xref: /openbmc/linux/mm/page_alloc.c (revision 1491eaf9)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 
68 #include <asm/sections.h>
69 #include <asm/tlbflush.h>
70 #include <asm/div64.h>
71 #include "internal.h"
72 
73 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74 static DEFINE_MUTEX(pcp_batch_high_lock);
75 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
76 
77 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78 DEFINE_PER_CPU(int, numa_node);
79 EXPORT_PER_CPU_SYMBOL(numa_node);
80 #endif
81 
82 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
83 /*
84  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87  * defined in <linux/topology.h>.
88  */
89 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
90 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
91 int _node_numa_mem_[MAX_NUMNODES];
92 #endif
93 
94 /*
95  * Array of node states.
96  */
97 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 	[N_POSSIBLE] = NODE_MASK_ALL,
99 	[N_ONLINE] = { { [0] = 1UL } },
100 #ifndef CONFIG_NUMA
101 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
102 #ifdef CONFIG_HIGHMEM
103 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
104 #endif
105 #ifdef CONFIG_MOVABLE_NODE
106 	[N_MEMORY] = { { [0] = 1UL } },
107 #endif
108 	[N_CPU] = { { [0] = 1UL } },
109 #endif	/* NUMA */
110 };
111 EXPORT_SYMBOL(node_states);
112 
113 /* Protect totalram_pages and zone->managed_pages */
114 static DEFINE_SPINLOCK(managed_page_count_lock);
115 
116 unsigned long totalram_pages __read_mostly;
117 unsigned long totalreserve_pages __read_mostly;
118 unsigned long totalcma_pages __read_mostly;
119 
120 int percpu_pagelist_fraction;
121 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
122 
123 /*
124  * A cached value of the page's pageblock's migratetype, used when the page is
125  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127  * Also the migratetype set in the page does not necessarily match the pcplist
128  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129  * other index - this ensures that it will be put on the correct CMA freelist.
130  */
131 static inline int get_pcppage_migratetype(struct page *page)
132 {
133 	return page->index;
134 }
135 
136 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137 {
138 	page->index = migratetype;
139 }
140 
141 #ifdef CONFIG_PM_SLEEP
142 /*
143  * The following functions are used by the suspend/hibernate code to temporarily
144  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145  * while devices are suspended.  To avoid races with the suspend/hibernate code,
146  * they should always be called with pm_mutex held (gfp_allowed_mask also should
147  * only be modified with pm_mutex held, unless the suspend/hibernate code is
148  * guaranteed not to run in parallel with that modification).
149  */
150 
151 static gfp_t saved_gfp_mask;
152 
153 void pm_restore_gfp_mask(void)
154 {
155 	WARN_ON(!mutex_is_locked(&pm_mutex));
156 	if (saved_gfp_mask) {
157 		gfp_allowed_mask = saved_gfp_mask;
158 		saved_gfp_mask = 0;
159 	}
160 }
161 
162 void pm_restrict_gfp_mask(void)
163 {
164 	WARN_ON(!mutex_is_locked(&pm_mutex));
165 	WARN_ON(saved_gfp_mask);
166 	saved_gfp_mask = gfp_allowed_mask;
167 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
168 }
169 
170 bool pm_suspended_storage(void)
171 {
172 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
173 		return false;
174 	return true;
175 }
176 #endif /* CONFIG_PM_SLEEP */
177 
178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
179 unsigned int pageblock_order __read_mostly;
180 #endif
181 
182 static void __free_pages_ok(struct page *page, unsigned int order);
183 
184 /*
185  * results with 256, 32 in the lowmem_reserve sysctl:
186  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187  *	1G machine -> (16M dma, 784M normal, 224M high)
188  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
190  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
191  *
192  * TBD: should special case ZONE_DMA32 machines here - in those we normally
193  * don't need any ZONE_NORMAL reservation
194  */
195 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
196 #ifdef CONFIG_ZONE_DMA
197 	 256,
198 #endif
199 #ifdef CONFIG_ZONE_DMA32
200 	 256,
201 #endif
202 #ifdef CONFIG_HIGHMEM
203 	 32,
204 #endif
205 	 32,
206 };
207 
208 EXPORT_SYMBOL(totalram_pages);
209 
210 static char * const zone_names[MAX_NR_ZONES] = {
211 #ifdef CONFIG_ZONE_DMA
212 	 "DMA",
213 #endif
214 #ifdef CONFIG_ZONE_DMA32
215 	 "DMA32",
216 #endif
217 	 "Normal",
218 #ifdef CONFIG_HIGHMEM
219 	 "HighMem",
220 #endif
221 	 "Movable",
222 #ifdef CONFIG_ZONE_DEVICE
223 	 "Device",
224 #endif
225 };
226 
227 char * const migratetype_names[MIGRATE_TYPES] = {
228 	"Unmovable",
229 	"Movable",
230 	"Reclaimable",
231 	"HighAtomic",
232 #ifdef CONFIG_CMA
233 	"CMA",
234 #endif
235 #ifdef CONFIG_MEMORY_ISOLATION
236 	"Isolate",
237 #endif
238 };
239 
240 compound_page_dtor * const compound_page_dtors[] = {
241 	NULL,
242 	free_compound_page,
243 #ifdef CONFIG_HUGETLB_PAGE
244 	free_huge_page,
245 #endif
246 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 	free_transhuge_page,
248 #endif
249 };
250 
251 int min_free_kbytes = 1024;
252 int user_min_free_kbytes = -1;
253 int watermark_scale_factor = 10;
254 
255 static unsigned long __meminitdata nr_kernel_pages;
256 static unsigned long __meminitdata nr_all_pages;
257 static unsigned long __meminitdata dma_reserve;
258 
259 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262 static unsigned long __initdata required_kernelcore;
263 static unsigned long __initdata required_movablecore;
264 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
265 static bool mirrored_kernelcore;
266 
267 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268 int movable_zone;
269 EXPORT_SYMBOL(movable_zone);
270 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
271 
272 #if MAX_NUMNODES > 1
273 int nr_node_ids __read_mostly = MAX_NUMNODES;
274 int nr_online_nodes __read_mostly = 1;
275 EXPORT_SYMBOL(nr_node_ids);
276 EXPORT_SYMBOL(nr_online_nodes);
277 #endif
278 
279 int page_group_by_mobility_disabled __read_mostly;
280 
281 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282 static inline void reset_deferred_meminit(pg_data_t *pgdat)
283 {
284 	pgdat->first_deferred_pfn = ULONG_MAX;
285 }
286 
287 /* Returns true if the struct page for the pfn is uninitialised */
288 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
289 {
290 	int nid = early_pfn_to_nid(pfn);
291 
292 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
293 		return true;
294 
295 	return false;
296 }
297 
298 /*
299  * Returns false when the remaining initialisation should be deferred until
300  * later in the boot cycle when it can be parallelised.
301  */
302 static inline bool update_defer_init(pg_data_t *pgdat,
303 				unsigned long pfn, unsigned long zone_end,
304 				unsigned long *nr_initialised)
305 {
306 	unsigned long max_initialise;
307 
308 	/* Always populate low zones for address-contrained allocations */
309 	if (zone_end < pgdat_end_pfn(pgdat))
310 		return true;
311 	/*
312 	 * Initialise at least 2G of a node but also take into account that
313 	 * two large system hashes that can take up 1GB for 0.25TB/node.
314 	 */
315 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 		(pgdat->node_spanned_pages >> 8));
317 
318 	(*nr_initialised)++;
319 	if ((*nr_initialised > max_initialise) &&
320 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 		pgdat->first_deferred_pfn = pfn;
322 		return false;
323 	}
324 
325 	return true;
326 }
327 #else
328 static inline void reset_deferred_meminit(pg_data_t *pgdat)
329 {
330 }
331 
332 static inline bool early_page_uninitialised(unsigned long pfn)
333 {
334 	return false;
335 }
336 
337 static inline bool update_defer_init(pg_data_t *pgdat,
338 				unsigned long pfn, unsigned long zone_end,
339 				unsigned long *nr_initialised)
340 {
341 	return true;
342 }
343 #endif
344 
345 /* Return a pointer to the bitmap storing bits affecting a block of pages */
346 static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 							unsigned long pfn)
348 {
349 #ifdef CONFIG_SPARSEMEM
350 	return __pfn_to_section(pfn)->pageblock_flags;
351 #else
352 	return page_zone(page)->pageblock_flags;
353 #endif /* CONFIG_SPARSEMEM */
354 }
355 
356 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357 {
358 #ifdef CONFIG_SPARSEMEM
359 	pfn &= (PAGES_PER_SECTION-1);
360 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361 #else
362 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366 
367 /**
368  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369  * @page: The page within the block of interest
370  * @pfn: The target page frame number
371  * @end_bitidx: The last bit of interest to retrieve
372  * @mask: mask of bits that the caller is interested in
373  *
374  * Return: pageblock_bits flags
375  */
376 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 					unsigned long pfn,
378 					unsigned long end_bitidx,
379 					unsigned long mask)
380 {
381 	unsigned long *bitmap;
382 	unsigned long bitidx, word_bitidx;
383 	unsigned long word;
384 
385 	bitmap = get_pageblock_bitmap(page, pfn);
386 	bitidx = pfn_to_bitidx(page, pfn);
387 	word_bitidx = bitidx / BITS_PER_LONG;
388 	bitidx &= (BITS_PER_LONG-1);
389 
390 	word = bitmap[word_bitidx];
391 	bitidx += end_bitidx;
392 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393 }
394 
395 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 					unsigned long end_bitidx,
397 					unsigned long mask)
398 {
399 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400 }
401 
402 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403 {
404 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405 }
406 
407 /**
408  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409  * @page: The page within the block of interest
410  * @flags: The flags to set
411  * @pfn: The target page frame number
412  * @end_bitidx: The last bit of interest
413  * @mask: mask of bits that the caller is interested in
414  */
415 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 					unsigned long pfn,
417 					unsigned long end_bitidx,
418 					unsigned long mask)
419 {
420 	unsigned long *bitmap;
421 	unsigned long bitidx, word_bitidx;
422 	unsigned long old_word, word;
423 
424 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425 
426 	bitmap = get_pageblock_bitmap(page, pfn);
427 	bitidx = pfn_to_bitidx(page, pfn);
428 	word_bitidx = bitidx / BITS_PER_LONG;
429 	bitidx &= (BITS_PER_LONG-1);
430 
431 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432 
433 	bitidx += end_bitidx;
434 	mask <<= (BITS_PER_LONG - bitidx - 1);
435 	flags <<= (BITS_PER_LONG - bitidx - 1);
436 
437 	word = READ_ONCE(bitmap[word_bitidx]);
438 	for (;;) {
439 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 		if (word == old_word)
441 			break;
442 		word = old_word;
443 	}
444 }
445 
446 void set_pageblock_migratetype(struct page *page, int migratetype)
447 {
448 	if (unlikely(page_group_by_mobility_disabled &&
449 		     migratetype < MIGRATE_PCPTYPES))
450 		migratetype = MIGRATE_UNMOVABLE;
451 
452 	set_pageblock_flags_group(page, (unsigned long)migratetype,
453 					PB_migrate, PB_migrate_end);
454 }
455 
456 #ifdef CONFIG_DEBUG_VM
457 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
458 {
459 	int ret = 0;
460 	unsigned seq;
461 	unsigned long pfn = page_to_pfn(page);
462 	unsigned long sp, start_pfn;
463 
464 	do {
465 		seq = zone_span_seqbegin(zone);
466 		start_pfn = zone->zone_start_pfn;
467 		sp = zone->spanned_pages;
468 		if (!zone_spans_pfn(zone, pfn))
469 			ret = 1;
470 	} while (zone_span_seqretry(zone, seq));
471 
472 	if (ret)
473 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 			pfn, zone_to_nid(zone), zone->name,
475 			start_pfn, start_pfn + sp);
476 
477 	return ret;
478 }
479 
480 static int page_is_consistent(struct zone *zone, struct page *page)
481 {
482 	if (!pfn_valid_within(page_to_pfn(page)))
483 		return 0;
484 	if (zone != page_zone(page))
485 		return 0;
486 
487 	return 1;
488 }
489 /*
490  * Temporary debugging check for pages not lying within a given zone.
491  */
492 static int bad_range(struct zone *zone, struct page *page)
493 {
494 	if (page_outside_zone_boundaries(zone, page))
495 		return 1;
496 	if (!page_is_consistent(zone, page))
497 		return 1;
498 
499 	return 0;
500 }
501 #else
502 static inline int bad_range(struct zone *zone, struct page *page)
503 {
504 	return 0;
505 }
506 #endif
507 
508 static void bad_page(struct page *page, const char *reason,
509 		unsigned long bad_flags)
510 {
511 	static unsigned long resume;
512 	static unsigned long nr_shown;
513 	static unsigned long nr_unshown;
514 
515 	/*
516 	 * Allow a burst of 60 reports, then keep quiet for that minute;
517 	 * or allow a steady drip of one report per second.
518 	 */
519 	if (nr_shown == 60) {
520 		if (time_before(jiffies, resume)) {
521 			nr_unshown++;
522 			goto out;
523 		}
524 		if (nr_unshown) {
525 			pr_alert(
526 			      "BUG: Bad page state: %lu messages suppressed\n",
527 				nr_unshown);
528 			nr_unshown = 0;
529 		}
530 		nr_shown = 0;
531 	}
532 	if (nr_shown++ == 0)
533 		resume = jiffies + 60 * HZ;
534 
535 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
536 		current->comm, page_to_pfn(page));
537 	__dump_page(page, reason);
538 	bad_flags &= page->flags;
539 	if (bad_flags)
540 		pr_alert("bad because of flags: %#lx(%pGp)\n",
541 						bad_flags, &bad_flags);
542 	dump_page_owner(page);
543 
544 	print_modules();
545 	dump_stack();
546 out:
547 	/* Leave bad fields for debug, except PageBuddy could make trouble */
548 	page_mapcount_reset(page); /* remove PageBuddy */
549 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
550 }
551 
552 /*
553  * Higher-order pages are called "compound pages".  They are structured thusly:
554  *
555  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
556  *
557  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
559  *
560  * The first tail page's ->compound_dtor holds the offset in array of compound
561  * page destructors. See compound_page_dtors.
562  *
563  * The first tail page's ->compound_order holds the order of allocation.
564  * This usage means that zero-order pages may not be compound.
565  */
566 
567 void free_compound_page(struct page *page)
568 {
569 	__free_pages_ok(page, compound_order(page));
570 }
571 
572 void prep_compound_page(struct page *page, unsigned int order)
573 {
574 	int i;
575 	int nr_pages = 1 << order;
576 
577 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
578 	set_compound_order(page, order);
579 	__SetPageHead(page);
580 	for (i = 1; i < nr_pages; i++) {
581 		struct page *p = page + i;
582 		set_page_count(p, 0);
583 		p->mapping = TAIL_MAPPING;
584 		set_compound_head(p, page);
585 	}
586 	atomic_set(compound_mapcount_ptr(page), -1);
587 }
588 
589 #ifdef CONFIG_DEBUG_PAGEALLOC
590 unsigned int _debug_guardpage_minorder;
591 bool _debug_pagealloc_enabled __read_mostly
592 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
593 EXPORT_SYMBOL(_debug_pagealloc_enabled);
594 bool _debug_guardpage_enabled __read_mostly;
595 
596 static int __init early_debug_pagealloc(char *buf)
597 {
598 	if (!buf)
599 		return -EINVAL;
600 	return kstrtobool(buf, &_debug_pagealloc_enabled);
601 }
602 early_param("debug_pagealloc", early_debug_pagealloc);
603 
604 static bool need_debug_guardpage(void)
605 {
606 	/* If we don't use debug_pagealloc, we don't need guard page */
607 	if (!debug_pagealloc_enabled())
608 		return false;
609 
610 	return true;
611 }
612 
613 static void init_debug_guardpage(void)
614 {
615 	if (!debug_pagealloc_enabled())
616 		return;
617 
618 	_debug_guardpage_enabled = true;
619 }
620 
621 struct page_ext_operations debug_guardpage_ops = {
622 	.need = need_debug_guardpage,
623 	.init = init_debug_guardpage,
624 };
625 
626 static int __init debug_guardpage_minorder_setup(char *buf)
627 {
628 	unsigned long res;
629 
630 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
631 		pr_err("Bad debug_guardpage_minorder value\n");
632 		return 0;
633 	}
634 	_debug_guardpage_minorder = res;
635 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
636 	return 0;
637 }
638 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639 
640 static inline void set_page_guard(struct zone *zone, struct page *page,
641 				unsigned int order, int migratetype)
642 {
643 	struct page_ext *page_ext;
644 
645 	if (!debug_guardpage_enabled())
646 		return;
647 
648 	page_ext = lookup_page_ext(page);
649 	if (unlikely(!page_ext))
650 		return;
651 
652 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653 
654 	INIT_LIST_HEAD(&page->lru);
655 	set_page_private(page, order);
656 	/* Guard pages are not available for any usage */
657 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
658 }
659 
660 static inline void clear_page_guard(struct zone *zone, struct page *page,
661 				unsigned int order, int migratetype)
662 {
663 	struct page_ext *page_ext;
664 
665 	if (!debug_guardpage_enabled())
666 		return;
667 
668 	page_ext = lookup_page_ext(page);
669 	if (unlikely(!page_ext))
670 		return;
671 
672 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673 
674 	set_page_private(page, 0);
675 	if (!is_migrate_isolate(migratetype))
676 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
677 }
678 #else
679 struct page_ext_operations debug_guardpage_ops = { NULL, };
680 static inline void set_page_guard(struct zone *zone, struct page *page,
681 				unsigned int order, int migratetype) {}
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 				unsigned int order, int migratetype) {}
684 #endif
685 
686 static inline void set_page_order(struct page *page, unsigned int order)
687 {
688 	set_page_private(page, order);
689 	__SetPageBuddy(page);
690 }
691 
692 static inline void rmv_page_order(struct page *page)
693 {
694 	__ClearPageBuddy(page);
695 	set_page_private(page, 0);
696 }
697 
698 /*
699  * This function checks whether a page is free && is the buddy
700  * we can do coalesce a page and its buddy if
701  * (a) the buddy is not in a hole &&
702  * (b) the buddy is in the buddy system &&
703  * (c) a page and its buddy have the same order &&
704  * (d) a page and its buddy are in the same zone.
705  *
706  * For recording whether a page is in the buddy system, we set ->_mapcount
707  * PAGE_BUDDY_MAPCOUNT_VALUE.
708  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709  * serialized by zone->lock.
710  *
711  * For recording page's order, we use page_private(page).
712  */
713 static inline int page_is_buddy(struct page *page, struct page *buddy,
714 							unsigned int order)
715 {
716 	if (!pfn_valid_within(page_to_pfn(buddy)))
717 		return 0;
718 
719 	if (page_is_guard(buddy) && page_order(buddy) == order) {
720 		if (page_zone_id(page) != page_zone_id(buddy))
721 			return 0;
722 
723 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724 
725 		return 1;
726 	}
727 
728 	if (PageBuddy(buddy) && page_order(buddy) == order) {
729 		/*
730 		 * zone check is done late to avoid uselessly
731 		 * calculating zone/node ids for pages that could
732 		 * never merge.
733 		 */
734 		if (page_zone_id(page) != page_zone_id(buddy))
735 			return 0;
736 
737 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738 
739 		return 1;
740 	}
741 	return 0;
742 }
743 
744 /*
745  * Freeing function for a buddy system allocator.
746  *
747  * The concept of a buddy system is to maintain direct-mapped table
748  * (containing bit values) for memory blocks of various "orders".
749  * The bottom level table contains the map for the smallest allocatable
750  * units of memory (here, pages), and each level above it describes
751  * pairs of units from the levels below, hence, "buddies".
752  * At a high level, all that happens here is marking the table entry
753  * at the bottom level available, and propagating the changes upward
754  * as necessary, plus some accounting needed to play nicely with other
755  * parts of the VM system.
756  * At each level, we keep a list of pages, which are heads of continuous
757  * free pages of length of (1 << order) and marked with _mapcount
758  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759  * field.
760  * So when we are allocating or freeing one, we can derive the state of the
761  * other.  That is, if we allocate a small block, and both were
762  * free, the remainder of the region must be split into blocks.
763  * If a block is freed, and its buddy is also free, then this
764  * triggers coalescing into a block of larger size.
765  *
766  * -- nyc
767  */
768 
769 static inline void __free_one_page(struct page *page,
770 		unsigned long pfn,
771 		struct zone *zone, unsigned int order,
772 		int migratetype)
773 {
774 	unsigned long page_idx;
775 	unsigned long combined_idx;
776 	unsigned long uninitialized_var(buddy_idx);
777 	struct page *buddy;
778 	unsigned int max_order;
779 
780 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
781 
782 	VM_BUG_ON(!zone_is_initialized(zone));
783 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
784 
785 	VM_BUG_ON(migratetype == -1);
786 	if (likely(!is_migrate_isolate(migratetype)))
787 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
788 
789 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
790 
791 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
793 
794 continue_merging:
795 	while (order < max_order - 1) {
796 		buddy_idx = __find_buddy_index(page_idx, order);
797 		buddy = page + (buddy_idx - page_idx);
798 		if (!page_is_buddy(page, buddy, order))
799 			goto done_merging;
800 		/*
801 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 		 * merge with it and move up one order.
803 		 */
804 		if (page_is_guard(buddy)) {
805 			clear_page_guard(zone, buddy, order, migratetype);
806 		} else {
807 			list_del(&buddy->lru);
808 			zone->free_area[order].nr_free--;
809 			rmv_page_order(buddy);
810 		}
811 		combined_idx = buddy_idx & page_idx;
812 		page = page + (combined_idx - page_idx);
813 		page_idx = combined_idx;
814 		order++;
815 	}
816 	if (max_order < MAX_ORDER) {
817 		/* If we are here, it means order is >= pageblock_order.
818 		 * We want to prevent merge between freepages on isolate
819 		 * pageblock and normal pageblock. Without this, pageblock
820 		 * isolation could cause incorrect freepage or CMA accounting.
821 		 *
822 		 * We don't want to hit this code for the more frequent
823 		 * low-order merging.
824 		 */
825 		if (unlikely(has_isolate_pageblock(zone))) {
826 			int buddy_mt;
827 
828 			buddy_idx = __find_buddy_index(page_idx, order);
829 			buddy = page + (buddy_idx - page_idx);
830 			buddy_mt = get_pageblock_migratetype(buddy);
831 
832 			if (migratetype != buddy_mt
833 					&& (is_migrate_isolate(migratetype) ||
834 						is_migrate_isolate(buddy_mt)))
835 				goto done_merging;
836 		}
837 		max_order++;
838 		goto continue_merging;
839 	}
840 
841 done_merging:
842 	set_page_order(page, order);
843 
844 	/*
845 	 * If this is not the largest possible page, check if the buddy
846 	 * of the next-highest order is free. If it is, it's possible
847 	 * that pages are being freed that will coalesce soon. In case,
848 	 * that is happening, add the free page to the tail of the list
849 	 * so it's less likely to be used soon and more likely to be merged
850 	 * as a higher order page
851 	 */
852 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
853 		struct page *higher_page, *higher_buddy;
854 		combined_idx = buddy_idx & page_idx;
855 		higher_page = page + (combined_idx - page_idx);
856 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
857 		higher_buddy = higher_page + (buddy_idx - combined_idx);
858 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 			list_add_tail(&page->lru,
860 				&zone->free_area[order].free_list[migratetype]);
861 			goto out;
862 		}
863 	}
864 
865 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866 out:
867 	zone->free_area[order].nr_free++;
868 }
869 
870 /*
871  * A bad page could be due to a number of fields. Instead of multiple branches,
872  * try and check multiple fields with one check. The caller must do a detailed
873  * check if necessary.
874  */
875 static inline bool page_expected_state(struct page *page,
876 					unsigned long check_flags)
877 {
878 	if (unlikely(atomic_read(&page->_mapcount) != -1))
879 		return false;
880 
881 	if (unlikely((unsigned long)page->mapping |
882 			page_ref_count(page) |
883 #ifdef CONFIG_MEMCG
884 			(unsigned long)page->mem_cgroup |
885 #endif
886 			(page->flags & check_flags)))
887 		return false;
888 
889 	return true;
890 }
891 
892 static void free_pages_check_bad(struct page *page)
893 {
894 	const char *bad_reason;
895 	unsigned long bad_flags;
896 
897 	bad_reason = NULL;
898 	bad_flags = 0;
899 
900 	if (unlikely(atomic_read(&page->_mapcount) != -1))
901 		bad_reason = "nonzero mapcount";
902 	if (unlikely(page->mapping != NULL))
903 		bad_reason = "non-NULL mapping";
904 	if (unlikely(page_ref_count(page) != 0))
905 		bad_reason = "nonzero _refcount";
906 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 	}
910 #ifdef CONFIG_MEMCG
911 	if (unlikely(page->mem_cgroup))
912 		bad_reason = "page still charged to cgroup";
913 #endif
914 	bad_page(page, bad_reason, bad_flags);
915 }
916 
917 static inline int free_pages_check(struct page *page)
918 {
919 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
920 		return 0;
921 
922 	/* Something has gone sideways, find it */
923 	free_pages_check_bad(page);
924 	return 1;
925 }
926 
927 static int free_tail_pages_check(struct page *head_page, struct page *page)
928 {
929 	int ret = 1;
930 
931 	/*
932 	 * We rely page->lru.next never has bit 0 set, unless the page
933 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 	 */
935 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936 
937 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 		ret = 0;
939 		goto out;
940 	}
941 	switch (page - head_page) {
942 	case 1:
943 		/* the first tail page: ->mapping is compound_mapcount() */
944 		if (unlikely(compound_mapcount(page))) {
945 			bad_page(page, "nonzero compound_mapcount", 0);
946 			goto out;
947 		}
948 		break;
949 	case 2:
950 		/*
951 		 * the second tail page: ->mapping is
952 		 * page_deferred_list().next -- ignore value.
953 		 */
954 		break;
955 	default:
956 		if (page->mapping != TAIL_MAPPING) {
957 			bad_page(page, "corrupted mapping in tail page", 0);
958 			goto out;
959 		}
960 		break;
961 	}
962 	if (unlikely(!PageTail(page))) {
963 		bad_page(page, "PageTail not set", 0);
964 		goto out;
965 	}
966 	if (unlikely(compound_head(page) != head_page)) {
967 		bad_page(page, "compound_head not consistent", 0);
968 		goto out;
969 	}
970 	ret = 0;
971 out:
972 	page->mapping = NULL;
973 	clear_compound_head(page);
974 	return ret;
975 }
976 
977 static __always_inline bool free_pages_prepare(struct page *page,
978 					unsigned int order, bool check_free)
979 {
980 	int bad = 0;
981 
982 	VM_BUG_ON_PAGE(PageTail(page), page);
983 
984 	trace_mm_page_free(page, order);
985 	kmemcheck_free_shadow(page, order);
986 
987 	/*
988 	 * Check tail pages before head page information is cleared to
989 	 * avoid checking PageCompound for order-0 pages.
990 	 */
991 	if (unlikely(order)) {
992 		bool compound = PageCompound(page);
993 		int i;
994 
995 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
996 
997 		if (compound)
998 			ClearPageDoubleMap(page);
999 		for (i = 1; i < (1 << order); i++) {
1000 			if (compound)
1001 				bad += free_tail_pages_check(page, page + i);
1002 			if (unlikely(free_pages_check(page + i))) {
1003 				bad++;
1004 				continue;
1005 			}
1006 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 		}
1008 	}
1009 	if (PageMappingFlags(page))
1010 		page->mapping = NULL;
1011 	if (memcg_kmem_enabled() && PageKmemcg(page))
1012 		memcg_kmem_uncharge(page, order);
1013 	if (check_free)
1014 		bad += free_pages_check(page);
1015 	if (bad)
1016 		return false;
1017 
1018 	page_cpupid_reset_last(page);
1019 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 	reset_page_owner(page, order);
1021 
1022 	if (!PageHighMem(page)) {
1023 		debug_check_no_locks_freed(page_address(page),
1024 					   PAGE_SIZE << order);
1025 		debug_check_no_obj_freed(page_address(page),
1026 					   PAGE_SIZE << order);
1027 	}
1028 	arch_free_page(page, order);
1029 	kernel_poison_pages(page, 1 << order, 0);
1030 	kernel_map_pages(page, 1 << order, 0);
1031 	kasan_free_pages(page, order);
1032 
1033 	return true;
1034 }
1035 
1036 #ifdef CONFIG_DEBUG_VM
1037 static inline bool free_pcp_prepare(struct page *page)
1038 {
1039 	return free_pages_prepare(page, 0, true);
1040 }
1041 
1042 static inline bool bulkfree_pcp_prepare(struct page *page)
1043 {
1044 	return false;
1045 }
1046 #else
1047 static bool free_pcp_prepare(struct page *page)
1048 {
1049 	return free_pages_prepare(page, 0, false);
1050 }
1051 
1052 static bool bulkfree_pcp_prepare(struct page *page)
1053 {
1054 	return free_pages_check(page);
1055 }
1056 #endif /* CONFIG_DEBUG_VM */
1057 
1058 /*
1059  * Frees a number of pages from the PCP lists
1060  * Assumes all pages on list are in same zone, and of same order.
