xref: /openbmc/linux/mm/page_alloc.c (revision 08720988)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 
72 #include <asm/sections.h>
73 #include <asm/tlbflush.h>
74 #include <asm/div64.h>
75 #include "internal.h"
76 #include "shuffle.h"
77 
78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
79 static DEFINE_MUTEX(pcp_batch_high_lock);
80 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
81 
82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
83 DEFINE_PER_CPU(int, numa_node);
84 EXPORT_PER_CPU_SYMBOL(numa_node);
85 #endif
86 
87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
88 
89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
90 /*
91  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
92  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
93  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
94  * defined in <linux/topology.h>.
95  */
96 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
97 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
98 int _node_numa_mem_[MAX_NUMNODES];
99 #endif
100 
101 /* work_structs for global per-cpu drains */
102 struct pcpu_drain {
103 	struct zone *zone;
104 	struct work_struct work;
105 };
106 DEFINE_MUTEX(pcpu_drain_mutex);
107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
108 
109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
110 volatile unsigned long latent_entropy __latent_entropy;
111 EXPORT_SYMBOL(latent_entropy);
112 #endif
113 
114 /*
115  * Array of node states.
116  */
117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
118 	[N_POSSIBLE] = NODE_MASK_ALL,
119 	[N_ONLINE] = { { [0] = 1UL } },
120 #ifndef CONFIG_NUMA
121 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
122 #ifdef CONFIG_HIGHMEM
123 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
124 #endif
125 	[N_MEMORY] = { { [0] = 1UL } },
126 	[N_CPU] = { { [0] = 1UL } },
127 #endif	/* NUMA */
128 };
129 EXPORT_SYMBOL(node_states);
130 
131 atomic_long_t _totalram_pages __read_mostly;
132 EXPORT_SYMBOL(_totalram_pages);
133 unsigned long totalreserve_pages __read_mostly;
134 unsigned long totalcma_pages __read_mostly;
135 
136 int percpu_pagelist_fraction;
137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
139 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
140 #else
141 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
142 #endif
143 EXPORT_SYMBOL(init_on_alloc);
144 
145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
146 DEFINE_STATIC_KEY_TRUE(init_on_free);
147 #else
148 DEFINE_STATIC_KEY_FALSE(init_on_free);
149 #endif
150 EXPORT_SYMBOL(init_on_free);
151 
152 static int __init early_init_on_alloc(char *buf)
153 {
154 	int ret;
155 	bool bool_result;
156 
157 	if (!buf)
158 		return -EINVAL;
159 	ret = kstrtobool(buf, &bool_result);
160 	if (bool_result && page_poisoning_enabled())
161 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
162 	if (bool_result)
163 		static_branch_enable(&init_on_alloc);
164 	else
165 		static_branch_disable(&init_on_alloc);
166 	return ret;
167 }
168 early_param("init_on_alloc", early_init_on_alloc);
169 
170 static int __init early_init_on_free(char *buf)
171 {
172 	int ret;
173 	bool bool_result;
174 
175 	if (!buf)
176 		return -EINVAL;
177 	ret = kstrtobool(buf, &bool_result);
178 	if (bool_result && page_poisoning_enabled())
179 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
180 	if (bool_result)
181 		static_branch_enable(&init_on_free);
182 	else
183 		static_branch_disable(&init_on_free);
184 	return ret;
185 }
186 early_param("init_on_free", early_init_on_free);
187 
188 /*
189  * A cached value of the page's pageblock's migratetype, used when the page is
190  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
191  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
192  * Also the migratetype set in the page does not necessarily match the pcplist
193  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
194  * other index - this ensures that it will be put on the correct CMA freelist.
195  */
196 static inline int get_pcppage_migratetype(struct page *page)
197 {
198 	return page->index;
199 }
200 
201 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
202 {
203 	page->index = migratetype;
204 }
205 
206 #ifdef CONFIG_PM_SLEEP
207 /*
208  * The following functions are used by the suspend/hibernate code to temporarily
209  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
210  * while devices are suspended.  To avoid races with the suspend/hibernate code,
211  * they should always be called with system_transition_mutex held
212  * (gfp_allowed_mask also should only be modified with system_transition_mutex
213  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
214  * with that modification).
215  */
216 
217 static gfp_t saved_gfp_mask;
218 
219 void pm_restore_gfp_mask(void)
220 {
221 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
222 	if (saved_gfp_mask) {
223 		gfp_allowed_mask = saved_gfp_mask;
224 		saved_gfp_mask = 0;
225 	}
226 }
227 
228 void pm_restrict_gfp_mask(void)
229 {
230 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
231 	WARN_ON(saved_gfp_mask);
232 	saved_gfp_mask = gfp_allowed_mask;
233 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
234 }
235 
236 bool pm_suspended_storage(void)
237 {
238 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
239 		return false;
240 	return true;
241 }
242 #endif /* CONFIG_PM_SLEEP */
243 
244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
245 unsigned int pageblock_order __read_mostly;
246 #endif
247 
248 static void __free_pages_ok(struct page *page, unsigned int order);
249 
250 /*
251  * results with 256, 32 in the lowmem_reserve sysctl:
252  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
253  *	1G machine -> (16M dma, 784M normal, 224M high)
254  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
255  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
256  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
257  *
258  * TBD: should special case ZONE_DMA32 machines here - in those we normally
259  * don't need any ZONE_NORMAL reservation
260  */
261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
262 #ifdef CONFIG_ZONE_DMA
263 	[ZONE_DMA] = 256,
264 #endif
265 #ifdef CONFIG_ZONE_DMA32
266 	[ZONE_DMA32] = 256,
267 #endif
268 	[ZONE_NORMAL] = 32,
269 #ifdef CONFIG_HIGHMEM
270 	[ZONE_HIGHMEM] = 0,
271 #endif
272 	[ZONE_MOVABLE] = 0,
273 };
274 
275 static char * const zone_names[MAX_NR_ZONES] = {
276 #ifdef CONFIG_ZONE_DMA
277 	 "DMA",
278 #endif
279 #ifdef CONFIG_ZONE_DMA32
280 	 "DMA32",
281 #endif
282 	 "Normal",
283 #ifdef CONFIG_HIGHMEM
284 	 "HighMem",
285 #endif
286 	 "Movable",
287 #ifdef CONFIG_ZONE_DEVICE
288 	 "Device",
289 #endif
290 };
291 
292 const char * const migratetype_names[MIGRATE_TYPES] = {
293 	"Unmovable",
294 	"Movable",
295 	"Reclaimable",
296 	"HighAtomic",
297 #ifdef CONFIG_CMA
298 	"CMA",
299 #endif
300 #ifdef CONFIG_MEMORY_ISOLATION
301 	"Isolate",
302 #endif
303 };
304 
305 compound_page_dtor * const compound_page_dtors[] = {
306 	NULL,
307 	free_compound_page,
308 #ifdef CONFIG_HUGETLB_PAGE
309 	free_huge_page,
310 #endif
311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
312 	free_transhuge_page,
313 #endif
314 };
315 
316 int min_free_kbytes = 1024;
317 int user_min_free_kbytes = -1;
318 #ifdef CONFIG_DISCONTIGMEM
319 /*
320  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
321  * are not on separate NUMA nodes. Functionally this works but with
322  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
323  * quite small. By default, do not boost watermarks on discontigmem as in
324  * many cases very high-order allocations like THP are likely to be
325  * unsupported and the premature reclaim offsets the advantage of long-term
326  * fragmentation avoidance.
327  */
328 int watermark_boost_factor __read_mostly;
329 #else
330 int watermark_boost_factor __read_mostly = 15000;
331 #endif
332 int watermark_scale_factor = 10;
333 
334 static unsigned long nr_kernel_pages __initdata;
335 static unsigned long nr_all_pages __initdata;
336 static unsigned long dma_reserve __initdata;
337 
338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
341 static unsigned long required_kernelcore __initdata;
342 static unsigned long required_kernelcore_percent __initdata;
343 static unsigned long required_movablecore __initdata;
344 static unsigned long required_movablecore_percent __initdata;
345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
346 static bool mirrored_kernelcore __meminitdata;
347 
348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
349 int movable_zone;
350 EXPORT_SYMBOL(movable_zone);
351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
352 
353 #if MAX_NUMNODES > 1
354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
355 unsigned int nr_online_nodes __read_mostly = 1;
356 EXPORT_SYMBOL(nr_node_ids);
357 EXPORT_SYMBOL(nr_online_nodes);
358 #endif
359 
360 int page_group_by_mobility_disabled __read_mostly;
361 
362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
363 /*
364  * During boot we initialize deferred pages on-demand, as needed, but once
365  * page_alloc_init_late() has finished, the deferred pages are all initialized,
366  * and we can permanently disable that path.
