access 1516 * under zone->lock. It is believed the overhead of 1517 * an additional test and calculating buddy_pfn here 1518 * can be offset by reduced memory latency later. To 1519 * avoid excessive prefetching due to large count, only 1520 * prefetch buddy for the first pcp->batch nr of pages. 1521 */ 1522 if (prefetch_nr) { 1523 prefetch_buddy(page); 1524 prefetch_nr--; 1525 } 1526 } while (count > 0 && --batch_free && !list_empty(list)); 1527 } 1528 pcp->count -= nr_freed; 1529 1530 /* 1531 * local_lock_irq held so equivalent to spin_lock_irqsave for 1532 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1533 */ 1534 spin_lock(&zone->lock); 1535 isolated_pageblocks = has_isolate_pageblock(zone); 1536 1537 /* 1538 * Use safe version since after __free_one_page(), 1539 * page->lru.next will not point to original list. 1540 */ 1541 list_for_each_entry_safe(page, tmp, &head, lru) { 1542 int mt = get_pcppage_migratetype(page); 1543 1544 /* mt has been encoded with the order (see above) */ 1545 order = mt & NR_PCP_ORDER_MASK; 1546 mt >>= NR_PCP_ORDER_WIDTH; 1547 1548 /* MIGRATE_ISOLATE page should not go to pcplists */ 1549 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1550 /* Pageblock could have been isolated meanwhile */ 1551 if (unlikely(isolated_pageblocks)) 1552 mt = get_pageblock_migratetype(page); 1553 1554 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1555 trace_mm_page_pcpu_drain(page, order, mt); 1556 } 1557 spin_unlock(&zone->lock); 1558 } 1559 1560 static void free_one_page(struct zone *zone, 1561 struct page *page, unsigned long pfn, 1562 unsigned int order, 1563 int migratetype, fpi_t fpi_flags) 1564 { 1565 unsigned long flags; 1566 1567 spin_lock_irqsave(&zone->lock, flags); 1568 if (unlikely(has_isolate_pageblock(zone) || 1569 is_migrate_isolate(migratetype))) { 1570 migratetype = get_pfnblock_migratetype(page, pfn); 1571 } 1572 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1573 spin_unlock_irqrestore(&zone->lock, flags); 1574 } 1575 1576 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1577 unsigned long zone, int nid) 1578 { 1579 mm_zero_struct_page(page); 1580 set_page_links(page, zone, nid, pfn); 1581 init_page_count(page); 1582 page_mapcount_reset(page); 1583 page_cpupid_reset_last(page); 1584 page_kasan_tag_reset(page); 1585 1586 INIT_LIST_HEAD(&page->lru); 1587 #ifdef WANT_PAGE_VIRTUAL 1588 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1589 if (!is_highmem_idx(zone)) 1590 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1591 #endif 1592 } 1593 1594 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1595 static void __meminit init_reserved_page(unsigned long pfn) 1596 { 1597 pg_data_t *pgdat; 1598 int nid, zid; 1599 1600 if (!early_page_uninitialised(pfn)) 1601 return; 1602 1603 nid = early_pfn_to_nid(pfn); 1604 pgdat = NODE_DATA(nid); 1605 1606 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1607 struct zone *zone = &pgdat->node_zones[zid]; 1608 1609 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1610 break; 1611 } 1612 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1613 } 1614 #else 1615 static inline void init_reserved_page(unsigned long pfn) 1616 { 1617 } 1618 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1619 1620 /* 1621 * Initialised pages do not have PageReserved set. This function is 1622 * called for each range allocated by the bootmem allocator and 1623 * marks the pages PageReserved. The remaining valid pages are later 1624 * sent to the buddy page allocator. 1625 */ 1626 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1627 { 1628 unsigned long start_pfn = PFN_DOWN(start); 1629 unsigned long end_pfn = PFN_UP(end); 1630 1631 for (; start_pfn < end_pfn; start_pfn++) { 1632 if (pfn_valid(start_pfn)) { 1633 struct page *page = pfn_to_page(start_pfn); 1634 1635 init_reserved_page(start_pfn); 1636 1637 /* Avoid false-positive PageTail() */ 1638 INIT_LIST_HEAD(&page->lru); 1639 1640 /* 1641 * no need for atomic set_bit because the struct 1642 * page is not visible yet so nobody should 1643 * access it yet. 1644 */ 1645 __SetPageReserved(page); 1646 } 1647 } 1648 } 1649 1650 static void __free_pages_ok(struct page *page, unsigned int order, 1651 fpi_t fpi_flags) 1652 { 1653 unsigned long flags; 1654 int migratetype; 1655 unsigned long pfn = page_to_pfn(page); 1656 struct zone *zone = page_zone(page); 1657 1658 if (!free_pages_prepare(page, order, true, fpi_flags)) 1659 return; 1660 1661 migratetype = get_pfnblock_migratetype(page, pfn); 1662 1663 spin_lock_irqsave(&zone->lock, flags); 1664 if (unlikely(has_isolate_pageblock(zone) || 1665 is_migrate_isolate(migratetype))) { 1666 migratetype = get_pfnblock_migratetype(page, pfn); 1667 } 1668 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1669 spin_unlock_irqrestore(&zone->lock, flags); 1670 1671 __count_vm_events(PGFREE, 1 << order); 1672 } 1673 1674 void __free_pages_core(struct page *page, unsigned int order) 1675 { 1676 unsigned int nr_pages = 1 << order; 1677 struct page *p = page; 1678 unsigned int loop; 1679 1680 /* 1681 * When initializing the memmap, __init_single_page() sets the refcount 1682 * of all pages to 1 ("allocated"/"not free"). We have to set the 1683 * refcount of all involved pages to 0. 1684 */ 1685 prefetchw(p); 1686 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1687 prefetchw(p + 1); 1688 __ClearPageReserved(p); 1689 set_page_count(p, 0); 1690 } 1691 __ClearPageReserved(p); 1692 set_page_count(p, 0); 1693 1694 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1695 1696 /* 1697 * Bypass PCP and place fresh pages right to the tail, primarily 1698 * relevant for memory onlining. 1699 */ 1700 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1701 } 1702 1703 #ifdef CONFIG_NUMA 1704 1705 /* 1706 * During memory init memblocks map pfns to nids. The search is expensive and 1707 * this caches recent lookups. The implementation of __early_pfn_to_nid 1708 * treats start/end as pfns. 1709 */ 1710 struct mminit_pfnnid_cache { 1711 unsigned long last_start; 1712 unsigned long last_end; 1713 int last_nid; 1714 }; 1715 1716 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1717 1718 /* 1719 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1720 */ 1721 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1722 struct mminit_pfnnid_cache *state) 1723 { 1724 unsigned long start_pfn, end_pfn; 1725 int nid; 1726 1727 if (state->last_start <= pfn && pfn < state->last_end) 1728 return state->last_nid; 1729 1730 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1731 if (nid != NUMA_NO_NODE) { 1732 state->last_start = start_pfn; 1733 state->last_end = end_pfn; 1734 state->last_nid = nid; 1735 } 1736 1737 return nid; 1738 } 1739 1740 int __meminit early_pfn_to_nid(unsigned long pfn) 1741 { 1742 static DEFINE_SPINLOCK(early_pfn_lock); 1743 int nid; 1744 1745 spin_lock(&early_pfn_lock); 1746 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1747 if (nid < 0) 1748 nid = first_online_node; 1749 spin_unlock(&early_pfn_lock); 1750 1751 return nid; 1752 } 1753 #endif /* CONFIG_NUMA */ 1754 1755 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1756 unsigned int order) 1757 { 1758 if (early_page_uninitialised(pfn)) 1759 return; 1760 __free_pages_core(page, order); 1761 } 1762 1763 /* 1764 * Check that the whole (or subset of) a pageblock given by the interval of 1765 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1766 * with the migration of free compaction scanner. The scanners then need to 1767 * use only pfn_valid_within() check for arches that allow holes within 1768 * pageblocks. 1769 * 1770 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1771 * 1772 * It's possible on some configurations to have a setup like node0 node1 node0 1773 * i.e. it's possible that all pages within a zones range of pages do not 1774 * belong to a single zone. We assume that a border between node0 and node1 1775 * can occur within a single pageblock, but not a node0 node1 node0 1776 * interleaving within a single pageblock. It is therefore sufficient to check 1777 * the first and last page of a pageblock and avoid checking each individual 1778 * page in a pageblock. 1779 */ 1780 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1781 unsigned long end_pfn, struct zone *zone) 1782 { 1783 struct page *start_page; 1784 struct page *end_page; 1785 1786 /* end_pfn is one past the range we are checking */ 1787 end_pfn--; 1788 1789 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1790 return NULL; 1791 1792 start_page = pfn_to_online_page(start_pfn); 1793 if (!start_page) 1794 return NULL; 1795 1796 if (page_zone(start_page) != zone) 1797 return NULL; 1798 1799 end_page = pfn_to_page(end_pfn); 1800 1801 /* This gives a shorter code than deriving page_zone(end_page) */ 1802 if (page_zone_id(start_page) != page_zone_id(end_page)) 1803 return NULL; 1804 1805 return start_page; 1806 } 1807 1808 void set_zone_contiguous(struct zone *zone) 1809 { 1810 unsigned long block_start_pfn = zone->zone_start_pfn; 1811 unsigned long block_end_pfn; 1812 1813 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1814 for (; block_start_pfn < zone_end_pfn(zone); 1815 block_start_pfn = block_end_pfn, 1816 block_end_pfn += pageblock_nr_pages) { 1817 1818 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1819 1820 if (!__pageblock_pfn_to_page(block_start_pfn, 1821 block_end_pfn, zone)) 1822 return; 1823 cond_resched(); 1824 } 1825 1826 /* We confirm that there is no hole */ 1827 zone->contiguous = true; 1828 } 1829 1830 void clear_zone_contiguous(struct zone *zone) 1831 { 1832 zone->contiguous = false; 1833 } 1834 1835 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1836 static void __init deferred_free_range(unsigned long pfn, 1837 unsigned long nr_pages) 1838 { 1839 struct page *page; 1840 unsigned long i; 1841 1842 if (!nr_pages) 1843 return; 1844 1845 page = pfn_to_page(pfn); 1846 1847 /* Free a large naturally-aligned chunk if possible */ 1848 if (nr_pages == pageblock_nr_pages && 1849 (pfn & (pageblock_nr_pages - 1)) == 0) { 1850 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1851 __free_pages_core(page, pageblock_order); 1852 return; 1853 } 1854 1855 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1856 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1857 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1858 __free_pages_core(page, 0); 1859 } 1860 } 1861 1862 /* Completion tracking for deferred_init_memmap() threads */ 1863 static atomic_t pgdat_init_n_undone __initdata; 1864 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1865 1866 static inline void __init pgdat_init_report_one_done(void) 1867 { 1868 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1869 complete(&pgdat_init_all_done_comp); 1870 } 1871 1872 /* 1873 * Returns true if page needs to be initialized or freed to buddy allocator. 1874 * 1875 * First we check if pfn is valid on architectures where it is possible to have 1876 * holes within pageblock_nr_pages. On systems where it is not possible, this 1877 * function is optimized out. 1878 * 1879 * Then, we check if a current large page is valid by only checking the validity 1880 * of the head pfn. 1881 */ 1882 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1883 { 1884 if (!pfn_valid_within(pfn)) 1885 return false; 1886 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1887 return false; 1888 return true; 1889 } 1890 1891 /* 1892 * Free pages to buddy allocator. Try to free aligned pages in 1893 * pageblock_nr_pages sizes. 1894 */ 1895 static void __init deferred_free_pages(unsigned long pfn, 1896 unsigned long end_pfn) 1897 { 1898 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1899 unsigned long nr_free = 0; 1900 1901 for (; pfn < end_pfn; pfn++) { 1902 if (!deferred_pfn_valid(pfn)) { 1903 deferred_free_range(pfn - nr_free, nr_free); 1904 nr_free = 0; 1905 } else if (!(pfn & nr_pgmask)) { 1906 deferred_free_range(pfn - nr_free, nr_free); 1907 nr_free = 1; 1908 } else { 1909 nr_free++; 1910 } 1911 } 1912 /* Free the last block of pages to allocator */ 1913 deferred_free_range(pfn - nr_free, nr_free); 1914 } 1915 1916 /* 1917 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1918 * by performing it only once every pageblock_nr_pages. 1919 * Return number of pages initialized. 1920 */ 1921 static unsigned long __init deferred_init_pages(struct zone *zone, 1922 unsigned long pfn, 1923 unsigned long end_pfn) 1924 { 1925 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1926 int nid = zone_to_nid(zone); 1927 unsigned long nr_pages = 0; 1928 int zid = zone_idx(zone); 1929 struct page *page = NULL; 1930 1931 for (; pfn < end_pfn; pfn++) { 1932 if (!deferred_pfn_valid(pfn)) { 1933 page = NULL; 1934 continue; 1935 } else if (!page || !(pfn & nr_pgmask)) { 1936 page = pfn_to_page(pfn); 1937 } else { 1938 page++; 1939 } 1940 __init_single_page(page, pfn, zid, nid); 1941 nr_pages++; 1942 } 1943 return (nr_pages); 1944 } 1945 1946 /* 1947 * This function is meant to pre-load the iterator for the zone init. 1948 * Specifically it walks through the ranges until we are caught up to the 1949 * first_init_pfn value and exits there. If we never encounter the value we 1950 * return false indicating there are no valid ranges left. 1951 */ 1952 static bool __init 1953 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1954 unsigned long *spfn, unsigned long *epfn, 1955 unsigned long first_init_pfn) 1956 { 1957 u64 j; 1958 1959 /* 1960 * Start out by walking through the ranges in this zone that have 1961 * already been initialized. We don't need to do anything with them 1962 * so we just need to flush them out of the system. 1963 */ 1964 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1965 if (*epfn <= first_init_pfn) 1966 continue; 1967 if (*spfn < first_init_pfn) 1968 *spfn = first_init_pfn; 1969 *i = j; 1970 return true; 1971 } 1972 1973 return false; 1974 } 1975 1976 /* 1977 * Initialize and free pages. We do it in two loops: first we initialize 1978 * struct page, then free to buddy allocator, because while we are 1979 * freeing pages we can access pages that are ahead (computing buddy 1980 * page in __free_one_page()). 1981 * 1982 * In order to try and keep some memory in the cache we have the loop 1983 * broken along max page order boundaries. This way we will not cause 1984 * any issues with the buddy page computation. 1985 */ 1986 static unsigned long __init 1987 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1988 unsigned long *end_pfn) 1989 { 1990 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1991 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1992 unsigned long nr_pages = 0; 1993 u64 j = *i; 1994 1995 /* First we loop through and initialize the page values */ 1996 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1997 unsigned long t; 1998 1999 if (mo_pfn <= *start_pfn) 2000 break; 2001 2002 t = min(mo_pfn, *end_pfn); 2003 nr_pages += deferred_init_pages(zone, *start_pfn, t); 2004 2005 if (mo_pfn < *end_pfn) { 2006 *start_pfn = mo_pfn; 2007 break; 2008 } 2009 } 2010 2011 /* Reset values and now loop through freeing pages as needed */ 2012 swap(j, *i); 2013 2014 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2015 unsigned long t; 2016 2017 if (mo_pfn <= spfn) 2018 break; 2019 2020 t = min(mo_pfn, epfn); 2021 deferred_free_pages(spfn, t); 2022 2023 if (mo_pfn <= epfn) 2024 break; 2025 } 2026 2027 return nr_pages; 2028 } 2029 2030 static void __init 2031 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2032 void *arg) 2033 { 2034 unsigned long spfn, epfn; 2035 struct zone *zone = arg; 2036 u64 i; 2037 2038 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2039 2040 /* 2041 * Initialize and free pages in MAX_ORDER sized increments so that we 2042 * can avoid introducing any issues with the buddy allocator. 2043 */ 2044 while (spfn < end_pfn) { 2045 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2046 cond_resched(); 2047 } 2048 } 2049 2050 /* An arch may override for more concurrency. */ 2051 __weak int __init 2052 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2053 { 2054 return 1; 2055 } 2056 2057 /* Initialise remaining memory on a node */ 2058 static int __init deferred_init_memmap(void *data) 2059 { 2060 pg_data_t *pgdat = data; 2061 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2062 unsigned long spfn = 0, epfn = 0; 2063 unsigned long first_init_pfn, flags; 2064 unsigned long start = jiffies; 2065 struct zone *zone; 2066 int zid, max_threads; 2067 u64 i; 2068 2069 /* Bind memory initialisation thread to a local node if possible */ 2070 if (!cpumask_empty(cpumask)) 2071 set_cpus_allowed_ptr(current, cpumask); 2072 2073 pgdat_resize_lock(pgdat, &flags); 2074 first_init_pfn = pgdat->first_deferred_pfn; 2075 if (first_init_pfn == ULONG_MAX) { 2076 pgdat_resize_unlock(pgdat, &flags); 2077 pgdat_init_report_one_done(); 2078 return 0; 2079 } 2080 2081 /* Sanity check boundaries */ 2082 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2083 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2084 pgdat->first_deferred_pfn = ULONG_MAX; 2085 2086 /* 2087 * Once we unlock here, the zone cannot be grown anymore, thus if an 2088 * interrupt thread must allocate this early in boot, zone must be 2089 * pre-grown prior to start of deferred page initialization. 2090 */ 2091 pgdat_resize_unlock(pgdat, &flags); 2092 2093 /* Only the highest zone is deferred so find it */ 2094 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2095 zone = pgdat->node_zones + zid; 2096 if (first_init_pfn < zone_end_pfn(zone)) 2097 break; 2098 } 2099 2100 /* If the zone is empty somebody else may have cleared out the zone */ 2101 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2102 first_init_pfn)) 2103 goto zone_empty; 2104 2105 max_threads = deferred_page_init_max_threads(cpumask); 2106 2107 while (spfn < epfn) { 2108 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2109 struct padata_mt_job job = { 2110 .thread_fn = deferred_init_memmap_chunk, 2111 .fn_arg = zone, 2112 .start = spfn, 2113 .size = epfn_align - spfn, 2114 .align = PAGES_PER_SECTION, 2115 .min_chunk = PAGES_PER_SECTION, 2116 .max_threads = max_threads, 2117 }; 2118 2119 padata_do_multithreaded(&job); 2120 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2121 epfn_align); 2122 } 2123 zone_empty: 2124 /* Sanity check that the next zone really is unpopulated */ 2125 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2126 2127 pr_info("node %d deferred pages initialised in %ums\n", 2128 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2129 2130 pgdat_init_report_one_done(); 2131 return 0; 2132 } 2133 2134 /* 2135 * If this zone has deferred pages, try to grow it by initializing enough 2136 * deferred pages to satisfy the allocation specified by order, rounded up to 2137 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2138 * of SECTION_SIZE bytes by initializing struct pages in increments of 2139 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2140 * 2141 * Return true when zone was grown, otherwise return false. We return true even 2142 * when we grow less than requested, to let the caller decide if there are 2143 * enough pages to satisfy the allocation. 2144 * 2145 * Note: We use noinline because this function is needed only during boot, and 2146 * it is called from a __ref function _deferred_grow_zone. This way we are 2147 * making sure that it is not inlined into permanent text section. 2148 */ 2149 static noinline bool __init 2150 deferred_grow_zone(struct zone *zone, unsigned int order) 2151 { 2152 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2153 pg_data_t *pgdat = zone->zone_pgdat; 2154 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2155 unsigned long spfn, epfn, flags; 2156 unsigned long nr_pages = 0; 2157 u64 i; 2158 2159 /* Only the last zone may have deferred pages */ 2160 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2161 return false; 2162 2163 pgdat_resize_lock(pgdat, &flags); 2164 2165 /* 2166 * If someone grew this zone while we were waiting for spinlock, return 2167 * true, as there might be enough pages already. 2168 */ 2169 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2170 pgdat_resize_unlock(pgdat, &flags); 2171 return true; 2172 } 2173 2174 /* If the zone is empty somebody else may have cleared out the zone */ 2175 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2176 first_deferred_pfn)) { 2177 pgdat->first_deferred_pfn = ULONG_MAX; 2178 pgdat_resize_unlock(pgdat, &flags); 2179 /* Retry only once. */ 2180 return first_deferred_pfn != ULONG_MAX; 2181 } 2182 2183 /* 2184 * Initialize and free pages in MAX_ORDER sized increments so 2185 * that we can avoid introducing any issues with the buddy 2186 * allocator. 2187 */ 2188 while (spfn < epfn) { 2189 /* update our first deferred PFN for this section */ 2190 first_deferred_pfn = spfn; 2191 2192 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2193 touch_nmi_watchdog(); 2194 2195 /* We should only stop along section boundaries */ 2196 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2197 continue; 2198 2199 /* If our quota has been met we can stop here */ 2200 if (nr_pages >= nr_pages_needed) 2201 break; 2202 } 2203 2204 pgdat->first_deferred_pfn = spfn; 2205 pgdat_resize_unlock(pgdat, &flags); 2206 2207 return nr_pages > 0; 2208 } 2209 2210 /* 2211 * deferred_grow_zone() is __init, but it is called from 2212 * get_page_from_freelist() during early boot until deferred_pages permanently 2213 * disables this call. This is why we have refdata wrapper to avoid warning, 2214 * and to ensure that the function body gets unloaded. 2215 */ 2216 static bool __ref 2217 _deferred_grow_zone(struct zone *zone, unsigned int order) 2218 { 2219 return deferred_grow_zone(zone, order); 2220 } 2221 2222 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2223 2224 void __init page_alloc_init_late(void) 2225 { 2226 struct zone *zone; 2227 int nid; 2228 2229 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2230 2231 /* There will be num_node_state(N_MEMORY) threads */ 2232 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2233 for_each_node_state(nid, N_MEMORY) { 2234 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2235 } 2236 2237 /* Block until all are initialised */ 2238 wait_for_completion(&pgdat_init_all_done_comp); 2239 2240 /* 2241 * We initialized the rest of the deferred pages. Permanently disable 2242 * on-demand struct page initialization. 2243 */ 2244 static_branch_disable(&deferred_pages); 2245 2246 /* Reinit limits that are based on free pages after the kernel is up */ 2247 files_maxfiles_init(); 2248 #endif 2249 2250 buffer_init(); 2251 2252 /* Discard memblock private memory */ 2253 memblock_discard(); 2254 2255 for_each_node_state(nid, N_MEMORY) 2256 shuffle_free_memory(NODE_DATA(nid)); 2257 2258 for_each_populated_zone(zone) 2259 set_zone_contiguous(zone); 2260 } 2261 2262 #ifdef CONFIG_CMA 2263 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2264 void __init init_cma_reserved_pageblock(struct page *page) 2265 { 2266 unsigned i = pageblock_nr_pages; 2267 struct page *p = page; 2268 2269 do { 2270 __ClearPageReserved(p); 2271 set_page_count(p, 0); 2272 } while (++p, --i); 2273 2274 set_pageblock_migratetype(page, MIGRATE_CMA); 2275 2276 if (pageblock_order >= MAX_ORDER) { 2277 i = pageblock_nr_pages; 2278 p = page; 2279 do { 2280 set_page_refcounted(p); 2281 __free_pages(p, MAX_ORDER - 1); 2282 p += MAX_ORDER_NR_PAGES; 2283 } while (i -= MAX_ORDER_NR_PAGES); 2284 } else { 2285 set_page_refcounted(page); 2286 __free_pages(page, pageblock_order); 2287 } 2288 2289 adjust_managed_page_count(page, pageblock_nr_pages); 2290 page_zone(page)->cma_pages += pageblock_nr_pages; 2291 } 2292 #endif 2293 2294 /* 2295 * The order of subdivision here is critical for the IO subsystem. 2296 * Please do not alter this order without good reasons and regression 2297 * testing. Specifically, as large blocks of memory are subdivided, 2298 * the order in which smaller blocks are delivered depends on the order 2299 * they're subdivided in this function. This is the primary factor 2300 * influencing the order in which pages are delivered to the IO 2301 * subsystem according to empirical testing, and this is also justified 2302 * by considering the behavior of a buddy system containing a single 2303 * large block of memory acted on by a series of small allocations. 2304 * This behavior is a critical factor in sglist merging's success. 2305 * 2306 * -- nyc 2307 */ 2308 static inline void expand(struct zone *zone, struct page *page, 2309 int low, int high, int migratetype) 2310 { 2311 unsigned long size = 1 << high; 2312 2313 while (high > low) { 2314 high--; 2315 size >>= 1; 2316 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2317 2318 /* 2319 * Mark as guard pages (or page), that will allow to 2320 * merge back to allocator when buddy will be freed. 2321 * Corresponding page table entries will not be touched, 2322 * pages will stay not present in virtual address space 2323 */ 2324 if (set_page_guard(zone, &page[size], high, migratetype)) 2325 continue; 2326 2327 add_to_free_list(&page[size], zone, high, migratetype); 2328 set_buddy_order(&page[size], high); 2329 } 2330 } 2331 2332 static void check_new_page_bad(struct page *page) 2333 { 2334 if (unlikely(page->flags & __PG_HWPOISON)) { 2335 /* Don't complain about hwpoisoned pages */ 2336 page_mapcount_reset(page); /* remove PageBuddy */ 2337 return; 2338 } 2339 2340 bad_page(page, 2341 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2342 } 2343 2344 /* 2345 * This page is about to be returned from the page allocator 2346 */ 2347 static inline int check_new_page(struct page *page) 2348 { 2349 if (likely(page_expected_state(page, 2350 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2351 return 0; 2352 2353 check_new_page_bad(page); 2354 return 1; 2355 } 2356 2357 #ifdef CONFIG_DEBUG_VM 2358 /* 2359 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2360 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2361 * also checked when pcp lists are refilled from the free lists. 2362 */ 2363 static inline bool check_pcp_refill(struct page *page) 2364 { 2365 if (debug_pagealloc_enabled_static()) 2366 return check_new_page(page); 2367 else 2368 return false; 2369 } 2370 2371 static inline bool check_new_pcp(struct page *page) 2372 { 2373 return check_new_page(page); 2374 } 2375 #else 2376 /* 2377 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2378 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2379 * enabled, they are also checked when being allocated from the pcp lists. 2380 */ 2381 static inline bool check_pcp_refill(struct page *page) 2382 { 2383 return check_new_page(page); 2384 } 2385 static inline bool check_new_pcp(struct page *page) 2386 { 2387 if (debug_pagealloc_enabled_static()) 2388 return check_new_page(page); 2389 else 2390 return false; 2391 } 2392 #endif /* CONFIG_DEBUG_VM */ 2393 2394 static bool check_new_pages(struct page *page, unsigned int order) 2395 { 2396 int i; 2397 for (i = 0; i < (1 << order); i++) { 2398 struct page *p = page + i; 2399 2400 if (unlikely(check_new_page(p))) 2401 return true; 2402 } 2403 2404 return false; 2405 } 2406 2407 inline void post_alloc_hook(struct page *page, unsigned int order, 2408 gfp_t gfp_flags) 2409 { 2410 set_page_private(page, 0); 2411 set_page_refcounted(page); 2412 2413 arch_alloc_page(page, order); 2414 debug_pagealloc_map_pages(page, 1 << order); 2415 2416 /* 2417 * Page unpoisoning must happen before memory initialization. 2418 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2419 * allocations and the page unpoisoning code will complain. 2420 */ 2421 kernel_unpoison_pages(page, 1 << order); 2422 2423 /* 2424 * As memory initialization might be integrated into KASAN, 2425 * kasan_alloc_pages and kernel_init_free_pages must be 2426 * kept together to avoid discrepancies in behavior. 2427 */ 2428 if (kasan_has_integrated_init()) { 2429 kasan_alloc_pages(page, order, gfp_flags); 2430 } else { 2431 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2432 2433 kasan_unpoison_pages(page, order, init); 2434 if (init) 2435 kernel_init_free_pages(page, 1 << order, 2436 gfp_flags & __GFP_ZEROTAGS); 2437 } 2438 2439 set_page_owner(page, order, gfp_flags); 2440 } 2441 2442 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2443 unsigned int alloc_flags) 2444 { 2445 post_alloc_hook(page, order, gfp_flags); 2446 2447 if (order && (gfp_flags & __GFP_COMP)) 2448 prep_compound_page(page, order); 2449 2450 /* 2451 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2452 * allocate the page. The expectation is that the caller is taking 2453 * steps that will free more memory. The caller should avoid the page 2454 * being used for !PFMEMALLOC purposes. 2455 */ 2456 if (alloc_flags & ALLOC_NO_WATERMARKS) 2457 set_page_pfmemalloc(page); 2458 else 2459 clear_page_pfmemalloc(page); 2460 } 2461 2462 /* 2463 * Go through the free lists for the given migratetype and remove 2464 * the smallest available page from the freelists 2465 */ 2466 static __always_inline 2467 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2468 int migratetype) 2469 { 2470 unsigned int current_order; 2471 struct free_area *area; 2472 struct page *page; 2473 2474 /* Find a page of the appropriate size in the preferred list */ 2475 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2476 area = &(zone->free_area[current_order]); 2477 page = get_page_from_free_area(area, migratetype); 2478 if (!page) 2479 continue; 2480 del_page_from_free_list(page, zone, current_order); 2481 expand(zone, page, order, current_order, migratetype); 2482 set_pcppage_migratetype(page, migratetype); 2483 return page; 2484 } 2485 2486 return NULL; 2487 } 2488 2489 2490 /* 2491 * This array describes the order lists are fallen back to when 2492 * the free lists for the desirable migrate type are depleted 2493 */ 2494 static int fallbacks[MIGRATE_TYPES][3] = { 2495 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2496 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2497 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2498 #ifdef CONFIG_CMA 2499 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2500 #endif 2501 #ifdef CONFIG_MEMORY_ISOLATION 2502 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2503 #endif 2504 }; 2505 2506 #ifdef CONFIG_CMA 2507 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2508 unsigned int order) 2509 { 2510 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2511 } 2512 #else 2513 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2514 unsigned int order) { return NULL; } 2515 #endif 2516 2517 /* 2518 * Move the free pages in a range to the freelist tail of the requested type. 2519 * Note that start_page and end_pages are not aligned on a pageblock 2520 * boundary. If alignment is required, use move_freepages_block() 2521 */ 2522 static int move_freepages(struct zone *zone, 2523 unsigned long start_pfn, unsigned long end_pfn, 2524 int migratetype, int *num_movable) 2525 { 2526 struct page *page; 2527 unsigned long pfn; 2528 unsigned int order; 2529 int pages_moved = 0; 2530 2531 for (pfn = start_pfn; pfn <= end_pfn;) { 2532 if (!pfn_valid_within(pfn)) { 2533 pfn++; 2534 continue; 2535 } 2536 2537 page = pfn_to_page(pfn); 2538 if (!PageBuddy(page)) { 2539 /* 2540 * We assume that pages that could be isolated for 2541 * migration are movable. But we don't actually try 2542 * isolating, as that would be expensive. 