xref: /openbmc/linux/mm/page_alloc.c (revision 150b2e86)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 
73 #include <asm/sections.h>
74 #include <asm/tlbflush.h>
75 #include <asm/div64.h>
76 #include "internal.h"
77 #include "shuffle.h"
78 #include "page_reporting.h"
79 
80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
81 static DEFINE_MUTEX(pcp_batch_high_lock);
82 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
83 
84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
85 DEFINE_PER_CPU(int, numa_node);
86 EXPORT_PER_CPU_SYMBOL(numa_node);
87 #endif
88 
89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
90 
91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
92 /*
93  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
94  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
95  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
96  * defined in <linux/topology.h>.
97  */
98 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
99 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
100 #endif
101 
102 /* work_structs for global per-cpu drains */
103 struct pcpu_drain {
104 	struct zone *zone;
105 	struct work_struct work;
106 };
107 static DEFINE_MUTEX(pcpu_drain_mutex);
108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
109 
110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
111 volatile unsigned long latent_entropy __latent_entropy;
112 EXPORT_SYMBOL(latent_entropy);
113 #endif
114 
115 /*
116  * Array of node states.
117  */
118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
119 	[N_POSSIBLE] = NODE_MASK_ALL,
120 	[N_ONLINE] = { { [0] = 1UL } },
121 #ifndef CONFIG_NUMA
122 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
123 #ifdef CONFIG_HIGHMEM
124 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
125 #endif
126 	[N_MEMORY] = { { [0] = 1UL } },
127 	[N_CPU] = { { [0] = 1UL } },
128 #endif	/* NUMA */
129 };
130 EXPORT_SYMBOL(node_states);
131 
132 atomic_long_t _totalram_pages __read_mostly;
133 EXPORT_SYMBOL(_totalram_pages);
134 unsigned long totalreserve_pages __read_mostly;
135 unsigned long totalcma_pages __read_mostly;
136 
137 int percpu_pagelist_fraction;
138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
140 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
141 #else
142 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
143 #endif
144 EXPORT_SYMBOL(init_on_alloc);
145 
146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
147 DEFINE_STATIC_KEY_TRUE(init_on_free);
148 #else
149 DEFINE_STATIC_KEY_FALSE(init_on_free);
150 #endif
151 EXPORT_SYMBOL(init_on_free);
152 
153 static int __init early_init_on_alloc(char *buf)
154 {
155 	int ret;
156 	bool bool_result;
157 
158 	if (!buf)
159 		return -EINVAL;
160 	ret = kstrtobool(buf, &bool_result);
161 	if (bool_result && page_poisoning_enabled())
162 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
163 	if (bool_result)
164 		static_branch_enable(&init_on_alloc);
165 	else
166 		static_branch_disable(&init_on_alloc);
167 	return ret;
168 }
169 early_param("init_on_alloc", early_init_on_alloc);
170 
171 static int __init early_init_on_free(char *buf)
172 {
173 	int ret;
174 	bool bool_result;
175 
176 	if (!buf)
177 		return -EINVAL;
178 	ret = kstrtobool(buf, &bool_result);
179 	if (bool_result && page_poisoning_enabled())
180 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
181 	if (bool_result)
182 		static_branch_enable(&init_on_free);
183 	else
184 		static_branch_disable(&init_on_free);
185 	return ret;
186 }
187 early_param("init_on_free", early_init_on_free);
188 
189 /*
190  * A cached value of the page's pageblock's migratetype, used when the page is
191  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
192  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
193  * Also the migratetype set in the page does not necessarily match the pcplist
194  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
195  * other index - this ensures that it will be put on the correct CMA freelist.
196  */
197 static inline int get_pcppage_migratetype(struct page *page)
198 {
199 	return page->index;
200 }
201 
202 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
203 {
204 	page->index = migratetype;
205 }
206 
207 #ifdef CONFIG_PM_SLEEP
208 /*
209  * The following functions are used by the suspend/hibernate code to temporarily
210  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
211  * while devices are suspended.  To avoid races with the suspend/hibernate code,
212  * they should always be called with system_transition_mutex held
213  * (gfp_allowed_mask also should only be modified with system_transition_mutex
214  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
215  * with that modification).
216  */
217 
218 static gfp_t saved_gfp_mask;
219 
220 void pm_restore_gfp_mask(void)
221 {
222 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
223 	if (saved_gfp_mask) {
224 		gfp_allowed_mask = saved_gfp_mask;
225 		saved_gfp_mask = 0;
226 	}
227 }
228 
229 void pm_restrict_gfp_mask(void)
230 {
231 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
232 	WARN_ON(saved_gfp_mask);
233 	saved_gfp_mask = gfp_allowed_mask;
234 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
235 }
236 
237 bool pm_suspended_storage(void)
238 {
239 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
240 		return false;
241 	return true;
242 }
243 #endif /* CONFIG_PM_SLEEP */
244 
245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
246 unsigned int pageblock_order __read_mostly;
247 #endif
248 
249 static void __free_pages_ok(struct page *page, unsigned int order);
250 
251 /*
252  * results with 256, 32 in the lowmem_reserve sysctl:
253  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
254  *	1G machine -> (16M dma, 784M normal, 224M high)
255  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
256  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
257  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
258  *
259  * TBD: should special case ZONE_DMA32 machines here - in those we normally
260  * don't need any ZONE_NORMAL reservation
261  */
262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
263 #ifdef CONFIG_ZONE_DMA
264 	[ZONE_DMA] = 256,
265 #endif
266 #ifdef CONFIG_ZONE_DMA32
267 	[ZONE_DMA32] = 256,
268 #endif
269 	[ZONE_NORMAL] = 32,
270 #ifdef CONFIG_HIGHMEM
271 	[ZONE_HIGHMEM] = 0,
272 #endif
273 	[ZONE_MOVABLE] = 0,
274 };
275 
276 static char * const zone_names[MAX_NR_ZONES] = {
277 #ifdef CONFIG_ZONE_DMA
278 	 "DMA",
279 #endif
280 #ifdef CONFIG_ZONE_DMA32
281 	 "DMA32",
282 #endif
283 	 "Normal",
284 #ifdef CONFIG_HIGHMEM
285 	 "HighMem",
286 #endif
287 	 "Movable",
288 #ifdef CONFIG_ZONE_DEVICE
289 	 "Device",
290 #endif
291 };
292 
293 const char * const migratetype_names[MIGRATE_TYPES] = {
294 	"Unmovable",
295 	"Movable",
296 	"Reclaimable",
297 	"HighAtomic",
298 #ifdef CONFIG_CMA
299 	"CMA",
300 #endif
301 #ifdef CONFIG_MEMORY_ISOLATION
302 	"Isolate",
303 #endif
304 };
305 
306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
307 	[NULL_COMPOUND_DTOR] = NULL,
308 	[COMPOUND_PAGE_DTOR] = free_compound_page,
309 #ifdef CONFIG_HUGETLB_PAGE
310 	[HUGETLB_PAGE_DTOR] = free_huge_page,
311 #endif
312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
313 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
314 #endif
315 };
316 
317 int min_free_kbytes = 1024;
318 int user_min_free_kbytes = -1;
319 #ifdef CONFIG_DISCONTIGMEM
320 /*
321  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
322  * are not on separate NUMA nodes. Functionally this works but with
323  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
324  * quite small. By default, do not boost watermarks on discontigmem as in
325  * many cases very high-order allocations like THP are likely to be
326  * unsupported and the premature reclaim offsets the advantage of long-term
327  * fragmentation avoidance.
328  */
329 int watermark_boost_factor __read_mostly;
330 #else
331 int watermark_boost_factor __read_mostly = 15000;
332 #endif
333 int watermark_scale_factor = 10;
334 
335 static unsigned long nr_kernel_pages __initdata;
336 static unsigned long nr_all_pages __initdata;
337 static unsigned long dma_reserve __initdata;
338 
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 
352 #if MAX_NUMNODES > 1
353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
354 unsigned int nr_online_nodes __read_mostly = 1;
355 EXPORT_SYMBOL(nr_node_ids);
356 EXPORT_SYMBOL(nr_online_nodes);
357 #endif
358 
359 int page_group_by_mobility_disabled __read_mostly;
360 
361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
362 /*
363  * During boot we initialize deferred pages on-demand, as needed, but once
364  * page_alloc_init_late() has finished, the deferred pages are all initialized,
365  * and we can permanently disable that path.
366  */
367 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
368 
369 /*
370  * Calling kasan_free_pages() only after deferred memory initialization
371  * has completed. Poisoning pages during deferred memory init will greatly
372  * lengthen the process and cause problem in large memory systems as the
373  * deferred pages initialization is done with interrupt disabled.
374  *
375  * Assuming that there will be no reference to those newly initialized
376  * pages before they are ever allocated, this should have no effect on
377  * KASAN memory tracking as the poison will be properly inserted at page
378  * allocation time. The only corner case is when pages are allocated by
379  * on-demand allocation and then freed again before the deferred pages
380  * initialization is done, but this is not likely to happen.
381  */
382 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
383 {
384 	if (!static_branch_unlikely(&deferred_pages))
385 		kasan_free_pages(page, order);
386 }
387 
388 /* Returns true if the struct page for the pfn is uninitialised */
389 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
390 {
391 	int nid = early_pfn_to_nid(pfn);
392 
393 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
394 		return true;
395 
396 	return false;
397 }
398 
399 /*
400  * Returns true when the remaining initialisation should be deferred until
401  * later in the boot cycle when it can be parallelised.
402  */
403 static bool __meminit
404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
405 {
406 	static unsigned long prev_end_pfn, nr_initialised;
407 
408 	/*
409 	 * prev_end_pfn static that contains the end of previous zone
410 	 * No need to protect because called very early in boot before smp_init.
411 	 */
412 	if (prev_end_pfn != end_pfn) {
413 		prev_end_pfn = end_pfn;
414 		nr_initialised = 0;
415 	}
416 
417 	/* Always populate low zones for address-constrained allocations */
418 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
419 		return false;
420 
421 	/*
422 	 * We start only with one section of pages, more pages are added as
423 	 * needed until the rest of deferred pages are initialized.
424 	 */
425 	nr_initialised++;
426 	if ((nr_initialised > PAGES_PER_SECTION) &&
427 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
428 		NODE_DATA(nid)->first_deferred_pfn = pfn;
429 		return true;
430 	}
431 	return false;
432 }
433 #else
434 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
435 
436 static inline bool early_page_uninitialised(unsigned long pfn)
437 {
438 	return false;
439 }
440 
441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 	return false;
444 }
445 #endif
446 
447 /* Return a pointer to the bitmap storing bits affecting a block of pages */
448 static inline unsigned long *get_pageblock_bitmap(struct page *page,
449 							unsigned long pfn)
450 {
451 #ifdef CONFIG_SPARSEMEM
452 	return section_to_usemap(__pfn_to_section(pfn));
453 #else
454 	return page_zone(page)->pageblock_flags;
455 #endif /* CONFIG_SPARSEMEM */
456 }
457 
458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
459 {
460 #ifdef CONFIG_SPARSEMEM
461 	pfn &= (PAGES_PER_SECTION-1);
462 #else
463 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
464 #endif /* CONFIG_SPARSEMEM */
465 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
466 }
467 
468 /**
469  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
470  * @page: The page within the block of interest
471  * @pfn: The target page frame number
472  * @mask: mask of bits that the caller is interested in
473  *
474  * Return: pageblock_bits flags
475  */
476 static __always_inline
477 unsigned long __get_pfnblock_flags_mask(struct page *page,
478 					unsigned long pfn,
479 					unsigned long mask)
480 {
481 	unsigned long *bitmap;
482 	unsigned long bitidx, word_bitidx;
483 	unsigned long word;
484 
485 	bitmap = get_pageblock_bitmap(page, pfn);
486 	bitidx = pfn_to_bitidx(page, pfn);
487 	word_bitidx = bitidx / BITS_PER_LONG;
488 	bitidx &= (BITS_PER_LONG-1);
489 
490 	word = bitmap[word_bitidx];
491 	return (word >> bitidx) & mask;
492 }
493 
494 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
495 					unsigned long mask)
496 {
497 	return __get_pfnblock_flags_mask(page, pfn, mask);
498 }
499 
500 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
503 }
504 
505 /**
506  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
507  * @page: The page within the block of interest
508  * @flags: The flags to set
509  * @pfn: The target page frame number
510  * @mask: mask of bits that the caller is interested in
511  */
512 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
513 					unsigned long pfn,
514 					unsigned long mask)
515 {
516 	unsigned long *bitmap;
517 	unsigned long bitidx, word_bitidx;
518 	unsigned long old_word, word;
519 
520 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
521 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
522 
523 	bitmap = get_pageblock_bitmap(page, pfn);
524 	bitidx = pfn_to_bitidx(page, pfn);
525 	word_bitidx = bitidx / BITS_PER_LONG;
526 	bitidx &= (BITS_PER_LONG-1);
527 
528 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
529 
530 	mask <<= bitidx;
531 	flags <<= bitidx;
532 
533 	word = READ_ONCE(bitmap[word_bitidx]);
534 	for (;;) {
535 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
536 		if (word == old_word)
537 			break;
538 		word = old_word;
539 	}
540 }
541 
542 void set_pageblock_migratetype(struct page *page, int migratetype)
543 {
544 	if (unlikely(page_group_by_mobility_disabled &&
545 		     migratetype < MIGRATE_PCPTYPES))
546 		migratetype = MIGRATE_UNMOVABLE;
547 
548 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
549 				page_to_pfn(page), MIGRATETYPE_MASK);
550 }
551 
552 #ifdef CONFIG_DEBUG_VM
553 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
554 {
555 	int ret = 0;
556 	unsigned seq;
557 	unsigned long pfn = page_to_pfn(page);
558 	unsigned long sp, start_pfn;
559 
560 	do {
561 		seq = zone_span_seqbegin(zone);
562 		start_pfn = zone->zone_start_pfn;
563 		sp = zone->spanned_pages;
564 		if (!zone_spans_pfn(zone, pfn))
565 			ret = 1;
566 	} while (zone_span_seqretry(zone, seq));
567 
568 	if (ret)
569 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
570 			pfn, zone_to_nid(zone), zone->name,
571 			start_pfn, start_pfn + sp);
572 
573 	return ret;
574 }
575 
576 static int page_is_consistent(struct zone *zone, struct page *page)
577 {
578 	if (!pfn_valid_within(page_to_pfn(page)))
579 		return 0;
580 	if (zone != page_zone(page))
581 		return 0;
582 
583 	return 1;
584 }
585 /*
586  * Temporary debugging check for pages not lying within a given zone.
587  */
588 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
589 {
590 	if (page_outside_zone_boundaries(zone, page))
591 		return 1;
592 	if (!page_is_consistent(zone, page))
593 		return 1;
594 
595 	return 0;
596 }
597 #else
598 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
599 {
600 	return 0;
601 }
602 #endif
603 
604 static void bad_page(struct page *page, const char *reason)
605 {
606 	static unsigned long resume;
607 	static unsigned long nr_shown;
608 	static unsigned long nr_unshown;
609 
610 	/*
611 	 * Allow a burst of 60 reports, then keep quiet for that minute;
612 	 * or allow a steady drip of one report per second.
613 	 */
614 	if (nr_shown == 60) {
615 		if (time_before(jiffies, resume)) {
616 			nr_unshown++;
617 			goto out;
618 		}
619 		if (nr_unshown) {
620 			pr_alert(
621 			      "BUG: Bad page state: %lu messages suppressed\n",
622 				nr_unshown);
623 			nr_unshown = 0;
624 		}
625 		nr_shown = 0;
626 	}
627 	if (nr_shown++ == 0)
628 		resume = jiffies + 60 * HZ;
629 
630 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
631 		current->comm, page_to_pfn(page));
632 	__dump_page(page, reason);
633 	dump_page_owner(page);
634 
635 	print_modules();
636 	dump_stack();
637 out:
638 	/* Leave bad fields for debug, except PageBuddy could make trouble */
639 	page_mapcount_reset(page); /* remove PageBuddy */
640 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
641 }
642 
643 /*
644  * Higher-order pages are called "compound pages".  They are structured thusly:
645  *
646  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
647  *
648  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
649  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
650  *
651  * The first tail page's ->compound_dtor holds the offset in array of compound
652  * page destructors. See compound_page_dtors.
653  *
654  * The first tail page's ->compound_order holds the order of allocation.
655  * This usage means that zero-order pages may not be compound.
656  */
657 
658 void free_compound_page(struct page *page)
659 {
660 	mem_cgroup_uncharge(page);
661 	__free_pages_ok(page, compound_order(page));
662 }
663 
664 void prep_compound_page(struct page *page, unsigned int order)
665 {
666 	int i;
667 	int nr_pages = 1 << order;
668 
669 	__SetPageHead(page);
670 	for (i = 1; i < nr_pages; i++) {
671 		struct page *p = page + i;
672 		set_page_count(p, 0);
673 		p->mapping = TAIL_MAPPING;
674 		set_compound_head(p, page);
675 	}
676 
677 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
678 	set_compound_order(page, order);
679 	atomic_set(compound_mapcount_ptr(page), -1);
680 	if (hpage_pincount_available(page))
681 		atomic_set(compound_pincount_ptr(page), 0);
682 }
683 
684 #ifdef CONFIG_DEBUG_PAGEALLOC
685 unsigned int _debug_guardpage_minorder;
686 
687 bool _debug_pagealloc_enabled_early __read_mostly
688 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
689 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
690 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
691 EXPORT_SYMBOL(_debug_pagealloc_enabled);
692 
693 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
694 
695 static int __init early_debug_pagealloc(char *buf)
696 {
697 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
698 }
699 early_param("debug_pagealloc", early_debug_pagealloc);
700 
701 void init_debug_pagealloc(void)
702 {
703 	if (!debug_pagealloc_enabled())
704 		return;
705 
706 	static_branch_enable(&_debug_pagealloc_enabled);
707 
708 	if (!debug_guardpage_minorder())
709 		return;
710 
711 	static_branch_enable(&_debug_guardpage_enabled);
712 }
713 
714 static int __init debug_guardpage_minorder_setup(char *buf)
715 {
716 	unsigned long res;
717 
718 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
719 		pr_err("Bad debug_guardpage_minorder value\n");
720 		return 0;
721 	}
722 	_debug_guardpage_minorder = res;
723 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
724 	return 0;
725 }
726 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
727 
728 static inline bool set_page_guard(struct zone *zone, struct page *page,
729 				unsigned int order, int migratetype)
730 {
731 	if (!debug_guardpage_enabled())
732 		return false;
733 
734 	if (order >= debug_guardpage_minorder())
735 		return false;
736 
737 	__SetPageGuard(page);
738 	INIT_LIST_HEAD(&page->lru);
739 	set_page_private(page, order);
740 	/* Guard pages are not available for any usage */
741 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
742 
743 	return true;
744 }
745 
746 static inline void clear_page_guard(struct zone *zone, struct page *page,
747 				unsigned int order, int migratetype)
748 {
749 	if (!debug_guardpage_enabled())
750 		return;
751 
752 	__ClearPageGuard(page);
753 
754 	set_page_private(page, 0);
755 	if (!is_migrate_isolate(migratetype))
756 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
757 }
758 #else
759 static inline bool set_page_guard(struct zone *zone, struct page *page,
760 			unsigned int order, int migratetype) { return false; }
761 static inline void clear_page_guard(struct zone *zone, struct page *page,
762 				unsigned int order, int migratetype) {}
763 #endif
764 
765 static inline void set_page_order(struct page *page, unsigned int order)
766 {
767 	set_page_private(page, order);
768 	__SetPageBuddy(page);
769 }
770 
771 /*
772  * This function checks whether a page is free && is the buddy
773  * we can coalesce a page and its buddy if
774  * (a) the buddy is not in a hole (check before calling!) &&
775  * (b) the buddy is in the buddy system &&
776  * (c) a page and its buddy have the same order &&
777  * (d) a page and its buddy are in the same zone.
778  *
779  * For recording whether a page is in the buddy system, we set PageBuddy.
780  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
781  *
782  * For recording page's order, we use page_private(page).
783  */
784 static inline bool page_is_buddy(struct page *page, struct page *buddy,
785 							unsigned int order)
786 {
787 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
788 		return false;
789 
790 	if (page_order(buddy) != order)
791 		return false;
792 
793 	/*
794 	 * zone check is done late to avoid uselessly calculating
795 	 * zone/node ids for pages that could never merge.
796 	 */
797 	if (page_zone_id(page) != page_zone_id(buddy))
798 		return false;
799 
800 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
801 
802 	return true;
803 }
804 
805 #ifdef CONFIG_COMPACTION
806 static inline struct capture_control *task_capc(struct zone *zone)
807 {
808 	struct capture_control *capc = current->capture_control;
809 
810 	return unlikely(capc) &&
811 		!(current->flags & PF_KTHREAD) &&
812 		!capc->page &&
813 		capc->cc->zone == zone ? capc : NULL;
814 }
815 
816 static inline bool
817 compaction_capture(struct capture_control *capc, struct page *page,
818 		   int order, int migratetype)
819 {
820 	if (!capc || order != capc->cc->order)
821 		return false;
822 
823 	/* Do not accidentally pollute CMA or isolated regions*/
824 	if (is_migrate_cma(migratetype) ||
825 	    is_migrate_isolate(migratetype))
826 		return false;
827 
828 	/*
829 	 * Do not let lower order allocations polluate a movable pageblock.
830 	 * This might let an unmovable request use a reclaimable pageblock
831 	 * and vice-versa but no more than normal fallback logic which can
832 	 * have trouble finding a high-order free page.
833 	 */
834 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
835 		return false;
836 
837 	capc->page = page;
838 	return true;
839 }
840 
841 #else
842 static inline struct capture_control *task_capc(struct zone *zone)
843 {
844 	return NULL;
845 }
846 
847 static inline bool
848 compaction_capture(struct capture_control *capc, struct page *page,
849 		   int order, int migratetype)
850 {
851 	return false;
852 }
853 #endif /* CONFIG_COMPACTION */
854 
855 /* Used for pages not on another list */
856 static inline void add_to_free_list(struct page *page, struct zone *zone,
857 				    unsigned int order, int migratetype)
858 {
859 	struct free_area *area = &zone->free_area[order];
860 
861 	list_add(&page->lru, &area->free_list[migratetype]);
862 	area->nr_free++;
863 }
864 
865 /* Used for pages not on another list */
866 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
867 					 unsigned int order, int migratetype)
868 {
869 	struct free_area *area = &zone->free_area[order];
870 
871 	list_add_tail(&page->lru, &area->free_list[migratetype]);
872 	area->nr_free++;
873 }
874 
875 /* Used for pages which are on another list */
876 static inline void move_to_free_list(struct page *page, struct zone *zone,
877 				     unsigned int order, int migratetype)
878 {
879 	struct free_area *area = &zone->free_area[order];
880 
881 	list_move(&page->lru, &area->free_list[migratetype]);
882 }
883 
884 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
885 					   unsigned int order)
886 {
887 	/* clear reported state and update reported page count */
888 	if (page_reported(page))
889 		__ClearPageReported(page);
890 
891 	list_del(&page->lru);
892 	__ClearPageBuddy(page);
893 	set_page_private(page, 0);
894 	zone->free_area[order].nr_free--;
895 }
896 
897 /*
898  * If this is not the largest possible page, check if the buddy
899  * of the next-highest order is free. If it is, it's possible
900  * that pages are being freed that will coalesce soon. In case,
901  * that is happening, add the free page to the tail of the list
902  * so it's less likely to be used soon and more likely to be merged
903  * as a higher order page
904  */
905 static inline bool
906 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
907 		   struct page *page, unsigned int order)
908 {
909 	struct page *higher_page, *higher_buddy;
910 	unsigned long combined_pfn;
911 
912 	if (order >= MAX_ORDER - 2)
913 		return false;
914 
915 	if (!pfn_valid_within(buddy_pfn))
916 		return false;
917 
918 	combined_pfn = buddy_pfn & pfn;
919 	higher_page = page + (combined_pfn - pfn);
920 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
921 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
922 
923 	return pfn_valid_within(buddy_pfn) &&
924 	       page_is_buddy(higher_page, higher_buddy, order + 1);
925 }
926 
927 /*
928  * Freeing function for a buddy system allocator.
929  *
930  * The concept of a buddy system is to maintain direct-mapped table
931  * (containing bit values) for memory blocks of various "orders".
932  * The bottom level table contains the map for the smallest allocatable
933  * units of memory (here, pages), and each level above it describes
934  * pairs of units from the levels below, hence, "buddies".
935  * At a high level, all that happens here is marking the table entry
936  * at the bottom level available, and propagating the changes upward
937  * as necessary, plus some accounting needed to play nicely with other
938  * parts of the VM system.
939  * At each level, we keep a list of pages, which are heads of continuous
940  * free pages of length of (1 << order) and marked with PageBuddy.
941  * Page's order is recorded in page_private(page) field.
942  * So when we are allocating or freeing one, we can derive the state of the
943  * other.  That is, if we allocate a small block, and both were
944  * free, the remainder of the region must be split into blocks.
945  * If a block is freed, and its buddy is also free, then this
946  * triggers coalescing into a block of larger size.
947  *
948  * -- nyc
949  */
950 
951 static inline void __free_one_page(struct page *page,
952 		unsigned long pfn,
953 		struct zone *zone, unsigned int order,
954 		int migratetype, bool report)
955 {
956 	struct capture_control *capc = task_capc(zone);
957 	unsigned long buddy_pfn;
958 	unsigned long combined_pfn;
959 	unsigned int max_order;
960 	struct page *buddy;
961 	bool to_tail;
962 
963 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
964 
965 	VM_BUG_ON(!zone_is_initialized(zone));
966 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
967 
968 	VM_BUG_ON(migratetype == -1);
969 	if (likely(!is_migrate_isolate(migratetype)))
970 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
971 
972 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
973 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
974 
975 continue_merging:
976 	while (order < max_order - 1) {
977 		if (compaction_capture(capc, page, order, migratetype)) {
978 			__mod_zone_freepage_state(zone, -(1 << order),
979 								migratetype);
980 			return;
981 		}
982 		buddy_pfn = __find_buddy_pfn(pfn, order);
983 		buddy = page + (buddy_pfn - pfn);
984 
985 		if (!pfn_valid_within(buddy_pfn))
986 			goto done_merging;
987 		if (!page_is_buddy(page, buddy, order))
988 			goto done_merging;
989 		/*
990 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
991 		 * merge with it and move up one order.
992 		 */
993 		if (page_is_guard(buddy))
994 			clear_page_guard(zone, buddy, order, migratetype);
995 		else
996 			del_page_from_free_list(buddy, zone, order);
997 		combined_pfn = buddy_pfn & pfn;
998 		page = page + (combined_pfn - pfn);
999 		pfn = combined_pfn;
1000 		order++;
1001 	}
1002 	if (max_order < MAX_ORDER) {
1003 		/* If we are here, it means order is >= pageblock_order.
1004 		 * We want to prevent merge between freepages on isolate
1005 		 * pageblock and normal pageblock. Without this, pageblock
1006 		 * isolation could cause incorrect freepage or CMA accounting.
1007 		 *
1008 		 * We don't want to hit this code for the more frequent
1009 		 * low-order merging.
1010 		 */
1011 		if (unlikely(has_isolate_pageblock(zone))) {
1012 			int buddy_mt;
1013 
1014 			buddy_pfn = __find_buddy_pfn(pfn, order);
1015 			buddy = page + (buddy_pfn - pfn);
1016 			buddy_mt = get_pageblock_migratetype(buddy);
1017 
1018 			if (migratetype != buddy_mt
1019 					&& (is_migrate_isolate(migratetype) ||
1020 						is_migrate_isolate(buddy_mt)))
1021 				goto done_merging;
1022 		}
1023 		max_order++;
1024 		goto continue_merging;
1025 	}
1026 
1027 done_merging:
1028 	set_page_order(page, order);
1029 
1030 	if (is_shuffle_order(order))
1031 		to_tail = shuffle_pick_tail();
1032 	else
1033 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1034 
1035 	if (to_tail)
1036 		add_to_free_list_tail(page, zone, order, migratetype);
1037 	else
1038 		add_to_free_list(page, zone, order, migratetype);
1039 
1040 	/* Notify page reporting subsystem of freed page */
1041 	if (report)
1042 		page_reporting_notify_free(order);
1043 }
1044 
1045 /*
1046  * A bad page could be due to a number of fields. Instead of multiple branches,
1047  * try and check multiple fields with one check. The caller must do a detailed
1048  * check if necessary.
1049  */
1050 static inline bool page_expected_state(struct page *page,
1051 					unsigned long check_flags)
1052 {
1053 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1054 		return false;
1055 
1056 	if (unlikely((unsigned long)page->mapping |
1057 			page_ref_count(page) |
1058 #ifdef CONFIG_MEMCG
1059 			(unsigned long)page->mem_cgroup |
1060 #endif
1061 			(page->flags & check_flags)))
1062 		return false;
1063 
1064 	return true;
1065 }
1066 
1067 static const char *page_bad_reason(struct page *page, unsigned long flags)
1068 {
1069 	const char *bad_reason = NULL;
1070 
1071 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1072 		bad_reason = "nonzero mapcount";
1073 	if (unlikely(page->mapping != NULL))
1074 		bad_reason = "non-NULL mapping";
1075 	if (unlikely(page_ref_count(page) != 0))
1076 		bad_reason = "nonzero _refcount";
1077 	if (unlikely(page->flags & flags)) {
1078 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1079 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1080 		else
1081 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1082 	}
1083 #ifdef CONFIG_MEMCG
1084 	if (unlikely(page->mem_cgroup))
1085 		bad_reason = "page still charged to cgroup";
1086 #endif
1087 	return bad_reason;
1088 }
1089 
1090 static void check_free_page_bad(struct page *page)
1091 {
1092 	bad_page(page,
1093 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1094 }
1095 
1096 static inline int check_free_page(struct page *page)
1097 {
1098 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1099 		return 0;
1100 
1101 	/* Something has gone sideways, find it */
1102 	check_free_page_bad(page);
1103 	return 1;
1104 }
1105 
1106 static int free_tail_pages_check(struct page *head_page, struct page *page)
1107 {
1108 	int ret = 1;
1109 
1110 	/*
1111 	 * We rely page->lru.next never has bit 0 set, unless the page
1112 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1113 	 */
1114 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1115 
1116 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1117 		ret = 0;
1118 		goto out;
1119 	}
1120 	switch (page - head_page) {
1121 	case 1:
1122 		/* the first tail page: ->mapping may be compound_mapcount() */
1123 		if (unlikely(compound_mapcount(page))) {
1124 			bad_page(page, "nonzero compound_mapcount");
1125 			goto out;
1126 		}
1127 		break;
1128 	case 2:
1129 		/*
1130 		 * the second tail page: ->mapping is
1131 		 * deferred_list.next -- ignore value.
1132 		 */
1133 		break;
1134 	default:
1135 		if (page->mapping != TAIL_MAPPING) {
1136 			bad_page(page, "corrupted mapping in tail page");
1137 			goto out;
1138 		}
1139 		break;
1140 	}
1141 	if (unlikely(!PageTail(page))) {
1142 		bad_page(page, "PageTail not set");
1143 		goto out;
1144 	}
1145 	if (unlikely(compound_head(page) != head_page)) {
1146 		bad_page(page, "compound_head not consistent");
1147 		goto out;
1148 	}
1149 	ret = 0;
1150 out:
1151 	page->mapping = NULL;
1152 	clear_compound_head(page);
1153 	return ret;
1154 }
1155 
1156 static void kernel_init_free_pages(struct page *page, int numpages)
1157 {
1158 	int i;
1159 
1160 	/* s390's use of memset() could override KASAN redzones. */
1161 	kasan_disable_current();
1162 	for (i = 0; i < numpages; i++)
1163 		clear_highpage(page + i);
1164 	kasan_enable_current();
1165 }
1166 
1167 static __always_inline bool free_pages_prepare(struct page *page,
1168 					unsigned int order, bool check_free)
1169 {
1170 	int bad = 0;
1171 
1172 	VM_BUG_ON_PAGE(PageTail(page), page);
1173 
1174 	trace_mm_page_free(page, order);
1175 
1176 	/*
1177 	 * Check tail pages before head page information is cleared to
1178 	 * avoid checking PageCompound for order-0 pages.
1179 	 */
1180 	if (unlikely(order)) {
1181 		bool compound = PageCompound(page);
1182 		int i;
1183 
1184 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1185 
1186 		if (compound)
1187 			ClearPageDoubleMap(page);
1188 		for (i = 1; i < (1 << order); i++) {
1189 			if (compound)
1190 				bad += free_tail_pages_check(page, page + i);
1191 			if (unlikely(check_free_page(page + i))) {
1192 				bad++;
1193 				continue;
1194 			}
1195 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1196 		}
1197 	}
1198 	if (PageMappingFlags(page))
1199 		page->mapping = NULL;
1200 	if (memcg_kmem_enabled() && PageKmemcg(page))
1201 		__memcg_kmem_uncharge_page(page, order);
1202 	if (check_free)
1203 		bad += check_free_page(page);
1204 	if (bad)
1205 		return false;
1206 
1207 	page_cpupid_reset_last(page);
1208 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1209 	reset_page_owner(page, order);
1210 
1211 	if (!PageHighMem(page)) {
1212 		debug_check_no_locks_freed(page_address(page),
1213 					   PAGE_SIZE << order);
1214 		debug_check_no_obj_freed(page_address(page),
1215 					   PAGE_SIZE << order);
1216 	}
1217 	if (want_init_on_free())
1218 		kernel_init_free_pages(page, 1 << order);
1219 
1220 	kernel_poison_pages(page, 1 << order, 0);
1221 	/*
1222 	 * arch_free_page() can make the page's contents inaccessible.  s390
1223 	 * does this.  So nothing which can access the page's contents should
1224 	 * happen after this.
1225 	 */
1226 	arch_free_page(page, order);
1227 
1228 	if (debug_pagealloc_enabled_static())
1229 		kernel_map_pages(page, 1 << order, 0);
1230 
1231 	kasan_free_nondeferred_pages(page, order);
1232 
1233 	return true;
1234 }
1235 
1236 #ifdef CONFIG_DEBUG_VM
1237 /*
1238  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1239  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1240  * moved from pcp lists to free lists.