367  */
368 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
369 
370 /*
371  * Calling kasan_free_pages() only after deferred memory initialization
372  * has completed. Poisoning pages during deferred memory init will greatly
373  * lengthen the process and cause problem in large memory systems as the
374  * deferred pages initialization is done with interrupt disabled.
375  *
376  * Assuming that there will be no reference to those newly initialized
377  * pages before they are ever allocated, this should have no effect on
378  * KASAN memory tracking as the poison will be properly inserted at page
379  * allocation time. The only corner case is when pages are allocated by
380  * on-demand allocation and then freed again before the deferred pages
381  * initialization is done, but this is not likely to happen.
382  */
383 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
384 {
385 	if (!static_branch_unlikely(&deferred_pages))
386 		kasan_free_pages(page, order);
387 }
388 
389 /* Returns true if the struct page for the pfn is uninitialised */
390 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
391 {
392 	int nid = early_pfn_to_nid(pfn);
393 
394 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
395 		return true;
396 
397 	return false;
398 }
399 
400 /*
401  * Returns true when the remaining initialisation should be deferred until
402  * later in the boot cycle when it can be parallelised.
403  */
404 static bool __meminit
405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
406 {
407 	static unsigned long prev_end_pfn, nr_initialised;
408 
409 	/*
410 	 * prev_end_pfn static that contains the end of previous zone
411 	 * No need to protect because called very early in boot before smp_init.
412 	 */
413 	if (prev_end_pfn != end_pfn) {
414 		prev_end_pfn = end_pfn;
415 		nr_initialised = 0;
416 	}
417 
418 	/* Always populate low zones for address-constrained allocations */
419 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
420 		return false;
421 
422 	/*
423 	 * We start only with one section of pages, more pages are added as
424 	 * needed until the rest of deferred pages are initialized.
425 	 */
426 	nr_initialised++;
427 	if ((nr_initialised > PAGES_PER_SECTION) &&
428 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
429 		NODE_DATA(nid)->first_deferred_pfn = pfn;
430 		return true;
431 	}
432 	return false;
433 }
434 #else
435 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
436 
437 static inline bool early_page_uninitialised(unsigned long pfn)
438 {
439 	return false;
440 }
441 
442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
443 {
444 	return false;
445 }
446 #endif
447 
448 /* Return a pointer to the bitmap storing bits affecting a block of pages */
449 static inline unsigned long *get_pageblock_bitmap(struct page *page,
450 							unsigned long pfn)
451 {
452 #ifdef CONFIG_SPARSEMEM
453 	return section_to_usemap(__pfn_to_section(pfn));
454 #else
455 	return page_zone(page)->pageblock_flags;
456 #endif /* CONFIG_SPARSEMEM */
457 }
458 
459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
460 {
461 #ifdef CONFIG_SPARSEMEM
462 	pfn &= (PAGES_PER_SECTION-1);
463 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
464 #else
465 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
466 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
467 #endif /* CONFIG_SPARSEMEM */
468 }
469 
470 /**
471  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
472  * @page: The page within the block of interest
473  * @pfn: The target page frame number
474  * @end_bitidx: The last bit of interest to retrieve
475  * @mask: mask of bits that the caller is interested in
476  *
477  * Return: pageblock_bits flags
478  */
479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
480 					unsigned long pfn,
481 					unsigned long end_bitidx,
482 					unsigned long mask)
483 {
484 	unsigned long *bitmap;
485 	unsigned long bitidx, word_bitidx;
486 	unsigned long word;
487 
488 	bitmap = get_pageblock_bitmap(page, pfn);
489 	bitidx = pfn_to_bitidx(page, pfn);
490 	word_bitidx = bitidx / BITS_PER_LONG;
491 	bitidx &= (BITS_PER_LONG-1);
492 
493 	word = bitmap[word_bitidx];
494 	bitidx += end_bitidx;
495 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
496 }
497 
498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
499 					unsigned long end_bitidx,
500 					unsigned long mask)
501 {
502 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
503 }
504 
505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
506 {
507 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
508 }
509 
510 /**
511  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
512  * @page: The page within the block of interest
513  * @flags: The flags to set
514  * @pfn: The target page frame number
515  * @end_bitidx: The last bit of interest
516  * @mask: mask of bits that the caller is interested in
517  */
518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
519 					unsigned long pfn,
520 					unsigned long end_bitidx,
521 					unsigned long mask)
522 {
523 	unsigned long *bitmap;
524 	unsigned long bitidx, word_bitidx;
525 	unsigned long old_word, word;
526 
527 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
528 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
529 
530 	bitmap = get_pageblock_bitmap(page, pfn);
531 	bitidx = pfn_to_bitidx(page, pfn);
532 	word_bitidx = bitidx / BITS_PER_LONG;
533 	bitidx &= (BITS_PER_LONG-1);
534 
535 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
536 
537 	bitidx += end_bitidx;
538 	mask <<= (BITS_PER_LONG - bitidx - 1);
539 	flags <<= (BITS_PER_LONG - bitidx - 1);
540 
541 	word = READ_ONCE(bitmap[word_bitidx]);
542 	for (;;) {
543 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
544 		if (word == old_word)
545 			break;
546 		word = old_word;
547 	}
548 }
549 
550 void set_pageblock_migratetype(struct page *page, int migratetype)
551 {
552 	if (unlikely(page_group_by_mobility_disabled &&
553 		     migratetype < MIGRATE_PCPTYPES))
554 		migratetype = MIGRATE_UNMOVABLE;
555 
556 	set_pageblock_flags_group(page, (unsigned long)migratetype,
557 					PB_migrate, PB_migrate_end);
558 }
559 
560 #ifdef CONFIG_DEBUG_VM
561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
562 {
563 	int ret = 0;
564 	unsigned seq;
565 	unsigned long pfn = page_to_pfn(page);
566 	unsigned long sp, start_pfn;
567 
568 	do {
569 		seq = zone_span_seqbegin(zone);
570 		start_pfn = zone->zone_start_pfn;
571 		sp = zone->spanned_pages;
572 		if (!zone_spans_pfn(zone, pfn))
573 			ret = 1;
574 	} while (zone_span_seqretry(zone, seq));
575 
576 	if (ret)
577 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
578 			pfn, zone_to_nid(zone), zone->name,
579 			start_pfn, start_pfn + sp);
580 
581 	return ret;
582 }
583 
584 static int page_is_consistent(struct zone *zone, struct page *page)
585 {
586 	if (!pfn_valid_within(page_to_pfn(page)))
587 		return 0;
588 	if (zone != page_zone(page))
589 		return 0;
590 
591 	return 1;
592 }
593 /*
594  * Temporary debugging check for pages not lying within a given zone.
595  */
596 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
597 {
598 	if (page_outside_zone_boundaries(zone, page))
599 		return 1;
600 	if (!page_is_consistent(zone, page))
601 		return 1;
602 
603 	return 0;
604 }
605 #else
606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
607 {
608 	return 0;
609 }
610 #endif
611 
612 static void bad_page(struct page *page, const char *reason,
613 		unsigned long bad_flags)
614 {
615 	static unsigned long resume;
616 	static unsigned long nr_shown;
617 	static unsigned long nr_unshown;
618 
619 	/*
620 	 * Allow a burst of 60 reports, then keep quiet for that minute;
621 	 * or allow a steady drip of one report per second.