2543 */ 2544 if (num_movable && 2545 (PageLRU(page) || __PageMovable(page))) 2546 (*num_movable)++; 2547 pfn++; 2548 continue; 2549 } 2550 2551 /* Make sure we are not inadvertently changing nodes */ 2552 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2553 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2554 2555 order = buddy_order(page); 2556 move_to_free_list(page, zone, order, migratetype); 2557 pfn += 1 << order; 2558 pages_moved += 1 << order; 2559 } 2560 2561 return pages_moved; 2562 } 2563 2564 int move_freepages_block(struct zone *zone, struct page *page, 2565 int migratetype, int *num_movable) 2566 { 2567 unsigned long start_pfn, end_pfn, pfn; 2568 2569 if (num_movable) 2570 *num_movable = 0; 2571 2572 pfn = page_to_pfn(page); 2573 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2574 end_pfn = start_pfn + pageblock_nr_pages - 1; 2575 2576 /* Do not cross zone boundaries */ 2577 if (!zone_spans_pfn(zone, start_pfn)) 2578 start_pfn = pfn; 2579 if (!zone_spans_pfn(zone, end_pfn)) 2580 return 0; 2581 2582 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2583 num_movable); 2584 } 2585 2586 static void change_pageblock_range(struct page *pageblock_page, 2587 int start_order, int migratetype) 2588 { 2589 int nr_pageblocks = 1 << (start_order - pageblock_order); 2590 2591 while (nr_pageblocks--) { 2592 set_pageblock_migratetype(pageblock_page, migratetype); 2593 pageblock_page += pageblock_nr_pages; 2594 } 2595 } 2596 2597 /* 2598 * When we are falling back to another migratetype during allocation, try to 2599 * steal extra free pages from the same pageblocks to satisfy further 2600 * allocations, instead of polluting multiple pageblocks. 2601 * 2602 * If we are stealing a relatively large buddy page, it is likely there will 2603 * be more free pages in the pageblock, so try to steal them all. For 2604 * reclaimable and unmovable allocations, we steal regardless of page size, 2605 * as fragmentation caused by those allocations polluting movable pageblocks 2606 * is worse than movable allocations stealing from unmovable and reclaimable 2607 * pageblocks. 2608 */ 2609 static bool can_steal_fallback(unsigned int order, int start_mt) 2610 { 2611 /* 2612 * Leaving this order check is intended, although there is 2613 * relaxed order check in next check. The reason is that 2614 * we can actually steal whole pageblock if this condition met, 2615 * but, below check doesn't guarantee it and that is just heuristic 2616 * so could be changed anytime. 2617 */ 2618 if (order >= pageblock_order) 2619 return true; 2620 2621 if (order >= pageblock_order / 2 || 2622 start_mt == MIGRATE_RECLAIMABLE || 2623 start_mt == MIGRATE_UNMOVABLE || 2624 page_group_by_mobility_disabled) 2625 return true; 2626 2627 return false; 2628 } 2629 2630 static inline bool boost_watermark(struct zone *zone) 2631 { 2632 unsigned long max_boost; 2633 2634 if (!watermark_boost_factor) 2635 return false; 2636 /* 2637 * Don't bother in zones that are unlikely to produce results. 2638 * On small machines, including kdump capture kernels running 2639 * in a small area, boosting the watermark can cause an out of 2640 * memory situation immediately. 2641 */ 2642 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2643 return false; 2644 2645 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2646 watermark_boost_factor, 10000); 2647 2648 /* 2649 * high watermark may be uninitialised if fragmentation occurs 2650 * very early in boot so do not boost. We do not fall 2651 * through and boost by pageblock_nr_pages as failing 2652 * allocations that early means that reclaim is not going 2653 * to help and it may even be impossible to reclaim the 2654 * boosted watermark resulting in a hang. 2655 */ 2656 if (!max_boost) 2657 return false; 2658 2659 max_boost = max(pageblock_nr_pages, max_boost); 2660 2661 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2662 max_boost); 2663 2664 return true; 2665 } 2666 2667 /* 2668 * This function implements actual steal behaviour. If order is large enough, 2669 * we can steal whole pageblock. If not, we first move freepages in this 2670 * pageblock to our migratetype and determine how many already-allocated pages 2671 * are there in the pageblock with a compatible migratetype. If at least half 2672 * of pages are free or compatible, we can change migratetype of the pageblock 2673 * itself, so pages freed in the future will be put on the correct free list. 2674 */ 2675 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2676 unsigned int alloc_flags, int start_type, bool whole_block) 2677 { 2678 unsigned int current_order = buddy_order(page); 2679 int free_pages, movable_pages, alike_pages; 2680 int old_block_type; 2681 2682 old_block_type = get_pageblock_migratetype(page); 2683 2684 /* 2685 * This can happen due to races and we want to prevent broken 2686 * highatomic accounting. 2687 */ 2688 if (is_migrate_highatomic(old_block_type)) 2689 goto single_page; 2690 2691 /* Take ownership for orders >= pageblock_order */ 2692 if (current_order >= pageblock_order) { 2693 change_pageblock_range(page, current_order, start_type); 2694 goto single_page; 2695 } 2696 2697 /* 2698 * Boost watermarks to increase reclaim pressure to reduce the 2699 * likelihood of future fallbacks. Wake kswapd now as the node 2700 * may be balanced overall and kswapd will not wake naturally. 2701 */ 2702 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2703 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2704 2705 /* We are not allowed to try stealing from the whole block */ 2706 if (!whole_block) 2707 goto single_page; 2708 2709 free_pages = move_freepages_block(zone, page, start_type, 2710 &movable_pages); 2711 /* 2712 * Determine how many pages are compatible with our allocation. 2713 * For movable allocation, it's the number of movable pages which 2714 * we just obtained. For other types it's a bit more tricky. 2715 */ 2716 if (start_type == MIGRATE_MOVABLE) { 2717 alike_pages = movable_pages; 2718 } else { 2719 /* 2720 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2721 * to MOVABLE pageblock, consider all non-movable pages as 2722 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2723 * vice versa, be conservative since we can't distinguish the 2724 * exact migratetype of non-movable pages. 2725 */ 2726 if (old_block_type == MIGRATE_MOVABLE) 2727 alike_pages = pageblock_nr_pages 2728 - (free_pages + movable_pages); 2729 else 2730 alike_pages = 0; 2731 } 2732 2733 /* moving whole block can fail due to zone boundary conditions */ 2734 if (!free_pages) 2735 goto single_page; 2736 2737 /* 2738 * If a sufficient number of pages in the block are either free or of 2739 * comparable migratability as our allocation, claim the whole block. 2740 */ 2741 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2742 page_group_by_mobility_disabled) 2743 set_pageblock_migratetype(page, start_type); 2744 2745 return; 2746 2747 single_page: 2748 move_to_free_list(page, zone, current_order, start_type); 2749 } 2750 2751 /* 2752 * Check whether there is a suitable fallback freepage with requested order. 2753 * If only_stealable is true, this function returns fallback_mt only if 2754 * we can steal other freepages all together. This would help to reduce 2755 * fragmentation due to mixed migratetype pages in one pageblock. 2756 */ 2757 int find_suitable_fallback(struct free_area *area, unsigned int order, 2758 int migratetype, bool only_stealable, bool *can_steal) 2759 { 2760 int i; 2761 int fallback_mt; 2762 2763 if (area->nr_free == 0) 2764 return -1; 2765 2766 *can_steal = false; 2767 for (i = 0;; i++) { 2768 fallback_mt = fallbacks[migratetype][i]; 2769 if (fallback_mt == MIGRATE_TYPES) 2770 break; 2771 2772 if (free_area_empty(area, fallback_mt)) 2773 continue; 2774 2775 if (can_steal_fallback(order, migratetype)) 2776 *can_steal = true; 2777 2778 if (!only_stealable) 2779 return fallback_mt; 2780 2781 if (*can_steal) 2782 return fallback_mt; 2783 } 2784 2785 return -1; 2786 } 2787 2788 /* 2789 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2790 * there are no empty page blocks that contain a page with a suitable order 2791 */ 2792 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2793 unsigned int alloc_order) 2794 { 2795 int mt; 2796 unsigned long max_managed, flags; 2797 2798 /* 2799 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2800 * Check is race-prone but harmless. 2801 */ 2802 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2803 if (zone->nr_reserved_highatomic >= max_managed) 2804 return; 2805 2806 spin_lock_irqsave(&zone->lock, flags); 2807 2808 /* Recheck the nr_reserved_highatomic limit under the lock */ 2809 if (zone->nr_reserved_highatomic >= max_managed) 2810 goto out_unlock; 2811 2812 /* Yoink! */ 2813 mt = get_pageblock_migratetype(page); 2814 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2815 && !is_migrate_cma(mt)) { 2816 zone->nr_reserved_highatomic += pageblock_nr_pages; 2817 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2818 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2819 } 2820 2821 out_unlock: 2822 spin_unlock_irqrestore(&zone->lock, flags); 2823 } 2824 2825 /* 2826 * Used when an allocation is about to fail under memory pressure. This 2827 * potentially hurts the reliability of high-order allocations when under 2828 * intense memory pressure but failed atomic allocations should be easier 2829 * to recover from than an OOM. 2830 * 2831 * If @force is true, try to unreserve a pageblock even though highatomic 2832 * pageblock is exhausted. 2833 */ 2834 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2835 bool force) 2836 { 2837 struct zonelist *zonelist = ac->zonelist; 2838 unsigned long flags; 2839 struct zoneref *z; 2840 struct zone *zone; 2841 struct page *page; 2842 int order; 2843 bool ret; 2844 2845 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2846 ac->nodemask) { 2847 /* 2848 * Preserve at least one pageblock unless memory pressure 2849 * is really high. 2850 */ 2851 if (!force && zone->nr_reserved_highatomic <= 2852 pageblock_nr_pages) 2853 continue; 2854 2855 spin_lock_irqsave(&zone->lock, flags); 2856 for (order = 0; order < MAX_ORDER; order++) { 2857 struct free_area *area = &(zone->free_area[order]); 2858 2859 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2860 if (!page) 2861 continue; 2862 2863 /* 2864 * In page freeing path, migratetype change is racy so 2865 * we can counter several free pages in a pageblock 2866 * in this loop although we changed the pageblock type 2867 * from highatomic to ac->migratetype. So we should 2868 * adjust the count once. 2869 */ 2870 if (is_migrate_highatomic_page(page)) { 2871 /* 2872 * It should never happen but changes to 2873 * locking could inadvertently allow a per-cpu 2874 * drain to add pages to MIGRATE_HIGHATOMIC 2875 * while unreserving so be safe and watch for 2876 * underflows. 2877 */ 2878 zone->nr_reserved_highatomic -= min( 2879 pageblock_nr_pages, 2880 zone->nr_reserved_highatomic); 2881 } 2882 2883 /* 2884 * Convert to ac->migratetype and avoid the normal 2885 * pageblock stealing heuristics. Minimally, the caller 2886 * is doing the work and needs the pages. More 2887 * importantly, if the block was always converted to 2888 * MIGRATE_UNMOVABLE or another type then the number 2889 * of pageblocks that cannot be completely freed 2890 * may increase. 2891 */ 2892 set_pageblock_migratetype(page, ac->migratetype); 2893 ret = move_freepages_block(zone, page, ac->migratetype, 2894 NULL); 2895 if (ret) { 2896 spin_unlock_irqrestore(&zone->lock, flags); 2897 return ret; 2898 } 2899 } 2900 spin_unlock_irqrestore(&zone->lock, flags); 2901 } 2902 2903 return false; 2904 } 2905 2906 /* 2907 * Try finding a free buddy page on the fallback list and put it on the free 2908 * list of requested migratetype, possibly along with other pages from the same 2909 * block, depending on fragmentation avoidance heuristics. Returns true if 2910 * fallback was found so that __rmqueue_smallest() can grab it. 2911 * 2912 * The use of signed ints for order and current_order is a deliberate 2913 * deviation from the rest of this file, to make the for loop 2914 * condition simpler. 2915 */ 2916 static __always_inline bool 2917 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2918 unsigned int alloc_flags) 2919 { 2920 struct free_area *area; 2921 int current_order; 2922 int min_order = order; 2923 struct page *page; 2924 int fallback_mt; 2925 bool can_steal; 2926 2927 /* 2928 * Do not steal pages from freelists belonging to other pageblocks 2929 * i.e. orders < pageblock_order. If there are no local zones free, 2930 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2931 */ 2932 if (alloc_flags & ALLOC_NOFRAGMENT) 2933 min_order = pageblock_order; 2934 2935 /* 2936 * Find the largest available free page in the other list. This roughly 2937 * approximates finding the pageblock with the most free pages, which 2938 * would be too costly to do exactly. 2939 */ 2940 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2941 --current_order) { 2942 area = &(zone->free_area[current_order]); 2943 fallback_mt = find_suitable_fallback(area, current_order, 2944 start_migratetype, false, &can_steal); 2945 if (fallback_mt == -1) 2946 continue; 2947 2948 /* 2949 * We cannot steal all free pages from the pageblock and the 2950 * requested migratetype is movable. In that case it's better to 2951 * steal and split the smallest available page instead of the 2952 * largest available page, because even if the next movable 2953 * allocation falls back into a different pageblock than this 2954 * one, it won't cause permanent fragmentation. 2955 */ 2956 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2957 && current_order > order) 2958 goto find_smallest; 2959 2960 goto do_steal; 2961 } 2962 2963 return false; 2964 2965 find_smallest: 2966 for (current_order = order; current_order < MAX_ORDER; 2967 current_order++) { 2968 area = &(zone->free_area[current_order]); 2969 fallback_mt = find_suitable_fallback(area, current_order, 2970 start_migratetype, false, &can_steal); 2971 if (fallback_mt != -1) 2972 break; 2973 } 2974 2975 /* 2976 * This should not happen - we already found a suitable fallback 2977 * when looking for the largest page. 2978 */ 2979 VM_BUG_ON(current_order == MAX_ORDER); 2980 2981 do_steal: 2982 page = get_page_from_free_area(area, fallback_mt); 2983 2984 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2985 can_steal); 2986 2987 trace_mm_page_alloc_extfrag(page, order, current_order, 2988 start_migratetype, fallback_mt); 2989 2990 return true; 2991 2992 } 2993 2994 /* 2995 * Do the hard work of removing an element from the buddy allocator. 2996 * Call me with the zone->lock already held. 2997 */ 2998 static __always_inline struct page * 2999 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 3000 unsigned int alloc_flags) 3001 { 3002 struct page *page; 3003 3004 if (IS_ENABLED(CONFIG_CMA)) { 3005 /* 3006 * Balance movable allocations between regular and CMA areas by 3007 * allocating from CMA when over half of the zone's free memory 3008 * is in the CMA area. 3009 */ 3010 if (alloc_flags & ALLOC_CMA && 3011 zone_page_state(zone, NR_FREE_CMA_PAGES) > 3012 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3013 page = __rmqueue_cma_fallback(zone, order); 3014 if (page) 3015 goto out; 3016 } 3017 } 3018 retry: 3019 page = __rmqueue_smallest(zone, order, migratetype); 3020 if (unlikely(!page)) { 3021 if (alloc_flags & ALLOC_CMA) 3022 page = __rmqueue_cma_fallback(zone, order); 3023 3024 if (!page && __rmqueue_fallback(zone, order, migratetype, 3025 alloc_flags)) 3026 goto retry; 3027 } 3028 out: 3029 if (page) 3030 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3031 return page; 3032 } 3033 3034 /* 3035 * Obtain a specified number of elements from the buddy allocator, all under 3036 * a single hold of the lock, for efficiency. Add them to the supplied list. 3037 * Returns the number of new pages which were placed at *list. 3038 */ 3039 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3040 unsigned long count, struct list_head *list, 3041 int migratetype, unsigned int alloc_flags) 3042 { 3043 int i, allocated = 0; 3044 3045 /* 3046 * local_lock_irq held so equivalent to spin_lock_irqsave for 3047 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3048 */ 3049 spin_lock(&zone->lock); 3050 for (i = 0; i < count; ++i) { 3051 struct page *page = __rmqueue(zone, order, migratetype, 3052 alloc_flags); 3053 if (unlikely(page == NULL)) 3054 break; 3055 3056 if (unlikely(check_pcp_refill(page))) 3057 continue; 3058 3059 /* 3060 * Split buddy pages returned by expand() are received here in 3061 * physical page order. The page is added to the tail of 3062 * caller's list. From the callers perspective, the linked list 3063 * is ordered by page number under some conditions. This is 3064 * useful for IO devices that can forward direction from the 3065 * head, thus also in the physical page order. This is useful 3066 * for IO devices that can merge IO requests if the physical 3067 * pages are ordered properly. 3068 */ 3069 list_add_tail(&page->lru, list); 3070 allocated++; 3071 if (is_migrate_cma(get_pcppage_migratetype(page))) 3072 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3073 -(1 << order)); 3074 } 3075 3076 /* 3077 * i pages were removed from the buddy list even if some leak due 3078 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3079 * on i. Do not confuse with 'allocated' which is the number of 3080 * pages added to the pcp list. 3081 */ 3082 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3083 spin_unlock(&zone->lock); 3084 return allocated; 3085 } 3086 3087 #ifdef CONFIG_NUMA 3088 /* 3089 * Called from the vmstat counter updater to drain pagesets of this 3090 * currently executing processor on remote nodes after they have 3091 * expired. 3092 * 3093 * Note that this function must be called with the thread pinned to 3094 * a single processor. 3095 */ 3096 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3097 { 3098 unsigned long flags; 3099 int to_drain, batch; 3100 3101 local_lock_irqsave(&pagesets.lock, flags); 3102 batch = READ_ONCE(pcp->batch); 3103 to_drain = min(pcp->count, batch); 3104 if (to_drain > 0) 3105 free_pcppages_bulk(zone, to_drain, pcp); 3106 local_unlock_irqrestore(&pagesets.lock, flags); 3107 } 3108 #endif 3109 3110 /* 3111 * Drain pcplists of the indicated processor and zone. 3112 * 3113 * The processor must either be the current processor and the 3114 * thread pinned to the current processor or a processor that 3115 * is not online. 3116 */ 3117 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3118 { 3119 unsigned long flags; 3120 struct per_cpu_pages *pcp; 3121 3122 local_lock_irqsave(&pagesets.lock, flags); 3123 3124 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3125 if (pcp->count) 3126 free_pcppages_bulk(zone, pcp->count, pcp); 3127 3128 local_unlock_irqrestore(&pagesets.lock, flags); 3129 } 3130 3131 /* 3132 * Drain pcplists of all zones on the indicated processor. 3133 * 3134 * The processor must either be the current processor and the 3135 * thread pinned to the current processor or a processor that 3136 * is not online. 3137 */ 3138 static void drain_pages(unsigned int cpu) 3139 { 3140 struct zone *zone; 3141 3142 for_each_populated_zone(zone) { 3143 drain_pages_zone(cpu, zone); 3144 } 3145 } 3146 3147 /* 3148 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3149 * 3150 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3151 * the single zone's pages. 3152 */ 3153 void drain_local_pages(struct zone *zone) 3154 { 3155 int cpu = smp_processor_id(); 3156 3157 if (zone) 3158 drain_pages_zone(cpu, zone); 3159 else 3160 drain_pages(cpu); 3161 } 3162 3163 static void drain_local_pages_wq(struct work_struct *work) 3164 { 3165 struct pcpu_drain *drain; 3166 3167 drain = container_of(work, struct pcpu_drain, work); 3168 3169 /* 3170 * drain_all_pages doesn't use proper cpu hotplug protection so 3171 * we can race with cpu offline when the WQ can move this from 3172 * a cpu pinned worker to an unbound one. We can operate on a different 3173 * cpu which is alright but we also have to make sure to not move to 3174 * a different one. 3175 */ 3176 preempt_disable(); 3177 drain_local_pages(drain->zone); 3178 preempt_enable(); 3179 } 3180 3181 /* 3182 * The implementation of drain_all_pages(), exposing an extra parameter to 3183 * drain on all cpus. 3184 * 3185 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3186 * not empty. The check for non-emptiness can however race with a free to 3187 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3188 * that need the guarantee that every CPU has drained can disable the 3189 * optimizing racy check. 3190 */ 3191 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3192 { 3193 int cpu; 3194 3195 /* 3196 * Allocate in the BSS so we wont require allocation in 3197 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3198 */ 3199 static cpumask_t cpus_with_pcps; 3200 3201 /* 3202 * Make sure nobody triggers this path before mm_percpu_wq is fully 3203 * initialized. 3204 */ 3205 if (WARN_ON_ONCE(!mm_percpu_wq)) 3206 return; 3207 3208 /* 3209 * Do not drain if one is already in progress unless it's specific to 3210 * a zone. Such callers are primarily CMA and memory hotplug and need 3211 * the drain to be complete when the call returns. 3212 */ 3213 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3214 if (!zone) 3215 return; 3216 mutex_lock(&pcpu_drain_mutex); 3217 } 3218 3219 /* 3220 * We don't care about racing with CPU hotplug event 3221 * as offline notification will cause the notified 3222 * cpu to drain that CPU pcps and on_each_cpu_mask 3223 * disables preemption as part of its processing 3224 */ 3225 for_each_online_cpu(cpu) { 3226 struct per_cpu_pages *pcp; 3227 struct zone *z; 3228 bool has_pcps = false; 3229 3230 if (force_all_cpus) { 3231 /* 3232 * The pcp.count check is racy, some callers need a 3233 * guarantee that no cpu is missed. 3234 */ 3235 has_pcps = true; 3236 } else if (zone) { 3237 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3238 if (pcp->count) 3239 has_pcps = true; 3240 } else { 3241 for_each_populated_zone(z) { 3242 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3243 if (pcp->count) { 3244 has_pcps = true; 3245 break; 3246 } 3247 } 3248 } 3249 3250 if (has_pcps) 3251 cpumask_set_cpu(cpu, &cpus_with_pcps); 3252 else 3253 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3254 } 3255 3256 for_each_cpu(cpu, &cpus_with_pcps) { 3257 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3258 3259 drain->zone = zone; 3260 INIT_WORK(&drain->work, drain_local_pages_wq); 3261 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3262 } 3263 for_each_cpu(cpu, &cpus_with_pcps) 3264 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3265 3266 mutex_unlock(&pcpu_drain_mutex); 3267 } 3268 3269 /* 3270 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3271 * 3272 * When zone parameter is non-NULL, spill just the single zone's pages. 3273 * 3274 * Note that this can be extremely slow as the draining happens in a workqueue. 3275 */ 3276 void drain_all_pages(struct zone *zone) 3277 { 3278 __drain_all_pages(zone, false); 3279 } 3280 3281 #ifdef CONFIG_HIBERNATION 3282 3283 /* 3284 * Touch the watchdog for every WD_PAGE_COUNT pages. 3285 */ 3286 #define WD_PAGE_COUNT (128*1024) 3287 3288 void mark_free_pages(struct zone *zone) 3289 { 3290 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3291 unsigned long flags; 3292 unsigned int order, t; 3293 struct page *page; 3294 3295 if (zone_is_empty(zone)) 3296 return; 3297 3298 spin_lock_irqsave(&zone->lock, flags); 3299 3300 max_zone_pfn = zone_end_pfn(zone); 3301 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3302 if (pfn_valid(pfn)) { 3303 page = pfn_to_page(pfn); 3304 3305 if (!--page_count) { 3306 touch_nmi_watchdog(); 3307 page_count = WD_PAGE_COUNT; 3308 } 3309 3310 if (page_zone(page) != zone) 3311 continue; 3312 3313 if (!swsusp_page_is_forbidden(page)) 3314 swsusp_unset_page_free(page); 3315 } 3316 3317 for_each_migratetype_order(order, t) { 3318 list_for_each_entry(page, 3319 &zone->free_area[order].free_list[t], lru) { 3320 unsigned long i; 3321 3322 pfn = page_to_pfn(page); 3323 for (i = 0; i < (1UL << order); i++) { 3324 if (!--page_count) { 3325 touch_nmi_watchdog(); 3326 page_count = WD_PAGE_COUNT; 3327 } 3328 swsusp_set_page_free(pfn_to_page(pfn + i)); 3329 } 3330 } 3331 } 3332 spin_unlock_irqrestore(&zone->lock, flags); 3333 } 3334 #endif /* CONFIG_PM */ 3335 3336 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3337 unsigned int order) 3338 { 3339 int migratetype; 3340 3341 if (!free_pcp_prepare(page, order)) 3342 return false; 3343 3344 migratetype = get_pfnblock_migratetype(page, pfn); 3345 set_pcppage_migratetype(page, migratetype); 3346 return true; 3347 } 3348 3349 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3350 { 3351 int min_nr_free, max_nr_free; 3352 3353 /* Check for PCP disabled or boot pageset */ 3354 if (unlikely(high < batch)) 3355 return 1; 3356 3357 /* Leave at least pcp->batch pages on the list */ 3358 min_nr_free = batch; 3359 max_nr_free = high - batch; 3360 3361 /* 3362 * Double the number of pages freed each time there is subsequent 3363 * freeing of pages without any allocation. 3364 */ 3365 batch <<= pcp->free_factor; 3366 if (batch < max_nr_free) 3367 pcp->free_factor++; 3368 batch = clamp(batch, min_nr_free, max_nr_free); 3369 3370 return batch; 3371 } 3372 3373 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3374 { 3375 int high = READ_ONCE(pcp->high); 3376 3377 if (unlikely(!high)) 3378 return 0; 3379 3380 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3381 return high; 3382 3383 /* 3384 * If reclaim is active, limit the number of pages that can be 3385 * stored on pcp lists 3386 */ 3387 return min(READ_ONCE(pcp->batch) << 2, high); 3388 } 3389 3390 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3391 int migratetype, unsigned int order) 3392 { 3393 struct zone *zone = page_zone(page); 3394 struct per_cpu_pages *pcp; 3395 int high; 3396 int pindex; 3397 3398 __count_vm_event(PGFREE); 3399 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3400 pindex = order_to_pindex(migratetype, order); 3401 list_add(&page->lru, &pcp->lists[pindex]); 3402 pcp->count += 1 << order; 3403 high = nr_pcp_high(pcp, zone); 3404 if (pcp->count >= high) { 3405 int batch = READ_ONCE(pcp->batch); 3406 3407 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3408 } 3409 } 3410 3411 /* 3412 * Free a pcp page 3413 */ 3414 void free_unref_page(struct page *page, unsigned int order) 3415 { 3416 unsigned long flags; 3417 unsigned long pfn = page_to_pfn(page); 3418 int migratetype; 3419 3420 if (!free_unref_page_prepare(page, pfn, order)) 3421 return; 3422 3423 /* 3424 * We only track unmovable, reclaimable and movable on pcp lists. 3425 * Place ISOLATE pages on the isolated list because they are being 3426 * offlined but treat HIGHATOMIC as movable pages so we can get those 3427 * areas back if necessary. Otherwise, we may have to free 3428 * excessively into the page allocator 3429 */ 3430 migratetype = get_pcppage_migratetype(page); 3431 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3432 if (unlikely(is_migrate_isolate(migratetype))) { 3433 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3434 return; 3435 } 3436 migratetype = MIGRATE_MOVABLE; 3437 } 3438 3439 local_lock_irqsave(&pagesets.lock, flags); 3440 free_unref_page_commit(page, pfn, migratetype, order); 3441 local_unlock_irqrestore(&pagesets.lock, flags); 3442 } 3443 3444 /* 3445 * Free a list of 0-order pages 3446 */ 3447 void free_unref_page_list(struct list_head *list) 3448 { 3449 struct page *page, *next; 3450 unsigned long flags, pfn; 3451 int batch_count = 0; 3452 int migratetype; 3453 3454 /* Prepare pages for freeing */ 3455 list_for_each_entry_safe(page, next, list, lru) { 3456 pfn = page_to_pfn(page); 3457 if (!free_unref_page_prepare(page, pfn, 0)) 3458 list_del(&page->lru); 3459 3460 /* 3461 * Free isolated pages directly to the allocator, see 3462 * comment in free_unref_page. 3463 */ 3464 migratetype = get_pcppage_migratetype(page); 3465 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3466 if (unlikely(is_migrate_isolate(migratetype))) { 3467 list_del(&page->lru); 3468 free_one_page(page_zone(page), page, pfn, 0, 3469 migratetype, FPI_NONE); 3470 continue; 3471 } 3472 3473 /* 3474 * Non-isolated types over MIGRATE_PCPTYPES get added 3475 * to the MIGRATE_MOVABLE pcp list. 3476 */ 3477 set_pcppage_migratetype(page, MIGRATE_MOVABLE); 3478 } 3479 3480 set_page_private(page, pfn); 3481 } 3482 3483 local_lock_irqsave(&pagesets.lock, flags); 3484 list_for_each_entry_safe(page, next, list, lru) { 3485 pfn = page_private(page); 3486 set_page_private(page, 0); 3487 migratetype = get_pcppage_migratetype(page); 3488 trace_mm_page_free_batched(page); 3489 free_unref_page_commit(page, pfn, migratetype, 0); 3490 3491 /* 3492 * Guard against excessive IRQ disabled times when we get 3493 * a large list of pages to free. 3494 */ 3495 if (++batch_count == SWAP_CLUSTER_MAX) { 3496 local_unlock_irqrestore(&pagesets.lock, flags); 3497 batch_count = 0; 3498 local_lock_irqsave(&pagesets.lock, flags); 3499 } 3500 } 3501 local_unlock_irqrestore(&pagesets.lock, flags); 3502 } 3503 3504 /* 3505 * split_page takes a non-compound higher-order page, and splits it into 3506 * n (1<<order) sub-pages: page[0..n] 3507 * Each sub-page must be freed individually. 3508 * 3509 * Note: this is probably too low level an operation for use in drivers. 3510 * Please consult with lkml before using this in your driver. 