xref: /openbmc/linux/mm/page_alloc.c (revision 110e6f26)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/page_ext.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 
67 #include <asm/sections.h>
68 #include <asm/tlbflush.h>
69 #include <asm/div64.h>
70 #include "internal.h"
71 
72 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
73 static DEFINE_MUTEX(pcp_batch_high_lock);
74 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
75 
76 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
77 DEFINE_PER_CPU(int, numa_node);
78 EXPORT_PER_CPU_SYMBOL(numa_node);
79 #endif
80 
81 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
82 /*
83  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
84  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
85  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
86  * defined in <linux/topology.h>.
87  */
88 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
89 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
90 int _node_numa_mem_[MAX_NUMNODES];
91 #endif
92 
93 /*
94  * Array of node states.
95  */
96 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
97 	[N_POSSIBLE] = NODE_MASK_ALL,
98 	[N_ONLINE] = { { [0] = 1UL } },
99 #ifndef CONFIG_NUMA
100 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
101 #ifdef CONFIG_HIGHMEM
102 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
103 #endif
104 #ifdef CONFIG_MOVABLE_NODE
105 	[N_MEMORY] = { { [0] = 1UL } },
106 #endif
107 	[N_CPU] = { { [0] = 1UL } },
108 #endif	/* NUMA */
109 };
110 EXPORT_SYMBOL(node_states);
111 
112 /* Protect totalram_pages and zone->managed_pages */
113 static DEFINE_SPINLOCK(managed_page_count_lock);
114 
115 unsigned long totalram_pages __read_mostly;
116 unsigned long totalreserve_pages __read_mostly;
117 unsigned long totalcma_pages __read_mostly;
118 
119 int percpu_pagelist_fraction;
120 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
121 
122 /*
123  * A cached value of the page's pageblock's migratetype, used when the page is
124  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
125  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
126  * Also the migratetype set in the page does not necessarily match the pcplist
127  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
128  * other index - this ensures that it will be put on the correct CMA freelist.
129  */
130 static inline int get_pcppage_migratetype(struct page *page)
131 {
132 	return page->index;
133 }
134 
135 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
136 {
137 	page->index = migratetype;
138 }
139 
140 #ifdef CONFIG_PM_SLEEP
141 /*
142  * The following functions are used by the suspend/hibernate code to temporarily
143  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
144  * while devices are suspended.  To avoid races with the suspend/hibernate code,
145  * they should always be called with pm_mutex held (gfp_allowed_mask also should
146  * only be modified with pm_mutex held, unless the suspend/hibernate code is
147  * guaranteed not to run in parallel with that modification).
148  */
149 
150 static gfp_t saved_gfp_mask;
151 
152 void pm_restore_gfp_mask(void)
153 {
154 	WARN_ON(!mutex_is_locked(&pm_mutex));
155 	if (saved_gfp_mask) {
156 		gfp_allowed_mask = saved_gfp_mask;
157 		saved_gfp_mask = 0;
158 	}
159 }
160 
161 void pm_restrict_gfp_mask(void)
162 {
163 	WARN_ON(!mutex_is_locked(&pm_mutex));
164 	WARN_ON(saved_gfp_mask);
165 	saved_gfp_mask = gfp_allowed_mask;
166 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
167 }
168 
169 bool pm_suspended_storage(void)
170 {
171 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
172 		return false;
173 	return true;
174 }
175 #endif /* CONFIG_PM_SLEEP */
176 
177 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
178 unsigned int pageblock_order __read_mostly;
179 #endif
180 
181 static void __free_pages_ok(struct page *page, unsigned int order);
182 
183 /*
184  * results with 256, 32 in the lowmem_reserve sysctl:
185  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
186  *	1G machine -> (16M dma, 784M normal, 224M high)
187  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
188  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
189  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
190  *
191  * TBD: should special case ZONE_DMA32 machines here - in those we normally
192  * don't need any ZONE_NORMAL reservation
193  */
194 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
195 #ifdef CONFIG_ZONE_DMA
196 	 256,
197 #endif
198 #ifdef CONFIG_ZONE_DMA32
199 	 256,
200 #endif
201 #ifdef CONFIG_HIGHMEM
202 	 32,
203 #endif
204 	 32,
205 };
206 
207 EXPORT_SYMBOL(totalram_pages);
208 
209 static char * const zone_names[MAX_NR_ZONES] = {
210 #ifdef CONFIG_ZONE_DMA
211 	 "DMA",
212 #endif
213 #ifdef CONFIG_ZONE_DMA32
214 	 "DMA32",
215 #endif
216 	 "Normal",
217 #ifdef CONFIG_HIGHMEM
218 	 "HighMem",
219 #endif
220 	 "Movable",
221 #ifdef CONFIG_ZONE_DEVICE
222 	 "Device",
223 #endif
224 };
225 
226 char * const migratetype_names[MIGRATE_TYPES] = {
227 	"Unmovable",
228 	"Movable",
229 	"Reclaimable",
230 	"HighAtomic",
231 #ifdef CONFIG_CMA
232 	"CMA",
233 #endif
234 #ifdef CONFIG_MEMORY_ISOLATION
235 	"Isolate",
236 #endif
237 };
238 
239 compound_page_dtor * const compound_page_dtors[] = {
240 	NULL,
241 	free_compound_page,
242 #ifdef CONFIG_HUGETLB_PAGE
243 	free_huge_page,
244 #endif
245 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
246 	free_transhuge_page,
247 #endif
248 };
249 
250 int min_free_kbytes = 1024;
251 int user_min_free_kbytes = -1;
252 int watermark_scale_factor = 10;
253 
254 static unsigned long __meminitdata nr_kernel_pages;
255 static unsigned long __meminitdata nr_all_pages;
256 static unsigned long __meminitdata dma_reserve;
257 
258 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
259 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
260 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
261 static unsigned long __initdata required_kernelcore;
262 static unsigned long __initdata required_movablecore;
263 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
264 static bool mirrored_kernelcore;
265 
266 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
267 int movable_zone;
268 EXPORT_SYMBOL(movable_zone);
269 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
270 
271 #if MAX_NUMNODES > 1
272 int nr_node_ids __read_mostly = MAX_NUMNODES;
273 int nr_online_nodes __read_mostly = 1;
274 EXPORT_SYMBOL(nr_node_ids);
275 EXPORT_SYMBOL(nr_online_nodes);
276 #endif
277 
278 int page_group_by_mobility_disabled __read_mostly;
279 
280 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
281 static inline void reset_deferred_meminit(pg_data_t *pgdat)
282 {
283 	pgdat->first_deferred_pfn = ULONG_MAX;
284 }
285 
286 /* Returns true if the struct page for the pfn is uninitialised */
287 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
288 {
289 	if (pfn >= NODE_DATA(early_pfn_to_nid(pfn))->first_deferred_pfn)
290 		return true;
291 
292 	return false;
293 }
294 
295 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
296 {
297 	if (pfn >= NODE_DATA(nid)->first_deferred_pfn)
298 		return true;
299 
300 	return false;
301 }
302 
303 /*
304  * Returns false when the remaining initialisation should be deferred until
305  * later in the boot cycle when it can be parallelised.
306  */
307 static inline bool update_defer_init(pg_data_t *pgdat,
308 				unsigned long pfn, unsigned long zone_end,
309 				unsigned long *nr_initialised)
310 {
311 	unsigned long max_initialise;
312 
313 	/* Always populate low zones for address-contrained allocations */
314 	if (zone_end < pgdat_end_pfn(pgdat))
315 		return true;
316 	/*
317 	 * Initialise at least 2G of a node but also take into account that
318 	 * two large system hashes that can take up 1GB for 0.25TB/node.
319 	 */
320 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
321 		(pgdat->node_spanned_pages >> 8));
322 
323 	(*nr_initialised)++;
324 	if ((*nr_initialised > max_initialise) &&
325 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
326 		pgdat->first_deferred_pfn = pfn;
327 		return false;
328 	}
329 
330 	return true;
331 }
332 #else
333 static inline void reset_deferred_meminit(pg_data_t *pgdat)
334 {
335 }
336 
337 static inline bool early_page_uninitialised(unsigned long pfn)
338 {
339 	return false;
340 }
341 
342 static inline bool early_page_nid_uninitialised(unsigned long pfn, int nid)
343 {
344 	return false;
345 }
346 
347 static inline bool update_defer_init(pg_data_t *pgdat,
348 				unsigned long pfn, unsigned long zone_end,
349 				unsigned long *nr_initialised)
350 {
351 	return true;
352 }
353 #endif
354 
355 
356 void set_pageblock_migratetype(struct page *page, int migratetype)
357 {
358 	if (unlikely(page_group_by_mobility_disabled &&
359 		     migratetype < MIGRATE_PCPTYPES))
360 		migratetype = MIGRATE_UNMOVABLE;
361 
362 	set_pageblock_flags_group(page, (unsigned long)migratetype,
363 					PB_migrate, PB_migrate_end);
364 }
365 
366 #ifdef CONFIG_DEBUG_VM
367 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
368 {
369 	int ret = 0;
370 	unsigned seq;
371 	unsigned long pfn = page_to_pfn(page);
372 	unsigned long sp, start_pfn;
373 
374 	do {
375 		seq = zone_span_seqbegin(zone);
376 		start_pfn = zone->zone_start_pfn;
377 		sp = zone->spanned_pages;
378 		if (!zone_spans_pfn(zone, pfn))
379 			ret = 1;
380 	} while (zone_span_seqretry(zone, seq));
381 
382 	if (ret)
383 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
384 			pfn, zone_to_nid(zone), zone->name,
385 			start_pfn, start_pfn + sp);
386 
387 	return ret;
388 }
389 
390 static int page_is_consistent(struct zone *zone, struct page *page)
391 {
392 	if (!pfn_valid_within(page_to_pfn(page)))
393 		return 0;
394 	if (zone != page_zone(page))
395 		return 0;
396 
397 	return 1;
398 }
399 /*
400  * Temporary debugging check for pages not lying within a given zone.
401  */
402 static int bad_range(struct zone *zone, struct page *page)
403 {
404 	if (page_outside_zone_boundaries(zone, page))
405 		return 1;
406 	if (!page_is_consistent(zone, page))
407 		return 1;
408 
409 	return 0;
410 }
411 #else
412 static inline int bad_range(struct zone *zone, struct page *page)
413 {
414 	return 0;
415 }
416 #endif
417 
418 static void bad_page(struct page *page, const char *reason,
419 		unsigned long bad_flags)
420 {
421 	static unsigned long resume;
422 	static unsigned long nr_shown;
423 	static unsigned long nr_unshown;
424 
425 	/* Don't complain about poisoned pages */
426 	if (PageHWPoison(page)) {
427 		page_mapcount_reset(page); /* remove PageBuddy */
428 		return;
429 	}
430 
431 	/*
432 	 * Allow a burst of 60 reports, then keep quiet for that minute;
433 	 * or allow a steady drip of one report per second.
434 	 */
435 	if (nr_shown == 60) {
436 		if (time_before(jiffies, resume)) {
437 			nr_unshown++;
438 			goto out;
439 		}
440 		if (nr_unshown) {
441 			pr_alert(
442 			      "BUG: Bad page state: %lu messages suppressed\n",
443 				nr_unshown);
444 			nr_unshown = 0;
445 		}
446 		nr_shown = 0;
447 	}
448 	if (nr_shown++ == 0)
449 		resume = jiffies + 60 * HZ;
450 
451 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
452 		current->comm, page_to_pfn(page));
453 	__dump_page(page, reason);
454 	bad_flags &= page->flags;
455 	if (bad_flags)
456 		pr_alert("bad because of flags: %#lx(%pGp)\n",
457 						bad_flags, &bad_flags);
458 	dump_page_owner(page);
459 
460 	print_modules();
461 	dump_stack();
462 out:
463 	/* Leave bad fields for debug, except PageBuddy could make trouble */
464 	page_mapcount_reset(page); /* remove PageBuddy */
465 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
466 }
467 
468 /*
469  * Higher-order pages are called "compound pages".  They are structured thusly:
470  *
471  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
472  *
473  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
474  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
475  *
476  * The first tail page's ->compound_dtor holds the offset in array of compound
477  * page destructors. See compound_page_dtors.
478  *
479  * The first tail page's ->compound_order holds the order of allocation.
480  * This usage means that zero-order pages may not be compound.
481  */
482 
483 void free_compound_page(struct page *page)
484 {
485 	__free_pages_ok(page, compound_order(page));
486 }
487 
488 void prep_compound_page(struct page *page, unsigned int order)
489 {
490 	int i;
491 	int nr_pages = 1 << order;
492 
493 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
494 	set_compound_order(page, order);
495 	__SetPageHead(page);
496 	for (i = 1; i < nr_pages; i++) {
497 		struct page *p = page + i;
498 		set_page_count(p, 0);
499 		p->mapping = TAIL_MAPPING;
500 		set_compound_head(p, page);
501 	}
502 	atomic_set(compound_mapcount_ptr(page), -1);
503 }
504 
505 #ifdef CONFIG_DEBUG_PAGEALLOC
506 unsigned int _debug_guardpage_minorder;
507 bool _debug_pagealloc_enabled __read_mostly
508 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
509 EXPORT_SYMBOL(_debug_pagealloc_enabled);
510 bool _debug_guardpage_enabled __read_mostly;
511 
512 static int __init early_debug_pagealloc(char *buf)
513 {
514 	if (!buf)
515 		return -EINVAL;
516 
517 	if (strcmp(buf, "on") == 0)
518 		_debug_pagealloc_enabled = true;
519 
520 	if (strcmp(buf, "off") == 0)
521 		_debug_pagealloc_enabled = false;
522 
523 	return 0;
524 }
525 early_param("debug_pagealloc", early_debug_pagealloc);
526 
527 static bool need_debug_guardpage(void)
528 {
529 	/* If we don't use debug_pagealloc, we don't need guard page */
530 	if (!debug_pagealloc_enabled())
531 		return false;
532 
533 	return true;
534 }
535 
536 static void init_debug_guardpage(void)
537 {
538 	if (!debug_pagealloc_enabled())
539 		return;
540 
541 	_debug_guardpage_enabled = true;
542 }
543 
544 struct page_ext_operations debug_guardpage_ops = {
545 	.need = need_debug_guardpage,
546 	.init = init_debug_guardpage,
547 };
548 
549 static int __init debug_guardpage_minorder_setup(char *buf)
550 {
551 	unsigned long res;
552 
553 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
554 		pr_err("Bad debug_guardpage_minorder value\n");
555 		return 0;
556 	}
557 	_debug_guardpage_minorder = res;
558 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
559 	return 0;
560 }
561 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
562 
563 static inline void set_page_guard(struct zone *zone, struct page *page,
564 				unsigned int order, int migratetype)
565 {
566 	struct page_ext *page_ext;
567 
568 	if (!debug_guardpage_enabled())
569 		return;
570 
571 	page_ext = lookup_page_ext(page);
572 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
573 
574 	INIT_LIST_HEAD(&page->lru);
575 	set_page_private(page, order);
576 	/* Guard pages are not available for any usage */
577 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
578 }
579 
580 static inline void clear_page_guard(struct zone *zone, struct page *page,
581 				unsigned int order, int migratetype)
582 {
583 	struct page_ext *page_ext;
584 
585 	if (!debug_guardpage_enabled())
586 		return;
587 
588 	page_ext = lookup_page_ext(page);
589 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
590 
591 	set_page_private(page, 0);
592 	if (!is_migrate_isolate(migratetype))
593 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
594 }
595 #else
596 struct page_ext_operations debug_guardpage_ops = { NULL, };
597 static inline void set_page_guard(struct zone *zone, struct page *page,
598 				unsigned int order, int migratetype) {}
599 static inline void clear_page_guard(struct zone *zone, struct page *page,
600 				unsigned int order, int migratetype) {}
601 #endif
602 
603 static inline void set_page_order(struct page *page, unsigned int order)
604 {
605 	set_page_private(page, order);
606 	__SetPageBuddy(page);
607 }
608 
609 static inline void rmv_page_order(struct page *page)
610 {
611 	__ClearPageBuddy(page);
612 	set_page_private(page, 0);
613 }
614 
615 /*
616  * This function checks whether a page is free && is the buddy
617  * we can do coalesce a page and its buddy if
618  * (a) the buddy is not in a hole &&
619  * (b) the buddy is in the buddy system &&
620  * (c) a page and its buddy have the same order &&
621  * (d) a page and its buddy are in the same zone.
622  *
623  * For recording whether a page is in the buddy system, we set ->_mapcount
624  * PAGE_BUDDY_MAPCOUNT_VALUE.
625  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
626  * serialized by zone->lock.
627  *
628  * For recording page's order, we use page_private(page).
629  */
630 static inline int page_is_buddy(struct page *page, struct page *buddy,
631 							unsigned int order)
632 {
633 	if (!pfn_valid_within(page_to_pfn(buddy)))
634 		return 0;
635 
636 	if (page_is_guard(buddy) && page_order(buddy) == order) {
637 		if (page_zone_id(page) != page_zone_id(buddy))
638 			return 0;
639 
640 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
641 
642 		return 1;
643 	}
644 
645 	if (PageBuddy(buddy) && page_order(buddy) == order) {
646 		/*
647 		 * zone check is done late to avoid uselessly
648 		 * calculating zone/node ids for pages that could
649 		 * never merge.
650 		 */
651 		if (page_zone_id(page) != page_zone_id(buddy))
652 			return 0;
653 
654 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
655 
656 		return 1;
657 	}
658 	return 0;
659 }
660 
661 /*
662  * Freeing function for a buddy system allocator.
663  *
664  * The concept of a buddy system is to maintain direct-mapped table
665  * (containing bit values) for memory blocks of various "orders".
666  * The bottom level table contains the map for the smallest allocatable
667  * units of memory (here, pages), and each level above it describes
668  * pairs of units from the levels below, hence, "buddies".
669  * At a high level, all that happens here is marking the table entry
670  * at the bottom level available, and propagating the changes upward
671  * as necessary, plus some accounting needed to play nicely with other
672  * parts of the VM system.
673  * At each level, we keep a list of pages, which are heads of continuous
674  * free pages of length of (1 << order) and marked with _mapcount
675  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
676  * field.
677  * So when we are allocating or freeing one, we can derive the state of the
678  * other.  That is, if we allocate a small block, and both were
679  * free, the remainder of the region must be split into blocks.
680  * If a block is freed, and its buddy is also free, then this
681  * triggers coalescing into a block of larger size.
682  *
683  * -- nyc
684  */
685 
686 static inline void __free_one_page(struct page *page,
687 		unsigned long pfn,
688 		struct zone *zone, unsigned int order,
689 		int migratetype)
690 {
691 	unsigned long page_idx;
692 	unsigned long combined_idx;
693 	unsigned long uninitialized_var(buddy_idx);
694 	struct page *buddy;
695 	unsigned int max_order;
696 
697 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
698 
699 	VM_BUG_ON(!zone_is_initialized(zone));
700 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
701 
702 	VM_BUG_ON(migratetype == -1);
703 	if (likely(!is_migrate_isolate(migratetype)))
704 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
705 
706 	page_idx = pfn & ((1 << MAX_ORDER) - 1);
707 
708 	VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
709 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
710 
711 continue_merging:
712 	while (order < max_order - 1) {
713 		buddy_idx = __find_buddy_index(page_idx, order);
714 		buddy = page + (buddy_idx - page_idx);
715 		if (!page_is_buddy(page, buddy, order))
716 			goto done_merging;
717 		/*
718 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
719 		 * merge with it and move up one order.
720 		 */
721 		if (page_is_guard(buddy)) {
722 			clear_page_guard(zone, buddy, order, migratetype);
723 		} else {
724 			list_del(&buddy->lru);
725 			zone->free_area[order].nr_free--;
726 			rmv_page_order(buddy);
727 		}
728 		combined_idx = buddy_idx & page_idx;
729 		page = page + (combined_idx - page_idx);
730 		page_idx = combined_idx;
731 		order++;
732 	}
733 	if (max_order < MAX_ORDER) {
734 		/* If we are here, it means order is >= pageblock_order.
735 		 * We want to prevent merge between freepages on isolate
736 		 * pageblock and normal pageblock. Without this, pageblock
737 		 * isolation could cause incorrect freepage or CMA accounting.
738 		 *
739 		 * We don't want to hit this code for the more frequent
740 		 * low-order merging.
741 		 */
742 		if (unlikely(has_isolate_pageblock(zone))) {
743 			int buddy_mt;
744 
745 			buddy_idx = __find_buddy_index(page_idx, order);
746 			buddy = page + (buddy_idx - page_idx);
747 			buddy_mt = get_pageblock_migratetype(buddy);
748 
749 			if (migratetype != buddy_mt
750 					&& (is_migrate_isolate(migratetype) ||
751 						is_migrate_isolate(buddy_mt)))
752 				goto done_merging;
753 		}
754 		max_order++;
755 		goto continue_merging;
756 	}
757 
758 done_merging:
759 	set_page_order(page, order);
760 
761 	/*
762 	 * If this is not the largest possible page, check if the buddy
763 	 * of the next-highest order is free. If it is, it's possible
764 	 * that pages are being freed that will coalesce soon. In case,
765 	 * that is happening, add the free page to the tail of the list
766 	 * so it's less likely to be used soon and more likely to be merged
767 	 * as a higher order page
768 	 */
769 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
770 		struct page *higher_page, *higher_buddy;
771 		combined_idx = buddy_idx & page_idx;
772 		higher_page = page + (combined_idx - page_idx);
773 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
774 		higher_buddy = higher_page + (buddy_idx - combined_idx);
775 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
776 			list_add_tail(&page->lru,
777 				&zone->free_area[order].free_list[migratetype]);
778 			goto out;
779 		}
780 	}
781 
782 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
783 out:
784 	zone->free_area[order].nr_free++;
785 }
786 
787 static inline int free_pages_check(struct page *page)
788 {
789 	const char *bad_reason = NULL;
790 	unsigned long bad_flags = 0;
791 
792 	if (unlikely(atomic_read(&page->_mapcount) != -1))
793 		bad_reason = "nonzero mapcount";
794 	if (unlikely(page->mapping != NULL))
795 		bad_reason = "non-NULL mapping";
796 	if (unlikely(page_ref_count(page) != 0))
797 		bad_reason = "nonzero _count";
798 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
799 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
800 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
801 	}
802 #ifdef CONFIG_MEMCG
803 	if (unlikely(page->mem_cgroup))
804 		bad_reason = "page still charged to cgroup";
805 #endif
806 	if (unlikely(bad_reason)) {
807 		bad_page(page, bad_reason, bad_flags);
808 		return 1;
809 	}
810 	page_cpupid_reset_last(page);
811 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
812 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
813 	return 0;
814 }
815 
816 /*
817  * Frees a number of pages from the PCP lists
818  * Assumes all pages on list are in same zone, and of same order.
819  * count is the number of pages to free.
820  *
821  * If the zone was previously in an "all pages pinned" state then look to
822  * see if this freeing clears that state.
823  *
824  * And clear the zone's pages_scanned counter, to hold off the "all pages are
825  * pinned" detection logic.
826  */
827 static void free_pcppages_bulk(struct zone *zone, int count,
828 					struct per_cpu_pages *pcp)
829 {
830 	int migratetype = 0;
831 	int batch_free = 0;
832 	int to_free = count;
833 	unsigned long nr_scanned;
834 
835 	spin_lock(&zone->lock);
836 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
837 	if (nr_scanned)
838 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
839 
840 	while (to_free) {
841 		struct page *page;
842 		struct list_head *list;
843 
844 		/*
845 		 * Remove pages from lists in a round-robin fashion. A
846 		 * batch_free count is maintained that is incremented when an
847 		 * empty list is encountered.  This is so more pages are freed
848 		 * off fuller lists instead of spinning excessively around empty
849 		 * lists
850 		 */
851 		do {
852 			batch_free++;
853 			if (++migratetype == MIGRATE_PCPTYPES)
854 				migratetype = 0;
855 			list = &pcp->lists[migratetype];
856 		} while (list_empty(list));
857 
858 		/* This is the only non-empty list. Free them all. */
859 		if (batch_free == MIGRATE_PCPTYPES)
860 			batch_free = to_free;
861 
862 		do {
863 			int mt;	/* migratetype of the to-be-freed page */
864 
865 			page = list_last_entry(list, struct page, lru);
866 			/* must delete as __free_one_page list manipulates */
867 			list_del(&page->lru);
868 
869 			mt = get_pcppage_migratetype(page);
870 			/* MIGRATE_ISOLATE page should not go to pcplists */
871 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
872 			/* Pageblock could have been isolated meanwhile */
873 			if (unlikely(has_isolate_pageblock(zone)))
874 				mt = get_pageblock_migratetype(page);
875 
876 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
877 			trace_mm_page_pcpu_drain(page, 0, mt);
878 		} while (--to_free && --batch_free && !list_empty(list));
879 	}
880 	spin_unlock(&zone->lock);
881 }
882 
883 static void free_one_page(struct zone *zone,
884 				struct page *page, unsigned long pfn,
885 				unsigned int order,
886 				int migratetype)
887 {
888 	unsigned long nr_scanned;
889 	spin_lock(&zone->lock);
890 	nr_scanned = zone_page_state(zone, NR_PAGES_SCANNED);
891 	if (nr_scanned)
892 		__mod_zone_page_state(zone, NR_PAGES_SCANNED, -nr_scanned);
893 
894 	if (unlikely(has_isolate_pageblock(zone) ||
895 		is_migrate_isolate(migratetype))) {
896 		migratetype = get_pfnblock_migratetype(page, pfn);
897 	}
898 	__free_one_page(page, pfn, zone, order, migratetype);
899 	spin_unlock(&zone->lock);
900 }
901 
902 static int free_tail_pages_check(struct page *head_page, struct page *page)
903 {
904 	int ret = 1;
905 
906 	/*
907 	 * We rely page->lru.next never has bit 0 set, unless the page
908 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
909 	 */
910 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
911 
912 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
913 		ret = 0;
914 		goto out;
915 	}
916 	switch (page - head_page) {
917 	case 1:
918 		/* the first tail page: ->mapping is compound_mapcount() */
919 		if (unlikely(compound_mapcount(page))) {
920 			bad_page(page, "nonzero compound_mapcount", 0);
921 			goto out;
922 		}
923 		break;
924 	case 2:
925 		/*
926 		 * the second tail page: ->mapping is
927 		 * page_deferred_list().next -- ignore value.
928 		 */
929 		break;
930 	default:
931 		if (page->mapping != TAIL_MAPPING) {
932 			bad_page(page, "corrupted mapping in tail page", 0);
933 			goto out;
934 		}
935 		break;
936 	}
937 	if (unlikely(!PageTail(page))) {
938 		bad_page(page, "PageTail not set", 0);
939 		goto out;
940 	}
941 	if (unlikely(compound_head(page) != head_page)) {
942 		bad_page(page, "compound_head not consistent", 0);
943 		goto out;
944 	}
945 	ret = 0;
946 out:
947 	page->mapping = NULL;
948 	clear_compound_head(page);
949 	return ret;
950 }
951 
952 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
953 				unsigned long zone, int nid)
954 {
955 	set_page_links(page, zone, nid, pfn);
956 	init_page_count(page);
957 	page_mapcount_reset(page);
958 	page_cpupid_reset_last(page);
959 
960 	INIT_LIST_HEAD(&page->lru);
961 #ifdef WANT_PAGE_VIRTUAL
962 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
963 	if (!is_highmem_idx(zone))
964 		set_page_address(page, __va(pfn << PAGE_SHIFT));
965 #endif
966 }
967 
968 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
969 					int nid)
970 {
971 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
972 }
973 
974 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
975 static void init_reserved_page(unsigned long pfn)
976 {
977 	pg_data_t *pgdat;
978 	int nid, zid;
979 
980 	if (!early_page_uninitialised(pfn))
981 		return;
982 
983 	nid = early_pfn_to_nid(pfn);
984 	pgdat = NODE_DATA(nid);
985 
986 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
987 		struct zone *zone = &pgdat->node_zones[zid];
988 
989 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
990 			break;
991 	}
992 	__init_single_pfn(pfn, zid, nid);
993 }
994 #else
995 static inline void init_reserved_page(unsigned long pfn)
996 {
997 }
998 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
999 
1000 /*
1001  * Initialised pages do not have PageReserved set. This function is
1002  * called for each range allocated by the bootmem allocator and
1003  * marks the pages PageReserved. The remaining valid pages are later
1004  * sent to the buddy page allocator.