1241  */
1242 static bool free_pcp_prepare(struct page *page)
1243 {
1244 	return free_pages_prepare(page, 0, true);
1245 }
1246 
1247 static bool bulkfree_pcp_prepare(struct page *page)
1248 {
1249 	if (debug_pagealloc_enabled_static())
1250 		return check_free_page(page);
1251 	else
1252 		return false;
1253 }
1254 #else
1255 /*
1256  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1257  * moving from pcp lists to free list in order to reduce overhead. With
1258  * debug_pagealloc enabled, they are checked also immediately when being freed
1259  * to the pcp lists.
1260  */
1261 static bool free_pcp_prepare(struct page *page)
1262 {
1263 	if (debug_pagealloc_enabled_static())
1264 		return free_pages_prepare(page, 0, true);
1265 	else
1266 		return free_pages_prepare(page, 0, false);
1267 }
1268 
1269 static bool bulkfree_pcp_prepare(struct page *page)
1270 {
1271 	return check_free_page(page);
1272 }
1273 #endif /* CONFIG_DEBUG_VM */
1274 
1275 static inline void prefetch_buddy(struct page *page)
1276 {
1277 	unsigned long pfn = page_to_pfn(page);
1278 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1279 	struct page *buddy = page + (buddy_pfn - pfn);
1280 
1281 	prefetch(buddy);
1282 }
1283 
1284 /*
1285  * Frees a number of pages from the PCP lists
1286  * Assumes all pages on list are in same zone, and of same order.
1287  * count is the number of pages to free.
1288  *
1289  * If the zone was previously in an "all pages pinned" state then look to
1290  * see if this freeing clears that state.
1291  *
1292  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1293  * pinned" detection logic.
1294  */
1295 static void free_pcppages_bulk(struct zone *zone, int count,
1296 					struct per_cpu_pages *pcp)
1297 {
1298 	int migratetype = 0;
1299 	int batch_free = 0;
1300 	int prefetch_nr = 0;
1301 	bool isolated_pageblocks;
1302 	struct page *page, *tmp;
1303 	LIST_HEAD(head);
1304 
1305 	/*
1306 	 * Ensure proper count is passed which otherwise would stuck in the
1307 	 * below while (list_empty(list)) loop.
1308 	 */
1309 	count = min(pcp->count, count);
1310 	while (count) {
1311 		struct list_head *list;
1312 
1313 		/*
1314 		 * Remove pages from lists in a round-robin fashion. A
1315 		 * batch_free count is maintained that is incremented when an
1316 		 * empty list is encountered.  This is so more pages are freed
1317 		 * off fuller lists instead of spinning excessively around empty
1318 		 * lists
1319 		 */
1320 		do {
1321 			batch_free++;
1322 			if (++migratetype == MIGRATE_PCPTYPES)
1323 				migratetype = 0;
1324 			list = &pcp->lists[migratetype];
1325 		} while (list_empty(list));
1326 
1327 		/* This is the only non-empty list. Free them all. */
1328 		if (batch_free == MIGRATE_PCPTYPES)
1329 			batch_free = count;
1330 
1331 		do {
1332 			page = list_last_entry(list, struct page, lru);
1333 			/* must delete to avoid corrupting pcp list */
1334 			list_del(&page->lru);
1335 			pcp->count--;
1336 
1337 			if (bulkfree_pcp_prepare(page))
1338 				continue;
1339 
1340 			list_add_tail(&page->lru, &head);
1341 
1342 			/*
1343 			 * We are going to put the page back to the global
1344 			 * pool, prefetch its buddy to speed up later access
1345 			 * under zone->lock. It is believed the overhead of
1346 			 * an additional test and calculating buddy_pfn here
1347 			 * can be offset by reduced memory latency later. To
1348 			 * avoid excessive prefetching due to large count, only
1349 			 * prefetch buddy for the first pcp->batch nr of pages.
1350 			 */
1351 			if (prefetch_nr++ < pcp->batch)
1352 				prefetch_buddy(page);
1353 		} while (--count && --batch_free && !list_empty(list));
1354 	}
1355 
1356 	spin_lock(&zone->lock);
1357 	isolated_pageblocks = has_isolate_pageblock(zone);
1358 
1359 	/*
1360 	 * Use safe version since after __free_one_page(),
1361 	 * page->lru.next will not point to original list.
1362 	 */
1363 	list_for_each_entry_safe(page, tmp, &head, lru) {
1364 		int mt = get_pcppage_migratetype(page);
1365 		/* MIGRATE_ISOLATE page should not go to pcplists */
1366 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1367 		/* Pageblock could have been isolated meanwhile */
1368 		if (unlikely(isolated_pageblocks))
1369 			mt = get_pageblock_migratetype(page);
1370 
1371 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, true);
1372 		trace_mm_page_pcpu_drain(page, 0, mt);
1373 	}
1374 	spin_unlock(&zone->lock);
1375 }
1376 
1377 static void free_one_page(struct zone *zone,
1378 				struct page *page, unsigned long pfn,
1379 				unsigned int order,
1380 				int migratetype)
1381 {
1382 	spin_lock(&zone->lock);
1383 	if (unlikely(has_isolate_pageblock(zone) ||
1384 		is_migrate_isolate(migratetype))) {
1385 		migratetype = get_pfnblock_migratetype(page, pfn);
1386 	}
1387 	__free_one_page(page, pfn, zone, order, migratetype, true);
1388 	spin_unlock(&zone->lock);
1389 }
1390 
1391 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1392 				unsigned long zone, int nid)
1393 {
1394 	mm_zero_struct_page(page);
1395 	set_page_links(page, zone, nid, pfn);
1396 	init_page_count(page);
1397 	page_mapcount_reset(page);
1398 	page_cpupid_reset_last(page);
1399 	page_kasan_tag_reset(page);
1400 
1401 	INIT_LIST_HEAD(&page->lru);
1402 #ifdef WANT_PAGE_VIRTUAL
1403 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1404 	if (!is_highmem_idx(zone))
1405 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1406 #endif
1407 }
1408 
1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1410 static void __meminit init_reserved_page(unsigned long pfn)
1411 {
1412 	pg_data_t *pgdat;
1413 	int nid, zid;
1414 
1415 	if (!early_page_uninitialised(pfn))
1416 		return;
1417 
1418 	nid = early_pfn_to_nid(pfn);
1419 	pgdat = NODE_DATA(nid);
1420 
1421 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1422 		struct zone *zone = &pgdat->node_zones[zid];
1423 
1424 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1425 			break;
1426 	}
1427 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1428 }
1429 #else
1430 static inline void init_reserved_page(unsigned long pfn)
1431 {
1432 }
1433 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1434 
1435 /*
1436  * Initialised pages do not have PageReserved set. This function is
1437  * called for each range allocated by the bootmem allocator and
1438  * marks the pages PageReserved. The remaining valid pages are later
1439  * sent to the buddy page allocator.
1440  */
1441 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1442 {
1443 	unsigned long start_pfn = PFN_DOWN(start);
1444 	unsigned long end_pfn = PFN_UP(end);
1445 
1446 	for (; start_pfn < end_pfn; start_pfn++) {
1447 		if (pfn_valid(start_pfn)) {
1448 			struct page *page = pfn_to_page(start_pfn);
1449 
1450 			init_reserved_page(start_pfn);
1451 
1452 			/* Avoid false-positive PageTail() */
1453 			INIT_LIST_HEAD(&page->lru);
1454 
1455 			/*
1456 			 * no need for atomic set_bit because the struct
1457 			 * page is not visible yet so nobody should
1458 			 * access it yet.
1459 			 */
1460 			__SetPageReserved(page);
1461 		}
1462 	}
1463 }
1464 
1465 static void __free_pages_ok(struct page *page, unsigned int order)
1466 {
1467 	unsigned long flags;
1468 	int migratetype;
1469 	unsigned long pfn = page_to_pfn(page);
1470 
1471 	if (!free_pages_prepare(page, order, true))
1472 		return;
1473 
1474 	migratetype = get_pfnblock_migratetype(page, pfn);
1475 	local_irq_save(flags);
1476 	__count_vm_events(PGFREE, 1 << order);
1477 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1478 	local_irq_restore(flags);
1479 }
1480 
1481 void __free_pages_core(struct page *page, unsigned int order)
1482 {
1483 	unsigned int nr_pages = 1 << order;
1484 	struct page *p = page;
1485 	unsigned int loop;
1486 
1487 	prefetchw(p);
1488 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1489 		prefetchw(p + 1);
1490 		__ClearPageReserved(p);
1491 		set_page_count(p, 0);
1492 	}
1493 	__ClearPageReserved(p);
1494 	set_page_count(p, 0);
1495 
1496 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1497 	set_page_refcounted(page);
1498 	__free_pages(page, order);
1499 }
1500 
1501 #ifdef CONFIG_NEED_MULTIPLE_NODES
1502 
1503 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1504 
1505 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1506 
1507 /*
1508  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1509  */
1510 int __meminit __early_pfn_to_nid(unsigned long pfn,
1511 					struct mminit_pfnnid_cache *state)
1512 {
1513 	unsigned long start_pfn, end_pfn;
1514 	int nid;
1515 
1516 	if (state->last_start <= pfn && pfn < state->last_end)
1517 		return state->last_nid;
1518 
1519 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1520 	if (nid != NUMA_NO_NODE) {
1521 		state->last_start = start_pfn;
1522 		state->last_end = end_pfn;
1523 		state->last_nid = nid;
1524 	}
1525 
1526 	return nid;
1527 }
1528 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1529 
1530 int __meminit early_pfn_to_nid(unsigned long pfn)
1531 {
1532 	static DEFINE_SPINLOCK(early_pfn_lock);
1533 	int nid;
1534 
1535 	spin_lock(&early_pfn_lock);
1536 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1537 	if (nid < 0)
1538 		nid = first_online_node;
1539 	spin_unlock(&early_pfn_lock);
1540 
1541 	return nid;
1542 }
1543 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1544 
1545 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1546 							unsigned int order)
1547 {
1548 	if (early_page_uninitialised(pfn))
1549 		return;
1550 	__free_pages_core(page, order);
1551 }
1552 
1553 /*
1554  * Check that the whole (or subset of) a pageblock given by the interval of
1555  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1556  * with the migration of free compaction scanner. The scanners then need to
1557  * use only pfn_valid_within() check for arches that allow holes within
1558  * pageblocks.
1559  *
1560  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1561  *
1562  * It's possible on some configurations to have a setup like node0 node1 node0
1563  * i.e. it's possible that all pages within a zones range of pages do not
1564  * belong to a single zone. We assume that a border between node0 and node1
1565  * can occur within a single pageblock, but not a node0 node1 node0
1566  * interleaving within a single pageblock. It is therefore sufficient to check
1567  * the first and last page of a pageblock and avoid checking each individual
1568  * page in a pageblock.
1569  */
1570 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1571 				     unsigned long end_pfn, struct zone *zone)
1572 {
1573 	struct page *start_page;
1574 	struct page *end_page;
1575 
1576 	/* end_pfn is one past the range we are checking */
1577 	end_pfn--;
1578 
1579 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1580 		return NULL;
1581 
1582 	start_page = pfn_to_online_page(start_pfn);
1583 	if (!start_page)
1584 		return NULL;
1585 
1586 	if (page_zone(start_page) != zone)
1587 		return NULL;
1588 
1589 	end_page = pfn_to_page(end_pfn);
1590 
1591 	/* This gives a shorter code than deriving page_zone(end_page) */
1592 	if (page_zone_id(start_page) != page_zone_id(end_page))
1593 		return NULL;
1594 
1595 	return start_page;
1596 }
1597 
1598 void set_zone_contiguous(struct zone *zone)
1599 {
1600 	unsigned long block_start_pfn = zone->zone_start_pfn;
1601 	unsigned long block_end_pfn;
1602 
1603 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1604 	for (; block_start_pfn < zone_end_pfn(zone);
1605 			block_start_pfn = block_end_pfn,
1606 			 block_end_pfn += pageblock_nr_pages) {
1607 
1608 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1609 
1610 		if (!__pageblock_pfn_to_page(block_start_pfn,
1611 					     block_end_pfn, zone))
1612 			return;
1613 		cond_resched();
1614 	}
1615 
1616 	/* We confirm that there is no hole */
1617 	zone->contiguous = true;
1618 }
1619 
1620 void clear_zone_contiguous(struct zone *zone)
1621 {
1622 	zone->contiguous = false;
1623 }
1624 
1625 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1626 static void __init deferred_free_range(unsigned long pfn,
1627 				       unsigned long nr_pages)
1628 {
1629 	struct page *page;
1630 	unsigned long i;
1631 
1632 	if (!nr_pages)
1633 		return;
1634 
1635 	page = pfn_to_page(pfn);
1636 
1637 	/* Free a large naturally-aligned chunk if possible */
1638 	if (nr_pages == pageblock_nr_pages &&
1639 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1640 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1641 		__free_pages_core(page, pageblock_order);
1642 		return;
1643 	}
1644 
1645 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1646 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1647 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1648 		__free_pages_core(page, 0);
1649 	}
1650 }
1651 
1652 /* Completion tracking for deferred_init_memmap() threads */
1653 static atomic_t pgdat_init_n_undone __initdata;
1654 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1655 
1656 static inline void __init pgdat_init_report_one_done(void)
1657 {
1658 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1659 		complete(&pgdat_init_all_done_comp);
1660 }
1661 
1662 /*
1663  * Returns true if page needs to be initialized or freed to buddy allocator.
1664  *
1665  * First we check if pfn is valid on architectures where it is possible to have
1666  * holes within pageblock_nr_pages. On systems where it is not possible, this
1667  * function is optimized out.
1668  *
1669  * Then, we check if a current large page is valid by only checking the validity
1670  * of the head pfn.
1671  */
1672 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1673 {
1674 	if (!pfn_valid_within(pfn))
1675 		return false;
1676 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1677 		return false;
1678 	return true;
1679 }
1680 
1681 /*
1682  * Free pages to buddy allocator. Try to free aligned pages in
1683  * pageblock_nr_pages sizes.
1684  */
1685 static void __init deferred_free_pages(unsigned long pfn,
1686 				       unsigned long end_pfn)
1687 {
1688 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1689 	unsigned long nr_free = 0;
1690 
1691 	for (; pfn < end_pfn; pfn++) {
1692 		if (!deferred_pfn_valid(pfn)) {
1693 			deferred_free_range(pfn - nr_free, nr_free);
1694 			nr_free = 0;
1695 		} else if (!(pfn & nr_pgmask)) {
1696 			deferred_free_range(pfn - nr_free, nr_free);
1697 			nr_free = 1;
1698 		} else {
1699 			nr_free++;
1700 		}
1701 	}
1702 	/* Free the last block of pages to allocator */
1703 	deferred_free_range(pfn - nr_free, nr_free);
1704 }
1705 
1706 /*
1707  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1708  * by performing it only once every pageblock_nr_pages.
1709  * Return number of pages initialized.
1710  */
1711 static unsigned long  __init deferred_init_pages(struct zone *zone,
1712 						 unsigned long pfn,
1713 						 unsigned long end_pfn)
1714 {
1715 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1716 	int nid = zone_to_nid(zone);
1717 	unsigned long nr_pages = 0;
1718 	int zid = zone_idx(zone);
1719 	struct page *page = NULL;
1720 
1721 	for (; pfn < end_pfn; pfn++) {
1722 		if (!deferred_pfn_valid(pfn)) {
1723 			page = NULL;
1724 			continue;
1725 		} else if (!page || !(pfn & nr_pgmask)) {
1726 			page = pfn_to_page(pfn);
1727 		} else {
1728 			page++;
1729 		}
1730 		__init_single_page(page, pfn, zid, nid);
1731 		nr_pages++;
1732 	}
1733 	return (nr_pages);
1734 }
1735 
1736 /*
1737  * This function is meant to pre-load the iterator for the zone init.
1738  * Specifically it walks through the ranges until we are caught up to the
1739  * first_init_pfn value and exits there. If we never encounter the value we
1740  * return false indicating there are no valid ranges left.
1741  */
1742 static bool __init
1743 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1744 				    unsigned long *spfn, unsigned long *epfn,
1745 				    unsigned long first_init_pfn)
1746 {
1747 	u64 j;
1748 
1749 	/*
1750 	 * Start out by walking through the ranges in this zone that have
1751 	 * already been initialized. We don't need to do anything with them
1752 	 * so we just need to flush them out of the system.
1753 	 */
1754 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1755 		if (*epfn <= first_init_pfn)
1756 			continue;
1757 		if (*spfn < first_init_pfn)
1758 			*spfn = first_init_pfn;
1759 		*i = j;
1760 		return true;
1761 	}
1762 
1763 	return false;
1764 }
1765 
1766 /*
1767  * Initialize and free pages. We do it in two loops: first we initialize
1768  * struct page, then free to buddy allocator, because while we are
1769  * freeing pages we can access pages that are ahead (computing buddy
1770  * page in __free_one_page()).
1771  *
1772  * In order to try and keep some memory in the cache we have the loop
1773  * broken along max page order boundaries. This way we will not cause
1774  * any issues with the buddy page computation.
1775  */
1776 static unsigned long __init
1777 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1778 		       unsigned long *end_pfn)
1779 {
1780 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1781 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1782 	unsigned long nr_pages = 0;
1783 	u64 j = *i;
1784 
1785 	/* First we loop through and initialize the page values */
1786 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1787 		unsigned long t;
1788 
1789 		if (mo_pfn <= *start_pfn)
1790 			break;
1791 
1792 		t = min(mo_pfn, *end_pfn);
1793 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1794 
1795 		if (mo_pfn < *end_pfn) {
1796 			*start_pfn = mo_pfn;
1797 			break;
1798 		}
1799 	}
1800 
1801 	/* Reset values and now loop through freeing pages as needed */
1802 	swap(j, *i);
1803 
1804 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1805 		unsigned long t;
1806 
1807 		if (mo_pfn <= spfn)
1808 			break;
1809 
1810 		t = min(mo_pfn, epfn);
1811 		deferred_free_pages(spfn, t);
1812 
1813 		if (mo_pfn <= epfn)
1814 			break;
1815 	}
1816 
1817 	return nr_pages;
1818 }
1819 
1820 static void __init
1821 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1822 			   void *arg)
1823 {
1824 	unsigned long spfn, epfn;
1825 	struct zone *zone = arg;
1826 	u64 i;
1827 
1828 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1829 
1830 	/*
1831 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1832 	 * can avoid introducing any issues with the buddy allocator.
1833 	 */
1834 	while (spfn < end_pfn) {
1835 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1836 		cond_resched();
1837 	}
1838 }
1839 
1840 /* An arch may override for more concurrency. */
1841 __weak int __init
1842 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1843 {
1844 	return 1;
1845 }
1846 
1847 /* Initialise remaining memory on a node */
1848 static int __init deferred_init_memmap(void *data)
1849 {
1850 	pg_data_t *pgdat = data;
1851 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1852 	unsigned long spfn = 0, epfn = 0;
1853 	unsigned long first_init_pfn, flags;
1854 	unsigned long start = jiffies;
1855 	struct zone *zone;
1856 	int zid, max_threads;
1857 	u64 i;
1858 
1859 	/* Bind memory initialisation thread to a local node if possible */
1860 	if (!cpumask_empty(cpumask))
1861 		set_cpus_allowed_ptr(current, cpumask);
1862 
1863 	pgdat_resize_lock(pgdat, &flags);
1864 	first_init_pfn = pgdat->first_deferred_pfn;
1865 	if (first_init_pfn == ULONG_MAX) {
1866 		pgdat_resize_unlock(pgdat, &flags);
1867 		pgdat_init_report_one_done();
1868 		return 0;
1869 	}
1870 
1871 	/* Sanity check boundaries */
1872 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1873 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1874 	pgdat->first_deferred_pfn = ULONG_MAX;
1875 
1876 	/*
1877 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1878 	 * interrupt thread must allocate this early in boot, zone must be
1879 	 * pre-grown prior to start of deferred page initialization.
1880 	 */
1881 	pgdat_resize_unlock(pgdat, &flags);
1882 
1883 	/* Only the highest zone is deferred so find it */
1884 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1885 		zone = pgdat->node_zones + zid;
1886 		if (first_init_pfn < zone_end_pfn(zone))
1887 			break;
1888 	}
1889 
1890 	/* If the zone is empty somebody else may have cleared out the zone */
1891 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1892 						 first_init_pfn))
1893 		goto zone_empty;
1894 
1895 	max_threads = deferred_page_init_max_threads(cpumask);
1896 
1897 	while (spfn < epfn) {
1898 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1899 		struct padata_mt_job job = {
1900 			.thread_fn   = deferred_init_memmap_chunk,
1901 			.fn_arg      = zone,
1902 			.start       = spfn,
1903 			.size        = epfn_align - spfn,
1904 			.align       = PAGES_PER_SECTION,
1905 			.min_chunk   = PAGES_PER_SECTION,
1906 			.max_threads = max_threads,
1907 		};
1908 
1909 		padata_do_multithreaded(&job);
1910 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1911 						    epfn_align);
1912 	}
1913 zone_empty:
1914 	/* Sanity check that the next zone really is unpopulated */
1915 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1916 
1917 	pr_info("node %d deferred pages initialised in %ums\n",
1918 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1919 
1920 	pgdat_init_report_one_done();
1921 	return 0;
1922 }
1923 
1924 /*
1925  * If this zone has deferred pages, try to grow it by initializing enough
1926  * deferred pages to satisfy the allocation specified by order, rounded up to
1927  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1928  * of SECTION_SIZE bytes by initializing struct pages in increments of
1929  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1930  *
1931  * Return true when zone was grown, otherwise return false. We return true even
1932  * when we grow less than requested, to let the caller decide if there are
1933  * enough pages to satisfy the allocation.
1934  *
1935  * Note: We use noinline because this function is needed only during boot, and
1936  * it is called from a __ref function _deferred_grow_zone. This way we are
1937  * making sure that it is not inlined into permanent text section.
1938  */
1939 static noinline bool __init
1940 deferred_grow_zone(struct zone *zone, unsigned int order)
1941 {
1942 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1943 	pg_data_t *pgdat = zone->zone_pgdat;
1944 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1945 	unsigned long spfn, epfn, flags;
1946 	unsigned long nr_pages = 0;
1947 	u64 i;
1948 
1949 	/* Only the last zone may have deferred pages */
1950 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1951 		return false;
1952 
1953 	pgdat_resize_lock(pgdat, &flags);
1954 
1955 	/*
1956 	 * If someone grew this zone while we were waiting for spinlock, return
1957 	 * true, as there might be enough pages already.
1958 	 */
1959 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1960 		pgdat_resize_unlock(pgdat, &flags);
1961 		return true;
1962 	}
1963 
1964 	/* If the zone is empty somebody else may have cleared out the zone */
1965 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1966 						 first_deferred_pfn)) {
1967 		pgdat->first_deferred_pfn = ULONG_MAX;
1968 		pgdat_resize_unlock(pgdat, &flags);
1969 		/* Retry only once. */
1970 		return first_deferred_pfn != ULONG_MAX;
1971 	}
1972 
1973 	/*
1974 	 * Initialize and free pages in MAX_ORDER sized increments so
1975 	 * that we can avoid introducing any issues with the buddy
1976 	 * allocator.
1977 	 */
1978 	while (spfn < epfn) {
1979 		/* update our first deferred PFN for this section */
1980 		first_deferred_pfn = spfn;
1981 
1982 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1983 		touch_nmi_watchdog();
1984 
1985 		/* We should only stop along section boundaries */
1986 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1987 			continue;
1988 
1989 		/* If our quota has been met we can stop here */
1990 		if (nr_pages >= nr_pages_needed)
1991 			break;
1992 	}
1993 
1994 	pgdat->first_deferred_pfn = spfn;
1995 	pgdat_resize_unlock(pgdat, &flags);
1996 
1997 	return nr_pages > 0;
1998 }
1999 
2000 /*
2001  * deferred_grow_zone() is __init, but it is called from
2002  * get_page_from_freelist() during early boot until deferred_pages permanently
2003  * disables this call. This is why we have refdata wrapper to avoid warning,
2004  * and to ensure that the function body gets unloaded.
2005  */
2006 static bool __ref
2007 _deferred_grow_zone(struct zone *zone, unsigned int order)
2008 {
2009 	return deferred_grow_zone(zone, order);
2010 }
2011 
2012 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2013 
2014 void __init page_alloc_init_late(void)
2015 {
2016 	struct zone *zone;
2017 	int nid;
2018 
2019 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2020 
2021 	/* There will be num_node_state(N_MEMORY) threads */
2022 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2023 	for_each_node_state(nid, N_MEMORY) {
2024 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2025 	}
2026 
2027 	/* Block until all are initialised */
2028 	wait_for_completion(&pgdat_init_all_done_comp);
2029 
2030 	/*
2031 	 * The number of managed pages has changed due to the initialisation
2032 	 * so the pcpu batch and high limits needs to be updated or the limits
2033 	 * will be artificially small.
2034 	 */
2035 	for_each_populated_zone(zone)
2036 		zone_pcp_update(zone);
2037 
2038 	/*
2039 	 * We initialized the rest of the deferred pages.  Permanently disable
2040 	 * on-demand struct page initialization.
2041 	 */
2042 	static_branch_disable(&deferred_pages);
2043 
2044 	/* Reinit limits that are based on free pages after the kernel is up */
2045 	files_maxfiles_init();
2046 #endif
2047 
2048 	/* Discard memblock private memory */
2049 	memblock_discard();
2050 
2051 	for_each_node_state(nid, N_MEMORY)
2052 		shuffle_free_memory(NODE_DATA(nid));
2053 
2054 	for_each_populated_zone(zone)
2055 		set_zone_contiguous(zone);
2056 }
2057 
2058 #ifdef CONFIG_CMA
2059 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2060 void __init init_cma_reserved_pageblock(struct page *page)
2061 {
2062 	unsigned i = pageblock_nr_pages;
2063 	struct page *p = page;
2064 
2065 	do {
2066 		__ClearPageReserved(p);
2067 		set_page_count(p, 0);
2068 	} while (++p, --i);
2069 
2070 	set_pageblock_migratetype(page, MIGRATE_CMA);
2071 
2072 	if (pageblock_order >= MAX_ORDER) {
2073 		i = pageblock_nr_pages;
2074 		p = page;
2075 		do {
2076 			set_page_refcounted(p);
2077 			__free_pages(p, MAX_ORDER - 1);
2078 			p += MAX_ORDER_NR_PAGES;
2079 		} while (i -= MAX_ORDER_NR_PAGES);
2080 	} else {
2081 		set_page_refcounted(page);
2082 		__free_pages(page, pageblock_order);
2083 	}
2084 
2085 	adjust_managed_page_count(page, pageblock_nr_pages);
2086 }
2087 #endif
2088 
2089 /*
2090  * The order of subdivision here is critical for the IO subsystem.
2091  * Please do not alter this order without good reasons and regression
2092  * testing. Specifically, as large blocks of memory are subdivided,
2093  * the order in which smaller blocks are delivered depends on the order
2094  * they're subdivided in this function. This is the primary factor
2095  * influencing the order in which pages are delivered to the IO
2096  * subsystem according to empirical testing, and this is also justified
2097  * by considering the behavior of a buddy system containing a single
2098  * large block of memory acted on by a series of small allocations.
2099  * This behavior is a critical factor in sglist merging's success.
2100  *
2101  * -- nyc
2102  */
2103 static inline void expand(struct zone *zone, struct page *page,
2104 	int low, int high, int migratetype)
2105 {
2106 	unsigned long size = 1 << high;
2107 
2108 	while (high > low) {
2109 		high--;
2110 		size >>= 1;
2111 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2112 
2113 		/*
2114 		 * Mark as guard pages (or page), that will allow to
2115 		 * merge back to allocator when buddy will be freed.
2116 		 * Corresponding page table entries will not be touched,
2117 		 * pages will stay not present in virtual address space
2118 		 */
2119 		if (set_page_guard(zone, &page[size], high, migratetype))
2120 			continue;
2121 
2122 		add_to_free_list(&page[size], zone, high, migratetype);
2123 		set_page_order(&page[size], high);
2124 	}
2125 }
2126 
2127 static void check_new_page_bad(struct page *page)
2128 {
2129 	if (unlikely(page->flags & __PG_HWPOISON)) {
2130 		/* Don't complain about hwpoisoned pages */
2131 		page_mapcount_reset(page); /* remove PageBuddy */
2132 		return;
2133 	}
2134 
2135 	bad_page(page,
2136 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2137 }
2138 
2139 /*
2140  * This page is about to be returned from the page allocator
2141  */
2142 static inline int check_new_page(struct page *page)
2143 {
2144 	if (likely(page_expected_state(page,
2145 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2146 		return 0;
2147 
2148 	check_new_page_bad(page);
2149 	return 1;
2150 }
2151 
2152 static inline bool free_pages_prezeroed(void)
2153 {
2154 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2155 		page_poisoning_enabled()) || want_init_on_free();
2156 }
2157 
2158 #ifdef CONFIG_DEBUG_VM
2159 /*
2160  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2161  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2162  * also checked when pcp lists are refilled from the free lists.
2163  */
2164 static inline bool check_pcp_refill(struct page *page)
2165 {
2166 	if (debug_pagealloc_enabled_static())
2167 		return check_new_page(page);
2168 	else
2169 		return false;
2170 }
2171 
2172 static inline bool check_new_pcp(struct page *page)
2173 {
2174 	return check_new_page(page);
2175 }
2176 #else
2177 /*
2178  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2179  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2180  * enabled, they are also checked when being allocated from the pcp lists.
2181  */
2182 static inline bool check_pcp_refill(struct page *page)
2183 {
2184 	return check_new_page(page);
2185 }
2186 static inline bool check_new_pcp(struct page *page)
2187 {
2188 	if (debug_pagealloc_enabled_static())
2189 		return check_new_page(page);
2190 	else
2191 		return false;
2192 }
2193 #endif /* CONFIG_DEBUG_VM */
2194 
2195 static bool check_new_pages(struct page *page, unsigned int order)
2196 {
2197 	int i;
2198 	for (i = 0; i < (1 << order); i++) {
2199 		struct page *p = page + i;
2200 
2201 		if (unlikely(check_new_page(p)))
2202 			return true;
2203 	}
2204 
2205 	return false;
2206 }
2207 
2208 inline void post_alloc_hook(struct page *page, unsigned int order,
2209 				gfp_t gfp_flags)
2210 {
2211 	set_page_private(page, 0);
2212 	set_page_refcounted(page);
2213 
2214 	arch_alloc_page(page, order);
2215 	if (debug_pagealloc_enabled_static())
2216 		kernel_map_pages(page, 1 << order, 1);
2217 	kasan_alloc_pages(page, order);
2218 	kernel_poison_pages(page, 1 << order, 1);
2219 	set_page_owner(page, order, gfp_flags);
2220 }
2221 
2222 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2223 							unsigned int alloc_flags)
2224 {
2225 	post_alloc_hook(page, order, gfp_flags);
2226 
2227 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2228 		kernel_init_free_pages(page, 1 << order);
2229 
2230 	if (order && (gfp_flags & __GFP_COMP))
2231 		prep_compound_page(page, order);
2232 
2233 	/*
2234 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2235 	 * allocate the page. The expectation is that the caller is taking
2236 	 * steps that will free more memory. The caller should avoid the page
2237 	 * being used for !PFMEMALLOC purposes.
2238 	 */
2239 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2240 		set_page_pfmemalloc(page);
2241 	else
2242 		clear_page_pfmemalloc(page);
2243 }
2244 
2245 /*
2246  * Go through the free lists for the given migratetype and remove
2247  * the smallest available page from the freelists
2248  */
2249 static __always_inline
2250 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2251 						int migratetype)
2252 {
2253 	unsigned int current_order;
2254 	struct free_area *area;
2255 	struct page *page;
2256 
2257 	/* Find a page of the appropriate size in the preferred list */
2258 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2259 		area = &(zone->free_area[current_order]);
2260 		page = get_page_from_free_area(area, migratetype);
2261 		if (!page)
2262 			continue;
2263 		del_page_from_free_list(page, zone, current_order);
2264 		expand(zone, page, order, current_order, migratetype);
2265 		set_pcppage_migratetype(page, migratetype);
2266 		return page;
2267 	}
2268 
2269 	return NULL;
2270 }
2271 
2272 
2273 /*
2274  * This array describes the order lists are fallen back to when
2275  * the free lists for the desirable migrate type are depleted
2276  */
2277 static int fallbacks[MIGRATE_TYPES][3] = {
2278 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2279 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2280 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2281 #ifdef CONFIG_CMA
2282 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2283 #endif
2284 #ifdef CONFIG_MEMORY_ISOLATION
2285 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2286 #endif
2287 };
2288 
2289 #ifdef CONFIG_CMA
2290 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2291 					unsigned int order)
2292 {
2293 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2294 }
2295 #else
2296 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2297 					unsigned int order) { return NULL; }
2298 #endif
2299 
2300 /*
2301  * Move the free pages in a range to the free lists of the requested type.
2302  * Note that start_page and end_pages are not aligned on a pageblock
2303  * boundary. If alignment is required, use move_freepages_block()
2304  */
2305 static int move_freepages(struct zone *zone,
2306 			  struct page *start_page, struct page *end_page,
2307 			  int migratetype, int *num_movable)
2308 {
2309 	struct page *page;
2310 	unsigned int order;
2311 	int pages_moved = 0;
2312 
2313 	for (page = start_page; page <= end_page;) {
2314 		if (!pfn_valid_within(page_to_pfn(page))) {
2315 			page++;
2316 			continue;
2317 		}
2318 
2319 		if (!PageBuddy(page)) {
2320 			/*
2321 			 * We assume that pages that could be isolated for
2322 			 * migration are movable. But we don't actually try
2323 			 * isolating, as that would be expensive.