622 	 */
623 	if (nr_shown == 60) {
624 		if (time_before(jiffies, resume)) {
625 			nr_unshown++;
626 			goto out;
627 		}
628 		if (nr_unshown) {
629 			pr_alert(
630 			      "BUG: Bad page state: %lu messages suppressed\n",
631 				nr_unshown);
632 			nr_unshown = 0;
633 		}
634 		nr_shown = 0;
635 	}
636 	if (nr_shown++ == 0)
637 		resume = jiffies + 60 * HZ;
638 
639 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
640 		current->comm, page_to_pfn(page));
641 	__dump_page(page, reason);
642 	bad_flags &= page->flags;
643 	if (bad_flags)
644 		pr_alert("bad because of flags: %#lx(%pGp)\n",
645 						bad_flags, &bad_flags);
646 	dump_page_owner(page);
647 
648 	print_modules();
649 	dump_stack();
650 out:
651 	/* Leave bad fields for debug, except PageBuddy could make trouble */
652 	page_mapcount_reset(page); /* remove PageBuddy */
653 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
654 }
655 
656 /*
657  * Higher-order pages are called "compound pages".  They are structured thusly:
658  *
659  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
660  *
661  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
662  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
663  *
664  * The first tail page's ->compound_dtor holds the offset in array of compound
665  * page destructors. See compound_page_dtors.
666  *
667  * The first tail page's ->compound_order holds the order of allocation.
668  * This usage means that zero-order pages may not be compound.
669  */
670 
671 void free_compound_page(struct page *page)
672 {
673 	mem_cgroup_uncharge(page);
674 	__free_pages_ok(page, compound_order(page));
675 }
676 
677 void prep_compound_page(struct page *page, unsigned int order)
678 {
679 	int i;
680 	int nr_pages = 1 << order;
681 
682 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
683 	set_compound_order(page, order);
684 	__SetPageHead(page);
685 	for (i = 1; i < nr_pages; i++) {
686 		struct page *p = page + i;
687 		set_page_count(p, 0);
688 		p->mapping = TAIL_MAPPING;
689 		set_compound_head(p, page);
690 	}
691 	atomic_set(compound_mapcount_ptr(page), -1);
692 }
693 
694 #ifdef CONFIG_DEBUG_PAGEALLOC
695 unsigned int _debug_guardpage_minorder;
696 
697 bool _debug_pagealloc_enabled_early __read_mostly
698 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
699 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
701 EXPORT_SYMBOL(_debug_pagealloc_enabled);
702 
703 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
704 
705 static int __init early_debug_pagealloc(char *buf)
706 {
707 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
708 }
709 early_param("debug_pagealloc", early_debug_pagealloc);
710 
711 void init_debug_pagealloc(void)
712 {
713 	if (!debug_pagealloc_enabled())
714 		return;
715 
716 	static_branch_enable(&_debug_pagealloc_enabled);
717 
718 	if (!debug_guardpage_minorder())
719 		return;
720 
721 	static_branch_enable(&_debug_guardpage_enabled);
722 }
723 
724 static int __init debug_guardpage_minorder_setup(char *buf)
725 {
726 	unsigned long res;
727 
728 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
729 		pr_err("Bad debug_guardpage_minorder value\n");
730 		return 0;
731 	}
732 	_debug_guardpage_minorder = res;
733 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
734 	return 0;
735 }
736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
737 
738 static inline bool set_page_guard(struct zone *zone, struct page *page,
739 				unsigned int order, int migratetype)
740 {
741 	if (!debug_guardpage_enabled())
742 		return false;
743 
744 	if (order >= debug_guardpage_minorder())
745 		return false;
746 
747 	__SetPageGuard(page);
748 	INIT_LIST_HEAD(&page->lru);
749 	set_page_private(page, order);
750 	/* Guard pages are not available for any usage */
751 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
752 
753 	return true;
754 }
755 
756 static inline void clear_page_guard(struct zone *zone, struct page *page,
757 				unsigned int order, int migratetype)
758 {
759 	if (!debug_guardpage_enabled())
760 		return;
761 
762 	__ClearPageGuard(page);
763 
764 	set_page_private(page, 0);
765 	if (!is_migrate_isolate(migratetype))
766 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
767 }
768 #else
769 static inline bool set_page_guard(struct zone *zone, struct page *page,
770 			unsigned int order, int migratetype) { return false; }
771 static inline void clear_page_guard(struct zone *zone, struct page *page,
772 				unsigned int order, int migratetype) {}
773 #endif
774 
775 static inline void set_page_order(struct page *page, unsigned int order)
776 {
777 	set_page_private(page, order);
778 	__SetPageBuddy(page);
779 }
780 
781 /*
782  * This function checks whether a page is free && is the buddy
783  * we can coalesce a page and its buddy if
784  * (a) the buddy is not in a hole (check before calling!) &&
785  * (b) the buddy is in the buddy system &&
786  * (c) a page and its buddy have the same order &&
787  * (d) a page and its buddy are in the same zone.
788  *
789  * For recording whether a page is in the buddy system, we set PageBuddy.
790  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
791  *
792  * For recording page's order, we use page_private(page).
793  */
794 static inline int page_is_buddy(struct page *page, struct page *buddy,
795 							unsigned int order)
796 {
797 	if (page_is_guard(buddy) && page_order(buddy) == order) {
798 		if (page_zone_id(page) != page_zone_id(buddy))
799 			return 0;
800 
801 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
802 
803 		return 1;
804 	}
805 
806 	if (PageBuddy(buddy) && page_order(buddy) == order) {
807 		/*
808 		 * zone check is done late to avoid uselessly
809 		 * calculating zone/node ids for pages that could
810 		 * never merge.
811 		 */
812 		if (page_zone_id(page) != page_zone_id(buddy))
813 			return 0;
814 
815 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
816 
817 		return 1;
818 	}
819 	return 0;
820 }
821 
822 #ifdef CONFIG_COMPACTION
823 static inline struct capture_control *task_capc(struct zone *zone)
824 {
825 	struct capture_control *capc = current->capture_control;
826 
827 	return capc &&
828 		!(current->flags & PF_KTHREAD) &&
829 		!capc->page &&
830 		capc->cc->zone == zone &&
831 		capc->cc->direct_compaction ? capc : NULL;
832 }
833 
834 static inline bool
835 compaction_capture(struct capture_control *capc, struct page *page,
836 		   int order, int migratetype)
837 {
838 	if (!capc || order != capc->cc->order)
839 		return false;
840 
841 	/* Do not accidentally pollute CMA or isolated regions*/
842 	if (is_migrate_cma(migratetype) ||
843 	    is_migrate_isolate(migratetype))
844 		return false;
845 
846 	/*
847 	 * Do not let lower order allocations polluate a movable pageblock.
848 	 * This might let an unmovable request use a reclaimable pageblock
849 	 * and vice-versa but no more than normal fallback logic which can
850 	 * have trouble finding a high-order free page.
851 	 */
852 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
853 		return false;
854 
855 	capc->page = page;
856 	return true;
857 }
858 
859 #else
860 static inline struct capture_control *task_capc(struct zone *zone)
861 {
862 	return NULL;
863 }
864 
865 static inline bool
866 compaction_capture(struct capture_control *capc, struct page *page,
867 		   int order, int migratetype)
868 {
869 	return false;
870 }
871 #endif /* CONFIG_COMPACTION */
872 
873 /*
874  * Freeing function for a buddy system allocator.
875  *
876  * The concept of a buddy system is to maintain direct-mapped table
877  * (containing bit values) for memory blocks of various "orders".
878  * The bottom level table contains the map for the smallest allocatable
879  * units of memory (here, pages), and each level above it describes
880  * pairs of units from the levels below, hence, "buddies".
881  * At a high level, all that happens here is marking the table entry
882  * at the bottom level available, and propagating the changes upward
883  * as necessary, plus some accounting needed to play nicely with other
884  * parts of the VM system.
885  * At each level, we keep a list of pages, which are heads of continuous
886  * free pages of length of (1 << order) and marked with PageBuddy.
887  * Page's order is recorded in page_private(page) field.
888  * So when we are allocating or freeing one, we can derive the state of the
889  * other.  That is, if we allocate a small block, and both were
890  * free, the remainder of the region must be split into blocks.
