1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kasan.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/sort.h> 48 #include <linux/pfn.h> 49 #include <linux/backing-dev.h> 50 #include <linux/fault-inject.h> 51 #include <linux/page-isolation.h> 52 #include <linux/page_ext.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 71 #include <asm/sections.h> 72 #include <asm/tlbflush.h> 73 #include <asm/div64.h> 74 #include "internal.h" 75 76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 77 static DEFINE_MUTEX(pcp_batch_high_lock); 78 #define MIN_PERCPU_PAGELIST_FRACTION (8) 79 80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 81 DEFINE_PER_CPU(int, numa_node); 82 EXPORT_PER_CPU_SYMBOL(numa_node); 83 #endif 84 85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 86 87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 88 /* 89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 92 * defined in <linux/topology.h>. 93 */ 94 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 95 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 96 int _node_numa_mem_[MAX_NUMNODES]; 97 #endif 98 99 /* work_structs for global per-cpu drains */ 100 DEFINE_MUTEX(pcpu_drain_mutex); 101 DEFINE_PER_CPU(struct work_struct, pcpu_drain); 102 103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 104 volatile unsigned long latent_entropy __latent_entropy; 105 EXPORT_SYMBOL(latent_entropy); 106 #endif 107 108 /* 109 * Array of node states. 110 */ 111 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 112 [N_POSSIBLE] = NODE_MASK_ALL, 113 [N_ONLINE] = { { [0] = 1UL } }, 114 #ifndef CONFIG_NUMA 115 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 116 #ifdef CONFIG_HIGHMEM 117 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 118 #endif 119 [N_MEMORY] = { { [0] = 1UL } }, 120 [N_CPU] = { { [0] = 1UL } }, 121 #endif /* NUMA */ 122 }; 123 EXPORT_SYMBOL(node_states); 124 125 /* Protect totalram_pages and zone->managed_pages */ 126 static DEFINE_SPINLOCK(managed_page_count_lock); 127 128 unsigned long totalram_pages __read_mostly; 129 unsigned long totalreserve_pages __read_mostly; 130 unsigned long totalcma_pages __read_mostly; 131 132 int percpu_pagelist_fraction; 133 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 134 135 /* 136 * A cached value of the page's pageblock's migratetype, used when the page is 137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 138 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 139 * Also the migratetype set in the page does not necessarily match the pcplist 140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 141 * other index - this ensures that it will be put on the correct CMA freelist. 142 */ 143 static inline int get_pcppage_migratetype(struct page *page) 144 { 145 return page->index; 146 } 147 148 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 149 { 150 page->index = migratetype; 151 } 152 153 #ifdef CONFIG_PM_SLEEP 154 /* 155 * The following functions are used by the suspend/hibernate code to temporarily 156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 157 * while devices are suspended. To avoid races with the suspend/hibernate code, 158 * they should always be called with pm_mutex held (gfp_allowed_mask also should 159 * only be modified with pm_mutex held, unless the suspend/hibernate code is 160 * guaranteed not to run in parallel with that modification). 161 */ 162 163 static gfp_t saved_gfp_mask; 164 165 void pm_restore_gfp_mask(void) 166 { 167 WARN_ON(!mutex_is_locked(&pm_mutex)); 168 if (saved_gfp_mask) { 169 gfp_allowed_mask = saved_gfp_mask; 170 saved_gfp_mask = 0; 171 } 172 } 173 174 void pm_restrict_gfp_mask(void) 175 { 176 WARN_ON(!mutex_is_locked(&pm_mutex)); 177 WARN_ON(saved_gfp_mask); 178 saved_gfp_mask = gfp_allowed_mask; 179 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 180 } 181 182 bool pm_suspended_storage(void) 183 { 184 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 185 return false; 186 return true; 187 } 188 #endif /* CONFIG_PM_SLEEP */ 189 190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 191 unsigned int pageblock_order __read_mostly; 192 #endif 193 194 static void __free_pages_ok(struct page *page, unsigned int order); 195 196 /* 197 * results with 256, 32 in the lowmem_reserve sysctl: 198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 199 * 1G machine -> (16M dma, 784M normal, 224M high) 200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 203 * 204 * TBD: should special case ZONE_DMA32 machines here - in those we normally 205 * don't need any ZONE_NORMAL reservation 206 */ 207 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 208 #ifdef CONFIG_ZONE_DMA 209 256, 210 #endif 211 #ifdef CONFIG_ZONE_DMA32 212 256, 213 #endif 214 #ifdef CONFIG_HIGHMEM 215 32, 216 #endif 217 32, 218 }; 219 220 EXPORT_SYMBOL(totalram_pages); 221 222 static char * const zone_names[MAX_NR_ZONES] = { 223 #ifdef CONFIG_ZONE_DMA 224 "DMA", 225 #endif 226 #ifdef CONFIG_ZONE_DMA32 227 "DMA32", 228 #endif 229 "Normal", 230 #ifdef CONFIG_HIGHMEM 231 "HighMem", 232 #endif 233 "Movable", 234 #ifdef CONFIG_ZONE_DEVICE 235 "Device", 236 #endif 237 }; 238 239 char * const migratetype_names[MIGRATE_TYPES] = { 240 "Unmovable", 241 "Movable", 242 "Reclaimable", 243 "HighAtomic", 244 #ifdef CONFIG_CMA 245 "CMA", 246 #endif 247 #ifdef CONFIG_MEMORY_ISOLATION 248 "Isolate", 249 #endif 250 }; 251 252 compound_page_dtor * const compound_page_dtors[] = { 253 NULL, 254 free_compound_page, 255 #ifdef CONFIG_HUGETLB_PAGE 256 free_huge_page, 257 #endif 258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 259 free_transhuge_page, 260 #endif 261 }; 262 263 int min_free_kbytes = 1024; 264 int user_min_free_kbytes = -1; 265 int watermark_scale_factor = 10; 266 267 static unsigned long __meminitdata nr_kernel_pages; 268 static unsigned long __meminitdata nr_all_pages; 269 static unsigned long __meminitdata dma_reserve; 270 271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 273 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 274 static unsigned long __initdata required_kernelcore; 275 static unsigned long __initdata required_movablecore; 276 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 277 static bool mirrored_kernelcore; 278 279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 280 int movable_zone; 281 EXPORT_SYMBOL(movable_zone); 282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 283 284 #if MAX_NUMNODES > 1 285 int nr_node_ids __read_mostly = MAX_NUMNODES; 286 int nr_online_nodes __read_mostly = 1; 287 EXPORT_SYMBOL(nr_node_ids); 288 EXPORT_SYMBOL(nr_online_nodes); 289 #endif 290 291 int page_group_by_mobility_disabled __read_mostly; 292 293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 294 295 /* 296 * Determine how many pages need to be initialized during early boot 297 * (non-deferred initialization). 298 * The value of first_deferred_pfn will be set later, once non-deferred pages 299 * are initialized, but for now set it ULONG_MAX. 300 */ 301 static inline void reset_deferred_meminit(pg_data_t *pgdat) 302 { 303 phys_addr_t start_addr, end_addr; 304 unsigned long max_pgcnt; 305 unsigned long reserved; 306 307 /* 308 * Initialise at least 2G of a node but also take into account that 309 * two large system hashes that can take up 1GB for 0.25TB/node. 310 */ 311 max_pgcnt = max(2UL << (30 - PAGE_SHIFT), 312 (pgdat->node_spanned_pages >> 8)); 313 314 /* 315 * Compensate the all the memblock reservations (e.g. crash kernel) 316 * from the initial estimation to make sure we will initialize enough 317 * memory to boot. 318 */ 319 start_addr = PFN_PHYS(pgdat->node_start_pfn); 320 end_addr = PFN_PHYS(pgdat->node_start_pfn + max_pgcnt); 321 reserved = memblock_reserved_memory_within(start_addr, end_addr); 322 max_pgcnt += PHYS_PFN(reserved); 323 324 pgdat->static_init_pgcnt = min(max_pgcnt, pgdat->node_spanned_pages); 325 pgdat->first_deferred_pfn = ULONG_MAX; 326 } 327 328 /* Returns true if the struct page for the pfn is uninitialised */ 329 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 330 { 331 int nid = early_pfn_to_nid(pfn); 332 333 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 334 return true; 335 336 return false; 337 } 338 339 /* 340 * Returns false when the remaining initialisation should be deferred until 341 * later in the boot cycle when it can be parallelised. 342 */ 343 static inline bool update_defer_init(pg_data_t *pgdat, 344 unsigned long pfn, unsigned long zone_end, 345 unsigned long *nr_initialised) 346 { 347 /* Always populate low zones for address-constrained allocations */ 348 if (zone_end < pgdat_end_pfn(pgdat)) 349 return true; 350 (*nr_initialised)++; 351 if ((*nr_initialised > pgdat->static_init_pgcnt) && 352 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 353 pgdat->first_deferred_pfn = pfn; 354 return false; 355 } 356 357 return true; 358 } 359 #else 360 static inline void reset_deferred_meminit(pg_data_t *pgdat) 361 { 362 } 363 364 static inline bool early_page_uninitialised(unsigned long pfn) 365 { 366 return false; 367 } 368 369 static inline bool update_defer_init(pg_data_t *pgdat, 370 unsigned long pfn, unsigned long zone_end, 371 unsigned long *nr_initialised) 372 { 373 return true; 374 } 375 #endif 376 377 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 378 static inline unsigned long *get_pageblock_bitmap(struct page *page, 379 unsigned long pfn) 380 { 381 #ifdef CONFIG_SPARSEMEM 382 return __pfn_to_section(pfn)->pageblock_flags; 383 #else 384 return page_zone(page)->pageblock_flags; 385 #endif /* CONFIG_SPARSEMEM */ 386 } 387 388 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 389 { 390 #ifdef CONFIG_SPARSEMEM 391 pfn &= (PAGES_PER_SECTION-1); 392 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 393 #else 394 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 395 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 396 #endif /* CONFIG_SPARSEMEM */ 397 } 398 399 /** 400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 401 * @page: The page within the block of interest 402 * @pfn: The target page frame number 403 * @end_bitidx: The last bit of interest to retrieve 404 * @mask: mask of bits that the caller is interested in 405 * 406 * Return: pageblock_bits flags 407 */ 408 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 409 unsigned long pfn, 410 unsigned long end_bitidx, 411 unsigned long mask) 412 { 413 unsigned long *bitmap; 414 unsigned long bitidx, word_bitidx; 415 unsigned long word; 416 417 bitmap = get_pageblock_bitmap(page, pfn); 418 bitidx = pfn_to_bitidx(page, pfn); 419 word_bitidx = bitidx / BITS_PER_LONG; 420 bitidx &= (BITS_PER_LONG-1); 421 422 word = bitmap[word_bitidx]; 423 bitidx += end_bitidx; 424 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 425 } 426 427 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 428 unsigned long end_bitidx, 429 unsigned long mask) 430 { 431 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 432 } 433 434 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 435 { 436 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 437 } 438 439 /** 440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 441 * @page: The page within the block of interest 442 * @flags: The flags to set 443 * @pfn: The target page frame number 444 * @end_bitidx: The last bit of interest 445 * @mask: mask of bits that the caller is interested in 446 */ 447 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 448 unsigned long pfn, 449 unsigned long end_bitidx, 450 unsigned long mask) 451 { 452 unsigned long *bitmap; 453 unsigned long bitidx, word_bitidx; 454 unsigned long old_word, word; 455 456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 457 458 bitmap = get_pageblock_bitmap(page, pfn); 459 bitidx = pfn_to_bitidx(page, pfn); 460 word_bitidx = bitidx / BITS_PER_LONG; 461 bitidx &= (BITS_PER_LONG-1); 462 463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 464 465 bitidx += end_bitidx; 466 mask <<= (BITS_PER_LONG - bitidx - 1); 467 flags <<= (BITS_PER_LONG - bitidx - 1); 468 469 word = READ_ONCE(bitmap[word_bitidx]); 470 for (;;) { 471 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 472 if (word == old_word) 473 break; 474 word = old_word; 475 } 476 } 477 478 void set_pageblock_migratetype(struct page *page, int migratetype) 479 { 480 if (unlikely(page_group_by_mobility_disabled && 481 migratetype < MIGRATE_PCPTYPES)) 482 migratetype = MIGRATE_UNMOVABLE; 483 484 set_pageblock_flags_group(page, (unsigned long)migratetype, 485 PB_migrate, PB_migrate_end); 486 } 487 488 #ifdef CONFIG_DEBUG_VM 489 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 490 { 491 int ret = 0; 492 unsigned seq; 493 unsigned long pfn = page_to_pfn(page); 494 unsigned long sp, start_pfn; 495 496 do { 497 seq = zone_span_seqbegin(zone); 498 start_pfn = zone->zone_start_pfn; 499 sp = zone->spanned_pages; 500 if (!zone_spans_pfn(zone, pfn)) 501 ret = 1; 502 } while (zone_span_seqretry(zone, seq)); 503 504 if (ret) 505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 506 pfn, zone_to_nid(zone), zone->name, 507 start_pfn, start_pfn + sp); 508 509 return ret; 510 } 511 512 static int page_is_consistent(struct zone *zone, struct page *page) 513 { 514 if (!pfn_valid_within(page_to_pfn(page))) 515 return 0; 516 if (zone != page_zone(page)) 517 return 0; 518 519 return 1; 520 } 521 /* 522 * Temporary debugging check for pages not lying within a given zone. 523 */ 524 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 525 { 526 if (page_outside_zone_boundaries(zone, page)) 527 return 1; 528 if (!page_is_consistent(zone, page)) 529 return 1; 530 531 return 0; 532 } 533 #else 534 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 535 { 536 return 0; 537 } 538 #endif 539 540 static void bad_page(struct page *page, const char *reason, 541 unsigned long bad_flags) 542 { 543 static unsigned long resume; 544 static unsigned long nr_shown; 545 static unsigned long nr_unshown; 546 547 /* 548 * Allow a burst of 60 reports, then keep quiet for that minute; 549 * or allow a steady drip of one report per second. 550 */ 551 if (nr_shown == 60) { 552 if (time_before(jiffies, resume)) { 553 nr_unshown++; 554 goto out; 555 } 556 if (nr_unshown) { 557 pr_alert( 558 "BUG: Bad page state: %lu messages suppressed\n", 559 nr_unshown); 560 nr_unshown = 0; 561 } 562 nr_shown = 0; 563 } 564 if (nr_shown++ == 0) 565 resume = jiffies + 60 * HZ; 566 567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 568 current->comm, page_to_pfn(page)); 569 __dump_page(page, reason); 570 bad_flags &= page->flags; 571 if (bad_flags) 572 pr_alert("bad because of flags: %#lx(%pGp)\n", 573 bad_flags, &bad_flags); 574 dump_page_owner(page); 575 576 print_modules(); 577 dump_stack(); 578 out: 579 /* Leave bad fields for debug, except PageBuddy could make trouble */ 580 page_mapcount_reset(page); /* remove PageBuddy */ 581 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 582 } 583 584 /* 585 * Higher-order pages are called "compound pages". They are structured thusly: 586 * 587 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 588 * 589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 591 * 592 * The first tail page's ->compound_dtor holds the offset in array of compound 593 * page destructors. See compound_page_dtors. 594 * 595 * The first tail page's ->compound_order holds the order of allocation. 596 * This usage means that zero-order pages may not be compound. 597 */ 598 599 void free_compound_page(struct page *page) 600 { 601 __free_pages_ok(page, compound_order(page)); 602 } 603 604 void prep_compound_page(struct page *page, unsigned int order) 605 { 606 int i; 607 int nr_pages = 1 << order; 608 609 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 610 set_compound_order(page, order); 611 __SetPageHead(page); 612 for (i = 1; i < nr_pages; i++) { 613 struct page *p = page + i; 614 set_page_count(p, 0); 615 p->mapping = TAIL_MAPPING; 616 set_compound_head(p, page); 617 } 618 atomic_set(compound_mapcount_ptr(page), -1); 619 } 620 621 #ifdef CONFIG_DEBUG_PAGEALLOC 622 unsigned int _debug_guardpage_minorder; 623 bool _debug_pagealloc_enabled __read_mostly 624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 625 EXPORT_SYMBOL(_debug_pagealloc_enabled); 626 bool _debug_guardpage_enabled __read_mostly; 627 628 static int __init early_debug_pagealloc(char *buf) 629 { 630 if (!buf) 631 return -EINVAL; 632 return kstrtobool(buf, &_debug_pagealloc_enabled); 633 } 634 early_param("debug_pagealloc", early_debug_pagealloc); 635 636 static bool need_debug_guardpage(void) 637 { 638 /* If we don't use debug_pagealloc, we don't need guard page */ 639 if (!debug_pagealloc_enabled()) 640 return false; 641 642 if (!debug_guardpage_minorder()) 643 return false; 644 645 return true; 646 } 647 648 static void init_debug_guardpage(void) 649 { 650 if (!debug_pagealloc_enabled()) 651 return; 652 653 if (!debug_guardpage_minorder()) 654 return; 655 656 _debug_guardpage_enabled = true; 657 } 658 659 struct page_ext_operations debug_guardpage_ops = { 660 .need = need_debug_guardpage, 661 .init = init_debug_guardpage, 662 }; 663 664 static int __init debug_guardpage_minorder_setup(char *buf) 665 { 666 unsigned long res; 667 668 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 669 pr_err("Bad debug_guardpage_minorder value\n"); 670 return 0; 671 } 672 _debug_guardpage_minorder = res; 673 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 674 return 0; 675 } 676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 677 678 static inline bool set_page_guard(struct zone *zone, struct page *page, 679 unsigned int order, int migratetype) 680 { 681 struct page_ext *page_ext; 682 683 if (!debug_guardpage_enabled()) 684 return false; 685 686 if (order >= debug_guardpage_minorder()) 687 return false; 688 689 page_ext = lookup_page_ext(page); 690 if (unlikely(!page_ext)) 691 return false; 692 693 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 694 695 INIT_LIST_HEAD(&page->lru); 696 set_page_private(page, order); 697 /* Guard pages are not available for any usage */ 698 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 699 700 return true; 701 } 702 703 static inline void clear_page_guard(struct zone *zone, struct page *page, 704 unsigned int order, int migratetype) 705 { 706 struct page_ext *page_ext; 707 708 if (!debug_guardpage_enabled()) 709 return; 710 711 page_ext = lookup_page_ext(page); 712 if (unlikely(!page_ext)) 713 return; 714 715 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags); 716 717 set_page_private(page, 0); 718 if (!is_migrate_isolate(migratetype)) 719 __mod_zone_freepage_state(zone, (1 << order), migratetype); 720 } 721 #else 722 struct page_ext_operations debug_guardpage_ops; 723 static inline bool set_page_guard(struct zone *zone, struct page *page, 724 unsigned int order, int migratetype) { return false; } 725 static inline void clear_page_guard(struct zone *zone, struct page *page, 726 unsigned int order, int migratetype) {} 727 #endif 728 729 static inline void set_page_order(struct page *page, unsigned int order) 730 { 731 set_page_private(page, order); 732 __SetPageBuddy(page); 733 } 734 735 static inline void rmv_page_order(struct page *page) 736 { 737 __ClearPageBuddy(page); 738 set_page_private(page, 0); 739 } 740 741 /* 742 * This function checks whether a page is free && is the buddy 743 * we can do coalesce a page and its buddy if 744 * (a) the buddy is not in a hole (check before calling!) && 745 * (b) the buddy is in the buddy system && 746 * (c) a page and its buddy have the same order && 747 * (d) a page and its buddy are in the same zone. 748 * 749 * For recording whether a page is in the buddy system, we set ->_mapcount 750 * PAGE_BUDDY_MAPCOUNT_VALUE. 751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is 752 * serialized by zone->lock. 753 * 754 * For recording page's order, we use page_private(page). 755 */ 756 static inline int page_is_buddy(struct page *page, struct page *buddy, 757 unsigned int order) 758 { 759 if (page_is_guard(buddy) && page_order(buddy) == order) { 760 if (page_zone_id(page) != page_zone_id(buddy)) 761 return 0; 762 763 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 764 765 return 1; 766 } 767 768 if (PageBuddy(buddy) && page_order(buddy) == order) { 769 /* 770 * zone check is done late to avoid uselessly 771 * calculating zone/node ids for pages that could 772 * never merge. 773 */ 774 if (page_zone_id(page) != page_zone_id(buddy)) 775 return 0; 776 777 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 778 779 return 1; 780 } 781 return 0; 782 } 783 784 /* 785 * Freeing function for a buddy system allocator. 786 * 787 * The concept of a buddy system is to maintain direct-mapped table 788 * (containing bit values) for memory blocks of various "orders". 789 * The bottom level table contains the map for the smallest allocatable 790 * units of memory (here, pages), and each level above it describes 791 * pairs of units from the levels below, hence, "buddies". 792 * At a high level, all that happens here is marking the table entry 793 * at the bottom level available, and propagating the changes upward 794 * as necessary, plus some accounting needed to play nicely with other 795 * parts of the VM system. 796 * At each level, we keep a list of pages, which are heads of continuous 797 * free pages of length of (1 << order) and marked with _mapcount 798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page) 799 * field. 800 * So when we are allocating or freeing one, we can derive the state of the 801 * other. That is, if we allocate a small block, and both were 802 * free, the remainder of the region must be split into blocks. 803 * If a block is freed, and its buddy is also free, then this 804 * triggers coalescing into a block of larger size. 805 * 806 * -- nyc 807 */ 808 809 static inline void __free_one_page(struct page *page, 810 unsigned long pfn, 811 struct zone *zone, unsigned int order, 812 int migratetype) 813 { 814 unsigned long combined_pfn; 815 unsigned long uninitialized_var(buddy_pfn); 816 struct page *buddy; 817 unsigned int max_order; 818 819 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 820 821 VM_BUG_ON(!zone_is_initialized(zone)); 822 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 823 824 VM_BUG_ON(migratetype == -1); 825 if (likely(!is_migrate_isolate(migratetype))) 826 __mod_zone_freepage_state(zone, 1 << order, migratetype); 827 828 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 829 VM_BUG_ON_PAGE(bad_range(zone, page), page); 830 831 continue_merging: 832 while (order < max_order - 1) { 833 buddy_pfn = __find_buddy_pfn(pfn, order); 834 buddy = page + (buddy_pfn - pfn); 835 836 if (!pfn_valid_within(buddy_pfn)) 837 goto done_merging; 838 if (!page_is_buddy(page, buddy, order)) 839 goto done_merging; 840 /* 841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 842 * merge with it and move up one order. 843 */ 844 if (page_is_guard(buddy)) { 845 clear_page_guard(zone, buddy, order, migratetype); 846 } else { 847 list_del(&buddy->lru); 848 zone->free_area[order].nr_free--; 849 rmv_page_order(buddy); 850 } 851 combined_pfn = buddy_pfn & pfn; 852 page = page + (combined_pfn - pfn); 853 pfn = combined_pfn; 854 order++; 855 } 856 if (max_order < MAX_ORDER) { 857 /* If we are here, it means order is >= pageblock_order. 858 * We want to prevent merge between freepages on isolate 859 * pageblock and normal pageblock. Without this, pageblock 860 * isolation could cause incorrect freepage or CMA accounting. 861 * 862 * We don't want to hit this code for the more frequent 863 * low-order merging. 864 */ 865 if (unlikely(has_isolate_pageblock(zone))) { 866 int buddy_mt; 867 868 buddy_pfn = __find_buddy_pfn(pfn, order); 869 buddy = page + (buddy_pfn - pfn); 870 buddy_mt = get_pageblock_migratetype(buddy); 871 872 if (migratetype != buddy_mt 873 && (is_migrate_isolate(migratetype) || 874 is_migrate_isolate(buddy_mt))) 875 goto done_merging; 876 } 877 max_order++; 878 goto continue_merging; 879 } 880 881 done_merging: 882 set_page_order(page, order); 883 884 /* 885 * If this is not the largest possible page, check if the buddy 886 * of the next-highest order is free. If it is, it's possible 887 * that pages are being freed that will coalesce soon. In case, 888 * that is happening, add the free page to the tail of the list 889 * so it's less likely to be used soon and more likely to be merged 890 * as a higher order page 891 */ 892 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) { 893 struct page *higher_page, *higher_buddy; 894 combined_pfn = buddy_pfn & pfn; 895 higher_page = page + (combined_pfn - pfn); 896 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 897 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 898 if (pfn_valid_within(buddy_pfn) && 899 page_is_buddy(higher_page, higher_buddy, order + 1)) { 900 list_add_tail(&page->lru, 901 &zone->free_area[order].free_list[migratetype]); 902 goto out; 903 } 904 } 905 906 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 907 out: 908 zone->free_area[order].nr_free++; 909 } 910 911 /* 912 * A bad page could be due to a number of fields. Instead of multiple branches, 913 * try and check multiple fields with one check. The caller must do a detailed 914 * check if necessary. 915 */ 916 static inline bool page_expected_state(struct page *page, 917 unsigned long check_flags) 918 { 919 if (unlikely(atomic_read(&page->_mapcount) != -1)) 920 return false; 921 922 if (unlikely((unsigned long)page->mapping | 923 page_ref_count(page) | 924 #ifdef CONFIG_MEMCG 925 (unsigned long)page->mem_cgroup | 926 #endif 927 (page->flags & check_flags))) 928 return false; 929 930 return true; 931 } 932 933 static void free_pages_check_bad(struct page *page) 934 { 935 const char *bad_reason; 936 unsigned long bad_flags; 937 938 bad_reason = NULL; 939 bad_flags = 0; 940 941 if (unlikely(atomic_read(&page->_mapcount) != -1)) 942 bad_reason = "nonzero mapcount"; 943 if (unlikely(page->mapping != NULL)) 944 bad_reason = "non-NULL mapping"; 945 if (unlikely(page_ref_count(page) != 0)) 946 bad_reason = "nonzero _refcount"; 947 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 948 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 949 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 950 } 951 #ifdef CONFIG_MEMCG 952 if (unlikely(page->mem_cgroup)) 953 bad_reason = "page still charged to cgroup"; 954 #endif 955 bad_page(page, bad_reason, bad_flags); 956 } 957 958 static inline int free_pages_check(struct page *page) 959 { 960 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 961 return 0; 962 963 /* Something has gone sideways, find it */ 964 free_pages_check_bad(page); 965 return 1; 966 } 967 968 static int free_tail_pages_check(struct page *head_page, struct page *page) 969 { 970 int ret = 1; 971 972 /* 973 * We rely page->lru.next never has bit 0 set, unless the page 974 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 975 */ 976 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 977 978 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 979 ret = 0; 980 goto out; 981 } 982 switch (page - head_page) { 983 case 1: 984 /* the first tail page: ->mapping is compound_mapcount() */ 985 if (unlikely(compound_mapcount(page))) { 986 bad_page(page, "nonzero compound_mapcount", 0); 987 goto out; 988 } 989 break; 990 case 2: 991 /* 992 * the second tail page: ->mapping is 993 * page_deferred_list().next -- ignore value. 994 */ 995 break; 996 default: 997 if (page->mapping != TAIL_MAPPING) { 998 bad_page(page, "corrupted mapping in tail page", 0); 999 goto out; 1000 } 1001 break; 1002 } 1003 if (unlikely(!PageTail(page))) { 1004 bad_page(page, "PageTail not set", 0); 1005 goto out; 1006 } 1007 if (unlikely(compound_head(page) != head_page)) { 1008 bad_page(page, "compound_head not consistent", 0); 1009 goto out; 1010 } 1011 ret = 0; 1012 out: 1013 page->mapping = NULL; 1014 clear_compound_head(page); 1015 return ret; 1016 } 1017 1018 static __always_inline bool free_pages_prepare(struct page *page, 1019 unsigned int order, bool check_free) 1020 { 1021 int bad = 0; 1022 1023 VM_BUG_ON_PAGE(PageTail(page), page); 1024 1025 trace_mm_page_free(page, order); 1026 1027 /* 1028 * Check tail pages before head page information is cleared to 1029 * avoid checking PageCompound for order-0 pages. 1030 */ 1031 if (unlikely(order)) { 1032 bool compound = PageCompound(page); 1033 int i; 1034 1035 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1036 1037 if (compound) 1038 ClearPageDoubleMap(page); 1039 for (i = 1; i < (1 << order); i++) { 1040 if (compound) 1041 bad += free_tail_pages_check(page, page + i); 1042 if (unlikely(free_pages_check(page + i))) { 1043 bad++; 1044 continue; 1045 } 1046 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1047 } 1048 } 1049 if (PageMappingFlags(page)) 1050 page->mapping = NULL; 1051 if (memcg_kmem_enabled() && PageKmemcg(page)) 1052 memcg_kmem_uncharge(page, order); 1053 if (check_free) 1054 bad += free_pages_check(page); 1055 if (bad) 1056 return false; 1057 1058 page_cpupid_reset_last(page); 1059 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1060 reset_page_owner(page, order); 1061 1062 if (!PageHighMem(page)) { 1063 debug_check_no_locks_freed(page_address(page), 1064 PAGE_SIZE << order); 1065 debug_check_no_obj_freed(page_address(page), 1066 PAGE_SIZE << order); 1067 } 1068 arch_free_page(page, order); 1069 kernel_poison_pages(page, 1 << order, 0); 1070 kernel_map_pages(page, 1 << order, 0); 1071 kasan_free_pages(page, order); 1072 1073 return true; 1074 } 1075 1076 #ifdef CONFIG_DEBUG_VM 1077 static inline bool free_pcp_prepare(struct page *page) 1078 { 1079 return free_pages_prepare(page, 0, true); 1080 } 1081 1082 static inline bool bulkfree_pcp_prepare(struct page *page) 1083 { 1084 return false; 1085 } 1086 #else 1087 static bool free_pcp_prepare(struct page *page) 1088 { 1089 return free_pages_prepare(page, 0, false); 1090 } 1091 1092 static bool bulkfree_pcp_prepare(struct page *page) 1093 { 1094 return free_pages_check(page); 1095 } 1096 #endif /* CONFIG_DEBUG_VM */ 1097 1098 /* 1099 * Frees a number of pages from the PCP lists 1100 * Assumes all pages on list are in same zone, and of same order. 