2324 			 */
2325 			if (num_movable &&
2326 					(PageLRU(page) || __PageMovable(page)))
2327 				(*num_movable)++;
2328 
2329 			page++;
2330 			continue;
2331 		}
2332 
2333 		/* Make sure we are not inadvertently changing nodes */
2334 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2335 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2336 
2337 		order = page_order(page);
2338 		move_to_free_list(page, zone, order, migratetype);
2339 		page += 1 << order;
2340 		pages_moved += 1 << order;
2341 	}
2342 
2343 	return pages_moved;
2344 }
2345 
2346 int move_freepages_block(struct zone *zone, struct page *page,
2347 				int migratetype, int *num_movable)
2348 {
2349 	unsigned long start_pfn, end_pfn;
2350 	struct page *start_page, *end_page;
2351 
2352 	if (num_movable)
2353 		*num_movable = 0;
2354 
2355 	start_pfn = page_to_pfn(page);
2356 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2357 	start_page = pfn_to_page(start_pfn);
2358 	end_page = start_page + pageblock_nr_pages - 1;
2359 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2360 
2361 	/* Do not cross zone boundaries */
2362 	if (!zone_spans_pfn(zone, start_pfn))
2363 		start_page = page;
2364 	if (!zone_spans_pfn(zone, end_pfn))
2365 		return 0;
2366 
2367 	return move_freepages(zone, start_page, end_page, migratetype,
2368 								num_movable);
2369 }
2370 
2371 static void change_pageblock_range(struct page *pageblock_page,
2372 					int start_order, int migratetype)
2373 {
2374 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2375 
2376 	while (nr_pageblocks--) {
2377 		set_pageblock_migratetype(pageblock_page, migratetype);
2378 		pageblock_page += pageblock_nr_pages;
2379 	}
2380 }
2381 
2382 /*
2383  * When we are falling back to another migratetype during allocation, try to
2384  * steal extra free pages from the same pageblocks to satisfy further
2385  * allocations, instead of polluting multiple pageblocks.
2386  *
2387  * If we are stealing a relatively large buddy page, it is likely there will
2388  * be more free pages in the pageblock, so try to steal them all. For
2389  * reclaimable and unmovable allocations, we steal regardless of page size,
2390  * as fragmentation caused by those allocations polluting movable pageblocks
2391  * is worse than movable allocations stealing from unmovable and reclaimable
2392  * pageblocks.
2393  */
2394 static bool can_steal_fallback(unsigned int order, int start_mt)
2395 {
2396 	/*
2397 	 * Leaving this order check is intended, although there is
2398 	 * relaxed order check in next check. The reason is that
2399 	 * we can actually steal whole pageblock if this condition met,
2400 	 * but, below check doesn't guarantee it and that is just heuristic
2401 	 * so could be changed anytime.
2402 	 */
2403 	if (order >= pageblock_order)
2404 		return true;
2405 
2406 	if (order >= pageblock_order / 2 ||
2407 		start_mt == MIGRATE_RECLAIMABLE ||
2408 		start_mt == MIGRATE_UNMOVABLE ||
2409 		page_group_by_mobility_disabled)
2410 		return true;
2411 
2412 	return false;
2413 }
2414 
2415 static inline void boost_watermark(struct zone *zone)
2416 {
2417 	unsigned long max_boost;
2418 
2419 	if (!watermark_boost_factor)
2420 		return;
2421 	/*
2422 	 * Don't bother in zones that are unlikely to produce results.
2423 	 * On small machines, including kdump capture kernels running
2424 	 * in a small area, boosting the watermark can cause an out of
2425 	 * memory situation immediately.
2426 	 */
2427 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2428 		return;
2429 
2430 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2431 			watermark_boost_factor, 10000);
2432 
2433 	/*
2434 	 * high watermark may be uninitialised if fragmentation occurs
2435 	 * very early in boot so do not boost. We do not fall
2436 	 * through and boost by pageblock_nr_pages as failing
2437 	 * allocations that early means that reclaim is not going
2438 	 * to help and it may even be impossible to reclaim the
2439 	 * boosted watermark resulting in a hang.
2440 	 */
2441 	if (!max_boost)
2442 		return;
2443 
2444 	max_boost = max(pageblock_nr_pages, max_boost);
2445 
2446 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2447 		max_boost);
2448 }
2449 
2450 /*
2451  * This function implements actual steal behaviour. If order is large enough,
2452  * we can steal whole pageblock. If not, we first move freepages in this
2453  * pageblock to our migratetype and determine how many already-allocated pages
2454  * are there in the pageblock with a compatible migratetype. If at least half
2455  * of pages are free or compatible, we can change migratetype of the pageblock
2456  * itself, so pages freed in the future will be put on the correct free list.
2457  */
2458 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2459 		unsigned int alloc_flags, int start_type, bool whole_block)
2460 {
2461 	unsigned int current_order = page_order(page);
2462 	int free_pages, movable_pages, alike_pages;
2463 	int old_block_type;
2464 
2465 	old_block_type = get_pageblock_migratetype(page);
2466 
2467 	/*
2468 	 * This can happen due to races and we want to prevent broken
2469 	 * highatomic accounting.
2470 	 */
2471 	if (is_migrate_highatomic(old_block_type))
2472 		goto single_page;
2473 
2474 	/* Take ownership for orders >= pageblock_order */
2475 	if (current_order >= pageblock_order) {
2476 		change_pageblock_range(page, current_order, start_type);
2477 		goto single_page;
2478 	}
2479 
2480 	/*
2481 	 * Boost watermarks to increase reclaim pressure to reduce the
2482 	 * likelihood of future fallbacks. Wake kswapd now as the node
2483 	 * may be balanced overall and kswapd will not wake naturally.
2484 	 */
2485 	boost_watermark(zone);
2486 	if (alloc_flags & ALLOC_KSWAPD)
2487 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2488 
2489 	/* We are not allowed to try stealing from the whole block */
2490 	if (!whole_block)
2491 		goto single_page;
2492 
2493 	free_pages = move_freepages_block(zone, page, start_type,
2494 						&movable_pages);
2495 	/*
2496 	 * Determine how many pages are compatible with our allocation.
2497 	 * For movable allocation, it's the number of movable pages which
2498 	 * we just obtained. For other types it's a bit more tricky.
2499 	 */
2500 	if (start_type == MIGRATE_MOVABLE) {
2501 		alike_pages = movable_pages;
2502 	} else {
2503 		/*
2504 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2505 		 * to MOVABLE pageblock, consider all non-movable pages as
2506 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2507 		 * vice versa, be conservative since we can't distinguish the
2508 		 * exact migratetype of non-movable pages.
2509 		 */
2510 		if (old_block_type == MIGRATE_MOVABLE)
2511 			alike_pages = pageblock_nr_pages
2512 						- (free_pages + movable_pages);
2513 		else
2514 			alike_pages = 0;
2515 	}
2516 
2517 	/* moving whole block can fail due to zone boundary conditions */
2518 	if (!free_pages)
2519 		goto single_page;
2520 
2521 	/*
2522 	 * If a sufficient number of pages in the block are either free or of
2523 	 * comparable migratability as our allocation, claim the whole block.
2524 	 */
2525 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2526 			page_group_by_mobility_disabled)
2527 		set_pageblock_migratetype(page, start_type);
2528 
2529 	return;
2530 
2531 single_page:
2532 	move_to_free_list(page, zone, current_order, start_type);
2533 }
2534 
2535 /*
2536  * Check whether there is a suitable fallback freepage with requested order.
2537  * If only_stealable is true, this function returns fallback_mt only if
2538  * we can steal other freepages all together. This would help to reduce
2539  * fragmentation due to mixed migratetype pages in one pageblock.
2540  */
2541 int find_suitable_fallback(struct free_area *area, unsigned int order,
2542 			int migratetype, bool only_stealable, bool *can_steal)
2543 {
2544 	int i;
2545 	int fallback_mt;
2546 
2547 	if (area->nr_free == 0)
2548 		return -1;
2549 
2550 	*can_steal = false;
2551 	for (i = 0;; i++) {
2552 		fallback_mt = fallbacks[migratetype][i];
2553 		if (fallback_mt == MIGRATE_TYPES)
2554 			break;
2555 
2556 		if (free_area_empty(area, fallback_mt))
2557 			continue;
2558 
2559 		if (can_steal_fallback(order, migratetype))
2560 			*can_steal = true;
2561 
2562 		if (!only_stealable)
2563 			return fallback_mt;
2564 
2565 		if (*can_steal)
2566 			return fallback_mt;
2567 	}
2568 
2569 	return -1;
2570 }
2571 
2572 /*
2573  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2574  * there are no empty page blocks that contain a page with a suitable order
2575  */
2576 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2577 				unsigned int alloc_order)
2578 {
2579 	int mt;
2580 	unsigned long max_managed, flags;
2581 
2582 	/*
2583 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2584 	 * Check is race-prone but harmless.
2585 	 */
2586 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2587 	if (zone->nr_reserved_highatomic >= max_managed)
2588 		return;
2589 
2590 	spin_lock_irqsave(&zone->lock, flags);
2591 
2592 	/* Recheck the nr_reserved_highatomic limit under the lock */
2593 	if (zone->nr_reserved_highatomic >= max_managed)
2594 		goto out_unlock;
2595 
2596 	/* Yoink! */
2597 	mt = get_pageblock_migratetype(page);
2598 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2599 	    && !is_migrate_cma(mt)) {
2600 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2601 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2602 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2603 	}
2604 
2605 out_unlock:
2606 	spin_unlock_irqrestore(&zone->lock, flags);
2607 }
2608 
2609 /*
2610  * Used when an allocation is about to fail under memory pressure. This
2611  * potentially hurts the reliability of high-order allocations when under
2612  * intense memory pressure but failed atomic allocations should be easier
2613  * to recover from than an OOM.
2614  *
2615  * If @force is true, try to unreserve a pageblock even though highatomic
2616  * pageblock is exhausted.
2617  */
2618 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2619 						bool force)
2620 {
2621 	struct zonelist *zonelist = ac->zonelist;
2622 	unsigned long flags;
2623 	struct zoneref *z;
2624 	struct zone *zone;
2625 	struct page *page;
2626 	int order;
2627 	bool ret;
2628 
2629 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2630 								ac->nodemask) {
2631 		/*
2632 		 * Preserve at least one pageblock unless memory pressure
2633 		 * is really high.
2634 		 */
2635 		if (!force && zone->nr_reserved_highatomic <=
2636 					pageblock_nr_pages)
2637 			continue;
2638 
2639 		spin_lock_irqsave(&zone->lock, flags);
2640 		for (order = 0; order < MAX_ORDER; order++) {
2641 			struct free_area *area = &(zone->free_area[order]);
2642 
2643 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2644 			if (!page)
2645 				continue;
2646 
2647 			/*
2648 			 * In page freeing path, migratetype change is racy so
2649 			 * we can counter several free pages in a pageblock
2650 			 * in this loop althoug we changed the pageblock type
2651 			 * from highatomic to ac->migratetype. So we should
2652 			 * adjust the count once.
2653 			 */
2654 			if (is_migrate_highatomic_page(page)) {
2655 				/*
2656 				 * It should never happen but changes to
2657 				 * locking could inadvertently allow a per-cpu
2658 				 * drain to add pages to MIGRATE_HIGHATOMIC
2659 				 * while unreserving so be safe and watch for
2660 				 * underflows.
2661 				 */
2662 				zone->nr_reserved_highatomic -= min(
2663 						pageblock_nr_pages,
2664 						zone->nr_reserved_highatomic);
2665 			}
2666 
2667 			/*
2668 			 * Convert to ac->migratetype and avoid the normal
2669 			 * pageblock stealing heuristics. Minimally, the caller
2670 			 * is doing the work and needs the pages. More
2671 			 * importantly, if the block was always converted to
2672 			 * MIGRATE_UNMOVABLE or another type then the number
2673 			 * of pageblocks that cannot be completely freed
2674 			 * may increase.
2675 			 */
2676 			set_pageblock_migratetype(page, ac->migratetype);
2677 			ret = move_freepages_block(zone, page, ac->migratetype,
2678 									NULL);
2679 			if (ret) {
2680 				spin_unlock_irqrestore(&zone->lock, flags);
2681 				return ret;
2682 			}
2683 		}
2684 		spin_unlock_irqrestore(&zone->lock, flags);
2685 	}
2686 
2687 	return false;
2688 }
2689 
2690 /*
2691  * Try finding a free buddy page on the fallback list and put it on the free
2692  * list of requested migratetype, possibly along with other pages from the same
2693  * block, depending on fragmentation avoidance heuristics. Returns true if
2694  * fallback was found so that __rmqueue_smallest() can grab it.
2695  *
2696  * The use of signed ints for order and current_order is a deliberate
2697  * deviation from the rest of this file, to make the for loop
2698  * condition simpler.
2699  */
2700 static __always_inline bool
2701 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2702 						unsigned int alloc_flags)
2703 {
2704 	struct free_area *area;
2705 	int current_order;
2706 	int min_order = order;
2707 	struct page *page;
2708 	int fallback_mt;
2709 	bool can_steal;
2710 
2711 	/*
2712 	 * Do not steal pages from freelists belonging to other pageblocks
2713 	 * i.e. orders < pageblock_order. If there are no local zones free,
2714 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2715 	 */
2716 	if (alloc_flags & ALLOC_NOFRAGMENT)
2717 		min_order = pageblock_order;
2718 
2719 	/*
2720 	 * Find the largest available free page in the other list. This roughly
2721 	 * approximates finding the pageblock with the most free pages, which
2722 	 * would be too costly to do exactly.
2723 	 */
2724 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2725 				--current_order) {
2726 		area = &(zone->free_area[current_order]);
2727 		fallback_mt = find_suitable_fallback(area, current_order,
2728 				start_migratetype, false, &can_steal);
2729 		if (fallback_mt == -1)
2730 			continue;
2731 
2732 		/*
2733 		 * We cannot steal all free pages from the pageblock and the
2734 		 * requested migratetype is movable. In that case it's better to
2735 		 * steal and split the smallest available page instead of the
2736 		 * largest available page, because even if the next movable
2737 		 * allocation falls back into a different pageblock than this
2738 		 * one, it won't cause permanent fragmentation.
2739 		 */
2740 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2741 					&& current_order > order)
2742 			goto find_smallest;
2743 
2744 		goto do_steal;
2745 	}
2746 
2747 	return false;
2748 
2749 find_smallest:
2750 	for (current_order = order; current_order < MAX_ORDER;
2751 							current_order++) {
2752 		area = &(zone->free_area[current_order]);
2753 		fallback_mt = find_suitable_fallback(area, current_order,
2754 				start_migratetype, false, &can_steal);
2755 		if (fallback_mt != -1)
2756 			break;
2757 	}
2758 
2759 	/*
2760 	 * This should not happen - we already found a suitable fallback
2761 	 * when looking for the largest page.
2762 	 */
2763 	VM_BUG_ON(current_order == MAX_ORDER);
2764 
2765 do_steal:
2766 	page = get_page_from_free_area(area, fallback_mt);
2767 
2768 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2769 								can_steal);
2770 
2771 	trace_mm_page_alloc_extfrag(page, order, current_order,
2772 		start_migratetype, fallback_mt);
2773 
2774 	return true;
2775 
2776 }
2777 
2778 /*
2779  * Do the hard work of removing an element from the buddy allocator.
2780  * Call me with the zone->lock already held.
2781  */
2782 static __always_inline struct page *
2783 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2784 						unsigned int alloc_flags)
2785 {
2786 	struct page *page;
2787 
2788 #ifdef CONFIG_CMA
2789 	/*
2790 	 * Balance movable allocations between regular and CMA areas by
2791 	 * allocating from CMA when over half of the zone's free memory
2792 	 * is in the CMA area.
2793 	 */
2794 	if (alloc_flags & ALLOC_CMA &&
2795 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2796 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2797 		page = __rmqueue_cma_fallback(zone, order);
2798 		if (page)
2799 			return page;
2800 	}
2801 #endif
2802 retry:
2803 	page = __rmqueue_smallest(zone, order, migratetype);
2804 	if (unlikely(!page)) {
2805 		if (alloc_flags & ALLOC_CMA)
2806 			page = __rmqueue_cma_fallback(zone, order);
2807 
2808 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2809 								alloc_flags))
2810 			goto retry;
2811 	}
2812 
2813 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2814 	return page;
2815 }
2816 
2817 /*
2818  * Obtain a specified number of elements from the buddy allocator, all under
2819  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2820  * Returns the number of new pages which were placed at *list.
2821  */
2822 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2823 			unsigned long count, struct list_head *list,
2824 			int migratetype, unsigned int alloc_flags)
2825 {
2826 	int i, alloced = 0;
2827 
2828 	spin_lock(&zone->lock);
2829 	for (i = 0; i < count; ++i) {
2830 		struct page *page = __rmqueue(zone, order, migratetype,
2831 								alloc_flags);
2832 		if (unlikely(page == NULL))
2833 			break;
2834 
2835 		if (unlikely(check_pcp_refill(page)))
2836 			continue;
2837 
2838 		/*
2839 		 * Split buddy pages returned by expand() are received here in
2840 		 * physical page order. The page is added to the tail of
2841 		 * caller's list. From the callers perspective, the linked list
2842 		 * is ordered by page number under some conditions. This is
2843 		 * useful for IO devices that can forward direction from the
2844 		 * head, thus also in the physical page order. This is useful
2845 		 * for IO devices that can merge IO requests if the physical
2846 		 * pages are ordered properly.
2847 		 */
2848 		list_add_tail(&page->lru, list);
2849 		alloced++;
2850 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2851 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2852 					      -(1 << order));
2853 	}
2854 
2855 	/*
2856 	 * i pages were removed from the buddy list even if some leak due
2857 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2858 	 * on i. Do not confuse with 'alloced' which is the number of
2859 	 * pages added to the pcp list.
2860 	 */
2861 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2862 	spin_unlock(&zone->lock);
2863 	return alloced;
2864 }
2865 
2866 #ifdef CONFIG_NUMA
2867 /*
2868  * Called from the vmstat counter updater to drain pagesets of this
2869  * currently executing processor on remote nodes after they have
2870  * expired.
2871  *
2872  * Note that this function must be called with the thread pinned to
2873  * a single processor.
2874  */
2875 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2876 {
2877 	unsigned long flags;
2878 	int to_drain, batch;
2879 
2880 	local_irq_save(flags);
2881 	batch = READ_ONCE(pcp->batch);
2882 	to_drain = min(pcp->count, batch);
2883 	if (to_drain > 0)
2884 		free_pcppages_bulk(zone, to_drain, pcp);
2885 	local_irq_restore(flags);
2886 }
2887 #endif
2888 
2889 /*
2890  * Drain pcplists of the indicated processor and zone.
2891  *
2892  * The processor must either be the current processor and the
2893  * thread pinned to the current processor or a processor that
2894  * is not online.
2895  */
2896 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2897 {
2898 	unsigned long flags;
2899 	struct per_cpu_pageset *pset;
2900 	struct per_cpu_pages *pcp;
2901 
2902 	local_irq_save(flags);
2903 	pset = per_cpu_ptr(zone->pageset, cpu);
2904 
2905 	pcp = &pset->pcp;
2906 	if (pcp->count)
2907 		free_pcppages_bulk(zone, pcp->count, pcp);
2908 	local_irq_restore(flags);
2909 }
2910 
2911 /*
2912  * Drain pcplists of all zones on the indicated processor.
2913  *
2914  * The processor must either be the current processor and the
2915  * thread pinned to the current processor or a processor that
2916  * is not online.
2917  */
2918 static void drain_pages(unsigned int cpu)
2919 {
2920 	struct zone *zone;
2921 
2922 	for_each_populated_zone(zone) {
2923 		drain_pages_zone(cpu, zone);
2924 	}
2925 }
2926 
2927 /*
2928  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2929  *
2930  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2931  * the single zone's pages.
2932  */
2933 void drain_local_pages(struct zone *zone)
2934 {
2935 	int cpu = smp_processor_id();
2936 
2937 	if (zone)
2938 		drain_pages_zone(cpu, zone);
2939 	else
2940 		drain_pages(cpu);
2941 }
2942 
2943 static void drain_local_pages_wq(struct work_struct *work)
2944 {
2945 	struct pcpu_drain *drain;
2946 
2947 	drain = container_of(work, struct pcpu_drain, work);
2948 
2949 	/*
2950 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2951 	 * we can race with cpu offline when the WQ can move this from
2952 	 * a cpu pinned worker to an unbound one. We can operate on a different
2953 	 * cpu which is allright but we also have to make sure to not move to
2954 	 * a different one.
2955 	 */
2956 	preempt_disable();
2957 	drain_local_pages(drain->zone);
2958 	preempt_enable();
2959 }
2960 
2961 /*
2962  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2963  *
2964  * When zone parameter is non-NULL, spill just the single zone's pages.
2965  *
2966  * Note that this can be extremely slow as the draining happens in a workqueue.
2967  */
2968 void drain_all_pages(struct zone *zone)
2969 {
2970 	int cpu;
2971 
2972 	/*
2973 	 * Allocate in the BSS so we wont require allocation in
2974 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2975 	 */
2976 	static cpumask_t cpus_with_pcps;
2977 
2978 	/*
2979 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2980 	 * initialized.
2981 	 */
2982 	if (WARN_ON_ONCE(!mm_percpu_wq))
2983 		return;
2984 
2985 	/*
2986 	 * Do not drain if one is already in progress unless it's specific to
2987 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2988 	 * the drain to be complete when the call returns.
2989 	 */
2990 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2991 		if (!zone)
2992 			return;
2993 		mutex_lock(&pcpu_drain_mutex);
2994 	}
2995 
2996 	/*
2997 	 * We don't care about racing with CPU hotplug event
2998 	 * as offline notification will cause the notified
2999 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3000 	 * disables preemption as part of its processing
3001 	 */
3002 	for_each_online_cpu(cpu) {
3003 		struct per_cpu_pageset *pcp;
3004 		struct zone *z;
3005 		bool has_pcps = false;
3006 
3007 		if (zone) {
3008 			pcp = per_cpu_ptr(zone->pageset, cpu);
3009 			if (pcp->pcp.count)
3010 				has_pcps = true;
3011 		} else {
3012 			for_each_populated_zone(z) {
3013 				pcp = per_cpu_ptr(z->pageset, cpu);
3014 				if (pcp->pcp.count) {
3015 					has_pcps = true;
3016 					break;
3017 				}
3018 			}
3019 		}
3020 
3021 		if (has_pcps)
3022 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3023 		else
3024 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3025 	}
3026 
3027 	for_each_cpu(cpu, &cpus_with_pcps) {
3028 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3029 
3030 		drain->zone = zone;
3031 		INIT_WORK(&drain->work, drain_local_pages_wq);
3032 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3033 	}
3034 	for_each_cpu(cpu, &cpus_with_pcps)
3035 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3036 
3037 	mutex_unlock(&pcpu_drain_mutex);
3038 }
3039 
3040 #ifdef CONFIG_HIBERNATION
3041 
3042 /*
3043  * Touch the watchdog for every WD_PAGE_COUNT pages.
3044  */
3045 #define WD_PAGE_COUNT	(128*1024)
3046 
3047 void mark_free_pages(struct zone *zone)
3048 {
3049 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3050 	unsigned long flags;
3051 	unsigned int order, t;
3052 	struct page *page;
3053 
3054 	if (zone_is_empty(zone))
3055 		return;
3056 
3057 	spin_lock_irqsave(&zone->lock, flags);
3058 
3059 	max_zone_pfn = zone_end_pfn(zone);
3060 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3061 		if (pfn_valid(pfn)) {
3062 			page = pfn_to_page(pfn);
3063 
3064 			if (!--page_count) {
3065 				touch_nmi_watchdog();
3066 				page_count = WD_PAGE_COUNT;
3067 			}
3068 
3069 			if (page_zone(page) != zone)
3070 				continue;
3071 
3072 			if (!swsusp_page_is_forbidden(page))
3073 				swsusp_unset_page_free(page);
3074 		}
3075 
3076 	for_each_migratetype_order(order, t) {
3077 		list_for_each_entry(page,
3078 				&zone->free_area[order].free_list[t], lru) {
3079 			unsigned long i;
3080 
3081 			pfn = page_to_pfn(page);
3082 			for (i = 0; i < (1UL << order); i++) {
3083 				if (!--page_count) {
3084 					touch_nmi_watchdog();
3085 					page_count = WD_PAGE_COUNT;
3086 				}
3087 				swsusp_set_page_free(pfn_to_page(pfn + i));
3088 			}
3089 		}
3090 	}
3091 	spin_unlock_irqrestore(&zone->lock, flags);
3092 }
3093 #endif /* CONFIG_PM */
3094 
3095 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3096 {
3097 	int migratetype;
3098 
3099 	if (!free_pcp_prepare(page))
3100 		return false;
3101 
3102 	migratetype = get_pfnblock_migratetype(page, pfn);
3103 	set_pcppage_migratetype(page, migratetype);
3104 	return true;
3105 }
3106 
3107 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3108 {
3109 	struct zone *zone = page_zone(page);
3110 	struct per_cpu_pages *pcp;
3111 	int migratetype;
3112 
3113 	migratetype = get_pcppage_migratetype(page);
3114 	__count_vm_event(PGFREE);
3115 
3116 	/*
3117 	 * We only track unmovable, reclaimable and movable on pcp lists.
3118 	 * Free ISOLATE pages back to the allocator because they are being
3119 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3120 	 * areas back if necessary. Otherwise, we may have to free
3121 	 * excessively into the page allocator
3122 	 */
3123 	if (migratetype >= MIGRATE_PCPTYPES) {
3124 		if (unlikely(is_migrate_isolate(migratetype))) {
3125 			free_one_page(zone, page, pfn, 0, migratetype);
3126 			return;
3127 		}
3128 		migratetype = MIGRATE_MOVABLE;
3129 	}
3130 
3131 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3132 	list_add(&page->lru, &pcp->lists[migratetype]);
3133 	pcp->count++;
3134 	if (pcp->count >= pcp->high) {
3135 		unsigned long batch = READ_ONCE(pcp->batch);
3136 		free_pcppages_bulk(zone, batch, pcp);
3137 	}
3138 }
3139 
3140 /*
3141  * Free a 0-order page
3142  */
3143 void free_unref_page(struct page *page)
3144 {
3145 	unsigned long flags;
3146 	unsigned long pfn = page_to_pfn(page);
3147 
3148 	if (!free_unref_page_prepare(page, pfn))
3149 		return;
3150 
3151 	local_irq_save(flags);
3152 	free_unref_page_commit(page, pfn);
3153 	local_irq_restore(flags);
3154 }
3155 
3156 /*
3157  * Free a list of 0-order pages
3158  */
3159 void free_unref_page_list(struct list_head *list)
3160 {
3161 	struct page *page, *next;
3162 	unsigned long flags, pfn;
3163 	int batch_count = 0;
3164 
3165 	/* Prepare pages for freeing */
3166 	list_for_each_entry_safe(page, next, list, lru) {
3167 		pfn = page_to_pfn(page);
3168 		if (!free_unref_page_prepare(page, pfn))
3169 			list_del(&page->lru);
3170 		set_page_private(page, pfn);
3171 	}
3172 
3173 	local_irq_save(flags);
3174 	list_for_each_entry_safe(page, next, list, lru) {
3175 		unsigned long pfn = page_private(page);
3176 
3177 		set_page_private(page, 0);
3178 		trace_mm_page_free_batched(page);
3179 		free_unref_page_commit(page, pfn);
3180 
3181 		/*
3182 		 * Guard against excessive IRQ disabled times when we get
3183 		 * a large list of pages to free.
3184 		 */
3185 		if (++batch_count == SWAP_CLUSTER_MAX) {
3186 			local_irq_restore(flags);
3187 			batch_count = 0;
3188 			local_irq_save(flags);
3189 		}
3190 	}
3191 	local_irq_restore(flags);
3192 }
3193 
3194 /*
3195  * split_page takes a non-compound higher-order page, and splits it into
3196  * n (1<<order) sub-pages: page[0..n]
3197  * Each sub-page must be freed individually.
3198  *
3199  * Note: this is probably too low level an operation for use in drivers.
3200  * Please consult with lkml before using this in your driver.
3201  */
3202 void split_page(struct page *page, unsigned int order)
3203 {
3204 	int i;
3205 
3206 	VM_BUG_ON_PAGE(PageCompound(page), page);
3207 	VM_BUG_ON_PAGE(!page_count(page), page);
3208 
3209 	for (i = 1; i < (1 << order); i++)
3210 		set_page_refcounted(page + i);
3211 	split_page_owner(page, order);
3212 }
3213 EXPORT_SYMBOL_GPL(split_page);
3214 
3215 int __isolate_free_page(struct page *page, unsigned int order)
3216 {
3217 	unsigned long watermark;
3218 	struct zone *zone;
3219 	int mt;
3220 
3221 	BUG_ON(!PageBuddy(page));
3222 
3223 	zone = page_zone(page);
3224 	mt = get_pageblock_migratetype(page);
3225 
3226 	if (!is_migrate_isolate(mt)) {
3227 		/*
3228 		 * Obey watermarks as if the page was being allocated. We can
3229 		 * emulate a high-order watermark check with a raised order-0
3230 		 * watermark, because we already know our high-order page
3231 		 * exists.
3232 		 */
3233 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3234 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3235 			return 0;
3236 
3237 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3238 	}
3239 
3240 	/* Remove page from free list */
3241 
3242 	del_page_from_free_list(page, zone, order);
3243 
3244 	/*
3245 	 * Set the pageblock if the isolated page is at least half of a
3246 	 * pageblock
3247 	 */
3248 	if (order >= pageblock_order - 1) {
3249 		struct page *endpage = page + (1 << order) - 1;
3250 		for (; page < endpage; page += pageblock_nr_pages) {
3251 			int mt = get_pageblock_migratetype(page);
3252 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3253 			    && !is_migrate_highatomic(mt))
3254 				set_pageblock_migratetype(page,
3255 							  MIGRATE_MOVABLE);
3256 		}
3257 	}
3258 
3259 
3260 	return 1UL << order;
3261 }
3262 
3263 /**
3264  * __putback_isolated_page - Return a now-isolated page back where we got it
3265  * @page: Page that was isolated
3266  * @order: Order of the isolated page
3267  * @mt: The page's pageblock's migratetype
3268  *
3269  * This function is meant to return a page pulled from the free lists via
3270  * __isolate_free_page back to the free lists they were pulled from.
3271  */
3272 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3273 {
3274 	struct zone *zone = page_zone(page);
3275 
3276 	/* zone lock should be held when this function is called */
3277 	lockdep_assert_held(&zone->lock);
3278 
3279 	/* Return isolated page to tail of freelist. */
3280 	__free_one_page(page, page_to_pfn(page), zone, order, mt, false);
3281 }
3282 
3283 /*
3284  * Update NUMA hit/miss statistics
3285  *
3286  * Must be called with interrupts disabled.
3287  */
3288 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3289 {
3290 #ifdef CONFIG_NUMA
3291 	enum numa_stat_item local_stat = NUMA_LOCAL;
3292 
3293 	/* skip numa counters update if numa stats is disabled */
3294 	if (!static_branch_likely(&vm_numa_stat_key))
3295 		return;
3296 
3297 	if (zone_to_nid(z) != numa_node_id())
3298 		local_stat = NUMA_OTHER;
3299 
3300 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3301 		__inc_numa_state(z, NUMA_HIT);
3302 	else {
3303 		__inc_numa_state(z, NUMA_MISS);
3304 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3305 	}
3306 	__inc_numa_state(z, local_stat);
3307 #endif
3308 }
3309 
3310 /* Remove page from the per-cpu list, caller must protect the list */
3311 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3312 			unsigned int alloc_flags,
3313 			struct per_cpu_pages *pcp,
3314 			struct list_head *list)
3315 {
3316 	struct page *page;
3317 
3318 	do {
3319 		if (list_empty(list)) {
3320 			pcp->count += rmqueue_bulk(zone, 0,
3321 					pcp->batch, list,
3322 					migratetype, alloc_flags);
3323 			if (unlikely(list_empty(list)))
3324 				return NULL;
3325 		}
3326 
3327 		page = list_first_entry(list, struct page, lru);
3328 		list_del(&page->lru);
3329 		pcp->count--;
3330 	} while (check_new_pcp(page));
3331 
3332 	return page;
3333 }
3334 
3335 /* Lock and remove page from the per-cpu list */
3336 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3337 			struct zone *zone, gfp_t gfp_flags,
3338 			int migratetype, unsigned int alloc_flags)
3339 {
3340 	struct per_cpu_pages *pcp;
3341 	struct list_head *list;
3342 	struct page *page;
3343 	unsigned long flags;
3344 
3345 	local_irq_save(flags);
3346 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3347 	list = &pcp->lists[migratetype];
3348 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3349 	if (page) {
3350 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3351 		zone_statistics(preferred_zone, zone);
3352 	}
3353 	local_irq_restore(flags);
3354 	return page;
3355 }
3356 
3357 /*
3358  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3359  */
3360 static inline
3361 struct page *rmqueue(struct zone *preferred_zone,
3362 			struct zone *zone, unsigned int order,
3363 			gfp_t gfp_flags, unsigned int alloc_flags,
3364 			int migratetype)
3365 {
3366 	unsigned long flags;
3367 	struct page *page;
3368 
3369 	if (likely(order == 0)) {
3370 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3371 					migratetype, alloc_flags);
3372 		goto out;
3373 	}
3374 
3375 	/*
3376 	 * We most definitely don't want callers attempting to
3377 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3378 	 */
3379 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3380 	spin_lock_irqsave(&zone->lock, flags);
3381 
3382 	do {
3383 		page = NULL;
3384 		if (alloc_flags & ALLOC_HARDER) {
3385 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3386 			if (page)
3387 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3388 		}
3389 		if (!page)
3390 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3391 	} while (page && check_new_pages(page, order));
3392 	spin_unlock(&zone->lock);
3393 	if (!page)
3394 		goto failed;
3395 	__mod_zone_freepage_state(zone, -(1 << order),
3396 				  get_pcppage_migratetype(page));
3397 
3398 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3399 	zone_statistics(preferred_zone, zone);
3400 	local_irq_restore(flags);
3401 
3402 out:
3403 	/* Separate test+clear to avoid unnecessary atomics */
3404 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3405 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3406 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3407 	}
3408 
3409 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3410 	return page;
3411 
3412 failed:
3413 	local_irq_restore(flags);
3414 	return NULL;
3415 }
3416 
3417 #ifdef CONFIG_FAIL_PAGE_ALLOC
3418 
3419 static struct {
3420 	struct fault_attr attr;
3421 
3422 	bool ignore_gfp_highmem;
3423 	bool ignore_gfp_reclaim;
3424 	u32 min_order;
3425 } fail_page_alloc = {
3426 	.attr = FAULT_ATTR_INITIALIZER,
3427 	.ignore_gfp_reclaim = true,
3428 	.ignore_gfp_highmem = true,
3429 	.min_order = 1,
3430 };
3431 
3432 static int __init setup_fail_page_alloc(char *str)
3433 {
3434 	return setup_fault_attr(&fail_page_alloc.attr, str);
3435 }
3436 __setup("fail_page_alloc=", setup_fail_page_alloc);
3437 
3438 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3439 {
3440 	if (order < fail_page_alloc.min_order)
3441 		return false;
3442 	if (gfp_mask & __GFP_NOFAIL)
3443 		return false;
3444 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3445 		return false;
3446 	if (fail_page_alloc.ignore_gfp_reclaim &&
3447 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3448 		return false;
3449 
3450 	return should_fail(&fail_page_alloc.attr, 1 << order);
3451 }
3452 
3453 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3454 
3455 static int __init fail_page_alloc_debugfs(void)
3456 {
3457 	umode_t mode = S_IFREG | 0600;
3458 	struct dentry *dir;
3459 
3460 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3461 					&fail_page_alloc.attr);
3462 
3463 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3464 			    &fail_page_alloc.ignore_gfp_reclaim);
3465 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3466 			    &fail_page_alloc.ignore_gfp_highmem);
3467 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3468 
3469 	return 0;
3470 }
3471 
3472 late_initcall(fail_page_alloc_debugfs);
3473 
3474 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3475 
3476 #else /* CONFIG_FAIL_PAGE_ALLOC */
3477 
3478 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3479 {
3480 	return false;
3481 }
3482 
3483 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3484 
3485 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3486 {
3487 	return __should_fail_alloc_page(gfp_mask, order);
3488 }
3489 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3490 
3491 static inline long __zone_watermark_unusable_free(struct zone *z,
3492 				unsigned int order, unsigned int alloc_flags)
3493 {
3494 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3495 	long unusable_free = (1 << order) - 1;
3496 
3497 	/*
3498 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3499 	 * the high-atomic reserves. This will over-estimate the size of the
3500 	 * atomic reserve but it avoids a search.