3511 */ 3512 void split_page(struct page *page, unsigned int order) 3513 { 3514 int i; 3515 3516 VM_BUG_ON_PAGE(PageCompound(page), page); 3517 VM_BUG_ON_PAGE(!page_count(page), page); 3518 3519 for (i = 1; i < (1 << order); i++) 3520 set_page_refcounted(page + i); 3521 split_page_owner(page, 1 << order); 3522 split_page_memcg(page, 1 << order); 3523 } 3524 EXPORT_SYMBOL_GPL(split_page); 3525 3526 int __isolate_free_page(struct page *page, unsigned int order) 3527 { 3528 unsigned long watermark; 3529 struct zone *zone; 3530 int mt; 3531 3532 BUG_ON(!PageBuddy(page)); 3533 3534 zone = page_zone(page); 3535 mt = get_pageblock_migratetype(page); 3536 3537 if (!is_migrate_isolate(mt)) { 3538 /* 3539 * Obey watermarks as if the page was being allocated. We can 3540 * emulate a high-order watermark check with a raised order-0 3541 * watermark, because we already know our high-order page 3542 * exists. 3543 */ 3544 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3545 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3546 return 0; 3547 3548 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3549 } 3550 3551 /* Remove page from free list */ 3552 3553 del_page_from_free_list(page, zone, order); 3554 3555 /* 3556 * Set the pageblock if the isolated page is at least half of a 3557 * pageblock 3558 */ 3559 if (order >= pageblock_order - 1) { 3560 struct page *endpage = page + (1 << order) - 1; 3561 for (; page < endpage; page += pageblock_nr_pages) { 3562 int mt = get_pageblock_migratetype(page); 3563 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3564 && !is_migrate_highatomic(mt)) 3565 set_pageblock_migratetype(page, 3566 MIGRATE_MOVABLE); 3567 } 3568 } 3569 3570 3571 return 1UL << order; 3572 } 3573 3574 /** 3575 * __putback_isolated_page - Return a now-isolated page back where we got it 3576 * @page: Page that was isolated 3577 * @order: Order of the isolated page 3578 * @mt: The page's pageblock's migratetype 3579 * 3580 * This function is meant to return a page pulled from the free lists via 3581 * __isolate_free_page back to the free lists they were pulled from. 3582 */ 3583 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3584 { 3585 struct zone *zone = page_zone(page); 3586 3587 /* zone lock should be held when this function is called */ 3588 lockdep_assert_held(&zone->lock); 3589 3590 /* Return isolated page to tail of freelist. */ 3591 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3592 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3593 } 3594 3595 /* 3596 * Update NUMA hit/miss statistics 3597 * 3598 * Must be called with interrupts disabled. 3599 */ 3600 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3601 long nr_account) 3602 { 3603 #ifdef CONFIG_NUMA 3604 enum numa_stat_item local_stat = NUMA_LOCAL; 3605 3606 /* skip numa counters update if numa stats is disabled */ 3607 if (!static_branch_likely(&vm_numa_stat_key)) 3608 return; 3609 3610 if (zone_to_nid(z) != numa_node_id()) 3611 local_stat = NUMA_OTHER; 3612 3613 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3614 __count_numa_events(z, NUMA_HIT, nr_account); 3615 else { 3616 __count_numa_events(z, NUMA_MISS, nr_account); 3617 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3618 } 3619 __count_numa_events(z, local_stat, nr_account); 3620 #endif 3621 } 3622 3623 /* Remove page from the per-cpu list, caller must protect the list */ 3624 static inline 3625 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3626 int migratetype, 3627 unsigned int alloc_flags, 3628 struct per_cpu_pages *pcp, 3629 struct list_head *list) 3630 { 3631 struct page *page; 3632 3633 do { 3634 if (list_empty(list)) { 3635 int batch = READ_ONCE(pcp->batch); 3636 int alloced; 3637 3638 /* 3639 * Scale batch relative to order if batch implies 3640 * free pages can be stored on the PCP. Batch can 3641 * be 1 for small zones or for boot pagesets which 3642 * should never store free pages as the pages may 3643 * belong to arbitrary zones. 3644 */ 3645 if (batch > 1) 3646 batch = max(batch >> order, 2); 3647 alloced = rmqueue_bulk(zone, order, 3648 batch, list, 3649 migratetype, alloc_flags); 3650 3651 pcp->count += alloced << order; 3652 if (unlikely(list_empty(list))) 3653 return NULL; 3654 } 3655 3656 page = list_first_entry(list, struct page, lru); 3657 list_del(&page->lru); 3658 pcp->count -= 1 << order; 3659 } while (check_new_pcp(page)); 3660 3661 return page; 3662 } 3663 3664 /* Lock and remove page from the per-cpu list */ 3665 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3666 struct zone *zone, unsigned int order, 3667 gfp_t gfp_flags, int migratetype, 3668 unsigned int alloc_flags) 3669 { 3670 struct per_cpu_pages *pcp; 3671 struct list_head *list; 3672 struct page *page; 3673 unsigned long flags; 3674 3675 local_lock_irqsave(&pagesets.lock, flags); 3676 3677 /* 3678 * On allocation, reduce the number of pages that are batch freed. 3679 * See nr_pcp_free() where free_factor is increased for subsequent 3680 * frees. 3681 */ 3682 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3683 pcp->free_factor >>= 1; 3684 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3685 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3686 local_unlock_irqrestore(&pagesets.lock, flags); 3687 if (page) { 3688 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3689 zone_statistics(preferred_zone, zone, 1); 3690 } 3691 return page; 3692 } 3693 3694 /* 3695 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3696 */ 3697 static inline 3698 struct page *rmqueue(struct zone *preferred_zone, 3699 struct zone *zone, unsigned int order, 3700 gfp_t gfp_flags, unsigned int alloc_flags, 3701 int migratetype) 3702 { 3703 unsigned long flags; 3704 struct page *page; 3705 3706 if (likely(pcp_allowed_order(order))) { 3707 /* 3708 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3709 * we need to skip it when CMA area isn't allowed. 3710 */ 3711 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3712 migratetype != MIGRATE_MOVABLE) { 3713 page = rmqueue_pcplist(preferred_zone, zone, order, 3714 gfp_flags, migratetype, alloc_flags); 3715 goto out; 3716 } 3717 } 3718 3719 /* 3720 * We most definitely don't want callers attempting to 3721 * allocate greater than order-1 page units with __GFP_NOFAIL. 3722 */ 3723 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3724 spin_lock_irqsave(&zone->lock, flags); 3725 3726 do { 3727 page = NULL; 3728 /* 3729 * order-0 request can reach here when the pcplist is skipped 3730 * due to non-CMA allocation context. HIGHATOMIC area is 3731 * reserved for high-order atomic allocation, so order-0 3732 * request should skip it. 3733 */ 3734 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3735 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3736 if (page) 3737 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3738 } 3739 if (!page) 3740 page = __rmqueue(zone, order, migratetype, alloc_flags); 3741 } while (page && check_new_pages(page, order)); 3742 if (!page) 3743 goto failed; 3744 3745 __mod_zone_freepage_state(zone, -(1 << order), 3746 get_pcppage_migratetype(page)); 3747 spin_unlock_irqrestore(&zone->lock, flags); 3748 3749 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3750 zone_statistics(preferred_zone, zone, 1); 3751 3752 out: 3753 /* Separate test+clear to avoid unnecessary atomics */ 3754 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3755 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3756 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3757 } 3758 3759 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3760 return page; 3761 3762 failed: 3763 spin_unlock_irqrestore(&zone->lock, flags); 3764 return NULL; 3765 } 3766 3767 #ifdef CONFIG_FAIL_PAGE_ALLOC 3768 3769 static struct { 3770 struct fault_attr attr; 3771 3772 bool ignore_gfp_highmem; 3773 bool ignore_gfp_reclaim; 3774 u32 min_order; 3775 } fail_page_alloc = { 3776 .attr = FAULT_ATTR_INITIALIZER, 3777 .ignore_gfp_reclaim = true, 3778 .ignore_gfp_highmem = true, 3779 .min_order = 1, 3780 }; 3781 3782 static int __init setup_fail_page_alloc(char *str) 3783 { 3784 return setup_fault_attr(&fail_page_alloc.attr, str); 3785 } 3786 __setup("fail_page_alloc=", setup_fail_page_alloc); 3787 3788 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3789 { 3790 if (order < fail_page_alloc.min_order) 3791 return false; 3792 if (gfp_mask & __GFP_NOFAIL) 3793 return false; 3794 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3795 return false; 3796 if (fail_page_alloc.ignore_gfp_reclaim && 3797 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3798 return false; 3799 3800 return should_fail(&fail_page_alloc.attr, 1 << order); 3801 } 3802 3803 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3804 3805 static int __init fail_page_alloc_debugfs(void) 3806 { 3807 umode_t mode = S_IFREG | 0600; 3808 struct dentry *dir; 3809 3810 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3811 &fail_page_alloc.attr); 3812 3813 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3814 &fail_page_alloc.ignore_gfp_reclaim); 3815 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3816 &fail_page_alloc.ignore_gfp_highmem); 3817 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3818 3819 return 0; 3820 } 3821 3822 late_initcall(fail_page_alloc_debugfs); 3823 3824 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3825 3826 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3827 3828 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3829 { 3830 return false; 3831 } 3832 3833 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3834 3835 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3836 { 3837 return __should_fail_alloc_page(gfp_mask, order); 3838 } 3839 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3840 3841 static inline long __zone_watermark_unusable_free(struct zone *z, 3842 unsigned int order, unsigned int alloc_flags) 3843 { 3844 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3845 long unusable_free = (1 << order) - 1; 3846 3847 /* 3848 * If the caller does not have rights to ALLOC_HARDER then subtract 3849 * the high-atomic reserves. This will over-estimate the size of the 3850 * atomic reserve but it avoids a search. 3851 */ 3852 if (likely(!alloc_harder)) 3853 unusable_free += z->nr_reserved_highatomic; 3854 3855 #ifdef CONFIG_CMA 3856 /* If allocation can't use CMA areas don't use free CMA pages */ 3857 if (!(alloc_flags & ALLOC_CMA)) 3858 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3859 #endif 3860 3861 return unusable_free; 3862 } 3863 3864 /* 3865 * Return true if free base pages are above 'mark'. For high-order checks it 3866 * will return true of the order-0 watermark is reached and there is at least 3867 * one free page of a suitable size. Checking now avoids taking the zone lock 3868 * to check in the allocation paths if no pages are free. 3869 */ 3870 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3871 int highest_zoneidx, unsigned int alloc_flags, 3872 long free_pages) 3873 { 3874 long min = mark; 3875 int o; 3876 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3877 3878 /* free_pages may go negative - that's OK */ 3879 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3880 3881 if (alloc_flags & ALLOC_HIGH) 3882 min -= min / 2; 3883 3884 if (unlikely(alloc_harder)) { 3885 /* 3886 * OOM victims can try even harder than normal ALLOC_HARDER 3887 * users on the grounds that it's definitely going to be in 3888 * the exit path shortly and free memory. Any allocation it 3889 * makes during the free path will be small and short-lived. 3890 */ 3891 if (alloc_flags & ALLOC_OOM) 3892 min -= min / 2; 3893 else 3894 min -= min / 4; 3895 } 3896 3897 /* 3898 * Check watermarks for an order-0 allocation request. If these 3899 * are not met, then a high-order request also cannot go ahead 3900 * even if a suitable page happened to be free. 3901 */ 3902 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3903 return false; 3904 3905 /* If this is an order-0 request then the watermark is fine */ 3906 if (!order) 3907 return true; 3908 3909 /* For a high-order request, check at least one suitable page is free */ 3910 for (o = order; o < MAX_ORDER; o++) { 3911 struct free_area *area = &z->free_area[o]; 3912 int mt; 3913 3914 if (!area->nr_free) 3915 continue; 3916 3917 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3918 if (!free_area_empty(area, mt)) 3919 return true; 3920 } 3921 3922 #ifdef CONFIG_CMA 3923 if ((alloc_flags & ALLOC_CMA) && 3924 !free_area_empty(area, MIGRATE_CMA)) { 3925 return true; 3926 } 3927 #endif 3928 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3929 return true; 3930 } 3931 return false; 3932 } 3933 3934 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3935 int highest_zoneidx, unsigned int alloc_flags) 3936 { 3937 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3938 zone_page_state(z, NR_FREE_PAGES)); 3939 } 3940 3941 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3942 unsigned long mark, int highest_zoneidx, 3943 unsigned int alloc_flags, gfp_t gfp_mask) 3944 { 3945 long free_pages; 3946 3947 free_pages = zone_page_state(z, NR_FREE_PAGES); 3948 3949 /* 3950 * Fast check for order-0 only. If this fails then the reserves 3951 * need to be calculated. 3952 */ 3953 if (!order) { 3954 long fast_free; 3955 3956 fast_free = free_pages; 3957 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3958 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3959 return true; 3960 } 3961 3962 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3963 free_pages)) 3964 return true; 3965 /* 3966 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3967 * when checking the min watermark. The min watermark is the 3968 * point where boosting is ignored so that kswapd is woken up 3969 * when below the low watermark. 3970 */ 3971 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3972 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3973 mark = z->_watermark[WMARK_MIN]; 3974 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3975 alloc_flags, free_pages); 3976 } 3977 3978 return false; 3979 } 3980 3981 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3982 unsigned long mark, int highest_zoneidx) 3983 { 3984 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3985 3986 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3987 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3988 3989 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3990 free_pages); 3991 } 3992 3993 #ifdef CONFIG_NUMA 3994 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3995 { 3996 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3997 node_reclaim_distance; 3998 } 3999 #else /* CONFIG_NUMA */ 4000 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 4001 { 4002 return true; 4003 } 4004 #endif /* CONFIG_NUMA */ 4005 4006 /* 4007 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 4008 * fragmentation is subtle. If the preferred zone was HIGHMEM then 4009 * premature use of a lower zone may cause lowmem pressure problems that 4010 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 4011 * probably too small. It only makes sense to spread allocations to avoid 4012 * fragmentation between the Normal and DMA32 zones. 4013 */ 4014 static inline unsigned int 4015 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4016 { 4017 unsigned int alloc_flags; 4018 4019 /* 4020 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4021 * to save a branch. 4022 */ 4023 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4024 4025 #ifdef CONFIG_ZONE_DMA32 4026 if (!zone) 4027 return alloc_flags; 4028 4029 if (zone_idx(zone) != ZONE_NORMAL) 4030 return alloc_flags; 4031 4032 /* 4033 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4034 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4035 * on UMA that if Normal is populated then so is DMA32. 4036 */ 4037 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4038 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4039 return alloc_flags; 4040 4041 alloc_flags |= ALLOC_NOFRAGMENT; 4042 #endif /* CONFIG_ZONE_DMA32 */ 4043 return alloc_flags; 4044 } 4045 4046 /* Must be called after current_gfp_context() which can change gfp_mask */ 4047 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4048 unsigned int alloc_flags) 4049 { 4050 #ifdef CONFIG_CMA 4051 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4052 alloc_flags |= ALLOC_CMA; 4053 #endif 4054 return alloc_flags; 4055 } 4056 4057 /* 4058 * get_page_from_freelist goes through the zonelist trying to allocate 4059 * a page. 4060 */ 4061 static struct page * 4062 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4063 const struct alloc_context *ac) 4064 { 4065 struct zoneref *z; 4066 struct zone *zone; 4067 struct pglist_data *last_pgdat_dirty_limit = NULL; 4068 bool no_fallback; 4069 4070 retry: 4071 /* 4072 * Scan zonelist, looking for a zone with enough free. 4073 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4074 */ 4075 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4076 z = ac->preferred_zoneref; 4077 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4078 ac->nodemask) { 4079 struct page *page; 4080 unsigned long mark; 4081 4082 if (cpusets_enabled() && 4083 (alloc_flags & ALLOC_CPUSET) && 4084 !__cpuset_zone_allowed(zone, gfp_mask)) 4085 continue; 4086 /* 4087 * When allocating a page cache page for writing, we 4088 * want to get it from a node that is within its dirty 4089 * limit, such that no single node holds more than its 4090 * proportional share of globally allowed dirty pages. 4091 * The dirty limits take into account the node's 4092 * lowmem reserves and high watermark so that kswapd 4093 * should be able to balance it without having to 4094 * write pages from its LRU list. 4095 * 4096 * XXX: For now, allow allocations to potentially 4097 * exceed the per-node dirty limit in the slowpath 4098 * (spread_dirty_pages unset) before going into reclaim, 4099 * which is important when on a NUMA setup the allowed 4100 * nodes are together not big enough to reach the 4101 * global limit. The proper fix for these situations 4102 * will require awareness of nodes in the 4103 * dirty-throttling and the flusher threads. 4104 */ 4105 if (ac->spread_dirty_pages) { 4106 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4107 continue; 4108 4109 if (!node_dirty_ok(zone->zone_pgdat)) { 4110 last_pgdat_dirty_limit = zone->zone_pgdat; 4111 continue; 4112 } 4113 } 4114 4115 if (no_fallback && nr_online_nodes > 1 && 4116 zone != ac->preferred_zoneref->zone) { 4117 int local_nid; 4118 4119 /* 4120 * If moving to a remote node, retry but allow 4121 * fragmenting fallbacks. Locality is more important 4122 * than fragmentation avoidance. 4123 */ 4124 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4125 if (zone_to_nid(zone) != local_nid) { 4126 alloc_flags &= ~ALLOC_NOFRAGMENT; 4127 goto retry; 4128 } 4129 } 4130 4131 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4132 if (!zone_watermark_fast(zone, order, mark, 4133 ac->highest_zoneidx, alloc_flags, 4134 gfp_mask)) { 4135 int ret; 4136 4137 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4138 /* 4139 * Watermark failed for this zone, but see if we can 4140 * grow this zone if it contains deferred pages. 4141 */ 4142 if (static_branch_unlikely(&deferred_pages)) { 4143 if (_deferred_grow_zone(zone, order)) 4144 goto try_this_zone; 4145 } 4146 #endif 4147 /* Checked here to keep the fast path fast */ 4148 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4149 if (alloc_flags & ALLOC_NO_WATERMARKS) 4150 goto try_this_zone; 4151 4152 if (!node_reclaim_enabled() || 4153 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4154 continue; 4155 4156 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4157 switch (ret) { 4158 case NODE_RECLAIM_NOSCAN: 4159 /* did not scan */ 4160 continue; 4161 case NODE_RECLAIM_FULL: 4162 /* scanned but unreclaimable */ 4163 continue; 4164 default: 4165 /* did we reclaim enough */ 4166 if (zone_watermark_ok(zone, order, mark, 4167 ac->highest_zoneidx, alloc_flags)) 4168 goto try_this_zone; 4169 4170 continue; 4171 } 4172 } 4173 4174 try_this_zone: 4175 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4176 gfp_mask, alloc_flags, ac->migratetype); 4177 if (page) { 4178 prep_new_page(page, order, gfp_mask, alloc_flags); 4179 4180 /* 4181 * If this is a high-order atomic allocation then check 4182 * if the pageblock should be reserved for the future 4183 */ 4184 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4185 reserve_highatomic_pageblock(page, zone, order); 4186 4187 return page; 4188 } else { 4189 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4190 /* Try again if zone has deferred pages */ 4191 if (static_branch_unlikely(&deferred_pages)) { 4192 if (_deferred_grow_zone(zone, order)) 4193 goto try_this_zone; 4194 } 4195 #endif 4196 } 4197 } 4198 4199 /* 4200 * It's possible on a UMA machine to get through all zones that are 4201 * fragmented. If avoiding fragmentation, reset and try again. 4202 */ 4203 if (no_fallback) { 4204 alloc_flags &= ~ALLOC_NOFRAGMENT; 4205 goto retry; 4206 } 4207 4208 return NULL; 4209 } 4210 4211 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4212 { 4213 unsigned int filter = SHOW_MEM_FILTER_NODES; 4214 4215 /* 4216 * This documents exceptions given to allocations in certain 4217 * contexts that are allowed to allocate outside current's set 4218 * of allowed nodes. 4219 */ 4220 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4221 if (tsk_is_oom_victim(current) || 4222 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4223 filter &= ~SHOW_MEM_FILTER_NODES; 4224 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4225 filter &= ~SHOW_MEM_FILTER_NODES; 4226 4227 show_mem(filter, nodemask); 4228 } 4229 4230 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4231 { 4232 struct va_format vaf; 4233 va_list args; 4234 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4235 4236 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4237 return; 4238 4239 va_start(args, fmt); 4240 vaf.fmt = fmt; 4241 vaf.va = &args; 4242 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4243 current->comm, &vaf, gfp_mask, &gfp_mask, 4244 nodemask_pr_args(nodemask)); 4245 va_end(args); 4246 4247 cpuset_print_current_mems_allowed(); 4248 pr_cont("\n"); 4249 dump_stack(); 4250 warn_alloc_show_mem(gfp_mask, nodemask); 4251 } 4252 4253 static inline struct page * 4254 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4255 unsigned int alloc_flags, 4256 const struct alloc_context *ac) 4257 { 4258 struct page *page; 4259 4260 page = get_page_from_freelist(gfp_mask, order, 4261 alloc_flags|ALLOC_CPUSET, ac); 4262 /* 4263 * fallback to ignore cpuset restriction if our nodes 4264 * are depleted 4265 */ 4266 if (!page) 4267 page = get_page_from_freelist(gfp_mask, order, 4268 alloc_flags, ac); 4269 4270 return page; 4271 } 4272 4273 static inline struct page * 4274 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4275 const struct alloc_context *ac, unsigned long *did_some_progress) 4276 { 4277 struct oom_control oc = { 4278 .zonelist = ac->zonelist, 4279 .nodemask = ac->nodemask, 4280 .memcg = NULL, 4281 .gfp_mask = gfp_mask, 4282 .order = order, 4283 }; 4284 struct page *page; 4285 4286 *did_some_progress = 0; 4287 4288 /* 4289 * Acquire the oom lock. If that fails, somebody else is 4290 * making progress for us. 4291 */ 4292 if (!mutex_trylock(&oom_lock)) { 4293 *did_some_progress = 1; 4294 schedule_timeout_uninterruptible(1); 4295 return NULL; 4296 } 4297 4298 /* 4299 * Go through the zonelist yet one more time, keep very high watermark 4300 * here, this is only to catch a parallel oom killing, we must fail if 4301 * we're still under heavy pressure. But make sure that this reclaim 4302 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4303 * allocation which will never fail due to oom_lock already held. 4304 */ 4305 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4306 ~__GFP_DIRECT_RECLAIM, order, 4307 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4308 if (page) 4309 goto out; 4310 4311 /* Coredumps can quickly deplete all memory reserves */ 4312 if (current->flags & PF_DUMPCORE) 4313 goto out; 4314 /* The OOM killer will not help higher order allocs */ 4315 if (order > PAGE_ALLOC_COSTLY_ORDER) 4316 goto out; 4317 /* 4318 * We have already exhausted all our reclaim opportunities without any 4319 * success so it is time to admit defeat. We will skip the OOM killer 4320 * because it is very likely that the caller has a more reasonable 4321 * fallback than shooting a random task. 4322 * 4323 * The OOM killer may not free memory on a specific node. 4324 */ 4325 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4326 goto out; 4327 /* The OOM killer does not needlessly kill tasks for lowmem */ 4328 if (ac->highest_zoneidx < ZONE_NORMAL) 4329 goto out; 4330 if (pm_suspended_storage()) 4331 goto out; 4332 /* 4333 * XXX: GFP_NOFS allocations should rather fail than rely on 4334 * other request to make a forward progress. 4335 * We are in an unfortunate situation where out_of_memory cannot 4336 * do much for this context but let's try it to at least get 4337 * access to memory reserved if the current task is killed (see 4338 * out_of_memory). Once filesystems are ready to handle allocation 4339 * failures more gracefully we should just bail out here. 4340 */ 4341 4342 /* Exhausted what can be done so it's blame time */ 4343 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4344 *did_some_progress = 1; 4345 4346 /* 4347 * Help non-failing allocations by giving them access to memory 4348 * reserves 4349 */ 4350 if (gfp_mask & __GFP_NOFAIL) 4351 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4352 ALLOC_NO_WATERMARKS, ac); 4353 } 4354 out: 4355 mutex_unlock(&oom_lock); 4356 return page; 4357 } 4358 4359 /* 4360 * Maximum number of compaction retries with a progress before OOM 4361 * killer is consider as the only way to move forward. 4362 */ 4363 #define MAX_COMPACT_RETRIES 16 4364 4365 #ifdef CONFIG_COMPACTION 4366 /* Try memory compaction for high-order allocations before reclaim */ 4367 static struct page * 4368 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4369 unsigned int alloc_flags, const struct alloc_context *ac, 4370 enum compact_priority prio, enum compact_result *compact_result) 4371 { 4372 struct page *page = NULL; 4373 unsigned long pflags; 4374 unsigned int noreclaim_flag; 4375 4376 if (!order) 4377 return NULL; 4378 4379 psi_memstall_enter(&pflags); 4380 noreclaim_flag = memalloc_noreclaim_save(); 4381 4382 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4383 prio, &page); 4384 4385 memalloc_noreclaim_restore(noreclaim_flag); 4386 psi_memstall_leave(&pflags); 4387 4388 if (*compact_result == COMPACT_SKIPPED) 4389 return NULL; 4390 /* 4391 * At least in one zone compaction wasn't deferred or skipped, so let's 4392 * count a compaction stall 4393 */ 4394 count_vm_event(COMPACTSTALL); 4395 4396 /* Prep a captured page if available */ 4397 if (page) 4398 prep_new_page(page, order, gfp_mask, alloc_flags); 4399 4400 /* Try get a page from the freelist if available */ 4401 if (!page) 4402 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4403 4404 if (page) { 4405 struct zone *zone = page_zone(page); 4406 4407 zone->compact_blockskip_flush = false; 4408 compaction_defer_reset(zone, order, true); 4409 count_vm_event(COMPACTSUCCESS); 4410 return page; 4411 } 4412 4413 /* 4414 * It's bad if compaction run occurs and fails. The most likely reason 4415 * is that pages exist, but not enough to satisfy watermarks. 4416 */ 4417 count_vm_event(COMPACTFAIL); 4418 4419 cond_resched(); 4420 4421 return NULL; 4422 } 4423 4424 static inline bool 4425 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4426 enum compact_result compact_result, 4427 enum compact_priority *compact_priority, 4428 int *compaction_retries) 4429 { 4430 int max_retries = MAX_COMPACT_RETRIES; 4431 int min_priority; 4432 bool ret = false; 4433 int retries = *compaction_retries; 4434 enum compact_priority priority = *compact_priority; 4435 4436 if (!order) 4437 return false; 4438 4439 if (fatal_signal_pending(current)) 4440 return false; 4441 4442 if (compaction_made_progress(compact_result)) 4443 (*compaction_retries)++; 4444 4445 /* 4446 * compaction considers all the zone as desperately out of memory 4447 * so it doesn't really make much sense to retry except when the 4448 * failure could be caused by insufficient priority 4449 */ 4450 if (compaction_failed(compact_result)) 4451 goto check_priority; 4452 4453 /* 4454 * compaction was skipped because there are not enough order-0 pages 4455 * to work with, so we retry only if it looks like reclaim can help. 4456 */ 4457 if (compaction_needs_reclaim(compact_result)) { 4458 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4459 goto out; 4460 } 4461 4462 /* 4463 * make sure the compaction wasn't deferred or didn't bail out early 4464 * due to locks contention before we declare that we should give up. 4465 * But the next retry should use a higher priority if allowed, so 4466 * we don't just keep bailing out endlessly. 4467 */ 4468 if (compaction_withdrawn(compact_result)) { 4469 goto check_priority; 4470 } 4471 4472 /* 4473 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4474 * costly ones because they are de facto nofail and invoke OOM 4475 * killer to move on while costly can fail and users are ready 4476 * to cope with that. 1/4 retries is rather arbitrary but we 4477 * would need much more detailed feedback from compaction to 4478 * make a better decision. 4479 */ 4480 if (order > PAGE_ALLOC_COSTLY_ORDER) 4481 max_retries /= 4; 4482 if (*compaction_retries <= max_retries) { 4483 ret = true; 4484 goto out; 4485 } 4486 4487 /* 4488 * Make sure there are attempts at the highest priority if we exhausted 4489 * all retries or failed at the lower priorities. 4490 */ 4491 check_priority: 4492 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4493 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4494 4495 if (*compact_priority > min_priority) { 4496 (*compact_priority)--; 4497 *compaction_retries = 0; 4498 ret = true; 4499 } 4500 out: 4501 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4502 return ret; 4503 } 4504 #else 4505 static inline struct page * 4506 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4507 unsigned int alloc_flags, const struct alloc_context *ac, 4508 enum compact_priority prio, enum compact_result *compact_result) 4509 { 4510 *compact_result = COMPACT_SKIPPED; 4511 return NULL; 4512 } 4513 4514 static inline bool 4515 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4516 enum compact_result compact_result, 4517 enum compact_priority *compact_priority, 4518 int *compaction_retries) 4519 { 4520 struct zone *zone; 4521 struct zoneref *z; 4522 4523 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4524 return false; 4525 4526 /* 4527 * There are setups with compaction disabled which would prefer to loop 4528 * inside the allocator rather than hit the oom killer prematurely. 