1005  */
1006 void __meminit reserve_bootmem_region(unsigned long start, unsigned long end)
1007 {
1008 	unsigned long start_pfn = PFN_DOWN(start);
1009 	unsigned long end_pfn = PFN_UP(end);
1010 
1011 	for (; start_pfn < end_pfn; start_pfn++) {
1012 		if (pfn_valid(start_pfn)) {
1013 			struct page *page = pfn_to_page(start_pfn);
1014 
1015 			init_reserved_page(start_pfn);
1016 
1017 			/* Avoid false-positive PageTail() */
1018 			INIT_LIST_HEAD(&page->lru);
1019 
1020 			SetPageReserved(page);
1021 		}
1022 	}
1023 }
1024 
1025 static bool free_pages_prepare(struct page *page, unsigned int order)
1026 {
1027 	bool compound = PageCompound(page);
1028 	int i, bad = 0;
1029 
1030 	VM_BUG_ON_PAGE(PageTail(page), page);
1031 	VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1032 
1033 	trace_mm_page_free(page, order);
1034 	kmemcheck_free_shadow(page, order);
1035 	kasan_free_pages(page, order);
1036 
1037 	if (PageAnon(page))
1038 		page->mapping = NULL;
1039 	bad += free_pages_check(page);
1040 	for (i = 1; i < (1 << order); i++) {
1041 		if (compound)
1042 			bad += free_tail_pages_check(page, page + i);
1043 		bad += free_pages_check(page + i);
1044 	}
1045 	if (bad)
1046 		return false;
1047 
1048 	reset_page_owner(page, order);
1049 
1050 	if (!PageHighMem(page)) {
1051 		debug_check_no_locks_freed(page_address(page),
1052 					   PAGE_SIZE << order);
1053 		debug_check_no_obj_freed(page_address(page),
1054 					   PAGE_SIZE << order);
1055 	}
1056 	arch_free_page(page, order);
1057 	kernel_poison_pages(page, 1 << order, 0);
1058 	kernel_map_pages(page, 1 << order, 0);
1059 
1060 	return true;
1061 }
1062 
1063 static void __free_pages_ok(struct page *page, unsigned int order)
1064 {
1065 	unsigned long flags;
1066 	int migratetype;
1067 	unsigned long pfn = page_to_pfn(page);
1068 
1069 	if (!free_pages_prepare(page, order))
1070 		return;
1071 
1072 	migratetype = get_pfnblock_migratetype(page, pfn);
1073 	local_irq_save(flags);
1074 	__count_vm_events(PGFREE, 1 << order);
1075 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1076 	local_irq_restore(flags);
1077 }
1078 
1079 static void __init __free_pages_boot_core(struct page *page,
1080 					unsigned long pfn, unsigned int order)
1081 {
1082 	unsigned int nr_pages = 1 << order;
1083 	struct page *p = page;
1084 	unsigned int loop;
1085 
1086 	prefetchw(p);
1087 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1088 		prefetchw(p + 1);
1089 		__ClearPageReserved(p);
1090 		set_page_count(p, 0);
1091 	}
1092 	__ClearPageReserved(p);
1093 	set_page_count(p, 0);
1094 
1095 	page_zone(page)->managed_pages += nr_pages;
1096 	set_page_refcounted(page);
1097 	__free_pages(page, order);
1098 }
1099 
1100 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1101 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1102 
1103 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1104 
1105 int __meminit early_pfn_to_nid(unsigned long pfn)
1106 {
1107 	static DEFINE_SPINLOCK(early_pfn_lock);
1108 	int nid;
1109 
1110 	spin_lock(&early_pfn_lock);
1111 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1112 	if (nid < 0)
1113 		nid = 0;
1114 	spin_unlock(&early_pfn_lock);
1115 
1116 	return nid;
1117 }
1118 #endif
1119 
1120 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1121 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1122 					struct mminit_pfnnid_cache *state)
1123 {
1124 	int nid;
1125 
1126 	nid = __early_pfn_to_nid(pfn, state);
1127 	if (nid >= 0 && nid != node)
1128 		return false;
1129 	return true;
1130 }
1131 
1132 /* Only safe to use early in boot when initialisation is single-threaded */
1133 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1134 {
1135 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1136 }
1137 
1138 #else
1139 
1140 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1141 {
1142 	return true;
1143 }
1144 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1145 					struct mminit_pfnnid_cache *state)
1146 {
1147 	return true;
1148 }
1149 #endif
1150 
1151 
1152 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1153 							unsigned int order)
1154 {
1155 	if (early_page_uninitialised(pfn))
1156 		return;
1157 	return __free_pages_boot_core(page, pfn, order);
1158 }
1159 
1160 /*
1161  * Check that the whole (or subset of) a pageblock given by the interval of
1162  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1163  * with the migration of free compaction scanner. The scanners then need to
1164  * use only pfn_valid_within() check for arches that allow holes within
1165  * pageblocks.
1166  *
1167  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1168  *
1169  * It's possible on some configurations to have a setup like node0 node1 node0
1170  * i.e. it's possible that all pages within a zones range of pages do not
1171  * belong to a single zone. We assume that a border between node0 and node1
1172  * can occur within a single pageblock, but not a node0 node1 node0
1173  * interleaving within a single pageblock. It is therefore sufficient to check
1174  * the first and last page of a pageblock and avoid checking each individual
1175  * page in a pageblock.
1176  */
1177 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1178 				     unsigned long end_pfn, struct zone *zone)
1179 {
1180 	struct page *start_page;
1181 	struct page *end_page;
1182 
1183 	/* end_pfn is one past the range we are checking */
1184 	end_pfn--;
1185 
1186 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1187 		return NULL;
1188 
1189 	start_page = pfn_to_page(start_pfn);
1190 
1191 	if (page_zone(start_page) != zone)
1192 		return NULL;
1193 
1194 	end_page = pfn_to_page(end_pfn);
1195 
1196 	/* This gives a shorter code than deriving page_zone(end_page) */
1197 	if (page_zone_id(start_page) != page_zone_id(end_page))
1198 		return NULL;
1199 
1200 	return start_page;
1201 }
1202 
1203 void set_zone_contiguous(struct zone *zone)
1204 {
1205 	unsigned long block_start_pfn = zone->zone_start_pfn;
1206 	unsigned long block_end_pfn;
1207 
1208 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1209 	for (; block_start_pfn < zone_end_pfn(zone);
1210 			block_start_pfn = block_end_pfn,
1211 			 block_end_pfn += pageblock_nr_pages) {
1212 
1213 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1214 
1215 		if (!__pageblock_pfn_to_page(block_start_pfn,
1216 					     block_end_pfn, zone))
1217 			return;
1218 	}
1219 
1220 	/* We confirm that there is no hole */
1221 	zone->contiguous = true;
1222 }
1223 
1224 void clear_zone_contiguous(struct zone *zone)
1225 {
1226 	zone->contiguous = false;
1227 }
1228 
1229 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1230 static void __init deferred_free_range(struct page *page,
1231 					unsigned long pfn, int nr_pages)
1232 {
1233 	int i;
1234 
1235 	if (!page)
1236 		return;
1237 
1238 	/* Free a large naturally-aligned chunk if possible */
1239 	if (nr_pages == MAX_ORDER_NR_PAGES &&
1240 	    (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
1241 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1242 		__free_pages_boot_core(page, pfn, MAX_ORDER-1);
1243 		return;
1244 	}
1245 
1246 	for (i = 0; i < nr_pages; i++, page++, pfn++)
1247 		__free_pages_boot_core(page, pfn, 0);
1248 }
1249 
1250 /* Completion tracking for deferred_init_memmap() threads */
1251 static atomic_t pgdat_init_n_undone __initdata;
1252 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1253 
1254 static inline void __init pgdat_init_report_one_done(void)
1255 {
1256 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1257 		complete(&pgdat_init_all_done_comp);
1258 }
1259 
1260 /* Initialise remaining memory on a node */
1261 static int __init deferred_init_memmap(void *data)
1262 {
1263 	pg_data_t *pgdat = data;
1264 	int nid = pgdat->node_id;
1265 	struct mminit_pfnnid_cache nid_init_state = { };
1266 	unsigned long start = jiffies;
1267 	unsigned long nr_pages = 0;
1268 	unsigned long walk_start, walk_end;
1269 	int i, zid;
1270 	struct zone *zone;
1271 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1272 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1273 
1274 	if (first_init_pfn == ULONG_MAX) {
1275 		pgdat_init_report_one_done();
1276 		return 0;
1277 	}
1278 
1279 	/* Bind memory initialisation thread to a local node if possible */
1280 	if (!cpumask_empty(cpumask))
1281 		set_cpus_allowed_ptr(current, cpumask);
1282 
1283 	/* Sanity check boundaries */
1284 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1285 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1286 	pgdat->first_deferred_pfn = ULONG_MAX;
1287 
1288 	/* Only the highest zone is deferred so find it */
1289 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1290 		zone = pgdat->node_zones + zid;
1291 		if (first_init_pfn < zone_end_pfn(zone))
1292 			break;
1293 	}
1294 
1295 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1296 		unsigned long pfn, end_pfn;
1297 		struct page *page = NULL;
1298 		struct page *free_base_page = NULL;
1299 		unsigned long free_base_pfn = 0;
1300 		int nr_to_free = 0;
1301 
1302 		end_pfn = min(walk_end, zone_end_pfn(zone));
1303 		pfn = first_init_pfn;
1304 		if (pfn < walk_start)
1305 			pfn = walk_start;
1306 		if (pfn < zone->zone_start_pfn)
1307 			pfn = zone->zone_start_pfn;
1308 
1309 		for (; pfn < end_pfn; pfn++) {
1310 			if (!pfn_valid_within(pfn))
1311 				goto free_range;
1312 
1313 			/*
1314 			 * Ensure pfn_valid is checked every
1315 			 * MAX_ORDER_NR_PAGES for memory holes
1316 			 */
1317 			if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1318 				if (!pfn_valid(pfn)) {
1319 					page = NULL;
1320 					goto free_range;
1321 				}
1322 			}
1323 
1324 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1325 				page = NULL;
1326 				goto free_range;
1327 			}
1328 
1329 			/* Minimise pfn page lookups and scheduler checks */
1330 			if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1331 				page++;
1332 			} else {
1333 				nr_pages += nr_to_free;
1334 				deferred_free_range(free_base_page,
1335 						free_base_pfn, nr_to_free);
1336 				free_base_page = NULL;
1337 				free_base_pfn = nr_to_free = 0;
1338 
1339 				page = pfn_to_page(pfn);
1340 				cond_resched();
1341 			}
1342 
1343 			if (page->flags) {
1344 				VM_BUG_ON(page_zone(page) != zone);
1345 				goto free_range;
1346 			}
1347 
1348 			__init_single_page(page, pfn, zid, nid);
1349 			if (!free_base_page) {
1350 				free_base_page = page;
1351 				free_base_pfn = pfn;
1352 				nr_to_free = 0;
1353 			}
1354 			nr_to_free++;
1355 
1356 			/* Where possible, batch up pages for a single free */
1357 			continue;
1358 free_range:
1359 			/* Free the current block of pages to allocator */
1360 			nr_pages += nr_to_free;
1361 			deferred_free_range(free_base_page, free_base_pfn,
1362 								nr_to_free);
1363 			free_base_page = NULL;
1364 			free_base_pfn = nr_to_free = 0;
1365 		}
1366 
1367 		first_init_pfn = max(end_pfn, first_init_pfn);
1368 	}
1369 
1370 	/* Sanity check that the next zone really is unpopulated */
1371 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1372 
1373 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1374 					jiffies_to_msecs(jiffies - start));
1375 
1376 	pgdat_init_report_one_done();
1377 	return 0;
1378 }
1379 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1380 
1381 void __init page_alloc_init_late(void)
1382 {
1383 	struct zone *zone;
1384 
1385 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1386 	int nid;
1387 
1388 	/* There will be num_node_state(N_MEMORY) threads */
1389 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1390 	for_each_node_state(nid, N_MEMORY) {
1391 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1392 	}
1393 
1394 	/* Block until all are initialised */
1395 	wait_for_completion(&pgdat_init_all_done_comp);
1396 
1397 	/* Reinit limits that are based on free pages after the kernel is up */
1398 	files_maxfiles_init();
1399 #endif
1400 
1401 	for_each_populated_zone(zone)
1402 		set_zone_contiguous(zone);
1403 }
1404 
1405 #ifdef CONFIG_CMA
1406 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1407 void __init init_cma_reserved_pageblock(struct page *page)
1408 {
1409 	unsigned i = pageblock_nr_pages;
1410 	struct page *p = page;
1411 
1412 	do {
1413 		__ClearPageReserved(p);
1414 		set_page_count(p, 0);
1415 	} while (++p, --i);
1416 
1417 	set_pageblock_migratetype(page, MIGRATE_CMA);
1418 
1419 	if (pageblock_order >= MAX_ORDER) {
1420 		i = pageblock_nr_pages;
1421 		p = page;
1422 		do {
1423 			set_page_refcounted(p);
1424 			__free_pages(p, MAX_ORDER - 1);
1425 			p += MAX_ORDER_NR_PAGES;
1426 		} while (i -= MAX_ORDER_NR_PAGES);
1427 	} else {
1428 		set_page_refcounted(page);
1429 		__free_pages(page, pageblock_order);
1430 	}
1431 
1432 	adjust_managed_page_count(page, pageblock_nr_pages);
1433 }
1434 #endif
1435 
1436 /*
1437  * The order of subdivision here is critical for the IO subsystem.
1438  * Please do not alter this order without good reasons and regression
1439  * testing. Specifically, as large blocks of memory are subdivided,
1440  * the order in which smaller blocks are delivered depends on the order
1441  * they're subdivided in this function. This is the primary factor
1442  * influencing the order in which pages are delivered to the IO
1443  * subsystem according to empirical testing, and this is also justified
1444  * by considering the behavior of a buddy system containing a single
1445  * large block of memory acted on by a series of small allocations.
1446  * This behavior is a critical factor in sglist merging's success.
1447  *
1448  * -- nyc
1449  */
1450 static inline void expand(struct zone *zone, struct page *page,
1451 	int low, int high, struct free_area *area,
1452 	int migratetype)
1453 {
1454 	unsigned long size = 1 << high;
1455 
1456 	while (high > low) {
1457 		area--;
1458 		high--;
1459 		size >>= 1;
1460 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1461 
1462 		if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
1463 			debug_guardpage_enabled() &&
1464 			high < debug_guardpage_minorder()) {
1465 			/*
1466 			 * Mark as guard pages (or page), that will allow to
1467 			 * merge back to allocator when buddy will be freed.
1468 			 * Corresponding page table entries will not be touched,
1469 			 * pages will stay not present in virtual address space
1470 			 */
1471 			set_page_guard(zone, &page[size], high, migratetype);
1472 			continue;
1473 		}
1474 		list_add(&page[size].lru, &area->free_list[migratetype]);
1475 		area->nr_free++;
1476 		set_page_order(&page[size], high);
1477 	}
1478 }
1479 
1480 /*
1481  * This page is about to be returned from the page allocator
1482  */
1483 static inline int check_new_page(struct page *page)
1484 {
1485 	const char *bad_reason = NULL;
1486 	unsigned long bad_flags = 0;
1487 
1488 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1489 		bad_reason = "nonzero mapcount";
1490 	if (unlikely(page->mapping != NULL))
1491 		bad_reason = "non-NULL mapping";
1492 	if (unlikely(page_ref_count(page) != 0))
1493 		bad_reason = "nonzero _count";
1494 	if (unlikely(page->flags & __PG_HWPOISON)) {
1495 		bad_reason = "HWPoisoned (hardware-corrupted)";
1496 		bad_flags = __PG_HWPOISON;
1497 	}
1498 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1499 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1500 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1501 	}
1502 #ifdef CONFIG_MEMCG
1503 	if (unlikely(page->mem_cgroup))
1504 		bad_reason = "page still charged to cgroup";
1505 #endif
1506 	if (unlikely(bad_reason)) {
1507 		bad_page(page, bad_reason, bad_flags);
1508 		return 1;
1509 	}
1510 	return 0;
1511 }
1512 
1513 static inline bool free_pages_prezeroed(bool poisoned)
1514 {
1515 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1516 		page_poisoning_enabled() && poisoned;
1517 }
1518 
1519 static int prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1520 								int alloc_flags)
1521 {
1522 	int i;
1523 	bool poisoned = true;
1524 
1525 	for (i = 0; i < (1 << order); i++) {
1526 		struct page *p = page + i;
1527 		if (unlikely(check_new_page(p)))
1528 			return 1;
1529 		if (poisoned)
1530 			poisoned &= page_is_poisoned(p);
1531 	}
1532 
1533 	set_page_private(page, 0);
1534 	set_page_refcounted(page);
1535 
1536 	arch_alloc_page(page, order);
1537 	kernel_map_pages(page, 1 << order, 1);
1538 	kernel_poison_pages(page, 1 << order, 1);
1539 	kasan_alloc_pages(page, order);
1540 
1541 	if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
1542 		for (i = 0; i < (1 << order); i++)
1543 			clear_highpage(page + i);
1544 
1545 	if (order && (gfp_flags & __GFP_COMP))
1546 		prep_compound_page(page, order);
1547 
1548 	set_page_owner(page, order, gfp_flags);
1549 
1550 	/*
1551 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1552 	 * allocate the page. The expectation is that the caller is taking
1553 	 * steps that will free more memory. The caller should avoid the page
1554 	 * being used for !PFMEMALLOC purposes.
1555 	 */
1556 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1557 		set_page_pfmemalloc(page);
1558 	else
1559 		clear_page_pfmemalloc(page);
1560 
1561 	return 0;
1562 }
1563 
1564 /*
1565  * Go through the free lists for the given migratetype and remove
1566  * the smallest available page from the freelists
1567  */
1568 static inline
1569 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1570 						int migratetype)
1571 {
1572 	unsigned int current_order;
1573 	struct free_area *area;
1574 	struct page *page;
1575 
1576 	/* Find a page of the appropriate size in the preferred list */
1577 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1578 		area = &(zone->free_area[current_order]);
1579 		page = list_first_entry_or_null(&area->free_list[migratetype],
1580 							struct page, lru);
1581 		if (!page)
1582 			continue;
1583 		list_del(&page->lru);
1584 		rmv_page_order(page);
1585 		area->nr_free--;
1586 		expand(zone, page, order, current_order, area, migratetype);
1587 		set_pcppage_migratetype(page, migratetype);
1588 		return page;
1589 	}
1590 
1591 	return NULL;
1592 }
1593 
1594 
1595 /*
1596  * This array describes the order lists are fallen back to when
1597  * the free lists for the desirable migrate type are depleted
1598  */
1599 static int fallbacks[MIGRATE_TYPES][4] = {
1600 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1601 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1602 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1603 #ifdef CONFIG_CMA
1604 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1605 #endif
1606 #ifdef CONFIG_MEMORY_ISOLATION
1607 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1608 #endif
1609 };
1610 
1611 #ifdef CONFIG_CMA
1612 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1613 					unsigned int order)
1614 {
1615 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1616 }
1617 #else
1618 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1619 					unsigned int order) { return NULL; }
1620 #endif
1621 
1622 /*
1623  * Move the free pages in a range to the free lists of the requested type.
1624  * Note that start_page and end_pages are not aligned on a pageblock
1625  * boundary. If alignment is required, use move_freepages_block()
1626  */
1627 int move_freepages(struct zone *zone,
1628 			  struct page *start_page, struct page *end_page,
1629 			  int migratetype)
1630 {
1631 	struct page *page;
1632 	unsigned int order;
1633 	int pages_moved = 0;
1634 
1635 #ifndef CONFIG_HOLES_IN_ZONE
1636 	/*
1637 	 * page_zone is not safe to call in this context when
1638 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1639 	 * anyway as we check zone boundaries in move_freepages_block().
1640 	 * Remove at a later date when no bug reports exist related to
1641 	 * grouping pages by mobility
1642 	 */
1643 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1644 #endif
1645 
1646 	for (page = start_page; page <= end_page;) {
1647 		/* Make sure we are not inadvertently changing nodes */
1648 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1649 
1650 		if (!pfn_valid_within(page_to_pfn(page))) {
1651 			page++;
1652 			continue;
1653 		}
1654 
1655 		if (!PageBuddy(page)) {
1656 			page++;
1657 			continue;
1658 		}
1659 
1660 		order = page_order(page);
1661 		list_move(&page->lru,
1662 			  &zone->free_area[order].free_list[migratetype]);
1663 		page += 1 << order;
1664 		pages_moved += 1 << order;
1665 	}
1666 
1667 	return pages_moved;
1668 }
1669 
1670 int move_freepages_block(struct zone *zone, struct page *page,
1671 				int migratetype)
1672 {
1673 	unsigned long start_pfn, end_pfn;
1674 	struct page *start_page, *end_page;
1675 
1676 	start_pfn = page_to_pfn(page);
1677 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1678 	start_page = pfn_to_page(start_pfn);
1679 	end_page = start_page + pageblock_nr_pages - 1;
1680 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1681 
1682 	/* Do not cross zone boundaries */
1683 	if (!zone_spans_pfn(zone, start_pfn))
1684 		start_page = page;
1685 	if (!zone_spans_pfn(zone, end_pfn))
1686 		return 0;
1687 
1688 	return move_freepages(zone, start_page, end_page, migratetype);
1689 }
1690 
1691 static void change_pageblock_range(struct page *pageblock_page,
1692 					int start_order, int migratetype)
1693 {
1694 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1695 
1696 	while (nr_pageblocks--) {
1697 		set_pageblock_migratetype(pageblock_page, migratetype);
1698 		pageblock_page += pageblock_nr_pages;
1699 	}
1700 }
1701 
1702 /*
1703  * When we are falling back to another migratetype during allocation, try to
1704  * steal extra free pages from the same pageblocks to satisfy further
1705  * allocations, instead of polluting multiple pageblocks.
1706  *
1707  * If we are stealing a relatively large buddy page, it is likely there will
1708  * be more free pages in the pageblock, so try to steal them all. For
1709  * reclaimable and unmovable allocations, we steal regardless of page size,
1710  * as fragmentation caused by those allocations polluting movable pageblocks
1711  * is worse than movable allocations stealing from unmovable and reclaimable
1712  * pageblocks.
1713  */
1714 static bool can_steal_fallback(unsigned int order, int start_mt)
1715 {
1716 	/*
1717 	 * Leaving this order check is intended, although there is
1718 	 * relaxed order check in next check. The reason is that
1719 	 * we can actually steal whole pageblock if this condition met,
1720 	 * but, below check doesn't guarantee it and that is just heuristic
1721 	 * so could be changed anytime.
1722 	 */
1723 	if (order >= pageblock_order)
1724 		return true;
1725 
1726 	if (order >= pageblock_order / 2 ||
1727 		start_mt == MIGRATE_RECLAIMABLE ||
1728 		start_mt == MIGRATE_UNMOVABLE ||
1729 		page_group_by_mobility_disabled)
1730 		return true;
1731 
1732 	return false;
1733 }
1734 
1735 /*
1736  * This function implements actual steal behaviour. If order is large enough,
1737  * we can steal whole pageblock. If not, we first move freepages in this
1738  * pageblock and check whether half of pages are moved or not. If half of
1739  * pages are moved, we can change migratetype of pageblock and permanently
1740  * use it's pages as requested migratetype in the future.
1741  */
1742 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1743 							  int start_type)
1744 {
1745 	unsigned int current_order = page_order(page);
1746 	int pages;
1747 
1748 	/* Take ownership for orders >= pageblock_order */
1749 	if (current_order >= pageblock_order) {
1750 		change_pageblock_range(page, current_order, start_type);
1751 		return;
1752 	}
1753 
1754 	pages = move_freepages_block(zone, page, start_type);
1755 
1756 	/* Claim the whole block if over half of it is free */
1757 	if (pages >= (1 << (pageblock_order-1)) ||
1758 			page_group_by_mobility_disabled)
1759 		set_pageblock_migratetype(page, start_type);
1760 }
1761 
1762 /*
1763  * Check whether there is a suitable fallback freepage with requested order.
1764  * If only_stealable is true, this function returns fallback_mt only if
1765  * we can steal other freepages all together. This would help to reduce
1766  * fragmentation due to mixed migratetype pages in one pageblock.
1767  */
1768 int find_suitable_fallback(struct free_area *area, unsigned int order,
1769 			int migratetype, bool only_stealable, bool *can_steal)
1770 {
1771 	int i;
1772 	int fallback_mt;
1773 
1774 	if (area->nr_free == 0)
1775 		return -1;
1776 
1777 	*can_steal = false;
1778 	for (i = 0;; i++) {
1779 		fallback_mt = fallbacks[migratetype][i];
1780 		if (fallback_mt == MIGRATE_TYPES)
1781 			break;
1782 
1783 		if (list_empty(&area->free_list[fallback_mt]))
1784 			continue;
1785 
1786 		if (can_steal_fallback(order, migratetype))
1787 			*can_steal = true;
1788 
1789 		if (!only_stealable)
1790 			return fallback_mt;
1791 
1792 		if (*can_steal)
1793 			return fallback_mt;
1794 	}
1795 
1796 	return -1;
1797 }
1798 
1799 /*
1800  * Reserve a pageblock for exclusive use of high-order atomic allocations if
1801  * there are no empty page blocks that contain a page with a suitable order
1802  */
1803 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
1804 				unsigned int alloc_order)
1805 {
1806 	int mt;
1807 	unsigned long max_managed, flags;
1808 
1809 	/*
1810 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
1811 	 * Check is race-prone but harmless.
1812 	 */
1813 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
1814 	if (zone->nr_reserved_highatomic >= max_managed)
1815 		return;
1816 
1817 	spin_lock_irqsave(&zone->lock, flags);
1818 
1819 	/* Recheck the nr_reserved_highatomic limit under the lock */
1820 	if (zone->nr_reserved_highatomic >= max_managed)
1821 		goto out_unlock;
1822 
1823 	/* Yoink! */
1824 	mt = get_pageblock_migratetype(page);
1825 	if (mt != MIGRATE_HIGHATOMIC &&
1826 			!is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
1827 		zone->nr_reserved_highatomic += pageblock_nr_pages;
1828 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
1829 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
1830 	}
1831 
1832 out_unlock:
1833 	spin_unlock_irqrestore(&zone->lock, flags);
1834 }
1835 
1836 /*
1837  * Used when an allocation is about to fail under memory pressure. This
1838  * potentially hurts the reliability of high-order allocations when under
1839  * intense memory pressure but failed atomic allocations should be easier
1840  * to recover from than an OOM.
1841  */
1842 static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
1843 {
1844 	struct zonelist *zonelist = ac->zonelist;
1845 	unsigned long flags;
1846 	struct zoneref *z;
1847 	struct zone *zone;
1848 	struct page *page;
1849 	int order;
1850 
1851 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
1852 								ac->nodemask) {
1853 		/* Preserve at least one pageblock */
1854 		if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
1855 			continue;
1856 
1857 		spin_lock_irqsave(&zone->lock, flags);
1858 		for (order = 0; order < MAX_ORDER; order++) {
1859 			struct free_area *area = &(zone->free_area[order]);
1860 
1861 			page = list_first_entry_or_null(
1862 					&area->free_list[MIGRATE_HIGHATOMIC],
1863 					struct page, lru);
1864 			if (!page)
1865 				continue;
1866 
1867 			/*
1868 			 * It should never happen but changes to locking could
1869 			 * inadvertently allow a per-cpu drain to add pages
1870 			 * to MIGRATE_HIGHATOMIC while unreserving so be safe
1871 			 * and watch for underflows.
1872 			 */
1873 			zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
1874 				zone->nr_reserved_highatomic);
1875 
1876 			/*
1877 			 * Convert to ac->migratetype and avoid the normal
1878 			 * pageblock stealing heuristics. Minimally, the caller
1879 			 * is doing the work and needs the pages. More
1880 			 * importantly, if the block was always converted to
1881 			 * MIGRATE_UNMOVABLE or another type then the number
1882 			 * of pageblocks that cannot be completely freed
1883 			 * may increase.
1884 			 */
1885 			set_pageblock_migratetype(page, ac->migratetype);
1886 			move_freepages_block(zone, page, ac->migratetype);
1887 			spin_unlock_irqrestore(&zone->lock, flags);
1888 			return;
1889 		}
1890 		spin_unlock_irqrestore(&zone->lock, flags);
1891 	}
1892 }
1893 
1894 /* Remove an element from the buddy allocator from the fallback list */
1895 static inline struct page *
1896 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
1897 {
1898 	struct free_area *area;
1899 	unsigned int current_order;
1900 	struct page *page;
1901 	int fallback_mt;
1902 	bool can_steal;
1903 
1904 	/* Find the largest possible block of pages in the other list */
1905 	for (current_order = MAX_ORDER-1;
1906 				current_order >= order && current_order <= MAX_ORDER-1;
1907 				--current_order) {
1908 		area = &(zone->free_area[current_order]);
1909 		fallback_mt = find_suitable_fallback(area, current_order,
1910 				start_migratetype, false, &can_steal);
1911 		if (fallback_mt == -1)
1912 			continue;
1913 
1914 		page = list_first_entry(&area->free_list[fallback_mt],
1915 						struct page, lru);
1916 		if (can_steal)
1917 			steal_suitable_fallback(zone, page, start_migratetype);
1918 
1919 		/* Remove the page from the freelists */
1920 		area->nr_free--;
1921 		list_del(&page->lru);
1922 		rmv_page_order(page);
1923 
1924 		expand(zone, page, order, current_order, area,
1925 					start_migratetype);
1926 		/*
1927 		 * The pcppage_migratetype may differ from pageblock's
1928 		 * migratetype depending on the decisions in
1929 		 * find_suitable_fallback(). This is OK as long as it does not
1930 		 * differ for MIGRATE_CMA pageblocks. Those can be used as
1931 		 * fallback only via special __rmqueue_cma_fallback() function
1932 		 */
1933 		set_pcppage_migratetype(page, start_migratetype);
1934 
1935 		trace_mm_page_alloc_extfrag(page, order, current_order,
1936 			start_migratetype, fallback_mt);
1937 
1938 		return page;
1939 	}
1940 
1941 	return NULL;
1942 }
1943 
1944 /*
1945  * Do the hard work of removing an element from the buddy allocator.