3501 	 */
3502 	if (likely(!alloc_harder))
3503 		unusable_free += z->nr_reserved_highatomic;
3504 
3505 #ifdef CONFIG_CMA
3506 	/* If allocation can't use CMA areas don't use free CMA pages */
3507 	if (!(alloc_flags & ALLOC_CMA))
3508 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3509 #endif
3510 
3511 	return unusable_free;
3512 }
3513 
3514 /*
3515  * Return true if free base pages are above 'mark'. For high-order checks it
3516  * will return true of the order-0 watermark is reached and there is at least
3517  * one free page of a suitable size. Checking now avoids taking the zone lock
3518  * to check in the allocation paths if no pages are free.
3519  */
3520 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3521 			 int highest_zoneidx, unsigned int alloc_flags,
3522 			 long free_pages)
3523 {
3524 	long min = mark;
3525 	int o;
3526 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3527 
3528 	/* free_pages may go negative - that's OK */
3529 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3530 
3531 	if (alloc_flags & ALLOC_HIGH)
3532 		min -= min / 2;
3533 
3534 	if (unlikely(alloc_harder)) {
3535 		/*
3536 		 * OOM victims can try even harder than normal ALLOC_HARDER
3537 		 * users on the grounds that it's definitely going to be in
3538 		 * the exit path shortly and free memory. Any allocation it
3539 		 * makes during the free path will be small and short-lived.
3540 		 */
3541 		if (alloc_flags & ALLOC_OOM)
3542 			min -= min / 2;
3543 		else
3544 			min -= min / 4;
3545 	}
3546 
3547 	/*
3548 	 * Check watermarks for an order-0 allocation request. If these
3549 	 * are not met, then a high-order request also cannot go ahead
3550 	 * even if a suitable page happened to be free.
3551 	 */
3552 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3553 		return false;
3554 
3555 	/* If this is an order-0 request then the watermark is fine */
3556 	if (!order)
3557 		return true;
3558 
3559 	/* For a high-order request, check at least one suitable page is free */
3560 	for (o = order; o < MAX_ORDER; o++) {
3561 		struct free_area *area = &z->free_area[o];
3562 		int mt;
3563 
3564 		if (!area->nr_free)
3565 			continue;
3566 
3567 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3568 			if (!free_area_empty(area, mt))
3569 				return true;
3570 		}
3571 
3572 #ifdef CONFIG_CMA
3573 		if ((alloc_flags & ALLOC_CMA) &&
3574 		    !free_area_empty(area, MIGRATE_CMA)) {
3575 			return true;
3576 		}
3577 #endif
3578 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3579 			return true;
3580 	}
3581 	return false;
3582 }
3583 
3584 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3585 		      int highest_zoneidx, unsigned int alloc_flags)
3586 {
3587 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3588 					zone_page_state(z, NR_FREE_PAGES));
3589 }
3590 
3591 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3592 				unsigned long mark, int highest_zoneidx,
3593 				unsigned int alloc_flags, gfp_t gfp_mask)
3594 {
3595 	long free_pages;
3596 
3597 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3598 
3599 	/*
3600 	 * Fast check for order-0 only. If this fails then the reserves
3601 	 * need to be calculated.
3602 	 */
3603 	if (!order) {
3604 		long fast_free;
3605 
3606 		fast_free = free_pages;
3607 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3608 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3609 			return true;
3610 	}
3611 
3612 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3613 					free_pages))
3614 		return true;
3615 	/*
3616 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3617 	 * when checking the min watermark. The min watermark is the
3618 	 * point where boosting is ignored so that kswapd is woken up
3619 	 * when below the low watermark.
3620 	 */
3621 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3622 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3623 		mark = z->_watermark[WMARK_MIN];
3624 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3625 					alloc_flags, free_pages);
3626 	}
3627 
3628 	return false;
3629 }
3630 
3631 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3632 			unsigned long mark, int highest_zoneidx)
3633 {
3634 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3635 
3636 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3637 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3638 
3639 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3640 								free_pages);
3641 }
3642 
3643 #ifdef CONFIG_NUMA
3644 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3645 {
3646 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3647 				node_reclaim_distance;
3648 }
3649 #else	/* CONFIG_NUMA */
3650 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3651 {
3652 	return true;
3653 }
3654 #endif	/* CONFIG_NUMA */
3655 
3656 /*
3657  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3658  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3659  * premature use of a lower zone may cause lowmem pressure problems that
3660  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3661  * probably too small. It only makes sense to spread allocations to avoid
3662  * fragmentation between the Normal and DMA32 zones.
3663  */
3664 static inline unsigned int
3665 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3666 {
3667 	unsigned int alloc_flags;
3668 
3669 	/*
3670 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3671 	 * to save a branch.
3672 	 */
3673 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3674 
3675 #ifdef CONFIG_ZONE_DMA32
3676 	if (!zone)
3677 		return alloc_flags;
3678 
3679 	if (zone_idx(zone) != ZONE_NORMAL)
3680 		return alloc_flags;
3681 
3682 	/*
3683 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3684 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3685 	 * on UMA that if Normal is populated then so is DMA32.
3686 	 */
3687 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3688 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3689 		return alloc_flags;
3690 
3691 	alloc_flags |= ALLOC_NOFRAGMENT;
3692 #endif /* CONFIG_ZONE_DMA32 */
3693 	return alloc_flags;
3694 }
3695 
3696 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3697 					unsigned int alloc_flags)
3698 {
3699 #ifdef CONFIG_CMA
3700 	unsigned int pflags = current->flags;
3701 
3702 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3703 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3704 		alloc_flags |= ALLOC_CMA;
3705 
3706 #endif
3707 	return alloc_flags;
3708 }
3709 
3710 /*
3711  * get_page_from_freelist goes through the zonelist trying to allocate
3712  * a page.
3713  */
3714 static struct page *
3715 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3716 						const struct alloc_context *ac)
3717 {
3718 	struct zoneref *z;
3719 	struct zone *zone;
3720 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3721 	bool no_fallback;
3722 
3723 retry:
3724 	/*
3725 	 * Scan zonelist, looking for a zone with enough free.
3726 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3727 	 */
3728 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3729 	z = ac->preferred_zoneref;
3730 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist,
3731 					ac->highest_zoneidx, ac->nodemask) {
3732 		struct page *page;
3733 		unsigned long mark;
3734 
3735 		if (cpusets_enabled() &&
3736 			(alloc_flags & ALLOC_CPUSET) &&
3737 			!__cpuset_zone_allowed(zone, gfp_mask))
3738 				continue;
3739 		/*
3740 		 * When allocating a page cache page for writing, we
3741 		 * want to get it from a node that is within its dirty
3742 		 * limit, such that no single node holds more than its
3743 		 * proportional share of globally allowed dirty pages.
3744 		 * The dirty limits take into account the node's
3745 		 * lowmem reserves and high watermark so that kswapd
3746 		 * should be able to balance it without having to
3747 		 * write pages from its LRU list.
3748 		 *
3749 		 * XXX: For now, allow allocations to potentially
3750 		 * exceed the per-node dirty limit in the slowpath
3751 		 * (spread_dirty_pages unset) before going into reclaim,
3752 		 * which is important when on a NUMA setup the allowed
3753 		 * nodes are together not big enough to reach the
3754 		 * global limit.  The proper fix for these situations
3755 		 * will require awareness of nodes in the
3756 		 * dirty-throttling and the flusher threads.
3757 		 */
3758 		if (ac->spread_dirty_pages) {
3759 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3760 				continue;
3761 
3762 			if (!node_dirty_ok(zone->zone_pgdat)) {
3763 				last_pgdat_dirty_limit = zone->zone_pgdat;
3764 				continue;
3765 			}
3766 		}
3767 
3768 		if (no_fallback && nr_online_nodes > 1 &&
3769 		    zone != ac->preferred_zoneref->zone) {
3770 			int local_nid;
3771 
3772 			/*
3773 			 * If moving to a remote node, retry but allow
3774 			 * fragmenting fallbacks. Locality is more important
3775 			 * than fragmentation avoidance.
3776 			 */
3777 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3778 			if (zone_to_nid(zone) != local_nid) {
3779 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3780 				goto retry;
3781 			}
3782 		}
3783 
3784 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3785 		if (!zone_watermark_fast(zone, order, mark,
3786 				       ac->highest_zoneidx, alloc_flags,
3787 				       gfp_mask)) {
3788 			int ret;
3789 
3790 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3791 			/*
3792 			 * Watermark failed for this zone, but see if we can
3793 			 * grow this zone if it contains deferred pages.
3794 			 */
3795 			if (static_branch_unlikely(&deferred_pages)) {
3796 				if (_deferred_grow_zone(zone, order))
3797 					goto try_this_zone;
3798 			}
3799 #endif
3800 			/* Checked here to keep the fast path fast */
3801 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3802 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3803 				goto try_this_zone;
3804 
3805 			if (node_reclaim_mode == 0 ||
3806 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3807 				continue;
3808 
3809 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3810 			switch (ret) {
3811 			case NODE_RECLAIM_NOSCAN:
3812 				/* did not scan */
3813 				continue;
3814 			case NODE_RECLAIM_FULL:
3815 				/* scanned but unreclaimable */
3816 				continue;
3817 			default:
3818 				/* did we reclaim enough */
3819 				if (zone_watermark_ok(zone, order, mark,
3820 					ac->highest_zoneidx, alloc_flags))
3821 					goto try_this_zone;
3822 
3823 				continue;
3824 			}
3825 		}
3826 
3827 try_this_zone:
3828 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3829 				gfp_mask, alloc_flags, ac->migratetype);
3830 		if (page) {
3831 			prep_new_page(page, order, gfp_mask, alloc_flags);
3832 
3833 			/*
3834 			 * If this is a high-order atomic allocation then check
3835 			 * if the pageblock should be reserved for the future
3836 			 */
3837 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3838 				reserve_highatomic_pageblock(page, zone, order);
3839 
3840 			return page;
3841 		} else {
3842 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3843 			/* Try again if zone has deferred pages */
3844 			if (static_branch_unlikely(&deferred_pages)) {
3845 				if (_deferred_grow_zone(zone, order))
3846 					goto try_this_zone;
3847 			}
3848 #endif
3849 		}
3850 	}
3851 
3852 	/*
3853 	 * It's possible on a UMA machine to get through all zones that are
3854 	 * fragmented. If avoiding fragmentation, reset and try again.
3855 	 */
3856 	if (no_fallback) {
3857 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3858 		goto retry;
3859 	}
3860 
3861 	return NULL;
3862 }
3863 
3864 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3865 {
3866 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3867 
3868 	/*
3869 	 * This documents exceptions given to allocations in certain
3870 	 * contexts that are allowed to allocate outside current's set
3871 	 * of allowed nodes.
3872 	 */
3873 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3874 		if (tsk_is_oom_victim(current) ||
3875 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3876 			filter &= ~SHOW_MEM_FILTER_NODES;
3877 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3878 		filter &= ~SHOW_MEM_FILTER_NODES;
3879 
3880 	show_mem(filter, nodemask);
3881 }
3882 
3883 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3884 {
3885 	struct va_format vaf;
3886 	va_list args;
3887 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3888 
3889 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3890 		return;
3891 
3892 	va_start(args, fmt);
3893 	vaf.fmt = fmt;
3894 	vaf.va = &args;
3895 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3896 			current->comm, &vaf, gfp_mask, &gfp_mask,
3897 			nodemask_pr_args(nodemask));
3898 	va_end(args);
3899 
3900 	cpuset_print_current_mems_allowed();
3901 	pr_cont("\n");
3902 	dump_stack();
3903 	warn_alloc_show_mem(gfp_mask, nodemask);
3904 }
3905 
3906 static inline struct page *
3907 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3908 			      unsigned int alloc_flags,
3909 			      const struct alloc_context *ac)
3910 {
3911 	struct page *page;
3912 
3913 	page = get_page_from_freelist(gfp_mask, order,
3914 			alloc_flags|ALLOC_CPUSET, ac);
3915 	/*
3916 	 * fallback to ignore cpuset restriction if our nodes
3917 	 * are depleted
3918 	 */
3919 	if (!page)
3920 		page = get_page_from_freelist(gfp_mask, order,
3921 				alloc_flags, ac);
3922 
3923 	return page;
3924 }
3925 
3926 static inline struct page *
3927 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3928 	const struct alloc_context *ac, unsigned long *did_some_progress)
3929 {
3930 	struct oom_control oc = {
3931 		.zonelist = ac->zonelist,
3932 		.nodemask = ac->nodemask,
3933 		.memcg = NULL,
3934 		.gfp_mask = gfp_mask,
3935 		.order = order,
3936 	};
3937 	struct page *page;
3938 
3939 	*did_some_progress = 0;
3940 
3941 	/*
3942 	 * Acquire the oom lock.  If that fails, somebody else is
3943 	 * making progress for us.
3944 	 */
3945 	if (!mutex_trylock(&oom_lock)) {
3946 		*did_some_progress = 1;
3947 		schedule_timeout_uninterruptible(1);
3948 		return NULL;
3949 	}
3950 
3951 	/*
3952 	 * Go through the zonelist yet one more time, keep very high watermark
3953 	 * here, this is only to catch a parallel oom killing, we must fail if
3954 	 * we're still under heavy pressure. But make sure that this reclaim
3955 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3956 	 * allocation which will never fail due to oom_lock already held.
3957 	 */
3958 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3959 				      ~__GFP_DIRECT_RECLAIM, order,
3960 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3961 	if (page)
3962 		goto out;
3963 
3964 	/* Coredumps can quickly deplete all memory reserves */
3965 	if (current->flags & PF_DUMPCORE)
3966 		goto out;
3967 	/* The OOM killer will not help higher order allocs */
3968 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3969 		goto out;
3970 	/*
3971 	 * We have already exhausted all our reclaim opportunities without any
3972 	 * success so it is time to admit defeat. We will skip the OOM killer
3973 	 * because it is very likely that the caller has a more reasonable
3974 	 * fallback than shooting a random task.
3975 	 */
3976 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3977 		goto out;
3978 	/* The OOM killer does not needlessly kill tasks for lowmem */
3979 	if (ac->highest_zoneidx < ZONE_NORMAL)
3980 		goto out;
3981 	if (pm_suspended_storage())
3982 		goto out;
3983 	/*
3984 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3985 	 * other request to make a forward progress.
3986 	 * We are in an unfortunate situation where out_of_memory cannot
3987 	 * do much for this context but let's try it to at least get
3988 	 * access to memory reserved if the current task is killed (see
3989 	 * out_of_memory). Once filesystems are ready to handle allocation
3990 	 * failures more gracefully we should just bail out here.
3991 	 */
3992 
3993 	/* The OOM killer may not free memory on a specific node */
3994 	if (gfp_mask & __GFP_THISNODE)
3995 		goto out;
3996 
3997 	/* Exhausted what can be done so it's blame time */
3998 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3999 		*did_some_progress = 1;
4000 
4001 		/*
4002 		 * Help non-failing allocations by giving them access to memory
4003 		 * reserves
4004 		 */
4005 		if (gfp_mask & __GFP_NOFAIL)
4006 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4007 					ALLOC_NO_WATERMARKS, ac);
4008 	}
4009 out:
4010 	mutex_unlock(&oom_lock);
4011 	return page;
4012 }
4013 
4014 /*
4015  * Maximum number of compaction retries wit a progress before OOM
4016  * killer is consider as the only way to move forward.
4017  */
4018 #define MAX_COMPACT_RETRIES 16
4019 
4020 #ifdef CONFIG_COMPACTION
4021 /* Try memory compaction for high-order allocations before reclaim */
4022 static struct page *
4023 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4024 		unsigned int alloc_flags, const struct alloc_context *ac,
4025 		enum compact_priority prio, enum compact_result *compact_result)
4026 {
4027 	struct page *page = NULL;
4028 	unsigned long pflags;
4029 	unsigned int noreclaim_flag;
4030 
4031 	if (!order)
4032 		return NULL;
4033 
4034 	psi_memstall_enter(&pflags);
4035 	noreclaim_flag = memalloc_noreclaim_save();
4036 
4037 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4038 								prio, &page);
4039 
4040 	memalloc_noreclaim_restore(noreclaim_flag);
4041 	psi_memstall_leave(&pflags);
4042 
4043 	/*
4044 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4045 	 * count a compaction stall
4046 	 */
4047 	count_vm_event(COMPACTSTALL);
4048 
4049 	/* Prep a captured page if available */
4050 	if (page)
4051 		prep_new_page(page, order, gfp_mask, alloc_flags);
4052 
4053 	/* Try get a page from the freelist if available */
4054 	if (!page)
4055 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4056 
4057 	if (page) {
4058 		struct zone *zone = page_zone(page);
4059 
4060 		zone->compact_blockskip_flush = false;
4061 		compaction_defer_reset(zone, order, true);
4062 		count_vm_event(COMPACTSUCCESS);
4063 		return page;
4064 	}
4065 
4066 	/*
4067 	 * It's bad if compaction run occurs and fails. The most likely reason
4068 	 * is that pages exist, but not enough to satisfy watermarks.
4069 	 */
4070 	count_vm_event(COMPACTFAIL);
4071 
4072 	cond_resched();
4073 
4074 	return NULL;
4075 }
4076 
4077 static inline bool
4078 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4079 		     enum compact_result compact_result,
4080 		     enum compact_priority *compact_priority,
4081 		     int *compaction_retries)
4082 {
4083 	int max_retries = MAX_COMPACT_RETRIES;
4084 	int min_priority;
4085 	bool ret = false;
4086 	int retries = *compaction_retries;
4087 	enum compact_priority priority = *compact_priority;
4088 
4089 	if (!order)
4090 		return false;
4091 
4092 	if (compaction_made_progress(compact_result))
4093 		(*compaction_retries)++;
4094 
4095 	/*
4096 	 * compaction considers all the zone as desperately out of memory
4097 	 * so it doesn't really make much sense to retry except when the
4098 	 * failure could be caused by insufficient priority
4099 	 */
4100 	if (compaction_failed(compact_result))
4101 		goto check_priority;
4102 
4103 	/*
4104 	 * compaction was skipped because there are not enough order-0 pages
4105 	 * to work with, so we retry only if it looks like reclaim can help.
4106 	 */
4107 	if (compaction_needs_reclaim(compact_result)) {
4108 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4109 		goto out;
4110 	}
4111 
4112 	/*
4113 	 * make sure the compaction wasn't deferred or didn't bail out early
4114 	 * due to locks contention before we declare that we should give up.
4115 	 * But the next retry should use a higher priority if allowed, so
4116 	 * we don't just keep bailing out endlessly.
4117 	 */
4118 	if (compaction_withdrawn(compact_result)) {
4119 		goto check_priority;
4120 	}
4121 
4122 	/*
4123 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4124 	 * costly ones because they are de facto nofail and invoke OOM
4125 	 * killer to move on while costly can fail and users are ready
4126 	 * to cope with that. 1/4 retries is rather arbitrary but we
4127 	 * would need much more detailed feedback from compaction to
4128 	 * make a better decision.
4129 	 */
4130 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4131 		max_retries /= 4;
4132 	if (*compaction_retries <= max_retries) {
4133 		ret = true;
4134 		goto out;
4135 	}
4136 
4137 	/*
4138 	 * Make sure there are attempts at the highest priority if we exhausted
4139 	 * all retries or failed at the lower priorities.
4140 	 */
4141 check_priority:
4142 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4143 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4144 
4145 	if (*compact_priority > min_priority) {
4146 		(*compact_priority)--;
4147 		*compaction_retries = 0;
4148 		ret = true;
4149 	}
4150 out:
4151 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4152 	return ret;
4153 }
4154 #else
4155 static inline struct page *
4156 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4157 		unsigned int alloc_flags, const struct alloc_context *ac,
4158 		enum compact_priority prio, enum compact_result *compact_result)
4159 {
4160 	*compact_result = COMPACT_SKIPPED;
4161 	return NULL;
4162 }
4163 
4164 static inline bool
4165 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4166 		     enum compact_result compact_result,
4167 		     enum compact_priority *compact_priority,
4168 		     int *compaction_retries)
4169 {
4170 	struct zone *zone;
4171 	struct zoneref *z;
4172 
4173 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4174 		return false;
4175 
4176 	/*
4177 	 * There are setups with compaction disabled which would prefer to loop
4178 	 * inside the allocator rather than hit the oom killer prematurely.
4179 	 * Let's give them a good hope and keep retrying while the order-0
4180 	 * watermarks are OK.
4181 	 */
4182 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4183 				ac->highest_zoneidx, ac->nodemask) {
4184 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4185 					ac->highest_zoneidx, alloc_flags))
4186 			return true;
4187 	}
4188 	return false;
4189 }
4190 #endif /* CONFIG_COMPACTION */
4191 
4192 #ifdef CONFIG_LOCKDEP
4193 static struct lockdep_map __fs_reclaim_map =
4194 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4195 
4196 static bool __need_fs_reclaim(gfp_t gfp_mask)
4197 {
4198 	gfp_mask = current_gfp_context(gfp_mask);
4199 
4200 	/* no reclaim without waiting on it */
4201 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4202 		return false;
4203 
4204 	/* this guy won't enter reclaim */
4205 	if (current->flags & PF_MEMALLOC)
4206 		return false;
4207 
4208 	/* We're only interested __GFP_FS allocations for now */
4209 	if (!(gfp_mask & __GFP_FS))
4210 		return false;
4211 
4212 	if (gfp_mask & __GFP_NOLOCKDEP)
4213 		return false;
4214 
4215 	return true;
4216 }
4217 
4218 void __fs_reclaim_acquire(void)
4219 {
4220 	lock_map_acquire(&__fs_reclaim_map);
4221 }
4222 
4223 void __fs_reclaim_release(void)
4224 {
4225 	lock_map_release(&__fs_reclaim_map);
4226 }
4227 
4228 void fs_reclaim_acquire(gfp_t gfp_mask)
4229 {
4230 	if (__need_fs_reclaim(gfp_mask))
4231 		__fs_reclaim_acquire();
4232 }
4233 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4234 
4235 void fs_reclaim_release(gfp_t gfp_mask)
4236 {
4237 	if (__need_fs_reclaim(gfp_mask))
4238 		__fs_reclaim_release();
4239 }
4240 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4241 #endif
4242 
4243 /* Perform direct synchronous page reclaim */
4244 static int
4245 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4246 					const struct alloc_context *ac)
4247 {
4248 	int progress;
4249 	unsigned int noreclaim_flag;
4250 	unsigned long pflags;
4251 
4252 	cond_resched();
4253 
4254 	/* We now go into synchronous reclaim */
4255 	cpuset_memory_pressure_bump();
4256 	psi_memstall_enter(&pflags);
4257 	fs_reclaim_acquire(gfp_mask);
4258 	noreclaim_flag = memalloc_noreclaim_save();
4259 
4260 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4261 								ac->nodemask);
4262 
4263 	memalloc_noreclaim_restore(noreclaim_flag);
4264 	fs_reclaim_release(gfp_mask);
4265 	psi_memstall_leave(&pflags);
4266 
4267 	cond_resched();
4268 
4269 	return progress;
4270 }
4271 
4272 /* The really slow allocator path where we enter direct reclaim */
4273 static inline struct page *
4274 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4275 		unsigned int alloc_flags, const struct alloc_context *ac,
4276 		unsigned long *did_some_progress)
4277 {
4278 	struct page *page = NULL;
4279 	bool drained = false;
4280 
4281 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4282 	if (unlikely(!(*did_some_progress)))
4283 		return NULL;
4284 
4285 retry:
4286 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4287 
4288 	/*
4289 	 * If an allocation failed after direct reclaim, it could be because
4290 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4291 	 * Shrink them and try again
4292 	 */
4293 	if (!page && !drained) {
4294 		unreserve_highatomic_pageblock(ac, false);
4295 		drain_all_pages(NULL);
4296 		drained = true;
4297 		goto retry;
4298 	}
4299 
4300 	return page;
4301 }
4302 
4303 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4304 			     const struct alloc_context *ac)
4305 {
4306 	struct zoneref *z;
4307 	struct zone *zone;
4308 	pg_data_t *last_pgdat = NULL;
4309 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4310 
4311 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4312 					ac->nodemask) {
4313 		if (last_pgdat != zone->zone_pgdat)
4314 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4315 		last_pgdat = zone->zone_pgdat;
4316 	}
4317 }
4318 
4319 static inline unsigned int
4320 gfp_to_alloc_flags(gfp_t gfp_mask)
4321 {
4322 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4323 
4324 	/*
4325 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4326 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4327 	 * to save two branches.
4328 	 */
4329 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4330 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4331 
4332 	/*
4333 	 * The caller may dip into page reserves a bit more if the caller
4334 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4335 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4336 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4337 	 */
4338 	alloc_flags |= (__force int)
4339 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4340 
4341 	if (gfp_mask & __GFP_ATOMIC) {
4342 		/*
4343 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4344 		 * if it can't schedule.
4345 		 */
4346 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4347 			alloc_flags |= ALLOC_HARDER;
4348 		/*
4349 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4350 		 * comment for __cpuset_node_allowed().
4351 		 */
4352 		alloc_flags &= ~ALLOC_CPUSET;
4353 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4354 		alloc_flags |= ALLOC_HARDER;
4355 
4356 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4357 
4358 	return alloc_flags;
4359 }
4360 
4361 static bool oom_reserves_allowed(struct task_struct *tsk)
4362 {
4363 	if (!tsk_is_oom_victim(tsk))
4364 		return false;
4365 
4366 	/*
4367 	 * !MMU doesn't have oom reaper so give access to memory reserves
4368 	 * only to the thread with TIF_MEMDIE set
4369 	 */
4370 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4371 		return false;
4372 
4373 	return true;
4374 }
4375 
4376 /*
4377  * Distinguish requests which really need access to full memory
4378  * reserves from oom victims which can live with a portion of it
4379  */
4380 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4381 {
4382 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4383 		return 0;
4384 	if (gfp_mask & __GFP_MEMALLOC)
4385 		return ALLOC_NO_WATERMARKS;
4386 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4387 		return ALLOC_NO_WATERMARKS;
4388 	if (!in_interrupt()) {
4389 		if (current->flags & PF_MEMALLOC)
4390 			return ALLOC_NO_WATERMARKS;
4391 		else if (oom_reserves_allowed(current))
4392 			return ALLOC_OOM;
4393 	}
4394 
4395 	return 0;
4396 }
4397 
4398 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4399 {
4400 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4401 }
4402 
4403 /*
4404  * Checks whether it makes sense to retry the reclaim to make a forward progress
4405  * for the given allocation request.
4406  *
4407  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4408  * without success, or when we couldn't even meet the watermark if we
4409  * reclaimed all remaining pages on the LRU lists.
4410  *
4411  * Returns true if a retry is viable or false to enter the oom path.
4412  */
4413 static inline bool
4414 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4415 		     struct alloc_context *ac, int alloc_flags,
4416 		     bool did_some_progress, int *no_progress_loops)
4417 {
4418 	struct zone *zone;
4419 	struct zoneref *z;
4420 	bool ret = false;
4421 
4422 	/*
4423 	 * Costly allocations might have made a progress but this doesn't mean
4424 	 * their order will become available due to high fragmentation so
4425 	 * always increment the no progress counter for them
4426 	 */
4427 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4428 		*no_progress_loops = 0;
4429 	else
4430 		(*no_progress_loops)++;
4431 
4432 	/*
4433 	 * Make sure we converge to OOM if we cannot make any progress
4434 	 * several times in the row.
4435 	 */
4436 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4437 		/* Before OOM, exhaust highatomic_reserve */
4438 		return unreserve_highatomic_pageblock(ac, true);
4439 	}
4440 
4441 	/*
4442 	 * Keep reclaiming pages while there is a chance this will lead
4443 	 * somewhere.  If none of the target zones can satisfy our allocation
4444 	 * request even if all reclaimable pages are considered then we are
4445 	 * screwed and have to go OOM.
4446 	 */
4447 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4448 				ac->highest_zoneidx, ac->nodemask) {
4449 		unsigned long available;
4450 		unsigned long reclaimable;
4451 		unsigned long min_wmark = min_wmark_pages(zone);
4452 		bool wmark;
4453 
4454 		available = reclaimable = zone_reclaimable_pages(zone);
4455 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4456 
4457 		/*
4458 		 * Would the allocation succeed if we reclaimed all
4459 		 * reclaimable pages?
4460 		 */
4461 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4462 				ac->highest_zoneidx, alloc_flags, available);
4463 		trace_reclaim_retry_zone(z, order, reclaimable,
4464 				available, min_wmark, *no_progress_loops, wmark);
4465 		if (wmark) {
4466 			/*
4467 			 * If we didn't make any progress and have a lot of
4468 			 * dirty + writeback pages then we should wait for
4469 			 * an IO to complete to slow down the reclaim and
4470 			 * prevent from pre mature OOM
4471 			 */
4472 			if (!did_some_progress) {
4473 				unsigned long write_pending;
4474 
4475 				write_pending = zone_page_state_snapshot(zone,
4476 							NR_ZONE_WRITE_PENDING);
4477 
4478 				if (2 * write_pending > reclaimable) {
4479 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4480 					return true;
4481 				}
4482 			}
4483 
4484 			ret = true;
4485 			goto out;
4486 		}
4487 	}
4488 
4489 out:
4490 	/*
4491 	 * Memory allocation/reclaim might be called from a WQ context and the
4492 	 * current implementation of the WQ concurrency control doesn't
4493 	 * recognize that a particular WQ is congested if the worker thread is
4494 	 * looping without ever sleeping. Therefore we have to do a short sleep
4495 	 * here rather than calling cond_resched().
4496 	 */
4497 	if (current->flags & PF_WQ_WORKER)
4498 		schedule_timeout_uninterruptible(1);
4499 	else
4500 		cond_resched();
4501 	return ret;
4502 }
4503 
4504 static inline bool
4505 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4506 {
4507 	/*
4508 	 * It's possible that cpuset's mems_allowed and the nodemask from
4509 	 * mempolicy don't intersect. This should be normally dealt with by
4510 	 * policy_nodemask(), but it's possible to race with cpuset update in
4511 	 * such a way the check therein was true, and then it became false
4512 	 * before we got our cpuset_mems_cookie here.
4513 	 * This assumes that for all allocations, ac->nodemask can come only
4514 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4515 	 * when it does not intersect with the cpuset restrictions) or the
4516 	 * caller can deal with a violated nodemask.
4517 	 */
4518 	if (cpusets_enabled() && ac->nodemask &&
4519 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4520 		ac->nodemask = NULL;
4521 		return true;
4522 	}
4523 
4524 	/*
4525 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4526 	 * possible to race with parallel threads in such a way that our
4527 	 * allocation can fail while the mask is being updated. If we are about
4528 	 * to fail, check if the cpuset changed during allocation and if so,
4529 	 * retry.
4530 	 */
4531 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4532 		return true;
4533 
4534 	return false;
4535 }
4536 
4537 static inline struct page *
4538 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4539 						struct alloc_context *ac)
4540 {
4541 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4542 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4543 	struct page *page = NULL;
4544 	unsigned int alloc_flags;
4545 	unsigned long did_some_progress;
4546 	enum compact_priority compact_priority;
4547 	enum compact_result compact_result;
4548 	int compaction_retries;
4549 	int no_progress_loops;
4550 	unsigned int cpuset_mems_cookie;
4551 	int reserve_flags;
4552 
4553 	/*
4554 	 * We also sanity check to catch abuse of atomic reserves being used by
4555 	 * callers that are not in atomic context.