1101 * count is the number of pages to free. 1102 * 1103 * If the zone was previously in an "all pages pinned" state then look to 1104 * see if this freeing clears that state. 1105 * 1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1107 * pinned" detection logic. 1108 */ 1109 static void free_pcppages_bulk(struct zone *zone, int count, 1110 struct per_cpu_pages *pcp) 1111 { 1112 int migratetype = 0; 1113 int batch_free = 0; 1114 bool isolated_pageblocks; 1115 1116 spin_lock(&zone->lock); 1117 isolated_pageblocks = has_isolate_pageblock(zone); 1118 1119 while (count) { 1120 struct page *page; 1121 struct list_head *list; 1122 1123 /* 1124 * Remove pages from lists in a round-robin fashion. A 1125 * batch_free count is maintained that is incremented when an 1126 * empty list is encountered. This is so more pages are freed 1127 * off fuller lists instead of spinning excessively around empty 1128 * lists 1129 */ 1130 do { 1131 batch_free++; 1132 if (++migratetype == MIGRATE_PCPTYPES) 1133 migratetype = 0; 1134 list = &pcp->lists[migratetype]; 1135 } while (list_empty(list)); 1136 1137 /* This is the only non-empty list. Free them all. */ 1138 if (batch_free == MIGRATE_PCPTYPES) 1139 batch_free = count; 1140 1141 do { 1142 int mt; /* migratetype of the to-be-freed page */ 1143 1144 page = list_last_entry(list, struct page, lru); 1145 /* must delete as __free_one_page list manipulates */ 1146 list_del(&page->lru); 1147 1148 mt = get_pcppage_migratetype(page); 1149 /* MIGRATE_ISOLATE page should not go to pcplists */ 1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1151 /* Pageblock could have been isolated meanwhile */ 1152 if (unlikely(isolated_pageblocks)) 1153 mt = get_pageblock_migratetype(page); 1154 1155 if (bulkfree_pcp_prepare(page)) 1156 continue; 1157 1158 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1159 trace_mm_page_pcpu_drain(page, 0, mt); 1160 } while (--count && --batch_free && !list_empty(list)); 1161 } 1162 spin_unlock(&zone->lock); 1163 } 1164 1165 static void free_one_page(struct zone *zone, 1166 struct page *page, unsigned long pfn, 1167 unsigned int order, 1168 int migratetype) 1169 { 1170 spin_lock(&zone->lock); 1171 if (unlikely(has_isolate_pageblock(zone) || 1172 is_migrate_isolate(migratetype))) { 1173 migratetype = get_pfnblock_migratetype(page, pfn); 1174 } 1175 __free_one_page(page, pfn, zone, order, migratetype); 1176 spin_unlock(&zone->lock); 1177 } 1178 1179 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1180 unsigned long zone, int nid, bool zero) 1181 { 1182 if (zero) 1183 mm_zero_struct_page(page); 1184 set_page_links(page, zone, nid, pfn); 1185 init_page_count(page); 1186 page_mapcount_reset(page); 1187 page_cpupid_reset_last(page); 1188 1189 INIT_LIST_HEAD(&page->lru); 1190 #ifdef WANT_PAGE_VIRTUAL 1191 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1192 if (!is_highmem_idx(zone)) 1193 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1194 #endif 1195 } 1196 1197 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone, 1198 int nid, bool zero) 1199 { 1200 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid, zero); 1201 } 1202 1203 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1204 static void __meminit init_reserved_page(unsigned long pfn) 1205 { 1206 pg_data_t *pgdat; 1207 int nid, zid; 1208 1209 if (!early_page_uninitialised(pfn)) 1210 return; 1211 1212 nid = early_pfn_to_nid(pfn); 1213 pgdat = NODE_DATA(nid); 1214 1215 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1216 struct zone *zone = &pgdat->node_zones[zid]; 1217 1218 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1219 break; 1220 } 1221 __init_single_pfn(pfn, zid, nid, true); 1222 } 1223 #else 1224 static inline void init_reserved_page(unsigned long pfn) 1225 { 1226 } 1227 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1228 1229 /* 1230 * Initialised pages do not have PageReserved set. This function is 1231 * called for each range allocated by the bootmem allocator and 1232 * marks the pages PageReserved. The remaining valid pages are later 1233 * sent to the buddy page allocator. 1234 */ 1235 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1236 { 1237 unsigned long start_pfn = PFN_DOWN(start); 1238 unsigned long end_pfn = PFN_UP(end); 1239 1240 for (; start_pfn < end_pfn; start_pfn++) { 1241 if (pfn_valid(start_pfn)) { 1242 struct page *page = pfn_to_page(start_pfn); 1243 1244 init_reserved_page(start_pfn); 1245 1246 /* Avoid false-positive PageTail() */ 1247 INIT_LIST_HEAD(&page->lru); 1248 1249 SetPageReserved(page); 1250 } 1251 } 1252 } 1253 1254 static void __free_pages_ok(struct page *page, unsigned int order) 1255 { 1256 unsigned long flags; 1257 int migratetype; 1258 unsigned long pfn = page_to_pfn(page); 1259 1260 if (!free_pages_prepare(page, order, true)) 1261 return; 1262 1263 migratetype = get_pfnblock_migratetype(page, pfn); 1264 local_irq_save(flags); 1265 __count_vm_events(PGFREE, 1 << order); 1266 free_one_page(page_zone(page), page, pfn, order, migratetype); 1267 local_irq_restore(flags); 1268 } 1269 1270 static void __init __free_pages_boot_core(struct page *page, unsigned int order) 1271 { 1272 unsigned int nr_pages = 1 << order; 1273 struct page *p = page; 1274 unsigned int loop; 1275 1276 prefetchw(p); 1277 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1278 prefetchw(p + 1); 1279 __ClearPageReserved(p); 1280 set_page_count(p, 0); 1281 } 1282 __ClearPageReserved(p); 1283 set_page_count(p, 0); 1284 1285 page_zone(page)->managed_pages += nr_pages; 1286 set_page_refcounted(page); 1287 __free_pages(page, order); 1288 } 1289 1290 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1291 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1292 1293 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1294 1295 int __meminit early_pfn_to_nid(unsigned long pfn) 1296 { 1297 static DEFINE_SPINLOCK(early_pfn_lock); 1298 int nid; 1299 1300 spin_lock(&early_pfn_lock); 1301 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1302 if (nid < 0) 1303 nid = first_online_node; 1304 spin_unlock(&early_pfn_lock); 1305 1306 return nid; 1307 } 1308 #endif 1309 1310 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1311 static inline bool __meminit __maybe_unused 1312 meminit_pfn_in_nid(unsigned long pfn, int node, 1313 struct mminit_pfnnid_cache *state) 1314 { 1315 int nid; 1316 1317 nid = __early_pfn_to_nid(pfn, state); 1318 if (nid >= 0 && nid != node) 1319 return false; 1320 return true; 1321 } 1322 1323 /* Only safe to use early in boot when initialisation is single-threaded */ 1324 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1325 { 1326 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache); 1327 } 1328 1329 #else 1330 1331 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1332 { 1333 return true; 1334 } 1335 static inline bool __meminit __maybe_unused 1336 meminit_pfn_in_nid(unsigned long pfn, int node, 1337 struct mminit_pfnnid_cache *state) 1338 { 1339 return true; 1340 } 1341 #endif 1342 1343 1344 void __init __free_pages_bootmem(struct page *page, unsigned long pfn, 1345 unsigned int order) 1346 { 1347 if (early_page_uninitialised(pfn)) 1348 return; 1349 return __free_pages_boot_core(page, order); 1350 } 1351 1352 /* 1353 * Check that the whole (or subset of) a pageblock given by the interval of 1354 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1355 * with the migration of free compaction scanner. The scanners then need to 1356 * use only pfn_valid_within() check for arches that allow holes within 1357 * pageblocks. 1358 * 1359 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1360 * 1361 * It's possible on some configurations to have a setup like node0 node1 node0 1362 * i.e. it's possible that all pages within a zones range of pages do not 1363 * belong to a single zone. We assume that a border between node0 and node1 1364 * can occur within a single pageblock, but not a node0 node1 node0 1365 * interleaving within a single pageblock. It is therefore sufficient to check 1366 * the first and last page of a pageblock and avoid checking each individual 1367 * page in a pageblock. 1368 */ 1369 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1370 unsigned long end_pfn, struct zone *zone) 1371 { 1372 struct page *start_page; 1373 struct page *end_page; 1374 1375 /* end_pfn is one past the range we are checking */ 1376 end_pfn--; 1377 1378 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1379 return NULL; 1380 1381 start_page = pfn_to_online_page(start_pfn); 1382 if (!start_page) 1383 return NULL; 1384 1385 if (page_zone(start_page) != zone) 1386 return NULL; 1387 1388 end_page = pfn_to_page(end_pfn); 1389 1390 /* This gives a shorter code than deriving page_zone(end_page) */ 1391 if (page_zone_id(start_page) != page_zone_id(end_page)) 1392 return NULL; 1393 1394 return start_page; 1395 } 1396 1397 void set_zone_contiguous(struct zone *zone) 1398 { 1399 unsigned long block_start_pfn = zone->zone_start_pfn; 1400 unsigned long block_end_pfn; 1401 1402 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1403 for (; block_start_pfn < zone_end_pfn(zone); 1404 block_start_pfn = block_end_pfn, 1405 block_end_pfn += pageblock_nr_pages) { 1406 1407 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1408 1409 if (!__pageblock_pfn_to_page(block_start_pfn, 1410 block_end_pfn, zone)) 1411 return; 1412 } 1413 1414 /* We confirm that there is no hole */ 1415 zone->contiguous = true; 1416 } 1417 1418 void clear_zone_contiguous(struct zone *zone) 1419 { 1420 zone->contiguous = false; 1421 } 1422 1423 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1424 static void __init deferred_free_range(unsigned long pfn, 1425 unsigned long nr_pages) 1426 { 1427 struct page *page; 1428 unsigned long i; 1429 1430 if (!nr_pages) 1431 return; 1432 1433 page = pfn_to_page(pfn); 1434 1435 /* Free a large naturally-aligned chunk if possible */ 1436 if (nr_pages == pageblock_nr_pages && 1437 (pfn & (pageblock_nr_pages - 1)) == 0) { 1438 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1439 __free_pages_boot_core(page, pageblock_order); 1440 return; 1441 } 1442 1443 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1444 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1445 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1446 __free_pages_boot_core(page, 0); 1447 } 1448 } 1449 1450 /* Completion tracking for deferred_init_memmap() threads */ 1451 static atomic_t pgdat_init_n_undone __initdata; 1452 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1453 1454 static inline void __init pgdat_init_report_one_done(void) 1455 { 1456 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1457 complete(&pgdat_init_all_done_comp); 1458 } 1459 1460 /* 1461 * Returns true if page needs to be initialized or freed to buddy allocator. 1462 * 1463 * First we check if pfn is valid on architectures where it is possible to have 1464 * holes within pageblock_nr_pages. On systems where it is not possible, this 1465 * function is optimized out. 1466 * 1467 * Then, we check if a current large page is valid by only checking the validity 1468 * of the head pfn. 1469 * 1470 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave 1471 * within a node: a pfn is between start and end of a node, but does not belong 1472 * to this memory node. 1473 */ 1474 static inline bool __init 1475 deferred_pfn_valid(int nid, unsigned long pfn, 1476 struct mminit_pfnnid_cache *nid_init_state) 1477 { 1478 if (!pfn_valid_within(pfn)) 1479 return false; 1480 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1481 return false; 1482 if (!meminit_pfn_in_nid(pfn, nid, nid_init_state)) 1483 return false; 1484 return true; 1485 } 1486 1487 /* 1488 * Free pages to buddy allocator. Try to free aligned pages in 1489 * pageblock_nr_pages sizes. 1490 */ 1491 static void __init deferred_free_pages(int nid, int zid, unsigned long pfn, 1492 unsigned long end_pfn) 1493 { 1494 struct mminit_pfnnid_cache nid_init_state = { }; 1495 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1496 unsigned long nr_free = 0; 1497 1498 for (; pfn < end_pfn; pfn++) { 1499 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1500 deferred_free_range(pfn - nr_free, nr_free); 1501 nr_free = 0; 1502 } else if (!(pfn & nr_pgmask)) { 1503 deferred_free_range(pfn - nr_free, nr_free); 1504 nr_free = 1; 1505 cond_resched(); 1506 } else { 1507 nr_free++; 1508 } 1509 } 1510 /* Free the last block of pages to allocator */ 1511 deferred_free_range(pfn - nr_free, nr_free); 1512 } 1513 1514 /* 1515 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1516 * by performing it only once every pageblock_nr_pages. 1517 * Return number of pages initialized. 1518 */ 1519 static unsigned long __init deferred_init_pages(int nid, int zid, 1520 unsigned long pfn, 1521 unsigned long end_pfn) 1522 { 1523 struct mminit_pfnnid_cache nid_init_state = { }; 1524 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1525 unsigned long nr_pages = 0; 1526 struct page *page = NULL; 1527 1528 for (; pfn < end_pfn; pfn++) { 1529 if (!deferred_pfn_valid(nid, pfn, &nid_init_state)) { 1530 page = NULL; 1531 continue; 1532 } else if (!page || !(pfn & nr_pgmask)) { 1533 page = pfn_to_page(pfn); 1534 cond_resched(); 1535 } else { 1536 page++; 1537 } 1538 __init_single_page(page, pfn, zid, nid, true); 1539 nr_pages++; 1540 } 1541 return (nr_pages); 1542 } 1543 1544 /* Initialise remaining memory on a node */ 1545 static int __init deferred_init_memmap(void *data) 1546 { 1547 pg_data_t *pgdat = data; 1548 int nid = pgdat->node_id; 1549 unsigned long start = jiffies; 1550 unsigned long nr_pages = 0; 1551 unsigned long spfn, epfn; 1552 phys_addr_t spa, epa; 1553 int zid; 1554 struct zone *zone; 1555 unsigned long first_init_pfn = pgdat->first_deferred_pfn; 1556 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1557 u64 i; 1558 1559 if (first_init_pfn == ULONG_MAX) { 1560 pgdat_init_report_one_done(); 1561 return 0; 1562 } 1563 1564 /* Bind memory initialisation thread to a local node if possible */ 1565 if (!cpumask_empty(cpumask)) 1566 set_cpus_allowed_ptr(current, cpumask); 1567 1568 /* Sanity check boundaries */ 1569 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1570 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1571 pgdat->first_deferred_pfn = ULONG_MAX; 1572 1573 /* Only the highest zone is deferred so find it */ 1574 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1575 zone = pgdat->node_zones + zid; 1576 if (first_init_pfn < zone_end_pfn(zone)) 1577 break; 1578 } 1579 first_init_pfn = max(zone->zone_start_pfn, first_init_pfn); 1580 1581 /* 1582 * Initialize and free pages. We do it in two loops: first we initialize 1583 * struct page, than free to buddy allocator, because while we are 1584 * freeing pages we can access pages that are ahead (computing buddy 1585 * page in __free_one_page()). 1586 */ 1587 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1588 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1589 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1590 nr_pages += deferred_init_pages(nid, zid, spfn, epfn); 1591 } 1592 for_each_free_mem_range(i, nid, MEMBLOCK_NONE, &spa, &epa, NULL) { 1593 spfn = max_t(unsigned long, first_init_pfn, PFN_UP(spa)); 1594 epfn = min_t(unsigned long, zone_end_pfn(zone), PFN_DOWN(epa)); 1595 deferred_free_pages(nid, zid, spfn, epfn); 1596 } 1597 1598 /* Sanity check that the next zone really is unpopulated */ 1599 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1600 1601 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages, 1602 jiffies_to_msecs(jiffies - start)); 1603 1604 pgdat_init_report_one_done(); 1605 return 0; 1606 } 1607 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1608 1609 void __init page_alloc_init_late(void) 1610 { 1611 struct zone *zone; 1612 1613 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1614 int nid; 1615 1616 /* There will be num_node_state(N_MEMORY) threads */ 1617 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1618 for_each_node_state(nid, N_MEMORY) { 1619 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1620 } 1621 1622 /* Block until all are initialised */ 1623 wait_for_completion(&pgdat_init_all_done_comp); 1624 1625 /* Reinit limits that are based on free pages after the kernel is up */ 1626 files_maxfiles_init(); 1627 #endif 1628 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK 1629 /* Discard memblock private memory */ 1630 memblock_discard(); 1631 #endif 1632 1633 for_each_populated_zone(zone) 1634 set_zone_contiguous(zone); 1635 } 1636 1637 #ifdef CONFIG_CMA 1638 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1639 void __init init_cma_reserved_pageblock(struct page *page) 1640 { 1641 unsigned i = pageblock_nr_pages; 1642 struct page *p = page; 1643 1644 do { 1645 __ClearPageReserved(p); 1646 set_page_count(p, 0); 1647 } while (++p, --i); 1648 1649 set_pageblock_migratetype(page, MIGRATE_CMA); 1650 1651 if (pageblock_order >= MAX_ORDER) { 1652 i = pageblock_nr_pages; 1653 p = page; 1654 do { 1655 set_page_refcounted(p); 1656 __free_pages(p, MAX_ORDER - 1); 1657 p += MAX_ORDER_NR_PAGES; 1658 } while (i -= MAX_ORDER_NR_PAGES); 1659 } else { 1660 set_page_refcounted(page); 1661 __free_pages(page, pageblock_order); 1662 } 1663 1664 adjust_managed_page_count(page, pageblock_nr_pages); 1665 } 1666 #endif 1667 1668 /* 1669 * The order of subdivision here is critical for the IO subsystem. 1670 * Please do not alter this order without good reasons and regression 1671 * testing. Specifically, as large blocks of memory are subdivided, 1672 * the order in which smaller blocks are delivered depends on the order 1673 * they're subdivided in this function. This is the primary factor 1674 * influencing the order in which pages are delivered to the IO 1675 * subsystem according to empirical testing, and this is also justified 1676 * by considering the behavior of a buddy system containing a single 1677 * large block of memory acted on by a series of small allocations. 1678 * This behavior is a critical factor in sglist merging's success. 1679 * 1680 * -- nyc 1681 */ 1682 static inline void expand(struct zone *zone, struct page *page, 1683 int low, int high, struct free_area *area, 1684 int migratetype) 1685 { 1686 unsigned long size = 1 << high; 1687 1688 while (high > low) { 1689 area--; 1690 high--; 1691 size >>= 1; 1692 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1693 1694 /* 1695 * Mark as guard pages (or page), that will allow to 1696 * merge back to allocator when buddy will be freed. 1697 * Corresponding page table entries will not be touched, 1698 * pages will stay not present in virtual address space 1699 */ 1700 if (set_page_guard(zone, &page[size], high, migratetype)) 1701 continue; 1702 1703 list_add(&page[size].lru, &area->free_list[migratetype]); 1704 area->nr_free++; 1705 set_page_order(&page[size], high); 1706 } 1707 } 1708 1709 static void check_new_page_bad(struct page *page) 1710 { 1711 const char *bad_reason = NULL; 1712 unsigned long bad_flags = 0; 1713 1714 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1715 bad_reason = "nonzero mapcount"; 1716 if (unlikely(page->mapping != NULL)) 1717 bad_reason = "non-NULL mapping"; 1718 if (unlikely(page_ref_count(page) != 0)) 1719 bad_reason = "nonzero _count"; 1720 if (unlikely(page->flags & __PG_HWPOISON)) { 1721 bad_reason = "HWPoisoned (hardware-corrupted)"; 1722 bad_flags = __PG_HWPOISON; 1723 /* Don't complain about hwpoisoned pages */ 1724 page_mapcount_reset(page); /* remove PageBuddy */ 1725 return; 1726 } 1727 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 1728 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 1729 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 1730 } 1731 #ifdef CONFIG_MEMCG 1732 if (unlikely(page->mem_cgroup)) 1733 bad_reason = "page still charged to cgroup"; 1734 #endif 1735 bad_page(page, bad_reason, bad_flags); 1736 } 1737 1738 /* 1739 * This page is about to be returned from the page allocator 1740 */ 1741 static inline int check_new_page(struct page *page) 1742 { 1743 if (likely(page_expected_state(page, 1744 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1745 return 0; 1746 1747 check_new_page_bad(page); 1748 return 1; 1749 } 1750 1751 static inline bool free_pages_prezeroed(void) 1752 { 1753 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 1754 page_poisoning_enabled(); 1755 } 1756 1757 #ifdef CONFIG_DEBUG_VM 1758 static bool check_pcp_refill(struct page *page) 1759 { 1760 return false; 1761 } 1762 1763 static bool check_new_pcp(struct page *page) 1764 { 1765 return check_new_page(page); 1766 } 1767 #else 1768 static bool check_pcp_refill(struct page *page) 1769 { 1770 return check_new_page(page); 1771 } 1772 static bool check_new_pcp(struct page *page) 1773 { 1774 return false; 1775 } 1776 #endif /* CONFIG_DEBUG_VM */ 1777 1778 static bool check_new_pages(struct page *page, unsigned int order) 1779 { 1780 int i; 1781 for (i = 0; i < (1 << order); i++) { 1782 struct page *p = page + i; 1783 1784 if (unlikely(check_new_page(p))) 1785 return true; 1786 } 1787 1788 return false; 1789 } 1790 1791 inline void post_alloc_hook(struct page *page, unsigned int order, 1792 gfp_t gfp_flags) 1793 { 1794 set_page_private(page, 0); 1795 set_page_refcounted(page); 1796 1797 arch_alloc_page(page, order); 1798 kernel_map_pages(page, 1 << order, 1); 1799 kernel_poison_pages(page, 1 << order, 1); 1800 kasan_alloc_pages(page, order); 1801 set_page_owner(page, order, gfp_flags); 1802 } 1803 1804 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1805 unsigned int alloc_flags) 1806 { 1807 int i; 1808 1809 post_alloc_hook(page, order, gfp_flags); 1810 1811 if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO)) 1812 for (i = 0; i < (1 << order); i++) 1813 clear_highpage(page + i); 1814 1815 if (order && (gfp_flags & __GFP_COMP)) 1816 prep_compound_page(page, order); 1817 1818 /* 1819 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1820 * allocate the page. The expectation is that the caller is taking 1821 * steps that will free more memory. The caller should avoid the page 1822 * being used for !PFMEMALLOC purposes. 1823 */ 1824 if (alloc_flags & ALLOC_NO_WATERMARKS) 1825 set_page_pfmemalloc(page); 1826 else 1827 clear_page_pfmemalloc(page); 1828 } 1829 1830 /* 1831 * Go through the free lists for the given migratetype and remove 1832 * the smallest available page from the freelists 1833 */ 1834 static __always_inline 1835 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1836 int migratetype) 1837 { 1838 unsigned int current_order; 1839 struct free_area *area; 1840 struct page *page; 1841 1842 /* Find a page of the appropriate size in the preferred list */ 1843 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 1844 area = &(zone->free_area[current_order]); 1845 page = list_first_entry_or_null(&area->free_list[migratetype], 1846 struct page, lru); 1847 if (!page) 1848 continue; 1849 list_del(&page->lru); 1850 rmv_page_order(page); 1851 area->nr_free--; 1852 expand(zone, page, order, current_order, area, migratetype); 1853 set_pcppage_migratetype(page, migratetype); 1854 return page; 1855 } 1856 1857 return NULL; 1858 } 1859 1860 1861 /* 1862 * This array describes the order lists are fallen back to when 1863 * the free lists for the desirable migrate type are depleted 1864 */ 1865 static int fallbacks[MIGRATE_TYPES][4] = { 1866 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1867 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 1868 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 1869 #ifdef CONFIG_CMA 1870 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 1871 #endif 1872 #ifdef CONFIG_MEMORY_ISOLATION 1873 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 1874 #endif 1875 }; 1876 1877 #ifdef CONFIG_CMA 1878 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1879 unsigned int order) 1880 { 1881 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1882 } 1883 #else 1884 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1885 unsigned int order) { return NULL; } 1886 #endif 1887 1888 /* 1889 * Move the free pages in a range to the free lists of the requested type. 1890 * Note that start_page and end_pages are not aligned on a pageblock 1891 * boundary. If alignment is required, use move_freepages_block() 1892 */ 1893 static int move_freepages(struct zone *zone, 1894 struct page *start_page, struct page *end_page, 1895 int migratetype, int *num_movable) 1896 { 1897 struct page *page; 1898 unsigned int order; 1899 int pages_moved = 0; 1900 1901 #ifndef CONFIG_HOLES_IN_ZONE 1902 /* 1903 * page_zone is not safe to call in this context when 1904 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 1905 * anyway as we check zone boundaries in move_freepages_block(). 1906 * Remove at a later date when no bug reports exist related to 1907 * grouping pages by mobility 1908 */ 1909 VM_BUG_ON(page_zone(start_page) != page_zone(end_page)); 1910 #endif 1911 1912 if (num_movable) 1913 *num_movable = 0; 1914 1915 for (page = start_page; page <= end_page;) { 1916 if (!pfn_valid_within(page_to_pfn(page))) { 1917 page++; 1918 continue; 1919 } 1920 1921 /* Make sure we are not inadvertently changing nodes */ 1922 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1923 1924 if (!PageBuddy(page)) { 1925 /* 1926 * We assume that pages that could be isolated for 1927 * migration are movable. But we don't actually try 1928 * isolating, as that would be expensive. 1929 */ 1930 if (num_movable && 1931 (PageLRU(page) || __PageMovable(page))) 1932 (*num_movable)++; 1933 1934 page++; 1935 continue; 1936 } 1937 1938 order = page_order(page); 1939 list_move(&page->lru, 1940 &zone->free_area[order].free_list[migratetype]); 1941 page += 1 << order; 1942 pages_moved += 1 << order; 1943 } 1944 1945 return pages_moved; 1946 } 1947 1948 int move_freepages_block(struct zone *zone, struct page *page, 1949 int migratetype, int *num_movable) 1950 { 1951 unsigned long start_pfn, end_pfn; 1952 struct page *start_page, *end_page; 1953 1954 start_pfn = page_to_pfn(page); 1955 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 1956 start_page = pfn_to_page(start_pfn); 1957 end_page = start_page + pageblock_nr_pages - 1; 1958 end_pfn = start_pfn + pageblock_nr_pages - 1; 1959 1960 /* Do not cross zone boundaries */ 1961 if (!zone_spans_pfn(zone, start_pfn)) 1962 start_page = page; 1963 if (!zone_spans_pfn(zone, end_pfn)) 1964 return 0; 1965 1966 return move_freepages(zone, start_page, end_page, migratetype, 1967 num_movable); 1968 } 1969 1970 static void change_pageblock_range(struct page *pageblock_page, 1971 int start_order, int migratetype) 1972 { 1973 int nr_pageblocks = 1 << (start_order - pageblock_order); 1974 1975 while (nr_pageblocks--) { 1976 set_pageblock_migratetype(pageblock_page, migratetype); 1977 pageblock_page += pageblock_nr_pages; 1978 } 1979 } 1980 1981 /* 1982 * When we are falling back to another migratetype during allocation, try to 1983 * steal extra free pages from the same pageblocks to satisfy further 1984 * allocations, instead of polluting multiple pageblocks. 1985 * 1986 * If we are stealing a relatively large buddy page, it is likely there will 1987 * be more free pages in the pageblock, so try to steal them all. For 1988 * reclaimable and unmovable allocations, we steal regardless of page size, 1989 * as fragmentation caused by those allocations polluting movable pageblocks 1990 * is worse than movable allocations stealing from unmovable and reclaimable 1991 * pageblocks. 1992 */ 1993 static bool can_steal_fallback(unsigned int order, int start_mt) 1994 { 1995 /* 1996 * Leaving this order check is intended, although there is 1997 * relaxed order check in next check. The reason is that 1998 * we can actually steal whole pageblock if this condition met, 1999 * but, below check doesn't guarantee it and that is just heuristic 2000 * so could be changed anytime. 2001 */ 2002 if (order >= pageblock_order) 2003 return true; 2004 2005 if (order >= pageblock_order / 2 || 2006 start_mt == MIGRATE_RECLAIMABLE || 2007 start_mt == MIGRATE_UNMOVABLE || 2008 page_group_by_mobility_disabled) 2009 return true; 2010 2011 return false; 2012 } 2013 2014 /* 2015 * This function implements actual steal behaviour. If order is large enough, 2016 * we can steal whole pageblock. If not, we first move freepages in this 2017 * pageblock to our migratetype and determine how many already-allocated pages 2018 * are there in the pageblock with a compatible migratetype. If at least half 2019 * of pages are free or compatible, we can change migratetype of the pageblock 2020 * itself, so pages freed in the future will be put on the correct free list. 2021 */ 2022 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2023 int start_type, bool whole_block) 2024 { 2025 unsigned int current_order = page_order(page); 2026 struct free_area *area; 2027 int free_pages, movable_pages, alike_pages; 2028 int old_block_type; 2029 2030 old_block_type = get_pageblock_migratetype(page); 2031 2032 /* 2033 * This can happen due to races and we want to prevent broken 2034 * highatomic accounting. 2035 */ 2036 if (is_migrate_highatomic(old_block_type)) 2037 goto single_page; 2038 2039 /* Take ownership for orders >= pageblock_order */ 2040 if (current_order >= pageblock_order) { 2041 change_pageblock_range(page, current_order, start_type); 2042 goto single_page; 2043 } 2044 2045 /* We are not allowed to try stealing from the whole block */ 2046 if (!whole_block) 2047 goto single_page; 2048 2049 free_pages = move_freepages_block(zone, page, start_type, 2050 &movable_pages); 2051 /* 2052 * Determine how many pages are compatible with our allocation. 