1946  * Call me with the zone->lock already held.
1947  */
1948 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1949 				int migratetype)
1950 {
1951 	struct page *page;
1952 
1953 	page = __rmqueue_smallest(zone, order, migratetype);
1954 	if (unlikely(!page)) {
1955 		if (migratetype == MIGRATE_MOVABLE)
1956 			page = __rmqueue_cma_fallback(zone, order);
1957 
1958 		if (!page)
1959 			page = __rmqueue_fallback(zone, order, migratetype);
1960 	}
1961 
1962 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1963 	return page;
1964 }
1965 
1966 /*
1967  * Obtain a specified number of elements from the buddy allocator, all under
1968  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1969  * Returns the number of new pages which were placed at *list.
1970  */
1971 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1972 			unsigned long count, struct list_head *list,
1973 			int migratetype, bool cold)
1974 {
1975 	int i;
1976 
1977 	spin_lock(&zone->lock);
1978 	for (i = 0; i < count; ++i) {
1979 		struct page *page = __rmqueue(zone, order, migratetype);
1980 		if (unlikely(page == NULL))
1981 			break;
1982 
1983 		/*
1984 		 * Split buddy pages returned by expand() are received here
1985 		 * in physical page order. The page is added to the callers and
1986 		 * list and the list head then moves forward. From the callers
1987 		 * perspective, the linked list is ordered by page number in
1988 		 * some conditions. This is useful for IO devices that can
1989 		 * merge IO requests if the physical pages are ordered
1990 		 * properly.
1991 		 */
1992 		if (likely(!cold))
1993 			list_add(&page->lru, list);
1994 		else
1995 			list_add_tail(&page->lru, list);
1996 		list = &page->lru;
1997 		if (is_migrate_cma(get_pcppage_migratetype(page)))
1998 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1999 					      -(1 << order));
2000 	}
2001 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2002 	spin_unlock(&zone->lock);
2003 	return i;
2004 }
2005 
2006 #ifdef CONFIG_NUMA
2007 /*
2008  * Called from the vmstat counter updater to drain pagesets of this
2009  * currently executing processor on remote nodes after they have
2010  * expired.
2011  *
2012  * Note that this function must be called with the thread pinned to
2013  * a single processor.
2014  */
2015 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2016 {
2017 	unsigned long flags;
2018 	int to_drain, batch;
2019 
2020 	local_irq_save(flags);
2021 	batch = READ_ONCE(pcp->batch);
2022 	to_drain = min(pcp->count, batch);
2023 	if (to_drain > 0) {
2024 		free_pcppages_bulk(zone, to_drain, pcp);
2025 		pcp->count -= to_drain;
2026 	}
2027 	local_irq_restore(flags);
2028 }
2029 #endif
2030 
2031 /*
2032  * Drain pcplists of the indicated processor and zone.
2033  *
2034  * The processor must either be the current processor and the
2035  * thread pinned to the current processor or a processor that
2036  * is not online.
2037  */
2038 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2039 {
2040 	unsigned long flags;
2041 	struct per_cpu_pageset *pset;
2042 	struct per_cpu_pages *pcp;
2043 
2044 	local_irq_save(flags);
2045 	pset = per_cpu_ptr(zone->pageset, cpu);
2046 
2047 	pcp = &pset->pcp;
2048 	if (pcp->count) {
2049 		free_pcppages_bulk(zone, pcp->count, pcp);
2050 		pcp->count = 0;
2051 	}
2052 	local_irq_restore(flags);
2053 }
2054 
2055 /*
2056  * Drain pcplists of all zones on the indicated processor.
2057  *
2058  * The processor must either be the current processor and the
2059  * thread pinned to the current processor or a processor that
2060  * is not online.
2061  */
2062 static void drain_pages(unsigned int cpu)
2063 {
2064 	struct zone *zone;
2065 
2066 	for_each_populated_zone(zone) {
2067 		drain_pages_zone(cpu, zone);
2068 	}
2069 }
2070 
2071 /*
2072  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2073  *
2074  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2075  * the single zone's pages.
2076  */
2077 void drain_local_pages(struct zone *zone)
2078 {
2079 	int cpu = smp_processor_id();
2080 
2081 	if (zone)
2082 		drain_pages_zone(cpu, zone);
2083 	else
2084 		drain_pages(cpu);
2085 }
2086 
2087 /*
2088  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2089  *
2090  * When zone parameter is non-NULL, spill just the single zone's pages.
2091  *
2092  * Note that this code is protected against sending an IPI to an offline
2093  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2094  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2095  * nothing keeps CPUs from showing up after we populated the cpumask and
2096  * before the call to on_each_cpu_mask().
2097  */
2098 void drain_all_pages(struct zone *zone)
2099 {
2100 	int cpu;
2101 
2102 	/*
2103 	 * Allocate in the BSS so we wont require allocation in
2104 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2105 	 */
2106 	static cpumask_t cpus_with_pcps;
2107 
2108 	/*
2109 	 * We don't care about racing with CPU hotplug event
2110 	 * as offline notification will cause the notified
2111 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2112 	 * disables preemption as part of its processing
2113 	 */
2114 	for_each_online_cpu(cpu) {
2115 		struct per_cpu_pageset *pcp;
2116 		struct zone *z;
2117 		bool has_pcps = false;
2118 
2119 		if (zone) {
2120 			pcp = per_cpu_ptr(zone->pageset, cpu);
2121 			if (pcp->pcp.count)
2122 				has_pcps = true;
2123 		} else {
2124 			for_each_populated_zone(z) {
2125 				pcp = per_cpu_ptr(z->pageset, cpu);
2126 				if (pcp->pcp.count) {
2127 					has_pcps = true;
2128 					break;
2129 				}
2130 			}
2131 		}
2132 
2133 		if (has_pcps)
2134 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2135 		else
2136 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2137 	}
2138 	on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2139 								zone, 1);
2140 }
2141 
2142 #ifdef CONFIG_HIBERNATION
2143 
2144 void mark_free_pages(struct zone *zone)
2145 {
2146 	unsigned long pfn, max_zone_pfn;
2147 	unsigned long flags;
2148 	unsigned int order, t;
2149 	struct page *page;
2150 
2151 	if (zone_is_empty(zone))
2152 		return;
2153 
2154 	spin_lock_irqsave(&zone->lock, flags);
2155 
2156 	max_zone_pfn = zone_end_pfn(zone);
2157 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2158 		if (pfn_valid(pfn)) {
2159 			page = pfn_to_page(pfn);
2160 			if (!swsusp_page_is_forbidden(page))
2161 				swsusp_unset_page_free(page);
2162 		}
2163 
2164 	for_each_migratetype_order(order, t) {
2165 		list_for_each_entry(page,
2166 				&zone->free_area[order].free_list[t], lru) {
2167 			unsigned long i;
2168 
2169 			pfn = page_to_pfn(page);
2170 			for (i = 0; i < (1UL << order); i++)
2171 				swsusp_set_page_free(pfn_to_page(pfn + i));
2172 		}
2173 	}
2174 	spin_unlock_irqrestore(&zone->lock, flags);
2175 }
2176 #endif /* CONFIG_PM */
2177 
2178 /*
2179  * Free a 0-order page
2180  * cold == true ? free a cold page : free a hot page
2181  */
2182 void free_hot_cold_page(struct page *page, bool cold)
2183 {
2184 	struct zone *zone = page_zone(page);
2185 	struct per_cpu_pages *pcp;
2186 	unsigned long flags;
2187 	unsigned long pfn = page_to_pfn(page);
2188 	int migratetype;
2189 
2190 	if (!free_pages_prepare(page, 0))
2191 		return;
2192 
2193 	migratetype = get_pfnblock_migratetype(page, pfn);
2194 	set_pcppage_migratetype(page, migratetype);
2195 	local_irq_save(flags);
2196 	__count_vm_event(PGFREE);
2197 
2198 	/*
2199 	 * We only track unmovable, reclaimable and movable on pcp lists.
2200 	 * Free ISOLATE pages back to the allocator because they are being
2201 	 * offlined but treat RESERVE as movable pages so we can get those
2202 	 * areas back if necessary. Otherwise, we may have to free
2203 	 * excessively into the page allocator
2204 	 */
2205 	if (migratetype >= MIGRATE_PCPTYPES) {
2206 		if (unlikely(is_migrate_isolate(migratetype))) {
2207 			free_one_page(zone, page, pfn, 0, migratetype);
2208 			goto out;
2209 		}
2210 		migratetype = MIGRATE_MOVABLE;
2211 	}
2212 
2213 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2214 	if (!cold)
2215 		list_add(&page->lru, &pcp->lists[migratetype]);
2216 	else
2217 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2218 	pcp->count++;
2219 	if (pcp->count >= pcp->high) {
2220 		unsigned long batch = READ_ONCE(pcp->batch);
2221 		free_pcppages_bulk(zone, batch, pcp);
2222 		pcp->count -= batch;
2223 	}
2224 
2225 out:
2226 	local_irq_restore(flags);
2227 }
2228 
2229 /*
2230  * Free a list of 0-order pages
2231  */
2232 void free_hot_cold_page_list(struct list_head *list, bool cold)
2233 {
2234 	struct page *page, *next;
2235 
2236 	list_for_each_entry_safe(page, next, list, lru) {
2237 		trace_mm_page_free_batched(page, cold);
2238 		free_hot_cold_page(page, cold);
2239 	}
2240 }
2241 
2242 /*
2243  * split_page takes a non-compound higher-order page, and splits it into
2244  * n (1<<order) sub-pages: page[0..n]
2245  * Each sub-page must be freed individually.
2246  *
2247  * Note: this is probably too low level an operation for use in drivers.
2248  * Please consult with lkml before using this in your driver.
2249  */
2250 void split_page(struct page *page, unsigned int order)
2251 {
2252 	int i;
2253 	gfp_t gfp_mask;
2254 
2255 	VM_BUG_ON_PAGE(PageCompound(page), page);
2256 	VM_BUG_ON_PAGE(!page_count(page), page);
2257 
2258 #ifdef CONFIG_KMEMCHECK
2259 	/*
2260 	 * Split shadow pages too, because free(page[0]) would
2261 	 * otherwise free the whole shadow.
2262 	 */
2263 	if (kmemcheck_page_is_tracked(page))
2264 		split_page(virt_to_page(page[0].shadow), order);
2265 #endif
2266 
2267 	gfp_mask = get_page_owner_gfp(page);
2268 	set_page_owner(page, 0, gfp_mask);
2269 	for (i = 1; i < (1 << order); i++) {
2270 		set_page_refcounted(page + i);
2271 		set_page_owner(page + i, 0, gfp_mask);
2272 	}
2273 }
2274 EXPORT_SYMBOL_GPL(split_page);
2275 
2276 int __isolate_free_page(struct page *page, unsigned int order)
2277 {
2278 	unsigned long watermark;
2279 	struct zone *zone;
2280 	int mt;
2281 
2282 	BUG_ON(!PageBuddy(page));
2283 
2284 	zone = page_zone(page);
2285 	mt = get_pageblock_migratetype(page);
2286 
2287 	if (!is_migrate_isolate(mt)) {
2288 		/* Obey watermarks as if the page was being allocated */
2289 		watermark = low_wmark_pages(zone) + (1 << order);
2290 		if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2291 			return 0;
2292 
2293 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2294 	}
2295 
2296 	/* Remove page from free list */
2297 	list_del(&page->lru);
2298 	zone->free_area[order].nr_free--;
2299 	rmv_page_order(page);
2300 
2301 	set_page_owner(page, order, __GFP_MOVABLE);
2302 
2303 	/* Set the pageblock if the isolated page is at least a pageblock */
2304 	if (order >= pageblock_order - 1) {
2305 		struct page *endpage = page + (1 << order) - 1;
2306 		for (; page < endpage; page += pageblock_nr_pages) {
2307 			int mt = get_pageblock_migratetype(page);
2308 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
2309 				set_pageblock_migratetype(page,
2310 							  MIGRATE_MOVABLE);
2311 		}
2312 	}
2313 
2314 
2315 	return 1UL << order;
2316 }
2317 
2318 /*
2319  * Similar to split_page except the page is already free. As this is only
2320  * being used for migration, the migratetype of the block also changes.
2321  * As this is called with interrupts disabled, the caller is responsible
2322  * for calling arch_alloc_page() and kernel_map_page() after interrupts
2323  * are enabled.
2324  *
2325  * Note: this is probably too low level an operation for use in drivers.
2326  * Please consult with lkml before using this in your driver.
2327  */
2328 int split_free_page(struct page *page)
2329 {
2330 	unsigned int order;
2331 	int nr_pages;
2332 
2333 	order = page_order(page);
2334 
2335 	nr_pages = __isolate_free_page(page, order);
2336 	if (!nr_pages)
2337 		return 0;
2338 
2339 	/* Split into individual pages */
2340 	set_page_refcounted(page);
2341 	split_page(page, order);
2342 	return nr_pages;
2343 }
2344 
2345 /*
2346  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2347  */
2348 static inline
2349 struct page *buffered_rmqueue(struct zone *preferred_zone,
2350 			struct zone *zone, unsigned int order,
2351 			gfp_t gfp_flags, int alloc_flags, int migratetype)
2352 {
2353 	unsigned long flags;
2354 	struct page *page;
2355 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2356 
2357 	if (likely(order == 0)) {
2358 		struct per_cpu_pages *pcp;
2359 		struct list_head *list;
2360 
2361 		local_irq_save(flags);
2362 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
2363 		list = &pcp->lists[migratetype];
2364 		if (list_empty(list)) {
2365 			pcp->count += rmqueue_bulk(zone, 0,
2366 					pcp->batch, list,
2367 					migratetype, cold);
2368 			if (unlikely(list_empty(list)))
2369 				goto failed;
2370 		}
2371 
2372 		if (cold)
2373 			page = list_last_entry(list, struct page, lru);
2374 		else
2375 			page = list_first_entry(list, struct page, lru);
2376 
2377 		list_del(&page->lru);
2378 		pcp->count--;
2379 	} else {
2380 		/*
2381 		 * We most definitely don't want callers attempting to
2382 		 * allocate greater than order-1 page units with __GFP_NOFAIL.
2383 		 */
2384 		WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2385 		spin_lock_irqsave(&zone->lock, flags);
2386 
2387 		page = NULL;
2388 		if (alloc_flags & ALLOC_HARDER) {
2389 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2390 			if (page)
2391 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2392 		}
2393 		if (!page)
2394 			page = __rmqueue(zone, order, migratetype);
2395 		spin_unlock(&zone->lock);
2396 		if (!page)
2397 			goto failed;
2398 		__mod_zone_freepage_state(zone, -(1 << order),
2399 					  get_pcppage_migratetype(page));
2400 	}
2401 
2402 	__mod_zone_page_state(zone, NR_ALLOC_BATCH, -(1 << order));
2403 	if (atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]) <= 0 &&
2404 	    !test_bit(ZONE_FAIR_DEPLETED, &zone->flags))
2405 		set_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2406 
2407 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
2408 	zone_statistics(preferred_zone, zone, gfp_flags);
2409 	local_irq_restore(flags);
2410 
2411 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
2412 	return page;
2413 
2414 failed:
2415 	local_irq_restore(flags);
2416 	return NULL;
2417 }
2418 
2419 #ifdef CONFIG_FAIL_PAGE_ALLOC
2420 
2421 static struct {
2422 	struct fault_attr attr;
2423 
2424 	bool ignore_gfp_highmem;
2425 	bool ignore_gfp_reclaim;
2426 	u32 min_order;
2427 } fail_page_alloc = {
2428 	.attr = FAULT_ATTR_INITIALIZER,
2429 	.ignore_gfp_reclaim = true,
2430 	.ignore_gfp_highmem = true,
2431 	.min_order = 1,
2432 };
2433 
2434 static int __init setup_fail_page_alloc(char *str)
2435 {
2436 	return setup_fault_attr(&fail_page_alloc.attr, str);
2437 }
2438 __setup("fail_page_alloc=", setup_fail_page_alloc);
2439 
2440 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2441 {
2442 	if (order < fail_page_alloc.min_order)
2443 		return false;
2444 	if (gfp_mask & __GFP_NOFAIL)
2445 		return false;
2446 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2447 		return false;
2448 	if (fail_page_alloc.ignore_gfp_reclaim &&
2449 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2450 		return false;
2451 
2452 	return should_fail(&fail_page_alloc.attr, 1 << order);
2453 }
2454 
2455 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2456 
2457 static int __init fail_page_alloc_debugfs(void)
2458 {
2459 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2460 	struct dentry *dir;
2461 
2462 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2463 					&fail_page_alloc.attr);
2464 	if (IS_ERR(dir))
2465 		return PTR_ERR(dir);
2466 
2467 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2468 				&fail_page_alloc.ignore_gfp_reclaim))
2469 		goto fail;
2470 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2471 				&fail_page_alloc.ignore_gfp_highmem))
2472 		goto fail;
2473 	if (!debugfs_create_u32("min-order", mode, dir,
2474 				&fail_page_alloc.min_order))
2475 		goto fail;
2476 
2477 	return 0;
2478 fail:
2479 	debugfs_remove_recursive(dir);
2480 
2481 	return -ENOMEM;
2482 }
2483 
2484 late_initcall(fail_page_alloc_debugfs);
2485 
2486 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2487 
2488 #else /* CONFIG_FAIL_PAGE_ALLOC */
2489 
2490 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2491 {
2492 	return false;
2493 }
2494 
2495 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2496 
2497 /*
2498  * Return true if free base pages are above 'mark'. For high-order checks it
2499  * will return true of the order-0 watermark is reached and there is at least
2500  * one free page of a suitable size. Checking now avoids taking the zone lock
2501  * to check in the allocation paths if no pages are free.
2502  */
2503 static bool __zone_watermark_ok(struct zone *z, unsigned int order,
2504 			unsigned long mark, int classzone_idx, int alloc_flags,
2505 			long free_pages)
2506 {
2507 	long min = mark;
2508 	int o;
2509 	const int alloc_harder = (alloc_flags & ALLOC_HARDER);
2510 
2511 	/* free_pages may go negative - that's OK */
2512 	free_pages -= (1 << order) - 1;
2513 
2514 	if (alloc_flags & ALLOC_HIGH)
2515 		min -= min / 2;
2516 
2517 	/*
2518 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2519 	 * the high-atomic reserves. This will over-estimate the size of the
2520 	 * atomic reserve but it avoids a search.
2521 	 */
2522 	if (likely(!alloc_harder))
2523 		free_pages -= z->nr_reserved_highatomic;
2524 	else
2525 		min -= min / 4;
2526 
2527 #ifdef CONFIG_CMA
2528 	/* If allocation can't use CMA areas don't use free CMA pages */
2529 	if (!(alloc_flags & ALLOC_CMA))
2530 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2531 #endif
2532 
2533 	/*
2534 	 * Check watermarks for an order-0 allocation request. If these
2535 	 * are not met, then a high-order request also cannot go ahead
2536 	 * even if a suitable page happened to be free.
2537 	 */
2538 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2539 		return false;
2540 
2541 	/* If this is an order-0 request then the watermark is fine */
2542 	if (!order)
2543 		return true;
2544 
2545 	/* For a high-order request, check at least one suitable page is free */
2546 	for (o = order; o < MAX_ORDER; o++) {
2547 		struct free_area *area = &z->free_area[o];
2548 		int mt;
2549 
2550 		if (!area->nr_free)
2551 			continue;
2552 
2553 		if (alloc_harder)
2554 			return true;
2555 
2556 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2557 			if (!list_empty(&area->free_list[mt]))
2558 				return true;
2559 		}
2560 
2561 #ifdef CONFIG_CMA
2562 		if ((alloc_flags & ALLOC_CMA) &&
2563 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2564 			return true;
2565 		}
2566 #endif
2567 	}
2568 	return false;
2569 }
2570 
2571 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2572 		      int classzone_idx, int alloc_flags)
2573 {
2574 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2575 					zone_page_state(z, NR_FREE_PAGES));
2576 }
2577 
2578 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2579 			unsigned long mark, int classzone_idx)
2580 {
2581 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2582 
2583 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2584 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2585 
2586 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2587 								free_pages);
2588 }
2589 
2590 #ifdef CONFIG_NUMA
2591 static bool zone_local(struct zone *local_zone, struct zone *zone)
2592 {
2593 	return local_zone->node == zone->node;
2594 }
2595 
2596 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2597 {
2598 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2599 				RECLAIM_DISTANCE;
2600 }
2601 #else	/* CONFIG_NUMA */
2602 static bool zone_local(struct zone *local_zone, struct zone *zone)
2603 {
2604 	return true;
2605 }
2606 
2607 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2608 {
2609 	return true;
2610 }
2611 #endif	/* CONFIG_NUMA */
2612 
2613 static void reset_alloc_batches(struct zone *preferred_zone)
2614 {
2615 	struct zone *zone = preferred_zone->zone_pgdat->node_zones;
2616 
2617 	do {
2618 		mod_zone_page_state(zone, NR_ALLOC_BATCH,
2619 			high_wmark_pages(zone) - low_wmark_pages(zone) -
2620 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
2621 		clear_bit(ZONE_FAIR_DEPLETED, &zone->flags);
2622 	} while (zone++ != preferred_zone);
2623 }
2624 
2625 /*
2626  * get_page_from_freelist goes through the zonelist trying to allocate
2627  * a page.
2628  */
2629 static struct page *
2630 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2631 						const struct alloc_context *ac)
2632 {
2633 	struct zonelist *zonelist = ac->zonelist;
2634 	struct zoneref *z;
2635 	struct page *page = NULL;
2636 	struct zone *zone;
2637 	int nr_fair_skipped = 0;
2638 	bool zonelist_rescan;
2639 
2640 zonelist_scan:
2641 	zonelist_rescan = false;
2642 
2643 	/*
2644 	 * Scan zonelist, looking for a zone with enough free.
2645 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
2646 	 */
2647 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2648 								ac->nodemask) {
2649 		unsigned long mark;
2650 
2651 		if (cpusets_enabled() &&
2652 			(alloc_flags & ALLOC_CPUSET) &&
2653 			!cpuset_zone_allowed(zone, gfp_mask))
2654 				continue;
2655 		/*
2656 		 * Distribute pages in proportion to the individual
2657 		 * zone size to ensure fair page aging.  The zone a
2658 		 * page was allocated in should have no effect on the
2659 		 * time the page has in memory before being reclaimed.
2660 		 */
2661 		if (alloc_flags & ALLOC_FAIR) {
2662 			if (!zone_local(ac->preferred_zone, zone))
2663 				break;
2664 			if (test_bit(ZONE_FAIR_DEPLETED, &zone->flags)) {
2665 				nr_fair_skipped++;
2666 				continue;
2667 			}
2668 		}
2669 		/*
2670 		 * When allocating a page cache page for writing, we
2671 		 * want to get it from a zone that is within its dirty
2672 		 * limit, such that no single zone holds more than its
2673 		 * proportional share of globally allowed dirty pages.
2674 		 * The dirty limits take into account the zone's
2675 		 * lowmem reserves and high watermark so that kswapd
2676 		 * should be able to balance it without having to
2677 		 * write pages from its LRU list.
2678 		 *
2679 		 * This may look like it could increase pressure on
2680 		 * lower zones by failing allocations in higher zones
2681 		 * before they are full.  But the pages that do spill
2682 		 * over are limited as the lower zones are protected
2683 		 * by this very same mechanism.  It should not become
2684 		 * a practical burden to them.
2685 		 *
2686 		 * XXX: For now, allow allocations to potentially
2687 		 * exceed the per-zone dirty limit in the slowpath
2688 		 * (spread_dirty_pages unset) before going into reclaim,
2689 		 * which is important when on a NUMA setup the allowed
2690 		 * zones are together not big enough to reach the
2691 		 * global limit.  The proper fix for these situations
2692 		 * will require awareness of zones in the
2693 		 * dirty-throttling and the flusher threads.
2694 		 */
2695 		if (ac->spread_dirty_pages && !zone_dirty_ok(zone))
2696 			continue;
2697 
2698 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
2699 		if (!zone_watermark_ok(zone, order, mark,
2700 				       ac->classzone_idx, alloc_flags)) {
2701 			int ret;
2702 
2703 			/* Checked here to keep the fast path fast */
2704 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2705 			if (alloc_flags & ALLOC_NO_WATERMARKS)
2706 				goto try_this_zone;
2707 
2708 			if (zone_reclaim_mode == 0 ||
2709 			    !zone_allows_reclaim(ac->preferred_zone, zone))
2710 				continue;
2711 
2712 			ret = zone_reclaim(zone, gfp_mask, order);
2713 			switch (ret) {
2714 			case ZONE_RECLAIM_NOSCAN:
2715 				/* did not scan */
2716 				continue;
2717 			case ZONE_RECLAIM_FULL:
2718 				/* scanned but unreclaimable */
2719 				continue;
2720 			default:
2721 				/* did we reclaim enough */
2722 				if (zone_watermark_ok(zone, order, mark,
2723 						ac->classzone_idx, alloc_flags))
2724 					goto try_this_zone;
2725 
2726 				continue;
2727 			}
2728 		}
2729 
2730 try_this_zone:
2731 		page = buffered_rmqueue(ac->preferred_zone, zone, order,
2732 				gfp_mask, alloc_flags, ac->migratetype);
2733 		if (page) {
2734 			if (prep_new_page(page, order, gfp_mask, alloc_flags))
2735 				goto try_this_zone;
2736 
2737 			/*
2738 			 * If this is a high-order atomic allocation then check
2739 			 * if the pageblock should be reserved for the future
2740 			 */
2741 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2742 				reserve_highatomic_pageblock(page, zone, order);
2743 
2744 			return page;
2745 		}
2746 	}
2747 
2748 	/*
2749 	 * The first pass makes sure allocations are spread fairly within the
2750 	 * local node.  However, the local node might have free pages left
2751 	 * after the fairness batches are exhausted, and remote zones haven't
2752 	 * even been considered yet.  Try once more without fairness, and
2753 	 * include remote zones now, before entering the slowpath and waking
2754 	 * kswapd: prefer spilling to a remote zone over swapping locally.
2755 	 */
2756 	if (alloc_flags & ALLOC_FAIR) {
2757 		alloc_flags &= ~ALLOC_FAIR;
2758 		if (nr_fair_skipped) {
2759 			zonelist_rescan = true;
2760 			reset_alloc_batches(ac->preferred_zone);
2761 		}
2762 		if (nr_online_nodes > 1)
2763 			zonelist_rescan = true;
2764 	}
2765 
2766 	if (zonelist_rescan)
2767 		goto zonelist_scan;
2768 
2769 	return NULL;
2770 }
2771 
2772 /*
2773  * Large machines with many possible nodes should not always dump per-node
2774  * meminfo in irq context.
2775  */
2776 static inline bool should_suppress_show_mem(void)
2777 {
2778 	bool ret = false;
2779 
2780 #if NODES_SHIFT > 8
2781 	ret = in_interrupt();
2782 #endif
2783 	return ret;
2784 }
2785 
2786 static DEFINE_RATELIMIT_STATE(nopage_rs,
2787 		DEFAULT_RATELIMIT_INTERVAL,
2788 		DEFAULT_RATELIMIT_BURST);
2789 
2790 void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
2791 {
2792 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2793 
2794 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2795 	    debug_guardpage_minorder() > 0)
2796 		return;
2797 
2798 	/*
2799 	 * This documents exceptions given to allocations in certain
2800 	 * contexts that are allowed to allocate outside current's set
2801 	 * of allowed nodes.
2802 	 */
2803 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2804 		if (test_thread_flag(TIF_MEMDIE) ||
2805 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2806 			filter &= ~SHOW_MEM_FILTER_NODES;
2807 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
2808 		filter &= ~SHOW_MEM_FILTER_NODES;
2809 
2810 	if (fmt) {
2811 		struct va_format vaf;
2812 		va_list args;
2813 
2814 		va_start(args, fmt);
2815 
2816 		vaf.fmt = fmt;
2817 		vaf.va = &args;
2818 
2819 		pr_warn("%pV", &vaf);
2820 
2821 		va_end(args);
2822 	}
2823 
2824 	pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2825 		current->comm, order, gfp_mask, &gfp_mask);
2826 	dump_stack();
2827 	if (!should_suppress_show_mem())
2828 		show_mem(filter);
2829 }
2830 
2831 static inline struct page *
2832 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2833 	const struct alloc_context *ac, unsigned long *did_some_progress)
2834 {
2835 	struct oom_control oc = {
2836 		.zonelist = ac->zonelist,
2837 		.nodemask = ac->nodemask,
2838 		.gfp_mask = gfp_mask,
2839 		.order = order,
2840 	};
2841 	struct page *page;
2842 
2843 	*did_some_progress = 0;
2844 
2845 	/*
2846 	 * Acquire the oom lock.  If that fails, somebody else is
2847 	 * making progress for us.