4529 * Let's give them a good hope and keep retrying while the order-0 4530 * watermarks are OK. 4531 */ 4532 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4533 ac->highest_zoneidx, ac->nodemask) { 4534 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4535 ac->highest_zoneidx, alloc_flags)) 4536 return true; 4537 } 4538 return false; 4539 } 4540 #endif /* CONFIG_COMPACTION */ 4541 4542 #ifdef CONFIG_LOCKDEP 4543 static struct lockdep_map __fs_reclaim_map = 4544 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4545 4546 static bool __need_reclaim(gfp_t gfp_mask) 4547 { 4548 /* no reclaim without waiting on it */ 4549 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4550 return false; 4551 4552 /* this guy won't enter reclaim */ 4553 if (current->flags & PF_MEMALLOC) 4554 return false; 4555 4556 if (gfp_mask & __GFP_NOLOCKDEP) 4557 return false; 4558 4559 return true; 4560 } 4561 4562 void __fs_reclaim_acquire(void) 4563 { 4564 lock_map_acquire(&__fs_reclaim_map); 4565 } 4566 4567 void __fs_reclaim_release(void) 4568 { 4569 lock_map_release(&__fs_reclaim_map); 4570 } 4571 4572 void fs_reclaim_acquire(gfp_t gfp_mask) 4573 { 4574 gfp_mask = current_gfp_context(gfp_mask); 4575 4576 if (__need_reclaim(gfp_mask)) { 4577 if (gfp_mask & __GFP_FS) 4578 __fs_reclaim_acquire(); 4579 4580 #ifdef CONFIG_MMU_NOTIFIER 4581 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4582 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4583 #endif 4584 4585 } 4586 } 4587 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4588 4589 void fs_reclaim_release(gfp_t gfp_mask) 4590 { 4591 gfp_mask = current_gfp_context(gfp_mask); 4592 4593 if (__need_reclaim(gfp_mask)) { 4594 if (gfp_mask & __GFP_FS) 4595 __fs_reclaim_release(); 4596 } 4597 } 4598 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4599 #endif 4600 4601 /* Perform direct synchronous page reclaim */ 4602 static unsigned long 4603 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4604 const struct alloc_context *ac) 4605 { 4606 unsigned int noreclaim_flag; 4607 unsigned long pflags, progress; 4608 4609 cond_resched(); 4610 4611 /* We now go into synchronous reclaim */ 4612 cpuset_memory_pressure_bump(); 4613 psi_memstall_enter(&pflags); 4614 fs_reclaim_acquire(gfp_mask); 4615 noreclaim_flag = memalloc_noreclaim_save(); 4616 4617 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4618 ac->nodemask); 4619 4620 memalloc_noreclaim_restore(noreclaim_flag); 4621 fs_reclaim_release(gfp_mask); 4622 psi_memstall_leave(&pflags); 4623 4624 cond_resched(); 4625 4626 return progress; 4627 } 4628 4629 /* The really slow allocator path where we enter direct reclaim */ 4630 static inline struct page * 4631 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4632 unsigned int alloc_flags, const struct alloc_context *ac, 4633 unsigned long *did_some_progress) 4634 { 4635 struct page *page = NULL; 4636 bool drained = false; 4637 4638 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4639 if (unlikely(!(*did_some_progress))) 4640 return NULL; 4641 4642 retry: 4643 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4644 4645 /* 4646 * If an allocation failed after direct reclaim, it could be because 4647 * pages are pinned on the per-cpu lists or in high alloc reserves. 4648 * Shrink them and try again 4649 */ 4650 if (!page && !drained) { 4651 unreserve_highatomic_pageblock(ac, false); 4652 drain_all_pages(NULL); 4653 drained = true; 4654 goto retry; 4655 } 4656 4657 return page; 4658 } 4659 4660 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4661 const struct alloc_context *ac) 4662 { 4663 struct zoneref *z; 4664 struct zone *zone; 4665 pg_data_t *last_pgdat = NULL; 4666 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4667 4668 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4669 ac->nodemask) { 4670 if (last_pgdat != zone->zone_pgdat) 4671 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4672 last_pgdat = zone->zone_pgdat; 4673 } 4674 } 4675 4676 static inline unsigned int 4677 gfp_to_alloc_flags(gfp_t gfp_mask) 4678 { 4679 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4680 4681 /* 4682 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4683 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4684 * to save two branches. 4685 */ 4686 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4687 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4688 4689 /* 4690 * The caller may dip into page reserves a bit more if the caller 4691 * cannot run direct reclaim, or if the caller has realtime scheduling 4692 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4693 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4694 */ 4695 alloc_flags |= (__force int) 4696 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4697 4698 if (gfp_mask & __GFP_ATOMIC) { 4699 /* 4700 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4701 * if it can't schedule. 4702 */ 4703 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4704 alloc_flags |= ALLOC_HARDER; 4705 /* 4706 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4707 * comment for __cpuset_node_allowed(). 4708 */ 4709 alloc_flags &= ~ALLOC_CPUSET; 4710 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4711 alloc_flags |= ALLOC_HARDER; 4712 4713 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4714 4715 return alloc_flags; 4716 } 4717 4718 static bool oom_reserves_allowed(struct task_struct *tsk) 4719 { 4720 if (!tsk_is_oom_victim(tsk)) 4721 return false; 4722 4723 /* 4724 * !MMU doesn't have oom reaper so give access to memory reserves 4725 * only to the thread with TIF_MEMDIE set 4726 */ 4727 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4728 return false; 4729 4730 return true; 4731 } 4732 4733 /* 4734 * Distinguish requests which really need access to full memory 4735 * reserves from oom victims which can live with a portion of it 4736 */ 4737 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4738 { 4739 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4740 return 0; 4741 if (gfp_mask & __GFP_MEMALLOC) 4742 return ALLOC_NO_WATERMARKS; 4743 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4744 return ALLOC_NO_WATERMARKS; 4745 if (!in_interrupt()) { 4746 if (current->flags & PF_MEMALLOC) 4747 return ALLOC_NO_WATERMARKS; 4748 else if (oom_reserves_allowed(current)) 4749 return ALLOC_OOM; 4750 } 4751 4752 return 0; 4753 } 4754 4755 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4756 { 4757 return !!__gfp_pfmemalloc_flags(gfp_mask); 4758 } 4759 4760 /* 4761 * Checks whether it makes sense to retry the reclaim to make a forward progress 4762 * for the given allocation request. 4763 * 4764 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4765 * without success, or when we couldn't even meet the watermark if we 4766 * reclaimed all remaining pages on the LRU lists. 4767 * 4768 * Returns true if a retry is viable or false to enter the oom path. 4769 */ 4770 static inline bool 4771 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4772 struct alloc_context *ac, int alloc_flags, 4773 bool did_some_progress, int *no_progress_loops) 4774 { 4775 struct zone *zone; 4776 struct zoneref *z; 4777 bool ret = false; 4778 4779 /* 4780 * Costly allocations might have made a progress but this doesn't mean 4781 * their order will become available due to high fragmentation so 4782 * always increment the no progress counter for them 4783 */ 4784 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4785 *no_progress_loops = 0; 4786 else 4787 (*no_progress_loops)++; 4788 4789 /* 4790 * Make sure we converge to OOM if we cannot make any progress 4791 * several times in the row. 4792 */ 4793 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4794 /* Before OOM, exhaust highatomic_reserve */ 4795 return unreserve_highatomic_pageblock(ac, true); 4796 } 4797 4798 /* 4799 * Keep reclaiming pages while there is a chance this will lead 4800 * somewhere. If none of the target zones can satisfy our allocation 4801 * request even if all reclaimable pages are considered then we are 4802 * screwed and have to go OOM. 4803 */ 4804 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4805 ac->highest_zoneidx, ac->nodemask) { 4806 unsigned long available; 4807 unsigned long reclaimable; 4808 unsigned long min_wmark = min_wmark_pages(zone); 4809 bool wmark; 4810 4811 available = reclaimable = zone_reclaimable_pages(zone); 4812 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4813 4814 /* 4815 * Would the allocation succeed if we reclaimed all 4816 * reclaimable pages? 4817 */ 4818 wmark = __zone_watermark_ok(zone, order, min_wmark, 4819 ac->highest_zoneidx, alloc_flags, available); 4820 trace_reclaim_retry_zone(z, order, reclaimable, 4821 available, min_wmark, *no_progress_loops, wmark); 4822 if (wmark) { 4823 /* 4824 * If we didn't make any progress and have a lot of 4825 * dirty + writeback pages then we should wait for 4826 * an IO to complete to slow down the reclaim and 4827 * prevent from pre mature OOM 4828 */ 4829 if (!did_some_progress) { 4830 unsigned long write_pending; 4831 4832 write_pending = zone_page_state_snapshot(zone, 4833 NR_ZONE_WRITE_PENDING); 4834 4835 if (2 * write_pending > reclaimable) { 4836 congestion_wait(BLK_RW_ASYNC, HZ/10); 4837 return true; 4838 } 4839 } 4840 4841 ret = true; 4842 goto out; 4843 } 4844 } 4845 4846 out: 4847 /* 4848 * Memory allocation/reclaim might be called from a WQ context and the 4849 * current implementation of the WQ concurrency control doesn't 4850 * recognize that a particular WQ is congested if the worker thread is 4851 * looping without ever sleeping. Therefore we have to do a short sleep 4852 * here rather than calling cond_resched(). 4853 */ 4854 if (current->flags & PF_WQ_WORKER) 4855 schedule_timeout_uninterruptible(1); 4856 else 4857 cond_resched(); 4858 return ret; 4859 } 4860 4861 static inline bool 4862 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4863 { 4864 /* 4865 * It's possible that cpuset's mems_allowed and the nodemask from 4866 * mempolicy don't intersect. This should be normally dealt with by 4867 * policy_nodemask(), but it's possible to race with cpuset update in 4868 * such a way the check therein was true, and then it became false 4869 * before we got our cpuset_mems_cookie here. 4870 * This assumes that for all allocations, ac->nodemask can come only 4871 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4872 * when it does not intersect with the cpuset restrictions) or the 4873 * caller can deal with a violated nodemask. 4874 */ 4875 if (cpusets_enabled() && ac->nodemask && 4876 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4877 ac->nodemask = NULL; 4878 return true; 4879 } 4880 4881 /* 4882 * When updating a task's mems_allowed or mempolicy nodemask, it is 4883 * possible to race with parallel threads in such a way that our 4884 * allocation can fail while the mask is being updated. If we are about 4885 * to fail, check if the cpuset changed during allocation and if so, 4886 * retry. 4887 */ 4888 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4889 return true; 4890 4891 return false; 4892 } 4893 4894 static inline struct page * 4895 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4896 struct alloc_context *ac) 4897 { 4898 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4899 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4900 struct page *page = NULL; 4901 unsigned int alloc_flags; 4902 unsigned long did_some_progress; 4903 enum compact_priority compact_priority; 4904 enum compact_result compact_result; 4905 int compaction_retries; 4906 int no_progress_loops; 4907 unsigned int cpuset_mems_cookie; 4908 int reserve_flags; 4909 4910 /* 4911 * We also sanity check to catch abuse of atomic reserves being used by 4912 * callers that are not in atomic context. 4913 */ 4914 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4915 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4916 gfp_mask &= ~__GFP_ATOMIC; 4917 4918 retry_cpuset: 4919 compaction_retries = 0; 4920 no_progress_loops = 0; 4921 compact_priority = DEF_COMPACT_PRIORITY; 4922 cpuset_mems_cookie = read_mems_allowed_begin(); 4923 4924 /* 4925 * The fast path uses conservative alloc_flags to succeed only until 4926 * kswapd needs to be woken up, and to avoid the cost of setting up 4927 * alloc_flags precisely. So we do that now. 4928 */ 4929 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4930 4931 /* 4932 * We need to recalculate the starting point for the zonelist iterator 4933 * because we might have used different nodemask in the fast path, or 4934 * there was a cpuset modification and we are retrying - otherwise we 4935 * could end up iterating over non-eligible zones endlessly. 4936 */ 4937 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4938 ac->highest_zoneidx, ac->nodemask); 4939 if (!ac->preferred_zoneref->zone) 4940 goto nopage; 4941 4942 if (alloc_flags & ALLOC_KSWAPD) 4943 wake_all_kswapds(order, gfp_mask, ac); 4944 4945 /* 4946 * The adjusted alloc_flags might result in immediate success, so try 4947 * that first 4948 */ 4949 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4950 if (page) 4951 goto got_pg; 4952 4953 /* 4954 * For costly allocations, try direct compaction first, as it's likely 4955 * that we have enough base pages and don't need to reclaim. For non- 4956 * movable high-order allocations, do that as well, as compaction will 4957 * try prevent permanent fragmentation by migrating from blocks of the 4958 * same migratetype. 4959 * Don't try this for allocations that are allowed to ignore 4960 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4961 */ 4962 if (can_direct_reclaim && 4963 (costly_order || 4964 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4965 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4966 page = __alloc_pages_direct_compact(gfp_mask, order, 4967 alloc_flags, ac, 4968 INIT_COMPACT_PRIORITY, 4969 &compact_result); 4970 if (page) 4971 goto got_pg; 4972 4973 /* 4974 * Checks for costly allocations with __GFP_NORETRY, which 4975 * includes some THP page fault allocations 4976 */ 4977 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4978 /* 4979 * If allocating entire pageblock(s) and compaction 4980 * failed because all zones are below low watermarks 4981 * or is prohibited because it recently failed at this 4982 * order, fail immediately unless the allocator has 4983 * requested compaction and reclaim retry. 4984 * 4985 * Reclaim is 4986 * - potentially very expensive because zones are far 4987 * below their low watermarks or this is part of very 4988 * bursty high order allocations, 4989 * - not guaranteed to help because isolate_freepages() 4990 * may not iterate over freed pages as part of its 4991 * linear scan, and 4992 * - unlikely to make entire pageblocks free on its 4993 * own. 4994 */ 4995 if (compact_result == COMPACT_SKIPPED || 4996 compact_result == COMPACT_DEFERRED) 4997 goto nopage; 4998 4999 /* 5000 * Looks like reclaim/compaction is worth trying, but 5001 * sync compaction could be very expensive, so keep 5002 * using async compaction. 5003 */ 5004 compact_priority = INIT_COMPACT_PRIORITY; 5005 } 5006 } 5007 5008 retry: 5009 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 5010 if (alloc_flags & ALLOC_KSWAPD) 5011 wake_all_kswapds(order, gfp_mask, ac); 5012 5013 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5014 if (reserve_flags) 5015 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5016 5017 /* 5018 * Reset the nodemask and zonelist iterators if memory policies can be 5019 * ignored. These allocations are high priority and system rather than 5020 * user oriented. 5021 */ 5022 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5023 ac->nodemask = NULL; 5024 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5025 ac->highest_zoneidx, ac->nodemask); 5026 } 5027 5028 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5029 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5030 if (page) 5031 goto got_pg; 5032 5033 /* Caller is not willing to reclaim, we can't balance anything */ 5034 if (!can_direct_reclaim) 5035 goto nopage; 5036 5037 /* Avoid recursion of direct reclaim */ 5038 if (current->flags & PF_MEMALLOC) 5039 goto nopage; 5040 5041 /* Try direct reclaim and then allocating */ 5042 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5043 &did_some_progress); 5044 if (page) 5045 goto got_pg; 5046 5047 /* Try direct compaction and then allocating */ 5048 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5049 compact_priority, &compact_result); 5050 if (page) 5051 goto got_pg; 5052 5053 /* Do not loop if specifically requested */ 5054 if (gfp_mask & __GFP_NORETRY) 5055 goto nopage; 5056 5057 /* 5058 * Do not retry costly high order allocations unless they are 5059 * __GFP_RETRY_MAYFAIL 5060 */ 5061 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5062 goto nopage; 5063 5064 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5065 did_some_progress > 0, &no_progress_loops)) 5066 goto retry; 5067 5068 /* 5069 * It doesn't make any sense to retry for the compaction if the order-0 5070 * reclaim is not able to make any progress because the current 5071 * implementation of the compaction depends on the sufficient amount 5072 * of free memory (see __compaction_suitable) 5073 */ 5074 if (did_some_progress > 0 && 5075 should_compact_retry(ac, order, alloc_flags, 5076 compact_result, &compact_priority, 5077 &compaction_retries)) 5078 goto retry; 5079 5080 5081 /* Deal with possible cpuset update races before we start OOM killing */ 5082 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5083 goto retry_cpuset; 5084 5085 /* Reclaim has failed us, start killing things */ 5086 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5087 if (page) 5088 goto got_pg; 5089 5090 /* Avoid allocations with no watermarks from looping endlessly */ 5091 if (tsk_is_oom_victim(current) && 5092 (alloc_flags & ALLOC_OOM || 5093 (gfp_mask & __GFP_NOMEMALLOC))) 5094 goto nopage; 5095 5096 /* Retry as long as the OOM killer is making progress */ 5097 if (did_some_progress) { 5098 no_progress_loops = 0; 5099 goto retry; 5100 } 5101 5102 nopage: 5103 /* Deal with possible cpuset update races before we fail */ 5104 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5105 goto retry_cpuset; 5106 5107 /* 5108 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5109 * we always retry 5110 */ 5111 if (gfp_mask & __GFP_NOFAIL) { 5112 /* 5113 * All existing users of the __GFP_NOFAIL are blockable, so warn 5114 * of any new users that actually require GFP_NOWAIT 5115 */ 5116 if (WARN_ON_ONCE(!can_direct_reclaim)) 5117 goto fail; 5118 5119 /* 5120 * PF_MEMALLOC request from this context is rather bizarre 5121 * because we cannot reclaim anything and only can loop waiting 5122 * for somebody to do a work for us 5123 */ 5124 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5125 5126 /* 5127 * non failing costly orders are a hard requirement which we 5128 * are not prepared for much so let's warn about these users 5129 * so that we can identify them and convert them to something 5130 * else. 5131 */ 5132 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5133 5134 /* 5135 * Help non-failing allocations by giving them access to memory 5136 * reserves but do not use ALLOC_NO_WATERMARKS because this 5137 * could deplete whole memory reserves which would just make 5138 * the situation worse 5139 */ 5140 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5141 if (page) 5142 goto got_pg; 5143 5144 cond_resched(); 5145 goto retry; 5146 } 5147 fail: 5148 warn_alloc(gfp_mask, ac->nodemask, 5149 "page allocation failure: order:%u", order); 5150 got_pg: 5151 return page; 5152 } 5153 5154 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5155 int preferred_nid, nodemask_t *nodemask, 5156 struct alloc_context *ac, gfp_t *alloc_gfp, 5157 unsigned int *alloc_flags) 5158 { 5159 ac->highest_zoneidx = gfp_zone(gfp_mask); 5160 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5161 ac->nodemask = nodemask; 5162 ac->migratetype = gfp_migratetype(gfp_mask); 5163 5164 if (cpusets_enabled()) { 5165 *alloc_gfp |= __GFP_HARDWALL; 5166 /* 5167 * When we are in the interrupt context, it is irrelevant 5168 * to the current task context. It means that any node ok. 5169 */ 5170 if (!in_interrupt() && !ac->nodemask) 5171 ac->nodemask = &cpuset_current_mems_allowed; 5172 else 5173 *alloc_flags |= ALLOC_CPUSET; 5174 } 5175 5176 fs_reclaim_acquire(gfp_mask); 5177 fs_reclaim_release(gfp_mask); 5178 5179 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5180 5181 if (should_fail_alloc_page(gfp_mask, order)) 5182 return false; 5183 5184 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5185 5186 /* Dirty zone balancing only done in the fast path */ 5187 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5188 5189 /* 5190 * The preferred zone is used for statistics but crucially it is 5191 * also used as the starting point for the zonelist iterator. It 5192 * may get reset for allocations that ignore memory policies. 5193 */ 5194 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5195 ac->highest_zoneidx, ac->nodemask); 5196 5197 return true; 5198 } 5199 5200 /* 5201 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5202 * @gfp: GFP flags for the allocation 5203 * @preferred_nid: The preferred NUMA node ID to allocate from 5204 * @nodemask: Set of nodes to allocate from, may be NULL 5205 * @nr_pages: The number of pages desired on the list or array 5206 * @page_list: Optional list to store the allocated pages 5207 * @page_array: Optional array to store the pages 5208 * 5209 * This is a batched version of the page allocator that attempts to 5210 * allocate nr_pages quickly. Pages are added to page_list if page_list 5211 * is not NULL, otherwise it is assumed that the page_array is valid. 5212 * 5213 * For lists, nr_pages is the number of pages that should be allocated. 5214 * 5215 * For arrays, only NULL elements are populated with pages and nr_pages 5216 * is the maximum number of pages that will be stored in the array. 5217 * 5218 * Returns the number of pages on the list or array. 5219 */ 5220 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5221 nodemask_t *nodemask, int nr_pages, 5222 struct list_head *page_list, 5223 struct page **page_array) 5224 { 5225 struct page *page; 5226 unsigned long flags; 5227 struct zone *zone; 5228 struct zoneref *z; 5229 struct per_cpu_pages *pcp; 5230 struct list_head *pcp_list; 5231 struct alloc_context ac; 5232 gfp_t alloc_gfp; 5233 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5234 int nr_populated = 0, nr_account = 0; 5235 5236 if (unlikely(nr_pages <= 0)) 5237 return 0; 5238 5239 /* 5240 * Skip populated array elements to determine if any pages need 5241 * to be allocated before disabling IRQs. 5242 */ 5243 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5244 nr_populated++; 5245 5246 /* Already populated array? */ 5247 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5248 return nr_populated; 5249 5250 /* Use the single page allocator for one page. */ 5251 if (nr_pages - nr_populated == 1) 5252 goto failed; 5253 5254 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5255 gfp &= gfp_allowed_mask; 5256 alloc_gfp = gfp; 5257 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5258 return 0; 5259 gfp = alloc_gfp; 5260 5261 /* Find an allowed local zone that meets the low watermark. */ 5262 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5263 unsigned long mark; 5264 5265 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5266 !__cpuset_zone_allowed(zone, gfp)) { 5267 continue; 5268 } 5269 5270 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5271 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5272 goto failed; 5273 } 5274 5275 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5276 if (zone_watermark_fast(zone, 0, mark, 5277 zonelist_zone_idx(ac.preferred_zoneref), 5278 alloc_flags, gfp)) { 5279 break; 5280 } 5281 } 5282 5283 /* 5284 * If there are no allowed local zones that meets the watermarks then 5285 * try to allocate a single page and reclaim if necessary. 5286 */ 5287 if (unlikely(!zone)) 5288 goto failed; 5289 5290 /* Attempt the batch allocation */ 5291 local_lock_irqsave(&pagesets.lock, flags); 5292 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5293 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5294 5295 while (nr_populated < nr_pages) { 5296 5297 /* Skip existing pages */ 5298 if (page_array && page_array[nr_populated]) { 5299 nr_populated++; 5300 continue; 5301 } 5302 5303 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5304 pcp, pcp_list); 5305 if (unlikely(!page)) { 5306 /* Try and get at least one page */ 5307 if (!nr_populated) 5308 goto failed_irq; 5309 break; 5310 } 5311 nr_account++; 5312 5313 prep_new_page(page, 0, gfp, 0); 5314 if (page_list) 5315 list_add(&page->lru, page_list); 5316 else 5317 page_array[nr_populated] = page; 5318 nr_populated++; 5319 } 5320 5321 local_unlock_irqrestore(&pagesets.lock, flags); 5322 5323 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5324 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5325 5326 return nr_populated; 5327 5328 failed_irq: 5329 local_unlock_irqrestore(&pagesets.lock, flags); 5330 5331 failed: 5332 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5333 if (page) { 5334 if (page_list) 5335 list_add(&page->lru, page_list); 5336 else 5337 page_array[nr_populated] = page; 5338 nr_populated++; 5339 } 5340 5341 return nr_populated; 5342 } 5343 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5344 5345 /* 5346 * This is the 'heart' of the zoned buddy allocator. 5347 */ 5348 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5349 nodemask_t *nodemask) 5350 { 5351 struct page *page; 5352 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5353 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5354 struct alloc_context ac = { }; 5355 5356 /* 5357 * There are several places where we assume that the order value is sane 5358 * so bail out early if the request is out of bound. 5359 */ 5360 if (unlikely(order >= MAX_ORDER)) { 5361 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5362 return NULL; 5363 } 5364 5365 gfp &= gfp_allowed_mask; 5366 /* 5367 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5368 * resp. GFP_NOIO which has to be inherited for all allocation requests 5369 * from a particular context which has been marked by 5370 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5371 * movable zones are not used during allocation. 5372 */ 5373 gfp = current_gfp_context(gfp); 5374 alloc_gfp = gfp; 5375 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5376 &alloc_gfp, &alloc_flags)) 5377 return NULL; 5378 5379 /* 5380 * Forbid the first pass from falling back to types that fragment 5381 * memory until all local zones are considered. 5382 */ 5383 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5384 5385 /* First allocation attempt */ 5386 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5387 if (likely(page)) 5388 goto out; 5389 5390 alloc_gfp = gfp; 5391 ac.spread_dirty_pages = false; 5392 5393 /* 5394 * Restore the original nodemask if it was potentially replaced with 5395 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5396 */ 5397 ac.nodemask = nodemask; 5398 5399 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5400 5401 out: 5402 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5403 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5404 __free_pages(page, order); 5405 page = NULL; 5406 } 5407 5408 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5409 5410 return page; 5411 } 5412 EXPORT_SYMBOL(__alloc_pages); 5413 5414 /* 5415 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5416 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5417 * you need to access high mem. 5418 */ 5419 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5420 { 5421 struct page *page; 5422 5423 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5424 if (!page) 5425 return 0; 5426 return (unsigned long) page_address(page); 5427 } 5428 EXPORT_SYMBOL(__get_free_pages); 5429 5430 unsigned long get_zeroed_page(gfp_t gfp_mask) 5431 { 5432 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5433 } 5434 EXPORT_SYMBOL(get_zeroed_page); 5435 5436 /** 5437 * __free_pages - Free pages allocated with alloc_pages(). 5438 * @page: The page pointer returned from alloc_pages(). 5439 * @order: The order of the allocation. 5440 * 5441 * This function can free multi-page allocations that are not compound 5442 * pages. It does not check that the @order passed in matches that of 5443 * the allocation, so it is easy to leak memory. Freeing more memory 5444 * than was allocated will probably emit a warning. 5445 * 5446 * If the last reference to this page is speculative, it will be released 5447 * by put_page() which only frees the first page of a non-compound 5448 * allocation. To prevent the remaining pages from being leaked, we free 5449 * the subsequent pages here. If you want to use the page's reference 5450 * count to decide when to free the allocation, you should allocate a 5451 * compound page, and use put_page() instead of __free_pages(). 5452 * 5453 * Context: May be called in interrupt context or while holding a normal 5454 * spinlock, but not in NMI context or while holding a raw spinlock. 5455 */ 5456 void __free_pages(struct page *page, unsigned int order) 5457 { 5458 if (put_page_testzero(page)) 5459 free_the_page(page, order); 5460 else if (!PageHead(page)) 5461 while (order-- > 0) 5462 free_the_page(page + (1 << order), order); 5463 } 5464 EXPORT_SYMBOL(__free_pages); 5465 5466 void free_pages(unsigned long addr, unsigned int order) 5467 { 5468 if (addr != 0) { 5469 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5470 __free_pages(virt_to_page((void *)addr), order); 5471 } 5472 } 5473 5474 EXPORT_SYMBOL(free_pages); 5475 5476 /* 5477 * Page Fragment: 5478 * An arbitrary-length arbitrary-offset area of memory which resides 5479 * within a 0 or higher order page. Multiple fragments within that page 5480 * are individually refcounted, in the page's reference counter. 