xref: /openbmc/linux/mm/page_alloc.c (revision 0eb76ba2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/mmu_notifier.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 #include <linux/lockdep.h>
70 #include <linux/nmi.h>
71 #include <linux/psi.h>
72 #include <linux/padata.h>
73 #include <linux/khugepaged.h>
74 #include <linux/buffer_head.h>
75 
76 #include <asm/sections.h>
77 #include <asm/tlbflush.h>
78 #include <asm/div64.h>
79 #include "internal.h"
80 #include "shuffle.h"
81 #include "page_reporting.h"
82 
83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
84 typedef int __bitwise fpi_t;
85 
86 /* No special request */
87 #define FPI_NONE		((__force fpi_t)0)
88 
89 /*
90  * Skip free page reporting notification for the (possibly merged) page.
91  * This does not hinder free page reporting from grabbing the page,
92  * reporting it and marking it "reported" -  it only skips notifying
93  * the free page reporting infrastructure about a newly freed page. For
94  * example, used when temporarily pulling a page from a freelist and
95  * putting it back unmodified.
96  */
97 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
98 
99 /*
100  * Place the (possibly merged) page to the tail of the freelist. Will ignore
101  * page shuffling (relevant code - e.g., memory onlining - is expected to
102  * shuffle the whole zone).
103  *
104  * Note: No code should rely on this flag for correctness - it's purely
105  *       to allow for optimizations when handing back either fresh pages
106  *       (memory onlining) or untouched pages (page isolation, free page
107  *       reporting).
108  */
109 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
110 
111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
112 static DEFINE_MUTEX(pcp_batch_high_lock);
113 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
114 
115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
116 DEFINE_PER_CPU(int, numa_node);
117 EXPORT_PER_CPU_SYMBOL(numa_node);
118 #endif
119 
120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
121 
122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
123 /*
124  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
125  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
126  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
127  * defined in <linux/topology.h>.
128  */
129 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
130 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
131 #endif
132 
133 /* work_structs for global per-cpu drains */
134 struct pcpu_drain {
135 	struct zone *zone;
136 	struct work_struct work;
137 };
138 static DEFINE_MUTEX(pcpu_drain_mutex);
139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
140 
141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
142 volatile unsigned long latent_entropy __latent_entropy;
143 EXPORT_SYMBOL(latent_entropy);
144 #endif
145 
146 /*
147  * Array of node states.
148  */
149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
150 	[N_POSSIBLE] = NODE_MASK_ALL,
151 	[N_ONLINE] = { { [0] = 1UL } },
152 #ifndef CONFIG_NUMA
153 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
154 #ifdef CONFIG_HIGHMEM
155 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
156 #endif
157 	[N_MEMORY] = { { [0] = 1UL } },
158 	[N_CPU] = { { [0] = 1UL } },
159 #endif	/* NUMA */
160 };
161 EXPORT_SYMBOL(node_states);
162 
163 atomic_long_t _totalram_pages __read_mostly;
164 EXPORT_SYMBOL(_totalram_pages);
165 unsigned long totalreserve_pages __read_mostly;
166 unsigned long totalcma_pages __read_mostly;
167 
168 int percpu_pagelist_fraction;
169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
170 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
171 EXPORT_SYMBOL(init_on_alloc);
172 
173 DEFINE_STATIC_KEY_FALSE(init_on_free);
174 EXPORT_SYMBOL(init_on_free);
175 
176 static bool _init_on_alloc_enabled_early __read_mostly
177 				= IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON);
178 static int __init early_init_on_alloc(char *buf)
179 {
180 
181 	return kstrtobool(buf, &_init_on_alloc_enabled_early);
182 }
183 early_param("init_on_alloc", early_init_on_alloc);
184 
185 static bool _init_on_free_enabled_early __read_mostly
186 				= IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON);
187 static int __init early_init_on_free(char *buf)
188 {
189 	return kstrtobool(buf, &_init_on_free_enabled_early);
190 }
191 early_param("init_on_free", early_init_on_free);
192 
193 /*
194  * A cached value of the page's pageblock's migratetype, used when the page is
195  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
196  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
197  * Also the migratetype set in the page does not necessarily match the pcplist
198  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
199  * other index - this ensures that it will be put on the correct CMA freelist.
200  */
201 static inline int get_pcppage_migratetype(struct page *page)
202 {
203 	return page->index;
204 }
205 
206 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
207 {
208 	page->index = migratetype;
209 }
210 
211 #ifdef CONFIG_PM_SLEEP
212 /*
213  * The following functions are used by the suspend/hibernate code to temporarily
214  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
215  * while devices are suspended.  To avoid races with the suspend/hibernate code,
216  * they should always be called with system_transition_mutex held
217  * (gfp_allowed_mask also should only be modified with system_transition_mutex
218  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
219  * with that modification).
220  */
221 
222 static gfp_t saved_gfp_mask;
223 
224 void pm_restore_gfp_mask(void)
225 {
226 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
227 	if (saved_gfp_mask) {
228 		gfp_allowed_mask = saved_gfp_mask;
229 		saved_gfp_mask = 0;
230 	}
231 }
232 
233 void pm_restrict_gfp_mask(void)
234 {
235 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
236 	WARN_ON(saved_gfp_mask);
237 	saved_gfp_mask = gfp_allowed_mask;
238 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
239 }
240 
241 bool pm_suspended_storage(void)
242 {
243 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
244 		return false;
245 	return true;
246 }
247 #endif /* CONFIG_PM_SLEEP */
248 
249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
250 unsigned int pageblock_order __read_mostly;
251 #endif
252 
253 static void __free_pages_ok(struct page *page, unsigned int order,
254 			    fpi_t fpi_flags);
255 
256 /*
257  * results with 256, 32 in the lowmem_reserve sysctl:
258  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
259  *	1G machine -> (16M dma, 784M normal, 224M high)
260  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
261  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
262  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
263  *
264  * TBD: should special case ZONE_DMA32 machines here - in those we normally
265  * don't need any ZONE_NORMAL reservation
266  */
267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
268 #ifdef CONFIG_ZONE_DMA
269 	[ZONE_DMA] = 256,
270 #endif
271 #ifdef CONFIG_ZONE_DMA32
272 	[ZONE_DMA32] = 256,
273 #endif
274 	[ZONE_NORMAL] = 32,
275 #ifdef CONFIG_HIGHMEM
276 	[ZONE_HIGHMEM] = 0,
277 #endif
278 	[ZONE_MOVABLE] = 0,
279 };
280 
281 static char * const zone_names[MAX_NR_ZONES] = {
282 #ifdef CONFIG_ZONE_DMA
283 	 "DMA",
284 #endif
285 #ifdef CONFIG_ZONE_DMA32
286 	 "DMA32",
287 #endif
288 	 "Normal",
289 #ifdef CONFIG_HIGHMEM
290 	 "HighMem",
291 #endif
292 	 "Movable",
293 #ifdef CONFIG_ZONE_DEVICE
294 	 "Device",
295 #endif
296 };
297 
298 const char * const migratetype_names[MIGRATE_TYPES] = {
299 	"Unmovable",
300 	"Movable",
301 	"Reclaimable",
302 	"HighAtomic",
303 #ifdef CONFIG_CMA
304 	"CMA",
305 #endif
306 #ifdef CONFIG_MEMORY_ISOLATION
307 	"Isolate",
308 #endif
309 };
310 
311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
312 	[NULL_COMPOUND_DTOR] = NULL,
313 	[COMPOUND_PAGE_DTOR] = free_compound_page,
314 #ifdef CONFIG_HUGETLB_PAGE
315 	[HUGETLB_PAGE_DTOR] = free_huge_page,
316 #endif
317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
318 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
319 #endif
320 };
321 
322 int min_free_kbytes = 1024;
323 int user_min_free_kbytes = -1;
324 #ifdef CONFIG_DISCONTIGMEM
325 /*
326  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
327  * are not on separate NUMA nodes. Functionally this works but with
328  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
329  * quite small. By default, do not boost watermarks on discontigmem as in
330  * many cases very high-order allocations like THP are likely to be
331  * unsupported and the premature reclaim offsets the advantage of long-term
332  * fragmentation avoidance.
333  */
334 int watermark_boost_factor __read_mostly;
335 #else
336 int watermark_boost_factor __read_mostly = 15000;
337 #endif
338 int watermark_scale_factor = 10;
339 
340 static unsigned long nr_kernel_pages __initdata;
341 static unsigned long nr_all_pages __initdata;
342 static unsigned long dma_reserve __initdata;
343 
344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
346 static unsigned long required_kernelcore __initdata;
347 static unsigned long required_kernelcore_percent __initdata;
348 static unsigned long required_movablecore __initdata;
349 static unsigned long required_movablecore_percent __initdata;
350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
351 static bool mirrored_kernelcore __meminitdata;
352 
353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
354 int movable_zone;
355 EXPORT_SYMBOL(movable_zone);
356 
357 #if MAX_NUMNODES > 1
358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
359 unsigned int nr_online_nodes __read_mostly = 1;
360 EXPORT_SYMBOL(nr_node_ids);
361 EXPORT_SYMBOL(nr_online_nodes);
362 #endif
363 
364 int page_group_by_mobility_disabled __read_mostly;
365 
366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
367 /*
368  * During boot we initialize deferred pages on-demand, as needed, but once
369  * page_alloc_init_late() has finished, the deferred pages are all initialized,
370  * and we can permanently disable that path.
371  */
372 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
373 
374 /*
375  * Calling kasan_free_pages() only after deferred memory initialization
376  * has completed. Poisoning pages during deferred memory init will greatly
377  * lengthen the process and cause problem in large memory systems as the
378  * deferred pages initialization is done with interrupt disabled.
379  *
380  * Assuming that there will be no reference to those newly initialized
381  * pages before they are ever allocated, this should have no effect on
382  * KASAN memory tracking as the poison will be properly inserted at page
383  * allocation time. The only corner case is when pages are allocated by
384  * on-demand allocation and then freed again before the deferred pages
385  * initialization is done, but this is not likely to happen.
386  */
387 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
388 {
389 	if (!static_branch_unlikely(&deferred_pages))
390 		kasan_free_pages(page, order);
391 }
392 
393 /* Returns true if the struct page for the pfn is uninitialised */
394 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
395 {
396 	int nid = early_pfn_to_nid(pfn);
397 
398 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
399 		return true;
400 
401 	return false;
402 }
403 
404 /*
405  * Returns true when the remaining initialisation should be deferred until
406  * later in the boot cycle when it can be parallelised.
407  */
408 static bool __meminit
409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
410 {
411 	static unsigned long prev_end_pfn, nr_initialised;
412 
413 	/*
414 	 * prev_end_pfn static that contains the end of previous zone
415 	 * No need to protect because called very early in boot before smp_init.
416 	 */
417 	if (prev_end_pfn != end_pfn) {
418 		prev_end_pfn = end_pfn;
419 		nr_initialised = 0;
420 	}
421 
422 	/* Always populate low zones for address-constrained allocations */
423 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
424 		return false;
425 
426 	/*
427 	 * We start only with one section of pages, more pages are added as
428 	 * needed until the rest of deferred pages are initialized.
429 	 */
430 	nr_initialised++;
431 	if ((nr_initialised > PAGES_PER_SECTION) &&
432 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
433 		NODE_DATA(nid)->first_deferred_pfn = pfn;
434 		return true;
435 	}
436 	return false;
437 }
438 #else
439 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
440 
441 static inline bool early_page_uninitialised(unsigned long pfn)
442 {
443 	return false;
444 }
445 
446 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
447 {
448 	return false;
449 }
450 #endif
451 
452 /* Return a pointer to the bitmap storing bits affecting a block of pages */
453 static inline unsigned long *get_pageblock_bitmap(struct page *page,
454 							unsigned long pfn)
455 {
456 #ifdef CONFIG_SPARSEMEM
457 	return section_to_usemap(__pfn_to_section(pfn));
458 #else
459 	return page_zone(page)->pageblock_flags;
460 #endif /* CONFIG_SPARSEMEM */
461 }
462 
463 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
464 {
465 #ifdef CONFIG_SPARSEMEM
466 	pfn &= (PAGES_PER_SECTION-1);
467 #else
468 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
469 #endif /* CONFIG_SPARSEMEM */
470 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
471 }
472 
473 static __always_inline
474 unsigned long __get_pfnblock_flags_mask(struct page *page,
475 					unsigned long pfn,
476 					unsigned long mask)
477 {
478 	unsigned long *bitmap;
479 	unsigned long bitidx, word_bitidx;
480 	unsigned long word;
481 
482 	bitmap = get_pageblock_bitmap(page, pfn);
483 	bitidx = pfn_to_bitidx(page, pfn);
484 	word_bitidx = bitidx / BITS_PER_LONG;
485 	bitidx &= (BITS_PER_LONG-1);
486 
487 	word = bitmap[word_bitidx];
488 	return (word >> bitidx) & mask;
489 }
490 
491 /**
492  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
493  * @page: The page within the block of interest
494  * @pfn: The target page frame number
495  * @mask: mask of bits that the caller is interested in
496  *
497  * Return: pageblock_bits flags
498  */
499 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
500 					unsigned long mask)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, mask);
503 }
504 
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @mask: mask of bits that the caller is interested in
516  */
517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
518 					unsigned long pfn,
519 					unsigned long mask)
520 {
521 	unsigned long *bitmap;
522 	unsigned long bitidx, word_bitidx;
523 	unsigned long old_word, word;
524 
525 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
526 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
527 
528 	bitmap = get_pageblock_bitmap(page, pfn);
529 	bitidx = pfn_to_bitidx(page, pfn);
530 	word_bitidx = bitidx / BITS_PER_LONG;
531 	bitidx &= (BITS_PER_LONG-1);
532 
533 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
534 
535 	mask <<= bitidx;
536 	flags <<= bitidx;
537 
538 	word = READ_ONCE(bitmap[word_bitidx]);
539 	for (;;) {
540 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
541 		if (word == old_word)
542 			break;
543 		word = old_word;
544 	}
545 }
546 
547 void set_pageblock_migratetype(struct page *page, int migratetype)
548 {
549 	if (unlikely(page_group_by_mobility_disabled &&
550 		     migratetype < MIGRATE_PCPTYPES))
551 		migratetype = MIGRATE_UNMOVABLE;
552 
553 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
554 				page_to_pfn(page), MIGRATETYPE_MASK);
555 }
556 
557 #ifdef CONFIG_DEBUG_VM
558 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
559 {
560 	int ret = 0;
561 	unsigned seq;
562 	unsigned long pfn = page_to_pfn(page);
563 	unsigned long sp, start_pfn;
564 
565 	do {
566 		seq = zone_span_seqbegin(zone);
567 		start_pfn = zone->zone_start_pfn;
568 		sp = zone->spanned_pages;
569 		if (!zone_spans_pfn(zone, pfn))
570 			ret = 1;
571 	} while (zone_span_seqretry(zone, seq));
572 
573 	if (ret)
574 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
575 			pfn, zone_to_nid(zone), zone->name,
576 			start_pfn, start_pfn + sp);
577 
578 	return ret;
579 }
580 
581 static int page_is_consistent(struct zone *zone, struct page *page)
582 {
583 	if (!pfn_valid_within(page_to_pfn(page)))
584 		return 0;
585 	if (zone != page_zone(page))
586 		return 0;
587 
588 	return 1;
589 }
590 /*
591  * Temporary debugging check for pages not lying within a given zone.
592  */
593 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
594 {
595 	if (page_outside_zone_boundaries(zone, page))
596 		return 1;
597 	if (!page_is_consistent(zone, page))
598 		return 1;
599 
600 	return 0;
601 }
602 #else
603 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
604 {
605 	return 0;
606 }
607 #endif
608 
609 static void bad_page(struct page *page, const char *reason)
610 {
611 	static unsigned long resume;
612 	static unsigned long nr_shown;
613 	static unsigned long nr_unshown;
614 
615 	/*
616 	 * Allow a burst of 60 reports, then keep quiet for that minute;
617 	 * or allow a steady drip of one report per second.
618 	 */
619 	if (nr_shown == 60) {
620 		if (time_before(jiffies, resume)) {
621 			nr_unshown++;
622 			goto out;
623 		}
624 		if (nr_unshown) {
625 			pr_alert(
626 			      "BUG: Bad page state: %lu messages suppressed\n",
627 				nr_unshown);
628 			nr_unshown = 0;
629 		}
630 		nr_shown = 0;
631 	}
632 	if (nr_shown++ == 0)
633 		resume = jiffies + 60 * HZ;
634 
635 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
636 		current->comm, page_to_pfn(page));
637 	__dump_page(page, reason);
638 	dump_page_owner(page);
639 
640 	print_modules();
641 	dump_stack();
642 out:
643 	/* Leave bad fields for debug, except PageBuddy could make trouble */
644 	page_mapcount_reset(page); /* remove PageBuddy */
645 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
646 }
647 
648 /*
649  * Higher-order pages are called "compound pages".  They are structured thusly:
650  *
651  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
652  *
653  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
654  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
655  *
656  * The first tail page's ->compound_dtor holds the offset in array of compound
657  * page destructors. See compound_page_dtors.
658  *
659  * The first tail page's ->compound_order holds the order of allocation.
660  * This usage means that zero-order pages may not be compound.
661  */
662 
663 void free_compound_page(struct page *page)
664 {
665 	mem_cgroup_uncharge(page);
666 	__free_pages_ok(page, compound_order(page), FPI_NONE);
667 }
668 
669 void prep_compound_page(struct page *page, unsigned int order)
670 {
671 	int i;
672 	int nr_pages = 1 << order;
673 
674 	__SetPageHead(page);
675 	for (i = 1; i < nr_pages; i++) {
676 		struct page *p = page + i;
677 		set_page_count(p, 0);
678 		p->mapping = TAIL_MAPPING;
679 		set_compound_head(p, page);
680 	}
681 
682 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 	set_compound_order(page, order);
684 	atomic_set(compound_mapcount_ptr(page), -1);
685 	if (hpage_pincount_available(page))
686 		atomic_set(compound_pincount_ptr(page), 0);
687 }
688 
689 #ifdef CONFIG_DEBUG_PAGEALLOC
690 unsigned int _debug_guardpage_minorder;
691 
692 bool _debug_pagealloc_enabled_early __read_mostly
693 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
694 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
695 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
696 EXPORT_SYMBOL(_debug_pagealloc_enabled);
697 
698 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
699 
700 static int __init early_debug_pagealloc(char *buf)
701 {
702 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
703 }
704 early_param("debug_pagealloc", early_debug_pagealloc);
705 
706 static int __init debug_guardpage_minorder_setup(char *buf)
707 {
708 	unsigned long res;
709 
710 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
711 		pr_err("Bad debug_guardpage_minorder value\n");
712 		return 0;
713 	}
714 	_debug_guardpage_minorder = res;
715 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
716 	return 0;
717 }
718 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
719 
720 static inline bool set_page_guard(struct zone *zone, struct page *page,
721 				unsigned int order, int migratetype)
722 {
723 	if (!debug_guardpage_enabled())
724 		return false;
725 
726 	if (order >= debug_guardpage_minorder())
727 		return false;
728 
729 	__SetPageGuard(page);
730 	INIT_LIST_HEAD(&page->lru);
731 	set_page_private(page, order);
732 	/* Guard pages are not available for any usage */
733 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
734 
735 	return true;
736 }
737 
738 static inline void clear_page_guard(struct zone *zone, struct page *page,
739 				unsigned int order, int migratetype)
740 {
741 	if (!debug_guardpage_enabled())
742 		return;
743 
744 	__ClearPageGuard(page);
745 
746 	set_page_private(page, 0);
747 	if (!is_migrate_isolate(migratetype))
748 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
749 }
750 #else
751 static inline bool set_page_guard(struct zone *zone, struct page *page,
752 			unsigned int order, int migratetype) { return false; }
753 static inline void clear_page_guard(struct zone *zone, struct page *page,
754 				unsigned int order, int migratetype) {}
755 #endif
756 
757 /*
758  * Enable static keys related to various memory debugging and hardening options.
759  * Some override others, and depend on early params that are evaluated in the
760  * order of appearance. So we need to first gather the full picture of what was
761  * enabled, and then make decisions.
762  */
763 void init_mem_debugging_and_hardening(void)
764 {
765 	if (_init_on_alloc_enabled_early) {
766 		if (page_poisoning_enabled())
767 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
768 				"will take precedence over init_on_alloc\n");
769 		else
770 			static_branch_enable(&init_on_alloc);
771 	}
772 	if (_init_on_free_enabled_early) {
773 		if (page_poisoning_enabled())
774 			pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, "
775 				"will take precedence over init_on_free\n");
776 		else
777 			static_branch_enable(&init_on_free);
778 	}
779 
780 #ifdef CONFIG_PAGE_POISONING
781 	/*
782 	 * Page poisoning is debug page alloc for some arches. If
783 	 * either of those options are enabled, enable poisoning.
784 	 */
785 	if (page_poisoning_enabled() ||
786 	     (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) &&
787 	      debug_pagealloc_enabled()))
788 		static_branch_enable(&_page_poisoning_enabled);
789 #endif
790 
791 #ifdef CONFIG_DEBUG_PAGEALLOC
792 	if (!debug_pagealloc_enabled())
793 		return;
794 
795 	static_branch_enable(&_debug_pagealloc_enabled);
796 
797 	if (!debug_guardpage_minorder())
798 		return;
799 
800 	static_branch_enable(&_debug_guardpage_enabled);
801 #endif
802 }
803 
804 static inline void set_buddy_order(struct page *page, unsigned int order)
805 {
806 	set_page_private(page, order);
807 	__SetPageBuddy(page);
808 }
809 
810 /*
811  * This function checks whether a page is free && is the buddy
812  * we can coalesce a page and its buddy if
813  * (a) the buddy is not in a hole (check before calling!) &&
814  * (b) the buddy is in the buddy system &&
815  * (c) a page and its buddy have the same order &&
816  * (d) a page and its buddy are in the same zone.
817  *
818  * For recording whether a page is in the buddy system, we set PageBuddy.
819  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
820  *
821  * For recording page's order, we use page_private(page).
822  */
823 static inline bool page_is_buddy(struct page *page, struct page *buddy,
824 							unsigned int order)
825 {
826 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
827 		return false;
828 
829 	if (buddy_order(buddy) != order)
830 		return false;
831 
832 	/*
833 	 * zone check is done late to avoid uselessly calculating
834 	 * zone/node ids for pages that could never merge.
835 	 */
836 	if (page_zone_id(page) != page_zone_id(buddy))
837 		return false;
838 
839 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
840 
841 	return true;
842 }
843 
844 #ifdef CONFIG_COMPACTION
845 static inline struct capture_control *task_capc(struct zone *zone)
846 {
847 	struct capture_control *capc = current->capture_control;
848 
849 	return unlikely(capc) &&
850 		!(current->flags & PF_KTHREAD) &&
851 		!capc->page &&
852 		capc->cc->zone == zone ? capc : NULL;
853 }
854 
855 static inline bool
856 compaction_capture(struct capture_control *capc, struct page *page,
857 		   int order, int migratetype)
858 {
859 	if (!capc || order != capc->cc->order)
860 		return false;
861 
862 	/* Do not accidentally pollute CMA or isolated regions*/
863 	if (is_migrate_cma(migratetype) ||
864 	    is_migrate_isolate(migratetype))
865 		return false;
866 
867 	/*
868 	 * Do not let lower order allocations polluate a movable pageblock.
869 	 * This might let an unmovable request use a reclaimable pageblock
870 	 * and vice-versa but no more than normal fallback logic which can
871 	 * have trouble finding a high-order free page.
872 	 */
873 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
874 		return false;
875 
876 	capc->page = page;
877 	return true;
878 }
879 
880 #else
881 static inline struct capture_control *task_capc(struct zone *zone)
882 {
883 	return NULL;
884 }
885 
886 static inline bool
887 compaction_capture(struct capture_control *capc, struct page *page,
888 		   int order, int migratetype)
889 {
890 	return false;
891 }
892 #endif /* CONFIG_COMPACTION */
893 
894 /* Used for pages not on another list */
895 static inline void add_to_free_list(struct page *page, struct zone *zone,
896 				    unsigned int order, int migratetype)
897 {
898 	struct free_area *area = &zone->free_area[order];
899 
900 	list_add(&page->lru, &area->free_list[migratetype]);
901 	area->nr_free++;
902 }
903 
904 /* Used for pages not on another list */
905 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
906 					 unsigned int order, int migratetype)
907 {
908 	struct free_area *area = &zone->free_area[order];
909 
910 	list_add_tail(&page->lru, &area->free_list[migratetype]);
911 	area->nr_free++;
912 }
913 
914 /*
915  * Used for pages which are on another list. Move the pages to the tail
916  * of the list - so the moved pages won't immediately be considered for
917  * allocation again (e.g., optimization for memory onlining).
918  */
919 static inline void move_to_free_list(struct page *page, struct zone *zone,
920 				     unsigned int order, int migratetype)
921 {
922 	struct free_area *area = &zone->free_area[order];
923 
924 	list_move_tail(&page->lru, &area->free_list[migratetype]);
925 }
926 
927 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
928 					   unsigned int order)
929 {
930 	/* clear reported state and update reported page count */
931 	if (page_reported(page))
932 		__ClearPageReported(page);
933 
934 	list_del(&page->lru);
935 	__ClearPageBuddy(page);
936 	set_page_private(page, 0);
937 	zone->free_area[order].nr_free--;
938 }
939 
940 /*
941  * If this is not the largest possible page, check if the buddy
942  * of the next-highest order is free. If it is, it's possible
943  * that pages are being freed that will coalesce soon. In case,
944  * that is happening, add the free page to the tail of the list
945  * so it's less likely to be used soon and more likely to be merged
946  * as a higher order page
947  */
948 static inline bool
949 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
950 		   struct page *page, unsigned int order)
951 {
952 	struct page *higher_page, *higher_buddy;
953 	unsigned long combined_pfn;
954 
955 	if (order >= MAX_ORDER - 2)
956 		return false;
957 
958 	if (!pfn_valid_within(buddy_pfn))
959 		return false;
960 
961 	combined_pfn = buddy_pfn & pfn;
962 	higher_page = page + (combined_pfn - pfn);
963 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
964 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
965 
966 	return pfn_valid_within(buddy_pfn) &&
967 	       page_is_buddy(higher_page, higher_buddy, order + 1);
968 }
969 
970 /*
971  * Freeing function for a buddy system allocator.
972  *
973  * The concept of a buddy system is to maintain direct-mapped table
974  * (containing bit values) for memory blocks of various "orders".
975  * The bottom level table contains the map for the smallest allocatable
976  * units of memory (here, pages), and each level above it describes
977  * pairs of units from the levels below, hence, "buddies".
978  * At a high level, all that happens here is marking the table entry
979  * at the bottom level available, and propagating the changes upward
980  * as necessary, plus some accounting needed to play nicely with other
981  * parts of the VM system.
982  * At each level, we keep a list of pages, which are heads of continuous
983  * free pages of length of (1 << order) and marked with PageBuddy.
984  * Page's order is recorded in page_private(page) field.
985  * So when we are allocating or freeing one, we can derive the state of the
986  * other.  That is, if we allocate a small block, and both were
987  * free, the remainder of the region must be split into blocks.
988  * If a block is freed, and its buddy is also free, then this
989  * triggers coalescing into a block of larger size.
990  *
991  * -- nyc
992  */
993 
994 static inline void __free_one_page(struct page *page,
995 		unsigned long pfn,
996 		struct zone *zone, unsigned int order,
997 		int migratetype, fpi_t fpi_flags)
998 {
999 	struct capture_control *capc = task_capc(zone);
1000 	unsigned long buddy_pfn;
1001 	unsigned long combined_pfn;
1002 	unsigned int max_order;
1003 	struct page *buddy;
1004 	bool to_tail;
1005 
1006 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1007 
1008 	VM_BUG_ON(!zone_is_initialized(zone));
1009 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1010 
1011 	VM_BUG_ON(migratetype == -1);
1012 	if (likely(!is_migrate_isolate(migratetype)))
1013 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1014 
1015 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1016 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1017 
1018 continue_merging:
1019 	while (order < max_order) {
1020 		if (compaction_capture(capc, page, order, migratetype)) {
1021 			__mod_zone_freepage_state(zone, -(1 << order),
1022 								migratetype);
1023 			return;
1024 		}
1025 		buddy_pfn = __find_buddy_pfn(pfn, order);
1026 		buddy = page + (buddy_pfn - pfn);
1027 
1028 		if (!pfn_valid_within(buddy_pfn))
1029 			goto done_merging;
1030 		if (!page_is_buddy(page, buddy, order))
1031 			goto done_merging;
1032 		/*
1033 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1034 		 * merge with it and move up one order.
1035 		 */
1036 		if (page_is_guard(buddy))
1037 			clear_page_guard(zone, buddy, order, migratetype);
1038 		else
1039 			del_page_from_free_list(buddy, zone, order);
1040 		combined_pfn = buddy_pfn & pfn;
1041 		page = page + (combined_pfn - pfn);
1042 		pfn = combined_pfn;
1043 		order++;
1044 	}
1045 	if (order < MAX_ORDER - 1) {
1046 		/* If we are here, it means order is >= pageblock_order.
1047 		 * We want to prevent merge between freepages on isolate
1048 		 * pageblock and normal pageblock. Without this, pageblock
1049 		 * isolation could cause incorrect freepage or CMA accounting.
1050 		 *
1051 		 * We don't want to hit this code for the more frequent
1052 		 * low-order merging.
1053 		 */
1054 		if (unlikely(has_isolate_pageblock(zone))) {
1055 			int buddy_mt;
1056 
1057 			buddy_pfn = __find_buddy_pfn(pfn, order);
1058 			buddy = page + (buddy_pfn - pfn);
1059 			buddy_mt = get_pageblock_migratetype(buddy);
1060 
1061 			if (migratetype != buddy_mt
1062 					&& (is_migrate_isolate(migratetype) ||
1063 						is_migrate_isolate(buddy_mt)))
1064 				goto done_merging;
1065 		}
1066 		max_order = order + 1;
1067 		goto continue_merging;
1068 	}
1069 
1070 done_merging:
1071 	set_buddy_order(page, order);
1072 
1073 	if (fpi_flags & FPI_TO_TAIL)
1074 		to_tail = true;
1075 	else if (is_shuffle_order(order))
1076 		to_tail = shuffle_pick_tail();
1077 	else
1078 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1079 
1080 	if (to_tail)
1081 		add_to_free_list_tail(page, zone, order, migratetype);
1082 	else
1083 		add_to_free_list(page, zone, order, migratetype);
1084 
1085 	/* Notify page reporting subsystem of freed page */
1086 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1087 		page_reporting_notify_free(order);
1088 }
1089 
1090 /*
1091  * A bad page could be due to a number of fields. Instead of multiple branches,
1092  * try and check multiple fields with one check. The caller must do a detailed
1093  * check if necessary.
1094  */
1095 static inline bool page_expected_state(struct page *page,
1096 					unsigned long check_flags)
1097 {
1098 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1099 		return false;
1100 
1101 	if (unlikely((unsigned long)page->mapping |
1102 			page_ref_count(page) |
1103 #ifdef CONFIG_MEMCG
1104 			(unsigned long)page_memcg(page) |
1105 #endif
1106 			(page->flags & check_flags)))
1107 		return false;
1108 
1109 	return true;
1110 }
1111 
1112 static const char *page_bad_reason(struct page *page, unsigned long flags)
1113 {
1114 	const char *bad_reason = NULL;
1115 
1116 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1117 		bad_reason = "nonzero mapcount";
1118 	if (unlikely(page->mapping != NULL))
1119 		bad_reason = "non-NULL mapping";
1120 	if (unlikely(page_ref_count(page) != 0))
1121 		bad_reason = "nonzero _refcount";
1122 	if (unlikely(page->flags & flags)) {
1123 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1124 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1125 		else
1126 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1127 	}
1128 #ifdef CONFIG_MEMCG
1129 	if (unlikely(page_memcg(page)))
1130 		bad_reason = "page still charged to cgroup";
1131 #endif
1132 	return bad_reason;
1133 }
1134 
1135 static void check_free_page_bad(struct page *page)
1136 {
1137 	bad_page(page,
1138 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1139 }
1140 
1141 static inline int check_free_page(struct page *page)
1142 {
1143 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1144 		return 0;
1145 
1146 	/* Something has gone sideways, find it */
1147 	check_free_page_bad(page);
1148 	return 1;
1149 }
1150 
1151 static int free_tail_pages_check(struct page *head_page, struct page *page)
1152 {
1153 	int ret = 1;
1154 
1155 	/*
1156 	 * We rely page->lru.next never has bit 0 set, unless the page
1157 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1158 	 */
1159 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1160 
1161 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1162 		ret = 0;
1163 		goto out;
1164 	}
1165 	switch (page - head_page) {
1166 	case 1:
1167 		/* the first tail page: ->mapping may be compound_mapcount() */
1168 		if (unlikely(compound_mapcount(page))) {
1169 			bad_page(page, "nonzero compound_mapcount");
1170 			goto out;
1171 		}
1172 		break;
1173 	case 2:
1174 		/*
1175 		 * the second tail page: ->mapping is
1176 		 * deferred_list.next -- ignore value.
1177 		 */
1178 		break;
1179 	default:
1180 		if (page->mapping != TAIL_MAPPING) {
1181 			bad_page(page, "corrupted mapping in tail page");
1182 			goto out;
1183 		}
1184 		break;
1185 	}
1186 	if (unlikely(!PageTail(page))) {
1187 		bad_page(page, "PageTail not set");
1188 		goto out;
1189 	}
1190 	if (unlikely(compound_head(page) != head_page)) {
1191 		bad_page(page, "compound_head not consistent");
1192 		goto out;
1193 	}
1194 	ret = 0;
1195 out:
1196 	page->mapping = NULL;
1197 	clear_compound_head(page);
1198 	return ret;
1199 }
1200 
1201 static void kernel_init_free_pages(struct page *page, int numpages)
1202 {
1203 	int i;
1204 
1205 	/* s390's use of memset() could override KASAN redzones. */
1206 	kasan_disable_current();
1207 	for (i = 0; i < numpages; i++) {
1208 		page_kasan_tag_reset(page + i);
1209 		clear_highpage(page + i);
1210 	}
1211 	kasan_enable_current();
1212 }
1213 
1214 static __always_inline bool free_pages_prepare(struct page *page,
1215 					unsigned int order, bool check_free)
1216 {
1217 	int bad = 0;
1218 
1219 	VM_BUG_ON_PAGE(PageTail(page), page);
1220 
1221 	trace_mm_page_free(page, order);
1222 
1223 	if (unlikely(PageHWPoison(page)) && !order) {
1224 		/*
1225 		 * Do not let hwpoison pages hit pcplists/buddy
1226 		 * Untie memcg state and reset page's owner
1227 		 */
1228 		if (memcg_kmem_enabled() && PageMemcgKmem(page))
1229 			__memcg_kmem_uncharge_page(page, order);
1230 		reset_page_owner(page, order);
1231 		return false;
1232 	}
1233 
1234 	/*
1235 	 * Check tail pages before head page information is cleared to
1236 	 * avoid checking PageCompound for order-0 pages.