2848 	 */
2849 	if (!mutex_trylock(&oom_lock)) {
2850 		*did_some_progress = 1;
2851 		schedule_timeout_uninterruptible(1);
2852 		return NULL;
2853 	}
2854 
2855 	/*
2856 	 * Go through the zonelist yet one more time, keep very high watermark
2857 	 * here, this is only to catch a parallel oom killing, we must fail if
2858 	 * we're still under heavy pressure.
2859 	 */
2860 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
2861 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
2862 	if (page)
2863 		goto out;
2864 
2865 	if (!(gfp_mask & __GFP_NOFAIL)) {
2866 		/* Coredumps can quickly deplete all memory reserves */
2867 		if (current->flags & PF_DUMPCORE)
2868 			goto out;
2869 		/* The OOM killer will not help higher order allocs */
2870 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2871 			goto out;
2872 		/* The OOM killer does not needlessly kill tasks for lowmem */
2873 		if (ac->high_zoneidx < ZONE_NORMAL)
2874 			goto out;
2875 		/* The OOM killer does not compensate for IO-less reclaim */
2876 		if (!(gfp_mask & __GFP_FS)) {
2877 			/*
2878 			 * XXX: Page reclaim didn't yield anything,
2879 			 * and the OOM killer can't be invoked, but
2880 			 * keep looping as per tradition.
2881 			 *
2882 			 * But do not keep looping if oom_killer_disable()
2883 			 * was already called, for the system is trying to
2884 			 * enter a quiescent state during suspend.
2885 			 */
2886 			*did_some_progress = !oom_killer_disabled;
2887 			goto out;
2888 		}
2889 		if (pm_suspended_storage())
2890 			goto out;
2891 		/* The OOM killer may not free memory on a specific node */
2892 		if (gfp_mask & __GFP_THISNODE)
2893 			goto out;
2894 	}
2895 	/* Exhausted what can be done so it's blamo time */
2896 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
2897 		*did_some_progress = 1;
2898 
2899 		if (gfp_mask & __GFP_NOFAIL) {
2900 			page = get_page_from_freelist(gfp_mask, order,
2901 					ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
2902 			/*
2903 			 * fallback to ignore cpuset restriction if our nodes
2904 			 * are depleted
2905 			 */
2906 			if (!page)
2907 				page = get_page_from_freelist(gfp_mask, order,
2908 					ALLOC_NO_WATERMARKS, ac);
2909 		}
2910 	}
2911 out:
2912 	mutex_unlock(&oom_lock);
2913 	return page;
2914 }
2915 
2916 #ifdef CONFIG_COMPACTION
2917 /* Try memory compaction for high-order allocations before reclaim */
2918 static struct page *
2919 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2920 		int alloc_flags, const struct alloc_context *ac,
2921 		enum migrate_mode mode, int *contended_compaction,
2922 		bool *deferred_compaction)
2923 {
2924 	unsigned long compact_result;
2925 	struct page *page;
2926 
2927 	if (!order)
2928 		return NULL;
2929 
2930 	current->flags |= PF_MEMALLOC;
2931 	compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
2932 						mode, contended_compaction);
2933 	current->flags &= ~PF_MEMALLOC;
2934 
2935 	switch (compact_result) {
2936 	case COMPACT_DEFERRED:
2937 		*deferred_compaction = true;
2938 		/* fall-through */
2939 	case COMPACT_SKIPPED:
2940 		return NULL;
2941 	default:
2942 		break;
2943 	}
2944 
2945 	/*
2946 	 * At least in one zone compaction wasn't deferred or skipped, so let's
2947 	 * count a compaction stall
2948 	 */
2949 	count_vm_event(COMPACTSTALL);
2950 
2951 	page = get_page_from_freelist(gfp_mask, order,
2952 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
2953 
2954 	if (page) {
2955 		struct zone *zone = page_zone(page);
2956 
2957 		zone->compact_blockskip_flush = false;
2958 		compaction_defer_reset(zone, order, true);
2959 		count_vm_event(COMPACTSUCCESS);
2960 		return page;
2961 	}
2962 
2963 	/*
2964 	 * It's bad if compaction run occurs and fails. The most likely reason
2965 	 * is that pages exist, but not enough to satisfy watermarks.
2966 	 */
2967 	count_vm_event(COMPACTFAIL);
2968 
2969 	cond_resched();
2970 
2971 	return NULL;
2972 }
2973 #else
2974 static inline struct page *
2975 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2976 		int alloc_flags, const struct alloc_context *ac,
2977 		enum migrate_mode mode, int *contended_compaction,
2978 		bool *deferred_compaction)
2979 {
2980 	return NULL;
2981 }
2982 #endif /* CONFIG_COMPACTION */
2983 
2984 /* Perform direct synchronous page reclaim */
2985 static int
2986 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
2987 					const struct alloc_context *ac)
2988 {
2989 	struct reclaim_state reclaim_state;
2990 	int progress;
2991 
2992 	cond_resched();
2993 
2994 	/* We now go into synchronous reclaim */
2995 	cpuset_memory_pressure_bump();
2996 	current->flags |= PF_MEMALLOC;
2997 	lockdep_set_current_reclaim_state(gfp_mask);
2998 	reclaim_state.reclaimed_slab = 0;
2999 	current->reclaim_state = &reclaim_state;
3000 
3001 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3002 								ac->nodemask);
3003 
3004 	current->reclaim_state = NULL;
3005 	lockdep_clear_current_reclaim_state();
3006 	current->flags &= ~PF_MEMALLOC;
3007 
3008 	cond_resched();
3009 
3010 	return progress;
3011 }
3012 
3013 /* The really slow allocator path where we enter direct reclaim */
3014 static inline struct page *
3015 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3016 		int alloc_flags, const struct alloc_context *ac,
3017 		unsigned long *did_some_progress)
3018 {
3019 	struct page *page = NULL;
3020 	bool drained = false;
3021 
3022 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3023 	if (unlikely(!(*did_some_progress)))
3024 		return NULL;
3025 
3026 retry:
3027 	page = get_page_from_freelist(gfp_mask, order,
3028 					alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3029 
3030 	/*
3031 	 * If an allocation failed after direct reclaim, it could be because
3032 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3033 	 * Shrink them them and try again
3034 	 */
3035 	if (!page && !drained) {
3036 		unreserve_highatomic_pageblock(ac);
3037 		drain_all_pages(NULL);
3038 		drained = true;
3039 		goto retry;
3040 	}
3041 
3042 	return page;
3043 }
3044 
3045 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3046 {
3047 	struct zoneref *z;
3048 	struct zone *zone;
3049 
3050 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3051 						ac->high_zoneidx, ac->nodemask)
3052 		wakeup_kswapd(zone, order, zone_idx(ac->preferred_zone));
3053 }
3054 
3055 static inline int
3056 gfp_to_alloc_flags(gfp_t gfp_mask)
3057 {
3058 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3059 
3060 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3061 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3062 
3063 	/*
3064 	 * The caller may dip into page reserves a bit more if the caller
3065 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3066 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3067 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3068 	 */
3069 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3070 
3071 	if (gfp_mask & __GFP_ATOMIC) {
3072 		/*
3073 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3074 		 * if it can't schedule.
3075 		 */
3076 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3077 			alloc_flags |= ALLOC_HARDER;
3078 		/*
3079 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3080 		 * comment for __cpuset_node_allowed().
3081 		 */
3082 		alloc_flags &= ~ALLOC_CPUSET;
3083 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3084 		alloc_flags |= ALLOC_HARDER;
3085 
3086 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
3087 		if (gfp_mask & __GFP_MEMALLOC)
3088 			alloc_flags |= ALLOC_NO_WATERMARKS;
3089 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3090 			alloc_flags |= ALLOC_NO_WATERMARKS;
3091 		else if (!in_interrupt() &&
3092 				((current->flags & PF_MEMALLOC) ||
3093 				 unlikely(test_thread_flag(TIF_MEMDIE))))
3094 			alloc_flags |= ALLOC_NO_WATERMARKS;
3095 	}
3096 #ifdef CONFIG_CMA
3097 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3098 		alloc_flags |= ALLOC_CMA;
3099 #endif
3100 	return alloc_flags;
3101 }
3102 
3103 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3104 {
3105 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
3106 }
3107 
3108 static inline bool is_thp_gfp_mask(gfp_t gfp_mask)
3109 {
3110 	return (gfp_mask & (GFP_TRANSHUGE | __GFP_KSWAPD_RECLAIM)) == GFP_TRANSHUGE;
3111 }
3112 
3113 static inline struct page *
3114 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3115 						struct alloc_context *ac)
3116 {
3117 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3118 	struct page *page = NULL;
3119 	int alloc_flags;
3120 	unsigned long pages_reclaimed = 0;
3121 	unsigned long did_some_progress;
3122 	enum migrate_mode migration_mode = MIGRATE_ASYNC;
3123 	bool deferred_compaction = false;
3124 	int contended_compaction = COMPACT_CONTENDED_NONE;
3125 
3126 	/*
3127 	 * In the slowpath, we sanity check order to avoid ever trying to
3128 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3129 	 * be using allocators in order of preference for an area that is
3130 	 * too large.
3131 	 */
3132 	if (order >= MAX_ORDER) {
3133 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3134 		return NULL;
3135 	}
3136 
3137 	/*
3138 	 * We also sanity check to catch abuse of atomic reserves being used by
3139 	 * callers that are not in atomic context.
3140 	 */
3141 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3142 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3143 		gfp_mask &= ~__GFP_ATOMIC;
3144 
3145 retry:
3146 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3147 		wake_all_kswapds(order, ac);
3148 
3149 	/*
3150 	 * OK, we're below the kswapd watermark and have kicked background
3151 	 * reclaim. Now things get more complex, so set up alloc_flags according
3152 	 * to how we want to proceed.
3153 	 */
3154 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3155 
3156 	/*
3157 	 * Find the true preferred zone if the allocation is unconstrained by
3158 	 * cpusets.
3159 	 */
3160 	if (!(alloc_flags & ALLOC_CPUSET) && !ac->nodemask) {
3161 		struct zoneref *preferred_zoneref;
3162 		preferred_zoneref = first_zones_zonelist(ac->zonelist,
3163 				ac->high_zoneidx, NULL, &ac->preferred_zone);
3164 		ac->classzone_idx = zonelist_zone_idx(preferred_zoneref);
3165 	}
3166 
3167 	/* This is the last chance, in general, before the goto nopage. */
3168 	page = get_page_from_freelist(gfp_mask, order,
3169 				alloc_flags & ~ALLOC_NO_WATERMARKS, ac);
3170 	if (page)
3171 		goto got_pg;
3172 
3173 	/* Allocate without watermarks if the context allows */
3174 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
3175 		/*
3176 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
3177 		 * the allocation is high priority and these type of
3178 		 * allocations are system rather than user orientated
3179 		 */
3180 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3181 		page = get_page_from_freelist(gfp_mask, order,
3182 						ALLOC_NO_WATERMARKS, ac);
3183 		if (page)
3184 			goto got_pg;
3185 	}
3186 
3187 	/* Caller is not willing to reclaim, we can't balance anything */
3188 	if (!can_direct_reclaim) {
3189 		/*
3190 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3191 		 * of any new users that actually allow this type of allocation
3192 		 * to fail.
3193 		 */
3194 		WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
3195 		goto nopage;
3196 	}
3197 
3198 	/* Avoid recursion of direct reclaim */
3199 	if (current->flags & PF_MEMALLOC) {
3200 		/*
3201 		 * __GFP_NOFAIL request from this context is rather bizarre
3202 		 * because we cannot reclaim anything and only can loop waiting
3203 		 * for somebody to do a work for us.
3204 		 */
3205 		if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3206 			cond_resched();
3207 			goto retry;
3208 		}
3209 		goto nopage;
3210 	}
3211 
3212 	/* Avoid allocations with no watermarks from looping endlessly */
3213 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3214 		goto nopage;
3215 
3216 	/*
3217 	 * Try direct compaction. The first pass is asynchronous. Subsequent
3218 	 * attempts after direct reclaim are synchronous
3219 	 */
3220 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3221 					migration_mode,
3222 					&contended_compaction,
3223 					&deferred_compaction);
3224 	if (page)
3225 		goto got_pg;
3226 
3227 	/* Checks for THP-specific high-order allocations */
3228 	if (is_thp_gfp_mask(gfp_mask)) {
3229 		/*
3230 		 * If compaction is deferred for high-order allocations, it is
3231 		 * because sync compaction recently failed. If this is the case
3232 		 * and the caller requested a THP allocation, we do not want
3233 		 * to heavily disrupt the system, so we fail the allocation
3234 		 * instead of entering direct reclaim.
3235 		 */
3236 		if (deferred_compaction)
3237 			goto nopage;
3238 
3239 		/*
3240 		 * In all zones where compaction was attempted (and not
3241 		 * deferred or skipped), lock contention has been detected.
3242 		 * For THP allocation we do not want to disrupt the others
3243 		 * so we fallback to base pages instead.
3244 		 */
3245 		if (contended_compaction == COMPACT_CONTENDED_LOCK)
3246 			goto nopage;
3247 
3248 		/*
3249 		 * If compaction was aborted due to need_resched(), we do not
3250 		 * want to further increase allocation latency, unless it is
3251 		 * khugepaged trying to collapse.
3252 		 */
3253 		if (contended_compaction == COMPACT_CONTENDED_SCHED
3254 			&& !(current->flags & PF_KTHREAD))
3255 			goto nopage;
3256 	}
3257 
3258 	/*
3259 	 * It can become very expensive to allocate transparent hugepages at
3260 	 * fault, so use asynchronous memory compaction for THP unless it is
3261 	 * khugepaged trying to collapse.
3262 	 */
3263 	if (!is_thp_gfp_mask(gfp_mask) || (current->flags & PF_KTHREAD))
3264 		migration_mode = MIGRATE_SYNC_LIGHT;
3265 
3266 	/* Try direct reclaim and then allocating */
3267 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3268 							&did_some_progress);
3269 	if (page)
3270 		goto got_pg;
3271 
3272 	/* Do not loop if specifically requested */
3273 	if (gfp_mask & __GFP_NORETRY)
3274 		goto noretry;
3275 
3276 	/* Keep reclaiming pages as long as there is reasonable progress */
3277 	pages_reclaimed += did_some_progress;
3278 	if ((did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) ||
3279 	    ((gfp_mask & __GFP_REPEAT) && pages_reclaimed < (1 << order))) {
3280 		/* Wait for some write requests to complete then retry */
3281 		wait_iff_congested(ac->preferred_zone, BLK_RW_ASYNC, HZ/50);
3282 		goto retry;
3283 	}
3284 
3285 	/* Reclaim has failed us, start killing things */
3286 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3287 	if (page)
3288 		goto got_pg;
3289 
3290 	/* Retry as long as the OOM killer is making progress */
3291 	if (did_some_progress)
3292 		goto retry;
3293 
3294 noretry:
3295 	/*
3296 	 * High-order allocations do not necessarily loop after
3297 	 * direct reclaim and reclaim/compaction depends on compaction
3298 	 * being called after reclaim so call directly if necessary
3299 	 */
3300 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags,
3301 					    ac, migration_mode,
3302 					    &contended_compaction,
3303 					    &deferred_compaction);
3304 	if (page)
3305 		goto got_pg;
3306 nopage:
3307 	warn_alloc_failed(gfp_mask, order, NULL);
3308 got_pg:
3309 	return page;
3310 }
3311 
3312 /*
3313  * This is the 'heart' of the zoned buddy allocator.
3314  */
3315 struct page *
3316 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3317 			struct zonelist *zonelist, nodemask_t *nodemask)
3318 {
3319 	struct zoneref *preferred_zoneref;
3320 	struct page *page = NULL;
3321 	unsigned int cpuset_mems_cookie;
3322 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET|ALLOC_FAIR;
3323 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
3324 	struct alloc_context ac = {
3325 		.high_zoneidx = gfp_zone(gfp_mask),
3326 		.nodemask = nodemask,
3327 		.migratetype = gfpflags_to_migratetype(gfp_mask),
3328 	};
3329 
3330 	gfp_mask &= gfp_allowed_mask;
3331 
3332 	lockdep_trace_alloc(gfp_mask);
3333 
3334 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3335 
3336 	if (should_fail_alloc_page(gfp_mask, order))
3337 		return NULL;
3338 
3339 	/*
3340 	 * Check the zones suitable for the gfp_mask contain at least one
3341 	 * valid zone. It's possible to have an empty zonelist as a result
3342 	 * of __GFP_THISNODE and a memoryless node
3343 	 */
3344 	if (unlikely(!zonelist->_zonerefs->zone))
3345 		return NULL;
3346 
3347 	if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
3348 		alloc_flags |= ALLOC_CMA;
3349 
3350 retry_cpuset:
3351 	cpuset_mems_cookie = read_mems_allowed_begin();
3352 
3353 	/* We set it here, as __alloc_pages_slowpath might have changed it */
3354 	ac.zonelist = zonelist;
3355 
3356 	/* Dirty zone balancing only done in the fast path */
3357 	ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3358 
3359 	/* The preferred zone is used for statistics later */
3360 	preferred_zoneref = first_zones_zonelist(ac.zonelist, ac.high_zoneidx,
3361 				ac.nodemask ? : &cpuset_current_mems_allowed,
3362 				&ac.preferred_zone);
3363 	if (!ac.preferred_zone)
3364 		goto out;
3365 	ac.classzone_idx = zonelist_zone_idx(preferred_zoneref);
3366 
3367 	/* First allocation attempt */
3368 	alloc_mask = gfp_mask|__GFP_HARDWALL;
3369 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
3370 	if (unlikely(!page)) {
3371 		/*
3372 		 * Runtime PM, block IO and its error handling path
3373 		 * can deadlock because I/O on the device might not
3374 		 * complete.
3375 		 */
3376 		alloc_mask = memalloc_noio_flags(gfp_mask);
3377 		ac.spread_dirty_pages = false;
3378 
3379 		page = __alloc_pages_slowpath(alloc_mask, order, &ac);
3380 	}
3381 
3382 	if (kmemcheck_enabled && page)
3383 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3384 
3385 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3386 
3387 out:
3388 	/*
3389 	 * When updating a task's mems_allowed, it is possible to race with
3390 	 * parallel threads in such a way that an allocation can fail while
3391 	 * the mask is being updated. If a page allocation is about to fail,
3392 	 * check if the cpuset changed during allocation and if so, retry.
3393 	 */
3394 	if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
3395 		goto retry_cpuset;
3396 
3397 	return page;
3398 }
3399 EXPORT_SYMBOL(__alloc_pages_nodemask);
3400 
3401 /*
3402  * Common helper functions.
3403  */
3404 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
3405 {
3406 	struct page *page;
3407 
3408 	/*
3409 	 * __get_free_pages() returns a 32-bit address, which cannot represent
3410 	 * a highmem page
3411 	 */
3412 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3413 
3414 	page = alloc_pages(gfp_mask, order);
3415 	if (!page)
3416 		return 0;
3417 	return (unsigned long) page_address(page);
3418 }
3419 EXPORT_SYMBOL(__get_free_pages);
3420 
3421 unsigned long get_zeroed_page(gfp_t gfp_mask)
3422 {
3423 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
3424 }
3425 EXPORT_SYMBOL(get_zeroed_page);
3426 
3427 void __free_pages(struct page *page, unsigned int order)
3428 {
3429 	if (put_page_testzero(page)) {
3430 		if (order == 0)
3431 			free_hot_cold_page(page, false);
3432 		else
3433 			__free_pages_ok(page, order);
3434 	}
3435 }
3436 
3437 EXPORT_SYMBOL(__free_pages);
3438 
3439 void free_pages(unsigned long addr, unsigned int order)
3440 {
3441 	if (addr != 0) {
3442 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3443 		__free_pages(virt_to_page((void *)addr), order);
3444 	}
3445 }
3446 
3447 EXPORT_SYMBOL(free_pages);
3448 
3449 /*
3450  * Page Fragment:
3451  *  An arbitrary-length arbitrary-offset area of memory which resides
3452  *  within a 0 or higher order page.  Multiple fragments within that page
3453  *  are individually refcounted, in the page's reference counter.
3454  *
3455  * The page_frag functions below provide a simple allocation framework for
3456  * page fragments.  This is used by the network stack and network device
3457  * drivers to provide a backing region of memory for use as either an
3458  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3459  */
3460 static struct page *__page_frag_refill(struct page_frag_cache *nc,
3461 				       gfp_t gfp_mask)
3462 {
3463 	struct page *page = NULL;
3464 	gfp_t gfp = gfp_mask;
3465 
3466 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3467 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3468 		    __GFP_NOMEMALLOC;
3469 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3470 				PAGE_FRAG_CACHE_MAX_ORDER);
3471 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3472 #endif
3473 	if (unlikely(!page))
3474 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3475 
3476 	nc->va = page ? page_address(page) : NULL;
3477 
3478 	return page;
3479 }
3480 
3481 void *__alloc_page_frag(struct page_frag_cache *nc,
3482 			unsigned int fragsz, gfp_t gfp_mask)
3483 {
3484 	unsigned int size = PAGE_SIZE;
3485 	struct page *page;
3486 	int offset;
3487 
3488 	if (unlikely(!nc->va)) {
3489 refill:
3490 		page = __page_frag_refill(nc, gfp_mask);
3491 		if (!page)
3492 			return NULL;
3493 
3494 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3495 		/* if size can vary use size else just use PAGE_SIZE */
3496 		size = nc->size;
3497 #endif
3498 		/* Even if we own the page, we do not use atomic_set().
3499 		 * This would break get_page_unless_zero() users.
3500 		 */
3501 		page_ref_add(page, size - 1);
3502 
3503 		/* reset page count bias and offset to start of new frag */
3504 		nc->pfmemalloc = page_is_pfmemalloc(page);
3505 		nc->pagecnt_bias = size;
3506 		nc->offset = size;
3507 	}
3508 
3509 	offset = nc->offset - fragsz;
3510 	if (unlikely(offset < 0)) {
3511 		page = virt_to_page(nc->va);
3512 
3513 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
3514 			goto refill;
3515 
3516 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3517 		/* if size can vary use size else just use PAGE_SIZE */
3518 		size = nc->size;
3519 #endif
3520 		/* OK, page count is 0, we can safely set it */
3521 		set_page_count(page, size);
3522 
3523 		/* reset page count bias and offset to start of new frag */
3524 		nc->pagecnt_bias = size;
3525 		offset = size - fragsz;
3526 	}
3527 
3528 	nc->pagecnt_bias--;
3529 	nc->offset = offset;
3530 
3531 	return nc->va + offset;
3532 }
3533 EXPORT_SYMBOL(__alloc_page_frag);
3534 
3535 /*
3536  * Frees a page fragment allocated out of either a compound or order 0 page.
3537  */
3538 void __free_page_frag(void *addr)
3539 {
3540 	struct page *page = virt_to_head_page(addr);
3541 
3542 	if (unlikely(put_page_testzero(page)))
3543 		__free_pages_ok(page, compound_order(page));
3544 }
3545 EXPORT_SYMBOL(__free_page_frag);
3546 
3547 /*
3548  * alloc_kmem_pages charges newly allocated pages to the kmem resource counter
3549  * of the current memory cgroup if __GFP_ACCOUNT is set, other than that it is
3550  * equivalent to alloc_pages.
3551  *
3552  * It should be used when the caller would like to use kmalloc, but since the
3553  * allocation is large, it has to fall back to the page allocator.
3554  */
3555 struct page *alloc_kmem_pages(gfp_t gfp_mask, unsigned int order)
3556 {
3557 	struct page *page;
3558 
3559 	page = alloc_pages(gfp_mask, order);
3560 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3561 		__free_pages(page, order);
3562 		page = NULL;
3563 	}
3564 	return page;
3565 }
3566 
3567 struct page *alloc_kmem_pages_node(int nid, gfp_t gfp_mask, unsigned int order)
3568 {
3569 	struct page *page;
3570 
3571 	page = alloc_pages_node(nid, gfp_mask, order);
3572 	if (page && memcg_kmem_charge(page, gfp_mask, order) != 0) {
3573 		__free_pages(page, order);
3574 		page = NULL;
3575 	}
3576 	return page;
3577 }
3578 
3579 /*
3580  * __free_kmem_pages and free_kmem_pages will free pages allocated with
3581  * alloc_kmem_pages.
3582  */
3583 void __free_kmem_pages(struct page *page, unsigned int order)
3584 {
3585 	memcg_kmem_uncharge(page, order);
3586 	__free_pages(page, order);
3587 }
3588 
3589 void free_kmem_pages(unsigned long addr, unsigned int order)
3590 {
3591 	if (addr != 0) {
3592 		VM_BUG_ON(!virt_addr_valid((void *)addr));
3593 		__free_kmem_pages(virt_to_page((void *)addr), order);
3594 	}
3595 }
3596 
3597 static void *make_alloc_exact(unsigned long addr, unsigned int order,
3598 		size_t size)
3599 {
3600 	if (addr) {
3601 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
3602 		unsigned long used = addr + PAGE_ALIGN(size);
3603 
3604 		split_page(virt_to_page((void *)addr), order);
3605 		while (used < alloc_end) {
3606 			free_page(used);
3607 			used += PAGE_SIZE;
3608 		}
3609 	}
3610 	return (void *)addr;
3611 }
3612 
3613 /**
3614  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3615  * @size: the number of bytes to allocate
3616  * @gfp_mask: GFP flags for the allocation
3617  *
3618  * This function is similar to alloc_pages(), except that it allocates the
3619  * minimum number of pages to satisfy the request.  alloc_pages() can only
3620  * allocate memory in power-of-two pages.
3621  *
3622  * This function is also limited by MAX_ORDER.
3623  *
3624  * Memory allocated by this function must be released by free_pages_exact().
3625  */
3626 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3627 {
3628 	unsigned int order = get_order(size);
3629 	unsigned long addr;
3630 
3631 	addr = __get_free_pages(gfp_mask, order);
3632 	return make_alloc_exact(addr, order, size);
3633 }
3634 EXPORT_SYMBOL(alloc_pages_exact);
3635 
3636 /**
3637  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3638  *			   pages on a node.
3639  * @nid: the preferred node ID where memory should be allocated
3640  * @size: the number of bytes to allocate
3641  * @gfp_mask: GFP flags for the allocation
3642  *
3643  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3644  * back.
3645  */
3646 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
3647 {
3648 	unsigned int order = get_order(size);
3649 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
3650 	if (!p)
3651 		return NULL;
3652 	return make_alloc_exact((unsigned long)page_address(p), order, size);
3653 }
3654 
3655 /**
3656  * free_pages_exact - release memory allocated via alloc_pages_exact()
3657  * @virt: the value returned by alloc_pages_exact.
3658  * @size: size of allocation, same value as passed to alloc_pages_exact().
3659  *
3660  * Release the memory allocated by a previous call to alloc_pages_exact.
3661  */
3662 void free_pages_exact(void *virt, size_t size)
3663 {
3664 	unsigned long addr = (unsigned long)virt;
3665 	unsigned long end = addr + PAGE_ALIGN(size);
3666 
3667 	while (addr < end) {
3668 		free_page(addr);
3669 		addr += PAGE_SIZE;
3670 	}
3671 }
3672 EXPORT_SYMBOL(free_pages_exact);
3673 
3674 /**
3675  * nr_free_zone_pages - count number of pages beyond high watermark
3676  * @offset: The zone index of the highest zone
3677  *
3678  * nr_free_zone_pages() counts the number of counts pages which are beyond the
3679  * high watermark within all zones at or below a given zone index.  For each
3680  * zone, the number of pages is calculated as:
3681  *     managed_pages - high_pages
3682  */
3683 static unsigned long nr_free_zone_pages(int offset)
3684 {
3685 	struct zoneref *z;
3686 	struct zone *zone;
3687 
3688 	/* Just pick one node, since fallback list is circular */
3689 	unsigned long sum = 0;
3690 
3691 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
3692 
3693 	for_each_zone_zonelist(zone, z, zonelist, offset) {
3694 		unsigned long size = zone->managed_pages;
3695 		unsigned long high = high_wmark_pages(zone);
3696 		if (size > high)
3697 			sum += size - high;
3698 	}
3699 
3700 	return sum;
3701 }
3702 
3703 /**
3704  * nr_free_buffer_pages - count number of pages beyond high watermark
3705  *
3706  * nr_free_buffer_pages() counts the number of pages which are beyond the high
3707  * watermark within ZONE_DMA and ZONE_NORMAL.
3708  */
3709 unsigned long nr_free_buffer_pages(void)
3710 {
3711 	return nr_free_zone_pages(gfp_zone(GFP_USER));
3712 }
3713 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
3714 
3715 /**
3716  * nr_free_pagecache_pages - count number of pages beyond high watermark
3717  *
3718  * nr_free_pagecache_pages() counts the number of pages which are beyond the
3719  * high watermark within all zones.
3720  */
3721 unsigned long nr_free_pagecache_pages(void)
3722 {
3723 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
3724 }
3725 
3726 static inline void show_node(struct zone *zone)
3727 {
3728 	if (IS_ENABLED(CONFIG_NUMA))
3729 		printk("Node %d ", zone_to_nid(zone));
3730 }
3731 
3732 long si_mem_available(void)
3733 {
3734 	long available;
3735 	unsigned long pagecache;
3736 	unsigned long wmark_low = 0;
3737 	unsigned long pages[NR_LRU_LISTS];
3738 	struct zone *zone;
3739 	int lru;
3740 
3741 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
3742 		pages[lru] = global_page_state(NR_LRU_BASE + lru);
3743 
3744 	for_each_zone(zone)
3745 		wmark_low += zone->watermark[WMARK_LOW];
3746 
3747 	/*
3748 	 * Estimate the amount of memory available for userspace allocations,
3749 	 * without causing swapping.