5481 * 5482 * The page_frag functions below provide a simple allocation framework for 5483 * page fragments. This is used by the network stack and network device 5484 * drivers to provide a backing region of memory for use as either an 5485 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5486 */ 5487 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5488 gfp_t gfp_mask) 5489 { 5490 struct page *page = NULL; 5491 gfp_t gfp = gfp_mask; 5492 5493 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5494 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5495 __GFP_NOMEMALLOC; 5496 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5497 PAGE_FRAG_CACHE_MAX_ORDER); 5498 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5499 #endif 5500 if (unlikely(!page)) 5501 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5502 5503 nc->va = page ? page_address(page) : NULL; 5504 5505 return page; 5506 } 5507 5508 void __page_frag_cache_drain(struct page *page, unsigned int count) 5509 { 5510 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5511 5512 if (page_ref_sub_and_test(page, count)) 5513 free_the_page(page, compound_order(page)); 5514 } 5515 EXPORT_SYMBOL(__page_frag_cache_drain); 5516 5517 void *page_frag_alloc_align(struct page_frag_cache *nc, 5518 unsigned int fragsz, gfp_t gfp_mask, 5519 unsigned int align_mask) 5520 { 5521 unsigned int size = PAGE_SIZE; 5522 struct page *page; 5523 int offset; 5524 5525 if (unlikely(!nc->va)) { 5526 refill: 5527 page = __page_frag_cache_refill(nc, gfp_mask); 5528 if (!page) 5529 return NULL; 5530 5531 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5532 /* if size can vary use size else just use PAGE_SIZE */ 5533 size = nc->size; 5534 #endif 5535 /* Even if we own the page, we do not use atomic_set(). 5536 * This would break get_page_unless_zero() users. 5537 */ 5538 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5539 5540 /* reset page count bias and offset to start of new frag */ 5541 nc->pfmemalloc = page_is_pfmemalloc(page); 5542 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5543 nc->offset = size; 5544 } 5545 5546 offset = nc->offset - fragsz; 5547 if (unlikely(offset < 0)) { 5548 page = virt_to_page(nc->va); 5549 5550 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5551 goto refill; 5552 5553 if (unlikely(nc->pfmemalloc)) { 5554 free_the_page(page, compound_order(page)); 5555 goto refill; 5556 } 5557 5558 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5559 /* if size can vary use size else just use PAGE_SIZE */ 5560 size = nc->size; 5561 #endif 5562 /* OK, page count is 0, we can safely set it */ 5563 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5564 5565 /* reset page count bias and offset to start of new frag */ 5566 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5567 offset = size - fragsz; 5568 } 5569 5570 nc->pagecnt_bias--; 5571 offset &= align_mask; 5572 nc->offset = offset; 5573 5574 return nc->va + offset; 5575 } 5576 EXPORT_SYMBOL(page_frag_alloc_align); 5577 5578 /* 5579 * Frees a page fragment allocated out of either a compound or order 0 page. 5580 */ 5581 void page_frag_free(void *addr) 5582 { 5583 struct page *page = virt_to_head_page(addr); 5584 5585 if (unlikely(put_page_testzero(page))) 5586 free_the_page(page, compound_order(page)); 5587 } 5588 EXPORT_SYMBOL(page_frag_free); 5589 5590 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5591 size_t size) 5592 { 5593 if (addr) { 5594 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5595 unsigned long used = addr + PAGE_ALIGN(size); 5596 5597 split_page(virt_to_page((void *)addr), order); 5598 while (used < alloc_end) { 5599 free_page(used); 5600 used += PAGE_SIZE; 5601 } 5602 } 5603 return (void *)addr; 5604 } 5605 5606 /** 5607 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5608 * @size: the number of bytes to allocate 5609 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5610 * 5611 * This function is similar to alloc_pages(), except that it allocates the 5612 * minimum number of pages to satisfy the request. alloc_pages() can only 5613 * allocate memory in power-of-two pages. 5614 * 5615 * This function is also limited by MAX_ORDER. 5616 * 5617 * Memory allocated by this function must be released by free_pages_exact(). 5618 * 5619 * Return: pointer to the allocated area or %NULL in case of error. 5620 */ 5621 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5622 { 5623 unsigned int order = get_order(size); 5624 unsigned long addr; 5625 5626 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5627 gfp_mask &= ~__GFP_COMP; 5628 5629 addr = __get_free_pages(gfp_mask, order); 5630 return make_alloc_exact(addr, order, size); 5631 } 5632 EXPORT_SYMBOL(alloc_pages_exact); 5633 5634 /** 5635 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5636 * pages on a node. 5637 * @nid: the preferred node ID where memory should be allocated 5638 * @size: the number of bytes to allocate 5639 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5640 * 5641 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5642 * back. 5643 * 5644 * Return: pointer to the allocated area or %NULL in case of error. 5645 */ 5646 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5647 { 5648 unsigned int order = get_order(size); 5649 struct page *p; 5650 5651 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5652 gfp_mask &= ~__GFP_COMP; 5653 5654 p = alloc_pages_node(nid, gfp_mask, order); 5655 if (!p) 5656 return NULL; 5657 return make_alloc_exact((unsigned long)page_address(p), order, size); 5658 } 5659 5660 /** 5661 * free_pages_exact - release memory allocated via alloc_pages_exact() 5662 * @virt: the value returned by alloc_pages_exact. 5663 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5664 * 5665 * Release the memory allocated by a previous call to alloc_pages_exact. 5666 */ 5667 void free_pages_exact(void *virt, size_t size) 5668 { 5669 unsigned long addr = (unsigned long)virt; 5670 unsigned long end = addr + PAGE_ALIGN(size); 5671 5672 while (addr < end) { 5673 free_page(addr); 5674 addr += PAGE_SIZE; 5675 } 5676 } 5677 EXPORT_SYMBOL(free_pages_exact); 5678 5679 /** 5680 * nr_free_zone_pages - count number of pages beyond high watermark 5681 * @offset: The zone index of the highest zone 5682 * 5683 * nr_free_zone_pages() counts the number of pages which are beyond the 5684 * high watermark within all zones at or below a given zone index. For each 5685 * zone, the number of pages is calculated as: 5686 * 5687 * nr_free_zone_pages = managed_pages - high_pages 5688 * 5689 * Return: number of pages beyond high watermark. 5690 */ 5691 static unsigned long nr_free_zone_pages(int offset) 5692 { 5693 struct zoneref *z; 5694 struct zone *zone; 5695 5696 /* Just pick one node, since fallback list is circular */ 5697 unsigned long sum = 0; 5698 5699 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5700 5701 for_each_zone_zonelist(zone, z, zonelist, offset) { 5702 unsigned long size = zone_managed_pages(zone); 5703 unsigned long high = high_wmark_pages(zone); 5704 if (size > high) 5705 sum += size - high; 5706 } 5707 5708 return sum; 5709 } 5710 5711 /** 5712 * nr_free_buffer_pages - count number of pages beyond high watermark 5713 * 5714 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5715 * watermark within ZONE_DMA and ZONE_NORMAL. 5716 * 5717 * Return: number of pages beyond high watermark within ZONE_DMA and 5718 * ZONE_NORMAL. 5719 */ 5720 unsigned long nr_free_buffer_pages(void) 5721 { 5722 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5723 } 5724 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5725 5726 static inline void show_node(struct zone *zone) 5727 { 5728 if (IS_ENABLED(CONFIG_NUMA)) 5729 printk("Node %d ", zone_to_nid(zone)); 5730 } 5731 5732 long si_mem_available(void) 5733 { 5734 long available; 5735 unsigned long pagecache; 5736 unsigned long wmark_low = 0; 5737 unsigned long pages[NR_LRU_LISTS]; 5738 unsigned long reclaimable; 5739 struct zone *zone; 5740 int lru; 5741 5742 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5743 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5744 5745 for_each_zone(zone) 5746 wmark_low += low_wmark_pages(zone); 5747 5748 /* 5749 * Estimate the amount of memory available for userspace allocations, 5750 * without causing swapping. 5751 */ 5752 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5753 5754 /* 5755 * Not all the page cache can be freed, otherwise the system will 5756 * start swapping. Assume at least half of the page cache, or the 5757 * low watermark worth of cache, needs to stay. 5758 */ 5759 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5760 pagecache -= min(pagecache / 2, wmark_low); 5761 available += pagecache; 5762 5763 /* 5764 * Part of the reclaimable slab and other kernel memory consists of 5765 * items that are in use, and cannot be freed. Cap this estimate at the 5766 * low watermark. 5767 */ 5768 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5769 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5770 available += reclaimable - min(reclaimable / 2, wmark_low); 5771 5772 if (available < 0) 5773 available = 0; 5774 return available; 5775 } 5776 EXPORT_SYMBOL_GPL(si_mem_available); 5777 5778 void si_meminfo(struct sysinfo *val) 5779 { 5780 val->totalram = totalram_pages(); 5781 val->sharedram = global_node_page_state(NR_SHMEM); 5782 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5783 val->bufferram = nr_blockdev_pages(); 5784 val->totalhigh = totalhigh_pages(); 5785 val->freehigh = nr_free_highpages(); 5786 val->mem_unit = PAGE_SIZE; 5787 } 5788 5789 EXPORT_SYMBOL(si_meminfo); 5790 5791 #ifdef CONFIG_NUMA 5792 void si_meminfo_node(struct sysinfo *val, int nid) 5793 { 5794 int zone_type; /* needs to be signed */ 5795 unsigned long managed_pages = 0; 5796 unsigned long managed_highpages = 0; 5797 unsigned long free_highpages = 0; 5798 pg_data_t *pgdat = NODE_DATA(nid); 5799 5800 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5801 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5802 val->totalram = managed_pages; 5803 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5804 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5805 #ifdef CONFIG_HIGHMEM 5806 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5807 struct zone *zone = &pgdat->node_zones[zone_type]; 5808 5809 if (is_highmem(zone)) { 5810 managed_highpages += zone_managed_pages(zone); 5811 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5812 } 5813 } 5814 val->totalhigh = managed_highpages; 5815 val->freehigh = free_highpages; 5816 #else 5817 val->totalhigh = managed_highpages; 5818 val->freehigh = free_highpages; 5819 #endif 5820 val->mem_unit = PAGE_SIZE; 5821 } 5822 #endif 5823 5824 /* 5825 * Determine whether the node should be displayed or not, depending on whether 5826 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5827 */ 5828 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5829 { 5830 if (!(flags & SHOW_MEM_FILTER_NODES)) 5831 return false; 5832 5833 /* 5834 * no node mask - aka implicit memory numa policy. Do not bother with 5835 * the synchronization - read_mems_allowed_begin - because we do not 5836 * have to be precise here. 5837 */ 5838 if (!nodemask) 5839 nodemask = &cpuset_current_mems_allowed; 5840 5841 return !node_isset(nid, *nodemask); 5842 } 5843 5844 #define K(x) ((x) << (PAGE_SHIFT-10)) 5845 5846 static void show_migration_types(unsigned char type) 5847 { 5848 static const char types[MIGRATE_TYPES] = { 5849 [MIGRATE_UNMOVABLE] = 'U', 5850 [MIGRATE_MOVABLE] = 'M', 5851 [MIGRATE_RECLAIMABLE] = 'E', 5852 [MIGRATE_HIGHATOMIC] = 'H', 5853 #ifdef CONFIG_CMA 5854 [MIGRATE_CMA] = 'C', 5855 #endif 5856 #ifdef CONFIG_MEMORY_ISOLATION 5857 [MIGRATE_ISOLATE] = 'I', 5858 #endif 5859 }; 5860 char tmp[MIGRATE_TYPES + 1]; 5861 char *p = tmp; 5862 int i; 5863 5864 for (i = 0; i < MIGRATE_TYPES; i++) { 5865 if (type & (1 << i)) 5866 *p++ = types[i]; 5867 } 5868 5869 *p = '\0'; 5870 printk(KERN_CONT "(%s) ", tmp); 5871 } 5872 5873 /* 5874 * Show free area list (used inside shift_scroll-lock stuff) 5875 * We also calculate the percentage fragmentation. We do this by counting the 5876 * memory on each free list with the exception of the first item on the list. 5877 * 5878 * Bits in @filter: 5879 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5880 * cpuset. 5881 */ 5882 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5883 { 5884 unsigned long free_pcp = 0; 5885 int cpu; 5886 struct zone *zone; 5887 pg_data_t *pgdat; 5888 5889 for_each_populated_zone(zone) { 5890 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5891 continue; 5892 5893 for_each_online_cpu(cpu) 5894 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5895 } 5896 5897 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5898 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5899 " unevictable:%lu dirty:%lu writeback:%lu\n" 5900 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5901 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5902 " free:%lu free_pcp:%lu free_cma:%lu\n", 5903 global_node_page_state(NR_ACTIVE_ANON), 5904 global_node_page_state(NR_INACTIVE_ANON), 5905 global_node_page_state(NR_ISOLATED_ANON), 5906 global_node_page_state(NR_ACTIVE_FILE), 5907 global_node_page_state(NR_INACTIVE_FILE), 5908 global_node_page_state(NR_ISOLATED_FILE), 5909 global_node_page_state(NR_UNEVICTABLE), 5910 global_node_page_state(NR_FILE_DIRTY), 5911 global_node_page_state(NR_WRITEBACK), 5912 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5913 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5914 global_node_page_state(NR_FILE_MAPPED), 5915 global_node_page_state(NR_SHMEM), 5916 global_node_page_state(NR_PAGETABLE), 5917 global_zone_page_state(NR_BOUNCE), 5918 global_zone_page_state(NR_FREE_PAGES), 5919 free_pcp, 5920 global_zone_page_state(NR_FREE_CMA_PAGES)); 5921 5922 for_each_online_pgdat(pgdat) { 5923 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5924 continue; 5925 5926 printk("Node %d" 5927 " active_anon:%lukB" 5928 " inactive_anon:%lukB" 5929 " active_file:%lukB" 5930 " inactive_file:%lukB" 5931 " unevictable:%lukB" 5932 " isolated(anon):%lukB" 5933 " isolated(file):%lukB" 5934 " mapped:%lukB" 5935 " dirty:%lukB" 5936 " writeback:%lukB" 5937 " shmem:%lukB" 5938 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5939 " shmem_thp: %lukB" 5940 " shmem_pmdmapped: %lukB" 5941 " anon_thp: %lukB" 5942 #endif 5943 " writeback_tmp:%lukB" 5944 " kernel_stack:%lukB" 5945 #ifdef CONFIG_SHADOW_CALL_STACK 5946 " shadow_call_stack:%lukB" 5947 #endif 5948 " pagetables:%lukB" 5949 " all_unreclaimable? %s" 5950 "\n", 5951 pgdat->node_id, 5952 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5953 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5954 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5955 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5956 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5957 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5958 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5959 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5960 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5961 K(node_page_state(pgdat, NR_WRITEBACK)), 5962 K(node_page_state(pgdat, NR_SHMEM)), 5963 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5964 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5965 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5966 K(node_page_state(pgdat, NR_ANON_THPS)), 5967 #endif 5968 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5969 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5970 #ifdef CONFIG_SHADOW_CALL_STACK 5971 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5972 #endif 5973 K(node_page_state(pgdat, NR_PAGETABLE)), 5974 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5975 "yes" : "no"); 5976 } 5977 5978 for_each_populated_zone(zone) { 5979 int i; 5980 5981 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5982 continue; 5983 5984 free_pcp = 0; 5985 for_each_online_cpu(cpu) 5986 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5987 5988 show_node(zone); 5989 printk(KERN_CONT 5990 "%s" 5991 " free:%lukB" 5992 " min:%lukB" 5993 " low:%lukB" 5994 " high:%lukB" 5995 " reserved_highatomic:%luKB" 5996 " active_anon:%lukB" 5997 " inactive_anon:%lukB" 5998 " active_file:%lukB" 5999 " inactive_file:%lukB" 6000 " unevictable:%lukB" 6001 " writepending:%lukB" 6002 " present:%lukB" 6003 " managed:%lukB" 6004 " mlocked:%lukB" 6005 " bounce:%lukB" 6006 " free_pcp:%lukB" 6007 " local_pcp:%ukB" 6008 " free_cma:%lukB" 6009 "\n", 6010 zone->name, 6011 K(zone_page_state(zone, NR_FREE_PAGES)), 6012 K(min_wmark_pages(zone)), 6013 K(low_wmark_pages(zone)), 6014 K(high_wmark_pages(zone)), 6015 K(zone->nr_reserved_highatomic), 6016 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6017 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6018 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6019 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6020 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6021 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6022 K(zone->present_pages), 6023 K(zone_managed_pages(zone)), 6024 K(zone_page_state(zone, NR_MLOCK)), 6025 K(zone_page_state(zone, NR_BOUNCE)), 6026 K(free_pcp), 6027 K(this_cpu_read(zone->per_cpu_pageset->count)), 6028 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6029 printk("lowmem_reserve[]:"); 6030 for (i = 0; i < MAX_NR_ZONES; i++) 6031 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6032 printk(KERN_CONT "\n"); 6033 } 6034 6035 for_each_populated_zone(zone) { 6036 unsigned int order; 6037 unsigned long nr[MAX_ORDER], flags, total = 0; 6038 unsigned char types[MAX_ORDER]; 6039 6040 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6041 continue; 6042 show_node(zone); 6043 printk(KERN_CONT "%s: ", zone->name); 6044 6045 spin_lock_irqsave(&zone->lock, flags); 6046 for (order = 0; order < MAX_ORDER; order++) { 6047 struct free_area *area = &zone->free_area[order]; 6048 int type; 6049 6050 nr[order] = area->nr_free; 6051 total += nr[order] << order; 6052 6053 types[order] = 0; 6054 for (type = 0; type < MIGRATE_TYPES; type++) { 6055 if (!free_area_empty(area, type)) 6056 types[order] |= 1 << type; 6057 } 6058 } 6059 spin_unlock_irqrestore(&zone->lock, flags); 6060 for (order = 0; order < MAX_ORDER; order++) { 6061 printk(KERN_CONT "%lu*%lukB ", 6062 nr[order], K(1UL) << order); 6063 if (nr[order]) 6064 show_migration_types(types[order]); 6065 } 6066 printk(KERN_CONT "= %lukB\n", K(total)); 6067 } 6068 6069 hugetlb_show_meminfo(); 6070 6071 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6072 6073 show_swap_cache_info(); 6074 } 6075 6076 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6077 { 6078 zoneref->zone = zone; 6079 zoneref->zone_idx = zone_idx(zone); 6080 } 6081 6082 /* 6083 * Builds allocation fallback zone lists. 6084 * 6085 * Add all populated zones of a node to the zonelist. 6086 */ 6087 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6088 { 6089 struct zone *zone; 6090 enum zone_type zone_type = MAX_NR_ZONES; 6091 int nr_zones = 0; 6092 6093 do { 6094 zone_type--; 6095 zone = pgdat->node_zones + zone_type; 6096 if (managed_zone(zone)) { 6097 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6098 check_highest_zone(zone_type); 6099 } 6100 } while (zone_type); 6101 6102 return nr_zones; 6103 } 6104 6105 #ifdef CONFIG_NUMA 6106 6107 static int __parse_numa_zonelist_order(char *s) 6108 { 6109 /* 6110 * We used to support different zonelists modes but they turned 6111 * out to be just not useful. Let's keep the warning in place 6112 * if somebody still use the cmd line parameter so that we do 6113 * not fail it silently 6114 */ 6115 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6116 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6117 return -EINVAL; 6118 } 6119 return 0; 6120 } 6121 6122 char numa_zonelist_order[] = "Node"; 6123 6124 /* 6125 * sysctl handler for numa_zonelist_order 6126 */ 6127 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6128 void *buffer, size_t *length, loff_t *ppos) 6129 { 6130 if (write) 6131 return __parse_numa_zonelist_order(buffer); 6132 return proc_dostring(table, write, buffer, length, ppos); 6133 } 6134 6135 6136 #define MAX_NODE_LOAD (nr_online_nodes) 6137 static int node_load[MAX_NUMNODES]; 6138 6139 /** 6140 * find_next_best_node - find the next node that should appear in a given node's fallback list 6141 * @node: node whose fallback list we're appending 6142 * @used_node_mask: nodemask_t of already used nodes 6143 * 6144 * We use a number of factors to determine which is the next node that should 6145 * appear on a given node's fallback list. The node should not have appeared 6146 * already in @node's fallback list, and it should be the next closest node 6147 * according to the distance array (which contains arbitrary distance values 6148 * from each node to each node in the system), and should also prefer nodes 6149 * with no CPUs, since presumably they'll have very little allocation pressure 6150 * on them otherwise. 6151 * 6152 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6153 */ 6154 static int find_next_best_node(int node, nodemask_t *used_node_mask) 6155 { 6156 int n, val; 6157 int min_val = INT_MAX; 6158 int best_node = NUMA_NO_NODE; 6159 6160 /* Use the local node if we haven't already */ 6161 if (!node_isset(node, *used_node_mask)) { 6162 node_set(node, *used_node_mask); 6163 return node; 6164 } 6165 6166 for_each_node_state(n, N_MEMORY) { 6167 6168 /* Don't want a node to appear more than once */ 6169 if (node_isset(n, *used_node_mask)) 6170 continue; 6171 6172 /* Use the distance array to find the distance */ 6173 val = node_distance(node, n); 6174 6175 /* Penalize nodes under us ("prefer the next node") */ 6176 val += (n < node); 6177 6178 /* Give preference to headless and unused nodes */ 6179 if (!cpumask_empty(cpumask_of_node(n))) 6180 val += PENALTY_FOR_NODE_WITH_CPUS; 6181 6182 /* Slight preference for less loaded node */ 6183 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6184 val += node_load[n]; 6185 6186 if (val < min_val) { 6187 min_val = val; 6188 best_node = n; 6189 } 6190 } 6191 6192 if (best_node >= 0) 6193 node_set(best_node, *used_node_mask); 6194 6195 return best_node; 6196 } 6197 6198 6199 /* 6200 * Build zonelists ordered by node and zones within node. 6201 * This results in maximum locality--normal zone overflows into local 6202 * DMA zone, if any--but risks exhausting DMA zone. 6203 */ 6204 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6205 unsigned nr_nodes) 6206 { 6207 struct zoneref *zonerefs; 6208 int i; 6209 6210 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6211 6212 for (i = 0; i < nr_nodes; i++) { 6213 int nr_zones; 6214 6215 pg_data_t *node = NODE_DATA(node_order[i]); 6216 6217 nr_zones = build_zonerefs_node(node, zonerefs); 6218 zonerefs += nr_zones; 6219 } 6220 zonerefs->zone = NULL; 6221 zonerefs->zone_idx = 0; 6222 } 6223 6224 /* 6225 * Build gfp_thisnode zonelists 6226 */ 6227 static void build_thisnode_zonelists(pg_data_t *pgdat) 6228 { 6229 struct zoneref *zonerefs; 6230 int nr_zones; 6231 6232 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6233 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6234 zonerefs += nr_zones; 6235 zonerefs->zone = NULL; 6236 zonerefs->zone_idx = 0; 6237 } 6238 6239 /* 6240 * Build zonelists ordered by zone and nodes within zones. 6241 * This results in conserving DMA zone[s] until all Normal memory is 6242 * exhausted, but results in overflowing to remote node while memory 6243 * may still exist in local DMA zone. 6244 */ 6245 6246 static void build_zonelists(pg_data_t *pgdat) 6247 { 6248 static int node_order[MAX_NUMNODES]; 6249 int node, load, nr_nodes = 0; 6250 nodemask_t used_mask = NODE_MASK_NONE; 6251 int local_node, prev_node; 6252 6253 /* NUMA-aware ordering of nodes */ 6254 local_node = pgdat->node_id; 6255 load = nr_online_nodes; 6256 prev_node = local_node; 6257 6258 memset(node_order, 0, sizeof(node_order)); 6259 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6260 /* 6261 * We don't want to pressure a particular node. 6262 * So adding penalty to the first node in same 6263 * distance group to make it round-robin. 6264 */ 6265 if (node_distance(local_node, node) != 6266 node_distance(local_node, prev_node)) 6267 node_load[node] = load; 6268 6269 node_order[nr_nodes++] = node; 6270 prev_node = node; 6271 load--; 6272 } 6273 6274 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6275 build_thisnode_zonelists(pgdat); 6276 } 6277 6278 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6279 /* 6280 * Return node id of node used for "local" allocations. 6281 * I.e., first node id of first zone in arg node's generic zonelist. 6282 * Used for initializing percpu 'numa_mem', which is used primarily 6283 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6284 */ 6285 int local_memory_node(int node) 6286 { 6287 struct zoneref *z; 6288 6289 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6290 gfp_zone(GFP_KERNEL), 6291 NULL); 6292 return zone_to_nid(z->zone); 6293 } 6294 #endif 6295 6296 static void setup_min_unmapped_ratio(void); 6297 static void setup_min_slab_ratio(void); 6298 #else /* CONFIG_NUMA */ 6299 6300 static void build_zonelists(pg_data_t *pgdat) 6301 { 6302 int node, local_node; 6303 struct zoneref *zonerefs; 6304 int nr_zones; 6305 6306 local_node = pgdat->node_id; 6307 6308 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6309 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6310 zonerefs += nr_zones; 6311 6312 /* 6313 * Now we build the zonelist so that it contains the zones 6314 * of all the other nodes. 6315 * We don't want to pressure a particular node, so when 6316 * building the zones for node N, we make sure that the 6317 * zones coming right after the local ones are those from 6318 * node N+1 (modulo N) 6319 */ 6320 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6321 if (!node_online(node)) 6322 continue; 6323 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6324 zonerefs += nr_zones; 6325 } 6326 for (node = 0; node < local_node; node++) { 6327 if (!node_online(node)) 6328 continue; 6329 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6330 zonerefs += nr_zones; 6331 } 6332 6333 zonerefs->zone = NULL; 6334 zonerefs->zone_idx = 0; 6335 } 6336 6337 #endif /* CONFIG_NUMA */ 6338 6339 /* 6340 * Boot pageset table. One per cpu which is going to be used for all 6341 * zones and all nodes. The parameters will be set in such a way 6342 * that an item put on a list will immediately be handed over to 6343 * the buddy list. This is safe since pageset manipulation is done 6344 * with interrupts disabled. 6345 * 6346 * The boot_pagesets must be kept even after bootup is complete for 6347 * unused processors and/or zones. They do play a role for bootstrapping 6348 * hotplugged processors. 6349 * 6350 * zoneinfo_show() and maybe other functions do 6351 * not check if the processor is online before following the pageset pointer. 6352 * Other parts of the kernel may not check if the zone is available. 6353 */ 6354 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6355 /* These effectively disable the pcplists in the boot pageset completely */ 6356 #define BOOT_PAGESET_HIGH 0 6357 #define BOOT_PAGESET_BATCH 1 6358 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6359 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6360 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6361 6362 static void __build_all_zonelists(void *data) 6363 { 6364 int nid; 6365 int __maybe_unused cpu; 6366 pg_data_t *self = data; 6367 static DEFINE_SPINLOCK(lock); 6368 6369 spin_lock(&lock); 6370 6371 #ifdef CONFIG_NUMA 6372 memset(node_load, 0, sizeof(node_load)); 6373 #endif 6374 6375 /* 6376 * This node is hotadded and no memory is yet present. So just 6377 * building zonelists is fine - no need to touch other nodes. 6378 */ 6379 if (self && !node_online(self->node_id)) { 6380 build_zonelists(self); 6381 } else { 6382 for_each_online_node(nid) { 6383 pg_data_t *pgdat = NODE_DATA(nid); 6384 6385 build_zonelists(pgdat); 6386 } 6387 6388 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6389 /* 6390 * We now know the "local memory node" for each node-- 6391 * i.e., the node of the first zone in the generic zonelist. 6392 * Set up numa_mem percpu variable for on-line cpus. During 6393 * boot, only the boot cpu should be on-line; we'll init the 6394 * secondary cpus' numa_mem as they come on-line. During 6395 * node/memory hotplug, we'll fixup all on-line cpus. 6396 */ 6397 for_each_online_cpu(cpu) 6398 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6399 #endif 6400 } 6401 6402 spin_unlock(&lock); 6403 } 6404 6405 static noinline void __init 6406 build_all_zonelists_init(void) 6407 { 6408 int cpu; 6409 6410 __build_all_zonelists(NULL); 6411 6412 /* 6413 * Initialize the boot_pagesets that are going to be used 6414 * for bootstrapping processors. The real pagesets for 6415 * each zone will be allocated later when the per cpu 6416 * allocator is available. 6417 * 6418 * boot_pagesets are used also for bootstrapping offline 6419 * cpus if the system is already booted because the pagesets 6420 * are needed to initialize allocators on a specific cpu too. 6421 * F.e. the percpu allocator needs the page allocator which 6422 * needs the percpu allocator in order to allocate its pagesets 6423 * (a chicken-egg dilemma). 6424 */ 6425 for_each_possible_cpu(cpu) 6426 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6427 6428 mminit_verify_zonelist(); 6429 cpuset_init_current_mems_allowed(); 6430 } 6431 6432 /* 6433 * unless system_state == SYSTEM_BOOTING. 6434 * 6435 * __ref due to call of __init annotated helper build_all_zonelists_init 6436 * [protected by SYSTEM_BOOTING]. 6437 */ 6438 void __ref build_all_zonelists(pg_data_t *pgdat) 6439 { 6440 unsigned long vm_total_pages; 6441 6442 if (system_state == SYSTEM_BOOTING) { 6443 build_all_zonelists_init(); 6444 } else { 6445 __build_all_zonelists(pgdat); 6446 /* cpuset refresh routine should be here */ 6447 } 6448 /* Get the number of free pages beyond high watermark in all zones. */ 6449 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6450 /* 6451 * Disable grouping by mobility if the number of pages in the 6452 * system is too low to allow the mechanism to work. It would be 6453 * more accurate, but expensive to check per-zone. This check is 6454 * made on memory-hotadd so a system can start with mobility 6455 * disabled and enable it later 6456 */ 6457 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6458 page_group_by_mobility_disabled = 1; 6459 else 6460 page_group_by_mobility_disabled = 0; 6461 6462 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6463 nr_online_nodes, 6464 page_group_by_mobility_disabled ? "off" : "on", 6465 vm_total_pages); 6466 #ifdef CONFIG_NUMA 6467 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6468 #endif 6469 } 6470 6471 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6472 static bool __meminit 6473 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6474 { 6475 static struct memblock_region *r; 6476 6477 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6478 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6479 for_each_mem_region(r) { 6480 if (*pfn < memblock_region_memory_end_pfn(r)) 6481 break; 6482 } 6483 } 6484 if (*pfn >= memblock_region_memory_base_pfn(r) && 6485 memblock_is_mirror(r)) { 6486 *pfn = memblock_region_memory_end_pfn(r); 6487 return true; 6488 } 6489 } 6490 return false; 6491 } 6492 6493 /* 6494 * Initially all pages are reserved - free ones are freed 6495 * up by memblock_free_all() once the early boot process is 6496 * done. Non-atomic initialization, single-pass. 6497 * 6498 * All aligned pageblocks are initialized to the specified migratetype 6499 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6500 * zone stats (e.g., nr_isolate_pageblock) are touched. 