2053 * For movable allocation, it's the number of movable pages which 2054 * we just obtained. For other types it's a bit more tricky. 2055 */ 2056 if (start_type == MIGRATE_MOVABLE) { 2057 alike_pages = movable_pages; 2058 } else { 2059 /* 2060 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2061 * to MOVABLE pageblock, consider all non-movable pages as 2062 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2063 * vice versa, be conservative since we can't distinguish the 2064 * exact migratetype of non-movable pages. 2065 */ 2066 if (old_block_type == MIGRATE_MOVABLE) 2067 alike_pages = pageblock_nr_pages 2068 - (free_pages + movable_pages); 2069 else 2070 alike_pages = 0; 2071 } 2072 2073 /* moving whole block can fail due to zone boundary conditions */ 2074 if (!free_pages) 2075 goto single_page; 2076 2077 /* 2078 * If a sufficient number of pages in the block are either free or of 2079 * comparable migratability as our allocation, claim the whole block. 2080 */ 2081 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2082 page_group_by_mobility_disabled) 2083 set_pageblock_migratetype(page, start_type); 2084 2085 return; 2086 2087 single_page: 2088 area = &zone->free_area[current_order]; 2089 list_move(&page->lru, &area->free_list[start_type]); 2090 } 2091 2092 /* 2093 * Check whether there is a suitable fallback freepage with requested order. 2094 * If only_stealable is true, this function returns fallback_mt only if 2095 * we can steal other freepages all together. This would help to reduce 2096 * fragmentation due to mixed migratetype pages in one pageblock. 2097 */ 2098 int find_suitable_fallback(struct free_area *area, unsigned int order, 2099 int migratetype, bool only_stealable, bool *can_steal) 2100 { 2101 int i; 2102 int fallback_mt; 2103 2104 if (area->nr_free == 0) 2105 return -1; 2106 2107 *can_steal = false; 2108 for (i = 0;; i++) { 2109 fallback_mt = fallbacks[migratetype][i]; 2110 if (fallback_mt == MIGRATE_TYPES) 2111 break; 2112 2113 if (list_empty(&area->free_list[fallback_mt])) 2114 continue; 2115 2116 if (can_steal_fallback(order, migratetype)) 2117 *can_steal = true; 2118 2119 if (!only_stealable) 2120 return fallback_mt; 2121 2122 if (*can_steal) 2123 return fallback_mt; 2124 } 2125 2126 return -1; 2127 } 2128 2129 /* 2130 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2131 * there are no empty page blocks that contain a page with a suitable order 2132 */ 2133 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2134 unsigned int alloc_order) 2135 { 2136 int mt; 2137 unsigned long max_managed, flags; 2138 2139 /* 2140 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2141 * Check is race-prone but harmless. 2142 */ 2143 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages; 2144 if (zone->nr_reserved_highatomic >= max_managed) 2145 return; 2146 2147 spin_lock_irqsave(&zone->lock, flags); 2148 2149 /* Recheck the nr_reserved_highatomic limit under the lock */ 2150 if (zone->nr_reserved_highatomic >= max_managed) 2151 goto out_unlock; 2152 2153 /* Yoink! */ 2154 mt = get_pageblock_migratetype(page); 2155 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2156 && !is_migrate_cma(mt)) { 2157 zone->nr_reserved_highatomic += pageblock_nr_pages; 2158 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2159 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2160 } 2161 2162 out_unlock: 2163 spin_unlock_irqrestore(&zone->lock, flags); 2164 } 2165 2166 /* 2167 * Used when an allocation is about to fail under memory pressure. This 2168 * potentially hurts the reliability of high-order allocations when under 2169 * intense memory pressure but failed atomic allocations should be easier 2170 * to recover from than an OOM. 2171 * 2172 * If @force is true, try to unreserve a pageblock even though highatomic 2173 * pageblock is exhausted. 2174 */ 2175 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2176 bool force) 2177 { 2178 struct zonelist *zonelist = ac->zonelist; 2179 unsigned long flags; 2180 struct zoneref *z; 2181 struct zone *zone; 2182 struct page *page; 2183 int order; 2184 bool ret; 2185 2186 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2187 ac->nodemask) { 2188 /* 2189 * Preserve at least one pageblock unless memory pressure 2190 * is really high. 2191 */ 2192 if (!force && zone->nr_reserved_highatomic <= 2193 pageblock_nr_pages) 2194 continue; 2195 2196 spin_lock_irqsave(&zone->lock, flags); 2197 for (order = 0; order < MAX_ORDER; order++) { 2198 struct free_area *area = &(zone->free_area[order]); 2199 2200 page = list_first_entry_or_null( 2201 &area->free_list[MIGRATE_HIGHATOMIC], 2202 struct page, lru); 2203 if (!page) 2204 continue; 2205 2206 /* 2207 * In page freeing path, migratetype change is racy so 2208 * we can counter several free pages in a pageblock 2209 * in this loop althoug we changed the pageblock type 2210 * from highatomic to ac->migratetype. So we should 2211 * adjust the count once. 2212 */ 2213 if (is_migrate_highatomic_page(page)) { 2214 /* 2215 * It should never happen but changes to 2216 * locking could inadvertently allow a per-cpu 2217 * drain to add pages to MIGRATE_HIGHATOMIC 2218 * while unreserving so be safe and watch for 2219 * underflows. 2220 */ 2221 zone->nr_reserved_highatomic -= min( 2222 pageblock_nr_pages, 2223 zone->nr_reserved_highatomic); 2224 } 2225 2226 /* 2227 * Convert to ac->migratetype and avoid the normal 2228 * pageblock stealing heuristics. Minimally, the caller 2229 * is doing the work and needs the pages. More 2230 * importantly, if the block was always converted to 2231 * MIGRATE_UNMOVABLE or another type then the number 2232 * of pageblocks that cannot be completely freed 2233 * may increase. 2234 */ 2235 set_pageblock_migratetype(page, ac->migratetype); 2236 ret = move_freepages_block(zone, page, ac->migratetype, 2237 NULL); 2238 if (ret) { 2239 spin_unlock_irqrestore(&zone->lock, flags); 2240 return ret; 2241 } 2242 } 2243 spin_unlock_irqrestore(&zone->lock, flags); 2244 } 2245 2246 return false; 2247 } 2248 2249 /* 2250 * Try finding a free buddy page on the fallback list and put it on the free 2251 * list of requested migratetype, possibly along with other pages from the same 2252 * block, depending on fragmentation avoidance heuristics. Returns true if 2253 * fallback was found so that __rmqueue_smallest() can grab it. 2254 * 2255 * The use of signed ints for order and current_order is a deliberate 2256 * deviation from the rest of this file, to make the for loop 2257 * condition simpler. 2258 */ 2259 static __always_inline bool 2260 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 2261 { 2262 struct free_area *area; 2263 int current_order; 2264 struct page *page; 2265 int fallback_mt; 2266 bool can_steal; 2267 2268 /* 2269 * Find the largest available free page in the other list. This roughly 2270 * approximates finding the pageblock with the most free pages, which 2271 * would be too costly to do exactly. 2272 */ 2273 for (current_order = MAX_ORDER - 1; current_order >= order; 2274 --current_order) { 2275 area = &(zone->free_area[current_order]); 2276 fallback_mt = find_suitable_fallback(area, current_order, 2277 start_migratetype, false, &can_steal); 2278 if (fallback_mt == -1) 2279 continue; 2280 2281 /* 2282 * We cannot steal all free pages from the pageblock and the 2283 * requested migratetype is movable. In that case it's better to 2284 * steal and split the smallest available page instead of the 2285 * largest available page, because even if the next movable 2286 * allocation falls back into a different pageblock than this 2287 * one, it won't cause permanent fragmentation. 2288 */ 2289 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2290 && current_order > order) 2291 goto find_smallest; 2292 2293 goto do_steal; 2294 } 2295 2296 return false; 2297 2298 find_smallest: 2299 for (current_order = order; current_order < MAX_ORDER; 2300 current_order++) { 2301 area = &(zone->free_area[current_order]); 2302 fallback_mt = find_suitable_fallback(area, current_order, 2303 start_migratetype, false, &can_steal); 2304 if (fallback_mt != -1) 2305 break; 2306 } 2307 2308 /* 2309 * This should not happen - we already found a suitable fallback 2310 * when looking for the largest page. 2311 */ 2312 VM_BUG_ON(current_order == MAX_ORDER); 2313 2314 do_steal: 2315 page = list_first_entry(&area->free_list[fallback_mt], 2316 struct page, lru); 2317 2318 steal_suitable_fallback(zone, page, start_migratetype, can_steal); 2319 2320 trace_mm_page_alloc_extfrag(page, order, current_order, 2321 start_migratetype, fallback_mt); 2322 2323 return true; 2324 2325 } 2326 2327 /* 2328 * Do the hard work of removing an element from the buddy allocator. 2329 * Call me with the zone->lock already held. 2330 */ 2331 static __always_inline struct page * 2332 __rmqueue(struct zone *zone, unsigned int order, int migratetype) 2333 { 2334 struct page *page; 2335 2336 retry: 2337 page = __rmqueue_smallest(zone, order, migratetype); 2338 if (unlikely(!page)) { 2339 if (migratetype == MIGRATE_MOVABLE) 2340 page = __rmqueue_cma_fallback(zone, order); 2341 2342 if (!page && __rmqueue_fallback(zone, order, migratetype)) 2343 goto retry; 2344 } 2345 2346 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2347 return page; 2348 } 2349 2350 /* 2351 * Obtain a specified number of elements from the buddy allocator, all under 2352 * a single hold of the lock, for efficiency. Add them to the supplied list. 2353 * Returns the number of new pages which were placed at *list. 2354 */ 2355 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2356 unsigned long count, struct list_head *list, 2357 int migratetype) 2358 { 2359 int i, alloced = 0; 2360 2361 spin_lock(&zone->lock); 2362 for (i = 0; i < count; ++i) { 2363 struct page *page = __rmqueue(zone, order, migratetype); 2364 if (unlikely(page == NULL)) 2365 break; 2366 2367 if (unlikely(check_pcp_refill(page))) 2368 continue; 2369 2370 /* 2371 * Split buddy pages returned by expand() are received here in 2372 * physical page order. The page is added to the tail of 2373 * caller's list. From the callers perspective, the linked list 2374 * is ordered by page number under some conditions. This is 2375 * useful for IO devices that can forward direction from the 2376 * head, thus also in the physical page order. This is useful 2377 * for IO devices that can merge IO requests if the physical 2378 * pages are ordered properly. 2379 */ 2380 list_add_tail(&page->lru, list); 2381 alloced++; 2382 if (is_migrate_cma(get_pcppage_migratetype(page))) 2383 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2384 -(1 << order)); 2385 } 2386 2387 /* 2388 * i pages were removed from the buddy list even if some leak due 2389 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2390 * on i. Do not confuse with 'alloced' which is the number of 2391 * pages added to the pcp list. 2392 */ 2393 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2394 spin_unlock(&zone->lock); 2395 return alloced; 2396 } 2397 2398 #ifdef CONFIG_NUMA 2399 /* 2400 * Called from the vmstat counter updater to drain pagesets of this 2401 * currently executing processor on remote nodes after they have 2402 * expired. 2403 * 2404 * Note that this function must be called with the thread pinned to 2405 * a single processor. 2406 */ 2407 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2408 { 2409 unsigned long flags; 2410 int to_drain, batch; 2411 2412 local_irq_save(flags); 2413 batch = READ_ONCE(pcp->batch); 2414 to_drain = min(pcp->count, batch); 2415 if (to_drain > 0) { 2416 free_pcppages_bulk(zone, to_drain, pcp); 2417 pcp->count -= to_drain; 2418 } 2419 local_irq_restore(flags); 2420 } 2421 #endif 2422 2423 /* 2424 * Drain pcplists of the indicated processor and zone. 2425 * 2426 * The processor must either be the current processor and the 2427 * thread pinned to the current processor or a processor that 2428 * is not online. 2429 */ 2430 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2431 { 2432 unsigned long flags; 2433 struct per_cpu_pageset *pset; 2434 struct per_cpu_pages *pcp; 2435 2436 local_irq_save(flags); 2437 pset = per_cpu_ptr(zone->pageset, cpu); 2438 2439 pcp = &pset->pcp; 2440 if (pcp->count) { 2441 free_pcppages_bulk(zone, pcp->count, pcp); 2442 pcp->count = 0; 2443 } 2444 local_irq_restore(flags); 2445 } 2446 2447 /* 2448 * Drain pcplists of all zones on the indicated processor. 2449 * 2450 * The processor must either be the current processor and the 2451 * thread pinned to the current processor or a processor that 2452 * is not online. 2453 */ 2454 static void drain_pages(unsigned int cpu) 2455 { 2456 struct zone *zone; 2457 2458 for_each_populated_zone(zone) { 2459 drain_pages_zone(cpu, zone); 2460 } 2461 } 2462 2463 /* 2464 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2465 * 2466 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2467 * the single zone's pages. 2468 */ 2469 void drain_local_pages(struct zone *zone) 2470 { 2471 int cpu = smp_processor_id(); 2472 2473 if (zone) 2474 drain_pages_zone(cpu, zone); 2475 else 2476 drain_pages(cpu); 2477 } 2478 2479 static void drain_local_pages_wq(struct work_struct *work) 2480 { 2481 /* 2482 * drain_all_pages doesn't use proper cpu hotplug protection so 2483 * we can race with cpu offline when the WQ can move this from 2484 * a cpu pinned worker to an unbound one. We can operate on a different 2485 * cpu which is allright but we also have to make sure to not move to 2486 * a different one. 2487 */ 2488 preempt_disable(); 2489 drain_local_pages(NULL); 2490 preempt_enable(); 2491 } 2492 2493 /* 2494 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2495 * 2496 * When zone parameter is non-NULL, spill just the single zone's pages. 2497 * 2498 * Note that this can be extremely slow as the draining happens in a workqueue. 2499 */ 2500 void drain_all_pages(struct zone *zone) 2501 { 2502 int cpu; 2503 2504 /* 2505 * Allocate in the BSS so we wont require allocation in 2506 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2507 */ 2508 static cpumask_t cpus_with_pcps; 2509 2510 /* 2511 * Make sure nobody triggers this path before mm_percpu_wq is fully 2512 * initialized. 2513 */ 2514 if (WARN_ON_ONCE(!mm_percpu_wq)) 2515 return; 2516 2517 /* 2518 * Do not drain if one is already in progress unless it's specific to 2519 * a zone. Such callers are primarily CMA and memory hotplug and need 2520 * the drain to be complete when the call returns. 2521 */ 2522 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2523 if (!zone) 2524 return; 2525 mutex_lock(&pcpu_drain_mutex); 2526 } 2527 2528 /* 2529 * We don't care about racing with CPU hotplug event 2530 * as offline notification will cause the notified 2531 * cpu to drain that CPU pcps and on_each_cpu_mask 2532 * disables preemption as part of its processing 2533 */ 2534 for_each_online_cpu(cpu) { 2535 struct per_cpu_pageset *pcp; 2536 struct zone *z; 2537 bool has_pcps = false; 2538 2539 if (zone) { 2540 pcp = per_cpu_ptr(zone->pageset, cpu); 2541 if (pcp->pcp.count) 2542 has_pcps = true; 2543 } else { 2544 for_each_populated_zone(z) { 2545 pcp = per_cpu_ptr(z->pageset, cpu); 2546 if (pcp->pcp.count) { 2547 has_pcps = true; 2548 break; 2549 } 2550 } 2551 } 2552 2553 if (has_pcps) 2554 cpumask_set_cpu(cpu, &cpus_with_pcps); 2555 else 2556 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2557 } 2558 2559 for_each_cpu(cpu, &cpus_with_pcps) { 2560 struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu); 2561 INIT_WORK(work, drain_local_pages_wq); 2562 queue_work_on(cpu, mm_percpu_wq, work); 2563 } 2564 for_each_cpu(cpu, &cpus_with_pcps) 2565 flush_work(per_cpu_ptr(&pcpu_drain, cpu)); 2566 2567 mutex_unlock(&pcpu_drain_mutex); 2568 } 2569 2570 #ifdef CONFIG_HIBERNATION 2571 2572 /* 2573 * Touch the watchdog for every WD_PAGE_COUNT pages. 2574 */ 2575 #define WD_PAGE_COUNT (128*1024) 2576 2577 void mark_free_pages(struct zone *zone) 2578 { 2579 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2580 unsigned long flags; 2581 unsigned int order, t; 2582 struct page *page; 2583 2584 if (zone_is_empty(zone)) 2585 return; 2586 2587 spin_lock_irqsave(&zone->lock, flags); 2588 2589 max_zone_pfn = zone_end_pfn(zone); 2590 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2591 if (pfn_valid(pfn)) { 2592 page = pfn_to_page(pfn); 2593 2594 if (!--page_count) { 2595 touch_nmi_watchdog(); 2596 page_count = WD_PAGE_COUNT; 2597 } 2598 2599 if (page_zone(page) != zone) 2600 continue; 2601 2602 if (!swsusp_page_is_forbidden(page)) 2603 swsusp_unset_page_free(page); 2604 } 2605 2606 for_each_migratetype_order(order, t) { 2607 list_for_each_entry(page, 2608 &zone->free_area[order].free_list[t], lru) { 2609 unsigned long i; 2610 2611 pfn = page_to_pfn(page); 2612 for (i = 0; i < (1UL << order); i++) { 2613 if (!--page_count) { 2614 touch_nmi_watchdog(); 2615 page_count = WD_PAGE_COUNT; 2616 } 2617 swsusp_set_page_free(pfn_to_page(pfn + i)); 2618 } 2619 } 2620 } 2621 spin_unlock_irqrestore(&zone->lock, flags); 2622 } 2623 #endif /* CONFIG_PM */ 2624 2625 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 2626 { 2627 int migratetype; 2628 2629 if (!free_pcp_prepare(page)) 2630 return false; 2631 2632 migratetype = get_pfnblock_migratetype(page, pfn); 2633 set_pcppage_migratetype(page, migratetype); 2634 return true; 2635 } 2636 2637 static void free_unref_page_commit(struct page *page, unsigned long pfn) 2638 { 2639 struct zone *zone = page_zone(page); 2640 struct per_cpu_pages *pcp; 2641 int migratetype; 2642 2643 migratetype = get_pcppage_migratetype(page); 2644 __count_vm_event(PGFREE); 2645 2646 /* 2647 * We only track unmovable, reclaimable and movable on pcp lists. 2648 * Free ISOLATE pages back to the allocator because they are being 2649 * offlined but treat HIGHATOMIC as movable pages so we can get those 2650 * areas back if necessary. Otherwise, we may have to free 2651 * excessively into the page allocator 2652 */ 2653 if (migratetype >= MIGRATE_PCPTYPES) { 2654 if (unlikely(is_migrate_isolate(migratetype))) { 2655 free_one_page(zone, page, pfn, 0, migratetype); 2656 return; 2657 } 2658 migratetype = MIGRATE_MOVABLE; 2659 } 2660 2661 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2662 list_add(&page->lru, &pcp->lists[migratetype]); 2663 pcp->count++; 2664 if (pcp->count >= pcp->high) { 2665 unsigned long batch = READ_ONCE(pcp->batch); 2666 free_pcppages_bulk(zone, batch, pcp); 2667 pcp->count -= batch; 2668 } 2669 } 2670 2671 /* 2672 * Free a 0-order page 2673 */ 2674 void free_unref_page(struct page *page) 2675 { 2676 unsigned long flags; 2677 unsigned long pfn = page_to_pfn(page); 2678 2679 if (!free_unref_page_prepare(page, pfn)) 2680 return; 2681 2682 local_irq_save(flags); 2683 free_unref_page_commit(page, pfn); 2684 local_irq_restore(flags); 2685 } 2686 2687 /* 2688 * Free a list of 0-order pages 2689 */ 2690 void free_unref_page_list(struct list_head *list) 2691 { 2692 struct page *page, *next; 2693 unsigned long flags, pfn; 2694 int batch_count = 0; 2695 2696 /* Prepare pages for freeing */ 2697 list_for_each_entry_safe(page, next, list, lru) { 2698 pfn = page_to_pfn(page); 2699 if (!free_unref_page_prepare(page, pfn)) 2700 list_del(&page->lru); 2701 set_page_private(page, pfn); 2702 } 2703 2704 local_irq_save(flags); 2705 list_for_each_entry_safe(page, next, list, lru) { 2706 unsigned long pfn = page_private(page); 2707 2708 set_page_private(page, 0); 2709 trace_mm_page_free_batched(page); 2710 free_unref_page_commit(page, pfn); 2711 2712 /* 2713 * Guard against excessive IRQ disabled times when we get 2714 * a large list of pages to free. 2715 */ 2716 if (++batch_count == SWAP_CLUSTER_MAX) { 2717 local_irq_restore(flags); 2718 batch_count = 0; 2719 local_irq_save(flags); 2720 } 2721 } 2722 local_irq_restore(flags); 2723 } 2724 2725 /* 2726 * split_page takes a non-compound higher-order page, and splits it into 2727 * n (1<<order) sub-pages: page[0..n] 2728 * Each sub-page must be freed individually. 2729 * 2730 * Note: this is probably too low level an operation for use in drivers. 2731 * Please consult with lkml before using this in your driver. 2732 */ 2733 void split_page(struct page *page, unsigned int order) 2734 { 2735 int i; 2736 2737 VM_BUG_ON_PAGE(PageCompound(page), page); 2738 VM_BUG_ON_PAGE(!page_count(page), page); 2739 2740 for (i = 1; i < (1 << order); i++) 2741 set_page_refcounted(page + i); 2742 split_page_owner(page, order); 2743 } 2744 EXPORT_SYMBOL_GPL(split_page); 2745 2746 int __isolate_free_page(struct page *page, unsigned int order) 2747 { 2748 unsigned long watermark; 2749 struct zone *zone; 2750 int mt; 2751 2752 BUG_ON(!PageBuddy(page)); 2753 2754 zone = page_zone(page); 2755 mt = get_pageblock_migratetype(page); 2756 2757 if (!is_migrate_isolate(mt)) { 2758 /* 2759 * Obey watermarks as if the page was being allocated. We can 2760 * emulate a high-order watermark check with a raised order-0 2761 * watermark, because we already know our high-order page 2762 * exists. 2763 */ 2764 watermark = min_wmark_pages(zone) + (1UL << order); 2765 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2766 return 0; 2767 2768 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2769 } 2770 2771 /* Remove page from free list */ 2772 list_del(&page->lru); 2773 zone->free_area[order].nr_free--; 2774 rmv_page_order(page); 2775 2776 /* 2777 * Set the pageblock if the isolated page is at least half of a 2778 * pageblock 2779 */ 2780 if (order >= pageblock_order - 1) { 2781 struct page *endpage = page + (1 << order) - 1; 2782 for (; page < endpage; page += pageblock_nr_pages) { 2783 int mt = get_pageblock_migratetype(page); 2784 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 2785 && !is_migrate_highatomic(mt)) 2786 set_pageblock_migratetype(page, 2787 MIGRATE_MOVABLE); 2788 } 2789 } 2790 2791 2792 return 1UL << order; 2793 } 2794 2795 /* 2796 * Update NUMA hit/miss statistics 2797 * 2798 * Must be called with interrupts disabled. 2799 */ 2800 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 2801 { 2802 #ifdef CONFIG_NUMA 2803 enum numa_stat_item local_stat = NUMA_LOCAL; 2804 2805 /* skip numa counters update if numa stats is disabled */ 2806 if (!static_branch_likely(&vm_numa_stat_key)) 2807 return; 2808 2809 if (z->node != numa_node_id()) 2810 local_stat = NUMA_OTHER; 2811 2812 if (z->node == preferred_zone->node) 2813 __inc_numa_state(z, NUMA_HIT); 2814 else { 2815 __inc_numa_state(z, NUMA_MISS); 2816 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 2817 } 2818 __inc_numa_state(z, local_stat); 2819 #endif 2820 } 2821 2822 /* Remove page from the per-cpu list, caller must protect the list */ 2823 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 2824 struct per_cpu_pages *pcp, 2825 struct list_head *list) 2826 { 2827 struct page *page; 2828 2829 do { 2830 if (list_empty(list)) { 2831 pcp->count += rmqueue_bulk(zone, 0, 2832 pcp->batch, list, 2833 migratetype); 2834 if (unlikely(list_empty(list))) 2835 return NULL; 2836 } 2837 2838 page = list_first_entry(list, struct page, lru); 2839 list_del(&page->lru); 2840 pcp->count--; 2841 } while (check_new_pcp(page)); 2842 2843 return page; 2844 } 2845 2846 /* Lock and remove page from the per-cpu list */ 2847 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2848 struct zone *zone, unsigned int order, 2849 gfp_t gfp_flags, int migratetype) 2850 { 2851 struct per_cpu_pages *pcp; 2852 struct list_head *list; 2853 struct page *page; 2854 unsigned long flags; 2855 2856 local_irq_save(flags); 2857 pcp = &this_cpu_ptr(zone->pageset)->pcp; 2858 list = &pcp->lists[migratetype]; 2859 page = __rmqueue_pcplist(zone, migratetype, pcp, list); 2860 if (page) { 2861 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2862 zone_statistics(preferred_zone, zone); 2863 } 2864 local_irq_restore(flags); 2865 return page; 2866 } 2867 2868 /* 2869 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 2870 */ 2871 static inline 2872 struct page *rmqueue(struct zone *preferred_zone, 2873 struct zone *zone, unsigned int order, 2874 gfp_t gfp_flags, unsigned int alloc_flags, 2875 int migratetype) 2876 { 2877 unsigned long flags; 2878 struct page *page; 2879 2880 if (likely(order == 0)) { 2881 page = rmqueue_pcplist(preferred_zone, zone, order, 2882 gfp_flags, migratetype); 2883 goto out; 2884 } 2885 2886 /* 2887 * We most definitely don't want callers attempting to 2888 * allocate greater than order-1 page units with __GFP_NOFAIL. 2889 */ 2890 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 2891 spin_lock_irqsave(&zone->lock, flags); 2892 2893 do { 2894 page = NULL; 2895 if (alloc_flags & ALLOC_HARDER) { 2896 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2897 if (page) 2898 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2899 } 2900 if (!page) 2901 page = __rmqueue(zone, order, migratetype); 2902 } while (page && check_new_pages(page, order)); 2903 spin_unlock(&zone->lock); 2904 if (!page) 2905 goto failed; 2906 __mod_zone_freepage_state(zone, -(1 << order), 2907 get_pcppage_migratetype(page)); 2908 2909 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2910 zone_statistics(preferred_zone, zone); 2911 local_irq_restore(flags); 2912 2913 out: 2914 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 2915 return page; 2916 2917 failed: 2918 local_irq_restore(flags); 2919 return NULL; 2920 } 2921 2922 #ifdef CONFIG_FAIL_PAGE_ALLOC 2923 2924 static struct { 2925 struct fault_attr attr; 2926 2927 bool ignore_gfp_highmem; 2928 bool ignore_gfp_reclaim; 2929 u32 min_order; 2930 } fail_page_alloc = { 2931 .attr = FAULT_ATTR_INITIALIZER, 2932 .ignore_gfp_reclaim = true, 2933 .ignore_gfp_highmem = true, 2934 .min_order = 1, 2935 }; 2936 2937 static int __init setup_fail_page_alloc(char *str) 2938 { 2939 return setup_fault_attr(&fail_page_alloc.attr, str); 2940 } 2941 __setup("fail_page_alloc=", setup_fail_page_alloc); 2942 2943 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2944 { 2945 if (order < fail_page_alloc.min_order) 2946 return false; 2947 if (gfp_mask & __GFP_NOFAIL) 2948 return false; 2949 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 2950 return false; 2951 if (fail_page_alloc.ignore_gfp_reclaim && 2952 (gfp_mask & __GFP_DIRECT_RECLAIM)) 2953 return false; 2954 2955 return should_fail(&fail_page_alloc.attr, 1 << order); 2956 } 2957 2958 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 2959 2960 static int __init fail_page_alloc_debugfs(void) 2961 { 2962 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 2963 struct dentry *dir; 2964 2965 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 2966 &fail_page_alloc.attr); 2967 if (IS_ERR(dir)) 2968 return PTR_ERR(dir); 2969 2970 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 2971 &fail_page_alloc.ignore_gfp_reclaim)) 2972 goto fail; 2973 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 2974 &fail_page_alloc.ignore_gfp_highmem)) 2975 goto fail; 2976 if (!debugfs_create_u32("min-order", mode, dir, 2977 &fail_page_alloc.min_order)) 2978 goto fail; 2979 2980 return 0; 2981 fail: 2982 debugfs_remove_recursive(dir); 2983 2984 return -ENOMEM; 2985 } 2986 2987 late_initcall(fail_page_alloc_debugfs); 2988 2989 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 2990 2991 #else /* CONFIG_FAIL_PAGE_ALLOC */ 2992 2993 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 2994 { 2995 return false; 2996 } 2997 2998 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 2999 3000 /* 3001 * Return true if free base pages are above 'mark'. For high-order checks it 3002 * will return true of the order-0 watermark is reached and there is at least 3003 * one free page of a suitable size. Checking now avoids taking the zone lock 3004 * to check in the allocation paths if no pages are free. 3005 */ 3006 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3007 int classzone_idx, unsigned int alloc_flags, 3008 long free_pages) 3009 { 3010 long min = mark; 3011 int o; 3012 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3013 3014 /* free_pages may go negative - that's OK */ 3015 free_pages -= (1 << order) - 1; 3016 3017 if (alloc_flags & ALLOC_HIGH) 3018 min -= min / 2; 3019 3020 /* 3021 * If the caller does not have rights to ALLOC_HARDER then subtract 3022 * the high-atomic reserves. This will over-estimate the size of the 3023 * atomic reserve but it avoids a search. 3024 */ 3025 if (likely(!alloc_harder)) { 3026 free_pages -= z->nr_reserved_highatomic; 3027 } else { 3028 /* 3029 * OOM victims can try even harder than normal ALLOC_HARDER 3030 * users on the grounds that it's definitely going to be in 3031 * the exit path shortly and free memory. Any allocation it 3032 * makes during the free path will be small and short-lived. 3033 */ 3034 if (alloc_flags & ALLOC_OOM) 3035 min -= min / 2; 3036 else 3037 min -= min / 4; 3038 } 3039 3040 3041 #ifdef CONFIG_CMA 3042 /* If allocation can't use CMA areas don't use free CMA pages */ 3043 if (!(alloc_flags & ALLOC_CMA)) 3044 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3045 #endif 3046 3047 /* 3048 * Check watermarks for an order-0 allocation request. If these 3049 * are not met, then a high-order request also cannot go ahead 3050 * even if a suitable page happened to be free. 3051 */ 3052 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3053 return false; 3054 3055 /* If this is an order-0 request then the watermark is fine */ 3056 if (!order) 3057 return true; 3058 3059 /* For a high-order request, check at least one suitable page is free */ 3060 for (o = order; o < MAX_ORDER; o++) { 3061 struct free_area *area = &z->free_area[o]; 3062 int mt; 3063 3064 if (!area->nr_free) 3065 continue; 3066 3067 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3068 if (!list_empty(&area->free_list[mt])) 3069 return true; 3070 } 3071 3072 #ifdef CONFIG_CMA 3073 if ((alloc_flags & ALLOC_CMA) && 3074 !list_empty(&area->free_list[MIGRATE_CMA])) { 3075 return true; 3076 } 3077 #endif 3078 if (alloc_harder && 3079 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3080 return true; 3081 } 3082 return false; 3083 } 3084 3085 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3086 int classzone_idx, unsigned int alloc_flags) 3087 { 3088 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3089 zone_page_state(z, NR_FREE_PAGES)); 3090 } 3091 3092 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3093 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3094 { 3095 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3096 long cma_pages = 0; 3097 3098 #ifdef CONFIG_CMA 3099 /* If allocation can't use CMA areas don't use free CMA pages */ 3100 if (!