1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 76 #include <asm/sections.h> 77 #include <asm/tlbflush.h> 78 #include <asm/div64.h> 79 #include "internal.h" 80 #include "shuffle.h" 81 #include "page_reporting.h" 82 83 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 84 typedef int __bitwise fpi_t; 85 86 /* No special request */ 87 #define FPI_NONE ((__force fpi_t)0) 88 89 /* 90 * Skip free page reporting notification for the (possibly merged) page. 91 * This does not hinder free page reporting from grabbing the page, 92 * reporting it and marking it "reported" - it only skips notifying 93 * the free page reporting infrastructure about a newly freed page. For 94 * example, used when temporarily pulling a page from a freelist and 95 * putting it back unmodified. 96 */ 97 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 98 99 /* 100 * Place the (possibly merged) page to the tail of the freelist. Will ignore 101 * page shuffling (relevant code - e.g., memory onlining - is expected to 102 * shuffle the whole zone). 103 * 104 * Note: No code should rely on this flag for correctness - it's purely 105 * to allow for optimizations when handing back either fresh pages 106 * (memory onlining) or untouched pages (page isolation, free page 107 * reporting). 108 */ 109 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 110 111 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 112 static DEFINE_MUTEX(pcp_batch_high_lock); 113 #define MIN_PERCPU_PAGELIST_FRACTION (8) 114 115 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 116 DEFINE_PER_CPU(int, numa_node); 117 EXPORT_PER_CPU_SYMBOL(numa_node); 118 #endif 119 120 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 121 122 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 123 /* 124 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 125 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 126 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 127 * defined in <linux/topology.h>. 128 */ 129 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 130 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 131 #endif 132 133 /* work_structs for global per-cpu drains */ 134 struct pcpu_drain { 135 struct zone *zone; 136 struct work_struct work; 137 }; 138 static DEFINE_MUTEX(pcpu_drain_mutex); 139 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 140 141 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 142 volatile unsigned long latent_entropy __latent_entropy; 143 EXPORT_SYMBOL(latent_entropy); 144 #endif 145 146 /* 147 * Array of node states. 148 */ 149 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 150 [N_POSSIBLE] = NODE_MASK_ALL, 151 [N_ONLINE] = { { [0] = 1UL } }, 152 #ifndef CONFIG_NUMA 153 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 154 #ifdef CONFIG_HIGHMEM 155 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 156 #endif 157 [N_MEMORY] = { { [0] = 1UL } }, 158 [N_CPU] = { { [0] = 1UL } }, 159 #endif /* NUMA */ 160 }; 161 EXPORT_SYMBOL(node_states); 162 163 atomic_long_t _totalram_pages __read_mostly; 164 EXPORT_SYMBOL(_totalram_pages); 165 unsigned long totalreserve_pages __read_mostly; 166 unsigned long totalcma_pages __read_mostly; 167 168 int percpu_pagelist_fraction; 169 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 170 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 171 EXPORT_SYMBOL(init_on_alloc); 172 173 DEFINE_STATIC_KEY_FALSE(init_on_free); 174 EXPORT_SYMBOL(init_on_free); 175 176 static bool _init_on_alloc_enabled_early __read_mostly 177 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 178 static int __init early_init_on_alloc(char *buf) 179 { 180 181 return kstrtobool(buf, &_init_on_alloc_enabled_early); 182 } 183 early_param("init_on_alloc", early_init_on_alloc); 184 185 static bool _init_on_free_enabled_early __read_mostly 186 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 187 static int __init early_init_on_free(char *buf) 188 { 189 return kstrtobool(buf, &_init_on_free_enabled_early); 190 } 191 early_param("init_on_free", early_init_on_free); 192 193 /* 194 * A cached value of the page's pageblock's migratetype, used when the page is 195 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 196 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 197 * Also the migratetype set in the page does not necessarily match the pcplist 198 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 199 * other index - this ensures that it will be put on the correct CMA freelist. 200 */ 201 static inline int get_pcppage_migratetype(struct page *page) 202 { 203 return page->index; 204 } 205 206 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 207 { 208 page->index = migratetype; 209 } 210 211 #ifdef CONFIG_PM_SLEEP 212 /* 213 * The following functions are used by the suspend/hibernate code to temporarily 214 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 215 * while devices are suspended. To avoid races with the suspend/hibernate code, 216 * they should always be called with system_transition_mutex held 217 * (gfp_allowed_mask also should only be modified with system_transition_mutex 218 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 219 * with that modification). 220 */ 221 222 static gfp_t saved_gfp_mask; 223 224 void pm_restore_gfp_mask(void) 225 { 226 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 227 if (saved_gfp_mask) { 228 gfp_allowed_mask = saved_gfp_mask; 229 saved_gfp_mask = 0; 230 } 231 } 232 233 void pm_restrict_gfp_mask(void) 234 { 235 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 236 WARN_ON(saved_gfp_mask); 237 saved_gfp_mask = gfp_allowed_mask; 238 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 239 } 240 241 bool pm_suspended_storage(void) 242 { 243 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 244 return false; 245 return true; 246 } 247 #endif /* CONFIG_PM_SLEEP */ 248 249 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 250 unsigned int pageblock_order __read_mostly; 251 #endif 252 253 static void __free_pages_ok(struct page *page, unsigned int order, 254 fpi_t fpi_flags); 255 256 /* 257 * results with 256, 32 in the lowmem_reserve sysctl: 258 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 259 * 1G machine -> (16M dma, 784M normal, 224M high) 260 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 261 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 262 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 263 * 264 * TBD: should special case ZONE_DMA32 machines here - in those we normally 265 * don't need any ZONE_NORMAL reservation 266 */ 267 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 268 #ifdef CONFIG_ZONE_DMA 269 [ZONE_DMA] = 256, 270 #endif 271 #ifdef CONFIG_ZONE_DMA32 272 [ZONE_DMA32] = 256, 273 #endif 274 [ZONE_NORMAL] = 32, 275 #ifdef CONFIG_HIGHMEM 276 [ZONE_HIGHMEM] = 0, 277 #endif 278 [ZONE_MOVABLE] = 0, 279 }; 280 281 static char * const zone_names[MAX_NR_ZONES] = { 282 #ifdef CONFIG_ZONE_DMA 283 "DMA", 284 #endif 285 #ifdef CONFIG_ZONE_DMA32 286 "DMA32", 287 #endif 288 "Normal", 289 #ifdef CONFIG_HIGHMEM 290 "HighMem", 291 #endif 292 "Movable", 293 #ifdef CONFIG_ZONE_DEVICE 294 "Device", 295 #endif 296 }; 297 298 const char * const migratetype_names[MIGRATE_TYPES] = { 299 "Unmovable", 300 "Movable", 301 "Reclaimable", 302 "HighAtomic", 303 #ifdef CONFIG_CMA 304 "CMA", 305 #endif 306 #ifdef CONFIG_MEMORY_ISOLATION 307 "Isolate", 308 #endif 309 }; 310 311 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 312 [NULL_COMPOUND_DTOR] = NULL, 313 [COMPOUND_PAGE_DTOR] = free_compound_page, 314 #ifdef CONFIG_HUGETLB_PAGE 315 [HUGETLB_PAGE_DTOR] = free_huge_page, 316 #endif 317 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 318 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 319 #endif 320 }; 321 322 int min_free_kbytes = 1024; 323 int user_min_free_kbytes = -1; 324 #ifdef CONFIG_DISCONTIGMEM 325 /* 326 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 327 * are not on separate NUMA nodes. Functionally this works but with 328 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 329 * quite small. By default, do not boost watermarks on discontigmem as in 330 * many cases very high-order allocations like THP are likely to be 331 * unsupported and the premature reclaim offsets the advantage of long-term 332 * fragmentation avoidance. 333 */ 334 int watermark_boost_factor __read_mostly; 335 #else 336 int watermark_boost_factor __read_mostly = 15000; 337 #endif 338 int watermark_scale_factor = 10; 339 340 static unsigned long nr_kernel_pages __initdata; 341 static unsigned long nr_all_pages __initdata; 342 static unsigned long dma_reserve __initdata; 343 344 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 345 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 346 static unsigned long required_kernelcore __initdata; 347 static unsigned long required_kernelcore_percent __initdata; 348 static unsigned long required_movablecore __initdata; 349 static unsigned long required_movablecore_percent __initdata; 350 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 351 static bool mirrored_kernelcore __meminitdata; 352 353 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 354 int movable_zone; 355 EXPORT_SYMBOL(movable_zone); 356 357 #if MAX_NUMNODES > 1 358 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 359 unsigned int nr_online_nodes __read_mostly = 1; 360 EXPORT_SYMBOL(nr_node_ids); 361 EXPORT_SYMBOL(nr_online_nodes); 362 #endif 363 364 int page_group_by_mobility_disabled __read_mostly; 365 366 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 367 /* 368 * During boot we initialize deferred pages on-demand, as needed, but once 369 * page_alloc_init_late() has finished, the deferred pages are all initialized, 370 * and we can permanently disable that path. 371 */ 372 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 373 374 /* 375 * Calling kasan_free_pages() only after deferred memory initialization 376 * has completed. Poisoning pages during deferred memory init will greatly 377 * lengthen the process and cause problem in large memory systems as the 378 * deferred pages initialization is done with interrupt disabled. 379 * 380 * Assuming that there will be no reference to those newly initialized 381 * pages before they are ever allocated, this should have no effect on 382 * KASAN memory tracking as the poison will be properly inserted at page 383 * allocation time. The only corner case is when pages are allocated by 384 * on-demand allocation and then freed again before the deferred pages 385 * initialization is done, but this is not likely to happen. 386 */ 387 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 388 { 389 if (!static_branch_unlikely(&deferred_pages)) 390 kasan_free_pages(page, order); 391 } 392 393 /* Returns true if the struct page for the pfn is uninitialised */ 394 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 395 { 396 int nid = early_pfn_to_nid(pfn); 397 398 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 399 return true; 400 401 return false; 402 } 403 404 /* 405 * Returns true when the remaining initialisation should be deferred until 406 * later in the boot cycle when it can be parallelised. 407 */ 408 static bool __meminit 409 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 410 { 411 static unsigned long prev_end_pfn, nr_initialised; 412 413 /* 414 * prev_end_pfn static that contains the end of previous zone 415 * No need to protect because called very early in boot before smp_init. 416 */ 417 if (prev_end_pfn != end_pfn) { 418 prev_end_pfn = end_pfn; 419 nr_initialised = 0; 420 } 421 422 /* Always populate low zones for address-constrained allocations */ 423 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 424 return false; 425 426 /* 427 * We start only with one section of pages, more pages are added as 428 * needed until the rest of deferred pages are initialized. 429 */ 430 nr_initialised++; 431 if ((nr_initialised > PAGES_PER_SECTION) && 432 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 433 NODE_DATA(nid)->first_deferred_pfn = pfn; 434 return true; 435 } 436 return false; 437 } 438 #else 439 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 440 441 static inline bool early_page_uninitialised(unsigned long pfn) 442 { 443 return false; 444 } 445 446 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 447 { 448 return false; 449 } 450 #endif 451 452 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 453 static inline unsigned long *get_pageblock_bitmap(struct page *page, 454 unsigned long pfn) 455 { 456 #ifdef CONFIG_SPARSEMEM 457 return section_to_usemap(__pfn_to_section(pfn)); 458 #else 459 return page_zone(page)->pageblock_flags; 460 #endif /* CONFIG_SPARSEMEM */ 461 } 462 463 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 464 { 465 #ifdef CONFIG_SPARSEMEM 466 pfn &= (PAGES_PER_SECTION-1); 467 #else 468 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 469 #endif /* CONFIG_SPARSEMEM */ 470 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 471 } 472 473 static __always_inline 474 unsigned long __get_pfnblock_flags_mask(struct page *page, 475 unsigned long pfn, 476 unsigned long mask) 477 { 478 unsigned long *bitmap; 479 unsigned long bitidx, word_bitidx; 480 unsigned long word; 481 482 bitmap = get_pageblock_bitmap(page, pfn); 483 bitidx = pfn_to_bitidx(page, pfn); 484 word_bitidx = bitidx / BITS_PER_LONG; 485 bitidx &= (BITS_PER_LONG-1); 486 487 word = bitmap[word_bitidx]; 488 return (word >> bitidx) & mask; 489 } 490 491 /** 492 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 493 * @page: The page within the block of interest 494 * @pfn: The target page frame number 495 * @mask: mask of bits that the caller is interested in 496 * 497 * Return: pageblock_bits flags 498 */ 499 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @mask: mask of bits that the caller is interested in 516 */ 517 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 518 unsigned long pfn, 519 unsigned long mask) 520 { 521 unsigned long *bitmap; 522 unsigned long bitidx, word_bitidx; 523 unsigned long old_word, word; 524 525 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 526 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 527 528 bitmap = get_pageblock_bitmap(page, pfn); 529 bitidx = pfn_to_bitidx(page, pfn); 530 word_bitidx = bitidx / BITS_PER_LONG; 531 bitidx &= (BITS_PER_LONG-1); 532 533 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 534 535 mask <<= bitidx; 536 flags <<= bitidx; 537 538 word = READ_ONCE(bitmap[word_bitidx]); 539 for (;;) { 540 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 541 if (word == old_word) 542 break; 543 word = old_word; 544 } 545 } 546 547 void set_pageblock_migratetype(struct page *page, int migratetype) 548 { 549 if (unlikely(page_group_by_mobility_disabled && 550 migratetype < MIGRATE_PCPTYPES)) 551 migratetype = MIGRATE_UNMOVABLE; 552 553 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 554 page_to_pfn(page), MIGRATETYPE_MASK); 555 } 556 557 #ifdef CONFIG_DEBUG_VM 558 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 559 { 560 int ret = 0; 561 unsigned seq; 562 unsigned long pfn = page_to_pfn(page); 563 unsigned long sp, start_pfn; 564 565 do { 566 seq = zone_span_seqbegin(zone); 567 start_pfn = zone->zone_start_pfn; 568 sp = zone->spanned_pages; 569 if (!zone_spans_pfn(zone, pfn)) 570 ret = 1; 571 } while (zone_span_seqretry(zone, seq)); 572 573 if (ret) 574 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 575 pfn, zone_to_nid(zone), zone->name, 576 start_pfn, start_pfn + sp); 577 578 return ret; 579 } 580 581 static int page_is_consistent(struct zone *zone, struct page *page) 582 { 583 if (!pfn_valid_within(page_to_pfn(page))) 584 return 0; 585 if (zone != page_zone(page)) 586 return 0; 587 588 return 1; 589 } 590 /* 591 * Temporary debugging check for pages not lying within a given zone. 592 */ 593 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 594 { 595 if (page_outside_zone_boundaries(zone, page)) 596 return 1; 597 if (!page_is_consistent(zone, page)) 598 return 1; 599 600 return 0; 601 } 602 #else 603 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 604 { 605 return 0; 606 } 607 #endif 608 609 static void bad_page(struct page *page, const char *reason) 610 { 611 static unsigned long resume; 612 static unsigned long nr_shown; 613 static unsigned long nr_unshown; 614 615 /* 616 * Allow a burst of 60 reports, then keep quiet for that minute; 617 * or allow a steady drip of one report per second. 618 */ 619 if (nr_shown == 60) { 620 if (time_before(jiffies, resume)) { 621 nr_unshown++; 622 goto out; 623 } 624 if (nr_unshown) { 625 pr_alert( 626 "BUG: Bad page state: %lu messages suppressed\n", 627 nr_unshown); 628 nr_unshown = 0; 629 } 630 nr_shown = 0; 631 } 632 if (nr_shown++ == 0) 633 resume = jiffies + 60 * HZ; 634 635 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 636 current->comm, page_to_pfn(page)); 637 __dump_page(page, reason); 638 dump_page_owner(page); 639 640 print_modules(); 641 dump_stack(); 642 out: 643 /* Leave bad fields for debug, except PageBuddy could make trouble */ 644 page_mapcount_reset(page); /* remove PageBuddy */ 645 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 646 } 647 648 /* 649 * Higher-order pages are called "compound pages". They are structured thusly: 650 * 651 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 652 * 653 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 654 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 655 * 656 * The first tail page's ->compound_dtor holds the offset in array of compound 657 * page destructors. See compound_page_dtors. 658 * 659 * The first tail page's ->compound_order holds the order of allocation. 660 * This usage means that zero-order pages may not be compound. 661 */ 662 663 void free_compound_page(struct page *page) 664 { 665 mem_cgroup_uncharge(page); 666 __free_pages_ok(page, compound_order(page), FPI_NONE); 667 } 668 669 void prep_compound_page(struct page *page, unsigned int order) 670 { 671 int i; 672 int nr_pages = 1 << order; 673 674 __SetPageHead(page); 675 for (i = 1; i < nr_pages; i++) { 676 struct page *p = page + i; 677 set_page_count(p, 0); 678 p->mapping = TAIL_MAPPING; 679 set_compound_head(p, page); 680 } 681 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 683 set_compound_order(page, order); 684 atomic_set(compound_mapcount_ptr(page), -1); 685 if (hpage_pincount_available(page)) 686 atomic_set(compound_pincount_ptr(page), 0); 687 } 688 689 #ifdef CONFIG_DEBUG_PAGEALLOC 690 unsigned int _debug_guardpage_minorder; 691 692 bool _debug_pagealloc_enabled_early __read_mostly 693 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 694 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 695 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 696 EXPORT_SYMBOL(_debug_pagealloc_enabled); 697 698 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 699 700 static int __init early_debug_pagealloc(char *buf) 701 { 702 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 703 } 704 early_param("debug_pagealloc", early_debug_pagealloc); 705 706 static int __init debug_guardpage_minorder_setup(char *buf) 707 { 708 unsigned long res; 709 710 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 711 pr_err("Bad debug_guardpage_minorder value\n"); 712 return 0; 713 } 714 _debug_guardpage_minorder = res; 715 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 716 return 0; 717 } 718 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 719 720 static inline bool set_page_guard(struct zone *zone, struct page *page, 721 unsigned int order, int migratetype) 722 { 723 if (!debug_guardpage_enabled()) 724 return false; 725 726 if (order >= debug_guardpage_minorder()) 727 return false; 728 729 __SetPageGuard(page); 730 INIT_LIST_HEAD(&page->lru); 731 set_page_private(page, order); 732 /* Guard pages are not available for any usage */ 733 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 734 735 return true; 736 } 737 738 static inline void clear_page_guard(struct zone *zone, struct page *page, 739 unsigned int order, int migratetype) 740 { 741 if (!debug_guardpage_enabled()) 742 return; 743 744 __ClearPageGuard(page); 745 746 set_page_private(page, 0); 747 if (!is_migrate_isolate(migratetype)) 748 __mod_zone_freepage_state(zone, (1 << order), migratetype); 749 } 750 #else 751 static inline bool set_page_guard(struct zone *zone, struct page *page, 752 unsigned int order, int migratetype) { return false; } 753 static inline void clear_page_guard(struct zone *zone, struct page *page, 754 unsigned int order, int migratetype) {} 755 #endif 756 757 /* 758 * Enable static keys related to various memory debugging and hardening options. 759 * Some override others, and depend on early params that are evaluated in the 760 * order of appearance. So we need to first gather the full picture of what was 761 * enabled, and then make decisions. 762 */ 763 void init_mem_debugging_and_hardening(void) 764 { 765 if (_init_on_alloc_enabled_early) { 766 if (page_poisoning_enabled()) 767 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 768 "will take precedence over init_on_alloc\n"); 769 else 770 static_branch_enable(&init_on_alloc); 771 } 772 if (_init_on_free_enabled_early) { 773 if (page_poisoning_enabled()) 774 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 775 "will take precedence over init_on_free\n"); 776 else 777 static_branch_enable(&init_on_free); 778 } 779 780 #ifdef CONFIG_PAGE_POISONING 781 /* 782 * Page poisoning is debug page alloc for some arches. If 783 * either of those options are enabled, enable poisoning. 784 */ 785 if (page_poisoning_enabled() || 786 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 787 debug_pagealloc_enabled())) 788 static_branch_enable(&_page_poisoning_enabled); 789 #endif 790 791 #ifdef CONFIG_DEBUG_PAGEALLOC 792 if (!debug_pagealloc_enabled()) 793 return; 794 795 static_branch_enable(&_debug_pagealloc_enabled); 796 797 if (!debug_guardpage_minorder()) 798 return; 799 800 static_branch_enable(&_debug_guardpage_enabled); 801 #endif 802 } 803 804 static inline void set_buddy_order(struct page *page, unsigned int order) 805 { 806 set_page_private(page, order); 807 __SetPageBuddy(page); 808 } 809 810 /* 811 * This function checks whether a page is free && is the buddy 812 * we can coalesce a page and its buddy if 813 * (a) the buddy is not in a hole (check before calling!) && 814 * (b) the buddy is in the buddy system && 815 * (c) a page and its buddy have the same order && 816 * (d) a page and its buddy are in the same zone. 817 * 818 * For recording whether a page is in the buddy system, we set PageBuddy. 819 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 820 * 821 * For recording page's order, we use page_private(page). 822 */ 823 static inline bool page_is_buddy(struct page *page, struct page *buddy, 824 unsigned int order) 825 { 826 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 827 return false; 828 829 if (buddy_order(buddy) != order) 830 return false; 831 832 /* 833 * zone check is done late to avoid uselessly calculating 834 * zone/node ids for pages that could never merge. 835 */ 836 if (page_zone_id(page) != page_zone_id(buddy)) 837 return false; 838 839 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 840 841 return true; 842 } 843 844 #ifdef CONFIG_COMPACTION 845 static inline struct capture_control *task_capc(struct zone *zone) 846 { 847 struct capture_control *capc = current->capture_control; 848 849 return unlikely(capc) && 850 !(current->flags & PF_KTHREAD) && 851 !capc->page && 852 capc->cc->zone == zone ? capc : NULL; 853 } 854 855 static inline bool 856 compaction_capture(struct capture_control *capc, struct page *page, 857 int order, int migratetype) 858 { 859 if (!capc || order != capc->cc->order) 860 return false; 861 862 /* Do not accidentally pollute CMA or isolated regions*/ 863 if (is_migrate_cma(migratetype) || 864 is_migrate_isolate(migratetype)) 865 return false; 866 867 /* 868 * Do not let lower order allocations polluate a movable pageblock. 869 * This might let an unmovable request use a reclaimable pageblock 870 * and vice-versa but no more than normal fallback logic which can 871 * have trouble finding a high-order free page. 872 */ 873 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 874 return false; 875 876 capc->page = page; 877 return true; 878 } 879 880 #else 881 static inline struct capture_control *task_capc(struct zone *zone) 882 { 883 return NULL; 884 } 885 886 static inline bool 887 compaction_capture(struct capture_control *capc, struct page *page, 888 int order, int migratetype) 889 { 890 return false; 891 } 892 #endif /* CONFIG_COMPACTION */ 893 894 /* Used for pages not on another list */ 895 static inline void add_to_free_list(struct page *page, struct zone *zone, 896 unsigned int order, int migratetype) 897 { 898 struct free_area *area = &zone->free_area[order]; 899 900 list_add(&page->lru, &area->free_list[migratetype]); 901 area->nr_free++; 902 } 903 904 /* Used for pages not on another list */ 905 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 906 unsigned int order, int migratetype) 907 { 908 struct free_area *area = &zone->free_area[order]; 909 910 list_add_tail(&page->lru, &area->free_list[migratetype]); 911 area->nr_free++; 912 } 913 914 /* 915 * Used for pages which are on another list. Move the pages to the tail 916 * of the list - so the moved pages won't immediately be considered for 917 * allocation again (e.g., optimization for memory onlining). 918 */ 919 static inline void move_to_free_list(struct page *page, struct zone *zone, 920 unsigned int order, int migratetype) 921 { 922 struct free_area *area = &zone->free_area[order]; 923 924 list_move_tail(&page->lru, &area->free_list[migratetype]); 925 } 926 927 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 928 unsigned int order) 929 { 930 /* clear reported state and update reported page count */ 931 if (page_reported(page)) 932 __ClearPageReported(page); 933 934 list_del(&page->lru); 935 __ClearPageBuddy(page); 936 set_page_private(page, 0); 937 zone->free_area[order].nr_free--; 938 } 939 940 /* 941 * If this is not the largest possible page, check if the buddy 942 * of the next-highest order is free. If it is, it's possible 943 * that pages are being freed that will coalesce soon. In case, 944 * that is happening, add the free page to the tail of the list 945 * so it's less likely to be used soon and more likely to be merged 946 * as a higher order page 947 */ 948 static inline bool 949 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 950 struct page *page, unsigned int order) 951 { 952 struct page *higher_page, *higher_buddy; 953 unsigned long combined_pfn; 954 955 if (order >= MAX_ORDER - 2) 956 return false; 957 958 if (!pfn_valid_within(buddy_pfn)) 959 return false; 960 961 combined_pfn = buddy_pfn & pfn; 962 higher_page = page + (combined_pfn - pfn); 963 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 964 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 965 966 return pfn_valid_within(buddy_pfn) && 967 page_is_buddy(higher_page, higher_buddy, order + 1); 968 } 969 970 /* 971 * Freeing function for a buddy system allocator. 972 * 973 * The concept of a buddy system is to maintain direct-mapped table 974 * (containing bit values) for memory blocks of various "orders". 975 * The bottom level table contains the map for the smallest allocatable 976 * units of memory (here, pages), and each level above it describes 977 * pairs of units from the levels below, hence, "buddies". 978 * At a high level, all that happens here is marking the table entry 979 * at the bottom level available, and propagating the changes upward 980 * as necessary, plus some accounting needed to play nicely with other 981 * parts of the VM system. 982 * At each level, we keep a list of pages, which are heads of continuous 983 * free pages of length of (1 << order) and marked with PageBuddy. 984 * Page's order is recorded in page_private(page) field. 985 * So when we are allocating or freeing one, we can derive the state of the 986 * other. That is, if we allocate a small block, and both were 987 * free, the remainder of the region must be split into blocks. 988 * If a block is freed, and its buddy is also free, then this 989 * triggers coalescing into a block of larger size. 990 * 991 * -- nyc 992 */ 993 994 static inline void __free_one_page(struct page *page, 995 unsigned long pfn, 996 struct zone *zone, unsigned int order, 997 int migratetype, fpi_t fpi_flags) 998 { 999 struct capture_control *capc = task_capc(zone); 1000 unsigned long buddy_pfn; 1001 unsigned long combined_pfn; 1002 unsigned int max_order; 1003 struct page *buddy; 1004 bool to_tail; 1005 1006 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1007 1008 VM_BUG_ON(!zone_is_initialized(zone)); 1009 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1010 1011 VM_BUG_ON(migratetype == -1); 1012 if (likely(!is_migrate_isolate(migratetype))) 1013 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1014 1015 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1016 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1017 1018 continue_merging: 1019 while (order < max_order) { 1020 if (compaction_capture(capc, page, order, migratetype)) { 1021 __mod_zone_freepage_state(zone, -(1 << order), 1022 migratetype); 1023 return; 1024 } 1025 buddy_pfn = __find_buddy_pfn(pfn, order); 1026 buddy = page + (buddy_pfn - pfn); 1027 1028 if (!pfn_valid_within(buddy_pfn)) 1029 goto done_merging; 1030 if (!page_is_buddy(page, buddy, order)) 1031 goto done_merging; 1032 /* 1033 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1034 * merge with it and move up one order. 1035 */ 1036 if (page_is_guard(buddy)) 1037 clear_page_guard(zone, buddy, order, migratetype); 1038 else 1039 del_page_from_free_list(buddy, zone, order); 1040 combined_pfn = buddy_pfn & pfn; 1041 page = page + (combined_pfn - pfn); 1042 pfn = combined_pfn; 1043 order++; 1044 } 1045 if (order < MAX_ORDER - 1) { 1046 /* If we are here, it means order is >= pageblock_order. 1047 * We want to prevent merge between freepages on isolate 1048 * pageblock and normal pageblock. Without this, pageblock 1049 * isolation could cause incorrect freepage or CMA accounting. 1050 * 1051 * We don't want to hit this code for the more frequent 1052 * low-order merging. 1053 */ 1054 if (unlikely(has_isolate_pageblock(zone))) { 1055 int buddy_mt; 1056 1057 buddy_pfn = __find_buddy_pfn(pfn, order); 1058 buddy = page + (buddy_pfn - pfn); 1059 buddy_mt = get_pageblock_migratetype(buddy); 1060 1061 if (migratetype != buddy_mt 1062 && (is_migrate_isolate(migratetype) || 1063 is_migrate_isolate(buddy_mt))) 1064 goto done_merging; 1065 } 1066 max_order = order + 1; 1067 goto continue_merging; 1068 } 1069 1070 done_merging: 1071 set_buddy_order(page, order); 1072 1073 if (fpi_flags & FPI_TO_TAIL) 1074 to_tail = true; 1075 else if (is_shuffle_order(order)) 1076 to_tail = shuffle_pick_tail(); 1077 else 1078 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1079 1080 if (to_tail) 1081 add_to_free_list_tail(page, zone, order, migratetype); 1082 else 1083 add_to_free_list(page, zone, order, migratetype); 1084 1085 /* Notify page reporting subsystem of freed page */ 1086 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1087 page_reporting_notify_free(order); 1088 } 1089 1090 /* 1091 * A bad page could be due to a number of fields. Instead of multiple branches, 1092 * try and check multiple fields with one check. The caller must do a detailed 1093 * check if necessary. 1094 */ 1095 static inline bool page_expected_state(struct page *page, 1096 unsigned long check_flags) 1097 { 1098 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1099 return false; 1100 1101 if (unlikely((unsigned long)page->mapping | 1102 page_ref_count(page) | 1103 #ifdef CONFIG_MEMCG 1104 (unsigned long)page_memcg(page) | 1105 #endif 1106 (page->flags & check_flags))) 1107 return false; 1108 1109 return true; 1110 } 1111 1112 static const char *page_bad_reason(struct page *page, unsigned long flags) 1113 { 1114 const char *bad_reason = NULL; 1115 1116 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1117 bad_reason = "nonzero mapcount"; 1118 if (unlikely(page->mapping != NULL)) 1119 bad_reason = "non-NULL mapping"; 1120 if (unlikely(page_ref_count(page) != 0)) 1121 bad_reason = "nonzero _refcount"; 1122 if (unlikely(page->flags & flags)) { 1123 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1124 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1125 else 1126 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1127 } 1128 #ifdef CONFIG_MEMCG 1129 if (unlikely(page_memcg(page))) 1130 bad_reason = "page still charged to cgroup"; 1131 #endif 1132 return bad_reason; 1133 } 1134 1135 static void check_free_page_bad(struct page *page) 1136 { 1137 bad_page(page, 1138 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1139 } 1140 1141 static inline int check_free_page(struct page *page) 1142 { 1143 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1144 return 0; 1145 1146 /* Something has gone sideways, find it */ 1147 check_free_page_bad(page); 1148 return 1; 1149 } 1150 1151 static int free_tail_pages_check(struct page *head_page, struct page *page) 1152 { 1153 int ret = 1; 1154 1155 /* 1156 * We rely page->lru.next never has bit 0 set, unless the page 1157 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1158 */ 1159 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1160 1161 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1162 ret = 0; 1163 goto out; 1164 } 1165 switch (page - head_page) { 1166 case 1: 1167 /* the first tail page: ->mapping may be compound_mapcount() */ 1168 if (unlikely(compound_mapcount(page))) { 1169 bad_page(page, "nonzero compound_mapcount"); 1170 goto out; 1171 } 1172 break; 1173 case 2: 1174 /* 1175 * the second tail page: ->mapping is 1176 * deferred_list.next -- ignore value. 