1237 	 */
1238 	if (unlikely(order)) {
1239 		bool compound = PageCompound(page);
1240 		int i;
1241 
1242 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1243 
1244 		if (compound)
1245 			ClearPageDoubleMap(page);
1246 		for (i = 1; i < (1 << order); i++) {
1247 			if (compound)
1248 				bad += free_tail_pages_check(page, page + i);
1249 			if (unlikely(check_free_page(page + i))) {
1250 				bad++;
1251 				continue;
1252 			}
1253 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1254 		}
1255 	}
1256 	if (PageMappingFlags(page))
1257 		page->mapping = NULL;
1258 	if (memcg_kmem_enabled() && PageMemcgKmem(page))
1259 		__memcg_kmem_uncharge_page(page, order);
1260 	if (check_free)
1261 		bad += check_free_page(page);
1262 	if (bad)
1263 		return false;
1264 
1265 	page_cpupid_reset_last(page);
1266 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1267 	reset_page_owner(page, order);
1268 
1269 	if (!PageHighMem(page)) {
1270 		debug_check_no_locks_freed(page_address(page),
1271 					   PAGE_SIZE << order);
1272 		debug_check_no_obj_freed(page_address(page),
1273 					   PAGE_SIZE << order);
1274 	}
1275 	if (want_init_on_free())
1276 		kernel_init_free_pages(page, 1 << order);
1277 
1278 	kernel_poison_pages(page, 1 << order);
1279 
1280 	/*
1281 	 * arch_free_page() can make the page's contents inaccessible.  s390
1282 	 * does this.  So nothing which can access the page's contents should
1283 	 * happen after this.
1284 	 */
1285 	arch_free_page(page, order);
1286 
1287 	debug_pagealloc_unmap_pages(page, 1 << order);
1288 
1289 	kasan_free_nondeferred_pages(page, order);
1290 
1291 	return true;
1292 }
1293 
1294 #ifdef CONFIG_DEBUG_VM
1295 /*
1296  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1297  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1298  * moved from pcp lists to free lists.
1299  */
1300 static bool free_pcp_prepare(struct page *page)
1301 {
1302 	return free_pages_prepare(page, 0, true);
1303 }
1304 
1305 static bool bulkfree_pcp_prepare(struct page *page)
1306 {
1307 	if (debug_pagealloc_enabled_static())
1308 		return check_free_page(page);
1309 	else
1310 		return false;
1311 }
1312 #else
1313 /*
1314  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1315  * moving from pcp lists to free list in order to reduce overhead. With
1316  * debug_pagealloc enabled, they are checked also immediately when being freed
1317  * to the pcp lists.
1318  */
1319 static bool free_pcp_prepare(struct page *page)
1320 {
1321 	if (debug_pagealloc_enabled_static())
1322 		return free_pages_prepare(page, 0, true);
1323 	else
1324 		return free_pages_prepare(page, 0, false);
1325 }
1326 
1327 static bool bulkfree_pcp_prepare(struct page *page)
1328 {
1329 	return check_free_page(page);
1330 }
1331 #endif /* CONFIG_DEBUG_VM */
1332 
1333 static inline void prefetch_buddy(struct page *page)
1334 {
1335 	unsigned long pfn = page_to_pfn(page);
1336 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1337 	struct page *buddy = page + (buddy_pfn - pfn);
1338 
1339 	prefetch(buddy);
1340 }
1341 
1342 /*
1343  * Frees a number of pages from the PCP lists
1344  * Assumes all pages on list are in same zone, and of same order.
1345  * count is the number of pages to free.
1346  *
1347  * If the zone was previously in an "all pages pinned" state then look to
1348  * see if this freeing clears that state.
1349  *
1350  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1351  * pinned" detection logic.
1352  */
1353 static void free_pcppages_bulk(struct zone *zone, int count,
1354 					struct per_cpu_pages *pcp)
1355 {
1356 	int migratetype = 0;
1357 	int batch_free = 0;
1358 	int prefetch_nr = READ_ONCE(pcp->batch);
1359 	bool isolated_pageblocks;
1360 	struct page *page, *tmp;
1361 	LIST_HEAD(head);
1362 
1363 	/*
1364 	 * Ensure proper count is passed which otherwise would stuck in the
1365 	 * below while (list_empty(list)) loop.
1366 	 */
1367 	count = min(pcp->count, count);
1368 	while (count) {
1369 		struct list_head *list;
1370 
1371 		/*
1372 		 * Remove pages from lists in a round-robin fashion. A
1373 		 * batch_free count is maintained that is incremented when an
1374 		 * empty list is encountered.  This is so more pages are freed
1375 		 * off fuller lists instead of spinning excessively around empty
1376 		 * lists
1377 		 */
1378 		do {
1379 			batch_free++;
1380 			if (++migratetype == MIGRATE_PCPTYPES)
1381 				migratetype = 0;
1382 			list = &pcp->lists[migratetype];
1383 		} while (list_empty(list));
1384 
1385 		/* This is the only non-empty list. Free them all. */
1386 		if (batch_free == MIGRATE_PCPTYPES)
1387 			batch_free = count;
1388 
1389 		do {
1390 			page = list_last_entry(list, struct page, lru);
1391 			/* must delete to avoid corrupting pcp list */
1392 			list_del(&page->lru);
1393 			pcp->count--;
1394 
1395 			if (bulkfree_pcp_prepare(page))
1396 				continue;
1397 
1398 			list_add_tail(&page->lru, &head);
1399 
1400 			/*
1401 			 * We are going to put the page back to the global
1402 			 * pool, prefetch its buddy to speed up later access
1403 			 * under zone->lock. It is believed the overhead of
1404 			 * an additional test and calculating buddy_pfn here
1405 			 * can be offset by reduced memory latency later. To
1406 			 * avoid excessive prefetching due to large count, only
1407 			 * prefetch buddy for the first pcp->batch nr of pages.
1408 			 */
1409 			if (prefetch_nr) {
1410 				prefetch_buddy(page);
1411 				prefetch_nr--;
1412 			}
1413 		} while (--count && --batch_free && !list_empty(list));
1414 	}
1415 
1416 	spin_lock(&zone->lock);
1417 	isolated_pageblocks = has_isolate_pageblock(zone);
1418 
1419 	/*
1420 	 * Use safe version since after __free_one_page(),
1421 	 * page->lru.next will not point to original list.
1422 	 */
1423 	list_for_each_entry_safe(page, tmp, &head, lru) {
1424 		int mt = get_pcppage_migratetype(page);
1425 		/* MIGRATE_ISOLATE page should not go to pcplists */
1426 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1427 		/* Pageblock could have been isolated meanwhile */
1428 		if (unlikely(isolated_pageblocks))
1429 			mt = get_pageblock_migratetype(page);
1430 
1431 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1432 		trace_mm_page_pcpu_drain(page, 0, mt);
1433 	}
1434 	spin_unlock(&zone->lock);
1435 }
1436 
1437 static void free_one_page(struct zone *zone,
1438 				struct page *page, unsigned long pfn,
1439 				unsigned int order,
1440 				int migratetype, fpi_t fpi_flags)
1441 {
1442 	spin_lock(&zone->lock);
1443 	if (unlikely(has_isolate_pageblock(zone) ||
1444 		is_migrate_isolate(migratetype))) {
1445 		migratetype = get_pfnblock_migratetype(page, pfn);
1446 	}
1447 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1448 	spin_unlock(&zone->lock);
1449 }
1450 
1451 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1452 				unsigned long zone, int nid)
1453 {
1454 	mm_zero_struct_page(page);
1455 	set_page_links(page, zone, nid, pfn);
1456 	init_page_count(page);
1457 	page_mapcount_reset(page);
1458 	page_cpupid_reset_last(page);
1459 	page_kasan_tag_reset(page);
1460 
1461 	INIT_LIST_HEAD(&page->lru);
1462 #ifdef WANT_PAGE_VIRTUAL
1463 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1464 	if (!is_highmem_idx(zone))
1465 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1466 #endif
1467 }
1468 
1469 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1470 static void __meminit init_reserved_page(unsigned long pfn)
1471 {
1472 	pg_data_t *pgdat;
1473 	int nid, zid;
1474 
1475 	if (!early_page_uninitialised(pfn))
1476 		return;
1477 
1478 	nid = early_pfn_to_nid(pfn);
1479 	pgdat = NODE_DATA(nid);
1480 
1481 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1482 		struct zone *zone = &pgdat->node_zones[zid];
1483 
1484 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1485 			break;
1486 	}
1487 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1488 }
1489 #else
1490 static inline void init_reserved_page(unsigned long pfn)
1491 {
1492 }
1493 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1494 
1495 /*
1496  * Initialised pages do not have PageReserved set. This function is
1497  * called for each range allocated by the bootmem allocator and
1498  * marks the pages PageReserved. The remaining valid pages are later
1499  * sent to the buddy page allocator.
1500  */
1501 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1502 {
1503 	unsigned long start_pfn = PFN_DOWN(start);
1504 	unsigned long end_pfn = PFN_UP(end);
1505 
1506 	for (; start_pfn < end_pfn; start_pfn++) {
1507 		if (pfn_valid(start_pfn)) {
1508 			struct page *page = pfn_to_page(start_pfn);
1509 
1510 			init_reserved_page(start_pfn);
1511 
1512 			/* Avoid false-positive PageTail() */
1513 			INIT_LIST_HEAD(&page->lru);
1514 
1515 			/*
1516 			 * no need for atomic set_bit because the struct
1517 			 * page is not visible yet so nobody should
1518 			 * access it yet.
1519 			 */
1520 			__SetPageReserved(page);
1521 		}
1522 	}
1523 }
1524 
1525 static void __free_pages_ok(struct page *page, unsigned int order,
1526 			    fpi_t fpi_flags)
1527 {
1528 	unsigned long flags;
1529 	int migratetype;
1530 	unsigned long pfn = page_to_pfn(page);
1531 
1532 	if (!free_pages_prepare(page, order, true))
1533 		return;
1534 
1535 	migratetype = get_pfnblock_migratetype(page, pfn);
1536 	local_irq_save(flags);
1537 	__count_vm_events(PGFREE, 1 << order);
1538 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1539 		      fpi_flags);
1540 	local_irq_restore(flags);
1541 }
1542 
1543 void __free_pages_core(struct page *page, unsigned int order)
1544 {
1545 	unsigned int nr_pages = 1 << order;
1546 	struct page *p = page;
1547 	unsigned int loop;
1548 
1549 	/*
1550 	 * When initializing the memmap, __init_single_page() sets the refcount
1551 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1552 	 * refcount of all involved pages to 0.
1553 	 */
1554 	prefetchw(p);
1555 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1556 		prefetchw(p + 1);
1557 		__ClearPageReserved(p);
1558 		set_page_count(p, 0);
1559 	}
1560 	__ClearPageReserved(p);
1561 	set_page_count(p, 0);
1562 
1563 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1564 
1565 	/*
1566 	 * Bypass PCP and place fresh pages right to the tail, primarily
1567 	 * relevant for memory onlining.
1568 	 */
1569 	__free_pages_ok(page, order, FPI_TO_TAIL);
1570 }
1571 
1572 #ifdef CONFIG_NEED_MULTIPLE_NODES
1573 
1574 /*
1575  * During memory init memblocks map pfns to nids. The search is expensive and
1576  * this caches recent lookups. The implementation of __early_pfn_to_nid
1577  * treats start/end as pfns.
1578  */
1579 struct mminit_pfnnid_cache {
1580 	unsigned long last_start;
1581 	unsigned long last_end;
1582 	int last_nid;
1583 };
1584 
1585 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1586 
1587 /*
1588  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1589  */
1590 static int __meminit __early_pfn_to_nid(unsigned long pfn,
1591 					struct mminit_pfnnid_cache *state)
1592 {
1593 	unsigned long start_pfn, end_pfn;
1594 	int nid;
1595 
1596 	if (state->last_start <= pfn && pfn < state->last_end)
1597 		return state->last_nid;
1598 
1599 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1600 	if (nid != NUMA_NO_NODE) {
1601 		state->last_start = start_pfn;
1602 		state->last_end = end_pfn;
1603 		state->last_nid = nid;
1604 	}
1605 
1606 	return nid;
1607 }
1608 
1609 int __meminit early_pfn_to_nid(unsigned long pfn)
1610 {
1611 	static DEFINE_SPINLOCK(early_pfn_lock);
1612 	int nid;
1613 
1614 	spin_lock(&early_pfn_lock);
1615 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1616 	if (nid < 0)
1617 		nid = first_online_node;
1618 	spin_unlock(&early_pfn_lock);
1619 
1620 	return nid;
1621 }
1622 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1623 
1624 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1625 							unsigned int order)
1626 {
1627 	if (early_page_uninitialised(pfn))
1628 		return;
1629 	__free_pages_core(page, order);
1630 }
1631 
1632 /*
1633  * Check that the whole (or subset of) a pageblock given by the interval of
1634  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1635  * with the migration of free compaction scanner. The scanners then need to
1636  * use only pfn_valid_within() check for arches that allow holes within
1637  * pageblocks.
1638  *
1639  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1640  *
1641  * It's possible on some configurations to have a setup like node0 node1 node0
1642  * i.e. it's possible that all pages within a zones range of pages do not
1643  * belong to a single zone. We assume that a border between node0 and node1
1644  * can occur within a single pageblock, but not a node0 node1 node0
1645  * interleaving within a single pageblock. It is therefore sufficient to check
1646  * the first and last page of a pageblock and avoid checking each individual
1647  * page in a pageblock.
1648  */
1649 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1650 				     unsigned long end_pfn, struct zone *zone)
1651 {
1652 	struct page *start_page;
1653 	struct page *end_page;
1654 
1655 	/* end_pfn is one past the range we are checking */
1656 	end_pfn--;
1657 
1658 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1659 		return NULL;
1660 
1661 	start_page = pfn_to_online_page(start_pfn);
1662 	if (!start_page)
1663 		return NULL;
1664 
1665 	if (page_zone(start_page) != zone)
1666 		return NULL;
1667 
1668 	end_page = pfn_to_page(end_pfn);
1669 
1670 	/* This gives a shorter code than deriving page_zone(end_page) */
1671 	if (page_zone_id(start_page) != page_zone_id(end_page))
1672 		return NULL;
1673 
1674 	return start_page;
1675 }
1676 
1677 void set_zone_contiguous(struct zone *zone)
1678 {
1679 	unsigned long block_start_pfn = zone->zone_start_pfn;
1680 	unsigned long block_end_pfn;
1681 
1682 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1683 	for (; block_start_pfn < zone_end_pfn(zone);
1684 			block_start_pfn = block_end_pfn,
1685 			 block_end_pfn += pageblock_nr_pages) {
1686 
1687 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1688 
1689 		if (!__pageblock_pfn_to_page(block_start_pfn,
1690 					     block_end_pfn, zone))
1691 			return;
1692 		cond_resched();
1693 	}
1694 
1695 	/* We confirm that there is no hole */
1696 	zone->contiguous = true;
1697 }
1698 
1699 void clear_zone_contiguous(struct zone *zone)
1700 {
1701 	zone->contiguous = false;
1702 }
1703 
1704 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1705 static void __init deferred_free_range(unsigned long pfn,
1706 				       unsigned long nr_pages)
1707 {
1708 	struct page *page;
1709 	unsigned long i;
1710 
1711 	if (!nr_pages)
1712 		return;
1713 
1714 	page = pfn_to_page(pfn);
1715 
1716 	/* Free a large naturally-aligned chunk if possible */
1717 	if (nr_pages == pageblock_nr_pages &&
1718 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1719 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1720 		__free_pages_core(page, pageblock_order);
1721 		return;
1722 	}
1723 
1724 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1725 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1726 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1727 		__free_pages_core(page, 0);
1728 	}
1729 }
1730 
1731 /* Completion tracking for deferred_init_memmap() threads */
1732 static atomic_t pgdat_init_n_undone __initdata;
1733 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1734 
1735 static inline void __init pgdat_init_report_one_done(void)
1736 {
1737 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1738 		complete(&pgdat_init_all_done_comp);
1739 }
1740 
1741 /*
1742  * Returns true if page needs to be initialized or freed to buddy allocator.
1743  *
1744  * First we check if pfn is valid on architectures where it is possible to have
1745  * holes within pageblock_nr_pages. On systems where it is not possible, this
1746  * function is optimized out.
1747  *
1748  * Then, we check if a current large page is valid by only checking the validity
1749  * of the head pfn.
1750  */
1751 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1752 {
1753 	if (!pfn_valid_within(pfn))
1754 		return false;
1755 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1756 		return false;
1757 	return true;
1758 }
1759 
1760 /*
1761  * Free pages to buddy allocator. Try to free aligned pages in
1762  * pageblock_nr_pages sizes.
1763  */
1764 static void __init deferred_free_pages(unsigned long pfn,
1765 				       unsigned long end_pfn)
1766 {
1767 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1768 	unsigned long nr_free = 0;
1769 
1770 	for (; pfn < end_pfn; pfn++) {
1771 		if (!deferred_pfn_valid(pfn)) {
1772 			deferred_free_range(pfn - nr_free, nr_free);
1773 			nr_free = 0;
1774 		} else if (!(pfn & nr_pgmask)) {
1775 			deferred_free_range(pfn - nr_free, nr_free);
1776 			nr_free = 1;
1777 		} else {
1778 			nr_free++;
1779 		}
1780 	}
1781 	/* Free the last block of pages to allocator */
1782 	deferred_free_range(pfn - nr_free, nr_free);
1783 }
1784 
1785 /*
1786  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1787  * by performing it only once every pageblock_nr_pages.
1788  * Return number of pages initialized.
1789  */
1790 static unsigned long  __init deferred_init_pages(struct zone *zone,
1791 						 unsigned long pfn,
1792 						 unsigned long end_pfn)
1793 {
1794 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1795 	int nid = zone_to_nid(zone);
1796 	unsigned long nr_pages = 0;
1797 	int zid = zone_idx(zone);
1798 	struct page *page = NULL;
1799 
1800 	for (; pfn < end_pfn; pfn++) {
1801 		if (!deferred_pfn_valid(pfn)) {
1802 			page = NULL;
1803 			continue;
1804 		} else if (!page || !(pfn & nr_pgmask)) {
1805 			page = pfn_to_page(pfn);
1806 		} else {
1807 			page++;
1808 		}
1809 		__init_single_page(page, pfn, zid, nid);
1810 		nr_pages++;
1811 	}
1812 	return (nr_pages);
1813 }
1814 
1815 /*
1816  * This function is meant to pre-load the iterator for the zone init.
1817  * Specifically it walks through the ranges until we are caught up to the
1818  * first_init_pfn value and exits there. If we never encounter the value we
1819  * return false indicating there are no valid ranges left.
1820  */
1821 static bool __init
1822 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1823 				    unsigned long *spfn, unsigned long *epfn,
1824 				    unsigned long first_init_pfn)
1825 {
1826 	u64 j;
1827 
1828 	/*
1829 	 * Start out by walking through the ranges in this zone that have
1830 	 * already been initialized. We don't need to do anything with them
1831 	 * so we just need to flush them out of the system.
1832 	 */
1833 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1834 		if (*epfn <= first_init_pfn)
1835 			continue;
1836 		if (*spfn < first_init_pfn)
1837 			*spfn = first_init_pfn;
1838 		*i = j;
1839 		return true;
1840 	}
1841 
1842 	return false;
1843 }
1844 
1845 /*
1846  * Initialize and free pages. We do it in two loops: first we initialize
1847  * struct page, then free to buddy allocator, because while we are
1848  * freeing pages we can access pages that are ahead (computing buddy
1849  * page in __free_one_page()).
1850  *
1851  * In order to try and keep some memory in the cache we have the loop
1852  * broken along max page order boundaries. This way we will not cause
1853  * any issues with the buddy page computation.
1854  */
1855 static unsigned long __init
1856 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1857 		       unsigned long *end_pfn)
1858 {
1859 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1860 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1861 	unsigned long nr_pages = 0;
1862 	u64 j = *i;
1863 
1864 	/* First we loop through and initialize the page values */
1865 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1866 		unsigned long t;
1867 
1868 		if (mo_pfn <= *start_pfn)
1869 			break;
1870 
1871 		t = min(mo_pfn, *end_pfn);
1872 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1873 
1874 		if (mo_pfn < *end_pfn) {
1875 			*start_pfn = mo_pfn;
1876 			break;
1877 		}
1878 	}
1879 
1880 	/* Reset values and now loop through freeing pages as needed */
1881 	swap(j, *i);
1882 
1883 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1884 		unsigned long t;
1885 
1886 		if (mo_pfn <= spfn)
1887 			break;
1888 
1889 		t = min(mo_pfn, epfn);
1890 		deferred_free_pages(spfn, t);
1891 
1892 		if (mo_pfn <= epfn)
1893 			break;
1894 	}
1895 
1896 	return nr_pages;
1897 }
1898 
1899 static void __init
1900 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1901 			   void *arg)
1902 {
1903 	unsigned long spfn, epfn;
1904 	struct zone *zone = arg;
1905 	u64 i;
1906 
1907 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1908 
1909 	/*
1910 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1911 	 * can avoid introducing any issues with the buddy allocator.
1912 	 */
1913 	while (spfn < end_pfn) {
1914 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1915 		cond_resched();
1916 	}
1917 }
1918 
1919 /* An arch may override for more concurrency. */
1920 __weak int __init
1921 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1922 {
1923 	return 1;
1924 }
1925 
1926 /* Initialise remaining memory on a node */
1927 static int __init deferred_init_memmap(void *data)
1928 {
1929 	pg_data_t *pgdat = data;
1930 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1931 	unsigned long spfn = 0, epfn = 0;
1932 	unsigned long first_init_pfn, flags;
1933 	unsigned long start = jiffies;
1934 	struct zone *zone;
1935 	int zid, max_threads;
1936 	u64 i;
1937 
1938 	/* Bind memory initialisation thread to a local node if possible */
1939 	if (!cpumask_empty(cpumask))
1940 		set_cpus_allowed_ptr(current, cpumask);
1941 
1942 	pgdat_resize_lock(pgdat, &flags);
1943 	first_init_pfn = pgdat->first_deferred_pfn;
1944 	if (first_init_pfn == ULONG_MAX) {
1945 		pgdat_resize_unlock(pgdat, &flags);
1946 		pgdat_init_report_one_done();
1947 		return 0;
1948 	}
1949 
1950 	/* Sanity check boundaries */
1951 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1952 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1953 	pgdat->first_deferred_pfn = ULONG_MAX;
1954 
1955 	/*
1956 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1957 	 * interrupt thread must allocate this early in boot, zone must be
1958 	 * pre-grown prior to start of deferred page initialization.
1959 	 */
1960 	pgdat_resize_unlock(pgdat, &flags);
1961 
1962 	/* Only the highest zone is deferred so find it */
1963 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1964 		zone = pgdat->node_zones + zid;
1965 		if (first_init_pfn < zone_end_pfn(zone))
1966 			break;
1967 	}
1968 
1969 	/* If the zone is empty somebody else may have cleared out the zone */
1970 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1971 						 first_init_pfn))
1972 		goto zone_empty;
1973 
1974 	max_threads = deferred_page_init_max_threads(cpumask);
1975 
1976 	while (spfn < epfn) {
1977 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1978 		struct padata_mt_job job = {
1979 			.thread_fn   = deferred_init_memmap_chunk,
1980 			.fn_arg      = zone,
1981 			.start       = spfn,
1982 			.size        = epfn_align - spfn,
1983 			.align       = PAGES_PER_SECTION,
1984 			.min_chunk   = PAGES_PER_SECTION,
1985 			.max_threads = max_threads,
1986 		};
1987 
1988 		padata_do_multithreaded(&job);
1989 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1990 						    epfn_align);
1991 	}
1992 zone_empty:
1993 	/* Sanity check that the next zone really is unpopulated */
1994 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1995 
1996 	pr_info("node %d deferred pages initialised in %ums\n",
1997 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1998 
1999 	pgdat_init_report_one_done();
2000 	return 0;
2001 }
2002 
2003 /*
2004  * If this zone has deferred pages, try to grow it by initializing enough
2005  * deferred pages to satisfy the allocation specified by order, rounded up to
2006  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
2007  * of SECTION_SIZE bytes by initializing struct pages in increments of
2008  * PAGES_PER_SECTION * sizeof(struct page) bytes.
2009  *
2010  * Return true when zone was grown, otherwise return false. We return true even
2011  * when we grow less than requested, to let the caller decide if there are
2012  * enough pages to satisfy the allocation.
2013  *
2014  * Note: We use noinline because this function is needed only during boot, and
2015  * it is called from a __ref function _deferred_grow_zone. This way we are
2016  * making sure that it is not inlined into permanent text section.
2017  */
2018 static noinline bool __init
2019 deferred_grow_zone(struct zone *zone, unsigned int order)
2020 {
2021 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2022 	pg_data_t *pgdat = zone->zone_pgdat;
2023 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2024 	unsigned long spfn, epfn, flags;
2025 	unsigned long nr_pages = 0;
2026 	u64 i;
2027 
2028 	/* Only the last zone may have deferred pages */
2029 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2030 		return false;
2031 
2032 	pgdat_resize_lock(pgdat, &flags);
2033 
2034 	/*
2035 	 * If someone grew this zone while we were waiting for spinlock, return
2036 	 * true, as there might be enough pages already.
2037 	 */
2038 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2039 		pgdat_resize_unlock(pgdat, &flags);
2040 		return true;
2041 	}
2042 
2043 	/* If the zone is empty somebody else may have cleared out the zone */
2044 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2045 						 first_deferred_pfn)) {
2046 		pgdat->first_deferred_pfn = ULONG_MAX;
2047 		pgdat_resize_unlock(pgdat, &flags);
2048 		/* Retry only once. */
2049 		return first_deferred_pfn != ULONG_MAX;
2050 	}
2051 
2052 	/*
2053 	 * Initialize and free pages in MAX_ORDER sized increments so
2054 	 * that we can avoid introducing any issues with the buddy
2055 	 * allocator.
2056 	 */
2057 	while (spfn < epfn) {
2058 		/* update our first deferred PFN for this section */
2059 		first_deferred_pfn = spfn;
2060 
2061 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2062 		touch_nmi_watchdog();
2063 
2064 		/* We should only stop along section boundaries */
2065 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2066 			continue;
2067 
2068 		/* If our quota has been met we can stop here */
2069 		if (nr_pages >= nr_pages_needed)
2070 			break;
2071 	}
2072 
2073 	pgdat->first_deferred_pfn = spfn;
2074 	pgdat_resize_unlock(pgdat, &flags);
2075 
2076 	return nr_pages > 0;
2077 }
2078 
2079 /*
2080  * deferred_grow_zone() is __init, but it is called from
2081  * get_page_from_freelist() during early boot until deferred_pages permanently
2082  * disables this call. This is why we have refdata wrapper to avoid warning,
2083  * and to ensure that the function body gets unloaded.
2084  */
2085 static bool __ref
2086 _deferred_grow_zone(struct zone *zone, unsigned int order)
2087 {
2088 	return deferred_grow_zone(zone, order);
2089 }
2090 
2091 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2092 
2093 void __init page_alloc_init_late(void)
2094 {
2095 	struct zone *zone;
2096 	int nid;
2097 
2098 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2099 
2100 	/* There will be num_node_state(N_MEMORY) threads */
2101 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2102 	for_each_node_state(nid, N_MEMORY) {
2103 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2104 	}
2105 
2106 	/* Block until all are initialised */
2107 	wait_for_completion(&pgdat_init_all_done_comp);
2108 
2109 	/*
2110 	 * The number of managed pages has changed due to the initialisation
2111 	 * so the pcpu batch and high limits needs to be updated or the limits
2112 	 * will be artificially small.
2113 	 */
2114 	for_each_populated_zone(zone)
2115 		zone_pcp_update(zone);
2116 
2117 	/*
2118 	 * We initialized the rest of the deferred pages.  Permanently disable
2119 	 * on-demand struct page initialization.
2120 	 */
2121 	static_branch_disable(&deferred_pages);
2122 
2123 	/* Reinit limits that are based on free pages after the kernel is up */
2124 	files_maxfiles_init();
2125 #endif
2126 
2127 	buffer_init();
2128 
2129 	/* Discard memblock private memory */
2130 	memblock_discard();
2131 
2132 	for_each_node_state(nid, N_MEMORY)
2133 		shuffle_free_memory(NODE_DATA(nid));
2134 
2135 	for_each_populated_zone(zone)
2136 		set_zone_contiguous(zone);
2137 }
2138 
2139 #ifdef CONFIG_CMA
2140 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
2141 void __init init_cma_reserved_pageblock(struct page *page)
2142 {
2143 	unsigned i = pageblock_nr_pages;
2144 	struct page *p = page;
2145 
2146 	do {
2147 		__ClearPageReserved(p);
2148 		set_page_count(p, 0);
2149 	} while (++p, --i);
2150 
2151 	set_pageblock_migratetype(page, MIGRATE_CMA);
2152 
2153 	if (pageblock_order >= MAX_ORDER) {
2154 		i = pageblock_nr_pages;
2155 		p = page;
2156 		do {
2157 			set_page_refcounted(p);
2158 			__free_pages(p, MAX_ORDER - 1);
2159 			p += MAX_ORDER_NR_PAGES;
2160 		} while (i -= MAX_ORDER_NR_PAGES);
2161 	} else {
2162 		set_page_refcounted(page);
2163 		__free_pages(page, pageblock_order);
2164 	}
2165 
2166 	adjust_managed_page_count(page, pageblock_nr_pages);
2167 }
2168 #endif
2169 
2170 /*
2171  * The order of subdivision here is critical for the IO subsystem.
2172  * Please do not alter this order without good reasons and regression
2173  * testing. Specifically, as large blocks of memory are subdivided,
2174  * the order in which smaller blocks are delivered depends on the order
2175  * they're subdivided in this function. This is the primary factor
2176  * influencing the order in which pages are delivered to the IO
2177  * subsystem according to empirical testing, and this is also justified
2178  * by considering the behavior of a buddy system containing a single
2179  * large block of memory acted on by a series of small allocations.
2180  * This behavior is a critical factor in sglist merging's success.
2181  *
2182  * -- nyc
2183  */
2184 static inline void expand(struct zone *zone, struct page *page,
2185 	int low, int high, int migratetype)
2186 {
2187 	unsigned long size = 1 << high;
2188 
2189 	while (high > low) {
2190 		high--;
2191 		size >>= 1;
2192 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2193 
2194 		/*
2195 		 * Mark as guard pages (or page), that will allow to
2196 		 * merge back to allocator when buddy will be freed.
2197 		 * Corresponding page table entries will not be touched,
2198 		 * pages will stay not present in virtual address space
2199 		 */
2200 		if (set_page_guard(zone, &page[size], high, migratetype))
2201 			continue;
2202 
2203 		add_to_free_list(&page[size], zone, high, migratetype);
2204 		set_buddy_order(&page[size], high);
2205 	}
2206 }
2207 
2208 static void check_new_page_bad(struct page *page)
2209 {
2210 	if (unlikely(page->flags & __PG_HWPOISON)) {
2211 		/* Don't complain about hwpoisoned pages */
2212 		page_mapcount_reset(page); /* remove PageBuddy */
2213 		return;
2214 	}
2215 
2216 	bad_page(page,
2217 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2218 }
2219 
2220 /*
2221  * This page is about to be returned from the page allocator
2222  */
2223 static inline int check_new_page(struct page *page)
2224 {
2225 	if (likely(page_expected_state(page,
2226 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2227 		return 0;
2228 
2229 	check_new_page_bad(page);
2230 	return 1;
2231 }
2232 
2233 #ifdef CONFIG_DEBUG_VM
2234 /*
2235  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2236  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2237  * also checked when pcp lists are refilled from the free lists.
2238  */
2239 static inline bool check_pcp_refill(struct page *page)
2240 {
2241 	if (debug_pagealloc_enabled_static())
2242 		return check_new_page(page);
2243 	else
2244 		return false;
2245 }
2246 
2247 static inline bool check_new_pcp(struct page *page)
2248 {
2249 	return check_new_page(page);
2250 }
2251 #else
2252 /*
2253  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2254  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2255  * enabled, they are also checked when being allocated from the pcp lists.
2256  */
2257 static inline bool check_pcp_refill(struct page *page)
2258 {
2259 	return check_new_page(page);
2260 }
2261 static inline bool check_new_pcp(struct page *page)
2262 {
2263 	if (debug_pagealloc_enabled_static())
2264 		return check_new_page(page);
2265 	else
2266 		return false;
2267 }
2268 #endif /* CONFIG_DEBUG_VM */
2269 
2270 static bool check_new_pages(struct page *page, unsigned int order)
2271 {
2272 	int i;
2273 	for (i = 0; i < (1 << order); i++) {
2274 		struct page *p = page + i;
2275 
2276 		if (unlikely(check_new_page(p)))
2277 			return true;
2278 	}
2279 
2280 	return false;
2281 }
2282 
2283 inline void post_alloc_hook(struct page *page, unsigned int order,
2284 				gfp_t gfp_flags)
2285 {
2286 	set_page_private(page, 0);
2287 	set_page_refcounted(page);
2288 
2289 	arch_alloc_page(page, order);
2290 	debug_pagealloc_map_pages(page, 1 << order);
2291 	kasan_alloc_pages(page, order);
2292 	kernel_unpoison_pages(page, 1 << order);
2293 	set_page_owner(page, order, gfp_flags);
2294 
2295 	if (!want_init_on_free() && want_init_on_alloc(gfp_flags))
2296 		kernel_init_free_pages(page, 1 << order);
2297 }
2298 
2299 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2300 							unsigned int alloc_flags)
2301 {
2302 	post_alloc_hook(page, order, gfp_flags);
2303 
2304 	if (order && (gfp_flags & __GFP_COMP))
2305 		prep_compound_page(page, order);
2306 
2307 	/*
2308 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2309 	 * allocate the page. The expectation is that the caller is taking
2310 	 * steps that will free more memory. The caller should avoid the page
2311 	 * being used for !PFMEMALLOC purposes.
2312 	 */
2313 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2314 		set_page_pfmemalloc(page);
2315 	else
2316 		clear_page_pfmemalloc(page);
2317 }
2318 
2319 /*
2320  * Go through the free lists for the given migratetype and remove
2321  * the smallest available page from the freelists
2322  */
2323 static __always_inline
2324 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2325 						int migratetype)
2326 {
2327 	unsigned int current_order;
2328 	struct free_area *area;
2329 	struct page *page;
2330 
2331 	/* Find a page of the appropriate size in the preferred list */
2332 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2333 		area = &(zone->free_area[current_order]);
2334 		page = get_page_from_free_area(area, migratetype);
2335 		if (!page)
2336 			continue;
2337 		del_page_from_free_list(page, zone, current_order);
2338 		expand(zone, page, order, current_order, migratetype);
2339 		set_pcppage_migratetype(page, migratetype);
2340 		return page;
2341 	}
2342 
2343 	return NULL;
2344 }
2345 
2346 
2347 /*
2348  * This array describes the order lists are fallen back to when
2349  * the free lists for the desirable migrate type are depleted
2350  */
2351 static int fallbacks[MIGRATE_TYPES][3] = {
2352 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2353 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2354 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2355 #ifdef CONFIG_CMA
2356 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2357 #endif
2358 #ifdef CONFIG_MEMORY_ISOLATION
2359 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2360 #endif
2361 };
2362 
2363 #ifdef CONFIG_CMA
2364 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2365 					unsigned int order)
2366 {
2367 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2368 }
2369 #else
2370 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2371 					unsigned int order) { return NULL; }
2372 #endif
2373 
2374 /*
2375  * Move the free pages in a range to the freelist tail of the requested type.