4556 	 */
4557 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4558 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4559 		gfp_mask &= ~__GFP_ATOMIC;
4560 
4561 retry_cpuset:
4562 	compaction_retries = 0;
4563 	no_progress_loops = 0;
4564 	compact_priority = DEF_COMPACT_PRIORITY;
4565 	cpuset_mems_cookie = read_mems_allowed_begin();
4566 
4567 	/*
4568 	 * The fast path uses conservative alloc_flags to succeed only until
4569 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4570 	 * alloc_flags precisely. So we do that now.
4571 	 */
4572 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4573 
4574 	/*
4575 	 * We need to recalculate the starting point for the zonelist iterator
4576 	 * because we might have used different nodemask in the fast path, or
4577 	 * there was a cpuset modification and we are retrying - otherwise we
4578 	 * could end up iterating over non-eligible zones endlessly.
4579 	 */
4580 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4581 					ac->highest_zoneidx, ac->nodemask);
4582 	if (!ac->preferred_zoneref->zone)
4583 		goto nopage;
4584 
4585 	if (alloc_flags & ALLOC_KSWAPD)
4586 		wake_all_kswapds(order, gfp_mask, ac);
4587 
4588 	/*
4589 	 * The adjusted alloc_flags might result in immediate success, so try
4590 	 * that first
4591 	 */
4592 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4593 	if (page)
4594 		goto got_pg;
4595 
4596 	/*
4597 	 * For costly allocations, try direct compaction first, as it's likely
4598 	 * that we have enough base pages and don't need to reclaim. For non-
4599 	 * movable high-order allocations, do that as well, as compaction will
4600 	 * try prevent permanent fragmentation by migrating from blocks of the
4601 	 * same migratetype.
4602 	 * Don't try this for allocations that are allowed to ignore
4603 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4604 	 */
4605 	if (can_direct_reclaim &&
4606 			(costly_order ||
4607 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4608 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4609 		page = __alloc_pages_direct_compact(gfp_mask, order,
4610 						alloc_flags, ac,
4611 						INIT_COMPACT_PRIORITY,
4612 						&compact_result);
4613 		if (page)
4614 			goto got_pg;
4615 
4616 		/*
4617 		 * Checks for costly allocations with __GFP_NORETRY, which
4618 		 * includes some THP page fault allocations
4619 		 */
4620 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4621 			/*
4622 			 * If allocating entire pageblock(s) and compaction
4623 			 * failed because all zones are below low watermarks
4624 			 * or is prohibited because it recently failed at this
4625 			 * order, fail immediately unless the allocator has
4626 			 * requested compaction and reclaim retry.
4627 			 *
4628 			 * Reclaim is
4629 			 *  - potentially very expensive because zones are far
4630 			 *    below their low watermarks or this is part of very
4631 			 *    bursty high order allocations,
4632 			 *  - not guaranteed to help because isolate_freepages()
4633 			 *    may not iterate over freed pages as part of its
4634 			 *    linear scan, and
4635 			 *  - unlikely to make entire pageblocks free on its
4636 			 *    own.
4637 			 */
4638 			if (compact_result == COMPACT_SKIPPED ||
4639 			    compact_result == COMPACT_DEFERRED)
4640 				goto nopage;
4641 
4642 			/*
4643 			 * Looks like reclaim/compaction is worth trying, but
4644 			 * sync compaction could be very expensive, so keep
4645 			 * using async compaction.
4646 			 */
4647 			compact_priority = INIT_COMPACT_PRIORITY;
4648 		}
4649 	}
4650 
4651 retry:
4652 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4653 	if (alloc_flags & ALLOC_KSWAPD)
4654 		wake_all_kswapds(order, gfp_mask, ac);
4655 
4656 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4657 	if (reserve_flags)
4658 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4659 
4660 	/*
4661 	 * Reset the nodemask and zonelist iterators if memory policies can be
4662 	 * ignored. These allocations are high priority and system rather than
4663 	 * user oriented.
4664 	 */
4665 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4666 		ac->nodemask = NULL;
4667 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4668 					ac->highest_zoneidx, ac->nodemask);
4669 	}
4670 
4671 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4672 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4673 	if (page)
4674 		goto got_pg;
4675 
4676 	/* Caller is not willing to reclaim, we can't balance anything */
4677 	if (!can_direct_reclaim)
4678 		goto nopage;
4679 
4680 	/* Avoid recursion of direct reclaim */
4681 	if (current->flags & PF_MEMALLOC)
4682 		goto nopage;
4683 
4684 	/* Try direct reclaim and then allocating */
4685 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4686 							&did_some_progress);
4687 	if (page)
4688 		goto got_pg;
4689 
4690 	/* Try direct compaction and then allocating */
4691 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4692 					compact_priority, &compact_result);
4693 	if (page)
4694 		goto got_pg;
4695 
4696 	/* Do not loop if specifically requested */
4697 	if (gfp_mask & __GFP_NORETRY)
4698 		goto nopage;
4699 
4700 	/*
4701 	 * Do not retry costly high order allocations unless they are
4702 	 * __GFP_RETRY_MAYFAIL
4703 	 */
4704 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4705 		goto nopage;
4706 
4707 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4708 				 did_some_progress > 0, &no_progress_loops))
4709 		goto retry;
4710 
4711 	/*
4712 	 * It doesn't make any sense to retry for the compaction if the order-0
4713 	 * reclaim is not able to make any progress because the current
4714 	 * implementation of the compaction depends on the sufficient amount
4715 	 * of free memory (see __compaction_suitable)
4716 	 */
4717 	if (did_some_progress > 0 &&
4718 			should_compact_retry(ac, order, alloc_flags,
4719 				compact_result, &compact_priority,
4720 				&compaction_retries))
4721 		goto retry;
4722 
4723 
4724 	/* Deal with possible cpuset update races before we start OOM killing */
4725 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4726 		goto retry_cpuset;
4727 
4728 	/* Reclaim has failed us, start killing things */
4729 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4730 	if (page)
4731 		goto got_pg;
4732 
4733 	/* Avoid allocations with no watermarks from looping endlessly */
4734 	if (tsk_is_oom_victim(current) &&
4735 	    (alloc_flags & ALLOC_OOM ||
4736 	     (gfp_mask & __GFP_NOMEMALLOC)))
4737 		goto nopage;
4738 
4739 	/* Retry as long as the OOM killer is making progress */
4740 	if (did_some_progress) {
4741 		no_progress_loops = 0;
4742 		goto retry;
4743 	}
4744 
4745 nopage:
4746 	/* Deal with possible cpuset update races before we fail */
4747 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4748 		goto retry_cpuset;
4749 
4750 	/*
4751 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4752 	 * we always retry
4753 	 */
4754 	if (gfp_mask & __GFP_NOFAIL) {
4755 		/*
4756 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4757 		 * of any new users that actually require GFP_NOWAIT
4758 		 */
4759 		if (WARN_ON_ONCE(!can_direct_reclaim))
4760 			goto fail;
4761 
4762 		/*
4763 		 * PF_MEMALLOC request from this context is rather bizarre
4764 		 * because we cannot reclaim anything and only can loop waiting
4765 		 * for somebody to do a work for us
4766 		 */
4767 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4768 
4769 		/*
4770 		 * non failing costly orders are a hard requirement which we
4771 		 * are not prepared for much so let's warn about these users
4772 		 * so that we can identify them and convert them to something
4773 		 * else.
4774 		 */
4775 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4776 
4777 		/*
4778 		 * Help non-failing allocations by giving them access to memory
4779 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4780 		 * could deplete whole memory reserves which would just make
4781 		 * the situation worse
4782 		 */
4783 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4784 		if (page)
4785 			goto got_pg;
4786 
4787 		cond_resched();
4788 		goto retry;
4789 	}
4790 fail:
4791 	warn_alloc(gfp_mask, ac->nodemask,
4792 			"page allocation failure: order:%u", order);
4793 got_pg:
4794 	return page;
4795 }
4796 
4797 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4798 		int preferred_nid, nodemask_t *nodemask,
4799 		struct alloc_context *ac, gfp_t *alloc_mask,
4800 		unsigned int *alloc_flags)
4801 {
4802 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4803 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4804 	ac->nodemask = nodemask;
4805 	ac->migratetype = gfp_migratetype(gfp_mask);
4806 
4807 	if (cpusets_enabled()) {
4808 		*alloc_mask |= __GFP_HARDWALL;
4809 		/*
4810 		 * When we are in the interrupt context, it is irrelevant
4811 		 * to the current task context. It means that any node ok.
4812 		 */
4813 		if (!in_interrupt() && !ac->nodemask)
4814 			ac->nodemask = &cpuset_current_mems_allowed;
4815 		else
4816 			*alloc_flags |= ALLOC_CPUSET;
4817 	}
4818 
4819 	fs_reclaim_acquire(gfp_mask);
4820 	fs_reclaim_release(gfp_mask);
4821 
4822 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4823 
4824 	if (should_fail_alloc_page(gfp_mask, order))
4825 		return false;
4826 
4827 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4828 
4829 	return true;
4830 }
4831 
4832 /* Determine whether to spread dirty pages and what the first usable zone */
4833 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4834 {
4835 	/* Dirty zone balancing only done in the fast path */
4836 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4837 
4838 	/*
4839 	 * The preferred zone is used for statistics but crucially it is
4840 	 * also used as the starting point for the zonelist iterator. It
4841 	 * may get reset for allocations that ignore memory policies.
4842 	 */
4843 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4844 					ac->highest_zoneidx, ac->nodemask);
4845 }
4846 
4847 /*
4848  * This is the 'heart' of the zoned buddy allocator.
4849  */
4850 struct page *
4851 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4852 							nodemask_t *nodemask)
4853 {
4854 	struct page *page;
4855 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4856 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4857 	struct alloc_context ac = { };
4858 
4859 	/*
4860 	 * There are several places where we assume that the order value is sane
4861 	 * so bail out early if the request is out of bound.
4862 	 */
4863 	if (unlikely(order >= MAX_ORDER)) {
4864 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4865 		return NULL;
4866 	}
4867 
4868 	gfp_mask &= gfp_allowed_mask;
4869 	alloc_mask = gfp_mask;
4870 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4871 		return NULL;
4872 
4873 	finalise_ac(gfp_mask, &ac);
4874 
4875 	/*
4876 	 * Forbid the first pass from falling back to types that fragment
4877 	 * memory until all local zones are considered.
4878 	 */
4879 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4880 
4881 	/* First allocation attempt */
4882 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4883 	if (likely(page))
4884 		goto out;
4885 
4886 	/*
4887 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4888 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4889 	 * from a particular context which has been marked by
4890 	 * memalloc_no{fs,io}_{save,restore}.
4891 	 */
4892 	alloc_mask = current_gfp_context(gfp_mask);
4893 	ac.spread_dirty_pages = false;
4894 
4895 	/*
4896 	 * Restore the original nodemask if it was potentially replaced with
4897 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4898 	 */
4899 	ac.nodemask = nodemask;
4900 
4901 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4902 
4903 out:
4904 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4905 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
4906 		__free_pages(page, order);
4907 		page = NULL;
4908 	}
4909 
4910 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4911 
4912 	return page;
4913 }
4914 EXPORT_SYMBOL(__alloc_pages_nodemask);
4915 
4916 /*
4917  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4918  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4919  * you need to access high mem.
4920  */
4921 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4922 {
4923 	struct page *page;
4924 
4925 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4926 	if (!page)
4927 		return 0;
4928 	return (unsigned long) page_address(page);
4929 }
4930 EXPORT_SYMBOL(__get_free_pages);
4931 
4932 unsigned long get_zeroed_page(gfp_t gfp_mask)
4933 {
4934 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4935 }
4936 EXPORT_SYMBOL(get_zeroed_page);
4937 
4938 static inline void free_the_page(struct page *page, unsigned int order)
4939 {
4940 	if (order == 0)		/* Via pcp? */
4941 		free_unref_page(page);
4942 	else
4943 		__free_pages_ok(page, order);
4944 }
4945 
4946 void __free_pages(struct page *page, unsigned int order)
4947 {
4948 	if (put_page_testzero(page))
4949 		free_the_page(page, order);
4950 }
4951 EXPORT_SYMBOL(__free_pages);
4952 
4953 void free_pages(unsigned long addr, unsigned int order)
4954 {
4955 	if (addr != 0) {
4956 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4957 		__free_pages(virt_to_page((void *)addr), order);
4958 	}
4959 }
4960 
4961 EXPORT_SYMBOL(free_pages);
4962 
4963 /*
4964  * Page Fragment:
4965  *  An arbitrary-length arbitrary-offset area of memory which resides
4966  *  within a 0 or higher order page.  Multiple fragments within that page
4967  *  are individually refcounted, in the page's reference counter.
4968  *
4969  * The page_frag functions below provide a simple allocation framework for
4970  * page fragments.  This is used by the network stack and network device
4971  * drivers to provide a backing region of memory for use as either an
4972  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4973  */
4974 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4975 					     gfp_t gfp_mask)
4976 {
4977 	struct page *page = NULL;
4978 	gfp_t gfp = gfp_mask;
4979 
4980 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4981 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4982 		    __GFP_NOMEMALLOC;
4983 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4984 				PAGE_FRAG_CACHE_MAX_ORDER);
4985 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4986 #endif
4987 	if (unlikely(!page))
4988 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4989 
4990 	nc->va = page ? page_address(page) : NULL;
4991 
4992 	return page;
4993 }
4994 
4995 void __page_frag_cache_drain(struct page *page, unsigned int count)
4996 {
4997 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4998 
4999 	if (page_ref_sub_and_test(page, count))
5000 		free_the_page(page, compound_order(page));
5001 }
5002 EXPORT_SYMBOL(__page_frag_cache_drain);
5003 
5004 void *page_frag_alloc(struct page_frag_cache *nc,
5005 		      unsigned int fragsz, gfp_t gfp_mask)
5006 {
5007 	unsigned int size = PAGE_SIZE;
5008 	struct page *page;
5009 	int offset;
5010 
5011 	if (unlikely(!nc->va)) {
5012 refill:
5013 		page = __page_frag_cache_refill(nc, gfp_mask);
5014 		if (!page)
5015 			return NULL;
5016 
5017 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5018 		/* if size can vary use size else just use PAGE_SIZE */
5019 		size = nc->size;
5020 #endif
5021 		/* Even if we own the page, we do not use atomic_set().
5022 		 * This would break get_page_unless_zero() users.
5023 		 */
5024 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5025 
5026 		/* reset page count bias and offset to start of new frag */
5027 		nc->pfmemalloc = page_is_pfmemalloc(page);
5028 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5029 		nc->offset = size;
5030 	}
5031 
5032 	offset = nc->offset - fragsz;
5033 	if (unlikely(offset < 0)) {
5034 		page = virt_to_page(nc->va);
5035 
5036 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5037 			goto refill;
5038 
5039 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5040 		/* if size can vary use size else just use PAGE_SIZE */
5041 		size = nc->size;
5042 #endif
5043 		/* OK, page count is 0, we can safely set it */
5044 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5045 
5046 		/* reset page count bias and offset to start of new frag */
5047 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5048 		offset = size - fragsz;
5049 	}
5050 
5051 	nc->pagecnt_bias--;
5052 	nc->offset = offset;
5053 
5054 	return nc->va + offset;
5055 }
5056 EXPORT_SYMBOL(page_frag_alloc);
5057 
5058 /*
5059  * Frees a page fragment allocated out of either a compound or order 0 page.
5060  */
5061 void page_frag_free(void *addr)
5062 {
5063 	struct page *page = virt_to_head_page(addr);
5064 
5065 	if (unlikely(put_page_testzero(page)))
5066 		free_the_page(page, compound_order(page));
5067 }
5068 EXPORT_SYMBOL(page_frag_free);
5069 
5070 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5071 		size_t size)
5072 {
5073 	if (addr) {
5074 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5075 		unsigned long used = addr + PAGE_ALIGN(size);
5076 
5077 		split_page(virt_to_page((void *)addr), order);
5078 		while (used < alloc_end) {
5079 			free_page(used);
5080 			used += PAGE_SIZE;
5081 		}
5082 	}
5083 	return (void *)addr;
5084 }
5085 
5086 /**
5087  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5088  * @size: the number of bytes to allocate
5089  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5090  *
5091  * This function is similar to alloc_pages(), except that it allocates the
5092  * minimum number of pages to satisfy the request.  alloc_pages() can only
5093  * allocate memory in power-of-two pages.
5094  *
5095  * This function is also limited by MAX_ORDER.
5096  *
5097  * Memory allocated by this function must be released by free_pages_exact().
5098  *
5099  * Return: pointer to the allocated area or %NULL in case of error.
5100  */
5101 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5102 {
5103 	unsigned int order = get_order(size);
5104 	unsigned long addr;
5105 
5106 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5107 		gfp_mask &= ~__GFP_COMP;
5108 
5109 	addr = __get_free_pages(gfp_mask, order);
5110 	return make_alloc_exact(addr, order, size);
5111 }
5112 EXPORT_SYMBOL(alloc_pages_exact);
5113 
5114 /**
5115  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5116  *			   pages on a node.
5117  * @nid: the preferred node ID where memory should be allocated
5118  * @size: the number of bytes to allocate
5119  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5120  *
5121  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5122  * back.
5123  *
5124  * Return: pointer to the allocated area or %NULL in case of error.
5125  */
5126 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5127 {
5128 	unsigned int order = get_order(size);
5129 	struct page *p;
5130 
5131 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5132 		gfp_mask &= ~__GFP_COMP;
5133 
5134 	p = alloc_pages_node(nid, gfp_mask, order);
5135 	if (!p)
5136 		return NULL;
5137 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5138 }
5139 
5140 /**
5141  * free_pages_exact - release memory allocated via alloc_pages_exact()
5142  * @virt: the value returned by alloc_pages_exact.
5143  * @size: size of allocation, same value as passed to alloc_pages_exact().
5144  *
5145  * Release the memory allocated by a previous call to alloc_pages_exact.
5146  */
5147 void free_pages_exact(void *virt, size_t size)
5148 {
5149 	unsigned long addr = (unsigned long)virt;
5150 	unsigned long end = addr + PAGE_ALIGN(size);
5151 
5152 	while (addr < end) {
5153 		free_page(addr);
5154 		addr += PAGE_SIZE;
5155 	}
5156 }
5157 EXPORT_SYMBOL(free_pages_exact);
5158 
5159 /**
5160  * nr_free_zone_pages - count number of pages beyond high watermark
5161  * @offset: The zone index of the highest zone
5162  *
5163  * nr_free_zone_pages() counts the number of pages which are beyond the
5164  * high watermark within all zones at or below a given zone index.  For each
5165  * zone, the number of pages is calculated as:
5166  *
5167  *     nr_free_zone_pages = managed_pages - high_pages
5168  *
5169  * Return: number of pages beyond high watermark.
5170  */
5171 static unsigned long nr_free_zone_pages(int offset)
5172 {
5173 	struct zoneref *z;
5174 	struct zone *zone;
5175 
5176 	/* Just pick one node, since fallback list is circular */
5177 	unsigned long sum = 0;
5178 
5179 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5180 
5181 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5182 		unsigned long size = zone_managed_pages(zone);
5183 		unsigned long high = high_wmark_pages(zone);
5184 		if (size > high)
5185 			sum += size - high;
5186 	}
5187 
5188 	return sum;
5189 }
5190 
5191 /**
5192  * nr_free_buffer_pages - count number of pages beyond high watermark
5193  *
5194  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5195  * watermark within ZONE_DMA and ZONE_NORMAL.
5196  *
5197  * Return: number of pages beyond high watermark within ZONE_DMA and
5198  * ZONE_NORMAL.
5199  */
5200 unsigned long nr_free_buffer_pages(void)
5201 {
5202 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5203 }
5204 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5205 
5206 static inline void show_node(struct zone *zone)
5207 {
5208 	if (IS_ENABLED(CONFIG_NUMA))
5209 		printk("Node %d ", zone_to_nid(zone));
5210 }
5211 
5212 long si_mem_available(void)
5213 {
5214 	long available;
5215 	unsigned long pagecache;
5216 	unsigned long wmark_low = 0;
5217 	unsigned long pages[NR_LRU_LISTS];
5218 	unsigned long reclaimable;
5219 	struct zone *zone;
5220 	int lru;
5221 
5222 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5223 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5224 
5225 	for_each_zone(zone)
5226 		wmark_low += low_wmark_pages(zone);
5227 
5228 	/*
5229 	 * Estimate the amount of memory available for userspace allocations,
5230 	 * without causing swapping.
5231 	 */
5232 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5233 
5234 	/*
5235 	 * Not all the page cache can be freed, otherwise the system will
5236 	 * start swapping. Assume at least half of the page cache, or the
5237 	 * low watermark worth of cache, needs to stay.
5238 	 */
5239 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5240 	pagecache -= min(pagecache / 2, wmark_low);
5241 	available += pagecache;
5242 
5243 	/*
5244 	 * Part of the reclaimable slab and other kernel memory consists of
5245 	 * items that are in use, and cannot be freed. Cap this estimate at the
5246 	 * low watermark.
5247 	 */
5248 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5249 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5250 	available += reclaimable - min(reclaimable / 2, wmark_low);
5251 
5252 	if (available < 0)
5253 		available = 0;
5254 	return available;
5255 }
5256 EXPORT_SYMBOL_GPL(si_mem_available);
5257 
5258 void si_meminfo(struct sysinfo *val)
5259 {
5260 	val->totalram = totalram_pages();
5261 	val->sharedram = global_node_page_state(NR_SHMEM);
5262 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5263 	val->bufferram = nr_blockdev_pages();
5264 	val->totalhigh = totalhigh_pages();
5265 	val->freehigh = nr_free_highpages();
5266 	val->mem_unit = PAGE_SIZE;
5267 }
5268 
5269 EXPORT_SYMBOL(si_meminfo);
5270 
5271 #ifdef CONFIG_NUMA
5272 void si_meminfo_node(struct sysinfo *val, int nid)
5273 {
5274 	int zone_type;		/* needs to be signed */
5275 	unsigned long managed_pages = 0;
5276 	unsigned long managed_highpages = 0;
5277 	unsigned long free_highpages = 0;
5278 	pg_data_t *pgdat = NODE_DATA(nid);
5279 
5280 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5281 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5282 	val->totalram = managed_pages;
5283 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5284 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5285 #ifdef CONFIG_HIGHMEM
5286 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5287 		struct zone *zone = &pgdat->node_zones[zone_type];
5288 
5289 		if (is_highmem(zone)) {
5290 			managed_highpages += zone_managed_pages(zone);
5291 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5292 		}
5293 	}
5294 	val->totalhigh = managed_highpages;
5295 	val->freehigh = free_highpages;
5296 #else
5297 	val->totalhigh = managed_highpages;
5298 	val->freehigh = free_highpages;
5299 #endif
5300 	val->mem_unit = PAGE_SIZE;
5301 }
5302 #endif
5303 
5304 /*
5305  * Determine whether the node should be displayed or not, depending on whether
5306  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5307  */
5308 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5309 {
5310 	if (!(flags & SHOW_MEM_FILTER_NODES))
5311 		return false;
5312 
5313 	/*
5314 	 * no node mask - aka implicit memory numa policy. Do not bother with
5315 	 * the synchronization - read_mems_allowed_begin - because we do not
5316 	 * have to be precise here.
5317 	 */
5318 	if (!nodemask)
5319 		nodemask = &cpuset_current_mems_allowed;
5320 
5321 	return !node_isset(nid, *nodemask);
5322 }
5323 
5324 #define K(x) ((x) << (PAGE_SHIFT-10))
5325 
5326 static void show_migration_types(unsigned char type)
5327 {
5328 	static const char types[MIGRATE_TYPES] = {
5329 		[MIGRATE_UNMOVABLE]	= 'U',
5330 		[MIGRATE_MOVABLE]	= 'M',
5331 		[MIGRATE_RECLAIMABLE]	= 'E',
5332 		[MIGRATE_HIGHATOMIC]	= 'H',
5333 #ifdef CONFIG_CMA
5334 		[MIGRATE_CMA]		= 'C',
5335 #endif
5336 #ifdef CONFIG_MEMORY_ISOLATION
5337 		[MIGRATE_ISOLATE]	= 'I',
5338 #endif
5339 	};
5340 	char tmp[MIGRATE_TYPES + 1];
5341 	char *p = tmp;
5342 	int i;
5343 
5344 	for (i = 0; i < MIGRATE_TYPES; i++) {
5345 		if (type & (1 << i))
5346 			*p++ = types[i];
5347 	}
5348 
5349 	*p = '\0';
5350 	printk(KERN_CONT "(%s) ", tmp);
5351 }
5352 
5353 /*
5354  * Show free area list (used inside shift_scroll-lock stuff)
5355  * We also calculate the percentage fragmentation. We do this by counting the
5356  * memory on each free list with the exception of the first item on the list.
5357  *
5358  * Bits in @filter:
5359  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5360  *   cpuset.
5361  */
5362 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5363 {
5364 	unsigned long free_pcp = 0;
5365 	int cpu;
5366 	struct zone *zone;
5367 	pg_data_t *pgdat;
5368 
5369 	for_each_populated_zone(zone) {
5370 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5371 			continue;
5372 
5373 		for_each_online_cpu(cpu)
5374 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5375 	}
5376 
5377 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5378 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5379 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5380 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5381 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5382 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5383 		global_node_page_state(NR_ACTIVE_ANON),
5384 		global_node_page_state(NR_INACTIVE_ANON),
5385 		global_node_page_state(NR_ISOLATED_ANON),
5386 		global_node_page_state(NR_ACTIVE_FILE),
5387 		global_node_page_state(NR_INACTIVE_FILE),
5388 		global_node_page_state(NR_ISOLATED_FILE),
5389 		global_node_page_state(NR_UNEVICTABLE),
5390 		global_node_page_state(NR_FILE_DIRTY),
5391 		global_node_page_state(NR_WRITEBACK),
5392 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5393 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5394 		global_node_page_state(NR_FILE_MAPPED),
5395 		global_node_page_state(NR_SHMEM),
5396 		global_zone_page_state(NR_PAGETABLE),
5397 		global_zone_page_state(NR_BOUNCE),
5398 		global_zone_page_state(NR_FREE_PAGES),
5399 		free_pcp,
5400 		global_zone_page_state(NR_FREE_CMA_PAGES));
5401 
5402 	for_each_online_pgdat(pgdat) {
5403 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5404 			continue;
5405 
5406 		printk("Node %d"
5407 			" active_anon:%lukB"
5408 			" inactive_anon:%lukB"
5409 			" active_file:%lukB"
5410 			" inactive_file:%lukB"
5411 			" unevictable:%lukB"
5412 			" isolated(anon):%lukB"
5413 			" isolated(file):%lukB"
5414 			" mapped:%lukB"
5415 			" dirty:%lukB"
5416 			" writeback:%lukB"
5417 			" shmem:%lukB"
5418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5419 			" shmem_thp: %lukB"
5420 			" shmem_pmdmapped: %lukB"
5421 			" anon_thp: %lukB"
5422 #endif
5423 			" writeback_tmp:%lukB"
5424 			" kernel_stack:%lukB"
5425 #ifdef CONFIG_SHADOW_CALL_STACK
5426 			" shadow_call_stack:%lukB"
5427 #endif
5428 			" all_unreclaimable? %s"
5429 			"\n",
5430 			pgdat->node_id,
5431 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5432 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5433 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5434 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5435 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5436 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5437 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5438 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5439 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5440 			K(node_page_state(pgdat, NR_WRITEBACK)),
5441 			K(node_page_state(pgdat, NR_SHMEM)),
5442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5443 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5444 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5445 					* HPAGE_PMD_NR),
5446 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5447 #endif
5448 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5449 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5450 #ifdef CONFIG_SHADOW_CALL_STACK
5451 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5452 #endif
5453 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5454 				"yes" : "no");
5455 	}
5456 
5457 	for_each_populated_zone(zone) {
5458 		int i;
5459 
5460 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5461 			continue;
5462 
5463 		free_pcp = 0;
5464 		for_each_online_cpu(cpu)
5465 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5466 
5467 		show_node(zone);
5468 		printk(KERN_CONT
5469 			"%s"
5470 			" free:%lukB"
5471 			" min:%lukB"
5472 			" low:%lukB"
5473 			" high:%lukB"
5474 			" reserved_highatomic:%luKB"
5475 			" active_anon:%lukB"
5476 			" inactive_anon:%lukB"
5477 			" active_file:%lukB"
5478 			" inactive_file:%lukB"
5479 			" unevictable:%lukB"
5480 			" writepending:%lukB"
5481 			" present:%lukB"
5482 			" managed:%lukB"
5483 			" mlocked:%lukB"
5484 			" pagetables:%lukB"
5485 			" bounce:%lukB"
5486 			" free_pcp:%lukB"
5487 			" local_pcp:%ukB"
5488 			" free_cma:%lukB"
5489 			"\n",
5490 			zone->name,
5491 			K(zone_page_state(zone, NR_FREE_PAGES)),
5492 			K(min_wmark_pages(zone)),
5493 			K(low_wmark_pages(zone)),
5494 			K(high_wmark_pages(zone)),
5495 			K(zone->nr_reserved_highatomic),
5496 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5497 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5498 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5499 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5500 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5501 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5502 			K(zone->present_pages),
5503 			K(zone_managed_pages(zone)),
5504 			K(zone_page_state(zone, NR_MLOCK)),
5505 			K(zone_page_state(zone, NR_PAGETABLE)),
5506 			K(zone_page_state(zone, NR_BOUNCE)),
5507 			K(free_pcp),
5508 			K(this_cpu_read(zone->pageset->pcp.count)),
5509 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5510 		printk("lowmem_reserve[]:");
5511 		for (i = 0; i < MAX_NR_ZONES; i++)
5512 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5513 		printk(KERN_CONT "\n");
5514 	}
5515 
5516 	for_each_populated_zone(zone) {
5517 		unsigned int order;
5518 		unsigned long nr[MAX_ORDER], flags, total = 0;
5519 		unsigned char types[MAX_ORDER];
5520 
5521 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5522 			continue;
5523 		show_node(zone);
5524 		printk(KERN_CONT "%s: ", zone->name);
5525 
5526 		spin_lock_irqsave(&zone->lock, flags);
5527 		for (order = 0; order < MAX_ORDER; order++) {
5528 			struct free_area *area = &zone->free_area[order];
5529 			int type;
5530 
5531 			nr[order] = area->nr_free;
5532 			total += nr[order] << order;
5533 
5534 			types[order] = 0;
5535 			for (type = 0; type < MIGRATE_TYPES; type++) {
5536 				if (!free_area_empty(area, type))
5537 					types[order] |= 1 << type;
5538 			}
5539 		}
5540 		spin_unlock_irqrestore(&zone->lock, flags);
5541 		for (order = 0; order < MAX_ORDER; order++) {
5542 			printk(KERN_CONT "%lu*%lukB ",
5543 			       nr[order], K(1UL) << order);
5544 			if (nr[order])
5545 				show_migration_types(types[order]);
5546 		}
5547 		printk(KERN_CONT "= %lukB\n", K(total));
5548 	}
5549 
5550 	hugetlb_show_meminfo();
5551 
5552 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5553 
5554 	show_swap_cache_info();
5555 }
5556 
5557 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5558 {
5559 	zoneref->zone = zone;
5560 	zoneref->zone_idx = zone_idx(zone);
5561 }
5562 
5563 /*
5564  * Builds allocation fallback zone lists.
5565  *
5566  * Add all populated zones of a node to the zonelist.
5567  */
5568 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5569 {
5570 	struct zone *zone;
5571 	enum zone_type zone_type = MAX_NR_ZONES;
5572 	int nr_zones = 0;
5573 
5574 	do {
5575 		zone_type--;
5576 		zone = pgdat->node_zones + zone_type;
5577 		if (managed_zone(zone)) {
5578 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5579 			check_highest_zone(zone_type);
5580 		}
5581 	} while (zone_type);
5582 
5583 	return nr_zones;
5584 }
5585 
5586 #ifdef CONFIG_NUMA
5587 
5588 static int __parse_numa_zonelist_order(char *s)
5589 {
5590 	/*
5591 	 * We used to support different zonlists modes but they turned
5592 	 * out to be just not useful. Let's keep the warning in place
5593 	 * if somebody still use the cmd line parameter so that we do
5594 	 * not fail it silently
5595 	 */
5596 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5597 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5598 		return -EINVAL;
5599 	}
5600 	return 0;
5601 }
5602 
5603 char numa_zonelist_order[] = "Node";
5604 
5605 /*
5606  * sysctl handler for numa_zonelist_order
5607  */
5608 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5609 		void *buffer, size_t *length, loff_t *ppos)
5610 {
5611 	if (write)
5612 		return __parse_numa_zonelist_order(buffer);
5613 	return proc_dostring(table, write, buffer, length, ppos);
5614 }
5615 
5616 
5617 #define MAX_NODE_LOAD (nr_online_nodes)
5618 static int node_load[MAX_NUMNODES];
5619 
5620 /**
5621  * find_next_best_node - find the next node that should appear in a given node's fallback list
5622  * @node: node whose fallback list we're appending
5623  * @used_node_mask: nodemask_t of already used nodes
5624  *
5625  * We use a number of factors to determine which is the next node that should
5626  * appear on a given node's fallback list.  The node should not have appeared
5627  * already in @node's fallback list, and it should be the next closest node
5628  * according to the distance array (which contains arbitrary distance values
5629  * from each node to each node in the system), and should also prefer nodes
5630  * with no CPUs, since presumably they'll have very little allocation pressure
5631  * on them otherwise.