1177 */ 1178 break; 1179 default: 1180 if (page->mapping != TAIL_MAPPING) { 1181 bad_page(page, "corrupted mapping in tail page"); 1182 goto out; 1183 } 1184 break; 1185 } 1186 if (unlikely(!PageTail(page))) { 1187 bad_page(page, "PageTail not set"); 1188 goto out; 1189 } 1190 if (unlikely(compound_head(page) != head_page)) { 1191 bad_page(page, "compound_head not consistent"); 1192 goto out; 1193 } 1194 ret = 0; 1195 out: 1196 page->mapping = NULL; 1197 clear_compound_head(page); 1198 return ret; 1199 } 1200 1201 static void kernel_init_free_pages(struct page *page, int numpages) 1202 { 1203 int i; 1204 1205 /* s390's use of memset() could override KASAN redzones. */ 1206 kasan_disable_current(); 1207 for (i = 0; i < numpages; i++) { 1208 page_kasan_tag_reset(page + i); 1209 clear_highpage(page + i); 1210 } 1211 kasan_enable_current(); 1212 } 1213 1214 static __always_inline bool free_pages_prepare(struct page *page, 1215 unsigned int order, bool check_free) 1216 { 1217 int bad = 0; 1218 1219 VM_BUG_ON_PAGE(PageTail(page), page); 1220 1221 trace_mm_page_free(page, order); 1222 1223 if (unlikely(PageHWPoison(page)) && !order) { 1224 /* 1225 * Do not let hwpoison pages hit pcplists/buddy 1226 * Untie memcg state and reset page's owner 1227 */ 1228 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1229 __memcg_kmem_uncharge_page(page, order); 1230 reset_page_owner(page, order); 1231 return false; 1232 } 1233 1234 /* 1235 * Check tail pages before head page information is cleared to 1236 * avoid checking PageCompound for order-0 pages. 1237 */ 1238 if (unlikely(order)) { 1239 bool compound = PageCompound(page); 1240 int i; 1241 1242 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1243 1244 if (compound) 1245 ClearPageDoubleMap(page); 1246 for (i = 1; i < (1 << order); i++) { 1247 if (compound) 1248 bad += free_tail_pages_check(page, page + i); 1249 if (unlikely(check_free_page(page + i))) { 1250 bad++; 1251 continue; 1252 } 1253 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1254 } 1255 } 1256 if (PageMappingFlags(page)) 1257 page->mapping = NULL; 1258 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1259 __memcg_kmem_uncharge_page(page, order); 1260 if (check_free) 1261 bad += check_free_page(page); 1262 if (bad) 1263 return false; 1264 1265 page_cpupid_reset_last(page); 1266 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1267 reset_page_owner(page, order); 1268 1269 if (!PageHighMem(page)) { 1270 debug_check_no_locks_freed(page_address(page), 1271 PAGE_SIZE << order); 1272 debug_check_no_obj_freed(page_address(page), 1273 PAGE_SIZE << order); 1274 } 1275 if (want_init_on_free()) 1276 kernel_init_free_pages(page, 1 << order); 1277 1278 kernel_poison_pages(page, 1 << order); 1279 1280 /* 1281 * arch_free_page() can make the page's contents inaccessible. s390 1282 * does this. So nothing which can access the page's contents should 1283 * happen after this. 1284 */ 1285 arch_free_page(page, order); 1286 1287 debug_pagealloc_unmap_pages(page, 1 << order); 1288 1289 kasan_free_nondeferred_pages(page, order); 1290 1291 return true; 1292 } 1293 1294 #ifdef CONFIG_DEBUG_VM 1295 /* 1296 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1297 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1298 * moved from pcp lists to free lists. 1299 */ 1300 static bool free_pcp_prepare(struct page *page) 1301 { 1302 return free_pages_prepare(page, 0, true); 1303 } 1304 1305 static bool bulkfree_pcp_prepare(struct page *page) 1306 { 1307 if (debug_pagealloc_enabled_static()) 1308 return check_free_page(page); 1309 else 1310 return false; 1311 } 1312 #else 1313 /* 1314 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1315 * moving from pcp lists to free list in order to reduce overhead. With 1316 * debug_pagealloc enabled, they are checked also immediately when being freed 1317 * to the pcp lists. 1318 */ 1319 static bool free_pcp_prepare(struct page *page) 1320 { 1321 if (debug_pagealloc_enabled_static()) 1322 return free_pages_prepare(page, 0, true); 1323 else 1324 return free_pages_prepare(page, 0, false); 1325 } 1326 1327 static bool bulkfree_pcp_prepare(struct page *page) 1328 { 1329 return check_free_page(page); 1330 } 1331 #endif /* CONFIG_DEBUG_VM */ 1332 1333 static inline void prefetch_buddy(struct page *page) 1334 { 1335 unsigned long pfn = page_to_pfn(page); 1336 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1337 struct page *buddy = page + (buddy_pfn - pfn); 1338 1339 prefetch(buddy); 1340 } 1341 1342 /* 1343 * Frees a number of pages from the PCP lists 1344 * Assumes all pages on list are in same zone, and of same order. 1345 * count is the number of pages to free. 1346 * 1347 * If the zone was previously in an "all pages pinned" state then look to 1348 * see if this freeing clears that state. 1349 * 1350 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1351 * pinned" detection logic. 1352 */ 1353 static void free_pcppages_bulk(struct zone *zone, int count, 1354 struct per_cpu_pages *pcp) 1355 { 1356 int migratetype = 0; 1357 int batch_free = 0; 1358 int prefetch_nr = READ_ONCE(pcp->batch); 1359 bool isolated_pageblocks; 1360 struct page *page, *tmp; 1361 LIST_HEAD(head); 1362 1363 /* 1364 * Ensure proper count is passed which otherwise would stuck in the 1365 * below while (list_empty(list)) loop. 1366 */ 1367 count = min(pcp->count, count); 1368 while (count) { 1369 struct list_head *list; 1370 1371 /* 1372 * Remove pages from lists in a round-robin fashion. A 1373 * batch_free count is maintained that is incremented when an 1374 * empty list is encountered. This is so more pages are freed 1375 * off fuller lists instead of spinning excessively around empty 1376 * lists 1377 */ 1378 do { 1379 batch_free++; 1380 if (++migratetype == MIGRATE_PCPTYPES) 1381 migratetype = 0; 1382 list = &pcp->lists[migratetype]; 1383 } while (list_empty(list)); 1384 1385 /* This is the only non-empty list. Free them all. */ 1386 if (batch_free == MIGRATE_PCPTYPES) 1387 batch_free = count; 1388 1389 do { 1390 page = list_last_entry(list, struct page, lru); 1391 /* must delete to avoid corrupting pcp list */ 1392 list_del(&page->lru); 1393 pcp->count--; 1394 1395 if (bulkfree_pcp_prepare(page)) 1396 continue; 1397 1398 list_add_tail(&page->lru, &head); 1399 1400 /* 1401 * We are going to put the page back to the global 1402 * pool, prefetch its buddy to speed up later access 1403 * under zone->lock. It is believed the overhead of 1404 * an additional test and calculating buddy_pfn here 1405 * can be offset by reduced memory latency later. To 1406 * avoid excessive prefetching due to large count, only 1407 * prefetch buddy for the first pcp->batch nr of pages. 1408 */ 1409 if (prefetch_nr) { 1410 prefetch_buddy(page); 1411 prefetch_nr--; 1412 } 1413 } while (--count && --batch_free && !list_empty(list)); 1414 } 1415 1416 spin_lock(&zone->lock); 1417 isolated_pageblocks = has_isolate_pageblock(zone); 1418 1419 /* 1420 * Use safe version since after __free_one_page(), 1421 * page->lru.next will not point to original list. 1422 */ 1423 list_for_each_entry_safe(page, tmp, &head, lru) { 1424 int mt = get_pcppage_migratetype(page); 1425 /* MIGRATE_ISOLATE page should not go to pcplists */ 1426 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1427 /* Pageblock could have been isolated meanwhile */ 1428 if (unlikely(isolated_pageblocks)) 1429 mt = get_pageblock_migratetype(page); 1430 1431 __free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE); 1432 trace_mm_page_pcpu_drain(page, 0, mt); 1433 } 1434 spin_unlock(&zone->lock); 1435 } 1436 1437 static void free_one_page(struct zone *zone, 1438 struct page *page, unsigned long pfn, 1439 unsigned int order, 1440 int migratetype, fpi_t fpi_flags) 1441 { 1442 spin_lock(&zone->lock); 1443 if (unlikely(has_isolate_pageblock(zone) || 1444 is_migrate_isolate(migratetype))) { 1445 migratetype = get_pfnblock_migratetype(page, pfn); 1446 } 1447 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1448 spin_unlock(&zone->lock); 1449 } 1450 1451 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1452 unsigned long zone, int nid) 1453 { 1454 mm_zero_struct_page(page); 1455 set_page_links(page, zone, nid, pfn); 1456 init_page_count(page); 1457 page_mapcount_reset(page); 1458 page_cpupid_reset_last(page); 1459 page_kasan_tag_reset(page); 1460 1461 INIT_LIST_HEAD(&page->lru); 1462 #ifdef WANT_PAGE_VIRTUAL 1463 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1464 if (!is_highmem_idx(zone)) 1465 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1466 #endif 1467 } 1468 1469 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1470 static void __meminit init_reserved_page(unsigned long pfn) 1471 { 1472 pg_data_t *pgdat; 1473 int nid, zid; 1474 1475 if (!early_page_uninitialised(pfn)) 1476 return; 1477 1478 nid = early_pfn_to_nid(pfn); 1479 pgdat = NODE_DATA(nid); 1480 1481 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1482 struct zone *zone = &pgdat->node_zones[zid]; 1483 1484 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1485 break; 1486 } 1487 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1488 } 1489 #else 1490 static inline void init_reserved_page(unsigned long pfn) 1491 { 1492 } 1493 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1494 1495 /* 1496 * Initialised pages do not have PageReserved set. This function is 1497 * called for each range allocated by the bootmem allocator and 1498 * marks the pages PageReserved. The remaining valid pages are later 1499 * sent to the buddy page allocator. 1500 */ 1501 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1502 { 1503 unsigned long start_pfn = PFN_DOWN(start); 1504 unsigned long end_pfn = PFN_UP(end); 1505 1506 for (; start_pfn < end_pfn; start_pfn++) { 1507 if (pfn_valid(start_pfn)) { 1508 struct page *page = pfn_to_page(start_pfn); 1509 1510 init_reserved_page(start_pfn); 1511 1512 /* Avoid false-positive PageTail() */ 1513 INIT_LIST_HEAD(&page->lru); 1514 1515 /* 1516 * no need for atomic set_bit because the struct 1517 * page is not visible yet so nobody should 1518 * access it yet. 1519 */ 1520 __SetPageReserved(page); 1521 } 1522 } 1523 } 1524 1525 static void __free_pages_ok(struct page *page, unsigned int order, 1526 fpi_t fpi_flags) 1527 { 1528 unsigned long flags; 1529 int migratetype; 1530 unsigned long pfn = page_to_pfn(page); 1531 1532 if (!free_pages_prepare(page, order, true)) 1533 return; 1534 1535 migratetype = get_pfnblock_migratetype(page, pfn); 1536 local_irq_save(flags); 1537 __count_vm_events(PGFREE, 1 << order); 1538 free_one_page(page_zone(page), page, pfn, order, migratetype, 1539 fpi_flags); 1540 local_irq_restore(flags); 1541 } 1542 1543 void __free_pages_core(struct page *page, unsigned int order) 1544 { 1545 unsigned int nr_pages = 1 << order; 1546 struct page *p = page; 1547 unsigned int loop; 1548 1549 /* 1550 * When initializing the memmap, __init_single_page() sets the refcount 1551 * of all pages to 1 ("allocated"/"not free"). We have to set the 1552 * refcount of all involved pages to 0. 1553 */ 1554 prefetchw(p); 1555 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1556 prefetchw(p + 1); 1557 __ClearPageReserved(p); 1558 set_page_count(p, 0); 1559 } 1560 __ClearPageReserved(p); 1561 set_page_count(p, 0); 1562 1563 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1564 1565 /* 1566 * Bypass PCP and place fresh pages right to the tail, primarily 1567 * relevant for memory onlining. 1568 */ 1569 __free_pages_ok(page, order, FPI_TO_TAIL); 1570 } 1571 1572 #ifdef CONFIG_NEED_MULTIPLE_NODES 1573 1574 /* 1575 * During memory init memblocks map pfns to nids. The search is expensive and 1576 * this caches recent lookups. The implementation of __early_pfn_to_nid 1577 * treats start/end as pfns. 1578 */ 1579 struct mminit_pfnnid_cache { 1580 unsigned long last_start; 1581 unsigned long last_end; 1582 int last_nid; 1583 }; 1584 1585 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1586 1587 /* 1588 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1589 */ 1590 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1591 struct mminit_pfnnid_cache *state) 1592 { 1593 unsigned long start_pfn, end_pfn; 1594 int nid; 1595 1596 if (state->last_start <= pfn && pfn < state->last_end) 1597 return state->last_nid; 1598 1599 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1600 if (nid != NUMA_NO_NODE) { 1601 state->last_start = start_pfn; 1602 state->last_end = end_pfn; 1603 state->last_nid = nid; 1604 } 1605 1606 return nid; 1607 } 1608 1609 int __meminit early_pfn_to_nid(unsigned long pfn) 1610 { 1611 static DEFINE_SPINLOCK(early_pfn_lock); 1612 int nid; 1613 1614 spin_lock(&early_pfn_lock); 1615 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1616 if (nid < 0) 1617 nid = first_online_node; 1618 spin_unlock(&early_pfn_lock); 1619 1620 return nid; 1621 } 1622 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1623 1624 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1625 unsigned int order) 1626 { 1627 if (early_page_uninitialised(pfn)) 1628 return; 1629 __free_pages_core(page, order); 1630 } 1631 1632 /* 1633 * Check that the whole (or subset of) a pageblock given by the interval of 1634 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1635 * with the migration of free compaction scanner. The scanners then need to 1636 * use only pfn_valid_within() check for arches that allow holes within 1637 * pageblocks. 1638 * 1639 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1640 * 1641 * It's possible on some configurations to have a setup like node0 node1 node0 1642 * i.e. it's possible that all pages within a zones range of pages do not 1643 * belong to a single zone. We assume that a border between node0 and node1 1644 * can occur within a single pageblock, but not a node0 node1 node0 1645 * interleaving within a single pageblock. It is therefore sufficient to check 1646 * the first and last page of a pageblock and avoid checking each individual 1647 * page in a pageblock. 1648 */ 1649 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1650 unsigned long end_pfn, struct zone *zone) 1651 { 1652 struct page *start_page; 1653 struct page *end_page; 1654 1655 /* end_pfn is one past the range we are checking */ 1656 end_pfn--; 1657 1658 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1659 return NULL; 1660 1661 start_page = pfn_to_online_page(start_pfn); 1662 if (!start_page) 1663 return NULL; 1664 1665 if (page_zone(start_page) != zone) 1666 return NULL; 1667 1668 end_page = pfn_to_page(end_pfn); 1669 1670 /* This gives a shorter code than deriving page_zone(end_page) */ 1671 if (page_zone_id(start_page) != page_zone_id(end_page)) 1672 return NULL; 1673 1674 return start_page; 1675 } 1676 1677 void set_zone_contiguous(struct zone *zone) 1678 { 1679 unsigned long block_start_pfn = zone->zone_start_pfn; 1680 unsigned long block_end_pfn; 1681 1682 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1683 for (; block_start_pfn < zone_end_pfn(zone); 1684 block_start_pfn = block_end_pfn, 1685 block_end_pfn += pageblock_nr_pages) { 1686 1687 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1688 1689 if (!__pageblock_pfn_to_page(block_start_pfn, 1690 block_end_pfn, zone)) 1691 return; 1692 cond_resched(); 1693 } 1694 1695 /* We confirm that there is no hole */ 1696 zone->contiguous = true; 1697 } 1698 1699 void clear_zone_contiguous(struct zone *zone) 1700 { 1701 zone->contiguous = false; 1702 } 1703 1704 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1705 static void __init deferred_free_range(unsigned long pfn, 1706 unsigned long nr_pages) 1707 { 1708 struct page *page; 1709 unsigned long i; 1710 1711 if (!nr_pages) 1712 return; 1713 1714 page = pfn_to_page(pfn); 1715 1716 /* Free a large naturally-aligned chunk if possible */ 1717 if (nr_pages == pageblock_nr_pages && 1718 (pfn & (pageblock_nr_pages - 1)) == 0) { 1719 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1720 __free_pages_core(page, pageblock_order); 1721 return; 1722 } 1723 1724 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1725 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1726 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1727 __free_pages_core(page, 0); 1728 } 1729 } 1730 1731 /* Completion tracking for deferred_init_memmap() threads */ 1732 static atomic_t pgdat_init_n_undone __initdata; 1733 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1734 1735 static inline void __init pgdat_init_report_one_done(void) 1736 { 1737 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1738 complete(&pgdat_init_all_done_comp); 1739 } 1740 1741 /* 1742 * Returns true if page needs to be initialized or freed to buddy allocator. 1743 * 1744 * First we check if pfn is valid on architectures where it is possible to have 1745 * holes within pageblock_nr_pages. On systems where it is not possible, this 1746 * function is optimized out. 1747 * 1748 * Then, we check if a current large page is valid by only checking the validity 1749 * of the head pfn. 1750 */ 1751 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1752 { 1753 if (!pfn_valid_within(pfn)) 1754 return false; 1755 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1756 return false; 1757 return true; 1758 } 1759 1760 /* 1761 * Free pages to buddy allocator. Try to free aligned pages in 1762 * pageblock_nr_pages sizes. 1763 */ 1764 static void __init deferred_free_pages(unsigned long pfn, 1765 unsigned long end_pfn) 1766 { 1767 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1768 unsigned long nr_free = 0; 1769 1770 for (; pfn < end_pfn; pfn++) { 1771 if (!deferred_pfn_valid(pfn)) { 1772 deferred_free_range(pfn - nr_free, nr_free); 1773 nr_free = 0; 1774 } else if (!(pfn & nr_pgmask)) { 1775 deferred_free_range(pfn - nr_free, nr_free); 1776 nr_free = 1; 1777 } else { 1778 nr_free++; 1779 } 1780 } 1781 /* Free the last block of pages to allocator */ 1782 deferred_free_range(pfn - nr_free, nr_free); 1783 } 1784 1785 /* 1786 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1787 * by performing it only once every pageblock_nr_pages. 1788 * Return number of pages initialized. 1789 */ 1790 static unsigned long __init deferred_init_pages(struct zone *zone, 1791 unsigned long pfn, 1792 unsigned long end_pfn) 1793 { 1794 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1795 int nid = zone_to_nid(zone); 1796 unsigned long nr_pages = 0; 1797 int zid = zone_idx(zone); 1798 struct page *page = NULL; 1799 1800 for (; pfn < end_pfn; pfn++) { 1801 if (!deferred_pfn_valid(pfn)) { 1802 page = NULL; 1803 continue; 1804 } else if (!page || !(pfn & nr_pgmask)) { 1805 page = pfn_to_page(pfn); 1806 } else { 1807 page++; 1808 } 1809 __init_single_page(page, pfn, zid, nid); 1810 nr_pages++; 1811 } 1812 return (nr_pages); 1813 } 1814 1815 /* 1816 * This function is meant to pre-load the iterator for the zone init. 1817 * Specifically it walks through the ranges until we are caught up to the 1818 * first_init_pfn value and exits there. If we never encounter the value we 1819 * return false indicating there are no valid ranges left. 1820 */ 1821 static bool __init 1822 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1823 unsigned long *spfn, unsigned long *epfn, 1824 unsigned long first_init_pfn) 1825 { 1826 u64 j; 1827 1828 /* 1829 * Start out by walking through the ranges in this zone that have 1830 * already been initialized. We don't need to do anything with them 1831 * so we just need to flush them out of the system. 1832 */ 1833 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1834 if (*epfn <= first_init_pfn) 1835 continue; 1836 if (*spfn < first_init_pfn) 1837 *spfn = first_init_pfn; 1838 *i = j; 1839 return true; 1840 } 1841 1842 return false; 1843 } 1844 1845 /* 1846 * Initialize and free pages. We do it in two loops: first we initialize 1847 * struct page, then free to buddy allocator, because while we are 1848 * freeing pages we can access pages that are ahead (computing buddy 1849 * page in __free_one_page()). 1850 * 1851 * In order to try and keep some memory in the cache we have the loop 1852 * broken along max page order boundaries. This way we will not cause 1853 * any issues with the buddy page computation. 1854 */ 1855 static unsigned long __init 1856 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1857 unsigned long *end_pfn) 1858 { 1859 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1860 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1861 unsigned long nr_pages = 0; 1862 u64 j = *i; 1863 1864 /* First we loop through and initialize the page values */ 1865 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1866 unsigned long t; 1867 1868 if (mo_pfn <= *start_pfn) 1869 break; 1870 1871 t = min(mo_pfn, *end_pfn); 1872 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1873 1874 if (mo_pfn < *end_pfn) { 1875 *start_pfn = mo_pfn; 1876 break; 1877 } 1878 } 1879 1880 /* Reset values and now loop through freeing pages as needed */ 1881 swap(j, *i); 1882 1883 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1884 unsigned long t; 1885 1886 if (mo_pfn <= spfn) 1887 break; 1888 1889 t = min(mo_pfn, epfn); 1890 deferred_free_pages(spfn, t); 1891 1892 if (mo_pfn <= epfn) 1893 break; 1894 } 1895 1896 return nr_pages; 1897 } 1898 1899 static void __init 1900 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1901 void *arg) 1902 { 1903 unsigned long spfn, epfn; 1904 struct zone *zone = arg; 1905 u64 i; 1906 1907 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1908 1909 /* 1910 * Initialize and free pages in MAX_ORDER sized increments so that we 1911 * can avoid introducing any issues with the buddy allocator. 1912 */ 1913 while (spfn < end_pfn) { 1914 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1915 cond_resched(); 1916 } 1917 } 1918 1919 /* An arch may override for more concurrency. */ 1920 __weak int __init 1921 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1922 { 1923 return 1; 1924 } 1925 1926 /* Initialise remaining memory on a node */ 1927 static int __init deferred_init_memmap(void *data) 1928 { 1929 pg_data_t *pgdat = data; 1930 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1931 unsigned long spfn = 0, epfn = 0; 1932 unsigned long first_init_pfn, flags; 1933 unsigned long start = jiffies; 1934 struct zone *zone; 1935 int zid, max_threads; 1936 u64 i; 1937 1938 /* Bind memory initialisation thread to a local node if possible */ 1939 if (!cpumask_empty(cpumask)) 1940 set_cpus_allowed_ptr(current, cpumask); 1941 1942 pgdat_resize_lock(pgdat, &flags); 1943 first_init_pfn = pgdat->first_deferred_pfn; 1944 if (first_init_pfn == ULONG_MAX) { 1945 pgdat_resize_unlock(pgdat, &flags); 1946 pgdat_init_report_one_done(); 1947 return 0; 1948 } 1949 1950 /* Sanity check boundaries */ 1951 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1952 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1953 pgdat->first_deferred_pfn = ULONG_MAX; 1954 1955 /* 1956 * Once we unlock here, the zone cannot be grown anymore, thus if an 1957 * interrupt thread must allocate this early in boot, zone must be 1958 * pre-grown prior to start of deferred page initialization. 1959 */ 1960 pgdat_resize_unlock(pgdat, &flags); 1961 1962 /* Only the highest zone is deferred so find it */ 1963 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1964 zone = pgdat->node_zones + zid; 1965 if (first_init_pfn < zone_end_pfn(zone)) 1966 break; 1967 } 1968 1969 /* If the zone is empty somebody else may have cleared out the zone */ 1970 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1971 first_init_pfn)) 1972 goto zone_empty; 1973 1974 max_threads = deferred_page_init_max_threads(cpumask); 1975 1976 while (spfn < epfn) { 1977 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1978 struct padata_mt_job job = { 1979 .thread_fn = deferred_init_memmap_chunk, 1980 .fn_arg = zone, 1981 .start = spfn, 1982 .size = epfn_align - spfn, 1983 .align = PAGES_PER_SECTION, 1984 .min_chunk = PAGES_PER_SECTION, 1985 .max_threads = max_threads, 1986 }; 1987 1988 padata_do_multithreaded(&job); 1989 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1990 epfn_align); 1991 } 1992 zone_empty: 1993 /* Sanity check that the next zone really is unpopulated */ 1994 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1995 1996 pr_info("node %d deferred pages initialised in %ums\n", 1997 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 1998 1999 pgdat_init_report_one_done(); 2000 return 0; 2001 } 2002 2003 /* 2004 * If this zone has deferred pages, try to grow it by initializing enough 2005 * deferred pages to satisfy the allocation specified by order, rounded up to 2006 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2007 * of SECTION_SIZE bytes by initializing struct pages in increments of 2008 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2009 * 2010 * Return true when zone was grown, otherwise return false. We return true even 2011 * when we grow less than requested, to let the caller decide if there are 2012 * enough pages to satisfy the allocation. 2013 * 2014 * Note: We use noinline because this function is needed only during boot, and 2015 * it is called from a __ref function _deferred_grow_zone. This way we are 2016 * making sure that it is not inlined into permanent text section. 2017 */ 2018 static noinline bool __init 2019 deferred_grow_zone(struct zone *zone, unsigned int order) 2020 { 2021 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2022 pg_data_t *pgdat = zone->zone_pgdat; 2023 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2024 unsigned long spfn, epfn, flags; 2025 unsigned long nr_pages = 0; 2026 u64 i; 2027 2028 /* Only the last zone may have deferred pages */ 2029 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2030 return false; 2031 2032 pgdat_resize_lock(pgdat, &flags); 2033 2034 /* 2035 * If someone grew this zone while we were waiting for spinlock, return 2036 * true, as there might be enough pages already. 2037 */ 2038 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2039 pgdat_resize_unlock(pgdat, &flags); 2040 return true; 2041 } 2042 2043 /* If the zone is empty somebody else may have cleared out the zone */ 2044 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2045 first_deferred_pfn)) { 2046 pgdat->first_deferred_pfn = ULONG_MAX; 2047 pgdat_resize_unlock(pgdat, &flags); 2048 /* Retry only once. */ 2049 return first_deferred_pfn != ULONG_MAX; 2050 } 2051 2052 /* 2053 * Initialize and free pages in MAX_ORDER sized increments so 2054 * that we can avoid introducing any issues with the buddy 2055 * allocator. 2056 */ 2057 while (spfn < epfn) { 2058 /* update our first deferred PFN for this section */ 2059 first_deferred_pfn = spfn; 2060 2061 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2062 touch_nmi_watchdog(); 2063 2064 /* We should only stop along section boundaries */ 2065 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2066 continue; 2067 2068 /* If our quota has been met we can stop here */ 2069 if (nr_pages >= nr_pages_needed) 2070 break; 2071 } 2072 2073 pgdat->first_deferred_pfn = spfn; 2074 pgdat_resize_unlock(pgdat, &flags); 2075 2076 return nr_pages > 0; 2077 } 2078 2079 /* 2080 * deferred_grow_zone() is __init, but it is called from 2081 * get_page_from_freelist() during early boot until deferred_pages permanently 2082 * disables this call. This is why we have refdata wrapper to avoid warning, 2083 * and to ensure that the function body gets unloaded. 2084 */ 2085 static bool __ref 2086 _deferred_grow_zone(struct zone *zone, unsigned int order) 2087 { 2088 return deferred_grow_zone(zone, order); 2089 } 2090 2091 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2092 2093 void __init page_alloc_init_late(void) 2094 { 2095 struct zone *zone; 2096 int nid; 2097 2098 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2099 2100 /* There will be num_node_state(N_MEMORY) threads */ 2101 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2102 for_each_node_state(nid, N_MEMORY) { 2103 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2104 } 2105 2106 /* Block until all are initialised */ 2107 wait_for_completion(&pgdat_init_all_done_comp); 2108 2109 /* 2110 * The number of managed pages has changed due to the initialisation 2111 * so the pcpu batch and high limits needs to be updated or the limits 2112 * will be artificially small. 2113 */ 2114 for_each_populated_zone(zone) 2115 zone_pcp_update(zone); 2116 2117 /* 2118 * We initialized the rest of the deferred pages. Permanently disable 2119 * on-demand struct page initialization. 2120 */ 2121 static_branch_disable(&deferred_pages); 2122 2123 /* Reinit limits that are based on free pages after the kernel is up */ 2124 files_maxfiles_init(); 2125 #endif 2126 2127 buffer_init(); 2128 2129 /* Discard memblock private memory */ 2130 memblock_discard(); 2131 2132 for_each_node_state(nid, N_MEMORY) 2133 shuffle_free_memory(NODE_DATA(nid)); 2134 2135 for_each_populated_zone(zone) 2136 set_zone_contiguous(zone); 2137 } 2138 2139 #ifdef CONFIG_CMA 2140 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2141 void __init init_cma_reserved_pageblock(struct page *page) 2142 { 2143 unsigned i = pageblock_nr_pages; 2144 struct page *p = page; 2145 2146 do { 2147 __ClearPageReserved(p); 2148 set_page_count(p, 0); 2149 } while (++p, --i); 2150 2151 set_pageblock_migratetype(page, MIGRATE_CMA); 2152 2153 if (pageblock_order >= MAX_ORDER) { 2154 i = pageblock_nr_pages; 2155 p = page; 2156 do { 2157 set_page_refcounted(p); 2158 __free_pages(p, MAX_ORDER - 1); 2159 p += MAX_ORDER_NR_PAGES; 2160 } while (i -= MAX_ORDER_NR_PAGES); 2161 } else { 2162 set_page_refcounted(page); 2163 __free_pages(page, pageblock_order); 2164 } 2165 2166 adjust_managed_page_count(page, pageblock_nr_pages); 2167 } 2168 #endif 2169 2170 /* 2171 * The order of subdivision here is critical for the IO subsystem. 2172 * Please do not alter this order without good reasons and regression 2173 * testing. Specifically, as large blocks of memory are subdivided, 2174 * the order in which smaller blocks are delivered depends on the order 2175 * they're subdivided in this function. This is the primary factor 2176 * influencing the order in which pages are delivered to the IO 2177 * subsystem according to empirical testing, and this is also justified 2178 * by considering the behavior of a buddy system containing a single 2179 * large block of memory acted on by a series of small allocations. 2180 * This behavior is a critical factor in sglist merging's success. 2181 * 2182 * -- nyc 2183 */ 2184 static inline void expand(struct zone *zone, struct page *page, 2185 int low, int high, int migratetype) 2186 { 2187 unsigned long size = 1 << high; 2188 2189 while (high > low) { 2190 high--; 2191 size >>= 1; 2192 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2193 2194 /* 2195 * Mark as guard pages (or page), that will allow to 2196 * merge back to allocator when buddy will be freed. 2197 * Corresponding page table entries will not be touched, 2198 * pages will stay not present in virtual address space 2199 */ 2200 if (set_page_guard(zone, &page[size], high, migratetype)) 2201 continue; 2202 2203 add_to_free_list(&page[size], zone, high, migratetype); 2204 set_buddy_order(&page[size], high); 2205 } 2206 } 2207 2208 static void check_new_page_bad(struct page *page) 2209 { 2210 if (unlikely(page->flags & __PG_HWPOISON)) { 2211 /* Don't complain about hwpoisoned pages */ 2212 page_mapcount_reset(page); /* remove PageBuddy */ 2213 return; 2214 } 2215 2216 bad_page(page, 2217 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2218 } 2219 2220 /* 2221 * This page is about to be returned from the page allocator 2222 */ 2223 static inline int check_new_page(struct page *page) 2224 { 2225 if (likely(page_expected_state(page, 2226 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2227 return 0; 2228 2229 check_new_page_bad(page); 2230 return 1; 2231 } 2232 2233 #ifdef CONFIG_DEBUG_VM 2234 /* 2235 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2236 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2237 * also checked when pcp lists are refilled from the free lists. 2238 */ 2239 static inline bool check_pcp_refill(struct page *page) 2240 { 2241 if (debug_pagealloc_enabled_static()) 2242 return check_new_page(page); 2243 else 2244 return false; 2245 } 2246 2247 static inline bool check_new_pcp(struct page *page) 2248 { 2249 return check_new_page(page); 2250 } 2251 #else 2252 /* 2253 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2254 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2255 * enabled, they are also checked when being allocated from the pcp lists. 2256 */ 2257 static inline bool check_pcp_refill(struct page *page) 2258 { 2259 return check_new_page(page); 2260 } 2261 static inline bool check_new_pcp(struct page *page) 2262 { 2263 if (debug_pagealloc_enabled_static()) 2264 return check_new_page(page); 2265 else 2266 return false; 2267 } 2268 #endif /* CONFIG_DEBUG_VM */ 2269 2270 static bool check_new_pages(struct page *page, unsigned int order) 2271 { 2272 int i; 2273 for (i = 0; i < (1 << order); i++) { 2274 struct page *p = page + i; 2275 2276 if (unlikely(check_new_page(p))) 2277 return true; 2278 } 2279 2280 return false; 2281 } 2282 2283 inline void post_alloc_hook(struct page *page, unsigned int order, 2284 gfp_t gfp_flags) 2285 { 2286 set_page_private(page, 0); 2287 set_page_refcounted(page); 2288 2289 arch_alloc_page(page, order); 2290 debug_pagealloc_map_pages(page, 1 << order); 2291 kasan_alloc_pages(page, order); 2292 kernel_unpoison_pages(page, 1 << order); 2293 set_page_owner(page, order, gfp_flags); 2294 2295 if (!want_init_on_free() && want_init_on_alloc(gfp_flags)) 2296 kernel_init_free_pages(page, 1 << order); 2297 } 2298 2299 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2300 unsigned int alloc_flags) 2301 { 2302 post_alloc_hook(page, order, gfp_flags); 2303 2304 if (order && (gfp_flags & __GFP_COMP)) 2305 prep_compound_page(page, order); 2306 2307 /* 2308 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2309 * allocate the page. The expectation is that the caller is taking 2310 * steps that will free more memory. The caller should avoid the page 2311 * being used for !PFMEMALLOC purposes. 