2376  * Note that start_page and end_pages are not aligned on a pageblock
2377  * boundary. If alignment is required, use move_freepages_block()
2378  */
2379 static int move_freepages(struct zone *zone,
2380 			  struct page *start_page, struct page *end_page,
2381 			  int migratetype, int *num_movable)
2382 {
2383 	struct page *page;
2384 	unsigned int order;
2385 	int pages_moved = 0;
2386 
2387 	for (page = start_page; page <= end_page;) {
2388 		if (!pfn_valid_within(page_to_pfn(page))) {
2389 			page++;
2390 			continue;
2391 		}
2392 
2393 		if (!PageBuddy(page)) {
2394 			/*
2395 			 * We assume that pages that could be isolated for
2396 			 * migration are movable. But we don't actually try
2397 			 * isolating, as that would be expensive.
2398 			 */
2399 			if (num_movable &&
2400 					(PageLRU(page) || __PageMovable(page)))
2401 				(*num_movable)++;
2402 
2403 			page++;
2404 			continue;
2405 		}
2406 
2407 		/* Make sure we are not inadvertently changing nodes */
2408 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2409 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2410 
2411 		order = buddy_order(page);
2412 		move_to_free_list(page, zone, order, migratetype);
2413 		page += 1 << order;
2414 		pages_moved += 1 << order;
2415 	}
2416 
2417 	return pages_moved;
2418 }
2419 
2420 int move_freepages_block(struct zone *zone, struct page *page,
2421 				int migratetype, int *num_movable)
2422 {
2423 	unsigned long start_pfn, end_pfn;
2424 	struct page *start_page, *end_page;
2425 
2426 	if (num_movable)
2427 		*num_movable = 0;
2428 
2429 	start_pfn = page_to_pfn(page);
2430 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2431 	start_page = pfn_to_page(start_pfn);
2432 	end_page = start_page + pageblock_nr_pages - 1;
2433 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2434 
2435 	/* Do not cross zone boundaries */
2436 	if (!zone_spans_pfn(zone, start_pfn))
2437 		start_page = page;
2438 	if (!zone_spans_pfn(zone, end_pfn))
2439 		return 0;
2440 
2441 	return move_freepages(zone, start_page, end_page, migratetype,
2442 								num_movable);
2443 }
2444 
2445 static void change_pageblock_range(struct page *pageblock_page,
2446 					int start_order, int migratetype)
2447 {
2448 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2449 
2450 	while (nr_pageblocks--) {
2451 		set_pageblock_migratetype(pageblock_page, migratetype);
2452 		pageblock_page += pageblock_nr_pages;
2453 	}
2454 }
2455 
2456 /*
2457  * When we are falling back to another migratetype during allocation, try to
2458  * steal extra free pages from the same pageblocks to satisfy further
2459  * allocations, instead of polluting multiple pageblocks.
2460  *
2461  * If we are stealing a relatively large buddy page, it is likely there will
2462  * be more free pages in the pageblock, so try to steal them all. For
2463  * reclaimable and unmovable allocations, we steal regardless of page size,
2464  * as fragmentation caused by those allocations polluting movable pageblocks
2465  * is worse than movable allocations stealing from unmovable and reclaimable
2466  * pageblocks.
2467  */
2468 static bool can_steal_fallback(unsigned int order, int start_mt)
2469 {
2470 	/*
2471 	 * Leaving this order check is intended, although there is
2472 	 * relaxed order check in next check. The reason is that
2473 	 * we can actually steal whole pageblock if this condition met,
2474 	 * but, below check doesn't guarantee it and that is just heuristic
2475 	 * so could be changed anytime.
2476 	 */
2477 	if (order >= pageblock_order)
2478 		return true;
2479 
2480 	if (order >= pageblock_order / 2 ||
2481 		start_mt == MIGRATE_RECLAIMABLE ||
2482 		start_mt == MIGRATE_UNMOVABLE ||
2483 		page_group_by_mobility_disabled)
2484 		return true;
2485 
2486 	return false;
2487 }
2488 
2489 static inline bool boost_watermark(struct zone *zone)
2490 {
2491 	unsigned long max_boost;
2492 
2493 	if (!watermark_boost_factor)
2494 		return false;
2495 	/*
2496 	 * Don't bother in zones that are unlikely to produce results.
2497 	 * On small machines, including kdump capture kernels running
2498 	 * in a small area, boosting the watermark can cause an out of
2499 	 * memory situation immediately.
2500 	 */
2501 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2502 		return false;
2503 
2504 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2505 			watermark_boost_factor, 10000);
2506 
2507 	/*
2508 	 * high watermark may be uninitialised if fragmentation occurs
2509 	 * very early in boot so do not boost. We do not fall
2510 	 * through and boost by pageblock_nr_pages as failing
2511 	 * allocations that early means that reclaim is not going
2512 	 * to help and it may even be impossible to reclaim the
2513 	 * boosted watermark resulting in a hang.
2514 	 */
2515 	if (!max_boost)
2516 		return false;
2517 
2518 	max_boost = max(pageblock_nr_pages, max_boost);
2519 
2520 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2521 		max_boost);
2522 
2523 	return true;
2524 }
2525 
2526 /*
2527  * This function implements actual steal behaviour. If order is large enough,
2528  * we can steal whole pageblock. If not, we first move freepages in this
2529  * pageblock to our migratetype and determine how many already-allocated pages
2530  * are there in the pageblock with a compatible migratetype. If at least half
2531  * of pages are free or compatible, we can change migratetype of the pageblock
2532  * itself, so pages freed in the future will be put on the correct free list.
2533  */
2534 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2535 		unsigned int alloc_flags, int start_type, bool whole_block)
2536 {
2537 	unsigned int current_order = buddy_order(page);
2538 	int free_pages, movable_pages, alike_pages;
2539 	int old_block_type;
2540 
2541 	old_block_type = get_pageblock_migratetype(page);
2542 
2543 	/*
2544 	 * This can happen due to races and we want to prevent broken
2545 	 * highatomic accounting.
2546 	 */
2547 	if (is_migrate_highatomic(old_block_type))
2548 		goto single_page;
2549 
2550 	/* Take ownership for orders >= pageblock_order */
2551 	if (current_order >= pageblock_order) {
2552 		change_pageblock_range(page, current_order, start_type);
2553 		goto single_page;
2554 	}
2555 
2556 	/*
2557 	 * Boost watermarks to increase reclaim pressure to reduce the
2558 	 * likelihood of future fallbacks. Wake kswapd now as the node
2559 	 * may be balanced overall and kswapd will not wake naturally.
2560 	 */
2561 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2562 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2563 
2564 	/* We are not allowed to try stealing from the whole block */
2565 	if (!whole_block)
2566 		goto single_page;
2567 
2568 	free_pages = move_freepages_block(zone, page, start_type,
2569 						&movable_pages);
2570 	/*
2571 	 * Determine how many pages are compatible with our allocation.
2572 	 * For movable allocation, it's the number of movable pages which
2573 	 * we just obtained. For other types it's a bit more tricky.
2574 	 */
2575 	if (start_type == MIGRATE_MOVABLE) {
2576 		alike_pages = movable_pages;
2577 	} else {
2578 		/*
2579 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2580 		 * to MOVABLE pageblock, consider all non-movable pages as
2581 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2582 		 * vice versa, be conservative since we can't distinguish the
2583 		 * exact migratetype of non-movable pages.
2584 		 */
2585 		if (old_block_type == MIGRATE_MOVABLE)
2586 			alike_pages = pageblock_nr_pages
2587 						- (free_pages + movable_pages);
2588 		else
2589 			alike_pages = 0;
2590 	}
2591 
2592 	/* moving whole block can fail due to zone boundary conditions */
2593 	if (!free_pages)
2594 		goto single_page;
2595 
2596 	/*
2597 	 * If a sufficient number of pages in the block are either free or of
2598 	 * comparable migratability as our allocation, claim the whole block.
2599 	 */
2600 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2601 			page_group_by_mobility_disabled)
2602 		set_pageblock_migratetype(page, start_type);
2603 
2604 	return;
2605 
2606 single_page:
2607 	move_to_free_list(page, zone, current_order, start_type);
2608 }
2609 
2610 /*
2611  * Check whether there is a suitable fallback freepage with requested order.
2612  * If only_stealable is true, this function returns fallback_mt only if
2613  * we can steal other freepages all together. This would help to reduce
2614  * fragmentation due to mixed migratetype pages in one pageblock.
2615  */
2616 int find_suitable_fallback(struct free_area *area, unsigned int order,
2617 			int migratetype, bool only_stealable, bool *can_steal)
2618 {
2619 	int i;
2620 	int fallback_mt;
2621 
2622 	if (area->nr_free == 0)
2623 		return -1;
2624 
2625 	*can_steal = false;
2626 	for (i = 0;; i++) {
2627 		fallback_mt = fallbacks[migratetype][i];
2628 		if (fallback_mt == MIGRATE_TYPES)
2629 			break;
2630 
2631 		if (free_area_empty(area, fallback_mt))
2632 			continue;
2633 
2634 		if (can_steal_fallback(order, migratetype))
2635 			*can_steal = true;
2636 
2637 		if (!only_stealable)
2638 			return fallback_mt;
2639 
2640 		if (*can_steal)
2641 			return fallback_mt;
2642 	}
2643 
2644 	return -1;
2645 }
2646 
2647 /*
2648  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2649  * there are no empty page blocks that contain a page with a suitable order
2650  */
2651 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2652 				unsigned int alloc_order)
2653 {
2654 	int mt;
2655 	unsigned long max_managed, flags;
2656 
2657 	/*
2658 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2659 	 * Check is race-prone but harmless.
2660 	 */
2661 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2662 	if (zone->nr_reserved_highatomic >= max_managed)
2663 		return;
2664 
2665 	spin_lock_irqsave(&zone->lock, flags);
2666 
2667 	/* Recheck the nr_reserved_highatomic limit under the lock */
2668 	if (zone->nr_reserved_highatomic >= max_managed)
2669 		goto out_unlock;
2670 
2671 	/* Yoink! */
2672 	mt = get_pageblock_migratetype(page);
2673 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2674 	    && !is_migrate_cma(mt)) {
2675 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2676 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2677 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2678 	}
2679 
2680 out_unlock:
2681 	spin_unlock_irqrestore(&zone->lock, flags);
2682 }
2683 
2684 /*
2685  * Used when an allocation is about to fail under memory pressure. This
2686  * potentially hurts the reliability of high-order allocations when under
2687  * intense memory pressure but failed atomic allocations should be easier
2688  * to recover from than an OOM.
2689  *
2690  * If @force is true, try to unreserve a pageblock even though highatomic
2691  * pageblock is exhausted.
2692  */
2693 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2694 						bool force)
2695 {
2696 	struct zonelist *zonelist = ac->zonelist;
2697 	unsigned long flags;
2698 	struct zoneref *z;
2699 	struct zone *zone;
2700 	struct page *page;
2701 	int order;
2702 	bool ret;
2703 
2704 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2705 								ac->nodemask) {
2706 		/*
2707 		 * Preserve at least one pageblock unless memory pressure
2708 		 * is really high.
2709 		 */
2710 		if (!force && zone->nr_reserved_highatomic <=
2711 					pageblock_nr_pages)
2712 			continue;
2713 
2714 		spin_lock_irqsave(&zone->lock, flags);
2715 		for (order = 0; order < MAX_ORDER; order++) {
2716 			struct free_area *area = &(zone->free_area[order]);
2717 
2718 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2719 			if (!page)
2720 				continue;
2721 
2722 			/*
2723 			 * In page freeing path, migratetype change is racy so
2724 			 * we can counter several free pages in a pageblock
2725 			 * in this loop althoug we changed the pageblock type
2726 			 * from highatomic to ac->migratetype. So we should
2727 			 * adjust the count once.
2728 			 */
2729 			if (is_migrate_highatomic_page(page)) {
2730 				/*
2731 				 * It should never happen but changes to
2732 				 * locking could inadvertently allow a per-cpu
2733 				 * drain to add pages to MIGRATE_HIGHATOMIC
2734 				 * while unreserving so be safe and watch for
2735 				 * underflows.
2736 				 */
2737 				zone->nr_reserved_highatomic -= min(
2738 						pageblock_nr_pages,
2739 						zone->nr_reserved_highatomic);
2740 			}
2741 
2742 			/*
2743 			 * Convert to ac->migratetype and avoid the normal
2744 			 * pageblock stealing heuristics. Minimally, the caller
2745 			 * is doing the work and needs the pages. More
2746 			 * importantly, if the block was always converted to
2747 			 * MIGRATE_UNMOVABLE or another type then the number
2748 			 * of pageblocks that cannot be completely freed
2749 			 * may increase.
2750 			 */
2751 			set_pageblock_migratetype(page, ac->migratetype);
2752 			ret = move_freepages_block(zone, page, ac->migratetype,
2753 									NULL);
2754 			if (ret) {
2755 				spin_unlock_irqrestore(&zone->lock, flags);
2756 				return ret;
2757 			}
2758 		}
2759 		spin_unlock_irqrestore(&zone->lock, flags);
2760 	}
2761 
2762 	return false;
2763 }
2764 
2765 /*
2766  * Try finding a free buddy page on the fallback list and put it on the free
2767  * list of requested migratetype, possibly along with other pages from the same
2768  * block, depending on fragmentation avoidance heuristics. Returns true if
2769  * fallback was found so that __rmqueue_smallest() can grab it.
2770  *
2771  * The use of signed ints for order and current_order is a deliberate
2772  * deviation from the rest of this file, to make the for loop
2773  * condition simpler.
2774  */
2775 static __always_inline bool
2776 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2777 						unsigned int alloc_flags)
2778 {
2779 	struct free_area *area;
2780 	int current_order;
2781 	int min_order = order;
2782 	struct page *page;
2783 	int fallback_mt;
2784 	bool can_steal;
2785 
2786 	/*
2787 	 * Do not steal pages from freelists belonging to other pageblocks
2788 	 * i.e. orders < pageblock_order. If there are no local zones free,
2789 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2790 	 */
2791 	if (alloc_flags & ALLOC_NOFRAGMENT)
2792 		min_order = pageblock_order;
2793 
2794 	/*
2795 	 * Find the largest available free page in the other list. This roughly
2796 	 * approximates finding the pageblock with the most free pages, which
2797 	 * would be too costly to do exactly.
2798 	 */
2799 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2800 				--current_order) {
2801 		area = &(zone->free_area[current_order]);
2802 		fallback_mt = find_suitable_fallback(area, current_order,
2803 				start_migratetype, false, &can_steal);
2804 		if (fallback_mt == -1)
2805 			continue;
2806 
2807 		/*
2808 		 * We cannot steal all free pages from the pageblock and the
2809 		 * requested migratetype is movable. In that case it's better to
2810 		 * steal and split the smallest available page instead of the
2811 		 * largest available page, because even if the next movable
2812 		 * allocation falls back into a different pageblock than this
2813 		 * one, it won't cause permanent fragmentation.
2814 		 */
2815 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2816 					&& current_order > order)
2817 			goto find_smallest;
2818 
2819 		goto do_steal;
2820 	}
2821 
2822 	return false;
2823 
2824 find_smallest:
2825 	for (current_order = order; current_order < MAX_ORDER;
2826 							current_order++) {
2827 		area = &(zone->free_area[current_order]);
2828 		fallback_mt = find_suitable_fallback(area, current_order,
2829 				start_migratetype, false, &can_steal);
2830 		if (fallback_mt != -1)
2831 			break;
2832 	}
2833 
2834 	/*
2835 	 * This should not happen - we already found a suitable fallback
2836 	 * when looking for the largest page.
2837 	 */
2838 	VM_BUG_ON(current_order == MAX_ORDER);
2839 
2840 do_steal:
2841 	page = get_page_from_free_area(area, fallback_mt);
2842 
2843 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2844 								can_steal);
2845 
2846 	trace_mm_page_alloc_extfrag(page, order, current_order,
2847 		start_migratetype, fallback_mt);
2848 
2849 	return true;
2850 
2851 }
2852 
2853 /*
2854  * Do the hard work of removing an element from the buddy allocator.
2855  * Call me with the zone->lock already held.
2856  */
2857 static __always_inline struct page *
2858 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2859 						unsigned int alloc_flags)
2860 {
2861 	struct page *page;
2862 
2863 #ifdef CONFIG_CMA
2864 	/*
2865 	 * Balance movable allocations between regular and CMA areas by
2866 	 * allocating from CMA when over half of the zone's free memory
2867 	 * is in the CMA area.
2868 	 */
2869 	if (alloc_flags & ALLOC_CMA &&
2870 	    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2871 	    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2872 		page = __rmqueue_cma_fallback(zone, order);
2873 		if (page)
2874 			return page;
2875 	}
2876 #endif
2877 retry:
2878 	page = __rmqueue_smallest(zone, order, migratetype);
2879 	if (unlikely(!page)) {
2880 		if (alloc_flags & ALLOC_CMA)
2881 			page = __rmqueue_cma_fallback(zone, order);
2882 
2883 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2884 								alloc_flags))
2885 			goto retry;
2886 	}
2887 
2888 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2889 	return page;
2890 }
2891 
2892 /*
2893  * Obtain a specified number of elements from the buddy allocator, all under
2894  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2895  * Returns the number of new pages which were placed at *list.
2896  */
2897 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2898 			unsigned long count, struct list_head *list,
2899 			int migratetype, unsigned int alloc_flags)
2900 {
2901 	int i, alloced = 0;
2902 
2903 	spin_lock(&zone->lock);
2904 	for (i = 0; i < count; ++i) {
2905 		struct page *page = __rmqueue(zone, order, migratetype,
2906 								alloc_flags);
2907 		if (unlikely(page == NULL))
2908 			break;
2909 
2910 		if (unlikely(check_pcp_refill(page)))
2911 			continue;
2912 
2913 		/*
2914 		 * Split buddy pages returned by expand() are received here in
2915 		 * physical page order. The page is added to the tail of
2916 		 * caller's list. From the callers perspective, the linked list
2917 		 * is ordered by page number under some conditions. This is
2918 		 * useful for IO devices that can forward direction from the
2919 		 * head, thus also in the physical page order. This is useful
2920 		 * for IO devices that can merge IO requests if the physical
2921 		 * pages are ordered properly.
2922 		 */
2923 		list_add_tail(&page->lru, list);
2924 		alloced++;
2925 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2926 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2927 					      -(1 << order));
2928 	}
2929 
2930 	/*
2931 	 * i pages were removed from the buddy list even if some leak due
2932 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2933 	 * on i. Do not confuse with 'alloced' which is the number of
2934 	 * pages added to the pcp list.
2935 	 */
2936 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2937 	spin_unlock(&zone->lock);
2938 	return alloced;
2939 }
2940 
2941 #ifdef CONFIG_NUMA
2942 /*
2943  * Called from the vmstat counter updater to drain pagesets of this
2944  * currently executing processor on remote nodes after they have
2945  * expired.
2946  *
2947  * Note that this function must be called with the thread pinned to
2948  * a single processor.
2949  */
2950 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2951 {
2952 	unsigned long flags;
2953 	int to_drain, batch;
2954 
2955 	local_irq_save(flags);
2956 	batch = READ_ONCE(pcp->batch);
2957 	to_drain = min(pcp->count, batch);
2958 	if (to_drain > 0)
2959 		free_pcppages_bulk(zone, to_drain, pcp);
2960 	local_irq_restore(flags);
2961 }
2962 #endif
2963 
2964 /*
2965  * Drain pcplists of the indicated processor and zone.
2966  *
2967  * The processor must either be the current processor and the
2968  * thread pinned to the current processor or a processor that
2969  * is not online.
2970  */
2971 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2972 {
2973 	unsigned long flags;
2974 	struct per_cpu_pageset *pset;
2975 	struct per_cpu_pages *pcp;
2976 
2977 	local_irq_save(flags);
2978 	pset = per_cpu_ptr(zone->pageset, cpu);
2979 
2980 	pcp = &pset->pcp;
2981 	if (pcp->count)
2982 		free_pcppages_bulk(zone, pcp->count, pcp);
2983 	local_irq_restore(flags);
2984 }
2985 
2986 /*
2987  * Drain pcplists of all zones on the indicated processor.
2988  *
2989  * The processor must either be the current processor and the
2990  * thread pinned to the current processor or a processor that
2991  * is not online.
2992  */
2993 static void drain_pages(unsigned int cpu)
2994 {
2995 	struct zone *zone;
2996 
2997 	for_each_populated_zone(zone) {
2998 		drain_pages_zone(cpu, zone);
2999 	}
3000 }
3001 
3002 /*
3003  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3004  *
3005  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3006  * the single zone's pages.
3007  */
3008 void drain_local_pages(struct zone *zone)
3009 {
3010 	int cpu = smp_processor_id();
3011 
3012 	if (zone)
3013 		drain_pages_zone(cpu, zone);
3014 	else
3015 		drain_pages(cpu);
3016 }
3017 
3018 static void drain_local_pages_wq(struct work_struct *work)
3019 {
3020 	struct pcpu_drain *drain;
3021 
3022 	drain = container_of(work, struct pcpu_drain, work);
3023 
3024 	/*
3025 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3026 	 * we can race with cpu offline when the WQ can move this from
3027 	 * a cpu pinned worker to an unbound one. We can operate on a different
3028 	 * cpu which is allright but we also have to make sure to not move to
3029 	 * a different one.
3030 	 */
3031 	preempt_disable();
3032 	drain_local_pages(drain->zone);
3033 	preempt_enable();
3034 }
3035 
3036 /*
3037  * The implementation of drain_all_pages(), exposing an extra parameter to
3038  * drain on all cpus.
3039  *
3040  * drain_all_pages() is optimized to only execute on cpus where pcplists are
3041  * not empty. The check for non-emptiness can however race with a free to
3042  * pcplist that has not yet increased the pcp->count from 0 to 1. Callers
3043  * that need the guarantee that every CPU has drained can disable the
3044  * optimizing racy check.
3045  */
3046 static void __drain_all_pages(struct zone *zone, bool force_all_cpus)
3047 {
3048 	int cpu;
3049 
3050 	/*
3051 	 * Allocate in the BSS so we wont require allocation in
3052 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3053 	 */
3054 	static cpumask_t cpus_with_pcps;
3055 
3056 	/*
3057 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3058 	 * initialized.
3059 	 */
3060 	if (WARN_ON_ONCE(!mm_percpu_wq))
3061 		return;
3062 
3063 	/*
3064 	 * Do not drain if one is already in progress unless it's specific to
3065 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3066 	 * the drain to be complete when the call returns.
3067 	 */
3068 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3069 		if (!zone)
3070 			return;
3071 		mutex_lock(&pcpu_drain_mutex);
3072 	}
3073 
3074 	/*
3075 	 * We don't care about racing with CPU hotplug event
3076 	 * as offline notification will cause the notified
3077 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3078 	 * disables preemption as part of its processing
3079 	 */
3080 	for_each_online_cpu(cpu) {
3081 		struct per_cpu_pageset *pcp;
3082 		struct zone *z;
3083 		bool has_pcps = false;
3084 
3085 		if (force_all_cpus) {
3086 			/*
3087 			 * The pcp.count check is racy, some callers need a
3088 			 * guarantee that no cpu is missed.
3089 			 */
3090 			has_pcps = true;
3091 		} else if (zone) {
3092 			pcp = per_cpu_ptr(zone->pageset, cpu);
3093 			if (pcp->pcp.count)
3094 				has_pcps = true;
3095 		} else {
3096 			for_each_populated_zone(z) {
3097 				pcp = per_cpu_ptr(z->pageset, cpu);
3098 				if (pcp->pcp.count) {
3099 					has_pcps = true;
3100 					break;
3101 				}
3102 			}
3103 		}
3104 
3105 		if (has_pcps)
3106 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3107 		else
3108 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3109 	}
3110 
3111 	for_each_cpu(cpu, &cpus_with_pcps) {
3112 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3113 
3114 		drain->zone = zone;
3115 		INIT_WORK(&drain->work, drain_local_pages_wq);
3116 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3117 	}
3118 	for_each_cpu(cpu, &cpus_with_pcps)
3119 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3120 
3121 	mutex_unlock(&pcpu_drain_mutex);
3122 }
3123 
3124 /*
3125  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3126  *
3127  * When zone parameter is non-NULL, spill just the single zone's pages.
3128  *
3129  * Note that this can be extremely slow as the draining happens in a workqueue.
3130  */
3131 void drain_all_pages(struct zone *zone)
3132 {
3133 	__drain_all_pages(zone, false);
3134 }
3135 
3136 #ifdef CONFIG_HIBERNATION
3137 
3138 /*
3139  * Touch the watchdog for every WD_PAGE_COUNT pages.
3140  */
3141 #define WD_PAGE_COUNT	(128*1024)
3142 
3143 void mark_free_pages(struct zone *zone)
3144 {
3145 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3146 	unsigned long flags;
3147 	unsigned int order, t;
3148 	struct page *page;
3149 
3150 	if (zone_is_empty(zone))
3151 		return;
3152 
3153 	spin_lock_irqsave(&zone->lock, flags);
3154 
3155 	max_zone_pfn = zone_end_pfn(zone);
3156 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3157 		if (pfn_valid(pfn)) {
3158 			page = pfn_to_page(pfn);
3159 
3160 			if (!--page_count) {
3161 				touch_nmi_watchdog();
3162 				page_count = WD_PAGE_COUNT;
3163 			}
3164 
3165 			if (page_zone(page) != zone)
3166 				continue;
3167 
3168 			if (!swsusp_page_is_forbidden(page))
3169 				swsusp_unset_page_free(page);
3170 		}
3171 
3172 	for_each_migratetype_order(order, t) {
3173 		list_for_each_entry(page,
3174 				&zone->free_area[order].free_list[t], lru) {
3175 			unsigned long i;
3176 
3177 			pfn = page_to_pfn(page);
3178 			for (i = 0; i < (1UL << order); i++) {
3179 				if (!--page_count) {
3180 					touch_nmi_watchdog();
3181 					page_count = WD_PAGE_COUNT;
3182 				}
3183 				swsusp_set_page_free(pfn_to_page(pfn + i));
3184 			}
3185 		}
3186 	}
3187 	spin_unlock_irqrestore(&zone->lock, flags);
3188 }
3189 #endif /* CONFIG_PM */
3190 
3191 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3192 {
3193 	int migratetype;
3194 
3195 	if (!free_pcp_prepare(page))
3196 		return false;
3197 
3198 	migratetype = get_pfnblock_migratetype(page, pfn);
3199 	set_pcppage_migratetype(page, migratetype);
3200 	return true;
3201 }
3202 
3203 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3204 {
3205 	struct zone *zone = page_zone(page);
3206 	struct per_cpu_pages *pcp;
3207 	int migratetype;
3208 
3209 	migratetype = get_pcppage_migratetype(page);
3210 	__count_vm_event(PGFREE);
3211 
3212 	/*
3213 	 * We only track unmovable, reclaimable and movable on pcp lists.
3214 	 * Free ISOLATE pages back to the allocator because they are being
3215 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3216 	 * areas back if necessary. Otherwise, we may have to free
3217 	 * excessively into the page allocator
3218 	 */
3219 	if (migratetype >= MIGRATE_PCPTYPES) {
3220 		if (unlikely(is_migrate_isolate(migratetype))) {
3221 			free_one_page(zone, page, pfn, 0, migratetype,
3222 				      FPI_NONE);
3223 			return;
3224 		}
3225 		migratetype = MIGRATE_MOVABLE;
3226 	}
3227 
3228 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3229 	list_add(&page->lru, &pcp->lists[migratetype]);
3230 	pcp->count++;
3231 	if (pcp->count >= READ_ONCE(pcp->high))
3232 		free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp);
3233 }
3234 
3235 /*
3236  * Free a 0-order page
3237  */
3238 void free_unref_page(struct page *page)
3239 {
3240 	unsigned long flags;
3241 	unsigned long pfn = page_to_pfn(page);
3242 
3243 	if (!free_unref_page_prepare(page, pfn))
3244 		return;
3245 
3246 	local_irq_save(flags);
3247 	free_unref_page_commit(page, pfn);
3248 	local_irq_restore(flags);
3249 }
3250 
3251 /*
3252  * Free a list of 0-order pages
3253  */
3254 void free_unref_page_list(struct list_head *list)
3255 {
3256 	struct page *page, *next;
3257 	unsigned long flags, pfn;
3258 	int batch_count = 0;
3259 
3260 	/* Prepare pages for freeing */
3261 	list_for_each_entry_safe(page, next, list, lru) {
3262 		pfn = page_to_pfn(page);
3263 		if (!free_unref_page_prepare(page, pfn))
3264 			list_del(&page->lru);
3265 		set_page_private(page, pfn);
3266 	}
3267 
3268 	local_irq_save(flags);
3269 	list_for_each_entry_safe(page, next, list, lru) {
3270 		unsigned long pfn = page_private(page);
3271 
3272 		set_page_private(page, 0);
3273 		trace_mm_page_free_batched(page);
3274 		free_unref_page_commit(page, pfn);
3275 
3276 		/*
3277 		 * Guard against excessive IRQ disabled times when we get
3278 		 * a large list of pages to free.
3279 		 */
3280 		if (++batch_count == SWAP_CLUSTER_MAX) {
3281 			local_irq_restore(flags);
3282 			batch_count = 0;
3283 			local_irq_save(flags);
3284 		}
3285 	}
3286 	local_irq_restore(flags);
3287 }
3288 
3289 /*
3290  * split_page takes a non-compound higher-order page, and splits it into
3291  * n (1<<order) sub-pages: page[0..n]
3292  * Each sub-page must be freed individually.
3293  *
3294  * Note: this is probably too low level an operation for use in drivers.
3295  * Please consult with lkml before using this in your driver.
3296  */
3297 void split_page(struct page *page, unsigned int order)
3298 {
3299 	int i;
3300 
3301 	VM_BUG_ON_PAGE(PageCompound(page), page);
3302 	VM_BUG_ON_PAGE(!page_count(page), page);
3303 
3304 	for (i = 1; i < (1 << order); i++)
3305 		set_page_refcounted(page + i);
3306 	split_page_owner(page, 1 << order);
3307 }
3308 EXPORT_SYMBOL_GPL(split_page);
3309 
3310 int __isolate_free_page(struct page *page, unsigned int order)
3311 {
3312 	unsigned long watermark;
3313 	struct zone *zone;
3314 	int mt;
3315 
3316 	BUG_ON(!PageBuddy(page));
3317 
3318 	zone = page_zone(page);
3319 	mt = get_pageblock_migratetype(page);
3320 
3321 	if (!is_migrate_isolate(mt)) {
3322 		/*
3323 		 * Obey watermarks as if the page was being allocated. We can
3324 		 * emulate a high-order watermark check with a raised order-0
3325 		 * watermark, because we already know our high-order page
3326 		 * exists.
3327 		 */
3328 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3329 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3330 			return 0;
3331 
3332 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3333 	}
3334 
3335 	/* Remove page from free list */
3336 
3337 	del_page_from_free_list(page, zone, order);
3338 
3339 	/*
3340 	 * Set the pageblock if the isolated page is at least half of a
3341 	 * pageblock
3342 	 */
3343 	if (order >= pageblock_order - 1) {
3344 		struct page *endpage = page + (1 << order) - 1;
3345 		for (; page < endpage; page += pageblock_nr_pages) {
3346 			int mt = get_pageblock_migratetype(page);
3347 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3348 			    && !is_migrate_highatomic(mt))
3349 				set_pageblock_migratetype(page,
3350 							  MIGRATE_MOVABLE);
3351 		}
3352 	}
3353 
3354 
3355 	return 1UL << order;
3356 }
3357 
3358 /**
3359  * __putback_isolated_page - Return a now-isolated page back where we got it
3360  * @page: Page that was isolated
3361  * @order: Order of the isolated page
3362  * @mt: The page's pageblock's migratetype
3363  *
3364  * This function is meant to return a page pulled from the free lists via
3365  * __isolate_free_page back to the free lists they were pulled from.
3366  */
3367 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3368 {
3369 	struct zone *zone = page_zone(page);
3370 
3371 	/* zone lock should be held when this function is called */
3372 	lockdep_assert_held(&zone->lock);
3373 
3374 	/* Return isolated page to tail of freelist. */
3375 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3376 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3377 }
3378 
3379 /*
3380  * Update NUMA hit/miss statistics
3381  *
3382  * Must be called with interrupts disabled.
3383  */
3384 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3385 {
3386 #ifdef CONFIG_NUMA
3387 	enum numa_stat_item local_stat = NUMA_LOCAL;
3388 
3389 	/* skip numa counters update if numa stats is disabled */
3390 	if (!static_branch_likely(&vm_numa_stat_key))
3391 		return;
3392 
3393 	if (zone_to_nid(z) != numa_node_id())
3394 		local_stat = NUMA_OTHER;
3395 
3396 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3397 		__inc_numa_state(z, NUMA_HIT);
3398 	else {
3399 		__inc_numa_state(z, NUMA_MISS);
3400 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3401 	}
3402 	__inc_numa_state(z, local_stat);
3403 #endif
3404 }
3405 
3406 /* Remove page from the per-cpu list, caller must protect the list */
3407 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3408 			unsigned int alloc_flags,
3409 			struct per_cpu_pages *pcp,
3410 			struct list_head *list)
3411 {
3412 	struct page *page;
3413 
3414 	do {
3415 		if (list_empty(list)) {
3416 			pcp->count += rmqueue_bulk(zone, 0,
3417 					READ_ONCE(pcp->batch), list,
3418 					migratetype, alloc_flags);
3419 			if (unlikely(list_empty(list)))
3420 				return NULL;
3421 		}
3422 
3423 		page = list_first_entry(list, struct page, lru);
3424 		list_del(&page->lru);
3425 		pcp->count--;
3426 	} while (check_new_pcp(page));
3427 
3428 	return page;
3429 }
3430 
3431 /* Lock and remove page from the per-cpu list */
3432 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3433 			struct zone *zone, gfp_t gfp_flags,
3434 			int migratetype, unsigned int alloc_flags)
3435 {
3436 	struct per_cpu_pages *pcp;
3437 	struct list_head *list;
3438 	struct page *page;
3439 	unsigned long flags;
3440 
3441 	local_irq_save(flags);
3442 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3443 	list = &pcp->lists[migratetype];
3444 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3445 	if (page) {
3446 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3447 		zone_statistics(preferred_zone, zone);
3448 	}
3449 	local_irq_restore(flags);
3450 	return page;
3451 }
3452 
3453 /*
3454  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3455  */
3456 static inline
3457 struct page *rmqueue(struct zone *preferred_zone,
3458 			struct zone *zone, unsigned int order,
3459 			gfp_t gfp_flags, unsigned int alloc_flags,
3460 			int migratetype)
3461 {
3462 	unsigned long flags;
3463 	struct page *page;
3464 
3465 	if (likely(order == 0)) {
3466 		/*
3467 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3468 		 * we need to skip it when CMA area isn't allowed.