1061  * count is the number of pages to free.
1062  *
1063  * If the zone was previously in an "all pages pinned" state then look to
1064  * see if this freeing clears that state.
1065  *
1066  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1067  * pinned" detection logic.
1068  */
1069 static void free_pcppages_bulk(struct zone *zone, int count,
1070 					struct per_cpu_pages *pcp)
1071 {
1072 	int migratetype = 0;
1073 	int batch_free = 0;
1074 	unsigned long nr_scanned;
1075 	bool isolated_pageblocks;
1076 
1077 	spin_lock(&zone->lock);
1078 	isolated_pageblocks = has_isolate_pageblock(zone);
1079 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1080 	if (nr_scanned)
1081 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1082 
1083 	while (count) {
1084 		struct page *page;
1085 		struct list_head *list;
1086 
1087 		/*
1088 		 * Remove pages from lists in a round-robin fashion. A
1089 		 * batch_free count is maintained that is incremented when an
1090 		 * empty list is encountered.  This is so more pages are freed
1091 		 * off fuller lists instead of spinning excessively around empty
1092 		 * lists
1093 		 */
1094 		do {
1095 			batch_free++;
1096 			if (++migratetype == MIGRATE_PCPTYPES)
1097 				migratetype = 0;
1098 			list = &pcp->lists[migratetype];
1099 		} while (list_empty(list));
1100 
1101 		/* This is the only non-empty list. Free them all. */
1102 		if (batch_free == MIGRATE_PCPTYPES)
1103 			batch_free = count;
1104 
1105 		do {
1106 			int mt;	/* migratetype of the to-be-freed page */
1107 
1108 			page = list_last_entry(list, struct page, lru);
1109 			/* must delete as __free_one_page list manipulates */
1110 			list_del(&page->lru);
1111 
1112 			mt = get_pcppage_migratetype(page);
1113 			/* MIGRATE_ISOLATE page should not go to pcplists */
1114 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1115 			/* Pageblock could have been isolated meanwhile */
1116 			if (unlikely(isolated_pageblocks))
1117 				mt = get_pageblock_migratetype(page);
1118 
1119 			if (bulkfree_pcp_prepare(page))
1120 				continue;
1121 
1122 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1123 			trace_mm_page_pcpu_drain(page, 0, mt);
1124 		} while (--count && --batch_free && !list_empty(list));
1125 	}
1126 	spin_unlock(&zone->lock);
1127 }
1128 
1129 static void free_one_page(struct zone *zone,
1130 				struct page *page, unsigned long pfn,
1131 				unsigned int order,
1132 				int migratetype)
1133 {
1134 	unsigned long nr_scanned;
1135 	spin_lock(&zone->lock);
1136 	nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
1137 	if (nr_scanned)
1138 		__mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
1139 
1140 	if (unlikely(has_isolate_pageblock(zone) ||
1141 		is_migrate_isolate(migratetype))) {
1142 		migratetype = get_pfnblock_migratetype(page, pfn);
1143 	}
1144 	__free_one_page(page, pfn, zone, order, migratetype);
1145 	spin_unlock(&zone->lock);
1146 }
1147 
1148 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1149 				unsigned long zone, int nid)
1150 {
1151 	set_page_links(page, zone, nid, pfn);
1152 	init_page_count(page);
1153 	page_mapcount_reset(page);
1154 	page_cpupid_reset_last(page);
1155 
1156 	INIT_LIST_HEAD(&page->lru);
1157 #ifdef WANT_PAGE_VIRTUAL
1158 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1159 	if (!is_highmem_idx(zone))
1160 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1161 #endif
1162 }
1163 
1164 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1165 					int nid)
1166 {
1167 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1168 }
1169 
1170 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1171 static void init_reserved_page(unsigned long pfn)
1172 {
1173 	pg_data_t *pgdat;
1174 	int nid, zid;
1175 
1176 	if (!early_page_uninitialised(pfn))
1177 		return;
1178 
1179 	nid = early_pfn_to_nid(pfn);
1180 	pgdat = NODE_DATA(nid);
1181 
1182 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1183 		struct zone *zone = &pgdat->node_zones[zid];
1184 
1185 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1186 			break;
1187 	}
1188 	__init_single_pfn(pfn, zid, nid);
1189 }
1190 #else
1191 static inline void init_reserved_page(unsigned long pfn)
1192 {
1193 }
1194 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1195 
1196 /*
1197  * Initialised pages do not have PageReserved set. This function is
1198  * called for each range allocated by the bootmem allocator and
1199  * marks the pages PageReserved. The remaining valid pages are later
1200  * sent to the buddy page allocator.
1201  */
1202 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1203 {
1204 	unsigned long start_pfn = PFN_DOWN(start);
1205 	unsigned long end_pfn = PFN_UP(end);
1206 
1207 	for (; start_pfn < end_pfn; start_pfn++) {
1208 		if (pfn_valid(start_pfn)) {
1209 			struct page *page = pfn_to_page(start_pfn);
1210 
1211 			init_reserved_page(start_pfn);
1212 
1213 			/* Avoid false-positive PageTail() */
1214 			INIT_LIST_HEAD(&page->lru);
1215 
1216 			SetPageReserved(page);
1217 		}
1218 	}
1219 }
1220 
1221 static void __free_pages_ok(struct page *page, unsigned int order)
1222 {
1223 	unsigned long flags;
1224 	int migratetype;
1225 	unsigned long pfn = page_to_pfn(page);
1226 
1227 	if (!free_pages_prepare(page, order, true))
1228 		return;
1229 
1230 	migratetype = get_pfnblock_migratetype(page, pfn);
1231 	local_irq_save(flags);
1232 	__count_vm_events(PGFREE, 1 << order);
1233 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1234 	local_irq_restore(flags);
1235 }
1236 
1237 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1238 {
1239 	unsigned int nr_pages = 1 << order;
1240 	struct page *p = page;
1241 	unsigned int loop;
1242 
1243 	prefetchw(p);
1244 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 		prefetchw(p + 1);
1246 		__ClearPageReserved(p);
1247 		set_page_count(p, 0);
1248 	}
1249 	__ClearPageReserved(p);
1250 	set_page_count(p, 0);
1251 
1252 	page_zone(page)->managed_pages += nr_pages;
1253 	set_page_refcounted(page);
1254 	__free_pages(page, order);
1255 }
1256 
1257 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1258 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1259 
1260 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1261 
1262 int __meminit early_pfn_to_nid(unsigned long pfn)
1263 {
1264 	static DEFINE_SPINLOCK(early_pfn_lock);
1265 	int nid;
1266 
1267 	spin_lock(&early_pfn_lock);
1268 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1269 	if (nid < 0)
1270 		nid = first_online_node;
1271 	spin_unlock(&early_pfn_lock);
1272 
1273 	return nid;
1274 }
1275 #endif
1276 
1277 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1278 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1279 					struct mminit_pfnnid_cache *state)
1280 {
1281 	int nid;
1282 
1283 	nid = __early_pfn_to_nid(pfn, state);
1284 	if (nid >= 0 && nid != node)
1285 		return false;
1286 	return true;
1287 }
1288 
1289 /* Only safe to use early in boot when initialisation is single-threaded */
1290 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1291 {
1292 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1293 }
1294 
1295 #else
1296 
1297 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1298 {
1299 	return true;
1300 }
1301 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1302 					struct mminit_pfnnid_cache *state)
1303 {
1304 	return true;
1305 }
1306 #endif
1307 
1308 
1309 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1310 							unsigned int order)
1311 {
1312 	if (early_page_uninitialised(pfn))
1313 		return;
1314 	return __free_pages_boot_core(page, order);
1315 }
1316 
1317 /*
1318  * Check that the whole (or subset of) a pageblock given by the interval of
1319  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1320  * with the migration of free compaction scanner. The scanners then need to
1321  * use only pfn_valid_within() check for arches that allow holes within
1322  * pageblocks.
1323  *
1324  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1325  *
1326  * It's possible on some configurations to have a setup like node0 node1 node0
1327  * i.e. it's possible that all pages within a zones range of pages do not
1328  * belong to a single zone. We assume that a border between node0 and node1
1329  * can occur within a single pageblock, but not a node0 node1 node0
1330  * interleaving within a single pageblock. It is therefore sufficient to check
1331  * the first and last page of a pageblock and avoid checking each individual
1332  * page in a pageblock.
1333  */
1334 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1335 				     unsigned long end_pfn, struct zone *zone)
1336 {
1337 	struct page *start_page;
1338 	struct page *end_page;
1339 
1340 	/* end_pfn is one past the range we are checking */
1341 	end_pfn--;
1342 
1343 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1344 		return NULL;
1345 
1346 	start_page = pfn_to_page(start_pfn);
1347 
1348 	if (page_zone(start_page) != zone)
1349 		return NULL;
1350 
1351 	end_page = pfn_to_page(end_pfn);
1352 
1353 	/* This gives a shorter code than deriving page_zone(end_page) */
1354 	if (page_zone_id(start_page) != page_zone_id(end_page))
1355 		return NULL;
1356 
1357 	return start_page;
1358 }
1359 
1360 void set_zone_contiguous(struct zone *zone)
1361 {
1362 	unsigned long block_start_pfn = zone->zone_start_pfn;
1363 	unsigned long block_end_pfn;
1364 
1365 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1366 	for (; block_start_pfn < zone_end_pfn(zone);
1367 			block_start_pfn = block_end_pfn,
1368 			 block_end_pfn += pageblock_nr_pages) {
1369 
1370 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1371 
1372 		if (!__pageblock_pfn_to_page(block_start_pfn,
1373 					     block_end_pfn, zone))
1374 			return;
1375 	}
1376 
1377 	/* We confirm that there is no hole */
1378 	zone->contiguous = true;
1379 }
1380 
1381 void clear_zone_contiguous(struct zone *zone)
1382 {
1383 	zone->contiguous = false;
1384 }
1385 
1386 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1387 static void __init deferred_free_range(struct page *page,
1388 					unsigned long pfn, int nr_pages)
1389 {
1390 	int i;
1391 
1392 	if (!page)
1393 		return;
1394 
1395 	/* Free a large naturally-aligned chunk if possible */
1396 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1397 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1398 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1399 		__free_pages_boot_core(page, MAX_ORDER-1);
1400 		return;
1401 	}
1402 
1403 	for (i = 0; i < nr_pages; i++, page++)
1404 		__free_pages_boot_core(page, 0);
1405 }
1406 
1407 /* Completion tracking for deferred_init_memmap() threads */
1408 static atomic_t pgdat_init_n_undone __initdata;
1409 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1410 
1411 static inline void __init pgdat_init_report_one_done(void)
1412 {
1413 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1414 		complete(&pgdat_init_all_done_comp);
1415 }
1416 
1417 /* Initialise remaining memory on a node */
1418 static int __init deferred_init_memmap(void *data)
1419 {
1420 	pg_data_t *pgdat = data;
1421 	int nid = pgdat->node_id;
1422 	struct mminit_pfnnid_cache nid_init_state = { };
1423 	unsigned long start = jiffies;
1424 	unsigned long nr_pages = 0;
1425 	unsigned long walk_start, walk_end;
1426 	int i, zid;
1427 	struct zone *zone;
1428 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1429 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1430 
1431 	if (first_init_pfn == ULONG_MAX) {
1432 		pgdat_init_report_one_done();
1433 		return 0;
1434 	}
1435 
1436 	/* Bind memory initialisation thread to a local node if possible */
1437 	if (!cpumask_empty(cpumask))
1438 		set_cpus_allowed_ptr(current, cpumask);
1439 
1440 	/* Sanity check boundaries */
1441 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1442 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1443 	pgdat->first_deferred_pfn = ULONG_MAX;
1444 
1445 	/* Only the highest zone is deferred so find it */
1446 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1447 		zone = pgdat->node_zones + zid;
1448 		if (first_init_pfn < zone_end_pfn(zone))
1449 			break;
1450 	}
1451 
1452 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1453 		unsigned long pfn, end_pfn;
1454 		struct page *page = NULL;
1455 		struct page *free_base_page = NULL;
1456 		unsigned long free_base_pfn = 0;
1457 		int nr_to_free = 0;
1458 
1459 		end_pfn = min(walk_end, zone_end_pfn(zone));
1460 		pfn = first_init_pfn;
1461 		if (pfn < walk_start)
1462 			pfn = walk_start;
1463 		if (pfn < zone->zone_start_pfn)
1464 			pfn = zone->zone_start_pfn;
1465 
1466 		for (; pfn < end_pfn; pfn++) {
1467 			if (!pfn_valid_within(pfn))
1468 				goto free_range;
1469 
1470 			/*
1471 			 * Ensure pfn_valid is checked every
1472 			 * MAX_ORDER_NR_PAGES for memory holes
1473 			 */
1474 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1475 				if (!pfn_valid(pfn)) {
1476 					page = NULL;
1477 					goto free_range;
1478 				}
1479 			}
1480 
1481 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1482 				page = NULL;
1483 				goto free_range;
1484 			}
1485 
1486 			/* Minimise pfn page lookups and scheduler checks */
1487 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1488 				page++;
1489 			} else {
1490 				nr_pages += nr_to_free;
1491 				deferred_free_range(free_base_page,
1492 						free_base_pfn, nr_to_free);
1493 				free_base_page = NULL;
1494 				free_base_pfn = nr_to_free = 0;
1495 
1496 				page = pfn_to_page(pfn);
1497 				cond_resched();
1498 			}
1499 
1500 			if (page->flags) {
1501 				VM_BUG_ON(page_zone(page) != zone);
1502 				goto free_range;
1503 			}
1504 
1505 			__init_single_page(page, pfn, zid, nid);
1506 			if (!free_base_page) {
1507 				free_base_page = page;
1508 				free_base_pfn = pfn;
1509 				nr_to_free = 0;
1510 			}
1511 			nr_to_free++;
1512 
1513 			/* Where possible, batch up pages for a single free */
1514 			continue;
1515 free_range:
1516 			/* Free the current block of pages to allocator */
1517 			nr_pages += nr_to_free;
1518 			deferred_free_range(free_base_page, free_base_pfn,
1519 								nr_to_free);
1520 			free_base_page = NULL;
1521 			free_base_pfn = nr_to_free = 0;
1522 		}
1523 
1524 		first_init_pfn = max(end_pfn, first_init_pfn);
1525 	}
1526 
1527 	/* Sanity check that the next zone really is unpopulated */
1528 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1529 
1530 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1531 					jiffies_to_msecs(jiffies - start));
1532 
1533 	pgdat_init_report_one_done();
1534 	return 0;
1535 }
1536 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1537 
1538 void __init page_alloc_init_late(void)
1539 {
1540 	struct zone *zone;
1541 
1542 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1543 	int nid;
1544 
1545 	/* There will be num_node_state(N_MEMORY) threads */
1546 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1547 	for_each_node_state(nid, N_MEMORY) {
1548 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1549 	}
1550 
1551 	/* Block until all are initialised */
1552 	wait_for_completion(&pgdat_init_all_done_comp);
1553 
1554 	/* Reinit limits that are based on free pages after the kernel is up */
1555 	files_maxfiles_init();
1556 #endif
1557 
1558 	for_each_populated_zone(zone)
1559 		set_zone_contiguous(zone);
1560 }
1561 
1562 #ifdef CONFIG_CMA
1563 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1564 void __init init_cma_reserved_pageblock(struct page *page)
1565 {
1566 	unsigned i = pageblock_nr_pages;
1567 	struct page *p = page;
1568 
1569 	do {
1570 		__ClearPageReserved(p);
1571 		set_page_count(p, 0);
1572 	} while (++p, --i);
1573 
1574 	set_pageblock_migratetype(page, MIGRATE_CMA);
1575 
1576 	if (pageblock_order >= MAX_ORDER) {
1577 		i = pageblock_nr_pages;
1578 		p = page;
1579 		do {
1580 			set_page_refcounted(p);
1581 			__free_pages(p, MAX_ORDER - 1);
1582 			p += MAX_ORDER_NR_PAGES;
1583 		} while (i -= MAX_ORDER_NR_PAGES);
1584 	} else {
1585 		set_page_refcounted(page);
1586 		__free_pages(page, pageblock_order);
1587 	}
1588 
1589 	adjust_managed_page_count(page, pageblock_nr_pages);
1590 }
1591 #endif
1592 
1593 /*
1594  * The order of subdivision here is critical for the IO subsystem.
1595  * Please do not alter this order without good reasons and regression
1596  * testing. Specifically, as large blocks of memory are subdivided,
1597  * the order in which smaller blocks are delivered depends on the order
1598  * they're subdivided in this function. This is the primary factor
1599  * influencing the order in which pages are delivered to the IO
1600  * subsystem according to empirical testing, and this is also justified
1601  * by considering the behavior of a buddy system containing a single
1602  * large block of memory acted on by a series of small allocations.
1603  * This behavior is a critical factor in sglist merging's success.
1604  *
1605  * -- nyc
1606  */
1607 static inline void expand(struct zone *zone, struct page *page,
1608 	int low, int high, struct free_area *area,
1609 	int migratetype)
1610 {
1611 	unsigned long size = 1 << high;
1612 
1613 	while (high > low) {
1614 		area--;
1615 		high--;
1616 		size >>= 1;
1617 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1618 
1619 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1620 			debug_guardpage_enabled() &&
1621 			high < debug_guardpage_minorder()) {
1622 			/*
1623 			 * Mark as guard pages (or page), that will allow to
1624 			 * merge back to allocator when buddy will be freed.
1625 			 * Corresponding page table entries will not be touched,
1626 			 * pages will stay not present in virtual address space
1627 			 */
1628 			set_page_guard(zone, &page[size], high, migratetype);
1629 			continue;
1630 		}
1631 		list_add(&page[size].lru, &area->free_list[migratetype]);
1632 		area->nr_free++;
1633 		set_page_order(&page[size], high);
1634 	}
1635 }
1636 
1637 static void check_new_page_bad(struct page *page)
1638 {
1639 	const char *bad_reason = NULL;
1640 	unsigned long bad_flags = 0;
1641 
1642 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1643 		bad_reason = "nonzero mapcount";
1644 	if (unlikely(page->mapping != NULL))
1645 		bad_reason = "non-NULL mapping";
1646 	if (unlikely(page_ref_count(page) != 0))
1647 		bad_reason = "nonzero _count";
1648 	if (unlikely(page->flags & __PG_HWPOISON)) {
1649 		bad_reason = "HWPoisoned (hardware-corrupted)";
1650 		bad_flags = __PG_HWPOISON;
1651 		/* Don't complain about hwpoisoned pages */
1652 		page_mapcount_reset(page); /* remove PageBuddy */
1653 		return;
1654 	}
1655 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1656 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1657 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1658 	}
1659 #ifdef CONFIG_MEMCG
1660 	if (unlikely(page->mem_cgroup))
1661 		bad_reason = "page still charged to cgroup";
1662 #endif
1663 	bad_page(page, bad_reason, bad_flags);
1664 }
1665 
1666 /*
1667  * This page is about to be returned from the page allocator
1668  */
1669 static inline int check_new_page(struct page *page)
1670 {
1671 	if (likely(page_expected_state(page,
1672 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1673 		return 0;
1674 
1675 	check_new_page_bad(page);
1676 	return 1;
1677 }
1678 
1679 static inline bool free_pages_prezeroed(bool poisoned)
1680 {
1681 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1682 		page_poisoning_enabled() && poisoned;
1683 }
1684 
1685 #ifdef CONFIG_DEBUG_VM
1686 static bool check_pcp_refill(struct page *page)
1687 {
1688 	return false;
1689 }
1690 
1691 static bool check_new_pcp(struct page *page)
1692 {
1693 	return check_new_page(page);
1694 }
1695 #else
1696 static bool check_pcp_refill(struct page *page)
1697 {
1698 	return check_new_page(page);
1699 }
1700 static bool check_new_pcp(struct page *page)
1701 {
1702 	return false;
1703 }
1704 #endif /* CONFIG_DEBUG_VM */
1705 
1706 static bool check_new_pages(struct page *page, unsigned int order)
1707 {
1708 	int i;
1709 	for (i = 0; i < (1 << order); i++) {
1710 		struct page *p = page + i;
1711 
1712 		if (unlikely(check_new_page(p)))
1713 			return true;
1714 	}
1715 
1716 	return false;
1717 }
1718 
1719 inline void post_alloc_hook(struct page *page, unsigned int order,
1720 				gfp_t gfp_flags)
1721 {
1722 	set_page_private(page, 0);
1723 	set_page_refcounted(page);
1724 
1725 	arch_alloc_page(page, order);
1726 	kernel_map_pages(page, 1 << order, 1);
1727 	kernel_poison_pages(page, 1 << order, 1);
1728 	kasan_alloc_pages(page, order);
1729 	set_page_owner(page, order, gfp_flags);
1730 }
1731 
1732 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1733 							unsigned int alloc_flags)
1734 {
1735 	int i;
1736 	bool poisoned = true;
1737 
1738 	for (i = 0; i < (1 << order); i++) {
1739 		struct page *p = page + i;
1740 		if (poisoned)
1741 			poisoned &= page_is_poisoned(p);
1742 	}
1743 
1744 	post_alloc_hook(page, order, gfp_flags);
1745 
1746 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1747 		for (i = 0; i < (1 << order); i++)
1748 			clear_highpage(page + i);
1749 
1750 	if (order && (gfp_flags & __GFP_COMP))
1751 		prep_compound_page(page, order);
1752 
1753 	/*
1754 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1755 	 * allocate the page. The expectation is that the caller is taking
1756 	 * steps that will free more memory. The caller should avoid the page
1757 	 * being used for !PFMEMALLOC purposes.
1758 	 */
1759 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1760 		set_page_pfmemalloc(page);
1761 	else
1762 		clear_page_pfmemalloc(page);
1763 }
1764 
1765 /*
1766  * Go through the free lists for the given migratetype and remove
1767  * the smallest available page from the freelists
1768  */
1769 static inline
1770 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1771 						int migratetype)
1772 {
1773 	unsigned int current_order;
1774 	struct free_area *area;
1775 	struct page *page;
1776 
1777 	/* Find a page of the appropriate size in the preferred list */
1778 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1779 		area = &(zone->free_area[current_order]);
1780 		page = list_first_entry_or_null(&area->free_list[migratetype],
1781 							struct page, lru);
1782 		if (!page)
1783 			continue;
1784 		list_del(&page->lru);
1785 		rmv_page_order(page);
1786 		area->nr_free--;
1787 		expand(zone, page, order, current_order, area, migratetype);
1788 		set_pcppage_migratetype(page, migratetype);
1789 		return page;
1790 	}
1791 
1792 	return NULL;
1793 }
1794 
1795 
1796 /*
1797  * This array describes the order lists are fallen back to when
1798  * the free lists for the desirable migrate type are depleted
1799  */
1800 static int fallbacks[MIGRATE_TYPES][4] = {
1801 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1802 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1803 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1804 #ifdef CONFIG_CMA
1805 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1806 #endif
1807 #ifdef CONFIG_MEMORY_ISOLATION
1808 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1809 #endif
1810 };
1811 
1812 #ifdef CONFIG_CMA
1813 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1814 					unsigned int order)
1815 {
1816 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1817 }
1818 #else
1819 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1820 					unsigned int order) { return NULL; }
1821 #endif
1822 
1823 /*
1824  * Move the free pages in a range to the free lists of the requested type.
1825  * Note that start_page and end_pages are not aligned on a pageblock
1826  * boundary. If alignment is required, use move_freepages_block()
1827  */
1828 int move_freepages(struct zone *zone,
1829 			  struct page *start_page, struct page *end_page,
1830 			  int migratetype)
1831 {
1832 	struct page *page;
1833 	unsigned int order;
1834 	int pages_moved = 0;
1835 
1836 #ifndef CONFIG_HOLES_IN_ZONE
1837 	/*
1838 	 * page_zone is not safe to call in this context when
1839 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1840 	 * anyway as we check zone boundaries in move_freepages_block().
1841 	 * Remove at a later date when no bug reports exist related to
1842 	 * grouping pages by mobility
1843 	 */
1844 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1845 #endif
1846 
1847 	for (page = start_page; page <= end_page;) {
1848 		/* Make sure we are not inadvertently changing nodes */
1849 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1850 
1851 		if (!pfn_valid_within(page_to_pfn(page))) {
1852 			page++;
1853 			continue;
1854 		}
1855 
1856 		if (!PageBuddy(page)) {
1857 			page++;
1858 			continue;
1859 		}
1860 
1861 		order = page_order(page);
1862 		list_move(&page->lru,
1863 			  &zone->free_area[order].free_list[migratetype]);
1864 		page += 1 << order;
1865 		pages_moved += 1 << order;
1866 	}
1867 
1868 	return pages_moved;
1869 }
1870 
1871 int move_freepages_block(struct zone *zone, struct page *page,
1872 				int migratetype)
1873 {
1874 	unsigned long start_pfn, end_pfn;
1875 	struct page *start_page, *end_page;
1876 
1877 	start_pfn = page_to_pfn(page);
1878 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1879 	start_page = pfn_to_page(start_pfn);
1880 	end_page = start_page + pageblock_nr_pages - 1;
1881 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1882 
1883 	/* Do not cross zone boundaries */
1884 	if (!zone_spans_pfn(zone, start_pfn))
1885 		start_page = page;
1886 	if (!zone_spans_pfn(zone, end_pfn))
1887 		return 0;
1888 
1889 	return move_freepages(zone, start_page, end_page, migratetype);
1890 }
1891 
1892 static void change_pageblock_range(struct page *pageblock_page,
1893 					int start_order, int migratetype)
1894 {
1895 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1896 
1897 	while (nr_pageblocks--) {
1898 		set_pageblock_migratetype(pageblock_page, migratetype);
1899 		pageblock_page += pageblock_nr_pages;
1900 	}
1901 }
1902 
1903 /*
1904  * When we are falling back to another migratetype during allocation, try to
1905  * steal extra free pages from the same pageblocks to satisfy further
1906  * allocations, instead of polluting multiple pageblocks.
1907  *
1908  * If we are stealing a relatively large buddy page, it is likely there will
1909  * be more free pages in the pageblock, so try to steal them all. For
1910  * reclaimable and unmovable allocations, we steal regardless of page size,
1911  * as fragmentation caused by those allocations polluting movable pageblocks
1912  * is worse than movable allocations stealing from unmovable and reclaimable
1913  * pageblocks.
1914  */
1915 static bool can_steal_fallback(unsigned int order, int start_mt)
1916 {
1917 	/*
1918 	 * Leaving this order check is intended, although there is
1919 	 * relaxed order check in next check. The reason is that
1920 	 * we can actually steal whole pageblock if this condition met,
1921 	 * but, below check doesn't guarantee it and that is just heuristic
1922 	 * so could be changed anytime.
1923 	 */
1924 	if (order >= pageblock_order)
1925 		return true;
1926 
1927 	if (order >= pageblock_order / 2 ||
1928 		start_mt == MIGRATE_RECLAIMABLE ||
1929 		start_mt == MIGRATE_UNMOVABLE ||
1930 		page_group_by_mobility_disabled)
1931 		return true;
1932 
1933 	return false;
1934 }
1935 
1936 /*
1937  * This function implements actual steal behaviour. If order is large enough,
1938  * we can steal whole pageblock. If not, we first move freepages in this
1939  * pageblock and check whether half of pages are moved or not. If half of
1940  * pages are moved, we can change migratetype of pageblock and permanently
1941  * use it's pages as requested migratetype in the future.
1942  */
1943 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1944 							  int start_type)
1945 {
1946 	unsigned int current_order = page_order(page);
1947 	int pages;
1948 
1949 	/* Take ownership for orders >= pageblock_order */
1950 	if (current_order >= pageblock_order) {
1951 		change_pageblock_range(page, current_order, start_type);
1952 		return;
1953 	}
1954 
1955 	pages = move_freepages_block(zone, page, start_type);
1956 
1957 	/* Claim the whole block if over half of it is free */
1958 	if (pages >= (1 << (pageblock_order-1)) ||
1959 			page_group_by_mobility_disabled)
1960 		set_pageblock_migratetype(page, start_type);
1961 }
1962 
1963 /*
1964  * Check whether there is a suitable fallback freepage with requested order.
1965  * If only_stealable is true, this function returns fallback_mt only if
1966  * we can steal other freepages all together. This would help to reduce
1967  * fragmentation due to mixed migratetype pages in one pageblock.