3750 	 */
3751 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
3752 
3753 	/*
3754 	 * Not all the page cache can be freed, otherwise the system will
3755 	 * start swapping. Assume at least half of the page cache, or the
3756 	 * low watermark worth of cache, needs to stay.
3757 	 */
3758 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
3759 	pagecache -= min(pagecache / 2, wmark_low);
3760 	available += pagecache;
3761 
3762 	/*
3763 	 * Part of the reclaimable slab consists of items that are in use,
3764 	 * and cannot be freed. Cap this estimate at the low watermark.
3765 	 */
3766 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
3767 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
3768 
3769 	if (available < 0)
3770 		available = 0;
3771 	return available;
3772 }
3773 EXPORT_SYMBOL_GPL(si_mem_available);
3774 
3775 void si_meminfo(struct sysinfo *val)
3776 {
3777 	val->totalram = totalram_pages;
3778 	val->sharedram = global_page_state(NR_SHMEM);
3779 	val->freeram = global_page_state(NR_FREE_PAGES);
3780 	val->bufferram = nr_blockdev_pages();
3781 	val->totalhigh = totalhigh_pages;
3782 	val->freehigh = nr_free_highpages();
3783 	val->mem_unit = PAGE_SIZE;
3784 }
3785 
3786 EXPORT_SYMBOL(si_meminfo);
3787 
3788 #ifdef CONFIG_NUMA
3789 void si_meminfo_node(struct sysinfo *val, int nid)
3790 {
3791 	int zone_type;		/* needs to be signed */
3792 	unsigned long managed_pages = 0;
3793 	pg_data_t *pgdat = NODE_DATA(nid);
3794 
3795 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
3796 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
3797 	val->totalram = managed_pages;
3798 	val->sharedram = node_page_state(nid, NR_SHMEM);
3799 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
3800 #ifdef CONFIG_HIGHMEM
3801 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].managed_pages;
3802 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
3803 			NR_FREE_PAGES);
3804 #else
3805 	val->totalhigh = 0;
3806 	val->freehigh = 0;
3807 #endif
3808 	val->mem_unit = PAGE_SIZE;
3809 }
3810 #endif
3811 
3812 /*
3813  * Determine whether the node should be displayed or not, depending on whether
3814  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
3815  */
3816 bool skip_free_areas_node(unsigned int flags, int nid)
3817 {
3818 	bool ret = false;
3819 	unsigned int cpuset_mems_cookie;
3820 
3821 	if (!(flags & SHOW_MEM_FILTER_NODES))
3822 		goto out;
3823 
3824 	do {
3825 		cpuset_mems_cookie = read_mems_allowed_begin();
3826 		ret = !node_isset(nid, cpuset_current_mems_allowed);
3827 	} while (read_mems_allowed_retry(cpuset_mems_cookie));
3828 out:
3829 	return ret;
3830 }
3831 
3832 #define K(x) ((x) << (PAGE_SHIFT-10))
3833 
3834 static void show_migration_types(unsigned char type)
3835 {
3836 	static const char types[MIGRATE_TYPES] = {
3837 		[MIGRATE_UNMOVABLE]	= 'U',
3838 		[MIGRATE_MOVABLE]	= 'M',
3839 		[MIGRATE_RECLAIMABLE]	= 'E',
3840 		[MIGRATE_HIGHATOMIC]	= 'H',
3841 #ifdef CONFIG_CMA
3842 		[MIGRATE_CMA]		= 'C',
3843 #endif
3844 #ifdef CONFIG_MEMORY_ISOLATION
3845 		[MIGRATE_ISOLATE]	= 'I',
3846 #endif
3847 	};
3848 	char tmp[MIGRATE_TYPES + 1];
3849 	char *p = tmp;
3850 	int i;
3851 
3852 	for (i = 0; i < MIGRATE_TYPES; i++) {
3853 		if (type & (1 << i))
3854 			*p++ = types[i];
3855 	}
3856 
3857 	*p = '\0';
3858 	printk("(%s) ", tmp);
3859 }
3860 
3861 /*
3862  * Show free area list (used inside shift_scroll-lock stuff)
3863  * We also calculate the percentage fragmentation. We do this by counting the
3864  * memory on each free list with the exception of the first item on the list.
3865  *
3866  * Bits in @filter:
3867  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
3868  *   cpuset.
3869  */
3870 void show_free_areas(unsigned int filter)
3871 {
3872 	unsigned long free_pcp = 0;
3873 	int cpu;
3874 	struct zone *zone;
3875 
3876 	for_each_populated_zone(zone) {
3877 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3878 			continue;
3879 
3880 		for_each_online_cpu(cpu)
3881 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3882 	}
3883 
3884 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
3885 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
3886 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
3887 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
3888 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
3889 		" free:%lu free_pcp:%lu free_cma:%lu\n",
3890 		global_page_state(NR_ACTIVE_ANON),
3891 		global_page_state(NR_INACTIVE_ANON),
3892 		global_page_state(NR_ISOLATED_ANON),
3893 		global_page_state(NR_ACTIVE_FILE),
3894 		global_page_state(NR_INACTIVE_FILE),
3895 		global_page_state(NR_ISOLATED_FILE),
3896 		global_page_state(NR_UNEVICTABLE),
3897 		global_page_state(NR_FILE_DIRTY),
3898 		global_page_state(NR_WRITEBACK),
3899 		global_page_state(NR_UNSTABLE_NFS),
3900 		global_page_state(NR_SLAB_RECLAIMABLE),
3901 		global_page_state(NR_SLAB_UNRECLAIMABLE),
3902 		global_page_state(NR_FILE_MAPPED),
3903 		global_page_state(NR_SHMEM),
3904 		global_page_state(NR_PAGETABLE),
3905 		global_page_state(NR_BOUNCE),
3906 		global_page_state(NR_FREE_PAGES),
3907 		free_pcp,
3908 		global_page_state(NR_FREE_CMA_PAGES));
3909 
3910 	for_each_populated_zone(zone) {
3911 		int i;
3912 
3913 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3914 			continue;
3915 
3916 		free_pcp = 0;
3917 		for_each_online_cpu(cpu)
3918 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
3919 
3920 		show_node(zone);
3921 		printk("%s"
3922 			" free:%lukB"
3923 			" min:%lukB"
3924 			" low:%lukB"
3925 			" high:%lukB"
3926 			" active_anon:%lukB"
3927 			" inactive_anon:%lukB"
3928 			" active_file:%lukB"
3929 			" inactive_file:%lukB"
3930 			" unevictable:%lukB"
3931 			" isolated(anon):%lukB"
3932 			" isolated(file):%lukB"
3933 			" present:%lukB"
3934 			" managed:%lukB"
3935 			" mlocked:%lukB"
3936 			" dirty:%lukB"
3937 			" writeback:%lukB"
3938 			" mapped:%lukB"
3939 			" shmem:%lukB"
3940 			" slab_reclaimable:%lukB"
3941 			" slab_unreclaimable:%lukB"
3942 			" kernel_stack:%lukB"
3943 			" pagetables:%lukB"
3944 			" unstable:%lukB"
3945 			" bounce:%lukB"
3946 			" free_pcp:%lukB"
3947 			" local_pcp:%ukB"
3948 			" free_cma:%lukB"
3949 			" writeback_tmp:%lukB"
3950 			" pages_scanned:%lu"
3951 			" all_unreclaimable? %s"
3952 			"\n",
3953 			zone->name,
3954 			K(zone_page_state(zone, NR_FREE_PAGES)),
3955 			K(min_wmark_pages(zone)),
3956 			K(low_wmark_pages(zone)),
3957 			K(high_wmark_pages(zone)),
3958 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
3959 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
3960 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
3961 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
3962 			K(zone_page_state(zone, NR_UNEVICTABLE)),
3963 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
3964 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
3965 			K(zone->present_pages),
3966 			K(zone->managed_pages),
3967 			K(zone_page_state(zone, NR_MLOCK)),
3968 			K(zone_page_state(zone, NR_FILE_DIRTY)),
3969 			K(zone_page_state(zone, NR_WRITEBACK)),
3970 			K(zone_page_state(zone, NR_FILE_MAPPED)),
3971 			K(zone_page_state(zone, NR_SHMEM)),
3972 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
3973 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
3974 			zone_page_state(zone, NR_KERNEL_STACK) *
3975 				THREAD_SIZE / 1024,
3976 			K(zone_page_state(zone, NR_PAGETABLE)),
3977 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
3978 			K(zone_page_state(zone, NR_BOUNCE)),
3979 			K(free_pcp),
3980 			K(this_cpu_read(zone->pageset->pcp.count)),
3981 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
3982 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
3983 			K(zone_page_state(zone, NR_PAGES_SCANNED)),
3984 			(!zone_reclaimable(zone) ? "yes" : "no")
3985 			);
3986 		printk("lowmem_reserve[]:");
3987 		for (i = 0; i < MAX_NR_ZONES; i++)
3988 			printk(" %ld", zone->lowmem_reserve[i]);
3989 		printk("\n");
3990 	}
3991 
3992 	for_each_populated_zone(zone) {
3993 		unsigned int order;
3994 		unsigned long nr[MAX_ORDER], flags, total = 0;
3995 		unsigned char types[MAX_ORDER];
3996 
3997 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3998 			continue;
3999 		show_node(zone);
4000 		printk("%s: ", zone->name);
4001 
4002 		spin_lock_irqsave(&zone->lock, flags);
4003 		for (order = 0; order < MAX_ORDER; order++) {
4004 			struct free_area *area = &zone->free_area[order];
4005 			int type;
4006 
4007 			nr[order] = area->nr_free;
4008 			total += nr[order] << order;
4009 
4010 			types[order] = 0;
4011 			for (type = 0; type < MIGRATE_TYPES; type++) {
4012 				if (!list_empty(&area->free_list[type]))
4013 					types[order] |= 1 << type;
4014 			}
4015 		}
4016 		spin_unlock_irqrestore(&zone->lock, flags);
4017 		for (order = 0; order < MAX_ORDER; order++) {
4018 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
4019 			if (nr[order])
4020 				show_migration_types(types[order]);
4021 		}
4022 		printk("= %lukB\n", K(total));
4023 	}
4024 
4025 	hugetlb_show_meminfo();
4026 
4027 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
4028 
4029 	show_swap_cache_info();
4030 }
4031 
4032 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4033 {
4034 	zoneref->zone = zone;
4035 	zoneref->zone_idx = zone_idx(zone);
4036 }
4037 
4038 /*
4039  * Builds allocation fallback zone lists.
4040  *
4041  * Add all populated zones of a node to the zonelist.
4042  */
4043 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4044 				int nr_zones)
4045 {
4046 	struct zone *zone;
4047 	enum zone_type zone_type = MAX_NR_ZONES;
4048 
4049 	do {
4050 		zone_type--;
4051 		zone = pgdat->node_zones + zone_type;
4052 		if (populated_zone(zone)) {
4053 			zoneref_set_zone(zone,
4054 				&zonelist->_zonerefs[nr_zones++]);
4055 			check_highest_zone(zone_type);
4056 		}
4057 	} while (zone_type);
4058 
4059 	return nr_zones;
4060 }
4061 
4062 
4063 /*
4064  *  zonelist_order:
4065  *  0 = automatic detection of better ordering.
4066  *  1 = order by ([node] distance, -zonetype)
4067  *  2 = order by (-zonetype, [node] distance)
4068  *
4069  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4070  *  the same zonelist. So only NUMA can configure this param.
4071  */
4072 #define ZONELIST_ORDER_DEFAULT  0
4073 #define ZONELIST_ORDER_NODE     1
4074 #define ZONELIST_ORDER_ZONE     2
4075 
4076 /* zonelist order in the kernel.
4077  * set_zonelist_order() will set this to NODE or ZONE.
4078  */
4079 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4080 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4081 
4082 
4083 #ifdef CONFIG_NUMA
4084 /* The value user specified ....changed by config */
4085 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4086 /* string for sysctl */
4087 #define NUMA_ZONELIST_ORDER_LEN	16
4088 char numa_zonelist_order[16] = "default";
4089 
4090 /*
4091  * interface for configure zonelist ordering.
4092  * command line option "numa_zonelist_order"
4093  *	= "[dD]efault	- default, automatic configuration.
4094  *	= "[nN]ode 	- order by node locality, then by zone within node
4095  *	= "[zZ]one      - order by zone, then by locality within zone
4096  */
4097 
4098 static int __parse_numa_zonelist_order(char *s)
4099 {
4100 	if (*s == 'd' || *s == 'D') {
4101 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4102 	} else if (*s == 'n' || *s == 'N') {
4103 		user_zonelist_order = ZONELIST_ORDER_NODE;
4104 	} else if (*s == 'z' || *s == 'Z') {
4105 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4106 	} else {
4107 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4108 		return -EINVAL;
4109 	}
4110 	return 0;
4111 }
4112 
4113 static __init int setup_numa_zonelist_order(char *s)
4114 {
4115 	int ret;
4116 
4117 	if (!s)
4118 		return 0;
4119 
4120 	ret = __parse_numa_zonelist_order(s);
4121 	if (ret == 0)
4122 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4123 
4124 	return ret;
4125 }
4126 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4127 
4128 /*
4129  * sysctl handler for numa_zonelist_order
4130  */
4131 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4132 		void __user *buffer, size_t *length,
4133 		loff_t *ppos)
4134 {
4135 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4136 	int ret;
4137 	static DEFINE_MUTEX(zl_order_mutex);
4138 
4139 	mutex_lock(&zl_order_mutex);
4140 	if (write) {
4141 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4142 			ret = -EINVAL;
4143 			goto out;
4144 		}
4145 		strcpy(saved_string, (char *)table->data);
4146 	}
4147 	ret = proc_dostring(table, write, buffer, length, ppos);
4148 	if (ret)
4149 		goto out;
4150 	if (write) {
4151 		int oldval = user_zonelist_order;
4152 
4153 		ret = __parse_numa_zonelist_order((char *)table->data);
4154 		if (ret) {
4155 			/*
4156 			 * bogus value.  restore saved string
4157 			 */
4158 			strncpy((char *)table->data, saved_string,
4159 				NUMA_ZONELIST_ORDER_LEN);
4160 			user_zonelist_order = oldval;
4161 		} else if (oldval != user_zonelist_order) {
4162 			mutex_lock(&zonelists_mutex);
4163 			build_all_zonelists(NULL, NULL);
4164 			mutex_unlock(&zonelists_mutex);
4165 		}
4166 	}
4167 out:
4168 	mutex_unlock(&zl_order_mutex);
4169 	return ret;
4170 }
4171 
4172 
4173 #define MAX_NODE_LOAD (nr_online_nodes)
4174 static int node_load[MAX_NUMNODES];
4175 
4176 /**
4177  * find_next_best_node - find the next node that should appear in a given node's fallback list
4178  * @node: node whose fallback list we're appending
4179  * @used_node_mask: nodemask_t of already used nodes
4180  *
4181  * We use a number of factors to determine which is the next node that should
4182  * appear on a given node's fallback list.  The node should not have appeared
4183  * already in @node's fallback list, and it should be the next closest node
4184  * according to the distance array (which contains arbitrary distance values
4185  * from each node to each node in the system), and should also prefer nodes
4186  * with no CPUs, since presumably they'll have very little allocation pressure
4187  * on them otherwise.
4188  * It returns -1 if no node is found.
4189  */
4190 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4191 {
4192 	int n, val;
4193 	int min_val = INT_MAX;
4194 	int best_node = NUMA_NO_NODE;
4195 	const struct cpumask *tmp = cpumask_of_node(0);
4196 
4197 	/* Use the local node if we haven't already */
4198 	if (!node_isset(node, *used_node_mask)) {
4199 		node_set(node, *used_node_mask);
4200 		return node;
4201 	}
4202 
4203 	for_each_node_state(n, N_MEMORY) {
4204 
4205 		/* Don't want a node to appear more than once */
4206 		if (node_isset(n, *used_node_mask))
4207 			continue;
4208 
4209 		/* Use the distance array to find the distance */
4210 		val = node_distance(node, n);
4211 
4212 		/* Penalize nodes under us ("prefer the next node") */
4213 		val += (n < node);
4214 
4215 		/* Give preference to headless and unused nodes */
4216 		tmp = cpumask_of_node(n);
4217 		if (!cpumask_empty(tmp))
4218 			val += PENALTY_FOR_NODE_WITH_CPUS;
4219 
4220 		/* Slight preference for less loaded node */
4221 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4222 		val += node_load[n];
4223 
4224 		if (val < min_val) {
4225 			min_val = val;
4226 			best_node = n;
4227 		}
4228 	}
4229 
4230 	if (best_node >= 0)
4231 		node_set(best_node, *used_node_mask);
4232 
4233 	return best_node;
4234 }
4235 
4236 
4237 /*
4238  * Build zonelists ordered by node and zones within node.
4239  * This results in maximum locality--normal zone overflows into local
4240  * DMA zone, if any--but risks exhausting DMA zone.
4241  */
4242 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4243 {
4244 	int j;
4245 	struct zonelist *zonelist;
4246 
4247 	zonelist = &pgdat->node_zonelists[0];
4248 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4249 		;
4250 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4251 	zonelist->_zonerefs[j].zone = NULL;
4252 	zonelist->_zonerefs[j].zone_idx = 0;
4253 }
4254 
4255 /*
4256  * Build gfp_thisnode zonelists
4257  */
4258 static void build_thisnode_zonelists(pg_data_t *pgdat)
4259 {
4260 	int j;
4261 	struct zonelist *zonelist;
4262 
4263 	zonelist = &pgdat->node_zonelists[1];
4264 	j = build_zonelists_node(pgdat, zonelist, 0);
4265 	zonelist->_zonerefs[j].zone = NULL;
4266 	zonelist->_zonerefs[j].zone_idx = 0;
4267 }
4268 
4269 /*
4270  * Build zonelists ordered by zone and nodes within zones.
4271  * This results in conserving DMA zone[s] until all Normal memory is
4272  * exhausted, but results in overflowing to remote node while memory
4273  * may still exist in local DMA zone.
4274  */
4275 static int node_order[MAX_NUMNODES];
4276 
4277 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4278 {
4279 	int pos, j, node;
4280 	int zone_type;		/* needs to be signed */
4281 	struct zone *z;
4282 	struct zonelist *zonelist;
4283 
4284 	zonelist = &pgdat->node_zonelists[0];
4285 	pos = 0;
4286 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4287 		for (j = 0; j < nr_nodes; j++) {
4288 			node = node_order[j];
4289 			z = &NODE_DATA(node)->node_zones[zone_type];
4290 			if (populated_zone(z)) {
4291 				zoneref_set_zone(z,
4292 					&zonelist->_zonerefs[pos++]);
4293 				check_highest_zone(zone_type);
4294 			}
4295 		}
4296 	}
4297 	zonelist->_zonerefs[pos].zone = NULL;
4298 	zonelist->_zonerefs[pos].zone_idx = 0;
4299 }
4300 
4301 #if defined(CONFIG_64BIT)
4302 /*
4303  * Devices that require DMA32/DMA are relatively rare and do not justify a
4304  * penalty to every machine in case the specialised case applies. Default
4305  * to Node-ordering on 64-bit NUMA machines
4306  */
4307 static int default_zonelist_order(void)
4308 {
4309 	return ZONELIST_ORDER_NODE;
4310 }
4311 #else
4312 /*
4313  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4314  * by the kernel. If processes running on node 0 deplete the low memory zone
4315  * then reclaim will occur more frequency increasing stalls and potentially
4316  * be easier to OOM if a large percentage of the zone is under writeback or
4317  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4318  * Hence, default to zone ordering on 32-bit.
4319  */
4320 static int default_zonelist_order(void)
4321 {
4322 	return ZONELIST_ORDER_ZONE;
4323 }
4324 #endif /* CONFIG_64BIT */
4325 
4326 static void set_zonelist_order(void)
4327 {
4328 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4329 		current_zonelist_order = default_zonelist_order();
4330 	else
4331 		current_zonelist_order = user_zonelist_order;
4332 }
4333 
4334 static void build_zonelists(pg_data_t *pgdat)
4335 {
4336 	int i, node, load;
4337 	nodemask_t used_mask;
4338 	int local_node, prev_node;
4339 	struct zonelist *zonelist;
4340 	unsigned int order = current_zonelist_order;
4341 
4342 	/* initialize zonelists */
4343 	for (i = 0; i < MAX_ZONELISTS; i++) {
4344 		zonelist = pgdat->node_zonelists + i;
4345 		zonelist->_zonerefs[0].zone = NULL;
4346 		zonelist->_zonerefs[0].zone_idx = 0;
4347 	}
4348 
4349 	/* NUMA-aware ordering of nodes */
4350 	local_node = pgdat->node_id;
4351 	load = nr_online_nodes;
4352 	prev_node = local_node;
4353 	nodes_clear(used_mask);
4354 
4355 	memset(node_order, 0, sizeof(node_order));
4356 	i = 0;
4357 
4358 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4359 		/*
4360 		 * We don't want to pressure a particular node.
4361 		 * So adding penalty to the first node in same
4362 		 * distance group to make it round-robin.
4363 		 */
4364 		if (node_distance(local_node, node) !=
4365 		    node_distance(local_node, prev_node))
4366 			node_load[node] = load;
4367 
4368 		prev_node = node;
4369 		load--;
4370 		if (order == ZONELIST_ORDER_NODE)
4371 			build_zonelists_in_node_order(pgdat, node);
4372 		else
4373 			node_order[i++] = node;	/* remember order */
4374 	}
4375 
4376 	if (order == ZONELIST_ORDER_ZONE) {
4377 		/* calculate node order -- i.e., DMA last! */
4378 		build_zonelists_in_zone_order(pgdat, i);
4379 	}
4380 
4381 	build_thisnode_zonelists(pgdat);
4382 }
4383 
4384 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4385 /*
4386  * Return node id of node used for "local" allocations.
4387  * I.e., first node id of first zone in arg node's generic zonelist.
4388  * Used for initializing percpu 'numa_mem', which is used primarily
4389  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4390  */
4391 int local_memory_node(int node)
4392 {
4393 	struct zone *zone;
4394 
4395 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
4396 				   gfp_zone(GFP_KERNEL),
4397 				   NULL,
4398 				   &zone);
4399 	return zone->node;
4400 }
4401 #endif
4402 
4403 #else	/* CONFIG_NUMA */
4404 
4405 static void set_zonelist_order(void)
4406 {
4407 	current_zonelist_order = ZONELIST_ORDER_ZONE;
4408 }
4409 
4410 static void build_zonelists(pg_data_t *pgdat)
4411 {
4412 	int node, local_node;
4413 	enum zone_type j;
4414 	struct zonelist *zonelist;
4415 
4416 	local_node = pgdat->node_id;
4417 
4418 	zonelist = &pgdat->node_zonelists[0];
4419 	j = build_zonelists_node(pgdat, zonelist, 0);
4420 
4421 	/*
4422 	 * Now we build the zonelist so that it contains the zones
4423 	 * of all the other nodes.
4424 	 * We don't want to pressure a particular node, so when
4425 	 * building the zones for node N, we make sure that the
4426 	 * zones coming right after the local ones are those from
4427 	 * node N+1 (modulo N)
4428 	 */
4429 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4430 		if (!node_online(node))
4431 			continue;
4432 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4433 	}
4434 	for (node = 0; node < local_node; node++) {
4435 		if (!node_online(node))
4436 			continue;
4437 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4438 	}
4439 
4440 	zonelist->_zonerefs[j].zone = NULL;
4441 	zonelist->_zonerefs[j].zone_idx = 0;
4442 }
4443 
4444 #endif	/* CONFIG_NUMA */
4445 
4446 /*
4447  * Boot pageset table. One per cpu which is going to be used for all
4448  * zones and all nodes. The parameters will be set in such a way
4449  * that an item put on a list will immediately be handed over to
4450  * the buddy list. This is safe since pageset manipulation is done
4451  * with interrupts disabled.
4452  *
4453  * The boot_pagesets must be kept even after bootup is complete for
4454  * unused processors and/or zones. They do play a role for bootstrapping
4455  * hotplugged processors.
4456  *
4457  * zoneinfo_show() and maybe other functions do
4458  * not check if the processor is online before following the pageset pointer.
4459  * Other parts of the kernel may not check if the zone is available.
4460  */
4461 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4462 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
4463 static void setup_zone_pageset(struct zone *zone);
4464 
4465 /*
4466  * Global mutex to protect against size modification of zonelists
4467  * as well as to serialize pageset setup for the new populated zone.
4468  */
4469 DEFINE_MUTEX(zonelists_mutex);
4470 
4471 /* return values int ....just for stop_machine() */
4472 static int __build_all_zonelists(void *data)
4473 {
4474 	int nid;
4475 	int cpu;
4476 	pg_data_t *self = data;
4477 
4478 #ifdef CONFIG_NUMA
4479 	memset(node_load, 0, sizeof(node_load));
4480 #endif
4481 
4482 	if (self && !node_online(self->node_id)) {
4483 		build_zonelists(self);
4484 	}
4485 
4486 	for_each_online_node(nid) {
4487 		pg_data_t *pgdat = NODE_DATA(nid);
4488 
4489 		build_zonelists(pgdat);
4490 	}
4491 
4492 	/*
4493 	 * Initialize the boot_pagesets that are going to be used
4494 	 * for bootstrapping processors. The real pagesets for
4495 	 * each zone will be allocated later when the per cpu
4496 	 * allocator is available.
4497 	 *
4498 	 * boot_pagesets are used also for bootstrapping offline
4499 	 * cpus if the system is already booted because the pagesets
4500 	 * are needed to initialize allocators on a specific cpu too.
4501 	 * F.e. the percpu allocator needs the page allocator which
4502 	 * needs the percpu allocator in order to allocate its pagesets
4503 	 * (a chicken-egg dilemma).
4504 	 */
4505 	for_each_possible_cpu(cpu) {
4506 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4507 
4508 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
4509 		/*
4510 		 * We now know the "local memory node" for each node--
4511 		 * i.e., the node of the first zone in the generic zonelist.
4512 		 * Set up numa_mem percpu variable for on-line cpus.  During
4513 		 * boot, only the boot cpu should be on-line;  we'll init the
4514 		 * secondary cpus' numa_mem as they come on-line.  During
4515 		 * node/memory hotplug, we'll fixup all on-line cpus.
4516 		 */
4517 		if (cpu_online(cpu))
4518 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4519 #endif
4520 	}
4521 
4522 	return 0;
4523 }
4524 
4525 static noinline void __init
4526 build_all_zonelists_init(void)
4527 {
4528 	__build_all_zonelists(NULL);
4529 	mminit_verify_zonelist();
4530 	cpuset_init_current_mems_allowed();
4531 }
4532 
4533 /*
4534  * Called with zonelists_mutex held always
4535  * unless system_state == SYSTEM_BOOTING.
4536  *
4537  * __ref due to (1) call of __meminit annotated setup_zone_pageset
4538  * [we're only called with non-NULL zone through __meminit paths] and
4539  * (2) call of __init annotated helper build_all_zonelists_init
4540  * [protected by SYSTEM_BOOTING].
4541  */
4542 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
4543 {
4544 	set_zonelist_order();
4545 
4546 	if (system_state == SYSTEM_BOOTING) {
4547 		build_all_zonelists_init();
4548 	} else {
4549 #ifdef CONFIG_MEMORY_HOTPLUG
4550 		if (zone)
4551 			setup_zone_pageset(zone);
4552 #endif
4553 		/* we have to stop all cpus to guarantee there is no user
4554 		   of zonelist */
4555 		stop_machine(__build_all_zonelists, pgdat, NULL);
4556 		/* cpuset refresh routine should be here */
4557 	}
4558 	vm_total_pages = nr_free_pagecache_pages();
4559 	/*
4560 	 * Disable grouping by mobility if the number of pages in the
4561 	 * system is too low to allow the mechanism to work. It would be
4562 	 * more accurate, but expensive to check per-zone. This check is
4563 	 * made on memory-hotadd so a system can start with mobility
4564 	 * disabled and enable it later
4565 	 */
4566 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
4567 		page_group_by_mobility_disabled = 1;
4568 	else
4569 		page_group_by_mobility_disabled = 0;
4570 
4571 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
4572 		nr_online_nodes,
4573 		zonelist_order_name[current_zonelist_order],
4574 		page_group_by_mobility_disabled ? "off" : "on",
4575 		vm_total_pages);
4576 #ifdef CONFIG_NUMA
4577 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
4578 #endif
4579 }
4580 
4581 /*
4582  * Helper functions to size the waitqueue hash table.
4583  * Essentially these want to choose hash table sizes sufficiently
4584  * large so that collisions trying to wait on pages are rare.
4585  * But in fact, the number of active page waitqueues on typical
4586  * systems is ridiculously low, less than 200. So this is even
4587  * conservative, even though it seems large.