2312 */ 2313 if (alloc_flags & ALLOC_NO_WATERMARKS) 2314 set_page_pfmemalloc(page); 2315 else 2316 clear_page_pfmemalloc(page); 2317 } 2318 2319 /* 2320 * Go through the free lists for the given migratetype and remove 2321 * the smallest available page from the freelists 2322 */ 2323 static __always_inline 2324 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2325 int migratetype) 2326 { 2327 unsigned int current_order; 2328 struct free_area *area; 2329 struct page *page; 2330 2331 /* Find a page of the appropriate size in the preferred list */ 2332 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2333 area = &(zone->free_area[current_order]); 2334 page = get_page_from_free_area(area, migratetype); 2335 if (!page) 2336 continue; 2337 del_page_from_free_list(page, zone, current_order); 2338 expand(zone, page, order, current_order, migratetype); 2339 set_pcppage_migratetype(page, migratetype); 2340 return page; 2341 } 2342 2343 return NULL; 2344 } 2345 2346 2347 /* 2348 * This array describes the order lists are fallen back to when 2349 * the free lists for the desirable migrate type are depleted 2350 */ 2351 static int fallbacks[MIGRATE_TYPES][3] = { 2352 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2353 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2354 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2355 #ifdef CONFIG_CMA 2356 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2357 #endif 2358 #ifdef CONFIG_MEMORY_ISOLATION 2359 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2360 #endif 2361 }; 2362 2363 #ifdef CONFIG_CMA 2364 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2365 unsigned int order) 2366 { 2367 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2368 } 2369 #else 2370 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2371 unsigned int order) { return NULL; } 2372 #endif 2373 2374 /* 2375 * Move the free pages in a range to the freelist tail of the requested type. 2376 * Note that start_page and end_pages are not aligned on a pageblock 2377 * boundary. If alignment is required, use move_freepages_block() 2378 */ 2379 static int move_freepages(struct zone *zone, 2380 struct page *start_page, struct page *end_page, 2381 int migratetype, int *num_movable) 2382 { 2383 struct page *page; 2384 unsigned int order; 2385 int pages_moved = 0; 2386 2387 for (page = start_page; page <= end_page;) { 2388 if (!pfn_valid_within(page_to_pfn(page))) { 2389 page++; 2390 continue; 2391 } 2392 2393 if (!PageBuddy(page)) { 2394 /* 2395 * We assume that pages that could be isolated for 2396 * migration are movable. But we don't actually try 2397 * isolating, as that would be expensive. 2398 */ 2399 if (num_movable && 2400 (PageLRU(page) || __PageMovable(page))) 2401 (*num_movable)++; 2402 2403 page++; 2404 continue; 2405 } 2406 2407 /* Make sure we are not inadvertently changing nodes */ 2408 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2409 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2410 2411 order = buddy_order(page); 2412 move_to_free_list(page, zone, order, migratetype); 2413 page += 1 << order; 2414 pages_moved += 1 << order; 2415 } 2416 2417 return pages_moved; 2418 } 2419 2420 int move_freepages_block(struct zone *zone, struct page *page, 2421 int migratetype, int *num_movable) 2422 { 2423 unsigned long start_pfn, end_pfn; 2424 struct page *start_page, *end_page; 2425 2426 if (num_movable) 2427 *num_movable = 0; 2428 2429 start_pfn = page_to_pfn(page); 2430 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2431 start_page = pfn_to_page(start_pfn); 2432 end_page = start_page + pageblock_nr_pages - 1; 2433 end_pfn = start_pfn + pageblock_nr_pages - 1; 2434 2435 /* Do not cross zone boundaries */ 2436 if (!zone_spans_pfn(zone, start_pfn)) 2437 start_page = page; 2438 if (!zone_spans_pfn(zone, end_pfn)) 2439 return 0; 2440 2441 return move_freepages(zone, start_page, end_page, migratetype, 2442 num_movable); 2443 } 2444 2445 static void change_pageblock_range(struct page *pageblock_page, 2446 int start_order, int migratetype) 2447 { 2448 int nr_pageblocks = 1 << (start_order - pageblock_order); 2449 2450 while (nr_pageblocks--) { 2451 set_pageblock_migratetype(pageblock_page, migratetype); 2452 pageblock_page += pageblock_nr_pages; 2453 } 2454 } 2455 2456 /* 2457 * When we are falling back to another migratetype during allocation, try to 2458 * steal extra free pages from the same pageblocks to satisfy further 2459 * allocations, instead of polluting multiple pageblocks. 2460 * 2461 * If we are stealing a relatively large buddy page, it is likely there will 2462 * be more free pages in the pageblock, so try to steal them all. For 2463 * reclaimable and unmovable allocations, we steal regardless of page size, 2464 * as fragmentation caused by those allocations polluting movable pageblocks 2465 * is worse than movable allocations stealing from unmovable and reclaimable 2466 * pageblocks. 2467 */ 2468 static bool can_steal_fallback(unsigned int order, int start_mt) 2469 { 2470 /* 2471 * Leaving this order check is intended, although there is 2472 * relaxed order check in next check. The reason is that 2473 * we can actually steal whole pageblock if this condition met, 2474 * but, below check doesn't guarantee it and that is just heuristic 2475 * so could be changed anytime. 2476 */ 2477 if (order >= pageblock_order) 2478 return true; 2479 2480 if (order >= pageblock_order / 2 || 2481 start_mt == MIGRATE_RECLAIMABLE || 2482 start_mt == MIGRATE_UNMOVABLE || 2483 page_group_by_mobility_disabled) 2484 return true; 2485 2486 return false; 2487 } 2488 2489 static inline bool boost_watermark(struct zone *zone) 2490 { 2491 unsigned long max_boost; 2492 2493 if (!watermark_boost_factor) 2494 return false; 2495 /* 2496 * Don't bother in zones that are unlikely to produce results. 2497 * On small machines, including kdump capture kernels running 2498 * in a small area, boosting the watermark can cause an out of 2499 * memory situation immediately. 2500 */ 2501 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2502 return false; 2503 2504 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2505 watermark_boost_factor, 10000); 2506 2507 /* 2508 * high watermark may be uninitialised if fragmentation occurs 2509 * very early in boot so do not boost. We do not fall 2510 * through and boost by pageblock_nr_pages as failing 2511 * allocations that early means that reclaim is not going 2512 * to help and it may even be impossible to reclaim the 2513 * boosted watermark resulting in a hang. 2514 */ 2515 if (!max_boost) 2516 return false; 2517 2518 max_boost = max(pageblock_nr_pages, max_boost); 2519 2520 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2521 max_boost); 2522 2523 return true; 2524 } 2525 2526 /* 2527 * This function implements actual steal behaviour. If order is large enough, 2528 * we can steal whole pageblock. If not, we first move freepages in this 2529 * pageblock to our migratetype and determine how many already-allocated pages 2530 * are there in the pageblock with a compatible migratetype. If at least half 2531 * of pages are free or compatible, we can change migratetype of the pageblock 2532 * itself, so pages freed in the future will be put on the correct free list. 2533 */ 2534 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2535 unsigned int alloc_flags, int start_type, bool whole_block) 2536 { 2537 unsigned int current_order = buddy_order(page); 2538 int free_pages, movable_pages, alike_pages; 2539 int old_block_type; 2540 2541 old_block_type = get_pageblock_migratetype(page); 2542 2543 /* 2544 * This can happen due to races and we want to prevent broken 2545 * highatomic accounting. 2546 */ 2547 if (is_migrate_highatomic(old_block_type)) 2548 goto single_page; 2549 2550 /* Take ownership for orders >= pageblock_order */ 2551 if (current_order >= pageblock_order) { 2552 change_pageblock_range(page, current_order, start_type); 2553 goto single_page; 2554 } 2555 2556 /* 2557 * Boost watermarks to increase reclaim pressure to reduce the 2558 * likelihood of future fallbacks. Wake kswapd now as the node 2559 * may be balanced overall and kswapd will not wake naturally. 2560 */ 2561 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2562 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2563 2564 /* We are not allowed to try stealing from the whole block */ 2565 if (!whole_block) 2566 goto single_page; 2567 2568 free_pages = move_freepages_block(zone, page, start_type, 2569 &movable_pages); 2570 /* 2571 * Determine how many pages are compatible with our allocation. 2572 * For movable allocation, it's the number of movable pages which 2573 * we just obtained. For other types it's a bit more tricky. 2574 */ 2575 if (start_type == MIGRATE_MOVABLE) { 2576 alike_pages = movable_pages; 2577 } else { 2578 /* 2579 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2580 * to MOVABLE pageblock, consider all non-movable pages as 2581 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2582 * vice versa, be conservative since we can't distinguish the 2583 * exact migratetype of non-movable pages. 2584 */ 2585 if (old_block_type == MIGRATE_MOVABLE) 2586 alike_pages = pageblock_nr_pages 2587 - (free_pages + movable_pages); 2588 else 2589 alike_pages = 0; 2590 } 2591 2592 /* moving whole block can fail due to zone boundary conditions */ 2593 if (!free_pages) 2594 goto single_page; 2595 2596 /* 2597 * If a sufficient number of pages in the block are either free or of 2598 * comparable migratability as our allocation, claim the whole block. 2599 */ 2600 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2601 page_group_by_mobility_disabled) 2602 set_pageblock_migratetype(page, start_type); 2603 2604 return; 2605 2606 single_page: 2607 move_to_free_list(page, zone, current_order, start_type); 2608 } 2609 2610 /* 2611 * Check whether there is a suitable fallback freepage with requested order. 2612 * If only_stealable is true, this function returns fallback_mt only if 2613 * we can steal other freepages all together. This would help to reduce 2614 * fragmentation due to mixed migratetype pages in one pageblock. 2615 */ 2616 int find_suitable_fallback(struct free_area *area, unsigned int order, 2617 int migratetype, bool only_stealable, bool *can_steal) 2618 { 2619 int i; 2620 int fallback_mt; 2621 2622 if (area->nr_free == 0) 2623 return -1; 2624 2625 *can_steal = false; 2626 for (i = 0;; i++) { 2627 fallback_mt = fallbacks[migratetype][i]; 2628 if (fallback_mt == MIGRATE_TYPES) 2629 break; 2630 2631 if (free_area_empty(area, fallback_mt)) 2632 continue; 2633 2634 if (can_steal_fallback(order, migratetype)) 2635 *can_steal = true; 2636 2637 if (!only_stealable) 2638 return fallback_mt; 2639 2640 if (*can_steal) 2641 return fallback_mt; 2642 } 2643 2644 return -1; 2645 } 2646 2647 /* 2648 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2649 * there are no empty page blocks that contain a page with a suitable order 2650 */ 2651 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2652 unsigned int alloc_order) 2653 { 2654 int mt; 2655 unsigned long max_managed, flags; 2656 2657 /* 2658 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2659 * Check is race-prone but harmless. 2660 */ 2661 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2662 if (zone->nr_reserved_highatomic >= max_managed) 2663 return; 2664 2665 spin_lock_irqsave(&zone->lock, flags); 2666 2667 /* Recheck the nr_reserved_highatomic limit under the lock */ 2668 if (zone->nr_reserved_highatomic >= max_managed) 2669 goto out_unlock; 2670 2671 /* Yoink! */ 2672 mt = get_pageblock_migratetype(page); 2673 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2674 && !is_migrate_cma(mt)) { 2675 zone->nr_reserved_highatomic += pageblock_nr_pages; 2676 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2677 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2678 } 2679 2680 out_unlock: 2681 spin_unlock_irqrestore(&zone->lock, flags); 2682 } 2683 2684 /* 2685 * Used when an allocation is about to fail under memory pressure. This 2686 * potentially hurts the reliability of high-order allocations when under 2687 * intense memory pressure but failed atomic allocations should be easier 2688 * to recover from than an OOM. 2689 * 2690 * If @force is true, try to unreserve a pageblock even though highatomic 2691 * pageblock is exhausted. 2692 */ 2693 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2694 bool force) 2695 { 2696 struct zonelist *zonelist = ac->zonelist; 2697 unsigned long flags; 2698 struct zoneref *z; 2699 struct zone *zone; 2700 struct page *page; 2701 int order; 2702 bool ret; 2703 2704 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2705 ac->nodemask) { 2706 /* 2707 * Preserve at least one pageblock unless memory pressure 2708 * is really high. 2709 */ 2710 if (!force && zone->nr_reserved_highatomic <= 2711 pageblock_nr_pages) 2712 continue; 2713 2714 spin_lock_irqsave(&zone->lock, flags); 2715 for (order = 0; order < MAX_ORDER; order++) { 2716 struct free_area *area = &(zone->free_area[order]); 2717 2718 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2719 if (!page) 2720 continue; 2721 2722 /* 2723 * In page freeing path, migratetype change is racy so 2724 * we can counter several free pages in a pageblock 2725 * in this loop althoug we changed the pageblock type 2726 * from highatomic to ac->migratetype. So we should 2727 * adjust the count once. 2728 */ 2729 if (is_migrate_highatomic_page(page)) { 2730 /* 2731 * It should never happen but changes to 2732 * locking could inadvertently allow a per-cpu 2733 * drain to add pages to MIGRATE_HIGHATOMIC 2734 * while unreserving so be safe and watch for 2735 * underflows. 2736 */ 2737 zone->nr_reserved_highatomic -= min( 2738 pageblock_nr_pages, 2739 zone->nr_reserved_highatomic); 2740 } 2741 2742 /* 2743 * Convert to ac->migratetype and avoid the normal 2744 * pageblock stealing heuristics. Minimally, the caller 2745 * is doing the work and needs the pages. More 2746 * importantly, if the block was always converted to 2747 * MIGRATE_UNMOVABLE or another type then the number 2748 * of pageblocks that cannot be completely freed 2749 * may increase. 2750 */ 2751 set_pageblock_migratetype(page, ac->migratetype); 2752 ret = move_freepages_block(zone, page, ac->migratetype, 2753 NULL); 2754 if (ret) { 2755 spin_unlock_irqrestore(&zone->lock, flags); 2756 return ret; 2757 } 2758 } 2759 spin_unlock_irqrestore(&zone->lock, flags); 2760 } 2761 2762 return false; 2763 } 2764 2765 /* 2766 * Try finding a free buddy page on the fallback list and put it on the free 2767 * list of requested migratetype, possibly along with other pages from the same 2768 * block, depending on fragmentation avoidance heuristics. Returns true if 2769 * fallback was found so that __rmqueue_smallest() can grab it. 2770 * 2771 * The use of signed ints for order and current_order is a deliberate 2772 * deviation from the rest of this file, to make the for loop 2773 * condition simpler. 2774 */ 2775 static __always_inline bool 2776 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2777 unsigned int alloc_flags) 2778 { 2779 struct free_area *area; 2780 int current_order; 2781 int min_order = order; 2782 struct page *page; 2783 int fallback_mt; 2784 bool can_steal; 2785 2786 /* 2787 * Do not steal pages from freelists belonging to other pageblocks 2788 * i.e. orders < pageblock_order. If there are no local zones free, 2789 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2790 */ 2791 if (alloc_flags & ALLOC_NOFRAGMENT) 2792 min_order = pageblock_order; 2793 2794 /* 2795 * Find the largest available free page in the other list. This roughly 2796 * approximates finding the pageblock with the most free pages, which 2797 * would be too costly to do exactly. 2798 */ 2799 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2800 --current_order) { 2801 area = &(zone->free_area[current_order]); 2802 fallback_mt = find_suitable_fallback(area, current_order, 2803 start_migratetype, false, &can_steal); 2804 if (fallback_mt == -1) 2805 continue; 2806 2807 /* 2808 * We cannot steal all free pages from the pageblock and the 2809 * requested migratetype is movable. In that case it's better to 2810 * steal and split the smallest available page instead of the 2811 * largest available page, because even if the next movable 2812 * allocation falls back into a different pageblock than this 2813 * one, it won't cause permanent fragmentation. 2814 */ 2815 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2816 && current_order > order) 2817 goto find_smallest; 2818 2819 goto do_steal; 2820 } 2821 2822 return false; 2823 2824 find_smallest: 2825 for (current_order = order; current_order < MAX_ORDER; 2826 current_order++) { 2827 area = &(zone->free_area[current_order]); 2828 fallback_mt = find_suitable_fallback(area, current_order, 2829 start_migratetype, false, &can_steal); 2830 if (fallback_mt != -1) 2831 break; 2832 } 2833 2834 /* 2835 * This should not happen - we already found a suitable fallback 2836 * when looking for the largest page. 2837 */ 2838 VM_BUG_ON(current_order == MAX_ORDER); 2839 2840 do_steal: 2841 page = get_page_from_free_area(area, fallback_mt); 2842 2843 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2844 can_steal); 2845 2846 trace_mm_page_alloc_extfrag(page, order, current_order, 2847 start_migratetype, fallback_mt); 2848 2849 return true; 2850 2851 } 2852 2853 /* 2854 * Do the hard work of removing an element from the buddy allocator. 2855 * Call me with the zone->lock already held. 2856 */ 2857 static __always_inline struct page * 2858 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2859 unsigned int alloc_flags) 2860 { 2861 struct page *page; 2862 2863 #ifdef CONFIG_CMA 2864 /* 2865 * Balance movable allocations between regular and CMA areas by 2866 * allocating from CMA when over half of the zone's free memory 2867 * is in the CMA area. 2868 */ 2869 if (alloc_flags & ALLOC_CMA && 2870 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2871 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2872 page = __rmqueue_cma_fallback(zone, order); 2873 if (page) 2874 return page; 2875 } 2876 #endif 2877 retry: 2878 page = __rmqueue_smallest(zone, order, migratetype); 2879 if (unlikely(!page)) { 2880 if (alloc_flags & ALLOC_CMA) 2881 page = __rmqueue_cma_fallback(zone, order); 2882 2883 if (!page && __rmqueue_fallback(zone, order, migratetype, 2884 alloc_flags)) 2885 goto retry; 2886 } 2887 2888 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2889 return page; 2890 } 2891 2892 /* 2893 * Obtain a specified number of elements from the buddy allocator, all under 2894 * a single hold of the lock, for efficiency. Add them to the supplied list. 2895 * Returns the number of new pages which were placed at *list. 2896 */ 2897 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2898 unsigned long count, struct list_head *list, 2899 int migratetype, unsigned int alloc_flags) 2900 { 2901 int i, alloced = 0; 2902 2903 spin_lock(&zone->lock); 2904 for (i = 0; i < count; ++i) { 2905 struct page *page = __rmqueue(zone, order, migratetype, 2906 alloc_flags); 2907 if (unlikely(page == NULL)) 2908 break; 2909 2910 if (unlikely(check_pcp_refill(page))) 2911 continue; 2912 2913 /* 2914 * Split buddy pages returned by expand() are received here in 2915 * physical page order. The page is added to the tail of 2916 * caller's list. From the callers perspective, the linked list 2917 * is ordered by page number under some conditions. This is 2918 * useful for IO devices that can forward direction from the 2919 * head, thus also in the physical page order. This is useful 2920 * for IO devices that can merge IO requests if the physical 2921 * pages are ordered properly. 2922 */ 2923 list_add_tail(&page->lru, list); 2924 alloced++; 2925 if (is_migrate_cma(get_pcppage_migratetype(page))) 2926 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2927 -(1 << order)); 2928 } 2929 2930 /* 2931 * i pages were removed from the buddy list even if some leak due 2932 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2933 * on i. Do not confuse with 'alloced' which is the number of 2934 * pages added to the pcp list. 2935 */ 2936 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2937 spin_unlock(&zone->lock); 2938 return alloced; 2939 } 2940 2941 #ifdef CONFIG_NUMA 2942 /* 2943 * Called from the vmstat counter updater to drain pagesets of this 2944 * currently executing processor on remote nodes after they have 2945 * expired. 2946 * 2947 * Note that this function must be called with the thread pinned to 2948 * a single processor. 2949 */ 2950 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2951 { 2952 unsigned long flags; 2953 int to_drain, batch; 2954 2955 local_irq_save(flags); 2956 batch = READ_ONCE(pcp->batch); 2957 to_drain = min(pcp->count, batch); 2958 if (to_drain > 0) 2959 free_pcppages_bulk(zone, to_drain, pcp); 2960 local_irq_restore(flags); 2961 } 2962 #endif 2963 2964 /* 2965 * Drain pcplists of the indicated processor and zone. 2966 * 2967 * The processor must either be the current processor and the 2968 * thread pinned to the current processor or a processor that 2969 * is not online. 2970 */ 2971 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2972 { 2973 unsigned long flags; 2974 struct per_cpu_pageset *pset; 2975 struct per_cpu_pages *pcp; 2976 2977 local_irq_save(flags); 2978 pset = per_cpu_ptr(zone->pageset, cpu); 2979 2980 pcp = &pset->pcp; 2981 if (pcp->count) 2982 free_pcppages_bulk(zone, pcp->count, pcp); 2983 local_irq_restore(flags); 2984 } 2985 2986 /* 2987 * Drain pcplists of all zones on the indicated processor. 2988 * 2989 * The processor must either be the current processor and the 2990 * thread pinned to the current processor or a processor that 2991 * is not online. 2992 */ 2993 static void drain_pages(unsigned int cpu) 2994 { 2995 struct zone *zone; 2996 2997 for_each_populated_zone(zone) { 2998 drain_pages_zone(cpu, zone); 2999 } 3000 } 3001 3002 /* 3003 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3004 * 3005 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3006 * the single zone's pages. 3007 */ 3008 void drain_local_pages(struct zone *zone) 3009 { 3010 int cpu = smp_processor_id(); 3011 3012 if (zone) 3013 drain_pages_zone(cpu, zone); 3014 else 3015 drain_pages(cpu); 3016 } 3017 3018 static void drain_local_pages_wq(struct work_struct *work) 3019 { 3020 struct pcpu_drain *drain; 3021 3022 drain = container_of(work, struct pcpu_drain, work); 3023 3024 /* 3025 * drain_all_pages doesn't use proper cpu hotplug protection so 3026 * we can race with cpu offline when the WQ can move this from 3027 * a cpu pinned worker to an unbound one. We can operate on a different 3028 * cpu which is allright but we also have to make sure to not move to 3029 * a different one. 3030 */ 3031 preempt_disable(); 3032 drain_local_pages(drain->zone); 3033 preempt_enable(); 3034 } 3035 3036 /* 3037 * The implementation of drain_all_pages(), exposing an extra parameter to 3038 * drain on all cpus. 3039 * 3040 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3041 * not empty. The check for non-emptiness can however race with a free to 3042 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3043 * that need the guarantee that every CPU has drained can disable the 3044 * optimizing racy check. 3045 */ 3046 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3047 { 3048 int cpu; 3049 3050 /* 3051 * Allocate in the BSS so we wont require allocation in 3052 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3053 */ 3054 static cpumask_t cpus_with_pcps; 3055 3056 /* 3057 * Make sure nobody triggers this path before mm_percpu_wq is fully 3058 * initialized. 3059 */ 3060 if (WARN_ON_ONCE(!mm_percpu_wq)) 3061 return; 3062 3063 /* 3064 * Do not drain if one is already in progress unless it's specific to 3065 * a zone. Such callers are primarily CMA and memory hotplug and need 3066 * the drain to be complete when the call returns. 3067 */ 3068 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3069 if (!zone) 3070 return; 3071 mutex_lock(&pcpu_drain_mutex); 3072 } 3073 3074 /* 3075 * We don't care about racing with CPU hotplug event 3076 * as offline notification will cause the notified 3077 * cpu to drain that CPU pcps and on_each_cpu_mask 3078 * disables preemption as part of its processing 3079 */ 3080 for_each_online_cpu(cpu) { 3081 struct per_cpu_pageset *pcp; 3082 struct zone *z; 3083 bool has_pcps = false; 3084 3085 if (force_all_cpus) { 3086 /* 3087 * The pcp.count check is racy, some callers need a 3088 * guarantee that no cpu is missed. 3089 */ 3090 has_pcps = true; 3091 } else if (zone) { 3092 pcp = per_cpu_ptr(zone->pageset, cpu); 3093 if (pcp->pcp.count) 3094 has_pcps = true; 3095 } else { 3096 for_each_populated_zone(z) { 3097 pcp = per_cpu_ptr(z->pageset, cpu); 3098 if (pcp->pcp.count) { 3099 has_pcps = true; 3100 break; 3101 } 3102 } 3103 } 3104 3105 if (has_pcps) 3106 cpumask_set_cpu(cpu, &cpus_with_pcps); 3107 else 3108 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3109 } 3110 3111 for_each_cpu(cpu, &cpus_with_pcps) { 3112 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3113 3114 drain->zone = zone; 3115 INIT_WORK(&drain->work, drain_local_pages_wq); 3116 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3117 } 3118 for_each_cpu(cpu, &cpus_with_pcps) 3119 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3120 3121 mutex_unlock(&pcpu_drain_mutex); 3122 } 3123 3124 /* 3125 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3126 * 3127 * When zone parameter is non-NULL, spill just the single zone's pages. 3128 * 3129 * Note that this can be extremely slow as the draining happens in a workqueue. 3130 */ 3131 void drain_all_pages(struct zone *zone) 3132 { 3133 __drain_all_pages(zone, false); 3134 } 3135 3136 #ifdef CONFIG_HIBERNATION 3137 3138 /* 3139 * Touch the watchdog for every WD_PAGE_COUNT pages. 3140 */ 3141 #define WD_PAGE_COUNT (128*1024) 3142 3143 void mark_free_pages(struct zone *zone) 3144 { 3145 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3146 unsigned long flags; 3147 unsigned int order, t; 3148 struct page *page; 3149 3150 if (zone_is_empty(zone)) 3151 return; 3152 3153 spin_lock_irqsave(&zone->lock, flags); 3154 3155 max_zone_pfn = zone_end_pfn(zone); 3156 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3157 if (pfn_valid(pfn)) { 3158 page = pfn_to_page(pfn); 3159 3160 if (!--page_count) { 3161 touch_nmi_watchdog(); 3162 page_count = WD_PAGE_COUNT; 3163 } 3164 3165 if (page_zone(page) != zone) 3166 continue; 3167 3168 if (!swsusp_page_is_forbidden(page)) 3169 swsusp_unset_page_free(page); 3170 } 3171 3172 for_each_migratetype_order(order, t) { 3173 list_for_each_entry(page, 3174 &zone->free_area[order].free_list[t], lru) { 3175 unsigned long i; 3176 3177 pfn = page_to_pfn(page); 3178 for (i = 0; i < (1UL << order); i++) { 3179 if (!--page_count) { 3180 touch_nmi_watchdog(); 3181 page_count = WD_PAGE_COUNT; 3182 } 3183 swsusp_set_page_free(pfn_to_page(pfn + i)); 3184 } 3185 } 3186 } 3187 spin_unlock_irqrestore(&zone->lock, flags); 3188 } 3189 #endif /* CONFIG_PM */ 3190 3191 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3192 { 3193 int migratetype; 3194 3195 if (!free_pcp_prepare(page)) 3196 return false; 3197 3198 migratetype = get_pfnblock_migratetype(page, pfn); 3199 set_pcppage_migratetype(page, migratetype); 3200 return true; 3201 } 3202 3203 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3204 { 3205 struct zone *zone = page_zone(page); 3206 struct per_cpu_pages *pcp; 3207 int migratetype; 3208 3209 migratetype = get_pcppage_migratetype(page); 3210 __count_vm_event(PGFREE); 3211 3212 /* 3213 * We only track unmovable, reclaimable and movable on pcp lists. 3214 * Free ISOLATE pages back to the allocator because they are being 3215 * offlined but treat HIGHATOMIC as movable pages so we can get those 3216 * areas back if necessary. Otherwise, we may have to free 3217 * excessively into the page allocator 3218 */ 3219 if (migratetype >= MIGRATE_PCPTYPES) { 3220 if (unlikely(is_migrate_isolate(migratetype))) { 3221 free_one_page(zone, page, pfn, 0, migratetype, 3222 FPI_NONE); 3223 return; 3224 } 3225 migratetype = MIGRATE_MOVABLE; 3226 } 3227 3228 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3229 list_add(&page->lru, &pcp->lists[migratetype]); 3230 pcp->count++; 3231 if (pcp->count >= READ_ONCE(pcp->high)) 3232 free_pcppages_bulk(zone, READ_ONCE(pcp->batch), pcp); 3233 } 3234 3235 /* 3236 * Free a 0-order page 3237 */ 3238 void free_unref_page(struct page *page) 3239 { 3240 unsigned long flags; 3241 unsigned long pfn = page_to_pfn(page); 3242 3243 if (!free_unref_page_prepare(page, pfn)) 3244 return; 3245 3246 local_irq_save(flags); 3247 free_unref_page_commit(page, pfn); 3248 local_irq_restore(flags); 3249 } 3250 3251 /* 3252 * Free a list of 0-order pages 3253 */ 3254 void free_unref_page_list(struct list_head *list) 3255 { 3256 struct page *page, *next; 3257 unsigned long flags, pfn; 3258 int batch_count = 0; 3259 3260 /* Prepare pages for freeing */ 3261 list_for_each_entry_safe(page, next, list, lru) { 3262 pfn = page_to_pfn(page); 3263 if (!free_unref_page_prepare(page, pfn)) 3264 list_del(&page->lru); 3265 set_page_private(page, pfn); 3266 } 3267 3268 local_irq_save(flags); 3269 list_for_each_entry_safe(page, next, list, lru) { 3270 unsigned long pfn = page_private(page); 3271 3272 set_page_private(page, 0); 3273 trace_mm_page_free_batched(page); 3274 free_unref_page_commit(page, pfn); 3275 3276 /* 3277 * Guard against excessive IRQ disabled times when we get 3278 * a large list of pages to free. 3279 */ 3280 if (++batch_count == SWAP_CLUSTER_MAX) { 3281 local_irq_restore(flags); 3282 batch_count = 0; 3283 local_irq_save(flags); 3284 } 3285 } 3286 local_irq_restore(flags); 3287 } 3288 3289 /* 3290 * split_page takes a non-compound higher-order page, and splits it into 3291 * n (1<<order) sub-pages: page[0..n] 3292 * Each sub-page must be freed individually. 3293 * 3294 * Note: this is probably too low level an operation for use in drivers. 3295 * Please consult with lkml before using this in your driver. 3296 */ 3297 void split_page(struct page *page, unsigned int order) 3298 { 3299 int i; 3300 3301 VM_BUG_ON_PAGE(PageCompound(page), page); 3302 VM_BUG_ON_PAGE(!page_count(page), page); 3303 3304 for (i = 1; i < (1 << order); i++) 3305 set_page_refcounted(page + i); 3306 split_page_owner(page, 1 << order); 3307 } 3308 EXPORT_SYMBOL_GPL(split_page); 3309 3310 int __isolate_free_page(struct page *page, unsigned int order) 3311 { 3312 unsigned long watermark; 3313 struct zone *zone; 3314 int mt; 3315 3316 BUG_ON(!PageBuddy(page)); 3317 3318 zone = page_zone(page); 3319 mt = get_pageblock_migratetype(page); 3320 3321 if (!is_migrate_isolate(mt)) { 3322 /* 3323 * Obey watermarks as if the page was being allocated. We can 3324 * emulate a high-order watermark check with a raised order-0 3325 * watermark, because we already know our high-order page 3326 * exists. 3327 */ 3328 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3329 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3330 return 0; 3331 3332 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3333 } 3334 3335 /* Remove page from free list */ 3336 3337 del_page_from_free_list(page, zone, order); 3338 3339 /* 3340 * Set the pageblock if the isolated page is at least half of a 3341 * pageblock 3342 */ 3343 if (order >= pageblock_order - 1) { 3344 struct page *endpage = page + (1 << order) - 1; 3345 for (; page < endpage; page += pageblock_nr_pages) { 3346 int mt = get_pageblock_migratetype(page); 3347 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3348 && !is_migrate_highatomic(mt)) 3349 set_pageblock_migratetype(page, 3350 MIGRATE_MOVABLE); 3351 } 3352 } 3353 3354 3355 return 1UL << order; 3356 } 3357 3358 /** 3359 * __putback_isolated_page - Return a now-isolated page back where we got it 3360 * @page: Page that was isolated 3361 * @order: Order of the isolated page 3362 * @mt: The page's pageblock's migratetype 3363 * 3364 * This function is meant to return a page pulled from the free lists via 3365 * __isolate_free_page back to the free lists they were pulled from. 3366 */ 3367 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3368 { 3369 struct zone *zone = page_zone(page); 3370 3371 /* zone lock should be held when this function is called */ 3372 lockdep_assert_held(&zone->lock); 3373 3374 /* Return isolated page to tail of freelist. */ 3375 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3376 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3377 } 3378 3379 /* 3380 * Update NUMA hit/miss statistics 3381 * 3382 * Must be called with interrupts disabled. 3383 */ 3384 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3385 { 3386 #ifdef CONFIG_NUMA 3387 enum numa_stat_item local_stat = NUMA_LOCAL; 3388 3389 /* skip numa counters update if numa stats is disabled */ 3390 if (!static_branch_likely(&vm_numa_stat_key)) 3391 return; 3392 3393 if (zone_to_nid(z) != numa_node_id()) 3394 local_stat = NUMA_OTHER; 3395 3396 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3397 __inc_numa_state(z, NUMA_HIT); 3398 else { 3399 __inc_numa_state(z, NUMA_MISS); 3400 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3401 } 3402 __inc_numa_state(z, local_stat); 3403 #endif 3404 } 3405 3406 /* Remove page from the per-cpu list, caller must protect the list */ 3407 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3408 unsigned int alloc_flags, 3409 struct per_cpu_pages *pcp, 3410 struct list_head *list) 3411 { 3412 struct page *page; 3413 3414 do { 3415 if (list_empty(list)) { 3416 pcp->count += rmqueue_bulk(zone, 0, 3417 READ_ONCE(pcp->batch), list, 3418 migratetype, alloc_flags); 3419 if (unlikely(list_empty(list))) 3420 return NULL; 3421 } 3422 3423 page = list_first_entry(list, struct page, lru); 3424 list_del(&page->lru); 3425 pcp->count--; 3426 } while (check_new_pcp(page)); 3427 3428 return page; 3429 } 3430 3431 /* Lock and remove page from the per-cpu list */ 3432 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3433 struct zone *zone, gfp_t gfp_flags, 3434 int migratetype, unsigned int alloc_flags) 3435 { 3436 struct per_cpu_pages *pcp; 3437 struct list_head *list; 3438 struct page *page; 3439 unsigned long flags; 3440 3441 local_irq_save(flags); 3442 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3443 list = &pcp->lists[migratetype]; 3444 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3445 if (page) { 3446 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3447 zone_statistics(preferred_zone, zone); 3448 } 3449 local_irq_restore(flags); 3450 return page; 3451 } 3452 3453 /* 3454 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3455 */ 3456 static inline 3457 struct page *rmqueue(struct zone *preferred_zone, 3458 struct zone *zone, unsigned int order, 3459 gfp_t gfp_flags, unsigned int alloc_flags, 3460 int migratetype) 3461 { 3462 unsigned long flags; 3463 struct page *page; 3464 3465 if (likely(order == 0)) { 3466 /* 3467 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3468 * we need to skip it when CMA area isn't allowed. 