5632  *
5633  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5634  */
5635 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5636 {
5637 	int n, val;
5638 	int min_val = INT_MAX;
5639 	int best_node = NUMA_NO_NODE;
5640 	const struct cpumask *tmp = cpumask_of_node(0);
5641 
5642 	/* Use the local node if we haven't already */
5643 	if (!node_isset(node, *used_node_mask)) {
5644 		node_set(node, *used_node_mask);
5645 		return node;
5646 	}
5647 
5648 	for_each_node_state(n, N_MEMORY) {
5649 
5650 		/* Don't want a node to appear more than once */
5651 		if (node_isset(n, *used_node_mask))
5652 			continue;
5653 
5654 		/* Use the distance array to find the distance */
5655 		val = node_distance(node, n);
5656 
5657 		/* Penalize nodes under us ("prefer the next node") */
5658 		val += (n < node);
5659 
5660 		/* Give preference to headless and unused nodes */
5661 		tmp = cpumask_of_node(n);
5662 		if (!cpumask_empty(tmp))
5663 			val += PENALTY_FOR_NODE_WITH_CPUS;
5664 
5665 		/* Slight preference for less loaded node */
5666 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5667 		val += node_load[n];
5668 
5669 		if (val < min_val) {
5670 			min_val = val;
5671 			best_node = n;
5672 		}
5673 	}
5674 
5675 	if (best_node >= 0)
5676 		node_set(best_node, *used_node_mask);
5677 
5678 	return best_node;
5679 }
5680 
5681 
5682 /*
5683  * Build zonelists ordered by node and zones within node.
5684  * This results in maximum locality--normal zone overflows into local
5685  * DMA zone, if any--but risks exhausting DMA zone.
5686  */
5687 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5688 		unsigned nr_nodes)
5689 {
5690 	struct zoneref *zonerefs;
5691 	int i;
5692 
5693 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5694 
5695 	for (i = 0; i < nr_nodes; i++) {
5696 		int nr_zones;
5697 
5698 		pg_data_t *node = NODE_DATA(node_order[i]);
5699 
5700 		nr_zones = build_zonerefs_node(node, zonerefs);
5701 		zonerefs += nr_zones;
5702 	}
5703 	zonerefs->zone = NULL;
5704 	zonerefs->zone_idx = 0;
5705 }
5706 
5707 /*
5708  * Build gfp_thisnode zonelists
5709  */
5710 static void build_thisnode_zonelists(pg_data_t *pgdat)
5711 {
5712 	struct zoneref *zonerefs;
5713 	int nr_zones;
5714 
5715 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5716 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5717 	zonerefs += nr_zones;
5718 	zonerefs->zone = NULL;
5719 	zonerefs->zone_idx = 0;
5720 }
5721 
5722 /*
5723  * Build zonelists ordered by zone and nodes within zones.
5724  * This results in conserving DMA zone[s] until all Normal memory is
5725  * exhausted, but results in overflowing to remote node while memory
5726  * may still exist in local DMA zone.
5727  */
5728 
5729 static void build_zonelists(pg_data_t *pgdat)
5730 {
5731 	static int node_order[MAX_NUMNODES];
5732 	int node, load, nr_nodes = 0;
5733 	nodemask_t used_mask = NODE_MASK_NONE;
5734 	int local_node, prev_node;
5735 
5736 	/* NUMA-aware ordering of nodes */
5737 	local_node = pgdat->node_id;
5738 	load = nr_online_nodes;
5739 	prev_node = local_node;
5740 
5741 	memset(node_order, 0, sizeof(node_order));
5742 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5743 		/*
5744 		 * We don't want to pressure a particular node.
5745 		 * So adding penalty to the first node in same
5746 		 * distance group to make it round-robin.
5747 		 */
5748 		if (node_distance(local_node, node) !=
5749 		    node_distance(local_node, prev_node))
5750 			node_load[node] = load;
5751 
5752 		node_order[nr_nodes++] = node;
5753 		prev_node = node;
5754 		load--;
5755 	}
5756 
5757 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5758 	build_thisnode_zonelists(pgdat);
5759 }
5760 
5761 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5762 /*
5763  * Return node id of node used for "local" allocations.
5764  * I.e., first node id of first zone in arg node's generic zonelist.
5765  * Used for initializing percpu 'numa_mem', which is used primarily
5766  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5767  */
5768 int local_memory_node(int node)
5769 {
5770 	struct zoneref *z;
5771 
5772 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5773 				   gfp_zone(GFP_KERNEL),
5774 				   NULL);
5775 	return zone_to_nid(z->zone);
5776 }
5777 #endif
5778 
5779 static void setup_min_unmapped_ratio(void);
5780 static void setup_min_slab_ratio(void);
5781 #else	/* CONFIG_NUMA */
5782 
5783 static void build_zonelists(pg_data_t *pgdat)
5784 {
5785 	int node, local_node;
5786 	struct zoneref *zonerefs;
5787 	int nr_zones;
5788 
5789 	local_node = pgdat->node_id;
5790 
5791 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5792 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5793 	zonerefs += nr_zones;
5794 
5795 	/*
5796 	 * Now we build the zonelist so that it contains the zones
5797 	 * of all the other nodes.
5798 	 * We don't want to pressure a particular node, so when
5799 	 * building the zones for node N, we make sure that the
5800 	 * zones coming right after the local ones are those from
5801 	 * node N+1 (modulo N)
5802 	 */
5803 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5804 		if (!node_online(node))
5805 			continue;
5806 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5807 		zonerefs += nr_zones;
5808 	}
5809 	for (node = 0; node < local_node; node++) {
5810 		if (!node_online(node))
5811 			continue;
5812 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5813 		zonerefs += nr_zones;
5814 	}
5815 
5816 	zonerefs->zone = NULL;
5817 	zonerefs->zone_idx = 0;
5818 }
5819 
5820 #endif	/* CONFIG_NUMA */
5821 
5822 /*
5823  * Boot pageset table. One per cpu which is going to be used for all
5824  * zones and all nodes. The parameters will be set in such a way
5825  * that an item put on a list will immediately be handed over to
5826  * the buddy list. This is safe since pageset manipulation is done
5827  * with interrupts disabled.
5828  *
5829  * The boot_pagesets must be kept even after bootup is complete for
5830  * unused processors and/or zones. They do play a role for bootstrapping
5831  * hotplugged processors.
5832  *
5833  * zoneinfo_show() and maybe other functions do
5834  * not check if the processor is online before following the pageset pointer.
5835  * Other parts of the kernel may not check if the zone is available.
5836  */
5837 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5838 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5839 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5840 
5841 static void __build_all_zonelists(void *data)
5842 {
5843 	int nid;
5844 	int __maybe_unused cpu;
5845 	pg_data_t *self = data;
5846 	static DEFINE_SPINLOCK(lock);
5847 
5848 	spin_lock(&lock);
5849 
5850 #ifdef CONFIG_NUMA
5851 	memset(node_load, 0, sizeof(node_load));
5852 #endif
5853 
5854 	/*
5855 	 * This node is hotadded and no memory is yet present.   So just
5856 	 * building zonelists is fine - no need to touch other nodes.
5857 	 */
5858 	if (self && !node_online(self->node_id)) {
5859 		build_zonelists(self);
5860 	} else {
5861 		for_each_online_node(nid) {
5862 			pg_data_t *pgdat = NODE_DATA(nid);
5863 
5864 			build_zonelists(pgdat);
5865 		}
5866 
5867 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5868 		/*
5869 		 * We now know the "local memory node" for each node--
5870 		 * i.e., the node of the first zone in the generic zonelist.
5871 		 * Set up numa_mem percpu variable for on-line cpus.  During
5872 		 * boot, only the boot cpu should be on-line;  we'll init the
5873 		 * secondary cpus' numa_mem as they come on-line.  During
5874 		 * node/memory hotplug, we'll fixup all on-line cpus.
5875 		 */
5876 		for_each_online_cpu(cpu)
5877 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5878 #endif
5879 	}
5880 
5881 	spin_unlock(&lock);
5882 }
5883 
5884 static noinline void __init
5885 build_all_zonelists_init(void)
5886 {
5887 	int cpu;
5888 
5889 	__build_all_zonelists(NULL);
5890 
5891 	/*
5892 	 * Initialize the boot_pagesets that are going to be used
5893 	 * for bootstrapping processors. The real pagesets for
5894 	 * each zone will be allocated later when the per cpu
5895 	 * allocator is available.
5896 	 *
5897 	 * boot_pagesets are used also for bootstrapping offline
5898 	 * cpus if the system is already booted because the pagesets
5899 	 * are needed to initialize allocators on a specific cpu too.
5900 	 * F.e. the percpu allocator needs the page allocator which
5901 	 * needs the percpu allocator in order to allocate its pagesets
5902 	 * (a chicken-egg dilemma).
5903 	 */
5904 	for_each_possible_cpu(cpu)
5905 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5906 
5907 	mminit_verify_zonelist();
5908 	cpuset_init_current_mems_allowed();
5909 }
5910 
5911 /*
5912  * unless system_state == SYSTEM_BOOTING.
5913  *
5914  * __ref due to call of __init annotated helper build_all_zonelists_init
5915  * [protected by SYSTEM_BOOTING].
5916  */
5917 void __ref build_all_zonelists(pg_data_t *pgdat)
5918 {
5919 	unsigned long vm_total_pages;
5920 
5921 	if (system_state == SYSTEM_BOOTING) {
5922 		build_all_zonelists_init();
5923 	} else {
5924 		__build_all_zonelists(pgdat);
5925 		/* cpuset refresh routine should be here */
5926 	}
5927 	/* Get the number of free pages beyond high watermark in all zones. */
5928 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5929 	/*
5930 	 * Disable grouping by mobility if the number of pages in the
5931 	 * system is too low to allow the mechanism to work. It would be
5932 	 * more accurate, but expensive to check per-zone. This check is
5933 	 * made on memory-hotadd so a system can start with mobility
5934 	 * disabled and enable it later
5935 	 */
5936 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5937 		page_group_by_mobility_disabled = 1;
5938 	else
5939 		page_group_by_mobility_disabled = 0;
5940 
5941 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5942 		nr_online_nodes,
5943 		page_group_by_mobility_disabled ? "off" : "on",
5944 		vm_total_pages);
5945 #ifdef CONFIG_NUMA
5946 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5947 #endif
5948 }
5949 
5950 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5951 static bool __meminit
5952 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5953 {
5954 	static struct memblock_region *r;
5955 
5956 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5957 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5958 			for_each_memblock(memory, r) {
5959 				if (*pfn < memblock_region_memory_end_pfn(r))
5960 					break;
5961 			}
5962 		}
5963 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5964 		    memblock_is_mirror(r)) {
5965 			*pfn = memblock_region_memory_end_pfn(r);
5966 			return true;
5967 		}
5968 	}
5969 	return false;
5970 }
5971 
5972 /*
5973  * Initially all pages are reserved - free ones are freed
5974  * up by memblock_free_all() once the early boot process is
5975  * done. Non-atomic initialization, single-pass.
5976  */
5977 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5978 		unsigned long start_pfn, enum memmap_context context,
5979 		struct vmem_altmap *altmap)
5980 {
5981 	unsigned long pfn, end_pfn = start_pfn + size;
5982 	struct page *page;
5983 
5984 	if (highest_memmap_pfn < end_pfn - 1)
5985 		highest_memmap_pfn = end_pfn - 1;
5986 
5987 #ifdef CONFIG_ZONE_DEVICE
5988 	/*
5989 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5990 	 * memory. We limit the total number of pages to initialize to just
5991 	 * those that might contain the memory mapping. We will defer the
5992 	 * ZONE_DEVICE page initialization until after we have released
5993 	 * the hotplug lock.
5994 	 */
5995 	if (zone == ZONE_DEVICE) {
5996 		if (!altmap)
5997 			return;
5998 
5999 		if (start_pfn == altmap->base_pfn)
6000 			start_pfn += altmap->reserve;
6001 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6002 	}
6003 #endif
6004 
6005 	for (pfn = start_pfn; pfn < end_pfn; ) {
6006 		/*
6007 		 * There can be holes in boot-time mem_map[]s handed to this
6008 		 * function.  They do not exist on hotplugged memory.
6009 		 */
6010 		if (context == MEMMAP_EARLY) {
6011 			if (overlap_memmap_init(zone, &pfn))
6012 				continue;
6013 			if (defer_init(nid, pfn, end_pfn))
6014 				break;
6015 		}
6016 
6017 		page = pfn_to_page(pfn);
6018 		__init_single_page(page, pfn, zone, nid);
6019 		if (context == MEMMAP_HOTPLUG)
6020 			__SetPageReserved(page);
6021 
6022 		/*
6023 		 * Mark the block movable so that blocks are reserved for
6024 		 * movable at startup. This will force kernel allocations
6025 		 * to reserve their blocks rather than leaking throughout
6026 		 * the address space during boot when many long-lived
6027 		 * kernel allocations are made.
6028 		 *
6029 		 * bitmap is created for zone's valid pfn range. but memmap
6030 		 * can be created for invalid pages (for alignment)
6031 		 * check here not to call set_pageblock_migratetype() against
6032 		 * pfn out of zone.
6033 		 */
6034 		if (!(pfn & (pageblock_nr_pages - 1))) {
6035 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6036 			cond_resched();
6037 		}
6038 		pfn++;
6039 	}
6040 }
6041 
6042 #ifdef CONFIG_ZONE_DEVICE
6043 void __ref memmap_init_zone_device(struct zone *zone,
6044 				   unsigned long start_pfn,
6045 				   unsigned long nr_pages,
6046 				   struct dev_pagemap *pgmap)
6047 {
6048 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6049 	struct pglist_data *pgdat = zone->zone_pgdat;
6050 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6051 	unsigned long zone_idx = zone_idx(zone);
6052 	unsigned long start = jiffies;
6053 	int nid = pgdat->node_id;
6054 
6055 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6056 		return;
6057 
6058 	/*
6059 	 * The call to memmap_init_zone should have already taken care
6060 	 * of the pages reserved for the memmap, so we can just jump to
6061 	 * the end of that region and start processing the device pages.
6062 	 */
6063 	if (altmap) {
6064 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6065 		nr_pages = end_pfn - start_pfn;
6066 	}
6067 
6068 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6069 		struct page *page = pfn_to_page(pfn);
6070 
6071 		__init_single_page(page, pfn, zone_idx, nid);
6072 
6073 		/*
6074 		 * Mark page reserved as it will need to wait for onlining
6075 		 * phase for it to be fully associated with a zone.
6076 		 *
6077 		 * We can use the non-atomic __set_bit operation for setting
6078 		 * the flag as we are still initializing the pages.
6079 		 */
6080 		__SetPageReserved(page);
6081 
6082 		/*
6083 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6084 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6085 		 * ever freed or placed on a driver-private list.
6086 		 */
6087 		page->pgmap = pgmap;
6088 		page->zone_device_data = NULL;
6089 
6090 		/*
6091 		 * Mark the block movable so that blocks are reserved for
6092 		 * movable at startup. This will force kernel allocations
6093 		 * to reserve their blocks rather than leaking throughout
6094 		 * the address space during boot when many long-lived
6095 		 * kernel allocations are made.
6096 		 *
6097 		 * bitmap is created for zone's valid pfn range. but memmap
6098 		 * can be created for invalid pages (for alignment)
6099 		 * check here not to call set_pageblock_migratetype() against
6100 		 * pfn out of zone.
6101 		 *
6102 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6103 		 * because this is done early in section_activate()
6104 		 */
6105 		if (!(pfn & (pageblock_nr_pages - 1))) {
6106 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6107 			cond_resched();
6108 		}
6109 	}
6110 
6111 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6112 		nr_pages, jiffies_to_msecs(jiffies - start));
6113 }
6114 
6115 #endif
6116 static void __meminit zone_init_free_lists(struct zone *zone)
6117 {
6118 	unsigned int order, t;
6119 	for_each_migratetype_order(order, t) {
6120 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6121 		zone->free_area[order].nr_free = 0;
6122 	}
6123 }
6124 
6125 void __meminit __weak memmap_init(unsigned long size, int nid,
6126 				  unsigned long zone,
6127 				  unsigned long range_start_pfn)
6128 {
6129 	unsigned long start_pfn, end_pfn;
6130 	unsigned long range_end_pfn = range_start_pfn + size;
6131 	int i;
6132 
6133 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6134 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6135 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6136 
6137 		if (end_pfn > start_pfn) {
6138 			size = end_pfn - start_pfn;
6139 			memmap_init_zone(size, nid, zone, start_pfn,
6140 					 MEMMAP_EARLY, NULL);
6141 		}
6142 	}
6143 }
6144 
6145 static int zone_batchsize(struct zone *zone)
6146 {
6147 #ifdef CONFIG_MMU
6148 	int batch;
6149 
6150 	/*
6151 	 * The per-cpu-pages pools are set to around 1000th of the
6152 	 * size of the zone.
6153 	 */
6154 	batch = zone_managed_pages(zone) / 1024;
6155 	/* But no more than a meg. */
6156 	if (batch * PAGE_SIZE > 1024 * 1024)
6157 		batch = (1024 * 1024) / PAGE_SIZE;
6158 	batch /= 4;		/* We effectively *= 4 below */
6159 	if (batch < 1)
6160 		batch = 1;
6161 
6162 	/*
6163 	 * Clamp the batch to a 2^n - 1 value. Having a power
6164 	 * of 2 value was found to be more likely to have
6165 	 * suboptimal cache aliasing properties in some cases.
6166 	 *
6167 	 * For example if 2 tasks are alternately allocating
6168 	 * batches of pages, one task can end up with a lot
6169 	 * of pages of one half of the possible page colors
6170 	 * and the other with pages of the other colors.
6171 	 */
6172 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6173 
6174 	return batch;
6175 
6176 #else
6177 	/* The deferral and batching of frees should be suppressed under NOMMU
6178 	 * conditions.
6179 	 *
6180 	 * The problem is that NOMMU needs to be able to allocate large chunks
6181 	 * of contiguous memory as there's no hardware page translation to
6182 	 * assemble apparent contiguous memory from discontiguous pages.
6183 	 *
6184 	 * Queueing large contiguous runs of pages for batching, however,
6185 	 * causes the pages to actually be freed in smaller chunks.  As there
6186 	 * can be a significant delay between the individual batches being
6187 	 * recycled, this leads to the once large chunks of space being
6188 	 * fragmented and becoming unavailable for high-order allocations.
6189 	 */
6190 	return 0;
6191 #endif
6192 }
6193 
6194 /*
6195  * pcp->high and pcp->batch values are related and dependent on one another:
6196  * ->batch must never be higher then ->high.
6197  * The following function updates them in a safe manner without read side
6198  * locking.
6199  *
6200  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6201  * those fields changing asynchronously (acording to the above rule).
6202  *
6203  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6204  * outside of boot time (or some other assurance that no concurrent updaters
6205  * exist).
6206  */
6207 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6208 		unsigned long batch)
6209 {
6210        /* start with a fail safe value for batch */
6211 	pcp->batch = 1;
6212 	smp_wmb();
6213 
6214        /* Update high, then batch, in order */
6215 	pcp->high = high;
6216 	smp_wmb();
6217 
6218 	pcp->batch = batch;
6219 }
6220 
6221 /* a companion to pageset_set_high() */
6222 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6223 {
6224 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6225 }
6226 
6227 static void pageset_init(struct per_cpu_pageset *p)
6228 {
6229 	struct per_cpu_pages *pcp;
6230 	int migratetype;
6231 
6232 	memset(p, 0, sizeof(*p));
6233 
6234 	pcp = &p->pcp;
6235 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6236 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6237 }
6238 
6239 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6240 {
6241 	pageset_init(p);
6242 	pageset_set_batch(p, batch);
6243 }
6244 
6245 /*
6246  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6247  * to the value high for the pageset p.
6248  */
6249 static void pageset_set_high(struct per_cpu_pageset *p,
6250 				unsigned long high)
6251 {
6252 	unsigned long batch = max(1UL, high / 4);
6253 	if ((high / 4) > (PAGE_SHIFT * 8))
6254 		batch = PAGE_SHIFT * 8;
6255 
6256 	pageset_update(&p->pcp, high, batch);
6257 }
6258 
6259 static void pageset_set_high_and_batch(struct zone *zone,
6260 				       struct per_cpu_pageset *pcp)
6261 {
6262 	if (percpu_pagelist_fraction)
6263 		pageset_set_high(pcp,
6264 			(zone_managed_pages(zone) /
6265 				percpu_pagelist_fraction));
6266 	else
6267 		pageset_set_batch(pcp, zone_batchsize(zone));
6268 }
6269 
6270 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6271 {
6272 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6273 
6274 	pageset_init(pcp);
6275 	pageset_set_high_and_batch(zone, pcp);
6276 }
6277 
6278 void __meminit setup_zone_pageset(struct zone *zone)
6279 {
6280 	int cpu;
6281 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6282 	for_each_possible_cpu(cpu)
6283 		zone_pageset_init(zone, cpu);
6284 }
6285 
6286 /*
6287  * Allocate per cpu pagesets and initialize them.
6288  * Before this call only boot pagesets were available.
6289  */
6290 void __init setup_per_cpu_pageset(void)
6291 {
6292 	struct pglist_data *pgdat;
6293 	struct zone *zone;
6294 	int __maybe_unused cpu;
6295 
6296 	for_each_populated_zone(zone)
6297 		setup_zone_pageset(zone);
6298 
6299 #ifdef CONFIG_NUMA
6300 	/*
6301 	 * Unpopulated zones continue using the boot pagesets.
6302 	 * The numa stats for these pagesets need to be reset.
6303 	 * Otherwise, they will end up skewing the stats of
6304 	 * the nodes these zones are associated with.
6305 	 */
6306 	for_each_possible_cpu(cpu) {
6307 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6308 		memset(pcp->vm_numa_stat_diff, 0,
6309 		       sizeof(pcp->vm_numa_stat_diff));
6310 	}
6311 #endif
6312 
6313 	for_each_online_pgdat(pgdat)
6314 		pgdat->per_cpu_nodestats =
6315 			alloc_percpu(struct per_cpu_nodestat);
6316 }
6317 
6318 static __meminit void zone_pcp_init(struct zone *zone)
6319 {
6320 	/*
6321 	 * per cpu subsystem is not up at this point. The following code
6322 	 * relies on the ability of the linker to provide the
6323 	 * offset of a (static) per cpu variable into the per cpu area.
6324 	 */
6325 	zone->pageset = &boot_pageset;
6326 
6327 	if (populated_zone(zone))
6328 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6329 			zone->name, zone->present_pages,
6330 					 zone_batchsize(zone));
6331 }
6332 
6333 void __meminit init_currently_empty_zone(struct zone *zone,
6334 					unsigned long zone_start_pfn,
6335 					unsigned long size)
6336 {
6337 	struct pglist_data *pgdat = zone->zone_pgdat;
6338 	int zone_idx = zone_idx(zone) + 1;
6339 
6340 	if (zone_idx > pgdat->nr_zones)
6341 		pgdat->nr_zones = zone_idx;
6342 
6343 	zone->zone_start_pfn = zone_start_pfn;
6344 
6345 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6346 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6347 			pgdat->node_id,
6348 			(unsigned long)zone_idx(zone),
6349 			zone_start_pfn, (zone_start_pfn + size));
6350 
6351 	zone_init_free_lists(zone);
6352 	zone->initialized = 1;
6353 }
6354 
6355 /**
6356  * get_pfn_range_for_nid - Return the start and end page frames for a node
6357  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6358  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6359  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6360  *
6361  * It returns the start and end page frame of a node based on information
6362  * provided by memblock_set_node(). If called for a node
6363  * with no available memory, a warning is printed and the start and end
6364  * PFNs will be 0.
6365  */
6366 void __init get_pfn_range_for_nid(unsigned int nid,
6367 			unsigned long *start_pfn, unsigned long *end_pfn)
6368 {
6369 	unsigned long this_start_pfn, this_end_pfn;
6370 	int i;
6371 
6372 	*start_pfn = -1UL;
6373 	*end_pfn = 0;
6374 
6375 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6376 		*start_pfn = min(*start_pfn, this_start_pfn);
6377 		*end_pfn = max(*end_pfn, this_end_pfn);
6378 	}
6379 
6380 	if (*start_pfn == -1UL)
6381 		*start_pfn = 0;
6382 }
6383 
6384 /*
6385  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6386  * assumption is made that zones within a node are ordered in monotonic
6387  * increasing memory addresses so that the "highest" populated zone is used
6388  */
6389 static void __init find_usable_zone_for_movable(void)
6390 {
6391 	int zone_index;
6392 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6393 		if (zone_index == ZONE_MOVABLE)
6394 			continue;
6395 
6396 		if (arch_zone_highest_possible_pfn[zone_index] >
6397 				arch_zone_lowest_possible_pfn[zone_index])
6398 			break;
6399 	}
6400 
6401 	VM_BUG_ON(zone_index == -1);
6402 	movable_zone = zone_index;
6403 }
6404 
6405 /*
6406  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6407  * because it is sized independent of architecture. Unlike the other zones,
6408  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6409  * in each node depending on the size of each node and how evenly kernelcore
6410  * is distributed. This helper function adjusts the zone ranges
6411  * provided by the architecture for a given node by using the end of the
6412  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6413  * zones within a node are in order of monotonic increases memory addresses
6414  */
6415 static void __init adjust_zone_range_for_zone_movable(int nid,
6416 					unsigned long zone_type,
6417 					unsigned long node_start_pfn,
6418 					unsigned long node_end_pfn,
6419 					unsigned long *zone_start_pfn,
6420 					unsigned long *zone_end_pfn)
6421 {
6422 	/* Only adjust if ZONE_MOVABLE is on this node */
6423 	if (zone_movable_pfn[nid]) {
6424 		/* Size ZONE_MOVABLE */
6425 		if (zone_type == ZONE_MOVABLE) {
6426 			*zone_start_pfn = zone_movable_pfn[nid];
6427 			*zone_end_pfn = min(node_end_pfn,
6428 				arch_zone_highest_possible_pfn[movable_zone]);
6429 
6430 		/* Adjust for ZONE_MOVABLE starting within this range */
6431 		} else if (!mirrored_kernelcore &&
6432 			*zone_start_pfn < zone_movable_pfn[nid] &&
6433 			*zone_end_pfn > zone_movable_pfn[nid]) {
6434 			*zone_end_pfn = zone_movable_pfn[nid];
6435 
6436 		/* Check if this whole range is within ZONE_MOVABLE */
6437 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6438 			*zone_start_pfn = *zone_end_pfn;
6439 	}
6440 }
6441 
6442 /*
6443  * Return the number of pages a zone spans in a node, including holes
6444  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6445  */
6446 static unsigned long __init zone_spanned_pages_in_node(int nid,
6447 					unsigned long zone_type,
6448 					unsigned long node_start_pfn,
6449 					unsigned long node_end_pfn,
6450 					unsigned long *zone_start_pfn,
6451 					unsigned long *zone_end_pfn)
6452 {
6453 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6454 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6455 	/* When hotadd a new node from cpu_up(), the node should be empty */
6456 	if (!node_start_pfn && !node_end_pfn)
6457 		return 0;
6458 
6459 	/* Get the start and end of the zone */
6460 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6461 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6462 	adjust_zone_range_for_zone_movable(nid, zone_type,
6463 				node_start_pfn, node_end_pfn,
6464 				zone_start_pfn, zone_end_pfn);
6465 
6466 	/* Check that this node has pages within the zone's required range */
6467 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6468 		return 0;
6469 
6470 	/* Move the zone boundaries inside the node if necessary */
6471 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6472 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6473 
6474 	/* Return the spanned pages */
6475 	return *zone_end_pfn - *zone_start_pfn;
6476 }
6477 
6478 /*
6479  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6480  * then all holes in the requested range will be accounted for.
6481  */
6482 unsigned long __init __absent_pages_in_range(int nid,
6483 				unsigned long range_start_pfn,
6484 				unsigned long range_end_pfn)
6485 {
6486 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6487 	unsigned long start_pfn, end_pfn;
6488 	int i;
6489 
6490 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6491 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6492 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6493 		nr_absent -= end_pfn - start_pfn;
6494 	}
6495 	return nr_absent;
6496 }
6497 
6498 /**
6499  * absent_pages_in_range - Return number of page frames in holes within a range
6500  * @start_pfn: The start PFN to start searching for holes
6501  * @end_pfn: The end PFN to stop searching for holes
6502  *
6503  * Return: the number of pages frames in memory holes within a range.
6504  */
6505 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6506 							unsigned long end_pfn)
6507 {
6508 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6509 }
6510 
6511 /* Return the number of page frames in holes in a zone on a node */
6512 static unsigned long __init zone_absent_pages_in_node(int nid,
6513 					unsigned long zone_type,
6514 					unsigned long node_start_pfn,
6515 					unsigned long node_end_pfn)
6516 {
6517 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6518 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6519 	unsigned long zone_start_pfn, zone_end_pfn;
6520 	unsigned long nr_absent;
6521 
6522 	/* When hotadd a new node from cpu_up(), the node should be empty */
6523 	if (!node_start_pfn && !node_end_pfn)
6524 		return 0;
6525 
6526 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6527 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6528 
6529 	adjust_zone_range_for_zone_movable(nid, zone_type,
6530 			node_start_pfn, node_end_pfn,
6531 			&zone_start_pfn, &zone_end_pfn);
6532 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6533 
6534 	/*
6535 	 * ZONE_MOVABLE handling.
6536 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6537 	 * and vice versa.
6538 	 */
6539 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6540 		unsigned long start_pfn, end_pfn;
6541 		struct memblock_region *r;
6542 
6543 		for_each_memblock(memory, r) {
6544 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6545 					  zone_start_pfn, zone_end_pfn);
6546 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6547 					zone_start_pfn, zone_end_pfn);
6548 
6549 			if (zone_type == ZONE_MOVABLE &&
6550 			    memblock_is_mirror(r))
6551 				nr_absent += end_pfn - start_pfn;
6552 
6553 			if (zone_type == ZONE_NORMAL &&
6554 			    !memblock_is_mirror(r))
6555 				nr_absent += end_pfn - start_pfn;
6556 		}
6557 	}
6558 
6559 	return nr_absent;
6560 }
6561 
6562 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6563 						unsigned long node_start_pfn,
6564 						unsigned long node_end_pfn)
6565 {
6566 	unsigned long realtotalpages = 0, totalpages = 0;
6567 	enum zone_type i;
6568 
6569 	for (i = 0; i < MAX_NR_ZONES; i++) {
6570 		struct zone *zone = pgdat->node_zones + i;
6571 		unsigned long zone_start_pfn, zone_end_pfn;
6572 		unsigned long spanned, absent;
6573 		unsigned long size, real_size;
6574 
6575 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6576 						     node_start_pfn,
6577 						     node_end_pfn,
6578 						     &zone_start_pfn,
6579 						     &zone_end_pfn);
6580 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6581 						   node_start_pfn,
6582 						   node_end_pfn);
6583 
6584 		size = spanned;
6585 		real_size = size - absent;
6586 
6587 		if (size)
6588 			zone->zone_start_pfn = zone_start_pfn;
6589 		else
6590 			zone->zone_start_pfn = 0;
6591 		zone->spanned_pages = size;
6592 		zone->present_pages = real_size;
6593 
6594 		totalpages += size;
6595 		realtotalpages += real_size;
6596 	}
6597 
6598 	pgdat->node_spanned_pages = totalpages;
6599 	pgdat->node_present_pages = realtotalpages;
6600 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6601 							realtotalpages);
6602 }
6603 
6604 #ifndef CONFIG_SPARSEMEM
6605 /*
6606  * Calculate the size of the zone->blockflags rounded to an unsigned long
6607  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6608  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6609  * round what is now in bits to nearest long in bits, then return it in
6610  * bytes.
6611  */
6612 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6613 {
6614 	unsigned long usemapsize;
6615 
6616 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6617 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6618 	usemapsize = usemapsize >> pageblock_order;
6619 	usemapsize *= NR_PAGEBLOCK_BITS;
6620 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6621 
6622 	return usemapsize / 8;
6623 }
6624 
6625 static void __ref setup_usemap(struct pglist_data *pgdat,
6626 				struct zone *zone,
6627 				unsigned long zone_start_pfn,
6628 				unsigned long zonesize)
6629 {
6630 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6631 	zone->pageblock_flags = NULL;
6632 	if (usemapsize) {
6633 		zone->pageblock_flags =
6634 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6635 					    pgdat->node_id);
6636 		if (!zone->pageblock_flags)
6637 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6638 			      usemapsize, zone->name, pgdat->node_id);
6639 	}
6640 }
6641 #else
6642 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6643 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6644 #endif /* CONFIG_SPARSEMEM */
6645 
6646 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6647 
6648 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6649 void __init set_pageblock_order(void)
6650 {
6651 	unsigned int order;
6652 
6653 	/* Check that pageblock_nr_pages has not already been setup */
6654 	if (pageblock_order)
6655 		return;
6656 
6657 	if (HPAGE_SHIFT > PAGE_SHIFT)
6658 		order = HUGETLB_PAGE_ORDER;
6659 	else
6660 		order = MAX_ORDER - 1;
6661 
6662 	/*
6663 	 * Assume the largest contiguous order of interest is a huge page.
6664 	 * This value may be variable depending on boot parameters on IA64 and
6665 	 * powerpc.
6666 	 */
6667 	pageblock_order = order;
6668 }
6669 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6670 
6671 /*
6672  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6673  * is unused as pageblock_order is set at compile-time. See
6674  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6675  * the kernel config
6676  */
6677 void __init set_pageblock_order(void)
6678 {
6679 }
6680 
6681 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6682 
6683 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6684 						unsigned long present_pages)
6685 {
6686 	unsigned long pages = spanned_pages;
6687 
6688 	/*
6689 	 * Provide a more accurate estimation if there are holes within
6690 	 * the zone and SPARSEMEM is in use. If there are holes within the
6691 	 * zone, each populated memory region may cost us one or two extra
6692 	 * memmap pages due to alignment because memmap pages for each
6693 	 * populated regions may not be naturally aligned on page boundary.