(alloc_flags & ALLOC_CMA)) 3101 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3102 #endif 3103 3104 /* 3105 * Fast check for order-0 only. If this fails then the reserves 3106 * need to be calculated. There is a corner case where the check 3107 * passes but only the high-order atomic reserve are free. If 3108 * the caller is !atomic then it'll uselessly search the free 3109 * list. That corner case is then slower but it is harmless. 3110 */ 3111 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3112 return true; 3113 3114 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3115 free_pages); 3116 } 3117 3118 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3119 unsigned long mark, int classzone_idx) 3120 { 3121 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3122 3123 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3124 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3125 3126 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3127 free_pages); 3128 } 3129 3130 #ifdef CONFIG_NUMA 3131 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3132 { 3133 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3134 RECLAIM_DISTANCE; 3135 } 3136 #else /* CONFIG_NUMA */ 3137 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3138 { 3139 return true; 3140 } 3141 #endif /* CONFIG_NUMA */ 3142 3143 /* 3144 * get_page_from_freelist goes through the zonelist trying to allocate 3145 * a page. 3146 */ 3147 static struct page * 3148 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3149 const struct alloc_context *ac) 3150 { 3151 struct zoneref *z = ac->preferred_zoneref; 3152 struct zone *zone; 3153 struct pglist_data *last_pgdat_dirty_limit = NULL; 3154 3155 /* 3156 * Scan zonelist, looking for a zone with enough free. 3157 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3158 */ 3159 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3160 ac->nodemask) { 3161 struct page *page; 3162 unsigned long mark; 3163 3164 if (cpusets_enabled() && 3165 (alloc_flags & ALLOC_CPUSET) && 3166 !__cpuset_zone_allowed(zone, gfp_mask)) 3167 continue; 3168 /* 3169 * When allocating a page cache page for writing, we 3170 * want to get it from a node that is within its dirty 3171 * limit, such that no single node holds more than its 3172 * proportional share of globally allowed dirty pages. 3173 * The dirty limits take into account the node's 3174 * lowmem reserves and high watermark so that kswapd 3175 * should be able to balance it without having to 3176 * write pages from its LRU list. 3177 * 3178 * XXX: For now, allow allocations to potentially 3179 * exceed the per-node dirty limit in the slowpath 3180 * (spread_dirty_pages unset) before going into reclaim, 3181 * which is important when on a NUMA setup the allowed 3182 * nodes are together not big enough to reach the 3183 * global limit. The proper fix for these situations 3184 * will require awareness of nodes in the 3185 * dirty-throttling and the flusher threads. 3186 */ 3187 if (ac->spread_dirty_pages) { 3188 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3189 continue; 3190 3191 if (!node_dirty_ok(zone->zone_pgdat)) { 3192 last_pgdat_dirty_limit = zone->zone_pgdat; 3193 continue; 3194 } 3195 } 3196 3197 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 3198 if (!zone_watermark_fast(zone, order, mark, 3199 ac_classzone_idx(ac), alloc_flags)) { 3200 int ret; 3201 3202 /* Checked here to keep the fast path fast */ 3203 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3204 if (alloc_flags & ALLOC_NO_WATERMARKS) 3205 goto try_this_zone; 3206 3207 if (node_reclaim_mode == 0 || 3208 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3209 continue; 3210 3211 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3212 switch (ret) { 3213 case NODE_RECLAIM_NOSCAN: 3214 /* did not scan */ 3215 continue; 3216 case NODE_RECLAIM_FULL: 3217 /* scanned but unreclaimable */ 3218 continue; 3219 default: 3220 /* did we reclaim enough */ 3221 if (zone_watermark_ok(zone, order, mark, 3222 ac_classzone_idx(ac), alloc_flags)) 3223 goto try_this_zone; 3224 3225 continue; 3226 } 3227 } 3228 3229 try_this_zone: 3230 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3231 gfp_mask, alloc_flags, ac->migratetype); 3232 if (page) { 3233 prep_new_page(page, order, gfp_mask, alloc_flags); 3234 3235 /* 3236 * If this is a high-order atomic allocation then check 3237 * if the pageblock should be reserved for the future 3238 */ 3239 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3240 reserve_highatomic_pageblock(page, zone, order); 3241 3242 return page; 3243 } 3244 } 3245 3246 return NULL; 3247 } 3248 3249 /* 3250 * Large machines with many possible nodes should not always dump per-node 3251 * meminfo in irq context. 3252 */ 3253 static inline bool should_suppress_show_mem(void) 3254 { 3255 bool ret = false; 3256 3257 #if NODES_SHIFT > 8 3258 ret = in_interrupt(); 3259 #endif 3260 return ret; 3261 } 3262 3263 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3264 { 3265 unsigned int filter = SHOW_MEM_FILTER_NODES; 3266 static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1); 3267 3268 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs)) 3269 return; 3270 3271 /* 3272 * This documents exceptions given to allocations in certain 3273 * contexts that are allowed to allocate outside current's set 3274 * of allowed nodes. 3275 */ 3276 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3277 if (tsk_is_oom_victim(current) || 3278 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3279 filter &= ~SHOW_MEM_FILTER_NODES; 3280 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3281 filter &= ~SHOW_MEM_FILTER_NODES; 3282 3283 show_mem(filter, nodemask); 3284 } 3285 3286 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3287 { 3288 struct va_format vaf; 3289 va_list args; 3290 static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL, 3291 DEFAULT_RATELIMIT_BURST); 3292 3293 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3294 return; 3295 3296 va_start(args, fmt); 3297 vaf.fmt = fmt; 3298 vaf.va = &args; 3299 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n", 3300 current->comm, &vaf, gfp_mask, &gfp_mask, 3301 nodemask_pr_args(nodemask)); 3302 va_end(args); 3303 3304 cpuset_print_current_mems_allowed(); 3305 3306 dump_stack(); 3307 warn_alloc_show_mem(gfp_mask, nodemask); 3308 } 3309 3310 static inline struct page * 3311 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3312 unsigned int alloc_flags, 3313 const struct alloc_context *ac) 3314 { 3315 struct page *page; 3316 3317 page = get_page_from_freelist(gfp_mask, order, 3318 alloc_flags|ALLOC_CPUSET, ac); 3319 /* 3320 * fallback to ignore cpuset restriction if our nodes 3321 * are depleted 3322 */ 3323 if (!page) 3324 page = get_page_from_freelist(gfp_mask, order, 3325 alloc_flags, ac); 3326 3327 return page; 3328 } 3329 3330 static inline struct page * 3331 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3332 const struct alloc_context *ac, unsigned long *did_some_progress) 3333 { 3334 struct oom_control oc = { 3335 .zonelist = ac->zonelist, 3336 .nodemask = ac->nodemask, 3337 .memcg = NULL, 3338 .gfp_mask = gfp_mask, 3339 .order = order, 3340 }; 3341 struct page *page; 3342 3343 *did_some_progress = 0; 3344 3345 /* 3346 * Acquire the oom lock. If that fails, somebody else is 3347 * making progress for us. 3348 */ 3349 if (!mutex_trylock(&oom_lock)) { 3350 *did_some_progress = 1; 3351 schedule_timeout_uninterruptible(1); 3352 return NULL; 3353 } 3354 3355 /* 3356 * Go through the zonelist yet one more time, keep very high watermark 3357 * here, this is only to catch a parallel oom killing, we must fail if 3358 * we're still under heavy pressure. But make sure that this reclaim 3359 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3360 * allocation which will never fail due to oom_lock already held. 3361 */ 3362 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3363 ~__GFP_DIRECT_RECLAIM, order, 3364 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3365 if (page) 3366 goto out; 3367 3368 /* Coredumps can quickly deplete all memory reserves */ 3369 if (current->flags & PF_DUMPCORE) 3370 goto out; 3371 /* The OOM killer will not help higher order allocs */ 3372 if (order > PAGE_ALLOC_COSTLY_ORDER) 3373 goto out; 3374 /* 3375 * We have already exhausted all our reclaim opportunities without any 3376 * success so it is time to admit defeat. We will skip the OOM killer 3377 * because it is very likely that the caller has a more reasonable 3378 * fallback than shooting a random task. 3379 */ 3380 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3381 goto out; 3382 /* The OOM killer does not needlessly kill tasks for lowmem */ 3383 if (ac->high_zoneidx < ZONE_NORMAL) 3384 goto out; 3385 if (pm_suspended_storage()) 3386 goto out; 3387 /* 3388 * XXX: GFP_NOFS allocations should rather fail than rely on 3389 * other request to make a forward progress. 3390 * We are in an unfortunate situation where out_of_memory cannot 3391 * do much for this context but let's try it to at least get 3392 * access to memory reserved if the current task is killed (see 3393 * out_of_memory). Once filesystems are ready to handle allocation 3394 * failures more gracefully we should just bail out here. 3395 */ 3396 3397 /* The OOM killer may not free memory on a specific node */ 3398 if (gfp_mask & __GFP_THISNODE) 3399 goto out; 3400 3401 /* Exhausted what can be done so it's blame time */ 3402 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3403 *did_some_progress = 1; 3404 3405 /* 3406 * Help non-failing allocations by giving them access to memory 3407 * reserves 3408 */ 3409 if (gfp_mask & __GFP_NOFAIL) 3410 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3411 ALLOC_NO_WATERMARKS, ac); 3412 } 3413 out: 3414 mutex_unlock(&oom_lock); 3415 return page; 3416 } 3417 3418 /* 3419 * Maximum number of compaction retries wit a progress before OOM 3420 * killer is consider as the only way to move forward. 3421 */ 3422 #define MAX_COMPACT_RETRIES 16 3423 3424 #ifdef CONFIG_COMPACTION 3425 /* Try memory compaction for high-order allocations before reclaim */ 3426 static struct page * 3427 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3428 unsigned int alloc_flags, const struct alloc_context *ac, 3429 enum compact_priority prio, enum compact_result *compact_result) 3430 { 3431 struct page *page; 3432 unsigned int noreclaim_flag; 3433 3434 if (!order) 3435 return NULL; 3436 3437 noreclaim_flag = memalloc_noreclaim_save(); 3438 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3439 prio); 3440 memalloc_noreclaim_restore(noreclaim_flag); 3441 3442 if (*compact_result <= COMPACT_INACTIVE) 3443 return NULL; 3444 3445 /* 3446 * At least in one zone compaction wasn't deferred or skipped, so let's 3447 * count a compaction stall 3448 */ 3449 count_vm_event(COMPACTSTALL); 3450 3451 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3452 3453 if (page) { 3454 struct zone *zone = page_zone(page); 3455 3456 zone->compact_blockskip_flush = false; 3457 compaction_defer_reset(zone, order, true); 3458 count_vm_event(COMPACTSUCCESS); 3459 return page; 3460 } 3461 3462 /* 3463 * It's bad if compaction run occurs and fails. The most likely reason 3464 * is that pages exist, but not enough to satisfy watermarks. 3465 */ 3466 count_vm_event(COMPACTFAIL); 3467 3468 cond_resched(); 3469 3470 return NULL; 3471 } 3472 3473 static inline bool 3474 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3475 enum compact_result compact_result, 3476 enum compact_priority *compact_priority, 3477 int *compaction_retries) 3478 { 3479 int max_retries = MAX_COMPACT_RETRIES; 3480 int min_priority; 3481 bool ret = false; 3482 int retries = *compaction_retries; 3483 enum compact_priority priority = *compact_priority; 3484 3485 if (!order) 3486 return false; 3487 3488 if (compaction_made_progress(compact_result)) 3489 (*compaction_retries)++; 3490 3491 /* 3492 * compaction considers all the zone as desperately out of memory 3493 * so it doesn't really make much sense to retry except when the 3494 * failure could be caused by insufficient priority 3495 */ 3496 if (compaction_failed(compact_result)) 3497 goto check_priority; 3498 3499 /* 3500 * make sure the compaction wasn't deferred or didn't bail out early 3501 * due to locks contention before we declare that we should give up. 3502 * But do not retry if the given zonelist is not suitable for 3503 * compaction. 3504 */ 3505 if (compaction_withdrawn(compact_result)) { 3506 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3507 goto out; 3508 } 3509 3510 /* 3511 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3512 * costly ones because they are de facto nofail and invoke OOM 3513 * killer to move on while costly can fail and users are ready 3514 * to cope with that. 1/4 retries is rather arbitrary but we 3515 * would need much more detailed feedback from compaction to 3516 * make a better decision. 3517 */ 3518 if (order > PAGE_ALLOC_COSTLY_ORDER) 3519 max_retries /= 4; 3520 if (*compaction_retries <= max_retries) { 3521 ret = true; 3522 goto out; 3523 } 3524 3525 /* 3526 * Make sure there are attempts at the highest priority if we exhausted 3527 * all retries or failed at the lower priorities. 3528 */ 3529 check_priority: 3530 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3531 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3532 3533 if (*compact_priority > min_priority) { 3534 (*compact_priority)--; 3535 *compaction_retries = 0; 3536 ret = true; 3537 } 3538 out: 3539 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3540 return ret; 3541 } 3542 #else 3543 static inline struct page * 3544 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3545 unsigned int alloc_flags, const struct alloc_context *ac, 3546 enum compact_priority prio, enum compact_result *compact_result) 3547 { 3548 *compact_result = COMPACT_SKIPPED; 3549 return NULL; 3550 } 3551 3552 static inline bool 3553 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3554 enum compact_result compact_result, 3555 enum compact_priority *compact_priority, 3556 int *compaction_retries) 3557 { 3558 struct zone *zone; 3559 struct zoneref *z; 3560 3561 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3562 return false; 3563 3564 /* 3565 * There are setups with compaction disabled which would prefer to loop 3566 * inside the allocator rather than hit the oom killer prematurely. 3567 * Let's give them a good hope and keep retrying while the order-0 3568 * watermarks are OK. 3569 */ 3570 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3571 ac->nodemask) { 3572 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3573 ac_classzone_idx(ac), alloc_flags)) 3574 return true; 3575 } 3576 return false; 3577 } 3578 #endif /* CONFIG_COMPACTION */ 3579 3580 #ifdef CONFIG_LOCKDEP 3581 struct lockdep_map __fs_reclaim_map = 3582 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3583 3584 static bool __need_fs_reclaim(gfp_t gfp_mask) 3585 { 3586 gfp_mask = current_gfp_context(gfp_mask); 3587 3588 /* no reclaim without waiting on it */ 3589 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3590 return false; 3591 3592 /* this guy won't enter reclaim */ 3593 if ((current->flags & PF_MEMALLOC) && !(gfp_mask & __GFP_NOMEMALLOC)) 3594 return false; 3595 3596 /* We're only interested __GFP_FS allocations for now */ 3597 if (!(gfp_mask & __GFP_FS)) 3598 return false; 3599 3600 if (gfp_mask & __GFP_NOLOCKDEP) 3601 return false; 3602 3603 return true; 3604 } 3605 3606 void fs_reclaim_acquire(gfp_t gfp_mask) 3607 { 3608 if (__need_fs_reclaim(gfp_mask)) 3609 lock_map_acquire(&__fs_reclaim_map); 3610 } 3611 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3612 3613 void fs_reclaim_release(gfp_t gfp_mask) 3614 { 3615 if (__need_fs_reclaim(gfp_mask)) 3616 lock_map_release(&__fs_reclaim_map); 3617 } 3618 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3619 #endif 3620 3621 /* Perform direct synchronous page reclaim */ 3622 static int 3623 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3624 const struct alloc_context *ac) 3625 { 3626 struct reclaim_state reclaim_state; 3627 int progress; 3628 unsigned int noreclaim_flag; 3629 3630 cond_resched(); 3631 3632 /* We now go into synchronous reclaim */ 3633 cpuset_memory_pressure_bump(); 3634 noreclaim_flag = memalloc_noreclaim_save(); 3635 fs_reclaim_acquire(gfp_mask); 3636 reclaim_state.reclaimed_slab = 0; 3637 current->reclaim_state = &reclaim_state; 3638 3639 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3640 ac->nodemask); 3641 3642 current->reclaim_state = NULL; 3643 fs_reclaim_release(gfp_mask); 3644 memalloc_noreclaim_restore(noreclaim_flag); 3645 3646 cond_resched(); 3647 3648 return progress; 3649 } 3650 3651 /* The really slow allocator path where we enter direct reclaim */ 3652 static inline struct page * 3653 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3654 unsigned int alloc_flags, const struct alloc_context *ac, 3655 unsigned long *did_some_progress) 3656 { 3657 struct page *page = NULL; 3658 bool drained = false; 3659 3660 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3661 if (unlikely(!(*did_some_progress))) 3662 return NULL; 3663 3664 retry: 3665 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3666 3667 /* 3668 * If an allocation failed after direct reclaim, it could be because 3669 * pages are pinned on the per-cpu lists or in high alloc reserves. 3670 * Shrink them them and try again 3671 */ 3672 if (!page && !drained) { 3673 unreserve_highatomic_pageblock(ac, false); 3674 drain_all_pages(NULL); 3675 drained = true; 3676 goto retry; 3677 } 3678 3679 return page; 3680 } 3681 3682 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac) 3683 { 3684 struct zoneref *z; 3685 struct zone *zone; 3686 pg_data_t *last_pgdat = NULL; 3687 3688 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3689 ac->high_zoneidx, ac->nodemask) { 3690 if (last_pgdat != zone->zone_pgdat) 3691 wakeup_kswapd(zone, order, ac->high_zoneidx); 3692 last_pgdat = zone->zone_pgdat; 3693 } 3694 } 3695 3696 static inline unsigned int 3697 gfp_to_alloc_flags(gfp_t gfp_mask) 3698 { 3699 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 3700 3701 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 3702 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 3703 3704 /* 3705 * The caller may dip into page reserves a bit more if the caller 3706 * cannot run direct reclaim, or if the caller has realtime scheduling 3707 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 3708 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 3709 */ 3710 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 3711 3712 if (gfp_mask & __GFP_ATOMIC) { 3713 /* 3714 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 3715 * if it can't schedule. 3716 */ 3717 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3718 alloc_flags |= ALLOC_HARDER; 3719 /* 3720 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 3721 * comment for __cpuset_node_allowed(). 3722 */ 3723 alloc_flags &= ~ALLOC_CPUSET; 3724 } else if (unlikely(rt_task(current)) && !in_interrupt()) 3725 alloc_flags |= ALLOC_HARDER; 3726 3727 #ifdef CONFIG_CMA 3728 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3729 alloc_flags |= ALLOC_CMA; 3730 #endif 3731 return alloc_flags; 3732 } 3733 3734 static bool oom_reserves_allowed(struct task_struct *tsk) 3735 { 3736 if (!tsk_is_oom_victim(tsk)) 3737 return false; 3738 3739 /* 3740 * !MMU doesn't have oom reaper so give access to memory reserves 3741 * only to the thread with TIF_MEMDIE set 3742 */ 3743 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 3744 return false; 3745 3746 return true; 3747 } 3748 3749 /* 3750 * Distinguish requests which really need access to full memory 3751 * reserves from oom victims which can live with a portion of it 3752 */ 3753 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 3754 { 3755 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 3756 return 0; 3757 if (gfp_mask & __GFP_MEMALLOC) 3758 return ALLOC_NO_WATERMARKS; 3759 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 3760 return ALLOC_NO_WATERMARKS; 3761 if (!in_interrupt()) { 3762 if (current->flags & PF_MEMALLOC) 3763 return ALLOC_NO_WATERMARKS; 3764 else if (oom_reserves_allowed(current)) 3765 return ALLOC_OOM; 3766 } 3767 3768 return 0; 3769 } 3770 3771 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 3772 { 3773 return !!__gfp_pfmemalloc_flags(gfp_mask); 3774 } 3775 3776 /* 3777 * Checks whether it makes sense to retry the reclaim to make a forward progress 3778 * for the given allocation request. 3779 * 3780 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 3781 * without success, or when we couldn't even meet the watermark if we 3782 * reclaimed all remaining pages on the LRU lists. 3783 * 3784 * Returns true if a retry is viable or false to enter the oom path. 3785 */ 3786 static inline bool 3787 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 3788 struct alloc_context *ac, int alloc_flags, 3789 bool did_some_progress, int *no_progress_loops) 3790 { 3791 struct zone *zone; 3792 struct zoneref *z; 3793 3794 /* 3795 * Costly allocations might have made a progress but this doesn't mean 3796 * their order will become available due to high fragmentation so 3797 * always increment the no progress counter for them 3798 */ 3799 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 3800 *no_progress_loops = 0; 3801 else 3802 (*no_progress_loops)++; 3803 3804 /* 3805 * Make sure we converge to OOM if we cannot make any progress 3806 * several times in the row. 3807 */ 3808 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 3809 /* Before OOM, exhaust highatomic_reserve */ 3810 return unreserve_highatomic_pageblock(ac, true); 3811 } 3812 3813 /* 3814 * Keep reclaiming pages while there is a chance this will lead 3815 * somewhere. If none of the target zones can satisfy our allocation 3816 * request even if all reclaimable pages are considered then we are 3817 * screwed and have to go OOM. 3818 */ 3819 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3820 ac->nodemask) { 3821 unsigned long available; 3822 unsigned long reclaimable; 3823 unsigned long min_wmark = min_wmark_pages(zone); 3824 bool wmark; 3825 3826 available = reclaimable = zone_reclaimable_pages(zone); 3827 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 3828 3829 /* 3830 * Would the allocation succeed if we reclaimed all 3831 * reclaimable pages? 3832 */ 3833 wmark = __zone_watermark_ok(zone, order, min_wmark, 3834 ac_classzone_idx(ac), alloc_flags, available); 3835 trace_reclaim_retry_zone(z, order, reclaimable, 3836 available, min_wmark, *no_progress_loops, wmark); 3837 if (wmark) { 3838 /* 3839 * If we didn't make any progress and have a lot of 3840 * dirty + writeback pages then we should wait for 3841 * an IO to complete to slow down the reclaim and 3842 * prevent from pre mature OOM 3843 */ 3844 if (!did_some_progress) { 3845 unsigned long write_pending; 3846 3847 write_pending = zone_page_state_snapshot(zone, 3848 NR_ZONE_WRITE_PENDING); 3849 3850 if (2 * write_pending > reclaimable) { 3851 congestion_wait(BLK_RW_ASYNC, HZ/10); 3852 return true; 3853 } 3854 } 3855 3856 /* 3857 * Memory allocation/reclaim might be called from a WQ 3858 * context and the current implementation of the WQ 3859 * concurrency control doesn't recognize that 3860 * a particular WQ is congested if the worker thread is 3861 * looping without ever sleeping. Therefore we have to 3862 * do a short sleep here rather than calling 3863 * cond_resched(). 3864 */ 3865 if (current->flags & PF_WQ_WORKER) 3866 schedule_timeout_uninterruptible(1); 3867 else 3868 cond_resched(); 3869 3870 return true; 3871 } 3872 } 3873 3874 return false; 3875 } 3876 3877 static inline bool 3878 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 3879 { 3880 /* 3881 * It's possible that cpuset's mems_allowed and the nodemask from 3882 * mempolicy don't intersect. This should be normally dealt with by 3883 * policy_nodemask(), but it's possible to race with cpuset update in 3884 * such a way the check therein was true, and then it became false 3885 * before we got our cpuset_mems_cookie here. 3886 * This assumes that for all allocations, ac->nodemask can come only 3887 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 3888 * when it does not intersect with the cpuset restrictions) or the 3889 * caller can deal with a violated nodemask. 3890 */ 3891 if (cpusets_enabled() && ac->nodemask && 3892 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 3893 ac->nodemask = NULL; 3894 return true; 3895 } 3896 3897 /* 3898 * When updating a task's mems_allowed or mempolicy nodemask, it is 3899 * possible to race with parallel threads in such a way that our 3900 * allocation can fail while the mask is being updated. If we are about 3901 * to fail, check if the cpuset changed during allocation and if so, 3902 * retry. 3903 */ 3904 if (read_mems_allowed_retry(cpuset_mems_cookie)) 3905 return true; 3906 3907 return false; 3908 } 3909 3910 static inline struct page * 3911 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 3912 struct alloc_context *ac) 3913 { 3914 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 3915 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 3916 struct page *page = NULL; 3917 unsigned int alloc_flags; 3918 unsigned long did_some_progress; 3919 enum compact_priority compact_priority; 3920 enum compact_result compact_result; 3921 int compaction_retries; 3922 int no_progress_loops; 3923 unsigned int cpuset_mems_cookie; 3924 int reserve_flags; 3925 3926 /* 3927 * In the slowpath, we sanity check order to avoid ever trying to 3928 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 3929 * be using allocators in order of preference for an area that is 3930 * too large. 3931 */ 3932 if (order >= MAX_ORDER) { 3933 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 3934 return NULL; 3935 } 3936 3937 /* 3938 * We also sanity check to catch abuse of atomic reserves being used by 3939 * callers that are not in atomic context. 3940 */ 3941 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 3942 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 3943 gfp_mask &= ~__GFP_ATOMIC; 3944 3945 retry_cpuset: 3946 compaction_retries = 0; 3947 no_progress_loops = 0; 3948 compact_priority = DEF_COMPACT_PRIORITY; 3949 cpuset_mems_cookie = read_mems_allowed_begin(); 3950 3951 /* 3952 * The fast path uses conservative alloc_flags to succeed only until 3953 * kswapd needs to be woken up, and to avoid the cost of setting up 3954 * alloc_flags precisely. So we do that now. 3955 */ 3956 alloc_flags = gfp_to_alloc_flags(gfp_mask); 3957 3958 /* 3959 * We need to recalculate the starting point for the zonelist iterator 3960 * because we might have used different nodemask in the fast path, or 3961 * there was a cpuset modification and we are retrying - otherwise we 3962 * could end up iterating over non-eligible zones endlessly. 3963 */ 3964 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 3965 ac->high_zoneidx, ac->nodemask); 3966 if (!ac->preferred_zoneref->zone) 3967 goto nopage; 3968 3969 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3970 wake_all_kswapds(order, ac); 3971 3972 /* 3973 * The adjusted alloc_flags might result in immediate success, so try 3974 * that first 3975 */ 3976 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3977 if (page) 3978 goto got_pg; 3979 3980 /* 3981 * For costly allocations, try direct compaction first, as it's likely 3982 * that we have enough base pages and don't need to reclaim. For non- 3983 * movable high-order allocations, do that as well, as compaction will 3984 * try prevent permanent fragmentation by migrating from blocks of the 3985 * same migratetype. 3986 * Don't try this for allocations that are allowed to ignore 3987 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 3988 */ 3989 if (can_direct_reclaim && 3990 (costly_order || 3991 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 3992 && !gfp_pfmemalloc_allowed(gfp_mask)) { 3993 page = __alloc_pages_direct_compact(gfp_mask, order, 3994 alloc_flags, ac, 3995 INIT_COMPACT_PRIORITY, 3996 &compact_result); 3997 if (page) 3998 goto got_pg; 3999 4000 /* 4001 * Checks for costly allocations with __GFP_NORETRY, which 4002 * includes THP page fault allocations 4003 */ 4004 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4005 /* 4006 * If compaction is deferred for high-order allocations, 4007 * it is because sync compaction recently failed. If 4008 * this is the case and the caller requested a THP 4009 * allocation, we do not want to heavily disrupt the 4010 * system, so we fail the allocation instead of entering 4011 * direct reclaim. 4012 */ 4013 if (compact_result == COMPACT_DEFERRED) 4014 goto nopage; 4015 4016 /* 4017 * Looks like reclaim/compaction is worth trying, but 4018 * sync compaction could be very expensive, so keep 4019 * using async compaction. 