1968  */
1969 int find_suitable_fallback(struct free_area *area, unsigned int order,
1970 			int migratetype, bool only_stealable, bool *can_steal)
1971 {
1972 	int i;
1973 	int fallback_mt;
1974 
1975 	if (area->nr_free == 0)
1976 		return -1;
1977 
1978 	*can_steal = false;
1979 	for (i = 0;; i++) {
1980 		fallback_mt = fallbacks[migratetype][i];
1981 		if (fallback_mt == MIGRATE_TYPES)
1982 			break;
1983 
1984 		if (list_empty(&area->free_list[fallback_mt]))
1985 			continue;
1986 
1987 		if (can_steal_fallback(order, migratetype))
1988 			*can_steal = true;
1989 
1990 		if (!only_stealable)
1991 			return fallback_mt;
1992 
1993 		if (*can_steal)
1994 			return fallback_mt;
1995 	}
1996 
1997 	return -1;
1998 }
1999 
2000 /*
2001  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2002  * there are no empty page blocks that contain a page with a suitable order
2003  */
2004 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2005 				unsigned int alloc_order)
2006 {
2007 	int mt;
2008 	unsigned long max_managed, flags;
2009 
2010 	/*
2011 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2012 	 * Check is race-prone but harmless.
2013 	 */
2014 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2015 	if (zone->nr_reserved_highatomic >= max_managed)
2016 		return;
2017 
2018 	spin_lock_irqsave(&zone->lock, flags);
2019 
2020 	/* Recheck the nr_reserved_highatomic limit under the lock */
2021 	if (zone->nr_reserved_highatomic >= max_managed)
2022 		goto out_unlock;
2023 
2024 	/* Yoink! */
2025 	mt = get_pageblock_migratetype(page);
2026 	if (mt != MIGRATE_HIGHATOMIC &&
2027 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2028 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2029 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2030 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2031 	}
2032 
2033 out_unlock:
2034 	spin_unlock_irqrestore(&zone->lock, flags);
2035 }
2036 
2037 /*
2038  * Used when an allocation is about to fail under memory pressure. This
2039  * potentially hurts the reliability of high-order allocations when under
2040  * intense memory pressure but failed atomic allocations should be easier
2041  * to recover from than an OOM.
2042  */
2043 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2044 {
2045 	struct zonelist *zonelist = ac->zonelist;
2046 	unsigned long flags;
2047 	struct zoneref *z;
2048 	struct zone *zone;
2049 	struct page *page;
2050 	int order;
2051 
2052 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2053 								ac->nodemask) {
2054 		/* Preserve at least one pageblock */
2055 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2056 			continue;
2057 
2058 		spin_lock_irqsave(&zone->lock, flags);
2059 		for (order = 0; order < MAX_ORDER; order++) {
2060 			struct free_area *area = &(zone->free_area[order]);
2061 
2062 			page = list_first_entry_or_null(
2063 					&area->free_list[MIGRATE_HIGHATOMIC],
2064 					struct page, lru);
2065 			if (!page)
2066 				continue;
2067 
2068 			/*
2069 			 * It should never happen but changes to locking could
2070 			 * inadvertently allow a per-cpu drain to add pages
2071 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2072 			 * and watch for underflows.
2073 			 */
2074 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2075 				zone->nr_reserved_highatomic);
2076 
2077 			/*
2078 			 * Convert to ac->migratetype and avoid the normal
2079 			 * pageblock stealing heuristics. Minimally, the caller
2080 			 * is doing the work and needs the pages. More
2081 			 * importantly, if the block was always converted to
2082 			 * MIGRATE_UNMOVABLE or another type then the number
2083 			 * of pageblocks that cannot be completely freed
2084 			 * may increase.
2085 			 */
2086 			set_pageblock_migratetype(page, ac->migratetype);
2087 			move_freepages_block(zone, page, ac->migratetype);
2088 			spin_unlock_irqrestore(&zone->lock, flags);
2089 			return;
2090 		}
2091 		spin_unlock_irqrestore(&zone->lock, flags);
2092 	}
2093 }
2094 
2095 /* Remove an element from the buddy allocator from the fallback list */
2096 static inline struct page *
2097 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2098 {
2099 	struct free_area *area;
2100 	unsigned int current_order;
2101 	struct page *page;
2102 	int fallback_mt;
2103 	bool can_steal;
2104 
2105 	/* Find the largest possible block of pages in the other list */
2106 	for (current_order = MAX_ORDER-1;
2107 				current_order >= order && current_order <= MAX_ORDER-1;
2108 				--current_order) {
2109 		area = &(zone->free_area[current_order]);
2110 		fallback_mt = find_suitable_fallback(area, current_order,
2111 				start_migratetype, false, &can_steal);
2112 		if (fallback_mt == -1)
2113 			continue;
2114 
2115 		page = list_first_entry(&area->free_list[fallback_mt],
2116 						struct page, lru);
2117 		if (can_steal)
2118 			steal_suitable_fallback(zone, page, start_migratetype);
2119 
2120 		/* Remove the page from the freelists */
2121 		area->nr_free--;
2122 		list_del(&page->lru);
2123 		rmv_page_order(page);
2124 
2125 		expand(zone, page, order, current_order, area,
2126 					start_migratetype);
2127 		/*
2128 		 * The pcppage_migratetype may differ from pageblock's
2129 		 * migratetype depending on the decisions in
2130 		 * find_suitable_fallback(). This is OK as long as it does not
2131 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
2132 		 * fallback only via special __rmqueue_cma_fallback() function
2133 		 */
2134 		set_pcppage_migratetype(page, start_migratetype);
2135 
2136 		trace_mm_page_alloc_extfrag(page, order, current_order,
2137 			start_migratetype, fallback_mt);
2138 
2139 		return page;
2140 	}
2141 
2142 	return NULL;
2143 }
2144 
2145 /*
2146  * Do the hard work of removing an element from the buddy allocator.
2147  * Call me with the zone->lock already held.
2148  */
2149 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2150 				int migratetype)
2151 {
2152 	struct page *page;
2153 
2154 	page = __rmqueue_smallest(zone, order, migratetype);
2155 	if (unlikely(!page)) {
2156 		if (migratetype == MIGRATE_MOVABLE)
2157 			page = __rmqueue_cma_fallback(zone, order);
2158 
2159 		if (!page)
2160 			page = __rmqueue_fallback(zone, order, migratetype);
2161 	}
2162 
2163 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2164 	return page;
2165 }
2166 
2167 /*
2168  * Obtain a specified number of elements from the buddy allocator, all under
2169  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2170  * Returns the number of new pages which were placed at *list.
2171  */
2172 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2173 			unsigned long count, struct list_head *list,
2174 			int migratetype, bool cold)
2175 {
2176 	int i;
2177 
2178 	spin_lock(&zone->lock);
2179 	for (i = 0; i < count; ++i) {
2180 		struct page *page = __rmqueue(zone, order, migratetype);
2181 		if (unlikely(page == NULL))
2182 			break;
2183 
2184 		if (unlikely(check_pcp_refill(page)))
2185 			continue;
2186 
2187 		/*
2188 		 * Split buddy pages returned by expand() are received here
2189 		 * in physical page order. The page is added to the callers and
2190 		 * list and the list head then moves forward. From the callers
2191 		 * perspective, the linked list is ordered by page number in
2192 		 * some conditions. This is useful for IO devices that can
2193 		 * merge IO requests if the physical pages are ordered
2194 		 * properly.
2195 		 */
2196 		if (likely(!cold))
2197 			list_add(&page->lru, list);
2198 		else
2199 			list_add_tail(&page->lru, list);
2200 		list = &page->lru;
2201 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2202 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2203 					      -(1 << order));
2204 	}
2205 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2206 	spin_unlock(&zone->lock);
2207 	return i;
2208 }
2209 
2210 #ifdef CONFIG_NUMA
2211 /*
2212  * Called from the vmstat counter updater to drain pagesets of this
2213  * currently executing processor on remote nodes after they have
2214  * expired.
2215  *
2216  * Note that this function must be called with the thread pinned to
2217  * a single processor.
2218  */
2219 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2220 {
2221 	unsigned long flags;
2222 	int to_drain, batch;
2223 
2224 	local_irq_save(flags);
2225 	batch = READ_ONCE(pcp->batch);
2226 	to_drain = min(pcp->count, batch);
2227 	if (to_drain > 0) {
2228 		free_pcppages_bulk(zone, to_drain, pcp);
2229 		pcp->count -= to_drain;
2230 	}
2231 	local_irq_restore(flags);
2232 }
2233 #endif
2234 
2235 /*
2236  * Drain pcplists of the indicated processor and zone.
2237  *
2238  * The processor must either be the current processor and the
2239  * thread pinned to the current processor or a processor that
2240  * is not online.
2241  */
2242 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2243 {
2244 	unsigned long flags;
2245 	struct per_cpu_pageset *pset;
2246 	struct per_cpu_pages *pcp;
2247 
2248 	local_irq_save(flags);
2249 	pset = per_cpu_ptr(zone->pageset, cpu);
2250 
2251 	pcp = &pset->pcp;
2252 	if (pcp->count) {
2253 		free_pcppages_bulk(zone, pcp->count, pcp);
2254 		pcp->count = 0;
2255 	}
2256 	local_irq_restore(flags);
2257 }
2258 
2259 /*
2260  * Drain pcplists of all zones on the indicated processor.
2261  *
2262  * The processor must either be the current processor and the
2263  * thread pinned to the current processor or a processor that
2264  * is not online.
2265  */
2266 static void drain_pages(unsigned int cpu)
2267 {
2268 	struct zone *zone;
2269 
2270 	for_each_populated_zone(zone) {
2271 		drain_pages_zone(cpu, zone);
2272 	}
2273 }
2274 
2275 /*
2276  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2277  *
2278  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2279  * the single zone's pages.
2280  */
2281 void drain_local_pages(struct zone *zone)
2282 {
2283 	int cpu = smp_processor_id();
2284 
2285 	if (zone)
2286 		drain_pages_zone(cpu, zone);
2287 	else
2288 		drain_pages(cpu);
2289 }
2290 
2291 /*
2292  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2293  *
2294  * When zone parameter is non-NULL, spill just the single zone's pages.
2295  *
2296  * Note that this code is protected against sending an IPI to an offline
2297  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2298  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2299  * nothing keeps CPUs from showing up after we populated the cpumask and
2300  * before the call to on_each_cpu_mask().
2301  */
2302 void drain_all_pages(struct zone *zone)
2303 {
2304 	int cpu;
2305 
2306 	/*
2307 	 * Allocate in the BSS so we wont require allocation in
2308 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2309 	 */
2310 	static cpumask_t cpus_with_pcps;
2311 
2312 	/*
2313 	 * We don't care about racing with CPU hotplug event
2314 	 * as offline notification will cause the notified
2315 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2316 	 * disables preemption as part of its processing
2317 	 */
2318 	for_each_online_cpu(cpu) {
2319 		struct per_cpu_pageset *pcp;
2320 		struct zone *z;
2321 		bool has_pcps = false;
2322 
2323 		if (zone) {
2324 			pcp = per_cpu_ptr(zone->pageset, cpu);
2325 			if (pcp->pcp.count)
2326 				has_pcps = true;
2327 		} else {
2328 			for_each_populated_zone(z) {
2329 				pcp = per_cpu_ptr(z->pageset, cpu);
2330 				if (pcp->pcp.count) {
2331 					has_pcps = true;
2332 					break;
2333 				}
2334 			}
2335 		}
2336 
2337 		if (has_pcps)
2338 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2339 		else
2340 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2341 	}
2342 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2343 								zone, 1);
2344 }
2345 
2346 #ifdef CONFIG_HIBERNATION
2347 
2348 void mark_free_pages(struct zone *zone)
2349 {
2350 	unsigned long pfn, max_zone_pfn;
2351 	unsigned long flags;
2352 	unsigned int order, t;
2353 	struct page *page;
2354 
2355 	if (zone_is_empty(zone))
2356 		return;
2357 
2358 	spin_lock_irqsave(&zone->lock, flags);
2359 
2360 	max_zone_pfn = zone_end_pfn(zone);
2361 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2362 		if (pfn_valid(pfn)) {
2363 			page = pfn_to_page(pfn);
2364 
2365 			if (page_zone(page) != zone)
2366 				continue;
2367 
2368 			if (!swsusp_page_is_forbidden(page))
2369 				swsusp_unset_page_free(page);
2370 		}
2371 
2372 	for_each_migratetype_order(order, t) {
2373 		list_for_each_entry(page,
2374 				&zone->free_area[order].free_list[t], lru) {
2375 			unsigned long i;
2376 
2377 			pfn = page_to_pfn(page);
2378 			for (i = 0; i < (1UL << order); i++)
2379 				swsusp_set_page_free(pfn_to_page(pfn + i));
2380 		}
2381 	}
2382 	spin_unlock_irqrestore(&zone->lock, flags);
2383 }
2384 #endif /* CONFIG_PM */
2385 
2386 /*
2387  * Free a 0-order page
2388  * cold == true ? free a cold page : free a hot page
2389  */
2390 void free_hot_cold_page(struct page *page, bool cold)
2391 {
2392 	struct zone *zone = page_zone(page);
2393 	struct per_cpu_pages *pcp;
2394 	unsigned long flags;
2395 	unsigned long pfn = page_to_pfn(page);
2396 	int migratetype;
2397 
2398 	if (!free_pcp_prepare(page))
2399 		return;
2400 
2401 	migratetype = get_pfnblock_migratetype(page, pfn);
2402 	set_pcppage_migratetype(page, migratetype);
2403 	local_irq_save(flags);
2404 	__count_vm_event(PGFREE);
2405 
2406 	/*
2407 	 * We only track unmovable, reclaimable and movable on pcp lists.
2408 	 * Free ISOLATE pages back to the allocator because they are being
2409 	 * offlined but treat RESERVE as movable pages so we can get those
2410 	 * areas back if necessary. Otherwise, we may have to free
2411 	 * excessively into the page allocator
2412 	 */
2413 	if (migratetype >= MIGRATE_PCPTYPES) {
2414 		if (unlikely(is_migrate_isolate(migratetype))) {
2415 			free_one_page(zone, page, pfn, 0, migratetype);
2416 			goto out;
2417 		}
2418 		migratetype = MIGRATE_MOVABLE;
2419 	}
2420 
2421 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2422 	if (!cold)
2423 		list_add(&page->lru, &pcp->lists[migratetype]);
2424 	else
2425 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2426 	pcp->count++;
2427 	if (pcp->count >= pcp->high) {
2428 		unsigned long batch = READ_ONCE(pcp->batch);
2429 		free_pcppages_bulk(zone, batch, pcp);
2430 		pcp->count -= batch;
2431 	}
2432 
2433 out:
2434 	local_irq_restore(flags);
2435 }
2436 
2437 /*
2438  * Free a list of 0-order pages
2439  */
2440 void free_hot_cold_page_list(struct list_head *list, bool cold)
2441 {
2442 	struct page *page, *next;
2443 
2444 	list_for_each_entry_safe(page, next, list, lru) {
2445 		trace_mm_page_free_batched(page, cold);
2446 		free_hot_cold_page(page, cold);
2447 	}
2448 }
2449 
2450 /*
2451  * split_page takes a non-compound higher-order page, and splits it into
2452  * n (1<<order) sub-pages: page[0..n]
2453  * Each sub-page must be freed individually.
2454  *
2455  * Note: this is probably too low level an operation for use in drivers.
2456  * Please consult with lkml before using this in your driver.
2457  */
2458 void split_page(struct page *page, unsigned int order)
2459 {
2460 	int i;
2461 
2462 	VM_BUG_ON_PAGE(PageCompound(page), page);
2463 	VM_BUG_ON_PAGE(!page_count(page), page);
2464 
2465 #ifdef CONFIG_KMEMCHECK
2466 	/*
2467 	 * Split shadow pages too, because free(page[0]) would
2468 	 * otherwise free the whole shadow.
2469 	 */
2470 	if (kmemcheck_page_is_tracked(page))
2471 		split_page(virt_to_page(page[0].shadow), order);
2472 #endif
2473 
2474 	for (i = 1; i < (1 << order); i++)
2475 		set_page_refcounted(page + i);
2476 	split_page_owner(page, order);
2477 }
2478 EXPORT_SYMBOL_GPL(split_page);
2479 
2480 int __isolate_free_page(struct page *page, unsigned int order)
2481 {
2482 	unsigned long watermark;
2483 	struct zone *zone;
2484 	int mt;
2485 
2486 	BUG_ON(!PageBuddy(page));
2487 
2488 	zone = page_zone(page);
2489 	mt = get_pageblock_migratetype(page);
2490 
2491 	if (!is_migrate_isolate(mt)) {
2492 		/* Obey watermarks as if the page was being allocated */
2493 		watermark = low_wmark_pages(zone) + (1 << order);
2494 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2495 			return 0;
2496 
2497 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2498 	}
2499 
2500 	/* Remove page from free list */
2501 	list_del(&page->lru);
2502 	zone->free_area[order].nr_free--;
2503 	rmv_page_order(page);
2504 
2505 	/*
2506 	 * Set the pageblock if the isolated page is at least half of a
2507 	 * pageblock
2508 	 */
2509 	if (order >= pageblock_order - 1) {
2510 		struct page *endpage = page + (1 << order) - 1;
2511 		for (; page < endpage; page += pageblock_nr_pages) {
2512 			int mt = get_pageblock_migratetype(page);
2513 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2514 				set_pageblock_migratetype(page,
2515 							  MIGRATE_MOVABLE);
2516 		}
2517 	}
2518 
2519 
2520 	return 1UL << order;
2521 }
2522 
2523 /*
2524  * Update NUMA hit/miss statistics
2525  *
2526  * Must be called with interrupts disabled.
2527  *
2528  * When __GFP_OTHER_NODE is set assume the node of the preferred
2529  * zone is the local node. This is useful for daemons who allocate
2530  * memory on behalf of other processes.
2531  */
2532 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2533 								gfp_t flags)
2534 {
2535 #ifdef CONFIG_NUMA
2536 	int local_nid = numa_node_id();
2537 	enum zone_stat_item local_stat = NUMA_LOCAL;
2538 
2539 	if (unlikely(flags & __GFP_OTHER_NODE)) {
2540 		local_stat = NUMA_OTHER;
2541 		local_nid = preferred_zone->node;
2542 	}
2543 
2544 	if (z->node == local_nid) {
2545 		__inc_zone_state(z, NUMA_HIT);
2546 		__inc_zone_state(z, local_stat);
2547 	} else {
2548 		__inc_zone_state(z, NUMA_MISS);
2549 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2550 	}
2551 #endif
2552 }
2553 
2554 /*
2555  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2556  */
2557 static inline
2558 struct page *buffered_rmqueue(struct zone *preferred_zone,
2559 			struct zone *zone, unsigned int order,
2560 			gfp_t gfp_flags, unsigned int alloc_flags,
2561 			int migratetype)
2562 {
2563 	unsigned long flags;
2564 	struct page *page;
2565 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2566 
2567 	if (likely(order == 0)) {
2568 		struct per_cpu_pages *pcp;
2569 		struct list_head *list;
2570 
2571 		local_irq_save(flags);
2572 		do {
2573 			pcp = &this_cpu_ptr(zone->pageset)->pcp;
2574 			list = &pcp->lists[migratetype];
2575 			if (list_empty(list)) {
2576 				pcp->count += rmqueue_bulk(zone, 0,
2577 						pcp->batch, list,
2578 						migratetype, cold);
2579 				if (unlikely(list_empty(list)))
2580 					goto failed;
2581 			}
2582 
2583 			if (cold)
2584 				page = list_last_entry(list, struct page, lru);
2585 			else
2586 				page = list_first_entry(list, struct page, lru);
2587 
2588 			list_del(&page->lru);
2589 			pcp->count--;
2590 
2591 		} while (check_new_pcp(page));
2592 	} else {
2593 		/*
2594 		 * We most definitely don't want callers attempting to
2595 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2596 		 */
2597 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2598 		spin_lock_irqsave(&zone->lock, flags);
2599 
2600 		do {
2601 			page = NULL;
2602 			if (alloc_flags & ALLOC_HARDER) {
2603 				page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2604 				if (page)
2605 					trace_mm_page_alloc_zone_locked(page, order, migratetype);
2606 			}
2607 			if (!page)
2608 				page = __rmqueue(zone, order, migratetype);
2609 		} while (page && check_new_pages(page, order));
2610 		spin_unlock(&zone->lock);
2611 		if (!page)
2612 			goto failed;
2613 		__mod_zone_freepage_state(zone, -(1 << order),
2614 					  get_pcppage_migratetype(page));
2615 	}
2616 
2617 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2618 	zone_statistics(preferred_zone, zone, gfp_flags);
2619 	local_irq_restore(flags);
2620 
2621 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2622 	return page;
2623 
2624 failed:
2625 	local_irq_restore(flags);
2626 	return NULL;
2627 }
2628 
2629 #ifdef CONFIG_FAIL_PAGE_ALLOC
2630 
2631 static struct {
2632 	struct fault_attr attr;
2633 
2634 	bool ignore_gfp_highmem;
2635 	bool ignore_gfp_reclaim;
2636 	u32 min_order;
2637 } fail_page_alloc = {
2638 	.attr = FAULT_ATTR_INITIALIZER,
2639 	.ignore_gfp_reclaim = true,
2640 	.ignore_gfp_highmem = true,
2641 	.min_order = 1,
2642 };
2643 
2644 static int __init setup_fail_page_alloc(char *str)
2645 {
2646 	return setup_fault_attr(&fail_page_alloc.attr, str);
2647 }
2648 __setup("fail_page_alloc=", setup_fail_page_alloc);
2649 
2650 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2651 {
2652 	if (order < fail_page_alloc.min_order)
2653 		return false;
2654 	if (gfp_mask & __GFP_NOFAIL)
2655 		return false;
2656 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2657 		return false;
2658 	if (fail_page_alloc.ignore_gfp_reclaim &&
2659 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2660 		return false;
2661 
2662 	return should_fail(&fail_page_alloc.attr, 1 << order);
2663 }
2664 
2665 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2666 
2667 static int __init fail_page_alloc_debugfs(void)
2668 {
2669 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2670 	struct dentry *dir;
2671 
2672 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2673 					&fail_page_alloc.attr);
2674 	if (IS_ERR(dir))
2675 		return PTR_ERR(dir);
2676 
2677 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2678 				&fail_page_alloc.ignore_gfp_reclaim))
2679 		goto fail;
2680 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2681 				&fail_page_alloc.ignore_gfp_highmem))
2682 		goto fail;
2683 	if (!debugfs_create_u32("min-order", mode, dir,
2684 				&fail_page_alloc.min_order))
2685 		goto fail;
2686 
2687 	return 0;
2688 fail:
2689 	debugfs_remove_recursive(dir);
2690 
2691 	return -ENOMEM;
2692 }
2693 
2694 late_initcall(fail_page_alloc_debugfs);
2695 
2696 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2697 
2698 #else /* CONFIG_FAIL_PAGE_ALLOC */
2699 
2700 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2701 {
2702 	return false;
2703 }
2704 
2705 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2706 
2707 /*
2708  * Return true if free base pages are above 'mark'. For high-order checks it
2709  * will return true of the order-0 watermark is reached and there is at least
2710  * one free page of a suitable size. Checking now avoids taking the zone lock
2711  * to check in the allocation paths if no pages are free.
2712  */
2713 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2714 			 int classzone_idx, unsigned int alloc_flags,
2715 			 long free_pages)
2716 {
2717 	long min = mark;
2718 	int o;
2719 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2720 
2721 	/* free_pages may go negative - that's OK */
2722 	free_pages -= (1 << order) - 1;
2723 
2724 	if (alloc_flags & ALLOC_HIGH)
2725 		min -= min / 2;
2726 
2727 	/*
2728 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2729 	 * the high-atomic reserves. This will over-estimate the size of the
2730 	 * atomic reserve but it avoids a search.
2731 	 */
2732 	if (likely(!alloc_harder))
2733 		free_pages -= z->nr_reserved_highatomic;
2734 	else
2735 		min -= min / 4;
2736 
2737 #ifdef CONFIG_CMA
2738 	/* If allocation can't use CMA areas don't use free CMA pages */
2739 	if (!(alloc_flags & ALLOC_CMA))
2740 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2741 #endif
2742 
2743 	/*
2744 	 * Check watermarks for an order-0 allocation request. If these
2745 	 * are not met, then a high-order request also cannot go ahead
2746 	 * even if a suitable page happened to be free.
2747 	 */
2748 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2749 		return false;
2750 
2751 	/* If this is an order-0 request then the watermark is fine */
2752 	if (!order)
2753 		return true;
2754 
2755 	/* For a high-order request, check at least one suitable page is free */
2756 	for (o = order; o < MAX_ORDER; o++) {
2757 		struct free_area *area = &z->free_area[o];
2758 		int mt;
2759 
2760 		if (!area->nr_free)
2761 			continue;
2762 
2763 		if (alloc_harder)
2764 			return true;
2765 
2766 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2767 			if (!list_empty(&area->free_list[mt]))
2768 				return true;
2769 		}
2770 
2771 #ifdef CONFIG_CMA
2772 		if ((alloc_flags & ALLOC_CMA) &&
2773 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2774 			return true;
2775 		}
2776 #endif
2777 	}
2778 	return false;
2779 }
2780 
2781 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2782 		      int classzone_idx, unsigned int alloc_flags)
2783 {
2784 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2785 					zone_page_state(z, NR_FREE_PAGES));
2786 }
2787 
2788 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2789 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2790 {
2791 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2792 	long cma_pages = 0;
2793 
2794 #ifdef CONFIG_CMA
2795 	/* If allocation can't use CMA areas don't use free CMA pages */
2796 	if (!(alloc_flags & ALLOC_CMA))
2797 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2798 #endif
2799 
2800 	/*
2801 	 * Fast check for order-0 only. If this fails then the reserves
2802 	 * need to be calculated. There is a corner case where the check
2803 	 * passes but only the high-order atomic reserve are free. If
2804 	 * the caller is !atomic then it'll uselessly search the free
2805 	 * list. That corner case is then slower but it is harmless.
2806 	 */
2807 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2808 		return true;
2809 
2810 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2811 					free_pages);
2812 }
2813 
2814 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2815 			unsigned long mark, int classzone_idx)
2816 {
2817 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2818 
2819 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2820 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2821 
2822 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2823 								free_pages);
2824 }
2825 
2826 #ifdef CONFIG_NUMA
2827 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2828 {
2829 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2830 				RECLAIM_DISTANCE;
2831 }
2832 #else	/* CONFIG_NUMA */
2833 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2834 {
2835 	return true;
2836 }
2837 #endif	/* CONFIG_NUMA */
2838 
2839 /*
2840  * get_page_from_freelist goes through the zonelist trying to allocate
2841  * a page.
2842  */
2843 static struct page *
2844 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2845 						const struct alloc_context *ac)
2846 {
2847 	struct zoneref *z = ac->preferred_zoneref;
2848 	struct zone *zone;
2849 	struct pglist_data *last_pgdat_dirty_limit = NULL;
2850 
2851 	/*
2852 	 * Scan zonelist, looking for a zone with enough free.
2853 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2854 	 */
2855 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
2856 								ac->nodemask) {
2857 		struct page *page;
2858 		unsigned long mark;
2859 
2860 		if (cpusets_enabled() &&
2861 			(alloc_flags & ALLOC_CPUSET) &&
2862 			!__cpuset_zone_allowed(zone, gfp_mask))
2863 				continue;
2864 		/*
2865 		 * When allocating a page cache page for writing, we
2866 		 * want to get it from a node that is within its dirty
2867 		 * limit, such that no single node holds more than its
2868 		 * proportional share of globally allowed dirty pages.
2869 		 * The dirty limits take into account the node's
2870 		 * lowmem reserves and high watermark so that kswapd
2871 		 * should be able to balance it without having to
2872 		 * write pages from its LRU list.
2873 		 *
2874 		 * XXX: For now, allow allocations to potentially
2875 		 * exceed the per-node dirty limit in the slowpath
2876 		 * (spread_dirty_pages unset) before going into reclaim,
2877 		 * which is important when on a NUMA setup the allowed
2878 		 * nodes are together not big enough to reach the
2879 		 * global limit.  The proper fix for these situations
2880 		 * will require awareness of nodes in the
2881 		 * dirty-throttling and the flusher threads.