3469 		 */
3470 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3471 				migratetype != MIGRATE_MOVABLE) {
3472 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3473 					migratetype, alloc_flags);
3474 			goto out;
3475 		}
3476 	}
3477 
3478 	/*
3479 	 * We most definitely don't want callers attempting to
3480 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3481 	 */
3482 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3483 	spin_lock_irqsave(&zone->lock, flags);
3484 
3485 	do {
3486 		page = NULL;
3487 		/*
3488 		 * order-0 request can reach here when the pcplist is skipped
3489 		 * due to non-CMA allocation context. HIGHATOMIC area is
3490 		 * reserved for high-order atomic allocation, so order-0
3491 		 * request should skip it.
3492 		 */
3493 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3494 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3495 			if (page)
3496 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3497 		}
3498 		if (!page)
3499 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3500 	} while (page && check_new_pages(page, order));
3501 	spin_unlock(&zone->lock);
3502 	if (!page)
3503 		goto failed;
3504 	__mod_zone_freepage_state(zone, -(1 << order),
3505 				  get_pcppage_migratetype(page));
3506 
3507 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3508 	zone_statistics(preferred_zone, zone);
3509 	local_irq_restore(flags);
3510 
3511 out:
3512 	/* Separate test+clear to avoid unnecessary atomics */
3513 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3514 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3515 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3516 	}
3517 
3518 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3519 	return page;
3520 
3521 failed:
3522 	local_irq_restore(flags);
3523 	return NULL;
3524 }
3525 
3526 #ifdef CONFIG_FAIL_PAGE_ALLOC
3527 
3528 static struct {
3529 	struct fault_attr attr;
3530 
3531 	bool ignore_gfp_highmem;
3532 	bool ignore_gfp_reclaim;
3533 	u32 min_order;
3534 } fail_page_alloc = {
3535 	.attr = FAULT_ATTR_INITIALIZER,
3536 	.ignore_gfp_reclaim = true,
3537 	.ignore_gfp_highmem = true,
3538 	.min_order = 1,
3539 };
3540 
3541 static int __init setup_fail_page_alloc(char *str)
3542 {
3543 	return setup_fault_attr(&fail_page_alloc.attr, str);
3544 }
3545 __setup("fail_page_alloc=", setup_fail_page_alloc);
3546 
3547 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3548 {
3549 	if (order < fail_page_alloc.min_order)
3550 		return false;
3551 	if (gfp_mask & __GFP_NOFAIL)
3552 		return false;
3553 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3554 		return false;
3555 	if (fail_page_alloc.ignore_gfp_reclaim &&
3556 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3557 		return false;
3558 
3559 	return should_fail(&fail_page_alloc.attr, 1 << order);
3560 }
3561 
3562 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3563 
3564 static int __init fail_page_alloc_debugfs(void)
3565 {
3566 	umode_t mode = S_IFREG | 0600;
3567 	struct dentry *dir;
3568 
3569 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3570 					&fail_page_alloc.attr);
3571 
3572 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3573 			    &fail_page_alloc.ignore_gfp_reclaim);
3574 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3575 			    &fail_page_alloc.ignore_gfp_highmem);
3576 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3577 
3578 	return 0;
3579 }
3580 
3581 late_initcall(fail_page_alloc_debugfs);
3582 
3583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3584 
3585 #else /* CONFIG_FAIL_PAGE_ALLOC */
3586 
3587 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3588 {
3589 	return false;
3590 }
3591 
3592 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3593 
3594 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3595 {
3596 	return __should_fail_alloc_page(gfp_mask, order);
3597 }
3598 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3599 
3600 static inline long __zone_watermark_unusable_free(struct zone *z,
3601 				unsigned int order, unsigned int alloc_flags)
3602 {
3603 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3604 	long unusable_free = (1 << order) - 1;
3605 
3606 	/*
3607 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3608 	 * the high-atomic reserves. This will over-estimate the size of the
3609 	 * atomic reserve but it avoids a search.
3610 	 */
3611 	if (likely(!alloc_harder))
3612 		unusable_free += z->nr_reserved_highatomic;
3613 
3614 #ifdef CONFIG_CMA
3615 	/* If allocation can't use CMA areas don't use free CMA pages */
3616 	if (!(alloc_flags & ALLOC_CMA))
3617 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3618 #endif
3619 
3620 	return unusable_free;
3621 }
3622 
3623 /*
3624  * Return true if free base pages are above 'mark'. For high-order checks it
3625  * will return true of the order-0 watermark is reached and there is at least
3626  * one free page of a suitable size. Checking now avoids taking the zone lock
3627  * to check in the allocation paths if no pages are free.
3628  */
3629 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3630 			 int highest_zoneidx, unsigned int alloc_flags,
3631 			 long free_pages)
3632 {
3633 	long min = mark;
3634 	int o;
3635 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3636 
3637 	/* free_pages may go negative - that's OK */
3638 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3639 
3640 	if (alloc_flags & ALLOC_HIGH)
3641 		min -= min / 2;
3642 
3643 	if (unlikely(alloc_harder)) {
3644 		/*
3645 		 * OOM victims can try even harder than normal ALLOC_HARDER
3646 		 * users on the grounds that it's definitely going to be in
3647 		 * the exit path shortly and free memory. Any allocation it
3648 		 * makes during the free path will be small and short-lived.
3649 		 */
3650 		if (alloc_flags & ALLOC_OOM)
3651 			min -= min / 2;
3652 		else
3653 			min -= min / 4;
3654 	}
3655 
3656 	/*
3657 	 * Check watermarks for an order-0 allocation request. If these
3658 	 * are not met, then a high-order request also cannot go ahead
3659 	 * even if a suitable page happened to be free.
3660 	 */
3661 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3662 		return false;
3663 
3664 	/* If this is an order-0 request then the watermark is fine */
3665 	if (!order)
3666 		return true;
3667 
3668 	/* For a high-order request, check at least one suitable page is free */
3669 	for (o = order; o < MAX_ORDER; o++) {
3670 		struct free_area *area = &z->free_area[o];
3671 		int mt;
3672 
3673 		if (!area->nr_free)
3674 			continue;
3675 
3676 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3677 			if (!free_area_empty(area, mt))
3678 				return true;
3679 		}
3680 
3681 #ifdef CONFIG_CMA
3682 		if ((alloc_flags & ALLOC_CMA) &&
3683 		    !free_area_empty(area, MIGRATE_CMA)) {
3684 			return true;
3685 		}
3686 #endif
3687 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3688 			return true;
3689 	}
3690 	return false;
3691 }
3692 
3693 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3694 		      int highest_zoneidx, unsigned int alloc_flags)
3695 {
3696 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3697 					zone_page_state(z, NR_FREE_PAGES));
3698 }
3699 
3700 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3701 				unsigned long mark, int highest_zoneidx,
3702 				unsigned int alloc_flags, gfp_t gfp_mask)
3703 {
3704 	long free_pages;
3705 
3706 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3707 
3708 	/*
3709 	 * Fast check for order-0 only. If this fails then the reserves
3710 	 * need to be calculated.
3711 	 */
3712 	if (!order) {
3713 		long fast_free;
3714 
3715 		fast_free = free_pages;
3716 		fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags);
3717 		if (fast_free > mark + z->lowmem_reserve[highest_zoneidx])
3718 			return true;
3719 	}
3720 
3721 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3722 					free_pages))
3723 		return true;
3724 	/*
3725 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3726 	 * when checking the min watermark. The min watermark is the
3727 	 * point where boosting is ignored so that kswapd is woken up
3728 	 * when below the low watermark.
3729 	 */
3730 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3731 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3732 		mark = z->_watermark[WMARK_MIN];
3733 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3734 					alloc_flags, free_pages);
3735 	}
3736 
3737 	return false;
3738 }
3739 
3740 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3741 			unsigned long mark, int highest_zoneidx)
3742 {
3743 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3744 
3745 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3746 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3747 
3748 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3749 								free_pages);
3750 }
3751 
3752 #ifdef CONFIG_NUMA
3753 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3754 {
3755 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3756 				node_reclaim_distance;
3757 }
3758 #else	/* CONFIG_NUMA */
3759 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3760 {
3761 	return true;
3762 }
3763 #endif	/* CONFIG_NUMA */
3764 
3765 /*
3766  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3767  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3768  * premature use of a lower zone may cause lowmem pressure problems that
3769  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3770  * probably too small. It only makes sense to spread allocations to avoid
3771  * fragmentation between the Normal and DMA32 zones.
3772  */
3773 static inline unsigned int
3774 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3775 {
3776 	unsigned int alloc_flags;
3777 
3778 	/*
3779 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3780 	 * to save a branch.
3781 	 */
3782 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3783 
3784 #ifdef CONFIG_ZONE_DMA32
3785 	if (!zone)
3786 		return alloc_flags;
3787 
3788 	if (zone_idx(zone) != ZONE_NORMAL)
3789 		return alloc_flags;
3790 
3791 	/*
3792 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3793 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3794 	 * on UMA that if Normal is populated then so is DMA32.
3795 	 */
3796 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3797 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3798 		return alloc_flags;
3799 
3800 	alloc_flags |= ALLOC_NOFRAGMENT;
3801 #endif /* CONFIG_ZONE_DMA32 */
3802 	return alloc_flags;
3803 }
3804 
3805 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3806 					unsigned int alloc_flags)
3807 {
3808 #ifdef CONFIG_CMA
3809 	unsigned int pflags = current->flags;
3810 
3811 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3812 			gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3813 		alloc_flags |= ALLOC_CMA;
3814 
3815 #endif
3816 	return alloc_flags;
3817 }
3818 
3819 /*
3820  * get_page_from_freelist goes through the zonelist trying to allocate
3821  * a page.
3822  */
3823 static struct page *
3824 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3825 						const struct alloc_context *ac)
3826 {
3827 	struct zoneref *z;
3828 	struct zone *zone;
3829 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3830 	bool no_fallback;
3831 
3832 retry:
3833 	/*
3834 	 * Scan zonelist, looking for a zone with enough free.
3835 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3836 	 */
3837 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3838 	z = ac->preferred_zoneref;
3839 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3840 					ac->nodemask) {
3841 		struct page *page;
3842 		unsigned long mark;
3843 
3844 		if (cpusets_enabled() &&
3845 			(alloc_flags & ALLOC_CPUSET) &&
3846 			!__cpuset_zone_allowed(zone, gfp_mask))
3847 				continue;
3848 		/*
3849 		 * When allocating a page cache page for writing, we
3850 		 * want to get it from a node that is within its dirty
3851 		 * limit, such that no single node holds more than its
3852 		 * proportional share of globally allowed dirty pages.
3853 		 * The dirty limits take into account the node's
3854 		 * lowmem reserves and high watermark so that kswapd
3855 		 * should be able to balance it without having to
3856 		 * write pages from its LRU list.
3857 		 *
3858 		 * XXX: For now, allow allocations to potentially
3859 		 * exceed the per-node dirty limit in the slowpath
3860 		 * (spread_dirty_pages unset) before going into reclaim,
3861 		 * which is important when on a NUMA setup the allowed
3862 		 * nodes are together not big enough to reach the
3863 		 * global limit.  The proper fix for these situations
3864 		 * will require awareness of nodes in the
3865 		 * dirty-throttling and the flusher threads.
3866 		 */
3867 		if (ac->spread_dirty_pages) {
3868 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3869 				continue;
3870 
3871 			if (!node_dirty_ok(zone->zone_pgdat)) {
3872 				last_pgdat_dirty_limit = zone->zone_pgdat;
3873 				continue;
3874 			}
3875 		}
3876 
3877 		if (no_fallback && nr_online_nodes > 1 &&
3878 		    zone != ac->preferred_zoneref->zone) {
3879 			int local_nid;
3880 
3881 			/*
3882 			 * If moving to a remote node, retry but allow
3883 			 * fragmenting fallbacks. Locality is more important
3884 			 * than fragmentation avoidance.
3885 			 */
3886 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3887 			if (zone_to_nid(zone) != local_nid) {
3888 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3889 				goto retry;
3890 			}
3891 		}
3892 
3893 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3894 		if (!zone_watermark_fast(zone, order, mark,
3895 				       ac->highest_zoneidx, alloc_flags,
3896 				       gfp_mask)) {
3897 			int ret;
3898 
3899 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3900 			/*
3901 			 * Watermark failed for this zone, but see if we can
3902 			 * grow this zone if it contains deferred pages.
3903 			 */
3904 			if (static_branch_unlikely(&deferred_pages)) {
3905 				if (_deferred_grow_zone(zone, order))
3906 					goto try_this_zone;
3907 			}
3908 #endif
3909 			/* Checked here to keep the fast path fast */
3910 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3911 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3912 				goto try_this_zone;
3913 
3914 			if (node_reclaim_mode == 0 ||
3915 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3916 				continue;
3917 
3918 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3919 			switch (ret) {
3920 			case NODE_RECLAIM_NOSCAN:
3921 				/* did not scan */
3922 				continue;
3923 			case NODE_RECLAIM_FULL:
3924 				/* scanned but unreclaimable */
3925 				continue;
3926 			default:
3927 				/* did we reclaim enough */
3928 				if (zone_watermark_ok(zone, order, mark,
3929 					ac->highest_zoneidx, alloc_flags))
3930 					goto try_this_zone;
3931 
3932 				continue;
3933 			}
3934 		}
3935 
3936 try_this_zone:
3937 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3938 				gfp_mask, alloc_flags, ac->migratetype);
3939 		if (page) {
3940 			prep_new_page(page, order, gfp_mask, alloc_flags);
3941 
3942 			/*
3943 			 * If this is a high-order atomic allocation then check
3944 			 * if the pageblock should be reserved for the future
3945 			 */
3946 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3947 				reserve_highatomic_pageblock(page, zone, order);
3948 
3949 			return page;
3950 		} else {
3951 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3952 			/* Try again if zone has deferred pages */
3953 			if (static_branch_unlikely(&deferred_pages)) {
3954 				if (_deferred_grow_zone(zone, order))
3955 					goto try_this_zone;
3956 			}
3957 #endif
3958 		}
3959 	}
3960 
3961 	/*
3962 	 * It's possible on a UMA machine to get through all zones that are
3963 	 * fragmented. If avoiding fragmentation, reset and try again.
3964 	 */
3965 	if (no_fallback) {
3966 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3967 		goto retry;
3968 	}
3969 
3970 	return NULL;
3971 }
3972 
3973 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3974 {
3975 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3976 
3977 	/*
3978 	 * This documents exceptions given to allocations in certain
3979 	 * contexts that are allowed to allocate outside current's set
3980 	 * of allowed nodes.
3981 	 */
3982 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3983 		if (tsk_is_oom_victim(current) ||
3984 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3985 			filter &= ~SHOW_MEM_FILTER_NODES;
3986 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3987 		filter &= ~SHOW_MEM_FILTER_NODES;
3988 
3989 	show_mem(filter, nodemask);
3990 }
3991 
3992 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3993 {
3994 	struct va_format vaf;
3995 	va_list args;
3996 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3997 
3998 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3999 		return;
4000 
4001 	va_start(args, fmt);
4002 	vaf.fmt = fmt;
4003 	vaf.va = &args;
4004 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4005 			current->comm, &vaf, gfp_mask, &gfp_mask,
4006 			nodemask_pr_args(nodemask));
4007 	va_end(args);
4008 
4009 	cpuset_print_current_mems_allowed();
4010 	pr_cont("\n");
4011 	dump_stack();
4012 	warn_alloc_show_mem(gfp_mask, nodemask);
4013 }
4014 
4015 static inline struct page *
4016 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4017 			      unsigned int alloc_flags,
4018 			      const struct alloc_context *ac)
4019 {
4020 	struct page *page;
4021 
4022 	page = get_page_from_freelist(gfp_mask, order,
4023 			alloc_flags|ALLOC_CPUSET, ac);
4024 	/*
4025 	 * fallback to ignore cpuset restriction if our nodes
4026 	 * are depleted
4027 	 */
4028 	if (!page)
4029 		page = get_page_from_freelist(gfp_mask, order,
4030 				alloc_flags, ac);
4031 
4032 	return page;
4033 }
4034 
4035 static inline struct page *
4036 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4037 	const struct alloc_context *ac, unsigned long *did_some_progress)
4038 {
4039 	struct oom_control oc = {
4040 		.zonelist = ac->zonelist,
4041 		.nodemask = ac->nodemask,
4042 		.memcg = NULL,
4043 		.gfp_mask = gfp_mask,
4044 		.order = order,
4045 	};
4046 	struct page *page;
4047 
4048 	*did_some_progress = 0;
4049 
4050 	/*
4051 	 * Acquire the oom lock.  If that fails, somebody else is
4052 	 * making progress for us.
4053 	 */
4054 	if (!mutex_trylock(&oom_lock)) {
4055 		*did_some_progress = 1;
4056 		schedule_timeout_uninterruptible(1);
4057 		return NULL;
4058 	}
4059 
4060 	/*
4061 	 * Go through the zonelist yet one more time, keep very high watermark
4062 	 * here, this is only to catch a parallel oom killing, we must fail if
4063 	 * we're still under heavy pressure. But make sure that this reclaim
4064 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4065 	 * allocation which will never fail due to oom_lock already held.
4066 	 */
4067 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4068 				      ~__GFP_DIRECT_RECLAIM, order,
4069 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4070 	if (page)
4071 		goto out;
4072 
4073 	/* Coredumps can quickly deplete all memory reserves */
4074 	if (current->flags & PF_DUMPCORE)
4075 		goto out;
4076 	/* The OOM killer will not help higher order allocs */
4077 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4078 		goto out;
4079 	/*
4080 	 * We have already exhausted all our reclaim opportunities without any
4081 	 * success so it is time to admit defeat. We will skip the OOM killer
4082 	 * because it is very likely that the caller has a more reasonable
4083 	 * fallback than shooting a random task.
4084 	 *
4085 	 * The OOM killer may not free memory on a specific node.
4086 	 */
4087 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4088 		goto out;
4089 	/* The OOM killer does not needlessly kill tasks for lowmem */
4090 	if (ac->highest_zoneidx < ZONE_NORMAL)
4091 		goto out;
4092 	if (pm_suspended_storage())
4093 		goto out;
4094 	/*
4095 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4096 	 * other request to make a forward progress.
4097 	 * We are in an unfortunate situation where out_of_memory cannot
4098 	 * do much for this context but let's try it to at least get
4099 	 * access to memory reserved if the current task is killed (see
4100 	 * out_of_memory). Once filesystems are ready to handle allocation
4101 	 * failures more gracefully we should just bail out here.
4102 	 */
4103 
4104 	/* Exhausted what can be done so it's blame time */
4105 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4106 		*did_some_progress = 1;
4107 
4108 		/*
4109 		 * Help non-failing allocations by giving them access to memory
4110 		 * reserves
4111 		 */
4112 		if (gfp_mask & __GFP_NOFAIL)
4113 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4114 					ALLOC_NO_WATERMARKS, ac);
4115 	}
4116 out:
4117 	mutex_unlock(&oom_lock);
4118 	return page;
4119 }
4120 
4121 /*
4122  * Maximum number of compaction retries wit a progress before OOM
4123  * killer is consider as the only way to move forward.
4124  */
4125 #define MAX_COMPACT_RETRIES 16
4126 
4127 #ifdef CONFIG_COMPACTION
4128 /* Try memory compaction for high-order allocations before reclaim */
4129 static struct page *
4130 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4131 		unsigned int alloc_flags, const struct alloc_context *ac,
4132 		enum compact_priority prio, enum compact_result *compact_result)
4133 {
4134 	struct page *page = NULL;
4135 	unsigned long pflags;
4136 	unsigned int noreclaim_flag;
4137 
4138 	if (!order)
4139 		return NULL;
4140 
4141 	psi_memstall_enter(&pflags);
4142 	noreclaim_flag = memalloc_noreclaim_save();
4143 
4144 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4145 								prio, &page);
4146 
4147 	memalloc_noreclaim_restore(noreclaim_flag);
4148 	psi_memstall_leave(&pflags);
4149 
4150 	/*
4151 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4152 	 * count a compaction stall
4153 	 */
4154 	count_vm_event(COMPACTSTALL);
4155 
4156 	/* Prep a captured page if available */
4157 	if (page)
4158 		prep_new_page(page, order, gfp_mask, alloc_flags);
4159 
4160 	/* Try get a page from the freelist if available */
4161 	if (!page)
4162 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4163 
4164 	if (page) {
4165 		struct zone *zone = page_zone(page);
4166 
4167 		zone->compact_blockskip_flush = false;
4168 		compaction_defer_reset(zone, order, true);
4169 		count_vm_event(COMPACTSUCCESS);
4170 		return page;
4171 	}
4172 
4173 	/*
4174 	 * It's bad if compaction run occurs and fails. The most likely reason
4175 	 * is that pages exist, but not enough to satisfy watermarks.
4176 	 */
4177 	count_vm_event(COMPACTFAIL);
4178 
4179 	cond_resched();
4180 
4181 	return NULL;
4182 }
4183 
4184 static inline bool
4185 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4186 		     enum compact_result compact_result,
4187 		     enum compact_priority *compact_priority,
4188 		     int *compaction_retries)
4189 {
4190 	int max_retries = MAX_COMPACT_RETRIES;
4191 	int min_priority;
4192 	bool ret = false;
4193 	int retries = *compaction_retries;
4194 	enum compact_priority priority = *compact_priority;
4195 
4196 	if (!order)
4197 		return false;
4198 
4199 	if (compaction_made_progress(compact_result))
4200 		(*compaction_retries)++;
4201 
4202 	/*
4203 	 * compaction considers all the zone as desperately out of memory
4204 	 * so it doesn't really make much sense to retry except when the
4205 	 * failure could be caused by insufficient priority
4206 	 */
4207 	if (compaction_failed(compact_result))
4208 		goto check_priority;
4209 
4210 	/*
4211 	 * compaction was skipped because there are not enough order-0 pages
4212 	 * to work with, so we retry only if it looks like reclaim can help.
4213 	 */
4214 	if (compaction_needs_reclaim(compact_result)) {
4215 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4216 		goto out;
4217 	}
4218 
4219 	/*
4220 	 * make sure the compaction wasn't deferred or didn't bail out early
4221 	 * due to locks contention before we declare that we should give up.
4222 	 * But the next retry should use a higher priority if allowed, so
4223 	 * we don't just keep bailing out endlessly.
4224 	 */
4225 	if (compaction_withdrawn(compact_result)) {
4226 		goto check_priority;
4227 	}
4228 
4229 	/*
4230 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4231 	 * costly ones because they are de facto nofail and invoke OOM
4232 	 * killer to move on while costly can fail and users are ready
4233 	 * to cope with that. 1/4 retries is rather arbitrary but we
4234 	 * would need much more detailed feedback from compaction to
4235 	 * make a better decision.
4236 	 */
4237 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4238 		max_retries /= 4;
4239 	if (*compaction_retries <= max_retries) {
4240 		ret = true;
4241 		goto out;
4242 	}
4243 
4244 	/*
4245 	 * Make sure there are attempts at the highest priority if we exhausted
4246 	 * all retries or failed at the lower priorities.
4247 	 */
4248 check_priority:
4249 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4250 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4251 
4252 	if (*compact_priority > min_priority) {
4253 		(*compact_priority)--;
4254 		*compaction_retries = 0;
4255 		ret = true;
4256 	}
4257 out:
4258 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4259 	return ret;
4260 }
4261 #else
4262 static inline struct page *
4263 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4264 		unsigned int alloc_flags, const struct alloc_context *ac,
4265 		enum compact_priority prio, enum compact_result *compact_result)
4266 {
4267 	*compact_result = COMPACT_SKIPPED;
4268 	return NULL;
4269 }
4270 
4271 static inline bool
4272 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4273 		     enum compact_result compact_result,
4274 		     enum compact_priority *compact_priority,
4275 		     int *compaction_retries)
4276 {
4277 	struct zone *zone;
4278 	struct zoneref *z;
4279 
4280 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4281 		return false;
4282 
4283 	/*
4284 	 * There are setups with compaction disabled which would prefer to loop
4285 	 * inside the allocator rather than hit the oom killer prematurely.
4286 	 * Let's give them a good hope and keep retrying while the order-0
4287 	 * watermarks are OK.
4288 	 */
4289 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4290 				ac->highest_zoneidx, ac->nodemask) {
4291 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4292 					ac->highest_zoneidx, alloc_flags))
4293 			return true;
4294 	}
4295 	return false;
4296 }
4297 #endif /* CONFIG_COMPACTION */
4298 
4299 #ifdef CONFIG_LOCKDEP
4300 static struct lockdep_map __fs_reclaim_map =
4301 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4302 
4303 static bool __need_reclaim(gfp_t gfp_mask)
4304 {
4305 	/* no reclaim without waiting on it */
4306 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4307 		return false;
4308 
4309 	/* this guy won't enter reclaim */
4310 	if (current->flags & PF_MEMALLOC)
4311 		return false;
4312 
4313 	if (gfp_mask & __GFP_NOLOCKDEP)
4314 		return false;
4315 
4316 	return true;
4317 }
4318 
4319 void __fs_reclaim_acquire(void)
4320 {
4321 	lock_map_acquire(&__fs_reclaim_map);
4322 }
4323 
4324 void __fs_reclaim_release(void)
4325 {
4326 	lock_map_release(&__fs_reclaim_map);
4327 }
4328 
4329 void fs_reclaim_acquire(gfp_t gfp_mask)
4330 {
4331 	gfp_mask = current_gfp_context(gfp_mask);
4332 
4333 	if (__need_reclaim(gfp_mask)) {
4334 		if (gfp_mask & __GFP_FS)
4335 			__fs_reclaim_acquire();
4336 
4337 #ifdef CONFIG_MMU_NOTIFIER
4338 		lock_map_acquire(&__mmu_notifier_invalidate_range_start_map);
4339 		lock_map_release(&__mmu_notifier_invalidate_range_start_map);
4340 #endif
4341 
4342 	}
4343 }
4344 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4345 
4346 void fs_reclaim_release(gfp_t gfp_mask)
4347 {
4348 	gfp_mask = current_gfp_context(gfp_mask);
4349 
4350 	if (__need_reclaim(gfp_mask)) {
4351 		if (gfp_mask & __GFP_FS)
4352 			__fs_reclaim_release();
4353 	}
4354 }
4355 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4356 #endif
4357 
4358 /* Perform direct synchronous page reclaim */
4359 static unsigned long
4360 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4361 					const struct alloc_context *ac)
4362 {
4363 	unsigned int noreclaim_flag;
4364 	unsigned long pflags, progress;
4365 
4366 	cond_resched();
4367 
4368 	/* We now go into synchronous reclaim */
4369 	cpuset_memory_pressure_bump();
4370 	psi_memstall_enter(&pflags);
4371 	fs_reclaim_acquire(gfp_mask);
4372 	noreclaim_flag = memalloc_noreclaim_save();
4373 
4374 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4375 								ac->nodemask);
4376 
4377 	memalloc_noreclaim_restore(noreclaim_flag);
4378 	fs_reclaim_release(gfp_mask);
4379 	psi_memstall_leave(&pflags);
4380 
4381 	cond_resched();
4382 
4383 	return progress;
4384 }
4385 
4386 /* The really slow allocator path where we enter direct reclaim */
4387 static inline struct page *
4388 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4389 		unsigned int alloc_flags, const struct alloc_context *ac,
4390 		unsigned long *did_some_progress)
4391 {
4392 	struct page *page = NULL;
4393 	bool drained = false;
4394 
4395 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4396 	if (unlikely(!(*did_some_progress)))
4397 		return NULL;
4398 
4399 retry:
4400 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4401 
4402 	/*
4403 	 * If an allocation failed after direct reclaim, it could be because
4404 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4405 	 * Shrink them and try again
4406 	 */
4407 	if (!page && !drained) {
4408 		unreserve_highatomic_pageblock(ac, false);
4409 		drain_all_pages(NULL);
4410 		drained = true;
4411 		goto retry;
4412 	}
4413 
4414 	return page;
4415 }
4416 
4417 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4418 			     const struct alloc_context *ac)
4419 {
4420 	struct zoneref *z;
4421 	struct zone *zone;
4422 	pg_data_t *last_pgdat = NULL;
4423 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4424 
4425 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4426 					ac->nodemask) {
4427 		if (last_pgdat != zone->zone_pgdat)
4428 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4429 		last_pgdat = zone->zone_pgdat;
4430 	}
4431 }
4432 
4433 static inline unsigned int
4434 gfp_to_alloc_flags(gfp_t gfp_mask)
4435 {
4436 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4437 
4438 	/*
4439 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4440 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4441 	 * to save two branches.
4442 	 */
4443 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4444 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4445 
4446 	/*
4447 	 * The caller may dip into page reserves a bit more if the caller
4448 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4449 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4450 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4451 	 */
4452 	alloc_flags |= (__force int)
4453 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4454 
4455 	if (gfp_mask & __GFP_ATOMIC) {
4456 		/*
4457 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4458 		 * if it can't schedule.
4459 		 */
4460 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4461 			alloc_flags |= ALLOC_HARDER;
4462 		/*
4463 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4464 		 * comment for __cpuset_node_allowed().
4465 		 */
4466 		alloc_flags &= ~ALLOC_CPUSET;
4467 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4468 		alloc_flags |= ALLOC_HARDER;
4469 
4470 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4471 
4472 	return alloc_flags;
4473 }
4474 
4475 static bool oom_reserves_allowed(struct task_struct *tsk)
4476 {
4477 	if (!tsk_is_oom_victim(tsk))
4478 		return false;
4479 
4480 	/*
4481 	 * !MMU doesn't have oom reaper so give access to memory reserves
4482 	 * only to the thread with TIF_MEMDIE set
4483 	 */
4484 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4485 		return false;
4486 
4487 	return true;
4488 }
4489 
4490 /*
4491  * Distinguish requests which really need access to full memory
4492  * reserves from oom victims which can live with a portion of it
4493  */
4494 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4495 {
4496 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4497 		return 0;
4498 	if (gfp_mask & __GFP_MEMALLOC)
4499 		return ALLOC_NO_WATERMARKS;
4500 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4501 		return ALLOC_NO_WATERMARKS;
4502 	if (!in_interrupt()) {
4503 		if (current->flags & PF_MEMALLOC)
4504 			return ALLOC_NO_WATERMARKS;
4505 		else if (oom_reserves_allowed(current))
4506 			return ALLOC_OOM;
4507 	}
4508 
4509 	return 0;
4510 }
4511 
4512 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4513 {
4514 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4515 }
4516 
4517 /*
4518  * Checks whether it makes sense to retry the reclaim to make a forward progress
4519  * for the given allocation request.
4520  *
4521  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4522  * without success, or when we couldn't even meet the watermark if we
4523  * reclaimed all remaining pages on the LRU lists.
4524  *
4525  * Returns true if a retry is viable or false to enter the oom path.
4526  */
4527 static inline bool
4528 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4529 		     struct alloc_context *ac, int alloc_flags,
4530 		     bool did_some_progress, int *no_progress_loops)
4531 {
4532 	struct zone *zone;
4533 	struct zoneref *z;
4534 	bool ret = false;
4535 
4536 	/*
4537 	 * Costly allocations might have made a progress but this doesn't mean
4538 	 * their order will become available due to high fragmentation so
4539 	 * always increment the no progress counter for them
4540 	 */
4541 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4542 		*no_progress_loops = 0;
4543 	else
4544 		(*no_progress_loops)++;
4545 
4546 	/*
4547 	 * Make sure we converge to OOM if we cannot make any progress
4548 	 * several times in the row.
4549 	 */
4550 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4551 		/* Before OOM, exhaust highatomic_reserve */
4552 		return unreserve_highatomic_pageblock(ac, true);
4553 	}
4554 
4555 	/*
4556 	 * Keep reclaiming pages while there is a chance this will lead
4557 	 * somewhere.  If none of the target zones can satisfy our allocation
4558 	 * request even if all reclaimable pages are considered then we are
4559 	 * screwed and have to go OOM.
4560 	 */
4561 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4562 				ac->highest_zoneidx, ac->nodemask) {
4563 		unsigned long available;
4564 		unsigned long reclaimable;
4565 		unsigned long min_wmark = min_wmark_pages(zone);
4566 		bool wmark;
4567 
4568 		available = reclaimable = zone_reclaimable_pages(zone);
4569 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4570 
4571 		/*
4572 		 * Would the allocation succeed if we reclaimed all
4573 		 * reclaimable pages?
4574 		 */
4575 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4576 				ac->highest_zoneidx, alloc_flags, available);
4577 		trace_reclaim_retry_zone(z, order, reclaimable,
4578 				available, min_wmark, *no_progress_loops, wmark);
4579 		if (wmark) {
4580 			/*
4581 			 * If we didn't make any progress and have a lot of
4582 			 * dirty + writeback pages then we should wait for
4583 			 * an IO to complete to slow down the reclaim and
4584 			 * prevent from pre mature OOM
4585 			 */
4586 			if (!did_some_progress) {
4587 				unsigned long write_pending;
4588 
4589 				write_pending = zone_page_state_snapshot(zone,
4590 							NR_ZONE_WRITE_PENDING);
4591 
4592 				if (2 * write_pending > reclaimable) {
4593 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4594 					return true;
4595 				}
4596 			}
4597 
4598 			ret = true;
4599 			goto out;
4600 		}
4601 	}
4602 
4603 out:
4604 	/*
4605 	 * Memory allocation/reclaim might be called from a WQ context and the
4606 	 * current implementation of the WQ concurrency control doesn't
4607 	 * recognize that a particular WQ is congested if the worker thread is
4608 	 * looping without ever sleeping. Therefore we have to do a short sleep
4609 	 * here rather than calling cond_resched().
4610 	 */
4611 	if (current->flags & PF_WQ_WORKER)
4612 		schedule_timeout_uninterruptible(1);
4613 	else
4614 		cond_resched();
4615 	return ret;
4616 }
4617 
4618 static inline bool
4619 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4620 {
4621 	/*
4622 	 * It's possible that cpuset's mems_allowed and the nodemask from
4623 	 * mempolicy don't intersect. This should be normally dealt with by
4624 	 * policy_nodemask(), but it's possible to race with cpuset update in
4625 	 * such a way the check therein was true, and then it became false
4626 	 * before we got our cpuset_mems_cookie here.
4627 	 * This assumes that for all allocations, ac->nodemask can come only
4628 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4629 	 * when it does not intersect with the cpuset restrictions) or the
4630 	 * caller can deal with a violated nodemask.
4631 	 */
4632 	if (cpusets_enabled() && ac->nodemask &&
4633 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4634 		ac->nodemask = NULL;
4635 		return true;
4636 	}
4637 
4638 	/*
4639 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4640 	 * possible to race with parallel threads in such a way that our
4641 	 * allocation can fail while the mask is being updated. If we are about
4642 	 * to fail, check if the cpuset changed during allocation and if so,
4643 	 * retry.