4588  *
4589  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4590  * waitqueues, i.e. the size of the waitq table given the number of pages.
4591  */
4592 #define PAGES_PER_WAITQUEUE	256
4593 
4594 #ifndef CONFIG_MEMORY_HOTPLUG
4595 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4596 {
4597 	unsigned long size = 1;
4598 
4599 	pages /= PAGES_PER_WAITQUEUE;
4600 
4601 	while (size < pages)
4602 		size <<= 1;
4603 
4604 	/*
4605 	 * Once we have dozens or even hundreds of threads sleeping
4606 	 * on IO we've got bigger problems than wait queue collision.
4607 	 * Limit the size of the wait table to a reasonable size.
4608 	 */
4609 	size = min(size, 4096UL);
4610 
4611 	return max(size, 4UL);
4612 }
4613 #else
4614 /*
4615  * A zone's size might be changed by hot-add, so it is not possible to determine
4616  * a suitable size for its wait_table.  So we use the maximum size now.
4617  *
4618  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
4619  *
4620  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
4621  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4622  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
4623  *
4624  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4625  * or more by the traditional way. (See above).  It equals:
4626  *
4627  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
4628  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
4629  *    powerpc (64K page size)             : =  (32G +16M)byte.
4630  */
4631 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4632 {
4633 	return 4096UL;
4634 }
4635 #endif
4636 
4637 /*
4638  * This is an integer logarithm so that shifts can be used later
4639  * to extract the more random high bits from the multiplicative
4640  * hash function before the remainder is taken.
4641  */
4642 static inline unsigned long wait_table_bits(unsigned long size)
4643 {
4644 	return ffz(~size);
4645 }
4646 
4647 /*
4648  * Initially all pages are reserved - free ones are freed
4649  * up by free_all_bootmem() once the early boot process is
4650  * done. Non-atomic initialization, single-pass.
4651  */
4652 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
4653 		unsigned long start_pfn, enum memmap_context context)
4654 {
4655 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
4656 	unsigned long end_pfn = start_pfn + size;
4657 	pg_data_t *pgdat = NODE_DATA(nid);
4658 	unsigned long pfn;
4659 	unsigned long nr_initialised = 0;
4660 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4661 	struct memblock_region *r = NULL, *tmp;
4662 #endif
4663 
4664 	if (highest_memmap_pfn < end_pfn - 1)
4665 		highest_memmap_pfn = end_pfn - 1;
4666 
4667 	/*
4668 	 * Honor reservation requested by the driver for this ZONE_DEVICE
4669 	 * memory
4670 	 */
4671 	if (altmap && start_pfn == altmap->base_pfn)
4672 		start_pfn += altmap->reserve;
4673 
4674 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
4675 		/*
4676 		 * There can be holes in boot-time mem_map[]s handed to this
4677 		 * function.  They do not exist on hotplugged memory.
4678 		 */
4679 		if (context != MEMMAP_EARLY)
4680 			goto not_early;
4681 
4682 		if (!early_pfn_valid(pfn))
4683 			continue;
4684 		if (!early_pfn_in_nid(pfn, nid))
4685 			continue;
4686 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4687 			break;
4688 
4689 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4690 		/*
4691 		 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
4692 		 * from zone_movable_pfn[nid] to end of each node should be
4693 		 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
4694 		 */
4695 		if (!mirrored_kernelcore && zone_movable_pfn[nid])
4696 			if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
4697 				continue;
4698 
4699 		/*
4700 		 * Check given memblock attribute by firmware which can affect
4701 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
4702 		 * mirrored, it's an overlapped memmap init. skip it.
4703 		 */
4704 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
4705 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
4706 				for_each_memblock(memory, tmp)
4707 					if (pfn < memblock_region_memory_end_pfn(tmp))
4708 						break;
4709 				r = tmp;
4710 			}
4711 			if (pfn >= memblock_region_memory_base_pfn(r) &&
4712 			    memblock_is_mirror(r)) {
4713 				/* already initialized as NORMAL */
4714 				pfn = memblock_region_memory_end_pfn(r);
4715 				continue;
4716 			}
4717 		}
4718 #endif
4719 
4720 not_early:
4721 		/*
4722 		 * Mark the block movable so that blocks are reserved for
4723 		 * movable at startup. This will force kernel allocations
4724 		 * to reserve their blocks rather than leaking throughout
4725 		 * the address space during boot when many long-lived
4726 		 * kernel allocations are made.
4727 		 *
4728 		 * bitmap is created for zone's valid pfn range. but memmap
4729 		 * can be created for invalid pages (for alignment)
4730 		 * check here not to call set_pageblock_migratetype() against
4731 		 * pfn out of zone.
4732 		 */
4733 		if (!(pfn & (pageblock_nr_pages - 1))) {
4734 			struct page *page = pfn_to_page(pfn);
4735 
4736 			__init_single_page(page, pfn, zone, nid);
4737 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4738 		} else {
4739 			__init_single_pfn(pfn, zone, nid);
4740 		}
4741 	}
4742 }
4743 
4744 static void __meminit zone_init_free_lists(struct zone *zone)
4745 {
4746 	unsigned int order, t;
4747 	for_each_migratetype_order(order, t) {
4748 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
4749 		zone->free_area[order].nr_free = 0;
4750 	}
4751 }
4752 
4753 #ifndef __HAVE_ARCH_MEMMAP_INIT
4754 #define memmap_init(size, nid, zone, start_pfn) \
4755 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
4756 #endif
4757 
4758 static int zone_batchsize(struct zone *zone)
4759 {
4760 #ifdef CONFIG_MMU
4761 	int batch;
4762 
4763 	/*
4764 	 * The per-cpu-pages pools are set to around 1000th of the
4765 	 * size of the zone.  But no more than 1/2 of a meg.
4766 	 *
4767 	 * OK, so we don't know how big the cache is.  So guess.
4768 	 */
4769 	batch = zone->managed_pages / 1024;
4770 	if (batch * PAGE_SIZE > 512 * 1024)
4771 		batch = (512 * 1024) / PAGE_SIZE;
4772 	batch /= 4;		/* We effectively *= 4 below */
4773 	if (batch < 1)
4774 		batch = 1;
4775 
4776 	/*
4777 	 * Clamp the batch to a 2^n - 1 value. Having a power
4778 	 * of 2 value was found to be more likely to have
4779 	 * suboptimal cache aliasing properties in some cases.
4780 	 *
4781 	 * For example if 2 tasks are alternately allocating
4782 	 * batches of pages, one task can end up with a lot
4783 	 * of pages of one half of the possible page colors
4784 	 * and the other with pages of the other colors.
4785 	 */
4786 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
4787 
4788 	return batch;
4789 
4790 #else
4791 	/* The deferral and batching of frees should be suppressed under NOMMU
4792 	 * conditions.
4793 	 *
4794 	 * The problem is that NOMMU needs to be able to allocate large chunks
4795 	 * of contiguous memory as there's no hardware page translation to
4796 	 * assemble apparent contiguous memory from discontiguous pages.
4797 	 *
4798 	 * Queueing large contiguous runs of pages for batching, however,
4799 	 * causes the pages to actually be freed in smaller chunks.  As there
4800 	 * can be a significant delay between the individual batches being
4801 	 * recycled, this leads to the once large chunks of space being
4802 	 * fragmented and becoming unavailable for high-order allocations.
4803 	 */
4804 	return 0;
4805 #endif
4806 }
4807 
4808 /*
4809  * pcp->high and pcp->batch values are related and dependent on one another:
4810  * ->batch must never be higher then ->high.
4811  * The following function updates them in a safe manner without read side
4812  * locking.
4813  *
4814  * Any new users of pcp->batch and pcp->high should ensure they can cope with
4815  * those fields changing asynchronously (acording the the above rule).
4816  *
4817  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
4818  * outside of boot time (or some other assurance that no concurrent updaters
4819  * exist).
4820  */
4821 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
4822 		unsigned long batch)
4823 {
4824        /* start with a fail safe value for batch */
4825 	pcp->batch = 1;
4826 	smp_wmb();
4827 
4828        /* Update high, then batch, in order */
4829 	pcp->high = high;
4830 	smp_wmb();
4831 
4832 	pcp->batch = batch;
4833 }
4834 
4835 /* a companion to pageset_set_high() */
4836 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
4837 {
4838 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4839 }
4840 
4841 static void pageset_init(struct per_cpu_pageset *p)
4842 {
4843 	struct per_cpu_pages *pcp;
4844 	int migratetype;
4845 
4846 	memset(p, 0, sizeof(*p));
4847 
4848 	pcp = &p->pcp;
4849 	pcp->count = 0;
4850 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
4851 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
4852 }
4853 
4854 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
4855 {
4856 	pageset_init(p);
4857 	pageset_set_batch(p, batch);
4858 }
4859 
4860 /*
4861  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
4862  * to the value high for the pageset p.
4863  */
4864 static void pageset_set_high(struct per_cpu_pageset *p,
4865 				unsigned long high)
4866 {
4867 	unsigned long batch = max(1UL, high / 4);
4868 	if ((high / 4) > (PAGE_SHIFT * 8))
4869 		batch = PAGE_SHIFT * 8;
4870 
4871 	pageset_update(&p->pcp, high, batch);
4872 }
4873 
4874 static void pageset_set_high_and_batch(struct zone *zone,
4875 				       struct per_cpu_pageset *pcp)
4876 {
4877 	if (percpu_pagelist_fraction)
4878 		pageset_set_high(pcp,
4879 			(zone->managed_pages /
4880 				percpu_pagelist_fraction));
4881 	else
4882 		pageset_set_batch(pcp, zone_batchsize(zone));
4883 }
4884 
4885 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
4886 {
4887 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
4888 
4889 	pageset_init(pcp);
4890 	pageset_set_high_and_batch(zone, pcp);
4891 }
4892 
4893 static void __meminit setup_zone_pageset(struct zone *zone)
4894 {
4895 	int cpu;
4896 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
4897 	for_each_possible_cpu(cpu)
4898 		zone_pageset_init(zone, cpu);
4899 }
4900 
4901 /*
4902  * Allocate per cpu pagesets and initialize them.
4903  * Before this call only boot pagesets were available.
4904  */
4905 void __init setup_per_cpu_pageset(void)
4906 {
4907 	struct zone *zone;
4908 
4909 	for_each_populated_zone(zone)
4910 		setup_zone_pageset(zone);
4911 }
4912 
4913 static noinline __init_refok
4914 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
4915 {
4916 	int i;
4917 	size_t alloc_size;
4918 
4919 	/*
4920 	 * The per-page waitqueue mechanism uses hashed waitqueues
4921 	 * per zone.
4922 	 */
4923 	zone->wait_table_hash_nr_entries =
4924 		 wait_table_hash_nr_entries(zone_size_pages);
4925 	zone->wait_table_bits =
4926 		wait_table_bits(zone->wait_table_hash_nr_entries);
4927 	alloc_size = zone->wait_table_hash_nr_entries
4928 					* sizeof(wait_queue_head_t);
4929 
4930 	if (!slab_is_available()) {
4931 		zone->wait_table = (wait_queue_head_t *)
4932 			memblock_virt_alloc_node_nopanic(
4933 				alloc_size, zone->zone_pgdat->node_id);
4934 	} else {
4935 		/*
4936 		 * This case means that a zone whose size was 0 gets new memory
4937 		 * via memory hot-add.
4938 		 * But it may be the case that a new node was hot-added.  In
4939 		 * this case vmalloc() will not be able to use this new node's
4940 		 * memory - this wait_table must be initialized to use this new
4941 		 * node itself as well.
4942 		 * To use this new node's memory, further consideration will be
4943 		 * necessary.
4944 		 */
4945 		zone->wait_table = vmalloc(alloc_size);
4946 	}
4947 	if (!zone->wait_table)
4948 		return -ENOMEM;
4949 
4950 	for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4951 		init_waitqueue_head(zone->wait_table + i);
4952 
4953 	return 0;
4954 }
4955 
4956 static __meminit void zone_pcp_init(struct zone *zone)
4957 {
4958 	/*
4959 	 * per cpu subsystem is not up at this point. The following code
4960 	 * relies on the ability of the linker to provide the
4961 	 * offset of a (static) per cpu variable into the per cpu area.
4962 	 */
4963 	zone->pageset = &boot_pageset;
4964 
4965 	if (populated_zone(zone))
4966 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4967 			zone->name, zone->present_pages,
4968 					 zone_batchsize(zone));
4969 }
4970 
4971 int __meminit init_currently_empty_zone(struct zone *zone,
4972 					unsigned long zone_start_pfn,
4973 					unsigned long size)
4974 {
4975 	struct pglist_data *pgdat = zone->zone_pgdat;
4976 	int ret;
4977 	ret = zone_wait_table_init(zone, size);
4978 	if (ret)
4979 		return ret;
4980 	pgdat->nr_zones = zone_idx(zone) + 1;
4981 
4982 	zone->zone_start_pfn = zone_start_pfn;
4983 
4984 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4985 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4986 			pgdat->node_id,
4987 			(unsigned long)zone_idx(zone),
4988 			zone_start_pfn, (zone_start_pfn + size));
4989 
4990 	zone_init_free_lists(zone);
4991 
4992 	return 0;
4993 }
4994 
4995 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4996 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4997 
4998 /*
4999  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5000  */
5001 int __meminit __early_pfn_to_nid(unsigned long pfn,
5002 					struct mminit_pfnnid_cache *state)
5003 {
5004 	unsigned long start_pfn, end_pfn;
5005 	int nid;
5006 
5007 	if (state->last_start <= pfn && pfn < state->last_end)
5008 		return state->last_nid;
5009 
5010 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5011 	if (nid != -1) {
5012 		state->last_start = start_pfn;
5013 		state->last_end = end_pfn;
5014 		state->last_nid = nid;
5015 	}
5016 
5017 	return nid;
5018 }
5019 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5020 
5021 /**
5022  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5023  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5024  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5025  *
5026  * If an architecture guarantees that all ranges registered contain no holes
5027  * and may be freed, this this function may be used instead of calling
5028  * memblock_free_early_nid() manually.
5029  */
5030 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5031 {
5032 	unsigned long start_pfn, end_pfn;
5033 	int i, this_nid;
5034 
5035 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5036 		start_pfn = min(start_pfn, max_low_pfn);
5037 		end_pfn = min(end_pfn, max_low_pfn);
5038 
5039 		if (start_pfn < end_pfn)
5040 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5041 					(end_pfn - start_pfn) << PAGE_SHIFT,
5042 					this_nid);
5043 	}
5044 }
5045 
5046 /**
5047  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5048  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5049  *
5050  * If an architecture guarantees that all ranges registered contain no holes and may
5051  * be freed, this function may be used instead of calling memory_present() manually.
5052  */
5053 void __init sparse_memory_present_with_active_regions(int nid)
5054 {
5055 	unsigned long start_pfn, end_pfn;
5056 	int i, this_nid;
5057 
5058 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5059 		memory_present(this_nid, start_pfn, end_pfn);
5060 }
5061 
5062 /**
5063  * get_pfn_range_for_nid - Return the start and end page frames for a node
5064  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5065  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5066  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5067  *
5068  * It returns the start and end page frame of a node based on information
5069  * provided by memblock_set_node(). If called for a node
5070  * with no available memory, a warning is printed and the start and end
5071  * PFNs will be 0.
5072  */
5073 void __meminit get_pfn_range_for_nid(unsigned int nid,
5074 			unsigned long *start_pfn, unsigned long *end_pfn)
5075 {
5076 	unsigned long this_start_pfn, this_end_pfn;
5077 	int i;
5078 
5079 	*start_pfn = -1UL;
5080 	*end_pfn = 0;
5081 
5082 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5083 		*start_pfn = min(*start_pfn, this_start_pfn);
5084 		*end_pfn = max(*end_pfn, this_end_pfn);
5085 	}
5086 
5087 	if (*start_pfn == -1UL)
5088 		*start_pfn = 0;
5089 }
5090 
5091 /*
5092  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5093  * assumption is made that zones within a node are ordered in monotonic
5094  * increasing memory addresses so that the "highest" populated zone is used
5095  */
5096 static void __init find_usable_zone_for_movable(void)
5097 {
5098 	int zone_index;
5099 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5100 		if (zone_index == ZONE_MOVABLE)
5101 			continue;
5102 
5103 		if (arch_zone_highest_possible_pfn[zone_index] >
5104 				arch_zone_lowest_possible_pfn[zone_index])
5105 			break;
5106 	}
5107 
5108 	VM_BUG_ON(zone_index == -1);
5109 	movable_zone = zone_index;
5110 }
5111 
5112 /*
5113  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5114  * because it is sized independent of architecture. Unlike the other zones,
5115  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5116  * in each node depending on the size of each node and how evenly kernelcore
5117  * is distributed. This helper function adjusts the zone ranges
5118  * provided by the architecture for a given node by using the end of the
5119  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5120  * zones within a node are in order of monotonic increases memory addresses
5121  */
5122 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5123 					unsigned long zone_type,
5124 					unsigned long node_start_pfn,
5125 					unsigned long node_end_pfn,
5126 					unsigned long *zone_start_pfn,
5127 					unsigned long *zone_end_pfn)
5128 {
5129 	/* Only adjust if ZONE_MOVABLE is on this node */
5130 	if (zone_movable_pfn[nid]) {
5131 		/* Size ZONE_MOVABLE */
5132 		if (zone_type == ZONE_MOVABLE) {
5133 			*zone_start_pfn = zone_movable_pfn[nid];
5134 			*zone_end_pfn = min(node_end_pfn,
5135 				arch_zone_highest_possible_pfn[movable_zone]);
5136 
5137 		/* Check if this whole range is within ZONE_MOVABLE */
5138 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5139 			*zone_start_pfn = *zone_end_pfn;
5140 	}
5141 }
5142 
5143 /*
5144  * Return the number of pages a zone spans in a node, including holes
5145  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5146  */
5147 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5148 					unsigned long zone_type,
5149 					unsigned long node_start_pfn,
5150 					unsigned long node_end_pfn,
5151 					unsigned long *zone_start_pfn,
5152 					unsigned long *zone_end_pfn,
5153 					unsigned long *ignored)
5154 {
5155 	/* When hotadd a new node from cpu_up(), the node should be empty */
5156 	if (!node_start_pfn && !node_end_pfn)
5157 		return 0;
5158 
5159 	/* Get the start and end of the zone */
5160 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5161 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5162 	adjust_zone_range_for_zone_movable(nid, zone_type,
5163 				node_start_pfn, node_end_pfn,
5164 				zone_start_pfn, zone_end_pfn);
5165 
5166 	/* Check that this node has pages within the zone's required range */
5167 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5168 		return 0;
5169 
5170 	/* Move the zone boundaries inside the node if necessary */
5171 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5172 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5173 
5174 	/* Return the spanned pages */
5175 	return *zone_end_pfn - *zone_start_pfn;
5176 }
5177 
5178 /*
5179  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5180  * then all holes in the requested range will be accounted for.
5181  */
5182 unsigned long __meminit __absent_pages_in_range(int nid,
5183 				unsigned long range_start_pfn,
5184 				unsigned long range_end_pfn)
5185 {
5186 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5187 	unsigned long start_pfn, end_pfn;
5188 	int i;
5189 
5190 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5191 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5192 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5193 		nr_absent -= end_pfn - start_pfn;
5194 	}
5195 	return nr_absent;
5196 }
5197 
5198 /**
5199  * absent_pages_in_range - Return number of page frames in holes within a range
5200  * @start_pfn: The start PFN to start searching for holes
5201  * @end_pfn: The end PFN to stop searching for holes
5202  *
5203  * It returns the number of pages frames in memory holes within a range.
5204  */
5205 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5206 							unsigned long end_pfn)
5207 {
5208 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5209 }
5210 
5211 /* Return the number of page frames in holes in a zone on a node */
5212 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5213 					unsigned long zone_type,
5214 					unsigned long node_start_pfn,
5215 					unsigned long node_end_pfn,
5216 					unsigned long *ignored)
5217 {
5218 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5219 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5220 	unsigned long zone_start_pfn, zone_end_pfn;
5221 	unsigned long nr_absent;
5222 
5223 	/* When hotadd a new node from cpu_up(), the node should be empty */
5224 	if (!node_start_pfn && !node_end_pfn)
5225 		return 0;
5226 
5227 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5228 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5229 
5230 	adjust_zone_range_for_zone_movable(nid, zone_type,
5231 			node_start_pfn, node_end_pfn,
5232 			&zone_start_pfn, &zone_end_pfn);
5233 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5234 
5235 	/*
5236 	 * ZONE_MOVABLE handling.
5237 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5238 	 * and vice versa.
5239 	 */
5240 	if (zone_movable_pfn[nid]) {
5241 		if (mirrored_kernelcore) {
5242 			unsigned long start_pfn, end_pfn;
5243 			struct memblock_region *r;
5244 
5245 			for_each_memblock(memory, r) {
5246 				start_pfn = clamp(memblock_region_memory_base_pfn(r),
5247 						  zone_start_pfn, zone_end_pfn);
5248 				end_pfn = clamp(memblock_region_memory_end_pfn(r),
5249 						zone_start_pfn, zone_end_pfn);
5250 
5251 				if (zone_type == ZONE_MOVABLE &&
5252 				    memblock_is_mirror(r))
5253 					nr_absent += end_pfn - start_pfn;
5254 
5255 				if (zone_type == ZONE_NORMAL &&
5256 				    !memblock_is_mirror(r))
5257 					nr_absent += end_pfn - start_pfn;
5258 			}
5259 		} else {
5260 			if (zone_type == ZONE_NORMAL)
5261 				nr_absent += node_end_pfn - zone_movable_pfn[nid];
5262 		}
5263 	}
5264 
5265 	return nr_absent;
5266 }
5267 
5268 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5269 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5270 					unsigned long zone_type,
5271 					unsigned long node_start_pfn,
5272 					unsigned long node_end_pfn,
5273 					unsigned long *zone_start_pfn,
5274 					unsigned long *zone_end_pfn,
5275 					unsigned long *zones_size)
5276 {
5277 	unsigned int zone;
5278 
5279 	*zone_start_pfn = node_start_pfn;
5280 	for (zone = 0; zone < zone_type; zone++)
5281 		*zone_start_pfn += zones_size[zone];
5282 
5283 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5284 
5285 	return zones_size[zone_type];
5286 }
5287 
5288 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5289 						unsigned long zone_type,
5290 						unsigned long node_start_pfn,
5291 						unsigned long node_end_pfn,
5292 						unsigned long *zholes_size)
5293 {
5294 	if (!zholes_size)
5295 		return 0;
5296 
5297 	return zholes_size[zone_type];
5298 }
5299 
5300 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5301 
5302 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5303 						unsigned long node_start_pfn,
5304 						unsigned long node_end_pfn,
5305 						unsigned long *zones_size,
5306 						unsigned long *zholes_size)
5307 {
5308 	unsigned long realtotalpages = 0, totalpages = 0;
5309 	enum zone_type i;
5310 
5311 	for (i = 0; i < MAX_NR_ZONES; i++) {
5312 		struct zone *zone = pgdat->node_zones + i;
5313 		unsigned long zone_start_pfn, zone_end_pfn;
5314 		unsigned long size, real_size;
5315 
5316 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5317 						  node_start_pfn,
5318 						  node_end_pfn,
5319 						  &zone_start_pfn,
5320 						  &zone_end_pfn,
5321 						  zones_size);
5322 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5323 						  node_start_pfn, node_end_pfn,
5324 						  zholes_size);
5325 		if (size)
5326 			zone->zone_start_pfn = zone_start_pfn;
5327 		else
5328 			zone->zone_start_pfn = 0;
5329 		zone->spanned_pages = size;
5330 		zone->present_pages = real_size;
5331 
5332 		totalpages += size;
5333 		realtotalpages += real_size;
5334 	}
5335 
5336 	pgdat->node_spanned_pages = totalpages;
5337 	pgdat->node_present_pages = realtotalpages;
5338 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5339 							realtotalpages);
5340 }
5341 
5342 #ifndef CONFIG_SPARSEMEM
5343 /*
5344  * Calculate the size of the zone->blockflags rounded to an unsigned long
5345  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5346  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5347  * round what is now in bits to nearest long in bits, then return it in
5348  * bytes.
5349  */
5350 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5351 {
5352 	unsigned long usemapsize;
5353 
5354 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5355 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5356 	usemapsize = usemapsize >> pageblock_order;
5357 	usemapsize *= NR_PAGEBLOCK_BITS;
5358 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5359 
5360 	return usemapsize / 8;
5361 }
5362 
5363 static void __init setup_usemap(struct pglist_data *pgdat,
5364 				struct zone *zone,
5365 				unsigned long zone_start_pfn,
5366 				unsigned long zonesize)
5367 {
5368 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5369 	zone->pageblock_flags = NULL;
5370 	if (usemapsize)
5371 		zone->pageblock_flags =
5372 			memblock_virt_alloc_node_nopanic(usemapsize,
5373 							 pgdat->node_id);
5374 }
5375 #else
5376 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5377 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5378 #endif /* CONFIG_SPARSEMEM */
5379 
5380 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5381 
5382 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5383 void __paginginit set_pageblock_order(void)
5384 {
5385 	unsigned int order;
5386 
5387 	/* Check that pageblock_nr_pages has not already been setup */
5388 	if (pageblock_order)
5389 		return;
5390 
5391 	if (HPAGE_SHIFT > PAGE_SHIFT)
5392 		order = HUGETLB_PAGE_ORDER;
5393 	else
5394 		order = MAX_ORDER - 1;
5395 
5396 	/*
5397 	 * Assume the largest contiguous order of interest is a huge page.
5398 	 * This value may be variable depending on boot parameters on IA64 and
5399 	 * powerpc.
5400 	 */
5401 	pageblock_order = order;
5402 }
5403 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5404 
5405 /*
5406  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5407  * is unused as pageblock_order is set at compile-time. See
5408  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5409  * the kernel config
5410  */
5411 void __paginginit set_pageblock_order(void)
5412 {
5413 }
5414 
5415 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5416 
5417 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5418 						   unsigned long present_pages)
5419 {
5420 	unsigned long pages = spanned_pages;
5421 
5422 	/*
5423 	 * Provide a more accurate estimation if there are holes within
5424 	 * the zone and SPARSEMEM is in use. If there are holes within the
5425 	 * zone, each populated memory region may cost us one or two extra
5426 	 * memmap pages due to alignment because memmap pages for each
5427 	 * populated regions may not naturally algined on page boundary.
5428 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5429 	 */
5430 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5431 	    IS_ENABLED(CONFIG_SPARSEMEM))
5432 		pages = present_pages;
5433 
5434 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5435 }
5436 
5437 /*
5438  * Set up the zone data structures:
5439  *   - mark all pages reserved
5440  *   - mark all memory queues empty
5441  *   - clear the memory bitmaps
5442  *
5443  * NOTE: pgdat should get zeroed by caller.
5444  */
5445 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5446 {
5447 	enum zone_type j;
5448 	int nid = pgdat->node_id;
5449 	int ret;
5450 
5451 	pgdat_resize_init(pgdat);
5452 #ifdef CONFIG_NUMA_BALANCING
5453 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
5454 	pgdat->numabalancing_migrate_nr_pages = 0;
5455 	pgdat->numabalancing_migrate_next_window = jiffies;
5456 #endif
5457 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5458 	spin_lock_init(&pgdat->split_queue_lock);
5459 	INIT_LIST_HEAD(&pgdat->split_queue);
5460 	pgdat->split_queue_len = 0;
5461 #endif
5462 	init_waitqueue_head(&pgdat->kswapd_wait);
5463 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
5464 #ifdef CONFIG_COMPACTION
5465 	init_waitqueue_head(&pgdat->kcompactd_wait);
5466 #endif
5467 	pgdat_page_ext_init(pgdat);
5468 
5469 	for (j = 0; j < MAX_NR_ZONES; j++) {
5470 		struct zone *zone = pgdat->node_zones + j;
5471 		unsigned long size, realsize, freesize, memmap_pages;
5472 		unsigned long zone_start_pfn = zone->zone_start_pfn;
5473 
5474 		size = zone->spanned_pages;
5475 		realsize = freesize = zone->present_pages;
5476 
5477 		/*
5478 		 * Adjust freesize so that it accounts for how much memory
5479 		 * is used by this zone for memmap. This affects the watermark
5480 		 * and per-cpu initialisations
5481 		 */
5482 		memmap_pages = calc_memmap_size(size, realsize);
5483 		if (!is_highmem_idx(j)) {
5484 			if (freesize >= memmap_pages) {
5485 				freesize -= memmap_pages;
5486 				if (memmap_pages)
5487 					printk(KERN_DEBUG
5488 					       "  %s zone: %lu pages used for memmap\n",
5489 					       zone_names[j], memmap_pages);
5490 			} else
5491 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
5492 					zone_names[j], memmap_pages, freesize);
5493 		}
5494 
5495 		/* Account for reserved pages */
5496 		if (j == 0 && freesize > dma_reserve) {
5497 			freesize -= dma_reserve;
5498 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
5499 					zone_names[0], dma_reserve);
5500 		}
5501 
5502 		if (!is_highmem_idx(j))
5503 			nr_kernel_pages += freesize;
5504 		/* Charge for highmem memmap if there are enough kernel pages */
5505 		else if (nr_kernel_pages > memmap_pages * 2)
5506 			nr_kernel_pages -= memmap_pages;
5507 		nr_all_pages += freesize;
5508 
5509 		/*
5510 		 * Set an approximate value for lowmem here, it will be adjusted
5511 		 * when the bootmem allocator frees pages into the buddy system.