6501 */ 6502 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6503 unsigned long start_pfn, unsigned long zone_end_pfn, 6504 enum meminit_context context, 6505 struct vmem_altmap *altmap, int migratetype) 6506 { 6507 unsigned long pfn, end_pfn = start_pfn + size; 6508 struct page *page; 6509 6510 if (highest_memmap_pfn < end_pfn - 1) 6511 highest_memmap_pfn = end_pfn - 1; 6512 6513 #ifdef CONFIG_ZONE_DEVICE 6514 /* 6515 * Honor reservation requested by the driver for this ZONE_DEVICE 6516 * memory. We limit the total number of pages to initialize to just 6517 * those that might contain the memory mapping. We will defer the 6518 * ZONE_DEVICE page initialization until after we have released 6519 * the hotplug lock. 6520 */ 6521 if (zone == ZONE_DEVICE) { 6522 if (!altmap) 6523 return; 6524 6525 if (start_pfn == altmap->base_pfn) 6526 start_pfn += altmap->reserve; 6527 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6528 } 6529 #endif 6530 6531 for (pfn = start_pfn; pfn < end_pfn; ) { 6532 /* 6533 * There can be holes in boot-time mem_map[]s handed to this 6534 * function. They do not exist on hotplugged memory. 6535 */ 6536 if (context == MEMINIT_EARLY) { 6537 if (overlap_memmap_init(zone, &pfn)) 6538 continue; 6539 if (defer_init(nid, pfn, zone_end_pfn)) 6540 break; 6541 } 6542 6543 page = pfn_to_page(pfn); 6544 __init_single_page(page, pfn, zone, nid); 6545 if (context == MEMINIT_HOTPLUG) 6546 __SetPageReserved(page); 6547 6548 /* 6549 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6550 * such that unmovable allocations won't be scattered all 6551 * over the place during system boot. 6552 */ 6553 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6554 set_pageblock_migratetype(page, migratetype); 6555 cond_resched(); 6556 } 6557 pfn++; 6558 } 6559 } 6560 6561 #ifdef CONFIG_ZONE_DEVICE 6562 void __ref memmap_init_zone_device(struct zone *zone, 6563 unsigned long start_pfn, 6564 unsigned long nr_pages, 6565 struct dev_pagemap *pgmap) 6566 { 6567 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6568 struct pglist_data *pgdat = zone->zone_pgdat; 6569 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6570 unsigned long zone_idx = zone_idx(zone); 6571 unsigned long start = jiffies; 6572 int nid = pgdat->node_id; 6573 6574 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6575 return; 6576 6577 /* 6578 * The call to memmap_init should have already taken care 6579 * of the pages reserved for the memmap, so we can just jump to 6580 * the end of that region and start processing the device pages. 6581 */ 6582 if (altmap) { 6583 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6584 nr_pages = end_pfn - start_pfn; 6585 } 6586 6587 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6588 struct page *page = pfn_to_page(pfn); 6589 6590 __init_single_page(page, pfn, zone_idx, nid); 6591 6592 /* 6593 * Mark page reserved as it will need to wait for onlining 6594 * phase for it to be fully associated with a zone. 6595 * 6596 * We can use the non-atomic __set_bit operation for setting 6597 * the flag as we are still initializing the pages. 6598 */ 6599 __SetPageReserved(page); 6600 6601 /* 6602 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6603 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6604 * ever freed or placed on a driver-private list. 6605 */ 6606 page->pgmap = pgmap; 6607 page->zone_device_data = NULL; 6608 6609 /* 6610 * Mark the block movable so that blocks are reserved for 6611 * movable at startup. This will force kernel allocations 6612 * to reserve their blocks rather than leaking throughout 6613 * the address space during boot when many long-lived 6614 * kernel allocations are made. 6615 * 6616 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6617 * because this is done early in section_activate() 6618 */ 6619 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6620 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6621 cond_resched(); 6622 } 6623 } 6624 6625 pr_info("%s initialised %lu pages in %ums\n", __func__, 6626 nr_pages, jiffies_to_msecs(jiffies - start)); 6627 } 6628 6629 #endif 6630 static void __meminit zone_init_free_lists(struct zone *zone) 6631 { 6632 unsigned int order, t; 6633 for_each_migratetype_order(order, t) { 6634 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6635 zone->free_area[order].nr_free = 0; 6636 } 6637 } 6638 6639 #if !defined(CONFIG_FLATMEM) 6640 /* 6641 * Only struct pages that correspond to ranges defined by memblock.memory 6642 * are zeroed and initialized by going through __init_single_page() during 6643 * memmap_init_zone_range(). 6644 * 6645 * But, there could be struct pages that correspond to holes in 6646 * memblock.memory. This can happen because of the following reasons: 6647 * - physical memory bank size is not necessarily the exact multiple of the 6648 * arbitrary section size 6649 * - early reserved memory may not be listed in memblock.memory 6650 * - memory layouts defined with memmap= kernel parameter may not align 6651 * nicely with memmap sections 6652 * 6653 * Explicitly initialize those struct pages so that: 6654 * - PG_Reserved is set 6655 * - zone and node links point to zone and node that span the page if the 6656 * hole is in the middle of a zone 6657 * - zone and node links point to adjacent zone/node if the hole falls on 6658 * the zone boundary; the pages in such holes will be prepended to the 6659 * zone/node above the hole except for the trailing pages in the last 6660 * section that will be appended to the zone/node below. 6661 */ 6662 static void __init init_unavailable_range(unsigned long spfn, 6663 unsigned long epfn, 6664 int zone, int node) 6665 { 6666 unsigned long pfn; 6667 u64 pgcnt = 0; 6668 6669 for (pfn = spfn; pfn < epfn; pfn++) { 6670 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6671 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6672 + pageblock_nr_pages - 1; 6673 continue; 6674 } 6675 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6676 __SetPageReserved(pfn_to_page(pfn)); 6677 pgcnt++; 6678 } 6679 6680 if (pgcnt) 6681 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6682 node, zone_names[zone], pgcnt); 6683 } 6684 #else 6685 static inline void init_unavailable_range(unsigned long spfn, 6686 unsigned long epfn, 6687 int zone, int node) 6688 { 6689 } 6690 #endif 6691 6692 static void __init memmap_init_zone_range(struct zone *zone, 6693 unsigned long start_pfn, 6694 unsigned long end_pfn, 6695 unsigned long *hole_pfn) 6696 { 6697 unsigned long zone_start_pfn = zone->zone_start_pfn; 6698 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6699 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6700 6701 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6702 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6703 6704 if (start_pfn >= end_pfn) 6705 return; 6706 6707 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6708 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6709 6710 if (*hole_pfn < start_pfn) 6711 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6712 6713 *hole_pfn = end_pfn; 6714 } 6715 6716 static void __init memmap_init(void) 6717 { 6718 unsigned long start_pfn, end_pfn; 6719 unsigned long hole_pfn = 0; 6720 int i, j, zone_id, nid; 6721 6722 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6723 struct pglist_data *node = NODE_DATA(nid); 6724 6725 for (j = 0; j < MAX_NR_ZONES; j++) { 6726 struct zone *zone = node->node_zones + j; 6727 6728 if (!populated_zone(zone)) 6729 continue; 6730 6731 memmap_init_zone_range(zone, start_pfn, end_pfn, 6732 &hole_pfn); 6733 zone_id = j; 6734 } 6735 } 6736 6737 #ifdef CONFIG_SPARSEMEM 6738 /* 6739 * Initialize the memory map for hole in the range [memory_end, 6740 * section_end]. 6741 * Append the pages in this hole to the highest zone in the last 6742 * node. 6743 * The call to init_unavailable_range() is outside the ifdef to 6744 * silence the compiler warining about zone_id set but not used; 6745 * for FLATMEM it is a nop anyway 6746 */ 6747 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6748 if (hole_pfn < end_pfn) 6749 #endif 6750 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6751 } 6752 6753 static int zone_batchsize(struct zone *zone) 6754 { 6755 #ifdef CONFIG_MMU 6756 int batch; 6757 6758 /* 6759 * The number of pages to batch allocate is either ~0.1% 6760 * of the zone or 1MB, whichever is smaller. The batch 6761 * size is striking a balance between allocation latency 6762 * and zone lock contention. 6763 */ 6764 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6765 batch /= 4; /* We effectively *= 4 below */ 6766 if (batch < 1) 6767 batch = 1; 6768 6769 /* 6770 * Clamp the batch to a 2^n - 1 value. Having a power 6771 * of 2 value was found to be more likely to have 6772 * suboptimal cache aliasing properties in some cases. 6773 * 6774 * For example if 2 tasks are alternately allocating 6775 * batches of pages, one task can end up with a lot 6776 * of pages of one half of the possible page colors 6777 * and the other with pages of the other colors. 6778 */ 6779 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6780 6781 return batch; 6782 6783 #else 6784 /* The deferral and batching of frees should be suppressed under NOMMU 6785 * conditions. 6786 * 6787 * The problem is that NOMMU needs to be able to allocate large chunks 6788 * of contiguous memory as there's no hardware page translation to 6789 * assemble apparent contiguous memory from discontiguous pages. 6790 * 6791 * Queueing large contiguous runs of pages for batching, however, 6792 * causes the pages to actually be freed in smaller chunks. As there 6793 * can be a significant delay between the individual batches being 6794 * recycled, this leads to the once large chunks of space being 6795 * fragmented and becoming unavailable for high-order allocations. 6796 */ 6797 return 0; 6798 #endif 6799 } 6800 6801 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6802 { 6803 #ifdef CONFIG_MMU 6804 int high; 6805 int nr_split_cpus; 6806 unsigned long total_pages; 6807 6808 if (!percpu_pagelist_high_fraction) { 6809 /* 6810 * By default, the high value of the pcp is based on the zone 6811 * low watermark so that if they are full then background 6812 * reclaim will not be started prematurely. 6813 */ 6814 total_pages = low_wmark_pages(zone); 6815 } else { 6816 /* 6817 * If percpu_pagelist_high_fraction is configured, the high 6818 * value is based on a fraction of the managed pages in the 6819 * zone. 6820 */ 6821 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6822 } 6823 6824 /* 6825 * Split the high value across all online CPUs local to the zone. Note 6826 * that early in boot that CPUs may not be online yet and that during 6827 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6828 * onlined. For memory nodes that have no CPUs, split pcp->high across 6829 * all online CPUs to mitigate the risk that reclaim is triggered 6830 * prematurely due to pages stored on pcp lists. 6831 */ 6832 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6833 if (!nr_split_cpus) 6834 nr_split_cpus = num_online_cpus(); 6835 high = total_pages / nr_split_cpus; 6836 6837 /* 6838 * Ensure high is at least batch*4. The multiple is based on the 6839 * historical relationship between high and batch. 6840 */ 6841 high = max(high, batch << 2); 6842 6843 return high; 6844 #else 6845 return 0; 6846 #endif 6847 } 6848 6849 /* 6850 * pcp->high and pcp->batch values are related and generally batch is lower 6851 * than high. They are also related to pcp->count such that count is lower 6852 * than high, and as soon as it reaches high, the pcplist is flushed. 6853 * 6854 * However, guaranteeing these relations at all times would require e.g. write 6855 * barriers here but also careful usage of read barriers at the read side, and 6856 * thus be prone to error and bad for performance. Thus the update only prevents 6857 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6858 * can cope with those fields changing asynchronously, and fully trust only the 6859 * pcp->count field on the local CPU with interrupts disabled. 6860 * 6861 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6862 * outside of boot time (or some other assurance that no concurrent updaters 6863 * exist). 6864 */ 6865 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6866 unsigned long batch) 6867 { 6868 WRITE_ONCE(pcp->batch, batch); 6869 WRITE_ONCE(pcp->high, high); 6870 } 6871 6872 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6873 { 6874 int pindex; 6875 6876 memset(pcp, 0, sizeof(*pcp)); 6877 memset(pzstats, 0, sizeof(*pzstats)); 6878 6879 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6880 INIT_LIST_HEAD(&pcp->lists[pindex]); 6881 6882 /* 6883 * Set batch and high values safe for a boot pageset. A true percpu 6884 * pageset's initialization will update them subsequently. Here we don't 6885 * need to be as careful as pageset_update() as nobody can access the 6886 * pageset yet. 6887 */ 6888 pcp->high = BOOT_PAGESET_HIGH; 6889 pcp->batch = BOOT_PAGESET_BATCH; 6890 pcp->free_factor = 0; 6891 } 6892 6893 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6894 unsigned long batch) 6895 { 6896 struct per_cpu_pages *pcp; 6897 int cpu; 6898 6899 for_each_possible_cpu(cpu) { 6900 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6901 pageset_update(pcp, high, batch); 6902 } 6903 } 6904 6905 /* 6906 * Calculate and set new high and batch values for all per-cpu pagesets of a 6907 * zone based on the zone's size. 6908 */ 6909 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6910 { 6911 int new_high, new_batch; 6912 6913 new_batch = max(1, zone_batchsize(zone)); 6914 new_high = zone_highsize(zone, new_batch, cpu_online); 6915 6916 if (zone->pageset_high == new_high && 6917 zone->pageset_batch == new_batch) 6918 return; 6919 6920 zone->pageset_high = new_high; 6921 zone->pageset_batch = new_batch; 6922 6923 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6924 } 6925 6926 void __meminit setup_zone_pageset(struct zone *zone) 6927 { 6928 int cpu; 6929 6930 /* Size may be 0 on !SMP && !NUMA */ 6931 if (sizeof(struct per_cpu_zonestat) > 0) 6932 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6933 6934 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6935 for_each_possible_cpu(cpu) { 6936 struct per_cpu_pages *pcp; 6937 struct per_cpu_zonestat *pzstats; 6938 6939 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6940 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6941 per_cpu_pages_init(pcp, pzstats); 6942 } 6943 6944 zone_set_pageset_high_and_batch(zone, 0); 6945 } 6946 6947 /* 6948 * Allocate per cpu pagesets and initialize them. 6949 * Before this call only boot pagesets were available. 6950 */ 6951 void __init setup_per_cpu_pageset(void) 6952 { 6953 struct pglist_data *pgdat; 6954 struct zone *zone; 6955 int __maybe_unused cpu; 6956 6957 for_each_populated_zone(zone) 6958 setup_zone_pageset(zone); 6959 6960 #ifdef CONFIG_NUMA 6961 /* 6962 * Unpopulated zones continue using the boot pagesets. 6963 * The numa stats for these pagesets need to be reset. 6964 * Otherwise, they will end up skewing the stats of 6965 * the nodes these zones are associated with. 6966 */ 6967 for_each_possible_cpu(cpu) { 6968 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6969 memset(pzstats->vm_numa_event, 0, 6970 sizeof(pzstats->vm_numa_event)); 6971 } 6972 #endif 6973 6974 for_each_online_pgdat(pgdat) 6975 pgdat->per_cpu_nodestats = 6976 alloc_percpu(struct per_cpu_nodestat); 6977 } 6978 6979 static __meminit void zone_pcp_init(struct zone *zone) 6980 { 6981 /* 6982 * per cpu subsystem is not up at this point. The following code 6983 * relies on the ability of the linker to provide the 6984 * offset of a (static) per cpu variable into the per cpu area. 6985 */ 6986 zone->per_cpu_pageset = &boot_pageset; 6987 zone->per_cpu_zonestats = &boot_zonestats; 6988 zone->pageset_high = BOOT_PAGESET_HIGH; 6989 zone->pageset_batch = BOOT_PAGESET_BATCH; 6990 6991 if (populated_zone(zone)) 6992 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6993 zone->present_pages, zone_batchsize(zone)); 6994 } 6995 6996 void __meminit init_currently_empty_zone(struct zone *zone, 6997 unsigned long zone_start_pfn, 6998 unsigned long size) 6999 { 7000 struct pglist_data *pgdat = zone->zone_pgdat; 7001 int zone_idx = zone_idx(zone) + 1; 7002 7003 if (zone_idx > pgdat->nr_zones) 7004 pgdat->nr_zones = zone_idx; 7005 7006 zone->zone_start_pfn = zone_start_pfn; 7007 7008 mminit_dprintk(MMINIT_TRACE, "memmap_init", 7009 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 7010 pgdat->node_id, 7011 (unsigned long)zone_idx(zone), 7012 zone_start_pfn, (zone_start_pfn + size)); 7013 7014 zone_init_free_lists(zone); 7015 zone->initialized = 1; 7016 } 7017 7018 /** 7019 * get_pfn_range_for_nid - Return the start and end page frames for a node 7020 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7021 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7022 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7023 * 7024 * It returns the start and end page frame of a node based on information 7025 * provided by memblock_set_node(). If called for a node 7026 * with no available memory, a warning is printed and the start and end 7027 * PFNs will be 0. 7028 */ 7029 void __init get_pfn_range_for_nid(unsigned int nid, 7030 unsigned long *start_pfn, unsigned long *end_pfn) 7031 { 7032 unsigned long this_start_pfn, this_end_pfn; 7033 int i; 7034 7035 *start_pfn = -1UL; 7036 *end_pfn = 0; 7037 7038 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7039 *start_pfn = min(*start_pfn, this_start_pfn); 7040 *end_pfn = max(*end_pfn, this_end_pfn); 7041 } 7042 7043 if (*start_pfn == -1UL) 7044 *start_pfn = 0; 7045 } 7046 7047 /* 7048 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7049 * assumption is made that zones within a node are ordered in monotonic 7050 * increasing memory addresses so that the "highest" populated zone is used 7051 */ 7052 static void __init find_usable_zone_for_movable(void) 7053 { 7054 int zone_index; 7055 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7056 if (zone_index == ZONE_MOVABLE) 7057 continue; 7058 7059 if (arch_zone_highest_possible_pfn[zone_index] > 7060 arch_zone_lowest_possible_pfn[zone_index]) 7061 break; 7062 } 7063 7064 VM_BUG_ON(zone_index == -1); 7065 movable_zone = zone_index; 7066 } 7067 7068 /* 7069 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7070 * because it is sized independent of architecture. Unlike the other zones, 7071 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7072 * in each node depending on the size of each node and how evenly kernelcore 7073 * is distributed. This helper function adjusts the zone ranges 7074 * provided by the architecture for a given node by using the end of the 7075 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7076 * zones within a node are in order of monotonic increases memory addresses 7077 */ 7078 static void __init adjust_zone_range_for_zone_movable(int nid, 7079 unsigned long zone_type, 7080 unsigned long node_start_pfn, 7081 unsigned long node_end_pfn, 7082 unsigned long *zone_start_pfn, 7083 unsigned long *zone_end_pfn) 7084 { 7085 /* Only adjust if ZONE_MOVABLE is on this node */ 7086 if (zone_movable_pfn[nid]) { 7087 /* Size ZONE_MOVABLE */ 7088 if (zone_type == ZONE_MOVABLE) { 7089 *zone_start_pfn = zone_movable_pfn[nid]; 7090 *zone_end_pfn = min(node_end_pfn, 7091 arch_zone_highest_possible_pfn[movable_zone]); 7092 7093 /* Adjust for ZONE_MOVABLE starting within this range */ 7094 } else if (!mirrored_kernelcore && 7095 *zone_start_pfn < zone_movable_pfn[nid] && 7096 *zone_end_pfn > zone_movable_pfn[nid]) { 7097 *zone_end_pfn = zone_movable_pfn[nid]; 7098 7099 /* Check if this whole range is within ZONE_MOVABLE */ 7100 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7101 *zone_start_pfn = *zone_end_pfn; 7102 } 7103 } 7104 7105 /* 7106 * Return the number of pages a zone spans in a node, including holes 7107 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7108 */ 7109 static unsigned long __init zone_spanned_pages_in_node(int nid, 7110 unsigned long zone_type, 7111 unsigned long node_start_pfn, 7112 unsigned long node_end_pfn, 7113 unsigned long *zone_start_pfn, 7114 unsigned long *zone_end_pfn) 7115 { 7116 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7117 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7118 /* When hotadd a new node from cpu_up(), the node should be empty */ 7119 if (!node_start_pfn && !node_end_pfn) 7120 return 0; 7121 7122 /* Get the start and end of the zone */ 7123 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7124 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7125 adjust_zone_range_for_zone_movable(nid, zone_type, 7126 node_start_pfn, node_end_pfn, 7127 zone_start_pfn, zone_end_pfn); 7128 7129 /* Check that this node has pages within the zone's required range */ 7130 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7131 return 0; 7132 7133 /* Move the zone boundaries inside the node if necessary */ 7134 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7135 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7136 7137 /* Return the spanned pages */ 7138 return *zone_end_pfn - *zone_start_pfn; 7139 } 7140 7141 /* 7142 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7143 * then all holes in the requested range will be accounted for. 7144 */ 7145 unsigned long __init __absent_pages_in_range(int nid, 7146 unsigned long range_start_pfn, 7147 unsigned long range_end_pfn) 7148 { 7149 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7150 unsigned long start_pfn, end_pfn; 7151 int i; 7152 7153 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7154 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7155 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7156 nr_absent -= end_pfn - start_pfn; 7157 } 7158 return nr_absent; 7159 } 7160 7161 /** 7162 * absent_pages_in_range - Return number of page frames in holes within a range 7163 * @start_pfn: The start PFN to start searching for holes 7164 * @end_pfn: The end PFN to stop searching for holes 7165 * 7166 * Return: the number of pages frames in memory holes within a range. 7167 */ 7168 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7169 unsigned long end_pfn) 7170 { 7171 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7172 } 7173 7174 /* Return the number of page frames in holes in a zone on a node */ 7175 static unsigned long __init zone_absent_pages_in_node(int nid, 7176 unsigned long zone_type, 7177 unsigned long node_start_pfn, 7178 unsigned long node_end_pfn) 7179 { 7180 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7181 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7182 unsigned long zone_start_pfn, zone_end_pfn; 7183 unsigned long nr_absent; 7184 7185 /* When hotadd a new node from cpu_up(), the node should be empty */ 7186 if (!node_start_pfn && !node_end_pfn) 7187 return 0; 7188 7189 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7190 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7191 7192 adjust_zone_range_for_zone_movable(nid, zone_type, 7193 node_start_pfn, node_end_pfn, 7194 &zone_start_pfn, &zone_end_pfn); 7195 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7196 7197 /* 7198 * ZONE_MOVABLE handling. 7199 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7200 * and vice versa. 7201 */ 7202 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7203 unsigned long start_pfn, end_pfn; 7204 struct memblock_region *r; 7205 7206 for_each_mem_region(r) { 7207 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7208 zone_start_pfn, zone_end_pfn); 7209 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7210 zone_start_pfn, zone_end_pfn); 7211 7212 if (zone_type == ZONE_MOVABLE && 7213 memblock_is_mirror(r)) 7214 nr_absent += end_pfn - start_pfn; 7215 7216 if (zone_type == ZONE_NORMAL && 7217 !memblock_is_mirror(r)) 7218 nr_absent += end_pfn - start_pfn; 7219 } 7220 } 7221 7222 return nr_absent; 7223 } 7224 7225 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7226 unsigned long node_start_pfn, 7227 unsigned long node_end_pfn) 7228 { 7229 unsigned long realtotalpages = 0, totalpages = 0; 7230 enum zone_type i; 7231 7232 for (i = 0; i < MAX_NR_ZONES; i++) { 7233 struct zone *zone = pgdat->node_zones + i; 7234 unsigned long zone_start_pfn, zone_end_pfn; 7235 unsigned long spanned, absent; 7236 unsigned long size, real_size; 7237 7238 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7239 node_start_pfn, 7240 node_end_pfn, 7241 &zone_start_pfn, 7242 &zone_end_pfn); 7243 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7244 node_start_pfn, 7245 node_end_pfn); 7246 7247 size = spanned; 7248 real_size = size - absent; 7249 7250 if (size) 7251 zone->zone_start_pfn = zone_start_pfn; 7252 else 7253 zone->zone_start_pfn = 0; 7254 zone->spanned_pages = size; 7255 zone->present_pages = real_size; 7256 7257 totalpages += size; 7258 realtotalpages += real_size; 7259 } 7260 7261 pgdat->node_spanned_pages = totalpages; 7262 pgdat->node_present_pages = realtotalpages; 7263 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7264 } 7265 7266 #ifndef CONFIG_SPARSEMEM 7267 /* 7268 * Calculate the size of the zone->blockflags rounded to an unsigned long 7269 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7270 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7271 * round what is now in bits to nearest long in bits, then return it in 7272 * bytes. 7273 */ 7274 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7275 { 7276 unsigned long usemapsize; 7277 7278 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7279 usemapsize = roundup(zonesize, pageblock_nr_pages); 7280 usemapsize = usemapsize >> pageblock_order; 7281 usemapsize *= NR_PAGEBLOCK_BITS; 7282 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7283 7284 return usemapsize / 8; 7285 } 7286 7287 static void __ref setup_usemap(struct zone *zone) 7288 { 7289 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7290 zone->spanned_pages); 7291 zone->pageblock_flags = NULL; 7292 if (usemapsize) { 7293 zone->pageblock_flags = 7294 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7295 zone_to_nid(zone)); 7296 if (!zone->pageblock_flags) 7297 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7298 usemapsize, zone->name, zone_to_nid(zone)); 7299 } 7300 } 7301 #else 7302 static inline void setup_usemap(struct zone *zone) {} 7303 #endif /* CONFIG_SPARSEMEM */ 7304 7305 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7306 7307 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7308 void __init set_pageblock_order(void) 7309 { 7310 unsigned int order; 7311 7312 /* Check that pageblock_nr_pages has not already been setup */ 7313 if (pageblock_order) 7314 return; 7315 7316 if (HPAGE_SHIFT > PAGE_SHIFT) 7317 order = HUGETLB_PAGE_ORDER; 7318 else 7319 order = MAX_ORDER - 1; 7320 7321 /* 7322 * Assume the largest contiguous order of interest is a huge page. 7323 * This value may be variable depending on boot parameters on IA64 and 7324 * powerpc. 7325 */ 7326 pageblock_order = order; 7327 } 7328 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7329 7330 /* 7331 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7332 * is unused as pageblock_order is set at compile-time. See 7333 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7334 * the kernel config 7335 */ 7336 void __init set_pageblock_order(void) 7337 { 7338 } 7339 7340 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7341 7342 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7343 unsigned long present_pages) 7344 { 7345 unsigned long pages = spanned_pages; 7346 7347 /* 7348 * Provide a more accurate estimation if there are holes within 7349 * the zone and SPARSEMEM is in use. If there are holes within the 7350 * zone, each populated memory region may cost us one or two extra 7351 * memmap pages due to alignment because memmap pages for each 7352 * populated regions may not be naturally aligned on page boundary. 7353 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7354 */ 7355 if (spanned_pages > present_pages + (present_pages >> 4) && 7356 IS_ENABLED(CONFIG_SPARSEMEM)) 7357 pages = present_pages; 7358 7359 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7360 } 7361 7362 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7363 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7364 { 7365 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7366 7367 spin_lock_init(&ds_queue->split_queue_lock); 7368 INIT_LIST_HEAD(&ds_queue->split_queue); 7369 ds_queue->split_queue_len = 0; 7370 } 7371 #else 7372 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7373 #endif 7374 7375 #ifdef CONFIG_COMPACTION 7376 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7377 { 7378 init_waitqueue_head(&pgdat->kcompactd_wait); 7379 } 7380 #else 7381 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7382 #endif 7383 7384 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7385 { 7386 pgdat_resize_init(pgdat); 7387 7388 pgdat_init_split_queue(pgdat); 7389 pgdat_init_kcompactd(pgdat); 7390 7391 init_waitqueue_head(&pgdat->kswapd_wait); 7392 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7393 7394 pgdat_page_ext_init(pgdat); 7395 lruvec_init(&pgdat->__lruvec); 7396 } 7397 7398 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7399 unsigned long remaining_pages) 7400 { 7401 atomic_long_set(&zone->managed_pages, remaining_pages); 7402 zone_set_nid(zone, nid); 7403 zone->name = zone_names[idx]; 7404 zone->zone_pgdat = NODE_DATA(nid); 7405 spin_lock_init(&zone->lock); 7406 zone_seqlock_init(zone); 7407 zone_pcp_init(zone); 7408 } 7409 7410 /* 7411 * Set up the zone data structures 7412 * - init pgdat internals 7413 * - init all zones belonging to this node 7414 * 7415 * NOTE: this function is only called during memory hotplug 7416 */ 7417 #ifdef CONFIG_MEMORY_HOTPLUG 7418 void __ref free_area_init_core_hotplug(int nid) 7419 { 7420 enum zone_type z; 7421 pg_data_t *pgdat = NODE_DATA(nid); 7422 7423 pgdat_init_internals(pgdat); 7424 for (z = 0; z < MAX_NR_ZONES; z++) 7425 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7426 } 7427 #endif 7428 7429 /* 7430 * Set up the zone data structures: 7431 * - mark all pages reserved 7432 * - mark all memory queues empty 7433 * - clear the memory bitmaps 7434 * 7435 * NOTE: pgdat should get zeroed by caller. 