4020 */ 4021 compact_priority = INIT_COMPACT_PRIORITY; 4022 } 4023 } 4024 4025 retry: 4026 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4027 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4028 wake_all_kswapds(order, ac); 4029 4030 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4031 if (reserve_flags) 4032 alloc_flags = reserve_flags; 4033 4034 /* 4035 * Reset the zonelist iterators if memory policies can be ignored. 4036 * These allocations are high priority and system rather than user 4037 * orientated. 4038 */ 4039 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4040 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask); 4041 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4042 ac->high_zoneidx, ac->nodemask); 4043 } 4044 4045 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4046 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4047 if (page) 4048 goto got_pg; 4049 4050 /* Caller is not willing to reclaim, we can't balance anything */ 4051 if (!can_direct_reclaim) 4052 goto nopage; 4053 4054 /* Avoid recursion of direct reclaim */ 4055 if (current->flags & PF_MEMALLOC) 4056 goto nopage; 4057 4058 /* Try direct reclaim and then allocating */ 4059 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4060 &did_some_progress); 4061 if (page) 4062 goto got_pg; 4063 4064 /* Try direct compaction and then allocating */ 4065 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4066 compact_priority, &compact_result); 4067 if (page) 4068 goto got_pg; 4069 4070 /* Do not loop if specifically requested */ 4071 if (gfp_mask & __GFP_NORETRY) 4072 goto nopage; 4073 4074 /* 4075 * Do not retry costly high order allocations unless they are 4076 * __GFP_RETRY_MAYFAIL 4077 */ 4078 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4079 goto nopage; 4080 4081 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4082 did_some_progress > 0, &no_progress_loops)) 4083 goto retry; 4084 4085 /* 4086 * It doesn't make any sense to retry for the compaction if the order-0 4087 * reclaim is not able to make any progress because the current 4088 * implementation of the compaction depends on the sufficient amount 4089 * of free memory (see __compaction_suitable) 4090 */ 4091 if (did_some_progress > 0 && 4092 should_compact_retry(ac, order, alloc_flags, 4093 compact_result, &compact_priority, 4094 &compaction_retries)) 4095 goto retry; 4096 4097 4098 /* Deal with possible cpuset update races before we start OOM killing */ 4099 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4100 goto retry_cpuset; 4101 4102 /* Reclaim has failed us, start killing things */ 4103 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4104 if (page) 4105 goto got_pg; 4106 4107 /* Avoid allocations with no watermarks from looping endlessly */ 4108 if (tsk_is_oom_victim(current) && 4109 (alloc_flags == ALLOC_OOM || 4110 (gfp_mask & __GFP_NOMEMALLOC))) 4111 goto nopage; 4112 4113 /* Retry as long as the OOM killer is making progress */ 4114 if (did_some_progress) { 4115 no_progress_loops = 0; 4116 goto retry; 4117 } 4118 4119 nopage: 4120 /* Deal with possible cpuset update races before we fail */ 4121 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4122 goto retry_cpuset; 4123 4124 /* 4125 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4126 * we always retry 4127 */ 4128 if (gfp_mask & __GFP_NOFAIL) { 4129 /* 4130 * All existing users of the __GFP_NOFAIL are blockable, so warn 4131 * of any new users that actually require GFP_NOWAIT 4132 */ 4133 if (WARN_ON_ONCE(!can_direct_reclaim)) 4134 goto fail; 4135 4136 /* 4137 * PF_MEMALLOC request from this context is rather bizarre 4138 * because we cannot reclaim anything and only can loop waiting 4139 * for somebody to do a work for us 4140 */ 4141 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4142 4143 /* 4144 * non failing costly orders are a hard requirement which we 4145 * are not prepared for much so let's warn about these users 4146 * so that we can identify them and convert them to something 4147 * else. 4148 */ 4149 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4150 4151 /* 4152 * Help non-failing allocations by giving them access to memory 4153 * reserves but do not use ALLOC_NO_WATERMARKS because this 4154 * could deplete whole memory reserves which would just make 4155 * the situation worse 4156 */ 4157 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4158 if (page) 4159 goto got_pg; 4160 4161 cond_resched(); 4162 goto retry; 4163 } 4164 fail: 4165 warn_alloc(gfp_mask, ac->nodemask, 4166 "page allocation failure: order:%u", order); 4167 got_pg: 4168 return page; 4169 } 4170 4171 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4172 int preferred_nid, nodemask_t *nodemask, 4173 struct alloc_context *ac, gfp_t *alloc_mask, 4174 unsigned int *alloc_flags) 4175 { 4176 ac->high_zoneidx = gfp_zone(gfp_mask); 4177 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4178 ac->nodemask = nodemask; 4179 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4180 4181 if (cpusets_enabled()) { 4182 *alloc_mask |= __GFP_HARDWALL; 4183 if (!ac->nodemask) 4184 ac->nodemask = &cpuset_current_mems_allowed; 4185 else 4186 *alloc_flags |= ALLOC_CPUSET; 4187 } 4188 4189 fs_reclaim_acquire(gfp_mask); 4190 fs_reclaim_release(gfp_mask); 4191 4192 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4193 4194 if (should_fail_alloc_page(gfp_mask, order)) 4195 return false; 4196 4197 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4198 *alloc_flags |= ALLOC_CMA; 4199 4200 return true; 4201 } 4202 4203 /* Determine whether to spread dirty pages and what the first usable zone */ 4204 static inline void finalise_ac(gfp_t gfp_mask, 4205 unsigned int order, struct alloc_context *ac) 4206 { 4207 /* Dirty zone balancing only done in the fast path */ 4208 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4209 4210 /* 4211 * The preferred zone is used for statistics but crucially it is 4212 * also used as the starting point for the zonelist iterator. It 4213 * may get reset for allocations that ignore memory policies. 4214 */ 4215 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4216 ac->high_zoneidx, ac->nodemask); 4217 } 4218 4219 /* 4220 * This is the 'heart' of the zoned buddy allocator. 4221 */ 4222 struct page * 4223 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4224 nodemask_t *nodemask) 4225 { 4226 struct page *page; 4227 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4228 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4229 struct alloc_context ac = { }; 4230 4231 gfp_mask &= gfp_allowed_mask; 4232 alloc_mask = gfp_mask; 4233 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4234 return NULL; 4235 4236 finalise_ac(gfp_mask, order, &ac); 4237 4238 /* First allocation attempt */ 4239 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4240 if (likely(page)) 4241 goto out; 4242 4243 /* 4244 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4245 * resp. GFP_NOIO which has to be inherited for all allocation requests 4246 * from a particular context which has been marked by 4247 * memalloc_no{fs,io}_{save,restore}. 4248 */ 4249 alloc_mask = current_gfp_context(gfp_mask); 4250 ac.spread_dirty_pages = false; 4251 4252 /* 4253 * Restore the original nodemask if it was potentially replaced with 4254 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4255 */ 4256 if (unlikely(ac.nodemask != nodemask)) 4257 ac.nodemask = nodemask; 4258 4259 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4260 4261 out: 4262 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4263 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4264 __free_pages(page, order); 4265 page = NULL; 4266 } 4267 4268 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4269 4270 return page; 4271 } 4272 EXPORT_SYMBOL(__alloc_pages_nodemask); 4273 4274 /* 4275 * Common helper functions. 4276 */ 4277 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4278 { 4279 struct page *page; 4280 4281 /* 4282 * __get_free_pages() returns a virtual address, which cannot represent 4283 * a highmem page 4284 */ 4285 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 4286 4287 page = alloc_pages(gfp_mask, order); 4288 if (!page) 4289 return 0; 4290 return (unsigned long) page_address(page); 4291 } 4292 EXPORT_SYMBOL(__get_free_pages); 4293 4294 unsigned long get_zeroed_page(gfp_t gfp_mask) 4295 { 4296 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4297 } 4298 EXPORT_SYMBOL(get_zeroed_page); 4299 4300 void __free_pages(struct page *page, unsigned int order) 4301 { 4302 if (put_page_testzero(page)) { 4303 if (order == 0) 4304 free_unref_page(page); 4305 else 4306 __free_pages_ok(page, order); 4307 } 4308 } 4309 4310 EXPORT_SYMBOL(__free_pages); 4311 4312 void free_pages(unsigned long addr, unsigned int order) 4313 { 4314 if (addr != 0) { 4315 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4316 __free_pages(virt_to_page((void *)addr), order); 4317 } 4318 } 4319 4320 EXPORT_SYMBOL(free_pages); 4321 4322 /* 4323 * Page Fragment: 4324 * An arbitrary-length arbitrary-offset area of memory which resides 4325 * within a 0 or higher order page. Multiple fragments within that page 4326 * are individually refcounted, in the page's reference counter. 4327 * 4328 * The page_frag functions below provide a simple allocation framework for 4329 * page fragments. This is used by the network stack and network device 4330 * drivers to provide a backing region of memory for use as either an 4331 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4332 */ 4333 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4334 gfp_t gfp_mask) 4335 { 4336 struct page *page = NULL; 4337 gfp_t gfp = gfp_mask; 4338 4339 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4340 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4341 __GFP_NOMEMALLOC; 4342 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4343 PAGE_FRAG_CACHE_MAX_ORDER); 4344 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4345 #endif 4346 if (unlikely(!page)) 4347 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4348 4349 nc->va = page ? page_address(page) : NULL; 4350 4351 return page; 4352 } 4353 4354 void __page_frag_cache_drain(struct page *page, unsigned int count) 4355 { 4356 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4357 4358 if (page_ref_sub_and_test(page, count)) { 4359 unsigned int order = compound_order(page); 4360 4361 if (order == 0) 4362 free_unref_page(page); 4363 else 4364 __free_pages_ok(page, order); 4365 } 4366 } 4367 EXPORT_SYMBOL(__page_frag_cache_drain); 4368 4369 void *page_frag_alloc(struct page_frag_cache *nc, 4370 unsigned int fragsz, gfp_t gfp_mask) 4371 { 4372 unsigned int size = PAGE_SIZE; 4373 struct page *page; 4374 int offset; 4375 4376 if (unlikely(!nc->va)) { 4377 refill: 4378 page = __page_frag_cache_refill(nc, gfp_mask); 4379 if (!page) 4380 return NULL; 4381 4382 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4383 /* if size can vary use size else just use PAGE_SIZE */ 4384 size = nc->size; 4385 #endif 4386 /* Even if we own the page, we do not use atomic_set(). 4387 * This would break get_page_unless_zero() users. 4388 */ 4389 page_ref_add(page, size - 1); 4390 4391 /* reset page count bias and offset to start of new frag */ 4392 nc->pfmemalloc = page_is_pfmemalloc(page); 4393 nc->pagecnt_bias = size; 4394 nc->offset = size; 4395 } 4396 4397 offset = nc->offset - fragsz; 4398 if (unlikely(offset < 0)) { 4399 page = virt_to_page(nc->va); 4400 4401 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4402 goto refill; 4403 4404 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4405 /* if size can vary use size else just use PAGE_SIZE */ 4406 size = nc->size; 4407 #endif 4408 /* OK, page count is 0, we can safely set it */ 4409 set_page_count(page, size); 4410 4411 /* reset page count bias and offset to start of new frag */ 4412 nc->pagecnt_bias = size; 4413 offset = size - fragsz; 4414 } 4415 4416 nc->pagecnt_bias--; 4417 nc->offset = offset; 4418 4419 return nc->va + offset; 4420 } 4421 EXPORT_SYMBOL(page_frag_alloc); 4422 4423 /* 4424 * Frees a page fragment allocated out of either a compound or order 0 page. 4425 */ 4426 void page_frag_free(void *addr) 4427 { 4428 struct page *page = virt_to_head_page(addr); 4429 4430 if (unlikely(put_page_testzero(page))) 4431 __free_pages_ok(page, compound_order(page)); 4432 } 4433 EXPORT_SYMBOL(page_frag_free); 4434 4435 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4436 size_t size) 4437 { 4438 if (addr) { 4439 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4440 unsigned long used = addr + PAGE_ALIGN(size); 4441 4442 split_page(virt_to_page((void *)addr), order); 4443 while (used < alloc_end) { 4444 free_page(used); 4445 used += PAGE_SIZE; 4446 } 4447 } 4448 return (void *)addr; 4449 } 4450 4451 /** 4452 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4453 * @size: the number of bytes to allocate 4454 * @gfp_mask: GFP flags for the allocation 4455 * 4456 * This function is similar to alloc_pages(), except that it allocates the 4457 * minimum number of pages to satisfy the request. alloc_pages() can only 4458 * allocate memory in power-of-two pages. 4459 * 4460 * This function is also limited by MAX_ORDER. 4461 * 4462 * Memory allocated by this function must be released by free_pages_exact(). 4463 */ 4464 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4465 { 4466 unsigned int order = get_order(size); 4467 unsigned long addr; 4468 4469 addr = __get_free_pages(gfp_mask, order); 4470 return make_alloc_exact(addr, order, size); 4471 } 4472 EXPORT_SYMBOL(alloc_pages_exact); 4473 4474 /** 4475 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4476 * pages on a node. 4477 * @nid: the preferred node ID where memory should be allocated 4478 * @size: the number of bytes to allocate 4479 * @gfp_mask: GFP flags for the allocation 4480 * 4481 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4482 * back. 4483 */ 4484 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 4485 { 4486 unsigned int order = get_order(size); 4487 struct page *p = alloc_pages_node(nid, gfp_mask, order); 4488 if (!p) 4489 return NULL; 4490 return make_alloc_exact((unsigned long)page_address(p), order, size); 4491 } 4492 4493 /** 4494 * free_pages_exact - release memory allocated via alloc_pages_exact() 4495 * @virt: the value returned by alloc_pages_exact. 4496 * @size: size of allocation, same value as passed to alloc_pages_exact(). 4497 * 4498 * Release the memory allocated by a previous call to alloc_pages_exact. 4499 */ 4500 void free_pages_exact(void *virt, size_t size) 4501 { 4502 unsigned long addr = (unsigned long)virt; 4503 unsigned long end = addr + PAGE_ALIGN(size); 4504 4505 while (addr < end) { 4506 free_page(addr); 4507 addr += PAGE_SIZE; 4508 } 4509 } 4510 EXPORT_SYMBOL(free_pages_exact); 4511 4512 /** 4513 * nr_free_zone_pages - count number of pages beyond high watermark 4514 * @offset: The zone index of the highest zone 4515 * 4516 * nr_free_zone_pages() counts the number of counts pages which are beyond the 4517 * high watermark within all zones at or below a given zone index. For each 4518 * zone, the number of pages is calculated as: 4519 * 4520 * nr_free_zone_pages = managed_pages - high_pages 4521 */ 4522 static unsigned long nr_free_zone_pages(int offset) 4523 { 4524 struct zoneref *z; 4525 struct zone *zone; 4526 4527 /* Just pick one node, since fallback list is circular */ 4528 unsigned long sum = 0; 4529 4530 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 4531 4532 for_each_zone_zonelist(zone, z, zonelist, offset) { 4533 unsigned long size = zone->managed_pages; 4534 unsigned long high = high_wmark_pages(zone); 4535 if (size > high) 4536 sum += size - high; 4537 } 4538 4539 return sum; 4540 } 4541 4542 /** 4543 * nr_free_buffer_pages - count number of pages beyond high watermark 4544 * 4545 * nr_free_buffer_pages() counts the number of pages which are beyond the high 4546 * watermark within ZONE_DMA and ZONE_NORMAL. 4547 */ 4548 unsigned long nr_free_buffer_pages(void) 4549 { 4550 return nr_free_zone_pages(gfp_zone(GFP_USER)); 4551 } 4552 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 4553 4554 /** 4555 * nr_free_pagecache_pages - count number of pages beyond high watermark 4556 * 4557 * nr_free_pagecache_pages() counts the number of pages which are beyond the 4558 * high watermark within all zones. 4559 */ 4560 unsigned long nr_free_pagecache_pages(void) 4561 { 4562 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 4563 } 4564 4565 static inline void show_node(struct zone *zone) 4566 { 4567 if (IS_ENABLED(CONFIG_NUMA)) 4568 printk("Node %d ", zone_to_nid(zone)); 4569 } 4570 4571 long si_mem_available(void) 4572 { 4573 long available; 4574 unsigned long pagecache; 4575 unsigned long wmark_low = 0; 4576 unsigned long pages[NR_LRU_LISTS]; 4577 struct zone *zone; 4578 int lru; 4579 4580 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 4581 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 4582 4583 for_each_zone(zone) 4584 wmark_low += zone->watermark[WMARK_LOW]; 4585 4586 /* 4587 * Estimate the amount of memory available for userspace allocations, 4588 * without causing swapping. 4589 */ 4590 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 4591 4592 /* 4593 * Not all the page cache can be freed, otherwise the system will 4594 * start swapping. Assume at least half of the page cache, or the 4595 * low watermark worth of cache, needs to stay. 4596 */ 4597 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 4598 pagecache -= min(pagecache / 2, wmark_low); 4599 available += pagecache; 4600 4601 /* 4602 * Part of the reclaimable slab consists of items that are in use, 4603 * and cannot be freed. Cap this estimate at the low watermark. 4604 */ 4605 available += global_node_page_state(NR_SLAB_RECLAIMABLE) - 4606 min(global_node_page_state(NR_SLAB_RECLAIMABLE) / 2, 4607 wmark_low); 4608 4609 if (available < 0) 4610 available = 0; 4611 return available; 4612 } 4613 EXPORT_SYMBOL_GPL(si_mem_available); 4614 4615 void si_meminfo(struct sysinfo *val) 4616 { 4617 val->totalram = totalram_pages; 4618 val->sharedram = global_node_page_state(NR_SHMEM); 4619 val->freeram = global_zone_page_state(NR_FREE_PAGES); 4620 val->bufferram = nr_blockdev_pages(); 4621 val->totalhigh = totalhigh_pages; 4622 val->freehigh = nr_free_highpages(); 4623 val->mem_unit = PAGE_SIZE; 4624 } 4625 4626 EXPORT_SYMBOL(si_meminfo); 4627 4628 #ifdef CONFIG_NUMA 4629 void si_meminfo_node(struct sysinfo *val, int nid) 4630 { 4631 int zone_type; /* needs to be signed */ 4632 unsigned long managed_pages = 0; 4633 unsigned long managed_highpages = 0; 4634 unsigned long free_highpages = 0; 4635 pg_data_t *pgdat = NODE_DATA(nid); 4636 4637 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 4638 managed_pages += pgdat->node_zones[zone_type].managed_pages; 4639 val->totalram = managed_pages; 4640 val->sharedram = node_page_state(pgdat, NR_SHMEM); 4641 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 4642 #ifdef CONFIG_HIGHMEM 4643 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 4644 struct zone *zone = &pgdat->node_zones[zone_type]; 4645 4646 if (is_highmem(zone)) { 4647 managed_highpages += zone->managed_pages; 4648 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 4649 } 4650 } 4651 val->totalhigh = managed_highpages; 4652 val->freehigh = free_highpages; 4653 #else 4654 val->totalhigh = managed_highpages; 4655 val->freehigh = free_highpages; 4656 #endif 4657 val->mem_unit = PAGE_SIZE; 4658 } 4659 #endif 4660 4661 /* 4662 * Determine whether the node should be displayed or not, depending on whether 4663 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 4664 */ 4665 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 4666 { 4667 if (!(flags & SHOW_MEM_FILTER_NODES)) 4668 return false; 4669 4670 /* 4671 * no node mask - aka implicit memory numa policy. Do not bother with 4672 * the synchronization - read_mems_allowed_begin - because we do not 4673 * have to be precise here. 4674 */ 4675 if (!nodemask) 4676 nodemask = &cpuset_current_mems_allowed; 4677 4678 return !node_isset(nid, *nodemask); 4679 } 4680 4681 #define K(x) ((x) << (PAGE_SHIFT-10)) 4682 4683 static void show_migration_types(unsigned char type) 4684 { 4685 static const char types[MIGRATE_TYPES] = { 4686 [MIGRATE_UNMOVABLE] = 'U', 4687 [MIGRATE_MOVABLE] = 'M', 4688 [MIGRATE_RECLAIMABLE] = 'E', 4689 [MIGRATE_HIGHATOMIC] = 'H', 4690 #ifdef CONFIG_CMA 4691 [MIGRATE_CMA] = 'C', 4692 #endif 4693 #ifdef CONFIG_MEMORY_ISOLATION 4694 [MIGRATE_ISOLATE] = 'I', 4695 #endif 4696 }; 4697 char tmp[MIGRATE_TYPES + 1]; 4698 char *p = tmp; 4699 int i; 4700 4701 for (i = 0; i < MIGRATE_TYPES; i++) { 4702 if (type & (1 << i)) 4703 *p++ = types[i]; 4704 } 4705 4706 *p = '\0'; 4707 printk(KERN_CONT "(%s) ", tmp); 4708 } 4709 4710 /* 4711 * Show free area list (used inside shift_scroll-lock stuff) 4712 * We also calculate the percentage fragmentation. We do this by counting the 4713 * memory on each free list with the exception of the first item on the list. 4714 * 4715 * Bits in @filter: 4716 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 4717 * cpuset. 4718 */ 4719 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 4720 { 4721 unsigned long free_pcp = 0; 4722 int cpu; 4723 struct zone *zone; 4724 pg_data_t *pgdat; 4725 4726 for_each_populated_zone(zone) { 4727 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4728 continue; 4729 4730 for_each_online_cpu(cpu) 4731 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4732 } 4733 4734 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 4735 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 4736 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 4737 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 4738 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 4739 " free:%lu free_pcp:%lu free_cma:%lu\n", 4740 global_node_page_state(NR_ACTIVE_ANON), 4741 global_node_page_state(NR_INACTIVE_ANON), 4742 global_node_page_state(NR_ISOLATED_ANON), 4743 global_node_page_state(NR_ACTIVE_FILE), 4744 global_node_page_state(NR_INACTIVE_FILE), 4745 global_node_page_state(NR_ISOLATED_FILE), 4746 global_node_page_state(NR_UNEVICTABLE), 4747 global_node_page_state(NR_FILE_DIRTY), 4748 global_node_page_state(NR_WRITEBACK), 4749 global_node_page_state(NR_UNSTABLE_NFS), 4750 global_node_page_state(NR_SLAB_RECLAIMABLE), 4751 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 4752 global_node_page_state(NR_FILE_MAPPED), 4753 global_node_page_state(NR_SHMEM), 4754 global_zone_page_state(NR_PAGETABLE), 4755 global_zone_page_state(NR_BOUNCE), 4756 global_zone_page_state(NR_FREE_PAGES), 4757 free_pcp, 4758 global_zone_page_state(NR_FREE_CMA_PAGES)); 4759 4760 for_each_online_pgdat(pgdat) { 4761 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 4762 continue; 4763 4764 printk("Node %d" 4765 " active_anon:%lukB" 4766 " inactive_anon:%lukB" 4767 " active_file:%lukB" 4768 " inactive_file:%lukB" 4769 " unevictable:%lukB" 4770 " isolated(anon):%lukB" 4771 " isolated(file):%lukB" 4772 " mapped:%lukB" 4773 " dirty:%lukB" 4774 " writeback:%lukB" 4775 " shmem:%lukB" 4776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4777 " shmem_thp: %lukB" 4778 " shmem_pmdmapped: %lukB" 4779 " anon_thp: %lukB" 4780 #endif 4781 " writeback_tmp:%lukB" 4782 " unstable:%lukB" 4783 " all_unreclaimable? %s" 4784 "\n", 4785 pgdat->node_id, 4786 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 4787 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 4788 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 4789 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 4790 K(node_page_state(pgdat, NR_UNEVICTABLE)), 4791 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 4792 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 4793 K(node_page_state(pgdat, NR_FILE_MAPPED)), 4794 K(node_page_state(pgdat, NR_FILE_DIRTY)), 4795 K(node_page_state(pgdat, NR_WRITEBACK)), 4796 K(node_page_state(pgdat, NR_SHMEM)), 4797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 4798 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 4799 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 4800 * HPAGE_PMD_NR), 4801 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 4802 #endif 4803 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 4804 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 4805 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 4806 "yes" : "no"); 4807 } 4808 4809 for_each_populated_zone(zone) { 4810 int i; 4811 4812 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4813 continue; 4814 4815 free_pcp = 0; 4816 for_each_online_cpu(cpu) 4817 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 4818 4819 show_node(zone); 4820 printk(KERN_CONT 4821 "%s" 4822 " free:%lukB" 4823 " min:%lukB" 4824 " low:%lukB" 4825 " high:%lukB" 4826 " active_anon:%lukB" 4827 " inactive_anon:%lukB" 4828 " active_file:%lukB" 4829 " inactive_file:%lukB" 4830 " unevictable:%lukB" 4831 " writepending:%lukB" 4832 " present:%lukB" 4833 " managed:%lukB" 4834 " mlocked:%lukB" 4835 " kernel_stack:%lukB" 4836 " pagetables:%lukB" 4837 " bounce:%lukB" 4838 " free_pcp:%lukB" 4839 " local_pcp:%ukB" 4840 " free_cma:%lukB" 4841 "\n", 4842 zone->name, 4843 K(zone_page_state(zone, NR_FREE_PAGES)), 4844 K(min_wmark_pages(zone)), 4845 K(low_wmark_pages(zone)), 4846 K(high_wmark_pages(zone)), 4847 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 4848 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 4849 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 4850 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 4851 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 4852 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 4853 K(zone->present_pages), 4854 K(zone->managed_pages), 4855 K(zone_page_state(zone, NR_MLOCK)), 4856 zone_page_state(zone, NR_KERNEL_STACK_KB), 4857 K(zone_page_state(zone, NR_PAGETABLE)), 4858 K(zone_page_state(zone, NR_BOUNCE)), 4859 K(free_pcp), 4860 K(this_cpu_read(zone->pageset->pcp.count)), 4861 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 4862 printk("lowmem_reserve[]:"); 4863 for (i = 0; i < MAX_NR_ZONES; i++) 4864 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 4865 printk(KERN_CONT "\n"); 4866 } 4867 4868 for_each_populated_zone(zone) { 4869 unsigned int order; 4870 unsigned long nr[MAX_ORDER], flags, total = 0; 4871 unsigned char types[MAX_ORDER]; 4872 4873 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 4874 continue; 4875 show_node(zone); 4876 printk(KERN_CONT "%s: ", zone->name); 4877 4878 spin_lock_irqsave(&zone->lock, flags); 4879 for (order = 0; order < MAX_ORDER; order++) { 4880 struct free_area *area = &zone->free_area[order]; 4881 int type; 4882 4883 nr[order] = area->nr_free; 4884 total += nr[order] << order; 4885 4886 types[order] = 0; 4887 for (type = 0; type < MIGRATE_TYPES; type++) { 4888 if (!list_empty(&area->free_list[type])) 4889 types[order] |= 1 << type; 4890 } 4891 } 4892 spin_unlock_irqrestore(&zone->lock, flags); 4893 for (order = 0; order < MAX_ORDER; order++) { 4894 printk(KERN_CONT "%lu*%lukB ", 4895 nr[order], K(1UL) << order); 4896 if (nr[order]) 4897 show_migration_types(types[order]); 4898 } 4899 printk(KERN_CONT "= %lukB\n", K(total)); 4900 } 4901 4902 hugetlb_show_meminfo(); 4903 4904 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 4905 4906 show_swap_cache_info(); 4907 } 4908 4909 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 4910 { 4911 zoneref->zone = zone; 4912 zoneref->zone_idx = zone_idx(zone); 4913 } 4914 4915 /* 4916 * Builds allocation fallback zone lists. 4917 * 4918 * Add all populated zones of a node to the zonelist. 4919 */ 4920 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 4921 { 4922 struct zone *zone; 4923 enum zone_type zone_type = MAX_NR_ZONES; 4924 int nr_zones = 0; 4925 4926 do { 4927 zone_type--; 4928 zone = pgdat->node_zones + zone_type; 4929 if (managed_zone(zone)) { 4930 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 4931 check_highest_zone(zone_type); 4932 } 4933 } while (zone_type); 4934 4935 return nr_zones; 4936 } 4937 4938 #ifdef CONFIG_NUMA 4939 4940 static int __parse_numa_zonelist_order(char *s) 4941 { 4942 /* 4943 * We used to support different zonlists modes but they turned 4944 * out to be just not useful. Let's keep the warning in place 4945 * if somebody still use the cmd line parameter so that we do 4946 * not fail it silently 4947 */ 4948 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 4949 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 4950 return -EINVAL; 4951 } 4952 return 0; 4953 } 4954 4955 static __init int setup_numa_zonelist_order(char *s) 4956 { 4957 if (!s) 4958 return 0; 4959 4960 return __parse_numa_zonelist_order(s); 4961 } 4962 early_param("numa_zonelist_order", setup_numa_zonelist_order); 4963 4964 char numa_zonelist_order[] = "Node"; 4965 4966 /* 4967 * sysctl handler for numa_zonelist_order 4968 */ 4969 int numa_zonelist_order_handler(struct ctl_table *table, int write, 4970 void __user *buffer, size_t *length, 4971 loff_t *ppos) 4972 { 4973 char *str; 4974 int ret; 4975 4976 if (!write) 4977 return proc_dostring(table, write, buffer, length, ppos); 4978 str = memdup_user_nul(buffer, 16); 4979 if (IS_ERR(str)) 4980 return PTR_ERR(str); 4981 4982 ret = __parse_numa_zonelist_order(str); 4983 kfree(str); 4984 return ret; 4985 } 4986 4987 4988 #define MAX_NODE_LOAD (nr_online_nodes) 4989 static int node_load[MAX_NUMNODES]; 4990 4991 /** 4992 * find_next_best_node - find the next node that should appear in a given node's fallback list 4993 * @node: node whose fallback list we're appending 4994 * @used_node_mask: nodemask_t of already used nodes 4995 * 4996 * We use a number of factors to determine which is the next node that should 4997 * appear on a given node's fallback list. The node should not have appeared 4998 * already in @node's fallback list, and it should be the next closest node 4999 * according to the distance array (which contains arbitrary distance values 5000 * from each node to each node in the system), and should also prefer nodes 5001 * with no CPUs, since presumably they'll have very little allocation pressure 5002 * on them otherwise. 