5512 		 * And all highmem pages will be managed by the buddy system.
5513 		 */
5514 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
5515 #ifdef CONFIG_NUMA
5516 		zone->node = nid;
5517 		zone->min_unmapped_pages = (freesize*sysctl_min_unmapped_ratio)
5518 						/ 100;
5519 		zone->min_slab_pages = (freesize * sysctl_min_slab_ratio) / 100;
5520 #endif
5521 		zone->name = zone_names[j];
5522 		spin_lock_init(&zone->lock);
5523 		spin_lock_init(&zone->lru_lock);
5524 		zone_seqlock_init(zone);
5525 		zone->zone_pgdat = pgdat;
5526 		zone_pcp_init(zone);
5527 
5528 		/* For bootup, initialized properly in watermark setup */
5529 		mod_zone_page_state(zone, NR_ALLOC_BATCH, zone->managed_pages);
5530 
5531 		lruvec_init(&zone->lruvec);
5532 		if (!size)
5533 			continue;
5534 
5535 		set_pageblock_order();
5536 		setup_usemap(pgdat, zone, zone_start_pfn, size);
5537 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
5538 		BUG_ON(ret);
5539 		memmap_init(size, nid, j, zone_start_pfn);
5540 	}
5541 }
5542 
5543 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
5544 {
5545 	unsigned long __maybe_unused start = 0;
5546 	unsigned long __maybe_unused offset = 0;
5547 
5548 	/* Skip empty nodes */
5549 	if (!pgdat->node_spanned_pages)
5550 		return;
5551 
5552 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5553 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5554 	offset = pgdat->node_start_pfn - start;
5555 	/* ia64 gets its own node_mem_map, before this, without bootmem */
5556 	if (!pgdat->node_mem_map) {
5557 		unsigned long size, end;
5558 		struct page *map;
5559 
5560 		/*
5561 		 * The zone's endpoints aren't required to be MAX_ORDER
5562 		 * aligned but the node_mem_map endpoints must be in order
5563 		 * for the buddy allocator to function correctly.
5564 		 */
5565 		end = pgdat_end_pfn(pgdat);
5566 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
5567 		size =  (end - start) * sizeof(struct page);
5568 		map = alloc_remap(pgdat->node_id, size);
5569 		if (!map)
5570 			map = memblock_virt_alloc_node_nopanic(size,
5571 							       pgdat->node_id);
5572 		pgdat->node_mem_map = map + offset;
5573 	}
5574 #ifndef CONFIG_NEED_MULTIPLE_NODES
5575 	/*
5576 	 * With no DISCONTIG, the global mem_map is just set as node 0's
5577 	 */
5578 	if (pgdat == NODE_DATA(0)) {
5579 		mem_map = NODE_DATA(0)->node_mem_map;
5580 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
5581 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
5582 			mem_map -= offset;
5583 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5584 	}
5585 #endif
5586 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
5587 }
5588 
5589 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5590 		unsigned long node_start_pfn, unsigned long *zholes_size)
5591 {
5592 	pg_data_t *pgdat = NODE_DATA(nid);
5593 	unsigned long start_pfn = 0;
5594 	unsigned long end_pfn = 0;
5595 
5596 	/* pg_data_t should be reset to zero when it's allocated */
5597 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
5598 
5599 	reset_deferred_meminit(pgdat);
5600 	pgdat->node_id = nid;
5601 	pgdat->node_start_pfn = node_start_pfn;
5602 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5603 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
5604 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
5605 		(u64)start_pfn << PAGE_SHIFT,
5606 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
5607 #else
5608 	start_pfn = node_start_pfn;
5609 #endif
5610 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5611 				  zones_size, zholes_size);
5612 
5613 	alloc_node_mem_map(pgdat);
5614 #ifdef CONFIG_FLAT_NODE_MEM_MAP
5615 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5616 		nid, (unsigned long)pgdat,
5617 		(unsigned long)pgdat->node_mem_map);
5618 #endif
5619 
5620 	free_area_init_core(pgdat);
5621 }
5622 
5623 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5624 
5625 #if MAX_NUMNODES > 1
5626 /*
5627  * Figure out the number of possible node ids.
5628  */
5629 void __init setup_nr_node_ids(void)
5630 {
5631 	unsigned int highest;
5632 
5633 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
5634 	nr_node_ids = highest + 1;
5635 }
5636 #endif
5637 
5638 /**
5639  * node_map_pfn_alignment - determine the maximum internode alignment
5640  *
5641  * This function should be called after node map is populated and sorted.
5642  * It calculates the maximum power of two alignment which can distinguish
5643  * all the nodes.
5644  *
5645  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5646  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
5647  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
5648  * shifted, 1GiB is enough and this function will indicate so.
5649  *
5650  * This is used to test whether pfn -> nid mapping of the chosen memory
5651  * model has fine enough granularity to avoid incorrect mapping for the
5652  * populated node map.
5653  *
5654  * Returns the determined alignment in pfn's.  0 if there is no alignment
5655  * requirement (single node).
5656  */
5657 unsigned long __init node_map_pfn_alignment(void)
5658 {
5659 	unsigned long accl_mask = 0, last_end = 0;
5660 	unsigned long start, end, mask;
5661 	int last_nid = -1;
5662 	int i, nid;
5663 
5664 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
5665 		if (!start || last_nid < 0 || last_nid == nid) {
5666 			last_nid = nid;
5667 			last_end = end;
5668 			continue;
5669 		}
5670 
5671 		/*
5672 		 * Start with a mask granular enough to pin-point to the
5673 		 * start pfn and tick off bits one-by-one until it becomes
5674 		 * too coarse to separate the current node from the last.
5675 		 */
5676 		mask = ~((1 << __ffs(start)) - 1);
5677 		while (mask && last_end <= (start & (mask << 1)))
5678 			mask <<= 1;
5679 
5680 		/* accumulate all internode masks */
5681 		accl_mask |= mask;
5682 	}
5683 
5684 	/* convert mask to number of pages */
5685 	return ~accl_mask + 1;
5686 }
5687 
5688 /* Find the lowest pfn for a node */
5689 static unsigned long __init find_min_pfn_for_node(int nid)
5690 {
5691 	unsigned long min_pfn = ULONG_MAX;
5692 	unsigned long start_pfn;
5693 	int i;
5694 
5695 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
5696 		min_pfn = min(min_pfn, start_pfn);
5697 
5698 	if (min_pfn == ULONG_MAX) {
5699 		pr_warn("Could not find start_pfn for node %d\n", nid);
5700 		return 0;
5701 	}
5702 
5703 	return min_pfn;
5704 }
5705 
5706 /**
5707  * find_min_pfn_with_active_regions - Find the minimum PFN registered
5708  *
5709  * It returns the minimum PFN based on information provided via
5710  * memblock_set_node().
5711  */
5712 unsigned long __init find_min_pfn_with_active_regions(void)
5713 {
5714 	return find_min_pfn_for_node(MAX_NUMNODES);
5715 }
5716 
5717 /*
5718  * early_calculate_totalpages()
5719  * Sum pages in active regions for movable zone.
5720  * Populate N_MEMORY for calculating usable_nodes.
5721  */
5722 static unsigned long __init early_calculate_totalpages(void)
5723 {
5724 	unsigned long totalpages = 0;
5725 	unsigned long start_pfn, end_pfn;
5726 	int i, nid;
5727 
5728 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
5729 		unsigned long pages = end_pfn - start_pfn;
5730 
5731 		totalpages += pages;
5732 		if (pages)
5733 			node_set_state(nid, N_MEMORY);
5734 	}
5735 	return totalpages;
5736 }
5737 
5738 /*
5739  * Find the PFN the Movable zone begins in each node. Kernel memory
5740  * is spread evenly between nodes as long as the nodes have enough
5741  * memory. When they don't, some nodes will have more kernelcore than
5742  * others
5743  */
5744 static void __init find_zone_movable_pfns_for_nodes(void)
5745 {
5746 	int i, nid;
5747 	unsigned long usable_startpfn;
5748 	unsigned long kernelcore_node, kernelcore_remaining;
5749 	/* save the state before borrow the nodemask */
5750 	nodemask_t saved_node_state = node_states[N_MEMORY];
5751 	unsigned long totalpages = early_calculate_totalpages();
5752 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
5753 	struct memblock_region *r;
5754 
5755 	/* Need to find movable_zone earlier when movable_node is specified. */
5756 	find_usable_zone_for_movable();
5757 
5758 	/*
5759 	 * If movable_node is specified, ignore kernelcore and movablecore
5760 	 * options.
5761 	 */
5762 	if (movable_node_is_enabled()) {
5763 		for_each_memblock(memory, r) {
5764 			if (!memblock_is_hotpluggable(r))
5765 				continue;
5766 
5767 			nid = r->nid;
5768 
5769 			usable_startpfn = PFN_DOWN(r->base);
5770 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5771 				min(usable_startpfn, zone_movable_pfn[nid]) :
5772 				usable_startpfn;
5773 		}
5774 
5775 		goto out2;
5776 	}
5777 
5778 	/*
5779 	 * If kernelcore=mirror is specified, ignore movablecore option
5780 	 */
5781 	if (mirrored_kernelcore) {
5782 		bool mem_below_4gb_not_mirrored = false;
5783 
5784 		for_each_memblock(memory, r) {
5785 			if (memblock_is_mirror(r))
5786 				continue;
5787 
5788 			nid = r->nid;
5789 
5790 			usable_startpfn = memblock_region_memory_base_pfn(r);
5791 
5792 			if (usable_startpfn < 0x100000) {
5793 				mem_below_4gb_not_mirrored = true;
5794 				continue;
5795 			}
5796 
5797 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
5798 				min(usable_startpfn, zone_movable_pfn[nid]) :
5799 				usable_startpfn;
5800 		}
5801 
5802 		if (mem_below_4gb_not_mirrored)
5803 			pr_warn("This configuration results in unmirrored kernel memory.");
5804 
5805 		goto out2;
5806 	}
5807 
5808 	/*
5809 	 * If movablecore=nn[KMG] was specified, calculate what size of
5810 	 * kernelcore that corresponds so that memory usable for
5811 	 * any allocation type is evenly spread. If both kernelcore
5812 	 * and movablecore are specified, then the value of kernelcore
5813 	 * will be used for required_kernelcore if it's greater than
5814 	 * what movablecore would have allowed.
5815 	 */
5816 	if (required_movablecore) {
5817 		unsigned long corepages;
5818 
5819 		/*
5820 		 * Round-up so that ZONE_MOVABLE is at least as large as what
5821 		 * was requested by the user
5822 		 */
5823 		required_movablecore =
5824 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
5825 		required_movablecore = min(totalpages, required_movablecore);
5826 		corepages = totalpages - required_movablecore;
5827 
5828 		required_kernelcore = max(required_kernelcore, corepages);
5829 	}
5830 
5831 	/*
5832 	 * If kernelcore was not specified or kernelcore size is larger
5833 	 * than totalpages, there is no ZONE_MOVABLE.
5834 	 */
5835 	if (!required_kernelcore || required_kernelcore >= totalpages)
5836 		goto out;
5837 
5838 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
5839 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
5840 
5841 restart:
5842 	/* Spread kernelcore memory as evenly as possible throughout nodes */
5843 	kernelcore_node = required_kernelcore / usable_nodes;
5844 	for_each_node_state(nid, N_MEMORY) {
5845 		unsigned long start_pfn, end_pfn;
5846 
5847 		/*
5848 		 * Recalculate kernelcore_node if the division per node
5849 		 * now exceeds what is necessary to satisfy the requested
5850 		 * amount of memory for the kernel
5851 		 */
5852 		if (required_kernelcore < kernelcore_node)
5853 			kernelcore_node = required_kernelcore / usable_nodes;
5854 
5855 		/*
5856 		 * As the map is walked, we track how much memory is usable
5857 		 * by the kernel using kernelcore_remaining. When it is
5858 		 * 0, the rest of the node is usable by ZONE_MOVABLE
5859 		 */
5860 		kernelcore_remaining = kernelcore_node;
5861 
5862 		/* Go through each range of PFNs within this node */
5863 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5864 			unsigned long size_pages;
5865 
5866 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
5867 			if (start_pfn >= end_pfn)
5868 				continue;
5869 
5870 			/* Account for what is only usable for kernelcore */
5871 			if (start_pfn < usable_startpfn) {
5872 				unsigned long kernel_pages;
5873 				kernel_pages = min(end_pfn, usable_startpfn)
5874 								- start_pfn;
5875 
5876 				kernelcore_remaining -= min(kernel_pages,
5877 							kernelcore_remaining);
5878 				required_kernelcore -= min(kernel_pages,
5879 							required_kernelcore);
5880 
5881 				/* Continue if range is now fully accounted */
5882 				if (end_pfn <= usable_startpfn) {
5883 
5884 					/*
5885 					 * Push zone_movable_pfn to the end so
5886 					 * that if we have to rebalance
5887 					 * kernelcore across nodes, we will
5888 					 * not double account here
5889 					 */
5890 					zone_movable_pfn[nid] = end_pfn;
5891 					continue;
5892 				}
5893 				start_pfn = usable_startpfn;
5894 			}
5895 
5896 			/*
5897 			 * The usable PFN range for ZONE_MOVABLE is from
5898 			 * start_pfn->end_pfn. Calculate size_pages as the
5899 			 * number of pages used as kernelcore
5900 			 */
5901 			size_pages = end_pfn - start_pfn;
5902 			if (size_pages > kernelcore_remaining)
5903 				size_pages = kernelcore_remaining;
5904 			zone_movable_pfn[nid] = start_pfn + size_pages;
5905 
5906 			/*
5907 			 * Some kernelcore has been met, update counts and
5908 			 * break if the kernelcore for this node has been
5909 			 * satisfied
5910 			 */
5911 			required_kernelcore -= min(required_kernelcore,
5912 								size_pages);
5913 			kernelcore_remaining -= size_pages;
5914 			if (!kernelcore_remaining)
5915 				break;
5916 		}
5917 	}
5918 
5919 	/*
5920 	 * If there is still required_kernelcore, we do another pass with one
5921 	 * less node in the count. This will push zone_movable_pfn[nid] further
5922 	 * along on the nodes that still have memory until kernelcore is
5923 	 * satisfied
5924 	 */
5925 	usable_nodes--;
5926 	if (usable_nodes && required_kernelcore > usable_nodes)
5927 		goto restart;
5928 
5929 out2:
5930 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
5931 	for (nid = 0; nid < MAX_NUMNODES; nid++)
5932 		zone_movable_pfn[nid] =
5933 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
5934 
5935 out:
5936 	/* restore the node_state */
5937 	node_states[N_MEMORY] = saved_node_state;
5938 }
5939 
5940 /* Any regular or high memory on that node ? */
5941 static void check_for_memory(pg_data_t *pgdat, int nid)
5942 {
5943 	enum zone_type zone_type;
5944 
5945 	if (N_MEMORY == N_NORMAL_MEMORY)
5946 		return;
5947 
5948 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
5949 		struct zone *zone = &pgdat->node_zones[zone_type];
5950 		if (populated_zone(zone)) {
5951 			node_set_state(nid, N_HIGH_MEMORY);
5952 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
5953 			    zone_type <= ZONE_NORMAL)
5954 				node_set_state(nid, N_NORMAL_MEMORY);
5955 			break;
5956 		}
5957 	}
5958 }
5959 
5960 /**
5961  * free_area_init_nodes - Initialise all pg_data_t and zone data
5962  * @max_zone_pfn: an array of max PFNs for each zone
5963  *
5964  * This will call free_area_init_node() for each active node in the system.
5965  * Using the page ranges provided by memblock_set_node(), the size of each
5966  * zone in each node and their holes is calculated. If the maximum PFN
5967  * between two adjacent zones match, it is assumed that the zone is empty.
5968  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
5969  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
5970  * starts where the previous one ended. For example, ZONE_DMA32 starts
5971  * at arch_max_dma_pfn.
5972  */
5973 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
5974 {
5975 	unsigned long start_pfn, end_pfn;
5976 	int i, nid;
5977 
5978 	/* Record where the zone boundaries are */
5979 	memset(arch_zone_lowest_possible_pfn, 0,
5980 				sizeof(arch_zone_lowest_possible_pfn));
5981 	memset(arch_zone_highest_possible_pfn, 0,
5982 				sizeof(arch_zone_highest_possible_pfn));
5983 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
5984 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
5985 	for (i = 1; i < MAX_NR_ZONES; i++) {
5986 		if (i == ZONE_MOVABLE)
5987 			continue;
5988 		arch_zone_lowest_possible_pfn[i] =
5989 			arch_zone_highest_possible_pfn[i-1];
5990 		arch_zone_highest_possible_pfn[i] =
5991 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
5992 	}
5993 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
5994 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
5995 
5996 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
5997 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
5998 	find_zone_movable_pfns_for_nodes();
5999 
6000 	/* Print out the zone ranges */
6001 	pr_info("Zone ranges:\n");
6002 	for (i = 0; i < MAX_NR_ZONES; i++) {
6003 		if (i == ZONE_MOVABLE)
6004 			continue;
6005 		pr_info("  %-8s ", zone_names[i]);
6006 		if (arch_zone_lowest_possible_pfn[i] ==
6007 				arch_zone_highest_possible_pfn[i])
6008 			pr_cont("empty\n");
6009 		else
6010 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6011 				(u64)arch_zone_lowest_possible_pfn[i]
6012 					<< PAGE_SHIFT,
6013 				((u64)arch_zone_highest_possible_pfn[i]
6014 					<< PAGE_SHIFT) - 1);
6015 	}
6016 
6017 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6018 	pr_info("Movable zone start for each node\n");
6019 	for (i = 0; i < MAX_NUMNODES; i++) {
6020 		if (zone_movable_pfn[i])
6021 			pr_info("  Node %d: %#018Lx\n", i,
6022 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6023 	}
6024 
6025 	/* Print out the early node map */
6026 	pr_info("Early memory node ranges\n");
6027 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6028 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6029 			(u64)start_pfn << PAGE_SHIFT,
6030 			((u64)end_pfn << PAGE_SHIFT) - 1);
6031 
6032 	/* Initialise every node */
6033 	mminit_verify_pageflags_layout();
6034 	setup_nr_node_ids();
6035 	for_each_online_node(nid) {
6036 		pg_data_t *pgdat = NODE_DATA(nid);
6037 		free_area_init_node(nid, NULL,
6038 				find_min_pfn_for_node(nid), NULL);
6039 
6040 		/* Any memory on that node */
6041 		if (pgdat->node_present_pages)
6042 			node_set_state(nid, N_MEMORY);
6043 		check_for_memory(pgdat, nid);
6044 	}
6045 }
6046 
6047 static int __init cmdline_parse_core(char *p, unsigned long *core)
6048 {
6049 	unsigned long long coremem;
6050 	if (!p)
6051 		return -EINVAL;
6052 
6053 	coremem = memparse(p, &p);
6054 	*core = coremem >> PAGE_SHIFT;
6055 
6056 	/* Paranoid check that UL is enough for the coremem value */
6057 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6058 
6059 	return 0;
6060 }
6061 
6062 /*
6063  * kernelcore=size sets the amount of memory for use for allocations that
6064  * cannot be reclaimed or migrated.
6065  */
6066 static int __init cmdline_parse_kernelcore(char *p)
6067 {
6068 	/* parse kernelcore=mirror */
6069 	if (parse_option_str(p, "mirror")) {
6070 		mirrored_kernelcore = true;
6071 		return 0;
6072 	}
6073 
6074 	return cmdline_parse_core(p, &required_kernelcore);
6075 }
6076 
6077 /*
6078  * movablecore=size sets the amount of memory for use for allocations that
6079  * can be reclaimed or migrated.
6080  */
6081 static int __init cmdline_parse_movablecore(char *p)
6082 {
6083 	return cmdline_parse_core(p, &required_movablecore);
6084 }
6085 
6086 early_param("kernelcore", cmdline_parse_kernelcore);
6087 early_param("movablecore", cmdline_parse_movablecore);
6088 
6089 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6090 
6091 void adjust_managed_page_count(struct page *page, long count)
6092 {
6093 	spin_lock(&managed_page_count_lock);
6094 	page_zone(page)->managed_pages += count;
6095 	totalram_pages += count;
6096 #ifdef CONFIG_HIGHMEM
6097 	if (PageHighMem(page))
6098 		totalhigh_pages += count;
6099 #endif
6100 	spin_unlock(&managed_page_count_lock);
6101 }
6102 EXPORT_SYMBOL(adjust_managed_page_count);
6103 
6104 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6105 {
6106 	void *pos;
6107 	unsigned long pages = 0;
6108 
6109 	start = (void *)PAGE_ALIGN((unsigned long)start);
6110 	end = (void *)((unsigned long)end & PAGE_MASK);
6111 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6112 		if ((unsigned int)poison <= 0xFF)
6113 			memset(pos, poison, PAGE_SIZE);
6114 		free_reserved_page(virt_to_page(pos));
6115 	}
6116 
6117 	if (pages && s)
6118 		pr_info("Freeing %s memory: %ldK (%p - %p)\n",
6119 			s, pages << (PAGE_SHIFT - 10), start, end);
6120 
6121 	return pages;
6122 }
6123 EXPORT_SYMBOL(free_reserved_area);
6124 
6125 #ifdef	CONFIG_HIGHMEM
6126 void free_highmem_page(struct page *page)
6127 {
6128 	__free_reserved_page(page);
6129 	totalram_pages++;
6130 	page_zone(page)->managed_pages++;
6131 	totalhigh_pages++;
6132 }
6133 #endif
6134 
6135 
6136 void __init mem_init_print_info(const char *str)
6137 {
6138 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6139 	unsigned long init_code_size, init_data_size;
6140 
6141 	physpages = get_num_physpages();
6142 	codesize = _etext - _stext;
6143 	datasize = _edata - _sdata;
6144 	rosize = __end_rodata - __start_rodata;
6145 	bss_size = __bss_stop - __bss_start;
6146 	init_data_size = __init_end - __init_begin;
6147 	init_code_size = _einittext - _sinittext;
6148 
6149 	/*
6150 	 * Detect special cases and adjust section sizes accordingly:
6151 	 * 1) .init.* may be embedded into .data sections
6152 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6153 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6154 	 * 3) .rodata.* may be embedded into .text or .data sections.
6155 	 */
6156 #define adj_init_size(start, end, size, pos, adj) \
6157 	do { \
6158 		if (start <= pos && pos < end && size > adj) \
6159 			size -= adj; \
6160 	} while (0)
6161 
6162 	adj_init_size(__init_begin, __init_end, init_data_size,
6163 		     _sinittext, init_code_size);
6164 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6165 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6166 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6167 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6168 
6169 #undef	adj_init_size
6170 
6171 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6172 #ifdef	CONFIG_HIGHMEM
6173 		", %luK highmem"
6174 #endif
6175 		"%s%s)\n",
6176 		nr_free_pages() << (PAGE_SHIFT - 10),
6177 		physpages << (PAGE_SHIFT - 10),
6178 		codesize >> 10, datasize >> 10, rosize >> 10,
6179 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6180 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6181 		totalcma_pages << (PAGE_SHIFT - 10),
6182 #ifdef	CONFIG_HIGHMEM
6183 		totalhigh_pages << (PAGE_SHIFT - 10),
6184 #endif
6185 		str ? ", " : "", str ? str : "");
6186 }
6187 
6188 /**
6189  * set_dma_reserve - set the specified number of pages reserved in the first zone
6190  * @new_dma_reserve: The number of pages to mark reserved
6191  *
6192  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6193  * In the DMA zone, a significant percentage may be consumed by kernel image
6194  * and other unfreeable allocations which can skew the watermarks badly. This
6195  * function may optionally be used to account for unfreeable pages in the
6196  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6197  * smaller per-cpu batchsize.
6198  */
6199 void __init set_dma_reserve(unsigned long new_dma_reserve)
6200 {
6201 	dma_reserve = new_dma_reserve;
6202 }
6203 
6204 void __init free_area_init(unsigned long *zones_size)
6205 {
6206 	free_area_init_node(0, zones_size,
6207 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6208 }
6209 
6210 static int page_alloc_cpu_notify(struct notifier_block *self,
6211 				 unsigned long action, void *hcpu)
6212 {
6213 	int cpu = (unsigned long)hcpu;
6214 
6215 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
6216 		lru_add_drain_cpu(cpu);
6217 		drain_pages(cpu);
6218 
6219 		/*
6220 		 * Spill the event counters of the dead processor
6221 		 * into the current processors event counters.
6222 		 * This artificially elevates the count of the current
6223 		 * processor.
6224 		 */
6225 		vm_events_fold_cpu(cpu);
6226 
6227 		/*
6228 		 * Zero the differential counters of the dead processor
6229 		 * so that the vm statistics are consistent.
6230 		 *
6231 		 * This is only okay since the processor is dead and cannot
6232 		 * race with what we are doing.
6233 		 */
6234 		cpu_vm_stats_fold(cpu);
6235 	}
6236 	return NOTIFY_OK;
6237 }
6238 
6239 void __init page_alloc_init(void)
6240 {
6241 	hotcpu_notifier(page_alloc_cpu_notify, 0);
6242 }
6243 
6244 /*
6245  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6246  *	or min_free_kbytes changes.
6247  */
6248 static void calculate_totalreserve_pages(void)
6249 {
6250 	struct pglist_data *pgdat;
6251 	unsigned long reserve_pages = 0;
6252 	enum zone_type i, j;
6253 
6254 	for_each_online_pgdat(pgdat) {
6255 		for (i = 0; i < MAX_NR_ZONES; i++) {
6256 			struct zone *zone = pgdat->node_zones + i;
6257 			long max = 0;
6258 
6259 			/* Find valid and maximum lowmem_reserve in the zone */
6260 			for (j = i; j < MAX_NR_ZONES; j++) {
6261 				if (zone->lowmem_reserve[j] > max)
6262 					max = zone->lowmem_reserve[j];
6263 			}
6264 
6265 			/* we treat the high watermark as reserved pages. */
6266 			max += high_wmark_pages(zone);
6267 
6268 			if (max > zone->managed_pages)
6269 				max = zone->managed_pages;
6270 
6271 			zone->totalreserve_pages = max;
6272 
6273 			reserve_pages += max;
6274 		}
6275 	}
6276 	totalreserve_pages = reserve_pages;
6277 }
6278 
6279 /*
6280  * setup_per_zone_lowmem_reserve - called whenever
6281  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6282  *	has a correct pages reserved value, so an adequate number of
6283  *	pages are left in the zone after a successful __alloc_pages().
6284  */
6285 static void setup_per_zone_lowmem_reserve(void)
6286 {
6287 	struct pglist_data *pgdat;
6288 	enum zone_type j, idx;
6289 
6290 	for_each_online_pgdat(pgdat) {
6291 		for (j = 0; j < MAX_NR_ZONES; j++) {
6292 			struct zone *zone = pgdat->node_zones + j;
6293 			unsigned long managed_pages = zone->managed_pages;
6294 
6295 			zone->lowmem_reserve[j] = 0;
6296 
6297 			idx = j;
6298 			while (idx) {
6299 				struct zone *lower_zone;
6300 
6301 				idx--;
6302 
6303 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6304 					sysctl_lowmem_reserve_ratio[idx] = 1;
6305 
6306 				lower_zone = pgdat->node_zones + idx;
6307 				lower_zone->lowmem_reserve[j] = managed_pages /
6308 					sysctl_lowmem_reserve_ratio[idx];
6309 				managed_pages += lower_zone->managed_pages;
6310 			}
6311 		}
6312 	}
6313 
6314 	/* update totalreserve_pages */
6315 	calculate_totalreserve_pages();
6316 }
6317 
6318 static void __setup_per_zone_wmarks(void)
6319 {
6320 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6321 	unsigned long lowmem_pages = 0;
6322 	struct zone *zone;
6323 	unsigned long flags;
6324 
6325 	/* Calculate total number of !ZONE_HIGHMEM pages */
6326 	for_each_zone(zone) {
6327 		if (!is_highmem(zone))
6328 			lowmem_pages += zone->managed_pages;
6329 	}
6330 
6331 	for_each_zone(zone) {
6332 		u64 tmp;
6333 
6334 		spin_lock_irqsave(&zone->lock, flags);
6335 		tmp = (u64)pages_min * zone->managed_pages;
6336 		do_div(tmp, lowmem_pages);
6337 		if (is_highmem(zone)) {
6338 			/*
6339 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6340 			 * need highmem pages, so cap pages_min to a small
6341 			 * value here.
6342 			 *
6343 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6344 			 * deltas control asynch page reclaim, and so should
6345 			 * not be capped for highmem.
6346 			 */
6347 			unsigned long min_pages;
6348 
6349 			min_pages = zone->managed_pages / 1024;
6350 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6351 			zone->watermark[WMARK_MIN] = min_pages;
6352 		} else {
6353 			/*
6354 			 * If it's a lowmem zone, reserve a number of pages
6355 			 * proportionate to the zone's size.