7436 * NOTE: this function is only called during early init. 7437 */ 7438 static void __init free_area_init_core(struct pglist_data *pgdat) 7439 { 7440 enum zone_type j; 7441 int nid = pgdat->node_id; 7442 7443 pgdat_init_internals(pgdat); 7444 pgdat->per_cpu_nodestats = &boot_nodestats; 7445 7446 for (j = 0; j < MAX_NR_ZONES; j++) { 7447 struct zone *zone = pgdat->node_zones + j; 7448 unsigned long size, freesize, memmap_pages; 7449 7450 size = zone->spanned_pages; 7451 freesize = zone->present_pages; 7452 7453 /* 7454 * Adjust freesize so that it accounts for how much memory 7455 * is used by this zone for memmap. This affects the watermark 7456 * and per-cpu initialisations 7457 */ 7458 memmap_pages = calc_memmap_size(size, freesize); 7459 if (!is_highmem_idx(j)) { 7460 if (freesize >= memmap_pages) { 7461 freesize -= memmap_pages; 7462 if (memmap_pages) 7463 pr_debug(" %s zone: %lu pages used for memmap\n", 7464 zone_names[j], memmap_pages); 7465 } else 7466 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7467 zone_names[j], memmap_pages, freesize); 7468 } 7469 7470 /* Account for reserved pages */ 7471 if (j == 0 && freesize > dma_reserve) { 7472 freesize -= dma_reserve; 7473 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7474 } 7475 7476 if (!is_highmem_idx(j)) 7477 nr_kernel_pages += freesize; 7478 /* Charge for highmem memmap if there are enough kernel pages */ 7479 else if (nr_kernel_pages > memmap_pages * 2) 7480 nr_kernel_pages -= memmap_pages; 7481 nr_all_pages += freesize; 7482 7483 /* 7484 * Set an approximate value for lowmem here, it will be adjusted 7485 * when the bootmem allocator frees pages into the buddy system. 7486 * And all highmem pages will be managed by the buddy system. 7487 */ 7488 zone_init_internals(zone, j, nid, freesize); 7489 7490 if (!size) 7491 continue; 7492 7493 set_pageblock_order(); 7494 setup_usemap(zone); 7495 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7496 } 7497 } 7498 7499 #ifdef CONFIG_FLATMEM 7500 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 7501 { 7502 unsigned long __maybe_unused start = 0; 7503 unsigned long __maybe_unused offset = 0; 7504 7505 /* Skip empty nodes */ 7506 if (!pgdat->node_spanned_pages) 7507 return; 7508 7509 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7510 offset = pgdat->node_start_pfn - start; 7511 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7512 if (!pgdat->node_mem_map) { 7513 unsigned long size, end; 7514 struct page *map; 7515 7516 /* 7517 * The zone's endpoints aren't required to be MAX_ORDER 7518 * aligned but the node_mem_map endpoints must be in order 7519 * for the buddy allocator to function correctly. 7520 */ 7521 end = pgdat_end_pfn(pgdat); 7522 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7523 size = (end - start) * sizeof(struct page); 7524 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7525 pgdat->node_id); 7526 if (!map) 7527 panic("Failed to allocate %ld bytes for node %d memory map\n", 7528 size, pgdat->node_id); 7529 pgdat->node_mem_map = map + offset; 7530 } 7531 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7532 __func__, pgdat->node_id, (unsigned long)pgdat, 7533 (unsigned long)pgdat->node_mem_map); 7534 #ifndef CONFIG_NUMA 7535 /* 7536 * With no DISCONTIG, the global mem_map is just set as node 0's 7537 */ 7538 if (pgdat == NODE_DATA(0)) { 7539 mem_map = NODE_DATA(0)->node_mem_map; 7540 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7541 mem_map -= offset; 7542 } 7543 #endif 7544 } 7545 #else 7546 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7547 #endif /* CONFIG_FLATMEM */ 7548 7549 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7550 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7551 { 7552 pgdat->first_deferred_pfn = ULONG_MAX; 7553 } 7554 #else 7555 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7556 #endif 7557 7558 static void __init free_area_init_node(int nid) 7559 { 7560 pg_data_t *pgdat = NODE_DATA(nid); 7561 unsigned long start_pfn = 0; 7562 unsigned long end_pfn = 0; 7563 7564 /* pg_data_t should be reset to zero when it's allocated */ 7565 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7566 7567 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7568 7569 pgdat->node_id = nid; 7570 pgdat->node_start_pfn = start_pfn; 7571 pgdat->per_cpu_nodestats = NULL; 7572 7573 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7574 (u64)start_pfn << PAGE_SHIFT, 7575 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7576 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7577 7578 alloc_node_mem_map(pgdat); 7579 pgdat_set_deferred_range(pgdat); 7580 7581 free_area_init_core(pgdat); 7582 } 7583 7584 void __init free_area_init_memoryless_node(int nid) 7585 { 7586 free_area_init_node(nid); 7587 } 7588 7589 #if MAX_NUMNODES > 1 7590 /* 7591 * Figure out the number of possible node ids. 7592 */ 7593 void __init setup_nr_node_ids(void) 7594 { 7595 unsigned int highest; 7596 7597 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7598 nr_node_ids = highest + 1; 7599 } 7600 #endif 7601 7602 /** 7603 * node_map_pfn_alignment - determine the maximum internode alignment 7604 * 7605 * This function should be called after node map is populated and sorted. 7606 * It calculates the maximum power of two alignment which can distinguish 7607 * all the nodes. 7608 * 7609 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7610 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7611 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7612 * shifted, 1GiB is enough and this function will indicate so. 7613 * 7614 * This is used to test whether pfn -> nid mapping of the chosen memory 7615 * model has fine enough granularity to avoid incorrect mapping for the 7616 * populated node map. 7617 * 7618 * Return: the determined alignment in pfn's. 0 if there is no alignment 7619 * requirement (single node). 7620 */ 7621 unsigned long __init node_map_pfn_alignment(void) 7622 { 7623 unsigned long accl_mask = 0, last_end = 0; 7624 unsigned long start, end, mask; 7625 int last_nid = NUMA_NO_NODE; 7626 int i, nid; 7627 7628 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7629 if (!start || last_nid < 0 || last_nid == nid) { 7630 last_nid = nid; 7631 last_end = end; 7632 continue; 7633 } 7634 7635 /* 7636 * Start with a mask granular enough to pin-point to the 7637 * start pfn and tick off bits one-by-one until it becomes 7638 * too coarse to separate the current node from the last. 7639 */ 7640 mask = ~((1 << __ffs(start)) - 1); 7641 while (mask && last_end <= (start & (mask << 1))) 7642 mask <<= 1; 7643 7644 /* accumulate all internode masks */ 7645 accl_mask |= mask; 7646 } 7647 7648 /* convert mask to number of pages */ 7649 return ~accl_mask + 1; 7650 } 7651 7652 /** 7653 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7654 * 7655 * Return: the minimum PFN based on information provided via 7656 * memblock_set_node(). 7657 */ 7658 unsigned long __init find_min_pfn_with_active_regions(void) 7659 { 7660 return PHYS_PFN(memblock_start_of_DRAM()); 7661 } 7662 7663 /* 7664 * early_calculate_totalpages() 7665 * Sum pages in active regions for movable zone. 7666 * Populate N_MEMORY for calculating usable_nodes. 7667 */ 7668 static unsigned long __init early_calculate_totalpages(void) 7669 { 7670 unsigned long totalpages = 0; 7671 unsigned long start_pfn, end_pfn; 7672 int i, nid; 7673 7674 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7675 unsigned long pages = end_pfn - start_pfn; 7676 7677 totalpages += pages; 7678 if (pages) 7679 node_set_state(nid, N_MEMORY); 7680 } 7681 return totalpages; 7682 } 7683 7684 /* 7685 * Find the PFN the Movable zone begins in each node. Kernel memory 7686 * is spread evenly between nodes as long as the nodes have enough 7687 * memory. When they don't, some nodes will have more kernelcore than 7688 * others 7689 */ 7690 static void __init find_zone_movable_pfns_for_nodes(void) 7691 { 7692 int i, nid; 7693 unsigned long usable_startpfn; 7694 unsigned long kernelcore_node, kernelcore_remaining; 7695 /* save the state before borrow the nodemask */ 7696 nodemask_t saved_node_state = node_states[N_MEMORY]; 7697 unsigned long totalpages = early_calculate_totalpages(); 7698 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7699 struct memblock_region *r; 7700 7701 /* Need to find movable_zone earlier when movable_node is specified. */ 7702 find_usable_zone_for_movable(); 7703 7704 /* 7705 * If movable_node is specified, ignore kernelcore and movablecore 7706 * options. 7707 */ 7708 if (movable_node_is_enabled()) { 7709 for_each_mem_region(r) { 7710 if (!memblock_is_hotpluggable(r)) 7711 continue; 7712 7713 nid = memblock_get_region_node(r); 7714 7715 usable_startpfn = PFN_DOWN(r->base); 7716 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7717 min(usable_startpfn, zone_movable_pfn[nid]) : 7718 usable_startpfn; 7719 } 7720 7721 goto out2; 7722 } 7723 7724 /* 7725 * If kernelcore=mirror is specified, ignore movablecore option 7726 */ 7727 if (mirrored_kernelcore) { 7728 bool mem_below_4gb_not_mirrored = false; 7729 7730 for_each_mem_region(r) { 7731 if (memblock_is_mirror(r)) 7732 continue; 7733 7734 nid = memblock_get_region_node(r); 7735 7736 usable_startpfn = memblock_region_memory_base_pfn(r); 7737 7738 if (usable_startpfn < 0x100000) { 7739 mem_below_4gb_not_mirrored = true; 7740 continue; 7741 } 7742 7743 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7744 min(usable_startpfn, zone_movable_pfn[nid]) : 7745 usable_startpfn; 7746 } 7747 7748 if (mem_below_4gb_not_mirrored) 7749 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7750 7751 goto out2; 7752 } 7753 7754 /* 7755 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7756 * amount of necessary memory. 7757 */ 7758 if (required_kernelcore_percent) 7759 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7760 10000UL; 7761 if (required_movablecore_percent) 7762 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7763 10000UL; 7764 7765 /* 7766 * If movablecore= was specified, calculate what size of 7767 * kernelcore that corresponds so that memory usable for 7768 * any allocation type is evenly spread. If both kernelcore 7769 * and movablecore are specified, then the value of kernelcore 7770 * will be used for required_kernelcore if it's greater than 7771 * what movablecore would have allowed. 7772 */ 7773 if (required_movablecore) { 7774 unsigned long corepages; 7775 7776 /* 7777 * Round-up so that ZONE_MOVABLE is at least as large as what 7778 * was requested by the user 7779 */ 7780 required_movablecore = 7781 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7782 required_movablecore = min(totalpages, required_movablecore); 7783 corepages = totalpages - required_movablecore; 7784 7785 required_kernelcore = max(required_kernelcore, corepages); 7786 } 7787 7788 /* 7789 * If kernelcore was not specified or kernelcore size is larger 7790 * than totalpages, there is no ZONE_MOVABLE. 7791 */ 7792 if (!required_kernelcore || required_kernelcore >= totalpages) 7793 goto out; 7794 7795 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7796 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7797 7798 restart: 7799 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7800 kernelcore_node = required_kernelcore / usable_nodes; 7801 for_each_node_state(nid, N_MEMORY) { 7802 unsigned long start_pfn, end_pfn; 7803 7804 /* 7805 * Recalculate kernelcore_node if the division per node 7806 * now exceeds what is necessary to satisfy the requested 7807 * amount of memory for the kernel 7808 */ 7809 if (required_kernelcore < kernelcore_node) 7810 kernelcore_node = required_kernelcore / usable_nodes; 7811 7812 /* 7813 * As the map is walked, we track how much memory is usable 7814 * by the kernel using kernelcore_remaining. When it is 7815 * 0, the rest of the node is usable by ZONE_MOVABLE 7816 */ 7817 kernelcore_remaining = kernelcore_node; 7818 7819 /* Go through each range of PFNs within this node */ 7820 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7821 unsigned long size_pages; 7822 7823 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7824 if (start_pfn >= end_pfn) 7825 continue; 7826 7827 /* Account for what is only usable for kernelcore */ 7828 if (start_pfn < usable_startpfn) { 7829 unsigned long kernel_pages; 7830 kernel_pages = min(end_pfn, usable_startpfn) 7831 - start_pfn; 7832 7833 kernelcore_remaining -= min(kernel_pages, 7834 kernelcore_remaining); 7835 required_kernelcore -= min(kernel_pages, 7836 required_kernelcore); 7837 7838 /* Continue if range is now fully accounted */ 7839 if (end_pfn <= usable_startpfn) { 7840 7841 /* 7842 * Push zone_movable_pfn to the end so 7843 * that if we have to rebalance 7844 * kernelcore across nodes, we will 7845 * not double account here 7846 */ 7847 zone_movable_pfn[nid] = end_pfn; 7848 continue; 7849 } 7850 start_pfn = usable_startpfn; 7851 } 7852 7853 /* 7854 * The usable PFN range for ZONE_MOVABLE is from 7855 * start_pfn->end_pfn. Calculate size_pages as the 7856 * number of pages used as kernelcore 7857 */ 7858 size_pages = end_pfn - start_pfn; 7859 if (size_pages > kernelcore_remaining) 7860 size_pages = kernelcore_remaining; 7861 zone_movable_pfn[nid] = start_pfn + size_pages; 7862 7863 /* 7864 * Some kernelcore has been met, update counts and 7865 * break if the kernelcore for this node has been 7866 * satisfied 7867 */ 7868 required_kernelcore -= min(required_kernelcore, 7869 size_pages); 7870 kernelcore_remaining -= size_pages; 7871 if (!kernelcore_remaining) 7872 break; 7873 } 7874 } 7875 7876 /* 7877 * If there is still required_kernelcore, we do another pass with one 7878 * less node in the count. This will push zone_movable_pfn[nid] further 7879 * along on the nodes that still have memory until kernelcore is 7880 * satisfied 7881 */ 7882 usable_nodes--; 7883 if (usable_nodes && required_kernelcore > usable_nodes) 7884 goto restart; 7885 7886 out2: 7887 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7888 for (nid = 0; nid < MAX_NUMNODES; nid++) 7889 zone_movable_pfn[nid] = 7890 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7891 7892 out: 7893 /* restore the node_state */ 7894 node_states[N_MEMORY] = saved_node_state; 7895 } 7896 7897 /* Any regular or high memory on that node ? */ 7898 static void check_for_memory(pg_data_t *pgdat, int nid) 7899 { 7900 enum zone_type zone_type; 7901 7902 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7903 struct zone *zone = &pgdat->node_zones[zone_type]; 7904 if (populated_zone(zone)) { 7905 if (IS_ENABLED(CONFIG_HIGHMEM)) 7906 node_set_state(nid, N_HIGH_MEMORY); 7907 if (zone_type <= ZONE_NORMAL) 7908 node_set_state(nid, N_NORMAL_MEMORY); 7909 break; 7910 } 7911 } 7912 } 7913 7914 /* 7915 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7916 * such cases we allow max_zone_pfn sorted in the descending order 7917 */ 7918 bool __weak arch_has_descending_max_zone_pfns(void) 7919 { 7920 return false; 7921 } 7922 7923 /** 7924 * free_area_init - Initialise all pg_data_t and zone data 7925 * @max_zone_pfn: an array of max PFNs for each zone 7926 * 7927 * This will call free_area_init_node() for each active node in the system. 7928 * Using the page ranges provided by memblock_set_node(), the size of each 7929 * zone in each node and their holes is calculated. If the maximum PFN 7930 * between two adjacent zones match, it is assumed that the zone is empty. 7931 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7932 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7933 * starts where the previous one ended. For example, ZONE_DMA32 starts 7934 * at arch_max_dma_pfn. 7935 */ 7936 void __init free_area_init(unsigned long *max_zone_pfn) 7937 { 7938 unsigned long start_pfn, end_pfn; 7939 int i, nid, zone; 7940 bool descending; 7941 7942 /* Record where the zone boundaries are */ 7943 memset(arch_zone_lowest_possible_pfn, 0, 7944 sizeof(arch_zone_lowest_possible_pfn)); 7945 memset(arch_zone_highest_possible_pfn, 0, 7946 sizeof(arch_zone_highest_possible_pfn)); 7947 7948 start_pfn = find_min_pfn_with_active_regions(); 7949 descending = arch_has_descending_max_zone_pfns(); 7950 7951 for (i = 0; i < MAX_NR_ZONES; i++) { 7952 if (descending) 7953 zone = MAX_NR_ZONES - i - 1; 7954 else 7955 zone = i; 7956 7957 if (zone == ZONE_MOVABLE) 7958 continue; 7959 7960 end_pfn = max(max_zone_pfn[zone], start_pfn); 7961 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7962 arch_zone_highest_possible_pfn[zone] = end_pfn; 7963 7964 start_pfn = end_pfn; 7965 } 7966 7967 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7968 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7969 find_zone_movable_pfns_for_nodes(); 7970 7971 /* Print out the zone ranges */ 7972 pr_info("Zone ranges:\n"); 7973 for (i = 0; i < MAX_NR_ZONES; i++) { 7974 if (i == ZONE_MOVABLE) 7975 continue; 7976 pr_info(" %-8s ", zone_names[i]); 7977 if (arch_zone_lowest_possible_pfn[i] == 7978 arch_zone_highest_possible_pfn[i]) 7979 pr_cont("empty\n"); 7980 else 7981 pr_cont("[mem %#018Lx-%#018Lx]\n", 7982 (u64)arch_zone_lowest_possible_pfn[i] 7983 << PAGE_SHIFT, 7984 ((u64)arch_zone_highest_possible_pfn[i] 7985 << PAGE_SHIFT) - 1); 7986 } 7987 7988 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7989 pr_info("Movable zone start for each node\n"); 7990 for (i = 0; i < MAX_NUMNODES; i++) { 7991 if (zone_movable_pfn[i]) 7992 pr_info(" Node %d: %#018Lx\n", i, 7993 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7994 } 7995 7996 /* 7997 * Print out the early node map, and initialize the 7998 * subsection-map relative to active online memory ranges to 7999 * enable future "sub-section" extensions of the memory map. 8000 */ 8001 pr_info("Early memory node ranges\n"); 8002 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 8003 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 8004 (u64)start_pfn << PAGE_SHIFT, 8005 ((u64)end_pfn << PAGE_SHIFT) - 1); 8006 subsection_map_init(start_pfn, end_pfn - start_pfn); 8007 } 8008 8009 /* Initialise every node */ 8010 mminit_verify_pageflags_layout(); 8011 setup_nr_node_ids(); 8012 for_each_online_node(nid) { 8013 pg_data_t *pgdat = NODE_DATA(nid); 8014 free_area_init_node(nid); 8015 8016 /* Any memory on that node */ 8017 if (pgdat->node_present_pages) 8018 node_set_state(nid, N_MEMORY); 8019 check_for_memory(pgdat, nid); 8020 } 8021 8022 memmap_init(); 8023 } 8024 8025 static int __init cmdline_parse_core(char *p, unsigned long *core, 8026 unsigned long *percent) 8027 { 8028 unsigned long long coremem; 8029 char *endptr; 8030 8031 if (!p) 8032 return -EINVAL; 8033 8034 /* Value may be a percentage of total memory, otherwise bytes */ 8035 coremem = simple_strtoull(p, &endptr, 0); 8036 if (*endptr == '%') { 8037 /* Paranoid check for percent values greater than 100 */ 8038 WARN_ON(coremem > 100); 8039 8040 *percent = coremem; 8041 } else { 8042 coremem = memparse(p, &p); 8043 /* Paranoid check that UL is enough for the coremem value */ 8044 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8045 8046 *core = coremem >> PAGE_SHIFT; 8047 *percent = 0UL; 8048 } 8049 return 0; 8050 } 8051 8052 /* 8053 * kernelcore=size sets the amount of memory for use for allocations that 8054 * cannot be reclaimed or migrated. 8055 */ 8056 static int __init cmdline_parse_kernelcore(char *p) 8057 { 8058 /* parse kernelcore=mirror */ 8059 if (parse_option_str(p, "mirror")) { 8060 mirrored_kernelcore = true; 8061 return 0; 8062 } 8063 8064 return cmdline_parse_core(p, &required_kernelcore, 8065 &required_kernelcore_percent); 8066 } 8067 8068 /* 8069 * movablecore=size sets the amount of memory for use for allocations that 8070 * can be reclaimed or migrated. 8071 */ 8072 static int __init cmdline_parse_movablecore(char *p) 8073 { 8074 return cmdline_parse_core(p, &required_movablecore, 8075 &required_movablecore_percent); 8076 } 8077 8078 early_param("kernelcore", cmdline_parse_kernelcore); 8079 early_param("movablecore", cmdline_parse_movablecore); 8080 8081 void adjust_managed_page_count(struct page *page, long count) 8082 { 8083 atomic_long_add(count, &page_zone(page)->managed_pages); 8084 totalram_pages_add(count); 8085 #ifdef CONFIG_HIGHMEM 8086 if (PageHighMem(page)) 8087 totalhigh_pages_add(count); 8088 #endif 8089 } 8090 EXPORT_SYMBOL(adjust_managed_page_count); 8091 8092 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8093 { 8094 void *pos; 8095 unsigned long pages = 0; 8096 8097 start = (void *)PAGE_ALIGN((unsigned long)start); 8098 end = (void *)((unsigned long)end & PAGE_MASK); 8099 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8100 struct page *page = virt_to_page(pos); 8101 void *direct_map_addr; 8102 8103 /* 8104 * 'direct_map_addr' might be different from 'pos' 8105 * because some architectures' virt_to_page() 8106 * work with aliases. Getting the direct map 8107 * address ensures that we get a _writeable_ 8108 * alias for the memset(). 8109 */ 8110 direct_map_addr = page_address(page); 8111 /* 8112 * Perform a kasan-unchecked memset() since this memory 8113 * has not been initialized. 8114 */ 8115 direct_map_addr = kasan_reset_tag(direct_map_addr); 8116 if ((unsigned int)poison <= 0xFF) 8117 memset(direct_map_addr, poison, PAGE_SIZE); 8118 8119 free_reserved_page(page); 8120 } 8121 8122 if (pages && s) 8123 pr_info("Freeing %s memory: %ldK\n", 8124 s, pages << (PAGE_SHIFT - 10)); 8125 8126 return pages; 8127 } 8128 8129 void __init mem_init_print_info(void) 8130 { 8131 unsigned long physpages, codesize, datasize, rosize, bss_size; 8132 unsigned long init_code_size, init_data_size; 8133 8134 physpages = get_num_physpages(); 8135 codesize = _etext - _stext; 8136 datasize = _edata - _sdata; 8137 rosize = __end_rodata - __start_rodata; 8138 bss_size = __bss_stop - __bss_start; 8139 init_data_size = __init_end - __init_begin; 8140 init_code_size = _einittext - _sinittext; 8141 8142 /* 8143 * Detect special cases and adjust section sizes accordingly: 8144 * 1) .init.* may be embedded into .data sections 8145 * 2) .init.text.* may be out of [__init_begin, __init_end], 8146 * please refer to arch/tile/kernel/vmlinux.lds.S. 8147 * 3) .rodata.* may be embedded into .text or .data sections. 8148 */ 8149 #define adj_init_size(start, end, size, pos, adj) \ 8150 do { \ 8151 if (start <= pos && pos < end && size > adj) \ 8152 size -= adj; \ 8153 } while (0) 8154 8155 adj_init_size(__init_begin, __init_end, init_data_size, 8156 _sinittext, init_code_size); 8157 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8158 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8159 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8160 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8161 8162 #undef adj_init_size 8163 8164 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8165 #ifdef CONFIG_HIGHMEM 8166 ", %luK highmem" 8167 #endif 8168 ")\n", 8169 nr_free_pages() << (PAGE_SHIFT - 10), 8170 physpages << (PAGE_SHIFT - 10), 8171 codesize >> 10, datasize >> 10, rosize >> 10, 8172 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8173 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 8174 totalcma_pages << (PAGE_SHIFT - 10) 8175 #ifdef CONFIG_HIGHMEM 8176 , totalhigh_pages() << (PAGE_SHIFT - 10) 8177 #endif 8178 ); 8179 } 8180 8181 /** 8182 * set_dma_reserve - set the specified number of pages reserved in the first zone 8183 * @new_dma_reserve: The number of pages to mark reserved 8184 * 8185 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8186 * In the DMA zone, a significant percentage may be consumed by kernel image 8187 * and other unfreeable allocations which can skew the watermarks badly. This 8188 * function may optionally be used to account for unfreeable pages in the 8189 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8190 * smaller per-cpu batchsize. 8191 */ 8192 void __init set_dma_reserve(unsigned long new_dma_reserve) 8193 { 8194 dma_reserve = new_dma_reserve; 8195 } 8196 8197 static int page_alloc_cpu_dead(unsigned int cpu) 8198 { 8199 struct zone *zone; 8200 8201 lru_add_drain_cpu(cpu); 8202 drain_pages(cpu); 8203 8204 /* 8205 * Spill the event counters of the dead processor 8206 * into the current processors event counters. 8207 * This artificially elevates the count of the current 8208 * processor. 8209 */ 8210 vm_events_fold_cpu(cpu); 8211 8212 /* 8213 * Zero the differential counters of the dead processor 8214 * so that the vm statistics are consistent. 8215 * 8216 * This is only okay since the processor is dead and cannot 8217 * race with what we are doing. 8218 */ 8219 cpu_vm_stats_fold(cpu); 8220 8221 for_each_populated_zone(zone) 8222 zone_pcp_update(zone, 0); 8223 8224 return 0; 8225 } 8226 8227 static int page_alloc_cpu_online(unsigned int cpu) 8228 { 8229 struct zone *zone; 8230 8231 for_each_populated_zone(zone) 8232 zone_pcp_update(zone, 1); 8233 return 0; 8234 } 8235 8236 #ifdef CONFIG_NUMA 8237 int hashdist = HASHDIST_DEFAULT; 8238 8239 static int __init set_hashdist(char *str) 8240 { 8241 if (!str) 8242 return 0; 8243 hashdist = simple_strtoul(str, &str, 0); 8244 return 1; 8245 } 8246 __setup("hashdist=", set_hashdist); 8247 #endif 8248 8249 void __init page_alloc_init(void) 8250 { 8251 int ret; 8252 8253 #ifdef CONFIG_NUMA 8254 if (num_node_state(N_MEMORY) == 1) 8255 hashdist = 0; 8256 #endif 8257 8258 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8259 "mm/page_alloc:pcp", 8260 page_alloc_cpu_online, 8261 page_alloc_cpu_dead); 8262 WARN_ON(ret < 0); 8263 } 8264 8265 /* 8266 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8267 * or min_free_kbytes changes. 8268 */ 8269 static void calculate_totalreserve_pages(void) 8270 { 8271 struct pglist_data *pgdat; 8272 unsigned long reserve_pages = 0; 8273 enum zone_type i, j; 8274 8275 for_each_online_pgdat(pgdat) { 8276 8277 pgdat->totalreserve_pages = 0; 8278 8279 for (i = 0; i < MAX_NR_ZONES; i++) { 8280 struct zone *zone = pgdat->node_zones + i; 8281 long max = 0; 8282 unsigned long managed_pages = zone_managed_pages(zone); 8283 8284 /* Find valid and maximum lowmem_reserve in the zone */ 8285 for (j = i; j < MAX_NR_ZONES; j++) { 8286 if (zone->lowmem_reserve[j] > max) 8287 max = zone->lowmem_reserve[j]; 8288 } 8289 8290 /* we treat the high watermark as reserved pages. */ 8291 max += high_wmark_pages(zone); 8292 8293 if (max > managed_pages) 8294 max = managed_pages; 8295 8296 pgdat->totalreserve_pages += max; 8297 8298 reserve_pages += max; 8299 } 8300 } 8301 totalreserve_pages = reserve_pages; 8302 } 8303 8304 /* 8305 * setup_per_zone_lowmem_reserve - called whenever 8306 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8307 * has a correct pages reserved value, so an adequate number of 8308 * pages are left in the zone after a successful __alloc_pages(). 8309 */ 8310 static void setup_per_zone_lowmem_reserve(void) 8311 { 8312 struct pglist_data *pgdat; 8313 enum zone_type i, j; 8314 8315 for_each_online_pgdat(pgdat) { 8316 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8317 struct zone *zone = &pgdat->node_zones[i]; 8318 int ratio = sysctl_lowmem_reserve_ratio[i]; 8319 bool clear = !ratio || !zone_managed_pages(zone); 8320 unsigned long managed_pages = 0; 8321 8322 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8323 struct zone *upper_zone = &pgdat->node_zones[j]; 8324 8325 managed_pages += zone_managed_pages(upper_zone); 8326 8327 if (clear) 8328 zone->lowmem_reserve[j] = 0; 8329 else 8330 zone->lowmem_reserve[j] = managed_pages / ratio; 8331 } 8332 } 8333 } 8334 8335 /* update totalreserve_pages */ 8336 calculate_totalreserve_pages(); 8337 } 8338 8339 static void __setup_per_zone_wmarks(void) 8340 { 8341 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8342 unsigned long lowmem_pages = 0; 8343 struct zone *zone; 8344 unsigned long flags; 8345 8346 /* Calculate total number of !ZONE_HIGHMEM pages */ 8347 for_each_zone(zone) { 8348 if (!is_highmem(zone)) 8349 lowmem_pages += zone_managed_pages(zone); 8350 } 8351 8352 for_each_zone(zone) { 8353 u64 tmp; 8354 8355 spin_lock_irqsave(&zone->lock, flags); 8356 tmp = (u64)pages_min * zone_managed_pages(zone); 8357 do_div(tmp, lowmem_pages); 8358 if (is_highmem(zone)) { 8359 /* 8360 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8361 * need highmem pages, so cap pages_min to a small 8362 * value here. 8363 * 8364 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8365 * deltas control async page reclaim, and so should 8366 * not be capped for highmem. 8367 */ 8368 unsigned long min_pages; 8369 8370 min_pages = zone_managed_pages(zone) / 1024; 8371 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8372 zone->_watermark[WMARK_MIN] = min_pages; 8373 } else { 8374 /* 8375 * If it's a lowmem zone, reserve a number of pages 8376 * proportionate to the zone's size. 8377 */ 8378 zone->_watermark[WMARK_MIN] = tmp; 8379 } 8380 8381 /* 8382 * Set the kswapd watermarks distance according to the 8383 * scale factor in proportion to available memory, but 8384 * ensure a minimum size on small systems. 8385 */ 8386 tmp = max_t(u64, tmp >> 2, 8387 mult_frac(zone_managed_pages(zone), 8388 watermark_scale_factor, 10000)); 8389 8390 zone->watermark_boost = 0; 8391 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8392 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8393 8394 spin_unlock_irqrestore(&zone->lock, flags); 8395 } 8396 8397 /* update totalreserve_pages */ 8398 calculate_totalreserve_pages(); 8399 } 8400 8401 /** 8402 * setup_per_zone_wmarks - called when min_free_kbytes changes 8403 * or when memory is hot-{added|removed} 8404 * 8405 * Ensures that the watermark[min,low,high] values for each zone are set 8406 * correctly with respect to min_free_kbytes. 8407 */ 8408 void setup_per_zone_wmarks(void) 8409 { 8410 struct zone *zone; 8411 static DEFINE_SPINLOCK(lock); 8412 8413 spin_lock(&lock); 8414 __setup_per_zone_wmarks(); 8415 spin_unlock(&lock); 8416 8417 /* 8418 * The watermark size have changed so update the pcpu batch 8419 * and high limits or the limits may be inappropriate. 8420 */ 8421 for_each_zone(zone) 8422 zone_pcp_update(zone, 0); 8423 } 8424 8425 /* 8426 * Initialise min_free_kbytes. 