5003 * It returns -1 if no node is found. 5004 */ 5005 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5006 { 5007 int n, val; 5008 int min_val = INT_MAX; 5009 int best_node = NUMA_NO_NODE; 5010 const struct cpumask *tmp = cpumask_of_node(0); 5011 5012 /* Use the local node if we haven't already */ 5013 if (!node_isset(node, *used_node_mask)) { 5014 node_set(node, *used_node_mask); 5015 return node; 5016 } 5017 5018 for_each_node_state(n, N_MEMORY) { 5019 5020 /* Don't want a node to appear more than once */ 5021 if (node_isset(n, *used_node_mask)) 5022 continue; 5023 5024 /* Use the distance array to find the distance */ 5025 val = node_distance(node, n); 5026 5027 /* Penalize nodes under us ("prefer the next node") */ 5028 val += (n < node); 5029 5030 /* Give preference to headless and unused nodes */ 5031 tmp = cpumask_of_node(n); 5032 if (!cpumask_empty(tmp)) 5033 val += PENALTY_FOR_NODE_WITH_CPUS; 5034 5035 /* Slight preference for less loaded node */ 5036 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5037 val += node_load[n]; 5038 5039 if (val < min_val) { 5040 min_val = val; 5041 best_node = n; 5042 } 5043 } 5044 5045 if (best_node >= 0) 5046 node_set(best_node, *used_node_mask); 5047 5048 return best_node; 5049 } 5050 5051 5052 /* 5053 * Build zonelists ordered by node and zones within node. 5054 * This results in maximum locality--normal zone overflows into local 5055 * DMA zone, if any--but risks exhausting DMA zone. 5056 */ 5057 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5058 unsigned nr_nodes) 5059 { 5060 struct zoneref *zonerefs; 5061 int i; 5062 5063 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5064 5065 for (i = 0; i < nr_nodes; i++) { 5066 int nr_zones; 5067 5068 pg_data_t *node = NODE_DATA(node_order[i]); 5069 5070 nr_zones = build_zonerefs_node(node, zonerefs); 5071 zonerefs += nr_zones; 5072 } 5073 zonerefs->zone = NULL; 5074 zonerefs->zone_idx = 0; 5075 } 5076 5077 /* 5078 * Build gfp_thisnode zonelists 5079 */ 5080 static void build_thisnode_zonelists(pg_data_t *pgdat) 5081 { 5082 struct zoneref *zonerefs; 5083 int nr_zones; 5084 5085 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5086 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5087 zonerefs += nr_zones; 5088 zonerefs->zone = NULL; 5089 zonerefs->zone_idx = 0; 5090 } 5091 5092 /* 5093 * Build zonelists ordered by zone and nodes within zones. 5094 * This results in conserving DMA zone[s] until all Normal memory is 5095 * exhausted, but results in overflowing to remote node while memory 5096 * may still exist in local DMA zone. 5097 */ 5098 5099 static void build_zonelists(pg_data_t *pgdat) 5100 { 5101 static int node_order[MAX_NUMNODES]; 5102 int node, load, nr_nodes = 0; 5103 nodemask_t used_mask; 5104 int local_node, prev_node; 5105 5106 /* NUMA-aware ordering of nodes */ 5107 local_node = pgdat->node_id; 5108 load = nr_online_nodes; 5109 prev_node = local_node; 5110 nodes_clear(used_mask); 5111 5112 memset(node_order, 0, sizeof(node_order)); 5113 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5114 /* 5115 * We don't want to pressure a particular node. 5116 * So adding penalty to the first node in same 5117 * distance group to make it round-robin. 5118 */ 5119 if (node_distance(local_node, node) != 5120 node_distance(local_node, prev_node)) 5121 node_load[node] = load; 5122 5123 node_order[nr_nodes++] = node; 5124 prev_node = node; 5125 load--; 5126 } 5127 5128 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5129 build_thisnode_zonelists(pgdat); 5130 } 5131 5132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5133 /* 5134 * Return node id of node used for "local" allocations. 5135 * I.e., first node id of first zone in arg node's generic zonelist. 5136 * Used for initializing percpu 'numa_mem', which is used primarily 5137 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5138 */ 5139 int local_memory_node(int node) 5140 { 5141 struct zoneref *z; 5142 5143 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5144 gfp_zone(GFP_KERNEL), 5145 NULL); 5146 return z->zone->node; 5147 } 5148 #endif 5149 5150 static void setup_min_unmapped_ratio(void); 5151 static void setup_min_slab_ratio(void); 5152 #else /* CONFIG_NUMA */ 5153 5154 static void build_zonelists(pg_data_t *pgdat) 5155 { 5156 int node, local_node; 5157 struct zoneref *zonerefs; 5158 int nr_zones; 5159 5160 local_node = pgdat->node_id; 5161 5162 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5163 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5164 zonerefs += nr_zones; 5165 5166 /* 5167 * Now we build the zonelist so that it contains the zones 5168 * of all the other nodes. 5169 * We don't want to pressure a particular node, so when 5170 * building the zones for node N, we make sure that the 5171 * zones coming right after the local ones are those from 5172 * node N+1 (modulo N) 5173 */ 5174 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5175 if (!node_online(node)) 5176 continue; 5177 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5178 zonerefs += nr_zones; 5179 } 5180 for (node = 0; node < local_node; node++) { 5181 if (!node_online(node)) 5182 continue; 5183 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5184 zonerefs += nr_zones; 5185 } 5186 5187 zonerefs->zone = NULL; 5188 zonerefs->zone_idx = 0; 5189 } 5190 5191 #endif /* CONFIG_NUMA */ 5192 5193 /* 5194 * Boot pageset table. One per cpu which is going to be used for all 5195 * zones and all nodes. The parameters will be set in such a way 5196 * that an item put on a list will immediately be handed over to 5197 * the buddy list. This is safe since pageset manipulation is done 5198 * with interrupts disabled. 5199 * 5200 * The boot_pagesets must be kept even after bootup is complete for 5201 * unused processors and/or zones. They do play a role for bootstrapping 5202 * hotplugged processors. 5203 * 5204 * zoneinfo_show() and maybe other functions do 5205 * not check if the processor is online before following the pageset pointer. 5206 * Other parts of the kernel may not check if the zone is available. 5207 */ 5208 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5209 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5210 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5211 5212 static void __build_all_zonelists(void *data) 5213 { 5214 int nid; 5215 int __maybe_unused cpu; 5216 pg_data_t *self = data; 5217 static DEFINE_SPINLOCK(lock); 5218 5219 spin_lock(&lock); 5220 5221 #ifdef CONFIG_NUMA 5222 memset(node_load, 0, sizeof(node_load)); 5223 #endif 5224 5225 /* 5226 * This node is hotadded and no memory is yet present. So just 5227 * building zonelists is fine - no need to touch other nodes. 5228 */ 5229 if (self && !node_online(self->node_id)) { 5230 build_zonelists(self); 5231 } else { 5232 for_each_online_node(nid) { 5233 pg_data_t *pgdat = NODE_DATA(nid); 5234 5235 build_zonelists(pgdat); 5236 } 5237 5238 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5239 /* 5240 * We now know the "local memory node" for each node-- 5241 * i.e., the node of the first zone in the generic zonelist. 5242 * Set up numa_mem percpu variable for on-line cpus. During 5243 * boot, only the boot cpu should be on-line; we'll init the 5244 * secondary cpus' numa_mem as they come on-line. During 5245 * node/memory hotplug, we'll fixup all on-line cpus. 5246 */ 5247 for_each_online_cpu(cpu) 5248 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5249 #endif 5250 } 5251 5252 spin_unlock(&lock); 5253 } 5254 5255 static noinline void __init 5256 build_all_zonelists_init(void) 5257 { 5258 int cpu; 5259 5260 __build_all_zonelists(NULL); 5261 5262 /* 5263 * Initialize the boot_pagesets that are going to be used 5264 * for bootstrapping processors. The real pagesets for 5265 * each zone will be allocated later when the per cpu 5266 * allocator is available. 5267 * 5268 * boot_pagesets are used also for bootstrapping offline 5269 * cpus if the system is already booted because the pagesets 5270 * are needed to initialize allocators on a specific cpu too. 5271 * F.e. the percpu allocator needs the page allocator which 5272 * needs the percpu allocator in order to allocate its pagesets 5273 * (a chicken-egg dilemma). 5274 */ 5275 for_each_possible_cpu(cpu) 5276 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5277 5278 mminit_verify_zonelist(); 5279 cpuset_init_current_mems_allowed(); 5280 } 5281 5282 /* 5283 * unless system_state == SYSTEM_BOOTING. 5284 * 5285 * __ref due to call of __init annotated helper build_all_zonelists_init 5286 * [protected by SYSTEM_BOOTING]. 5287 */ 5288 void __ref build_all_zonelists(pg_data_t *pgdat) 5289 { 5290 if (system_state == SYSTEM_BOOTING) { 5291 build_all_zonelists_init(); 5292 } else { 5293 __build_all_zonelists(pgdat); 5294 /* cpuset refresh routine should be here */ 5295 } 5296 vm_total_pages = nr_free_pagecache_pages(); 5297 /* 5298 * Disable grouping by mobility if the number of pages in the 5299 * system is too low to allow the mechanism to work. It would be 5300 * more accurate, but expensive to check per-zone. This check is 5301 * made on memory-hotadd so a system can start with mobility 5302 * disabled and enable it later 5303 */ 5304 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5305 page_group_by_mobility_disabled = 1; 5306 else 5307 page_group_by_mobility_disabled = 0; 5308 5309 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n", 5310 nr_online_nodes, 5311 page_group_by_mobility_disabled ? "off" : "on", 5312 vm_total_pages); 5313 #ifdef CONFIG_NUMA 5314 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5315 #endif 5316 } 5317 5318 /* 5319 * Initially all pages are reserved - free ones are freed 5320 * up by free_all_bootmem() once the early boot process is 5321 * done. Non-atomic initialization, single-pass. 5322 */ 5323 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5324 unsigned long start_pfn, enum memmap_context context, 5325 struct vmem_altmap *altmap) 5326 { 5327 unsigned long end_pfn = start_pfn + size; 5328 pg_data_t *pgdat = NODE_DATA(nid); 5329 unsigned long pfn; 5330 unsigned long nr_initialised = 0; 5331 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5332 struct memblock_region *r = NULL, *tmp; 5333 #endif 5334 5335 if (highest_memmap_pfn < end_pfn - 1) 5336 highest_memmap_pfn = end_pfn - 1; 5337 5338 /* 5339 * Honor reservation requested by the driver for this ZONE_DEVICE 5340 * memory 5341 */ 5342 if (altmap && start_pfn == altmap->base_pfn) 5343 start_pfn += altmap->reserve; 5344 5345 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5346 /* 5347 * There can be holes in boot-time mem_map[]s handed to this 5348 * function. They do not exist on hotplugged memory. 5349 */ 5350 if (context != MEMMAP_EARLY) 5351 goto not_early; 5352 5353 if (!early_pfn_valid(pfn)) { 5354 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5355 /* 5356 * Skip to the pfn preceding the next valid one (or 5357 * end_pfn), such that we hit a valid pfn (or end_pfn) 5358 * on our next iteration of the loop. 5359 */ 5360 pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1; 5361 #endif 5362 continue; 5363 } 5364 if (!early_pfn_in_nid(pfn, nid)) 5365 continue; 5366 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised)) 5367 break; 5368 5369 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5370 /* 5371 * Check given memblock attribute by firmware which can affect 5372 * kernel memory layout. If zone==ZONE_MOVABLE but memory is 5373 * mirrored, it's an overlapped memmap init. skip it. 5374 */ 5375 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5376 if (!r || pfn >= memblock_region_memory_end_pfn(r)) { 5377 for_each_memblock(memory, tmp) 5378 if (pfn < memblock_region_memory_end_pfn(tmp)) 5379 break; 5380 r = tmp; 5381 } 5382 if (pfn >= memblock_region_memory_base_pfn(r) && 5383 memblock_is_mirror(r)) { 5384 /* already initialized as NORMAL */ 5385 pfn = memblock_region_memory_end_pfn(r); 5386 continue; 5387 } 5388 } 5389 #endif 5390 5391 not_early: 5392 /* 5393 * Mark the block movable so that blocks are reserved for 5394 * movable at startup. This will force kernel allocations 5395 * to reserve their blocks rather than leaking throughout 5396 * the address space during boot when many long-lived 5397 * kernel allocations are made. 5398 * 5399 * bitmap is created for zone's valid pfn range. but memmap 5400 * can be created for invalid pages (for alignment) 5401 * check here not to call set_pageblock_migratetype() against 5402 * pfn out of zone. 5403 * 5404 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 5405 * because this is done early in sparse_add_one_section 5406 */ 5407 if (!(pfn & (pageblock_nr_pages - 1))) { 5408 struct page *page = pfn_to_page(pfn); 5409 5410 __init_single_page(page, pfn, zone, nid, 5411 context != MEMMAP_HOTPLUG); 5412 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5413 cond_resched(); 5414 } else { 5415 __init_single_pfn(pfn, zone, nid, 5416 context != MEMMAP_HOTPLUG); 5417 } 5418 } 5419 } 5420 5421 static void __meminit zone_init_free_lists(struct zone *zone) 5422 { 5423 unsigned int order, t; 5424 for_each_migratetype_order(order, t) { 5425 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 5426 zone->free_area[order].nr_free = 0; 5427 } 5428 } 5429 5430 #ifndef __HAVE_ARCH_MEMMAP_INIT 5431 #define memmap_init(size, nid, zone, start_pfn) \ 5432 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL) 5433 #endif 5434 5435 static int zone_batchsize(struct zone *zone) 5436 { 5437 #ifdef CONFIG_MMU 5438 int batch; 5439 5440 /* 5441 * The per-cpu-pages pools are set to around 1000th of the 5442 * size of the zone. But no more than 1/2 of a meg. 5443 * 5444 * OK, so we don't know how big the cache is. So guess. 5445 */ 5446 batch = zone->managed_pages / 1024; 5447 if (batch * PAGE_SIZE > 512 * 1024) 5448 batch = (512 * 1024) / PAGE_SIZE; 5449 batch /= 4; /* We effectively *= 4 below */ 5450 if (batch < 1) 5451 batch = 1; 5452 5453 /* 5454 * Clamp the batch to a 2^n - 1 value. Having a power 5455 * of 2 value was found to be more likely to have 5456 * suboptimal cache aliasing properties in some cases. 5457 * 5458 * For example if 2 tasks are alternately allocating 5459 * batches of pages, one task can end up with a lot 5460 * of pages of one half of the possible page colors 5461 * and the other with pages of the other colors. 5462 */ 5463 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5464 5465 return batch; 5466 5467 #else 5468 /* The deferral and batching of frees should be suppressed under NOMMU 5469 * conditions. 5470 * 5471 * The problem is that NOMMU needs to be able to allocate large chunks 5472 * of contiguous memory as there's no hardware page translation to 5473 * assemble apparent contiguous memory from discontiguous pages. 5474 * 5475 * Queueing large contiguous runs of pages for batching, however, 5476 * causes the pages to actually be freed in smaller chunks. As there 5477 * can be a significant delay between the individual batches being 5478 * recycled, this leads to the once large chunks of space being 5479 * fragmented and becoming unavailable for high-order allocations. 5480 */ 5481 return 0; 5482 #endif 5483 } 5484 5485 /* 5486 * pcp->high and pcp->batch values are related and dependent on one another: 5487 * ->batch must never be higher then ->high. 5488 * The following function updates them in a safe manner without read side 5489 * locking. 5490 * 5491 * Any new users of pcp->batch and pcp->high should ensure they can cope with 5492 * those fields changing asynchronously (acording the the above rule). 5493 * 5494 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 5495 * outside of boot time (or some other assurance that no concurrent updaters 5496 * exist). 5497 */ 5498 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 5499 unsigned long batch) 5500 { 5501 /* start with a fail safe value for batch */ 5502 pcp->batch = 1; 5503 smp_wmb(); 5504 5505 /* Update high, then batch, in order */ 5506 pcp->high = high; 5507 smp_wmb(); 5508 5509 pcp->batch = batch; 5510 } 5511 5512 /* a companion to pageset_set_high() */ 5513 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 5514 { 5515 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 5516 } 5517 5518 static void pageset_init(struct per_cpu_pageset *p) 5519 { 5520 struct per_cpu_pages *pcp; 5521 int migratetype; 5522 5523 memset(p, 0, sizeof(*p)); 5524 5525 pcp = &p->pcp; 5526 pcp->count = 0; 5527 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 5528 INIT_LIST_HEAD(&pcp->lists[migratetype]); 5529 } 5530 5531 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 5532 { 5533 pageset_init(p); 5534 pageset_set_batch(p, batch); 5535 } 5536 5537 /* 5538 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 5539 * to the value high for the pageset p. 5540 */ 5541 static void pageset_set_high(struct per_cpu_pageset *p, 5542 unsigned long high) 5543 { 5544 unsigned long batch = max(1UL, high / 4); 5545 if ((high / 4) > (PAGE_SHIFT * 8)) 5546 batch = PAGE_SHIFT * 8; 5547 5548 pageset_update(&p->pcp, high, batch); 5549 } 5550 5551 static void pageset_set_high_and_batch(struct zone *zone, 5552 struct per_cpu_pageset *pcp) 5553 { 5554 if (percpu_pagelist_fraction) 5555 pageset_set_high(pcp, 5556 (zone->managed_pages / 5557 percpu_pagelist_fraction)); 5558 else 5559 pageset_set_batch(pcp, zone_batchsize(zone)); 5560 } 5561 5562 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 5563 { 5564 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 5565 5566 pageset_init(pcp); 5567 pageset_set_high_and_batch(zone, pcp); 5568 } 5569 5570 void __meminit setup_zone_pageset(struct zone *zone) 5571 { 5572 int cpu; 5573 zone->pageset = alloc_percpu(struct per_cpu_pageset); 5574 for_each_possible_cpu(cpu) 5575 zone_pageset_init(zone, cpu); 5576 } 5577 5578 /* 5579 * Allocate per cpu pagesets and initialize them. 5580 * Before this call only boot pagesets were available. 5581 */ 5582 void __init setup_per_cpu_pageset(void) 5583 { 5584 struct pglist_data *pgdat; 5585 struct zone *zone; 5586 5587 for_each_populated_zone(zone) 5588 setup_zone_pageset(zone); 5589 5590 for_each_online_pgdat(pgdat) 5591 pgdat->per_cpu_nodestats = 5592 alloc_percpu(struct per_cpu_nodestat); 5593 } 5594 5595 static __meminit void zone_pcp_init(struct zone *zone) 5596 { 5597 /* 5598 * per cpu subsystem is not up at this point. The following code 5599 * relies on the ability of the linker to provide the 5600 * offset of a (static) per cpu variable into the per cpu area. 5601 */ 5602 zone->pageset = &boot_pageset; 5603 5604 if (populated_zone(zone)) 5605 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 5606 zone->name, zone->present_pages, 5607 zone_batchsize(zone)); 5608 } 5609 5610 void __meminit init_currently_empty_zone(struct zone *zone, 5611 unsigned long zone_start_pfn, 5612 unsigned long size) 5613 { 5614 struct pglist_data *pgdat = zone->zone_pgdat; 5615 5616 pgdat->nr_zones = zone_idx(zone) + 1; 5617 5618 zone->zone_start_pfn = zone_start_pfn; 5619 5620 mminit_dprintk(MMINIT_TRACE, "memmap_init", 5621 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 5622 pgdat->node_id, 5623 (unsigned long)zone_idx(zone), 5624 zone_start_pfn, (zone_start_pfn + size)); 5625 5626 zone_init_free_lists(zone); 5627 zone->initialized = 1; 5628 } 5629 5630 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5631 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 5632 5633 /* 5634 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 5635 */ 5636 int __meminit __early_pfn_to_nid(unsigned long pfn, 5637 struct mminit_pfnnid_cache *state) 5638 { 5639 unsigned long start_pfn, end_pfn; 5640 int nid; 5641 5642 if (state->last_start <= pfn && pfn < state->last_end) 5643 return state->last_nid; 5644 5645 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 5646 if (nid != -1) { 5647 state->last_start = start_pfn; 5648 state->last_end = end_pfn; 5649 state->last_nid = nid; 5650 } 5651 5652 return nid; 5653 } 5654 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 5655 5656 /** 5657 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 5658 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 5659 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 5660 * 5661 * If an architecture guarantees that all ranges registered contain no holes 5662 * and may be freed, this this function may be used instead of calling 5663 * memblock_free_early_nid() manually. 5664 */ 5665 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 5666 { 5667 unsigned long start_pfn, end_pfn; 5668 int i, this_nid; 5669 5670 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 5671 start_pfn = min(start_pfn, max_low_pfn); 5672 end_pfn = min(end_pfn, max_low_pfn); 5673 5674 if (start_pfn < end_pfn) 5675 memblock_free_early_nid(PFN_PHYS(start_pfn), 5676 (end_pfn - start_pfn) << PAGE_SHIFT, 5677 this_nid); 5678 } 5679 } 5680 5681 /** 5682 * sparse_memory_present_with_active_regions - Call memory_present for each active range 5683 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 5684 * 5685 * If an architecture guarantees that all ranges registered contain no holes and may 5686 * be freed, this function may be used instead of calling memory_present() manually. 5687 */ 5688 void __init sparse_memory_present_with_active_regions(int nid) 5689 { 5690 unsigned long start_pfn, end_pfn; 5691 int i, this_nid; 5692 5693 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 5694 memory_present(this_nid, start_pfn, end_pfn); 5695 } 5696 5697 /** 5698 * get_pfn_range_for_nid - Return the start and end page frames for a node 5699 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 5700 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 5701 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 5702 * 5703 * It returns the start and end page frame of a node based on information 5704 * provided by memblock_set_node(). If called for a node 5705 * with no available memory, a warning is printed and the start and end 5706 * PFNs will be 0. 5707 */ 5708 void __meminit get_pfn_range_for_nid(unsigned int nid, 5709 unsigned long *start_pfn, unsigned long *end_pfn) 5710 { 5711 unsigned long this_start_pfn, this_end_pfn; 5712 int i; 5713 5714 *start_pfn = -1UL; 5715 *end_pfn = 0; 5716 5717 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 5718 *start_pfn = min(*start_pfn, this_start_pfn); 5719 *end_pfn = max(*end_pfn, this_end_pfn); 5720 } 5721 5722 if (*start_pfn == -1UL) 5723 *start_pfn = 0; 5724 } 5725 5726 /* 5727 * This finds a zone that can be used for ZONE_MOVABLE pages. The 5728 * assumption is made that zones within a node are ordered in monotonic 5729 * increasing memory addresses so that the "highest" populated zone is used 5730 */ 5731 static void __init find_usable_zone_for_movable(void) 5732 { 5733 int zone_index; 5734 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 5735 if (zone_index == ZONE_MOVABLE) 5736 continue; 5737 5738 if (arch_zone_highest_possible_pfn[zone_index] > 5739 arch_zone_lowest_possible_pfn[zone_index]) 5740 break; 5741 } 5742 5743 VM_BUG_ON(zone_index == -1); 5744 movable_zone = zone_index; 5745 } 5746 5747 /* 5748 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 5749 * because it is sized independent of architecture. Unlike the other zones, 5750 * the starting point for ZONE_MOVABLE is not fixed. It may be different 5751 * in each node depending on the size of each node and how evenly kernelcore 5752 * is distributed. This helper function adjusts the zone ranges 5753 * provided by the architecture for a given node by using the end of the 5754 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 5755 * zones within a node are in order of monotonic increases memory addresses 5756 */ 5757 static void __meminit adjust_zone_range_for_zone_movable(int nid, 5758 unsigned long zone_type, 5759 unsigned long node_start_pfn, 5760 unsigned long node_end_pfn, 5761 unsigned long *zone_start_pfn, 5762 unsigned long *zone_end_pfn) 5763 { 5764 /* Only adjust if ZONE_MOVABLE is on this node */ 5765 if (zone_movable_pfn[nid]) { 5766 /* Size ZONE_MOVABLE */ 5767 if (zone_type == ZONE_MOVABLE) { 5768 *zone_start_pfn = zone_movable_pfn[nid]; 5769 *zone_end_pfn = min(node_end_pfn, 5770 arch_zone_highest_possible_pfn[movable_zone]); 5771 5772 /* Adjust for ZONE_MOVABLE starting within this range */ 5773 } else if (!mirrored_kernelcore && 5774 *zone_start_pfn < zone_movable_pfn[nid] && 5775 *zone_end_pfn > zone_movable_pfn[nid]) { 5776 *zone_end_pfn = zone_movable_pfn[nid]; 5777 5778 /* Check if this whole range is within ZONE_MOVABLE */ 5779 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 5780 *zone_start_pfn = *zone_end_pfn; 5781 } 5782 } 5783 5784 /* 5785 * Return the number of pages a zone spans in a node, including holes 5786 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 5787 */ 5788 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 5789 unsigned long zone_type, 5790 unsigned long node_start_pfn, 5791 unsigned long node_end_pfn, 5792 unsigned long *zone_start_pfn, 5793 unsigned long *zone_end_pfn, 5794 unsigned long *ignored) 5795 { 5796 /* When hotadd a new node from cpu_up(), the node should be empty */ 5797 if (!node_start_pfn && !node_end_pfn) 5798 return 0; 5799 5800 /* Get the start and end of the zone */ 5801 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 5802 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 5803 adjust_zone_range_for_zone_movable(nid, zone_type, 5804 node_start_pfn, node_end_pfn, 5805 zone_start_pfn, zone_end_pfn); 5806 5807 /* Check that this node has pages within the zone's required range */ 5808 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 5809 return 0; 5810 5811 /* Move the zone boundaries inside the node if necessary */ 5812 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 5813 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 5814 5815 /* Return the spanned pages */ 5816 return *zone_end_pfn - *zone_start_pfn; 5817 } 5818 5819 /* 5820 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 5821 * then all holes in the requested range will be accounted for. 5822 */ 5823 unsigned long __meminit __absent_pages_in_range(int nid, 5824 unsigned long range_start_pfn, 5825 unsigned long range_end_pfn) 5826 { 5827 unsigned long nr_absent = range_end_pfn - range_start_pfn; 5828 unsigned long start_pfn, end_pfn; 5829 int i; 5830 5831 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 5832 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 5833 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 5834 nr_absent -= end_pfn - start_pfn; 5835 } 5836 return nr_absent; 5837 } 5838 5839 /** 5840 * absent_pages_in_range - Return number of page frames in holes within a range 5841 * @start_pfn: The start PFN to start searching for holes 5842 * @end_pfn: The end PFN to stop searching for holes 5843 * 5844 * It returns the number of pages frames in memory holes within a range. 5845 */ 5846 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 5847 unsigned long end_pfn) 5848 { 5849 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 5850 } 5851 5852 /* Return the number of page frames in holes in a zone on a node */ 5853 static unsigned long __meminit zone_absent_pages_in_node(int nid, 5854 unsigned long zone_type, 5855 unsigned long node_start_pfn, 5856 unsigned long node_end_pfn, 5857 unsigned long *ignored) 5858 { 5859 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 5860 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 5861 unsigned long zone_start_pfn, zone_end_pfn; 5862 unsigned long nr_absent; 5863 5864 /* When hotadd a new node from cpu_up(), the node should be empty */ 5865 if (!node_start_pfn && !node_end_pfn) 5866 return 0; 5867 5868 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 5869 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 5870 5871 adjust_zone_range_for_zone_movable(nid, zone_type, 5872 node_start_pfn, node_end_pfn, 5873 &zone_start_pfn, &zone_end_pfn); 5874 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 5875 5876 /* 5877 * ZONE_MOVABLE handling. 5878 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 5879 * and vice versa. 