2882 		 */
2883 		if (ac->spread_dirty_pages) {
2884 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
2885 				continue;
2886 
2887 			if (!node_dirty_ok(zone->zone_pgdat)) {
2888 				last_pgdat_dirty_limit = zone->zone_pgdat;
2889 				continue;
2890 			}
2891 		}
2892 
2893 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2894 		if (!zone_watermark_fast(zone, order, mark,
2895 				       ac_classzone_idx(ac), alloc_flags)) {
2896 			int ret;
2897 
2898 			/* Checked here to keep the fast path fast */
2899 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2900 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2901 				goto try_this_zone;
2902 
2903 			if (node_reclaim_mode == 0 ||
2904 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
2905 				continue;
2906 
2907 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
2908 			switch (ret) {
2909 			case NODE_RECLAIM_NOSCAN:
2910 				/* did not scan */
2911 				continue;
2912 			case NODE_RECLAIM_FULL:
2913 				/* scanned but unreclaimable */
2914 				continue;
2915 			default:
2916 				/* did we reclaim enough */
2917 				if (zone_watermark_ok(zone, order, mark,
2918 						ac_classzone_idx(ac), alloc_flags))
2919 					goto try_this_zone;
2920 
2921 				continue;
2922 			}
2923 		}
2924 
2925 try_this_zone:
2926 		page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
2927 				gfp_mask, alloc_flags, ac->migratetype);
2928 		if (page) {
2929 			prep_new_page(page, order, gfp_mask, alloc_flags);
2930 
2931 			/*
2932 			 * If this is a high-order atomic allocation then check
2933 			 * if the pageblock should be reserved for the future
2934 			 */
2935 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2936 				reserve_highatomic_pageblock(page, zone, order);
2937 
2938 			return page;
2939 		}
2940 	}
2941 
2942 	return NULL;
2943 }
2944 
2945 /*
2946  * Large machines with many possible nodes should not always dump per-node
2947  * meminfo in irq context.
2948  */
2949 static inline bool should_suppress_show_mem(void)
2950 {
2951 	bool ret = false;
2952 
2953 #if NODES_SHIFT > 8
2954 	ret = in_interrupt();
2955 #endif
2956 	return ret;
2957 }
2958 
2959 static DEFINE_RATELIMIT_STATE(nopage_rs,
2960 		DEFAULT_RATELIMIT_INTERVAL,
2961 		DEFAULT_RATELIMIT_BURST);
2962 
2963 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2964 {
2965 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2966 
2967 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2968 	    debug_guardpage_minorder() > 0)
2969 		return;
2970 
2971 	/*
2972 	 * This documents exceptions given to allocations in certain
2973 	 * contexts that are allowed to allocate outside current's set
2974 	 * of allowed nodes.
2975 	 */
2976 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2977 		if (test_thread_flag(TIF_MEMDIE) ||
2978 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2979 			filter &= ~SHOW_MEM_FILTER_NODES;
2980 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2981 		filter &= ~SHOW_MEM_FILTER_NODES;
2982 
2983 	if (fmt) {
2984 		struct va_format vaf;
2985 		va_list args;
2986 
2987 		va_start(args, fmt);
2988 
2989 		vaf.fmt = fmt;
2990 		vaf.va = &args;
2991 
2992 		pr_warn("%pV", &vaf);
2993 
2994 		va_end(args);
2995 	}
2996 
2997 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2998 		current->comm, order, gfp_mask, &gfp_mask);
2999 	dump_stack();
3000 	if (!should_suppress_show_mem())
3001 		show_mem(filter);
3002 }
3003 
3004 static inline struct page *
3005 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3006 	const struct alloc_context *ac, unsigned long *did_some_progress)
3007 {
3008 	struct oom_control oc = {
3009 		.zonelist = ac->zonelist,
3010 		.nodemask = ac->nodemask,
3011 		.memcg = NULL,
3012 		.gfp_mask = gfp_mask,
3013 		.order = order,
3014 	};
3015 	struct page *page;
3016 
3017 	*did_some_progress = 0;
3018 
3019 	/*
3020 	 * Acquire the oom lock.  If that fails, somebody else is
3021 	 * making progress for us.
3022 	 */
3023 	if (!mutex_trylock(&oom_lock)) {
3024 		*did_some_progress = 1;
3025 		schedule_timeout_uninterruptible(1);
3026 		return NULL;
3027 	}
3028 
3029 	/*
3030 	 * Go through the zonelist yet one more time, keep very high watermark
3031 	 * here, this is only to catch a parallel oom killing, we must fail if
3032 	 * we're still under heavy pressure.
3033 	 */
3034 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3035 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3036 	if (page)
3037 		goto out;
3038 
3039 	if (!(gfp_mask & __GFP_NOFAIL)) {
3040 		/* Coredumps can quickly deplete all memory reserves */
3041 		if (current->flags & PF_DUMPCORE)
3042 			goto out;
3043 		/* The OOM killer will not help higher order allocs */
3044 		if (order > PAGE_ALLOC_COSTLY_ORDER)
3045 			goto out;
3046 		/* The OOM killer does not needlessly kill tasks for lowmem */
3047 		if (ac->high_zoneidx < ZONE_NORMAL)
3048 			goto out;
3049 		if (pm_suspended_storage())
3050 			goto out;
3051 		/*
3052 		 * XXX: GFP_NOFS allocations should rather fail than rely on
3053 		 * other request to make a forward progress.
3054 		 * We are in an unfortunate situation where out_of_memory cannot
3055 		 * do much for this context but let's try it to at least get
3056 		 * access to memory reserved if the current task is killed (see
3057 		 * out_of_memory). Once filesystems are ready to handle allocation
3058 		 * failures more gracefully we should just bail out here.
3059 		 */
3060 
3061 		/* The OOM killer may not free memory on a specific node */
3062 		if (gfp_mask & __GFP_THISNODE)
3063 			goto out;
3064 	}
3065 	/* Exhausted what can be done so it's blamo time */
3066 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3067 		*did_some_progress = 1;
3068 
3069 		if (gfp_mask & __GFP_NOFAIL) {
3070 			page = get_page_from_freelist(gfp_mask, order,
3071 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3072 			/*
3073 			 * fallback to ignore cpuset restriction if our nodes
3074 			 * are depleted
3075 			 */
3076 			if (!page)
3077 				page = get_page_from_freelist(gfp_mask, order,
3078 					ALLOC_NO_WATERMARKS, ac);
3079 		}
3080 	}
3081 out:
3082 	mutex_unlock(&oom_lock);
3083 	return page;
3084 }
3085 
3086 /*
3087  * Maximum number of compaction retries wit a progress before OOM
3088  * killer is consider as the only way to move forward.
3089  */
3090 #define MAX_COMPACT_RETRIES 16
3091 
3092 #ifdef CONFIG_COMPACTION
3093 /* Try memory compaction for high-order allocations before reclaim */
3094 static struct page *
3095 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3096 		unsigned int alloc_flags, const struct alloc_context *ac,
3097 		enum compact_priority prio, enum compact_result *compact_result)
3098 {
3099 	struct page *page;
3100 
3101 	if (!order)
3102 		return NULL;
3103 
3104 	current->flags |= PF_MEMALLOC;
3105 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3106 									prio);
3107 	current->flags &= ~PF_MEMALLOC;
3108 
3109 	if (*compact_result <= COMPACT_INACTIVE)
3110 		return NULL;
3111 
3112 	/*
3113 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3114 	 * count a compaction stall
3115 	 */
3116 	count_vm_event(COMPACTSTALL);
3117 
3118 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3119 
3120 	if (page) {
3121 		struct zone *zone = page_zone(page);
3122 
3123 		zone->compact_blockskip_flush = false;
3124 		compaction_defer_reset(zone, order, true);
3125 		count_vm_event(COMPACTSUCCESS);
3126 		return page;
3127 	}
3128 
3129 	/*
3130 	 * It's bad if compaction run occurs and fails. The most likely reason
3131 	 * is that pages exist, but not enough to satisfy watermarks.
3132 	 */
3133 	count_vm_event(COMPACTFAIL);
3134 
3135 	cond_resched();
3136 
3137 	return NULL;
3138 }
3139 
3140 #else
3141 static inline struct page *
3142 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3143 		unsigned int alloc_flags, const struct alloc_context *ac,
3144 		enum compact_priority prio, enum compact_result *compact_result)
3145 {
3146 	*compact_result = COMPACT_SKIPPED;
3147 	return NULL;
3148 }
3149 
3150 #endif /* CONFIG_COMPACTION */
3151 
3152 static inline bool
3153 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3154 		     enum compact_result compact_result,
3155 		     enum compact_priority *compact_priority,
3156 		     int compaction_retries)
3157 {
3158 	struct zone *zone;
3159 	struct zoneref *z;
3160 
3161 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3162 		return false;
3163 
3164 	/*
3165 	 * There are setups with compaction disabled which would prefer to loop
3166 	 * inside the allocator rather than hit the oom killer prematurely.
3167 	 * Let's give them a good hope and keep retrying while the order-0
3168 	 * watermarks are OK.
3169 	 */
3170 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3171 					ac->nodemask) {
3172 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3173 					ac_classzone_idx(ac), alloc_flags))
3174 			return true;
3175 	}
3176 	return false;
3177 }
3178 
3179 /* Perform direct synchronous page reclaim */
3180 static int
3181 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3182 					const struct alloc_context *ac)
3183 {
3184 	struct reclaim_state reclaim_state;
3185 	int progress;
3186 
3187 	cond_resched();
3188 
3189 	/* We now go into synchronous reclaim */
3190 	cpuset_memory_pressure_bump();
3191 	current->flags |= PF_MEMALLOC;
3192 	lockdep_set_current_reclaim_state(gfp_mask);
3193 	reclaim_state.reclaimed_slab = 0;
3194 	current->reclaim_state = &reclaim_state;
3195 
3196 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3197 								ac->nodemask);
3198 
3199 	current->reclaim_state = NULL;
3200 	lockdep_clear_current_reclaim_state();
3201 	current->flags &= ~PF_MEMALLOC;
3202 
3203 	cond_resched();
3204 
3205 	return progress;
3206 }
3207 
3208 /* The really slow allocator path where we enter direct reclaim */
3209 static inline struct page *
3210 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3211 		unsigned int alloc_flags, const struct alloc_context *ac,
3212 		unsigned long *did_some_progress)
3213 {
3214 	struct page *page = NULL;
3215 	bool drained = false;
3216 
3217 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3218 	if (unlikely(!(*did_some_progress)))
3219 		return NULL;
3220 
3221 retry:
3222 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3223 
3224 	/*
3225 	 * If an allocation failed after direct reclaim, it could be because
3226 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3227 	 * Shrink them them and try again
3228 	 */
3229 	if (!page && !drained) {
3230 		unreserve_highatomic_pageblock(ac);
3231 		drain_all_pages(NULL);
3232 		drained = true;
3233 		goto retry;
3234 	}
3235 
3236 	return page;
3237 }
3238 
3239 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3240 {
3241 	struct zoneref *z;
3242 	struct zone *zone;
3243 	pg_data_t *last_pgdat = NULL;
3244 
3245 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3246 					ac->high_zoneidx, ac->nodemask) {
3247 		if (last_pgdat != zone->zone_pgdat)
3248 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3249 		last_pgdat = zone->zone_pgdat;
3250 	}
3251 }
3252 
3253 static inline unsigned int
3254 gfp_to_alloc_flags(gfp_t gfp_mask)
3255 {
3256 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3257 
3258 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3259 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3260 
3261 	/*
3262 	 * The caller may dip into page reserves a bit more if the caller
3263 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3264 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3265 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3266 	 */
3267 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3268 
3269 	if (gfp_mask & __GFP_ATOMIC) {
3270 		/*
3271 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3272 		 * if it can't schedule.
3273 		 */
3274 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3275 			alloc_flags |= ALLOC_HARDER;
3276 		/*
3277 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3278 		 * comment for __cpuset_node_allowed().
3279 		 */
3280 		alloc_flags &= ~ALLOC_CPUSET;
3281 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3282 		alloc_flags |= ALLOC_HARDER;
3283 
3284 #ifdef CONFIG_CMA
3285 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3286 		alloc_flags |= ALLOC_CMA;
3287 #endif
3288 	return alloc_flags;
3289 }
3290 
3291 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3292 {
3293 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3294 		return false;
3295 
3296 	if (gfp_mask & __GFP_MEMALLOC)
3297 		return true;
3298 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3299 		return true;
3300 	if (!in_interrupt() &&
3301 			((current->flags & PF_MEMALLOC) ||
3302 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3303 		return true;
3304 
3305 	return false;
3306 }
3307 
3308 /*
3309  * Maximum number of reclaim retries without any progress before OOM killer
3310  * is consider as the only way to move forward.
3311  */
3312 #define MAX_RECLAIM_RETRIES 16
3313 
3314 /*
3315  * Checks whether it makes sense to retry the reclaim to make a forward progress
3316  * for the given allocation request.
3317  * The reclaim feedback represented by did_some_progress (any progress during
3318  * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3319  * any progress in a row) is considered as well as the reclaimable pages on the
3320  * applicable zone list (with a backoff mechanism which is a function of
3321  * no_progress_loops).
3322  *
3323  * Returns true if a retry is viable or false to enter the oom path.
3324  */
3325 static inline bool
3326 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3327 		     struct alloc_context *ac, int alloc_flags,
3328 		     bool did_some_progress, int no_progress_loops)
3329 {
3330 	struct zone *zone;
3331 	struct zoneref *z;
3332 
3333 	/*
3334 	 * Make sure we converge to OOM if we cannot make any progress
3335 	 * several times in the row.
3336 	 */
3337 	if (no_progress_loops > MAX_RECLAIM_RETRIES)
3338 		return false;
3339 
3340 	/*
3341 	 * Keep reclaiming pages while there is a chance this will lead
3342 	 * somewhere.  If none of the target zones can satisfy our allocation
3343 	 * request even if all reclaimable pages are considered then we are
3344 	 * screwed and have to go OOM.
3345 	 */
3346 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3347 					ac->nodemask) {
3348 		unsigned long available;
3349 		unsigned long reclaimable;
3350 
3351 		available = reclaimable = zone_reclaimable_pages(zone);
3352 		available -= DIV_ROUND_UP(no_progress_loops * available,
3353 					  MAX_RECLAIM_RETRIES);
3354 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3355 
3356 		/*
3357 		 * Would the allocation succeed if we reclaimed the whole
3358 		 * available?
3359 		 */
3360 		if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3361 				ac_classzone_idx(ac), alloc_flags, available)) {
3362 			/*
3363 			 * If we didn't make any progress and have a lot of
3364 			 * dirty + writeback pages then we should wait for
3365 			 * an IO to complete to slow down the reclaim and
3366 			 * prevent from pre mature OOM
3367 			 */
3368 			if (!did_some_progress) {
3369 				unsigned long write_pending;
3370 
3371 				write_pending = zone_page_state_snapshot(zone,
3372 							NR_ZONE_WRITE_PENDING);
3373 
3374 				if (2 * write_pending > reclaimable) {
3375 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3376 					return true;
3377 				}
3378 			}
3379 
3380 			/*
3381 			 * Memory allocation/reclaim might be called from a WQ
3382 			 * context and the current implementation of the WQ
3383 			 * concurrency control doesn't recognize that
3384 			 * a particular WQ is congested if the worker thread is
3385 			 * looping without ever sleeping. Therefore we have to
3386 			 * do a short sleep here rather than calling
3387 			 * cond_resched().
3388 			 */
3389 			if (current->flags & PF_WQ_WORKER)
3390 				schedule_timeout_uninterruptible(1);
3391 			else
3392 				cond_resched();
3393 
3394 			return true;
3395 		}
3396 	}
3397 
3398 	return false;
3399 }
3400 
3401 static inline struct page *
3402 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3403 						struct alloc_context *ac)
3404 {
3405 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3406 	struct page *page = NULL;
3407 	unsigned int alloc_flags;
3408 	unsigned long did_some_progress;
3409 	enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
3410 	enum compact_result compact_result;
3411 	int compaction_retries = 0;
3412 	int no_progress_loops = 0;
3413 
3414 	/*
3415 	 * In the slowpath, we sanity check order to avoid ever trying to
3416 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3417 	 * be using allocators in order of preference for an area that is
3418 	 * too large.
3419 	 */
3420 	if (order >= MAX_ORDER) {
3421 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3422 		return NULL;
3423 	}
3424 
3425 	/*
3426 	 * We also sanity check to catch abuse of atomic reserves being used by
3427 	 * callers that are not in atomic context.
3428 	 */
3429 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3430 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3431 		gfp_mask &= ~__GFP_ATOMIC;
3432 
3433 	/*
3434 	 * The fast path uses conservative alloc_flags to succeed only until
3435 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3436 	 * alloc_flags precisely. So we do that now.
3437 	 */
3438 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3439 
3440 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3441 		wake_all_kswapds(order, ac);
3442 
3443 	/*
3444 	 * The adjusted alloc_flags might result in immediate success, so try
3445 	 * that first
3446 	 */
3447 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3448 	if (page)
3449 		goto got_pg;
3450 
3451 	/*
3452 	 * For costly allocations, try direct compaction first, as it's likely
3453 	 * that we have enough base pages and don't need to reclaim. Don't try
3454 	 * that for allocations that are allowed to ignore watermarks, as the
3455 	 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3456 	 */
3457 	if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3458 		!gfp_pfmemalloc_allowed(gfp_mask)) {
3459 		page = __alloc_pages_direct_compact(gfp_mask, order,
3460 						alloc_flags, ac,
3461 						INIT_COMPACT_PRIORITY,
3462 						&compact_result);
3463 		if (page)
3464 			goto got_pg;
3465 
3466 		/*
3467 		 * Checks for costly allocations with __GFP_NORETRY, which
3468 		 * includes THP page fault allocations
3469 		 */
3470 		if (gfp_mask & __GFP_NORETRY) {
3471 			/*
3472 			 * If compaction is deferred for high-order allocations,
3473 			 * it is because sync compaction recently failed. If
3474 			 * this is the case and the caller requested a THP
3475 			 * allocation, we do not want to heavily disrupt the
3476 			 * system, so we fail the allocation instead of entering
3477 			 * direct reclaim.
3478 			 */
3479 			if (compact_result == COMPACT_DEFERRED)
3480 				goto nopage;
3481 
3482 			/*
3483 			 * Looks like reclaim/compaction is worth trying, but
3484 			 * sync compaction could be very expensive, so keep
3485 			 * using async compaction.
3486 			 */
3487 			compact_priority = INIT_COMPACT_PRIORITY;
3488 		}
3489 	}
3490 
3491 retry:
3492 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3493 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3494 		wake_all_kswapds(order, ac);
3495 
3496 	if (gfp_pfmemalloc_allowed(gfp_mask))
3497 		alloc_flags = ALLOC_NO_WATERMARKS;
3498 
3499 	/*
3500 	 * Reset the zonelist iterators if memory policies can be ignored.
3501 	 * These allocations are high priority and system rather than user
3502 	 * orientated.
3503 	 */
3504 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3505 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3506 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3507 					ac->high_zoneidx, ac->nodemask);
3508 	}
3509 
3510 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3511 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3512 	if (page)
3513 		goto got_pg;
3514 
3515 	/* Caller is not willing to reclaim, we can't balance anything */
3516 	if (!can_direct_reclaim) {
3517 		/*
3518 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3519 		 * of any new users that actually allow this type of allocation
3520 		 * to fail.
3521 		 */
3522 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3523 		goto nopage;
3524 	}
3525 
3526 	/* Avoid recursion of direct reclaim */
3527 	if (current->flags & PF_MEMALLOC) {
3528 		/*
3529 		 * __GFP_NOFAIL request from this context is rather bizarre
3530 		 * because we cannot reclaim anything and only can loop waiting
3531 		 * for somebody to do a work for us.
3532 		 */
3533 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3534 			cond_resched();
3535 			goto retry;
3536 		}
3537 		goto nopage;
3538 	}
3539 
3540 	/* Avoid allocations with no watermarks from looping endlessly */
3541 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3542 		goto nopage;
3543 
3544 
3545 	/* Try direct reclaim and then allocating */
3546 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3547 							&did_some_progress);
3548 	if (page)
3549 		goto got_pg;
3550 
3551 	/* Try direct compaction and then allocating */
3552 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3553 					compact_priority, &compact_result);
3554 	if (page)
3555 		goto got_pg;
3556 
3557 	if (order && compaction_made_progress(compact_result))
3558 		compaction_retries++;
3559 
3560 	/* Do not loop if specifically requested */
3561 	if (gfp_mask & __GFP_NORETRY)
3562 		goto nopage;
3563 
3564 	/*
3565 	 * Do not retry costly high order allocations unless they are
3566 	 * __GFP_REPEAT
3567 	 */
3568 	if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
3569 		goto nopage;
3570 
3571 	/*
3572 	 * Costly allocations might have made a progress but this doesn't mean
3573 	 * their order will become available due to high fragmentation so
3574 	 * always increment the no progress counter for them
3575 	 */
3576 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3577 		no_progress_loops = 0;
3578 	else
3579 		no_progress_loops++;
3580 
3581 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3582 				 did_some_progress > 0, no_progress_loops))
3583 		goto retry;
3584 
3585 	/*
3586 	 * It doesn't make any sense to retry for the compaction if the order-0
3587 	 * reclaim is not able to make any progress because the current
3588 	 * implementation of the compaction depends on the sufficient amount
3589 	 * of free memory (see __compaction_suitable)
3590 	 */
3591 	if (did_some_progress > 0 &&
3592 			should_compact_retry(ac, order, alloc_flags,
3593 				compact_result, &compact_priority,
3594 				compaction_retries))
3595 		goto retry;
3596 
3597 	/* Reclaim has failed us, start killing things */
3598 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3599 	if (page)
3600 		goto got_pg;
3601 
3602 	/* Retry as long as the OOM killer is making progress */
3603 	if (did_some_progress) {
3604 		no_progress_loops = 0;
3605 		goto retry;
3606 	}
3607 
3608 nopage:
3609 	warn_alloc_failed(gfp_mask, order, NULL);
3610 got_pg:
3611 	return page;
3612 }
3613 
3614 /*
3615  * This is the 'heart' of the zoned buddy allocator.
3616  */
3617 struct page *
3618 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3619 			struct zonelist *zonelist, nodemask_t *nodemask)
3620 {
3621 	struct page *page;
3622 	unsigned int cpuset_mems_cookie;
3623 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3624 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3625 	struct alloc_context ac = {
3626 		.high_zoneidx = gfp_zone(gfp_mask),
3627 		.zonelist = zonelist,
3628 		.nodemask = nodemask,
3629 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3630 	};
3631 
3632 	if (cpusets_enabled()) {
3633 		alloc_mask |= __GFP_HARDWALL;
3634 		alloc_flags |= ALLOC_CPUSET;
3635 		if (!ac.nodemask)
3636 			ac.nodemask = &cpuset_current_mems_allowed;
3637 	}
3638 
3639 	gfp_mask &= gfp_allowed_mask;
3640 
3641 	lockdep_trace_alloc(gfp_mask);
3642 
3643 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3644 
3645 	if (should_fail_alloc_page(gfp_mask, order))
3646 		return NULL;
3647 
3648 	/*
3649 	 * Check the zones suitable for the gfp_mask contain at least one
3650 	 * valid zone. It's possible to have an empty zonelist as a result
3651 	 * of __GFP_THISNODE and a memoryless node
3652 	 */
3653 	if (unlikely(!zonelist->_zonerefs->zone))
3654 		return NULL;
3655 
3656 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3657 		alloc_flags |= ALLOC_CMA;
3658 
3659 retry_cpuset:
3660 	cpuset_mems_cookie = read_mems_allowed_begin();
3661 
3662 	/* Dirty zone balancing only done in the fast path */
3663 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3664 
3665 	/*
3666 	 * The preferred zone is used for statistics but crucially it is
3667 	 * also used as the starting point for the zonelist iterator. It
3668 	 * may get reset for allocations that ignore memory policies.
3669 	 */
3670 	ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3671 					ac.high_zoneidx, ac.nodemask);
3672 	if (!ac.preferred_zoneref) {
3673 		page = NULL;
3674 		goto no_zone;
3675 	}
3676 
3677 	/* First allocation attempt */
3678 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3679 	if (likely(page))
3680 		goto out;
3681 
3682 	/*
3683 	 * Runtime PM, block IO and its error handling path can deadlock
3684 	 * because I/O on the device might not complete.
3685 	 */
3686 	alloc_mask = memalloc_noio_flags(gfp_mask);
3687 	ac.spread_dirty_pages = false;
3688 
3689 	/*
3690 	 * Restore the original nodemask if it was potentially replaced with
3691 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3692 	 */
3693 	if (cpusets_enabled())
3694 		ac.nodemask = nodemask;
3695 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3696 
3697 no_zone:
3698 	/*
3699 	 * When updating a task's mems_allowed, it is possible to race with
3700 	 * parallel threads in such a way that an allocation can fail while
3701 	 * the mask is being updated. If a page allocation is about to fail,
3702 	 * check if the cpuset changed during allocation and if so, retry.
3703 	 */
3704 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3705 		alloc_mask = gfp_mask;
3706 		goto retry_cpuset;
3707 	}
3708 
3709 out:
3710 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3711 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3712 		__free_pages(page, order);
3713 		page = NULL;
3714 	}
3715 
3716 	if (kmemcheck_enabled && page)
3717 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3718 
3719 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3720 
3721 	return page;
3722 }
3723 EXPORT_SYMBOL(__alloc_pages_nodemask);
3724 
3725 /*
3726  * Common helper functions.
3727  */
3728 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3729 {
3730 	struct page *page;
3731 
3732 	/*
3733 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3734 	 * a highmem page
3735 	 */
3736 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3737 
3738 	page = alloc_pages(gfp_mask, order);
3739 	if (!page)
3740 		return 0;
3741 	return (unsigned long) page_address(page);
3742 }
3743 EXPORT_SYMBOL(__get_free_pages);
3744 
3745 unsigned long get_zeroed_page(gfp_t gfp_mask)
3746 {
3747 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3748 }
3749 EXPORT_SYMBOL(get_zeroed_page);
3750 
3751 void __free_pages(struct page *page, unsigned int order)
3752 {
3753 	if (put_page_testzero(page)) {
3754 		if (order == 0)
3755 			free_hot_cold_page(page, false);
3756 		else
3757 			__free_pages_ok(page, order);
3758 	}
3759 }
3760 
3761 EXPORT_SYMBOL(__free_pages);
3762 
3763 void free_pages(unsigned long addr, unsigned int order)
3764 {
3765 	if (addr != 0) {
3766 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3767 		__free_pages(virt_to_page((void *)addr), order);
3768 	}
3769 }
3770 
3771 EXPORT_SYMBOL(free_pages);
3772 
3773 /*
3774  * Page Fragment:
3775  *  An arbitrary-length arbitrary-offset area of memory which resides
3776  *  within a 0 or higher order page.  Multiple fragments within that page
3777  *  are individually refcounted, in the page's reference counter.
3778  *
3779  * The page_frag functions below provide a simple allocation framework for
3780  * page fragments.  This is used by the network stack and network device
3781  * drivers to provide a backing region of memory for use as either an
3782  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3783  */
3784 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3785 				       gfp_t gfp_mask)
3786 {
3787 	struct page *page = NULL;
3788 	gfp_t gfp = gfp_mask;
3789 
3790 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3791 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3792 		    __GFP_NOMEMALLOC;
3793 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3794 				PAGE_FRAG_CACHE_MAX_ORDER);
3795 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3796 #endif
3797 	if (unlikely(!page))
3798 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3799 
3800 	nc->va = page ? page_address(page) : NULL;
3801 
3802 	return page;
3803 }
3804 
3805 void *__alloc_page_frag(struct page_frag_cache *nc,
3806 			unsigned int fragsz, gfp_t gfp_mask)
3807 {
3808 	unsigned int size = PAGE_SIZE;
3809 	struct page *page;
3810 	int offset;
3811 
3812 	if (unlikely(!nc->va)) {
3813 refill:
3814 		page = __page_frag_refill(nc, gfp_mask);
3815 		if (!page)
3816 			return NULL;
3817 
3818 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3819 		/* if size can vary use size else just use PAGE_SIZE */
3820 		size = nc->size;
3821 #endif
3822 		/* Even if we own the page, we do not use atomic_set().
3823 		 * This would break get_page_unless_zero() users.
3824 		 */
3825 		page_ref_add(page, size - 1);
3826 
3827 		/* reset page count bias and offset to start of new frag */
3828 		nc->pfmemalloc = page_is_pfmemalloc(page);
3829 		nc->pagecnt_bias = size;
3830 		nc->offset = size;
3831 	}
3832 
3833 	offset = nc->offset - fragsz;
3834 	if (unlikely(offset < 0)) {
3835 		page = virt_to_page(nc->va);
3836 
3837 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3838 			goto refill;
3839 
3840 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3841 		/* if size can vary use size else just use PAGE_SIZE */
3842 		size = nc->size;
3843 #endif
3844 		/* OK, page count is 0, we can safely set it */
3845 		set_page_count(page, size);
3846 
3847 		/* reset page count bias and offset to start of new frag */
3848 		nc->pagecnt_bias = size;
3849 		offset = size - fragsz;
3850 	}
3851 
3852 	nc->pagecnt_bias--;
3853 	nc->offset = offset;
3854 
3855 	return nc->va + offset;
3856 }
3857 EXPORT_SYMBOL(__alloc_page_frag);
3858 
3859 /*
3860  * Frees a page fragment allocated out of either a compound or order 0 page.