4644 	 */
4645 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4646 		return true;
4647 
4648 	return false;
4649 }
4650 
4651 static inline struct page *
4652 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4653 						struct alloc_context *ac)
4654 {
4655 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4656 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4657 	struct page *page = NULL;
4658 	unsigned int alloc_flags;
4659 	unsigned long did_some_progress;
4660 	enum compact_priority compact_priority;
4661 	enum compact_result compact_result;
4662 	int compaction_retries;
4663 	int no_progress_loops;
4664 	unsigned int cpuset_mems_cookie;
4665 	int reserve_flags;
4666 
4667 	/*
4668 	 * We also sanity check to catch abuse of atomic reserves being used by
4669 	 * callers that are not in atomic context.
4670 	 */
4671 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4672 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4673 		gfp_mask &= ~__GFP_ATOMIC;
4674 
4675 retry_cpuset:
4676 	compaction_retries = 0;
4677 	no_progress_loops = 0;
4678 	compact_priority = DEF_COMPACT_PRIORITY;
4679 	cpuset_mems_cookie = read_mems_allowed_begin();
4680 
4681 	/*
4682 	 * The fast path uses conservative alloc_flags to succeed only until
4683 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4684 	 * alloc_flags precisely. So we do that now.
4685 	 */
4686 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4687 
4688 	/*
4689 	 * We need to recalculate the starting point for the zonelist iterator
4690 	 * because we might have used different nodemask in the fast path, or
4691 	 * there was a cpuset modification and we are retrying - otherwise we
4692 	 * could end up iterating over non-eligible zones endlessly.
4693 	 */
4694 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4695 					ac->highest_zoneidx, ac->nodemask);
4696 	if (!ac->preferred_zoneref->zone)
4697 		goto nopage;
4698 
4699 	if (alloc_flags & ALLOC_KSWAPD)
4700 		wake_all_kswapds(order, gfp_mask, ac);
4701 
4702 	/*
4703 	 * The adjusted alloc_flags might result in immediate success, so try
4704 	 * that first
4705 	 */
4706 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4707 	if (page)
4708 		goto got_pg;
4709 
4710 	/*
4711 	 * For costly allocations, try direct compaction first, as it's likely
4712 	 * that we have enough base pages and don't need to reclaim. For non-
4713 	 * movable high-order allocations, do that as well, as compaction will
4714 	 * try prevent permanent fragmentation by migrating from blocks of the
4715 	 * same migratetype.
4716 	 * Don't try this for allocations that are allowed to ignore
4717 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4718 	 */
4719 	if (can_direct_reclaim &&
4720 			(costly_order ||
4721 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4722 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4723 		page = __alloc_pages_direct_compact(gfp_mask, order,
4724 						alloc_flags, ac,
4725 						INIT_COMPACT_PRIORITY,
4726 						&compact_result);
4727 		if (page)
4728 			goto got_pg;
4729 
4730 		/*
4731 		 * Checks for costly allocations with __GFP_NORETRY, which
4732 		 * includes some THP page fault allocations
4733 		 */
4734 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4735 			/*
4736 			 * If allocating entire pageblock(s) and compaction
4737 			 * failed because all zones are below low watermarks
4738 			 * or is prohibited because it recently failed at this
4739 			 * order, fail immediately unless the allocator has
4740 			 * requested compaction and reclaim retry.
4741 			 *
4742 			 * Reclaim is
4743 			 *  - potentially very expensive because zones are far
4744 			 *    below their low watermarks or this is part of very
4745 			 *    bursty high order allocations,
4746 			 *  - not guaranteed to help because isolate_freepages()
4747 			 *    may not iterate over freed pages as part of its
4748 			 *    linear scan, and
4749 			 *  - unlikely to make entire pageblocks free on its
4750 			 *    own.
4751 			 */
4752 			if (compact_result == COMPACT_SKIPPED ||
4753 			    compact_result == COMPACT_DEFERRED)
4754 				goto nopage;
4755 
4756 			/*
4757 			 * Looks like reclaim/compaction is worth trying, but
4758 			 * sync compaction could be very expensive, so keep
4759 			 * using async compaction.
4760 			 */
4761 			compact_priority = INIT_COMPACT_PRIORITY;
4762 		}
4763 	}
4764 
4765 retry:
4766 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4767 	if (alloc_flags & ALLOC_KSWAPD)
4768 		wake_all_kswapds(order, gfp_mask, ac);
4769 
4770 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4771 	if (reserve_flags)
4772 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4773 
4774 	/*
4775 	 * Reset the nodemask and zonelist iterators if memory policies can be
4776 	 * ignored. These allocations are high priority and system rather than
4777 	 * user oriented.
4778 	 */
4779 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4780 		ac->nodemask = NULL;
4781 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4782 					ac->highest_zoneidx, ac->nodemask);
4783 	}
4784 
4785 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4786 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4787 	if (page)
4788 		goto got_pg;
4789 
4790 	/* Caller is not willing to reclaim, we can't balance anything */
4791 	if (!can_direct_reclaim)
4792 		goto nopage;
4793 
4794 	/* Avoid recursion of direct reclaim */
4795 	if (current->flags & PF_MEMALLOC)
4796 		goto nopage;
4797 
4798 	/* Try direct reclaim and then allocating */
4799 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4800 							&did_some_progress);
4801 	if (page)
4802 		goto got_pg;
4803 
4804 	/* Try direct compaction and then allocating */
4805 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4806 					compact_priority, &compact_result);
4807 	if (page)
4808 		goto got_pg;
4809 
4810 	/* Do not loop if specifically requested */
4811 	if (gfp_mask & __GFP_NORETRY)
4812 		goto nopage;
4813 
4814 	/*
4815 	 * Do not retry costly high order allocations unless they are
4816 	 * __GFP_RETRY_MAYFAIL
4817 	 */
4818 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4819 		goto nopage;
4820 
4821 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4822 				 did_some_progress > 0, &no_progress_loops))
4823 		goto retry;
4824 
4825 	/*
4826 	 * It doesn't make any sense to retry for the compaction if the order-0
4827 	 * reclaim is not able to make any progress because the current
4828 	 * implementation of the compaction depends on the sufficient amount
4829 	 * of free memory (see __compaction_suitable)
4830 	 */
4831 	if (did_some_progress > 0 &&
4832 			should_compact_retry(ac, order, alloc_flags,
4833 				compact_result, &compact_priority,
4834 				&compaction_retries))
4835 		goto retry;
4836 
4837 
4838 	/* Deal with possible cpuset update races before we start OOM killing */
4839 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4840 		goto retry_cpuset;
4841 
4842 	/* Reclaim has failed us, start killing things */
4843 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4844 	if (page)
4845 		goto got_pg;
4846 
4847 	/* Avoid allocations with no watermarks from looping endlessly */
4848 	if (tsk_is_oom_victim(current) &&
4849 	    (alloc_flags & ALLOC_OOM ||
4850 	     (gfp_mask & __GFP_NOMEMALLOC)))
4851 		goto nopage;
4852 
4853 	/* Retry as long as the OOM killer is making progress */
4854 	if (did_some_progress) {
4855 		no_progress_loops = 0;
4856 		goto retry;
4857 	}
4858 
4859 nopage:
4860 	/* Deal with possible cpuset update races before we fail */
4861 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4862 		goto retry_cpuset;
4863 
4864 	/*
4865 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4866 	 * we always retry
4867 	 */
4868 	if (gfp_mask & __GFP_NOFAIL) {
4869 		/*
4870 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4871 		 * of any new users that actually require GFP_NOWAIT
4872 		 */
4873 		if (WARN_ON_ONCE(!can_direct_reclaim))
4874 			goto fail;
4875 
4876 		/*
4877 		 * PF_MEMALLOC request from this context is rather bizarre
4878 		 * because we cannot reclaim anything and only can loop waiting
4879 		 * for somebody to do a work for us
4880 		 */
4881 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4882 
4883 		/*
4884 		 * non failing costly orders are a hard requirement which we
4885 		 * are not prepared for much so let's warn about these users
4886 		 * so that we can identify them and convert them to something
4887 		 * else.
4888 		 */
4889 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4890 
4891 		/*
4892 		 * Help non-failing allocations by giving them access to memory
4893 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4894 		 * could deplete whole memory reserves which would just make
4895 		 * the situation worse
4896 		 */
4897 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4898 		if (page)
4899 			goto got_pg;
4900 
4901 		cond_resched();
4902 		goto retry;
4903 	}
4904 fail:
4905 	warn_alloc(gfp_mask, ac->nodemask,
4906 			"page allocation failure: order:%u", order);
4907 got_pg:
4908 	return page;
4909 }
4910 
4911 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4912 		int preferred_nid, nodemask_t *nodemask,
4913 		struct alloc_context *ac, gfp_t *alloc_mask,
4914 		unsigned int *alloc_flags)
4915 {
4916 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4917 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4918 	ac->nodemask = nodemask;
4919 	ac->migratetype = gfp_migratetype(gfp_mask);
4920 
4921 	if (cpusets_enabled()) {
4922 		*alloc_mask |= __GFP_HARDWALL;
4923 		/*
4924 		 * When we are in the interrupt context, it is irrelevant
4925 		 * to the current task context. It means that any node ok.
4926 		 */
4927 		if (!in_interrupt() && !ac->nodemask)
4928 			ac->nodemask = &cpuset_current_mems_allowed;
4929 		else
4930 			*alloc_flags |= ALLOC_CPUSET;
4931 	}
4932 
4933 	fs_reclaim_acquire(gfp_mask);
4934 	fs_reclaim_release(gfp_mask);
4935 
4936 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4937 
4938 	if (should_fail_alloc_page(gfp_mask, order))
4939 		return false;
4940 
4941 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4942 
4943 	/* Dirty zone balancing only done in the fast path */
4944 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4945 
4946 	/*
4947 	 * The preferred zone is used for statistics but crucially it is
4948 	 * also used as the starting point for the zonelist iterator. It
4949 	 * may get reset for allocations that ignore memory policies.
4950 	 */
4951 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4952 					ac->highest_zoneidx, ac->nodemask);
4953 
4954 	return true;
4955 }
4956 
4957 /*
4958  * This is the 'heart' of the zoned buddy allocator.
4959  */
4960 struct page *
4961 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4962 							nodemask_t *nodemask)
4963 {
4964 	struct page *page;
4965 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4966 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4967 	struct alloc_context ac = { };
4968 
4969 	/*
4970 	 * There are several places where we assume that the order value is sane
4971 	 * so bail out early if the request is out of bound.
4972 	 */
4973 	if (unlikely(order >= MAX_ORDER)) {
4974 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4975 		return NULL;
4976 	}
4977 
4978 	gfp_mask &= gfp_allowed_mask;
4979 	alloc_mask = gfp_mask;
4980 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4981 		return NULL;
4982 
4983 	/*
4984 	 * Forbid the first pass from falling back to types that fragment
4985 	 * memory until all local zones are considered.
4986 	 */
4987 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4988 
4989 	/* First allocation attempt */
4990 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4991 	if (likely(page))
4992 		goto out;
4993 
4994 	/*
4995 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4996 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4997 	 * from a particular context which has been marked by
4998 	 * memalloc_no{fs,io}_{save,restore}.
4999 	 */
5000 	alloc_mask = current_gfp_context(gfp_mask);
5001 	ac.spread_dirty_pages = false;
5002 
5003 	/*
5004 	 * Restore the original nodemask if it was potentially replaced with
5005 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5006 	 */
5007 	ac.nodemask = nodemask;
5008 
5009 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5010 
5011 out:
5012 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5013 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5014 		__free_pages(page, order);
5015 		page = NULL;
5016 	}
5017 
5018 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5019 
5020 	return page;
5021 }
5022 EXPORT_SYMBOL(__alloc_pages_nodemask);
5023 
5024 /*
5025  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5026  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5027  * you need to access high mem.
5028  */
5029 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5030 {
5031 	struct page *page;
5032 
5033 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5034 	if (!page)
5035 		return 0;
5036 	return (unsigned long) page_address(page);
5037 }
5038 EXPORT_SYMBOL(__get_free_pages);
5039 
5040 unsigned long get_zeroed_page(gfp_t gfp_mask)
5041 {
5042 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5043 }
5044 EXPORT_SYMBOL(get_zeroed_page);
5045 
5046 static inline void free_the_page(struct page *page, unsigned int order)
5047 {
5048 	if (order == 0)		/* Via pcp? */
5049 		free_unref_page(page);
5050 	else
5051 		__free_pages_ok(page, order, FPI_NONE);
5052 }
5053 
5054 /**
5055  * __free_pages - Free pages allocated with alloc_pages().
5056  * @page: The page pointer returned from alloc_pages().
5057  * @order: The order of the allocation.
5058  *
5059  * This function can free multi-page allocations that are not compound
5060  * pages.  It does not check that the @order passed in matches that of
5061  * the allocation, so it is easy to leak memory.  Freeing more memory
5062  * than was allocated will probably emit a warning.
5063  *
5064  * If the last reference to this page is speculative, it will be released
5065  * by put_page() which only frees the first page of a non-compound
5066  * allocation.  To prevent the remaining pages from being leaked, we free
5067  * the subsequent pages here.  If you want to use the page's reference
5068  * count to decide when to free the allocation, you should allocate a
5069  * compound page, and use put_page() instead of __free_pages().
5070  *
5071  * Context: May be called in interrupt context or while holding a normal
5072  * spinlock, but not in NMI context or while holding a raw spinlock.
5073  */
5074 void __free_pages(struct page *page, unsigned int order)
5075 {
5076 	if (put_page_testzero(page))
5077 		free_the_page(page, order);
5078 	else if (!PageHead(page))
5079 		while (order-- > 0)
5080 			free_the_page(page + (1 << order), order);
5081 }
5082 EXPORT_SYMBOL(__free_pages);
5083 
5084 void free_pages(unsigned long addr, unsigned int order)
5085 {
5086 	if (addr != 0) {
5087 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5088 		__free_pages(virt_to_page((void *)addr), order);
5089 	}
5090 }
5091 
5092 EXPORT_SYMBOL(free_pages);
5093 
5094 /*
5095  * Page Fragment:
5096  *  An arbitrary-length arbitrary-offset area of memory which resides
5097  *  within a 0 or higher order page.  Multiple fragments within that page
5098  *  are individually refcounted, in the page's reference counter.
5099  *
5100  * The page_frag functions below provide a simple allocation framework for
5101  * page fragments.  This is used by the network stack and network device
5102  * drivers to provide a backing region of memory for use as either an
5103  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5104  */
5105 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5106 					     gfp_t gfp_mask)
5107 {
5108 	struct page *page = NULL;
5109 	gfp_t gfp = gfp_mask;
5110 
5111 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5112 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5113 		    __GFP_NOMEMALLOC;
5114 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5115 				PAGE_FRAG_CACHE_MAX_ORDER);
5116 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5117 #endif
5118 	if (unlikely(!page))
5119 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5120 
5121 	nc->va = page ? page_address(page) : NULL;
5122 
5123 	return page;
5124 }
5125 
5126 void __page_frag_cache_drain(struct page *page, unsigned int count)
5127 {
5128 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5129 
5130 	if (page_ref_sub_and_test(page, count))
5131 		free_the_page(page, compound_order(page));
5132 }
5133 EXPORT_SYMBOL(__page_frag_cache_drain);
5134 
5135 void *page_frag_alloc(struct page_frag_cache *nc,
5136 		      unsigned int fragsz, gfp_t gfp_mask)
5137 {
5138 	unsigned int size = PAGE_SIZE;
5139 	struct page *page;
5140 	int offset;
5141 
5142 	if (unlikely(!nc->va)) {
5143 refill:
5144 		page = __page_frag_cache_refill(nc, gfp_mask);
5145 		if (!page)
5146 			return NULL;
5147 
5148 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5149 		/* if size can vary use size else just use PAGE_SIZE */
5150 		size = nc->size;
5151 #endif
5152 		/* Even if we own the page, we do not use atomic_set().
5153 		 * This would break get_page_unless_zero() users.
5154 		 */
5155 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5156 
5157 		/* reset page count bias and offset to start of new frag */
5158 		nc->pfmemalloc = page_is_pfmemalloc(page);
5159 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5160 		nc->offset = size;
5161 	}
5162 
5163 	offset = nc->offset - fragsz;
5164 	if (unlikely(offset < 0)) {
5165 		page = virt_to_page(nc->va);
5166 
5167 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5168 			goto refill;
5169 
5170 		if (unlikely(nc->pfmemalloc)) {
5171 			free_the_page(page, compound_order(page));
5172 			goto refill;
5173 		}
5174 
5175 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5176 		/* if size can vary use size else just use PAGE_SIZE */
5177 		size = nc->size;
5178 #endif
5179 		/* OK, page count is 0, we can safely set it */
5180 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5181 
5182 		/* reset page count bias and offset to start of new frag */
5183 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5184 		offset = size - fragsz;
5185 	}
5186 
5187 	nc->pagecnt_bias--;
5188 	nc->offset = offset;
5189 
5190 	return nc->va + offset;
5191 }
5192 EXPORT_SYMBOL(page_frag_alloc);
5193 
5194 /*
5195  * Frees a page fragment allocated out of either a compound or order 0 page.
5196  */
5197 void page_frag_free(void *addr)
5198 {
5199 	struct page *page = virt_to_head_page(addr);
5200 
5201 	if (unlikely(put_page_testzero(page)))
5202 		free_the_page(page, compound_order(page));
5203 }
5204 EXPORT_SYMBOL(page_frag_free);
5205 
5206 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5207 		size_t size)
5208 {
5209 	if (addr) {
5210 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5211 		unsigned long used = addr + PAGE_ALIGN(size);
5212 
5213 		split_page(virt_to_page((void *)addr), order);
5214 		while (used < alloc_end) {
5215 			free_page(used);
5216 			used += PAGE_SIZE;
5217 		}
5218 	}
5219 	return (void *)addr;
5220 }
5221 
5222 /**
5223  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5224  * @size: the number of bytes to allocate
5225  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5226  *
5227  * This function is similar to alloc_pages(), except that it allocates the
5228  * minimum number of pages to satisfy the request.  alloc_pages() can only
5229  * allocate memory in power-of-two pages.
5230  *
5231  * This function is also limited by MAX_ORDER.
5232  *
5233  * Memory allocated by this function must be released by free_pages_exact().
5234  *
5235  * Return: pointer to the allocated area or %NULL in case of error.
5236  */
5237 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5238 {
5239 	unsigned int order = get_order(size);
5240 	unsigned long addr;
5241 
5242 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5243 		gfp_mask &= ~__GFP_COMP;
5244 
5245 	addr = __get_free_pages(gfp_mask, order);
5246 	return make_alloc_exact(addr, order, size);
5247 }
5248 EXPORT_SYMBOL(alloc_pages_exact);
5249 
5250 /**
5251  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5252  *			   pages on a node.
5253  * @nid: the preferred node ID where memory should be allocated
5254  * @size: the number of bytes to allocate
5255  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5256  *
5257  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5258  * back.
5259  *
5260  * Return: pointer to the allocated area or %NULL in case of error.
5261  */
5262 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5263 {
5264 	unsigned int order = get_order(size);
5265 	struct page *p;
5266 
5267 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5268 		gfp_mask &= ~__GFP_COMP;
5269 
5270 	p = alloc_pages_node(nid, gfp_mask, order);
5271 	if (!p)
5272 		return NULL;
5273 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5274 }
5275 
5276 /**
5277  * free_pages_exact - release memory allocated via alloc_pages_exact()
5278  * @virt: the value returned by alloc_pages_exact.
5279  * @size: size of allocation, same value as passed to alloc_pages_exact().
5280  *
5281  * Release the memory allocated by a previous call to alloc_pages_exact.
5282  */
5283 void free_pages_exact(void *virt, size_t size)
5284 {
5285 	unsigned long addr = (unsigned long)virt;
5286 	unsigned long end = addr + PAGE_ALIGN(size);
5287 
5288 	while (addr < end) {
5289 		free_page(addr);
5290 		addr += PAGE_SIZE;
5291 	}
5292 }
5293 EXPORT_SYMBOL(free_pages_exact);
5294 
5295 /**
5296  * nr_free_zone_pages - count number of pages beyond high watermark
5297  * @offset: The zone index of the highest zone
5298  *
5299  * nr_free_zone_pages() counts the number of pages which are beyond the
5300  * high watermark within all zones at or below a given zone index.  For each
5301  * zone, the number of pages is calculated as:
5302  *
5303  *     nr_free_zone_pages = managed_pages - high_pages
5304  *
5305  * Return: number of pages beyond high watermark.
5306  */
5307 static unsigned long nr_free_zone_pages(int offset)
5308 {
5309 	struct zoneref *z;
5310 	struct zone *zone;
5311 
5312 	/* Just pick one node, since fallback list is circular */
5313 	unsigned long sum = 0;
5314 
5315 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5316 
5317 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5318 		unsigned long size = zone_managed_pages(zone);
5319 		unsigned long high = high_wmark_pages(zone);
5320 		if (size > high)
5321 			sum += size - high;
5322 	}
5323 
5324 	return sum;
5325 }
5326 
5327 /**
5328  * nr_free_buffer_pages - count number of pages beyond high watermark
5329  *
5330  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5331  * watermark within ZONE_DMA and ZONE_NORMAL.
5332  *
5333  * Return: number of pages beyond high watermark within ZONE_DMA and
5334  * ZONE_NORMAL.
5335  */
5336 unsigned long nr_free_buffer_pages(void)
5337 {
5338 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5339 }
5340 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5341 
5342 static inline void show_node(struct zone *zone)
5343 {
5344 	if (IS_ENABLED(CONFIG_NUMA))
5345 		printk("Node %d ", zone_to_nid(zone));
5346 }
5347 
5348 long si_mem_available(void)
5349 {
5350 	long available;
5351 	unsigned long pagecache;
5352 	unsigned long wmark_low = 0;
5353 	unsigned long pages[NR_LRU_LISTS];
5354 	unsigned long reclaimable;
5355 	struct zone *zone;
5356 	int lru;
5357 
5358 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5359 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5360 
5361 	for_each_zone(zone)
5362 		wmark_low += low_wmark_pages(zone);
5363 
5364 	/*
5365 	 * Estimate the amount of memory available for userspace allocations,
5366 	 * without causing swapping.
5367 	 */
5368 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5369 
5370 	/*
5371 	 * Not all the page cache can be freed, otherwise the system will
5372 	 * start swapping. Assume at least half of the page cache, or the
5373 	 * low watermark worth of cache, needs to stay.
5374 	 */
5375 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5376 	pagecache -= min(pagecache / 2, wmark_low);
5377 	available += pagecache;
5378 
5379 	/*
5380 	 * Part of the reclaimable slab and other kernel memory consists of
5381 	 * items that are in use, and cannot be freed. Cap this estimate at the
5382 	 * low watermark.
5383 	 */
5384 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5385 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5386 	available += reclaimable - min(reclaimable / 2, wmark_low);
5387 
5388 	if (available < 0)
5389 		available = 0;
5390 	return available;
5391 }
5392 EXPORT_SYMBOL_GPL(si_mem_available);
5393 
5394 void si_meminfo(struct sysinfo *val)
5395 {
5396 	val->totalram = totalram_pages();
5397 	val->sharedram = global_node_page_state(NR_SHMEM);
5398 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5399 	val->bufferram = nr_blockdev_pages();
5400 	val->totalhigh = totalhigh_pages();
5401 	val->freehigh = nr_free_highpages();
5402 	val->mem_unit = PAGE_SIZE;
5403 }
5404 
5405 EXPORT_SYMBOL(si_meminfo);
5406 
5407 #ifdef CONFIG_NUMA
5408 void si_meminfo_node(struct sysinfo *val, int nid)
5409 {
5410 	int zone_type;		/* needs to be signed */
5411 	unsigned long managed_pages = 0;
5412 	unsigned long managed_highpages = 0;
5413 	unsigned long free_highpages = 0;
5414 	pg_data_t *pgdat = NODE_DATA(nid);
5415 
5416 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5417 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5418 	val->totalram = managed_pages;
5419 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5420 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5421 #ifdef CONFIG_HIGHMEM
5422 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5423 		struct zone *zone = &pgdat->node_zones[zone_type];
5424 
5425 		if (is_highmem(zone)) {
5426 			managed_highpages += zone_managed_pages(zone);
5427 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5428 		}
5429 	}
5430 	val->totalhigh = managed_highpages;
5431 	val->freehigh = free_highpages;
5432 #else
5433 	val->totalhigh = managed_highpages;
5434 	val->freehigh = free_highpages;
5435 #endif
5436 	val->mem_unit = PAGE_SIZE;
5437 }
5438 #endif
5439 
5440 /*
5441  * Determine whether the node should be displayed or not, depending on whether
5442  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5443  */
5444 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5445 {
5446 	if (!(flags & SHOW_MEM_FILTER_NODES))
5447 		return false;
5448 
5449 	/*
5450 	 * no node mask - aka implicit memory numa policy. Do not bother with
5451 	 * the synchronization - read_mems_allowed_begin - because we do not
5452 	 * have to be precise here.
5453 	 */
5454 	if (!nodemask)
5455 		nodemask = &cpuset_current_mems_allowed;
5456 
5457 	return !node_isset(nid, *nodemask);
5458 }
5459 
5460 #define K(x) ((x) << (PAGE_SHIFT-10))
5461 
5462 static void show_migration_types(unsigned char type)
5463 {
5464 	static const char types[MIGRATE_TYPES] = {
5465 		[MIGRATE_UNMOVABLE]	= 'U',
5466 		[MIGRATE_MOVABLE]	= 'M',
5467 		[MIGRATE_RECLAIMABLE]	= 'E',
5468 		[MIGRATE_HIGHATOMIC]	= 'H',
5469 #ifdef CONFIG_CMA
5470 		[MIGRATE_CMA]		= 'C',
5471 #endif
5472 #ifdef CONFIG_MEMORY_ISOLATION
5473 		[MIGRATE_ISOLATE]	= 'I',
5474 #endif
5475 	};
5476 	char tmp[MIGRATE_TYPES + 1];
5477 	char *p = tmp;
5478 	int i;
5479 
5480 	for (i = 0; i < MIGRATE_TYPES; i++) {
5481 		if (type & (1 << i))
5482 			*p++ = types[i];
5483 	}
5484 
5485 	*p = '\0';
5486 	printk(KERN_CONT "(%s) ", tmp);
5487 }
5488 
5489 /*
5490  * Show free area list (used inside shift_scroll-lock stuff)
5491  * We also calculate the percentage fragmentation. We do this by counting the
5492  * memory on each free list with the exception of the first item on the list.
5493  *
5494  * Bits in @filter:
5495  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5496  *   cpuset.
5497  */
5498 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5499 {
5500 	unsigned long free_pcp = 0;
5501 	int cpu;
5502 	struct zone *zone;
5503 	pg_data_t *pgdat;
5504 
5505 	for_each_populated_zone(zone) {
5506 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5507 			continue;
5508 
5509 		for_each_online_cpu(cpu)
5510 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5511 	}
5512 
5513 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5514 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5515 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5516 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5517 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5518 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5519 		global_node_page_state(NR_ACTIVE_ANON),
5520 		global_node_page_state(NR_INACTIVE_ANON),
5521 		global_node_page_state(NR_ISOLATED_ANON),
5522 		global_node_page_state(NR_ACTIVE_FILE),
5523 		global_node_page_state(NR_INACTIVE_FILE),
5524 		global_node_page_state(NR_ISOLATED_FILE),
5525 		global_node_page_state(NR_UNEVICTABLE),
5526 		global_node_page_state(NR_FILE_DIRTY),
5527 		global_node_page_state(NR_WRITEBACK),
5528 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5529 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5530 		global_node_page_state(NR_FILE_MAPPED),
5531 		global_node_page_state(NR_SHMEM),
5532 		global_node_page_state(NR_PAGETABLE),
5533 		global_zone_page_state(NR_BOUNCE),
5534 		global_zone_page_state(NR_FREE_PAGES),
5535 		free_pcp,
5536 		global_zone_page_state(NR_FREE_CMA_PAGES));
5537 
5538 	for_each_online_pgdat(pgdat) {
5539 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5540 			continue;
5541 
5542 		printk("Node %d"
5543 			" active_anon:%lukB"
5544 			" inactive_anon:%lukB"
5545 			" active_file:%lukB"
5546 			" inactive_file:%lukB"
5547 			" unevictable:%lukB"
5548 			" isolated(anon):%lukB"
5549 			" isolated(file):%lukB"
5550 			" mapped:%lukB"
5551 			" dirty:%lukB"
5552 			" writeback:%lukB"
5553 			" shmem:%lukB"
5554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5555 			" shmem_thp: %lukB"
5556 			" shmem_pmdmapped: %lukB"
5557 			" anon_thp: %lukB"
5558 #endif
5559 			" writeback_tmp:%lukB"
5560 			" kernel_stack:%lukB"
5561 #ifdef CONFIG_SHADOW_CALL_STACK
5562 			" shadow_call_stack:%lukB"
5563 #endif
5564 			" pagetables:%lukB"
5565 			" all_unreclaimable? %s"
5566 			"\n",
5567 			pgdat->node_id,
5568 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5569 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5570 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5571 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5572 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5573 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5574 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5575 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5576 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5577 			K(node_page_state(pgdat, NR_WRITEBACK)),
5578 			K(node_page_state(pgdat, NR_SHMEM)),
5579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5580 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5581 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5582 					* HPAGE_PMD_NR),
5583 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5584 #endif
5585 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5586 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5587 #ifdef CONFIG_SHADOW_CALL_STACK
5588 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5589 #endif
5590 			K(node_page_state(pgdat, NR_PAGETABLE)),
5591 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5592 				"yes" : "no");
5593 	}
5594 
5595 	for_each_populated_zone(zone) {
5596 		int i;
5597 
5598 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5599 			continue;
5600 
5601 		free_pcp = 0;
5602 		for_each_online_cpu(cpu)
5603 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5604 
5605 		show_node(zone);
5606 		printk(KERN_CONT
5607 			"%s"
5608 			" free:%lukB"
5609 			" min:%lukB"
5610 			" low:%lukB"
5611 			" high:%lukB"
5612 			" reserved_highatomic:%luKB"
5613 			" active_anon:%lukB"
5614 			" inactive_anon:%lukB"
5615 			" active_file:%lukB"
5616 			" inactive_file:%lukB"
5617 			" unevictable:%lukB"
5618 			" writepending:%lukB"
5619 			" present:%lukB"
5620 			" managed:%lukB"
5621 			" mlocked:%lukB"
5622 			" bounce:%lukB"
5623 			" free_pcp:%lukB"
5624 			" local_pcp:%ukB"
5625 			" free_cma:%lukB"
5626 			"\n",
5627 			zone->name,
5628 			K(zone_page_state(zone, NR_FREE_PAGES)),
5629 			K(min_wmark_pages(zone)),
5630 			K(low_wmark_pages(zone)),
5631 			K(high_wmark_pages(zone)),
5632 			K(zone->nr_reserved_highatomic),
5633 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5634 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5635 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5636 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5637 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5638 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5639 			K(zone->present_pages),
5640 			K(zone_managed_pages(zone)),
5641 			K(zone_page_state(zone, NR_MLOCK)),
5642 			K(zone_page_state(zone, NR_BOUNCE)),
5643 			K(free_pcp),
5644 			K(this_cpu_read(zone->pageset->pcp.count)),
5645 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5646 		printk("lowmem_reserve[]:");
5647 		for (i = 0; i < MAX_NR_ZONES; i++)
5648 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5649 		printk(KERN_CONT "\n");
5650 	}
5651 
5652 	for_each_populated_zone(zone) {
5653 		unsigned int order;
5654 		unsigned long nr[MAX_ORDER], flags, total = 0;
5655 		unsigned char types[MAX_ORDER];
5656 
5657 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5658 			continue;
5659 		show_node(zone);
5660 		printk(KERN_CONT "%s: ", zone->name);
5661 
5662 		spin_lock_irqsave(&zone->lock, flags);
5663 		for (order = 0; order < MAX_ORDER; order++) {
5664 			struct free_area *area = &zone->free_area[order];
5665 			int type;
5666 
5667 			nr[order] = area->nr_free;
5668 			total += nr[order] << order;
5669 
5670 			types[order] = 0;
5671 			for (type = 0; type < MIGRATE_TYPES; type++) {
5672 				if (!free_area_empty(area, type))
5673 					types[order] |= 1 << type;
5674 			}
5675 		}
5676 		spin_unlock_irqrestore(&zone->lock, flags);
5677 		for (order = 0; order < MAX_ORDER; order++) {
5678 			printk(KERN_CONT "%lu*%lukB ",
5679 			       nr[order], K(1UL) << order);
5680 			if (nr[order])
5681 				show_migration_types(types[order]);
5682 		}
5683 		printk(KERN_CONT "= %lukB\n", K(total));
5684 	}
5685 
5686 	hugetlb_show_meminfo();
5687 
5688 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5689 
5690 	show_swap_cache_info();
5691 }
5692 
5693 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5694 {
5695 	zoneref->zone = zone;
5696 	zoneref->zone_idx = zone_idx(zone);
5697 }
5698 
5699 /*
5700  * Builds allocation fallback zone lists.
5701  *
5702  * Add all populated zones of a node to the zonelist.
5703  */
5704 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5705 {
5706 	struct zone *zone;
5707 	enum zone_type zone_type = MAX_NR_ZONES;
5708 	int nr_zones = 0;
5709 
5710 	do {
5711 		zone_type--;
5712 		zone = pgdat->node_zones + zone_type;
5713 		if (managed_zone(zone)) {
5714 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5715 			check_highest_zone(zone_type);
5716 		}
5717 	} while (zone_type);
5718 
5719 	return nr_zones;
5720 }
5721 
5722 #ifdef CONFIG_NUMA
5723 
5724 static int __parse_numa_zonelist_order(char *s)
5725 {
5726 	/*
5727 	 * We used to support different zonlists modes but they turned
5728 	 * out to be just not useful. Let's keep the warning in place
5729 	 * if somebody still use the cmd line parameter so that we do
5730 	 * not fail it silently
5731 	 */
5732 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5733 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5734 		return -EINVAL;
5735 	}
5736 	return 0;
5737 }
5738 
5739 char numa_zonelist_order[] = "Node";
5740 
5741 /*
5742  * sysctl handler for numa_zonelist_order
5743  */
5744 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5745 		void *buffer, size_t *length, loff_t *ppos)
5746 {
5747 	if (write)
5748 		return __parse_numa_zonelist_order(buffer);
5749 	return proc_dostring(table, write, buffer, length, ppos);
5750 }
5751 
5752 
5753 #define MAX_NODE_LOAD (nr_online_nodes)
5754 static int node_load[MAX_NUMNODES];
5755 
5756 /**
5757  * find_next_best_node - find the next node that should appear in a given node's fallback list
5758  * @node: node whose fallback list we're appending
5759  * @used_node_mask: nodemask_t of already used nodes
5760  *
5761  * We use a number of factors to determine which is the next node that should
5762  * appear on a given node's fallback list.  The node should not have appeared
5763  * already in @node's fallback list, and it should be the next closest node
5764  * according to the distance array (which contains arbitrary distance values
5765  * from each node to each node in the system), and should also prefer nodes
5766  * with no CPUs, since presumably they'll have very little allocation pressure
5767  * on them otherwise.