3469 */ 3470 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3471 migratetype != MIGRATE_MOVABLE) { 3472 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3473 migratetype, alloc_flags); 3474 goto out; 3475 } 3476 } 3477 3478 /* 3479 * We most definitely don't want callers attempting to 3480 * allocate greater than order-1 page units with __GFP_NOFAIL. 3481 */ 3482 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3483 spin_lock_irqsave(&zone->lock, flags); 3484 3485 do { 3486 page = NULL; 3487 /* 3488 * order-0 request can reach here when the pcplist is skipped 3489 * due to non-CMA allocation context. HIGHATOMIC area is 3490 * reserved for high-order atomic allocation, so order-0 3491 * request should skip it. 3492 */ 3493 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3494 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3495 if (page) 3496 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3497 } 3498 if (!page) 3499 page = __rmqueue(zone, order, migratetype, alloc_flags); 3500 } while (page && check_new_pages(page, order)); 3501 spin_unlock(&zone->lock); 3502 if (!page) 3503 goto failed; 3504 __mod_zone_freepage_state(zone, -(1 << order), 3505 get_pcppage_migratetype(page)); 3506 3507 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3508 zone_statistics(preferred_zone, zone); 3509 local_irq_restore(flags); 3510 3511 out: 3512 /* Separate test+clear to avoid unnecessary atomics */ 3513 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3514 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3515 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3516 } 3517 3518 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3519 return page; 3520 3521 failed: 3522 local_irq_restore(flags); 3523 return NULL; 3524 } 3525 3526 #ifdef CONFIG_FAIL_PAGE_ALLOC 3527 3528 static struct { 3529 struct fault_attr attr; 3530 3531 bool ignore_gfp_highmem; 3532 bool ignore_gfp_reclaim; 3533 u32 min_order; 3534 } fail_page_alloc = { 3535 .attr = FAULT_ATTR_INITIALIZER, 3536 .ignore_gfp_reclaim = true, 3537 .ignore_gfp_highmem = true, 3538 .min_order = 1, 3539 }; 3540 3541 static int __init setup_fail_page_alloc(char *str) 3542 { 3543 return setup_fault_attr(&fail_page_alloc.attr, str); 3544 } 3545 __setup("fail_page_alloc=", setup_fail_page_alloc); 3546 3547 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3548 { 3549 if (order < fail_page_alloc.min_order) 3550 return false; 3551 if (gfp_mask & __GFP_NOFAIL) 3552 return false; 3553 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3554 return false; 3555 if (fail_page_alloc.ignore_gfp_reclaim && 3556 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3557 return false; 3558 3559 return should_fail(&fail_page_alloc.attr, 1 << order); 3560 } 3561 3562 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3563 3564 static int __init fail_page_alloc_debugfs(void) 3565 { 3566 umode_t mode = S_IFREG | 0600; 3567 struct dentry *dir; 3568 3569 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3570 &fail_page_alloc.attr); 3571 3572 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3573 &fail_page_alloc.ignore_gfp_reclaim); 3574 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3575 &fail_page_alloc.ignore_gfp_highmem); 3576 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3577 3578 return 0; 3579 } 3580 3581 late_initcall(fail_page_alloc_debugfs); 3582 3583 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3584 3585 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3586 3587 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3588 { 3589 return false; 3590 } 3591 3592 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3593 3594 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3595 { 3596 return __should_fail_alloc_page(gfp_mask, order); 3597 } 3598 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3599 3600 static inline long __zone_watermark_unusable_free(struct zone *z, 3601 unsigned int order, unsigned int alloc_flags) 3602 { 3603 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3604 long unusable_free = (1 << order) - 1; 3605 3606 /* 3607 * If the caller does not have rights to ALLOC_HARDER then subtract 3608 * the high-atomic reserves. This will over-estimate the size of the 3609 * atomic reserve but it avoids a search. 3610 */ 3611 if (likely(!alloc_harder)) 3612 unusable_free += z->nr_reserved_highatomic; 3613 3614 #ifdef CONFIG_CMA 3615 /* If allocation can't use CMA areas don't use free CMA pages */ 3616 if (!(alloc_flags & ALLOC_CMA)) 3617 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3618 #endif 3619 3620 return unusable_free; 3621 } 3622 3623 /* 3624 * Return true if free base pages are above 'mark'. For high-order checks it 3625 * will return true of the order-0 watermark is reached and there is at least 3626 * one free page of a suitable size. Checking now avoids taking the zone lock 3627 * to check in the allocation paths if no pages are free. 3628 */ 3629 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3630 int highest_zoneidx, unsigned int alloc_flags, 3631 long free_pages) 3632 { 3633 long min = mark; 3634 int o; 3635 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3636 3637 /* free_pages may go negative - that's OK */ 3638 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3639 3640 if (alloc_flags & ALLOC_HIGH) 3641 min -= min / 2; 3642 3643 if (unlikely(alloc_harder)) { 3644 /* 3645 * OOM victims can try even harder than normal ALLOC_HARDER 3646 * users on the grounds that it's definitely going to be in 3647 * the exit path shortly and free memory. Any allocation it 3648 * makes during the free path will be small and short-lived. 3649 */ 3650 if (alloc_flags & ALLOC_OOM) 3651 min -= min / 2; 3652 else 3653 min -= min / 4; 3654 } 3655 3656 /* 3657 * Check watermarks for an order-0 allocation request. If these 3658 * are not met, then a high-order request also cannot go ahead 3659 * even if a suitable page happened to be free. 3660 */ 3661 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3662 return false; 3663 3664 /* If this is an order-0 request then the watermark is fine */ 3665 if (!order) 3666 return true; 3667 3668 /* For a high-order request, check at least one suitable page is free */ 3669 for (o = order; o < MAX_ORDER; o++) { 3670 struct free_area *area = &z->free_area[o]; 3671 int mt; 3672 3673 if (!area->nr_free) 3674 continue; 3675 3676 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3677 if (!free_area_empty(area, mt)) 3678 return true; 3679 } 3680 3681 #ifdef CONFIG_CMA 3682 if ((alloc_flags & ALLOC_CMA) && 3683 !free_area_empty(area, MIGRATE_CMA)) { 3684 return true; 3685 } 3686 #endif 3687 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3688 return true; 3689 } 3690 return false; 3691 } 3692 3693 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3694 int highest_zoneidx, unsigned int alloc_flags) 3695 { 3696 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3697 zone_page_state(z, NR_FREE_PAGES)); 3698 } 3699 3700 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3701 unsigned long mark, int highest_zoneidx, 3702 unsigned int alloc_flags, gfp_t gfp_mask) 3703 { 3704 long free_pages; 3705 3706 free_pages = zone_page_state(z, NR_FREE_PAGES); 3707 3708 /* 3709 * Fast check for order-0 only. If this fails then the reserves 3710 * need to be calculated. 3711 */ 3712 if (!order) { 3713 long fast_free; 3714 3715 fast_free = free_pages; 3716 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3717 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3718 return true; 3719 } 3720 3721 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3722 free_pages)) 3723 return true; 3724 /* 3725 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3726 * when checking the min watermark. The min watermark is the 3727 * point where boosting is ignored so that kswapd is woken up 3728 * when below the low watermark. 3729 */ 3730 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3731 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3732 mark = z->_watermark[WMARK_MIN]; 3733 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3734 alloc_flags, free_pages); 3735 } 3736 3737 return false; 3738 } 3739 3740 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3741 unsigned long mark, int highest_zoneidx) 3742 { 3743 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3744 3745 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3746 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3747 3748 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3749 free_pages); 3750 } 3751 3752 #ifdef CONFIG_NUMA 3753 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3754 { 3755 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3756 node_reclaim_distance; 3757 } 3758 #else /* CONFIG_NUMA */ 3759 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3760 { 3761 return true; 3762 } 3763 #endif /* CONFIG_NUMA */ 3764 3765 /* 3766 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3767 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3768 * premature use of a lower zone may cause lowmem pressure problems that 3769 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3770 * probably too small. It only makes sense to spread allocations to avoid 3771 * fragmentation between the Normal and DMA32 zones. 3772 */ 3773 static inline unsigned int 3774 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3775 { 3776 unsigned int alloc_flags; 3777 3778 /* 3779 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3780 * to save a branch. 3781 */ 3782 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3783 3784 #ifdef CONFIG_ZONE_DMA32 3785 if (!zone) 3786 return alloc_flags; 3787 3788 if (zone_idx(zone) != ZONE_NORMAL) 3789 return alloc_flags; 3790 3791 /* 3792 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3793 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3794 * on UMA that if Normal is populated then so is DMA32. 3795 */ 3796 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3797 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3798 return alloc_flags; 3799 3800 alloc_flags |= ALLOC_NOFRAGMENT; 3801 #endif /* CONFIG_ZONE_DMA32 */ 3802 return alloc_flags; 3803 } 3804 3805 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3806 unsigned int alloc_flags) 3807 { 3808 #ifdef CONFIG_CMA 3809 unsigned int pflags = current->flags; 3810 3811 if (!(pflags & PF_MEMALLOC_NOCMA) && 3812 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3813 alloc_flags |= ALLOC_CMA; 3814 3815 #endif 3816 return alloc_flags; 3817 } 3818 3819 /* 3820 * get_page_from_freelist goes through the zonelist trying to allocate 3821 * a page. 3822 */ 3823 static struct page * 3824 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3825 const struct alloc_context *ac) 3826 { 3827 struct zoneref *z; 3828 struct zone *zone; 3829 struct pglist_data *last_pgdat_dirty_limit = NULL; 3830 bool no_fallback; 3831 3832 retry: 3833 /* 3834 * Scan zonelist, looking for a zone with enough free. 3835 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3836 */ 3837 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3838 z = ac->preferred_zoneref; 3839 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3840 ac->nodemask) { 3841 struct page *page; 3842 unsigned long mark; 3843 3844 if (cpusets_enabled() && 3845 (alloc_flags & ALLOC_CPUSET) && 3846 !__cpuset_zone_allowed(zone, gfp_mask)) 3847 continue; 3848 /* 3849 * When allocating a page cache page for writing, we 3850 * want to get it from a node that is within its dirty 3851 * limit, such that no single node holds more than its 3852 * proportional share of globally allowed dirty pages. 3853 * The dirty limits take into account the node's 3854 * lowmem reserves and high watermark so that kswapd 3855 * should be able to balance it without having to 3856 * write pages from its LRU list. 3857 * 3858 * XXX: For now, allow allocations to potentially 3859 * exceed the per-node dirty limit in the slowpath 3860 * (spread_dirty_pages unset) before going into reclaim, 3861 * which is important when on a NUMA setup the allowed 3862 * nodes are together not big enough to reach the 3863 * global limit. The proper fix for these situations 3864 * will require awareness of nodes in the 3865 * dirty-throttling and the flusher threads. 3866 */ 3867 if (ac->spread_dirty_pages) { 3868 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3869 continue; 3870 3871 if (!node_dirty_ok(zone->zone_pgdat)) { 3872 last_pgdat_dirty_limit = zone->zone_pgdat; 3873 continue; 3874 } 3875 } 3876 3877 if (no_fallback && nr_online_nodes > 1 && 3878 zone != ac->preferred_zoneref->zone) { 3879 int local_nid; 3880 3881 /* 3882 * If moving to a remote node, retry but allow 3883 * fragmenting fallbacks. Locality is more important 3884 * than fragmentation avoidance. 3885 */ 3886 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3887 if (zone_to_nid(zone) != local_nid) { 3888 alloc_flags &= ~ALLOC_NOFRAGMENT; 3889 goto retry; 3890 } 3891 } 3892 3893 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3894 if (!zone_watermark_fast(zone, order, mark, 3895 ac->highest_zoneidx, alloc_flags, 3896 gfp_mask)) { 3897 int ret; 3898 3899 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3900 /* 3901 * Watermark failed for this zone, but see if we can 3902 * grow this zone if it contains deferred pages. 3903 */ 3904 if (static_branch_unlikely(&deferred_pages)) { 3905 if (_deferred_grow_zone(zone, order)) 3906 goto try_this_zone; 3907 } 3908 #endif 3909 /* Checked here to keep the fast path fast */ 3910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3911 if (alloc_flags & ALLOC_NO_WATERMARKS) 3912 goto try_this_zone; 3913 3914 if (node_reclaim_mode == 0 || 3915 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3916 continue; 3917 3918 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3919 switch (ret) { 3920 case NODE_RECLAIM_NOSCAN: 3921 /* did not scan */ 3922 continue; 3923 case NODE_RECLAIM_FULL: 3924 /* scanned but unreclaimable */ 3925 continue; 3926 default: 3927 /* did we reclaim enough */ 3928 if (zone_watermark_ok(zone, order, mark, 3929 ac->highest_zoneidx, alloc_flags)) 3930 goto try_this_zone; 3931 3932 continue; 3933 } 3934 } 3935 3936 try_this_zone: 3937 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3938 gfp_mask, alloc_flags, ac->migratetype); 3939 if (page) { 3940 prep_new_page(page, order, gfp_mask, alloc_flags); 3941 3942 /* 3943 * If this is a high-order atomic allocation then check 3944 * if the pageblock should be reserved for the future 3945 */ 3946 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3947 reserve_highatomic_pageblock(page, zone, order); 3948 3949 return page; 3950 } else { 3951 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3952 /* Try again if zone has deferred pages */ 3953 if (static_branch_unlikely(&deferred_pages)) { 3954 if (_deferred_grow_zone(zone, order)) 3955 goto try_this_zone; 3956 } 3957 #endif 3958 } 3959 } 3960 3961 /* 3962 * It's possible on a UMA machine to get through all zones that are 3963 * fragmented. If avoiding fragmentation, reset and try again. 3964 */ 3965 if (no_fallback) { 3966 alloc_flags &= ~ALLOC_NOFRAGMENT; 3967 goto retry; 3968 } 3969 3970 return NULL; 3971 } 3972 3973 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3974 { 3975 unsigned int filter = SHOW_MEM_FILTER_NODES; 3976 3977 /* 3978 * This documents exceptions given to allocations in certain 3979 * contexts that are allowed to allocate outside current's set 3980 * of allowed nodes. 3981 */ 3982 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3983 if (tsk_is_oom_victim(current) || 3984 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3985 filter &= ~SHOW_MEM_FILTER_NODES; 3986 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3987 filter &= ~SHOW_MEM_FILTER_NODES; 3988 3989 show_mem(filter, nodemask); 3990 } 3991 3992 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3993 { 3994 struct va_format vaf; 3995 va_list args; 3996 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3997 3998 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3999 return; 4000 4001 va_start(args, fmt); 4002 vaf.fmt = fmt; 4003 vaf.va = &args; 4004 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4005 current->comm, &vaf, gfp_mask, &gfp_mask, 4006 nodemask_pr_args(nodemask)); 4007 va_end(args); 4008 4009 cpuset_print_current_mems_allowed(); 4010 pr_cont("\n"); 4011 dump_stack(); 4012 warn_alloc_show_mem(gfp_mask, nodemask); 4013 } 4014 4015 static inline struct page * 4016 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4017 unsigned int alloc_flags, 4018 const struct alloc_context *ac) 4019 { 4020 struct page *page; 4021 4022 page = get_page_from_freelist(gfp_mask, order, 4023 alloc_flags|ALLOC_CPUSET, ac); 4024 /* 4025 * fallback to ignore cpuset restriction if our nodes 4026 * are depleted 4027 */ 4028 if (!page) 4029 page = get_page_from_freelist(gfp_mask, order, 4030 alloc_flags, ac); 4031 4032 return page; 4033 } 4034 4035 static inline struct page * 4036 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4037 const struct alloc_context *ac, unsigned long *did_some_progress) 4038 { 4039 struct oom_control oc = { 4040 .zonelist = ac->zonelist, 4041 .nodemask = ac->nodemask, 4042 .memcg = NULL, 4043 .gfp_mask = gfp_mask, 4044 .order = order, 4045 }; 4046 struct page *page; 4047 4048 *did_some_progress = 0; 4049 4050 /* 4051 * Acquire the oom lock. If that fails, somebody else is 4052 * making progress for us. 4053 */ 4054 if (!mutex_trylock(&oom_lock)) { 4055 *did_some_progress = 1; 4056 schedule_timeout_uninterruptible(1); 4057 return NULL; 4058 } 4059 4060 /* 4061 * Go through the zonelist yet one more time, keep very high watermark 4062 * here, this is only to catch a parallel oom killing, we must fail if 4063 * we're still under heavy pressure. But make sure that this reclaim 4064 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4065 * allocation which will never fail due to oom_lock already held. 4066 */ 4067 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4068 ~__GFP_DIRECT_RECLAIM, order, 4069 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4070 if (page) 4071 goto out; 4072 4073 /* Coredumps can quickly deplete all memory reserves */ 4074 if (current->flags & PF_DUMPCORE) 4075 goto out; 4076 /* The OOM killer will not help higher order allocs */ 4077 if (order > PAGE_ALLOC_COSTLY_ORDER) 4078 goto out; 4079 /* 4080 * We have already exhausted all our reclaim opportunities without any 4081 * success so it is time to admit defeat. We will skip the OOM killer 4082 * because it is very likely that the caller has a more reasonable 4083 * fallback than shooting a random task. 4084 * 4085 * The OOM killer may not free memory on a specific node. 4086 */ 4087 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4088 goto out; 4089 /* The OOM killer does not needlessly kill tasks for lowmem */ 4090 if (ac->highest_zoneidx < ZONE_NORMAL) 4091 goto out; 4092 if (pm_suspended_storage()) 4093 goto out; 4094 /* 4095 * XXX: GFP_NOFS allocations should rather fail than rely on 4096 * other request to make a forward progress. 4097 * We are in an unfortunate situation where out_of_memory cannot 4098 * do much for this context but let's try it to at least get 4099 * access to memory reserved if the current task is killed (see 4100 * out_of_memory). Once filesystems are ready to handle allocation 4101 * failures more gracefully we should just bail out here. 4102 */ 4103 4104 /* Exhausted what can be done so it's blame time */ 4105 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4106 *did_some_progress = 1; 4107 4108 /* 4109 * Help non-failing allocations by giving them access to memory 4110 * reserves 4111 */ 4112 if (gfp_mask & __GFP_NOFAIL) 4113 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4114 ALLOC_NO_WATERMARKS, ac); 4115 } 4116 out: 4117 mutex_unlock(&oom_lock); 4118 return page; 4119 } 4120 4121 /* 4122 * Maximum number of compaction retries wit a progress before OOM 4123 * killer is consider as the only way to move forward. 4124 */ 4125 #define MAX_COMPACT_RETRIES 16 4126 4127 #ifdef CONFIG_COMPACTION 4128 /* Try memory compaction for high-order allocations before reclaim */ 4129 static struct page * 4130 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4131 unsigned int alloc_flags, const struct alloc_context *ac, 4132 enum compact_priority prio, enum compact_result *compact_result) 4133 { 4134 struct page *page = NULL; 4135 unsigned long pflags; 4136 unsigned int noreclaim_flag; 4137 4138 if (!order) 4139 return NULL; 4140 4141 psi_memstall_enter(&pflags); 4142 noreclaim_flag = memalloc_noreclaim_save(); 4143 4144 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4145 prio, &page); 4146 4147 memalloc_noreclaim_restore(noreclaim_flag); 4148 psi_memstall_leave(&pflags); 4149 4150 /* 4151 * At least in one zone compaction wasn't deferred or skipped, so let's 4152 * count a compaction stall 4153 */ 4154 count_vm_event(COMPACTSTALL); 4155 4156 /* Prep a captured page if available */ 4157 if (page) 4158 prep_new_page(page, order, gfp_mask, alloc_flags); 4159 4160 /* Try get a page from the freelist if available */ 4161 if (!page) 4162 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4163 4164 if (page) { 4165 struct zone *zone = page_zone(page); 4166 4167 zone->compact_blockskip_flush = false; 4168 compaction_defer_reset(zone, order, true); 4169 count_vm_event(COMPACTSUCCESS); 4170 return page; 4171 } 4172 4173 /* 4174 * It's bad if compaction run occurs and fails. The most likely reason 4175 * is that pages exist, but not enough to satisfy watermarks. 4176 */ 4177 count_vm_event(COMPACTFAIL); 4178 4179 cond_resched(); 4180 4181 return NULL; 4182 } 4183 4184 static inline bool 4185 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4186 enum compact_result compact_result, 4187 enum compact_priority *compact_priority, 4188 int *compaction_retries) 4189 { 4190 int max_retries = MAX_COMPACT_RETRIES; 4191 int min_priority; 4192 bool ret = false; 4193 int retries = *compaction_retries; 4194 enum compact_priority priority = *compact_priority; 4195 4196 if (!order) 4197 return false; 4198 4199 if (compaction_made_progress(compact_result)) 4200 (*compaction_retries)++; 4201 4202 /* 4203 * compaction considers all the zone as desperately out of memory 4204 * so it doesn't really make much sense to retry except when the 4205 * failure could be caused by insufficient priority 4206 */ 4207 if (compaction_failed(compact_result)) 4208 goto check_priority; 4209 4210 /* 4211 * compaction was skipped because there are not enough order-0 pages 4212 * to work with, so we retry only if it looks like reclaim can help. 4213 */ 4214 if (compaction_needs_reclaim(compact_result)) { 4215 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4216 goto out; 4217 } 4218 4219 /* 4220 * make sure the compaction wasn't deferred or didn't bail out early 4221 * due to locks contention before we declare that we should give up. 4222 * But the next retry should use a higher priority if allowed, so 4223 * we don't just keep bailing out endlessly. 4224 */ 4225 if (compaction_withdrawn(compact_result)) { 4226 goto check_priority; 4227 } 4228 4229 /* 4230 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4231 * costly ones because they are de facto nofail and invoke OOM 4232 * killer to move on while costly can fail and users are ready 4233 * to cope with that. 1/4 retries is rather arbitrary but we 4234 * would need much more detailed feedback from compaction to 4235 * make a better decision. 4236 */ 4237 if (order > PAGE_ALLOC_COSTLY_ORDER) 4238 max_retries /= 4; 4239 if (*compaction_retries <= max_retries) { 4240 ret = true; 4241 goto out; 4242 } 4243 4244 /* 4245 * Make sure there are attempts at the highest priority if we exhausted 4246 * all retries or failed at the lower priorities. 4247 */ 4248 check_priority: 4249 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4250 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4251 4252 if (*compact_priority > min_priority) { 4253 (*compact_priority)--; 4254 *compaction_retries = 0; 4255 ret = true; 4256 } 4257 out: 4258 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4259 return ret; 4260 } 4261 #else 4262 static inline struct page * 4263 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4264 unsigned int alloc_flags, const struct alloc_context *ac, 4265 enum compact_priority prio, enum compact_result *compact_result) 4266 { 4267 *compact_result = COMPACT_SKIPPED; 4268 return NULL; 4269 } 4270 4271 static inline bool 4272 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4273 enum compact_result compact_result, 4274 enum compact_priority *compact_priority, 4275 int *compaction_retries) 4276 { 4277 struct zone *zone; 4278 struct zoneref *z; 4279 4280 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4281 return false; 4282 4283 /* 4284 * There are setups with compaction disabled which would prefer to loop 4285 * inside the allocator rather than hit the oom killer prematurely. 4286 * Let's give them a good hope and keep retrying while the order-0 4287 * watermarks are OK. 4288 */ 4289 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4290 ac->highest_zoneidx, ac->nodemask) { 4291 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4292 ac->highest_zoneidx, alloc_flags)) 4293 return true; 4294 } 4295 return false; 4296 } 4297 #endif /* CONFIG_COMPACTION */ 4298 4299 #ifdef CONFIG_LOCKDEP 4300 static struct lockdep_map __fs_reclaim_map = 4301 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4302 4303 static bool __need_reclaim(gfp_t gfp_mask) 4304 { 4305 /* no reclaim without waiting on it */ 4306 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4307 return false; 4308 4309 /* this guy won't enter reclaim */ 4310 if (current->flags & PF_MEMALLOC) 4311 return false; 4312 4313 if (gfp_mask & __GFP_NOLOCKDEP) 4314 return false; 4315 4316 return true; 4317 } 4318 4319 void __fs_reclaim_acquire(void) 4320 { 4321 lock_map_acquire(&__fs_reclaim_map); 4322 } 4323 4324 void __fs_reclaim_release(void) 4325 { 4326 lock_map_release(&__fs_reclaim_map); 4327 } 4328 4329 void fs_reclaim_acquire(gfp_t gfp_mask) 4330 { 4331 gfp_mask = current_gfp_context(gfp_mask); 4332 4333 if (__need_reclaim(gfp_mask)) { 4334 if (gfp_mask & __GFP_FS) 4335 __fs_reclaim_acquire(); 4336 4337 #ifdef CONFIG_MMU_NOTIFIER 4338 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4339 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4340 #endif 4341 4342 } 4343 } 4344 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4345 4346 void fs_reclaim_release(gfp_t gfp_mask) 4347 { 4348 gfp_mask = current_gfp_context(gfp_mask); 4349 4350 if (__need_reclaim(gfp_mask)) { 4351 if (gfp_mask & __GFP_FS) 4352 __fs_reclaim_release(); 4353 } 4354 } 4355 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4356 #endif 4357 4358 /* Perform direct synchronous page reclaim */ 4359 static unsigned long 4360 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4361 const struct alloc_context *ac) 4362 { 4363 unsigned int noreclaim_flag; 4364 unsigned long pflags, progress; 4365 4366 cond_resched(); 4367 4368 /* We now go into synchronous reclaim */ 4369 cpuset_memory_pressure_bump(); 4370 psi_memstall_enter(&pflags); 4371 fs_reclaim_acquire(gfp_mask); 4372 noreclaim_flag = memalloc_noreclaim_save(); 4373 4374 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4375 ac->nodemask); 4376 4377 memalloc_noreclaim_restore(noreclaim_flag); 4378 fs_reclaim_release(gfp_mask); 4379 psi_memstall_leave(&pflags); 4380 4381 cond_resched(); 4382 4383 return progress; 4384 } 4385 4386 /* The really slow allocator path where we enter direct reclaim */ 4387 static inline struct page * 4388 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4389 unsigned int alloc_flags, const struct alloc_context *ac, 4390 unsigned long *did_some_progress) 4391 { 4392 struct page *page = NULL; 4393 bool drained = false; 4394 4395 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4396 if (unlikely(!(*did_some_progress))) 4397 return NULL; 4398 4399 retry: 4400 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4401 4402 /* 4403 * If an allocation failed after direct reclaim, it could be because 4404 * pages are pinned on the per-cpu lists or in high alloc reserves. 4405 * Shrink them and try again 4406 */ 4407 if (!page && !drained) { 4408 unreserve_highatomic_pageblock(ac, false); 4409 drain_all_pages(NULL); 4410 drained = true; 4411 goto retry; 4412 } 4413 4414 return page; 4415 } 4416 4417 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4418 const struct alloc_context *ac) 4419 { 4420 struct zoneref *z; 4421 struct zone *zone; 4422 pg_data_t *last_pgdat = NULL; 4423 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4424 4425 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4426 ac->nodemask) { 4427 if (last_pgdat != zone->zone_pgdat) 4428 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4429 last_pgdat = zone->zone_pgdat; 4430 } 4431 } 4432 4433 static inline unsigned int 4434 gfp_to_alloc_flags(gfp_t gfp_mask) 4435 { 4436 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4437 4438 /* 4439 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4440 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4441 * to save two branches. 4442 */ 4443 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4444 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4445 4446 /* 4447 * The caller may dip into page reserves a bit more if the caller 4448 * cannot run direct reclaim, or if the caller has realtime scheduling 4449 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4450 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4451 */ 4452 alloc_flags |= (__force int) 4453 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4454 4455 if (gfp_mask & __GFP_ATOMIC) { 4456 /* 4457 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4458 * if it can't schedule. 4459 */ 4460 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4461 alloc_flags |= ALLOC_HARDER; 4462 /* 4463 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4464 * comment for __cpuset_node_allowed(). 4465 */ 4466 alloc_flags &= ~ALLOC_CPUSET; 4467 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4468 alloc_flags |= ALLOC_HARDER; 4469 4470 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4471 4472 return alloc_flags; 4473 } 4474 4475 static bool oom_reserves_allowed(struct task_struct *tsk) 4476 { 4477 if (!tsk_is_oom_victim(tsk)) 4478 return false; 4479 4480 /* 4481 * !MMU doesn't have oom reaper so give access to memory reserves 4482 * only to the thread with TIF_MEMDIE set 4483 */ 4484 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4485 return false; 4486 4487 return true; 4488 } 4489 4490 /* 4491 * Distinguish requests which really need access to full memory 4492 * reserves from oom victims which can live with a portion of it 4493 */ 4494 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4495 { 4496 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4497 return 0; 4498 if (gfp_mask & __GFP_MEMALLOC) 4499 return ALLOC_NO_WATERMARKS; 4500 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4501 return ALLOC_NO_WATERMARKS; 4502 if (!in_interrupt()) { 4503 if (current->flags & PF_MEMALLOC) 4504 return ALLOC_NO_WATERMARKS; 4505 else if (oom_reserves_allowed(current)) 4506 return ALLOC_OOM; 4507 } 4508 4509 return 0; 4510 } 4511 4512 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4513 { 4514 return !!__gfp_pfmemalloc_flags(gfp_mask); 4515 } 4516 4517 /* 4518 * Checks whether it makes sense to retry the reclaim to make a forward progress 4519 * for the given allocation request. 4520 * 4521 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4522 * without success, or when we couldn't even meet the watermark if we 4523 * reclaimed all remaining pages on the LRU lists. 4524 * 4525 * Returns true if a retry is viable or false to enter the oom path. 4526 */ 4527 static inline bool 4528 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4529 struct alloc_context *ac, int alloc_flags, 4530 bool did_some_progress, int *no_progress_loops) 4531 { 4532 struct zone *zone; 4533 struct zoneref *z; 4534 bool ret = false; 4535 4536 /* 4537 * Costly allocations might have made a progress but this doesn't mean 4538 * their order will become available due to high fragmentation so 4539 * always increment the no progress counter for them 4540 */ 4541 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4542 *no_progress_loops = 0; 4543 else 4544 (*no_progress_loops)++; 4545 4546 /* 4547 * Make sure we converge to OOM if we cannot make any progress 4548 * several times in the row. 4549 */ 4550 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4551 /* Before OOM, exhaust highatomic_reserve */ 4552 return unreserve_highatomic_pageblock(ac, true); 4553 } 4554 4555 /* 4556 * Keep reclaiming pages while there is a chance this will lead 4557 * somewhere. If none of the target zones can satisfy our allocation 4558 * request even if all reclaimable pages are considered then we are 4559 * screwed and have to go OOM. 4560 */ 4561 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4562 ac->highest_zoneidx, ac->nodemask) { 4563 unsigned long available; 4564 unsigned long reclaimable; 4565 unsigned long min_wmark = min_wmark_pages(zone); 4566 bool wmark; 4567 4568 available = reclaimable = zone_reclaimable_pages(zone); 4569 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4570 4571 /* 4572 * Would the allocation succeed if we reclaimed all 4573 * reclaimable pages? 