5880 */ 5881 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 5882 unsigned long start_pfn, end_pfn; 5883 struct memblock_region *r; 5884 5885 for_each_memblock(memory, r) { 5886 start_pfn = clamp(memblock_region_memory_base_pfn(r), 5887 zone_start_pfn, zone_end_pfn); 5888 end_pfn = clamp(memblock_region_memory_end_pfn(r), 5889 zone_start_pfn, zone_end_pfn); 5890 5891 if (zone_type == ZONE_MOVABLE && 5892 memblock_is_mirror(r)) 5893 nr_absent += end_pfn - start_pfn; 5894 5895 if (zone_type == ZONE_NORMAL && 5896 !memblock_is_mirror(r)) 5897 nr_absent += end_pfn - start_pfn; 5898 } 5899 } 5900 5901 return nr_absent; 5902 } 5903 5904 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5905 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 5906 unsigned long zone_type, 5907 unsigned long node_start_pfn, 5908 unsigned long node_end_pfn, 5909 unsigned long *zone_start_pfn, 5910 unsigned long *zone_end_pfn, 5911 unsigned long *zones_size) 5912 { 5913 unsigned int zone; 5914 5915 *zone_start_pfn = node_start_pfn; 5916 for (zone = 0; zone < zone_type; zone++) 5917 *zone_start_pfn += zones_size[zone]; 5918 5919 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 5920 5921 return zones_size[zone_type]; 5922 } 5923 5924 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 5925 unsigned long zone_type, 5926 unsigned long node_start_pfn, 5927 unsigned long node_end_pfn, 5928 unsigned long *zholes_size) 5929 { 5930 if (!zholes_size) 5931 return 0; 5932 5933 return zholes_size[zone_type]; 5934 } 5935 5936 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 5937 5938 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 5939 unsigned long node_start_pfn, 5940 unsigned long node_end_pfn, 5941 unsigned long *zones_size, 5942 unsigned long *zholes_size) 5943 { 5944 unsigned long realtotalpages = 0, totalpages = 0; 5945 enum zone_type i; 5946 5947 for (i = 0; i < MAX_NR_ZONES; i++) { 5948 struct zone *zone = pgdat->node_zones + i; 5949 unsigned long zone_start_pfn, zone_end_pfn; 5950 unsigned long size, real_size; 5951 5952 size = zone_spanned_pages_in_node(pgdat->node_id, i, 5953 node_start_pfn, 5954 node_end_pfn, 5955 &zone_start_pfn, 5956 &zone_end_pfn, 5957 zones_size); 5958 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 5959 node_start_pfn, node_end_pfn, 5960 zholes_size); 5961 if (size) 5962 zone->zone_start_pfn = zone_start_pfn; 5963 else 5964 zone->zone_start_pfn = 0; 5965 zone->spanned_pages = size; 5966 zone->present_pages = real_size; 5967 5968 totalpages += size; 5969 realtotalpages += real_size; 5970 } 5971 5972 pgdat->node_spanned_pages = totalpages; 5973 pgdat->node_present_pages = realtotalpages; 5974 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 5975 realtotalpages); 5976 } 5977 5978 #ifndef CONFIG_SPARSEMEM 5979 /* 5980 * Calculate the size of the zone->blockflags rounded to an unsigned long 5981 * Start by making sure zonesize is a multiple of pageblock_order by rounding 5982 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 5983 * round what is now in bits to nearest long in bits, then return it in 5984 * bytes. 5985 */ 5986 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 5987 { 5988 unsigned long usemapsize; 5989 5990 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 5991 usemapsize = roundup(zonesize, pageblock_nr_pages); 5992 usemapsize = usemapsize >> pageblock_order; 5993 usemapsize *= NR_PAGEBLOCK_BITS; 5994 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 5995 5996 return usemapsize / 8; 5997 } 5998 5999 static void __init setup_usemap(struct pglist_data *pgdat, 6000 struct zone *zone, 6001 unsigned long zone_start_pfn, 6002 unsigned long zonesize) 6003 { 6004 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6005 zone->pageblock_flags = NULL; 6006 if (usemapsize) 6007 zone->pageblock_flags = 6008 memblock_virt_alloc_node_nopanic(usemapsize, 6009 pgdat->node_id); 6010 } 6011 #else 6012 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6013 unsigned long zone_start_pfn, unsigned long zonesize) {} 6014 #endif /* CONFIG_SPARSEMEM */ 6015 6016 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6017 6018 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6019 void __paginginit set_pageblock_order(void) 6020 { 6021 unsigned int order; 6022 6023 /* Check that pageblock_nr_pages has not already been setup */ 6024 if (pageblock_order) 6025 return; 6026 6027 if (HPAGE_SHIFT > PAGE_SHIFT) 6028 order = HUGETLB_PAGE_ORDER; 6029 else 6030 order = MAX_ORDER - 1; 6031 6032 /* 6033 * Assume the largest contiguous order of interest is a huge page. 6034 * This value may be variable depending on boot parameters on IA64 and 6035 * powerpc. 6036 */ 6037 pageblock_order = order; 6038 } 6039 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6040 6041 /* 6042 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6043 * is unused as pageblock_order is set at compile-time. See 6044 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6045 * the kernel config 6046 */ 6047 void __paginginit set_pageblock_order(void) 6048 { 6049 } 6050 6051 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6052 6053 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages, 6054 unsigned long present_pages) 6055 { 6056 unsigned long pages = spanned_pages; 6057 6058 /* 6059 * Provide a more accurate estimation if there are holes within 6060 * the zone and SPARSEMEM is in use. If there are holes within the 6061 * zone, each populated memory region may cost us one or two extra 6062 * memmap pages due to alignment because memmap pages for each 6063 * populated regions may not be naturally aligned on page boundary. 6064 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6065 */ 6066 if (spanned_pages > present_pages + (present_pages >> 4) && 6067 IS_ENABLED(CONFIG_SPARSEMEM)) 6068 pages = present_pages; 6069 6070 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6071 } 6072 6073 /* 6074 * Set up the zone data structures: 6075 * - mark all pages reserved 6076 * - mark all memory queues empty 6077 * - clear the memory bitmaps 6078 * 6079 * NOTE: pgdat should get zeroed by caller. 6080 */ 6081 static void __paginginit free_area_init_core(struct pglist_data *pgdat) 6082 { 6083 enum zone_type j; 6084 int nid = pgdat->node_id; 6085 6086 pgdat_resize_init(pgdat); 6087 #ifdef CONFIG_NUMA_BALANCING 6088 spin_lock_init(&pgdat->numabalancing_migrate_lock); 6089 pgdat->numabalancing_migrate_nr_pages = 0; 6090 pgdat->numabalancing_migrate_next_window = jiffies; 6091 #endif 6092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6093 spin_lock_init(&pgdat->split_queue_lock); 6094 INIT_LIST_HEAD(&pgdat->split_queue); 6095 pgdat->split_queue_len = 0; 6096 #endif 6097 init_waitqueue_head(&pgdat->kswapd_wait); 6098 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6099 #ifdef CONFIG_COMPACTION 6100 init_waitqueue_head(&pgdat->kcompactd_wait); 6101 #endif 6102 pgdat_page_ext_init(pgdat); 6103 spin_lock_init(&pgdat->lru_lock); 6104 lruvec_init(node_lruvec(pgdat)); 6105 6106 pgdat->per_cpu_nodestats = &boot_nodestats; 6107 6108 for (j = 0; j < MAX_NR_ZONES; j++) { 6109 struct zone *zone = pgdat->node_zones + j; 6110 unsigned long size, realsize, freesize, memmap_pages; 6111 unsigned long zone_start_pfn = zone->zone_start_pfn; 6112 6113 size = zone->spanned_pages; 6114 realsize = freesize = zone->present_pages; 6115 6116 /* 6117 * Adjust freesize so that it accounts for how much memory 6118 * is used by this zone for memmap. This affects the watermark 6119 * and per-cpu initialisations 6120 */ 6121 memmap_pages = calc_memmap_size(size, realsize); 6122 if (!is_highmem_idx(j)) { 6123 if (freesize >= memmap_pages) { 6124 freesize -= memmap_pages; 6125 if (memmap_pages) 6126 printk(KERN_DEBUG 6127 " %s zone: %lu pages used for memmap\n", 6128 zone_names[j], memmap_pages); 6129 } else 6130 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6131 zone_names[j], memmap_pages, freesize); 6132 } 6133 6134 /* Account for reserved pages */ 6135 if (j == 0 && freesize > dma_reserve) { 6136 freesize -= dma_reserve; 6137 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6138 zone_names[0], dma_reserve); 6139 } 6140 6141 if (!is_highmem_idx(j)) 6142 nr_kernel_pages += freesize; 6143 /* Charge for highmem memmap if there are enough kernel pages */ 6144 else if (nr_kernel_pages > memmap_pages * 2) 6145 nr_kernel_pages -= memmap_pages; 6146 nr_all_pages += freesize; 6147 6148 /* 6149 * Set an approximate value for lowmem here, it will be adjusted 6150 * when the bootmem allocator frees pages into the buddy system. 6151 * And all highmem pages will be managed by the buddy system. 6152 */ 6153 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize; 6154 #ifdef CONFIG_NUMA 6155 zone->node = nid; 6156 #endif 6157 zone->name = zone_names[j]; 6158 zone->zone_pgdat = pgdat; 6159 spin_lock_init(&zone->lock); 6160 zone_seqlock_init(zone); 6161 zone_pcp_init(zone); 6162 6163 if (!size) 6164 continue; 6165 6166 set_pageblock_order(); 6167 setup_usemap(pgdat, zone, zone_start_pfn, size); 6168 init_currently_empty_zone(zone, zone_start_pfn, size); 6169 memmap_init(size, nid, j, zone_start_pfn); 6170 } 6171 } 6172 6173 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6174 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6175 { 6176 unsigned long __maybe_unused start = 0; 6177 unsigned long __maybe_unused offset = 0; 6178 6179 /* Skip empty nodes */ 6180 if (!pgdat->node_spanned_pages) 6181 return; 6182 6183 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6184 offset = pgdat->node_start_pfn - start; 6185 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6186 if (!pgdat->node_mem_map) { 6187 unsigned long size, end; 6188 struct page *map; 6189 6190 /* 6191 * The zone's endpoints aren't required to be MAX_ORDER 6192 * aligned but the node_mem_map endpoints must be in order 6193 * for the buddy allocator to function correctly. 6194 */ 6195 end = pgdat_end_pfn(pgdat); 6196 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6197 size = (end - start) * sizeof(struct page); 6198 map = alloc_remap(pgdat->node_id, size); 6199 if (!map) 6200 map = memblock_virt_alloc_node_nopanic(size, 6201 pgdat->node_id); 6202 pgdat->node_mem_map = map + offset; 6203 } 6204 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6205 __func__, pgdat->node_id, (unsigned long)pgdat, 6206 (unsigned long)pgdat->node_mem_map); 6207 #ifndef CONFIG_NEED_MULTIPLE_NODES 6208 /* 6209 * With no DISCONTIG, the global mem_map is just set as node 0's 6210 */ 6211 if (pgdat == NODE_DATA(0)) { 6212 mem_map = NODE_DATA(0)->node_mem_map; 6213 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6214 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6215 mem_map -= offset; 6216 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6217 } 6218 #endif 6219 } 6220 #else 6221 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6222 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6223 6224 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 6225 unsigned long node_start_pfn, unsigned long *zholes_size) 6226 { 6227 pg_data_t *pgdat = NODE_DATA(nid); 6228 unsigned long start_pfn = 0; 6229 unsigned long end_pfn = 0; 6230 6231 /* pg_data_t should be reset to zero when it's allocated */ 6232 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6233 6234 pgdat->node_id = nid; 6235 pgdat->node_start_pfn = node_start_pfn; 6236 pgdat->per_cpu_nodestats = NULL; 6237 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6238 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6239 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6240 (u64)start_pfn << PAGE_SHIFT, 6241 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6242 #else 6243 start_pfn = node_start_pfn; 6244 #endif 6245 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6246 zones_size, zholes_size); 6247 6248 alloc_node_mem_map(pgdat); 6249 6250 reset_deferred_meminit(pgdat); 6251 free_area_init_core(pgdat); 6252 } 6253 6254 #ifdef CONFIG_HAVE_MEMBLOCK 6255 /* 6256 * Only struct pages that are backed by physical memory are zeroed and 6257 * initialized by going through __init_single_page(). But, there are some 6258 * struct pages which are reserved in memblock allocator and their fields 6259 * may be accessed (for example page_to_pfn() on some configuration accesses 6260 * flags). We must explicitly zero those struct pages. 6261 */ 6262 void __paginginit zero_resv_unavail(void) 6263 { 6264 phys_addr_t start, end; 6265 unsigned long pfn; 6266 u64 i, pgcnt; 6267 6268 /* 6269 * Loop through ranges that are reserved, but do not have reported 6270 * physical memory backing. 6271 */ 6272 pgcnt = 0; 6273 for_each_resv_unavail_range(i, &start, &end) { 6274 for (pfn = PFN_DOWN(start); pfn < PFN_UP(end); pfn++) { 6275 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) 6276 continue; 6277 mm_zero_struct_page(pfn_to_page(pfn)); 6278 pgcnt++; 6279 } 6280 } 6281 6282 /* 6283 * Struct pages that do not have backing memory. This could be because 6284 * firmware is using some of this memory, or for some other reasons. 6285 * Once memblock is changed so such behaviour is not allowed: i.e. 6286 * list of "reserved" memory must be a subset of list of "memory", then 6287 * this code can be removed. 6288 */ 6289 if (pgcnt) 6290 pr_info("Reserved but unavailable: %lld pages", pgcnt); 6291 } 6292 #endif /* CONFIG_HAVE_MEMBLOCK */ 6293 6294 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6295 6296 #if MAX_NUMNODES > 1 6297 /* 6298 * Figure out the number of possible node ids. 6299 */ 6300 void __init setup_nr_node_ids(void) 6301 { 6302 unsigned int highest; 6303 6304 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6305 nr_node_ids = highest + 1; 6306 } 6307 #endif 6308 6309 /** 6310 * node_map_pfn_alignment - determine the maximum internode alignment 6311 * 6312 * This function should be called after node map is populated and sorted. 6313 * It calculates the maximum power of two alignment which can distinguish 6314 * all the nodes. 6315 * 6316 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6317 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 6318 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 6319 * shifted, 1GiB is enough and this function will indicate so. 6320 * 6321 * This is used to test whether pfn -> nid mapping of the chosen memory 6322 * model has fine enough granularity to avoid incorrect mapping for the 6323 * populated node map. 6324 * 6325 * Returns the determined alignment in pfn's. 0 if there is no alignment 6326 * requirement (single node). 6327 */ 6328 unsigned long __init node_map_pfn_alignment(void) 6329 { 6330 unsigned long accl_mask = 0, last_end = 0; 6331 unsigned long start, end, mask; 6332 int last_nid = -1; 6333 int i, nid; 6334 6335 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 6336 if (!start || last_nid < 0 || last_nid == nid) { 6337 last_nid = nid; 6338 last_end = end; 6339 continue; 6340 } 6341 6342 /* 6343 * Start with a mask granular enough to pin-point to the 6344 * start pfn and tick off bits one-by-one until it becomes 6345 * too coarse to separate the current node from the last. 6346 */ 6347 mask = ~((1 << __ffs(start)) - 1); 6348 while (mask && last_end <= (start & (mask << 1))) 6349 mask <<= 1; 6350 6351 /* accumulate all internode masks */ 6352 accl_mask |= mask; 6353 } 6354 6355 /* convert mask to number of pages */ 6356 return ~accl_mask + 1; 6357 } 6358 6359 /* Find the lowest pfn for a node */ 6360 static unsigned long __init find_min_pfn_for_node(int nid) 6361 { 6362 unsigned long min_pfn = ULONG_MAX; 6363 unsigned long start_pfn; 6364 int i; 6365 6366 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 6367 min_pfn = min(min_pfn, start_pfn); 6368 6369 if (min_pfn == ULONG_MAX) { 6370 pr_warn("Could not find start_pfn for node %d\n", nid); 6371 return 0; 6372 } 6373 6374 return min_pfn; 6375 } 6376 6377 /** 6378 * find_min_pfn_with_active_regions - Find the minimum PFN registered 6379 * 6380 * It returns the minimum PFN based on information provided via 6381 * memblock_set_node(). 6382 */ 6383 unsigned long __init find_min_pfn_with_active_regions(void) 6384 { 6385 return find_min_pfn_for_node(MAX_NUMNODES); 6386 } 6387 6388 /* 6389 * early_calculate_totalpages() 6390 * Sum pages in active regions for movable zone. 6391 * Populate N_MEMORY for calculating usable_nodes. 6392 */ 6393 static unsigned long __init early_calculate_totalpages(void) 6394 { 6395 unsigned long totalpages = 0; 6396 unsigned long start_pfn, end_pfn; 6397 int i, nid; 6398 6399 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6400 unsigned long pages = end_pfn - start_pfn; 6401 6402 totalpages += pages; 6403 if (pages) 6404 node_set_state(nid, N_MEMORY); 6405 } 6406 return totalpages; 6407 } 6408 6409 /* 6410 * Find the PFN the Movable zone begins in each node. Kernel memory 6411 * is spread evenly between nodes as long as the nodes have enough 6412 * memory. When they don't, some nodes will have more kernelcore than 6413 * others 6414 */ 6415 static void __init find_zone_movable_pfns_for_nodes(void) 6416 { 6417 int i, nid; 6418 unsigned long usable_startpfn; 6419 unsigned long kernelcore_node, kernelcore_remaining; 6420 /* save the state before borrow the nodemask */ 6421 nodemask_t saved_node_state = node_states[N_MEMORY]; 6422 unsigned long totalpages = early_calculate_totalpages(); 6423 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 6424 struct memblock_region *r; 6425 6426 /* Need to find movable_zone earlier when movable_node is specified. */ 6427 find_usable_zone_for_movable(); 6428 6429 /* 6430 * If movable_node is specified, ignore kernelcore and movablecore 6431 * options. 6432 */ 6433 if (movable_node_is_enabled()) { 6434 for_each_memblock(memory, r) { 6435 if (!memblock_is_hotpluggable(r)) 6436 continue; 6437 6438 nid = r->nid; 6439 6440 usable_startpfn = PFN_DOWN(r->base); 6441 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6442 min(usable_startpfn, zone_movable_pfn[nid]) : 6443 usable_startpfn; 6444 } 6445 6446 goto out2; 6447 } 6448 6449 /* 6450 * If kernelcore=mirror is specified, ignore movablecore option 6451 */ 6452 if (mirrored_kernelcore) { 6453 bool mem_below_4gb_not_mirrored = false; 6454 6455 for_each_memblock(memory, r) { 6456 if (memblock_is_mirror(r)) 6457 continue; 6458 6459 nid = r->nid; 6460 6461 usable_startpfn = memblock_region_memory_base_pfn(r); 6462 6463 if (usable_startpfn < 0x100000) { 6464 mem_below_4gb_not_mirrored = true; 6465 continue; 6466 } 6467 6468 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 6469 min(usable_startpfn, zone_movable_pfn[nid]) : 6470 usable_startpfn; 6471 } 6472 6473 if (mem_below_4gb_not_mirrored) 6474 pr_warn("This configuration results in unmirrored kernel memory."); 6475 6476 goto out2; 6477 } 6478 6479 /* 6480 * If movablecore=nn[KMG] was specified, calculate what size of 6481 * kernelcore that corresponds so that memory usable for 6482 * any allocation type is evenly spread. If both kernelcore 6483 * and movablecore are specified, then the value of kernelcore 6484 * will be used for required_kernelcore if it's greater than 6485 * what movablecore would have allowed. 6486 */ 6487 if (required_movablecore) { 6488 unsigned long corepages; 6489 6490 /* 6491 * Round-up so that ZONE_MOVABLE is at least as large as what 6492 * was requested by the user 6493 */ 6494 required_movablecore = 6495 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 6496 required_movablecore = min(totalpages, required_movablecore); 6497 corepages = totalpages - required_movablecore; 6498 6499 required_kernelcore = max(required_kernelcore, corepages); 6500 } 6501 6502 /* 6503 * If kernelcore was not specified or kernelcore size is larger 6504 * than totalpages, there is no ZONE_MOVABLE. 6505 */ 6506 if (!required_kernelcore || required_kernelcore >= totalpages) 6507 goto out; 6508 6509 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 6510 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 6511 6512 restart: 6513 /* Spread kernelcore memory as evenly as possible throughout nodes */ 6514 kernelcore_node = required_kernelcore / usable_nodes; 6515 for_each_node_state(nid, N_MEMORY) { 6516 unsigned long start_pfn, end_pfn; 6517 6518 /* 6519 * Recalculate kernelcore_node if the division per node 6520 * now exceeds what is necessary to satisfy the requested 6521 * amount of memory for the kernel 6522 */ 6523 if (required_kernelcore < kernelcore_node) 6524 kernelcore_node = required_kernelcore / usable_nodes; 6525 6526 /* 6527 * As the map is walked, we track how much memory is usable 6528 * by the kernel using kernelcore_remaining. When it is 6529 * 0, the rest of the node is usable by ZONE_MOVABLE 6530 */ 6531 kernelcore_remaining = kernelcore_node; 6532 6533 /* Go through each range of PFNs within this node */ 6534 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6535 unsigned long size_pages; 6536 6537 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 6538 if (start_pfn >= end_pfn) 6539 continue; 6540 6541 /* Account for what is only usable for kernelcore */ 6542 if (start_pfn < usable_startpfn) { 6543 unsigned long kernel_pages; 6544 kernel_pages = min(end_pfn, usable_startpfn) 6545 - start_pfn; 6546 6547 kernelcore_remaining -= min(kernel_pages, 6548 kernelcore_remaining); 6549 required_kernelcore -= min(kernel_pages, 6550 required_kernelcore); 6551 6552 /* Continue if range is now fully accounted */ 6553 if (end_pfn <= usable_startpfn) { 6554 6555 /* 6556 * Push zone_movable_pfn to the end so 6557 * that if we have to rebalance 6558 * kernelcore across nodes, we will 6559 * not double account here 6560 */ 6561 zone_movable_pfn[nid] = end_pfn; 6562 continue; 6563 } 6564 start_pfn = usable_startpfn; 6565 } 6566 6567 /* 6568 * The usable PFN range for ZONE_MOVABLE is from 6569 * start_pfn->end_pfn. Calculate size_pages as the 6570 * number of pages used as kernelcore 6571 */ 6572 size_pages = end_pfn - start_pfn; 6573 if (size_pages > kernelcore_remaining) 6574 size_pages = kernelcore_remaining; 6575 zone_movable_pfn[nid] = start_pfn + size_pages; 6576 6577 /* 6578 * Some kernelcore has been met, update counts and 6579 * break if the kernelcore for this node has been 6580 * satisfied 6581 */ 6582 required_kernelcore -= min(required_kernelcore, 6583 size_pages); 6584 kernelcore_remaining -= size_pages; 6585 if (!kernelcore_remaining) 6586 break; 6587 } 6588 } 6589 6590 /* 6591 * If there is still required_kernelcore, we do another pass with one 6592 * less node in the count. This will push zone_movable_pfn[nid] further 6593 * along on the nodes that still have memory until kernelcore is 6594 * satisfied 6595 */ 6596 usable_nodes--; 6597 if (usable_nodes && required_kernelcore > usable_nodes) 6598 goto restart; 6599 6600 out2: 6601 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 6602 for (nid = 0; nid < MAX_NUMNODES; nid++) 6603 zone_movable_pfn[nid] = 6604 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 6605 6606 out: 6607 /* restore the node_state */ 6608 node_states[N_MEMORY] = saved_node_state; 6609 } 6610 6611 /* Any regular or high memory on that node ? */ 6612 static void check_for_memory(pg_data_t *pgdat, int nid) 6613 { 6614 enum zone_type zone_type; 6615 6616 if (N_MEMORY == N_NORMAL_MEMORY) 6617 return; 6618 6619 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 6620 struct zone *zone = &pgdat->node_zones[zone_type]; 6621 if (populated_zone(zone)) { 6622 node_set_state(nid, N_HIGH_MEMORY); 6623 if (N_NORMAL_MEMORY != N_HIGH_MEMORY && 6624 zone_type <= ZONE_NORMAL) 6625 node_set_state(nid, N_NORMAL_MEMORY); 6626 break; 6627 } 6628 } 6629 } 6630 6631 /** 6632 * free_area_init_nodes - Initialise all pg_data_t and zone data 6633 * @max_zone_pfn: an array of max PFNs for each zone 6634 * 6635 * This will call free_area_init_node() for each active node in the system. 6636 * Using the page ranges provided by memblock_set_node(), the size of each 6637 * zone in each node and their holes is calculated. If the maximum PFN 6638 * between two adjacent zones match, it is assumed that the zone is empty. 6639 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 6640 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 6641 * starts where the previous one ended. For example, ZONE_DMA32 starts 6642 * at arch_max_dma_pfn. 6643 */ 6644 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 6645 { 6646 unsigned long start_pfn, end_pfn; 6647 int i, nid; 6648 6649 /* Record where the zone boundaries are */ 6650 memset(arch_zone_lowest_possible_pfn, 0, 6651 sizeof(arch_zone_lowest_possible_pfn)); 6652 memset(arch_zone_highest_possible_pfn, 0, 6653 sizeof(arch_zone_highest_possible_pfn)); 6654 6655 start_pfn = find_min_pfn_with_active_regions(); 6656 6657 for (i = 0; i < MAX_NR_ZONES; i++) { 6658 if (i == ZONE_MOVABLE) 6659 continue; 6660 6661 end_pfn = max(max_zone_pfn[i], start_pfn); 6662 arch_zone_lowest_possible_pfn[i] = start_pfn; 6663 arch_zone_highest_possible_pfn[i] = end_pfn; 6664 6665 start_pfn = end_pfn; 6666 } 6667 6668 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 6669 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 6670 find_zone_movable_pfns_for_nodes(); 6671 6672 /* Print out the zone ranges */ 6673 pr_info("Zone ranges:\n"); 6674 for (i = 0; i < MAX_NR_ZONES; i++) { 6675 if (i == ZONE_MOVABLE) 6676 continue; 6677 pr_info(" %-8s ", zone_names[i]); 6678 if (arch_zone_lowest_possible_pfn[i] == 6679 arch_zone_highest_possible_pfn[i]) 6680 pr_cont("empty\n"); 6681 else 6682 pr_cont("[mem %#018Lx-%#018Lx]\n", 6683 (u64)arch_zone_lowest_possible_pfn[i] 6684 << PAGE_SHIFT, 6685 ((u64)arch_zone_highest_possible_pfn[i] 6686 << PAGE_SHIFT) - 1); 6687 } 6688 6689 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 6690 pr_info("Movable zone start for each node\n"); 6691 for (i = 0; i < MAX_NUMNODES; i++) { 6692 if (zone_movable_pfn[i]) 6693 pr_info(" Node %d: %#018Lx\n", i, 6694 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 6695 } 6696 6697 /* Print out the early node map */ 6698 pr_info("Early memory node ranges\n"); 6699 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 6700 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 6701 (u64)start_pfn << PAGE_SHIFT, 6702 ((u64)end_pfn << PAGE_SHIFT) - 1); 6703 6704 /* Initialise every node */ 6705 mminit_verify_pageflags_layout(); 6706 setup_nr_node_ids(); 6707 for_each_online_node(nid) { 6708 pg_data_t *pgdat = NODE_DATA(nid); 6709 free_area_init_node(nid, NULL, 6710 find_min_pfn_for_node(nid), NULL); 6711 6712 /* Any memory on that node */ 6713 if (pgdat->node_present_pages) 6714 node_set_state(nid, N_MEMORY); 6715 check_for_memory(pgdat, nid); 6716 } 6717 zero_resv_unavail(); 6718 } 6719 6720 static int __init cmdline_parse_core(char *p, unsigned long *core) 6721 { 6722 unsigned long long coremem; 6723 if (!p) 6724 return -EINVAL; 6725 6726 coremem = memparse(p, &p); 6727 *core = coremem >> PAGE_SHIFT; 6728 6729 /* Paranoid check that UL is enough for the coremem value */ 6730 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 6731 6732 return 0; 6733 } 6734 6735 /* 6736 * kernelcore=size sets the amount of memory for use for allocations that 6737 * cannot be reclaimed or migrated. 6738 */ 6739 static int __init cmdline_parse_kernelcore(char *p) 6740 { 6741 /* parse kernelcore=mirror */ 6742 if (parse_option_str(p, "mirror")) { 6743 mirrored_kernelcore = true; 6744 return 0; 6745 } 6746 6747 return cmdline_parse_core(p, &required_kernelcore); 6748 } 6749 6750 /* 6751 * movablecore=size sets the amount of memory for use for allocations that 6752 * can be reclaimed or migrated. 6753 */ 6754 static int __init cmdline_parse_movablecore(char *p) 6755 { 6756 return cmdline_parse_core(p, &required_movablecore); 6757 } 6758 6759 early_param("kernelcore", cmdline_parse_kernelcore); 6760 early_param("movablecore", cmdline_parse_movablecore); 6761 6762 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6763 6764 void adjust_managed_page_count(struct page *page, long count) 6765 { 6766 spin_lock(&managed_page_count_lock); 6767 page_zone(page)->managed_pages += count; 6768 totalram_pages += count; 6769 #ifdef CONFIG_HIGHMEM 6770 if (PageHighMem(page)) 6771 totalhigh_pages += count; 6772 #endif 6773 spin_unlock(&managed_page_count_lock); 6774 } 6775 EXPORT_SYMBOL(adjust_managed_page_count); 6776 6777 unsigned long free_reserved_area(void *start, void *end, int poison, char *s) 6778 { 6779 void *pos; 6780 unsigned long pages = 0; 6781 6782 start = (void *)PAGE_ALIGN((unsigned long)start); 6783 end = (void *)((unsigned long)end & PAGE_MASK); 6784 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6785 if ((unsigned int)poison <= 0xFF) 6786 memset(pos, poison, PAGE_SIZE); 6787 free_reserved_page(virt_to_page(pos)); 6788 } 6789 6790 if (pages && s) 6791 pr_info("Freeing %s memory: %ldK\n", 6792 s, pages << (PAGE_SHIFT - 10)); 6793 6794 return pages; 6795 } 6796 EXPORT_SYMBOL(free_reserved_area); 6797 6798 #ifdef CONFIG_HIGHMEM 6799 void free_highmem_page(struct page *page) 6800 { 6801 __free_reserved_page(page); 6802 totalram_pages++; 6803 page_zone(page)->managed_pages++; 6804 totalhigh_pages++; 6805 } 6806 #endif 6807 6808 6809 void __init mem_init_print_info(const char *str) 6810 { 6811 unsigned long physpages, codesize, datasize, rosize, bss_size; 6812 unsigned long init_code_size, init_data_size; 6813 6814 physpages = get_num_physpages(); 6815 codesize = _etext - _stext; 6816 datasize = _edata - _sdata; 6817 rosize = __end_rodata - __start_rodata; 6818 bss_size = __bss_stop - __bss_start; 6819 init_data_size = __init_end - __init_begin; 6820 init_code_size = _einittext - _sinittext; 6821 6822 /* 6823 * Detect special cases and adjust section sizes accordingly: 6824 * 1) .init.* may be embedded into .data sections 6825 * 2) .init.text.* may be out of [__init_begin, __init_end], 6826 * please refer to arch/tile/kernel/vmlinux.lds.S. 6827 * 3) .rodata.* may be embedded into .text or .data sections. 6828 */ 6829 #define adj_init_size(start, end, size, pos, adj) \ 6830 do { \ 6831 if (start <= pos && pos < end && size > adj) \ 6832 size -= adj; \ 6833 } while (0) 6834 6835 adj_init_size(__init_begin, __init_end, init_data_size, 6836 _sinittext, init_code_size); 6837 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 6838 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 6839 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 6840 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 6841 6842 #undef adj_init_size 6843 6844 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 6845 #ifdef CONFIG_HIGHMEM 6846 ", %luK highmem" 6847 #endif 6848 "%s%s)\n", 6849 nr_free_pages() << (PAGE_SHIFT - 10), 6850 physpages << (PAGE_SHIFT - 10), 6851 codesize >> 10, datasize >> 10, rosize >> 10, 6852 (init_data_size + init_code_size) >> 10, bss_size >> 10, 6853 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10), 6854 totalcma_pages << (PAGE_SHIFT - 10), 6855 #ifdef CONFIG_HIGHMEM 6856 totalhigh_pages << (PAGE_SHIFT - 10), 6857 #endif 6858 str ? ", " : "", str ? str : ""); 6859 } 6860 6861 /** 6862 * set_dma_reserve - set the specified number of pages reserved in the first zone 6863 * @new_dma_reserve: The number of pages to mark reserved 6864 * 6865 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 6866 * In the DMA zone, a significant percentage may be consumed by kernel image 6867 * and other unfreeable allocations which can skew the watermarks badly. This 6868 * function may optionally be used to account for unfreeable pages in the 6869 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 6870 * smaller per-cpu batchsize. 