5768  *
5769  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5770  */
5771 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5772 {
5773 	int n, val;
5774 	int min_val = INT_MAX;
5775 	int best_node = NUMA_NO_NODE;
5776 
5777 	/* Use the local node if we haven't already */
5778 	if (!node_isset(node, *used_node_mask)) {
5779 		node_set(node, *used_node_mask);
5780 		return node;
5781 	}
5782 
5783 	for_each_node_state(n, N_MEMORY) {
5784 
5785 		/* Don't want a node to appear more than once */
5786 		if (node_isset(n, *used_node_mask))
5787 			continue;
5788 
5789 		/* Use the distance array to find the distance */
5790 		val = node_distance(node, n);
5791 
5792 		/* Penalize nodes under us ("prefer the next node") */
5793 		val += (n < node);
5794 
5795 		/* Give preference to headless and unused nodes */
5796 		if (!cpumask_empty(cpumask_of_node(n)))
5797 			val += PENALTY_FOR_NODE_WITH_CPUS;
5798 
5799 		/* Slight preference for less loaded node */
5800 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5801 		val += node_load[n];
5802 
5803 		if (val < min_val) {
5804 			min_val = val;
5805 			best_node = n;
5806 		}
5807 	}
5808 
5809 	if (best_node >= 0)
5810 		node_set(best_node, *used_node_mask);
5811 
5812 	return best_node;
5813 }
5814 
5815 
5816 /*
5817  * Build zonelists ordered by node and zones within node.
5818  * This results in maximum locality--normal zone overflows into local
5819  * DMA zone, if any--but risks exhausting DMA zone.
5820  */
5821 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5822 		unsigned nr_nodes)
5823 {
5824 	struct zoneref *zonerefs;
5825 	int i;
5826 
5827 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5828 
5829 	for (i = 0; i < nr_nodes; i++) {
5830 		int nr_zones;
5831 
5832 		pg_data_t *node = NODE_DATA(node_order[i]);
5833 
5834 		nr_zones = build_zonerefs_node(node, zonerefs);
5835 		zonerefs += nr_zones;
5836 	}
5837 	zonerefs->zone = NULL;
5838 	zonerefs->zone_idx = 0;
5839 }
5840 
5841 /*
5842  * Build gfp_thisnode zonelists
5843  */
5844 static void build_thisnode_zonelists(pg_data_t *pgdat)
5845 {
5846 	struct zoneref *zonerefs;
5847 	int nr_zones;
5848 
5849 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5850 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5851 	zonerefs += nr_zones;
5852 	zonerefs->zone = NULL;
5853 	zonerefs->zone_idx = 0;
5854 }
5855 
5856 /*
5857  * Build zonelists ordered by zone and nodes within zones.
5858  * This results in conserving DMA zone[s] until all Normal memory is
5859  * exhausted, but results in overflowing to remote node while memory
5860  * may still exist in local DMA zone.
5861  */
5862 
5863 static void build_zonelists(pg_data_t *pgdat)
5864 {
5865 	static int node_order[MAX_NUMNODES];
5866 	int node, load, nr_nodes = 0;
5867 	nodemask_t used_mask = NODE_MASK_NONE;
5868 	int local_node, prev_node;
5869 
5870 	/* NUMA-aware ordering of nodes */
5871 	local_node = pgdat->node_id;
5872 	load = nr_online_nodes;
5873 	prev_node = local_node;
5874 
5875 	memset(node_order, 0, sizeof(node_order));
5876 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5877 		/*
5878 		 * We don't want to pressure a particular node.
5879 		 * So adding penalty to the first node in same
5880 		 * distance group to make it round-robin.
5881 		 */
5882 		if (node_distance(local_node, node) !=
5883 		    node_distance(local_node, prev_node))
5884 			node_load[node] = load;
5885 
5886 		node_order[nr_nodes++] = node;
5887 		prev_node = node;
5888 		load--;
5889 	}
5890 
5891 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5892 	build_thisnode_zonelists(pgdat);
5893 }
5894 
5895 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5896 /*
5897  * Return node id of node used for "local" allocations.
5898  * I.e., first node id of first zone in arg node's generic zonelist.
5899  * Used for initializing percpu 'numa_mem', which is used primarily
5900  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5901  */
5902 int local_memory_node(int node)
5903 {
5904 	struct zoneref *z;
5905 
5906 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5907 				   gfp_zone(GFP_KERNEL),
5908 				   NULL);
5909 	return zone_to_nid(z->zone);
5910 }
5911 #endif
5912 
5913 static void setup_min_unmapped_ratio(void);
5914 static void setup_min_slab_ratio(void);
5915 #else	/* CONFIG_NUMA */
5916 
5917 static void build_zonelists(pg_data_t *pgdat)
5918 {
5919 	int node, local_node;
5920 	struct zoneref *zonerefs;
5921 	int nr_zones;
5922 
5923 	local_node = pgdat->node_id;
5924 
5925 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5926 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5927 	zonerefs += nr_zones;
5928 
5929 	/*
5930 	 * Now we build the zonelist so that it contains the zones
5931 	 * of all the other nodes.
5932 	 * We don't want to pressure a particular node, so when
5933 	 * building the zones for node N, we make sure that the
5934 	 * zones coming right after the local ones are those from
5935 	 * node N+1 (modulo N)
5936 	 */
5937 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5938 		if (!node_online(node))
5939 			continue;
5940 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5941 		zonerefs += nr_zones;
5942 	}
5943 	for (node = 0; node < local_node; node++) {
5944 		if (!node_online(node))
5945 			continue;
5946 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5947 		zonerefs += nr_zones;
5948 	}
5949 
5950 	zonerefs->zone = NULL;
5951 	zonerefs->zone_idx = 0;
5952 }
5953 
5954 #endif	/* CONFIG_NUMA */
5955 
5956 /*
5957  * Boot pageset table. One per cpu which is going to be used for all
5958  * zones and all nodes. The parameters will be set in such a way
5959  * that an item put on a list will immediately be handed over to
5960  * the buddy list. This is safe since pageset manipulation is done
5961  * with interrupts disabled.
5962  *
5963  * The boot_pagesets must be kept even after bootup is complete for
5964  * unused processors and/or zones. They do play a role for bootstrapping
5965  * hotplugged processors.
5966  *
5967  * zoneinfo_show() and maybe other functions do
5968  * not check if the processor is online before following the pageset pointer.
5969  * Other parts of the kernel may not check if the zone is available.
5970  */
5971 static void pageset_init(struct per_cpu_pageset *p);
5972 /* These effectively disable the pcplists in the boot pageset completely */
5973 #define BOOT_PAGESET_HIGH	0
5974 #define BOOT_PAGESET_BATCH	1
5975 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5976 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5977 
5978 static void __build_all_zonelists(void *data)
5979 {
5980 	int nid;
5981 	int __maybe_unused cpu;
5982 	pg_data_t *self = data;
5983 	static DEFINE_SPINLOCK(lock);
5984 
5985 	spin_lock(&lock);
5986 
5987 #ifdef CONFIG_NUMA
5988 	memset(node_load, 0, sizeof(node_load));
5989 #endif
5990 
5991 	/*
5992 	 * This node is hotadded and no memory is yet present.   So just
5993 	 * building zonelists is fine - no need to touch other nodes.
5994 	 */
5995 	if (self && !node_online(self->node_id)) {
5996 		build_zonelists(self);
5997 	} else {
5998 		for_each_online_node(nid) {
5999 			pg_data_t *pgdat = NODE_DATA(nid);
6000 
6001 			build_zonelists(pgdat);
6002 		}
6003 
6004 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6005 		/*
6006 		 * We now know the "local memory node" for each node--
6007 		 * i.e., the node of the first zone in the generic zonelist.
6008 		 * Set up numa_mem percpu variable for on-line cpus.  During
6009 		 * boot, only the boot cpu should be on-line;  we'll init the
6010 		 * secondary cpus' numa_mem as they come on-line.  During
6011 		 * node/memory hotplug, we'll fixup all on-line cpus.
6012 		 */
6013 		for_each_online_cpu(cpu)
6014 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6015 #endif
6016 	}
6017 
6018 	spin_unlock(&lock);
6019 }
6020 
6021 static noinline void __init
6022 build_all_zonelists_init(void)
6023 {
6024 	int cpu;
6025 
6026 	__build_all_zonelists(NULL);
6027 
6028 	/*
6029 	 * Initialize the boot_pagesets that are going to be used
6030 	 * for bootstrapping processors. The real pagesets for
6031 	 * each zone will be allocated later when the per cpu
6032 	 * allocator is available.
6033 	 *
6034 	 * boot_pagesets are used also for bootstrapping offline
6035 	 * cpus if the system is already booted because the pagesets
6036 	 * are needed to initialize allocators on a specific cpu too.
6037 	 * F.e. the percpu allocator needs the page allocator which
6038 	 * needs the percpu allocator in order to allocate its pagesets
6039 	 * (a chicken-egg dilemma).
6040 	 */
6041 	for_each_possible_cpu(cpu)
6042 		pageset_init(&per_cpu(boot_pageset, cpu));
6043 
6044 	mminit_verify_zonelist();
6045 	cpuset_init_current_mems_allowed();
6046 }
6047 
6048 /*
6049  * unless system_state == SYSTEM_BOOTING.
6050  *
6051  * __ref due to call of __init annotated helper build_all_zonelists_init
6052  * [protected by SYSTEM_BOOTING].
6053  */
6054 void __ref build_all_zonelists(pg_data_t *pgdat)
6055 {
6056 	unsigned long vm_total_pages;
6057 
6058 	if (system_state == SYSTEM_BOOTING) {
6059 		build_all_zonelists_init();
6060 	} else {
6061 		__build_all_zonelists(pgdat);
6062 		/* cpuset refresh routine should be here */
6063 	}
6064 	/* Get the number of free pages beyond high watermark in all zones. */
6065 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6066 	/*
6067 	 * Disable grouping by mobility if the number of pages in the
6068 	 * system is too low to allow the mechanism to work. It would be
6069 	 * more accurate, but expensive to check per-zone. This check is
6070 	 * made on memory-hotadd so a system can start with mobility
6071 	 * disabled and enable it later
6072 	 */
6073 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6074 		page_group_by_mobility_disabled = 1;
6075 	else
6076 		page_group_by_mobility_disabled = 0;
6077 
6078 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6079 		nr_online_nodes,
6080 		page_group_by_mobility_disabled ? "off" : "on",
6081 		vm_total_pages);
6082 #ifdef CONFIG_NUMA
6083 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6084 #endif
6085 }
6086 
6087 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6088 static bool __meminit
6089 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6090 {
6091 	static struct memblock_region *r;
6092 
6093 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6094 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6095 			for_each_mem_region(r) {
6096 				if (*pfn < memblock_region_memory_end_pfn(r))
6097 					break;
6098 			}
6099 		}
6100 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6101 		    memblock_is_mirror(r)) {
6102 			*pfn = memblock_region_memory_end_pfn(r);
6103 			return true;
6104 		}
6105 	}
6106 	return false;
6107 }
6108 
6109 /*
6110  * Initially all pages are reserved - free ones are freed
6111  * up by memblock_free_all() once the early boot process is
6112  * done. Non-atomic initialization, single-pass.
6113  *
6114  * All aligned pageblocks are initialized to the specified migratetype
6115  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6116  * zone stats (e.g., nr_isolate_pageblock) are touched.
6117  */
6118 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6119 		unsigned long start_pfn,
6120 		enum meminit_context context,
6121 		struct vmem_altmap *altmap, int migratetype)
6122 {
6123 	unsigned long pfn, end_pfn = start_pfn + size;
6124 	struct page *page;
6125 
6126 	if (highest_memmap_pfn < end_pfn - 1)
6127 		highest_memmap_pfn = end_pfn - 1;
6128 
6129 #ifdef CONFIG_ZONE_DEVICE
6130 	/*
6131 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6132 	 * memory. We limit the total number of pages to initialize to just
6133 	 * those that might contain the memory mapping. We will defer the
6134 	 * ZONE_DEVICE page initialization until after we have released
6135 	 * the hotplug lock.
6136 	 */
6137 	if (zone == ZONE_DEVICE) {
6138 		if (!altmap)
6139 			return;
6140 
6141 		if (start_pfn == altmap->base_pfn)
6142 			start_pfn += altmap->reserve;
6143 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6144 	}
6145 #endif
6146 
6147 	for (pfn = start_pfn; pfn < end_pfn; ) {
6148 		/*
6149 		 * There can be holes in boot-time mem_map[]s handed to this
6150 		 * function.  They do not exist on hotplugged memory.
6151 		 */
6152 		if (context == MEMINIT_EARLY) {
6153 			if (overlap_memmap_init(zone, &pfn))
6154 				continue;
6155 			if (defer_init(nid, pfn, end_pfn))
6156 				break;
6157 		}
6158 
6159 		page = pfn_to_page(pfn);
6160 		__init_single_page(page, pfn, zone, nid);
6161 		if (context == MEMINIT_HOTPLUG)
6162 			__SetPageReserved(page);
6163 
6164 		/*
6165 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6166 		 * such that unmovable allocations won't be scattered all
6167 		 * over the place during system boot.
6168 		 */
6169 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6170 			set_pageblock_migratetype(page, migratetype);
6171 			cond_resched();
6172 		}
6173 		pfn++;
6174 	}
6175 }
6176 
6177 #ifdef CONFIG_ZONE_DEVICE
6178 void __ref memmap_init_zone_device(struct zone *zone,
6179 				   unsigned long start_pfn,
6180 				   unsigned long nr_pages,
6181 				   struct dev_pagemap *pgmap)
6182 {
6183 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6184 	struct pglist_data *pgdat = zone->zone_pgdat;
6185 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6186 	unsigned long zone_idx = zone_idx(zone);
6187 	unsigned long start = jiffies;
6188 	int nid = pgdat->node_id;
6189 
6190 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6191 		return;
6192 
6193 	/*
6194 	 * The call to memmap_init_zone should have already taken care
6195 	 * of the pages reserved for the memmap, so we can just jump to
6196 	 * the end of that region and start processing the device pages.
6197 	 */
6198 	if (altmap) {
6199 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6200 		nr_pages = end_pfn - start_pfn;
6201 	}
6202 
6203 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6204 		struct page *page = pfn_to_page(pfn);
6205 
6206 		__init_single_page(page, pfn, zone_idx, nid);
6207 
6208 		/*
6209 		 * Mark page reserved as it will need to wait for onlining
6210 		 * phase for it to be fully associated with a zone.
6211 		 *
6212 		 * We can use the non-atomic __set_bit operation for setting
6213 		 * the flag as we are still initializing the pages.
6214 		 */
6215 		__SetPageReserved(page);
6216 
6217 		/*
6218 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6219 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6220 		 * ever freed or placed on a driver-private list.
6221 		 */
6222 		page->pgmap = pgmap;
6223 		page->zone_device_data = NULL;
6224 
6225 		/*
6226 		 * Mark the block movable so that blocks are reserved for
6227 		 * movable at startup. This will force kernel allocations
6228 		 * to reserve their blocks rather than leaking throughout
6229 		 * the address space during boot when many long-lived
6230 		 * kernel allocations are made.
6231 		 *
6232 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6233 		 * because this is done early in section_activate()
6234 		 */
6235 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6236 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6237 			cond_resched();
6238 		}
6239 	}
6240 
6241 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6242 		nr_pages, jiffies_to_msecs(jiffies - start));
6243 }
6244 
6245 #endif
6246 static void __meminit zone_init_free_lists(struct zone *zone)
6247 {
6248 	unsigned int order, t;
6249 	for_each_migratetype_order(order, t) {
6250 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6251 		zone->free_area[order].nr_free = 0;
6252 	}
6253 }
6254 
6255 void __meminit __weak memmap_init(unsigned long size, int nid,
6256 				  unsigned long zone,
6257 				  unsigned long range_start_pfn)
6258 {
6259 	unsigned long start_pfn, end_pfn;
6260 	unsigned long range_end_pfn = range_start_pfn + size;
6261 	int i;
6262 
6263 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6264 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6265 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6266 
6267 		if (end_pfn > start_pfn) {
6268 			size = end_pfn - start_pfn;
6269 			memmap_init_zone(size, nid, zone, start_pfn,
6270 					 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6271 		}
6272 	}
6273 }
6274 
6275 static int zone_batchsize(struct zone *zone)
6276 {
6277 #ifdef CONFIG_MMU
6278 	int batch;
6279 
6280 	/*
6281 	 * The per-cpu-pages pools are set to around 1000th of the
6282 	 * size of the zone.
6283 	 */
6284 	batch = zone_managed_pages(zone) / 1024;
6285 	/* But no more than a meg. */
6286 	if (batch * PAGE_SIZE > 1024 * 1024)
6287 		batch = (1024 * 1024) / PAGE_SIZE;
6288 	batch /= 4;		/* We effectively *= 4 below */
6289 	if (batch < 1)
6290 		batch = 1;
6291 
6292 	/*
6293 	 * Clamp the batch to a 2^n - 1 value. Having a power
6294 	 * of 2 value was found to be more likely to have
6295 	 * suboptimal cache aliasing properties in some cases.
6296 	 *
6297 	 * For example if 2 tasks are alternately allocating
6298 	 * batches of pages, one task can end up with a lot
6299 	 * of pages of one half of the possible page colors
6300 	 * and the other with pages of the other colors.
6301 	 */
6302 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6303 
6304 	return batch;
6305 
6306 #else
6307 	/* The deferral and batching of frees should be suppressed under NOMMU
6308 	 * conditions.
6309 	 *
6310 	 * The problem is that NOMMU needs to be able to allocate large chunks
6311 	 * of contiguous memory as there's no hardware page translation to
6312 	 * assemble apparent contiguous memory from discontiguous pages.
6313 	 *
6314 	 * Queueing large contiguous runs of pages for batching, however,
6315 	 * causes the pages to actually be freed in smaller chunks.  As there
6316 	 * can be a significant delay between the individual batches being
6317 	 * recycled, this leads to the once large chunks of space being
6318 	 * fragmented and becoming unavailable for high-order allocations.
6319 	 */
6320 	return 0;
6321 #endif
6322 }
6323 
6324 /*
6325  * pcp->high and pcp->batch values are related and generally batch is lower
6326  * than high. They are also related to pcp->count such that count is lower
6327  * than high, and as soon as it reaches high, the pcplist is flushed.
6328  *
6329  * However, guaranteeing these relations at all times would require e.g. write
6330  * barriers here but also careful usage of read barriers at the read side, and
6331  * thus be prone to error and bad for performance. Thus the update only prevents
6332  * store tearing. Any new users of pcp->batch and pcp->high should ensure they
6333  * can cope with those fields changing asynchronously, and fully trust only the
6334  * pcp->count field on the local CPU with interrupts disabled.
6335  *
6336  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6337  * outside of boot time (or some other assurance that no concurrent updaters
6338  * exist).
6339  */
6340 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6341 		unsigned long batch)
6342 {
6343 	WRITE_ONCE(pcp->batch, batch);
6344 	WRITE_ONCE(pcp->high, high);
6345 }
6346 
6347 static void pageset_init(struct per_cpu_pageset *p)
6348 {
6349 	struct per_cpu_pages *pcp;
6350 	int migratetype;
6351 
6352 	memset(p, 0, sizeof(*p));
6353 
6354 	pcp = &p->pcp;
6355 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6356 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6357 
6358 	/*
6359 	 * Set batch and high values safe for a boot pageset. A true percpu
6360 	 * pageset's initialization will update them subsequently. Here we don't
6361 	 * need to be as careful as pageset_update() as nobody can access the
6362 	 * pageset yet.
6363 	 */
6364 	pcp->high = BOOT_PAGESET_HIGH;
6365 	pcp->batch = BOOT_PAGESET_BATCH;
6366 }
6367 
6368 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high,
6369 		unsigned long batch)
6370 {
6371 	struct per_cpu_pageset *p;
6372 	int cpu;
6373 
6374 	for_each_possible_cpu(cpu) {
6375 		p = per_cpu_ptr(zone->pageset, cpu);
6376 		pageset_update(&p->pcp, high, batch);
6377 	}
6378 }
6379 
6380 /*
6381  * Calculate and set new high and batch values for all per-cpu pagesets of a
6382  * zone, based on the zone's size and the percpu_pagelist_fraction sysctl.
6383  */
6384 static void zone_set_pageset_high_and_batch(struct zone *zone)
6385 {
6386 	unsigned long new_high, new_batch;
6387 
6388 	if (percpu_pagelist_fraction) {
6389 		new_high = zone_managed_pages(zone) / percpu_pagelist_fraction;
6390 		new_batch = max(1UL, new_high / 4);
6391 		if ((new_high / 4) > (PAGE_SHIFT * 8))
6392 			new_batch = PAGE_SHIFT * 8;
6393 	} else {
6394 		new_batch = zone_batchsize(zone);
6395 		new_high = 6 * new_batch;
6396 		new_batch = max(1UL, 1 * new_batch);
6397 	}
6398 
6399 	if (zone->pageset_high == new_high &&
6400 	    zone->pageset_batch == new_batch)
6401 		return;
6402 
6403 	zone->pageset_high = new_high;
6404 	zone->pageset_batch = new_batch;
6405 
6406 	__zone_set_pageset_high_and_batch(zone, new_high, new_batch);
6407 }
6408 
6409 void __meminit setup_zone_pageset(struct zone *zone)
6410 {
6411 	struct per_cpu_pageset *p;
6412 	int cpu;
6413 
6414 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6415 	for_each_possible_cpu(cpu) {
6416 		p = per_cpu_ptr(zone->pageset, cpu);
6417 		pageset_init(p);
6418 	}
6419 
6420 	zone_set_pageset_high_and_batch(zone);
6421 }
6422 
6423 /*
6424  * Allocate per cpu pagesets and initialize them.
6425  * Before this call only boot pagesets were available.
6426  */
6427 void __init setup_per_cpu_pageset(void)
6428 {
6429 	struct pglist_data *pgdat;
6430 	struct zone *zone;
6431 	int __maybe_unused cpu;
6432 
6433 	for_each_populated_zone(zone)
6434 		setup_zone_pageset(zone);
6435 
6436 #ifdef CONFIG_NUMA
6437 	/*
6438 	 * Unpopulated zones continue using the boot pagesets.
6439 	 * The numa stats for these pagesets need to be reset.
6440 	 * Otherwise, they will end up skewing the stats of
6441 	 * the nodes these zones are associated with.
6442 	 */
6443 	for_each_possible_cpu(cpu) {
6444 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6445 		memset(pcp->vm_numa_stat_diff, 0,
6446 		       sizeof(pcp->vm_numa_stat_diff));
6447 	}
6448 #endif
6449 
6450 	for_each_online_pgdat(pgdat)
6451 		pgdat->per_cpu_nodestats =
6452 			alloc_percpu(struct per_cpu_nodestat);
6453 }
6454 
6455 static __meminit void zone_pcp_init(struct zone *zone)
6456 {
6457 	/*
6458 	 * per cpu subsystem is not up at this point. The following code
6459 	 * relies on the ability of the linker to provide the
6460 	 * offset of a (static) per cpu variable into the per cpu area.
6461 	 */
6462 	zone->pageset = &boot_pageset;
6463 	zone->pageset_high = BOOT_PAGESET_HIGH;
6464 	zone->pageset_batch = BOOT_PAGESET_BATCH;
6465 
6466 	if (populated_zone(zone))
6467 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6468 			zone->name, zone->present_pages,
6469 					 zone_batchsize(zone));
6470 }
6471 
6472 void __meminit init_currently_empty_zone(struct zone *zone,
6473 					unsigned long zone_start_pfn,
6474 					unsigned long size)
6475 {
6476 	struct pglist_data *pgdat = zone->zone_pgdat;
6477 	int zone_idx = zone_idx(zone) + 1;
6478 
6479 	if (zone_idx > pgdat->nr_zones)
6480 		pgdat->nr_zones = zone_idx;
6481 
6482 	zone->zone_start_pfn = zone_start_pfn;
6483 
6484 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6485 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6486 			pgdat->node_id,
6487 			(unsigned long)zone_idx(zone),
6488 			zone_start_pfn, (zone_start_pfn + size));
6489 
6490 	zone_init_free_lists(zone);
6491 	zone->initialized = 1;
6492 }
6493 
6494 /**
6495  * get_pfn_range_for_nid - Return the start and end page frames for a node
6496  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6497  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6498  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6499  *
6500  * It returns the start and end page frame of a node based on information
6501  * provided by memblock_set_node(). If called for a node
6502  * with no available memory, a warning is printed and the start and end
6503  * PFNs will be 0.
6504  */
6505 void __init get_pfn_range_for_nid(unsigned int nid,
6506 			unsigned long *start_pfn, unsigned long *end_pfn)
6507 {
6508 	unsigned long this_start_pfn, this_end_pfn;
6509 	int i;
6510 
6511 	*start_pfn = -1UL;
6512 	*end_pfn = 0;
6513 
6514 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6515 		*start_pfn = min(*start_pfn, this_start_pfn);
6516 		*end_pfn = max(*end_pfn, this_end_pfn);
6517 	}
6518 
6519 	if (*start_pfn == -1UL)
6520 		*start_pfn = 0;
6521 }
6522 
6523 /*
6524  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6525  * assumption is made that zones within a node are ordered in monotonic
6526  * increasing memory addresses so that the "highest" populated zone is used
6527  */
6528 static void __init find_usable_zone_for_movable(void)
6529 {
6530 	int zone_index;
6531 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6532 		if (zone_index == ZONE_MOVABLE)
6533 			continue;
6534 
6535 		if (arch_zone_highest_possible_pfn[zone_index] >
6536 				arch_zone_lowest_possible_pfn[zone_index])
6537 			break;
6538 	}
6539 
6540 	VM_BUG_ON(zone_index == -1);
6541 	movable_zone = zone_index;
6542 }
6543 
6544 /*
6545  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6546  * because it is sized independent of architecture. Unlike the other zones,
6547  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6548  * in each node depending on the size of each node and how evenly kernelcore
6549  * is distributed. This helper function adjusts the zone ranges
6550  * provided by the architecture for a given node by using the end of the
6551  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6552  * zones within a node are in order of monotonic increases memory addresses
6553  */
6554 static void __init adjust_zone_range_for_zone_movable(int nid,
6555 					unsigned long zone_type,
6556 					unsigned long node_start_pfn,
6557 					unsigned long node_end_pfn,
6558 					unsigned long *zone_start_pfn,
6559 					unsigned long *zone_end_pfn)
6560 {
6561 	/* Only adjust if ZONE_MOVABLE is on this node */
6562 	if (zone_movable_pfn[nid]) {
6563 		/* Size ZONE_MOVABLE */
6564 		if (zone_type == ZONE_MOVABLE) {
6565 			*zone_start_pfn = zone_movable_pfn[nid];
6566 			*zone_end_pfn = min(node_end_pfn,
6567 				arch_zone_highest_possible_pfn[movable_zone]);
6568 
6569 		/* Adjust for ZONE_MOVABLE starting within this range */
6570 		} else if (!mirrored_kernelcore &&
6571 			*zone_start_pfn < zone_movable_pfn[nid] &&
6572 			*zone_end_pfn > zone_movable_pfn[nid]) {
6573 			*zone_end_pfn = zone_movable_pfn[nid];
6574 
6575 		/* Check if this whole range is within ZONE_MOVABLE */
6576 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6577 			*zone_start_pfn = *zone_end_pfn;
6578 	}
6579 }
6580 
6581 /*
6582  * Return the number of pages a zone spans in a node, including holes
6583  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6584  */
6585 static unsigned long __init zone_spanned_pages_in_node(int nid,
6586 					unsigned long zone_type,
6587 					unsigned long node_start_pfn,
6588 					unsigned long node_end_pfn,
6589 					unsigned long *zone_start_pfn,
6590 					unsigned long *zone_end_pfn)
6591 {
6592 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6593 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6594 	/* When hotadd a new node from cpu_up(), the node should be empty */
6595 	if (!node_start_pfn && !node_end_pfn)
6596 		return 0;
6597 
6598 	/* Get the start and end of the zone */
6599 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6600 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6601 	adjust_zone_range_for_zone_movable(nid, zone_type,
6602 				node_start_pfn, node_end_pfn,
6603 				zone_start_pfn, zone_end_pfn);
6604 
6605 	/* Check that this node has pages within the zone's required range */
6606 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6607 		return 0;
6608 
6609 	/* Move the zone boundaries inside the node if necessary */
6610 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6611 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6612 
6613 	/* Return the spanned pages */
6614 	return *zone_end_pfn - *zone_start_pfn;
6615 }
6616 
6617 /*
6618  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6619  * then all holes in the requested range will be accounted for.
6620  */
6621 unsigned long __init __absent_pages_in_range(int nid,
6622 				unsigned long range_start_pfn,
6623 				unsigned long range_end_pfn)
6624 {
6625 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6626 	unsigned long start_pfn, end_pfn;
6627 	int i;
6628 
6629 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6630 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6631 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6632 		nr_absent -= end_pfn - start_pfn;
6633 	}
6634 	return nr_absent;
6635 }
6636 
6637 /**
6638  * absent_pages_in_range - Return number of page frames in holes within a range
6639  * @start_pfn: The start PFN to start searching for holes
6640  * @end_pfn: The end PFN to stop searching for holes
6641  *
6642  * Return: the number of pages frames in memory holes within a range.
6643  */
6644 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6645 							unsigned long end_pfn)
6646 {
6647 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6648 }
6649 
6650 /* Return the number of page frames in holes in a zone on a node */
6651 static unsigned long __init zone_absent_pages_in_node(int nid,
6652 					unsigned long zone_type,
6653 					unsigned long node_start_pfn,
6654 					unsigned long node_end_pfn)
6655 {
6656 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6657 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6658 	unsigned long zone_start_pfn, zone_end_pfn;
6659 	unsigned long nr_absent;
6660 
6661 	/* When hotadd a new node from cpu_up(), the node should be empty */
6662 	if (!node_start_pfn && !node_end_pfn)
6663 		return 0;
6664 
6665 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6666 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6667 
6668 	adjust_zone_range_for_zone_movable(nid, zone_type,
6669 			node_start_pfn, node_end_pfn,
6670 			&zone_start_pfn, &zone_end_pfn);
6671 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6672 
6673 	/*
6674 	 * ZONE_MOVABLE handling.
6675 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6676 	 * and vice versa.
6677 	 */
6678 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6679 		unsigned long start_pfn, end_pfn;
6680 		struct memblock_region *r;
6681 
6682 		for_each_mem_region(r) {
6683 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6684 					  zone_start_pfn, zone_end_pfn);
6685 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6686 					zone_start_pfn, zone_end_pfn);
6687 
6688 			if (zone_type == ZONE_MOVABLE &&
6689 			    memblock_is_mirror(r))
6690 				nr_absent += end_pfn - start_pfn;
6691 
6692 			if (zone_type == ZONE_NORMAL &&
6693 			    !memblock_is_mirror(r))
6694 				nr_absent += end_pfn - start_pfn;
6695 		}
6696 	}
6697 
6698 	return nr_absent;
6699 }
6700 
6701 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6702 						unsigned long node_start_pfn,
6703 						unsigned long node_end_pfn)
6704 {
6705 	unsigned long realtotalpages = 0, totalpages = 0;
6706 	enum zone_type i;
6707 
6708 	for (i = 0; i < MAX_NR_ZONES; i++) {
6709 		struct zone *zone = pgdat->node_zones + i;
6710 		unsigned long zone_start_pfn, zone_end_pfn;
6711 		unsigned long spanned, absent;
6712 		unsigned long size, real_size;
6713 
6714 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6715 						     node_start_pfn,
6716 						     node_end_pfn,
6717 						     &zone_start_pfn,
6718 						     &zone_end_pfn);
6719 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6720 						   node_start_pfn,
6721 						   node_end_pfn);
6722 
6723 		size = spanned;
6724 		real_size = size - absent;
6725 
6726 		if (size)
6727 			zone->zone_start_pfn = zone_start_pfn;
6728 		else
6729 			zone->zone_start_pfn = 0;
6730 		zone->spanned_pages = size;
6731 		zone->present_pages = real_size;
6732 
6733 		totalpages += size;
6734 		realtotalpages += real_size;
6735 	}
6736 
6737 	pgdat->node_spanned_pages = totalpages;
6738 	pgdat->node_present_pages = realtotalpages;
6739 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6740 							realtotalpages);
6741 }
6742 
6743 #ifndef CONFIG_SPARSEMEM
6744 /*
6745  * Calculate the size of the zone->blockflags rounded to an unsigned long
6746  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6747  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6748  * round what is now in bits to nearest long in bits, then return it in
6749  * bytes.
6750  */
6751 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6752 {
6753 	unsigned long usemapsize;
6754 
6755 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6756 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6757 	usemapsize = usemapsize >> pageblock_order;
6758 	usemapsize *= NR_PAGEBLOCK_BITS;
6759 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6760 
6761 	return usemapsize / 8;
6762 }
6763 
6764 static void __ref setup_usemap(struct pglist_data *pgdat,
6765 				struct zone *zone,
6766 				unsigned long zone_start_pfn,
6767 				unsigned long zonesize)
6768 {
6769 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6770 	zone->pageblock_flags = NULL;
6771 	if (usemapsize) {
6772 		zone->pageblock_flags =
6773 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6774 					    pgdat->node_id);
6775 		if (!zone->pageblock_flags)
6776 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6777 			      usemapsize, zone->name, pgdat->node_id);
6778 	}
6779 }
6780 #else
6781 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6782 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6783 #endif /* CONFIG_SPARSEMEM */
6784 
6785 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6786 
6787 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6788 void __init set_pageblock_order(void)
6789 {
6790 	unsigned int order;
6791 
6792 	/* Check that pageblock_nr_pages has not already been setup */
6793 	if (pageblock_order)
6794 		return;
6795 
6796 	if (HPAGE_SHIFT > PAGE_SHIFT)
6797 		order = HUGETLB_PAGE_ORDER;
6798 	else
6799 		order = MAX_ORDER - 1;
6800 
6801 	/*
6802 	 * Assume the largest contiguous order of interest is a huge page.
6803 	 * This value may be variable depending on boot parameters on IA64 and
6804 	 * powerpc.
6805 	 */
6806 	pageblock_order = order;
6807 }
6808 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6809 
6810 /*
6811  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6812  * is unused as pageblock_order is set at compile-time. See
6813  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6814  * the kernel config
6815  */
6816 void __init set_pageblock_order(void)
6817 {
6818 }
6819 
6820 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6821 
6822 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6823 						unsigned long present_pages)
6824 {
6825 	unsigned long pages = spanned_pages;
6826 
6827 	/*
6828 	 * Provide a more accurate estimation if there are holes within
6829 	 * the zone and SPARSEMEM is in use. If there are holes within the
6830 	 * zone, each populated memory region may cost us one or two extra
6831 	 * memmap pages due to alignment because memmap pages for each
6832 	 * populated regions may not be naturally aligned on page boundary.