4574 */ 4575 wmark = __zone_watermark_ok(zone, order, min_wmark, 4576 ac->highest_zoneidx, alloc_flags, available); 4577 trace_reclaim_retry_zone(z, order, reclaimable, 4578 available, min_wmark, *no_progress_loops, wmark); 4579 if (wmark) { 4580 /* 4581 * If we didn't make any progress and have a lot of 4582 * dirty + writeback pages then we should wait for 4583 * an IO to complete to slow down the reclaim and 4584 * prevent from pre mature OOM 4585 */ 4586 if (!did_some_progress) { 4587 unsigned long write_pending; 4588 4589 write_pending = zone_page_state_snapshot(zone, 4590 NR_ZONE_WRITE_PENDING); 4591 4592 if (2 * write_pending > reclaimable) { 4593 congestion_wait(BLK_RW_ASYNC, HZ/10); 4594 return true; 4595 } 4596 } 4597 4598 ret = true; 4599 goto out; 4600 } 4601 } 4602 4603 out: 4604 /* 4605 * Memory allocation/reclaim might be called from a WQ context and the 4606 * current implementation of the WQ concurrency control doesn't 4607 * recognize that a particular WQ is congested if the worker thread is 4608 * looping without ever sleeping. Therefore we have to do a short sleep 4609 * here rather than calling cond_resched(). 4610 */ 4611 if (current->flags & PF_WQ_WORKER) 4612 schedule_timeout_uninterruptible(1); 4613 else 4614 cond_resched(); 4615 return ret; 4616 } 4617 4618 static inline bool 4619 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4620 { 4621 /* 4622 * It's possible that cpuset's mems_allowed and the nodemask from 4623 * mempolicy don't intersect. This should be normally dealt with by 4624 * policy_nodemask(), but it's possible to race with cpuset update in 4625 * such a way the check therein was true, and then it became false 4626 * before we got our cpuset_mems_cookie here. 4627 * This assumes that for all allocations, ac->nodemask can come only 4628 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4629 * when it does not intersect with the cpuset restrictions) or the 4630 * caller can deal with a violated nodemask. 4631 */ 4632 if (cpusets_enabled() && ac->nodemask && 4633 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4634 ac->nodemask = NULL; 4635 return true; 4636 } 4637 4638 /* 4639 * When updating a task's mems_allowed or mempolicy nodemask, it is 4640 * possible to race with parallel threads in such a way that our 4641 * allocation can fail while the mask is being updated. If we are about 4642 * to fail, check if the cpuset changed during allocation and if so, 4643 * retry. 4644 */ 4645 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4646 return true; 4647 4648 return false; 4649 } 4650 4651 static inline struct page * 4652 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4653 struct alloc_context *ac) 4654 { 4655 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4656 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4657 struct page *page = NULL; 4658 unsigned int alloc_flags; 4659 unsigned long did_some_progress; 4660 enum compact_priority compact_priority; 4661 enum compact_result compact_result; 4662 int compaction_retries; 4663 int no_progress_loops; 4664 unsigned int cpuset_mems_cookie; 4665 int reserve_flags; 4666 4667 /* 4668 * We also sanity check to catch abuse of atomic reserves being used by 4669 * callers that are not in atomic context. 4670 */ 4671 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4672 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4673 gfp_mask &= ~__GFP_ATOMIC; 4674 4675 retry_cpuset: 4676 compaction_retries = 0; 4677 no_progress_loops = 0; 4678 compact_priority = DEF_COMPACT_PRIORITY; 4679 cpuset_mems_cookie = read_mems_allowed_begin(); 4680 4681 /* 4682 * The fast path uses conservative alloc_flags to succeed only until 4683 * kswapd needs to be woken up, and to avoid the cost of setting up 4684 * alloc_flags precisely. So we do that now. 4685 */ 4686 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4687 4688 /* 4689 * We need to recalculate the starting point for the zonelist iterator 4690 * because we might have used different nodemask in the fast path, or 4691 * there was a cpuset modification and we are retrying - otherwise we 4692 * could end up iterating over non-eligible zones endlessly. 4693 */ 4694 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4695 ac->highest_zoneidx, ac->nodemask); 4696 if (!ac->preferred_zoneref->zone) 4697 goto nopage; 4698 4699 if (alloc_flags & ALLOC_KSWAPD) 4700 wake_all_kswapds(order, gfp_mask, ac); 4701 4702 /* 4703 * The adjusted alloc_flags might result in immediate success, so try 4704 * that first 4705 */ 4706 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4707 if (page) 4708 goto got_pg; 4709 4710 /* 4711 * For costly allocations, try direct compaction first, as it's likely 4712 * that we have enough base pages and don't need to reclaim. For non- 4713 * movable high-order allocations, do that as well, as compaction will 4714 * try prevent permanent fragmentation by migrating from blocks of the 4715 * same migratetype. 4716 * Don't try this for allocations that are allowed to ignore 4717 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4718 */ 4719 if (can_direct_reclaim && 4720 (costly_order || 4721 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4722 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4723 page = __alloc_pages_direct_compact(gfp_mask, order, 4724 alloc_flags, ac, 4725 INIT_COMPACT_PRIORITY, 4726 &compact_result); 4727 if (page) 4728 goto got_pg; 4729 4730 /* 4731 * Checks for costly allocations with __GFP_NORETRY, which 4732 * includes some THP page fault allocations 4733 */ 4734 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4735 /* 4736 * If allocating entire pageblock(s) and compaction 4737 * failed because all zones are below low watermarks 4738 * or is prohibited because it recently failed at this 4739 * order, fail immediately unless the allocator has 4740 * requested compaction and reclaim retry. 4741 * 4742 * Reclaim is 4743 * - potentially very expensive because zones are far 4744 * below their low watermarks or this is part of very 4745 * bursty high order allocations, 4746 * - not guaranteed to help because isolate_freepages() 4747 * may not iterate over freed pages as part of its 4748 * linear scan, and 4749 * - unlikely to make entire pageblocks free on its 4750 * own. 4751 */ 4752 if (compact_result == COMPACT_SKIPPED || 4753 compact_result == COMPACT_DEFERRED) 4754 goto nopage; 4755 4756 /* 4757 * Looks like reclaim/compaction is worth trying, but 4758 * sync compaction could be very expensive, so keep 4759 * using async compaction. 4760 */ 4761 compact_priority = INIT_COMPACT_PRIORITY; 4762 } 4763 } 4764 4765 retry: 4766 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4767 if (alloc_flags & ALLOC_KSWAPD) 4768 wake_all_kswapds(order, gfp_mask, ac); 4769 4770 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4771 if (reserve_flags) 4772 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4773 4774 /* 4775 * Reset the nodemask and zonelist iterators if memory policies can be 4776 * ignored. These allocations are high priority and system rather than 4777 * user oriented. 4778 */ 4779 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4780 ac->nodemask = NULL; 4781 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4782 ac->highest_zoneidx, ac->nodemask); 4783 } 4784 4785 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4786 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4787 if (page) 4788 goto got_pg; 4789 4790 /* Caller is not willing to reclaim, we can't balance anything */ 4791 if (!can_direct_reclaim) 4792 goto nopage; 4793 4794 /* Avoid recursion of direct reclaim */ 4795 if (current->flags & PF_MEMALLOC) 4796 goto nopage; 4797 4798 /* Try direct reclaim and then allocating */ 4799 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4800 &did_some_progress); 4801 if (page) 4802 goto got_pg; 4803 4804 /* Try direct compaction and then allocating */ 4805 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4806 compact_priority, &compact_result); 4807 if (page) 4808 goto got_pg; 4809 4810 /* Do not loop if specifically requested */ 4811 if (gfp_mask & __GFP_NORETRY) 4812 goto nopage; 4813 4814 /* 4815 * Do not retry costly high order allocations unless they are 4816 * __GFP_RETRY_MAYFAIL 4817 */ 4818 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4819 goto nopage; 4820 4821 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4822 did_some_progress > 0, &no_progress_loops)) 4823 goto retry; 4824 4825 /* 4826 * It doesn't make any sense to retry for the compaction if the order-0 4827 * reclaim is not able to make any progress because the current 4828 * implementation of the compaction depends on the sufficient amount 4829 * of free memory (see __compaction_suitable) 4830 */ 4831 if (did_some_progress > 0 && 4832 should_compact_retry(ac, order, alloc_flags, 4833 compact_result, &compact_priority, 4834 &compaction_retries)) 4835 goto retry; 4836 4837 4838 /* Deal with possible cpuset update races before we start OOM killing */ 4839 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4840 goto retry_cpuset; 4841 4842 /* Reclaim has failed us, start killing things */ 4843 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4844 if (page) 4845 goto got_pg; 4846 4847 /* Avoid allocations with no watermarks from looping endlessly */ 4848 if (tsk_is_oom_victim(current) && 4849 (alloc_flags & ALLOC_OOM || 4850 (gfp_mask & __GFP_NOMEMALLOC))) 4851 goto nopage; 4852 4853 /* Retry as long as the OOM killer is making progress */ 4854 if (did_some_progress) { 4855 no_progress_loops = 0; 4856 goto retry; 4857 } 4858 4859 nopage: 4860 /* Deal with possible cpuset update races before we fail */ 4861 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4862 goto retry_cpuset; 4863 4864 /* 4865 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4866 * we always retry 4867 */ 4868 if (gfp_mask & __GFP_NOFAIL) { 4869 /* 4870 * All existing users of the __GFP_NOFAIL are blockable, so warn 4871 * of any new users that actually require GFP_NOWAIT 4872 */ 4873 if (WARN_ON_ONCE(!can_direct_reclaim)) 4874 goto fail; 4875 4876 /* 4877 * PF_MEMALLOC request from this context is rather bizarre 4878 * because we cannot reclaim anything and only can loop waiting 4879 * for somebody to do a work for us 4880 */ 4881 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4882 4883 /* 4884 * non failing costly orders are a hard requirement which we 4885 * are not prepared for much so let's warn about these users 4886 * so that we can identify them and convert them to something 4887 * else. 4888 */ 4889 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4890 4891 /* 4892 * Help non-failing allocations by giving them access to memory 4893 * reserves but do not use ALLOC_NO_WATERMARKS because this 4894 * could deplete whole memory reserves which would just make 4895 * the situation worse 4896 */ 4897 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4898 if (page) 4899 goto got_pg; 4900 4901 cond_resched(); 4902 goto retry; 4903 } 4904 fail: 4905 warn_alloc(gfp_mask, ac->nodemask, 4906 "page allocation failure: order:%u", order); 4907 got_pg: 4908 return page; 4909 } 4910 4911 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4912 int preferred_nid, nodemask_t *nodemask, 4913 struct alloc_context *ac, gfp_t *alloc_mask, 4914 unsigned int *alloc_flags) 4915 { 4916 ac->highest_zoneidx = gfp_zone(gfp_mask); 4917 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4918 ac->nodemask = nodemask; 4919 ac->migratetype = gfp_migratetype(gfp_mask); 4920 4921 if (cpusets_enabled()) { 4922 *alloc_mask |= __GFP_HARDWALL; 4923 /* 4924 * When we are in the interrupt context, it is irrelevant 4925 * to the current task context. It means that any node ok. 4926 */ 4927 if (!in_interrupt() && !ac->nodemask) 4928 ac->nodemask = &cpuset_current_mems_allowed; 4929 else 4930 *alloc_flags |= ALLOC_CPUSET; 4931 } 4932 4933 fs_reclaim_acquire(gfp_mask); 4934 fs_reclaim_release(gfp_mask); 4935 4936 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4937 4938 if (should_fail_alloc_page(gfp_mask, order)) 4939 return false; 4940 4941 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4942 4943 /* Dirty zone balancing only done in the fast path */ 4944 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4945 4946 /* 4947 * The preferred zone is used for statistics but crucially it is 4948 * also used as the starting point for the zonelist iterator. It 4949 * may get reset for allocations that ignore memory policies. 4950 */ 4951 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4952 ac->highest_zoneidx, ac->nodemask); 4953 4954 return true; 4955 } 4956 4957 /* 4958 * This is the 'heart' of the zoned buddy allocator. 4959 */ 4960 struct page * 4961 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4962 nodemask_t *nodemask) 4963 { 4964 struct page *page; 4965 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4966 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4967 struct alloc_context ac = { }; 4968 4969 /* 4970 * There are several places where we assume that the order value is sane 4971 * so bail out early if the request is out of bound. 4972 */ 4973 if (unlikely(order >= MAX_ORDER)) { 4974 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4975 return NULL; 4976 } 4977 4978 gfp_mask &= gfp_allowed_mask; 4979 alloc_mask = gfp_mask; 4980 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4981 return NULL; 4982 4983 /* 4984 * Forbid the first pass from falling back to types that fragment 4985 * memory until all local zones are considered. 4986 */ 4987 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4988 4989 /* First allocation attempt */ 4990 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4991 if (likely(page)) 4992 goto out; 4993 4994 /* 4995 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4996 * resp. GFP_NOIO which has to be inherited for all allocation requests 4997 * from a particular context which has been marked by 4998 * memalloc_no{fs,io}_{save,restore}. 4999 */ 5000 alloc_mask = current_gfp_context(gfp_mask); 5001 ac.spread_dirty_pages = false; 5002 5003 /* 5004 * Restore the original nodemask if it was potentially replaced with 5005 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5006 */ 5007 ac.nodemask = nodemask; 5008 5009 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 5010 5011 out: 5012 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 5013 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 5014 __free_pages(page, order); 5015 page = NULL; 5016 } 5017 5018 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 5019 5020 return page; 5021 } 5022 EXPORT_SYMBOL(__alloc_pages_nodemask); 5023 5024 /* 5025 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5026 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5027 * you need to access high mem. 5028 */ 5029 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5030 { 5031 struct page *page; 5032 5033 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5034 if (!page) 5035 return 0; 5036 return (unsigned long) page_address(page); 5037 } 5038 EXPORT_SYMBOL(__get_free_pages); 5039 5040 unsigned long get_zeroed_page(gfp_t gfp_mask) 5041 { 5042 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5043 } 5044 EXPORT_SYMBOL(get_zeroed_page); 5045 5046 static inline void free_the_page(struct page *page, unsigned int order) 5047 { 5048 if (order == 0) /* Via pcp? */ 5049 free_unref_page(page); 5050 else 5051 __free_pages_ok(page, order, FPI_NONE); 5052 } 5053 5054 /** 5055 * __free_pages - Free pages allocated with alloc_pages(). 5056 * @page: The page pointer returned from alloc_pages(). 5057 * @order: The order of the allocation. 5058 * 5059 * This function can free multi-page allocations that are not compound 5060 * pages. It does not check that the @order passed in matches that of 5061 * the allocation, so it is easy to leak memory. Freeing more memory 5062 * than was allocated will probably emit a warning. 5063 * 5064 * If the last reference to this page is speculative, it will be released 5065 * by put_page() which only frees the first page of a non-compound 5066 * allocation. To prevent the remaining pages from being leaked, we free 5067 * the subsequent pages here. If you want to use the page's reference 5068 * count to decide when to free the allocation, you should allocate a 5069 * compound page, and use put_page() instead of __free_pages(). 5070 * 5071 * Context: May be called in interrupt context or while holding a normal 5072 * spinlock, but not in NMI context or while holding a raw spinlock. 5073 */ 5074 void __free_pages(struct page *page, unsigned int order) 5075 { 5076 if (put_page_testzero(page)) 5077 free_the_page(page, order); 5078 else if (!PageHead(page)) 5079 while (order-- > 0) 5080 free_the_page(page + (1 << order), order); 5081 } 5082 EXPORT_SYMBOL(__free_pages); 5083 5084 void free_pages(unsigned long addr, unsigned int order) 5085 { 5086 if (addr != 0) { 5087 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5088 __free_pages(virt_to_page((void *)addr), order); 5089 } 5090 } 5091 5092 EXPORT_SYMBOL(free_pages); 5093 5094 /* 5095 * Page Fragment: 5096 * An arbitrary-length arbitrary-offset area of memory which resides 5097 * within a 0 or higher order page. Multiple fragments within that page 5098 * are individually refcounted, in the page's reference counter. 5099 * 5100 * The page_frag functions below provide a simple allocation framework for 5101 * page fragments. This is used by the network stack and network device 5102 * drivers to provide a backing region of memory for use as either an 5103 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5104 */ 5105 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5106 gfp_t gfp_mask) 5107 { 5108 struct page *page = NULL; 5109 gfp_t gfp = gfp_mask; 5110 5111 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5112 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5113 __GFP_NOMEMALLOC; 5114 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5115 PAGE_FRAG_CACHE_MAX_ORDER); 5116 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5117 #endif 5118 if (unlikely(!page)) 5119 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5120 5121 nc->va = page ? page_address(page) : NULL; 5122 5123 return page; 5124 } 5125 5126 void __page_frag_cache_drain(struct page *page, unsigned int count) 5127 { 5128 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5129 5130 if (page_ref_sub_and_test(page, count)) 5131 free_the_page(page, compound_order(page)); 5132 } 5133 EXPORT_SYMBOL(__page_frag_cache_drain); 5134 5135 void *page_frag_alloc(struct page_frag_cache *nc, 5136 unsigned int fragsz, gfp_t gfp_mask) 5137 { 5138 unsigned int size = PAGE_SIZE; 5139 struct page *page; 5140 int offset; 5141 5142 if (unlikely(!nc->va)) { 5143 refill: 5144 page = __page_frag_cache_refill(nc, gfp_mask); 5145 if (!page) 5146 return NULL; 5147 5148 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5149 /* if size can vary use size else just use PAGE_SIZE */ 5150 size = nc->size; 5151 #endif 5152 /* Even if we own the page, we do not use atomic_set(). 5153 * This would break get_page_unless_zero() users. 5154 */ 5155 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5156 5157 /* reset page count bias and offset to start of new frag */ 5158 nc->pfmemalloc = page_is_pfmemalloc(page); 5159 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5160 nc->offset = size; 5161 } 5162 5163 offset = nc->offset - fragsz; 5164 if (unlikely(offset < 0)) { 5165 page = virt_to_page(nc->va); 5166 5167 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5168 goto refill; 5169 5170 if (unlikely(nc->pfmemalloc)) { 5171 free_the_page(page, compound_order(page)); 5172 goto refill; 5173 } 5174 5175 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5176 /* if size can vary use size else just use PAGE_SIZE */ 5177 size = nc->size; 5178 #endif 5179 /* OK, page count is 0, we can safely set it */ 5180 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5181 5182 /* reset page count bias and offset to start of new frag */ 5183 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5184 offset = size - fragsz; 5185 } 5186 5187 nc->pagecnt_bias--; 5188 nc->offset = offset; 5189 5190 return nc->va + offset; 5191 } 5192 EXPORT_SYMBOL(page_frag_alloc); 5193 5194 /* 5195 * Frees a page fragment allocated out of either a compound or order 0 page. 5196 */ 5197 void page_frag_free(void *addr) 5198 { 5199 struct page *page = virt_to_head_page(addr); 5200 5201 if (unlikely(put_page_testzero(page))) 5202 free_the_page(page, compound_order(page)); 5203 } 5204 EXPORT_SYMBOL(page_frag_free); 5205 5206 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5207 size_t size) 5208 { 5209 if (addr) { 5210 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5211 unsigned long used = addr + PAGE_ALIGN(size); 5212 5213 split_page(virt_to_page((void *)addr), order); 5214 while (used < alloc_end) { 5215 free_page(used); 5216 used += PAGE_SIZE; 5217 } 5218 } 5219 return (void *)addr; 5220 } 5221 5222 /** 5223 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5224 * @size: the number of bytes to allocate 5225 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5226 * 5227 * This function is similar to alloc_pages(), except that it allocates the 5228 * minimum number of pages to satisfy the request. alloc_pages() can only 5229 * allocate memory in power-of-two pages. 5230 * 5231 * This function is also limited by MAX_ORDER. 5232 * 5233 * Memory allocated by this function must be released by free_pages_exact(). 5234 * 5235 * Return: pointer to the allocated area or %NULL in case of error. 5236 */ 5237 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5238 { 5239 unsigned int order = get_order(size); 5240 unsigned long addr; 5241 5242 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5243 gfp_mask &= ~__GFP_COMP; 5244 5245 addr = __get_free_pages(gfp_mask, order); 5246 return make_alloc_exact(addr, order, size); 5247 } 5248 EXPORT_SYMBOL(alloc_pages_exact); 5249 5250 /** 5251 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5252 * pages on a node. 5253 * @nid: the preferred node ID where memory should be allocated 5254 * @size: the number of bytes to allocate 5255 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5256 * 5257 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5258 * back. 5259 * 5260 * Return: pointer to the allocated area or %NULL in case of error. 5261 */ 5262 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5263 { 5264 unsigned int order = get_order(size); 5265 struct page *p; 5266 5267 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5268 gfp_mask &= ~__GFP_COMP; 5269 5270 p = alloc_pages_node(nid, gfp_mask, order); 5271 if (!p) 5272 return NULL; 5273 return make_alloc_exact((unsigned long)page_address(p), order, size); 5274 } 5275 5276 /** 5277 * free_pages_exact - release memory allocated via alloc_pages_exact() 5278 * @virt: the value returned by alloc_pages_exact. 5279 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5280 * 5281 * Release the memory allocated by a previous call to alloc_pages_exact. 5282 */ 5283 void free_pages_exact(void *virt, size_t size) 5284 { 5285 unsigned long addr = (unsigned long)virt; 5286 unsigned long end = addr + PAGE_ALIGN(size); 5287 5288 while (addr < end) { 5289 free_page(addr); 5290 addr += PAGE_SIZE; 5291 } 5292 } 5293 EXPORT_SYMBOL(free_pages_exact); 5294 5295 /** 5296 * nr_free_zone_pages - count number of pages beyond high watermark 5297 * @offset: The zone index of the highest zone 5298 * 5299 * nr_free_zone_pages() counts the number of pages which are beyond the 5300 * high watermark within all zones at or below a given zone index. For each 5301 * zone, the number of pages is calculated as: 5302 * 5303 * nr_free_zone_pages = managed_pages - high_pages 5304 * 5305 * Return: number of pages beyond high watermark. 5306 */ 5307 static unsigned long nr_free_zone_pages(int offset) 5308 { 5309 struct zoneref *z; 5310 struct zone *zone; 5311 5312 /* Just pick one node, since fallback list is circular */ 5313 unsigned long sum = 0; 5314 5315 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5316 5317 for_each_zone_zonelist(zone, z, zonelist, offset) { 5318 unsigned long size = zone_managed_pages(zone); 5319 unsigned long high = high_wmark_pages(zone); 5320 if (size > high) 5321 sum += size - high; 5322 } 5323 5324 return sum; 5325 } 5326 5327 /** 5328 * nr_free_buffer_pages - count number of pages beyond high watermark 5329 * 5330 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5331 * watermark within ZONE_DMA and ZONE_NORMAL. 5332 * 5333 * Return: number of pages beyond high watermark within ZONE_DMA and 5334 * ZONE_NORMAL. 5335 */ 5336 unsigned long nr_free_buffer_pages(void) 5337 { 5338 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5339 } 5340 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5341 5342 static inline void show_node(struct zone *zone) 5343 { 5344 if (IS_ENABLED(CONFIG_NUMA)) 5345 printk("Node %d ", zone_to_nid(zone)); 5346 } 5347 5348 long si_mem_available(void) 5349 { 5350 long available; 5351 unsigned long pagecache; 5352 unsigned long wmark_low = 0; 5353 unsigned long pages[NR_LRU_LISTS]; 5354 unsigned long reclaimable; 5355 struct zone *zone; 5356 int lru; 5357 5358 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5359 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5360 5361 for_each_zone(zone) 5362 wmark_low += low_wmark_pages(zone); 5363 5364 /* 5365 * Estimate the amount of memory available for userspace allocations, 5366 * without causing swapping. 5367 */ 5368 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5369 5370 /* 5371 * Not all the page cache can be freed, otherwise the system will 5372 * start swapping. Assume at least half of the page cache, or the 5373 * low watermark worth of cache, needs to stay. 5374 */ 5375 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5376 pagecache -= min(pagecache / 2, wmark_low); 5377 available += pagecache; 5378 5379 /* 5380 * Part of the reclaimable slab and other kernel memory consists of 5381 * items that are in use, and cannot be freed. Cap this estimate at the 5382 * low watermark. 5383 */ 5384 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5385 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5386 available += reclaimable - min(reclaimable / 2, wmark_low); 5387 5388 if (available < 0) 5389 available = 0; 5390 return available; 5391 } 5392 EXPORT_SYMBOL_GPL(si_mem_available); 5393 5394 void si_meminfo(struct sysinfo *val) 5395 { 5396 val->totalram = totalram_pages(); 5397 val->sharedram = global_node_page_state(NR_SHMEM); 5398 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5399 val->bufferram = nr_blockdev_pages(); 5400 val->totalhigh = totalhigh_pages(); 5401 val->freehigh = nr_free_highpages(); 5402 val->mem_unit = PAGE_SIZE; 5403 } 5404 5405 EXPORT_SYMBOL(si_meminfo); 5406 5407 #ifdef CONFIG_NUMA 5408 void si_meminfo_node(struct sysinfo *val, int nid) 5409 { 5410 int zone_type; /* needs to be signed */ 5411 unsigned long managed_pages = 0; 5412 unsigned long managed_highpages = 0; 5413 unsigned long free_highpages = 0; 5414 pg_data_t *pgdat = NODE_DATA(nid); 5415 5416 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5417 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5418 val->totalram = managed_pages; 5419 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5420 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5421 #ifdef CONFIG_HIGHMEM 5422 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5423 struct zone *zone = &pgdat->node_zones[zone_type]; 5424 5425 if (is_highmem(zone)) { 5426 managed_highpages += zone_managed_pages(zone); 5427 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5428 } 5429 } 5430 val->totalhigh = managed_highpages; 5431 val->freehigh = free_highpages; 5432 #else 5433 val->totalhigh = managed_highpages; 5434 val->freehigh = free_highpages; 5435 #endif 5436 val->mem_unit = PAGE_SIZE; 5437 } 5438 #endif 5439 5440 /* 5441 * Determine whether the node should be displayed or not, depending on whether 5442 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5443 */ 5444 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5445 { 5446 if (!(flags & SHOW_MEM_FILTER_NODES)) 5447 return false; 5448 5449 /* 5450 * no node mask - aka implicit memory numa policy. Do not bother with 5451 * the synchronization - read_mems_allowed_begin - because we do not 5452 * have to be precise here. 5453 */ 5454 if (!nodemask) 5455 nodemask = &cpuset_current_mems_allowed; 5456 5457 return !node_isset(nid, *nodemask); 5458 } 5459 5460 #define K(x) ((x) << (PAGE_SHIFT-10)) 5461 5462 static void show_migration_types(unsigned char type) 5463 { 5464 static const char types[MIGRATE_TYPES] = { 5465 [MIGRATE_UNMOVABLE] = 'U', 5466 [MIGRATE_MOVABLE] = 'M', 5467 [MIGRATE_RECLAIMABLE] = 'E', 5468 [MIGRATE_HIGHATOMIC] = 'H', 5469 #ifdef CONFIG_CMA 5470 [MIGRATE_CMA] = 'C', 5471 #endif 5472 #ifdef CONFIG_MEMORY_ISOLATION 5473 [MIGRATE_ISOLATE] = 'I', 5474 #endif 5475 }; 5476 char tmp[MIGRATE_TYPES + 1]; 5477 char *p = tmp; 5478 int i; 5479 5480 for (i = 0; i < MIGRATE_TYPES; i++) { 5481 if (type & (1 << i)) 5482 *p++ = types[i]; 5483 } 5484 5485 *p = '\0'; 5486 printk(KERN_CONT "(%s) ", tmp); 5487 } 5488 5489 /* 5490 * Show free area list (used inside shift_scroll-lock stuff) 5491 * We also calculate the percentage fragmentation. We do this by counting the 5492 * memory on each free list with the exception of the first item on the list. 5493 * 5494 * Bits in @filter: 5495 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5496 * cpuset. 5497 */ 5498 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5499 { 5500 unsigned long free_pcp = 0; 5501 int cpu; 5502 struct zone *zone; 5503 pg_data_t *pgdat; 5504 5505 for_each_populated_zone(zone) { 5506 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5507 continue; 5508 5509 for_each_online_cpu(cpu) 5510 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5511 } 5512 5513 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5514 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5515 " unevictable:%lu dirty:%lu writeback:%lu\n" 5516 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5517 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5518 " free:%lu free_pcp:%lu free_cma:%lu\n", 5519 global_node_page_state(NR_ACTIVE_ANON), 5520 global_node_page_state(NR_INACTIVE_ANON), 5521 global_node_page_state(NR_ISOLATED_ANON), 5522 global_node_page_state(NR_ACTIVE_FILE), 5523 global_node_page_state(NR_INACTIVE_FILE), 5524 global_node_page_state(NR_ISOLATED_FILE), 5525 global_node_page_state(NR_UNEVICTABLE), 5526 global_node_page_state(NR_FILE_DIRTY), 5527 global_node_page_state(NR_WRITEBACK), 5528 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5529 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5530 global_node_page_state(NR_FILE_MAPPED), 5531 global_node_page_state(NR_SHMEM), 5532 global_node_page_state(NR_PAGETABLE), 5533 global_zone_page_state(NR_BOUNCE), 5534 global_zone_page_state(NR_FREE_PAGES), 5535 free_pcp, 5536 global_zone_page_state(NR_FREE_CMA_PAGES)); 5537 5538 for_each_online_pgdat(pgdat) { 5539 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5540 continue; 5541 5542 printk("Node %d" 5543 " active_anon:%lukB" 5544 " inactive_anon:%lukB" 5545 " active_file:%lukB" 5546 " inactive_file:%lukB" 5547 " unevictable:%lukB" 5548 " isolated(anon):%lukB" 5549 " isolated(file):%lukB" 5550 " mapped:%lukB" 5551 " dirty:%lukB" 5552 " writeback:%lukB" 5553 " shmem:%lukB" 5554 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5555 " shmem_thp: %lukB" 5556 " shmem_pmdmapped: %lukB" 5557 " anon_thp: %lukB" 5558 #endif 5559 " writeback_tmp:%lukB" 5560 " kernel_stack:%lukB" 5561 #ifdef CONFIG_SHADOW_CALL_STACK 5562 " shadow_call_stack:%lukB" 5563 #endif 5564 " pagetables:%lukB" 5565 " all_unreclaimable? %s" 5566 "\n", 5567 pgdat->node_id, 5568 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5569 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5570 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5571 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5572 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5573 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5574 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5575 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5576 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5577 K(node_page_state(pgdat, NR_WRITEBACK)), 5578 K(node_page_state(pgdat, NR_SHMEM)), 5579 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5580 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5581 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5582 * HPAGE_PMD_NR), 5583 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5584 #endif 5585 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5586 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5587 #ifdef CONFIG_SHADOW_CALL_STACK 5588 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5589 #endif 5590 K(node_page_state(pgdat, NR_PAGETABLE)), 5591 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5592 "yes" : "no"); 5593 } 5594 5595 for_each_populated_zone(zone) { 5596 int i; 5597 5598 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5599 continue; 5600 5601 free_pcp = 0; 5602 for_each_online_cpu(cpu) 5603 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5604 5605 show_node(zone); 5606 printk(KERN_CONT 5607 "%s" 5608 " free:%lukB" 5609 " min:%lukB" 5610 " low:%lukB" 5611 " high:%lukB" 5612 " reserved_highatomic:%luKB" 5613 " active_anon:%lukB" 5614 " inactive_anon:%lukB" 5615 " active_file:%lukB" 5616 " inactive_file:%lukB" 5617 " unevictable:%lukB" 5618 " writepending:%lukB" 5619 " present:%lukB" 5620 " managed:%lukB" 5621 " mlocked:%lukB" 5622 " bounce:%lukB" 5623 " free_pcp:%lukB" 5624 " local_pcp:%ukB" 5625 " free_cma:%lukB" 5626 "\n", 5627 zone->name, 5628 K(zone_page_state(zone, NR_FREE_PAGES)), 5629 K(min_wmark_pages(zone)), 5630 K(low_wmark_pages(zone)), 5631 K(high_wmark_pages(zone)), 5632 K(zone->nr_reserved_highatomic), 5633 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5634 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5635 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5636 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5637 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5638 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5639 K(zone->present_pages), 5640 K(zone_managed_pages(zone)), 5641 K(zone_page_state(zone, NR_MLOCK)), 5642 K(zone_page_state(zone, NR_BOUNCE)), 5643 K(free_pcp), 5644 K(this_cpu_read(zone->pageset->pcp.count)), 5645 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5646 printk("lowmem_reserve[]:"); 5647 for (i = 0; i < MAX_NR_ZONES; i++) 5648 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5649 printk(KERN_CONT "\n"); 5650 } 5651 5652 for_each_populated_zone(zone) { 5653 unsigned int order; 5654 unsigned long nr[MAX_ORDER], flags, total = 0; 5655 unsigned char types[MAX_ORDER]; 5656 5657 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5658 continue; 5659 show_node(zone); 5660 printk(KERN_CONT "%s: ", zone->name); 5661 5662 spin_lock_irqsave(&zone->lock, flags); 5663 for (order = 0; order < MAX_ORDER; order++) { 5664 struct free_area *area = &zone->free_area[order]; 5665 int type; 5666 5667 nr[order] = area->nr_free; 5668 total += nr[order] << order; 5669 5670 types[order] = 0; 5671 for (type = 0; type < MIGRATE_TYPES; type++) { 5672 if (!free_area_empty(area, type)) 5673 types[order] |= 1 << type; 5674 } 5675 } 5676 spin_unlock_irqrestore(&zone->lock, flags); 5677 for (order = 0; order < MAX_ORDER; order++) { 5678 printk(KERN_CONT "%lu*%lukB ", 5679 nr[order], K(1UL) << order); 5680 if (nr[order]) 5681 show_migration_types(types[order]); 5682 } 5683 printk(KERN_CONT "= %lukB\n", K(total)); 5684 } 5685 5686 hugetlb_show_meminfo(); 5687 5688 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5689 5690 show_swap_cache_info(); 5691 } 5692 5693 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5694 { 5695 zoneref->zone = zone; 5696 zoneref->zone_idx = zone_idx(zone); 5697 } 5698 5699 /* 5700 * Builds allocation fallback zone lists. 