3861  */
3862 void __free_page_frag(void *addr)
3863 {
3864 	struct page *page = virt_to_head_page(addr);
3865 
3866 	if (unlikely(put_page_testzero(page)))
3867 		__free_pages_ok(page, compound_order(page));
3868 }
3869 EXPORT_SYMBOL(__free_page_frag);
3870 
3871 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3872 		size_t size)
3873 {
3874 	if (addr) {
3875 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3876 		unsigned long used = addr + PAGE_ALIGN(size);
3877 
3878 		split_page(virt_to_page((void *)addr), order);
3879 		while (used < alloc_end) {
3880 			free_page(used);
3881 			used += PAGE_SIZE;
3882 		}
3883 	}
3884 	return (void *)addr;
3885 }
3886 
3887 /**
3888  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3889  * @size: the number of bytes to allocate
3890  * @gfp_mask: GFP flags for the allocation
3891  *
3892  * This function is similar to alloc_pages(), except that it allocates the
3893  * minimum number of pages to satisfy the request.  alloc_pages() can only
3894  * allocate memory in power-of-two pages.
3895  *
3896  * This function is also limited by MAX_ORDER.
3897  *
3898  * Memory allocated by this function must be released by free_pages_exact().
3899  */
3900 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3901 {
3902 	unsigned int order = get_order(size);
3903 	unsigned long addr;
3904 
3905 	addr = __get_free_pages(gfp_mask, order);
3906 	return make_alloc_exact(addr, order, size);
3907 }
3908 EXPORT_SYMBOL(alloc_pages_exact);
3909 
3910 /**
3911  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3912  *			   pages on a node.
3913  * @nid: the preferred node ID where memory should be allocated
3914  * @size: the number of bytes to allocate
3915  * @gfp_mask: GFP flags for the allocation
3916  *
3917  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3918  * back.
3919  */
3920 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3921 {
3922 	unsigned int order = get_order(size);
3923 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3924 	if (!p)
3925 		return NULL;
3926 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3927 }
3928 
3929 /**
3930  * free_pages_exact - release memory allocated via alloc_pages_exact()
3931  * @virt: the value returned by alloc_pages_exact.
3932  * @size: size of allocation, same value as passed to alloc_pages_exact().
3933  *
3934  * Release the memory allocated by a previous call to alloc_pages_exact.
3935  */
3936 void free_pages_exact(void *virt, size_t size)
3937 {
3938 	unsigned long addr = (unsigned long)virt;
3939 	unsigned long end = addr + PAGE_ALIGN(size);
3940 
3941 	while (addr < end) {
3942 		free_page(addr);
3943 		addr += PAGE_SIZE;
3944 	}
3945 }
3946 EXPORT_SYMBOL(free_pages_exact);
3947 
3948 /**
3949  * nr_free_zone_pages - count number of pages beyond high watermark
3950  * @offset: The zone index of the highest zone
3951  *
3952  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3953  * high watermark within all zones at or below a given zone index.  For each
3954  * zone, the number of pages is calculated as:
3955  *     managed_pages - high_pages
3956  */
3957 static unsigned long nr_free_zone_pages(int offset)
3958 {
3959 	struct zoneref *z;
3960 	struct zone *zone;
3961 
3962 	/* Just pick one node, since fallback list is circular */
3963 	unsigned long sum = 0;
3964 
3965 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3966 
3967 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3968 		unsigned long size = zone->managed_pages;
3969 		unsigned long high = high_wmark_pages(zone);
3970 		if (size > high)
3971 			sum += size - high;
3972 	}
3973 
3974 	return sum;
3975 }
3976 
3977 /**
3978  * nr_free_buffer_pages - count number of pages beyond high watermark
3979  *
3980  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3981  * watermark within ZONE_DMA and ZONE_NORMAL.
3982  */
3983 unsigned long nr_free_buffer_pages(void)
3984 {
3985 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3986 }
3987 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3988 
3989 /**
3990  * nr_free_pagecache_pages - count number of pages beyond high watermark
3991  *
3992  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3993  * high watermark within all zones.
3994  */
3995 unsigned long nr_free_pagecache_pages(void)
3996 {
3997 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3998 }
3999 
4000 static inline void show_node(struct zone *zone)
4001 {
4002 	if (IS_ENABLED(CONFIG_NUMA))
4003 		printk("Node %d ", zone_to_nid(zone));
4004 }
4005 
4006 long si_mem_available(void)
4007 {
4008 	long available;
4009 	unsigned long pagecache;
4010 	unsigned long wmark_low = 0;
4011 	unsigned long pages[NR_LRU_LISTS];
4012 	struct zone *zone;
4013 	int lru;
4014 
4015 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4016 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4017 
4018 	for_each_zone(zone)
4019 		wmark_low += zone->watermark[WMARK_LOW];
4020 
4021 	/*
4022 	 * Estimate the amount of memory available for userspace allocations,
4023 	 * without causing swapping.
4024 	 */
4025 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4026 
4027 	/*
4028 	 * Not all the page cache can be freed, otherwise the system will
4029 	 * start swapping. Assume at least half of the page cache, or the
4030 	 * low watermark worth of cache, needs to stay.
4031 	 */
4032 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4033 	pagecache -= min(pagecache / 2, wmark_low);
4034 	available += pagecache;
4035 
4036 	/*
4037 	 * Part of the reclaimable slab consists of items that are in use,
4038 	 * and cannot be freed. Cap this estimate at the low watermark.
4039 	 */
4040 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4041 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4042 
4043 	if (available < 0)
4044 		available = 0;
4045 	return available;
4046 }
4047 EXPORT_SYMBOL_GPL(si_mem_available);
4048 
4049 void si_meminfo(struct sysinfo *val)
4050 {
4051 	val->totalram = totalram_pages;
4052 	val->sharedram = global_node_page_state(NR_SHMEM);
4053 	val->freeram = global_page_state(NR_FREE_PAGES);
4054 	val->bufferram = nr_blockdev_pages();
4055 	val->totalhigh = totalhigh_pages;
4056 	val->freehigh = nr_free_highpages();
4057 	val->mem_unit = PAGE_SIZE;
4058 }
4059 
4060 EXPORT_SYMBOL(si_meminfo);
4061 
4062 #ifdef CONFIG_NUMA
4063 void si_meminfo_node(struct sysinfo *val, int nid)
4064 {
4065 	int zone_type;		/* needs to be signed */
4066 	unsigned long managed_pages = 0;
4067 	unsigned long managed_highpages = 0;
4068 	unsigned long free_highpages = 0;
4069 	pg_data_t *pgdat = NODE_DATA(nid);
4070 
4071 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4072 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4073 	val->totalram = managed_pages;
4074 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4075 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4076 #ifdef CONFIG_HIGHMEM
4077 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4078 		struct zone *zone = &pgdat->node_zones[zone_type];
4079 
4080 		if (is_highmem(zone)) {
4081 			managed_highpages += zone->managed_pages;
4082 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4083 		}
4084 	}
4085 	val->totalhigh = managed_highpages;
4086 	val->freehigh = free_highpages;
4087 #else
4088 	val->totalhigh = managed_highpages;
4089 	val->freehigh = free_highpages;
4090 #endif
4091 	val->mem_unit = PAGE_SIZE;
4092 }
4093 #endif
4094 
4095 /*
4096  * Determine whether the node should be displayed or not, depending on whether
4097  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4098  */
4099 bool skip_free_areas_node(unsigned int flags, int nid)
4100 {
4101 	bool ret = false;
4102 	unsigned int cpuset_mems_cookie;
4103 
4104 	if (!(flags & SHOW_MEM_FILTER_NODES))
4105 		goto out;
4106 
4107 	do {
4108 		cpuset_mems_cookie = read_mems_allowed_begin();
4109 		ret = !node_isset(nid, cpuset_current_mems_allowed);
4110 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
4111 out:
4112 	return ret;
4113 }
4114 
4115 #define K(x) ((x) << (PAGE_SHIFT-10))
4116 
4117 static void show_migration_types(unsigned char type)
4118 {
4119 	static const char types[MIGRATE_TYPES] = {
4120 		[MIGRATE_UNMOVABLE]	= 'U',
4121 		[MIGRATE_MOVABLE]	= 'M',
4122 		[MIGRATE_RECLAIMABLE]	= 'E',
4123 		[MIGRATE_HIGHATOMIC]	= 'H',
4124 #ifdef CONFIG_CMA
4125 		[MIGRATE_CMA]		= 'C',
4126 #endif
4127 #ifdef CONFIG_MEMORY_ISOLATION
4128 		[MIGRATE_ISOLATE]	= 'I',
4129 #endif
4130 	};
4131 	char tmp[MIGRATE_TYPES + 1];
4132 	char *p = tmp;
4133 	int i;
4134 
4135 	for (i = 0; i < MIGRATE_TYPES; i++) {
4136 		if (type & (1 << i))
4137 			*p++ = types[i];
4138 	}
4139 
4140 	*p = '\0';
4141 	printk("(%s) ", tmp);
4142 }
4143 
4144 /*
4145  * Show free area list (used inside shift_scroll-lock stuff)
4146  * We also calculate the percentage fragmentation. We do this by counting the
4147  * memory on each free list with the exception of the first item on the list.
4148  *
4149  * Bits in @filter:
4150  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4151  *   cpuset.
4152  */
4153 void show_free_areas(unsigned int filter)
4154 {
4155 	unsigned long free_pcp = 0;
4156 	int cpu;
4157 	struct zone *zone;
4158 	pg_data_t *pgdat;
4159 
4160 	for_each_populated_zone(zone) {
4161 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4162 			continue;
4163 
4164 		for_each_online_cpu(cpu)
4165 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4166 	}
4167 
4168 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4169 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4170 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4171 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4172 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4173 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4174 		global_node_page_state(NR_ACTIVE_ANON),
4175 		global_node_page_state(NR_INACTIVE_ANON),
4176 		global_node_page_state(NR_ISOLATED_ANON),
4177 		global_node_page_state(NR_ACTIVE_FILE),
4178 		global_node_page_state(NR_INACTIVE_FILE),
4179 		global_node_page_state(NR_ISOLATED_FILE),
4180 		global_node_page_state(NR_UNEVICTABLE),
4181 		global_node_page_state(NR_FILE_DIRTY),
4182 		global_node_page_state(NR_WRITEBACK),
4183 		global_node_page_state(NR_UNSTABLE_NFS),
4184 		global_page_state(NR_SLAB_RECLAIMABLE),
4185 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4186 		global_node_page_state(NR_FILE_MAPPED),
4187 		global_node_page_state(NR_SHMEM),
4188 		global_page_state(NR_PAGETABLE),
4189 		global_page_state(NR_BOUNCE),
4190 		global_page_state(NR_FREE_PAGES),
4191 		free_pcp,
4192 		global_page_state(NR_FREE_CMA_PAGES));
4193 
4194 	for_each_online_pgdat(pgdat) {
4195 		printk("Node %d"
4196 			" active_anon:%lukB"
4197 			" inactive_anon:%lukB"
4198 			" active_file:%lukB"
4199 			" inactive_file:%lukB"
4200 			" unevictable:%lukB"
4201 			" isolated(anon):%lukB"
4202 			" isolated(file):%lukB"
4203 			" mapped:%lukB"
4204 			" dirty:%lukB"
4205 			" writeback:%lukB"
4206 			" shmem:%lukB"
4207 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4208 			" shmem_thp: %lukB"
4209 			" shmem_pmdmapped: %lukB"
4210 			" anon_thp: %lukB"
4211 #endif
4212 			" writeback_tmp:%lukB"
4213 			" unstable:%lukB"
4214 			" pages_scanned:%lu"
4215 			" all_unreclaimable? %s"
4216 			"\n",
4217 			pgdat->node_id,
4218 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4219 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4220 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4221 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4222 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4223 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4224 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4225 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4226 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4227 			K(node_page_state(pgdat, NR_WRITEBACK)),
4228 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4230 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4231 					* HPAGE_PMD_NR),
4232 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4233 #endif
4234 			K(node_page_state(pgdat, NR_SHMEM)),
4235 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4236 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4237 			node_page_state(pgdat, NR_PAGES_SCANNED),
4238 			!pgdat_reclaimable(pgdat) ? "yes" : "no");
4239 	}
4240 
4241 	for_each_populated_zone(zone) {
4242 		int i;
4243 
4244 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4245 			continue;
4246 
4247 		free_pcp = 0;
4248 		for_each_online_cpu(cpu)
4249 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4250 
4251 		show_node(zone);
4252 		printk("%s"
4253 			" free:%lukB"
4254 			" min:%lukB"
4255 			" low:%lukB"
4256 			" high:%lukB"
4257 			" active_anon:%lukB"
4258 			" inactive_anon:%lukB"
4259 			" active_file:%lukB"
4260 			" inactive_file:%lukB"
4261 			" unevictable:%lukB"
4262 			" writepending:%lukB"
4263 			" present:%lukB"
4264 			" managed:%lukB"
4265 			" mlocked:%lukB"
4266 			" slab_reclaimable:%lukB"
4267 			" slab_unreclaimable:%lukB"
4268 			" kernel_stack:%lukB"
4269 			" pagetables:%lukB"
4270 			" bounce:%lukB"
4271 			" free_pcp:%lukB"
4272 			" local_pcp:%ukB"
4273 			" free_cma:%lukB"
4274 			"\n",
4275 			zone->name,
4276 			K(zone_page_state(zone, NR_FREE_PAGES)),
4277 			K(min_wmark_pages(zone)),
4278 			K(low_wmark_pages(zone)),
4279 			K(high_wmark_pages(zone)),
4280 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4281 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4282 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4283 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4284 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4285 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4286 			K(zone->present_pages),
4287 			K(zone->managed_pages),
4288 			K(zone_page_state(zone, NR_MLOCK)),
4289 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4290 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4291 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4292 			K(zone_page_state(zone, NR_PAGETABLE)),
4293 			K(zone_page_state(zone, NR_BOUNCE)),
4294 			K(free_pcp),
4295 			K(this_cpu_read(zone->pageset->pcp.count)),
4296 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4297 		printk("lowmem_reserve[]:");
4298 		for (i = 0; i < MAX_NR_ZONES; i++)
4299 			printk(" %ld", zone->lowmem_reserve[i]);
4300 		printk("\n");
4301 	}
4302 
4303 	for_each_populated_zone(zone) {
4304 		unsigned int order;
4305 		unsigned long nr[MAX_ORDER], flags, total = 0;
4306 		unsigned char types[MAX_ORDER];
4307 
4308 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
4309 			continue;
4310 		show_node(zone);
4311 		printk("%s: ", zone->name);
4312 
4313 		spin_lock_irqsave(&zone->lock, flags);
4314 		for (order = 0; order < MAX_ORDER; order++) {
4315 			struct free_area *area = &zone->free_area[order];
4316 			int type;
4317 
4318 			nr[order] = area->nr_free;
4319 			total += nr[order] << order;
4320 
4321 			types[order] = 0;
4322 			for (type = 0; type < MIGRATE_TYPES; type++) {
4323 				if (!list_empty(&area->free_list[type]))
4324 					types[order] |= 1 << type;
4325 			}
4326 		}
4327 		spin_unlock_irqrestore(&zone->lock, flags);
4328 		for (order = 0; order < MAX_ORDER; order++) {
4329 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4330 			if (nr[order])
4331 				show_migration_types(types[order]);
4332 		}
4333 		printk("= %lukB\n", K(total));
4334 	}
4335 
4336 	hugetlb_show_meminfo();
4337 
4338 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4339 
4340 	show_swap_cache_info();
4341 }
4342 
4343 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4344 {
4345 	zoneref->zone = zone;
4346 	zoneref->zone_idx = zone_idx(zone);
4347 }
4348 
4349 /*
4350  * Builds allocation fallback zone lists.
4351  *
4352  * Add all populated zones of a node to the zonelist.
4353  */
4354 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4355 				int nr_zones)
4356 {
4357 	struct zone *zone;
4358 	enum zone_type zone_type = MAX_NR_ZONES;
4359 
4360 	do {
4361 		zone_type--;
4362 		zone = pgdat->node_zones + zone_type;
4363 		if (managed_zone(zone)) {
4364 			zoneref_set_zone(zone,
4365 				&zonelist->_zonerefs[nr_zones++]);
4366 			check_highest_zone(zone_type);
4367 		}
4368 	} while (zone_type);
4369 
4370 	return nr_zones;
4371 }
4372 
4373 
4374 /*
4375  *  zonelist_order:
4376  *  0 = automatic detection of better ordering.
4377  *  1 = order by ([node] distance, -zonetype)
4378  *  2 = order by (-zonetype, [node] distance)
4379  *
4380  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4381  *  the same zonelist. So only NUMA can configure this param.
4382  */
4383 #define ZONELIST_ORDER_DEFAULT  0
4384 #define ZONELIST_ORDER_NODE     1
4385 #define ZONELIST_ORDER_ZONE     2
4386 
4387 /* zonelist order in the kernel.
4388  * set_zonelist_order() will set this to NODE or ZONE.
4389  */
4390 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4391 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4392 
4393 
4394 #ifdef CONFIG_NUMA
4395 /* The value user specified ....changed by config */
4396 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4397 /* string for sysctl */
4398 #define NUMA_ZONELIST_ORDER_LEN	16
4399 char numa_zonelist_order[16] = "default";
4400 
4401 /*
4402  * interface for configure zonelist ordering.
4403  * command line option "numa_zonelist_order"
4404  *	= "[dD]efault	- default, automatic configuration.
4405  *	= "[nN]ode 	- order by node locality, then by zone within node
4406  *	= "[zZ]one      - order by zone, then by locality within zone
4407  */
4408 
4409 static int __parse_numa_zonelist_order(char *s)
4410 {
4411 	if (*s == 'd' || *s == 'D') {
4412 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4413 	} else if (*s == 'n' || *s == 'N') {
4414 		user_zonelist_order = ZONELIST_ORDER_NODE;
4415 	} else if (*s == 'z' || *s == 'Z') {
4416 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4417 	} else {
4418 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4419 		return -EINVAL;
4420 	}
4421 	return 0;
4422 }
4423 
4424 static __init int setup_numa_zonelist_order(char *s)
4425 {
4426 	int ret;
4427 
4428 	if (!s)
4429 		return 0;
4430 
4431 	ret = __parse_numa_zonelist_order(s);
4432 	if (ret == 0)
4433 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4434 
4435 	return ret;
4436 }
4437 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4438 
4439 /*
4440  * sysctl handler for numa_zonelist_order
4441  */
4442 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4443 		void __user *buffer, size_t *length,
4444 		loff_t *ppos)
4445 {
4446 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4447 	int ret;
4448 	static DEFINE_MUTEX(zl_order_mutex);
4449 
4450 	mutex_lock(&zl_order_mutex);
4451 	if (write) {
4452 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4453 			ret = -EINVAL;
4454 			goto out;
4455 		}
4456 		strcpy(saved_string, (char *)table->data);
4457 	}
4458 	ret = proc_dostring(table, write, buffer, length, ppos);
4459 	if (ret)
4460 		goto out;
4461 	if (write) {
4462 		int oldval = user_zonelist_order;
4463 
4464 		ret = __parse_numa_zonelist_order((char *)table->data);
4465 		if (ret) {
4466 			/*
4467 			 * bogus value.  restore saved string
4468 			 */
4469 			strncpy((char *)table->data, saved_string,
4470 				NUMA_ZONELIST_ORDER_LEN);
4471 			user_zonelist_order = oldval;
4472 		} else if (oldval != user_zonelist_order) {
4473 			mutex_lock(&zonelists_mutex);
4474 			build_all_zonelists(NULL, NULL);
4475 			mutex_unlock(&zonelists_mutex);
4476 		}
4477 	}
4478 out:
4479 	mutex_unlock(&zl_order_mutex);
4480 	return ret;
4481 }
4482 
4483 
4484 #define MAX_NODE_LOAD (nr_online_nodes)
4485 static int node_load[MAX_NUMNODES];
4486 
4487 /**
4488  * find_next_best_node - find the next node that should appear in a given node's fallback list
4489  * @node: node whose fallback list we're appending
4490  * @used_node_mask: nodemask_t of already used nodes
4491  *
4492  * We use a number of factors to determine which is the next node that should
4493  * appear on a given node's fallback list.  The node should not have appeared
4494  * already in @node's fallback list, and it should be the next closest node
4495  * according to the distance array (which contains arbitrary distance values
4496  * from each node to each node in the system), and should also prefer nodes
4497  * with no CPUs, since presumably they'll have very little allocation pressure
4498  * on them otherwise.
4499  * It returns -1 if no node is found.
4500  */
4501 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4502 {
4503 	int n, val;
4504 	int min_val = INT_MAX;
4505 	int best_node = NUMA_NO_NODE;
4506 	const struct cpumask *tmp = cpumask_of_node(0);
4507 
4508 	/* Use the local node if we haven't already */
4509 	if (!node_isset(node, *used_node_mask)) {
4510 		node_set(node, *used_node_mask);
4511 		return node;
4512 	}
4513 
4514 	for_each_node_state(n, N_MEMORY) {
4515 
4516 		/* Don't want a node to appear more than once */
4517 		if (node_isset(n, *used_node_mask))
4518 			continue;
4519 
4520 		/* Use the distance array to find the distance */
4521 		val = node_distance(node, n);
4522 
4523 		/* Penalize nodes under us ("prefer the next node") */
4524 		val += (n < node);
4525 
4526 		/* Give preference to headless and unused nodes */
4527 		tmp = cpumask_of_node(n);
4528 		if (!cpumask_empty(tmp))
4529 			val += PENALTY_FOR_NODE_WITH_CPUS;
4530 
4531 		/* Slight preference for less loaded node */
4532 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4533 		val += node_load[n];
4534 
4535 		if (val < min_val) {
4536 			min_val = val;
4537 			best_node = n;
4538 		}
4539 	}
4540 
4541 	if (best_node >= 0)
4542 		node_set(best_node, *used_node_mask);
4543 
4544 	return best_node;
4545 }
4546 
4547 
4548 /*
4549  * Build zonelists ordered by node and zones within node.
4550  * This results in maximum locality--normal zone overflows into local
4551  * DMA zone, if any--but risks exhausting DMA zone.
4552  */
4553 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4554 {
4555 	int j;
4556 	struct zonelist *zonelist;
4557 
4558 	zonelist = &pgdat->node_zonelists[0];
4559 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4560 		;
4561 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4562 	zonelist->_zonerefs[j].zone = NULL;
4563 	zonelist->_zonerefs[j].zone_idx = 0;
4564 }
4565 
4566 /*
4567  * Build gfp_thisnode zonelists
4568  */
4569 static void build_thisnode_zonelists(pg_data_t *pgdat)
4570 {
4571 	int j;
4572 	struct zonelist *zonelist;
4573 
4574 	zonelist = &pgdat->node_zonelists[1];
4575 	j = build_zonelists_node(pgdat, zonelist, 0);
4576 	zonelist->_zonerefs[j].zone = NULL;
4577 	zonelist->_zonerefs[j].zone_idx = 0;
4578 }
4579 
4580 /*
4581  * Build zonelists ordered by zone and nodes within zones.
4582  * This results in conserving DMA zone[s] until all Normal memory is
4583  * exhausted, but results in overflowing to remote node while memory
4584  * may still exist in local DMA zone.
4585  */
4586 static int node_order[MAX_NUMNODES];
4587 
4588 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4589 {
4590 	int pos, j, node;
4591 	int zone_type;		/* needs to be signed */
4592 	struct zone *z;
4593 	struct zonelist *zonelist;
4594 
4595 	zonelist = &pgdat->node_zonelists[0];
4596 	pos = 0;
4597 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4598 		for (j = 0; j < nr_nodes; j++) {
4599 			node = node_order[j];
4600 			z = &NODE_DATA(node)->node_zones[zone_type];
4601 			if (managed_zone(z)) {
4602 				zoneref_set_zone(z,
4603 					&zonelist->_zonerefs[pos++]);
4604 				check_highest_zone(zone_type);
4605 			}
4606 		}
4607 	}
4608 	zonelist->_zonerefs[pos].zone = NULL;
4609 	zonelist->_zonerefs[pos].zone_idx = 0;
4610 }
4611 
4612 #if defined(CONFIG_64BIT)
4613 /*
4614  * Devices that require DMA32/DMA are relatively rare and do not justify a
4615  * penalty to every machine in case the specialised case applies. Default
4616  * to Node-ordering on 64-bit NUMA machines
4617  */
4618 static int default_zonelist_order(void)
4619 {
4620 	return ZONELIST_ORDER_NODE;
4621 }
4622 #else
4623 /*
4624  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4625  * by the kernel. If processes running on node 0 deplete the low memory zone
4626  * then reclaim will occur more frequency increasing stalls and potentially
4627  * be easier to OOM if a large percentage of the zone is under writeback or
4628  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4629  * Hence, default to zone ordering on 32-bit.
4630  */
4631 static int default_zonelist_order(void)
4632 {
4633 	return ZONELIST_ORDER_ZONE;
4634 }
4635 #endif /* CONFIG_64BIT */
4636 
4637 static void set_zonelist_order(void)
4638 {
4639 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4640 		current_zonelist_order = default_zonelist_order();
4641 	else
4642 		current_zonelist_order = user_zonelist_order;
4643 }
4644 
4645 static void build_zonelists(pg_data_t *pgdat)
4646 {
4647 	int i, node, load;
4648 	nodemask_t used_mask;
4649 	int local_node, prev_node;
4650 	struct zonelist *zonelist;
4651 	unsigned int order = current_zonelist_order;
4652 
4653 	/* initialize zonelists */
4654 	for (i = 0; i < MAX_ZONELISTS; i++) {
4655 		zonelist = pgdat->node_zonelists + i;
4656 		zonelist->_zonerefs[0].zone = NULL;
4657 		zonelist->_zonerefs[0].zone_idx = 0;
4658 	}
4659 
4660 	/* NUMA-aware ordering of nodes */
4661 	local_node = pgdat->node_id;
4662 	load = nr_online_nodes;
4663 	prev_node = local_node;
4664 	nodes_clear(used_mask);
4665 
4666 	memset(node_order, 0, sizeof(node_order));
4667 	i = 0;
4668 
4669 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4670 		/*
4671 		 * We don't want to pressure a particular node.
4672 		 * So adding penalty to the first node in same
4673 		 * distance group to make it round-robin.
4674 		 */
4675 		if (node_distance(local_node, node) !=
4676 		    node_distance(local_node, prev_node))
4677 			node_load[node] = load;
4678 
4679 		prev_node = node;
4680 		load--;
4681 		if (order == ZONELIST_ORDER_NODE)
4682 			build_zonelists_in_node_order(pgdat, node);
4683 		else
4684 			node_order[i++] = node;	/* remember order */
4685 	}
4686 
4687 	if (order == ZONELIST_ORDER_ZONE) {
4688 		/* calculate node order -- i.e., DMA last! */
4689 		build_zonelists_in_zone_order(pgdat, i);
4690 	}
4691 
4692 	build_thisnode_zonelists(pgdat);
4693 }
4694 
4695 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4696 /*
4697  * Return node id of node used for "local" allocations.
4698  * I.e., first node id of first zone in arg node's generic zonelist.
4699  * Used for initializing percpu 'numa_mem', which is used primarily
4700  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4701  */
4702 int local_memory_node(int node)
4703 {
4704 	struct zoneref *z;
4705 
4706 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4707 				   gfp_zone(GFP_KERNEL),
4708 				   NULL);
4709 	return z->zone->node;
4710 }
4711 #endif
4712 
4713 static void setup_min_unmapped_ratio(void);
4714 static void setup_min_slab_ratio(void);
4715 #else	/* CONFIG_NUMA */
4716 
4717 static void set_zonelist_order(void)
4718 {
4719 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4720 }
4721 
4722 static void build_zonelists(pg_data_t *pgdat)
4723 {
4724 	int node, local_node;
4725 	enum zone_type j;
4726 	struct zonelist *zonelist;
4727 
4728 	local_node = pgdat->node_id;
4729 
4730 	zonelist = &pgdat->node_zonelists[0];
4731 	j = build_zonelists_node(pgdat, zonelist, 0);
4732 
4733 	/*
4734 	 * Now we build the zonelist so that it contains the zones
4735 	 * of all the other nodes.
4736 	 * We don't want to pressure a particular node, so when
4737 	 * building the zones for node N, we make sure that the
4738 	 * zones coming right after the local ones are those from
4739 	 * node N+1 (modulo N)
4740 	 */
4741 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4742 		if (!node_online(node))
4743 			continue;
4744 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4745 	}
4746 	for (node = 0; node < local_node; node++) {
4747 		if (!node_online(node))
4748 			continue;
4749 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4750 	}
4751 
4752 	zonelist->_zonerefs[j].zone = NULL;
4753 	zonelist->_zonerefs[j].zone_idx = 0;
4754 }
4755 
4756 #endif	/* CONFIG_NUMA */
4757 
4758 /*
4759  * Boot pageset table. One per cpu which is going to be used for all
4760  * zones and all nodes. The parameters will be set in such a way
4761  * that an item put on a list will immediately be handed over to
4762  * the buddy list. This is safe since pageset manipulation is done
4763  * with interrupts disabled.