6356 			 */
6357 			zone->watermark[WMARK_MIN] = tmp;
6358 		}
6359 
6360 		/*
6361 		 * Set the kswapd watermarks distance according to the
6362 		 * scale factor in proportion to available memory, but
6363 		 * ensure a minimum size on small systems.
6364 		 */
6365 		tmp = max_t(u64, tmp >> 2,
6366 			    mult_frac(zone->managed_pages,
6367 				      watermark_scale_factor, 10000));
6368 
6369 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6370 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6371 
6372 		__mod_zone_page_state(zone, NR_ALLOC_BATCH,
6373 			high_wmark_pages(zone) - low_wmark_pages(zone) -
6374 			atomic_long_read(&zone->vm_stat[NR_ALLOC_BATCH]));
6375 
6376 		spin_unlock_irqrestore(&zone->lock, flags);
6377 	}
6378 
6379 	/* update totalreserve_pages */
6380 	calculate_totalreserve_pages();
6381 }
6382 
6383 /**
6384  * setup_per_zone_wmarks - called when min_free_kbytes changes
6385  * or when memory is hot-{added|removed}
6386  *
6387  * Ensures that the watermark[min,low,high] values for each zone are set
6388  * correctly with respect to min_free_kbytes.
6389  */
6390 void setup_per_zone_wmarks(void)
6391 {
6392 	mutex_lock(&zonelists_mutex);
6393 	__setup_per_zone_wmarks();
6394 	mutex_unlock(&zonelists_mutex);
6395 }
6396 
6397 /*
6398  * The inactive anon list should be small enough that the VM never has to
6399  * do too much work, but large enough that each inactive page has a chance
6400  * to be referenced again before it is swapped out.
6401  *
6402  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
6403  * INACTIVE_ANON pages on this zone's LRU, maintained by the
6404  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
6405  * the anonymous pages are kept on the inactive list.
6406  *
6407  * total     target    max
6408  * memory    ratio     inactive anon
6409  * -------------------------------------
6410  *   10MB       1         5MB
6411  *  100MB       1        50MB
6412  *    1GB       3       250MB
6413  *   10GB      10       0.9GB
6414  *  100GB      31         3GB
6415  *    1TB     101        10GB
6416  *   10TB     320        32GB
6417  */
6418 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
6419 {
6420 	unsigned int gb, ratio;
6421 
6422 	/* Zone size in gigabytes */
6423 	gb = zone->managed_pages >> (30 - PAGE_SHIFT);
6424 	if (gb)
6425 		ratio = int_sqrt(10 * gb);
6426 	else
6427 		ratio = 1;
6428 
6429 	zone->inactive_ratio = ratio;
6430 }
6431 
6432 static void __meminit setup_per_zone_inactive_ratio(void)
6433 {
6434 	struct zone *zone;
6435 
6436 	for_each_zone(zone)
6437 		calculate_zone_inactive_ratio(zone);
6438 }
6439 
6440 /*
6441  * Initialise min_free_kbytes.
6442  *
6443  * For small machines we want it small (128k min).  For large machines
6444  * we want it large (64MB max).  But it is not linear, because network
6445  * bandwidth does not increase linearly with machine size.  We use
6446  *
6447  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6448  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6449  *
6450  * which yields
6451  *
6452  * 16MB:	512k
6453  * 32MB:	724k
6454  * 64MB:	1024k
6455  * 128MB:	1448k
6456  * 256MB:	2048k
6457  * 512MB:	2896k
6458  * 1024MB:	4096k
6459  * 2048MB:	5792k
6460  * 4096MB:	8192k
6461  * 8192MB:	11584k
6462  * 16384MB:	16384k
6463  */
6464 int __meminit init_per_zone_wmark_min(void)
6465 {
6466 	unsigned long lowmem_kbytes;
6467 	int new_min_free_kbytes;
6468 
6469 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6470 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6471 
6472 	if (new_min_free_kbytes > user_min_free_kbytes) {
6473 		min_free_kbytes = new_min_free_kbytes;
6474 		if (min_free_kbytes < 128)
6475 			min_free_kbytes = 128;
6476 		if (min_free_kbytes > 65536)
6477 			min_free_kbytes = 65536;
6478 	} else {
6479 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6480 				new_min_free_kbytes, user_min_free_kbytes);
6481 	}
6482 	setup_per_zone_wmarks();
6483 	refresh_zone_stat_thresholds();
6484 	setup_per_zone_lowmem_reserve();
6485 	setup_per_zone_inactive_ratio();
6486 	return 0;
6487 }
6488 module_init(init_per_zone_wmark_min)
6489 
6490 /*
6491  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6492  *	that we can call two helper functions whenever min_free_kbytes
6493  *	changes.
6494  */
6495 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
6496 	void __user *buffer, size_t *length, loff_t *ppos)
6497 {
6498 	int rc;
6499 
6500 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6501 	if (rc)
6502 		return rc;
6503 
6504 	if (write) {
6505 		user_min_free_kbytes = min_free_kbytes;
6506 		setup_per_zone_wmarks();
6507 	}
6508 	return 0;
6509 }
6510 
6511 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6512 	void __user *buffer, size_t *length, loff_t *ppos)
6513 {
6514 	int rc;
6515 
6516 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6517 	if (rc)
6518 		return rc;
6519 
6520 	if (write)
6521 		setup_per_zone_wmarks();
6522 
6523 	return 0;
6524 }
6525 
6526 #ifdef CONFIG_NUMA
6527 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
6528 	void __user *buffer, size_t *length, loff_t *ppos)
6529 {
6530 	struct zone *zone;
6531 	int rc;
6532 
6533 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6534 	if (rc)
6535 		return rc;
6536 
6537 	for_each_zone(zone)
6538 		zone->min_unmapped_pages = (zone->managed_pages *
6539 				sysctl_min_unmapped_ratio) / 100;
6540 	return 0;
6541 }
6542 
6543 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6544 	void __user *buffer, size_t *length, loff_t *ppos)
6545 {
6546 	struct zone *zone;
6547 	int rc;
6548 
6549 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6550 	if (rc)
6551 		return rc;
6552 
6553 	for_each_zone(zone)
6554 		zone->min_slab_pages = (zone->managed_pages *
6555 				sysctl_min_slab_ratio) / 100;
6556 	return 0;
6557 }
6558 #endif
6559 
6560 /*
6561  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6562  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6563  *	whenever sysctl_lowmem_reserve_ratio changes.
6564  *
6565  * The reserve ratio obviously has absolutely no relation with the
6566  * minimum watermarks. The lowmem reserve ratio can only make sense
6567  * if in function of the boot time zone sizes.
6568  */
6569 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
6570 	void __user *buffer, size_t *length, loff_t *ppos)
6571 {
6572 	proc_dointvec_minmax(table, write, buffer, length, ppos);
6573 	setup_per_zone_lowmem_reserve();
6574 	return 0;
6575 }
6576 
6577 /*
6578  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
6579  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
6580  * pagelist can have before it gets flushed back to buddy allocator.
6581  */
6582 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
6583 	void __user *buffer, size_t *length, loff_t *ppos)
6584 {
6585 	struct zone *zone;
6586 	int old_percpu_pagelist_fraction;
6587 	int ret;
6588 
6589 	mutex_lock(&pcp_batch_high_lock);
6590 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6591 
6592 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
6593 	if (!write || ret < 0)
6594 		goto out;
6595 
6596 	/* Sanity checking to avoid pcp imbalance */
6597 	if (percpu_pagelist_fraction &&
6598 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6599 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6600 		ret = -EINVAL;
6601 		goto out;
6602 	}
6603 
6604 	/* No change? */
6605 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6606 		goto out;
6607 
6608 	for_each_populated_zone(zone) {
6609 		unsigned int cpu;
6610 
6611 		for_each_possible_cpu(cpu)
6612 			pageset_set_high_and_batch(zone,
6613 					per_cpu_ptr(zone->pageset, cpu));
6614 	}
6615 out:
6616 	mutex_unlock(&pcp_batch_high_lock);
6617 	return ret;
6618 }
6619 
6620 #ifdef CONFIG_NUMA
6621 int hashdist = HASHDIST_DEFAULT;
6622 
6623 static int __init set_hashdist(char *str)
6624 {
6625 	if (!str)
6626 		return 0;
6627 	hashdist = simple_strtoul(str, &str, 0);
6628 	return 1;
6629 }
6630 __setup("hashdist=", set_hashdist);
6631 #endif
6632 
6633 /*
6634  * allocate a large system hash table from bootmem
6635  * - it is assumed that the hash table must contain an exact power-of-2
6636  *   quantity of entries
6637  * - limit is the number of hash buckets, not the total allocation size
6638  */
6639 void *__init alloc_large_system_hash(const char *tablename,
6640 				     unsigned long bucketsize,
6641 				     unsigned long numentries,
6642 				     int scale,
6643 				     int flags,
6644 				     unsigned int *_hash_shift,
6645 				     unsigned int *_hash_mask,
6646 				     unsigned long low_limit,
6647 				     unsigned long high_limit)
6648 {
6649 	unsigned long long max = high_limit;
6650 	unsigned long log2qty, size;
6651 	void *table = NULL;
6652 
6653 	/* allow the kernel cmdline to have a say */
6654 	if (!numentries) {
6655 		/* round applicable memory size up to nearest megabyte */
6656 		numentries = nr_kernel_pages;
6657 
6658 		/* It isn't necessary when PAGE_SIZE >= 1MB */
6659 		if (PAGE_SHIFT < 20)
6660 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
6661 
6662 		/* limit to 1 bucket per 2^scale bytes of low memory */
6663 		if (scale > PAGE_SHIFT)
6664 			numentries >>= (scale - PAGE_SHIFT);
6665 		else
6666 			numentries <<= (PAGE_SHIFT - scale);
6667 
6668 		/* Make sure we've got at least a 0-order allocation.. */
6669 		if (unlikely(flags & HASH_SMALL)) {
6670 			/* Makes no sense without HASH_EARLY */
6671 			WARN_ON(!(flags & HASH_EARLY));
6672 			if (!(numentries >> *_hash_shift)) {
6673 				numentries = 1UL << *_hash_shift;
6674 				BUG_ON(!numentries);
6675 			}
6676 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
6677 			numentries = PAGE_SIZE / bucketsize;
6678 	}
6679 	numentries = roundup_pow_of_two(numentries);
6680 
6681 	/* limit allocation size to 1/16 total memory by default */
6682 	if (max == 0) {
6683 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6684 		do_div(max, bucketsize);
6685 	}
6686 	max = min(max, 0x80000000ULL);
6687 
6688 	if (numentries < low_limit)
6689 		numentries = low_limit;
6690 	if (numentries > max)
6691 		numentries = max;
6692 
6693 	log2qty = ilog2(numentries);
6694 
6695 	do {
6696 		size = bucketsize << log2qty;
6697 		if (flags & HASH_EARLY)
6698 			table = memblock_virt_alloc_nopanic(size, 0);
6699 		else if (hashdist)
6700 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
6701 		else {
6702 			/*
6703 			 * If bucketsize is not a power-of-two, we may free
6704 			 * some pages at the end of hash table which
6705 			 * alloc_pages_exact() automatically does
6706 			 */
6707 			if (get_order(size) < MAX_ORDER) {
6708 				table = alloc_pages_exact(size, GFP_ATOMIC);
6709 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
6710 			}
6711 		}
6712 	} while (!table && size > PAGE_SIZE && --log2qty);
6713 
6714 	if (!table)
6715 		panic("Failed to allocate %s hash table\n", tablename);
6716 
6717 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
6718 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
6719 
6720 	if (_hash_shift)
6721 		*_hash_shift = log2qty;
6722 	if (_hash_mask)
6723 		*_hash_mask = (1 << log2qty) - 1;
6724 
6725 	return table;
6726 }
6727 
6728 /* Return a pointer to the bitmap storing bits affecting a block of pages */
6729 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
6730 							unsigned long pfn)
6731 {
6732 #ifdef CONFIG_SPARSEMEM
6733 	return __pfn_to_section(pfn)->pageblock_flags;
6734 #else
6735 	return zone->pageblock_flags;
6736 #endif /* CONFIG_SPARSEMEM */
6737 }
6738 
6739 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
6740 {
6741 #ifdef CONFIG_SPARSEMEM
6742 	pfn &= (PAGES_PER_SECTION-1);
6743 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6744 #else
6745 	pfn = pfn - round_down(zone->zone_start_pfn, pageblock_nr_pages);
6746 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
6747 #endif /* CONFIG_SPARSEMEM */
6748 }
6749 
6750 /**
6751  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
6752  * @page: The page within the block of interest
6753  * @pfn: The target page frame number
6754  * @end_bitidx: The last bit of interest to retrieve
6755  * @mask: mask of bits that the caller is interested in
6756  *
6757  * Return: pageblock_bits flags
6758  */
6759 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
6760 					unsigned long end_bitidx,
6761 					unsigned long mask)
6762 {
6763 	struct zone *zone;
6764 	unsigned long *bitmap;
6765 	unsigned long bitidx, word_bitidx;
6766 	unsigned long word;
6767 
6768 	zone = page_zone(page);
6769 	bitmap = get_pageblock_bitmap(zone, pfn);
6770 	bitidx = pfn_to_bitidx(zone, pfn);
6771 	word_bitidx = bitidx / BITS_PER_LONG;
6772 	bitidx &= (BITS_PER_LONG-1);
6773 
6774 	word = bitmap[word_bitidx];
6775 	bitidx += end_bitidx;
6776 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
6777 }
6778 
6779 /**
6780  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
6781  * @page: The page within the block of interest
6782  * @flags: The flags to set
6783  * @pfn: The target page frame number
6784  * @end_bitidx: The last bit of interest
6785  * @mask: mask of bits that the caller is interested in
6786  */
6787 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
6788 					unsigned long pfn,
6789 					unsigned long end_bitidx,
6790 					unsigned long mask)
6791 {
6792 	struct zone *zone;
6793 	unsigned long *bitmap;
6794 	unsigned long bitidx, word_bitidx;
6795 	unsigned long old_word, word;
6796 
6797 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
6798 
6799 	zone = page_zone(page);
6800 	bitmap = get_pageblock_bitmap(zone, pfn);
6801 	bitidx = pfn_to_bitidx(zone, pfn);
6802 	word_bitidx = bitidx / BITS_PER_LONG;
6803 	bitidx &= (BITS_PER_LONG-1);
6804 
6805 	VM_BUG_ON_PAGE(!zone_spans_pfn(zone, pfn), page);
6806 
6807 	bitidx += end_bitidx;
6808 	mask <<= (BITS_PER_LONG - bitidx - 1);
6809 	flags <<= (BITS_PER_LONG - bitidx - 1);
6810 
6811 	word = READ_ONCE(bitmap[word_bitidx]);
6812 	for (;;) {
6813 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
6814 		if (word == old_word)
6815 			break;
6816 		word = old_word;
6817 	}
6818 }
6819 
6820 /*
6821  * This function checks whether pageblock includes unmovable pages or not.
6822  * If @count is not zero, it is okay to include less @count unmovable pages
6823  *
6824  * PageLRU check without isolation or lru_lock could race so that
6825  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
6826  * expect this function should be exact.
6827  */
6828 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
6829 			 bool skip_hwpoisoned_pages)
6830 {
6831 	unsigned long pfn, iter, found;
6832 	int mt;
6833 
6834 	/*
6835 	 * For avoiding noise data, lru_add_drain_all() should be called
6836 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
6837 	 */
6838 	if (zone_idx(zone) == ZONE_MOVABLE)
6839 		return false;
6840 	mt = get_pageblock_migratetype(page);
6841 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
6842 		return false;
6843 
6844 	pfn = page_to_pfn(page);
6845 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
6846 		unsigned long check = pfn + iter;
6847 
6848 		if (!pfn_valid_within(check))
6849 			continue;
6850 
6851 		page = pfn_to_page(check);
6852 
6853 		/*
6854 		 * Hugepages are not in LRU lists, but they're movable.
6855 		 * We need not scan over tail pages bacause we don't
6856 		 * handle each tail page individually in migration.
6857 		 */
6858 		if (PageHuge(page)) {
6859 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
6860 			continue;
6861 		}
6862 
6863 		/*
6864 		 * We can't use page_count without pin a page
6865 		 * because another CPU can free compound page.
6866 		 * This check already skips compound tails of THP
6867 		 * because their page->_count is zero at all time.
6868 		 */
6869 		if (!page_ref_count(page)) {
6870 			if (PageBuddy(page))
6871 				iter += (1 << page_order(page)) - 1;
6872 			continue;
6873 		}
6874 
6875 		/*
6876 		 * The HWPoisoned page may be not in buddy system, and
6877 		 * page_count() is not 0.
6878 		 */
6879 		if (skip_hwpoisoned_pages && PageHWPoison(page))
6880 			continue;
6881 
6882 		if (!PageLRU(page))
6883 			found++;
6884 		/*
6885 		 * If there are RECLAIMABLE pages, we need to check
6886 		 * it.  But now, memory offline itself doesn't call
6887 		 * shrink_node_slabs() and it still to be fixed.
6888 		 */
6889 		/*
6890 		 * If the page is not RAM, page_count()should be 0.
6891 		 * we don't need more check. This is an _used_ not-movable page.
6892 		 *
6893 		 * The problematic thing here is PG_reserved pages. PG_reserved
6894 		 * is set to both of a memory hole page and a _used_ kernel
6895 		 * page at boot.
6896 		 */
6897 		if (found > count)
6898 			return true;
6899 	}
6900 	return false;
6901 }
6902 
6903 bool is_pageblock_removable_nolock(struct page *page)
6904 {
6905 	struct zone *zone;
6906 	unsigned long pfn;
6907 
6908 	/*
6909 	 * We have to be careful here because we are iterating over memory
6910 	 * sections which are not zone aware so we might end up outside of
6911 	 * the zone but still within the section.
6912 	 * We have to take care about the node as well. If the node is offline
6913 	 * its NODE_DATA will be NULL - see page_zone.
6914 	 */
6915 	if (!node_online(page_to_nid(page)))
6916 		return false;
6917 
6918 	zone = page_zone(page);
6919 	pfn = page_to_pfn(page);
6920 	if (!zone_spans_pfn(zone, pfn))
6921 		return false;
6922 
6923 	return !has_unmovable_pages(zone, page, 0, true);
6924 }
6925 
6926 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
6927 
6928 static unsigned long pfn_max_align_down(unsigned long pfn)
6929 {
6930 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
6931 			     pageblock_nr_pages) - 1);
6932 }
6933 
6934 static unsigned long pfn_max_align_up(unsigned long pfn)
6935 {
6936 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
6937 				pageblock_nr_pages));
6938 }
6939 
6940 /* [start, end) must belong to a single zone. */
6941 static int __alloc_contig_migrate_range(struct compact_control *cc,
6942 					unsigned long start, unsigned long end)
6943 {
6944 	/* This function is based on compact_zone() from compaction.c. */
6945 	unsigned long nr_reclaimed;
6946 	unsigned long pfn = start;
6947 	unsigned int tries = 0;
6948 	int ret = 0;
6949 
6950 	migrate_prep();
6951 
6952 	while (pfn < end || !list_empty(&cc->migratepages)) {
6953 		if (fatal_signal_pending(current)) {
6954 			ret = -EINTR;
6955 			break;
6956 		}
6957 
6958 		if (list_empty(&cc->migratepages)) {
6959 			cc->nr_migratepages = 0;
6960 			pfn = isolate_migratepages_range(cc, pfn, end);
6961 			if (!pfn) {
6962 				ret = -EINTR;
6963 				break;
6964 			}
6965 			tries = 0;
6966 		} else if (++tries == 5) {
6967 			ret = ret < 0 ? ret : -EBUSY;
6968 			break;
6969 		}
6970 
6971 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
6972 							&cc->migratepages);
6973 		cc->nr_migratepages -= nr_reclaimed;
6974 
6975 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
6976 				    NULL, 0, cc->mode, MR_CMA);
6977 	}
6978 	if (ret < 0) {
6979 		putback_movable_pages(&cc->migratepages);
6980 		return ret;
6981 	}
6982 	return 0;
6983 }
6984 
6985 /**
6986  * alloc_contig_range() -- tries to allocate given range of pages
6987  * @start:	start PFN to allocate
6988  * @end:	one-past-the-last PFN to allocate
6989  * @migratetype:	migratetype of the underlaying pageblocks (either
6990  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
6991  *			in range must have the same migratetype and it must
6992  *			be either of the two.
6993  *
6994  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
6995  * aligned, however it's the caller's responsibility to guarantee that
6996  * we are the only thread that changes migrate type of pageblocks the
6997  * pages fall in.
6998  *
6999  * The PFN range must belong to a single zone.
7000  *
7001  * Returns zero on success or negative error code.  On success all
7002  * pages which PFN is in [start, end) are allocated for the caller and
7003  * need to be freed with free_contig_range().
7004  */
7005 int alloc_contig_range(unsigned long start, unsigned long end,
7006 		       unsigned migratetype)
7007 {
7008 	unsigned long outer_start, outer_end;
7009 	unsigned int order;
7010 	int ret = 0;
7011 
7012 	struct compact_control cc = {
7013 		.nr_migratepages = 0,
7014 		.order = -1,
7015 		.zone = page_zone(pfn_to_page(start)),
7016 		.mode = MIGRATE_SYNC,
7017 		.ignore_skip_hint = true,
7018 	};
7019 	INIT_LIST_HEAD(&cc.migratepages);
7020 
7021 	/*
7022 	 * What we do here is we mark all pageblocks in range as
7023 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7024 	 * have different sizes, and due to the way page allocator
7025 	 * work, we align the range to biggest of the two pages so
7026 	 * that page allocator won't try to merge buddies from
7027 	 * different pageblocks and change MIGRATE_ISOLATE to some
7028 	 * other migration type.
7029 	 *
7030 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7031 	 * migrate the pages from an unaligned range (ie. pages that
7032 	 * we are interested in).  This will put all the pages in
7033 	 * range back to page allocator as MIGRATE_ISOLATE.
7034 	 *
7035 	 * When this is done, we take the pages in range from page
7036 	 * allocator removing them from the buddy system.  This way
7037 	 * page allocator will never consider using them.
7038 	 *
7039 	 * This lets us mark the pageblocks back as
7040 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7041 	 * aligned range but not in the unaligned, original range are
7042 	 * put back to page allocator so that buddy can use them.
7043 	 */
7044 
7045 	ret = start_isolate_page_range(pfn_max_align_down(start),
7046 				       pfn_max_align_up(end), migratetype,
7047 				       false);
7048 	if (ret)
7049 		return ret;
7050 
7051 	/*
7052 	 * In case of -EBUSY, we'd like to know which page causes problem.
7053 	 * So, just fall through. We will check it in test_pages_isolated().
7054 	 */
7055 	ret = __alloc_contig_migrate_range(&cc, start, end);
7056 	if (ret && ret != -EBUSY)
7057 		goto done;
7058 
7059 	/*
7060 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7061 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7062 	 * more, all pages in [start, end) are free in page allocator.
7063 	 * What we are going to do is to allocate all pages from
7064 	 * [start, end) (that is remove them from page allocator).
7065 	 *
7066 	 * The only problem is that pages at the beginning and at the
7067 	 * end of interesting range may be not aligned with pages that
7068 	 * page allocator holds, ie. they can be part of higher order
7069 	 * pages.  Because of this, we reserve the bigger range and
7070 	 * once this is done free the pages we are not interested in.
7071 	 *
7072 	 * We don't have to hold zone->lock here because the pages are
7073 	 * isolated thus they won't get removed from buddy.
7074 	 */
7075 
7076 	lru_add_drain_all();
7077 	drain_all_pages(cc.zone);
7078 
7079 	order = 0;
7080 	outer_start = start;
7081 	while (!PageBuddy(pfn_to_page(outer_start))) {
7082 		if (++order >= MAX_ORDER) {
7083 			outer_start = start;
7084 			break;
7085 		}
7086 		outer_start &= ~0UL << order;
7087 	}
7088 
7089 	if (outer_start != start) {
7090 		order = page_order(pfn_to_page(outer_start));
7091 
7092 		/*
7093 		 * outer_start page could be small order buddy page and
7094 		 * it doesn't include start page. Adjust outer_start
7095 		 * in this case to report failed page properly
7096 		 * on tracepoint in test_pages_isolated()
7097 		 */
7098 		if (outer_start + (1UL << order) <= start)
7099 			outer_start = start;
7100 	}
7101 
7102 	/* Make sure the range is really isolated. */
7103 	if (test_pages_isolated(outer_start, end, false)) {
7104 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7105 			__func__, outer_start, end);
7106 		ret = -EBUSY;
7107 		goto done;
7108 	}
7109 
7110 	/* Grab isolated pages from freelists. */
7111 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7112 	if (!outer_end) {
7113 		ret = -EBUSY;
7114 		goto done;
7115 	}
7116 
7117 	/* Free head and tail (if any) */
7118 	if (start != outer_start)
7119 		free_contig_range(outer_start, start - outer_start);
7120 	if (end != outer_end)
7121 		free_contig_range(end, outer_end - end);
7122 
7123 done:
7124 	undo_isolate_page_range(pfn_max_align_down(start),
7125 				pfn_max_align_up(end), migratetype);
7126 	return ret;
7127 }
7128 
7129 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7130 {
7131 	unsigned int count = 0;
7132 
7133 	for (; nr_pages--; pfn++) {
7134 		struct page *page = pfn_to_page(pfn);
7135 
7136 		count += page_count(page) != 1;
7137 		__free_page(page);
7138 	}
7139 	WARN(count != 0, "%d pages are still in use!\n", count);
7140 }
7141 #endif
7142 
7143 #ifdef CONFIG_MEMORY_HOTPLUG
7144 /*
7145  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7146  * page high values need to be recalulated.
7147  */
7148 void __meminit zone_pcp_update(struct zone *zone)
7149 {
7150 	unsigned cpu;
7151 	mutex_lock(&pcp_batch_high_lock);
7152 	for_each_possible_cpu(cpu)
7153 		pageset_set_high_and_batch(zone,
7154 				per_cpu_ptr(zone->pageset, cpu));
7155 	mutex_unlock(&pcp_batch_high_lock);
7156 }
7157 #endif
7158 
7159 void zone_pcp_reset(struct zone *zone)
7160 {
7161 	unsigned long flags;
7162 	int cpu;
7163 	struct per_cpu_pageset *pset;
7164 
7165 	/* avoid races with drain_pages()  */
7166 	local_irq_save(flags);
7167 	if (zone->pageset != &boot_pageset) {
7168 		for_each_online_cpu(cpu) {
7169 			pset = per_cpu_ptr(zone->pageset, cpu);
7170 			drain_zonestat(zone, pset);
7171 		}
7172 		free_percpu(zone->pageset);
7173 		zone->pageset = &boot_pageset;
7174 	}
7175 	local_irq_restore(flags);
7176 }
7177 
7178 #ifdef CONFIG_MEMORY_HOTREMOVE
7179 /*
7180  * All pages in the range must be isolated before calling this.
7181  */
7182 void
7183 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7184 {
7185 	struct page *page;
7186 	struct zone *zone;
7187 	unsigned int order, i;
7188 	unsigned long pfn;
7189 	unsigned long flags;
7190 	/* find the first valid pfn */
7191 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7192 		if (pfn_valid(pfn))
7193 			break;
7194 	if (pfn == end_pfn)
7195 		return;
7196 	zone = page_zone(pfn_to_page(pfn));
7197 	spin_lock_irqsave(&zone->lock, flags);
7198 	pfn = start_pfn;
7199 	while (pfn < end_pfn) {
7200 		if (!pfn_valid(pfn)) {
7201 			pfn++;
7202 			continue;
7203 		}
7204 		page = pfn_to_page(pfn);
7205 		/*
7206 		 * The HWPoisoned page may be not in buddy system, and
7207 		 * page_count() is not 0.
7208 		 */
7209 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7210 			pfn++;
7211 			SetPageReserved(page);
7212 			continue;
7213 		}
7214 
7215 		BUG_ON(page_count(page));
7216 		BUG_ON(!PageBuddy(page));
7217 		order = page_order(page);
7218 #ifdef CONFIG_DEBUG_VM
7219 		pr_info("remove from free list %lx %d %lx\n",
7220 			pfn, 1 << order, end_pfn);
7221 #endif
7222 		list_del(&page->lru);
7223 		rmv_page_order(page);
7224 		zone->free_area[order].nr_free--;
7225 		for (i = 0; i < (1 << order); i++)
7226 			SetPageReserved((page+i));
7227 		pfn += (1 << order);
7228 	}
7229 	spin_unlock_irqrestore(&zone->lock, flags);
7230 }
7231 #endif
7232 
7233 bool is_free_buddy_page(struct page *page)
7234 {
7235 	struct zone *zone = page_zone(page);
7236 	unsigned long pfn = page_to_pfn(page);
7237 	unsigned long flags;
7238 	unsigned int order;
7239 
7240 	spin_lock_irqsave(&zone->lock, flags);
7241 	for (order = 0; order < MAX_ORDER; order++) {
7242 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7243 
7244 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7245 			break;
7246 	}
7247 	spin_unlock_irqrestore(&zone->lock, flags);
7248 
7249 	return order < MAX_ORDER;
7250 }
7251