5701 * 5702 * Add all populated zones of a node to the zonelist. 5703 */ 5704 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5705 { 5706 struct zone *zone; 5707 enum zone_type zone_type = MAX_NR_ZONES; 5708 int nr_zones = 0; 5709 5710 do { 5711 zone_type--; 5712 zone = pgdat->node_zones + zone_type; 5713 if (managed_zone(zone)) { 5714 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5715 check_highest_zone(zone_type); 5716 } 5717 } while (zone_type); 5718 5719 return nr_zones; 5720 } 5721 5722 #ifdef CONFIG_NUMA 5723 5724 static int __parse_numa_zonelist_order(char *s) 5725 { 5726 /* 5727 * We used to support different zonlists modes but they turned 5728 * out to be just not useful. Let's keep the warning in place 5729 * if somebody still use the cmd line parameter so that we do 5730 * not fail it silently 5731 */ 5732 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5733 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5734 return -EINVAL; 5735 } 5736 return 0; 5737 } 5738 5739 char numa_zonelist_order[] = "Node"; 5740 5741 /* 5742 * sysctl handler for numa_zonelist_order 5743 */ 5744 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5745 void *buffer, size_t *length, loff_t *ppos) 5746 { 5747 if (write) 5748 return __parse_numa_zonelist_order(buffer); 5749 return proc_dostring(table, write, buffer, length, ppos); 5750 } 5751 5752 5753 #define MAX_NODE_LOAD (nr_online_nodes) 5754 static int node_load[MAX_NUMNODES]; 5755 5756 /** 5757 * find_next_best_node - find the next node that should appear in a given node's fallback list 5758 * @node: node whose fallback list we're appending 5759 * @used_node_mask: nodemask_t of already used nodes 5760 * 5761 * We use a number of factors to determine which is the next node that should 5762 * appear on a given node's fallback list. The node should not have appeared 5763 * already in @node's fallback list, and it should be the next closest node 5764 * according to the distance array (which contains arbitrary distance values 5765 * from each node to each node in the system), and should also prefer nodes 5766 * with no CPUs, since presumably they'll have very little allocation pressure 5767 * on them otherwise. 5768 * 5769 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5770 */ 5771 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5772 { 5773 int n, val; 5774 int min_val = INT_MAX; 5775 int best_node = NUMA_NO_NODE; 5776 5777 /* Use the local node if we haven't already */ 5778 if (!node_isset(node, *used_node_mask)) { 5779 node_set(node, *used_node_mask); 5780 return node; 5781 } 5782 5783 for_each_node_state(n, N_MEMORY) { 5784 5785 /* Don't want a node to appear more than once */ 5786 if (node_isset(n, *used_node_mask)) 5787 continue; 5788 5789 /* Use the distance array to find the distance */ 5790 val = node_distance(node, n); 5791 5792 /* Penalize nodes under us ("prefer the next node") */ 5793 val += (n < node); 5794 5795 /* Give preference to headless and unused nodes */ 5796 if (!cpumask_empty(cpumask_of_node(n))) 5797 val += PENALTY_FOR_NODE_WITH_CPUS; 5798 5799 /* Slight preference for less loaded node */ 5800 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5801 val += node_load[n]; 5802 5803 if (val < min_val) { 5804 min_val = val; 5805 best_node = n; 5806 } 5807 } 5808 5809 if (best_node >= 0) 5810 node_set(best_node, *used_node_mask); 5811 5812 return best_node; 5813 } 5814 5815 5816 /* 5817 * Build zonelists ordered by node and zones within node. 5818 * This results in maximum locality--normal zone overflows into local 5819 * DMA zone, if any--but risks exhausting DMA zone. 5820 */ 5821 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5822 unsigned nr_nodes) 5823 { 5824 struct zoneref *zonerefs; 5825 int i; 5826 5827 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5828 5829 for (i = 0; i < nr_nodes; i++) { 5830 int nr_zones; 5831 5832 pg_data_t *node = NODE_DATA(node_order[i]); 5833 5834 nr_zones = build_zonerefs_node(node, zonerefs); 5835 zonerefs += nr_zones; 5836 } 5837 zonerefs->zone = NULL; 5838 zonerefs->zone_idx = 0; 5839 } 5840 5841 /* 5842 * Build gfp_thisnode zonelists 5843 */ 5844 static void build_thisnode_zonelists(pg_data_t *pgdat) 5845 { 5846 struct zoneref *zonerefs; 5847 int nr_zones; 5848 5849 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5850 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5851 zonerefs += nr_zones; 5852 zonerefs->zone = NULL; 5853 zonerefs->zone_idx = 0; 5854 } 5855 5856 /* 5857 * Build zonelists ordered by zone and nodes within zones. 5858 * This results in conserving DMA zone[s] until all Normal memory is 5859 * exhausted, but results in overflowing to remote node while memory 5860 * may still exist in local DMA zone. 5861 */ 5862 5863 static void build_zonelists(pg_data_t *pgdat) 5864 { 5865 static int node_order[MAX_NUMNODES]; 5866 int node, load, nr_nodes = 0; 5867 nodemask_t used_mask = NODE_MASK_NONE; 5868 int local_node, prev_node; 5869 5870 /* NUMA-aware ordering of nodes */ 5871 local_node = pgdat->node_id; 5872 load = nr_online_nodes; 5873 prev_node = local_node; 5874 5875 memset(node_order, 0, sizeof(node_order)); 5876 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5877 /* 5878 * We don't want to pressure a particular node. 5879 * So adding penalty to the first node in same 5880 * distance group to make it round-robin. 5881 */ 5882 if (node_distance(local_node, node) != 5883 node_distance(local_node, prev_node)) 5884 node_load[node] = load; 5885 5886 node_order[nr_nodes++] = node; 5887 prev_node = node; 5888 load--; 5889 } 5890 5891 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5892 build_thisnode_zonelists(pgdat); 5893 } 5894 5895 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5896 /* 5897 * Return node id of node used for "local" allocations. 5898 * I.e., first node id of first zone in arg node's generic zonelist. 5899 * Used for initializing percpu 'numa_mem', which is used primarily 5900 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5901 */ 5902 int local_memory_node(int node) 5903 { 5904 struct zoneref *z; 5905 5906 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5907 gfp_zone(GFP_KERNEL), 5908 NULL); 5909 return zone_to_nid(z->zone); 5910 } 5911 #endif 5912 5913 static void setup_min_unmapped_ratio(void); 5914 static void setup_min_slab_ratio(void); 5915 #else /* CONFIG_NUMA */ 5916 5917 static void build_zonelists(pg_data_t *pgdat) 5918 { 5919 int node, local_node; 5920 struct zoneref *zonerefs; 5921 int nr_zones; 5922 5923 local_node = pgdat->node_id; 5924 5925 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5926 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5927 zonerefs += nr_zones; 5928 5929 /* 5930 * Now we build the zonelist so that it contains the zones 5931 * of all the other nodes. 5932 * We don't want to pressure a particular node, so when 5933 * building the zones for node N, we make sure that the 5934 * zones coming right after the local ones are those from 5935 * node N+1 (modulo N) 5936 */ 5937 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5938 if (!node_online(node)) 5939 continue; 5940 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5941 zonerefs += nr_zones; 5942 } 5943 for (node = 0; node < local_node; node++) { 5944 if (!node_online(node)) 5945 continue; 5946 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5947 zonerefs += nr_zones; 5948 } 5949 5950 zonerefs->zone = NULL; 5951 zonerefs->zone_idx = 0; 5952 } 5953 5954 #endif /* CONFIG_NUMA */ 5955 5956 /* 5957 * Boot pageset table. One per cpu which is going to be used for all 5958 * zones and all nodes. The parameters will be set in such a way 5959 * that an item put on a list will immediately be handed over to 5960 * the buddy list. This is safe since pageset manipulation is done 5961 * with interrupts disabled. 5962 * 5963 * The boot_pagesets must be kept even after bootup is complete for 5964 * unused processors and/or zones. They do play a role for bootstrapping 5965 * hotplugged processors. 5966 * 5967 * zoneinfo_show() and maybe other functions do 5968 * not check if the processor is online before following the pageset pointer. 5969 * Other parts of the kernel may not check if the zone is available. 5970 */ 5971 static void pageset_init(struct per_cpu_pageset *p); 5972 /* These effectively disable the pcplists in the boot pageset completely */ 5973 #define BOOT_PAGESET_HIGH 0 5974 #define BOOT_PAGESET_BATCH 1 5975 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5976 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5977 5978 static void __build_all_zonelists(void *data) 5979 { 5980 int nid; 5981 int __maybe_unused cpu; 5982 pg_data_t *self = data; 5983 static DEFINE_SPINLOCK(lock); 5984 5985 spin_lock(&lock); 5986 5987 #ifdef CONFIG_NUMA 5988 memset(node_load, 0, sizeof(node_load)); 5989 #endif 5990 5991 /* 5992 * This node is hotadded and no memory is yet present. So just 5993 * building zonelists is fine - no need to touch other nodes. 5994 */ 5995 if (self && !node_online(self->node_id)) { 5996 build_zonelists(self); 5997 } else { 5998 for_each_online_node(nid) { 5999 pg_data_t *pgdat = NODE_DATA(nid); 6000 6001 build_zonelists(pgdat); 6002 } 6003 6004 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6005 /* 6006 * We now know the "local memory node" for each node-- 6007 * i.e., the node of the first zone in the generic zonelist. 6008 * Set up numa_mem percpu variable for on-line cpus. During 6009 * boot, only the boot cpu should be on-line; we'll init the 6010 * secondary cpus' numa_mem as they come on-line. During 6011 * node/memory hotplug, we'll fixup all on-line cpus. 6012 */ 6013 for_each_online_cpu(cpu) 6014 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6015 #endif 6016 } 6017 6018 spin_unlock(&lock); 6019 } 6020 6021 static noinline void __init 6022 build_all_zonelists_init(void) 6023 { 6024 int cpu; 6025 6026 __build_all_zonelists(NULL); 6027 6028 /* 6029 * Initialize the boot_pagesets that are going to be used 6030 * for bootstrapping processors. The real pagesets for 6031 * each zone will be allocated later when the per cpu 6032 * allocator is available. 6033 * 6034 * boot_pagesets are used also for bootstrapping offline 6035 * cpus if the system is already booted because the pagesets 6036 * are needed to initialize allocators on a specific cpu too. 6037 * F.e. the percpu allocator needs the page allocator which 6038 * needs the percpu allocator in order to allocate its pagesets 6039 * (a chicken-egg dilemma). 6040 */ 6041 for_each_possible_cpu(cpu) 6042 pageset_init(&per_cpu(boot_pageset, cpu)); 6043 6044 mminit_verify_zonelist(); 6045 cpuset_init_current_mems_allowed(); 6046 } 6047 6048 /* 6049 * unless system_state == SYSTEM_BOOTING. 6050 * 6051 * __ref due to call of __init annotated helper build_all_zonelists_init 6052 * [protected by SYSTEM_BOOTING]. 6053 */ 6054 void __ref build_all_zonelists(pg_data_t *pgdat) 6055 { 6056 unsigned long vm_total_pages; 6057 6058 if (system_state == SYSTEM_BOOTING) { 6059 build_all_zonelists_init(); 6060 } else { 6061 __build_all_zonelists(pgdat); 6062 /* cpuset refresh routine should be here */ 6063 } 6064 /* Get the number of free pages beyond high watermark in all zones. */ 6065 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6066 /* 6067 * Disable grouping by mobility if the number of pages in the 6068 * system is too low to allow the mechanism to work. It would be 6069 * more accurate, but expensive to check per-zone. This check is 6070 * made on memory-hotadd so a system can start with mobility 6071 * disabled and enable it later 6072 */ 6073 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6074 page_group_by_mobility_disabled = 1; 6075 else 6076 page_group_by_mobility_disabled = 0; 6077 6078 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6079 nr_online_nodes, 6080 page_group_by_mobility_disabled ? "off" : "on", 6081 vm_total_pages); 6082 #ifdef CONFIG_NUMA 6083 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6084 #endif 6085 } 6086 6087 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6088 static bool __meminit 6089 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6090 { 6091 static struct memblock_region *r; 6092 6093 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6094 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6095 for_each_mem_region(r) { 6096 if (*pfn < memblock_region_memory_end_pfn(r)) 6097 break; 6098 } 6099 } 6100 if (*pfn >= memblock_region_memory_base_pfn(r) && 6101 memblock_is_mirror(r)) { 6102 *pfn = memblock_region_memory_end_pfn(r); 6103 return true; 6104 } 6105 } 6106 return false; 6107 } 6108 6109 /* 6110 * Initially all pages are reserved - free ones are freed 6111 * up by memblock_free_all() once the early boot process is 6112 * done. Non-atomic initialization, single-pass. 6113 * 6114 * All aligned pageblocks are initialized to the specified migratetype 6115 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6116 * zone stats (e.g., nr_isolate_pageblock) are touched. 6117 */ 6118 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 6119 unsigned long start_pfn, 6120 enum meminit_context context, 6121 struct vmem_altmap *altmap, int migratetype) 6122 { 6123 unsigned long pfn, end_pfn = start_pfn + size; 6124 struct page *page; 6125 6126 if (highest_memmap_pfn < end_pfn - 1) 6127 highest_memmap_pfn = end_pfn - 1; 6128 6129 #ifdef CONFIG_ZONE_DEVICE 6130 /* 6131 * Honor reservation requested by the driver for this ZONE_DEVICE 6132 * memory. We limit the total number of pages to initialize to just 6133 * those that might contain the memory mapping. We will defer the 6134 * ZONE_DEVICE page initialization until after we have released 6135 * the hotplug lock. 6136 */ 6137 if (zone == ZONE_DEVICE) { 6138 if (!altmap) 6139 return; 6140 6141 if (start_pfn == altmap->base_pfn) 6142 start_pfn += altmap->reserve; 6143 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6144 } 6145 #endif 6146 6147 for (pfn = start_pfn; pfn < end_pfn; ) { 6148 /* 6149 * There can be holes in boot-time mem_map[]s handed to this 6150 * function. They do not exist on hotplugged memory. 6151 */ 6152 if (context == MEMINIT_EARLY) { 6153 if (overlap_memmap_init(zone, &pfn)) 6154 continue; 6155 if (defer_init(nid, pfn, end_pfn)) 6156 break; 6157 } 6158 6159 page = pfn_to_page(pfn); 6160 __init_single_page(page, pfn, zone, nid); 6161 if (context == MEMINIT_HOTPLUG) 6162 __SetPageReserved(page); 6163 6164 /* 6165 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6166 * such that unmovable allocations won't be scattered all 6167 * over the place during system boot. 6168 */ 6169 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6170 set_pageblock_migratetype(page, migratetype); 6171 cond_resched(); 6172 } 6173 pfn++; 6174 } 6175 } 6176 6177 #ifdef CONFIG_ZONE_DEVICE 6178 void __ref memmap_init_zone_device(struct zone *zone, 6179 unsigned long start_pfn, 6180 unsigned long nr_pages, 6181 struct dev_pagemap *pgmap) 6182 { 6183 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6184 struct pglist_data *pgdat = zone->zone_pgdat; 6185 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6186 unsigned long zone_idx = zone_idx(zone); 6187 unsigned long start = jiffies; 6188 int nid = pgdat->node_id; 6189 6190 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6191 return; 6192 6193 /* 6194 * The call to memmap_init_zone should have already taken care 6195 * of the pages reserved for the memmap, so we can just jump to 6196 * the end of that region and start processing the device pages. 6197 */ 6198 if (altmap) { 6199 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6200 nr_pages = end_pfn - start_pfn; 6201 } 6202 6203 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6204 struct page *page = pfn_to_page(pfn); 6205 6206 __init_single_page(page, pfn, zone_idx, nid); 6207 6208 /* 6209 * Mark page reserved as it will need to wait for onlining 6210 * phase for it to be fully associated with a zone. 6211 * 6212 * We can use the non-atomic __set_bit operation for setting 6213 * the flag as we are still initializing the pages. 6214 */ 6215 __SetPageReserved(page); 6216 6217 /* 6218 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6219 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6220 * ever freed or placed on a driver-private list. 6221 */ 6222 page->pgmap = pgmap; 6223 page->zone_device_data = NULL; 6224 6225 /* 6226 * Mark the block movable so that blocks are reserved for 6227 * movable at startup. This will force kernel allocations 6228 * to reserve their blocks rather than leaking throughout 6229 * the address space during boot when many long-lived 6230 * kernel allocations are made. 6231 * 6232 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6233 * because this is done early in section_activate() 6234 */ 6235 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6236 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6237 cond_resched(); 6238 } 6239 } 6240 6241 pr_info("%s initialised %lu pages in %ums\n", __func__, 6242 nr_pages, jiffies_to_msecs(jiffies - start)); 6243 } 6244 6245 #endif 6246 static void __meminit zone_init_free_lists(struct zone *zone) 6247 { 6248 unsigned int order, t; 6249 for_each_migratetype_order(order, t) { 6250 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6251 zone->free_area[order].nr_free = 0; 6252 } 6253 } 6254 6255 void __meminit __weak memmap_init(unsigned long size, int nid, 6256 unsigned long zone, 6257 unsigned long range_start_pfn) 6258 { 6259 unsigned long start_pfn, end_pfn; 6260 unsigned long range_end_pfn = range_start_pfn + size; 6261 int i; 6262 6263 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6264 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6265 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6266 6267 if (end_pfn > start_pfn) { 6268 size = end_pfn - start_pfn; 6269 memmap_init_zone(size, nid, zone, start_pfn, 6270 MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6271 } 6272 } 6273 } 6274 6275 static int zone_batchsize(struct zone *zone) 6276 { 6277 #ifdef CONFIG_MMU 6278 int batch; 6279 6280 /* 6281 * The per-cpu-pages pools are set to around 1000th of the 6282 * size of the zone. 6283 */ 6284 batch = zone_managed_pages(zone) / 1024; 6285 /* But no more than a meg. */ 6286 if (batch * PAGE_SIZE > 1024 * 1024) 6287 batch = (1024 * 1024) / PAGE_SIZE; 6288 batch /= 4; /* We effectively *= 4 below */ 6289 if (batch < 1) 6290 batch = 1; 6291 6292 /* 6293 * Clamp the batch to a 2^n - 1 value. Having a power 6294 * of 2 value was found to be more likely to have 6295 * suboptimal cache aliasing properties in some cases. 6296 * 6297 * For example if 2 tasks are alternately allocating 6298 * batches of pages, one task can end up with a lot 6299 * of pages of one half of the possible page colors 6300 * and the other with pages of the other colors. 6301 */ 6302 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6303 6304 return batch; 6305 6306 #else 6307 /* The deferral and batching of frees should be suppressed under NOMMU 6308 * conditions. 6309 * 6310 * The problem is that NOMMU needs to be able to allocate large chunks 6311 * of contiguous memory as there's no hardware page translation to 6312 * assemble apparent contiguous memory from discontiguous pages. 6313 * 6314 * Queueing large contiguous runs of pages for batching, however, 6315 * causes the pages to actually be freed in smaller chunks. As there 6316 * can be a significant delay between the individual batches being 6317 * recycled, this leads to the once large chunks of space being 6318 * fragmented and becoming unavailable for high-order allocations. 6319 */ 6320 return 0; 6321 #endif 6322 } 6323 6324 /* 6325 * pcp->high and pcp->batch values are related and generally batch is lower 6326 * than high. They are also related to pcp->count such that count is lower 6327 * than high, and as soon as it reaches high, the pcplist is flushed. 6328 * 6329 * However, guaranteeing these relations at all times would require e.g. write 6330 * barriers here but also careful usage of read barriers at the read side, and 6331 * thus be prone to error and bad for performance. Thus the update only prevents 6332 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6333 * can cope with those fields changing asynchronously, and fully trust only the 6334 * pcp->count field on the local CPU with interrupts disabled. 6335 * 6336 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6337 * outside of boot time (or some other assurance that no concurrent updaters 6338 * exist). 6339 */ 6340 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6341 unsigned long batch) 6342 { 6343 WRITE_ONCE(pcp->batch, batch); 6344 WRITE_ONCE(pcp->high, high); 6345 } 6346 6347 static void pageset_init(struct per_cpu_pageset *p) 6348 { 6349 struct per_cpu_pages *pcp; 6350 int migratetype; 6351 6352 memset(p, 0, sizeof(*p)); 6353 6354 pcp = &p->pcp; 6355 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6356 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6357 6358 /* 6359 * Set batch and high values safe for a boot pageset. A true percpu 6360 * pageset's initialization will update them subsequently. Here we don't 6361 * need to be as careful as pageset_update() as nobody can access the 6362 * pageset yet. 6363 */ 6364 pcp->high = BOOT_PAGESET_HIGH; 6365 pcp->batch = BOOT_PAGESET_BATCH; 6366 } 6367 6368 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6369 unsigned long batch) 6370 { 6371 struct per_cpu_pageset *p; 6372 int cpu; 6373 6374 for_each_possible_cpu(cpu) { 6375 p = per_cpu_ptr(zone->pageset, cpu); 6376 pageset_update(&p->pcp, high, batch); 6377 } 6378 } 6379 6380 /* 6381 * Calculate and set new high and batch values for all per-cpu pagesets of a 6382 * zone, based on the zone's size and the percpu_pagelist_fraction sysctl. 6383 */ 6384 static void zone_set_pageset_high_and_batch(struct zone *zone) 6385 { 6386 unsigned long new_high, new_batch; 6387 6388 if (percpu_pagelist_fraction) { 6389 new_high = zone_managed_pages(zone) / percpu_pagelist_fraction; 6390 new_batch = max(1UL, new_high / 4); 6391 if ((new_high / 4) > (PAGE_SHIFT * 8)) 6392 new_batch = PAGE_SHIFT * 8; 6393 } else { 6394 new_batch = zone_batchsize(zone); 6395 new_high = 6 * new_batch; 6396 new_batch = max(1UL, 1 * new_batch); 6397 } 6398 6399 if (zone->pageset_high == new_high && 6400 zone->pageset_batch == new_batch) 6401 return; 6402 6403 zone->pageset_high = new_high; 6404 zone->pageset_batch = new_batch; 6405 6406 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6407 } 6408 6409 void __meminit setup_zone_pageset(struct zone *zone) 6410 { 6411 struct per_cpu_pageset *p; 6412 int cpu; 6413 6414 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6415 for_each_possible_cpu(cpu) { 6416 p = per_cpu_ptr(zone->pageset, cpu); 6417 pageset_init(p); 6418 } 6419 6420 zone_set_pageset_high_and_batch(zone); 6421 } 6422 6423 /* 6424 * Allocate per cpu pagesets and initialize them. 6425 * Before this call only boot pagesets were available. 6426 */ 6427 void __init setup_per_cpu_pageset(void) 6428 { 6429 struct pglist_data *pgdat; 6430 struct zone *zone; 6431 int __maybe_unused cpu; 6432 6433 for_each_populated_zone(zone) 6434 setup_zone_pageset(zone); 6435 6436 #ifdef CONFIG_NUMA 6437 /* 6438 * Unpopulated zones continue using the boot pagesets. 6439 * The numa stats for these pagesets need to be reset. 6440 * Otherwise, they will end up skewing the stats of 6441 * the nodes these zones are associated with. 6442 */ 6443 for_each_possible_cpu(cpu) { 6444 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6445 memset(pcp->vm_numa_stat_diff, 0, 6446 sizeof(pcp->vm_numa_stat_diff)); 6447 } 6448 #endif 6449 6450 for_each_online_pgdat(pgdat) 6451 pgdat->per_cpu_nodestats = 6452 alloc_percpu(struct per_cpu_nodestat); 6453 } 6454 6455 static __meminit void zone_pcp_init(struct zone *zone) 6456 { 6457 /* 6458 * per cpu subsystem is not up at this point. The following code 6459 * relies on the ability of the linker to provide the 6460 * offset of a (static) per cpu variable into the per cpu area. 6461 */ 6462 zone->pageset = &boot_pageset; 6463 zone->pageset_high = BOOT_PAGESET_HIGH; 6464 zone->pageset_batch = BOOT_PAGESET_BATCH; 6465 6466 if (populated_zone(zone)) 6467 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6468 zone->name, zone->present_pages, 6469 zone_batchsize(zone)); 6470 } 6471 6472 void __meminit init_currently_empty_zone(struct zone *zone, 6473 unsigned long zone_start_pfn, 6474 unsigned long size) 6475 { 6476 struct pglist_data *pgdat = zone->zone_pgdat; 6477 int zone_idx = zone_idx(zone) + 1; 6478 6479 if (zone_idx > pgdat->nr_zones) 6480 pgdat->nr_zones = zone_idx; 6481 6482 zone->zone_start_pfn = zone_start_pfn; 6483 6484 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6485 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6486 pgdat->node_id, 6487 (unsigned long)zone_idx(zone), 6488 zone_start_pfn, (zone_start_pfn + size)); 6489 6490 zone_init_free_lists(zone); 6491 zone->initialized = 1; 6492 } 6493 6494 /** 6495 * get_pfn_range_for_nid - Return the start and end page frames for a node 6496 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6497 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6498 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6499 * 6500 * It returns the start and end page frame of a node based on information 6501 * provided by memblock_set_node(). If called for a node 6502 * with no available memory, a warning is printed and the start and end 6503 * PFNs will be 0. 6504 */ 6505 void __init get_pfn_range_for_nid(unsigned int nid, 6506 unsigned long *start_pfn, unsigned long *end_pfn) 6507 { 6508 unsigned long this_start_pfn, this_end_pfn; 6509 int i; 6510 6511 *start_pfn = -1UL; 6512 *end_pfn = 0; 6513 6514 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6515 *start_pfn = min(*start_pfn, this_start_pfn); 6516 *end_pfn = max(*end_pfn, this_end_pfn); 6517 } 6518 6519 if (*start_pfn == -1UL) 6520 *start_pfn = 0; 6521 } 6522 6523 /* 6524 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6525 * assumption is made that zones within a node are ordered in monotonic 6526 * increasing memory addresses so that the "highest" populated zone is used 6527 */ 6528 static void __init find_usable_zone_for_movable(void) 6529 { 6530 int zone_index; 6531 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6532 if (zone_index == ZONE_MOVABLE) 6533 continue; 6534 6535 if (arch_zone_highest_possible_pfn[zone_index] > 6536 arch_zone_lowest_possible_pfn[zone_index]) 6537 break; 6538 } 6539 6540 VM_BUG_ON(zone_index == -1); 6541 movable_zone = zone_index; 6542 } 6543 6544 /* 6545 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6546 * because it is sized independent of architecture. Unlike the other zones, 6547 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6548 * in each node depending on the size of each node and how evenly kernelcore 6549 * is distributed. This helper function adjusts the zone ranges 6550 * provided by the architecture for a given node by using the end of the 6551 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6552 * zones within a node are in order of monotonic increases memory addresses 6553 */ 6554 static void __init adjust_zone_range_for_zone_movable(int nid, 6555 unsigned long zone_type, 6556 unsigned long node_start_pfn, 6557 unsigned long node_end_pfn, 6558 unsigned long *zone_start_pfn, 6559 unsigned long *zone_end_pfn) 6560 { 6561 /* Only adjust if ZONE_MOVABLE is on this node */ 6562 if (zone_movable_pfn[nid]) { 6563 /* Size ZONE_MOVABLE */ 6564 if (zone_type == ZONE_MOVABLE) { 6565 *zone_start_pfn = zone_movable_pfn[nid]; 6566 *zone_end_pfn = min(node_end_pfn, 6567 arch_zone_highest_possible_pfn[movable_zone]); 6568 6569 /* Adjust for ZONE_MOVABLE starting within this range */ 6570 } else if (!mirrored_kernelcore && 6571 *zone_start_pfn < zone_movable_pfn[nid] && 6572 *zone_end_pfn > zone_movable_pfn[nid]) { 6573 *zone_end_pfn = zone_movable_pfn[nid]; 6574 6575 /* Check if this whole range is within ZONE_MOVABLE */ 6576 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6577 *zone_start_pfn = *zone_end_pfn; 6578 } 6579 } 6580 6581 /* 6582 * Return the number of pages a zone spans in a node, including holes 6583 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6584 */ 6585 static unsigned long __init zone_spanned_pages_in_node(int nid, 6586 unsigned long zone_type, 6587 unsigned long node_start_pfn, 6588 unsigned long node_end_pfn, 6589 unsigned long *zone_start_pfn, 6590 unsigned long *zone_end_pfn) 6591 { 6592 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6593 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6594 /* When hotadd a new node from cpu_up(), the node should be empty */ 6595 if (!node_start_pfn && !node_end_pfn) 6596 return 0; 6597 6598 /* Get the start and end of the zone */ 6599 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6600 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6601 adjust_zone_range_for_zone_movable(nid, zone_type, 6602 node_start_pfn, node_end_pfn, 6603 zone_start_pfn, zone_end_pfn); 6604 6605 /* Check that this node has pages within the zone's required range */ 6606 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6607 return 0; 6608 6609 /* Move the zone boundaries inside the node if necessary */ 6610 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6611 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6612 6613 /* Return the spanned pages */ 6614 return *zone_end_pfn - *zone_start_pfn; 6615 } 6616 6617 /* 6618 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6619 * then all holes in the requested range will be accounted for. 6620 */ 6621 unsigned long __init __absent_pages_in_range(int nid, 6622 unsigned long range_start_pfn, 6623 unsigned long range_end_pfn) 6624 { 6625 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6626 unsigned long start_pfn, end_pfn; 6627 int i; 6628 6629 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6630 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6631 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6632 nr_absent -= end_pfn - start_pfn; 6633 } 6634 return nr_absent; 6635 } 6636 6637 /** 6638 * absent_pages_in_range - Return number of page frames in holes within a range 6639 * @start_pfn: The start PFN to start searching for holes 6640 * @end_pfn: The end PFN to stop searching for holes 6641 * 6642 * Return: the number of pages frames in memory holes within a range. 6643 */ 6644 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6645 unsigned long end_pfn) 6646 { 6647 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6648 } 6649 6650 /* Return the number of page frames in holes in a zone on a node */ 6651 static unsigned long __init zone_absent_pages_in_node(int nid, 6652 unsigned long zone_type, 6653 unsigned long node_start_pfn, 6654 unsigned long node_end_pfn) 6655 { 6656 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6657 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6658 unsigned long zone_start_pfn, zone_end_pfn; 6659 unsigned long nr_absent; 6660 6661 /* When hotadd a new node from cpu_up(), the node should be empty */ 6662 if (!node_start_pfn && !node_end_pfn) 6663 return 0; 6664 6665 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6666 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6667 6668 adjust_zone_range_for_zone_movable(nid, zone_type, 6669 node_start_pfn, node_end_pfn, 6670 &zone_start_pfn, &zone_end_pfn); 6671 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6672 6673 /* 6674 * ZONE_MOVABLE handling. 6675 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6676 * and vice versa. 6677 */ 6678 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6679 unsigned long start_pfn, end_pfn; 6680 struct memblock_region *r; 6681 6682 for_each_mem_region(r) { 6683 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6684 zone_start_pfn, zone_end_pfn); 6685 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6686 zone_start_pfn, zone_end_pfn); 6687 6688 if (zone_type == ZONE_MOVABLE && 6689 memblock_is_mirror(r)) 6690 nr_absent += end_pfn - start_pfn; 6691 6692 if (zone_type == ZONE_NORMAL && 6693 !memblock_is_mirror(r)) 6694 nr_absent += end_pfn - start_pfn; 6695 } 6696 } 6697 6698 return nr_absent; 6699 } 6700 6701 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6702 unsigned long node_start_pfn, 6703 unsigned long node_end_pfn) 6704 { 6705 unsigned long realtotalpages = 0, totalpages = 0; 6706 enum zone_type i; 6707 6708 for (i = 0; i < MAX_NR_ZONES; i++) { 6709 struct zone *zone = pgdat->node_zones + i; 6710 unsigned long zone_start_pfn, zone_end_pfn; 6711 unsigned long spanned, absent; 6712 unsigned long size, real_size; 6713 6714 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6715 node_start_pfn, 6716 node_end_pfn, 6717 &zone_start_pfn, 6718 &zone_end_pfn); 6719 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6720 node_start_pfn, 6721 node_end_pfn); 6722 6723 size = spanned; 6724 real_size = size - absent; 6725 6726 if (size) 6727 zone->zone_start_pfn = zone_start_pfn; 6728 else 6729 zone->zone_start_pfn = 0; 6730 zone->spanned_pages = size; 6731 zone->present_pages = real_size; 6732 6733 totalpages += size; 6734 realtotalpages += real_size; 6735 } 6736 6737 pgdat->node_spanned_pages = totalpages; 6738 pgdat->node_present_pages = realtotalpages; 6739 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6740 realtotalpages); 6741 } 6742 6743 #ifndef CONFIG_SPARSEMEM 6744 /* 6745 * Calculate the size of the zone->blockflags rounded to an unsigned long 6746 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6747 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6748 * round what is now in bits to nearest long in bits, then return it in 6749 * bytes. 