6871 */ 6872 void __init set_dma_reserve(unsigned long new_dma_reserve) 6873 { 6874 dma_reserve = new_dma_reserve; 6875 } 6876 6877 void __init free_area_init(unsigned long *zones_size) 6878 { 6879 free_area_init_node(0, zones_size, 6880 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 6881 zero_resv_unavail(); 6882 } 6883 6884 static int page_alloc_cpu_dead(unsigned int cpu) 6885 { 6886 6887 lru_add_drain_cpu(cpu); 6888 drain_pages(cpu); 6889 6890 /* 6891 * Spill the event counters of the dead processor 6892 * into the current processors event counters. 6893 * This artificially elevates the count of the current 6894 * processor. 6895 */ 6896 vm_events_fold_cpu(cpu); 6897 6898 /* 6899 * Zero the differential counters of the dead processor 6900 * so that the vm statistics are consistent. 6901 * 6902 * This is only okay since the processor is dead and cannot 6903 * race with what we are doing. 6904 */ 6905 cpu_vm_stats_fold(cpu); 6906 return 0; 6907 } 6908 6909 void __init page_alloc_init(void) 6910 { 6911 int ret; 6912 6913 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 6914 "mm/page_alloc:dead", NULL, 6915 page_alloc_cpu_dead); 6916 WARN_ON(ret < 0); 6917 } 6918 6919 /* 6920 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6921 * or min_free_kbytes changes. 6922 */ 6923 static void calculate_totalreserve_pages(void) 6924 { 6925 struct pglist_data *pgdat; 6926 unsigned long reserve_pages = 0; 6927 enum zone_type i, j; 6928 6929 for_each_online_pgdat(pgdat) { 6930 6931 pgdat->totalreserve_pages = 0; 6932 6933 for (i = 0; i < MAX_NR_ZONES; i++) { 6934 struct zone *zone = pgdat->node_zones + i; 6935 long max = 0; 6936 6937 /* Find valid and maximum lowmem_reserve in the zone */ 6938 for (j = i; j < MAX_NR_ZONES; j++) { 6939 if (zone->lowmem_reserve[j] > max) 6940 max = zone->lowmem_reserve[j]; 6941 } 6942 6943 /* we treat the high watermark as reserved pages. */ 6944 max += high_wmark_pages(zone); 6945 6946 if (max > zone->managed_pages) 6947 max = zone->managed_pages; 6948 6949 pgdat->totalreserve_pages += max; 6950 6951 reserve_pages += max; 6952 } 6953 } 6954 totalreserve_pages = reserve_pages; 6955 } 6956 6957 /* 6958 * setup_per_zone_lowmem_reserve - called whenever 6959 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6960 * has a correct pages reserved value, so an adequate number of 6961 * pages are left in the zone after a successful __alloc_pages(). 6962 */ 6963 static void setup_per_zone_lowmem_reserve(void) 6964 { 6965 struct pglist_data *pgdat; 6966 enum zone_type j, idx; 6967 6968 for_each_online_pgdat(pgdat) { 6969 for (j = 0; j < MAX_NR_ZONES; j++) { 6970 struct zone *zone = pgdat->node_zones + j; 6971 unsigned long managed_pages = zone->managed_pages; 6972 6973 zone->lowmem_reserve[j] = 0; 6974 6975 idx = j; 6976 while (idx) { 6977 struct zone *lower_zone; 6978 6979 idx--; 6980 6981 if (sysctl_lowmem_reserve_ratio[idx] < 1) 6982 sysctl_lowmem_reserve_ratio[idx] = 1; 6983 6984 lower_zone = pgdat->node_zones + idx; 6985 lower_zone->lowmem_reserve[j] = managed_pages / 6986 sysctl_lowmem_reserve_ratio[idx]; 6987 managed_pages += lower_zone->managed_pages; 6988 } 6989 } 6990 } 6991 6992 /* update totalreserve_pages */ 6993 calculate_totalreserve_pages(); 6994 } 6995 6996 static void __setup_per_zone_wmarks(void) 6997 { 6998 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6999 unsigned long lowmem_pages = 0; 7000 struct zone *zone; 7001 unsigned long flags; 7002 7003 /* Calculate total number of !ZONE_HIGHMEM pages */ 7004 for_each_zone(zone) { 7005 if (!is_highmem(zone)) 7006 lowmem_pages += zone->managed_pages; 7007 } 7008 7009 for_each_zone(zone) { 7010 u64 tmp; 7011 7012 spin_lock_irqsave(&zone->lock, flags); 7013 tmp = (u64)pages_min * zone->managed_pages; 7014 do_div(tmp, lowmem_pages); 7015 if (is_highmem(zone)) { 7016 /* 7017 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7018 * need highmem pages, so cap pages_min to a small 7019 * value here. 7020 * 7021 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7022 * deltas control asynch page reclaim, and so should 7023 * not be capped for highmem. 7024 */ 7025 unsigned long min_pages; 7026 7027 min_pages = zone->managed_pages / 1024; 7028 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7029 zone->watermark[WMARK_MIN] = min_pages; 7030 } else { 7031 /* 7032 * If it's a lowmem zone, reserve a number of pages 7033 * proportionate to the zone's size. 7034 */ 7035 zone->watermark[WMARK_MIN] = tmp; 7036 } 7037 7038 /* 7039 * Set the kswapd watermarks distance according to the 7040 * scale factor in proportion to available memory, but 7041 * ensure a minimum size on small systems. 7042 */ 7043 tmp = max_t(u64, tmp >> 2, 7044 mult_frac(zone->managed_pages, 7045 watermark_scale_factor, 10000)); 7046 7047 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7048 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7049 7050 spin_unlock_irqrestore(&zone->lock, flags); 7051 } 7052 7053 /* update totalreserve_pages */ 7054 calculate_totalreserve_pages(); 7055 } 7056 7057 /** 7058 * setup_per_zone_wmarks - called when min_free_kbytes changes 7059 * or when memory is hot-{added|removed} 7060 * 7061 * Ensures that the watermark[min,low,high] values for each zone are set 7062 * correctly with respect to min_free_kbytes. 7063 */ 7064 void setup_per_zone_wmarks(void) 7065 { 7066 static DEFINE_SPINLOCK(lock); 7067 7068 spin_lock(&lock); 7069 __setup_per_zone_wmarks(); 7070 spin_unlock(&lock); 7071 } 7072 7073 /* 7074 * Initialise min_free_kbytes. 7075 * 7076 * For small machines we want it small (128k min). For large machines 7077 * we want it large (64MB max). But it is not linear, because network 7078 * bandwidth does not increase linearly with machine size. We use 7079 * 7080 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7081 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7082 * 7083 * which yields 7084 * 7085 * 16MB: 512k 7086 * 32MB: 724k 7087 * 64MB: 1024k 7088 * 128MB: 1448k 7089 * 256MB: 2048k 7090 * 512MB: 2896k 7091 * 1024MB: 4096k 7092 * 2048MB: 5792k 7093 * 4096MB: 8192k 7094 * 8192MB: 11584k 7095 * 16384MB: 16384k 7096 */ 7097 int __meminit init_per_zone_wmark_min(void) 7098 { 7099 unsigned long lowmem_kbytes; 7100 int new_min_free_kbytes; 7101 7102 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7103 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7104 7105 if (new_min_free_kbytes > user_min_free_kbytes) { 7106 min_free_kbytes = new_min_free_kbytes; 7107 if (min_free_kbytes < 128) 7108 min_free_kbytes = 128; 7109 if (min_free_kbytes > 65536) 7110 min_free_kbytes = 65536; 7111 } else { 7112 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7113 new_min_free_kbytes, user_min_free_kbytes); 7114 } 7115 setup_per_zone_wmarks(); 7116 refresh_zone_stat_thresholds(); 7117 setup_per_zone_lowmem_reserve(); 7118 7119 #ifdef CONFIG_NUMA 7120 setup_min_unmapped_ratio(); 7121 setup_min_slab_ratio(); 7122 #endif 7123 7124 return 0; 7125 } 7126 core_initcall(init_per_zone_wmark_min) 7127 7128 /* 7129 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7130 * that we can call two helper functions whenever min_free_kbytes 7131 * changes. 7132 */ 7133 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7134 void __user *buffer, size_t *length, loff_t *ppos) 7135 { 7136 int rc; 7137 7138 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7139 if (rc) 7140 return rc; 7141 7142 if (write) { 7143 user_min_free_kbytes = min_free_kbytes; 7144 setup_per_zone_wmarks(); 7145 } 7146 return 0; 7147 } 7148 7149 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7150 void __user *buffer, size_t *length, loff_t *ppos) 7151 { 7152 int rc; 7153 7154 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7155 if (rc) 7156 return rc; 7157 7158 if (write) 7159 setup_per_zone_wmarks(); 7160 7161 return 0; 7162 } 7163 7164 #ifdef CONFIG_NUMA 7165 static void setup_min_unmapped_ratio(void) 7166 { 7167 pg_data_t *pgdat; 7168 struct zone *zone; 7169 7170 for_each_online_pgdat(pgdat) 7171 pgdat->min_unmapped_pages = 0; 7172 7173 for_each_zone(zone) 7174 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages * 7175 sysctl_min_unmapped_ratio) / 100; 7176 } 7177 7178 7179 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7180 void __user *buffer, size_t *length, loff_t *ppos) 7181 { 7182 int rc; 7183 7184 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7185 if (rc) 7186 return rc; 7187 7188 setup_min_unmapped_ratio(); 7189 7190 return 0; 7191 } 7192 7193 static void setup_min_slab_ratio(void) 7194 { 7195 pg_data_t *pgdat; 7196 struct zone *zone; 7197 7198 for_each_online_pgdat(pgdat) 7199 pgdat->min_slab_pages = 0; 7200 7201 for_each_zone(zone) 7202 zone->zone_pgdat->min_slab_pages += (zone->managed_pages * 7203 sysctl_min_slab_ratio) / 100; 7204 } 7205 7206 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7207 void __user *buffer, size_t *length, loff_t *ppos) 7208 { 7209 int rc; 7210 7211 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7212 if (rc) 7213 return rc; 7214 7215 setup_min_slab_ratio(); 7216 7217 return 0; 7218 } 7219 #endif 7220 7221 /* 7222 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7223 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7224 * whenever sysctl_lowmem_reserve_ratio changes. 7225 * 7226 * The reserve ratio obviously has absolutely no relation with the 7227 * minimum watermarks. The lowmem reserve ratio can only make sense 7228 * if in function of the boot time zone sizes. 7229 */ 7230 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7231 void __user *buffer, size_t *length, loff_t *ppos) 7232 { 7233 proc_dointvec_minmax(table, write, buffer, length, ppos); 7234 setup_per_zone_lowmem_reserve(); 7235 return 0; 7236 } 7237 7238 /* 7239 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7240 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7241 * pagelist can have before it gets flushed back to buddy allocator. 7242 */ 7243 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7244 void __user *buffer, size_t *length, loff_t *ppos) 7245 { 7246 struct zone *zone; 7247 int old_percpu_pagelist_fraction; 7248 int ret; 7249 7250 mutex_lock(&pcp_batch_high_lock); 7251 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 7252 7253 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 7254 if (!write || ret < 0) 7255 goto out; 7256 7257 /* Sanity checking to avoid pcp imbalance */ 7258 if (percpu_pagelist_fraction && 7259 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 7260 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 7261 ret = -EINVAL; 7262 goto out; 7263 } 7264 7265 /* No change? */ 7266 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 7267 goto out; 7268 7269 for_each_populated_zone(zone) { 7270 unsigned int cpu; 7271 7272 for_each_possible_cpu(cpu) 7273 pageset_set_high_and_batch(zone, 7274 per_cpu_ptr(zone->pageset, cpu)); 7275 } 7276 out: 7277 mutex_unlock(&pcp_batch_high_lock); 7278 return ret; 7279 } 7280 7281 #ifdef CONFIG_NUMA 7282 int hashdist = HASHDIST_DEFAULT; 7283 7284 static int __init set_hashdist(char *str) 7285 { 7286 if (!str) 7287 return 0; 7288 hashdist = simple_strtoul(str, &str, 0); 7289 return 1; 7290 } 7291 __setup("hashdist=", set_hashdist); 7292 #endif 7293 7294 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 7295 /* 7296 * Returns the number of pages that arch has reserved but 7297 * is not known to alloc_large_system_hash(). 7298 */ 7299 static unsigned long __init arch_reserved_kernel_pages(void) 7300 { 7301 return 0; 7302 } 7303 #endif 7304 7305 /* 7306 * Adaptive scale is meant to reduce sizes of hash tables on large memory 7307 * machines. As memory size is increased the scale is also increased but at 7308 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 7309 * quadruples the scale is increased by one, which means the size of hash table 7310 * only doubles, instead of quadrupling as well. 7311 * Because 32-bit systems cannot have large physical memory, where this scaling 7312 * makes sense, it is disabled on such platforms. 7313 */ 7314 #if __BITS_PER_LONG > 32 7315 #define ADAPT_SCALE_BASE (64ul << 30) 7316 #define ADAPT_SCALE_SHIFT 2 7317 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 7318 #endif 7319 7320 /* 7321 * allocate a large system hash table from bootmem 7322 * - it is assumed that the hash table must contain an exact power-of-2 7323 * quantity of entries 7324 * - limit is the number of hash buckets, not the total allocation size 7325 */ 7326 void *__init alloc_large_system_hash(const char *tablename, 7327 unsigned long bucketsize, 7328 unsigned long numentries, 7329 int scale, 7330 int flags, 7331 unsigned int *_hash_shift, 7332 unsigned int *_hash_mask, 7333 unsigned long low_limit, 7334 unsigned long high_limit) 7335 { 7336 unsigned long long max = high_limit; 7337 unsigned long log2qty, size; 7338 void *table = NULL; 7339 gfp_t gfp_flags; 7340 7341 /* allow the kernel cmdline to have a say */ 7342 if (!numentries) { 7343 /* round applicable memory size up to nearest megabyte */ 7344 numentries = nr_kernel_pages; 7345 numentries -= arch_reserved_kernel_pages(); 7346 7347 /* It isn't necessary when PAGE_SIZE >= 1MB */ 7348 if (PAGE_SHIFT < 20) 7349 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 7350 7351 #if __BITS_PER_LONG > 32 7352 if (!high_limit) { 7353 unsigned long adapt; 7354 7355 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 7356 adapt <<= ADAPT_SCALE_SHIFT) 7357 scale++; 7358 } 7359 #endif 7360 7361 /* limit to 1 bucket per 2^scale bytes of low memory */ 7362 if (scale > PAGE_SHIFT) 7363 numentries >>= (scale - PAGE_SHIFT); 7364 else 7365 numentries <<= (PAGE_SHIFT - scale); 7366 7367 /* Make sure we've got at least a 0-order allocation.. */ 7368 if (unlikely(flags & HASH_SMALL)) { 7369 /* Makes no sense without HASH_EARLY */ 7370 WARN_ON(!(flags & HASH_EARLY)); 7371 if (!(numentries >> *_hash_shift)) { 7372 numentries = 1UL << *_hash_shift; 7373 BUG_ON(!numentries); 7374 } 7375 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 7376 numentries = PAGE_SIZE / bucketsize; 7377 } 7378 numentries = roundup_pow_of_two(numentries); 7379 7380 /* limit allocation size to 1/16 total memory by default */ 7381 if (max == 0) { 7382 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 7383 do_div(max, bucketsize); 7384 } 7385 max = min(max, 0x80000000ULL); 7386 7387 if (numentries < low_limit) 7388 numentries = low_limit; 7389 if (numentries > max) 7390 numentries = max; 7391 7392 log2qty = ilog2(numentries); 7393 7394 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 7395 do { 7396 size = bucketsize << log2qty; 7397 if (flags & HASH_EARLY) { 7398 if (flags & HASH_ZERO) 7399 table = memblock_virt_alloc_nopanic(size, 0); 7400 else 7401 table = memblock_virt_alloc_raw(size, 0); 7402 } else if (hashdist) { 7403 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 7404 } else { 7405 /* 7406 * If bucketsize is not a power-of-two, we may free 7407 * some pages at the end of hash table which 7408 * alloc_pages_exact() automatically does 7409 */ 7410 if (get_order(size) < MAX_ORDER) { 7411 table = alloc_pages_exact(size, gfp_flags); 7412 kmemleak_alloc(table, size, 1, gfp_flags); 7413 } 7414 } 7415 } while (!table && size > PAGE_SIZE && --log2qty); 7416 7417 if (!table) 7418 panic("Failed to allocate %s hash table\n", tablename); 7419 7420 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n", 7421 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size); 7422 7423 if (_hash_shift) 7424 *_hash_shift = log2qty; 7425 if (_hash_mask) 7426 *_hash_mask = (1 << log2qty) - 1; 7427 7428 return table; 7429 } 7430 7431 /* 7432 * This function checks whether pageblock includes unmovable pages or not. 7433 * If @count is not zero, it is okay to include less @count unmovable pages 7434 * 7435 * PageLRU check without isolation or lru_lock could race so that 7436 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 7437 * check without lock_page also may miss some movable non-lru pages at 7438 * race condition. So you can't expect this function should be exact. 7439 */ 7440 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 7441 int migratetype, 7442 bool skip_hwpoisoned_pages) 7443 { 7444 unsigned long pfn, iter, found; 7445 7446 /* 7447 * For avoiding noise data, lru_add_drain_all() should be called 7448 * If ZONE_MOVABLE, the zone never contains unmovable pages 7449 */ 7450 if (zone_idx(zone) == ZONE_MOVABLE) 7451 return false; 7452 7453 /* 7454 * CMA allocations (alloc_contig_range) really need to mark isolate 7455 * CMA pageblocks even when they are not movable in fact so consider 7456 * them movable here. 7457 */ 7458 if (is_migrate_cma(migratetype) && 7459 is_migrate_cma(get_pageblock_migratetype(page))) 7460 return false; 7461 7462 pfn = page_to_pfn(page); 7463 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 7464 unsigned long check = pfn + iter; 7465 7466 if (!pfn_valid_within(check)) 7467 continue; 7468 7469 page = pfn_to_page(check); 7470 7471 if (PageReserved(page)) 7472 return true; 7473 7474 /* 7475 * Hugepages are not in LRU lists, but they're movable. 7476 * We need not scan over tail pages bacause we don't 7477 * handle each tail page individually in migration. 7478 */ 7479 if (PageHuge(page)) { 7480 iter = round_up(iter + 1, 1<<compound_order(page)) - 1; 7481 continue; 7482 } 7483 7484 /* 7485 * We can't use page_count without pin a page 7486 * because another CPU can free compound page. 7487 * This check already skips compound tails of THP 7488 * because their page->_refcount is zero at all time. 7489 */ 7490 if (!page_ref_count(page)) { 7491 if (PageBuddy(page)) 7492 iter += (1 << page_order(page)) - 1; 7493 continue; 7494 } 7495 7496 /* 7497 * The HWPoisoned page may be not in buddy system, and 7498 * page_count() is not 0. 7499 */ 7500 if (skip_hwpoisoned_pages && PageHWPoison(page)) 7501 continue; 7502 7503 if (__PageMovable(page)) 7504 continue; 7505 7506 if (!PageLRU(page)) 7507 found++; 7508 /* 7509 * If there are RECLAIMABLE pages, we need to check 7510 * it. But now, memory offline itself doesn't call 7511 * shrink_node_slabs() and it still to be fixed. 7512 */ 7513 /* 7514 * If the page is not RAM, page_count()should be 0. 7515 * we don't need more check. This is an _used_ not-movable page. 7516 * 7517 * The problematic thing here is PG_reserved pages. PG_reserved 7518 * is set to both of a memory hole page and a _used_ kernel 7519 * page at boot. 7520 */ 7521 if (found > count) 7522 return true; 7523 } 7524 return false; 7525 } 7526 7527 bool is_pageblock_removable_nolock(struct page *page) 7528 { 7529 struct zone *zone; 7530 unsigned long pfn; 7531 7532 /* 7533 * We have to be careful here because we are iterating over memory 7534 * sections which are not zone aware so we might end up outside of 7535 * the zone but still within the section. 7536 * We have to take care about the node as well. If the node is offline 7537 * its NODE_DATA will be NULL - see page_zone. 7538 */ 7539 if (!node_online(page_to_nid(page))) 7540 return false; 7541 7542 zone = page_zone(page); 7543 pfn = page_to_pfn(page); 7544 if (!zone_spans_pfn(zone, pfn)) 7545 return false; 7546 7547 return !has_unmovable_pages(zone, page, 0, MIGRATE_MOVABLE, true); 7548 } 7549 7550 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA) 7551 7552 static unsigned long pfn_max_align_down(unsigned long pfn) 7553 { 7554 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 7555 pageblock_nr_pages) - 1); 7556 } 7557 7558 static unsigned long pfn_max_align_up(unsigned long pfn) 7559 { 7560 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 7561 pageblock_nr_pages)); 7562 } 7563 7564 /* [start, end) must belong to a single zone. */ 7565 static int __alloc_contig_migrate_range(struct compact_control *cc, 7566 unsigned long start, unsigned long end) 7567 { 7568 /* This function is based on compact_zone() from compaction.c. */ 7569 unsigned long nr_reclaimed; 7570 unsigned long pfn = start; 7571 unsigned int tries = 0; 7572 int ret = 0; 7573 7574 migrate_prep(); 7575 7576 while (pfn < end || !list_empty(&cc->migratepages)) { 7577 if (fatal_signal_pending(current)) { 7578 ret = -EINTR; 7579 break; 7580 } 7581 7582 if (list_empty(&cc->migratepages)) { 7583 cc->nr_migratepages = 0; 7584 pfn = isolate_migratepages_range(cc, pfn, end); 7585 if (!pfn) { 7586 ret = -EINTR; 7587 break; 7588 } 7589 tries = 0; 7590 } else if (++tries == 5) { 7591 ret = ret < 0 ? ret : -EBUSY; 7592 break; 7593 } 7594 7595 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 7596 &cc->migratepages); 7597 cc->nr_migratepages -= nr_reclaimed; 7598 7599 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 7600 NULL, 0, cc->mode, MR_CMA); 7601 } 7602 if (ret < 0) { 7603 putback_movable_pages(&cc->migratepages); 7604 return ret; 7605 } 7606 return 0; 7607 } 7608 7609 /** 7610 * alloc_contig_range() -- tries to allocate given range of pages 7611 * @start: start PFN to allocate 7612 * @end: one-past-the-last PFN to allocate 7613 * @migratetype: migratetype of the underlaying pageblocks (either 7614 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 7615 * in range must have the same migratetype and it must 7616 * be either of the two. 7617 * @gfp_mask: GFP mask to use during compaction 7618 * 7619 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 7620 * aligned, however it's the caller's responsibility to guarantee that 7621 * we are the only thread that changes migrate type of pageblocks the 7622 * pages fall in. 7623 * 7624 * The PFN range must belong to a single zone. 7625 * 7626 * Returns zero on success or negative error code. On success all 7627 * pages which PFN is in [start, end) are allocated for the caller and 7628 * need to be freed with free_contig_range(). 7629 */ 7630 int alloc_contig_range(unsigned long start, unsigned long end, 7631 unsigned migratetype, gfp_t gfp_mask) 7632 { 7633 unsigned long outer_start, outer_end; 7634 unsigned int order; 7635 int ret = 0; 7636 7637 struct compact_control cc = { 7638 .nr_migratepages = 0, 7639 .order = -1, 7640 .zone = page_zone(pfn_to_page(start)), 7641 .mode = MIGRATE_SYNC, 7642 .ignore_skip_hint = true, 7643 .no_set_skip_hint = true, 7644 .gfp_mask = current_gfp_context(gfp_mask), 7645 }; 7646 INIT_LIST_HEAD(&cc.migratepages); 7647 7648 /* 7649 * What we do here is we mark all pageblocks in range as 7650 * MIGRATE_ISOLATE. Because pageblock and max order pages may 7651 * have different sizes, and due to the way page allocator 7652 * work, we align the range to biggest of the two pages so 7653 * that page allocator won't try to merge buddies from 7654 * different pageblocks and change MIGRATE_ISOLATE to some 7655 * other migration type. 7656 * 7657 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 7658 * migrate the pages from an unaligned range (ie. pages that 7659 * we are interested in). This will put all the pages in 7660 * range back to page allocator as MIGRATE_ISOLATE. 7661 * 7662 * When this is done, we take the pages in range from page 7663 * allocator removing them from the buddy system. This way 7664 * page allocator will never consider using them. 7665 * 7666 * This lets us mark the pageblocks back as 7667 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 7668 * aligned range but not in the unaligned, original range are 7669 * put back to page allocator so that buddy can use them. 7670 */ 7671 7672 ret = start_isolate_page_range(pfn_max_align_down(start), 7673 pfn_max_align_up(end), migratetype, 7674 false); 7675 if (ret) 7676 return ret; 7677 7678 /* 7679 * In case of -EBUSY, we'd like to know which page causes problem. 7680 * So, just fall through. test_pages_isolated() has a tracepoint 7681 * which will report the busy page. 7682 * 7683 * It is possible that busy pages could become available before 7684 * the call to test_pages_isolated, and the range will actually be 7685 * allocated. So, if we fall through be sure to clear ret so that 7686 * -EBUSY is not accidentally used or returned to caller. 7687 */ 7688 ret = __alloc_contig_migrate_range(&cc, start, end); 7689 if (ret && ret != -EBUSY) 7690 goto done; 7691 ret =0; 7692 7693 /* 7694 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 7695 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 7696 * more, all pages in [start, end) are free in page allocator. 7697 * What we are going to do is to allocate all pages from 7698 * [start, end) (that is remove them from page allocator). 7699 * 7700 * The only problem is that pages at the beginning and at the 7701 * end of interesting range may be not aligned with pages that 7702 * page allocator holds, ie. they can be part of higher order 7703 * pages. Because of this, we reserve the bigger range and 7704 * once this is done free the pages we are not interested in. 7705 * 7706 * We don't have to hold zone->lock here because the pages are 7707 * isolated thus they won't get removed from buddy. 7708 */ 7709 7710 lru_add_drain_all(); 7711 drain_all_pages(cc.zone); 7712 7713 order = 0; 7714 outer_start = start; 7715 while (!PageBuddy(pfn_to_page(outer_start))) { 7716 if (++order >= MAX_ORDER) { 7717 outer_start = start; 7718 break; 7719 } 7720 outer_start &= ~0UL << order; 7721 } 7722 7723 if (outer_start != start) { 7724 order = page_order(pfn_to_page(outer_start)); 7725 7726 /* 7727 * outer_start page could be small order buddy page and 7728 * it doesn't include start page. Adjust outer_start 7729 * in this case to report failed page properly 7730 * on tracepoint in test_pages_isolated() 7731 */ 7732 if (outer_start + (1UL << order) <= start) 7733 outer_start = start; 7734 } 7735 7736 /* Make sure the range is really isolated. */ 7737 if (test_pages_isolated(outer_start, end, false)) { 7738 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 7739 __func__, outer_start, end); 7740 ret = -EBUSY; 7741 goto done; 7742 } 7743 7744 /* Grab isolated pages from freelists. */ 7745 outer_end = isolate_freepages_range(&cc, outer_start, end); 7746 if (!outer_end) { 7747 ret = -EBUSY; 7748 goto done; 7749 } 7750 7751 /* Free head and tail (if any) */ 7752 if (start != outer_start) 7753 free_contig_range(outer_start, start - outer_start); 7754 if (end != outer_end) 7755 free_contig_range(end, outer_end - end); 7756 7757 done: 7758 undo_isolate_page_range(pfn_max_align_down(start), 7759 pfn_max_align_up(end), migratetype); 7760 return ret; 7761 } 7762 7763 void free_contig_range(unsigned long pfn, unsigned nr_pages) 7764 { 7765 unsigned int count = 0; 7766 7767 for (; nr_pages--; pfn++) { 7768 struct page *page = pfn_to_page(pfn); 7769 7770 count += page_count(page) != 1; 7771 __free_page(page); 7772 } 7773 WARN(count != 0, "%d pages are still in use!\n", count); 7774 } 7775 #endif 7776 7777 #ifdef CONFIG_MEMORY_HOTPLUG 7778 /* 7779 * The zone indicated has a new number of managed_pages; batch sizes and percpu 7780 * page high values need to be recalulated. 7781 */ 7782 void __meminit zone_pcp_update(struct zone *zone) 7783 { 7784 unsigned cpu; 7785 mutex_lock(&pcp_batch_high_lock); 7786 for_each_possible_cpu(cpu) 7787 pageset_set_high_and_batch(zone, 7788 per_cpu_ptr(zone->pageset, cpu)); 7789 mutex_unlock(&pcp_batch_high_lock); 7790 } 7791 #endif 7792 7793 void zone_pcp_reset(struct zone *zone) 7794 { 7795 unsigned long flags; 7796 int cpu; 7797 struct per_cpu_pageset *pset; 7798 7799 /* avoid races with drain_pages() */ 7800 local_irq_save(flags); 7801 if (zone->pageset != &boot_pageset) { 7802 for_each_online_cpu(cpu) { 7803 pset = per_cpu_ptr(zone->pageset, cpu); 7804 drain_zonestat(zone, pset); 7805 } 7806 free_percpu(zone->pageset); 7807 zone->pageset = &boot_pageset; 7808 } 7809 local_irq_restore(flags); 7810 } 7811 7812 #ifdef CONFIG_MEMORY_HOTREMOVE 7813 /* 7814 * All pages in the range must be in a single zone and isolated 7815 * before calling this. 7816 */ 7817 void 7818 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7819 { 7820 struct page *page; 7821 struct zone *zone; 7822 unsigned int order, i; 7823 unsigned long pfn; 7824 unsigned long flags; 7825 /* find the first valid pfn */ 7826 for (pfn = start_pfn; pfn < end_pfn; pfn++) 7827 if (pfn_valid(pfn)) 7828 break; 7829 if (pfn == end_pfn) 7830 return; 7831 offline_mem_sections(pfn, end_pfn); 7832 zone = page_zone(pfn_to_page(pfn)); 7833 spin_lock_irqsave(&zone->lock, flags); 7834 pfn = start_pfn; 7835 while (pfn < end_pfn) { 7836 if (!pfn_valid(pfn)) { 7837 pfn++; 7838 continue; 7839 } 7840 page = pfn_to_page(pfn); 7841 /* 7842 * The HWPoisoned page may be not in buddy system, and 7843 * page_count() is not 0. 7844 */ 7845 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7846 pfn++; 7847 SetPageReserved(page); 7848 continue; 7849 } 7850 7851 BUG_ON(page_count(page)); 7852 BUG_ON(!PageBuddy(page)); 7853 order = page_order(page); 7854 #ifdef CONFIG_DEBUG_VM 7855 pr_info("remove from free list %lx %d %lx\n", 7856 pfn, 1 << order, end_pfn); 7857 #endif 7858 list_del(&page->lru); 7859 rmv_page_order(page); 7860 zone->free_area[order].nr_free--; 7861 for (i = 0; i < (1 << order); i++) 7862 SetPageReserved((page+i)); 7863 pfn += (1 << order); 7864 } 7865 spin_unlock_irqrestore(&zone->lock, flags); 7866 } 7867 #endif 7868 7869 bool is_free_buddy_page(struct page *page) 7870 { 7871 struct zone *zone = page_zone(page); 7872 unsigned long pfn = page_to_pfn(page); 7873 unsigned long flags; 7874 unsigned int order; 7875 7876 spin_lock_irqsave(&zone->lock, flags); 7877 for (order = 0; order < MAX_ORDER; order++) { 7878 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7879 7880 if (PageBuddy(page_head) && page_order(page_head) >= order) 7881 break; 7882 } 7883 spin_unlock_irqrestore(&zone->lock, flags); 7884 7885 return order < MAX_ORDER; 7886 } 7887