4764  *
4765  * The boot_pagesets must be kept even after bootup is complete for
4766  * unused processors and/or zones. They do play a role for bootstrapping
4767  * hotplugged processors.
4768  *
4769  * zoneinfo_show() and maybe other functions do
4770  * not check if the processor is online before following the pageset pointer.
4771  * Other parts of the kernel may not check if the zone is available.
4772  */
4773 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4774 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4775 static void setup_zone_pageset(struct zone *zone);
4776 
4777 /*
4778  * Global mutex to protect against size modification of zonelists
4779  * as well as to serialize pageset setup for the new populated zone.
4780  */
4781 DEFINE_MUTEX(zonelists_mutex);
4782 
4783 /* return values int ....just for stop_machine() */
4784 static int __build_all_zonelists(void *data)
4785 {
4786 	int nid;
4787 	int cpu;
4788 	pg_data_t *self = data;
4789 
4790 #ifdef CONFIG_NUMA
4791 	memset(node_load, 0, sizeof(node_load));
4792 #endif
4793 
4794 	if (self && !node_online(self->node_id)) {
4795 		build_zonelists(self);
4796 	}
4797 
4798 	for_each_online_node(nid) {
4799 		pg_data_t *pgdat = NODE_DATA(nid);
4800 
4801 		build_zonelists(pgdat);
4802 	}
4803 
4804 	/*
4805 	 * Initialize the boot_pagesets that are going to be used
4806 	 * for bootstrapping processors. The real pagesets for
4807 	 * each zone will be allocated later when the per cpu
4808 	 * allocator is available.
4809 	 *
4810 	 * boot_pagesets are used also for bootstrapping offline
4811 	 * cpus if the system is already booted because the pagesets
4812 	 * are needed to initialize allocators on a specific cpu too.
4813 	 * F.e. the percpu allocator needs the page allocator which
4814 	 * needs the percpu allocator in order to allocate its pagesets
4815 	 * (a chicken-egg dilemma).
4816 	 */
4817 	for_each_possible_cpu(cpu) {
4818 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4819 
4820 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4821 		/*
4822 		 * We now know the "local memory node" for each node--
4823 		 * i.e., the node of the first zone in the generic zonelist.
4824 		 * Set up numa_mem percpu variable for on-line cpus.  During
4825 		 * boot, only the boot cpu should be on-line;  we'll init the
4826 		 * secondary cpus' numa_mem as they come on-line.  During
4827 		 * node/memory hotplug, we'll fixup all on-line cpus.
4828 		 */
4829 		if (cpu_online(cpu))
4830 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4831 #endif
4832 	}
4833 
4834 	return 0;
4835 }
4836 
4837 static noinline void __init
4838 build_all_zonelists_init(void)
4839 {
4840 	__build_all_zonelists(NULL);
4841 	mminit_verify_zonelist();
4842 	cpuset_init_current_mems_allowed();
4843 }
4844 
4845 /*
4846  * Called with zonelists_mutex held always
4847  * unless system_state == SYSTEM_BOOTING.
4848  *
4849  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4850  * [we're only called with non-NULL zone through __meminit paths] and
4851  * (2) call of __init annotated helper build_all_zonelists_init
4852  * [protected by SYSTEM_BOOTING].
4853  */
4854 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4855 {
4856 	set_zonelist_order();
4857 
4858 	if (system_state == SYSTEM_BOOTING) {
4859 		build_all_zonelists_init();
4860 	} else {
4861 #ifdef CONFIG_MEMORY_HOTPLUG
4862 		if (zone)
4863 			setup_zone_pageset(zone);
4864 #endif
4865 		/* we have to stop all cpus to guarantee there is no user
4866 		   of zonelist */
4867 		stop_machine(__build_all_zonelists, pgdat, NULL);
4868 		/* cpuset refresh routine should be here */
4869 	}
4870 	vm_total_pages = nr_free_pagecache_pages();
4871 	/*
4872 	 * Disable grouping by mobility if the number of pages in the
4873 	 * system is too low to allow the mechanism to work. It would be
4874 	 * more accurate, but expensive to check per-zone. This check is
4875 	 * made on memory-hotadd so a system can start with mobility
4876 	 * disabled and enable it later
4877 	 */
4878 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4879 		page_group_by_mobility_disabled = 1;
4880 	else
4881 		page_group_by_mobility_disabled = 0;
4882 
4883 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4884 		nr_online_nodes,
4885 		zonelist_order_name[current_zonelist_order],
4886 		page_group_by_mobility_disabled ? "off" : "on",
4887 		vm_total_pages);
4888 #ifdef CONFIG_NUMA
4889 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4890 #endif
4891 }
4892 
4893 /*
4894  * Helper functions to size the waitqueue hash table.
4895  * Essentially these want to choose hash table sizes sufficiently
4896  * large so that collisions trying to wait on pages are rare.
4897  * But in fact, the number of active page waitqueues on typical
4898  * systems is ridiculously low, less than 200. So this is even
4899  * conservative, even though it seems large.
4900  *
4901  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4902  * waitqueues, i.e. the size of the waitq table given the number of pages.
4903  */
4904 #define PAGES_PER_WAITQUEUE	256
4905 
4906 #ifndef CONFIG_MEMORY_HOTPLUG
4907 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4908 {
4909 	unsigned long size = 1;
4910 
4911 	pages /= PAGES_PER_WAITQUEUE;
4912 
4913 	while (size < pages)
4914 		size <<= 1;
4915 
4916 	/*
4917 	 * Once we have dozens or even hundreds of threads sleeping
4918 	 * on IO we've got bigger problems than wait queue collision.
4919 	 * Limit the size of the wait table to a reasonable size.
4920 	 */
4921 	size = min(size, 4096UL);
4922 
4923 	return max(size, 4UL);
4924 }
4925 #else
4926 /*
4927  * A zone's size might be changed by hot-add, so it is not possible to determine
4928  * a suitable size for its wait_table.  So we use the maximum size now.
4929  *
4930  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4931  *
4932  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4933  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4934  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4935  *
4936  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4937  * or more by the traditional way. (See above).  It equals:
4938  *
4939  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4940  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4941  *    powerpc (64K page size)             : =  (32G +16M)byte.
4942  */
4943 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4944 {
4945 	return 4096UL;
4946 }
4947 #endif
4948 
4949 /*
4950  * This is an integer logarithm so that shifts can be used later
4951  * to extract the more random high bits from the multiplicative
4952  * hash function before the remainder is taken.
4953  */
4954 static inline unsigned long wait_table_bits(unsigned long size)
4955 {
4956 	return ffz(~size);
4957 }
4958 
4959 /*
4960  * Initially all pages are reserved - free ones are freed
4961  * up by free_all_bootmem() once the early boot process is
4962  * done. Non-atomic initialization, single-pass.
4963  */
4964 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4965 		unsigned long start_pfn, enum memmap_context context)
4966 {
4967 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4968 	unsigned long end_pfn = start_pfn + size;
4969 	pg_data_t *pgdat = NODE_DATA(nid);
4970 	unsigned long pfn;
4971 	unsigned long nr_initialised = 0;
4972 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4973 	struct memblock_region *r = NULL, *tmp;
4974 #endif
4975 
4976 	if (highest_memmap_pfn < end_pfn - 1)
4977 		highest_memmap_pfn = end_pfn - 1;
4978 
4979 	/*
4980 	 * Honor reservation requested by the driver for this ZONE_DEVICE
4981 	 * memory
4982 	 */
4983 	if (altmap && start_pfn == altmap->base_pfn)
4984 		start_pfn += altmap->reserve;
4985 
4986 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4987 		/*
4988 		 * There can be holes in boot-time mem_map[]s handed to this
4989 		 * function.  They do not exist on hotplugged memory.
4990 		 */
4991 		if (context != MEMMAP_EARLY)
4992 			goto not_early;
4993 
4994 		if (!early_pfn_valid(pfn))
4995 			continue;
4996 		if (!early_pfn_in_nid(pfn, nid))
4997 			continue;
4998 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4999 			break;
5000 
5001 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5002 		/*
5003 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5004 		 * from zone_movable_pfn[nid] to end of each node should be
5005 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5006 		 */
5007 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
5008 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5009 				continue;
5010 
5011 		/*
5012 		 * Check given memblock attribute by firmware which can affect
5013 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5014 		 * mirrored, it's an overlapped memmap init. skip it.
5015 		 */
5016 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5017 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5018 				for_each_memblock(memory, tmp)
5019 					if (pfn < memblock_region_memory_end_pfn(tmp))
5020 						break;
5021 				r = tmp;
5022 			}
5023 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5024 			    memblock_is_mirror(r)) {
5025 				/* already initialized as NORMAL */
5026 				pfn = memblock_region_memory_end_pfn(r);
5027 				continue;
5028 			}
5029 		}
5030 #endif
5031 
5032 not_early:
5033 		/*
5034 		 * Mark the block movable so that blocks are reserved for
5035 		 * movable at startup. This will force kernel allocations
5036 		 * to reserve their blocks rather than leaking throughout
5037 		 * the address space during boot when many long-lived
5038 		 * kernel allocations are made.
5039 		 *
5040 		 * bitmap is created for zone's valid pfn range. but memmap
5041 		 * can be created for invalid pages (for alignment)
5042 		 * check here not to call set_pageblock_migratetype() against
5043 		 * pfn out of zone.
5044 		 */
5045 		if (!(pfn & (pageblock_nr_pages - 1))) {
5046 			struct page *page = pfn_to_page(pfn);
5047 
5048 			__init_single_page(page, pfn, zone, nid);
5049 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5050 		} else {
5051 			__init_single_pfn(pfn, zone, nid);
5052 		}
5053 	}
5054 }
5055 
5056 static void __meminit zone_init_free_lists(struct zone *zone)
5057 {
5058 	unsigned int order, t;
5059 	for_each_migratetype_order(order, t) {
5060 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5061 		zone->free_area[order].nr_free = 0;
5062 	}
5063 }
5064 
5065 #ifndef __HAVE_ARCH_MEMMAP_INIT
5066 #define memmap_init(size, nid, zone, start_pfn) \
5067 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5068 #endif
5069 
5070 static int zone_batchsize(struct zone *zone)
5071 {
5072 #ifdef CONFIG_MMU
5073 	int batch;
5074 
5075 	/*
5076 	 * The per-cpu-pages pools are set to around 1000th of the
5077 	 * size of the zone.  But no more than 1/2 of a meg.
5078 	 *
5079 	 * OK, so we don't know how big the cache is.  So guess.
5080 	 */
5081 	batch = zone->managed_pages / 1024;
5082 	if (batch * PAGE_SIZE > 512 * 1024)
5083 		batch = (512 * 1024) / PAGE_SIZE;
5084 	batch /= 4;		/* We effectively *= 4 below */
5085 	if (batch < 1)
5086 		batch = 1;
5087 
5088 	/*
5089 	 * Clamp the batch to a 2^n - 1 value. Having a power
5090 	 * of 2 value was found to be more likely to have
5091 	 * suboptimal cache aliasing properties in some cases.
5092 	 *
5093 	 * For example if 2 tasks are alternately allocating
5094 	 * batches of pages, one task can end up with a lot
5095 	 * of pages of one half of the possible page colors
5096 	 * and the other with pages of the other colors.
5097 	 */
5098 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5099 
5100 	return batch;
5101 
5102 #else
5103 	/* The deferral and batching of frees should be suppressed under NOMMU
5104 	 * conditions.
5105 	 *
5106 	 * The problem is that NOMMU needs to be able to allocate large chunks
5107 	 * of contiguous memory as there's no hardware page translation to
5108 	 * assemble apparent contiguous memory from discontiguous pages.
5109 	 *
5110 	 * Queueing large contiguous runs of pages for batching, however,
5111 	 * causes the pages to actually be freed in smaller chunks.  As there
5112 	 * can be a significant delay between the individual batches being
5113 	 * recycled, this leads to the once large chunks of space being
5114 	 * fragmented and becoming unavailable for high-order allocations.
5115 	 */
5116 	return 0;
5117 #endif
5118 }
5119 
5120 /*
5121  * pcp->high and pcp->batch values are related and dependent on one another:
5122  * ->batch must never be higher then ->high.
5123  * The following function updates them in a safe manner without read side
5124  * locking.
5125  *
5126  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5127  * those fields changing asynchronously (acording the the above rule).
5128  *
5129  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5130  * outside of boot time (or some other assurance that no concurrent updaters
5131  * exist).
5132  */
5133 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5134 		unsigned long batch)
5135 {
5136        /* start with a fail safe value for batch */
5137 	pcp->batch = 1;
5138 	smp_wmb();
5139 
5140        /* Update high, then batch, in order */
5141 	pcp->high = high;
5142 	smp_wmb();
5143 
5144 	pcp->batch = batch;
5145 }
5146 
5147 /* a companion to pageset_set_high() */
5148 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5149 {
5150 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5151 }
5152 
5153 static void pageset_init(struct per_cpu_pageset *p)
5154 {
5155 	struct per_cpu_pages *pcp;
5156 	int migratetype;
5157 
5158 	memset(p, 0, sizeof(*p));
5159 
5160 	pcp = &p->pcp;
5161 	pcp->count = 0;
5162 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5163 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5164 }
5165 
5166 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5167 {
5168 	pageset_init(p);
5169 	pageset_set_batch(p, batch);
5170 }
5171 
5172 /*
5173  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5174  * to the value high for the pageset p.
5175  */
5176 static void pageset_set_high(struct per_cpu_pageset *p,
5177 				unsigned long high)
5178 {
5179 	unsigned long batch = max(1UL, high / 4);
5180 	if ((high / 4) > (PAGE_SHIFT * 8))
5181 		batch = PAGE_SHIFT * 8;
5182 
5183 	pageset_update(&p->pcp, high, batch);
5184 }
5185 
5186 static void pageset_set_high_and_batch(struct zone *zone,
5187 				       struct per_cpu_pageset *pcp)
5188 {
5189 	if (percpu_pagelist_fraction)
5190 		pageset_set_high(pcp,
5191 			(zone->managed_pages /
5192 				percpu_pagelist_fraction));
5193 	else
5194 		pageset_set_batch(pcp, zone_batchsize(zone));
5195 }
5196 
5197 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5198 {
5199 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5200 
5201 	pageset_init(pcp);
5202 	pageset_set_high_and_batch(zone, pcp);
5203 }
5204 
5205 static void __meminit setup_zone_pageset(struct zone *zone)
5206 {
5207 	int cpu;
5208 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5209 	for_each_possible_cpu(cpu)
5210 		zone_pageset_init(zone, cpu);
5211 }
5212 
5213 /*
5214  * Allocate per cpu pagesets and initialize them.
5215  * Before this call only boot pagesets were available.
5216  */
5217 void __init setup_per_cpu_pageset(void)
5218 {
5219 	struct pglist_data *pgdat;
5220 	struct zone *zone;
5221 
5222 	for_each_populated_zone(zone)
5223 		setup_zone_pageset(zone);
5224 
5225 	for_each_online_pgdat(pgdat)
5226 		pgdat->per_cpu_nodestats =
5227 			alloc_percpu(struct per_cpu_nodestat);
5228 }
5229 
5230 static noinline __ref
5231 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
5232 {
5233 	int i;
5234 	size_t alloc_size;
5235 
5236 	/*
5237 	 * The per-page waitqueue mechanism uses hashed waitqueues
5238 	 * per zone.
5239 	 */
5240 	zone->wait_table_hash_nr_entries =
5241 		 wait_table_hash_nr_entries(zone_size_pages);
5242 	zone->wait_table_bits =
5243 		wait_table_bits(zone->wait_table_hash_nr_entries);
5244 	alloc_size = zone->wait_table_hash_nr_entries
5245 					* sizeof(wait_queue_head_t);
5246 
5247 	if (!slab_is_available()) {
5248 		zone->wait_table = (wait_queue_head_t *)
5249 			memblock_virt_alloc_node_nopanic(
5250 				alloc_size, zone->zone_pgdat->node_id);
5251 	} else {
5252 		/*
5253 		 * This case means that a zone whose size was 0 gets new memory
5254 		 * via memory hot-add.
5255 		 * But it may be the case that a new node was hot-added.  In
5256 		 * this case vmalloc() will not be able to use this new node's
5257 		 * memory - this wait_table must be initialized to use this new
5258 		 * node itself as well.
5259 		 * To use this new node's memory, further consideration will be
5260 		 * necessary.
5261 		 */
5262 		zone->wait_table = vmalloc(alloc_size);
5263 	}
5264 	if (!zone->wait_table)
5265 		return -ENOMEM;
5266 
5267 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
5268 		init_waitqueue_head(zone->wait_table + i);
5269 
5270 	return 0;
5271 }
5272 
5273 static __meminit void zone_pcp_init(struct zone *zone)
5274 {
5275 	/*
5276 	 * per cpu subsystem is not up at this point. The following code
5277 	 * relies on the ability of the linker to provide the
5278 	 * offset of a (static) per cpu variable into the per cpu area.
5279 	 */
5280 	zone->pageset = &boot_pageset;
5281 
5282 	if (populated_zone(zone))
5283 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5284 			zone->name, zone->present_pages,
5285 					 zone_batchsize(zone));
5286 }
5287 
5288 int __meminit init_currently_empty_zone(struct zone *zone,
5289 					unsigned long zone_start_pfn,
5290 					unsigned long size)
5291 {
5292 	struct pglist_data *pgdat = zone->zone_pgdat;
5293 	int ret;
5294 	ret = zone_wait_table_init(zone, size);
5295 	if (ret)
5296 		return ret;
5297 	pgdat->nr_zones = zone_idx(zone) + 1;
5298 
5299 	zone->zone_start_pfn = zone_start_pfn;
5300 
5301 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5302 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5303 			pgdat->node_id,
5304 			(unsigned long)zone_idx(zone),
5305 			zone_start_pfn, (zone_start_pfn + size));
5306 
5307 	zone_init_free_lists(zone);
5308 
5309 	return 0;
5310 }
5311 
5312 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5313 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5314 
5315 /*
5316  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5317  */
5318 int __meminit __early_pfn_to_nid(unsigned long pfn,
5319 					struct mminit_pfnnid_cache *state)
5320 {
5321 	unsigned long start_pfn, end_pfn;
5322 	int nid;
5323 
5324 	if (state->last_start <= pfn && pfn < state->last_end)
5325 		return state->last_nid;
5326 
5327 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5328 	if (nid != -1) {
5329 		state->last_start = start_pfn;
5330 		state->last_end = end_pfn;
5331 		state->last_nid = nid;
5332 	}
5333 
5334 	return nid;
5335 }
5336 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5337 
5338 /**
5339  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5340  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5341  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5342  *
5343  * If an architecture guarantees that all ranges registered contain no holes
5344  * and may be freed, this this function may be used instead of calling
5345  * memblock_free_early_nid() manually.
5346  */
5347 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5348 {
5349 	unsigned long start_pfn, end_pfn;
5350 	int i, this_nid;
5351 
5352 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5353 		start_pfn = min(start_pfn, max_low_pfn);
5354 		end_pfn = min(end_pfn, max_low_pfn);
5355 
5356 		if (start_pfn < end_pfn)
5357 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5358 					(end_pfn - start_pfn) << PAGE_SHIFT,
5359 					this_nid);
5360 	}
5361 }
5362 
5363 /**
5364  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5365  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5366  *
5367  * If an architecture guarantees that all ranges registered contain no holes and may
5368  * be freed, this function may be used instead of calling memory_present() manually.
5369  */
5370 void __init sparse_memory_present_with_active_regions(int nid)
5371 {
5372 	unsigned long start_pfn, end_pfn;
5373 	int i, this_nid;
5374 
5375 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5376 		memory_present(this_nid, start_pfn, end_pfn);
5377 }
5378 
5379 /**
5380  * get_pfn_range_for_nid - Return the start and end page frames for a node
5381  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5382  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5383  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5384  *
5385  * It returns the start and end page frame of a node based on information
5386  * provided by memblock_set_node(). If called for a node
5387  * with no available memory, a warning is printed and the start and end
5388  * PFNs will be 0.
5389  */
5390 void __meminit get_pfn_range_for_nid(unsigned int nid,
5391 			unsigned long *start_pfn, unsigned long *end_pfn)
5392 {
5393 	unsigned long this_start_pfn, this_end_pfn;
5394 	int i;
5395 
5396 	*start_pfn = -1UL;
5397 	*end_pfn = 0;
5398 
5399 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5400 		*start_pfn = min(*start_pfn, this_start_pfn);
5401 		*end_pfn = max(*end_pfn, this_end_pfn);
5402 	}
5403 
5404 	if (*start_pfn == -1UL)
5405 		*start_pfn = 0;
5406 }
5407 
5408 /*
5409  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5410  * assumption is made that zones within a node are ordered in monotonic
5411  * increasing memory addresses so that the "highest" populated zone is used
5412  */
5413 static void __init find_usable_zone_for_movable(void)
5414 {
5415 	int zone_index;
5416 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5417 		if (zone_index == ZONE_MOVABLE)
5418 			continue;
5419 
5420 		if (arch_zone_highest_possible_pfn[zone_index] >
5421 				arch_zone_lowest_possible_pfn[zone_index])
5422 			break;
5423 	}
5424 
5425 	VM_BUG_ON(zone_index == -1);
5426 	movable_zone = zone_index;
5427 }
5428 
5429 /*
5430  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5431  * because it is sized independent of architecture. Unlike the other zones,
5432  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5433  * in each node depending on the size of each node and how evenly kernelcore
5434  * is distributed. This helper function adjusts the zone ranges
5435  * provided by the architecture for a given node by using the end of the
5436  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5437  * zones within a node are in order of monotonic increases memory addresses
5438  */
5439 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5440 					unsigned long zone_type,
5441 					unsigned long node_start_pfn,
5442 					unsigned long node_end_pfn,
5443 					unsigned long *zone_start_pfn,
5444 					unsigned long *zone_end_pfn)
5445 {
5446 	/* Only adjust if ZONE_MOVABLE is on this node */
5447 	if (zone_movable_pfn[nid]) {
5448 		/* Size ZONE_MOVABLE */
5449 		if (zone_type == ZONE_MOVABLE) {
5450 			*zone_start_pfn = zone_movable_pfn[nid];
5451 			*zone_end_pfn = min(node_end_pfn,
5452 				arch_zone_highest_possible_pfn[movable_zone]);
5453 
5454 		/* Check if this whole range is within ZONE_MOVABLE */
5455 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5456 			*zone_start_pfn = *zone_end_pfn;
5457 	}
5458 }
5459 
5460 /*
5461  * Return the number of pages a zone spans in a node, including holes
5462  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5463  */
5464 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5465 					unsigned long zone_type,
5466 					unsigned long node_start_pfn,
5467 					unsigned long node_end_pfn,
5468 					unsigned long *zone_start_pfn,
5469 					unsigned long *zone_end_pfn,
5470 					unsigned long *ignored)
5471 {
5472 	/* When hotadd a new node from cpu_up(), the node should be empty */
5473 	if (!node_start_pfn && !node_end_pfn)
5474 		return 0;
5475 
5476 	/* Get the start and end of the zone */
5477 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5478 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5479 	adjust_zone_range_for_zone_movable(nid, zone_type,
5480 				node_start_pfn, node_end_pfn,
5481 				zone_start_pfn, zone_end_pfn);
5482 
5483 	/* Check that this node has pages within the zone's required range */
5484 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5485 		return 0;
5486 
5487 	/* Move the zone boundaries inside the node if necessary */
5488 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5489 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5490 
5491 	/* Return the spanned pages */
5492 	return *zone_end_pfn - *zone_start_pfn;
5493 }
5494 
5495 /*
5496  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5497  * then all holes in the requested range will be accounted for.
5498  */
5499 unsigned long __meminit __absent_pages_in_range(int nid,
5500 				unsigned long range_start_pfn,
5501 				unsigned long range_end_pfn)
5502 {
5503 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5504 	unsigned long start_pfn, end_pfn;
5505 	int i;
5506 
5507 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5508 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5509 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5510 		nr_absent -= end_pfn - start_pfn;
5511 	}
5512 	return nr_absent;
5513 }
5514 
5515 /**
5516  * absent_pages_in_range - Return number of page frames in holes within a range
5517  * @start_pfn: The start PFN to start searching for holes
5518  * @end_pfn: The end PFN to stop searching for holes
5519  *
5520  * It returns the number of pages frames in memory holes within a range.
5521  */
5522 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5523 							unsigned long end_pfn)
5524 {
5525 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5526 }
5527 
5528 /* Return the number of page frames in holes in a zone on a node */
5529 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5530 					unsigned long zone_type,
5531 					unsigned long node_start_pfn,
5532 					unsigned long node_end_pfn,
5533 					unsigned long *ignored)
5534 {
5535 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5536 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5537 	unsigned long zone_start_pfn, zone_end_pfn;
5538 	unsigned long nr_absent;
5539 
5540 	/* When hotadd a new node from cpu_up(), the node should be empty */
5541 	if (!node_start_pfn && !node_end_pfn)
5542 		return 0;
5543 
5544 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5545 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5546 
5547 	adjust_zone_range_for_zone_movable(nid, zone_type,
5548 			node_start_pfn, node_end_pfn,
5549 			&zone_start_pfn, &zone_end_pfn);
5550 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5551 
5552 	/*
5553 	 * ZONE_MOVABLE handling.
5554 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5555 	 * and vice versa.
5556 	 */
5557 	if (zone_movable_pfn[nid]) {
5558 		if (mirrored_kernelcore) {
5559 			unsigned long start_pfn, end_pfn;
5560 			struct memblock_region *r;
5561 
5562 			for_each_memblock(memory, r) {
5563 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5564 						  zone_start_pfn, zone_end_pfn);
5565 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5566 						zone_start_pfn, zone_end_pfn);
5567 
5568 				if (zone_type == ZONE_MOVABLE &&
5569 				    memblock_is_mirror(r))
5570 					nr_absent += end_pfn - start_pfn;
5571 
5572 				if (zone_type == ZONE_NORMAL &&
5573 				    !memblock_is_mirror(r))
5574 					nr_absent += end_pfn - start_pfn;
5575 			}
5576 		} else {
5577 			if (zone_type == ZONE_NORMAL)
5578 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5579 		}
5580 	}
5581 
5582 	return nr_absent;
5583 }
5584 
5585 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5586 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5587 					unsigned long zone_type,
5588 					unsigned long node_start_pfn,
5589 					unsigned long node_end_pfn,
5590 					unsigned long *zone_start_pfn,
5591 					unsigned long *zone_end_pfn,
5592 					unsigned long *zones_size)
5593 {
5594 	unsigned int zone;
5595 
5596 	*zone_start_pfn = node_start_pfn;
5597 	for (zone = 0; zone < zone_type; zone++)
5598 		*zone_start_pfn += zones_size[zone];
5599 
5600 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5601 
5602 	return zones_size[zone_type];
5603 }
5604 
5605 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5606 						unsigned long zone_type,
5607 						unsigned long node_start_pfn,
5608 						unsigned long node_end_pfn,
5609 						unsigned long *zholes_size)
5610 {
5611 	if (!zholes_size)
5612 		return 0;
5613 
5614 	return zholes_size[zone_type];
5615 }
5616 
5617 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5618 
5619 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5620 						unsigned long node_start_pfn,
5621 						unsigned long node_end_pfn,
5622 						unsigned long *zones_size,
5623 						unsigned long *zholes_size)
5624 {
5625 	unsigned long realtotalpages = 0, totalpages = 0;
5626 	enum zone_type i;
5627 
5628 	for (i = 0; i < MAX_NR_ZONES; i++) {
5629 		struct zone *zone = pgdat->node_zones + i;
5630 		unsigned long zone_start_pfn, zone_end_pfn;
5631 		unsigned long size, real_size;
5632 
5633 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5634 						  node_start_pfn,
5635 						  node_end_pfn,
5636 						  &zone_start_pfn,
5637 						  &zone_end_pfn,
5638 						  zones_size);
5639 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5640 						  node_start_pfn, node_end_pfn,
5641 						  zholes_size);
5642 		if (size)
5643 			zone->zone_start_pfn = zone_start_pfn;
5644 		else
5645 			zone->zone_start_pfn = 0;
5646 		zone->spanned_pages = size;
5647 		zone->present_pages = real_size;
5648 
5649 		totalpages += size;
5650 		realtotalpages += real_size;
5651 	}
5652 
5653 	pgdat->node_spanned_pages = totalpages;
5654 	pgdat->node_present_pages = realtotalpages;
5655 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5656 							realtotalpages);
5657 }
5658 
5659 #ifndef CONFIG_SPARSEMEM
5660 /*
5661  * Calculate the size of the zone->blockflags rounded to an unsigned long
5662  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5663  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5664  * round what is now in bits to nearest long in bits, then return it in
5665  * bytes.