6833 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6834 	 */
6835 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6836 	    IS_ENABLED(CONFIG_SPARSEMEM))
6837 		pages = present_pages;
6838 
6839 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6840 }
6841 
6842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6843 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6844 {
6845 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6846 
6847 	spin_lock_init(&ds_queue->split_queue_lock);
6848 	INIT_LIST_HEAD(&ds_queue->split_queue);
6849 	ds_queue->split_queue_len = 0;
6850 }
6851 #else
6852 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6853 #endif
6854 
6855 #ifdef CONFIG_COMPACTION
6856 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6857 {
6858 	init_waitqueue_head(&pgdat->kcompactd_wait);
6859 }
6860 #else
6861 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6862 #endif
6863 
6864 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6865 {
6866 	pgdat_resize_init(pgdat);
6867 
6868 	pgdat_init_split_queue(pgdat);
6869 	pgdat_init_kcompactd(pgdat);
6870 
6871 	init_waitqueue_head(&pgdat->kswapd_wait);
6872 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6873 
6874 	pgdat_page_ext_init(pgdat);
6875 	lruvec_init(&pgdat->__lruvec);
6876 }
6877 
6878 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6879 							unsigned long remaining_pages)
6880 {
6881 	atomic_long_set(&zone->managed_pages, remaining_pages);
6882 	zone_set_nid(zone, nid);
6883 	zone->name = zone_names[idx];
6884 	zone->zone_pgdat = NODE_DATA(nid);
6885 	spin_lock_init(&zone->lock);
6886 	zone_seqlock_init(zone);
6887 	zone_pcp_init(zone);
6888 }
6889 
6890 /*
6891  * Set up the zone data structures
6892  * - init pgdat internals
6893  * - init all zones belonging to this node
6894  *
6895  * NOTE: this function is only called during memory hotplug
6896  */
6897 #ifdef CONFIG_MEMORY_HOTPLUG
6898 void __ref free_area_init_core_hotplug(int nid)
6899 {
6900 	enum zone_type z;
6901 	pg_data_t *pgdat = NODE_DATA(nid);
6902 
6903 	pgdat_init_internals(pgdat);
6904 	for (z = 0; z < MAX_NR_ZONES; z++)
6905 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6906 }
6907 #endif
6908 
6909 /*
6910  * Set up the zone data structures:
6911  *   - mark all pages reserved
6912  *   - mark all memory queues empty
6913  *   - clear the memory bitmaps
6914  *
6915  * NOTE: pgdat should get zeroed by caller.
6916  * NOTE: this function is only called during early init.
6917  */
6918 static void __init free_area_init_core(struct pglist_data *pgdat)
6919 {
6920 	enum zone_type j;
6921 	int nid = pgdat->node_id;
6922 
6923 	pgdat_init_internals(pgdat);
6924 	pgdat->per_cpu_nodestats = &boot_nodestats;
6925 
6926 	for (j = 0; j < MAX_NR_ZONES; j++) {
6927 		struct zone *zone = pgdat->node_zones + j;
6928 		unsigned long size, freesize, memmap_pages;
6929 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6930 
6931 		size = zone->spanned_pages;
6932 		freesize = zone->present_pages;
6933 
6934 		/*
6935 		 * Adjust freesize so that it accounts for how much memory
6936 		 * is used by this zone for memmap. This affects the watermark
6937 		 * and per-cpu initialisations
6938 		 */
6939 		memmap_pages = calc_memmap_size(size, freesize);
6940 		if (!is_highmem_idx(j)) {
6941 			if (freesize >= memmap_pages) {
6942 				freesize -= memmap_pages;
6943 				if (memmap_pages)
6944 					printk(KERN_DEBUG
6945 					       "  %s zone: %lu pages used for memmap\n",
6946 					       zone_names[j], memmap_pages);
6947 			} else
6948 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6949 					zone_names[j], memmap_pages, freesize);
6950 		}
6951 
6952 		/* Account for reserved pages */
6953 		if (j == 0 && freesize > dma_reserve) {
6954 			freesize -= dma_reserve;
6955 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6956 					zone_names[0], dma_reserve);
6957 		}
6958 
6959 		if (!is_highmem_idx(j))
6960 			nr_kernel_pages += freesize;
6961 		/* Charge for highmem memmap if there are enough kernel pages */
6962 		else if (nr_kernel_pages > memmap_pages * 2)
6963 			nr_kernel_pages -= memmap_pages;
6964 		nr_all_pages += freesize;
6965 
6966 		/*
6967 		 * Set an approximate value for lowmem here, it will be adjusted
6968 		 * when the bootmem allocator frees pages into the buddy system.
6969 		 * And all highmem pages will be managed by the buddy system.
6970 		 */
6971 		zone_init_internals(zone, j, nid, freesize);
6972 
6973 		if (!size)
6974 			continue;
6975 
6976 		set_pageblock_order();
6977 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6978 		init_currently_empty_zone(zone, zone_start_pfn, size);
6979 		memmap_init(size, nid, j, zone_start_pfn);
6980 	}
6981 }
6982 
6983 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6984 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6985 {
6986 	unsigned long __maybe_unused start = 0;
6987 	unsigned long __maybe_unused offset = 0;
6988 
6989 	/* Skip empty nodes */
6990 	if (!pgdat->node_spanned_pages)
6991 		return;
6992 
6993 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6994 	offset = pgdat->node_start_pfn - start;
6995 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6996 	if (!pgdat->node_mem_map) {
6997 		unsigned long size, end;
6998 		struct page *map;
6999 
7000 		/*
7001 		 * The zone's endpoints aren't required to be MAX_ORDER
7002 		 * aligned but the node_mem_map endpoints must be in order
7003 		 * for the buddy allocator to function correctly.
7004 		 */
7005 		end = pgdat_end_pfn(pgdat);
7006 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7007 		size =  (end - start) * sizeof(struct page);
7008 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7009 					  pgdat->node_id);
7010 		if (!map)
7011 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7012 			      size, pgdat->node_id);
7013 		pgdat->node_mem_map = map + offset;
7014 	}
7015 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7016 				__func__, pgdat->node_id, (unsigned long)pgdat,
7017 				(unsigned long)pgdat->node_mem_map);
7018 #ifndef CONFIG_NEED_MULTIPLE_NODES
7019 	/*
7020 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7021 	 */
7022 	if (pgdat == NODE_DATA(0)) {
7023 		mem_map = NODE_DATA(0)->node_mem_map;
7024 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7025 			mem_map -= offset;
7026 	}
7027 #endif
7028 }
7029 #else
7030 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7031 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7032 
7033 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
7034 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7035 {
7036 	pgdat->first_deferred_pfn = ULONG_MAX;
7037 }
7038 #else
7039 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7040 #endif
7041 
7042 static void __init free_area_init_node(int nid)
7043 {
7044 	pg_data_t *pgdat = NODE_DATA(nid);
7045 	unsigned long start_pfn = 0;
7046 	unsigned long end_pfn = 0;
7047 
7048 	/* pg_data_t should be reset to zero when it's allocated */
7049 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7050 
7051 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7052 
7053 	pgdat->node_id = nid;
7054 	pgdat->node_start_pfn = start_pfn;
7055 	pgdat->per_cpu_nodestats = NULL;
7056 
7057 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7058 		(u64)start_pfn << PAGE_SHIFT,
7059 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7060 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7061 
7062 	alloc_node_mem_map(pgdat);
7063 	pgdat_set_deferred_range(pgdat);
7064 
7065 	free_area_init_core(pgdat);
7066 }
7067 
7068 void __init free_area_init_memoryless_node(int nid)
7069 {
7070 	free_area_init_node(nid);
7071 }
7072 
7073 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
7074 /*
7075  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
7076  * PageReserved(). Return the number of struct pages that were initialized.
7077  */
7078 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
7079 {
7080 	unsigned long pfn;
7081 	u64 pgcnt = 0;
7082 
7083 	for (pfn = spfn; pfn < epfn; pfn++) {
7084 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
7085 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
7086 				+ pageblock_nr_pages - 1;
7087 			continue;
7088 		}
7089 		/*
7090 		 * Use a fake node/zone (0) for now. Some of these pages
7091 		 * (in memblock.reserved but not in memblock.memory) will
7092 		 * get re-initialized via reserve_bootmem_region() later.
7093 		 */
7094 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
7095 		__SetPageReserved(pfn_to_page(pfn));
7096 		pgcnt++;
7097 	}
7098 
7099 	return pgcnt;
7100 }
7101 
7102 /*
7103  * Only struct pages that are backed by physical memory are zeroed and
7104  * initialized by going through __init_single_page(). But, there are some
7105  * struct pages which are reserved in memblock allocator and their fields
7106  * may be accessed (for example page_to_pfn() on some configuration accesses
7107  * flags). We must explicitly initialize those struct pages.
7108  *
7109  * This function also addresses a similar issue where struct pages are left
7110  * uninitialized because the physical address range is not covered by
7111  * memblock.memory or memblock.reserved. That could happen when memblock
7112  * layout is manually configured via memmap=, or when the highest physical
7113  * address (max_pfn) does not end on a section boundary.
7114  */
7115 static void __init init_unavailable_mem(void)
7116 {
7117 	phys_addr_t start, end;
7118 	u64 i, pgcnt;
7119 	phys_addr_t next = 0;
7120 
7121 	/*
7122 	 * Loop through unavailable ranges not covered by memblock.memory.
7123 	 */
7124 	pgcnt = 0;
7125 	for_each_mem_range(i, &start, &end) {
7126 		if (next < start)
7127 			pgcnt += init_unavailable_range(PFN_DOWN(next),
7128 							PFN_UP(start));
7129 		next = end;
7130 	}
7131 
7132 	/*
7133 	 * Early sections always have a fully populated memmap for the whole
7134 	 * section - see pfn_valid(). If the last section has holes at the
7135 	 * end and that section is marked "online", the memmap will be
7136 	 * considered initialized. Make sure that memmap has a well defined
7137 	 * state.
7138 	 */
7139 	pgcnt += init_unavailable_range(PFN_DOWN(next),
7140 					round_up(max_pfn, PAGES_PER_SECTION));
7141 
7142 	/*
7143 	 * Struct pages that do not have backing memory. This could be because
7144 	 * firmware is using some of this memory, or for some other reasons.
7145 	 */
7146 	if (pgcnt)
7147 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
7148 }
7149 #else
7150 static inline void __init init_unavailable_mem(void)
7151 {
7152 }
7153 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
7154 
7155 #if MAX_NUMNODES > 1
7156 /*
7157  * Figure out the number of possible node ids.
7158  */
7159 void __init setup_nr_node_ids(void)
7160 {
7161 	unsigned int highest;
7162 
7163 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7164 	nr_node_ids = highest + 1;
7165 }
7166 #endif
7167 
7168 /**
7169  * node_map_pfn_alignment - determine the maximum internode alignment
7170  *
7171  * This function should be called after node map is populated and sorted.
7172  * It calculates the maximum power of two alignment which can distinguish
7173  * all the nodes.
7174  *
7175  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7176  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7177  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7178  * shifted, 1GiB is enough and this function will indicate so.
7179  *
7180  * This is used to test whether pfn -> nid mapping of the chosen memory
7181  * model has fine enough granularity to avoid incorrect mapping for the
7182  * populated node map.
7183  *
7184  * Return: the determined alignment in pfn's.  0 if there is no alignment
7185  * requirement (single node).
7186  */
7187 unsigned long __init node_map_pfn_alignment(void)
7188 {
7189 	unsigned long accl_mask = 0, last_end = 0;
7190 	unsigned long start, end, mask;
7191 	int last_nid = NUMA_NO_NODE;
7192 	int i, nid;
7193 
7194 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7195 		if (!start || last_nid < 0 || last_nid == nid) {
7196 			last_nid = nid;
7197 			last_end = end;
7198 			continue;
7199 		}
7200 
7201 		/*
7202 		 * Start with a mask granular enough to pin-point to the
7203 		 * start pfn and tick off bits one-by-one until it becomes
7204 		 * too coarse to separate the current node from the last.
7205 		 */
7206 		mask = ~((1 << __ffs(start)) - 1);
7207 		while (mask && last_end <= (start & (mask << 1)))
7208 			mask <<= 1;
7209 
7210 		/* accumulate all internode masks */
7211 		accl_mask |= mask;
7212 	}
7213 
7214 	/* convert mask to number of pages */
7215 	return ~accl_mask + 1;
7216 }
7217 
7218 /**
7219  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7220  *
7221  * Return: the minimum PFN based on information provided via
7222  * memblock_set_node().
7223  */
7224 unsigned long __init find_min_pfn_with_active_regions(void)
7225 {
7226 	return PHYS_PFN(memblock_start_of_DRAM());
7227 }
7228 
7229 /*
7230  * early_calculate_totalpages()
7231  * Sum pages in active regions for movable zone.
7232  * Populate N_MEMORY for calculating usable_nodes.
7233  */
7234 static unsigned long __init early_calculate_totalpages(void)
7235 {
7236 	unsigned long totalpages = 0;
7237 	unsigned long start_pfn, end_pfn;
7238 	int i, nid;
7239 
7240 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7241 		unsigned long pages = end_pfn - start_pfn;
7242 
7243 		totalpages += pages;
7244 		if (pages)
7245 			node_set_state(nid, N_MEMORY);
7246 	}
7247 	return totalpages;
7248 }
7249 
7250 /*
7251  * Find the PFN the Movable zone begins in each node. Kernel memory
7252  * is spread evenly between nodes as long as the nodes have enough
7253  * memory. When they don't, some nodes will have more kernelcore than
7254  * others
7255  */
7256 static void __init find_zone_movable_pfns_for_nodes(void)
7257 {
7258 	int i, nid;
7259 	unsigned long usable_startpfn;
7260 	unsigned long kernelcore_node, kernelcore_remaining;
7261 	/* save the state before borrow the nodemask */
7262 	nodemask_t saved_node_state = node_states[N_MEMORY];
7263 	unsigned long totalpages = early_calculate_totalpages();
7264 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7265 	struct memblock_region *r;
7266 
7267 	/* Need to find movable_zone earlier when movable_node is specified. */
7268 	find_usable_zone_for_movable();
7269 
7270 	/*
7271 	 * If movable_node is specified, ignore kernelcore and movablecore
7272 	 * options.
7273 	 */
7274 	if (movable_node_is_enabled()) {
7275 		for_each_mem_region(r) {
7276 			if (!memblock_is_hotpluggable(r))
7277 				continue;
7278 
7279 			nid = memblock_get_region_node(r);
7280 
7281 			usable_startpfn = PFN_DOWN(r->base);
7282 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7283 				min(usable_startpfn, zone_movable_pfn[nid]) :
7284 				usable_startpfn;
7285 		}
7286 
7287 		goto out2;
7288 	}
7289 
7290 	/*
7291 	 * If kernelcore=mirror is specified, ignore movablecore option
7292 	 */
7293 	if (mirrored_kernelcore) {
7294 		bool mem_below_4gb_not_mirrored = false;
7295 
7296 		for_each_mem_region(r) {
7297 			if (memblock_is_mirror(r))
7298 				continue;
7299 
7300 			nid = memblock_get_region_node(r);
7301 
7302 			usable_startpfn = memblock_region_memory_base_pfn(r);
7303 
7304 			if (usable_startpfn < 0x100000) {
7305 				mem_below_4gb_not_mirrored = true;
7306 				continue;
7307 			}
7308 
7309 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7310 				min(usable_startpfn, zone_movable_pfn[nid]) :
7311 				usable_startpfn;
7312 		}
7313 
7314 		if (mem_below_4gb_not_mirrored)
7315 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7316 
7317 		goto out2;
7318 	}
7319 
7320 	/*
7321 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7322 	 * amount of necessary memory.
7323 	 */
7324 	if (required_kernelcore_percent)
7325 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7326 				       10000UL;
7327 	if (required_movablecore_percent)
7328 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7329 					10000UL;
7330 
7331 	/*
7332 	 * If movablecore= was specified, calculate what size of
7333 	 * kernelcore that corresponds so that memory usable for
7334 	 * any allocation type is evenly spread. If both kernelcore
7335 	 * and movablecore are specified, then the value of kernelcore
7336 	 * will be used for required_kernelcore if it's greater than
7337 	 * what movablecore would have allowed.
7338 	 */
7339 	if (required_movablecore) {
7340 		unsigned long corepages;
7341 
7342 		/*
7343 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7344 		 * was requested by the user
7345 		 */
7346 		required_movablecore =
7347 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7348 		required_movablecore = min(totalpages, required_movablecore);
7349 		corepages = totalpages - required_movablecore;
7350 
7351 		required_kernelcore = max(required_kernelcore, corepages);
7352 	}
7353 
7354 	/*
7355 	 * If kernelcore was not specified or kernelcore size is larger
7356 	 * than totalpages, there is no ZONE_MOVABLE.
7357 	 */
7358 	if (!required_kernelcore || required_kernelcore >= totalpages)
7359 		goto out;
7360 
7361 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7362 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7363 
7364 restart:
7365 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7366 	kernelcore_node = required_kernelcore / usable_nodes;
7367 	for_each_node_state(nid, N_MEMORY) {
7368 		unsigned long start_pfn, end_pfn;
7369 
7370 		/*
7371 		 * Recalculate kernelcore_node if the division per node
7372 		 * now exceeds what is necessary to satisfy the requested
7373 		 * amount of memory for the kernel
7374 		 */
7375 		if (required_kernelcore < kernelcore_node)
7376 			kernelcore_node = required_kernelcore / usable_nodes;
7377 
7378 		/*
7379 		 * As the map is walked, we track how much memory is usable
7380 		 * by the kernel using kernelcore_remaining. When it is
7381 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7382 		 */
7383 		kernelcore_remaining = kernelcore_node;
7384 
7385 		/* Go through each range of PFNs within this node */
7386 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7387 			unsigned long size_pages;
7388 
7389 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7390 			if (start_pfn >= end_pfn)
7391 				continue;
7392 
7393 			/* Account for what is only usable for kernelcore */
7394 			if (start_pfn < usable_startpfn) {
7395 				unsigned long kernel_pages;
7396 				kernel_pages = min(end_pfn, usable_startpfn)
7397 								- start_pfn;
7398 
7399 				kernelcore_remaining -= min(kernel_pages,
7400 							kernelcore_remaining);
7401 				required_kernelcore -= min(kernel_pages,
7402 							required_kernelcore);
7403 
7404 				/* Continue if range is now fully accounted */
7405 				if (end_pfn <= usable_startpfn) {
7406 
7407 					/*
7408 					 * Push zone_movable_pfn to the end so
7409 					 * that if we have to rebalance
7410 					 * kernelcore across nodes, we will
7411 					 * not double account here
7412 					 */
7413 					zone_movable_pfn[nid] = end_pfn;
7414 					continue;
7415 				}
7416 				start_pfn = usable_startpfn;
7417 			}
7418 
7419 			/*
7420 			 * The usable PFN range for ZONE_MOVABLE is from
7421 			 * start_pfn->end_pfn. Calculate size_pages as the
7422 			 * number of pages used as kernelcore
7423 			 */
7424 			size_pages = end_pfn - start_pfn;
7425 			if (size_pages > kernelcore_remaining)
7426 				size_pages = kernelcore_remaining;
7427 			zone_movable_pfn[nid] = start_pfn + size_pages;
7428 
7429 			/*
7430 			 * Some kernelcore has been met, update counts and
7431 			 * break if the kernelcore for this node has been
7432 			 * satisfied
7433 			 */
7434 			required_kernelcore -= min(required_kernelcore,
7435 								size_pages);
7436 			kernelcore_remaining -= size_pages;
7437 			if (!kernelcore_remaining)
7438 				break;
7439 		}
7440 	}
7441 
7442 	/*
7443 	 * If there is still required_kernelcore, we do another pass with one
7444 	 * less node in the count. This will push zone_movable_pfn[nid] further
7445 	 * along on the nodes that still have memory until kernelcore is
7446 	 * satisfied
7447 	 */
7448 	usable_nodes--;
7449 	if (usable_nodes && required_kernelcore > usable_nodes)
7450 		goto restart;
7451 
7452 out2:
7453 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7454 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7455 		zone_movable_pfn[nid] =
7456 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7457 
7458 out:
7459 	/* restore the node_state */
7460 	node_states[N_MEMORY] = saved_node_state;
7461 }
7462 
7463 /* Any regular or high memory on that node ? */
7464 static void check_for_memory(pg_data_t *pgdat, int nid)
7465 {
7466 	enum zone_type zone_type;
7467 
7468 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7469 		struct zone *zone = &pgdat->node_zones[zone_type];
7470 		if (populated_zone(zone)) {
7471 			if (IS_ENABLED(CONFIG_HIGHMEM))
7472 				node_set_state(nid, N_HIGH_MEMORY);
7473 			if (zone_type <= ZONE_NORMAL)
7474 				node_set_state(nid, N_NORMAL_MEMORY);
7475 			break;
7476 		}
7477 	}
7478 }
7479 
7480 /*
7481  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7482  * such cases we allow max_zone_pfn sorted in the descending order
7483  */
7484 bool __weak arch_has_descending_max_zone_pfns(void)
7485 {
7486 	return false;
7487 }
7488 
7489 /**
7490  * free_area_init - Initialise all pg_data_t and zone data
7491  * @max_zone_pfn: an array of max PFNs for each zone
7492  *
7493  * This will call free_area_init_node() for each active node in the system.
7494  * Using the page ranges provided by memblock_set_node(), the size of each
7495  * zone in each node and their holes is calculated. If the maximum PFN
7496  * between two adjacent zones match, it is assumed that the zone is empty.
7497  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7498  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7499  * starts where the previous one ended. For example, ZONE_DMA32 starts
7500  * at arch_max_dma_pfn.
7501  */
7502 void __init free_area_init(unsigned long *max_zone_pfn)
7503 {
7504 	unsigned long start_pfn, end_pfn;
7505 	int i, nid, zone;
7506 	bool descending;
7507 
7508 	/* Record where the zone boundaries are */
7509 	memset(arch_zone_lowest_possible_pfn, 0,
7510 				sizeof(arch_zone_lowest_possible_pfn));
7511 	memset(arch_zone_highest_possible_pfn, 0,
7512 				sizeof(arch_zone_highest_possible_pfn));
7513 
7514 	start_pfn = find_min_pfn_with_active_regions();
7515 	descending = arch_has_descending_max_zone_pfns();
7516 
7517 	for (i = 0; i < MAX_NR_ZONES; i++) {
7518 		if (descending)
7519 			zone = MAX_NR_ZONES - i - 1;
7520 		else
7521 			zone = i;
7522 
7523 		if (zone == ZONE_MOVABLE)
7524 			continue;
7525 
7526 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7527 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7528 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7529 
7530 		start_pfn = end_pfn;
7531 	}
7532 
7533 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7534 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7535 	find_zone_movable_pfns_for_nodes();
7536 
7537 	/* Print out the zone ranges */
7538 	pr_info("Zone ranges:\n");
7539 	for (i = 0; i < MAX_NR_ZONES; i++) {
7540 		if (i == ZONE_MOVABLE)
7541 			continue;
7542 		pr_info("  %-8s ", zone_names[i]);
7543 		if (arch_zone_lowest_possible_pfn[i] ==
7544 				arch_zone_highest_possible_pfn[i])
7545 			pr_cont("empty\n");
7546 		else
7547 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7548 				(u64)arch_zone_lowest_possible_pfn[i]
7549 					<< PAGE_SHIFT,
7550 				((u64)arch_zone_highest_possible_pfn[i]
7551 					<< PAGE_SHIFT) - 1);
7552 	}
7553 
7554 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7555 	pr_info("Movable zone start for each node\n");
7556 	for (i = 0; i < MAX_NUMNODES; i++) {
7557 		if (zone_movable_pfn[i])
7558 			pr_info("  Node %d: %#018Lx\n", i,
7559 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7560 	}
7561 
7562 	/*
7563 	 * Print out the early node map, and initialize the
7564 	 * subsection-map relative to active online memory ranges to
7565 	 * enable future "sub-section" extensions of the memory map.
7566 	 */
7567 	pr_info("Early memory node ranges\n");
7568 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7569 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7570 			(u64)start_pfn << PAGE_SHIFT,
7571 			((u64)end_pfn << PAGE_SHIFT) - 1);
7572 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7573 	}
7574 
7575 	/* Initialise every node */
7576 	mminit_verify_pageflags_layout();
7577 	setup_nr_node_ids();
7578 	init_unavailable_mem();
7579 	for_each_online_node(nid) {
7580 		pg_data_t *pgdat = NODE_DATA(nid);
7581 		free_area_init_node(nid);
7582 
7583 		/* Any memory on that node */
7584 		if (pgdat->node_present_pages)
7585 			node_set_state(nid, N_MEMORY);
7586 		check_for_memory(pgdat, nid);
7587 	}
7588 }
7589 
7590 static int __init cmdline_parse_core(char *p, unsigned long *core,
7591 				     unsigned long *percent)
7592 {
7593 	unsigned long long coremem;
7594 	char *endptr;
7595 
7596 	if (!p)
7597 		return -EINVAL;
7598 
7599 	/* Value may be a percentage of total memory, otherwise bytes */
7600 	coremem = simple_strtoull(p, &endptr, 0);
7601 	if (*endptr == '%') {
7602 		/* Paranoid check for percent values greater than 100 */
7603 		WARN_ON(coremem > 100);
7604 
7605 		*percent = coremem;
7606 	} else {
7607 		coremem = memparse(p, &p);
7608 		/* Paranoid check that UL is enough for the coremem value */
7609 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7610 
7611 		*core = coremem >> PAGE_SHIFT;
7612 		*percent = 0UL;
7613 	}
7614 	return 0;
7615 }
7616 
7617 /*
7618  * kernelcore=size sets the amount of memory for use for allocations that
7619  * cannot be reclaimed or migrated.
7620  */
7621 static int __init cmdline_parse_kernelcore(char *p)
7622 {
7623 	/* parse kernelcore=mirror */
7624 	if (parse_option_str(p, "mirror")) {
7625 		mirrored_kernelcore = true;
7626 		return 0;
7627 	}
7628 
7629 	return cmdline_parse_core(p, &required_kernelcore,
7630 				  &required_kernelcore_percent);
7631 }
7632 
7633 /*
7634  * movablecore=size sets the amount of memory for use for allocations that
7635  * can be reclaimed or migrated.
7636  */
7637 static int __init cmdline_parse_movablecore(char *p)
7638 {
7639 	return cmdline_parse_core(p, &required_movablecore,
7640 				  &required_movablecore_percent);
7641 }
7642 
7643 early_param("kernelcore", cmdline_parse_kernelcore);
7644 early_param("movablecore", cmdline_parse_movablecore);
7645 
7646 void adjust_managed_page_count(struct page *page, long count)
7647 {
7648 	atomic_long_add(count, &page_zone(page)->managed_pages);
7649 	totalram_pages_add(count);
7650 #ifdef CONFIG_HIGHMEM
7651 	if (PageHighMem(page))
7652 		totalhigh_pages_add(count);
7653 #endif
7654 }
7655 EXPORT_SYMBOL(adjust_managed_page_count);
7656 
7657 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7658 {
7659 	void *pos;
7660 	unsigned long pages = 0;
7661 
7662 	start = (void *)PAGE_ALIGN((unsigned long)start);
7663 	end = (void *)((unsigned long)end & PAGE_MASK);
7664 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7665 		struct page *page = virt_to_page(pos);
7666 		void *direct_map_addr;
7667 
7668 		/*
7669 		 * 'direct_map_addr' might be different from 'pos'
7670 		 * because some architectures' virt_to_page()
7671 		 * work with aliases.  Getting the direct map
7672 		 * address ensures that we get a _writeable_
7673 		 * alias for the memset().
7674 		 */
7675 		direct_map_addr = page_address(page);
7676 		/*
7677 		 * Perform a kasan-unchecked memset() since this memory
7678 		 * has not been initialized.
7679 		 */
7680 		direct_map_addr = kasan_reset_tag(direct_map_addr);
7681 		if ((unsigned int)poison <= 0xFF)
7682 			memset(direct_map_addr, poison, PAGE_SIZE);
7683 
7684 		free_reserved_page(page);
7685 	}
7686 
7687 	if (pages && s)
7688 		pr_info("Freeing %s memory: %ldK\n",
7689 			s, pages << (PAGE_SHIFT - 10));
7690 
7691 	return pages;
7692 }
7693 
7694 #ifdef	CONFIG_HIGHMEM
7695 void free_highmem_page(struct page *page)
7696 {
7697 	__free_reserved_page(page);
7698 	totalram_pages_inc();
7699 	atomic_long_inc(&page_zone(page)->managed_pages);
7700 	totalhigh_pages_inc();
7701 }
7702 #endif
7703 
7704 
7705 void __init mem_init_print_info(const char *str)
7706 {
7707 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7708 	unsigned long init_code_size, init_data_size;
7709 
7710 	physpages = get_num_physpages();
7711 	codesize = _etext - _stext;
7712 	datasize = _edata - _sdata;
7713 	rosize = __end_rodata - __start_rodata;
7714 	bss_size = __bss_stop - __bss_start;
7715 	init_data_size = __init_end - __init_begin;
7716 	init_code_size = _einittext - _sinittext;
7717 
7718 	/*
7719 	 * Detect special cases and adjust section sizes accordingly:
7720 	 * 1) .init.* may be embedded into .data sections
7721 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7722 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7723 	 * 3) .rodata.* may be embedded into .text or .data sections.
7724 	 */
7725 #define adj_init_size(start, end, size, pos, adj) \
7726 	do { \
7727 		if (start <= pos && pos < end && size > adj) \
7728 			size -= adj; \
7729 	} while (0)
7730 
7731 	adj_init_size(__init_begin, __init_end, init_data_size,
7732 		     _sinittext, init_code_size);
7733 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7734 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7735 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7736 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7737 
7738 #undef	adj_init_size
7739 
7740 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7741 #ifdef	CONFIG_HIGHMEM
7742 		", %luK highmem"
7743 #endif
7744 		"%s%s)\n",
7745 		nr_free_pages() << (PAGE_SHIFT - 10),
7746 		physpages << (PAGE_SHIFT - 10),
7747 		codesize >> 10, datasize >> 10, rosize >> 10,
7748 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7749 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7750 		totalcma_pages << (PAGE_SHIFT - 10),
7751 #ifdef	CONFIG_HIGHMEM
7752 		totalhigh_pages() << (PAGE_SHIFT - 10),
7753 #endif
7754 		str ? ", " : "", str ? str : "");
7755 }
7756 
7757 /**
7758  * set_dma_reserve - set the specified number of pages reserved in the first zone
7759  * @new_dma_reserve: The number of pages to mark reserved
7760  *
7761  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7762  * In the DMA zone, a significant percentage may be consumed by kernel image
7763  * and other unfreeable allocations which can skew the watermarks badly. This
7764  * function may optionally be used to account for unfreeable pages in the
7765  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7766  * smaller per-cpu batchsize.
7767  */
7768 void __init set_dma_reserve(unsigned long new_dma_reserve)
7769 {
7770 	dma_reserve = new_dma_reserve;
7771 }
7772 
7773 static int page_alloc_cpu_dead(unsigned int cpu)
7774 {
7775 
7776 	lru_add_drain_cpu(cpu);
7777 	drain_pages(cpu);
7778 
7779 	/*
7780 	 * Spill the event counters of the dead processor
7781 	 * into the current processors event counters.
7782 	 * This artificially elevates the count of the current
7783 	 * processor.
7784 	 */
7785 	vm_events_fold_cpu(cpu);
7786 
7787 	/*
7788 	 * Zero the differential counters of the dead processor
7789 	 * so that the vm statistics are consistent.
7790 	 *
7791 	 * This is only okay since the processor is dead and cannot
7792 	 * race with what we are doing.
7793 	 */
7794 	cpu_vm_stats_fold(cpu);
7795 	return 0;
7796 }
7797 
7798 #ifdef CONFIG_NUMA
7799 int hashdist = HASHDIST_DEFAULT;
7800 
7801 static int __init set_hashdist(char *str)
7802 {
7803 	if (!str)
7804 		return 0;
7805 	hashdist = simple_strtoul(str, &str, 0);
7806 	return 1;
7807 }
7808 __setup("hashdist=", set_hashdist);
7809 #endif
7810 
7811 void __init page_alloc_init(void)
7812 {
7813 	int ret;
7814 
7815 #ifdef CONFIG_NUMA
7816 	if (num_node_state(N_MEMORY) == 1)
7817 		hashdist = 0;
7818 #endif
7819 
7820 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7821 					"mm/page_alloc:dead", NULL,
7822 					page_alloc_cpu_dead);
7823 	WARN_ON(ret < 0);
7824 }
7825 
7826 /*
7827  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7828  *	or min_free_kbytes changes.
7829  */
7830 static void calculate_totalreserve_pages(void)
7831 {
7832 	struct pglist_data *pgdat;
7833 	unsigned long reserve_pages = 0;
7834 	enum zone_type i, j;
7835 
7836 	for_each_online_pgdat(pgdat) {
7837 
7838 		pgdat->totalreserve_pages = 0;
7839 
7840 		for (i = 0; i < MAX_NR_ZONES; i++) {
7841 			struct zone *zone = pgdat->node_zones + i;
7842 			long max = 0;
7843 			unsigned long managed_pages = zone_managed_pages(zone);
7844 
7845 			/* Find valid and maximum lowmem_reserve in the zone */
7846 			for (j = i; j < MAX_NR_ZONES; j++) {
7847 				if (zone->lowmem_reserve[j] > max)
7848 					max = zone->lowmem_reserve[j];
7849 			}
7850 
7851 			/* we treat the high watermark as reserved pages. */
7852 			max += high_wmark_pages(zone);
7853 
7854 			if (max > managed_pages)
7855 				max = managed_pages;
7856 
7857 			pgdat->totalreserve_pages += max;
7858 
7859 			reserve_pages += max;
7860 		}
7861 	}
7862 	totalreserve_pages = reserve_pages;
7863 }
7864 
7865 /*
7866  * setup_per_zone_lowmem_reserve - called whenever
7867  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7868  *	has a correct pages reserved value, so an adequate number of
7869  *	pages are left in the zone after a successful __alloc_pages().