891  * If a block is freed, and its buddy is also free, then this
892  * triggers coalescing into a block of larger size.
893  *
894  * -- nyc
895  */
896 
897 static inline void __free_one_page(struct page *page,
898 		unsigned long pfn,
899 		struct zone *zone, unsigned int order,
900 		int migratetype)
901 {
902 	unsigned long combined_pfn;
903 	unsigned long uninitialized_var(buddy_pfn);
904 	struct page *buddy;
905 	unsigned int max_order;
906 	struct capture_control *capc = task_capc(zone);
907 
908 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
909 
910 	VM_BUG_ON(!zone_is_initialized(zone));
911 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
912 
913 	VM_BUG_ON(migratetype == -1);
914 	if (likely(!is_migrate_isolate(migratetype)))
915 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
916 
917 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
918 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
919 
920 continue_merging:
921 	while (order < max_order - 1) {
922 		if (compaction_capture(capc, page, order, migratetype)) {
923 			__mod_zone_freepage_state(zone, -(1 << order),
924 								migratetype);
925 			return;
926 		}
927 		buddy_pfn = __find_buddy_pfn(pfn, order);
928 		buddy = page + (buddy_pfn - pfn);
929 
930 		if (!pfn_valid_within(buddy_pfn))
931 			goto done_merging;
932 		if (!page_is_buddy(page, buddy, order))
933 			goto done_merging;
934 		/*
935 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
936 		 * merge with it and move up one order.
937 		 */
938 		if (page_is_guard(buddy))
939 			clear_page_guard(zone, buddy, order, migratetype);
940 		else
941 			del_page_from_free_area(buddy, &zone->free_area[order]);
942 		combined_pfn = buddy_pfn & pfn;
943 		page = page + (combined_pfn - pfn);
944 		pfn = combined_pfn;
945 		order++;
946 	}
947 	if (max_order < MAX_ORDER) {
948 		/* If we are here, it means order is >= pageblock_order.
949 		 * We want to prevent merge between freepages on isolate
950 		 * pageblock and normal pageblock. Without this, pageblock
951 		 * isolation could cause incorrect freepage or CMA accounting.
952 		 *
953 		 * We don't want to hit this code for the more frequent
954 		 * low-order merging.
955 		 */
956 		if (unlikely(has_isolate_pageblock(zone))) {
957 			int buddy_mt;
958 
959 			buddy_pfn = __find_buddy_pfn(pfn, order);
960 			buddy = page + (buddy_pfn - pfn);
961 			buddy_mt = get_pageblock_migratetype(buddy);
962 
963 			if (migratetype != buddy_mt
964 					&& (is_migrate_isolate(migratetype) ||
965 						is_migrate_isolate(buddy_mt)))
966 				goto done_merging;
967 		}
968 		max_order++;
969 		goto continue_merging;
970 	}
971 
972 done_merging:
973 	set_page_order(page, order);
974 
975 	/*
976 	 * If this is not the largest possible page, check if the buddy
977 	 * of the next-highest order is free. If it is, it's possible
978 	 * that pages are being freed that will coalesce soon. In case,
979 	 * that is happening, add the free page to the tail of the list
980 	 * so it's less likely to be used soon and more likely to be merged
981 	 * as a higher order page
982 	 */
983 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)
984 			&& !is_shuffle_order(order)) {
985 		struct page *higher_page, *higher_buddy;
986 		combined_pfn = buddy_pfn & pfn;
987 		higher_page = page + (combined_pfn - pfn);
988 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
989 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
990 		if (pfn_valid_within(buddy_pfn) &&
991 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
992 			add_to_free_area_tail(page, &zone->free_area[order],
993 					      migratetype);
994 			return;
995 		}
996 	}
997 
998 	if (is_shuffle_order(order))
999 		add_to_free_area_random(page, &zone->free_area[order],
1000 				migratetype);
1001 	else
1002 		add_to_free_area(page, &zone->free_area[order], migratetype);
1003 
1004 }
1005 
1006 /*
1007  * A bad page could be due to a number of fields. Instead of multiple branches,
1008  * try and check multiple fields with one check. The caller must do a detailed
1009  * check if necessary.
1010  */
1011 static inline bool page_expected_state(struct page *page,
1012 					unsigned long check_flags)
1013 {
1014 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1015 		return false;
1016 
1017 	if (unlikely((unsigned long)page->mapping |
1018 			page_ref_count(page) |
1019 #ifdef CONFIG_MEMCG
1020 			(unsigned long)page->mem_cgroup |
1021 #endif
1022 			(page->flags & check_flags)))
1023 		return false;
1024 
1025 	return true;
1026 }
1027 
1028 static void free_pages_check_bad(struct page *page)
1029 {
1030 	const char *bad_reason;
1031 	unsigned long bad_flags;
1032 
1033 	bad_reason = NULL;
1034 	bad_flags = 0;
1035 
1036 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1037 		bad_reason = "nonzero mapcount";
1038 	if (unlikely(page->mapping != NULL))
1039 		bad_reason = "non-NULL mapping";
1040 	if (unlikely(page_ref_count(page) != 0))
1041 		bad_reason = "nonzero _refcount";
1042 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
1043 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1044 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
1045 	}
1046 #ifdef CONFIG_MEMCG
1047 	if (unlikely(page->mem_cgroup))
1048 		bad_reason = "page still charged to cgroup";
1049 #endif
1050 	bad_page(page, bad_reason, bad_flags);
1051 }
1052 
1053 static inline int free_pages_check(struct page *page)
1054 {
1055 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1056 		return 0;
1057 
1058 	/* Something has gone sideways, find it */
1059 	free_pages_check_bad(page);
1060 	return 1;
1061 }
1062 
1063 static int free_tail_pages_check(struct page *head_page, struct page *page)
1064 {
1065 	int ret = 1;
1066 
1067 	/*
1068 	 * We rely page->lru.next never has bit 0 set, unless the page
1069 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1070 	 */
1071 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1072 
1073 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1074 		ret = 0;
1075 		goto out;
1076 	}
1077 	switch (page - head_page) {
1078 	case 1:
1079 		/* the first tail page: ->mapping may be compound_mapcount() */
1080 		if (unlikely(compound_mapcount(page))) {
1081 			bad_page(page, "nonzero compound_mapcount", 0);
1082 			goto out;
1083 		}
1084 		break;
1085 	case 2:
1086 		/*
1087 		 * the second tail page: ->mapping is
1088 		 * deferred_list.next -- ignore value.
1089 		 */
1090 		break;
1091 	default:
1092 		if (page->mapping != TAIL_MAPPING) {
1093 			bad_page(page, "corrupted mapping in tail page", 0);
1094 			goto out;
1095 		}
1096 		break;
1097 	}
1098 	if (unlikely(!PageTail(page))) {
1099 		bad_page(page, "PageTail not set", 0);
1100 		goto out;
1101 	}
1102 	if (unlikely(compound_head(page) != head_page)) {
1103 		bad_page(page, "compound_head not consistent", 0);
1104 		goto out;
1105 	}
1106 	ret = 0;
1107 out:
1108 	page->mapping = NULL;
1109 	clear_compound_head(page);
1110 	return ret;
1111 }
1112 
1113 static void kernel_init_free_pages(struct page *page, int numpages)
1114 {
1115 	int i;
1116 
1117 	for (i = 0; i < numpages; i++)
1118 		clear_highpage(page + i);
1119 }
1120 
1121 static __always_inline bool free_pages_prepare(struct page *page,
1122 					unsigned int order, bool check_free)
1123 {
1124 	int bad = 0;
1125 
1126 	VM_BUG_ON_PAGE(PageTail(page), page);
1127 
1128 	trace_mm_page_free(page, order);
1129 
1130 	/*
1131 	 * Check tail pages before head page information is cleared to
1132 	 * avoid checking PageCompound for order-0 pages.