5666  */
5667 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5668 {
5669 	unsigned long usemapsize;
5670 
5671 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5672 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5673 	usemapsize = usemapsize >> pageblock_order;
5674 	usemapsize *= NR_PAGEBLOCK_BITS;
5675 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5676 
5677 	return usemapsize / 8;
5678 }
5679 
5680 static void __init setup_usemap(struct pglist_data *pgdat,
5681 				struct zone *zone,
5682 				unsigned long zone_start_pfn,
5683 				unsigned long zonesize)
5684 {
5685 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5686 	zone->pageblock_flags = NULL;
5687 	if (usemapsize)
5688 		zone->pageblock_flags =
5689 			memblock_virt_alloc_node_nopanic(usemapsize,
5690 							 pgdat->node_id);
5691 }
5692 #else
5693 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5694 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5695 #endif /* CONFIG_SPARSEMEM */
5696 
5697 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5698 
5699 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5700 void __paginginit set_pageblock_order(void)
5701 {
5702 	unsigned int order;
5703 
5704 	/* Check that pageblock_nr_pages has not already been setup */
5705 	if (pageblock_order)
5706 		return;
5707 
5708 	if (HPAGE_SHIFT > PAGE_SHIFT)
5709 		order = HUGETLB_PAGE_ORDER;
5710 	else
5711 		order = MAX_ORDER - 1;
5712 
5713 	/*
5714 	 * Assume the largest contiguous order of interest is a huge page.
5715 	 * This value may be variable depending on boot parameters on IA64 and
5716 	 * powerpc.
5717 	 */
5718 	pageblock_order = order;
5719 }
5720 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5721 
5722 /*
5723  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5724  * is unused as pageblock_order is set at compile-time. See
5725  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5726  * the kernel config
5727  */
5728 void __paginginit set_pageblock_order(void)
5729 {
5730 }
5731 
5732 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5733 
5734 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5735 						   unsigned long present_pages)
5736 {
5737 	unsigned long pages = spanned_pages;
5738 
5739 	/*
5740 	 * Provide a more accurate estimation if there are holes within
5741 	 * the zone and SPARSEMEM is in use. If there are holes within the
5742 	 * zone, each populated memory region may cost us one or two extra
5743 	 * memmap pages due to alignment because memmap pages for each
5744 	 * populated regions may not naturally algined on page boundary.
5745 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5746 	 */
5747 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5748 	    IS_ENABLED(CONFIG_SPARSEMEM))
5749 		pages = present_pages;
5750 
5751 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5752 }
5753 
5754 /*
5755  * Set up the zone data structures:
5756  *   - mark all pages reserved
5757  *   - mark all memory queues empty
5758  *   - clear the memory bitmaps
5759  *
5760  * NOTE: pgdat should get zeroed by caller.
5761  */
5762 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5763 {
5764 	enum zone_type j;
5765 	int nid = pgdat->node_id;
5766 	int ret;
5767 
5768 	pgdat_resize_init(pgdat);
5769 #ifdef CONFIG_NUMA_BALANCING
5770 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5771 	pgdat->numabalancing_migrate_nr_pages = 0;
5772 	pgdat->numabalancing_migrate_next_window = jiffies;
5773 #endif
5774 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5775 	spin_lock_init(&pgdat->split_queue_lock);
5776 	INIT_LIST_HEAD(&pgdat->split_queue);
5777 	pgdat->split_queue_len = 0;
5778 #endif
5779 	init_waitqueue_head(&pgdat->kswapd_wait);
5780 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5781 #ifdef CONFIG_COMPACTION
5782 	init_waitqueue_head(&pgdat->kcompactd_wait);
5783 #endif
5784 	pgdat_page_ext_init(pgdat);
5785 	spin_lock_init(&pgdat->lru_lock);
5786 	lruvec_init(node_lruvec(pgdat));
5787 
5788 	for (j = 0; j < MAX_NR_ZONES; j++) {
5789 		struct zone *zone = pgdat->node_zones + j;
5790 		unsigned long size, realsize, freesize, memmap_pages;
5791 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5792 
5793 		size = zone->spanned_pages;
5794 		realsize = freesize = zone->present_pages;
5795 
5796 		/*
5797 		 * Adjust freesize so that it accounts for how much memory
5798 		 * is used by this zone for memmap. This affects the watermark
5799 		 * and per-cpu initialisations
5800 		 */
5801 		memmap_pages = calc_memmap_size(size, realsize);
5802 		if (!is_highmem_idx(j)) {
5803 			if (freesize >= memmap_pages) {
5804 				freesize -= memmap_pages;
5805 				if (memmap_pages)
5806 					printk(KERN_DEBUG
5807 					       "  %s zone: %lu pages used for memmap\n",
5808 					       zone_names[j], memmap_pages);
5809 			} else
5810 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5811 					zone_names[j], memmap_pages, freesize);
5812 		}
5813 
5814 		/* Account for reserved pages */
5815 		if (j == 0 && freesize > dma_reserve) {
5816 			freesize -= dma_reserve;
5817 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5818 					zone_names[0], dma_reserve);
5819 		}
5820 
5821 		if (!is_highmem_idx(j))
5822 			nr_kernel_pages += freesize;
5823 		/* Charge for highmem memmap if there are enough kernel pages */
5824 		else if (nr_kernel_pages > memmap_pages * 2)
5825 			nr_kernel_pages -= memmap_pages;
5826 		nr_all_pages += freesize;
5827 
5828 		/*
5829 		 * Set an approximate value for lowmem here, it will be adjusted
5830 		 * when the bootmem allocator frees pages into the buddy system.
5831 		 * And all highmem pages will be managed by the buddy system.
5832 		 */
5833 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5834 #ifdef CONFIG_NUMA
5835 		zone->node = nid;
5836 #endif
5837 		zone->name = zone_names[j];
5838 		zone->zone_pgdat = pgdat;
5839 		spin_lock_init(&zone->lock);
5840 		zone_seqlock_init(zone);
5841 		zone_pcp_init(zone);
5842 
5843 		if (!size)
5844 			continue;
5845 
5846 		set_pageblock_order();
5847 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5848 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5849 		BUG_ON(ret);
5850 		memmap_init(size, nid, j, zone_start_pfn);
5851 	}
5852 }
5853 
5854 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
5855 {
5856 	unsigned long __maybe_unused start = 0;
5857 	unsigned long __maybe_unused offset = 0;
5858 
5859 	/* Skip empty nodes */
5860 	if (!pgdat->node_spanned_pages)
5861 		return;
5862 
5863 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5864 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5865 	offset = pgdat->node_start_pfn - start;
5866 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5867 	if (!pgdat->node_mem_map) {
5868 		unsigned long size, end;
5869 		struct page *map;
5870 
5871 		/*
5872 		 * The zone's endpoints aren't required to be MAX_ORDER
5873 		 * aligned but the node_mem_map endpoints must be in order
5874 		 * for the buddy allocator to function correctly.
5875 		 */
5876 		end = pgdat_end_pfn(pgdat);
5877 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5878 		size =  (end - start) * sizeof(struct page);
5879 		map = alloc_remap(pgdat->node_id, size);
5880 		if (!map)
5881 			map = memblock_virt_alloc_node_nopanic(size,
5882 							       pgdat->node_id);
5883 		pgdat->node_mem_map = map + offset;
5884 	}
5885 #ifndef CONFIG_NEED_MULTIPLE_NODES
5886 	/*
5887 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5888 	 */
5889 	if (pgdat == NODE_DATA(0)) {
5890 		mem_map = NODE_DATA(0)->node_mem_map;
5891 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5892 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5893 			mem_map -= offset;
5894 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5895 	}
5896 #endif
5897 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5898 }
5899 
5900 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5901 		unsigned long node_start_pfn, unsigned long *zholes_size)
5902 {
5903 	pg_data_t *pgdat = NODE_DATA(nid);
5904 	unsigned long start_pfn = 0;
5905 	unsigned long end_pfn = 0;
5906 
5907 	/* pg_data_t should be reset to zero when it's allocated */
5908 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
5909 
5910 	reset_deferred_meminit(pgdat);
5911 	pgdat->node_id = nid;
5912 	pgdat->node_start_pfn = node_start_pfn;
5913 	pgdat->per_cpu_nodestats = NULL;
5914 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5915 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5916 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5917 		(u64)start_pfn << PAGE_SHIFT,
5918 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5919 #else
5920 	start_pfn = node_start_pfn;
5921 #endif
5922 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5923 				  zones_size, zholes_size);
5924 
5925 	alloc_node_mem_map(pgdat);
5926 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5927 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5928 		nid, (unsigned long)pgdat,
5929 		(unsigned long)pgdat->node_mem_map);
5930 #endif
5931 
5932 	free_area_init_core(pgdat);
5933 }
5934 
5935 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5936 
5937 #if MAX_NUMNODES > 1
5938 /*
5939  * Figure out the number of possible node ids.
5940  */
5941 void __init setup_nr_node_ids(void)
5942 {
5943 	unsigned int highest;
5944 
5945 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5946 	nr_node_ids = highest + 1;
5947 }
5948 #endif
5949 
5950 /**
5951  * node_map_pfn_alignment - determine the maximum internode alignment
5952  *
5953  * This function should be called after node map is populated and sorted.
5954  * It calculates the maximum power of two alignment which can distinguish
5955  * all the nodes.
5956  *
5957  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5958  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5959  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5960  * shifted, 1GiB is enough and this function will indicate so.
5961  *
5962  * This is used to test whether pfn -> nid mapping of the chosen memory
5963  * model has fine enough granularity to avoid incorrect mapping for the
5964  * populated node map.
5965  *
5966  * Returns the determined alignment in pfn's.  0 if there is no alignment
5967  * requirement (single node).
5968  */
5969 unsigned long __init node_map_pfn_alignment(void)
5970 {
5971 	unsigned long accl_mask = 0, last_end = 0;
5972 	unsigned long start, end, mask;
5973 	int last_nid = -1;
5974 	int i, nid;
5975 
5976 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5977 		if (!start || last_nid < 0 || last_nid == nid) {
5978 			last_nid = nid;
5979 			last_end = end;
5980 			continue;
5981 		}
5982 
5983 		/*
5984 		 * Start with a mask granular enough to pin-point to the
5985 		 * start pfn and tick off bits one-by-one until it becomes
5986 		 * too coarse to separate the current node from the last.
5987 		 */
5988 		mask = ~((1 << __ffs(start)) - 1);
5989 		while (mask && last_end <= (start & (mask << 1)))
5990 			mask <<= 1;
5991 
5992 		/* accumulate all internode masks */
5993 		accl_mask |= mask;
5994 	}
5995 
5996 	/* convert mask to number of pages */
5997 	return ~accl_mask + 1;
5998 }
5999 
6000 /* Find the lowest pfn for a node */
6001 static unsigned long __init find_min_pfn_for_node(int nid)
6002 {
6003 	unsigned long min_pfn = ULONG_MAX;
6004 	unsigned long start_pfn;
6005 	int i;
6006 
6007 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6008 		min_pfn = min(min_pfn, start_pfn);
6009 
6010 	if (min_pfn == ULONG_MAX) {
6011 		pr_warn("Could not find start_pfn for node %d\n", nid);
6012 		return 0;
6013 	}
6014 
6015 	return min_pfn;
6016 }
6017 
6018 /**
6019  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6020  *
6021  * It returns the minimum PFN based on information provided via
6022  * memblock_set_node().
6023  */
6024 unsigned long __init find_min_pfn_with_active_regions(void)
6025 {
6026 	return find_min_pfn_for_node(MAX_NUMNODES);
6027 }
6028 
6029 /*
6030  * early_calculate_totalpages()
6031  * Sum pages in active regions for movable zone.
6032  * Populate N_MEMORY for calculating usable_nodes.
6033  */
6034 static unsigned long __init early_calculate_totalpages(void)
6035 {
6036 	unsigned long totalpages = 0;
6037 	unsigned long start_pfn, end_pfn;
6038 	int i, nid;
6039 
6040 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6041 		unsigned long pages = end_pfn - start_pfn;
6042 
6043 		totalpages += pages;
6044 		if (pages)
6045 			node_set_state(nid, N_MEMORY);
6046 	}
6047 	return totalpages;
6048 }
6049 
6050 /*
6051  * Find the PFN the Movable zone begins in each node. Kernel memory
6052  * is spread evenly between nodes as long as the nodes have enough
6053  * memory. When they don't, some nodes will have more kernelcore than
6054  * others
6055  */
6056 static void __init find_zone_movable_pfns_for_nodes(void)
6057 {
6058 	int i, nid;
6059 	unsigned long usable_startpfn;
6060 	unsigned long kernelcore_node, kernelcore_remaining;
6061 	/* save the state before borrow the nodemask */
6062 	nodemask_t saved_node_state = node_states[N_MEMORY];
6063 	unsigned long totalpages = early_calculate_totalpages();
6064 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6065 	struct memblock_region *r;
6066 
6067 	/* Need to find movable_zone earlier when movable_node is specified. */
6068 	find_usable_zone_for_movable();
6069 
6070 	/*
6071 	 * If movable_node is specified, ignore kernelcore and movablecore
6072 	 * options.
6073 	 */
6074 	if (movable_node_is_enabled()) {
6075 		for_each_memblock(memory, r) {
6076 			if (!memblock_is_hotpluggable(r))
6077 				continue;
6078 
6079 			nid = r->nid;
6080 
6081 			usable_startpfn = PFN_DOWN(r->base);
6082 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6083 				min(usable_startpfn, zone_movable_pfn[nid]) :
6084 				usable_startpfn;
6085 		}
6086 
6087 		goto out2;
6088 	}
6089 
6090 	/*
6091 	 * If kernelcore=mirror is specified, ignore movablecore option
6092 	 */
6093 	if (mirrored_kernelcore) {
6094 		bool mem_below_4gb_not_mirrored = false;
6095 
6096 		for_each_memblock(memory, r) {
6097 			if (memblock_is_mirror(r))
6098 				continue;
6099 
6100 			nid = r->nid;
6101 
6102 			usable_startpfn = memblock_region_memory_base_pfn(r);
6103 
6104 			if (usable_startpfn < 0x100000) {
6105 				mem_below_4gb_not_mirrored = true;
6106 				continue;
6107 			}
6108 
6109 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6110 				min(usable_startpfn, zone_movable_pfn[nid]) :
6111 				usable_startpfn;
6112 		}
6113 
6114 		if (mem_below_4gb_not_mirrored)
6115 			pr_warn("This configuration results in unmirrored kernel memory.");
6116 
6117 		goto out2;
6118 	}
6119 
6120 	/*
6121 	 * If movablecore=nn[KMG] was specified, calculate what size of
6122 	 * kernelcore that corresponds so that memory usable for
6123 	 * any allocation type is evenly spread. If both kernelcore
6124 	 * and movablecore are specified, then the value of kernelcore
6125 	 * will be used for required_kernelcore if it's greater than
6126 	 * what movablecore would have allowed.
6127 	 */
6128 	if (required_movablecore) {
6129 		unsigned long corepages;
6130 
6131 		/*
6132 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6133 		 * was requested by the user
6134 		 */
6135 		required_movablecore =
6136 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6137 		required_movablecore = min(totalpages, required_movablecore);
6138 		corepages = totalpages - required_movablecore;
6139 
6140 		required_kernelcore = max(required_kernelcore, corepages);
6141 	}
6142 
6143 	/*
6144 	 * If kernelcore was not specified or kernelcore size is larger
6145 	 * than totalpages, there is no ZONE_MOVABLE.
6146 	 */
6147 	if (!required_kernelcore || required_kernelcore >= totalpages)
6148 		goto out;
6149 
6150 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6151 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6152 
6153 restart:
6154 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6155 	kernelcore_node = required_kernelcore / usable_nodes;
6156 	for_each_node_state(nid, N_MEMORY) {
6157 		unsigned long start_pfn, end_pfn;
6158 
6159 		/*
6160 		 * Recalculate kernelcore_node if the division per node
6161 		 * now exceeds what is necessary to satisfy the requested
6162 		 * amount of memory for the kernel
6163 		 */
6164 		if (required_kernelcore < kernelcore_node)
6165 			kernelcore_node = required_kernelcore / usable_nodes;
6166 
6167 		/*
6168 		 * As the map is walked, we track how much memory is usable
6169 		 * by the kernel using kernelcore_remaining. When it is
6170 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6171 		 */
6172 		kernelcore_remaining = kernelcore_node;
6173 
6174 		/* Go through each range of PFNs within this node */
6175 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6176 			unsigned long size_pages;
6177 
6178 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6179 			if (start_pfn >= end_pfn)
6180 				continue;
6181 
6182 			/* Account for what is only usable for kernelcore */
6183 			if (start_pfn < usable_startpfn) {
6184 				unsigned long kernel_pages;
6185 				kernel_pages = min(end_pfn, usable_startpfn)
6186 								- start_pfn;
6187 
6188 				kernelcore_remaining -= min(kernel_pages,
6189 							kernelcore_remaining);
6190 				required_kernelcore -= min(kernel_pages,
6191 							required_kernelcore);
6192 
6193 				/* Continue if range is now fully accounted */
6194 				if (end_pfn <= usable_startpfn) {
6195 
6196 					/*
6197 					 * Push zone_movable_pfn to the end so
6198 					 * that if we have to rebalance
6199 					 * kernelcore across nodes, we will
6200 					 * not double account here
6201 					 */
6202 					zone_movable_pfn[nid] = end_pfn;
6203 					continue;
6204 				}
6205 				start_pfn = usable_startpfn;
6206 			}
6207 
6208 			/*
6209 			 * The usable PFN range for ZONE_MOVABLE is from
6210 			 * start_pfn->end_pfn. Calculate size_pages as the
6211 			 * number of pages used as kernelcore
6212 			 */
6213 			size_pages = end_pfn - start_pfn;
6214 			if (size_pages > kernelcore_remaining)
6215 				size_pages = kernelcore_remaining;
6216 			zone_movable_pfn[nid] = start_pfn + size_pages;
6217 
6218 			/*
6219 			 * Some kernelcore has been met, update counts and
6220 			 * break if the kernelcore for this node has been
6221 			 * satisfied
6222 			 */
6223 			required_kernelcore -= min(required_kernelcore,
6224 								size_pages);
6225 			kernelcore_remaining -= size_pages;
6226 			if (!kernelcore_remaining)
6227 				break;
6228 		}
6229 	}
6230 
6231 	/*
6232 	 * If there is still required_kernelcore, we do another pass with one
6233 	 * less node in the count. This will push zone_movable_pfn[nid] further
6234 	 * along on the nodes that still have memory until kernelcore is
6235 	 * satisfied
6236 	 */
6237 	usable_nodes--;
6238 	if (usable_nodes && required_kernelcore > usable_nodes)
6239 		goto restart;
6240 
6241 out2:
6242 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6243 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6244 		zone_movable_pfn[nid] =
6245 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6246 
6247 out:
6248 	/* restore the node_state */
6249 	node_states[N_MEMORY] = saved_node_state;
6250 }
6251 
6252 /* Any regular or high memory on that node ? */
6253 static void check_for_memory(pg_data_t *pgdat, int nid)
6254 {
6255 	enum zone_type zone_type;
6256 
6257 	if (N_MEMORY == N_NORMAL_MEMORY)
6258 		return;
6259 
6260 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6261 		struct zone *zone = &pgdat->node_zones[zone_type];
6262 		if (populated_zone(zone)) {
6263 			node_set_state(nid, N_HIGH_MEMORY);
6264 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6265 			    zone_type <= ZONE_NORMAL)
6266 				node_set_state(nid, N_NORMAL_MEMORY);
6267 			break;
6268 		}
6269 	}
6270 }
6271 
6272 /**
6273  * free_area_init_nodes - Initialise all pg_data_t and zone data
6274  * @max_zone_pfn: an array of max PFNs for each zone
6275  *
6276  * This will call free_area_init_node() for each active node in the system.
6277  * Using the page ranges provided by memblock_set_node(), the size of each
6278  * zone in each node and their holes is calculated. If the maximum PFN
6279  * between two adjacent zones match, it is assumed that the zone is empty.
6280  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6281  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6282  * starts where the previous one ended. For example, ZONE_DMA32 starts
6283  * at arch_max_dma_pfn.
6284  */
6285 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6286 {
6287 	unsigned long start_pfn, end_pfn;
6288 	int i, nid;
6289 
6290 	/* Record where the zone boundaries are */
6291 	memset(arch_zone_lowest_possible_pfn, 0,
6292 				sizeof(arch_zone_lowest_possible_pfn));
6293 	memset(arch_zone_highest_possible_pfn, 0,
6294 				sizeof(arch_zone_highest_possible_pfn));
6295 
6296 	start_pfn = find_min_pfn_with_active_regions();
6297 
6298 	for (i = 0; i < MAX_NR_ZONES; i++) {
6299 		if (i == ZONE_MOVABLE)
6300 			continue;
6301 
6302 		end_pfn = max(max_zone_pfn[i], start_pfn);
6303 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6304 		arch_zone_highest_possible_pfn[i] = end_pfn;
6305 
6306 		start_pfn = end_pfn;
6307 	}
6308 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6309 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6310 
6311 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6312 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6313 	find_zone_movable_pfns_for_nodes();
6314 
6315 	/* Print out the zone ranges */
6316 	pr_info("Zone ranges:\n");
6317 	for (i = 0; i < MAX_NR_ZONES; i++) {
6318 		if (i == ZONE_MOVABLE)
6319 			continue;
6320 		pr_info("  %-8s ", zone_names[i]);
6321 		if (arch_zone_lowest_possible_pfn[i] ==
6322 				arch_zone_highest_possible_pfn[i])
6323 			pr_cont("empty\n");
6324 		else
6325 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6326 				(u64)arch_zone_lowest_possible_pfn[i]
6327 					<< PAGE_SHIFT,
6328 				((u64)arch_zone_highest_possible_pfn[i]
6329 					<< PAGE_SHIFT) - 1);
6330 	}
6331 
6332 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6333 	pr_info("Movable zone start for each node\n");
6334 	for (i = 0; i < MAX_NUMNODES; i++) {
6335 		if (zone_movable_pfn[i])
6336 			pr_info("  Node %d: %#018Lx\n", i,
6337 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6338 	}
6339 
6340 	/* Print out the early node map */
6341 	pr_info("Early memory node ranges\n");
6342 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6343 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6344 			(u64)start_pfn << PAGE_SHIFT,
6345 			((u64)end_pfn << PAGE_SHIFT) - 1);
6346 
6347 	/* Initialise every node */
6348 	mminit_verify_pageflags_layout();
6349 	setup_nr_node_ids();
6350 	for_each_online_node(nid) {
6351 		pg_data_t *pgdat = NODE_DATA(nid);
6352 		free_area_init_node(nid, NULL,
6353 				find_min_pfn_for_node(nid), NULL);
6354 
6355 		/* Any memory on that node */
6356 		if (pgdat->node_present_pages)
6357 			node_set_state(nid, N_MEMORY);
6358 		check_for_memory(pgdat, nid);
6359 	}
6360 }
6361 
6362 static int __init cmdline_parse_core(char *p, unsigned long *core)
6363 {
6364 	unsigned long long coremem;
6365 	if (!p)
6366 		return -EINVAL;
6367 
6368 	coremem = memparse(p, &p);
6369 	*core = coremem >> PAGE_SHIFT;
6370 
6371 	/* Paranoid check that UL is enough for the coremem value */
6372 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6373 
6374 	return 0;
6375 }
6376 
6377 /*
6378  * kernelcore=size sets the amount of memory for use for allocations that
6379  * cannot be reclaimed or migrated.
6380  */
6381 static int __init cmdline_parse_kernelcore(char *p)
6382 {
6383 	/* parse kernelcore=mirror */
6384 	if (parse_option_str(p, "mirror")) {
6385 		mirrored_kernelcore = true;
6386 		return 0;
6387 	}
6388 
6389 	return cmdline_parse_core(p, &required_kernelcore);
6390 }
6391 
6392 /*
6393  * movablecore=size sets the amount of memory for use for allocations that
6394  * can be reclaimed or migrated.
6395  */
6396 static int __init cmdline_parse_movablecore(char *p)
6397 {
6398 	return cmdline_parse_core(p, &required_movablecore);
6399 }
6400 
6401 early_param("kernelcore", cmdline_parse_kernelcore);
6402 early_param("movablecore", cmdline_parse_movablecore);
6403 
6404 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6405 
6406 void adjust_managed_page_count(struct page *page, long count)
6407 {
6408 	spin_lock(&managed_page_count_lock);
6409 	page_zone(page)->managed_pages += count;
6410 	totalram_pages += count;
6411 #ifdef CONFIG_HIGHMEM
6412 	if (PageHighMem(page))
6413 		totalhigh_pages += count;
6414 #endif
6415 	spin_unlock(&managed_page_count_lock);
6416 }
6417 EXPORT_SYMBOL(adjust_managed_page_count);
6418 
6419 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6420 {
6421 	void *pos;
6422 	unsigned long pages = 0;
6423 
6424 	start = (void *)PAGE_ALIGN((unsigned long)start);
6425 	end = (void *)((unsigned long)end & PAGE_MASK);
6426 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6427 		if ((unsigned int)poison <= 0xFF)
6428 			memset(pos, poison, PAGE_SIZE);
6429 		free_reserved_page(virt_to_page(pos));
6430 	}
6431 
6432 	if (pages && s)
6433 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6434 			s, pages << (PAGE_SHIFT - 10), start, end);
6435 
6436 	return pages;
6437 }
6438 EXPORT_SYMBOL(free_reserved_area);
6439 
6440 #ifdef	CONFIG_HIGHMEM
6441 void free_highmem_page(struct page *page)
6442 {
6443 	__free_reserved_page(page);
6444 	totalram_pages++;
6445 	page_zone(page)->managed_pages++;
6446 	totalhigh_pages++;
6447 }
6448 #endif
6449 
6450 
6451 void __init mem_init_print_info(const char *str)
6452 {
6453 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6454 	unsigned long init_code_size, init_data_size;
6455 
6456 	physpages = get_num_physpages();
6457 	codesize = _etext - _stext;
6458 	datasize = _edata - _sdata;
6459 	rosize = __end_rodata - __start_rodata;
6460 	bss_size = __bss_stop - __bss_start;
6461 	init_data_size = __init_end - __init_begin;
6462 	init_code_size = _einittext - _sinittext;
6463 
6464 	/*
6465 	 * Detect special cases and adjust section sizes accordingly:
6466 	 * 1) .init.* may be embedded into .data sections
6467 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6468 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6469 	 * 3) .rodata.* may be embedded into .text or .data sections.
6470 	 */
6471 #define adj_init_size(start, end, size, pos, adj) \
6472 	do { \
6473 		if (start <= pos && pos < end && size > adj) \
6474 			size -= adj; \
6475 	} while (0)
6476 
6477 	adj_init_size(__init_begin, __init_end, init_data_size,
6478 		     _sinittext, init_code_size);
6479 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6480 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6481 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6482 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6483 
6484 #undef	adj_init_size
6485 
6486 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6487 #ifdef	CONFIG_HIGHMEM
6488 		", %luK highmem"
6489 #endif
6490 		"%s%s)\n",
6491 		nr_free_pages() << (PAGE_SHIFT - 10),
6492 		physpages << (PAGE_SHIFT - 10),
6493 		codesize >> 10, datasize >> 10, rosize >> 10,
6494 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6495 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6496 		totalcma_pages << (PAGE_SHIFT - 10),
6497 #ifdef	CONFIG_HIGHMEM
6498 		totalhigh_pages << (PAGE_SHIFT - 10),
6499 #endif
6500 		str ? ", " : "", str ? str : "");
6501 }
6502 
6503 /**
6504  * set_dma_reserve - set the specified number of pages reserved in the first zone
6505  * @new_dma_reserve: The number of pages to mark reserved
6506  *
6507  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6508  * In the DMA zone, a significant percentage may be consumed by kernel image
6509  * and other unfreeable allocations which can skew the watermarks badly. This
6510  * function may optionally be used to account for unfreeable pages in the
6511  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6512  * smaller per-cpu batchsize.
6513  */
6514 void __init set_dma_reserve(unsigned long new_dma_reserve)
6515 {
6516 	dma_reserve = new_dma_reserve;
6517 }
6518 
6519 void __init free_area_init(unsigned long *zones_size)
6520 {
6521 	free_area_init_node(0, zones_size,
6522 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6523 }
6524 
6525 static int page_alloc_cpu_notify(struct notifier_block *self,
6526 				 unsigned long action, void *hcpu)
6527 {
6528 	int cpu = (unsigned long)hcpu;
6529 
6530 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6531 		lru_add_drain_cpu(cpu);
6532 		drain_pages(cpu);
6533 
6534 		/*
6535 		 * Spill the event counters of the dead processor
6536 		 * into the current processors event counters.
6537 		 * This artificially elevates the count of the current
6538 		 * processor.
6539 		 */
6540 		vm_events_fold_cpu(cpu);
6541 
6542 		/*
6543 		 * Zero the differential counters of the dead processor
6544 		 * so that the vm statistics are consistent.
6545 		 *
6546 		 * This is only okay since the processor is dead and cannot
6547 		 * race with what we are doing.