6750 */ 6751 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6752 { 6753 unsigned long usemapsize; 6754 6755 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6756 usemapsize = roundup(zonesize, pageblock_nr_pages); 6757 usemapsize = usemapsize >> pageblock_order; 6758 usemapsize *= NR_PAGEBLOCK_BITS; 6759 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6760 6761 return usemapsize / 8; 6762 } 6763 6764 static void __ref setup_usemap(struct pglist_data *pgdat, 6765 struct zone *zone, 6766 unsigned long zone_start_pfn, 6767 unsigned long zonesize) 6768 { 6769 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6770 zone->pageblock_flags = NULL; 6771 if (usemapsize) { 6772 zone->pageblock_flags = 6773 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6774 pgdat->node_id); 6775 if (!zone->pageblock_flags) 6776 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6777 usemapsize, zone->name, pgdat->node_id); 6778 } 6779 } 6780 #else 6781 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6782 unsigned long zone_start_pfn, unsigned long zonesize) {} 6783 #endif /* CONFIG_SPARSEMEM */ 6784 6785 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6786 6787 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6788 void __init set_pageblock_order(void) 6789 { 6790 unsigned int order; 6791 6792 /* Check that pageblock_nr_pages has not already been setup */ 6793 if (pageblock_order) 6794 return; 6795 6796 if (HPAGE_SHIFT > PAGE_SHIFT) 6797 order = HUGETLB_PAGE_ORDER; 6798 else 6799 order = MAX_ORDER - 1; 6800 6801 /* 6802 * Assume the largest contiguous order of interest is a huge page. 6803 * This value may be variable depending on boot parameters on IA64 and 6804 * powerpc. 6805 */ 6806 pageblock_order = order; 6807 } 6808 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6809 6810 /* 6811 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6812 * is unused as pageblock_order is set at compile-time. See 6813 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6814 * the kernel config 6815 */ 6816 void __init set_pageblock_order(void) 6817 { 6818 } 6819 6820 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6821 6822 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6823 unsigned long present_pages) 6824 { 6825 unsigned long pages = spanned_pages; 6826 6827 /* 6828 * Provide a more accurate estimation if there are holes within 6829 * the zone and SPARSEMEM is in use. If there are holes within the 6830 * zone, each populated memory region may cost us one or two extra 6831 * memmap pages due to alignment because memmap pages for each 6832 * populated regions may not be naturally aligned on page boundary. 6833 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6834 */ 6835 if (spanned_pages > present_pages + (present_pages >> 4) && 6836 IS_ENABLED(CONFIG_SPARSEMEM)) 6837 pages = present_pages; 6838 6839 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6840 } 6841 6842 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6843 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6844 { 6845 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6846 6847 spin_lock_init(&ds_queue->split_queue_lock); 6848 INIT_LIST_HEAD(&ds_queue->split_queue); 6849 ds_queue->split_queue_len = 0; 6850 } 6851 #else 6852 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6853 #endif 6854 6855 #ifdef CONFIG_COMPACTION 6856 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6857 { 6858 init_waitqueue_head(&pgdat->kcompactd_wait); 6859 } 6860 #else 6861 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6862 #endif 6863 6864 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6865 { 6866 pgdat_resize_init(pgdat); 6867 6868 pgdat_init_split_queue(pgdat); 6869 pgdat_init_kcompactd(pgdat); 6870 6871 init_waitqueue_head(&pgdat->kswapd_wait); 6872 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6873 6874 pgdat_page_ext_init(pgdat); 6875 lruvec_init(&pgdat->__lruvec); 6876 } 6877 6878 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6879 unsigned long remaining_pages) 6880 { 6881 atomic_long_set(&zone->managed_pages, remaining_pages); 6882 zone_set_nid(zone, nid); 6883 zone->name = zone_names[idx]; 6884 zone->zone_pgdat = NODE_DATA(nid); 6885 spin_lock_init(&zone->lock); 6886 zone_seqlock_init(zone); 6887 zone_pcp_init(zone); 6888 } 6889 6890 /* 6891 * Set up the zone data structures 6892 * - init pgdat internals 6893 * - init all zones belonging to this node 6894 * 6895 * NOTE: this function is only called during memory hotplug 6896 */ 6897 #ifdef CONFIG_MEMORY_HOTPLUG 6898 void __ref free_area_init_core_hotplug(int nid) 6899 { 6900 enum zone_type z; 6901 pg_data_t *pgdat = NODE_DATA(nid); 6902 6903 pgdat_init_internals(pgdat); 6904 for (z = 0; z < MAX_NR_ZONES; z++) 6905 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6906 } 6907 #endif 6908 6909 /* 6910 * Set up the zone data structures: 6911 * - mark all pages reserved 6912 * - mark all memory queues empty 6913 * - clear the memory bitmaps 6914 * 6915 * NOTE: pgdat should get zeroed by caller. 6916 * NOTE: this function is only called during early init. 6917 */ 6918 static void __init free_area_init_core(struct pglist_data *pgdat) 6919 { 6920 enum zone_type j; 6921 int nid = pgdat->node_id; 6922 6923 pgdat_init_internals(pgdat); 6924 pgdat->per_cpu_nodestats = &boot_nodestats; 6925 6926 for (j = 0; j < MAX_NR_ZONES; j++) { 6927 struct zone *zone = pgdat->node_zones + j; 6928 unsigned long size, freesize, memmap_pages; 6929 unsigned long zone_start_pfn = zone->zone_start_pfn; 6930 6931 size = zone->spanned_pages; 6932 freesize = zone->present_pages; 6933 6934 /* 6935 * Adjust freesize so that it accounts for how much memory 6936 * is used by this zone for memmap. This affects the watermark 6937 * and per-cpu initialisations 6938 */ 6939 memmap_pages = calc_memmap_size(size, freesize); 6940 if (!is_highmem_idx(j)) { 6941 if (freesize >= memmap_pages) { 6942 freesize -= memmap_pages; 6943 if (memmap_pages) 6944 printk(KERN_DEBUG 6945 " %s zone: %lu pages used for memmap\n", 6946 zone_names[j], memmap_pages); 6947 } else 6948 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6949 zone_names[j], memmap_pages, freesize); 6950 } 6951 6952 /* Account for reserved pages */ 6953 if (j == 0 && freesize > dma_reserve) { 6954 freesize -= dma_reserve; 6955 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6956 zone_names[0], dma_reserve); 6957 } 6958 6959 if (!is_highmem_idx(j)) 6960 nr_kernel_pages += freesize; 6961 /* Charge for highmem memmap if there are enough kernel pages */ 6962 else if (nr_kernel_pages > memmap_pages * 2) 6963 nr_kernel_pages -= memmap_pages; 6964 nr_all_pages += freesize; 6965 6966 /* 6967 * Set an approximate value for lowmem here, it will be adjusted 6968 * when the bootmem allocator frees pages into the buddy system. 6969 * And all highmem pages will be managed by the buddy system. 6970 */ 6971 zone_init_internals(zone, j, nid, freesize); 6972 6973 if (!size) 6974 continue; 6975 6976 set_pageblock_order(); 6977 setup_usemap(pgdat, zone, zone_start_pfn, size); 6978 init_currently_empty_zone(zone, zone_start_pfn, size); 6979 memmap_init(size, nid, j, zone_start_pfn); 6980 } 6981 } 6982 6983 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6984 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6985 { 6986 unsigned long __maybe_unused start = 0; 6987 unsigned long __maybe_unused offset = 0; 6988 6989 /* Skip empty nodes */ 6990 if (!pgdat->node_spanned_pages) 6991 return; 6992 6993 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6994 offset = pgdat->node_start_pfn - start; 6995 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6996 if (!pgdat->node_mem_map) { 6997 unsigned long size, end; 6998 struct page *map; 6999 7000 /* 7001 * The zone's endpoints aren't required to be MAX_ORDER 7002 * aligned but the node_mem_map endpoints must be in order 7003 * for the buddy allocator to function correctly. 7004 */ 7005 end = pgdat_end_pfn(pgdat); 7006 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7007 size = (end - start) * sizeof(struct page); 7008 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7009 pgdat->node_id); 7010 if (!map) 7011 panic("Failed to allocate %ld bytes for node %d memory map\n", 7012 size, pgdat->node_id); 7013 pgdat->node_mem_map = map + offset; 7014 } 7015 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7016 __func__, pgdat->node_id, (unsigned long)pgdat, 7017 (unsigned long)pgdat->node_mem_map); 7018 #ifndef CONFIG_NEED_MULTIPLE_NODES 7019 /* 7020 * With no DISCONTIG, the global mem_map is just set as node 0's 7021 */ 7022 if (pgdat == NODE_DATA(0)) { 7023 mem_map = NODE_DATA(0)->node_mem_map; 7024 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7025 mem_map -= offset; 7026 } 7027 #endif 7028 } 7029 #else 7030 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7031 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 7032 7033 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7034 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7035 { 7036 pgdat->first_deferred_pfn = ULONG_MAX; 7037 } 7038 #else 7039 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7040 #endif 7041 7042 static void __init free_area_init_node(int nid) 7043 { 7044 pg_data_t *pgdat = NODE_DATA(nid); 7045 unsigned long start_pfn = 0; 7046 unsigned long end_pfn = 0; 7047 7048 /* pg_data_t should be reset to zero when it's allocated */ 7049 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7050 7051 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7052 7053 pgdat->node_id = nid; 7054 pgdat->node_start_pfn = start_pfn; 7055 pgdat->per_cpu_nodestats = NULL; 7056 7057 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7058 (u64)start_pfn << PAGE_SHIFT, 7059 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7060 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7061 7062 alloc_node_mem_map(pgdat); 7063 pgdat_set_deferred_range(pgdat); 7064 7065 free_area_init_core(pgdat); 7066 } 7067 7068 void __init free_area_init_memoryless_node(int nid) 7069 { 7070 free_area_init_node(nid); 7071 } 7072 7073 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 7074 /* 7075 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 7076 * PageReserved(). Return the number of struct pages that were initialized. 7077 */ 7078 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 7079 { 7080 unsigned long pfn; 7081 u64 pgcnt = 0; 7082 7083 for (pfn = spfn; pfn < epfn; pfn++) { 7084 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 7085 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 7086 + pageblock_nr_pages - 1; 7087 continue; 7088 } 7089 /* 7090 * Use a fake node/zone (0) for now. Some of these pages 7091 * (in memblock.reserved but not in memblock.memory) will 7092 * get re-initialized via reserve_bootmem_region() later. 7093 */ 7094 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 7095 __SetPageReserved(pfn_to_page(pfn)); 7096 pgcnt++; 7097 } 7098 7099 return pgcnt; 7100 } 7101 7102 /* 7103 * Only struct pages that are backed by physical memory are zeroed and 7104 * initialized by going through __init_single_page(). But, there are some 7105 * struct pages which are reserved in memblock allocator and their fields 7106 * may be accessed (for example page_to_pfn() on some configuration accesses 7107 * flags). We must explicitly initialize those struct pages. 7108 * 7109 * This function also addresses a similar issue where struct pages are left 7110 * uninitialized because the physical address range is not covered by 7111 * memblock.memory or memblock.reserved. That could happen when memblock 7112 * layout is manually configured via memmap=, or when the highest physical 7113 * address (max_pfn) does not end on a section boundary. 7114 */ 7115 static void __init init_unavailable_mem(void) 7116 { 7117 phys_addr_t start, end; 7118 u64 i, pgcnt; 7119 phys_addr_t next = 0; 7120 7121 /* 7122 * Loop through unavailable ranges not covered by memblock.memory. 7123 */ 7124 pgcnt = 0; 7125 for_each_mem_range(i, &start, &end) { 7126 if (next < start) 7127 pgcnt += init_unavailable_range(PFN_DOWN(next), 7128 PFN_UP(start)); 7129 next = end; 7130 } 7131 7132 /* 7133 * Early sections always have a fully populated memmap for the whole 7134 * section - see pfn_valid(). If the last section has holes at the 7135 * end and that section is marked "online", the memmap will be 7136 * considered initialized. Make sure that memmap has a well defined 7137 * state. 7138 */ 7139 pgcnt += init_unavailable_range(PFN_DOWN(next), 7140 round_up(max_pfn, PAGES_PER_SECTION)); 7141 7142 /* 7143 * Struct pages that do not have backing memory. This could be because 7144 * firmware is using some of this memory, or for some other reasons. 7145 */ 7146 if (pgcnt) 7147 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7148 } 7149 #else 7150 static inline void __init init_unavailable_mem(void) 7151 { 7152 } 7153 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7154 7155 #if MAX_NUMNODES > 1 7156 /* 7157 * Figure out the number of possible node ids. 7158 */ 7159 void __init setup_nr_node_ids(void) 7160 { 7161 unsigned int highest; 7162 7163 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7164 nr_node_ids = highest + 1; 7165 } 7166 #endif 7167 7168 /** 7169 * node_map_pfn_alignment - determine the maximum internode alignment 7170 * 7171 * This function should be called after node map is populated and sorted. 7172 * It calculates the maximum power of two alignment which can distinguish 7173 * all the nodes. 7174 * 7175 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7176 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7177 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7178 * shifted, 1GiB is enough and this function will indicate so. 7179 * 7180 * This is used to test whether pfn -> nid mapping of the chosen memory 7181 * model has fine enough granularity to avoid incorrect mapping for the 7182 * populated node map. 7183 * 7184 * Return: the determined alignment in pfn's. 0 if there is no alignment 7185 * requirement (single node). 7186 */ 7187 unsigned long __init node_map_pfn_alignment(void) 7188 { 7189 unsigned long accl_mask = 0, last_end = 0; 7190 unsigned long start, end, mask; 7191 int last_nid = NUMA_NO_NODE; 7192 int i, nid; 7193 7194 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7195 if (!start || last_nid < 0 || last_nid == nid) { 7196 last_nid = nid; 7197 last_end = end; 7198 continue; 7199 } 7200 7201 /* 7202 * Start with a mask granular enough to pin-point to the 7203 * start pfn and tick off bits one-by-one until it becomes 7204 * too coarse to separate the current node from the last. 7205 */ 7206 mask = ~((1 << __ffs(start)) - 1); 7207 while (mask && last_end <= (start & (mask << 1))) 7208 mask <<= 1; 7209 7210 /* accumulate all internode masks */ 7211 accl_mask |= mask; 7212 } 7213 7214 /* convert mask to number of pages */ 7215 return ~accl_mask + 1; 7216 } 7217 7218 /** 7219 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7220 * 7221 * Return: the minimum PFN based on information provided via 7222 * memblock_set_node(). 7223 */ 7224 unsigned long __init find_min_pfn_with_active_regions(void) 7225 { 7226 return PHYS_PFN(memblock_start_of_DRAM()); 7227 } 7228 7229 /* 7230 * early_calculate_totalpages() 7231 * Sum pages in active regions for movable zone. 7232 * Populate N_MEMORY for calculating usable_nodes. 7233 */ 7234 static unsigned long __init early_calculate_totalpages(void) 7235 { 7236 unsigned long totalpages = 0; 7237 unsigned long start_pfn, end_pfn; 7238 int i, nid; 7239 7240 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7241 unsigned long pages = end_pfn - start_pfn; 7242 7243 totalpages += pages; 7244 if (pages) 7245 node_set_state(nid, N_MEMORY); 7246 } 7247 return totalpages; 7248 } 7249 7250 /* 7251 * Find the PFN the Movable zone begins in each node. Kernel memory 7252 * is spread evenly between nodes as long as the nodes have enough 7253 * memory. When they don't, some nodes will have more kernelcore than 7254 * others 7255 */ 7256 static void __init find_zone_movable_pfns_for_nodes(void) 7257 { 7258 int i, nid; 7259 unsigned long usable_startpfn; 7260 unsigned long kernelcore_node, kernelcore_remaining; 7261 /* save the state before borrow the nodemask */ 7262 nodemask_t saved_node_state = node_states[N_MEMORY]; 7263 unsigned long totalpages = early_calculate_totalpages(); 7264 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7265 struct memblock_region *r; 7266 7267 /* Need to find movable_zone earlier when movable_node is specified. */ 7268 find_usable_zone_for_movable(); 7269 7270 /* 7271 * If movable_node is specified, ignore kernelcore and movablecore 7272 * options. 7273 */ 7274 if (movable_node_is_enabled()) { 7275 for_each_mem_region(r) { 7276 if (!memblock_is_hotpluggable(r)) 7277 continue; 7278 7279 nid = memblock_get_region_node(r); 7280 7281 usable_startpfn = PFN_DOWN(r->base); 7282 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7283 min(usable_startpfn, zone_movable_pfn[nid]) : 7284 usable_startpfn; 7285 } 7286 7287 goto out2; 7288 } 7289 7290 /* 7291 * If kernelcore=mirror is specified, ignore movablecore option 7292 */ 7293 if (mirrored_kernelcore) { 7294 bool mem_below_4gb_not_mirrored = false; 7295 7296 for_each_mem_region(r) { 7297 if (memblock_is_mirror(r)) 7298 continue; 7299 7300 nid = memblock_get_region_node(r); 7301 7302 usable_startpfn = memblock_region_memory_base_pfn(r); 7303 7304 if (usable_startpfn < 0x100000) { 7305 mem_below_4gb_not_mirrored = true; 7306 continue; 7307 } 7308 7309 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7310 min(usable_startpfn, zone_movable_pfn[nid]) : 7311 usable_startpfn; 7312 } 7313 7314 if (mem_below_4gb_not_mirrored) 7315 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7316 7317 goto out2; 7318 } 7319 7320 /* 7321 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7322 * amount of necessary memory. 7323 */ 7324 if (required_kernelcore_percent) 7325 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7326 10000UL; 7327 if (required_movablecore_percent) 7328 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7329 10000UL; 7330 7331 /* 7332 * If movablecore= was specified, calculate what size of 7333 * kernelcore that corresponds so that memory usable for 7334 * any allocation type is evenly spread. If both kernelcore 7335 * and movablecore are specified, then the value of kernelcore 7336 * will be used for required_kernelcore if it's greater than 7337 * what movablecore would have allowed. 7338 */ 7339 if (required_movablecore) { 7340 unsigned long corepages; 7341 7342 /* 7343 * Round-up so that ZONE_MOVABLE is at least as large as what 7344 * was requested by the user 7345 */ 7346 required_movablecore = 7347 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7348 required_movablecore = min(totalpages, required_movablecore); 7349 corepages = totalpages - required_movablecore; 7350 7351 required_kernelcore = max(required_kernelcore, corepages); 7352 } 7353 7354 /* 7355 * If kernelcore was not specified or kernelcore size is larger 7356 * than totalpages, there is no ZONE_MOVABLE. 7357 */ 7358 if (!required_kernelcore || required_kernelcore >= totalpages) 7359 goto out; 7360 7361 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7362 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7363 7364 restart: 7365 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7366 kernelcore_node = required_kernelcore / usable_nodes; 7367 for_each_node_state(nid, N_MEMORY) { 7368 unsigned long start_pfn, end_pfn; 7369 7370 /* 7371 * Recalculate kernelcore_node if the division per node 7372 * now exceeds what is necessary to satisfy the requested 7373 * amount of memory for the kernel 7374 */ 7375 if (required_kernelcore < kernelcore_node) 7376 kernelcore_node = required_kernelcore / usable_nodes; 7377 7378 /* 7379 * As the map is walked, we track how much memory is usable 7380 * by the kernel using kernelcore_remaining. When it is 7381 * 0, the rest of the node is usable by ZONE_MOVABLE 7382 */ 7383 kernelcore_remaining = kernelcore_node; 7384 7385 /* Go through each range of PFNs within this node */ 7386 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7387 unsigned long size_pages; 7388 7389 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7390 if (start_pfn >= end_pfn) 7391 continue; 7392 7393 /* Account for what is only usable for kernelcore */ 7394 if (start_pfn < usable_startpfn) { 7395 unsigned long kernel_pages; 7396 kernel_pages = min(end_pfn, usable_startpfn) 7397 - start_pfn; 7398 7399 kernelcore_remaining -= min(kernel_pages, 7400 kernelcore_remaining); 7401 required_kernelcore -= min(kernel_pages, 7402 required_kernelcore); 7403 7404 /* Continue if range is now fully accounted */ 7405 if (end_pfn <= usable_startpfn) { 7406 7407 /* 7408 * Push zone_movable_pfn to the end so 7409 * that if we have to rebalance 7410 * kernelcore across nodes, we will 7411 * not double account here 7412 */ 7413 zone_movable_pfn[nid] = end_pfn; 7414 continue; 7415 } 7416 start_pfn = usable_startpfn; 7417 } 7418 7419 /* 7420 * The usable PFN range for ZONE_MOVABLE is from 7421 * start_pfn->end_pfn. Calculate size_pages as the 7422 * number of pages used as kernelcore 7423 */ 7424 size_pages = end_pfn - start_pfn; 7425 if (size_pages > kernelcore_remaining) 7426 size_pages = kernelcore_remaining; 7427 zone_movable_pfn[nid] = start_pfn + size_pages; 7428 7429 /* 7430 * Some kernelcore has been met, update counts and 7431 * break if the kernelcore for this node has been 7432 * satisfied 7433 */ 7434 required_kernelcore -= min(required_kernelcore, 7435 size_pages); 7436 kernelcore_remaining -= size_pages; 7437 if (!kernelcore_remaining) 7438 break; 7439 } 7440 } 7441 7442 /* 7443 * If there is still required_kernelcore, we do another pass with one 7444 * less node in the count. This will push zone_movable_pfn[nid] further 7445 * along on the nodes that still have memory until kernelcore is 7446 * satisfied 7447 */ 7448 usable_nodes--; 7449 if (usable_nodes && required_kernelcore > usable_nodes) 7450 goto restart; 7451 7452 out2: 7453 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7454 for (nid = 0; nid < MAX_NUMNODES; nid++) 7455 zone_movable_pfn[nid] = 7456 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7457 7458 out: 7459 /* restore the node_state */ 7460 node_states[N_MEMORY] = saved_node_state; 7461 } 7462 7463 /* Any regular or high memory on that node ? */ 7464 static void check_for_memory(pg_data_t *pgdat, int nid) 7465 { 7466 enum zone_type zone_type; 7467 7468 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7469 struct zone *zone = &pgdat->node_zones[zone_type]; 7470 if (populated_zone(zone)) { 7471 if (IS_ENABLED(CONFIG_HIGHMEM)) 7472 node_set_state(nid, N_HIGH_MEMORY); 7473 if (zone_type <= ZONE_NORMAL) 7474 node_set_state(nid, N_NORMAL_MEMORY); 7475 break; 7476 } 7477 } 7478 } 7479 7480 /* 7481 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7482 * such cases we allow max_zone_pfn sorted in the descending order 7483 */ 7484 bool __weak arch_has_descending_max_zone_pfns(void) 7485 { 7486 return false; 7487 } 7488 7489 /** 7490 * free_area_init - Initialise all pg_data_t and zone data 7491 * @max_zone_pfn: an array of max PFNs for each zone 7492 * 7493 * This will call free_area_init_node() for each active node in the system. 7494 * Using the page ranges provided by memblock_set_node(), the size of each 7495 * zone in each node and their holes is calculated. If the maximum PFN 7496 * between two adjacent zones match, it is assumed that the zone is empty. 7497 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7498 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7499 * starts where the previous one ended. For example, ZONE_DMA32 starts 7500 * at arch_max_dma_pfn. 7501 */ 7502 void __init free_area_init(unsigned long *max_zone_pfn) 7503 { 7504 unsigned long start_pfn, end_pfn; 7505 int i, nid, zone; 7506 bool descending; 7507 7508 /* Record where the zone boundaries are */ 7509 memset(arch_zone_lowest_possible_pfn, 0, 7510 sizeof(arch_zone_lowest_possible_pfn)); 7511 memset(arch_zone_highest_possible_pfn, 0, 7512 sizeof(arch_zone_highest_possible_pfn)); 7513 7514 start_pfn = find_min_pfn_with_active_regions(); 7515 descending = arch_has_descending_max_zone_pfns(); 7516 7517 for (i = 0; i < MAX_NR_ZONES; i++) { 7518 if (descending) 7519 zone = MAX_NR_ZONES - i - 1; 7520 else 7521 zone = i; 7522 7523 if (zone == ZONE_MOVABLE) 7524 continue; 7525 7526 end_pfn = max(max_zone_pfn[zone], start_pfn); 7527 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7528 arch_zone_highest_possible_pfn[zone] = end_pfn; 7529 7530 start_pfn = end_pfn; 7531 } 7532 7533 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7534 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7535 find_zone_movable_pfns_for_nodes(); 7536 7537 /* Print out the zone ranges */ 7538 pr_info("Zone ranges:\n"); 7539 for (i = 0; i < MAX_NR_ZONES; i++) { 7540 if (i == ZONE_MOVABLE) 7541 continue; 7542 pr_info(" %-8s ", zone_names[i]); 7543 if (arch_zone_lowest_possible_pfn[i] == 7544 arch_zone_highest_possible_pfn[i]) 7545 pr_cont("empty\n"); 7546 else 7547 pr_cont("[mem %#018Lx-%#018Lx]\n", 7548 (u64)arch_zone_lowest_possible_pfn[i] 7549 << PAGE_SHIFT, 7550 ((u64)arch_zone_highest_possible_pfn[i] 7551 << PAGE_SHIFT) - 1); 7552 } 7553 7554 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7555 pr_info("Movable zone start for each node\n"); 7556 for (i = 0; i < MAX_NUMNODES; i++) { 7557 if (zone_movable_pfn[i]) 7558 pr_info(" Node %d: %#018Lx\n", i, 7559 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7560 } 7561 7562 /* 7563 * Print out the early node map, and initialize the 7564 * subsection-map relative to active online memory ranges to 7565 * enable future "sub-section" extensions of the memory map. 7566 */ 7567 pr_info("Early memory node ranges\n"); 7568 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7569 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7570 (u64)start_pfn << PAGE_SHIFT, 7571 ((u64)end_pfn << PAGE_SHIFT) - 1); 7572 subsection_map_init(start_pfn, end_pfn - start_pfn); 7573 } 7574 7575 /* Initialise every node */ 7576 mminit_verify_pageflags_layout(); 7577 setup_nr_node_ids(); 7578 init_unavailable_mem(); 7579 for_each_online_node(nid) { 7580 pg_data_t *pgdat = NODE_DATA(nid); 7581 free_area_init_node(nid); 7582 7583 /* Any memory on that node */ 7584 if (pgdat->node_present_pages) 7585 node_set_state(nid, N_MEMORY); 7586 check_for_memory(pgdat, nid); 7587 } 7588 } 7589 7590 static int __init cmdline_parse_core(char *p, unsigned long *core, 7591 unsigned long *percent) 7592 { 7593 unsigned long long coremem; 7594 char *endptr; 7595 7596 if (!p) 7597 return -EINVAL; 7598 7599 /* Value may be a percentage of total memory, otherwise bytes */ 7600 coremem = simple_strtoull(p, &endptr, 0); 7601 if (*endptr == '%') { 7602 /* Paranoid check for percent values greater than 100 */ 7603 WARN_ON(coremem > 100); 7604 7605 *percent = coremem; 7606 } else { 7607 coremem = memparse(p, &p); 7608 /* Paranoid check that UL is enough for the coremem value */ 7609 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7610 7611 *core = coremem >> PAGE_SHIFT; 7612 *percent = 0UL; 7613 } 7614 return 0; 7615 } 7616 7617 /* 7618 * kernelcore=size sets the amount of memory for use for allocations that 7619 * cannot be reclaimed or migrated. 7620 */ 7621 static int __init cmdline_parse_kernelcore(char *p) 7622 { 7623 /* parse kernelcore=mirror */ 7624 if (parse_option_str(p, "mirror")) { 7625 mirrored_kernelcore = true; 7626 return 0; 7627 } 7628 7629 return cmdline_parse_core(p, &required_kernelcore, 7630 &required_kernelcore_percent); 7631 } 7632 7633 /* 7634 * movablecore=size sets the amount of memory for use for allocations that 7635 * can be reclaimed or migrated. 7636 */ 7637 static int __init cmdline_parse_movablecore(char *p) 7638 { 7639 return cmdline_parse_core(p, &required_movablecore, 7640 &required_movablecore_percent); 7641 } 7642 7643 early_param("kernelcore", cmdline_parse_kernelcore); 7644 early_param("movablecore", cmdline_parse_movablecore); 7645 7646 void adjust_managed_page_count(struct page *page, long count) 7647 { 7648 atomic_long_add(count, &page_zone(page)->managed_pages); 7649 totalram_pages_add(count); 7650 #ifdef CONFIG_HIGHMEM 7651 if (PageHighMem(page)) 7652 totalhigh_pages_add(count); 7653 #endif 7654 } 7655 EXPORT_SYMBOL(adjust_managed_page_count); 7656 7657 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7658 { 7659 void *pos; 7660 unsigned long pages = 0; 7661 7662 start = (void *)PAGE_ALIGN((unsigned long)start); 7663 end = (void *)((unsigned long)end & PAGE_MASK); 7664 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7665 struct page *page = virt_to_page(pos); 7666 void *direct_map_addr; 7667 7668 /* 7669 * 'direct_map_addr' might be different from 'pos' 7670 * because some architectures' virt_to_page() 7671 * work with aliases. Getting the direct map 7672 * address ensures that we get a _writeable_ 7673 * alias for the memset(). 7674 */ 7675 direct_map_addr = page_address(page); 7676 /* 7677 * Perform a kasan-unchecked memset() since this memory 7678 * has not been initialized. 7679 */ 7680 direct_map_addr = kasan_reset_tag(direct_map_addr); 7681 if ((unsigned int)poison <= 0xFF) 7682 memset(direct_map_addr, poison, PAGE_SIZE); 7683 7684 free_reserved_page(page); 7685 } 7686 7687 if (pages && s) 7688 pr_info("Freeing %s memory: %ldK\n", 7689 s, pages << (PAGE_SHIFT - 10)); 7690 7691 return pages; 7692 } 7693 7694 #ifdef CONFIG_HIGHMEM 7695 void free_highmem_page(struct page *page) 7696 { 7697 __free_reserved_page(page); 7698 totalram_pages_inc(); 7699 atomic_long_inc(&page_zone(page)->managed_pages); 7700 totalhigh_pages_inc(); 7701 } 7702 #endif 7703 7704 7705 void __init mem_init_print_info(const char *str) 7706 { 7707 unsigned long physpages, codesize, datasize, rosize, bss_size; 7708 unsigned long init_code_size, init_data_size; 7709 7710 physpages = get_num_physpages(); 7711 codesize = _etext - _stext; 7712 datasize = _edata - _sdata; 7713 rosize = __end_rodata - __start_rodata; 7714 bss_size = __bss_stop - __bss_start; 7715 init_data_size = __init_end - __init_begin; 7716 init_code_size = _einittext - _sinittext; 7717 7718 /* 7719 * Detect special cases and adjust section sizes accordingly: 7720 * 1) .init.* may be embedded into .data sections 7721 * 2) .init.text.* may be out of [__init_begin, __init_end], 7722 * please refer to arch/tile/kernel/vmlinux.lds.S. 7723 * 3) .rodata.* may be embedded into .text or .data sections. 7724 */ 7725 #define adj_init_size(start, end, size, pos, adj) \ 7726 do { \ 7727 if (start <= pos && pos < end && size > adj) \ 7728 size -= adj; \ 7729 } while (0) 7730 7731 adj_init_size(__init_begin, __init_end, init_data_size, 7732 _sinittext, init_code_size); 7733 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7734 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7735 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7736 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7737 7738 #undef adj_init_size 7739 7740 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7741 #ifdef CONFIG_HIGHMEM 7742 ", %luK highmem" 7743 #endif 7744 "%s%s)\n", 7745 nr_free_pages() << (PAGE_SHIFT - 10), 7746 physpages << (PAGE_SHIFT - 10), 7747 codesize >> 10, datasize >> 10, rosize >> 10, 7748 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7749 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7750 totalcma_pages << (PAGE_SHIFT - 10), 7751 #ifdef CONFIG_HIGHMEM 7752 totalhigh_pages() << (PAGE_SHIFT - 10), 7753 #endif 7754 str ? ", " : "", str ? str : ""); 7755 } 7756 7757 /** 7758 * set_dma_reserve - set the specified number of pages reserved in the first zone 7759 * @new_dma_reserve: The number of pages to mark reserved 7760 * 7761 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7762 * In the DMA zone, a significant percentage may be consumed by kernel image 7763 * and other unfreeable allocations which can skew the watermarks badly. This 7764 * function may optionally be used to account for unfreeable pages in the 7765 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7766 * smaller per-cpu batchsize. 7767 */ 7768 void __init set_dma_reserve(unsigned long new_dma_reserve) 7769 { 7770 dma_reserve = new_dma_reserve; 7771 } 7772 7773 static int page_alloc_cpu_dead(unsigned int cpu) 7774 { 7775 7776 lru_add_drain_cpu(cpu); 7777 drain_pages(cpu); 7778 7779 /* 7780 * Spill the event counters of the dead processor 7781 * into the current processors event counters. 7782 * This artificially elevates the count of the current 7783 * processor. 7784 */ 7785 vm_events_fold_cpu(cpu); 7786 7787 /* 7788 * Zero the differential counters of the dead processor 7789 * so that the vm statistics are consistent. 7790 * 7791 * This is only okay since the processor is dead and cannot 7792 * race with what we are doing. 7793 */ 7794 cpu_vm_stats_fold(cpu); 7795 return 0; 7796 } 7797 7798 #ifdef CONFIG_NUMA 7799 int hashdist = HASHDIST_DEFAULT; 7800 7801 static int __init set_hashdist(char *str) 7802 { 7803 if (!str) 7804 return 0; 7805 hashdist = simple_strtoul(str, &str, 0); 7806 return 1; 7807 } 7808 __setup("hashdist=", set_hashdist); 7809 #endif 7810 7811 void __init page_alloc_init(void) 7812 { 7813 int ret; 7814 7815 #ifdef CONFIG_NUMA 7816 if (num_node_state(N_MEMORY) == 1) 7817 hashdist = 0; 7818 #endif 7819 7820 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7821 "mm/page_alloc:dead", NULL, 7822 page_alloc_cpu_dead); 7823 WARN_ON(ret < 0); 7824 } 7825 7826 /* 7827 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7828 * or min_free_kbytes changes. 