1133 	 */
1134 	if (unlikely(order)) {
1135 		bool compound = PageCompound(page);
1136 		int i;
1137 
1138 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1139 
1140 		if (compound)
1141 			ClearPageDoubleMap(page);
1142 		for (i = 1; i < (1 << order); i++) {
1143 			if (compound)
1144 				bad += free_tail_pages_check(page, page + i);
1145 			if (unlikely(free_pages_check(page + i))) {
1146 				bad++;
1147 				continue;
1148 			}
1149 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1150 		}
1151 	}
1152 	if (PageMappingFlags(page))
1153 		page->mapping = NULL;
1154 	if (memcg_kmem_enabled() && PageKmemcg(page))
1155 		__memcg_kmem_uncharge(page, order);
1156 	if (check_free)
1157 		bad += free_pages_check(page);
1158 	if (bad)
1159 		return false;
1160 
1161 	page_cpupid_reset_last(page);
1162 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1163 	reset_page_owner(page, order);
1164 
1165 	if (!PageHighMem(page)) {
1166 		debug_check_no_locks_freed(page_address(page),
1167 					   PAGE_SIZE << order);
1168 		debug_check_no_obj_freed(page_address(page),
1169 					   PAGE_SIZE << order);
1170 	}
1171 	if (want_init_on_free())
1172 		kernel_init_free_pages(page, 1 << order);
1173 
1174 	kernel_poison_pages(page, 1 << order, 0);
1175 	/*
1176 	 * arch_free_page() can make the page's contents inaccessible.  s390
1177 	 * does this.  So nothing which can access the page's contents should
1178 	 * happen after this.
1179 	 */
1180 	arch_free_page(page, order);
1181 
1182 	if (debug_pagealloc_enabled_static())
1183 		kernel_map_pages(page, 1 << order, 0);
1184 
1185 	kasan_free_nondeferred_pages(page, order);
1186 
1187 	return true;
1188 }
1189 
1190 #ifdef CONFIG_DEBUG_VM
1191 /*
1192  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1193  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1194  * moved from pcp lists to free lists.
1195  */
1196 static bool free_pcp_prepare(struct page *page)
1197 {
1198 	return free_pages_prepare(page, 0, true);
1199 }
1200 
1201 static bool bulkfree_pcp_prepare(struct page *page)
1202 {
1203 	if (debug_pagealloc_enabled_static())
1204 		return free_pages_check(page);
1205 	else
1206 		return false;
1207 }
1208 #else
1209 /*
1210  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1211  * moving from pcp lists to free list in order to reduce overhead. With
1212  * debug_pagealloc enabled, they are checked also immediately when being freed
1213  * to the pcp lists.
1214  */
1215 static bool free_pcp_prepare(struct page *page)
1216 {
1217 	if (debug_pagealloc_enabled_static())
1218 		return free_pages_prepare(page, 0, true);
1219 	else
1220 		return free_pages_prepare(page, 0, false);
1221 }
1222 
1223 static bool bulkfree_pcp_prepare(struct page *page)
1224 {
1225 	return free_pages_check(page);
1226 }
1227 #endif /* CONFIG_DEBUG_VM */
1228 
1229 static inline void prefetch_buddy(struct page *page)
1230 {
1231 	unsigned long pfn = page_to_pfn(page);
1232 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1233 	struct page *buddy = page + (buddy_pfn - pfn);
1234 
1235 	prefetch(buddy);
1236 }
1237 
1238 /*
1239  * Frees a number of pages from the PCP lists
1240  * Assumes all pages on list are in same zone, and of same order.
1241  * count is the number of pages to free.
1242  *
1243  * If the zone was previously in an "all pages pinned" state then look to
1244  * see if this freeing clears that state.
1245  *
1246  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1247  * pinned" detection logic.
1248  */
1249 static void free_pcppages_bulk(struct zone *zone, int count,
1250 					struct per_cpu_pages *pcp)
1251 {
1252 	int migratetype = 0;
1253 	int batch_free = 0;
1254 	int prefetch_nr = 0;
1255 	bool isolated_pageblocks;
1256 	struct page *page, *tmp;
1257 	LIST_HEAD(head);
1258 
1259 	while (count) {
1260 		struct list_head *list;
1261 
1262 		/*
1263 		 * Remove pages from lists in a round-robin fashion. A
1264 		 * batch_free count is maintained that is incremented when an
1265 		 * empty list is encountered.  This is so more pages are freed
1266 		 * off fuller lists instead of spinning excessively around empty
1267 		 * lists
1268 		 */
1269 		do {
1270 			batch_free++;
1271 			if (++migratetype == MIGRATE_PCPTYPES)
1272 				migratetype = 0;
1273 			list = &pcp->lists[migratetype];
1274 		} while (list_empty(list));
1275 
1276 		/* This is the only non-empty list. Free them all. */
1277 		if (batch_free == MIGRATE_PCPTYPES)
1278 			batch_free = count;
1279 
1280 		do {
1281 			page = list_last_entry(list, struct page, lru);
1282 			/* must delete to avoid corrupting pcp list */
1283 			list_del(&page->lru);
1284 			pcp->count--;
1285 
1286 			if (bulkfree_pcp_prepare(page))
1287 				continue;
1288 
1289 			list_add_tail(&page->lru, &head);
1290 
1291 			/*
1292 			 * We are going to put the page back to the global
1293 			 * pool, prefetch its buddy to speed up later access
1294 			 * under zone->lock. It is believed the overhead of
1295 			 * an additional test and calculating buddy_pfn here
1296 			 * can be offset by reduced memory latency later. To
1297 			 * avoid excessive prefetching due to large count, only
1298 			 * prefetch buddy for the first pcp->batch nr of pages.
1299 			 */
1300 			if (prefetch_nr++ < pcp->batch)
1301 				prefetch_buddy(page);
1302 		} while (--count && --batch_free && !list_empty(list));
1303 	}
1304 
1305 	spin_lock(&zone->lock);
1306 	isolated_pageblocks = has_isolate_pageblock(zone);
1307 
1308 	/*
1309 	 * Use safe version since after __free_one_page(),
1310 	 * page->lru.next will not point to original list.
1311 	 */
1312 	list_for_each_entry_safe(page, tmp, &head, lru) {
1313 		int mt = get_pcppage_migratetype(page);
1314 		/* MIGRATE_ISOLATE page should not go to pcplists */
1315 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1316 		/* Pageblock could have been isolated meanwhile */
1317 		if (unlikely(isolated_pageblocks))
1318 			mt = get_pageblock_migratetype(page);
1319 
1320 		__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1321 		trace_mm_page_pcpu_drain(page, 0, mt);
1322 	}
1323 	spin_unlock(&zone->lock);
1324 }
1325 
1326 static void free_one_page(struct zone *zone,
1327 				struct page *page, unsigned long pfn,
1328 				unsigned int order,
1329 				int migratetype)
1330 {
1331 	spin_lock(&zone->lock);
1332 	if (unlikely(has_isolate_pageblock(zone) ||
1333 		is_migrate_isolate(migratetype))) {
1334 		migratetype = get_pfnblock_migratetype(page, pfn);
1335 	}
1336 	__free_one_page(page, pfn, zone, order, migratetype);
1337 	spin_unlock(&zone->lock);
1338 }
1339 
1340 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1341 				unsigned long zone, int nid)
1342 {
1343 	mm_zero_struct_page(page);
1344 	set_page_links(page, zone, nid, pfn);
1345 	init_page_count(page);
1346 	page_mapcount_reset(page);
1347 	page_cpupid_reset_last(page);
1348 	page_kasan_tag_reset(page);
1349 
1350 	INIT_LIST_HEAD(&page->lru);
1351 #ifdef WANT_PAGE_VIRTUAL
1352 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1353 	if (!is_highmem_idx(zone))
1354 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1355 #endif
1356 }
1357 
1358 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1359 static void __meminit init_reserved_page(unsigned long pfn)
1360 {
1361 	pg_data_t *pgdat;
1362 	int nid, zid;
1363 
1364 	if (!early_page_uninitialised(pfn))
1365 		return;
1366 
1367 	nid = early_pfn_to_nid(pfn);
1368 	pgdat = NODE_DATA(nid);
1369 
1370 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1371 		struct zone *zone = &pgdat->node_zones[zid];
1372 
1373 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1374 			break;
1375 	}
1376 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1377 }
1378 #else
1379 static inline void init_reserved_page(unsigned long pfn)
1380 {
1381 }
1382 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1383 
1384 /*
1385  * Initialised pages do not have PageReserved set. This function is
1386  * called for each range allocated by the bootmem allocator and
1387  * marks the pages PageReserved. The remaining valid pages are later
1388  * sent to the buddy page allocator.