6548 		 */
6549 		cpu_vm_stats_fold(cpu);
6550 	}
6551 	return NOTIFY_OK;
6552 }
6553 
6554 void __init page_alloc_init(void)
6555 {
6556 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6557 }
6558 
6559 /*
6560  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6561  *	or min_free_kbytes changes.
6562  */
6563 static void calculate_totalreserve_pages(void)
6564 {
6565 	struct pglist_data *pgdat;
6566 	unsigned long reserve_pages = 0;
6567 	enum zone_type i, j;
6568 
6569 	for_each_online_pgdat(pgdat) {
6570 
6571 		pgdat->totalreserve_pages = 0;
6572 
6573 		for (i = 0; i < MAX_NR_ZONES; i++) {
6574 			struct zone *zone = pgdat->node_zones + i;
6575 			long max = 0;
6576 
6577 			/* Find valid and maximum lowmem_reserve in the zone */
6578 			for (j = i; j < MAX_NR_ZONES; j++) {
6579 				if (zone->lowmem_reserve[j] > max)
6580 					max = zone->lowmem_reserve[j];
6581 			}
6582 
6583 			/* we treat the high watermark as reserved pages. */
6584 			max += high_wmark_pages(zone);
6585 
6586 			if (max > zone->managed_pages)
6587 				max = zone->managed_pages;
6588 
6589 			pgdat->totalreserve_pages += max;
6590 
6591 			reserve_pages += max;
6592 		}
6593 	}
6594 	totalreserve_pages = reserve_pages;
6595 }
6596 
6597 /*
6598  * setup_per_zone_lowmem_reserve - called whenever
6599  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6600  *	has a correct pages reserved value, so an adequate number of
6601  *	pages are left in the zone after a successful __alloc_pages().
6602  */
6603 static void setup_per_zone_lowmem_reserve(void)
6604 {
6605 	struct pglist_data *pgdat;
6606 	enum zone_type j, idx;
6607 
6608 	for_each_online_pgdat(pgdat) {
6609 		for (j = 0; j < MAX_NR_ZONES; j++) {
6610 			struct zone *zone = pgdat->node_zones + j;
6611 			unsigned long managed_pages = zone->managed_pages;
6612 
6613 			zone->lowmem_reserve[j] = 0;
6614 
6615 			idx = j;
6616 			while (idx) {
6617 				struct zone *lower_zone;
6618 
6619 				idx--;
6620 
6621 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6622 					sysctl_lowmem_reserve_ratio[idx] = 1;
6623 
6624 				lower_zone = pgdat->node_zones + idx;
6625 				lower_zone->lowmem_reserve[j] = managed_pages /
6626 					sysctl_lowmem_reserve_ratio[idx];
6627 				managed_pages += lower_zone->managed_pages;
6628 			}
6629 		}
6630 	}
6631 
6632 	/* update totalreserve_pages */
6633 	calculate_totalreserve_pages();
6634 }
6635 
6636 static void __setup_per_zone_wmarks(void)
6637 {
6638 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6639 	unsigned long lowmem_pages = 0;
6640 	struct zone *zone;
6641 	unsigned long flags;
6642 
6643 	/* Calculate total number of !ZONE_HIGHMEM pages */
6644 	for_each_zone(zone) {
6645 		if (!is_highmem(zone))
6646 			lowmem_pages += zone->managed_pages;
6647 	}
6648 
6649 	for_each_zone(zone) {
6650 		u64 tmp;
6651 
6652 		spin_lock_irqsave(&zone->lock, flags);
6653 		tmp = (u64)pages_min * zone->managed_pages;
6654 		do_div(tmp, lowmem_pages);
6655 		if (is_highmem(zone)) {
6656 			/*
6657 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6658 			 * need highmem pages, so cap pages_min to a small
6659 			 * value here.
6660 			 *
6661 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6662 			 * deltas control asynch page reclaim, and so should
6663 			 * not be capped for highmem.
6664 			 */
6665 			unsigned long min_pages;
6666 
6667 			min_pages = zone->managed_pages / 1024;
6668 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6669 			zone->watermark[WMARK_MIN] = min_pages;
6670 		} else {
6671 			/*
6672 			 * If it's a lowmem zone, reserve a number of pages
6673 			 * proportionate to the zone's size.
6674 			 */
6675 			zone->watermark[WMARK_MIN] = tmp;
6676 		}
6677 
6678 		/*
6679 		 * Set the kswapd watermarks distance according to the
6680 		 * scale factor in proportion to available memory, but
6681 		 * ensure a minimum size on small systems.
6682 		 */
6683 		tmp = max_t(u64, tmp >> 2,
6684 			    mult_frac(zone->managed_pages,
6685 				      watermark_scale_factor, 10000));
6686 
6687 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6688 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6689 
6690 		spin_unlock_irqrestore(&zone->lock, flags);
6691 	}
6692 
6693 	/* update totalreserve_pages */
6694 	calculate_totalreserve_pages();
6695 }
6696 
6697 /**
6698  * setup_per_zone_wmarks - called when min_free_kbytes changes
6699  * or when memory is hot-{added|removed}
6700  *
6701  * Ensures that the watermark[min,low,high] values for each zone are set
6702  * correctly with respect to min_free_kbytes.
6703  */
6704 void setup_per_zone_wmarks(void)
6705 {
6706 	mutex_lock(&zonelists_mutex);
6707 	__setup_per_zone_wmarks();
6708 	mutex_unlock(&zonelists_mutex);
6709 }
6710 
6711 /*
6712  * Initialise min_free_kbytes.
6713  *
6714  * For small machines we want it small (128k min).  For large machines
6715  * we want it large (64MB max).  But it is not linear, because network
6716  * bandwidth does not increase linearly with machine size.  We use
6717  *
6718  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6719  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6720  *
6721  * which yields
6722  *
6723  * 16MB:	512k
6724  * 32MB:	724k
6725  * 64MB:	1024k
6726  * 128MB:	1448k
6727  * 256MB:	2048k
6728  * 512MB:	2896k
6729  * 1024MB:	4096k
6730  * 2048MB:	5792k
6731  * 4096MB:	8192k
6732  * 8192MB:	11584k
6733  * 16384MB:	16384k
6734  */
6735 int __meminit init_per_zone_wmark_min(void)
6736 {
6737 	unsigned long lowmem_kbytes;
6738 	int new_min_free_kbytes;
6739 
6740 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6741 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6742 
6743 	if (new_min_free_kbytes > user_min_free_kbytes) {
6744 		min_free_kbytes = new_min_free_kbytes;
6745 		if (min_free_kbytes < 128)
6746 			min_free_kbytes = 128;
6747 		if (min_free_kbytes > 65536)
6748 			min_free_kbytes = 65536;
6749 	} else {
6750 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6751 				new_min_free_kbytes, user_min_free_kbytes);
6752 	}
6753 	setup_per_zone_wmarks();
6754 	refresh_zone_stat_thresholds();
6755 	setup_per_zone_lowmem_reserve();
6756 
6757 #ifdef CONFIG_NUMA
6758 	setup_min_unmapped_ratio();
6759 	setup_min_slab_ratio();
6760 #endif
6761 
6762 	return 0;
6763 }
6764 core_initcall(init_per_zone_wmark_min)
6765 
6766 /*
6767  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6768  *	that we can call two helper functions whenever min_free_kbytes
6769  *	changes.
6770  */
6771 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6772 	void __user *buffer, size_t *length, loff_t *ppos)
6773 {
6774 	int rc;
6775 
6776 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6777 	if (rc)
6778 		return rc;
6779 
6780 	if (write) {
6781 		user_min_free_kbytes = min_free_kbytes;
6782 		setup_per_zone_wmarks();
6783 	}
6784 	return 0;
6785 }
6786 
6787 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6788 	void __user *buffer, size_t *length, loff_t *ppos)
6789 {
6790 	int rc;
6791 
6792 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6793 	if (rc)
6794 		return rc;
6795 
6796 	if (write)
6797 		setup_per_zone_wmarks();
6798 
6799 	return 0;
6800 }
6801 
6802 #ifdef CONFIG_NUMA
6803 static void setup_min_unmapped_ratio(void)
6804 {
6805 	pg_data_t *pgdat;
6806 	struct zone *zone;
6807 
6808 	for_each_online_pgdat(pgdat)
6809 		pgdat->min_unmapped_pages = 0;
6810 
6811 	for_each_zone(zone)
6812 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
6813 				sysctl_min_unmapped_ratio) / 100;
6814 }
6815 
6816 
6817 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6818 	void __user *buffer, size_t *length, loff_t *ppos)
6819 {
6820 	int rc;
6821 
6822 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6823 	if (rc)
6824 		return rc;
6825 
6826 	setup_min_unmapped_ratio();
6827 
6828 	return 0;
6829 }
6830 
6831 static void setup_min_slab_ratio(void)
6832 {
6833 	pg_data_t *pgdat;
6834 	struct zone *zone;
6835 
6836 	for_each_online_pgdat(pgdat)
6837 		pgdat->min_slab_pages = 0;
6838 
6839 	for_each_zone(zone)
6840 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
6841 				sysctl_min_slab_ratio) / 100;
6842 }
6843 
6844 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6845 	void __user *buffer, size_t *length, loff_t *ppos)
6846 {
6847 	int rc;
6848 
6849 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6850 	if (rc)
6851 		return rc;
6852 
6853 	setup_min_slab_ratio();
6854 
6855 	return 0;
6856 }
6857 #endif
6858 
6859 /*
6860  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6861  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6862  *	whenever sysctl_lowmem_reserve_ratio changes.
6863  *
6864  * The reserve ratio obviously has absolutely no relation with the
6865  * minimum watermarks. The lowmem reserve ratio can only make sense
6866  * if in function of the boot time zone sizes.
6867  */
6868 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6869 	void __user *buffer, size_t *length, loff_t *ppos)
6870 {
6871 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6872 	setup_per_zone_lowmem_reserve();
6873 	return 0;
6874 }
6875 
6876 /*
6877  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6878  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6879  * pagelist can have before it gets flushed back to buddy allocator.
6880  */
6881 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6882 	void __user *buffer, size_t *length, loff_t *ppos)
6883 {
6884 	struct zone *zone;
6885 	int old_percpu_pagelist_fraction;
6886 	int ret;
6887 
6888 	mutex_lock(&pcp_batch_high_lock);
6889 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6890 
6891 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6892 	if (!write || ret < 0)
6893 		goto out;
6894 
6895 	/* Sanity checking to avoid pcp imbalance */
6896 	if (percpu_pagelist_fraction &&
6897 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6898 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6899 		ret = -EINVAL;
6900 		goto out;
6901 	}
6902 
6903 	/* No change? */
6904 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6905 		goto out;
6906 
6907 	for_each_populated_zone(zone) {
6908 		unsigned int cpu;
6909 
6910 		for_each_possible_cpu(cpu)
6911 			pageset_set_high_and_batch(zone,
6912 					per_cpu_ptr(zone->pageset, cpu));
6913 	}
6914 out:
6915 	mutex_unlock(&pcp_batch_high_lock);
6916 	return ret;
6917 }
6918 
6919 #ifdef CONFIG_NUMA
6920 int hashdist = HASHDIST_DEFAULT;
6921 
6922 static int __init set_hashdist(char *str)
6923 {
6924 	if (!str)
6925 		return 0;
6926 	hashdist = simple_strtoul(str, &str, 0);
6927 	return 1;
6928 }
6929 __setup("hashdist=", set_hashdist);
6930 #endif
6931 
6932 /*
6933  * allocate a large system hash table from bootmem
6934  * - it is assumed that the hash table must contain an exact power-of-2
6935  *   quantity of entries
6936  * - limit is the number of hash buckets, not the total allocation size
6937  */
6938 void *__init alloc_large_system_hash(const char *tablename,
6939 				     unsigned long bucketsize,
6940 				     unsigned long numentries,
6941 				     int scale,
6942 				     int flags,
6943 				     unsigned int *_hash_shift,
6944 				     unsigned int *_hash_mask,
6945 				     unsigned long low_limit,
6946 				     unsigned long high_limit)
6947 {
6948 	unsigned long long max = high_limit;
6949 	unsigned long log2qty, size;
6950 	void *table = NULL;
6951 
6952 	/* allow the kernel cmdline to have a say */
6953 	if (!numentries) {
6954 		/* round applicable memory size up to nearest megabyte */
6955 		numentries = nr_kernel_pages;
6956 
6957 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6958 		if (PAGE_SHIFT < 20)
6959 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6960 
6961 		/* limit to 1 bucket per 2^scale bytes of low memory */
6962 		if (scale > PAGE_SHIFT)
6963 			numentries >>= (scale - PAGE_SHIFT);
6964 		else
6965 			numentries <<= (PAGE_SHIFT - scale);
6966 
6967 		/* Make sure we've got at least a 0-order allocation.. */
6968 		if (unlikely(flags & HASH_SMALL)) {
6969 			/* Makes no sense without HASH_EARLY */
6970 			WARN_ON(!(flags & HASH_EARLY));
6971 			if (!(numentries >> *_hash_shift)) {
6972 				numentries = 1UL << *_hash_shift;
6973 				BUG_ON(!numentries);
6974 			}
6975 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6976 			numentries = PAGE_SIZE / bucketsize;
6977 	}
6978 	numentries = roundup_pow_of_two(numentries);
6979 
6980 	/* limit allocation size to 1/16 total memory by default */
6981 	if (max == 0) {
6982 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6983 		do_div(max, bucketsize);
6984 	}
6985 	max = min(max, 0x80000000ULL);
6986 
6987 	if (numentries < low_limit)
6988 		numentries = low_limit;
6989 	if (numentries > max)
6990 		numentries = max;
6991 
6992 	log2qty = ilog2(numentries);
6993 
6994 	do {
6995 		size = bucketsize << log2qty;
6996 		if (flags & HASH_EARLY)
6997 			table = memblock_virt_alloc_nopanic(size, 0);
6998 		else if (hashdist)
6999 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7000 		else {
7001 			/*
7002 			 * If bucketsize is not a power-of-two, we may free
7003 			 * some pages at the end of hash table which
7004 			 * alloc_pages_exact() automatically does
7005 			 */
7006 			if (get_order(size) < MAX_ORDER) {
7007 				table = alloc_pages_exact(size, GFP_ATOMIC);
7008 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7009 			}
7010 		}
7011 	} while (!table && size > PAGE_SIZE && --log2qty);
7012 
7013 	if (!table)
7014 		panic("Failed to allocate %s hash table\n", tablename);
7015 
7016 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7017 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7018 
7019 	if (_hash_shift)
7020 		*_hash_shift = log2qty;
7021 	if (_hash_mask)
7022 		*_hash_mask = (1 << log2qty) - 1;
7023 
7024 	return table;
7025 }
7026 
7027 /*
7028  * This function checks whether pageblock includes unmovable pages or not.
7029  * If @count is not zero, it is okay to include less @count unmovable pages
7030  *
7031  * PageLRU check without isolation or lru_lock could race so that
7032  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7033  * expect this function should be exact.
7034  */
7035 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7036 			 bool skip_hwpoisoned_pages)
7037 {
7038 	unsigned long pfn, iter, found;
7039 	int mt;
7040 
7041 	/*
7042 	 * For avoiding noise data, lru_add_drain_all() should be called
7043 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7044 	 */
7045 	if (zone_idx(zone) == ZONE_MOVABLE)
7046 		return false;
7047 	mt = get_pageblock_migratetype(page);
7048 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7049 		return false;
7050 
7051 	pfn = page_to_pfn(page);
7052 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7053 		unsigned long check = pfn + iter;
7054 
7055 		if (!pfn_valid_within(check))
7056 			continue;
7057 
7058 		page = pfn_to_page(check);
7059 
7060 		/*
7061 		 * Hugepages are not in LRU lists, but they're movable.
7062 		 * We need not scan over tail pages bacause we don't
7063 		 * handle each tail page individually in migration.
7064 		 */
7065 		if (PageHuge(page)) {
7066 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7067 			continue;
7068 		}
7069 
7070 		/*
7071 		 * We can't use page_count without pin a page
7072 		 * because another CPU can free compound page.
7073 		 * This check already skips compound tails of THP
7074 		 * because their page->_refcount is zero at all time.
7075 		 */
7076 		if (!page_ref_count(page)) {
7077 			if (PageBuddy(page))
7078 				iter += (1 << page_order(page)) - 1;
7079 			continue;
7080 		}
7081 
7082 		/*
7083 		 * The HWPoisoned page may be not in buddy system, and
7084 		 * page_count() is not 0.
7085 		 */
7086 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7087 			continue;
7088 
7089 		if (!PageLRU(page))
7090 			found++;
7091 		/*
7092 		 * If there are RECLAIMABLE pages, we need to check
7093 		 * it.  But now, memory offline itself doesn't call
7094 		 * shrink_node_slabs() and it still to be fixed.
7095 		 */
7096 		/*
7097 		 * If the page is not RAM, page_count()should be 0.
7098 		 * we don't need more check. This is an _used_ not-movable page.
7099 		 *
7100 		 * The problematic thing here is PG_reserved pages. PG_reserved
7101 		 * is set to both of a memory hole page and a _used_ kernel
7102 		 * page at boot.
7103 		 */
7104 		if (found > count)
7105 			return true;
7106 	}
7107 	return false;
7108 }
7109 
7110 bool is_pageblock_removable_nolock(struct page *page)
7111 {
7112 	struct zone *zone;
7113 	unsigned long pfn;
7114 
7115 	/*
7116 	 * We have to be careful here because we are iterating over memory
7117 	 * sections which are not zone aware so we might end up outside of
7118 	 * the zone but still within the section.
7119 	 * We have to take care about the node as well. If the node is offline
7120 	 * its NODE_DATA will be NULL - see page_zone.
7121 	 */
7122 	if (!node_online(page_to_nid(page)))
7123 		return false;
7124 
7125 	zone = page_zone(page);
7126 	pfn = page_to_pfn(page);
7127 	if (!zone_spans_pfn(zone, pfn))
7128 		return false;
7129 
7130 	return !has_unmovable_pages(zone, page, 0, true);
7131 }
7132 
7133 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7134 
7135 static unsigned long pfn_max_align_down(unsigned long pfn)
7136 {
7137 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7138 			     pageblock_nr_pages) - 1);
7139 }
7140 
7141 static unsigned long pfn_max_align_up(unsigned long pfn)
7142 {
7143 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7144 				pageblock_nr_pages));
7145 }
7146 
7147 /* [start, end) must belong to a single zone. */
7148 static int __alloc_contig_migrate_range(struct compact_control *cc,
7149 					unsigned long start, unsigned long end)
7150 {
7151 	/* This function is based on compact_zone() from compaction.c. */
7152 	unsigned long nr_reclaimed;
7153 	unsigned long pfn = start;
7154 	unsigned int tries = 0;
7155 	int ret = 0;
7156 
7157 	migrate_prep();
7158 
7159 	while (pfn < end || !list_empty(&cc->migratepages)) {
7160 		if (fatal_signal_pending(current)) {
7161 			ret = -EINTR;
7162 			break;
7163 		}
7164 
7165 		if (list_empty(&cc->migratepages)) {
7166 			cc->nr_migratepages = 0;
7167 			pfn = isolate_migratepages_range(cc, pfn, end);
7168 			if (!pfn) {
7169 				ret = -EINTR;
7170 				break;
7171 			}
7172 			tries = 0;
7173 		} else if (++tries == 5) {
7174 			ret = ret < 0 ? ret : -EBUSY;
7175 			break;
7176 		}
7177 
7178 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7179 							&cc->migratepages);
7180 		cc->nr_migratepages -= nr_reclaimed;
7181 
7182 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7183 				    NULL, 0, cc->mode, MR_CMA);
7184 	}
7185 	if (ret < 0) {
7186 		putback_movable_pages(&cc->migratepages);
7187 		return ret;
7188 	}
7189 	return 0;
7190 }
7191 
7192 /**
7193  * alloc_contig_range() -- tries to allocate given range of pages
7194  * @start:	start PFN to allocate
7195  * @end:	one-past-the-last PFN to allocate
7196  * @migratetype:	migratetype of the underlaying pageblocks (either
7197  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7198  *			in range must have the same migratetype and it must
7199  *			be either of the two.
7200  *
7201  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7202  * aligned, however it's the caller's responsibility to guarantee that
7203  * we are the only thread that changes migrate type of pageblocks the
7204  * pages fall in.
7205  *
7206  * The PFN range must belong to a single zone.
7207  *
7208  * Returns zero on success or negative error code.  On success all
7209  * pages which PFN is in [start, end) are allocated for the caller and
7210  * need to be freed with free_contig_range().
7211  */
7212 int alloc_contig_range(unsigned long start, unsigned long end,
7213 		       unsigned migratetype)
7214 {
7215 	unsigned long outer_start, outer_end;
7216 	unsigned int order;
7217 	int ret = 0;
7218 
7219 	struct compact_control cc = {
7220 		.nr_migratepages = 0,
7221 		.order = -1,
7222 		.zone = page_zone(pfn_to_page(start)),
7223 		.mode = MIGRATE_SYNC,
7224 		.ignore_skip_hint = true,
7225 	};
7226 	INIT_LIST_HEAD(&cc.migratepages);
7227 
7228 	/*
7229 	 * What we do here is we mark all pageblocks in range as
7230 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7231 	 * have different sizes, and due to the way page allocator
7232 	 * work, we align the range to biggest of the two pages so
7233 	 * that page allocator won't try to merge buddies from
7234 	 * different pageblocks and change MIGRATE_ISOLATE to some
7235 	 * other migration type.
7236 	 *
7237 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7238 	 * migrate the pages from an unaligned range (ie. pages that
7239 	 * we are interested in).  This will put all the pages in
7240 	 * range back to page allocator as MIGRATE_ISOLATE.
7241 	 *
7242 	 * When this is done, we take the pages in range from page
7243 	 * allocator removing them from the buddy system.  This way
7244 	 * page allocator will never consider using them.
7245 	 *
7246 	 * This lets us mark the pageblocks back as
7247 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7248 	 * aligned range but not in the unaligned, original range are
7249 	 * put back to page allocator so that buddy can use them.
7250 	 */
7251 
7252 	ret = start_isolate_page_range(pfn_max_align_down(start),
7253 				       pfn_max_align_up(end), migratetype,
7254 				       false);
7255 	if (ret)
7256 		return ret;
7257 
7258 	/*
7259 	 * In case of -EBUSY, we'd like to know which page causes problem.
7260 	 * So, just fall through. We will check it in test_pages_isolated().
7261 	 */
7262 	ret = __alloc_contig_migrate_range(&cc, start, end);
7263 	if (ret && ret != -EBUSY)
7264 		goto done;
7265 
7266 	/*
7267 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7268 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7269 	 * more, all pages in [start, end) are free in page allocator.
7270 	 * What we are going to do is to allocate all pages from
7271 	 * [start, end) (that is remove them from page allocator).
7272 	 *
7273 	 * The only problem is that pages at the beginning and at the
7274 	 * end of interesting range may be not aligned with pages that
7275 	 * page allocator holds, ie. they can be part of higher order
7276 	 * pages.  Because of this, we reserve the bigger range and
7277 	 * once this is done free the pages we are not interested in.
7278 	 *
7279 	 * We don't have to hold zone->lock here because the pages are
7280 	 * isolated thus they won't get removed from buddy.
7281 	 */
7282 
7283 	lru_add_drain_all();
7284 	drain_all_pages(cc.zone);
7285 
7286 	order = 0;
7287 	outer_start = start;
7288 	while (!PageBuddy(pfn_to_page(outer_start))) {
7289 		if (++order >= MAX_ORDER) {
7290 			outer_start = start;
7291 			break;
7292 		}
7293 		outer_start &= ~0UL << order;
7294 	}
7295 
7296 	if (outer_start != start) {
7297 		order = page_order(pfn_to_page(outer_start));
7298 
7299 		/*
7300 		 * outer_start page could be small order buddy page and
7301 		 * it doesn't include start page. Adjust outer_start
7302 		 * in this case to report failed page properly
7303 		 * on tracepoint in test_pages_isolated()
7304 		 */
7305 		if (outer_start + (1UL << order) <= start)
7306 			outer_start = start;
7307 	}
7308 
7309 	/* Make sure the range is really isolated. */
7310 	if (test_pages_isolated(outer_start, end, false)) {
7311 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7312 			__func__, outer_start, end);
7313 		ret = -EBUSY;
7314 		goto done;
7315 	}
7316 
7317 	/* Grab isolated pages from freelists. */
7318 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7319 	if (!outer_end) {
7320 		ret = -EBUSY;
7321 		goto done;
7322 	}
7323 
7324 	/* Free head and tail (if any) */
7325 	if (start != outer_start)
7326 		free_contig_range(outer_start, start - outer_start);
7327 	if (end != outer_end)
7328 		free_contig_range(end, outer_end - end);
7329 
7330 done:
7331 	undo_isolate_page_range(pfn_max_align_down(start),
7332 				pfn_max_align_up(end), migratetype);
7333 	return ret;
7334 }
7335 
7336 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7337 {
7338 	unsigned int count = 0;
7339 
7340 	for (; nr_pages--; pfn++) {
7341 		struct page *page = pfn_to_page(pfn);
7342 
7343 		count += page_count(page) != 1;
7344 		__free_page(page);
7345 	}
7346 	WARN(count != 0, "%d pages are still in use!\n", count);
7347 }
7348 #endif
7349 
7350 #ifdef CONFIG_MEMORY_HOTPLUG
7351 /*
7352  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7353  * page high values need to be recalulated.
7354  */
7355 void __meminit zone_pcp_update(struct zone *zone)
7356 {
7357 	unsigned cpu;
7358 	mutex_lock(&pcp_batch_high_lock);
7359 	for_each_possible_cpu(cpu)
7360 		pageset_set_high_and_batch(zone,
7361 				per_cpu_ptr(zone->pageset, cpu));
7362 	mutex_unlock(&pcp_batch_high_lock);
7363 }
7364 #endif
7365 
7366 void zone_pcp_reset(struct zone *zone)
7367 {
7368 	unsigned long flags;
7369 	int cpu;
7370 	struct per_cpu_pageset *pset;
7371 
7372 	/* avoid races with drain_pages()  */
7373 	local_irq_save(flags);
7374 	if (zone->pageset != &boot_pageset) {
7375 		for_each_online_cpu(cpu) {
7376 			pset = per_cpu_ptr(zone->pageset, cpu);
7377 			drain_zonestat(zone, pset);
7378 		}
7379 		free_percpu(zone->pageset);
7380 		zone->pageset = &boot_pageset;
7381 	}
7382 	local_irq_restore(flags);
7383 }
7384 
7385 #ifdef CONFIG_MEMORY_HOTREMOVE
7386 /*
7387  * All pages in the range must be in a single zone and isolated
7388  * before calling this.
7389  */
7390 void
7391 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7392 {
7393 	struct page *page;
7394 	struct zone *zone;
7395 	unsigned int order, i;
7396 	unsigned long pfn;
7397 	unsigned long flags;
7398 	/* find the first valid pfn */
7399 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7400 		if (pfn_valid(pfn))
7401 			break;
7402 	if (pfn == end_pfn)
7403 		return;
7404 	zone = page_zone(pfn_to_page(pfn));
7405 	spin_lock_irqsave(&zone->lock, flags);
7406 	pfn = start_pfn;
7407 	while (pfn < end_pfn) {
7408 		if (!pfn_valid(pfn)) {
7409 			pfn++;
7410 			continue;
7411 		}
7412 		page = pfn_to_page(pfn);
7413 		/*
7414 		 * The HWPoisoned page may be not in buddy system, and
7415 		 * page_count() is not 0.
7416 		 */
7417 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7418 			pfn++;
7419 			SetPageReserved(page);
7420 			continue;
7421 		}
7422 
7423 		BUG_ON(page_count(page));
7424 		BUG_ON(!PageBuddy(page));
7425 		order = page_order(page);
7426 #ifdef CONFIG_DEBUG_VM
7427 		pr_info("remove from free list %lx %d %lx\n",
7428 			pfn, 1 << order, end_pfn);
7429 #endif
7430 		list_del(&page->lru);
7431 		rmv_page_order(page);
7432 		zone->free_area[order].nr_free--;
7433 		for (i = 0; i < (1 << order); i++)
7434 			SetPageReserved((page+i));
7435 		pfn += (1 << order);
7436 	}
7437 	spin_unlock_irqrestore(&zone->lock, flags);
7438 }
7439 #endif
7440 
7441 bool is_free_buddy_page(struct page *page)
7442 {
7443 	struct zone *zone = page_zone(page);
7444 	unsigned long pfn = page_to_pfn(page);
7445 	unsigned long flags;
7446 	unsigned int order;
7447 
7448 	spin_lock_irqsave(&zone->lock, flags);
7449 	for (order = 0; order < MAX_ORDER; order++) {
7450 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7451 
7452 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7453 			break;
7454 	}
7455 	spin_unlock_irqrestore(&zone->lock, flags);
7456 
7457 	return order < MAX_ORDER;
7458 }
7459