6694 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6695 	 */
6696 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6697 	    IS_ENABLED(CONFIG_SPARSEMEM))
6698 		pages = present_pages;
6699 
6700 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6701 }
6702 
6703 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6704 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6705 {
6706 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6707 
6708 	spin_lock_init(&ds_queue->split_queue_lock);
6709 	INIT_LIST_HEAD(&ds_queue->split_queue);
6710 	ds_queue->split_queue_len = 0;
6711 }
6712 #else
6713 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6714 #endif
6715 
6716 #ifdef CONFIG_COMPACTION
6717 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6718 {
6719 	init_waitqueue_head(&pgdat->kcompactd_wait);
6720 }
6721 #else
6722 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6723 #endif
6724 
6725 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6726 {
6727 	pgdat_resize_init(pgdat);
6728 
6729 	pgdat_init_split_queue(pgdat);
6730 	pgdat_init_kcompactd(pgdat);
6731 
6732 	init_waitqueue_head(&pgdat->kswapd_wait);
6733 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6734 
6735 	pgdat_page_ext_init(pgdat);
6736 	spin_lock_init(&pgdat->lru_lock);
6737 	lruvec_init(&pgdat->__lruvec);
6738 }
6739 
6740 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6741 							unsigned long remaining_pages)
6742 {
6743 	atomic_long_set(&zone->managed_pages, remaining_pages);
6744 	zone_set_nid(zone, nid);
6745 	zone->name = zone_names[idx];
6746 	zone->zone_pgdat = NODE_DATA(nid);
6747 	spin_lock_init(&zone->lock);
6748 	zone_seqlock_init(zone);
6749 	zone_pcp_init(zone);
6750 }
6751 
6752 /*
6753  * Set up the zone data structures
6754  * - init pgdat internals
6755  * - init all zones belonging to this node
6756  *
6757  * NOTE: this function is only called during memory hotplug
6758  */
6759 #ifdef CONFIG_MEMORY_HOTPLUG
6760 void __ref free_area_init_core_hotplug(int nid)
6761 {
6762 	enum zone_type z;
6763 	pg_data_t *pgdat = NODE_DATA(nid);
6764 
6765 	pgdat_init_internals(pgdat);
6766 	for (z = 0; z < MAX_NR_ZONES; z++)
6767 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6768 }
6769 #endif
6770 
6771 /*
6772  * Set up the zone data structures:
6773  *   - mark all pages reserved
6774  *   - mark all memory queues empty
6775  *   - clear the memory bitmaps
6776  *
6777  * NOTE: pgdat should get zeroed by caller.
6778  * NOTE: this function is only called during early init.
6779  */
6780 static void __init free_area_init_core(struct pglist_data *pgdat)
6781 {
6782 	enum zone_type j;
6783 	int nid = pgdat->node_id;
6784 
6785 	pgdat_init_internals(pgdat);
6786 	pgdat->per_cpu_nodestats = &boot_nodestats;
6787 
6788 	for (j = 0; j < MAX_NR_ZONES; j++) {
6789 		struct zone *zone = pgdat->node_zones + j;
6790 		unsigned long size, freesize, memmap_pages;
6791 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6792 
6793 		size = zone->spanned_pages;
6794 		freesize = zone->present_pages;
6795 
6796 		/*
6797 		 * Adjust freesize so that it accounts for how much memory
6798 		 * is used by this zone for memmap. This affects the watermark
6799 		 * and per-cpu initialisations
6800 		 */
6801 		memmap_pages = calc_memmap_size(size, freesize);
6802 		if (!is_highmem_idx(j)) {
6803 			if (freesize >= memmap_pages) {
6804 				freesize -= memmap_pages;
6805 				if (memmap_pages)
6806 					printk(KERN_DEBUG
6807 					       "  %s zone: %lu pages used for memmap\n",
6808 					       zone_names[j], memmap_pages);
6809 			} else
6810 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6811 					zone_names[j], memmap_pages, freesize);
6812 		}
6813 
6814 		/* Account for reserved pages */
6815 		if (j == 0 && freesize > dma_reserve) {
6816 			freesize -= dma_reserve;
6817 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6818 					zone_names[0], dma_reserve);
6819 		}
6820 
6821 		if (!is_highmem_idx(j))
6822 			nr_kernel_pages += freesize;
6823 		/* Charge for highmem memmap if there are enough kernel pages */
6824 		else if (nr_kernel_pages > memmap_pages * 2)
6825 			nr_kernel_pages -= memmap_pages;
6826 		nr_all_pages += freesize;
6827 
6828 		/*
6829 		 * Set an approximate value for lowmem here, it will be adjusted
6830 		 * when the bootmem allocator frees pages into the buddy system.
6831 		 * And all highmem pages will be managed by the buddy system.
6832 		 */
6833 		zone_init_internals(zone, j, nid, freesize);
6834 
6835 		if (!size)
6836 			continue;
6837 
6838 		set_pageblock_order();
6839 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6840 		init_currently_empty_zone(zone, zone_start_pfn, size);
6841 		memmap_init(size, nid, j, zone_start_pfn);
6842 	}
6843 }
6844 
6845 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6846 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6847 {
6848 	unsigned long __maybe_unused start = 0;
6849 	unsigned long __maybe_unused offset = 0;
6850 
6851 	/* Skip empty nodes */
6852 	if (!pgdat->node_spanned_pages)
6853 		return;
6854 
6855 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6856 	offset = pgdat->node_start_pfn - start;
6857 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6858 	if (!pgdat->node_mem_map) {
6859 		unsigned long size, end;
6860 		struct page *map;
6861 
6862 		/*
6863 		 * The zone's endpoints aren't required to be MAX_ORDER
6864 		 * aligned but the node_mem_map endpoints must be in order
6865 		 * for the buddy allocator to function correctly.
6866 		 */
6867 		end = pgdat_end_pfn(pgdat);
6868 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6869 		size =  (end - start) * sizeof(struct page);
6870 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6871 					  pgdat->node_id);
6872 		if (!map)
6873 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6874 			      size, pgdat->node_id);
6875 		pgdat->node_mem_map = map + offset;
6876 	}
6877 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6878 				__func__, pgdat->node_id, (unsigned long)pgdat,
6879 				(unsigned long)pgdat->node_mem_map);
6880 #ifndef CONFIG_NEED_MULTIPLE_NODES
6881 	/*
6882 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6883 	 */
6884 	if (pgdat == NODE_DATA(0)) {
6885 		mem_map = NODE_DATA(0)->node_mem_map;
6886 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6887 			mem_map -= offset;
6888 	}
6889 #endif
6890 }
6891 #else
6892 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6893 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6894 
6895 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6896 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6897 {
6898 	pgdat->first_deferred_pfn = ULONG_MAX;
6899 }
6900 #else
6901 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6902 #endif
6903 
6904 static void __init free_area_init_node(int nid)
6905 {
6906 	pg_data_t *pgdat = NODE_DATA(nid);
6907 	unsigned long start_pfn = 0;
6908 	unsigned long end_pfn = 0;
6909 
6910 	/* pg_data_t should be reset to zero when it's allocated */
6911 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
6912 
6913 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6914 
6915 	pgdat->node_id = nid;
6916 	pgdat->node_start_pfn = start_pfn;
6917 	pgdat->per_cpu_nodestats = NULL;
6918 
6919 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6920 		(u64)start_pfn << PAGE_SHIFT,
6921 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6922 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
6923 
6924 	alloc_node_mem_map(pgdat);
6925 	pgdat_set_deferred_range(pgdat);
6926 
6927 	free_area_init_core(pgdat);
6928 }
6929 
6930 void __init free_area_init_memoryless_node(int nid)
6931 {
6932 	free_area_init_node(nid);
6933 }
6934 
6935 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6936 /*
6937  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6938  * PageReserved(). Return the number of struct pages that were initialized.
6939  */
6940 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6941 {
6942 	unsigned long pfn;
6943 	u64 pgcnt = 0;
6944 
6945 	for (pfn = spfn; pfn < epfn; pfn++) {
6946 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6947 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6948 				+ pageblock_nr_pages - 1;
6949 			continue;
6950 		}
6951 		/*
6952 		 * Use a fake node/zone (0) for now. Some of these pages
6953 		 * (in memblock.reserved but not in memblock.memory) will
6954 		 * get re-initialized via reserve_bootmem_region() later.
6955 		 */
6956 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6957 		__SetPageReserved(pfn_to_page(pfn));
6958 		pgcnt++;
6959 	}
6960 
6961 	return pgcnt;
6962 }
6963 
6964 /*
6965  * Only struct pages that are backed by physical memory are zeroed and
6966  * initialized by going through __init_single_page(). But, there are some
6967  * struct pages which are reserved in memblock allocator and their fields
6968  * may be accessed (for example page_to_pfn() on some configuration accesses
6969  * flags). We must explicitly initialize those struct pages.
6970  *
6971  * This function also addresses a similar issue where struct pages are left
6972  * uninitialized because the physical address range is not covered by
6973  * memblock.memory or memblock.reserved. That could happen when memblock
6974  * layout is manually configured via memmap=, or when the highest physical
6975  * address (max_pfn) does not end on a section boundary.
6976  */
6977 static void __init init_unavailable_mem(void)
6978 {
6979 	phys_addr_t start, end;
6980 	u64 i, pgcnt;
6981 	phys_addr_t next = 0;
6982 
6983 	/*
6984 	 * Loop through unavailable ranges not covered by memblock.memory.
6985 	 */
6986 	pgcnt = 0;
6987 	for_each_mem_range(i, &memblock.memory, NULL,
6988 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6989 		if (next < start)
6990 			pgcnt += init_unavailable_range(PFN_DOWN(next),
6991 							PFN_UP(start));
6992 		next = end;
6993 	}
6994 
6995 	/*
6996 	 * Early sections always have a fully populated memmap for the whole
6997 	 * section - see pfn_valid(). If the last section has holes at the
6998 	 * end and that section is marked "online", the memmap will be
6999 	 * considered initialized. Make sure that memmap has a well defined
7000 	 * state.
7001 	 */
7002 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7003 					round_up(max_pfn, PAGES_PER_SECTION));
7004 
7005 	/*
7006 	 * Struct pages that do not have backing memory. This could be because
7007 	 * firmware is using some of this memory, or for some other reasons.
7008 	 */
7009 	if (pgcnt)
7010 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7011 }
7012 #else
7013 static inline void __init init_unavailable_mem(void)
7014 {
7015 }
7016 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7017 
7018 #if MAX_NUMNODES > 1
7019 /*
7020  * Figure out the number of possible node ids.
7021  */
7022 void __init setup_nr_node_ids(void)
7023 {
7024 	unsigned int highest;
7025 
7026 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7027 	nr_node_ids = highest + 1;
7028 }
7029 #endif
7030 
7031 /**
7032  * node_map_pfn_alignment - determine the maximum internode alignment
7033  *
7034  * This function should be called after node map is populated and sorted.
7035  * It calculates the maximum power of two alignment which can distinguish
7036  * all the nodes.
7037  *
7038  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7039  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7040  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7041  * shifted, 1GiB is enough and this function will indicate so.
7042  *
7043  * This is used to test whether pfn -> nid mapping of the chosen memory
7044  * model has fine enough granularity to avoid incorrect mapping for the
7045  * populated node map.
7046  *
7047  * Return: the determined alignment in pfn's.  0 if there is no alignment
7048  * requirement (single node).
7049  */
7050 unsigned long __init node_map_pfn_alignment(void)
7051 {
7052 	unsigned long accl_mask = 0, last_end = 0;
7053 	unsigned long start, end, mask;
7054 	int last_nid = NUMA_NO_NODE;
7055 	int i, nid;
7056 
7057 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7058 		if (!start || last_nid < 0 || last_nid == nid) {
7059 			last_nid = nid;
7060 			last_end = end;
7061 			continue;
7062 		}
7063 
7064 		/*
7065 		 * Start with a mask granular enough to pin-point to the
7066 		 * start pfn and tick off bits one-by-one until it becomes
7067 		 * too coarse to separate the current node from the last.
7068 		 */
7069 		mask = ~((1 << __ffs(start)) - 1);
7070 		while (mask && last_end <= (start & (mask << 1)))
7071 			mask <<= 1;
7072 
7073 		/* accumulate all internode masks */
7074 		accl_mask |= mask;
7075 	}
7076 
7077 	/* convert mask to number of pages */
7078 	return ~accl_mask + 1;
7079 }
7080 
7081 /**
7082  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7083  *
7084  * Return: the minimum PFN based on information provided via
7085  * memblock_set_node().
7086  */
7087 unsigned long __init find_min_pfn_with_active_regions(void)
7088 {
7089 	return PHYS_PFN(memblock_start_of_DRAM());
7090 }
7091 
7092 /*
7093  * early_calculate_totalpages()
7094  * Sum pages in active regions for movable zone.
7095  * Populate N_MEMORY for calculating usable_nodes.
7096  */
7097 static unsigned long __init early_calculate_totalpages(void)
7098 {
7099 	unsigned long totalpages = 0;
7100 	unsigned long start_pfn, end_pfn;
7101 	int i, nid;
7102 
7103 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7104 		unsigned long pages = end_pfn - start_pfn;
7105 
7106 		totalpages += pages;
7107 		if (pages)
7108 			node_set_state(nid, N_MEMORY);
7109 	}
7110 	return totalpages;
7111 }
7112 
7113 /*
7114  * Find the PFN the Movable zone begins in each node. Kernel memory
7115  * is spread evenly between nodes as long as the nodes have enough
7116  * memory. When they don't, some nodes will have more kernelcore than
7117  * others
7118  */
7119 static void __init find_zone_movable_pfns_for_nodes(void)
7120 {
7121 	int i, nid;
7122 	unsigned long usable_startpfn;
7123 	unsigned long kernelcore_node, kernelcore_remaining;
7124 	/* save the state before borrow the nodemask */
7125 	nodemask_t saved_node_state = node_states[N_MEMORY];
7126 	unsigned long totalpages = early_calculate_totalpages();
7127 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7128 	struct memblock_region *r;
7129 
7130 	/* Need to find movable_zone earlier when movable_node is specified. */
7131 	find_usable_zone_for_movable();
7132 
7133 	/*
7134 	 * If movable_node is specified, ignore kernelcore and movablecore
7135 	 * options.
7136 	 */
7137 	if (movable_node_is_enabled()) {
7138 		for_each_memblock(memory, r) {
7139 			if (!memblock_is_hotpluggable(r))
7140 				continue;
7141 
7142 			nid = memblock_get_region_node(r);
7143 
7144 			usable_startpfn = PFN_DOWN(r->base);
7145 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7146 				min(usable_startpfn, zone_movable_pfn[nid]) :
7147 				usable_startpfn;
7148 		}
7149 
7150 		goto out2;
7151 	}
7152 
7153 	/*
7154 	 * If kernelcore=mirror is specified, ignore movablecore option
7155 	 */
7156 	if (mirrored_kernelcore) {
7157 		bool mem_below_4gb_not_mirrored = false;
7158 
7159 		for_each_memblock(memory, r) {
7160 			if (memblock_is_mirror(r))
7161 				continue;
7162 
7163 			nid = memblock_get_region_node(r);
7164 
7165 			usable_startpfn = memblock_region_memory_base_pfn(r);
7166 
7167 			if (usable_startpfn < 0x100000) {
7168 				mem_below_4gb_not_mirrored = true;
7169 				continue;
7170 			}
7171 
7172 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7173 				min(usable_startpfn, zone_movable_pfn[nid]) :
7174 				usable_startpfn;
7175 		}
7176 
7177 		if (mem_below_4gb_not_mirrored)
7178 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7179 
7180 		goto out2;
7181 	}
7182 
7183 	/*
7184 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7185 	 * amount of necessary memory.
7186 	 */
7187 	if (required_kernelcore_percent)
7188 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7189 				       10000UL;
7190 	if (required_movablecore_percent)
7191 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7192 					10000UL;
7193 
7194 	/*
7195 	 * If movablecore= was specified, calculate what size of
7196 	 * kernelcore that corresponds so that memory usable for
7197 	 * any allocation type is evenly spread. If both kernelcore
7198 	 * and movablecore are specified, then the value of kernelcore
7199 	 * will be used for required_kernelcore if it's greater than
7200 	 * what movablecore would have allowed.
7201 	 */
7202 	if (required_movablecore) {
7203 		unsigned long corepages;
7204 
7205 		/*
7206 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7207 		 * was requested by the user
7208 		 */
7209 		required_movablecore =
7210 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7211 		required_movablecore = min(totalpages, required_movablecore);
7212 		corepages = totalpages - required_movablecore;
7213 
7214 		required_kernelcore = max(required_kernelcore, corepages);
7215 	}
7216 
7217 	/*
7218 	 * If kernelcore was not specified or kernelcore size is larger
7219 	 * than totalpages, there is no ZONE_MOVABLE.
7220 	 */
7221 	if (!required_kernelcore || required_kernelcore >= totalpages)
7222 		goto out;
7223 
7224 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7225 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7226 
7227 restart:
7228 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7229 	kernelcore_node = required_kernelcore / usable_nodes;
7230 	for_each_node_state(nid, N_MEMORY) {
7231 		unsigned long start_pfn, end_pfn;
7232 
7233 		/*
7234 		 * Recalculate kernelcore_node if the division per node
7235 		 * now exceeds what is necessary to satisfy the requested
7236 		 * amount of memory for the kernel
7237 		 */
7238 		if (required_kernelcore < kernelcore_node)
7239 			kernelcore_node = required_kernelcore / usable_nodes;
7240 
7241 		/*
7242 		 * As the map is walked, we track how much memory is usable
7243 		 * by the kernel using kernelcore_remaining. When it is
7244 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7245 		 */
7246 		kernelcore_remaining = kernelcore_node;
7247 
7248 		/* Go through each range of PFNs within this node */
7249 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7250 			unsigned long size_pages;
7251 
7252 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7253 			if (start_pfn >= end_pfn)
7254 				continue;
7255 
7256 			/* Account for what is only usable for kernelcore */
7257 			if (start_pfn < usable_startpfn) {
7258 				unsigned long kernel_pages;
7259 				kernel_pages = min(end_pfn, usable_startpfn)
7260 								- start_pfn;
7261 
7262 				kernelcore_remaining -= min(kernel_pages,
7263 							kernelcore_remaining);
7264 				required_kernelcore -= min(kernel_pages,
7265 							required_kernelcore);
7266 
7267 				/* Continue if range is now fully accounted */
7268 				if (end_pfn <= usable_startpfn) {
7269 
7270 					/*
7271 					 * Push zone_movable_pfn to the end so
7272 					 * that if we have to rebalance
7273 					 * kernelcore across nodes, we will
7274 					 * not double account here
7275 					 */
7276 					zone_movable_pfn[nid] = end_pfn;
7277 					continue;
7278 				}
7279 				start_pfn = usable_startpfn;
7280 			}
7281 
7282 			/*
7283 			 * The usable PFN range for ZONE_MOVABLE is from
7284 			 * start_pfn->end_pfn. Calculate size_pages as the
7285 			 * number of pages used as kernelcore
7286 			 */
7287 			size_pages = end_pfn - start_pfn;
7288 			if (size_pages > kernelcore_remaining)
7289 				size_pages = kernelcore_remaining;
7290 			zone_movable_pfn[nid] = start_pfn + size_pages;
7291 
7292 			/*
7293 			 * Some kernelcore has been met, update counts and
7294 			 * break if the kernelcore for this node has been
7295 			 * satisfied
7296 			 */
7297 			required_kernelcore -= min(required_kernelcore,
7298 								size_pages);
7299 			kernelcore_remaining -= size_pages;
7300 			if (!kernelcore_remaining)
7301 				break;
7302 		}
7303 	}
7304 
7305 	/*
7306 	 * If there is still required_kernelcore, we do another pass with one
7307 	 * less node in the count. This will push zone_movable_pfn[nid] further
7308 	 * along on the nodes that still have memory until kernelcore is
7309 	 * satisfied
7310 	 */
7311 	usable_nodes--;
7312 	if (usable_nodes && required_kernelcore > usable_nodes)
7313 		goto restart;
7314 
7315 out2:
7316 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7317 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7318 		zone_movable_pfn[nid] =
7319 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7320 
7321 out:
7322 	/* restore the node_state */
7323 	node_states[N_MEMORY] = saved_node_state;
7324 }
7325 
7326 /* Any regular or high memory on that node ? */
7327 static void check_for_memory(pg_data_t *pgdat, int nid)
7328 {
7329 	enum zone_type zone_type;
7330 
7331 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7332 		struct zone *zone = &pgdat->node_zones[zone_type];
7333 		if (populated_zone(zone)) {
7334 			if (IS_ENABLED(CONFIG_HIGHMEM))
7335 				node_set_state(nid, N_HIGH_MEMORY);
7336 			if (zone_type <= ZONE_NORMAL)
7337 				node_set_state(nid, N_NORMAL_MEMORY);
7338 			break;
7339 		}
7340 	}
7341 }
7342 
7343 /*
7344  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7345  * such cases we allow max_zone_pfn sorted in the descending order
7346  */
7347 bool __weak arch_has_descending_max_zone_pfns(void)
7348 {
7349 	return false;
7350 }
7351 
7352 /**
7353  * free_area_init - Initialise all pg_data_t and zone data
7354  * @max_zone_pfn: an array of max PFNs for each zone
7355  *
7356  * This will call free_area_init_node() for each active node in the system.
7357  * Using the page ranges provided by memblock_set_node(), the size of each
7358  * zone in each node and their holes is calculated. If the maximum PFN
7359  * between two adjacent zones match, it is assumed that the zone is empty.
7360  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7361  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7362  * starts where the previous one ended. For example, ZONE_DMA32 starts
7363  * at arch_max_dma_pfn.
7364  */
7365 void __init free_area_init(unsigned long *max_zone_pfn)
7366 {
7367 	unsigned long start_pfn, end_pfn;
7368 	int i, nid, zone;
7369 	bool descending;
7370 
7371 	/* Record where the zone boundaries are */
7372 	memset(arch_zone_lowest_possible_pfn, 0,
7373 				sizeof(arch_zone_lowest_possible_pfn));
7374 	memset(arch_zone_highest_possible_pfn, 0,
7375 				sizeof(arch_zone_highest_possible_pfn));
7376 
7377 	start_pfn = find_min_pfn_with_active_regions();
7378 	descending = arch_has_descending_max_zone_pfns();
7379 
7380 	for (i = 0; i < MAX_NR_ZONES; i++) {
7381 		if (descending)
7382 			zone = MAX_NR_ZONES - i - 1;
7383 		else
7384 			zone = i;
7385 
7386 		if (zone == ZONE_MOVABLE)
7387 			continue;
7388 
7389 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7390 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7391 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7392 
7393 		start_pfn = end_pfn;
7394 	}
7395 
7396 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7397 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7398 	find_zone_movable_pfns_for_nodes();
7399 
7400 	/* Print out the zone ranges */
7401 	pr_info("Zone ranges:\n");
7402 	for (i = 0; i < MAX_NR_ZONES; i++) {
7403 		if (i == ZONE_MOVABLE)
7404 			continue;
7405 		pr_info("  %-8s ", zone_names[i]);
7406 		if (arch_zone_lowest_possible_pfn[i] ==
7407 				arch_zone_highest_possible_pfn[i])
7408 			pr_cont("empty\n");
7409 		else
7410 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7411 				(u64)arch_zone_lowest_possible_pfn[i]
7412 					<< PAGE_SHIFT,
7413 				((u64)arch_zone_highest_possible_pfn[i]
7414 					<< PAGE_SHIFT) - 1);
7415 	}
7416 
7417 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7418 	pr_info("Movable zone start for each node\n");
7419 	for (i = 0; i < MAX_NUMNODES; i++) {
7420 		if (zone_movable_pfn[i])
7421 			pr_info("  Node %d: %#018Lx\n", i,
7422 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7423 	}
7424 
7425 	/*
7426 	 * Print out the early node map, and initialize the
7427 	 * subsection-map relative to active online memory ranges to
7428 	 * enable future "sub-section" extensions of the memory map.
7429 	 */
7430 	pr_info("Early memory node ranges\n");
7431 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7432 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7433 			(u64)start_pfn << PAGE_SHIFT,
7434 			((u64)end_pfn << PAGE_SHIFT) - 1);
7435 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7436 	}
7437 
7438 	/* Initialise every node */
7439 	mminit_verify_pageflags_layout();
7440 	setup_nr_node_ids();
7441 	init_unavailable_mem();
7442 	for_each_online_node(nid) {
7443 		pg_data_t *pgdat = NODE_DATA(nid);
7444 		free_area_init_node(nid);
7445 
7446 		/* Any memory on that node */
7447 		if (pgdat->node_present_pages)
7448 			node_set_state(nid, N_MEMORY);
7449 		check_for_memory(pgdat, nid);
7450 	}
7451 }
7452 
7453 static int __init cmdline_parse_core(char *p, unsigned long *core,
7454 				     unsigned long *percent)
7455 {
7456 	unsigned long long coremem;
7457 	char *endptr;
7458 
7459 	if (!p)
7460 		return -EINVAL;
7461 
7462 	/* Value may be a percentage of total memory, otherwise bytes */
7463 	coremem = simple_strtoull(p, &endptr, 0);
7464 	if (*endptr == '%') {
7465 		/* Paranoid check for percent values greater than 100 */
7466 		WARN_ON(coremem > 100);
7467 
7468 		*percent = coremem;
7469 	} else {
7470 		coremem = memparse(p, &p);
7471 		/* Paranoid check that UL is enough for the coremem value */
7472 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7473 
7474 		*core = coremem >> PAGE_SHIFT;
7475 		*percent = 0UL;
7476 	}
7477 	return 0;
7478 }
7479 
7480 /*
7481  * kernelcore=size sets the amount of memory for use for allocations that
7482  * cannot be reclaimed or migrated.
7483  */
7484 static int __init cmdline_parse_kernelcore(char *p)
7485 {
7486 	/* parse kernelcore=mirror */
7487 	if (parse_option_str(p, "mirror")) {
7488 		mirrored_kernelcore = true;
7489 		return 0;
7490 	}
7491 
7492 	return cmdline_parse_core(p, &required_kernelcore,
7493 				  &required_kernelcore_percent);
7494 }
7495 
7496 /*
7497  * movablecore=size sets the amount of memory for use for allocations that
7498  * can be reclaimed or migrated.
7499  */
7500 static int __init cmdline_parse_movablecore(char *p)
7501 {
7502 	return cmdline_parse_core(p, &required_movablecore,
7503 				  &required_movablecore_percent);
7504 }
7505 
7506 early_param("kernelcore", cmdline_parse_kernelcore);
7507 early_param("movablecore", cmdline_parse_movablecore);
7508 
7509 void adjust_managed_page_count(struct page *page, long count)
7510 {
7511 	atomic_long_add(count, &page_zone(page)->managed_pages);
7512 	totalram_pages_add(count);
7513 #ifdef CONFIG_HIGHMEM
7514 	if (PageHighMem(page))
7515 		totalhigh_pages_add(count);
7516 #endif
7517 }
7518 EXPORT_SYMBOL(adjust_managed_page_count);
7519 
7520 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7521 {
7522 	void *pos;
7523 	unsigned long pages = 0;
7524 
7525 	start = (void *)PAGE_ALIGN((unsigned long)start);
7526 	end = (void *)((unsigned long)end & PAGE_MASK);
7527 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7528 		struct page *page = virt_to_page(pos);
7529 		void *direct_map_addr;
7530 
7531 		/*
7532 		 * 'direct_map_addr' might be different from 'pos'
7533 		 * because some architectures' virt_to_page()
7534 		 * work with aliases.  Getting the direct map
7535 		 * address ensures that we get a _writeable_
7536 		 * alias for the memset().
7537 		 */
7538 		direct_map_addr = page_address(page);
7539 		if ((unsigned int)poison <= 0xFF)
7540 			memset(direct_map_addr, poison, PAGE_SIZE);
7541 
7542 		free_reserved_page(page);
7543 	}
7544 
7545 	if (pages && s)
7546 		pr_info("Freeing %s memory: %ldK\n",
7547 			s, pages << (PAGE_SHIFT - 10));
7548 
7549 	return pages;
7550 }
7551 
7552 #ifdef	CONFIG_HIGHMEM
7553 void free_highmem_page(struct page *page)
7554 {
7555 	__free_reserved_page(page);
7556 	totalram_pages_inc();
7557 	atomic_long_inc(&page_zone(page)->managed_pages);
7558 	totalhigh_pages_inc();
7559 }
7560 #endif
7561 
7562 
7563 void __init mem_init_print_info(const char *str)
7564 {
7565 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7566 	unsigned long init_code_size, init_data_size;
7567 
7568 	physpages = get_num_physpages();
7569 	codesize = _etext - _stext;
7570 	datasize = _edata - _sdata;
7571 	rosize = __end_rodata - __start_rodata;
7572 	bss_size = __bss_stop - __bss_start;
7573 	init_data_size = __init_end - __init_begin;
7574 	init_code_size = _einittext - _sinittext;
7575 
7576 	/*
7577 	 * Detect special cases and adjust section sizes accordingly:
7578 	 * 1) .init.* may be embedded into .data sections
7579 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7580 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7581 	 * 3) .rodata.* may be embedded into .text or .data sections.
7582 	 */
7583 #define adj_init_size(start, end, size, pos, adj) \
7584 	do { \
7585 		if (start <= pos && pos < end && size > adj) \
7586 			size -= adj; \
7587 	} while (0)
7588 
7589 	adj_init_size(__init_begin, __init_end, init_data_size,
7590 		     _sinittext, init_code_size);
7591 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7592 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7593 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7594 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7595 
7596 #undef	adj_init_size
7597 
7598 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7599 #ifdef	CONFIG_HIGHMEM
7600 		", %luK highmem"
7601 #endif
7602 		"%s%s)\n",
7603 		nr_free_pages() << (PAGE_SHIFT - 10),
7604 		physpages << (PAGE_SHIFT - 10),
7605 		codesize >> 10, datasize >> 10, rosize >> 10,
7606 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7607 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7608 		totalcma_pages << (PAGE_SHIFT - 10),
7609 #ifdef	CONFIG_HIGHMEM
7610 		totalhigh_pages() << (PAGE_SHIFT - 10),
7611 #endif
7612 		str ? ", " : "", str ? str : "");
7613 }
7614 
7615 /**
7616  * set_dma_reserve - set the specified number of pages reserved in the first zone
7617  * @new_dma_reserve: The number of pages to mark reserved
7618  *
7619  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7620  * In the DMA zone, a significant percentage may be consumed by kernel image
7621  * and other unfreeable allocations which can skew the watermarks badly. This
7622  * function may optionally be used to account for unfreeable pages in the
7623  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7624  * smaller per-cpu batchsize.
7625  */
7626 void __init set_dma_reserve(unsigned long new_dma_reserve)
7627 {
7628 	dma_reserve = new_dma_reserve;
7629 }
7630 
7631 static int page_alloc_cpu_dead(unsigned int cpu)
7632 {
7633 
7634 	lru_add_drain_cpu(cpu);
7635 	drain_pages(cpu);
7636 
7637 	/*
7638 	 * Spill the event counters of the dead processor
7639 	 * into the current processors event counters.
7640 	 * This artificially elevates the count of the current
7641 	 * processor.
7642 	 */
7643 	vm_events_fold_cpu(cpu);
7644 
7645 	/*
7646 	 * Zero the differential counters of the dead processor
7647 	 * so that the vm statistics are consistent.
7648 	 *
7649 	 * This is only okay since the processor is dead and cannot
7650 	 * race with what we are doing.
7651 	 */
7652 	cpu_vm_stats_fold(cpu);
7653 	return 0;
7654 }
7655 
7656 #ifdef CONFIG_NUMA
7657 int hashdist = HASHDIST_DEFAULT;
7658 
7659 static int __init set_hashdist(char *str)
7660 {
7661 	if (!str)
7662 		return 0;
7663 	hashdist = simple_strtoul(str, &str, 0);
7664 	return 1;
7665 }
7666 __setup("hashdist=", set_hashdist);
7667 #endif
7668 
7669 void __init page_alloc_init(void)
7670 {
7671 	int ret;
7672 
7673 #ifdef CONFIG_NUMA
7674 	if (num_node_state(N_MEMORY) == 1)
7675 		hashdist = 0;
7676 #endif
7677 
7678 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7679 					"mm/page_alloc:dead", NULL,
7680 					page_alloc_cpu_dead);
7681 	WARN_ON(ret < 0);
7682 }
7683 
7684 /*
7685  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7686  *	or min_free_kbytes changes.
7687  */
7688 static void calculate_totalreserve_pages(void)
7689 {
7690 	struct pglist_data *pgdat;
7691 	unsigned long reserve_pages = 0;
7692 	enum zone_type i, j;
7693 
7694 	for_each_online_pgdat(pgdat) {
7695 
7696 		pgdat->totalreserve_pages = 0;
7697 
7698 		for (i = 0; i < MAX_NR_ZONES; i++) {
7699 			struct zone *zone = pgdat->node_zones + i;
7700 			long max = 0;
7701 			unsigned long managed_pages = zone_managed_pages(zone);
7702 
7703 			/* Find valid and maximum lowmem_reserve in the zone */
7704 			for (j = i; j < MAX_NR_ZONES; j++) {
7705 				if (zone->lowmem_reserve[j] > max)
7706 					max = zone->lowmem_reserve[j];
7707 			}
7708 
7709 			/* we treat the high watermark as reserved pages. */
7710 			max += high_wmark_pages(zone);
7711 
7712 			if (max > managed_pages)
7713 				max = managed_pages;
7714 
7715 			pgdat->totalreserve_pages += max;
7716 
7717 			reserve_pages += max;
7718 		}
7719 	}
7720 	totalreserve_pages = reserve_pages;
7721 }
7722 
7723 /*
7724  * setup_per_zone_lowmem_reserve - called whenever
7725  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7726  *	has a correct pages reserved value, so an adequate number of
7727  *	pages are left in the zone after a successful __alloc_pages().