1389  */
1390 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1391 {
1392 	unsigned long start_pfn = PFN_DOWN(start);
1393 	unsigned long end_pfn = PFN_UP(end);
1394 
1395 	for (; start_pfn < end_pfn; start_pfn++) {
1396 		if (pfn_valid(start_pfn)) {
1397 			struct page *page = pfn_to_page(start_pfn);
1398 
1399 			init_reserved_page(start_pfn);
1400 
1401 			/* Avoid false-positive PageTail() */
1402 			INIT_LIST_HEAD(&page->lru);
1403 
1404 			/*
1405 			 * no need for atomic set_bit because the struct
1406 			 * page is not visible yet so nobody should
1407 			 * access it yet.
1408 			 */
1409 			__SetPageReserved(page);
1410 		}
1411 	}
1412 }
1413 
1414 static void __free_pages_ok(struct page *page, unsigned int order)
1415 {
1416 	unsigned long flags;
1417 	int migratetype;
1418 	unsigned long pfn = page_to_pfn(page);
1419 
1420 	if (!free_pages_prepare(page, order, true))
1421 		return;
1422 
1423 	migratetype = get_pfnblock_migratetype(page, pfn);
1424 	local_irq_save(flags);
1425 	__count_vm_events(PGFREE, 1 << order);
1426 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1427 	local_irq_restore(flags);
1428 }
1429 
1430 void __free_pages_core(struct page *page, unsigned int order)
1431 {
1432 	unsigned int nr_pages = 1 << order;
1433 	struct page *p = page;
1434 	unsigned int loop;
1435 
1436 	prefetchw(p);
1437 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1438 		prefetchw(p + 1);
1439 		__ClearPageReserved(p);
1440 		set_page_count(p, 0);
1441 	}
1442 	__ClearPageReserved(p);
1443 	set_page_count(p, 0);
1444 
1445 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1446 	set_page_refcounted(page);
1447 	__free_pages(page, order);
1448 }
1449 
1450 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1451 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1452 
1453 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1454 
1455 int __meminit early_pfn_to_nid(unsigned long pfn)
1456 {
1457 	static DEFINE_SPINLOCK(early_pfn_lock);
1458 	int nid;
1459 
1460 	spin_lock(&early_pfn_lock);
1461 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1462 	if (nid < 0)
1463 		nid = first_online_node;
1464 	spin_unlock(&early_pfn_lock);
1465 
1466 	return nid;
1467 }
1468 #endif
1469 
1470 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1471 /* Only safe to use early in boot when initialisation is single-threaded */
1472 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1473 {
1474 	int nid;
1475 
1476 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1477 	if (nid >= 0 && nid != node)
1478 		return false;
1479 	return true;
1480 }
1481 
1482 #else
1483 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1484 {
1485 	return true;
1486 }
1487 #endif
1488 
1489 
1490 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1491 							unsigned int order)
1492 {
1493 	if (early_page_uninitialised(pfn))
1494 		return;
1495 	__free_pages_core(page, order);
1496 }
1497 
1498 /*
1499  * Check that the whole (or subset of) a pageblock given by the interval of
1500  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1501  * with the migration of free compaction scanner. The scanners then need to
1502  * use only pfn_valid_within() check for arches that allow holes within
1503  * pageblocks.
1504  *
1505  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1506  *
1507  * It's possible on some configurations to have a setup like node0 node1 node0
1508  * i.e. it's possible that all pages within a zones range of pages do not
1509  * belong to a single zone. We assume that a border between node0 and node1
1510  * can occur within a single pageblock, but not a node0 node1 node0
1511  * interleaving within a single pageblock. It is therefore sufficient to check
1512  * the first and last page of a pageblock and avoid checking each individual
1513  * page in a pageblock.
1514  */
1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1516 				     unsigned long end_pfn, struct zone *zone)
1517 {
1518 	struct page *start_page;
1519 	struct page *end_page;
1520 
1521 	/* end_pfn is one past the range we are checking */
1522 	end_pfn--;
1523 
1524 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1525 		return NULL;
1526 
1527 	start_page = pfn_to_online_page(start_pfn);
1528 	if (!start_page)
1529 		return NULL;
1530 
1531 	if (page_zone(start_page) != zone)
1532 		return NULL;
1533 
1534 	end_page = pfn_to_page(end_pfn);
1535 
1536 	/* This gives a shorter code than deriving page_zone(end_page) */
1537 	if (page_zone_id(start_page) != page_zone_id(end_page))
1538 		return NULL;
1539 
1540 	return start_page;
1541 }
1542 
1543 void set_zone_contiguous(struct zone *zone)
1544 {
1545 	unsigned long block_start_pfn = zone->zone_start_pfn;
1546 	unsigned long block_end_pfn;
1547 
1548 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1549 	for (; block_start_pfn < zone_end_pfn(zone);
1550 			block_start_pfn = block_end_pfn,
1551 			 block_end_pfn += pageblock_nr_pages) {
1552 
1553 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1554 
1555 		if (!__pageblock_pfn_to_page(block_start_pfn,
1556 					     block_end_pfn, zone))
1557 			return;
1558 	}
1559 
1560 	/* We confirm that there is no hole */
1561 	zone->contiguous = true;
1562 }
1563 
1564 void clear_zone_contiguous(struct zone *zone)
1565 {
1566 	zone->contiguous = false;
1567 }
1568 
1569 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1570 static void __init deferred_free_range(unsigned long pfn,
1571 				       unsigned long nr_pages)
1572 {
1573 	struct page *page;
1574 	unsigned long i;
1575 
1576 	if (!nr_pages)
1577 		return;
1578 
1579 	page = pfn_to_page(pfn);
1580 
1581 	/* Free a large naturally-aligned chunk if possible */
1582 	if (nr_pages == pageblock_nr_pages &&
1583 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1584 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1585 		__free_pages_core(page, pageblock_order);
1586 		return;
1587 	}
1588 
1589 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1590 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1591 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1592 		__free_pages_core(page, 0);
1593 	}
1594 }
1595 
1596 /* Completion tracking for deferred_init_memmap() threads */
1597 static atomic_t pgdat_init_n_undone __initdata;
1598 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1599 
1600 static inline void __init pgdat_init_report_one_done(void)
1601 {
1602 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1603 		complete(&pgdat_init_all_done_comp);
1604 }
1605 
1606 /*
1607  * Returns true if page needs to be initialized or freed to buddy allocator.
1608  *
1609  * First we check if pfn is valid on architectures where it is possible to have
1610  * holes within pageblock_nr_pages. On systems where it is not possible, this
1611  * function is optimized out.
1612  *
1613  * Then, we check if a current large page is valid by only checking the validity
1614  * of the head pfn.
1615  */
1616 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1617 {
1618 	if (!pfn_valid_within(pfn))
1619 		return false;
1620 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1621 		return false;
1622 	return true;
1623 }
1624 
1625 /*
1626  * Free pages to buddy allocator. Try to free aligned pages in
1627  * pageblock_nr_pages sizes.
1628  */
1629 static void __init deferred_free_pages(unsigned long pfn,
1630 				       unsigned long end_pfn)
1631 {
1632 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1633 	unsigned long nr_free = 0;
1634 
1635 	for (; pfn < end_pfn; pfn++) {
1636 		if (!deferred_pfn_valid(pfn)) {
1637 			deferred_free_range(pfn - nr_free, nr_free);
1638 			nr_free = 0;
1639 		} else if (!(pfn & nr_pgmask)) {
1640 			deferred_free_range(pfn - nr_free, nr_free);
1641 			nr_free = 1;
1642 			touch_nmi_watchdog();
1643 		} else {
1644 			nr_free++;
1645 		}
1646 	}
1647 	/* Free the last block of pages to allocator */
1648 	deferred_free_range(pfn - nr_free, nr_free);
1649 }
1650 
1651 /*
1652  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1653  * by performing it only once every pageblock_nr_pages.