7829 */ 7830 static void calculate_totalreserve_pages(void) 7831 { 7832 struct pglist_data *pgdat; 7833 unsigned long reserve_pages = 0; 7834 enum zone_type i, j; 7835 7836 for_each_online_pgdat(pgdat) { 7837 7838 pgdat->totalreserve_pages = 0; 7839 7840 for (i = 0; i < MAX_NR_ZONES; i++) { 7841 struct zone *zone = pgdat->node_zones + i; 7842 long max = 0; 7843 unsigned long managed_pages = zone_managed_pages(zone); 7844 7845 /* Find valid and maximum lowmem_reserve in the zone */ 7846 for (j = i; j < MAX_NR_ZONES; j++) { 7847 if (zone->lowmem_reserve[j] > max) 7848 max = zone->lowmem_reserve[j]; 7849 } 7850 7851 /* we treat the high watermark as reserved pages. */ 7852 max += high_wmark_pages(zone); 7853 7854 if (max > managed_pages) 7855 max = managed_pages; 7856 7857 pgdat->totalreserve_pages += max; 7858 7859 reserve_pages += max; 7860 } 7861 } 7862 totalreserve_pages = reserve_pages; 7863 } 7864 7865 /* 7866 * setup_per_zone_lowmem_reserve - called whenever 7867 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7868 * has a correct pages reserved value, so an adequate number of 7869 * pages are left in the zone after a successful __alloc_pages(). 7870 */ 7871 static void setup_per_zone_lowmem_reserve(void) 7872 { 7873 struct pglist_data *pgdat; 7874 enum zone_type i, j; 7875 7876 for_each_online_pgdat(pgdat) { 7877 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 7878 struct zone *zone = &pgdat->node_zones[i]; 7879 int ratio = sysctl_lowmem_reserve_ratio[i]; 7880 bool clear = !ratio || !zone_managed_pages(zone); 7881 unsigned long managed_pages = 0; 7882 7883 for (j = i + 1; j < MAX_NR_ZONES; j++) { 7884 if (clear) { 7885 zone->lowmem_reserve[j] = 0; 7886 } else { 7887 struct zone *upper_zone = &pgdat->node_zones[j]; 7888 7889 managed_pages += zone_managed_pages(upper_zone); 7890 zone->lowmem_reserve[j] = managed_pages / ratio; 7891 } 7892 } 7893 } 7894 } 7895 7896 /* update totalreserve_pages */ 7897 calculate_totalreserve_pages(); 7898 } 7899 7900 static void __setup_per_zone_wmarks(void) 7901 { 7902 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7903 unsigned long lowmem_pages = 0; 7904 struct zone *zone; 7905 unsigned long flags; 7906 7907 /* Calculate total number of !ZONE_HIGHMEM pages */ 7908 for_each_zone(zone) { 7909 if (!is_highmem(zone)) 7910 lowmem_pages += zone_managed_pages(zone); 7911 } 7912 7913 for_each_zone(zone) { 7914 u64 tmp; 7915 7916 spin_lock_irqsave(&zone->lock, flags); 7917 tmp = (u64)pages_min * zone_managed_pages(zone); 7918 do_div(tmp, lowmem_pages); 7919 if (is_highmem(zone)) { 7920 /* 7921 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7922 * need highmem pages, so cap pages_min to a small 7923 * value here. 7924 * 7925 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7926 * deltas control async page reclaim, and so should 7927 * not be capped for highmem. 7928 */ 7929 unsigned long min_pages; 7930 7931 min_pages = zone_managed_pages(zone) / 1024; 7932 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7933 zone->_watermark[WMARK_MIN] = min_pages; 7934 } else { 7935 /* 7936 * If it's a lowmem zone, reserve a number of pages 7937 * proportionate to the zone's size. 7938 */ 7939 zone->_watermark[WMARK_MIN] = tmp; 7940 } 7941 7942 /* 7943 * Set the kswapd watermarks distance according to the 7944 * scale factor in proportion to available memory, but 7945 * ensure a minimum size on small systems. 7946 */ 7947 tmp = max_t(u64, tmp >> 2, 7948 mult_frac(zone_managed_pages(zone), 7949 watermark_scale_factor, 10000)); 7950 7951 zone->watermark_boost = 0; 7952 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7953 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7954 7955 spin_unlock_irqrestore(&zone->lock, flags); 7956 } 7957 7958 /* update totalreserve_pages */ 7959 calculate_totalreserve_pages(); 7960 } 7961 7962 /** 7963 * setup_per_zone_wmarks - called when min_free_kbytes changes 7964 * or when memory is hot-{added|removed} 7965 * 7966 * Ensures that the watermark[min,low,high] values for each zone are set 7967 * correctly with respect to min_free_kbytes. 7968 */ 7969 void setup_per_zone_wmarks(void) 7970 { 7971 static DEFINE_SPINLOCK(lock); 7972 7973 spin_lock(&lock); 7974 __setup_per_zone_wmarks(); 7975 spin_unlock(&lock); 7976 } 7977 7978 /* 7979 * Initialise min_free_kbytes. 7980 * 7981 * For small machines we want it small (128k min). For large machines 7982 * we want it large (256MB max). But it is not linear, because network 7983 * bandwidth does not increase linearly with machine size. We use 7984 * 7985 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7986 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7987 * 7988 * which yields 7989 * 7990 * 16MB: 512k 7991 * 32MB: 724k 7992 * 64MB: 1024k 7993 * 128MB: 1448k 7994 * 256MB: 2048k 7995 * 512MB: 2896k 7996 * 1024MB: 4096k 7997 * 2048MB: 5792k 7998 * 4096MB: 8192k 7999 * 8192MB: 11584k 8000 * 16384MB: 16384k 8001 */ 8002 int __meminit init_per_zone_wmark_min(void) 8003 { 8004 unsigned long lowmem_kbytes; 8005 int new_min_free_kbytes; 8006 8007 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8008 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8009 8010 if (new_min_free_kbytes > user_min_free_kbytes) { 8011 min_free_kbytes = new_min_free_kbytes; 8012 if (min_free_kbytes < 128) 8013 min_free_kbytes = 128; 8014 if (min_free_kbytes > 262144) 8015 min_free_kbytes = 262144; 8016 } else { 8017 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8018 new_min_free_kbytes, user_min_free_kbytes); 8019 } 8020 setup_per_zone_wmarks(); 8021 refresh_zone_stat_thresholds(); 8022 setup_per_zone_lowmem_reserve(); 8023 8024 #ifdef CONFIG_NUMA 8025 setup_min_unmapped_ratio(); 8026 setup_min_slab_ratio(); 8027 #endif 8028 8029 khugepaged_min_free_kbytes_update(); 8030 8031 return 0; 8032 } 8033 postcore_initcall(init_per_zone_wmark_min) 8034 8035 /* 8036 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8037 * that we can call two helper functions whenever min_free_kbytes 8038 * changes. 8039 */ 8040 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8041 void *buffer, size_t *length, loff_t *ppos) 8042 { 8043 int rc; 8044 8045 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8046 if (rc) 8047 return rc; 8048 8049 if (write) { 8050 user_min_free_kbytes = min_free_kbytes; 8051 setup_per_zone_wmarks(); 8052 } 8053 return 0; 8054 } 8055 8056 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8057 void *buffer, size_t *length, loff_t *ppos) 8058 { 8059 int rc; 8060 8061 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8062 if (rc) 8063 return rc; 8064 8065 if (write) 8066 setup_per_zone_wmarks(); 8067 8068 return 0; 8069 } 8070 8071 #ifdef CONFIG_NUMA 8072 static void setup_min_unmapped_ratio(void) 8073 { 8074 pg_data_t *pgdat; 8075 struct zone *zone; 8076 8077 for_each_online_pgdat(pgdat) 8078 pgdat->min_unmapped_pages = 0; 8079 8080 for_each_zone(zone) 8081 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8082 sysctl_min_unmapped_ratio) / 100; 8083 } 8084 8085 8086 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8087 void *buffer, size_t *length, loff_t *ppos) 8088 { 8089 int rc; 8090 8091 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8092 if (rc) 8093 return rc; 8094 8095 setup_min_unmapped_ratio(); 8096 8097 return 0; 8098 } 8099 8100 static void setup_min_slab_ratio(void) 8101 { 8102 pg_data_t *pgdat; 8103 struct zone *zone; 8104 8105 for_each_online_pgdat(pgdat) 8106 pgdat->min_slab_pages = 0; 8107 8108 for_each_zone(zone) 8109 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8110 sysctl_min_slab_ratio) / 100; 8111 } 8112 8113 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8114 void *buffer, size_t *length, loff_t *ppos) 8115 { 8116 int rc; 8117 8118 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8119 if (rc) 8120 return rc; 8121 8122 setup_min_slab_ratio(); 8123 8124 return 0; 8125 } 8126 #endif 8127 8128 /* 8129 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8130 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8131 * whenever sysctl_lowmem_reserve_ratio changes. 8132 * 8133 * The reserve ratio obviously has absolutely no relation with the 8134 * minimum watermarks. The lowmem reserve ratio can only make sense 8135 * if in function of the boot time zone sizes. 8136 */ 8137 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8138 void *buffer, size_t *length, loff_t *ppos) 8139 { 8140 int i; 8141 8142 proc_dointvec_minmax(table, write, buffer, length, ppos); 8143 8144 for (i = 0; i < MAX_NR_ZONES; i++) { 8145 if (sysctl_lowmem_reserve_ratio[i] < 1) 8146 sysctl_lowmem_reserve_ratio[i] = 0; 8147 } 8148 8149 setup_per_zone_lowmem_reserve(); 8150 return 0; 8151 } 8152 8153 /* 8154 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8155 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8156 * pagelist can have before it gets flushed back to buddy allocator. 8157 */ 8158 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8159 void *buffer, size_t *length, loff_t *ppos) 8160 { 8161 struct zone *zone; 8162 int old_percpu_pagelist_fraction; 8163 int ret; 8164 8165 mutex_lock(&pcp_batch_high_lock); 8166 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8167 8168 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8169 if (!write || ret < 0) 8170 goto out; 8171 8172 /* Sanity checking to avoid pcp imbalance */ 8173 if (percpu_pagelist_fraction && 8174 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8175 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8176 ret = -EINVAL; 8177 goto out; 8178 } 8179 8180 /* No change? */ 8181 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8182 goto out; 8183 8184 for_each_populated_zone(zone) 8185 zone_set_pageset_high_and_batch(zone); 8186 out: 8187 mutex_unlock(&pcp_batch_high_lock); 8188 return ret; 8189 } 8190 8191 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8192 /* 8193 * Returns the number of pages that arch has reserved but 8194 * is not known to alloc_large_system_hash(). 8195 */ 8196 static unsigned long __init arch_reserved_kernel_pages(void) 8197 { 8198 return 0; 8199 } 8200 #endif 8201 8202 /* 8203 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8204 * machines. As memory size is increased the scale is also increased but at 8205 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8206 * quadruples the scale is increased by one, which means the size of hash table 8207 * only doubles, instead of quadrupling as well. 8208 * Because 32-bit systems cannot have large physical memory, where this scaling 8209 * makes sense, it is disabled on such platforms. 8210 */ 8211 #if __BITS_PER_LONG > 32 8212 #define ADAPT_SCALE_BASE (64ul << 30) 8213 #define ADAPT_SCALE_SHIFT 2 8214 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8215 #endif 8216 8217 /* 8218 * allocate a large system hash table from bootmem 8219 * - it is assumed that the hash table must contain an exact power-of-2 8220 * quantity of entries 8221 * - limit is the number of hash buckets, not the total allocation size 8222 */ 8223 void *__init alloc_large_system_hash(const char *tablename, 8224 unsigned long bucketsize, 8225 unsigned long numentries, 8226 int scale, 8227 int flags, 8228 unsigned int *_hash_shift, 8229 unsigned int *_hash_mask, 8230 unsigned long low_limit, 8231 unsigned long high_limit) 8232 { 8233 unsigned long long max = high_limit; 8234 unsigned long log2qty, size; 8235 void *table = NULL; 8236 gfp_t gfp_flags; 8237 bool virt; 8238 8239 /* allow the kernel cmdline to have a say */ 8240 if (!numentries) { 8241 /* round applicable memory size up to nearest megabyte */ 8242 numentries = nr_kernel_pages; 8243 numentries -= arch_reserved_kernel_pages(); 8244 8245 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8246 if (PAGE_SHIFT < 20) 8247 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8248 8249 #if __BITS_PER_LONG > 32 8250 if (!high_limit) { 8251 unsigned long adapt; 8252 8253 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8254 adapt <<= ADAPT_SCALE_SHIFT) 8255 scale++; 8256 } 8257 #endif 8258 8259 /* limit to 1 bucket per 2^scale bytes of low memory */ 8260 if (scale > PAGE_SHIFT) 8261 numentries >>= (scale - PAGE_SHIFT); 8262 else 8263 numentries <<= (PAGE_SHIFT - scale); 8264 8265 /* Make sure we've got at least a 0-order allocation.. */ 8266 if (unlikely(flags & HASH_SMALL)) { 8267 /* Makes no sense without HASH_EARLY */ 8268 WARN_ON(!(flags & HASH_EARLY)); 8269 if (!(numentries >> *_hash_shift)) { 8270 numentries = 1UL << *_hash_shift; 8271 BUG_ON(!numentries); 8272 } 8273 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8274 numentries = PAGE_SIZE / bucketsize; 8275 } 8276 numentries = roundup_pow_of_two(numentries); 8277 8278 /* limit allocation size to 1/16 total memory by default */ 8279 if (max == 0) { 8280 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8281 do_div(max, bucketsize); 8282 } 8283 max = min(max, 0x80000000ULL); 8284 8285 if (numentries < low_limit) 8286 numentries = low_limit; 8287 if (numentries > max) 8288 numentries = max; 8289 8290 log2qty = ilog2(numentries); 8291 8292 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8293 do { 8294 virt = false; 8295 size = bucketsize << log2qty; 8296 if (flags & HASH_EARLY) { 8297 if (flags & HASH_ZERO) 8298 table = memblock_alloc(size, SMP_CACHE_BYTES); 8299 else 8300 table = memblock_alloc_raw(size, 8301 SMP_CACHE_BYTES); 8302 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8303 table = __vmalloc(size, gfp_flags); 8304 virt = true; 8305 } else { 8306 /* 8307 * If bucketsize is not a power-of-two, we may free 8308 * some pages at the end of hash table which 8309 * alloc_pages_exact() automatically does 8310 */ 8311 table = alloc_pages_exact(size, gfp_flags); 8312 kmemleak_alloc(table, size, 1, gfp_flags); 8313 } 8314 } while (!table && size > PAGE_SIZE && --log2qty); 8315 8316 if (!table) 8317 panic("Failed to allocate %s hash table\n", tablename); 8318 8319 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8320 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8321 virt ? "vmalloc" : "linear"); 8322 8323 if (_hash_shift) 8324 *_hash_shift = log2qty; 8325 if (_hash_mask) 8326 *_hash_mask = (1 << log2qty) - 1; 8327 8328 return table; 8329 } 8330 8331 /* 8332 * This function checks whether pageblock includes unmovable pages or not. 8333 * 8334 * PageLRU check without isolation or lru_lock could race so that 8335 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8336 * check without lock_page also may miss some movable non-lru pages at 8337 * race condition. So you can't expect this function should be exact. 8338 * 8339 * Returns a page without holding a reference. If the caller wants to 8340 * dereference that page (e.g., dumping), it has to make sure that it 8341 * cannot get removed (e.g., via memory unplug) concurrently. 8342 * 8343 */ 8344 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8345 int migratetype, int flags) 8346 { 8347 unsigned long iter = 0; 8348 unsigned long pfn = page_to_pfn(page); 8349 unsigned long offset = pfn % pageblock_nr_pages; 8350 8351 if (is_migrate_cma_page(page)) { 8352 /* 8353 * CMA allocations (alloc_contig_range) really need to mark 8354 * isolate CMA pageblocks even when they are not movable in fact 8355 * so consider them movable here. 8356 */ 8357 if (is_migrate_cma(migratetype)) 8358 return NULL; 8359 8360 return page; 8361 } 8362 8363 for (; iter < pageblock_nr_pages - offset; iter++) { 8364 if (!pfn_valid_within(pfn + iter)) 8365 continue; 8366 8367 page = pfn_to_page(pfn + iter); 8368 8369 /* 8370 * Both, bootmem allocations and memory holes are marked 8371 * PG_reserved and are unmovable. We can even have unmovable 8372 * allocations inside ZONE_MOVABLE, for example when 8373 * specifying "movablecore". 8374 */ 8375 if (PageReserved(page)) 8376 return page; 8377 8378 /* 8379 * If the zone is movable and we have ruled out all reserved 8380 * pages then it should be reasonably safe to assume the rest 8381 * is movable. 8382 */ 8383 if (zone_idx(zone) == ZONE_MOVABLE) 8384 continue; 8385 8386 /* 8387 * Hugepages are not in LRU lists, but they're movable. 8388 * THPs are on the LRU, but need to be counted as #small pages. 8389 * We need not scan over tail pages because we don't 8390 * handle each tail page individually in migration. 8391 */ 8392 if (PageHuge(page) || PageTransCompound(page)) { 8393 struct page *head = compound_head(page); 8394 unsigned int skip_pages; 8395 8396 if (PageHuge(page)) { 8397 if (!hugepage_migration_supported(page_hstate(head))) 8398 return page; 8399 } else if (!PageLRU(head) && !__PageMovable(head)) { 8400 return page; 8401 } 8402 8403 skip_pages = compound_nr(head) - (page - head); 8404 iter += skip_pages - 1; 8405 continue; 8406 } 8407 8408 /* 8409 * We can't use page_count without pin a page 8410 * because another CPU can free compound page. 8411 * This check already skips compound tails of THP 8412 * because their page->_refcount is zero at all time. 8413 */ 8414 if (!page_ref_count(page)) { 8415 if (PageBuddy(page)) 8416 iter += (1 << buddy_order(page)) - 1; 8417 continue; 8418 } 8419 8420 /* 8421 * The HWPoisoned page may be not in buddy system, and 8422 * page_count() is not 0. 8423 */ 8424 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8425 continue; 8426 8427 /* 8428 * We treat all PageOffline() pages as movable when offlining 8429 * to give drivers a chance to decrement their reference count 8430 * in MEM_GOING_OFFLINE in order to indicate that these pages 8431 * can be offlined as there are no direct references anymore. 8432 * For actually unmovable PageOffline() where the driver does 8433 * not support this, we will fail later when trying to actually 8434 * move these pages that still have a reference count > 0. 8435 * (false negatives in this function only) 8436 */ 8437 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8438 continue; 8439 8440 if (__PageMovable(page) || PageLRU(page)) 8441 continue; 8442 8443 /* 8444 * If there are RECLAIMABLE pages, we need to check 8445 * it. But now, memory offline itself doesn't call 8446 * shrink_node_slabs() and it still to be fixed. 8447 */ 8448 return page; 8449 } 8450 return NULL; 8451 } 8452 8453 #ifdef CONFIG_CONTIG_ALLOC 8454 static unsigned long pfn_max_align_down(unsigned long pfn) 8455 { 8456 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8457 pageblock_nr_pages) - 1); 8458 } 8459 8460 static unsigned long pfn_max_align_up(unsigned long pfn) 8461 { 8462 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8463 pageblock_nr_pages)); 8464 } 8465 8466 /* [start, end) must belong to a single zone. */ 8467 static int __alloc_contig_migrate_range(struct compact_control *cc, 8468 unsigned long start, unsigned long end) 8469 { 8470 /* This function is based on compact_zone() from compaction.c. */ 8471 unsigned int nr_reclaimed; 8472 unsigned long pfn = start; 8473 unsigned int tries = 0; 8474 int ret = 0; 8475 struct migration_target_control mtc = { 8476 .nid = zone_to_nid(cc->zone), 8477 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8478 }; 8479 8480 migrate_prep(); 8481 8482 while (pfn < end || !list_empty(&cc->migratepages)) { 8483 if (fatal_signal_pending(current)) { 8484 ret = -EINTR; 8485 break; 8486 } 8487 8488 if (list_empty(&cc->migratepages)) { 8489 cc->nr_migratepages = 0; 8490 pfn = isolate_migratepages_range(cc, pfn, end); 8491 if (!pfn) { 8492 ret = -EINTR; 8493 break; 8494 } 8495 tries = 0; 8496 } else if (++tries == 5) { 8497 ret = ret < 0 ? ret : -EBUSY; 8498 break; 8499 } 8500 8501 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8502 &cc->migratepages); 8503 cc->nr_migratepages -= nr_reclaimed; 8504 8505 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8506 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8507 } 8508 if (ret < 0) { 8509 putback_movable_pages(&cc->migratepages); 8510 return ret; 8511 } 8512 return 0; 8513 } 8514 8515 /** 8516 * alloc_contig_range() -- tries to allocate given range of pages 8517 * @start: start PFN to allocate 8518 * @end: one-past-the-last PFN to allocate 8519 * @migratetype: migratetype of the underlaying pageblocks (either 8520 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8521 * in range must have the same migratetype and it must 8522 * be either of the two. 8523 * @gfp_mask: GFP mask to use during compaction 8524 * 8525 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8526 * aligned. The PFN range must belong to a single zone. 8527 * 8528 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8529 * pageblocks in the range. Once isolated, the pageblocks should not 8530 * be modified by others. 8531 * 8532 * Return: zero on success or negative error code. On success all 8533 * pages which PFN is in [start, end) are allocated for the caller and 8534 * need to be freed with free_contig_range(). 8535 */ 8536 int alloc_contig_range(unsigned long start, unsigned long end, 8537 unsigned migratetype, gfp_t gfp_mask) 8538 { 8539 unsigned long outer_start, outer_end; 8540 unsigned int order; 8541 int ret = 0; 8542 8543 struct compact_control cc = { 8544 .nr_migratepages = 0, 8545 .order = -1, 8546 .zone = page_zone(pfn_to_page(start)), 8547 .mode = MIGRATE_SYNC, 8548 .ignore_skip_hint = true, 8549 .no_set_skip_hint = true, 8550 .gfp_mask = current_gfp_context(gfp_mask), 8551 .alloc_contig = true, 8552 }; 8553 INIT_LIST_HEAD(&cc.migratepages); 8554 8555 /* 8556 * What we do here is we mark all pageblocks in range as 8557 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8558 * have different sizes, and due to the way page allocator 8559 * work, we align the range to biggest of the two pages so 8560 * that page allocator won't try to merge buddies from 8561 * different pageblocks and change MIGRATE_ISOLATE to some 8562 * other migration type. 8563 * 8564 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8565 * migrate the pages from an unaligned range (ie. pages that 8566 * we are interested in). This will put all the pages in 8567 * range back to page allocator as MIGRATE_ISOLATE. 8568 * 8569 * When this is done, we take the pages in range from page 8570 * allocator removing them from the buddy system. This way 8571 * page allocator will never consider using them. 8572 * 8573 * This lets us mark the pageblocks back as 8574 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8575 * aligned range but not in the unaligned, original range are 8576 * put back to page allocator so that buddy can use them. 8577 */ 8578 8579 ret = start_isolate_page_range(pfn_max_align_down(start), 8580 pfn_max_align_up(end), migratetype, 0); 8581 if (ret) 8582 return ret; 8583 8584 drain_all_pages(cc.zone); 8585 8586 /* 8587 * In case of -EBUSY, we'd like to know which page causes problem. 8588 * So, just fall through. test_pages_isolated() has a tracepoint 8589 * which will report the busy page. 8590 * 8591 * It is possible that busy pages could become available before 8592 * the call to test_pages_isolated, and the range will actually be 8593 * allocated. So, if we fall through be sure to clear ret so that 8594 * -EBUSY is not accidentally used or returned to caller. 8595 */ 8596 ret = __alloc_contig_migrate_range(&cc, start, end); 8597 if (ret && ret != -EBUSY) 8598 goto done; 8599 ret =0; 8600 8601 /* 8602 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8603 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8604 * more, all pages in [start, end) are free in page allocator. 8605 * What we are going to do is to allocate all pages from 8606 * [start, end) (that is remove them from page allocator). 8607 * 8608 * The only problem is that pages at the beginning and at the 8609 * end of interesting range may be not aligned with pages that 8610 * page allocator holds, ie. they can be part of higher order 8611 * pages. Because of this, we reserve the bigger range and 8612 * once this is done free the pages we are not interested in. 8613 * 8614 * We don't have to hold zone->lock here because the pages are 8615 * isolated thus they won't get removed from buddy. 8616 */ 8617 8618 lru_add_drain_all(); 8619 8620 order = 0; 8621 outer_start = start; 8622 while (!PageBuddy(pfn_to_page(outer_start))) { 8623 if (++order >= MAX_ORDER) { 8624 outer_start = start; 8625 break; 8626 } 8627 outer_start &= ~0UL << order; 8628 } 8629 8630 if (outer_start != start) { 8631 order = buddy_order(pfn_to_page(outer_start)); 8632 8633 /* 8634 * outer_start page could be small order buddy page and 8635 * it doesn't include start page. Adjust outer_start 8636 * in this case to report failed page properly 8637 * on tracepoint in test_pages_isolated() 8638 */ 8639 if (outer_start + (1UL << order) <= start) 8640 outer_start = start; 8641 } 8642 8643 /* Make sure the range is really isolated. */ 8644 if (test_pages_isolated(outer_start, end, 0)) { 8645 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8646 __func__, outer_start, end); 8647 ret = -EBUSY; 8648 goto done; 8649 } 8650 8651 /* Grab isolated pages from freelists. */ 8652 outer_end = isolate_freepages_range(&cc, outer_start, end); 8653 if (!outer_end) { 8654 ret = -EBUSY; 8655 goto done; 8656 } 8657 8658 /* Free head and tail (if any) */ 8659 if (start != outer_start) 8660 free_contig_range(outer_start, start - outer_start); 8661 if (end != outer_end) 8662 free_contig_range(end, outer_end - end); 8663 8664 done: 8665 undo_isolate_page_range(pfn_max_align_down(start), 8666 pfn_max_align_up(end), migratetype); 8667 return ret; 8668 } 8669 EXPORT_SYMBOL(alloc_contig_range); 8670 8671 static int __alloc_contig_pages(unsigned long start_pfn, 8672 unsigned long nr_pages, gfp_t gfp_mask) 8673 { 8674 unsigned long end_pfn = start_pfn + nr_pages; 8675 8676 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8677 gfp_mask); 8678 } 8679 8680 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8681 unsigned long nr_pages) 8682 { 8683 unsigned long i, end_pfn = start_pfn + nr_pages; 8684 struct page *page; 8685 8686 for (i = start_pfn; i < end_pfn; i++) { 8687 page = pfn_to_online_page(i); 8688 if (!page) 8689 return false; 8690 8691 if (page_zone(page) != z) 8692 return false; 8693 8694 if (PageReserved(page)) 8695 return false; 8696 8697 if (page_count(page) > 0) 8698 return false; 8699 8700 if (PageHuge(page)) 8701 return false; 8702 } 8703 return true; 8704 } 8705 8706 static bool zone_spans_last_pfn(const struct zone *zone, 8707 unsigned long start_pfn, unsigned long nr_pages) 8708 { 8709 unsigned long last_pfn = start_pfn + nr_pages - 1; 8710 8711 return zone_spans_pfn(zone, last_pfn); 8712 } 8713 8714 /** 8715 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8716 * @nr_pages: Number of contiguous pages to allocate 8717 * @gfp_mask: GFP mask to limit search and used during compaction 8718 * @nid: Target node 8719 * @nodemask: Mask for other possible nodes 8720 * 8721 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8722 * on an applicable zonelist to find a contiguous pfn range which can then be 8723 * tried for allocation with alloc_contig_range(). This routine is intended 8724 * for allocation requests which can not be fulfilled with the buddy allocator. 8725 * 8726 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8727 * power of two then the alignment is guaranteed to be to the given nr_pages 8728 * (e.g. 1GB request would be aligned to 1GB). 8729 * 8730 * Allocated pages can be freed with free_contig_range() or by manually calling 8731 * __free_page() on each allocated page. 8732 * 8733 * Return: pointer to contiguous pages on success, or NULL if not successful. 8734 */ 8735 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8736 int nid, nodemask_t *nodemask) 8737 { 8738 unsigned long ret, pfn, flags; 8739 struct zonelist *zonelist; 8740 struct zone *zone; 8741 struct zoneref *z; 8742 8743 zonelist = node_zonelist(nid, gfp_mask); 8744 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8745 gfp_zone(gfp_mask), nodemask) { 8746 spin_lock_irqsave(&zone->lock, flags); 8747 8748 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8749 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8750 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8751 /* 8752 * We release the zone lock here because 8753 * alloc_contig_range() will also lock the zone 8754 * at some point. If there's an allocation 8755 * spinning on this lock, it may win the race 8756 * and cause alloc_contig_range() to fail... 8757 */ 8758 spin_unlock_irqrestore(&zone->lock, flags); 8759 ret = __alloc_contig_pages(pfn, nr_pages, 8760 gfp_mask); 8761 if (!ret) 8762 return pfn_to_page(pfn); 8763 spin_lock_irqsave(&zone->lock, flags); 8764 } 8765 pfn += nr_pages; 8766 } 8767 spin_unlock_irqrestore(&zone->lock, flags); 8768 } 8769 return NULL; 8770 } 8771 #endif /* CONFIG_CONTIG_ALLOC */ 8772 8773 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8774 { 8775 unsigned int count = 0; 8776 8777 for (; nr_pages--; pfn++) { 8778 struct page *page = pfn_to_page(pfn); 8779 8780 count += page_count(page) != 1; 8781 __free_page(page); 8782 } 8783 WARN(count != 0, "%d pages are still in use!\n", count); 8784 } 8785 EXPORT_SYMBOL(free_contig_range); 8786 8787 /* 8788 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8789 * page high values need to be recalulated. 8790 */ 8791 void __meminit zone_pcp_update(struct zone *zone) 8792 { 8793 mutex_lock(&pcp_batch_high_lock); 8794 zone_set_pageset_high_and_batch(zone); 8795 mutex_unlock(&pcp_batch_high_lock); 8796 } 8797 8798 /* 8799 * Effectively disable pcplists for the zone by setting the high limit to 0 8800 * and draining all cpus. A concurrent page freeing on another CPU that's about 8801 * to put the page on pcplist will either finish before the drain and the page 8802 * will be drained, or observe the new high limit and skip the pcplist. 8803 * 8804 * Must be paired with a call to zone_pcp_enable(). 8805 */ 8806 void zone_pcp_disable(struct zone *zone) 8807 { 8808 mutex_lock(&pcp_batch_high_lock); 8809 __zone_set_pageset_high_and_batch(zone, 0, 1); 8810 __drain_all_pages(zone, true); 8811 } 8812 8813 void zone_pcp_enable(struct zone *zone) 8814 { 8815 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 8816 mutex_unlock(&pcp_batch_high_lock); 8817 } 8818 8819 void zone_pcp_reset(struct zone *zone) 8820 { 8821 unsigned long flags; 8822 int cpu; 8823 struct per_cpu_pageset *pset; 8824 8825 /* avoid races with drain_pages() */ 8826 local_irq_save(flags); 8827 if (zone->pageset != &boot_pageset) { 8828 for_each_online_cpu(cpu) { 8829 pset = per_cpu_ptr(zone->pageset, cpu); 8830 drain_zonestat(zone, pset); 8831 } 8832 free_percpu(zone->pageset); 8833 zone->pageset = &boot_pageset; 8834 } 8835 local_irq_restore(flags); 8836 } 8837 8838 #ifdef CONFIG_MEMORY_HOTREMOVE 8839 /* 8840 * All pages in the range must be in a single zone, must not contain holes, 8841 * must span full sections, and must be isolated before calling this function. 8842 */ 8843 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8844 { 8845 unsigned long pfn = start_pfn; 8846 struct page *page; 8847 struct zone *zone; 8848 unsigned int order; 8849 unsigned long flags; 8850 8851 offline_mem_sections(pfn, end_pfn); 8852 zone = page_zone(pfn_to_page(pfn)); 8853 spin_lock_irqsave(&zone->lock, flags); 8854 while (pfn < end_pfn) { 8855 page = pfn_to_page(pfn); 8856 /* 8857 * The HWPoisoned page may be not in buddy system, and 8858 * page_count() is not 0. 8859 */ 8860 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8861 pfn++; 8862 continue; 8863 } 8864 /* 8865 * At this point all remaining PageOffline() pages have a 8866 * reference count of 0 and can simply be skipped. 8867 */ 8868 if (PageOffline(page)) { 8869 BUG_ON(page_count(page)); 8870 BUG_ON(PageBuddy(page)); 8871 pfn++; 8872 continue; 8873 } 8874 8875 BUG_ON(page_count(page)); 8876 BUG_ON(!PageBuddy(page)); 8877 order = buddy_order(page); 8878 del_page_from_free_list(page, zone, order); 8879 pfn += (1 << order); 8880 } 8881 spin_unlock_irqrestore(&zone->lock, flags); 8882 } 8883 #endif 8884 8885 bool is_free_buddy_page(struct page *page) 8886 { 8887 struct zone *zone = page_zone(page); 8888 unsigned long pfn = page_to_pfn(page); 8889 unsigned long flags; 8890 unsigned int order; 8891 8892 spin_lock_irqsave(&zone->lock, flags); 8893 for (order = 0; order < MAX_ORDER; order++) { 8894 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8895 8896 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 8897 break; 8898 } 8899 spin_unlock_irqrestore(&zone->lock, flags); 8900 8901 return order < MAX_ORDER; 8902 } 8903 8904 #ifdef CONFIG_MEMORY_FAILURE 8905 /* 8906 * Break down a higher-order page in sub-pages, and keep our target out of 8907 * buddy allocator. 8908 */ 8909 static void break_down_buddy_pages(struct zone *zone, struct page *page, 8910 struct page *target, int low, int high, 8911 int migratetype) 8912 { 8913 unsigned long size = 1 << high; 8914 struct page *current_buddy, *next_page; 8915 8916 while (high > low) { 8917 high--; 8918 size >>= 1; 8919 8920 if (target >= &page[size]) { 8921 next_page = page + size; 8922 current_buddy = page; 8923 } else { 8924 next_page = page; 8925 current_buddy = page + size; 8926 } 8927 8928 if (set_page_guard(zone, current_buddy, high, migratetype)) 8929 continue; 8930 8931 if (current_buddy != target) { 8932 add_to_free_list(current_buddy, zone, high, migratetype); 8933 set_buddy_order(current_buddy, high); 8934 page = next_page; 8935 } 8936 } 8937 } 8938 8939 /* 8940 * Take a page that will be marked as poisoned off the buddy allocator. 8941 */ 8942 bool take_page_off_buddy(struct page *page) 8943 { 8944 struct zone *zone = page_zone(page); 8945 unsigned long pfn = page_to_pfn(page); 8946 unsigned long flags; 8947 unsigned int order; 8948 bool ret = false; 8949 8950 spin_lock_irqsave(&zone->lock, flags); 8951 for (order = 0; order < MAX_ORDER; order++) { 8952 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8953 int page_order = buddy_order(page_head); 8954 8955 if (PageBuddy(page_head) && page_order >= order) { 8956 unsigned long pfn_head = page_to_pfn(page_head); 8957 int migratetype = get_pfnblock_migratetype(page_head, 8958 pfn_head); 8959 8960 del_page_from_free_list(page_head, zone, page_order); 8961 break_down_buddy_pages(zone, page_head, page, 0, 8962 page_order, migratetype); 8963 ret = true; 8964 break; 8965 } 8966 if (page_count(page_head) > 0) 8967 break; 8968 } 8969 spin_unlock_irqrestore(&zone->lock, flags); 8970 return ret; 8971 } 8972 #endif 8973