7870  */
7871 static void setup_per_zone_lowmem_reserve(void)
7872 {
7873 	struct pglist_data *pgdat;
7874 	enum zone_type i, j;
7875 
7876 	for_each_online_pgdat(pgdat) {
7877 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7878 			struct zone *zone = &pgdat->node_zones[i];
7879 			int ratio = sysctl_lowmem_reserve_ratio[i];
7880 			bool clear = !ratio || !zone_managed_pages(zone);
7881 			unsigned long managed_pages = 0;
7882 
7883 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
7884 				if (clear) {
7885 					zone->lowmem_reserve[j] = 0;
7886 				} else {
7887 					struct zone *upper_zone = &pgdat->node_zones[j];
7888 
7889 					managed_pages += zone_managed_pages(upper_zone);
7890 					zone->lowmem_reserve[j] = managed_pages / ratio;
7891 				}
7892 			}
7893 		}
7894 	}
7895 
7896 	/* update totalreserve_pages */
7897 	calculate_totalreserve_pages();
7898 }
7899 
7900 static void __setup_per_zone_wmarks(void)
7901 {
7902 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7903 	unsigned long lowmem_pages = 0;
7904 	struct zone *zone;
7905 	unsigned long flags;
7906 
7907 	/* Calculate total number of !ZONE_HIGHMEM pages */
7908 	for_each_zone(zone) {
7909 		if (!is_highmem(zone))
7910 			lowmem_pages += zone_managed_pages(zone);
7911 	}
7912 
7913 	for_each_zone(zone) {
7914 		u64 tmp;
7915 
7916 		spin_lock_irqsave(&zone->lock, flags);
7917 		tmp = (u64)pages_min * zone_managed_pages(zone);
7918 		do_div(tmp, lowmem_pages);
7919 		if (is_highmem(zone)) {
7920 			/*
7921 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7922 			 * need highmem pages, so cap pages_min to a small
7923 			 * value here.
7924 			 *
7925 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7926 			 * deltas control async page reclaim, and so should
7927 			 * not be capped for highmem.
7928 			 */
7929 			unsigned long min_pages;
7930 
7931 			min_pages = zone_managed_pages(zone) / 1024;
7932 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7933 			zone->_watermark[WMARK_MIN] = min_pages;
7934 		} else {
7935 			/*
7936 			 * If it's a lowmem zone, reserve a number of pages
7937 			 * proportionate to the zone's size.
7938 			 */
7939 			zone->_watermark[WMARK_MIN] = tmp;
7940 		}
7941 
7942 		/*
7943 		 * Set the kswapd watermarks distance according to the
7944 		 * scale factor in proportion to available memory, but
7945 		 * ensure a minimum size on small systems.
7946 		 */
7947 		tmp = max_t(u64, tmp >> 2,
7948 			    mult_frac(zone_managed_pages(zone),
7949 				      watermark_scale_factor, 10000));
7950 
7951 		zone->watermark_boost = 0;
7952 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7953 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7954 
7955 		spin_unlock_irqrestore(&zone->lock, flags);
7956 	}
7957 
7958 	/* update totalreserve_pages */
7959 	calculate_totalreserve_pages();
7960 }
7961 
7962 /**
7963  * setup_per_zone_wmarks - called when min_free_kbytes changes
7964  * or when memory is hot-{added|removed}
7965  *
7966  * Ensures that the watermark[min,low,high] values for each zone are set
7967  * correctly with respect to min_free_kbytes.
7968  */
7969 void setup_per_zone_wmarks(void)
7970 {
7971 	static DEFINE_SPINLOCK(lock);
7972 
7973 	spin_lock(&lock);
7974 	__setup_per_zone_wmarks();
7975 	spin_unlock(&lock);
7976 }
7977 
7978 /*
7979  * Initialise min_free_kbytes.
7980  *
7981  * For small machines we want it small (128k min).  For large machines
7982  * we want it large (256MB max).  But it is not linear, because network
7983  * bandwidth does not increase linearly with machine size.  We use
7984  *
7985  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7986  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7987  *
7988  * which yields
7989  *
7990  * 16MB:	512k
7991  * 32MB:	724k
7992  * 64MB:	1024k
7993  * 128MB:	1448k
7994  * 256MB:	2048k
7995  * 512MB:	2896k
7996  * 1024MB:	4096k
7997  * 2048MB:	5792k
7998  * 4096MB:	8192k
7999  * 8192MB:	11584k
8000  * 16384MB:	16384k
8001  */
8002 int __meminit init_per_zone_wmark_min(void)
8003 {
8004 	unsigned long lowmem_kbytes;
8005 	int new_min_free_kbytes;
8006 
8007 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8008 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8009 
8010 	if (new_min_free_kbytes > user_min_free_kbytes) {
8011 		min_free_kbytes = new_min_free_kbytes;
8012 		if (min_free_kbytes < 128)
8013 			min_free_kbytes = 128;
8014 		if (min_free_kbytes > 262144)
8015 			min_free_kbytes = 262144;
8016 	} else {
8017 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8018 				new_min_free_kbytes, user_min_free_kbytes);
8019 	}
8020 	setup_per_zone_wmarks();
8021 	refresh_zone_stat_thresholds();
8022 	setup_per_zone_lowmem_reserve();
8023 
8024 #ifdef CONFIG_NUMA
8025 	setup_min_unmapped_ratio();
8026 	setup_min_slab_ratio();
8027 #endif
8028 
8029 	khugepaged_min_free_kbytes_update();
8030 
8031 	return 0;
8032 }
8033 postcore_initcall(init_per_zone_wmark_min)
8034 
8035 /*
8036  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8037  *	that we can call two helper functions whenever min_free_kbytes
8038  *	changes.
8039  */
8040 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8041 		void *buffer, size_t *length, loff_t *ppos)
8042 {
8043 	int rc;
8044 
8045 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8046 	if (rc)
8047 		return rc;
8048 
8049 	if (write) {
8050 		user_min_free_kbytes = min_free_kbytes;
8051 		setup_per_zone_wmarks();
8052 	}
8053 	return 0;
8054 }
8055 
8056 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8057 		void *buffer, size_t *length, loff_t *ppos)
8058 {
8059 	int rc;
8060 
8061 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8062 	if (rc)
8063 		return rc;
8064 
8065 	if (write)
8066 		setup_per_zone_wmarks();
8067 
8068 	return 0;
8069 }
8070 
8071 #ifdef CONFIG_NUMA
8072 static void setup_min_unmapped_ratio(void)
8073 {
8074 	pg_data_t *pgdat;
8075 	struct zone *zone;
8076 
8077 	for_each_online_pgdat(pgdat)
8078 		pgdat->min_unmapped_pages = 0;
8079 
8080 	for_each_zone(zone)
8081 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8082 						         sysctl_min_unmapped_ratio) / 100;
8083 }
8084 
8085 
8086 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8087 		void *buffer, size_t *length, loff_t *ppos)
8088 {
8089 	int rc;
8090 
8091 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8092 	if (rc)
8093 		return rc;
8094 
8095 	setup_min_unmapped_ratio();
8096 
8097 	return 0;
8098 }
8099 
8100 static void setup_min_slab_ratio(void)
8101 {
8102 	pg_data_t *pgdat;
8103 	struct zone *zone;
8104 
8105 	for_each_online_pgdat(pgdat)
8106 		pgdat->min_slab_pages = 0;
8107 
8108 	for_each_zone(zone)
8109 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8110 						     sysctl_min_slab_ratio) / 100;
8111 }
8112 
8113 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8114 		void *buffer, size_t *length, loff_t *ppos)
8115 {
8116 	int rc;
8117 
8118 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8119 	if (rc)
8120 		return rc;
8121 
8122 	setup_min_slab_ratio();
8123 
8124 	return 0;
8125 }
8126 #endif
8127 
8128 /*
8129  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8130  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8131  *	whenever sysctl_lowmem_reserve_ratio changes.
8132  *
8133  * The reserve ratio obviously has absolutely no relation with the
8134  * minimum watermarks. The lowmem reserve ratio can only make sense
8135  * if in function of the boot time zone sizes.
8136  */
8137 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8138 		void *buffer, size_t *length, loff_t *ppos)
8139 {
8140 	int i;
8141 
8142 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8143 
8144 	for (i = 0; i < MAX_NR_ZONES; i++) {
8145 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8146 			sysctl_lowmem_reserve_ratio[i] = 0;
8147 	}
8148 
8149 	setup_per_zone_lowmem_reserve();
8150 	return 0;
8151 }
8152 
8153 /*
8154  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8155  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8156  * pagelist can have before it gets flushed back to buddy allocator.
8157  */
8158 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8159 		void *buffer, size_t *length, loff_t *ppos)
8160 {
8161 	struct zone *zone;
8162 	int old_percpu_pagelist_fraction;
8163 	int ret;
8164 
8165 	mutex_lock(&pcp_batch_high_lock);
8166 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8167 
8168 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8169 	if (!write || ret < 0)
8170 		goto out;
8171 
8172 	/* Sanity checking to avoid pcp imbalance */
8173 	if (percpu_pagelist_fraction &&
8174 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8175 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8176 		ret = -EINVAL;
8177 		goto out;
8178 	}
8179 
8180 	/* No change? */
8181 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8182 		goto out;
8183 
8184 	for_each_populated_zone(zone)
8185 		zone_set_pageset_high_and_batch(zone);
8186 out:
8187 	mutex_unlock(&pcp_batch_high_lock);
8188 	return ret;
8189 }
8190 
8191 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8192 /*
8193  * Returns the number of pages that arch has reserved but
8194  * is not known to alloc_large_system_hash().
8195  */
8196 static unsigned long __init arch_reserved_kernel_pages(void)
8197 {
8198 	return 0;
8199 }
8200 #endif
8201 
8202 /*
8203  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8204  * machines. As memory size is increased the scale is also increased but at
8205  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8206  * quadruples the scale is increased by one, which means the size of hash table
8207  * only doubles, instead of quadrupling as well.
8208  * Because 32-bit systems cannot have large physical memory, where this scaling
8209  * makes sense, it is disabled on such platforms.
8210  */
8211 #if __BITS_PER_LONG > 32
8212 #define ADAPT_SCALE_BASE	(64ul << 30)
8213 #define ADAPT_SCALE_SHIFT	2
8214 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8215 #endif
8216 
8217 /*
8218  * allocate a large system hash table from bootmem
8219  * - it is assumed that the hash table must contain an exact power-of-2
8220  *   quantity of entries
8221  * - limit is the number of hash buckets, not the total allocation size
8222  */
8223 void *__init alloc_large_system_hash(const char *tablename,
8224 				     unsigned long bucketsize,
8225 				     unsigned long numentries,
8226 				     int scale,
8227 				     int flags,
8228 				     unsigned int *_hash_shift,
8229 				     unsigned int *_hash_mask,
8230 				     unsigned long low_limit,
8231 				     unsigned long high_limit)
8232 {
8233 	unsigned long long max = high_limit;
8234 	unsigned long log2qty, size;
8235 	void *table = NULL;
8236 	gfp_t gfp_flags;
8237 	bool virt;
8238 
8239 	/* allow the kernel cmdline to have a say */
8240 	if (!numentries) {
8241 		/* round applicable memory size up to nearest megabyte */
8242 		numentries = nr_kernel_pages;
8243 		numentries -= arch_reserved_kernel_pages();
8244 
8245 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8246 		if (PAGE_SHIFT < 20)
8247 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8248 
8249 #if __BITS_PER_LONG > 32
8250 		if (!high_limit) {
8251 			unsigned long adapt;
8252 
8253 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8254 			     adapt <<= ADAPT_SCALE_SHIFT)
8255 				scale++;
8256 		}
8257 #endif
8258 
8259 		/* limit to 1 bucket per 2^scale bytes of low memory */
8260 		if (scale > PAGE_SHIFT)
8261 			numentries >>= (scale - PAGE_SHIFT);
8262 		else
8263 			numentries <<= (PAGE_SHIFT - scale);
8264 
8265 		/* Make sure we've got at least a 0-order allocation.. */
8266 		if (unlikely(flags & HASH_SMALL)) {
8267 			/* Makes no sense without HASH_EARLY */
8268 			WARN_ON(!(flags & HASH_EARLY));
8269 			if (!(numentries >> *_hash_shift)) {
8270 				numentries = 1UL << *_hash_shift;
8271 				BUG_ON(!numentries);
8272 			}
8273 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8274 			numentries = PAGE_SIZE / bucketsize;
8275 	}
8276 	numentries = roundup_pow_of_two(numentries);
8277 
8278 	/* limit allocation size to 1/16 total memory by default */
8279 	if (max == 0) {
8280 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8281 		do_div(max, bucketsize);
8282 	}
8283 	max = min(max, 0x80000000ULL);
8284 
8285 	if (numentries < low_limit)
8286 		numentries = low_limit;
8287 	if (numentries > max)
8288 		numentries = max;
8289 
8290 	log2qty = ilog2(numentries);
8291 
8292 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8293 	do {
8294 		virt = false;
8295 		size = bucketsize << log2qty;
8296 		if (flags & HASH_EARLY) {
8297 			if (flags & HASH_ZERO)
8298 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8299 			else
8300 				table = memblock_alloc_raw(size,
8301 							   SMP_CACHE_BYTES);
8302 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8303 			table = __vmalloc(size, gfp_flags);
8304 			virt = true;
8305 		} else {
8306 			/*
8307 			 * If bucketsize is not a power-of-two, we may free
8308 			 * some pages at the end of hash table which
8309 			 * alloc_pages_exact() automatically does
8310 			 */
8311 			table = alloc_pages_exact(size, gfp_flags);
8312 			kmemleak_alloc(table, size, 1, gfp_flags);
8313 		}
8314 	} while (!table && size > PAGE_SIZE && --log2qty);
8315 
8316 	if (!table)
8317 		panic("Failed to allocate %s hash table\n", tablename);
8318 
8319 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8320 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8321 		virt ? "vmalloc" : "linear");
8322 
8323 	if (_hash_shift)
8324 		*_hash_shift = log2qty;
8325 	if (_hash_mask)
8326 		*_hash_mask = (1 << log2qty) - 1;
8327 
8328 	return table;
8329 }
8330 
8331 /*
8332  * This function checks whether pageblock includes unmovable pages or not.
8333  *
8334  * PageLRU check without isolation or lru_lock could race so that
8335  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8336  * check without lock_page also may miss some movable non-lru pages at
8337  * race condition. So you can't expect this function should be exact.
8338  *
8339  * Returns a page without holding a reference. If the caller wants to
8340  * dereference that page (e.g., dumping), it has to make sure that it
8341  * cannot get removed (e.g., via memory unplug) concurrently.
8342  *
8343  */
8344 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8345 				 int migratetype, int flags)
8346 {
8347 	unsigned long iter = 0;
8348 	unsigned long pfn = page_to_pfn(page);
8349 	unsigned long offset = pfn % pageblock_nr_pages;
8350 
8351 	if (is_migrate_cma_page(page)) {
8352 		/*
8353 		 * CMA allocations (alloc_contig_range) really need to mark
8354 		 * isolate CMA pageblocks even when they are not movable in fact
8355 		 * so consider them movable here.
8356 		 */
8357 		if (is_migrate_cma(migratetype))
8358 			return NULL;
8359 
8360 		return page;
8361 	}
8362 
8363 	for (; iter < pageblock_nr_pages - offset; iter++) {
8364 		if (!pfn_valid_within(pfn + iter))
8365 			continue;
8366 
8367 		page = pfn_to_page(pfn + iter);
8368 
8369 		/*
8370 		 * Both, bootmem allocations and memory holes are marked
8371 		 * PG_reserved and are unmovable. We can even have unmovable
8372 		 * allocations inside ZONE_MOVABLE, for example when
8373 		 * specifying "movablecore".
8374 		 */
8375 		if (PageReserved(page))
8376 			return page;
8377 
8378 		/*
8379 		 * If the zone is movable and we have ruled out all reserved
8380 		 * pages then it should be reasonably safe to assume the rest
8381 		 * is movable.
8382 		 */
8383 		if (zone_idx(zone) == ZONE_MOVABLE)
8384 			continue;
8385 
8386 		/*
8387 		 * Hugepages are not in LRU lists, but they're movable.
8388 		 * THPs are on the LRU, but need to be counted as #small pages.
8389 		 * We need not scan over tail pages because we don't
8390 		 * handle each tail page individually in migration.
8391 		 */
8392 		if (PageHuge(page) || PageTransCompound(page)) {
8393 			struct page *head = compound_head(page);
8394 			unsigned int skip_pages;
8395 
8396 			if (PageHuge(page)) {
8397 				if (!hugepage_migration_supported(page_hstate(head)))
8398 					return page;
8399 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8400 				return page;
8401 			}
8402 
8403 			skip_pages = compound_nr(head) - (page - head);
8404 			iter += skip_pages - 1;
8405 			continue;
8406 		}
8407 
8408 		/*
8409 		 * We can't use page_count without pin a page
8410 		 * because another CPU can free compound page.
8411 		 * This check already skips compound tails of THP
8412 		 * because their page->_refcount is zero at all time.
8413 		 */
8414 		if (!page_ref_count(page)) {
8415 			if (PageBuddy(page))
8416 				iter += (1 << buddy_order(page)) - 1;
8417 			continue;
8418 		}
8419 
8420 		/*
8421 		 * The HWPoisoned page may be not in buddy system, and
8422 		 * page_count() is not 0.
8423 		 */
8424 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8425 			continue;
8426 
8427 		/*
8428 		 * We treat all PageOffline() pages as movable when offlining
8429 		 * to give drivers a chance to decrement their reference count
8430 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8431 		 * can be offlined as there are no direct references anymore.
8432 		 * For actually unmovable PageOffline() where the driver does
8433 		 * not support this, we will fail later when trying to actually
8434 		 * move these pages that still have a reference count > 0.
8435 		 * (false negatives in this function only)
8436 		 */
8437 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8438 			continue;
8439 
8440 		if (__PageMovable(page) || PageLRU(page))
8441 			continue;
8442 
8443 		/*
8444 		 * If there are RECLAIMABLE pages, we need to check
8445 		 * it.  But now, memory offline itself doesn't call
8446 		 * shrink_node_slabs() and it still to be fixed.
8447 		 */
8448 		return page;
8449 	}
8450 	return NULL;
8451 }
8452 
8453 #ifdef CONFIG_CONTIG_ALLOC
8454 static unsigned long pfn_max_align_down(unsigned long pfn)
8455 {
8456 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8457 			     pageblock_nr_pages) - 1);
8458 }
8459 
8460 static unsigned long pfn_max_align_up(unsigned long pfn)
8461 {
8462 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8463 				pageblock_nr_pages));
8464 }
8465 
8466 /* [start, end) must belong to a single zone. */
8467 static int __alloc_contig_migrate_range(struct compact_control *cc,
8468 					unsigned long start, unsigned long end)
8469 {
8470 	/* This function is based on compact_zone() from compaction.c. */
8471 	unsigned int nr_reclaimed;
8472 	unsigned long pfn = start;
8473 	unsigned int tries = 0;
8474 	int ret = 0;
8475 	struct migration_target_control mtc = {
8476 		.nid = zone_to_nid(cc->zone),
8477 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8478 	};
8479 
8480 	migrate_prep();
8481 
8482 	while (pfn < end || !list_empty(&cc->migratepages)) {
8483 		if (fatal_signal_pending(current)) {
8484 			ret = -EINTR;
8485 			break;
8486 		}
8487 
8488 		if (list_empty(&cc->migratepages)) {
8489 			cc->nr_migratepages = 0;
8490 			pfn = isolate_migratepages_range(cc, pfn, end);
8491 			if (!pfn) {
8492 				ret = -EINTR;
8493 				break;
8494 			}
8495 			tries = 0;
8496 		} else if (++tries == 5) {
8497 			ret = ret < 0 ? ret : -EBUSY;
8498 			break;
8499 		}
8500 
8501 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8502 							&cc->migratepages);
8503 		cc->nr_migratepages -= nr_reclaimed;
8504 
8505 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8506 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8507 	}
8508 	if (ret < 0) {
8509 		putback_movable_pages(&cc->migratepages);
8510 		return ret;
8511 	}
8512 	return 0;
8513 }
8514 
8515 /**
8516  * alloc_contig_range() -- tries to allocate given range of pages
8517  * @start:	start PFN to allocate
8518  * @end:	one-past-the-last PFN to allocate
8519  * @migratetype:	migratetype of the underlaying pageblocks (either
8520  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8521  *			in range must have the same migratetype and it must
8522  *			be either of the two.
8523  * @gfp_mask:	GFP mask to use during compaction
8524  *
8525  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8526  * aligned.  The PFN range must belong to a single zone.
8527  *
8528  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8529  * pageblocks in the range.  Once isolated, the pageblocks should not
8530  * be modified by others.
8531  *
8532  * Return: zero on success or negative error code.  On success all
8533  * pages which PFN is in [start, end) are allocated for the caller and
8534  * need to be freed with free_contig_range().
8535  */
8536 int alloc_contig_range(unsigned long start, unsigned long end,
8537 		       unsigned migratetype, gfp_t gfp_mask)
8538 {
8539 	unsigned long outer_start, outer_end;
8540 	unsigned int order;
8541 	int ret = 0;
8542 
8543 	struct compact_control cc = {
8544 		.nr_migratepages = 0,
8545 		.order = -1,
8546 		.zone = page_zone(pfn_to_page(start)),
8547 		.mode = MIGRATE_SYNC,
8548 		.ignore_skip_hint = true,
8549 		.no_set_skip_hint = true,
8550 		.gfp_mask = current_gfp_context(gfp_mask),
8551 		.alloc_contig = true,
8552 	};
8553 	INIT_LIST_HEAD(&cc.migratepages);
8554 
8555 	/*
8556 	 * What we do here is we mark all pageblocks in range as
8557 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8558 	 * have different sizes, and due to the way page allocator
8559 	 * work, we align the range to biggest of the two pages so
8560 	 * that page allocator won't try to merge buddies from
8561 	 * different pageblocks and change MIGRATE_ISOLATE to some
8562 	 * other migration type.
8563 	 *
8564 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8565 	 * migrate the pages from an unaligned range (ie. pages that
8566 	 * we are interested in).  This will put all the pages in
8567 	 * range back to page allocator as MIGRATE_ISOLATE.
8568 	 *
8569 	 * When this is done, we take the pages in range from page
8570 	 * allocator removing them from the buddy system.  This way
8571 	 * page allocator will never consider using them.
8572 	 *
8573 	 * This lets us mark the pageblocks back as
8574 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8575 	 * aligned range but not in the unaligned, original range are
8576 	 * put back to page allocator so that buddy can use them.
8577 	 */
8578 
8579 	ret = start_isolate_page_range(pfn_max_align_down(start),
8580 				       pfn_max_align_up(end), migratetype, 0);
8581 	if (ret)
8582 		return ret;
8583 
8584 	drain_all_pages(cc.zone);
8585 
8586 	/*
8587 	 * In case of -EBUSY, we'd like to know which page causes problem.
8588 	 * So, just fall through. test_pages_isolated() has a tracepoint
8589 	 * which will report the busy page.
8590 	 *
8591 	 * It is possible that busy pages could become available before
8592 	 * the call to test_pages_isolated, and the range will actually be
8593 	 * allocated.  So, if we fall through be sure to clear ret so that
8594 	 * -EBUSY is not accidentally used or returned to caller.
8595 	 */
8596 	ret = __alloc_contig_migrate_range(&cc, start, end);
8597 	if (ret && ret != -EBUSY)
8598 		goto done;
8599 	ret =0;
8600 
8601 	/*
8602 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8603 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8604 	 * more, all pages in [start, end) are free in page allocator.
8605 	 * What we are going to do is to allocate all pages from
8606 	 * [start, end) (that is remove them from page allocator).
8607 	 *
8608 	 * The only problem is that pages at the beginning and at the
8609 	 * end of interesting range may be not aligned with pages that
8610 	 * page allocator holds, ie. they can be part of higher order
8611 	 * pages.  Because of this, we reserve the bigger range and
8612 	 * once this is done free the pages we are not interested in.
8613 	 *
8614 	 * We don't have to hold zone->lock here because the pages are
8615 	 * isolated thus they won't get removed from buddy.
8616 	 */
8617 
8618 	lru_add_drain_all();
8619 
8620 	order = 0;
8621 	outer_start = start;
8622 	while (!PageBuddy(pfn_to_page(outer_start))) {
8623 		if (++order >= MAX_ORDER) {
8624 			outer_start = start;
8625 			break;
8626 		}
8627 		outer_start &= ~0UL << order;
8628 	}
8629 
8630 	if (outer_start != start) {
8631 		order = buddy_order(pfn_to_page(outer_start));
8632 
8633 		/*
8634 		 * outer_start page could be small order buddy page and
8635 		 * it doesn't include start page. Adjust outer_start
8636 		 * in this case to report failed page properly
8637 		 * on tracepoint in test_pages_isolated()
8638 		 */
8639 		if (outer_start + (1UL << order) <= start)
8640 			outer_start = start;
8641 	}
8642 
8643 	/* Make sure the range is really isolated. */
8644 	if (test_pages_isolated(outer_start, end, 0)) {
8645 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8646 			__func__, outer_start, end);
8647 		ret = -EBUSY;
8648 		goto done;
8649 	}
8650 
8651 	/* Grab isolated pages from freelists. */
8652 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8653 	if (!outer_end) {
8654 		ret = -EBUSY;
8655 		goto done;
8656 	}
8657 
8658 	/* Free head and tail (if any) */
8659 	if (start != outer_start)
8660 		free_contig_range(outer_start, start - outer_start);
8661 	if (end != outer_end)
8662 		free_contig_range(end, outer_end - end);
8663 
8664 done:
8665 	undo_isolate_page_range(pfn_max_align_down(start),
8666 				pfn_max_align_up(end), migratetype);
8667 	return ret;
8668 }
8669 EXPORT_SYMBOL(alloc_contig_range);
8670 
8671 static int __alloc_contig_pages(unsigned long start_pfn,
8672 				unsigned long nr_pages, gfp_t gfp_mask)
8673 {
8674 	unsigned long end_pfn = start_pfn + nr_pages;
8675 
8676 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8677 				  gfp_mask);
8678 }
8679 
8680 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8681 				   unsigned long nr_pages)
8682 {
8683 	unsigned long i, end_pfn = start_pfn + nr_pages;
8684 	struct page *page;
8685 
8686 	for (i = start_pfn; i < end_pfn; i++) {
8687 		page = pfn_to_online_page(i);
8688 		if (!page)
8689 			return false;
8690 
8691 		if (page_zone(page) != z)
8692 			return false;
8693 
8694 		if (PageReserved(page))
8695 			return false;
8696 
8697 		if (page_count(page) > 0)
8698 			return false;
8699 
8700 		if (PageHuge(page))
8701 			return false;
8702 	}
8703 	return true;
8704 }
8705 
8706 static bool zone_spans_last_pfn(const struct zone *zone,
8707 				unsigned long start_pfn, unsigned long nr_pages)
8708 {
8709 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8710 
8711 	return zone_spans_pfn(zone, last_pfn);
8712 }
8713 
8714 /**
8715  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8716  * @nr_pages:	Number of contiguous pages to allocate
8717  * @gfp_mask:	GFP mask to limit search and used during compaction
8718  * @nid:	Target node
8719  * @nodemask:	Mask for other possible nodes
8720  *
8721  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8722  * on an applicable zonelist to find a contiguous pfn range which can then be
8723  * tried for allocation with alloc_contig_range(). This routine is intended
8724  * for allocation requests which can not be fulfilled with the buddy allocator.
8725  *
8726  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8727  * power of two then the alignment is guaranteed to be to the given nr_pages
8728  * (e.g. 1GB request would be aligned to 1GB).
8729  *
8730  * Allocated pages can be freed with free_contig_range() or by manually calling
8731  * __free_page() on each allocated page.
8732  *
8733  * Return: pointer to contiguous pages on success, or NULL if not successful.
8734  */
8735 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8736 				int nid, nodemask_t *nodemask)
8737 {
8738 	unsigned long ret, pfn, flags;
8739 	struct zonelist *zonelist;
8740 	struct zone *zone;
8741 	struct zoneref *z;
8742 
8743 	zonelist = node_zonelist(nid, gfp_mask);
8744 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8745 					gfp_zone(gfp_mask), nodemask) {
8746 		spin_lock_irqsave(&zone->lock, flags);
8747 
8748 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8749 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8750 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8751 				/*
8752 				 * We release the zone lock here because
8753 				 * alloc_contig_range() will also lock the zone
8754 				 * at some point. If there's an allocation
8755 				 * spinning on this lock, it may win the race
8756 				 * and cause alloc_contig_range() to fail...
8757 				 */
8758 				spin_unlock_irqrestore(&zone->lock, flags);
8759 				ret = __alloc_contig_pages(pfn, nr_pages,
8760 							gfp_mask);
8761 				if (!ret)
8762 					return pfn_to_page(pfn);
8763 				spin_lock_irqsave(&zone->lock, flags);
8764 			}
8765 			pfn += nr_pages;
8766 		}
8767 		spin_unlock_irqrestore(&zone->lock, flags);
8768 	}
8769 	return NULL;
8770 }
8771 #endif /* CONFIG_CONTIG_ALLOC */
8772 
8773 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8774 {
8775 	unsigned int count = 0;
8776 
8777 	for (; nr_pages--; pfn++) {
8778 		struct page *page = pfn_to_page(pfn);
8779 
8780 		count += page_count(page) != 1;
8781 		__free_page(page);
8782 	}
8783 	WARN(count != 0, "%d pages are still in use!\n", count);
8784 }
8785 EXPORT_SYMBOL(free_contig_range);
8786 
8787 /*
8788  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8789  * page high values need to be recalulated.
8790  */
8791 void __meminit zone_pcp_update(struct zone *zone)
8792 {
8793 	mutex_lock(&pcp_batch_high_lock);
8794 	zone_set_pageset_high_and_batch(zone);
8795 	mutex_unlock(&pcp_batch_high_lock);
8796 }
8797 
8798 /*
8799  * Effectively disable pcplists for the zone by setting the high limit to 0
8800  * and draining all cpus. A concurrent page freeing on another CPU that's about
8801  * to put the page on pcplist will either finish before the drain and the page
8802  * will be drained, or observe the new high limit and skip the pcplist.
8803  *
8804  * Must be paired with a call to zone_pcp_enable().
8805  */
8806 void zone_pcp_disable(struct zone *zone)
8807 {
8808 	mutex_lock(&pcp_batch_high_lock);
8809 	__zone_set_pageset_high_and_batch(zone, 0, 1);
8810 	__drain_all_pages(zone, true);
8811 }
8812 
8813 void zone_pcp_enable(struct zone *zone)
8814 {
8815 	__zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch);
8816 	mutex_unlock(&pcp_batch_high_lock);
8817 }
8818 
8819 void zone_pcp_reset(struct zone *zone)
8820 {
8821 	unsigned long flags;
8822 	int cpu;
8823 	struct per_cpu_pageset *pset;
8824 
8825 	/* avoid races with drain_pages()  */
8826 	local_irq_save(flags);
8827 	if (zone->pageset != &boot_pageset) {
8828 		for_each_online_cpu(cpu) {
8829 			pset = per_cpu_ptr(zone->pageset, cpu);
8830 			drain_zonestat(zone, pset);
8831 		}
8832 		free_percpu(zone->pageset);
8833 		zone->pageset = &boot_pageset;
8834 	}
8835 	local_irq_restore(flags);
8836 }
8837 
8838 #ifdef CONFIG_MEMORY_HOTREMOVE
8839 /*
8840  * All pages in the range must be in a single zone, must not contain holes,
8841  * must span full sections, and must be isolated before calling this function.
8842  */
8843 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8844 {
8845 	unsigned long pfn = start_pfn;
8846 	struct page *page;
8847 	struct zone *zone;
8848 	unsigned int order;
8849 	unsigned long flags;
8850 
8851 	offline_mem_sections(pfn, end_pfn);
8852 	zone = page_zone(pfn_to_page(pfn));
8853 	spin_lock_irqsave(&zone->lock, flags);
8854 	while (pfn < end_pfn) {
8855 		page = pfn_to_page(pfn);
8856 		/*
8857 		 * The HWPoisoned page may be not in buddy system, and
8858 		 * page_count() is not 0.
8859 		 */
8860 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8861 			pfn++;
8862 			continue;
8863 		}
8864 		/*
8865 		 * At this point all remaining PageOffline() pages have a
8866 		 * reference count of 0 and can simply be skipped.
8867 		 */
8868 		if (PageOffline(page)) {
8869 			BUG_ON(page_count(page));
8870 			BUG_ON(PageBuddy(page));
8871 			pfn++;
8872 			continue;
8873 		}
8874 
8875 		BUG_ON(page_count(page));
8876 		BUG_ON(!PageBuddy(page));
8877 		order = buddy_order(page);
8878 		del_page_from_free_list(page, zone, order);
8879 		pfn += (1 << order);
8880 	}
8881 	spin_unlock_irqrestore(&zone->lock, flags);
8882 }
8883 #endif
8884 
8885 bool is_free_buddy_page(struct page *page)
8886 {
8887 	struct zone *zone = page_zone(page);
8888 	unsigned long pfn = page_to_pfn(page);
8889 	unsigned long flags;
8890 	unsigned int order;
8891 
8892 	spin_lock_irqsave(&zone->lock, flags);
8893 	for (order = 0; order < MAX_ORDER; order++) {
8894 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8895 
8896 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8897 			break;
8898 	}
8899 	spin_unlock_irqrestore(&zone->lock, flags);
8900 
8901 	return order < MAX_ORDER;
8902 }
8903 
8904 #ifdef CONFIG_MEMORY_FAILURE
8905 /*
8906  * Break down a higher-order page in sub-pages, and keep our target out of
8907  * buddy allocator.
8908  */
8909 static void break_down_buddy_pages(struct zone *zone, struct page *page,
8910 				   struct page *target, int low, int high,
8911 				   int migratetype)
8912 {
8913 	unsigned long size = 1 << high;
8914 	struct page *current_buddy, *next_page;
8915 
8916 	while (high > low) {
8917 		high--;
8918 		size >>= 1;
8919 
8920 		if (target >= &page[size]) {
8921 			next_page = page + size;
8922 			current_buddy = page;
8923 		} else {
8924 			next_page = page;
8925 			current_buddy = page + size;
8926 		}
8927 
8928 		if (set_page_guard(zone, current_buddy, high, migratetype))
8929 			continue;
8930 
8931 		if (current_buddy != target) {
8932 			add_to_free_list(current_buddy, zone, high, migratetype);
8933 			set_buddy_order(current_buddy, high);
8934 			page = next_page;
8935 		}
8936 	}
8937 }
8938 
8939 /*
8940  * Take a page that will be marked as poisoned off the buddy allocator.
8941  */
8942 bool take_page_off_buddy(struct page *page)
8943 {
8944 	struct zone *zone = page_zone(page);
8945 	unsigned long pfn = page_to_pfn(page);
8946 	unsigned long flags;
8947 	unsigned int order;
8948 	bool ret = false;
8949 
8950 	spin_lock_irqsave(&zone->lock, flags);
8951 	for (order = 0; order < MAX_ORDER; order++) {
8952 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8953 		int page_order = buddy_order(page_head);
8954 
8955 		if (PageBuddy(page_head) && page_order >= order) {
8956 			unsigned long pfn_head = page_to_pfn(page_head);
8957 			int migratetype = get_pfnblock_migratetype(page_head,
8958 								   pfn_head);
8959 
8960 			del_page_from_free_list(page_head, zone, page_order);
8961 			break_down_buddy_pages(zone, page_head, page, 0,
8962 						page_order, migratetype);
8963 			ret = true;
8964 			break;
8965 		}
8966 		if (page_count(page_head) > 0)
8967 			break;
8968 	}
8969 	spin_unlock_irqrestore(&zone->lock, flags);
8970 	return ret;
8971 }
8972 #endif
8973