1654  * Return number of pages initialized.
1655  */
1656 static unsigned long  __init deferred_init_pages(struct zone *zone,
1657 						 unsigned long pfn,
1658 						 unsigned long end_pfn)
1659 {
1660 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1661 	int nid = zone_to_nid(zone);
1662 	unsigned long nr_pages = 0;
1663 	int zid = zone_idx(zone);
1664 	struct page *page = NULL;
1665 
1666 	for (; pfn < end_pfn; pfn++) {
1667 		if (!deferred_pfn_valid(pfn)) {
1668 			page = NULL;
1669 			continue;
1670 		} else if (!page || !(pfn & nr_pgmask)) {
1671 			page = pfn_to_page(pfn);
1672 			touch_nmi_watchdog();
1673 		} else {
1674 			page++;
1675 		}
1676 		__init_single_page(page, pfn, zid, nid);
1677 		nr_pages++;
1678 	}
1679 	return (nr_pages);
1680 }
1681 
1682 /*
1683  * This function is meant to pre-load the iterator for the zone init.
1684  * Specifically it walks through the ranges until we are caught up to the
1685  * first_init_pfn value and exits there. If we never encounter the value we
1686  * return false indicating there are no valid ranges left.
1687  */
1688 static bool __init
1689 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1690 				    unsigned long *spfn, unsigned long *epfn,
1691 				    unsigned long first_init_pfn)
1692 {
1693 	u64 j;
1694 
1695 	/*
1696 	 * Start out by walking through the ranges in this zone that have
1697 	 * already been initialized. We don't need to do anything with them
1698 	 * so we just need to flush them out of the system.
1699 	 */
1700 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1701 		if (*epfn <= first_init_pfn)
1702 			continue;
1703 		if (*spfn < first_init_pfn)
1704 			*spfn = first_init_pfn;
1705 		*i = j;
1706 		return true;
1707 	}
1708 
1709 	return false;
1710 }
1711 
1712 /*
1713  * Initialize and free pages. We do it in two loops: first we initialize
1714  * struct page, then free to buddy allocator, because while we are
1715  * freeing pages we can access pages that are ahead (computing buddy
1716  * page in __free_one_page()).
1717  *
1718  * In order to try and keep some memory in the cache we have the loop
1719  * broken along max page order boundaries. This way we will not cause
1720  * any issues with the buddy page computation.
1721  */
1722 static unsigned long __init
1723 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1724 		       unsigned long *end_pfn)
1725 {
1726 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1727 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1728 	unsigned long nr_pages = 0;
1729 	u64 j = *i;
1730 
1731 	/* First we loop through and initialize the page values */
1732 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1733 		unsigned long t;
1734 
1735 		if (mo_pfn <= *start_pfn)
1736 			break;
1737 
1738 		t = min(mo_pfn, *end_pfn);
1739 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1740 
1741 		if (mo_pfn < *end_pfn) {
1742 			*start_pfn = mo_pfn;
1743 			break;
1744 		}
1745 	}
1746 
1747 	/* Reset values and now loop through freeing pages as needed */
1748 	swap(j, *i);
1749 
1750 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1751 		unsigned long t;
1752 
1753 		if (mo_pfn <= spfn)
1754 			break;
1755 
1756 		t = min(mo_pfn, epfn);
1757 		deferred_free_pages(spfn, t);
1758 
1759 		if (mo_pfn <= epfn)
1760 			break;
1761 	}
1762 
1763 	return nr_pages;
1764 }
1765 
1766 /* Initialise remaining memory on a node */
1767 static int __init deferred_init_memmap(void *data)
1768 {
1769 	pg_data_t *pgdat = data;
1770 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1771 	unsigned long spfn = 0, epfn = 0, nr_pages = 0;
1772 	unsigned long first_init_pfn, flags;
1773 	unsigned long start = jiffies;
1774 	struct zone *zone;
1775 	int zid;
1776 	u64 i;
1777 
1778 	/* Bind memory initialisation thread to a local node if possible */
1779 	if (!cpumask_empty(cpumask))
1780 		set_cpus_allowed_ptr(current, cpumask);
1781 
1782 	pgdat_resize_lock(pgdat, &flags);
1783 	first_init_pfn = pgdat->first_deferred_pfn;
1784 	if (first_init_pfn == ULONG_MAX) {
1785 		pgdat_resize_unlock(pgdat, &flags);
1786 		pgdat_init_report_one_done();
1787 		return 0;
1788 	}
1789 
1790 	/* Sanity check boundaries */
1791 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1792 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1793 	pgdat->first_deferred_pfn = ULONG_MAX;
1794 
1795 	/* Only the highest zone is deferred so find it */
1796 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1797 		zone = pgdat->node_zones + zid;
1798 		if (first_init_pfn < zone_end_pfn(zone))
1799 			break;
1800 	}
1801 
1802 	/* If the zone is empty somebody else may have cleared out the zone */
1803 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1804 						 first_init_pfn))
1805 		goto zone_empty;
1806 
1807 	/*
1808 	 * Initialize and free pages in MAX_ORDER sized increments so
1809 	 * that we can avoid introducing any issues with the buddy
1810 	 * allocator.
1811 	 */
1812 	while (spfn < epfn)
1813 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1814 zone_empty:
1815 	pgdat_resize_unlock(pgdat, &flags);
1816 
1817 	/* Sanity check that the next zone really is unpopulated */
1818 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1819 
1820 	pr_info("node %d initialised, %lu pages in %ums\n",
1821 		pgdat->node_id,	nr_pages, jiffies_to_msecs(jiffies - start));
1822 
1823 	pgdat_init_report_one_done();
1824 	return 0;
1825 }
1826 
1827 /*
1828  * If this zone has deferred pages, try to grow it by initializing enough
1829  * deferred pages to satisfy the allocation specified by order, rounded up to
1830  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1831  * of SECTION_SIZE bytes by initializing struct pages in increments of
1832  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1833  *
1834  * Return true when zone was grown, otherwise return false. We return true even
1835  * when we grow less than requested, to let the caller decide if there are
1836  * enough pages to satisfy the allocation.
1837  *
1838  * Note: We use noinline because this function is needed only during boot, and
1839  * it is called from a __ref function _deferred_grow_zone. This way we are
1840  * making sure that it is not inlined into permanent text section.
1841  */
1842 static noinline bool __init
1843 deferred_grow_zone(struct zone *zone, unsigned int order)
1844 {
1845 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
1846 	pg_data_t *pgdat = zone->zone_pgdat;
1847 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
1848 	unsigned long spfn, epfn, flags;
1849 	unsigned long nr_pages = 0;
1850 	u64 i;
1851 
1852 	/* Only the last zone may have deferred pages */
1853 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
1854 		return false;
1855 
1856 	pgdat_resize_lock(pgdat, &flags);
1857 
1858 	/*
1859 	 * If deferred pages have been initialized while we were waiting for
1860 	 * the lock, return true, as the zone was grown.  The caller will retry
1861 	 * this zone.  We won't return to this function since the caller also
1862 	 * has this static branch.
1863 	 */
1864 	if (!static_branch_unlikely(&deferred_pages)) {
1865 		pgdat_resize_unlock(pgdat, &flags);
1866 		return true;
1867 	}
1868 
1869 	/*
1870 	 * If someone grew this zone while we were waiting for spinlock, return
1871 	 * true, as there might be enough pages already.
1872 	 */
1873 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
1874 		pgdat_resize_unlock(pgdat, &flags);
1875 		return true;
1876 	}
1877 
1878 	/* If the zone is empty somebody else may have cleared out the zone */
1879 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1880 						 first_deferred_pfn)) {
1881 		pgdat->first_deferred_pfn = ULONG_MAX;
1882 		pgdat_resize_unlock(pgdat, &flags);
1883 		/* Retry only once. */
1884 		return first_deferred_pfn != ULONG_MAX;
1885 	}
1886 
1887 	/*
1888 	 * Initialize and free pages in MAX_ORDER sized increments so
1889 	 * that we can avoid introducing any issues with the buddy
1890 	 * allocator.