8427 * 8428 * For small machines we want it small (128k min). For large machines 8429 * we want it large (256MB max). But it is not linear, because network 8430 * bandwidth does not increase linearly with machine size. We use 8431 * 8432 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8433 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8434 * 8435 * which yields 8436 * 8437 * 16MB: 512k 8438 * 32MB: 724k 8439 * 64MB: 1024k 8440 * 128MB: 1448k 8441 * 256MB: 2048k 8442 * 512MB: 2896k 8443 * 1024MB: 4096k 8444 * 2048MB: 5792k 8445 * 4096MB: 8192k 8446 * 8192MB: 11584k 8447 * 16384MB: 16384k 8448 */ 8449 int __meminit init_per_zone_wmark_min(void) 8450 { 8451 unsigned long lowmem_kbytes; 8452 int new_min_free_kbytes; 8453 8454 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8455 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8456 8457 if (new_min_free_kbytes > user_min_free_kbytes) { 8458 min_free_kbytes = new_min_free_kbytes; 8459 if (min_free_kbytes < 128) 8460 min_free_kbytes = 128; 8461 if (min_free_kbytes > 262144) 8462 min_free_kbytes = 262144; 8463 } else { 8464 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8465 new_min_free_kbytes, user_min_free_kbytes); 8466 } 8467 setup_per_zone_wmarks(); 8468 refresh_zone_stat_thresholds(); 8469 setup_per_zone_lowmem_reserve(); 8470 8471 #ifdef CONFIG_NUMA 8472 setup_min_unmapped_ratio(); 8473 setup_min_slab_ratio(); 8474 #endif 8475 8476 khugepaged_min_free_kbytes_update(); 8477 8478 return 0; 8479 } 8480 postcore_initcall(init_per_zone_wmark_min) 8481 8482 /* 8483 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8484 * that we can call two helper functions whenever min_free_kbytes 8485 * changes. 8486 */ 8487 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8488 void *buffer, size_t *length, loff_t *ppos) 8489 { 8490 int rc; 8491 8492 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8493 if (rc) 8494 return rc; 8495 8496 if (write) { 8497 user_min_free_kbytes = min_free_kbytes; 8498 setup_per_zone_wmarks(); 8499 } 8500 return 0; 8501 } 8502 8503 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8504 void *buffer, size_t *length, loff_t *ppos) 8505 { 8506 int rc; 8507 8508 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8509 if (rc) 8510 return rc; 8511 8512 if (write) 8513 setup_per_zone_wmarks(); 8514 8515 return 0; 8516 } 8517 8518 #ifdef CONFIG_NUMA 8519 static void setup_min_unmapped_ratio(void) 8520 { 8521 pg_data_t *pgdat; 8522 struct zone *zone; 8523 8524 for_each_online_pgdat(pgdat) 8525 pgdat->min_unmapped_pages = 0; 8526 8527 for_each_zone(zone) 8528 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8529 sysctl_min_unmapped_ratio) / 100; 8530 } 8531 8532 8533 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8534 void *buffer, size_t *length, loff_t *ppos) 8535 { 8536 int rc; 8537 8538 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8539 if (rc) 8540 return rc; 8541 8542 setup_min_unmapped_ratio(); 8543 8544 return 0; 8545 } 8546 8547 static void setup_min_slab_ratio(void) 8548 { 8549 pg_data_t *pgdat; 8550 struct zone *zone; 8551 8552 for_each_online_pgdat(pgdat) 8553 pgdat->min_slab_pages = 0; 8554 8555 for_each_zone(zone) 8556 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8557 sysctl_min_slab_ratio) / 100; 8558 } 8559 8560 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8561 void *buffer, size_t *length, loff_t *ppos) 8562 { 8563 int rc; 8564 8565 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8566 if (rc) 8567 return rc; 8568 8569 setup_min_slab_ratio(); 8570 8571 return 0; 8572 } 8573 #endif 8574 8575 /* 8576 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8577 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8578 * whenever sysctl_lowmem_reserve_ratio changes. 8579 * 8580 * The reserve ratio obviously has absolutely no relation with the 8581 * minimum watermarks. The lowmem reserve ratio can only make sense 8582 * if in function of the boot time zone sizes. 8583 */ 8584 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8585 void *buffer, size_t *length, loff_t *ppos) 8586 { 8587 int i; 8588 8589 proc_dointvec_minmax(table, write, buffer, length, ppos); 8590 8591 for (i = 0; i < MAX_NR_ZONES; i++) { 8592 if (sysctl_lowmem_reserve_ratio[i] < 1) 8593 sysctl_lowmem_reserve_ratio[i] = 0; 8594 } 8595 8596 setup_per_zone_lowmem_reserve(); 8597 return 0; 8598 } 8599 8600 /* 8601 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8602 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8603 * pagelist can have before it gets flushed back to buddy allocator. 8604 */ 8605 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8606 int write, void *buffer, size_t *length, loff_t *ppos) 8607 { 8608 struct zone *zone; 8609 int old_percpu_pagelist_high_fraction; 8610 int ret; 8611 8612 mutex_lock(&pcp_batch_high_lock); 8613 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8614 8615 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8616 if (!write || ret < 0) 8617 goto out; 8618 8619 /* Sanity checking to avoid pcp imbalance */ 8620 if (percpu_pagelist_high_fraction && 8621 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8622 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8623 ret = -EINVAL; 8624 goto out; 8625 } 8626 8627 /* No change? */ 8628 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8629 goto out; 8630 8631 for_each_populated_zone(zone) 8632 zone_set_pageset_high_and_batch(zone, 0); 8633 out: 8634 mutex_unlock(&pcp_batch_high_lock); 8635 return ret; 8636 } 8637 8638 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8639 /* 8640 * Returns the number of pages that arch has reserved but 8641 * is not known to alloc_large_system_hash(). 8642 */ 8643 static unsigned long __init arch_reserved_kernel_pages(void) 8644 { 8645 return 0; 8646 } 8647 #endif 8648 8649 /* 8650 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8651 * machines. As memory size is increased the scale is also increased but at 8652 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8653 * quadruples the scale is increased by one, which means the size of hash table 8654 * only doubles, instead of quadrupling as well. 8655 * Because 32-bit systems cannot have large physical memory, where this scaling 8656 * makes sense, it is disabled on such platforms. 8657 */ 8658 #if __BITS_PER_LONG > 32 8659 #define ADAPT_SCALE_BASE (64ul << 30) 8660 #define ADAPT_SCALE_SHIFT 2 8661 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8662 #endif 8663 8664 /* 8665 * allocate a large system hash table from bootmem 8666 * - it is assumed that the hash table must contain an exact power-of-2 8667 * quantity of entries 8668 * - limit is the number of hash buckets, not the total allocation size 8669 */ 8670 void *__init alloc_large_system_hash(const char *tablename, 8671 unsigned long bucketsize, 8672 unsigned long numentries, 8673 int scale, 8674 int flags, 8675 unsigned int *_hash_shift, 8676 unsigned int *_hash_mask, 8677 unsigned long low_limit, 8678 unsigned long high_limit) 8679 { 8680 unsigned long long max = high_limit; 8681 unsigned long log2qty, size; 8682 void *table = NULL; 8683 gfp_t gfp_flags; 8684 bool virt; 8685 bool huge; 8686 8687 /* allow the kernel cmdline to have a say */ 8688 if (!numentries) { 8689 /* round applicable memory size up to nearest megabyte */ 8690 numentries = nr_kernel_pages; 8691 numentries -= arch_reserved_kernel_pages(); 8692 8693 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8694 if (PAGE_SHIFT < 20) 8695 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8696 8697 #if __BITS_PER_LONG > 32 8698 if (!high_limit) { 8699 unsigned long adapt; 8700 8701 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8702 adapt <<= ADAPT_SCALE_SHIFT) 8703 scale++; 8704 } 8705 #endif 8706 8707 /* limit to 1 bucket per 2^scale bytes of low memory */ 8708 if (scale > PAGE_SHIFT) 8709 numentries >>= (scale - PAGE_SHIFT); 8710 else 8711 numentries <<= (PAGE_SHIFT - scale); 8712 8713 /* Make sure we've got at least a 0-order allocation.. */ 8714 if (unlikely(flags & HASH_SMALL)) { 8715 /* Makes no sense without HASH_EARLY */ 8716 WARN_ON(!(flags & HASH_EARLY)); 8717 if (!(numentries >> *_hash_shift)) { 8718 numentries = 1UL << *_hash_shift; 8719 BUG_ON(!numentries); 8720 } 8721 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8722 numentries = PAGE_SIZE / bucketsize; 8723 } 8724 numentries = roundup_pow_of_two(numentries); 8725 8726 /* limit allocation size to 1/16 total memory by default */ 8727 if (max == 0) { 8728 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8729 do_div(max, bucketsize); 8730 } 8731 max = min(max, 0x80000000ULL); 8732 8733 if (numentries < low_limit) 8734 numentries = low_limit; 8735 if (numentries > max) 8736 numentries = max; 8737 8738 log2qty = ilog2(numentries); 8739 8740 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8741 do { 8742 virt = false; 8743 size = bucketsize << log2qty; 8744 if (flags & HASH_EARLY) { 8745 if (flags & HASH_ZERO) 8746 table = memblock_alloc(size, SMP_CACHE_BYTES); 8747 else 8748 table = memblock_alloc_raw(size, 8749 SMP_CACHE_BYTES); 8750 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8751 table = __vmalloc(size, gfp_flags); 8752 virt = true; 8753 huge = is_vm_area_hugepages(table); 8754 } else { 8755 /* 8756 * If bucketsize is not a power-of-two, we may free 8757 * some pages at the end of hash table which 8758 * alloc_pages_exact() automatically does 8759 */ 8760 table = alloc_pages_exact(size, gfp_flags); 8761 kmemleak_alloc(table, size, 1, gfp_flags); 8762 } 8763 } while (!table && size > PAGE_SIZE && --log2qty); 8764 8765 if (!table) 8766 panic("Failed to allocate %s hash table\n", tablename); 8767 8768 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8769 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8770 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8771 8772 if (_hash_shift) 8773 *_hash_shift = log2qty; 8774 if (_hash_mask) 8775 *_hash_mask = (1 << log2qty) - 1; 8776 8777 return table; 8778 } 8779 8780 /* 8781 * This function checks whether pageblock includes unmovable pages or not. 8782 * 8783 * PageLRU check without isolation or lru_lock could race so that 8784 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8785 * check without lock_page also may miss some movable non-lru pages at 8786 * race condition. So you can't expect this function should be exact. 8787 * 8788 * Returns a page without holding a reference. If the caller wants to 8789 * dereference that page (e.g., dumping), it has to make sure that it 8790 * cannot get removed (e.g., via memory unplug) concurrently. 8791 * 8792 */ 8793 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8794 int migratetype, int flags) 8795 { 8796 unsigned long iter = 0; 8797 unsigned long pfn = page_to_pfn(page); 8798 unsigned long offset = pfn % pageblock_nr_pages; 8799 8800 if (is_migrate_cma_page(page)) { 8801 /* 8802 * CMA allocations (alloc_contig_range) really need to mark 8803 * isolate CMA pageblocks even when they are not movable in fact 8804 * so consider them movable here. 8805 */ 8806 if (is_migrate_cma(migratetype)) 8807 return NULL; 8808 8809 return page; 8810 } 8811 8812 for (; iter < pageblock_nr_pages - offset; iter++) { 8813 if (!pfn_valid_within(pfn + iter)) 8814 continue; 8815 8816 page = pfn_to_page(pfn + iter); 8817 8818 /* 8819 * Both, bootmem allocations and memory holes are marked 8820 * PG_reserved and are unmovable. We can even have unmovable 8821 * allocations inside ZONE_MOVABLE, for example when 8822 * specifying "movablecore". 8823 */ 8824 if (PageReserved(page)) 8825 return page; 8826 8827 /* 8828 * If the zone is movable and we have ruled out all reserved 8829 * pages then it should be reasonably safe to assume the rest 8830 * is movable. 8831 */ 8832 if (zone_idx(zone) == ZONE_MOVABLE) 8833 continue; 8834 8835 /* 8836 * Hugepages are not in LRU lists, but they're movable. 8837 * THPs are on the LRU, but need to be counted as #small pages. 8838 * We need not scan over tail pages because we don't 8839 * handle each tail page individually in migration. 8840 */ 8841 if (PageHuge(page) || PageTransCompound(page)) { 8842 struct page *head = compound_head(page); 8843 unsigned int skip_pages; 8844 8845 if (PageHuge(page)) { 8846 if (!hugepage_migration_supported(page_hstate(head))) 8847 return page; 8848 } else if (!PageLRU(head) && !__PageMovable(head)) { 8849 return page; 8850 } 8851 8852 skip_pages = compound_nr(head) - (page - head); 8853 iter += skip_pages - 1; 8854 continue; 8855 } 8856 8857 /* 8858 * We can't use page_count without pin a page 8859 * because another CPU can free compound page. 8860 * This check already skips compound tails of THP 8861 * because their page->_refcount is zero at all time. 8862 */ 8863 if (!page_ref_count(page)) { 8864 if (PageBuddy(page)) 8865 iter += (1 << buddy_order(page)) - 1; 8866 continue; 8867 } 8868 8869 /* 8870 * The HWPoisoned page may be not in buddy system, and 8871 * page_count() is not 0. 8872 */ 8873 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8874 continue; 8875 8876 /* 8877 * We treat all PageOffline() pages as movable when offlining 8878 * to give drivers a chance to decrement their reference count 8879 * in MEM_GOING_OFFLINE in order to indicate that these pages 8880 * can be offlined as there are no direct references anymore. 8881 * For actually unmovable PageOffline() where the driver does 8882 * not support this, we will fail later when trying to actually 8883 * move these pages that still have a reference count > 0. 8884 * (false negatives in this function only) 8885 */ 8886 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8887 continue; 8888 8889 if (__PageMovable(page) || PageLRU(page)) 8890 continue; 8891 8892 /* 8893 * If there are RECLAIMABLE pages, we need to check 8894 * it. But now, memory offline itself doesn't call 8895 * shrink_node_slabs() and it still to be fixed. 8896 */ 8897 return page; 8898 } 8899 return NULL; 8900 } 8901 8902 #ifdef CONFIG_CONTIG_ALLOC 8903 static unsigned long pfn_max_align_down(unsigned long pfn) 8904 { 8905 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8906 pageblock_nr_pages) - 1); 8907 } 8908 8909 static unsigned long pfn_max_align_up(unsigned long pfn) 8910 { 8911 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8912 pageblock_nr_pages)); 8913 } 8914 8915 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8916 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8917 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8918 static void alloc_contig_dump_pages(struct list_head *page_list) 8919 { 8920 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8921 8922 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8923 struct page *page; 8924 8925 dump_stack(); 8926 list_for_each_entry(page, page_list, lru) 8927 dump_page(page, "migration failure"); 8928 } 8929 } 8930 #else 8931 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8932 { 8933 } 8934 #endif 8935 8936 /* [start, end) must belong to a single zone. */ 8937 static int __alloc_contig_migrate_range(struct compact_control *cc, 8938 unsigned long start, unsigned long end) 8939 { 8940 /* This function is based on compact_zone() from compaction.c. */ 8941 unsigned int nr_reclaimed; 8942 unsigned long pfn = start; 8943 unsigned int tries = 0; 8944 int ret = 0; 8945 struct migration_target_control mtc = { 8946 .nid = zone_to_nid(cc->zone), 8947 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8948 }; 8949 8950 lru_cache_disable(); 8951 8952 while (pfn < end || !list_empty(&cc->migratepages)) { 8953 if (fatal_signal_pending(current)) { 8954 ret = -EINTR; 8955 break; 8956 } 8957 8958 if (list_empty(&cc->migratepages)) { 8959 cc->nr_migratepages = 0; 8960 ret = isolate_migratepages_range(cc, pfn, end); 8961 if (ret && ret != -EAGAIN) 8962 break; 8963 pfn = cc->migrate_pfn; 8964 tries = 0; 8965 } else if (++tries == 5) { 8966 ret = -EBUSY; 8967 break; 8968 } 8969 8970 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8971 &cc->migratepages); 8972 cc->nr_migratepages -= nr_reclaimed; 8973 8974 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8975 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8976 8977 /* 8978 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 8979 * to retry again over this error, so do the same here. 8980 */ 8981 if (ret == -ENOMEM) 8982 break; 8983 } 8984 8985 lru_cache_enable(); 8986 if (ret < 0) { 8987 if (ret == -EBUSY) 8988 alloc_contig_dump_pages(&cc->migratepages); 8989 putback_movable_pages(&cc->migratepages); 8990 return ret; 8991 } 8992 return 0; 8993 } 8994 8995 /** 8996 * alloc_contig_range() -- tries to allocate given range of pages 8997 * @start: start PFN to allocate 8998 * @end: one-past-the-last PFN to allocate 8999 * @migratetype: migratetype of the underlying pageblocks (either 9000 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 9001 * in range must have the same migratetype and it must 9002 * be either of the two. 9003 * @gfp_mask: GFP mask to use during compaction 9004 * 9005 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 9006 * aligned. The PFN range must belong to a single zone. 9007 * 9008 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 9009 * pageblocks in the range. Once isolated, the pageblocks should not 9010 * be modified by others. 9011 * 9012 * Return: zero on success or negative error code. On success all 9013 * pages which PFN is in [start, end) are allocated for the caller and 9014 * need to be freed with free_contig_range(). 9015 */ 9016 int alloc_contig_range(unsigned long start, unsigned long end, 9017 unsigned migratetype, gfp_t gfp_mask) 9018 { 9019 unsigned long outer_start, outer_end; 9020 unsigned int order; 9021 int ret = 0; 9022 9023 struct compact_control cc = { 9024 .nr_migratepages = 0, 9025 .order = -1, 9026 .zone = page_zone(pfn_to_page(start)), 9027 .mode = MIGRATE_SYNC, 9028 .ignore_skip_hint = true, 9029 .no_set_skip_hint = true, 9030 .gfp_mask = current_gfp_context(gfp_mask), 9031 .alloc_contig = true, 9032 }; 9033 INIT_LIST_HEAD(&cc.migratepages); 9034 9035 /* 9036 * What we do here is we mark all pageblocks in range as 9037 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9038 * have different sizes, and due to the way page allocator 9039 * work, we align the range to biggest of the two pages so 9040 * that page allocator won't try to merge buddies from 9041 * different pageblocks and change MIGRATE_ISOLATE to some 9042 * other migration type. 9043 * 9044 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9045 * migrate the pages from an unaligned range (ie. pages that 9046 * we are interested in). This will put all the pages in 9047 * range back to page allocator as MIGRATE_ISOLATE. 9048 * 9049 * When this is done, we take the pages in range from page 9050 * allocator removing them from the buddy system. This way 9051 * page allocator will never consider using them. 9052 * 9053 * This lets us mark the pageblocks back as 9054 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9055 * aligned range but not in the unaligned, original range are 9056 * put back to page allocator so that buddy can use them. 9057 */ 9058 9059 ret = start_isolate_page_range(pfn_max_align_down(start), 9060 pfn_max_align_up(end), migratetype, 0); 9061 if (ret) 9062 return ret; 9063 9064 drain_all_pages(cc.zone); 9065 9066 /* 9067 * In case of -EBUSY, we'd like to know which page causes problem. 9068 * So, just fall through. test_pages_isolated() has a tracepoint 9069 * which will report the busy page. 9070 * 9071 * It is possible that busy pages could become available before 9072 * the call to test_pages_isolated, and the range will actually be 9073 * allocated. So, if we fall through be sure to clear ret so that 9074 * -EBUSY is not accidentally used or returned to caller. 9075 */ 9076 ret = __alloc_contig_migrate_range(&cc, start, end); 9077 if (ret && ret != -EBUSY) 9078 goto done; 9079 ret = 0; 9080 9081 /* 9082 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9083 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9084 * more, all pages in [start, end) are free in page allocator. 9085 * What we are going to do is to allocate all pages from 9086 * [start, end) (that is remove them from page allocator). 9087 * 9088 * The only problem is that pages at the beginning and at the 9089 * end of interesting range may be not aligned with pages that 9090 * page allocator holds, ie. they can be part of higher order 9091 * pages. Because of this, we reserve the bigger range and 9092 * once this is done free the pages we are not interested in. 9093 * 9094 * We don't have to hold zone->lock here because the pages are 9095 * isolated thus they won't get removed from buddy. 9096 */ 9097 9098 order = 0; 9099 outer_start = start; 9100 while (!PageBuddy(pfn_to_page(outer_start))) { 9101 if (++order >= MAX_ORDER) { 9102 outer_start = start; 9103 break; 9104 } 9105 outer_start &= ~0UL << order; 9106 } 9107 9108 if (outer_start != start) { 9109 order = buddy_order(pfn_to_page(outer_start)); 9110 9111 /* 9112 * outer_start page could be small order buddy page and 9113 * it doesn't include start page. Adjust outer_start 9114 * in this case to report failed page properly 9115 * on tracepoint in test_pages_isolated() 9116 */ 9117 if (outer_start + (1UL << order) <= start) 9118 outer_start = start; 9119 } 9120 9121 /* Make sure the range is really isolated. */ 9122 if (test_pages_isolated(outer_start, end, 0)) { 9123 ret = -EBUSY; 9124 goto done; 9125 } 9126 9127 /* Grab isolated pages from freelists. */ 9128 outer_end = isolate_freepages_range(&cc, outer_start, end); 9129 if (!outer_end) { 9130 ret = -EBUSY; 9131 goto done; 9132 } 9133 9134 /* Free head and tail (if any) */ 9135 if (start != outer_start) 9136 free_contig_range(outer_start, start - outer_start); 9137 if (end != outer_end) 9138 free_contig_range(end, outer_end - end); 9139 9140 done: 9141 undo_isolate_page_range(pfn_max_align_down(start), 9142 pfn_max_align_up(end), migratetype); 9143 return ret; 9144 } 9145 EXPORT_SYMBOL(alloc_contig_range); 9146 9147 static int __alloc_contig_pages(unsigned long start_pfn, 9148 unsigned long nr_pages, gfp_t gfp_mask) 9149 { 9150 unsigned long end_pfn = start_pfn + nr_pages; 9151 9152 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9153 gfp_mask); 9154 } 9155 9156 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9157 unsigned long nr_pages) 9158 { 9159 unsigned long i, end_pfn = start_pfn + nr_pages; 9160 struct page *page; 9161 9162 for (i = start_pfn; i < end_pfn; i++) { 9163 page = pfn_to_online_page(i); 9164 if (!page) 9165 return false; 9166 9167 if (page_zone(page) != z) 9168 return false; 9169 9170 if (PageReserved(page)) 9171 return false; 9172 } 9173 return true; 9174 } 9175 9176 static bool zone_spans_last_pfn(const struct zone *zone, 9177 unsigned long start_pfn, unsigned long nr_pages) 9178 { 9179 unsigned long last_pfn = start_pfn + nr_pages - 1; 9180 9181 return zone_spans_pfn(zone, last_pfn); 9182 } 9183 9184 /** 9185 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9186 * @nr_pages: Number of contiguous pages to allocate 9187 * @gfp_mask: GFP mask to limit search and used during compaction 9188 * @nid: Target node 9189 * @nodemask: Mask for other possible nodes 9190 * 9191 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9192 * on an applicable zonelist to find a contiguous pfn range which can then be 9193 * tried for allocation with alloc_contig_range(). This routine is intended 9194 * for allocation requests which can not be fulfilled with the buddy allocator. 9195 * 9196 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9197 * power of two then the alignment is guaranteed to be to the given nr_pages 9198 * (e.g. 1GB request would be aligned to 1GB). 9199 * 9200 * Allocated pages can be freed with free_contig_range() or by manually calling 9201 * __free_page() on each allocated page. 9202 * 9203 * Return: pointer to contiguous pages on success, or NULL if not successful. 9204 */ 9205 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9206 int nid, nodemask_t *nodemask) 9207 { 9208 unsigned long ret, pfn, flags; 9209 struct zonelist *zonelist; 9210 struct zone *zone; 9211 struct zoneref *z; 9212 9213 zonelist = node_zonelist(nid, gfp_mask); 9214 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9215 gfp_zone(gfp_mask), nodemask) { 9216 spin_lock_irqsave(&zone->lock, flags); 9217 9218 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9219 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9220 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9221 /* 9222 * We release the zone lock here because 9223 * alloc_contig_range() will also lock the zone 9224 * at some point. If there's an allocation 9225 * spinning on this lock, it may win the race 9226 * and cause alloc_contig_range() to fail... 9227 */ 9228 spin_unlock_irqrestore(&zone->lock, flags); 9229 ret = __alloc_contig_pages(pfn, nr_pages, 9230 gfp_mask); 9231 if (!ret) 9232 return pfn_to_page(pfn); 9233 spin_lock_irqsave(&zone->lock, flags); 9234 } 9235 pfn += nr_pages; 9236 } 9237 spin_unlock_irqrestore(&zone->lock, flags); 9238 } 9239 return NULL; 9240 } 9241 #endif /* CONFIG_CONTIG_ALLOC */ 9242 9243 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9244 { 9245 unsigned long count = 0; 9246 9247 for (; nr_pages--; pfn++) { 9248 struct page *page = pfn_to_page(pfn); 9249 9250 count += page_count(page) != 1; 9251 __free_page(page); 9252 } 9253 WARN(count != 0, "%lu pages are still in use!\n", count); 9254 } 9255 EXPORT_SYMBOL(free_contig_range); 9256 9257 /* 9258 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9259 * page high values need to be recalculated. 9260 */ 9261 void zone_pcp_update(struct zone *zone, int cpu_online) 9262 { 9263 mutex_lock(&pcp_batch_high_lock); 9264 zone_set_pageset_high_and_batch(zone, cpu_online); 9265 mutex_unlock(&pcp_batch_high_lock); 9266 } 9267 9268 /* 9269 * Effectively disable pcplists for the zone by setting the high limit to 0 9270 * and draining all cpus. A concurrent page freeing on another CPU that's about 9271 * to put the page on pcplist will either finish before the drain and the page 9272 * will be drained, or observe the new high limit and skip the pcplist. 9273 * 9274 * Must be paired with a call to zone_pcp_enable(). 9275 */ 9276 void zone_pcp_disable(struct zone *zone) 9277 { 9278 mutex_lock(&pcp_batch_high_lock); 9279 __zone_set_pageset_high_and_batch(zone, 0, 1); 9280 __drain_all_pages(zone, true); 9281 } 9282 9283 void zone_pcp_enable(struct zone *zone) 9284 { 9285 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9286 mutex_unlock(&pcp_batch_high_lock); 9287 } 9288 9289 void zone_pcp_reset(struct zone *zone) 9290 { 9291 int cpu; 9292 struct per_cpu_zonestat *pzstats; 9293 9294 if (zone->per_cpu_pageset != &boot_pageset) { 9295 for_each_online_cpu(cpu) { 9296 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9297 drain_zonestat(zone, pzstats); 9298 } 9299 free_percpu(zone->per_cpu_pageset); 9300 free_percpu(zone->per_cpu_zonestats); 9301 zone->per_cpu_pageset = &boot_pageset; 9302 zone->per_cpu_zonestats = &boot_zonestats; 9303 } 9304 } 9305 9306 #ifdef CONFIG_MEMORY_HOTREMOVE 9307 /* 9308 * All pages in the range must be in a single zone, must not contain holes, 9309 * must span full sections, and must be isolated before calling this function. 9310 */ 9311 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9312 { 9313 unsigned long pfn = start_pfn; 9314 struct page *page; 9315 struct zone *zone; 9316 unsigned int order; 9317 unsigned long flags; 9318 9319 offline_mem_sections(pfn, end_pfn); 9320 zone = page_zone(pfn_to_page(pfn)); 9321 spin_lock_irqsave(&zone->lock, flags); 9322 while (pfn < end_pfn) { 9323 page = pfn_to_page(pfn); 9324 /* 9325 * The HWPoisoned page may be not in buddy system, and 9326 * page_count() is not 0. 9327 */ 9328 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9329 pfn++; 9330 continue; 9331 } 9332 /* 9333 * At this point all remaining PageOffline() pages have a 9334 * reference count of 0 and can simply be skipped. 9335 */ 9336 if (PageOffline(page)) { 9337 BUG_ON(page_count(page)); 9338 BUG_ON(PageBuddy(page)); 9339 pfn++; 9340 continue; 9341 } 9342 9343 BUG_ON(page_count(page)); 9344 BUG_ON(!PageBuddy(page)); 9345 order = buddy_order(page); 9346 del_page_from_free_list(page, zone, order); 9347 pfn += (1 << order); 9348 } 9349 spin_unlock_irqrestore(&zone->lock, flags); 9350 } 9351 #endif 9352 9353 bool is_free_buddy_page(struct page *page) 9354 { 9355 struct zone *zone = page_zone(page); 9356 unsigned long pfn = page_to_pfn(page); 9357 unsigned long flags; 9358 unsigned int order; 9359 9360 spin_lock_irqsave(&zone->lock, flags); 9361 for (order = 0; order < MAX_ORDER; order++) { 9362 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9363 9364 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 9365 break; 9366 } 9367 spin_unlock_irqrestore(&zone->lock, flags); 9368 9369 return order < MAX_ORDER; 9370 } 9371 9372 #ifdef CONFIG_MEMORY_FAILURE 9373 /* 9374 * Break down a higher-order page in sub-pages, and keep our target out of 9375 * buddy allocator. 9376 */ 9377 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9378 struct page *target, int low, int high, 9379 int migratetype) 9380 { 9381 unsigned long size = 1 << high; 9382 struct page *current_buddy, *next_page; 9383 9384 while (high > low) { 9385 high--; 9386 size >>= 1; 9387 9388 if (target >= &page[size]) { 9389 next_page = page + size; 9390 current_buddy = page; 9391 } else { 9392 next_page = page; 9393 current_buddy = page + size; 9394 } 9395 9396 if (set_page_guard(zone, current_buddy, high, migratetype)) 9397 continue; 9398 9399 if (current_buddy != target) { 9400 add_to_free_list(current_buddy, zone, high, migratetype); 9401 set_buddy_order(current_buddy, high); 9402 page = next_page; 9403 } 9404 } 9405 } 9406 9407 /* 9408 * Take a page that will be marked as poisoned off the buddy allocator. 9409 */ 9410 bool take_page_off_buddy(struct page *page) 9411 { 9412 struct zone *zone = page_zone(page); 9413 unsigned long pfn = page_to_pfn(page); 9414 unsigned long flags; 9415 unsigned int order; 9416 bool ret = false; 9417 9418 spin_lock_irqsave(&zone->lock, flags); 9419 for (order = 0; order < MAX_ORDER; order++) { 9420 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9421 int page_order = buddy_order(page_head); 9422 9423 if (PageBuddy(page_head) && page_order >= order) { 9424 unsigned long pfn_head = page_to_pfn(page_head); 9425 int migratetype = get_pfnblock_migratetype(page_head, 9426 pfn_head); 9427 9428 del_page_from_free_list(page_head, zone, page_order); 9429 break_down_buddy_pages(zone, page_head, page, 0, 9430 page_order, migratetype); 9431 if (!is_migrate_isolate(migratetype)) 9432 __mod_zone_freepage_state(zone, -1, migratetype); 9433 ret = true; 9434 break; 9435 } 9436 if (page_count(page_head) > 0) 9437 break; 9438 } 9439 spin_unlock_irqrestore(&zone->lock, flags); 9440 return ret; 9441 } 9442 #endif 9443