7728  */
7729 static void setup_per_zone_lowmem_reserve(void)
7730 {
7731 	struct pglist_data *pgdat;
7732 	enum zone_type j, idx;
7733 
7734 	for_each_online_pgdat(pgdat) {
7735 		for (j = 0; j < MAX_NR_ZONES; j++) {
7736 			struct zone *zone = pgdat->node_zones + j;
7737 			unsigned long managed_pages = zone_managed_pages(zone);
7738 
7739 			zone->lowmem_reserve[j] = 0;
7740 
7741 			idx = j;
7742 			while (idx) {
7743 				struct zone *lower_zone;
7744 
7745 				idx--;
7746 				lower_zone = pgdat->node_zones + idx;
7747 
7748 				if (!sysctl_lowmem_reserve_ratio[idx] ||
7749 				    !zone_managed_pages(lower_zone)) {
7750 					lower_zone->lowmem_reserve[j] = 0;
7751 					continue;
7752 				} else {
7753 					lower_zone->lowmem_reserve[j] =
7754 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7755 				}
7756 				managed_pages += zone_managed_pages(lower_zone);
7757 			}
7758 		}
7759 	}
7760 
7761 	/* update totalreserve_pages */
7762 	calculate_totalreserve_pages();
7763 }
7764 
7765 static void __setup_per_zone_wmarks(void)
7766 {
7767 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7768 	unsigned long lowmem_pages = 0;
7769 	struct zone *zone;
7770 	unsigned long flags;
7771 
7772 	/* Calculate total number of !ZONE_HIGHMEM pages */
7773 	for_each_zone(zone) {
7774 		if (!is_highmem(zone))
7775 			lowmem_pages += zone_managed_pages(zone);
7776 	}
7777 
7778 	for_each_zone(zone) {
7779 		u64 tmp;
7780 
7781 		spin_lock_irqsave(&zone->lock, flags);
7782 		tmp = (u64)pages_min * zone_managed_pages(zone);
7783 		do_div(tmp, lowmem_pages);
7784 		if (is_highmem(zone)) {
7785 			/*
7786 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7787 			 * need highmem pages, so cap pages_min to a small
7788 			 * value here.
7789 			 *
7790 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7791 			 * deltas control async page reclaim, and so should
7792 			 * not be capped for highmem.
7793 			 */
7794 			unsigned long min_pages;
7795 
7796 			min_pages = zone_managed_pages(zone) / 1024;
7797 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7798 			zone->_watermark[WMARK_MIN] = min_pages;
7799 		} else {
7800 			/*
7801 			 * If it's a lowmem zone, reserve a number of pages
7802 			 * proportionate to the zone's size.
7803 			 */
7804 			zone->_watermark[WMARK_MIN] = tmp;
7805 		}
7806 
7807 		/*
7808 		 * Set the kswapd watermarks distance according to the
7809 		 * scale factor in proportion to available memory, but
7810 		 * ensure a minimum size on small systems.
7811 		 */
7812 		tmp = max_t(u64, tmp >> 2,
7813 			    mult_frac(zone_managed_pages(zone),
7814 				      watermark_scale_factor, 10000));
7815 
7816 		zone->watermark_boost = 0;
7817 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7818 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7819 
7820 		spin_unlock_irqrestore(&zone->lock, flags);
7821 	}
7822 
7823 	/* update totalreserve_pages */
7824 	calculate_totalreserve_pages();
7825 }
7826 
7827 /**
7828  * setup_per_zone_wmarks - called when min_free_kbytes changes
7829  * or when memory is hot-{added|removed}
7830  *
7831  * Ensures that the watermark[min,low,high] values for each zone are set
7832  * correctly with respect to min_free_kbytes.
7833  */
7834 void setup_per_zone_wmarks(void)
7835 {
7836 	static DEFINE_SPINLOCK(lock);
7837 
7838 	spin_lock(&lock);
7839 	__setup_per_zone_wmarks();
7840 	spin_unlock(&lock);
7841 }
7842 
7843 /*
7844  * Initialise min_free_kbytes.
7845  *
7846  * For small machines we want it small (128k min).  For large machines
7847  * we want it large (256MB max).  But it is not linear, because network
7848  * bandwidth does not increase linearly with machine size.  We use
7849  *
7850  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7851  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7852  *
7853  * which yields
7854  *
7855  * 16MB:	512k
7856  * 32MB:	724k
7857  * 64MB:	1024k
7858  * 128MB:	1448k
7859  * 256MB:	2048k
7860  * 512MB:	2896k
7861  * 1024MB:	4096k
7862  * 2048MB:	5792k
7863  * 4096MB:	8192k
7864  * 8192MB:	11584k
7865  * 16384MB:	16384k
7866  */
7867 int __meminit init_per_zone_wmark_min(void)
7868 {
7869 	unsigned long lowmem_kbytes;
7870 	int new_min_free_kbytes;
7871 
7872 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7873 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7874 
7875 	if (new_min_free_kbytes > user_min_free_kbytes) {
7876 		min_free_kbytes = new_min_free_kbytes;
7877 		if (min_free_kbytes < 128)
7878 			min_free_kbytes = 128;
7879 		if (min_free_kbytes > 262144)
7880 			min_free_kbytes = 262144;
7881 	} else {
7882 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7883 				new_min_free_kbytes, user_min_free_kbytes);
7884 	}
7885 	setup_per_zone_wmarks();
7886 	refresh_zone_stat_thresholds();
7887 	setup_per_zone_lowmem_reserve();
7888 
7889 #ifdef CONFIG_NUMA
7890 	setup_min_unmapped_ratio();
7891 	setup_min_slab_ratio();
7892 #endif
7893 
7894 	return 0;
7895 }
7896 postcore_initcall(init_per_zone_wmark_min)
7897 
7898 /*
7899  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7900  *	that we can call two helper functions whenever min_free_kbytes
7901  *	changes.
7902  */
7903 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7904 		void *buffer, size_t *length, loff_t *ppos)
7905 {
7906 	int rc;
7907 
7908 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7909 	if (rc)
7910 		return rc;
7911 
7912 	if (write) {
7913 		user_min_free_kbytes = min_free_kbytes;
7914 		setup_per_zone_wmarks();
7915 	}
7916 	return 0;
7917 }
7918 
7919 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7920 		void *buffer, size_t *length, loff_t *ppos)
7921 {
7922 	int rc;
7923 
7924 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7925 	if (rc)
7926 		return rc;
7927 
7928 	if (write)
7929 		setup_per_zone_wmarks();
7930 
7931 	return 0;
7932 }
7933 
7934 #ifdef CONFIG_NUMA
7935 static void setup_min_unmapped_ratio(void)
7936 {
7937 	pg_data_t *pgdat;
7938 	struct zone *zone;
7939 
7940 	for_each_online_pgdat(pgdat)
7941 		pgdat->min_unmapped_pages = 0;
7942 
7943 	for_each_zone(zone)
7944 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7945 						         sysctl_min_unmapped_ratio) / 100;
7946 }
7947 
7948 
7949 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7950 		void *buffer, size_t *length, loff_t *ppos)
7951 {
7952 	int rc;
7953 
7954 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7955 	if (rc)
7956 		return rc;
7957 
7958 	setup_min_unmapped_ratio();
7959 
7960 	return 0;
7961 }
7962 
7963 static void setup_min_slab_ratio(void)
7964 {
7965 	pg_data_t *pgdat;
7966 	struct zone *zone;
7967 
7968 	for_each_online_pgdat(pgdat)
7969 		pgdat->min_slab_pages = 0;
7970 
7971 	for_each_zone(zone)
7972 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7973 						     sysctl_min_slab_ratio) / 100;
7974 }
7975 
7976 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7977 		void *buffer, size_t *length, loff_t *ppos)
7978 {
7979 	int rc;
7980 
7981 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7982 	if (rc)
7983 		return rc;
7984 
7985 	setup_min_slab_ratio();
7986 
7987 	return 0;
7988 }
7989 #endif
7990 
7991 /*
7992  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7993  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7994  *	whenever sysctl_lowmem_reserve_ratio changes.
7995  *
7996  * The reserve ratio obviously has absolutely no relation with the
7997  * minimum watermarks. The lowmem reserve ratio can only make sense
7998  * if in function of the boot time zone sizes.
7999  */
8000 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8001 		void *buffer, size_t *length, loff_t *ppos)
8002 {
8003 	int i;
8004 
8005 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8006 
8007 	for (i = 0; i < MAX_NR_ZONES; i++) {
8008 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8009 			sysctl_lowmem_reserve_ratio[i] = 0;
8010 	}
8011 
8012 	setup_per_zone_lowmem_reserve();
8013 	return 0;
8014 }
8015 
8016 static void __zone_pcp_update(struct zone *zone)
8017 {
8018 	unsigned int cpu;
8019 
8020 	for_each_possible_cpu(cpu)
8021 		pageset_set_high_and_batch(zone,
8022 				per_cpu_ptr(zone->pageset, cpu));
8023 }
8024 
8025 /*
8026  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8027  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8028  * pagelist can have before it gets flushed back to buddy allocator.
8029  */
8030 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8031 		void *buffer, size_t *length, loff_t *ppos)
8032 {
8033 	struct zone *zone;
8034 	int old_percpu_pagelist_fraction;
8035 	int ret;
8036 
8037 	mutex_lock(&pcp_batch_high_lock);
8038 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8039 
8040 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8041 	if (!write || ret < 0)
8042 		goto out;
8043 
8044 	/* Sanity checking to avoid pcp imbalance */
8045 	if (percpu_pagelist_fraction &&
8046 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8047 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8048 		ret = -EINVAL;
8049 		goto out;
8050 	}
8051 
8052 	/* No change? */
8053 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8054 		goto out;
8055 
8056 	for_each_populated_zone(zone)
8057 		__zone_pcp_update(zone);
8058 out:
8059 	mutex_unlock(&pcp_batch_high_lock);
8060 	return ret;
8061 }
8062 
8063 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8064 /*
8065  * Returns the number of pages that arch has reserved but
8066  * is not known to alloc_large_system_hash().
8067  */
8068 static unsigned long __init arch_reserved_kernel_pages(void)
8069 {
8070 	return 0;
8071 }
8072 #endif
8073 
8074 /*
8075  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8076  * machines. As memory size is increased the scale is also increased but at
8077  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8078  * quadruples the scale is increased by one, which means the size of hash table
8079  * only doubles, instead of quadrupling as well.
8080  * Because 32-bit systems cannot have large physical memory, where this scaling
8081  * makes sense, it is disabled on such platforms.
8082  */
8083 #if __BITS_PER_LONG > 32
8084 #define ADAPT_SCALE_BASE	(64ul << 30)
8085 #define ADAPT_SCALE_SHIFT	2
8086 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8087 #endif
8088 
8089 /*
8090  * allocate a large system hash table from bootmem
8091  * - it is assumed that the hash table must contain an exact power-of-2
8092  *   quantity of entries
8093  * - limit is the number of hash buckets, not the total allocation size
8094  */
8095 void *__init alloc_large_system_hash(const char *tablename,
8096 				     unsigned long bucketsize,
8097 				     unsigned long numentries,
8098 				     int scale,
8099 				     int flags,
8100 				     unsigned int *_hash_shift,
8101 				     unsigned int *_hash_mask,
8102 				     unsigned long low_limit,
8103 				     unsigned long high_limit)
8104 {
8105 	unsigned long long max = high_limit;
8106 	unsigned long log2qty, size;
8107 	void *table = NULL;
8108 	gfp_t gfp_flags;
8109 	bool virt;
8110 
8111 	/* allow the kernel cmdline to have a say */
8112 	if (!numentries) {
8113 		/* round applicable memory size up to nearest megabyte */
8114 		numentries = nr_kernel_pages;
8115 		numentries -= arch_reserved_kernel_pages();
8116 
8117 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8118 		if (PAGE_SHIFT < 20)
8119 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8120 
8121 #if __BITS_PER_LONG > 32
8122 		if (!high_limit) {
8123 			unsigned long adapt;
8124 
8125 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8126 			     adapt <<= ADAPT_SCALE_SHIFT)
8127 				scale++;
8128 		}
8129 #endif
8130 
8131 		/* limit to 1 bucket per 2^scale bytes of low memory */
8132 		if (scale > PAGE_SHIFT)
8133 			numentries >>= (scale - PAGE_SHIFT);
8134 		else
8135 			numentries <<= (PAGE_SHIFT - scale);
8136 
8137 		/* Make sure we've got at least a 0-order allocation.. */
8138 		if (unlikely(flags & HASH_SMALL)) {
8139 			/* Makes no sense without HASH_EARLY */
8140 			WARN_ON(!(flags & HASH_EARLY));
8141 			if (!(numentries >> *_hash_shift)) {
8142 				numentries = 1UL << *_hash_shift;
8143 				BUG_ON(!numentries);
8144 			}
8145 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8146 			numentries = PAGE_SIZE / bucketsize;
8147 	}
8148 	numentries = roundup_pow_of_two(numentries);
8149 
8150 	/* limit allocation size to 1/16 total memory by default */
8151 	if (max == 0) {
8152 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8153 		do_div(max, bucketsize);
8154 	}
8155 	max = min(max, 0x80000000ULL);
8156 
8157 	if (numentries < low_limit)
8158 		numentries = low_limit;
8159 	if (numentries > max)
8160 		numentries = max;
8161 
8162 	log2qty = ilog2(numentries);
8163 
8164 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8165 	do {
8166 		virt = false;
8167 		size = bucketsize << log2qty;
8168 		if (flags & HASH_EARLY) {
8169 			if (flags & HASH_ZERO)
8170 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8171 			else
8172 				table = memblock_alloc_raw(size,
8173 							   SMP_CACHE_BYTES);
8174 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8175 			table = __vmalloc(size, gfp_flags);
8176 			virt = true;
8177 		} else {
8178 			/*
8179 			 * If bucketsize is not a power-of-two, we may free
8180 			 * some pages at the end of hash table which
8181 			 * alloc_pages_exact() automatically does
8182 			 */
8183 			table = alloc_pages_exact(size, gfp_flags);
8184 			kmemleak_alloc(table, size, 1, gfp_flags);
8185 		}
8186 	} while (!table && size > PAGE_SIZE && --log2qty);
8187 
8188 	if (!table)
8189 		panic("Failed to allocate %s hash table\n", tablename);
8190 
8191 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8192 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8193 		virt ? "vmalloc" : "linear");
8194 
8195 	if (_hash_shift)
8196 		*_hash_shift = log2qty;
8197 	if (_hash_mask)
8198 		*_hash_mask = (1 << log2qty) - 1;
8199 
8200 	return table;
8201 }
8202 
8203 /*
8204  * This function checks whether pageblock includes unmovable pages or not.
8205  *
8206  * PageLRU check without isolation or lru_lock could race so that
8207  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8208  * check without lock_page also may miss some movable non-lru pages at
8209  * race condition. So you can't expect this function should be exact.
8210  *
8211  * Returns a page without holding a reference. If the caller wants to
8212  * dereference that page (e.g., dumping), it has to make sure that it
8213  * cannot get removed (e.g., via memory unplug) concurrently.
8214  *
8215  */
8216 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8217 				 int migratetype, int flags)
8218 {
8219 	unsigned long iter = 0;
8220 	unsigned long pfn = page_to_pfn(page);
8221 
8222 	/*
8223 	 * TODO we could make this much more efficient by not checking every
8224 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8225 	 * that the movable zone guarantees that pages are migratable but
8226 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8227 	 * can still lead to having bootmem allocations in zone_movable.
8228 	 */
8229 
8230 	if (is_migrate_cma_page(page)) {
8231 		/*
8232 		 * CMA allocations (alloc_contig_range) really need to mark
8233 		 * isolate CMA pageblocks even when they are not movable in fact
8234 		 * so consider them movable here.
8235 		 */
8236 		if (is_migrate_cma(migratetype))
8237 			return NULL;
8238 
8239 		return page;
8240 	}
8241 
8242 	for (; iter < pageblock_nr_pages; iter++) {
8243 		if (!pfn_valid_within(pfn + iter))
8244 			continue;
8245 
8246 		page = pfn_to_page(pfn + iter);
8247 
8248 		if (PageReserved(page))
8249 			return page;
8250 
8251 		/*
8252 		 * If the zone is movable and we have ruled out all reserved
8253 		 * pages then it should be reasonably safe to assume the rest
8254 		 * is movable.
8255 		 */
8256 		if (zone_idx(zone) == ZONE_MOVABLE)
8257 			continue;
8258 
8259 		/*
8260 		 * Hugepages are not in LRU lists, but they're movable.
8261 		 * THPs are on the LRU, but need to be counted as #small pages.
8262 		 * We need not scan over tail pages because we don't
8263 		 * handle each tail page individually in migration.
8264 		 */
8265 		if (PageHuge(page) || PageTransCompound(page)) {
8266 			struct page *head = compound_head(page);
8267 			unsigned int skip_pages;
8268 
8269 			if (PageHuge(page)) {
8270 				if (!hugepage_migration_supported(page_hstate(head)))
8271 					return page;
8272 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8273 				return page;
8274 			}
8275 
8276 			skip_pages = compound_nr(head) - (page - head);
8277 			iter += skip_pages - 1;
8278 			continue;
8279 		}
8280 
8281 		/*
8282 		 * We can't use page_count without pin a page
8283 		 * because another CPU can free compound page.
8284 		 * This check already skips compound tails of THP
8285 		 * because their page->_refcount is zero at all time.
8286 		 */
8287 		if (!page_ref_count(page)) {
8288 			if (PageBuddy(page))
8289 				iter += (1 << page_order(page)) - 1;
8290 			continue;
8291 		}
8292 
8293 		/*
8294 		 * The HWPoisoned page may be not in buddy system, and
8295 		 * page_count() is not 0.
8296 		 */
8297 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8298 			continue;
8299 
8300 		/*
8301 		 * We treat all PageOffline() pages as movable when offlining
8302 		 * to give drivers a chance to decrement their reference count
8303 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8304 		 * can be offlined as there are no direct references anymore.
8305 		 * For actually unmovable PageOffline() where the driver does
8306 		 * not support this, we will fail later when trying to actually
8307 		 * move these pages that still have a reference count > 0.
8308 		 * (false negatives in this function only)
8309 		 */
8310 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8311 			continue;
8312 
8313 		if (__PageMovable(page) || PageLRU(page))
8314 			continue;
8315 
8316 		/*
8317 		 * If there are RECLAIMABLE pages, we need to check
8318 		 * it.  But now, memory offline itself doesn't call
8319 		 * shrink_node_slabs() and it still to be fixed.
8320 		 */
8321 		/*
8322 		 * If the page is not RAM, page_count()should be 0.
8323 		 * we don't need more check. This is an _used_ not-movable page.
8324 		 *
8325 		 * The problematic thing here is PG_reserved pages. PG_reserved
8326 		 * is set to both of a memory hole page and a _used_ kernel
8327 		 * page at boot.
8328 		 */
8329 		return page;
8330 	}
8331 	return NULL;
8332 }
8333 
8334 #ifdef CONFIG_CONTIG_ALLOC
8335 static unsigned long pfn_max_align_down(unsigned long pfn)
8336 {
8337 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8338 			     pageblock_nr_pages) - 1);
8339 }
8340 
8341 static unsigned long pfn_max_align_up(unsigned long pfn)
8342 {
8343 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8344 				pageblock_nr_pages));
8345 }
8346 
8347 /* [start, end) must belong to a single zone. */
8348 static int __alloc_contig_migrate_range(struct compact_control *cc,
8349 					unsigned long start, unsigned long end)
8350 {
8351 	/* This function is based on compact_zone() from compaction.c. */
8352 	unsigned int nr_reclaimed;
8353 	unsigned long pfn = start;
8354 	unsigned int tries = 0;
8355 	int ret = 0;
8356 	struct migration_target_control mtc = {
8357 		.nid = zone_to_nid(cc->zone),
8358 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8359 	};
8360 
8361 	migrate_prep();
8362 
8363 	while (pfn < end || !list_empty(&cc->migratepages)) {
8364 		if (fatal_signal_pending(current)) {
8365 			ret = -EINTR;
8366 			break;
8367 		}
8368 
8369 		if (list_empty(&cc->migratepages)) {
8370 			cc->nr_migratepages = 0;
8371 			pfn = isolate_migratepages_range(cc, pfn, end);
8372 			if (!pfn) {
8373 				ret = -EINTR;
8374 				break;
8375 			}
8376 			tries = 0;
8377 		} else if (++tries == 5) {
8378 			ret = ret < 0 ? ret : -EBUSY;
8379 			break;
8380 		}
8381 
8382 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8383 							&cc->migratepages);
8384 		cc->nr_migratepages -= nr_reclaimed;
8385 
8386 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8387 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8388 	}
8389 	if (ret < 0) {
8390 		putback_movable_pages(&cc->migratepages);
8391 		return ret;
8392 	}
8393 	return 0;
8394 }
8395 
8396 /**
8397  * alloc_contig_range() -- tries to allocate given range of pages
8398  * @start:	start PFN to allocate
8399  * @end:	one-past-the-last PFN to allocate
8400  * @migratetype:	migratetype of the underlaying pageblocks (either
8401  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8402  *			in range must have the same migratetype and it must
8403  *			be either of the two.
8404  * @gfp_mask:	GFP mask to use during compaction
8405  *
8406  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8407  * aligned.  The PFN range must belong to a single zone.
8408  *
8409  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8410  * pageblocks in the range.  Once isolated, the pageblocks should not
8411  * be modified by others.
8412  *
8413  * Return: zero on success or negative error code.  On success all
8414  * pages which PFN is in [start, end) are allocated for the caller and
8415  * need to be freed with free_contig_range().
8416  */
8417 int alloc_contig_range(unsigned long start, unsigned long end,
8418 		       unsigned migratetype, gfp_t gfp_mask)
8419 {
8420 	unsigned long outer_start, outer_end;
8421 	unsigned int order;
8422 	int ret = 0;
8423 
8424 	struct compact_control cc = {
8425 		.nr_migratepages = 0,
8426 		.order = -1,
8427 		.zone = page_zone(pfn_to_page(start)),
8428 		.mode = MIGRATE_SYNC,
8429 		.ignore_skip_hint = true,
8430 		.no_set_skip_hint = true,
8431 		.gfp_mask = current_gfp_context(gfp_mask),
8432 		.alloc_contig = true,
8433 	};
8434 	INIT_LIST_HEAD(&cc.migratepages);
8435 
8436 	/*
8437 	 * What we do here is we mark all pageblocks in range as
8438 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8439 	 * have different sizes, and due to the way page allocator
8440 	 * work, we align the range to biggest of the two pages so
8441 	 * that page allocator won't try to merge buddies from
8442 	 * different pageblocks and change MIGRATE_ISOLATE to some
8443 	 * other migration type.
8444 	 *
8445 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8446 	 * migrate the pages from an unaligned range (ie. pages that
8447 	 * we are interested in).  This will put all the pages in
8448 	 * range back to page allocator as MIGRATE_ISOLATE.
8449 	 *
8450 	 * When this is done, we take the pages in range from page
8451 	 * allocator removing them from the buddy system.  This way
8452 	 * page allocator will never consider using them.
8453 	 *
8454 	 * This lets us mark the pageblocks back as
8455 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8456 	 * aligned range but not in the unaligned, original range are
8457 	 * put back to page allocator so that buddy can use them.
8458 	 */
8459 
8460 	ret = start_isolate_page_range(pfn_max_align_down(start),
8461 				       pfn_max_align_up(end), migratetype, 0);
8462 	if (ret < 0)
8463 		return ret;
8464 
8465 	/*
8466 	 * In case of -EBUSY, we'd like to know which page causes problem.
8467 	 * So, just fall through. test_pages_isolated() has a tracepoint
8468 	 * which will report the busy page.
8469 	 *
8470 	 * It is possible that busy pages could become available before
8471 	 * the call to test_pages_isolated, and the range will actually be
8472 	 * allocated.  So, if we fall through be sure to clear ret so that
8473 	 * -EBUSY is not accidentally used or returned to caller.
8474 	 */
8475 	ret = __alloc_contig_migrate_range(&cc, start, end);
8476 	if (ret && ret != -EBUSY)
8477 		goto done;
8478 	ret =0;
8479 
8480 	/*
8481 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8482 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8483 	 * more, all pages in [start, end) are free in page allocator.
8484 	 * What we are going to do is to allocate all pages from
8485 	 * [start, end) (that is remove them from page allocator).
8486 	 *
8487 	 * The only problem is that pages at the beginning and at the
8488 	 * end of interesting range may be not aligned with pages that
8489 	 * page allocator holds, ie. they can be part of higher order
8490 	 * pages.  Because of this, we reserve the bigger range and
8491 	 * once this is done free the pages we are not interested in.
8492 	 *
8493 	 * We don't have to hold zone->lock here because the pages are
8494 	 * isolated thus they won't get removed from buddy.
8495 	 */
8496 
8497 	lru_add_drain_all();
8498 
8499 	order = 0;
8500 	outer_start = start;
8501 	while (!PageBuddy(pfn_to_page(outer_start))) {
8502 		if (++order >= MAX_ORDER) {
8503 			outer_start = start;
8504 			break;
8505 		}
8506 		outer_start &= ~0UL << order;
8507 	}
8508 
8509 	if (outer_start != start) {
8510 		order = page_order(pfn_to_page(outer_start));
8511 
8512 		/*
8513 		 * outer_start page could be small order buddy page and
8514 		 * it doesn't include start page. Adjust outer_start
8515 		 * in this case to report failed page properly
8516 		 * on tracepoint in test_pages_isolated()
8517 		 */
8518 		if (outer_start + (1UL << order) <= start)
8519 			outer_start = start;
8520 	}
8521 
8522 	/* Make sure the range is really isolated. */
8523 	if (test_pages_isolated(outer_start, end, 0)) {
8524 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8525 			__func__, outer_start, end);
8526 		ret = -EBUSY;
8527 		goto done;
8528 	}
8529 
8530 	/* Grab isolated pages from freelists. */
8531 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8532 	if (!outer_end) {
8533 		ret = -EBUSY;
8534 		goto done;
8535 	}
8536 
8537 	/* Free head and tail (if any) */
8538 	if (start != outer_start)
8539 		free_contig_range(outer_start, start - outer_start);
8540 	if (end != outer_end)
8541 		free_contig_range(end, outer_end - end);
8542 
8543 done:
8544 	undo_isolate_page_range(pfn_max_align_down(start),
8545 				pfn_max_align_up(end), migratetype);
8546 	return ret;
8547 }
8548 EXPORT_SYMBOL(alloc_contig_range);
8549 
8550 static int __alloc_contig_pages(unsigned long start_pfn,
8551 				unsigned long nr_pages, gfp_t gfp_mask)
8552 {
8553 	unsigned long end_pfn = start_pfn + nr_pages;
8554 
8555 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8556 				  gfp_mask);
8557 }
8558 
8559 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8560 				   unsigned long nr_pages)
8561 {
8562 	unsigned long i, end_pfn = start_pfn + nr_pages;
8563 	struct page *page;
8564 
8565 	for (i = start_pfn; i < end_pfn; i++) {
8566 		page = pfn_to_online_page(i);
8567 		if (!page)
8568 			return false;
8569 
8570 		if (page_zone(page) != z)
8571 			return false;
8572 
8573 		if (PageReserved(page))
8574 			return false;
8575 
8576 		if (page_count(page) > 0)
8577 			return false;
8578 
8579 		if (PageHuge(page))
8580 			return false;
8581 	}
8582 	return true;
8583 }
8584 
8585 static bool zone_spans_last_pfn(const struct zone *zone,
8586 				unsigned long start_pfn, unsigned long nr_pages)
8587 {
8588 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8589 
8590 	return zone_spans_pfn(zone, last_pfn);
8591 }
8592 
8593 /**
8594  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8595  * @nr_pages:	Number of contiguous pages to allocate
8596  * @gfp_mask:	GFP mask to limit search and used during compaction
8597  * @nid:	Target node
8598  * @nodemask:	Mask for other possible nodes
8599  *
8600  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8601  * on an applicable zonelist to find a contiguous pfn range which can then be
8602  * tried for allocation with alloc_contig_range(). This routine is intended
8603  * for allocation requests which can not be fulfilled with the buddy allocator.
8604  *
8605  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8606  * power of two then the alignment is guaranteed to be to the given nr_pages
8607  * (e.g. 1GB request would be aligned to 1GB).
8608  *
8609  * Allocated pages can be freed with free_contig_range() or by manually calling
8610  * __free_page() on each allocated page.
8611  *
8612  * Return: pointer to contiguous pages on success, or NULL if not successful.
8613  */
8614 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8615 				int nid, nodemask_t *nodemask)
8616 {
8617 	unsigned long ret, pfn, flags;
8618 	struct zonelist *zonelist;
8619 	struct zone *zone;
8620 	struct zoneref *z;
8621 
8622 	zonelist = node_zonelist(nid, gfp_mask);
8623 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8624 					gfp_zone(gfp_mask), nodemask) {
8625 		spin_lock_irqsave(&zone->lock, flags);
8626 
8627 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8628 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8629 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8630 				/*
8631 				 * We release the zone lock here because
8632 				 * alloc_contig_range() will also lock the zone
8633 				 * at some point. If there's an allocation
8634 				 * spinning on this lock, it may win the race
8635 				 * and cause alloc_contig_range() to fail...
8636 				 */
8637 				spin_unlock_irqrestore(&zone->lock, flags);
8638 				ret = __alloc_contig_pages(pfn, nr_pages,
8639 							gfp_mask);
8640 				if (!ret)
8641 					return pfn_to_page(pfn);
8642 				spin_lock_irqsave(&zone->lock, flags);
8643 			}
8644 			pfn += nr_pages;
8645 		}
8646 		spin_unlock_irqrestore(&zone->lock, flags);
8647 	}
8648 	return NULL;
8649 }
8650 #endif /* CONFIG_CONTIG_ALLOC */
8651 
8652 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8653 {
8654 	unsigned int count = 0;
8655 
8656 	for (; nr_pages--; pfn++) {
8657 		struct page *page = pfn_to_page(pfn);
8658 
8659 		count += page_count(page) != 1;
8660 		__free_page(page);
8661 	}
8662 	WARN(count != 0, "%d pages are still in use!\n", count);
8663 }
8664 EXPORT_SYMBOL(free_contig_range);
8665 
8666 /*
8667  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8668  * page high values need to be recalulated.
8669  */
8670 void __meminit zone_pcp_update(struct zone *zone)
8671 {
8672 	mutex_lock(&pcp_batch_high_lock);
8673 	__zone_pcp_update(zone);
8674 	mutex_unlock(&pcp_batch_high_lock);
8675 }
8676 
8677 void zone_pcp_reset(struct zone *zone)
8678 {
8679 	unsigned long flags;
8680 	int cpu;
8681 	struct per_cpu_pageset *pset;
8682 
8683 	/* avoid races with drain_pages()  */
8684 	local_irq_save(flags);
8685 	if (zone->pageset != &boot_pageset) {
8686 		for_each_online_cpu(cpu) {
8687 			pset = per_cpu_ptr(zone->pageset, cpu);
8688 			drain_zonestat(zone, pset);
8689 		}
8690 		free_percpu(zone->pageset);
8691 		zone->pageset = &boot_pageset;
8692 	}
8693 	local_irq_restore(flags);
8694 }
8695 
8696 #ifdef CONFIG_MEMORY_HOTREMOVE
8697 /*
8698  * All pages in the range must be in a single zone and isolated
8699  * before calling this.
8700  */
8701 unsigned long
8702 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8703 {
8704 	struct page *page;
8705 	struct zone *zone;
8706 	unsigned int order;
8707 	unsigned long pfn;
8708 	unsigned long flags;
8709 	unsigned long offlined_pages = 0;
8710 
8711 	/* find the first valid pfn */
8712 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8713 		if (pfn_valid(pfn))
8714 			break;
8715 	if (pfn == end_pfn)
8716 		return offlined_pages;
8717 
8718 	offline_mem_sections(pfn, end_pfn);
8719 	zone = page_zone(pfn_to_page(pfn));
8720 	spin_lock_irqsave(&zone->lock, flags);
8721 	pfn = start_pfn;
8722 	while (pfn < end_pfn) {
8723 		if (!pfn_valid(pfn)) {
8724 			pfn++;
8725 			continue;
8726 		}
8727 		page = pfn_to_page(pfn);
8728 		/*
8729 		 * The HWPoisoned page may be not in buddy system, and
8730 		 * page_count() is not 0.
8731 		 */
8732 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8733 			pfn++;
8734 			offlined_pages++;
8735 			continue;
8736 		}
8737 		/*
8738 		 * At this point all remaining PageOffline() pages have a
8739 		 * reference count of 0 and can simply be skipped.
8740 		 */
8741 		if (PageOffline(page)) {
8742 			BUG_ON(page_count(page));
8743 			BUG_ON(PageBuddy(page));
8744 			pfn++;
8745 			offlined_pages++;
8746 			continue;
8747 		}
8748 
8749 		BUG_ON(page_count(page));
8750 		BUG_ON(!PageBuddy(page));
8751 		order = page_order(page);
8752 		offlined_pages += 1 << order;
8753 		del_page_from_free_list(page, zone, order);
8754 		pfn += (1 << order);
8755 	}
8756 	spin_unlock_irqrestore(&zone->lock, flags);
8757 
8758 	return offlined_pages;
8759 }
8760 #endif
8761 
8762 bool is_free_buddy_page(struct page *page)
8763 {
8764 	struct zone *zone = page_zone(page);
8765 	unsigned long pfn = page_to_pfn(page);
8766 	unsigned long flags;
8767 	unsigned int order;
8768 
8769 	spin_lock_irqsave(&zone->lock, flags);
8770 	for (order = 0; order < MAX_ORDER; order++) {
8771 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8772 
8773 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8774 			break;
8775 	}
8776 	spin_unlock_irqrestore(&zone->lock, flags);
8777 
8778 	return order < MAX_ORDER;
8779 }
8780 
8781 #ifdef CONFIG_MEMORY_FAILURE
8782 /*
8783  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8784  * test is performed under the zone lock to prevent a race against page
8785  * allocation.
8786  */
8787 bool set_hwpoison_free_buddy_page(struct page *page)
8788 {
8789 	struct zone *zone = page_zone(page);
8790 	unsigned long pfn = page_to_pfn(page);
8791 	unsigned long flags;
8792 	unsigned int order;
8793 	bool hwpoisoned = false;
8794 
8795 	spin_lock_irqsave(&zone->lock, flags);
8796 	for (order = 0; order < MAX_ORDER; order++) {
8797 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8798 
8799 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8800 			if (!TestSetPageHWPoison(page))
8801 				hwpoisoned = true;
8802 			break;
8803 		}
8804 	}
8805 	spin_unlock_irqrestore(&zone->lock, flags);
8806 
8807 	return hwpoisoned;
8808 }
8809 #endif
8810