1891 	 */
1892 	while (spfn < epfn) {
1893 		/* update our first deferred PFN for this section */
1894 		first_deferred_pfn = spfn;
1895 
1896 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
1897 
1898 		/* We should only stop along section boundaries */
1899 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
1900 			continue;
1901 
1902 		/* If our quota has been met we can stop here */
1903 		if (nr_pages >= nr_pages_needed)
1904 			break;
1905 	}
1906 
1907 	pgdat->first_deferred_pfn = spfn;
1908 	pgdat_resize_unlock(pgdat, &flags);
1909 
1910 	return nr_pages > 0;
1911 }
1912 
1913 /*
1914  * deferred_grow_zone() is __init, but it is called from
1915  * get_page_from_freelist() during early boot until deferred_pages permanently
1916  * disables this call. This is why we have refdata wrapper to avoid warning,
1917  * and to ensure that the function body gets unloaded.
1918  */
1919 static bool __ref
1920 _deferred_grow_zone(struct zone *zone, unsigned int order)
1921 {
1922 	return deferred_grow_zone(zone, order);
1923 }
1924 
1925 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1926 
1927 void __init page_alloc_init_late(void)
1928 {
1929 	struct zone *zone;
1930 	int nid;
1931 
1932 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1933 
1934 	/* There will be num_node_state(N_MEMORY) threads */
1935 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1936 	for_each_node_state(nid, N_MEMORY) {
1937 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1938 	}
1939 
1940 	/* Block until all are initialised */
1941 	wait_for_completion(&pgdat_init_all_done_comp);
1942 
1943 	/*
1944 	 * The number of managed pages has changed due to the initialisation
1945 	 * so the pcpu batch and high limits needs to be updated or the limits
1946 	 * will be artificially small.
1947 	 */
1948 	for_each_populated_zone(zone)
1949 		zone_pcp_update(zone);
1950 
1951 	/*
1952 	 * We initialized the rest of the deferred pages.  Permanently disable
1953 	 * on-demand struct page initialization.
1954 	 */
1955 	static_branch_disable(&deferred_pages);
1956 
1957 	/* Reinit limits that are based on free pages after the kernel is up */
1958 	files_maxfiles_init();
1959 #endif
1960 
1961 	/* Discard memblock private memory */
1962 	memblock_discard();
1963 
1964 	for_each_node_state(nid, N_MEMORY)
1965 		shuffle_free_memory(NODE_DATA(nid));
1966 
1967 	for_each_populated_zone(zone)
1968 		set_zone_contiguous(zone);
1969 }
1970 
1971 #ifdef CONFIG_CMA
1972 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1973 void __init init_cma_reserved_pageblock(struct page *page)
1974 {
1975 	unsigned i = pageblock_nr_pages;
1976 	struct page *p = page;
1977 
1978 	do {
1979 		__ClearPageReserved(p);
1980 		set_page_count(p, 0);
1981 	} while (++p, --i);
1982 
1983 	set_pageblock_migratetype(page, MIGRATE_CMA);
1984 
1985 	if (pageblock_order >= MAX_ORDER) {
1986 		i = pageblock_nr_pages;
1987 		p = page;
1988 		do {
1989 			set_page_refcounted(p);
1990 			__free_pages(p, MAX_ORDER - 1);
1991 			p += MAX_ORDER_NR_PAGES;
1992 		} while (i -= MAX_ORDER_NR_PAGES);
1993 	} else {
1994 		set_page_refcounted(page);
1995 		__free_pages(page, pageblock_order);
1996 	}
1997 
1998 	adjust_managed_page_count(page, pageblock_nr_pages);
1999 }
2000 #endif
2001 
2002 /*
2003  * The order of subdivision here is critical for the IO subsystem.
2004  * Please do not alter this order without good reasons and regression
2005  * testing. Specifically, as large blocks of memory are subdivided,
2006  * the order in which smaller blocks are delivered depends on the order
2007  * they're subdivided in this function. This is the primary factor
2008  * influencing the order in which pages are delivered to the IO
2009  * subsystem according to empirical testing, and this is also justified
2010  * by considering the behavior of a buddy system containing a single
2011  * large block of memory acted on by a series of small allocations.
2012  * This behavior is a critical factor in sglist merging's success.
2013  *
2014  * -- nyc
2015  */
2016 static inline void expand(struct zone *zone, struct page *page,
2017 	int low, int high, struct free_area *area,
2018 	int migratetype)
2019 {
2020 	unsigned long size = 1 << high;
2021 
2022 	while (high > low) {
2023 		area--;
2024 		high--;
2025 		size >>= 1;
2026 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2027 
2028 		/*
2029 		 * Mark as guard pages (or page), that will allow to
2030 		 * merge back to allocator when buddy will be freed.
2031 		 * Corresponding page table entries will not be touched,
2032 		 * pages will stay not present in virtual address space
2033 		 */
2034 		if (set_page_guard(zone, &page[size], high, migratetype))
2035 			continue;
2036 
2037 		add_to_free_area(&page[size], area, migratetype);
2038 		set_page_order(&page[size], high);
2039 	}
2040 }
2041 
2042 static void check_new_page_bad(struct page *page)
2043 {
2044 	const char *bad_reason = NULL;
2045 	unsigned long bad_flags = 0;
2046 
2047 	if (unlikely(atomic_read(&page->_mapcount) != -1))
2048 		bad_reason = "nonzero mapcount";
2049 	if (unlikely(page->mapping != NULL))
2050 		bad_reason = "non-NULL mapping";
2051 	if (unlikely(page_ref_count(page) != 0))
2052 		bad_reason = "nonzero _refcount";
2053 	if (unlikely(page->flags & __PG_HWPOISON)) {
2054 		bad_reason = "HWPoisoned (hardware-corrupted)";
2055 		bad_flags = __PG_HWPOISON;
2056 		/* Don't complain about hwpoisoned pages */
2057 		page_mapcount_reset(page); /* remove PageBuddy */
2058 		return;
2059 	}
2060 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
2061 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
2062 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
2063 	}
2064 #ifdef CONFIG_MEMCG
2065 	if (unlikely(page->mem_cgroup))
2066 		bad_reason = "page still charged to cgroup";
2067 #endif
2068 	bad_page(page, bad_reason, bad_flags);
2069 }
2070 
2071 /*
2072  * This page is about to be returned from the page allocator
2073  */
2074 static inline int check_new_page(struct page *page)
2075 {
2076 	if (likely(page_expected_state(page,
2077 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2078 		return 0;
2079 
2080 	check_new_page_bad(page);
2081 	return 1;
2082 }
2083 
2084 static inline bool free_pages_prezeroed(void)
2085 {
2086 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2087 		page_poisoning_enabled()) || want_init_on_free();
2088 }
2089 
2090 #ifdef CONFIG_DEBUG_VM
2091 /*
2092  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2093  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2094  * also checked when pcp lists are refilled from the free lists.
2095  */
2096 static inline bool check_pcp_refill(struct page *page)
2097 {
2098 	if (debug_pagealloc_enabled_static())
2099 		return check_new_page(page);
2100 	else
2101 		return false;
2102 }
2103 
2104 static inline bool check_new_pcp(struct page *page)
2105 {
2106 	return check_new_page(page);
2107 }
2108 #else
2109 /*
2110  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2111  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2112  * enabled, they are also checked when being allocated from the pcp lists.
2113  */
2114 static inline bool check_pcp_refill(struct page *page)
2115 {
2116 	return check_new_page(page);
2117 }
2118 static inline bool check_new_pcp(struct page *page)
2119 {
2120 	if (debug_pagealloc_enabled_static())
2121 		return check_new_page(page);
2122 	else
2123 		return false;
2124 }
2125 #endif /* CONFIG_DEBUG_VM */
2126 
2127 static bool check_new_pages(struct page *page, unsigned int order)
2128 {
2129 	int i;
2130 	for (i = 0; i < (1 << order); i++) {
2131 		struct page *p = page + i;
2132 
2133 		if (unlikely(check_new_page(p)))
2134 			return true;
2135 	}
2136 
2137 	return false;
2138 }
2139 
2140 inline void post_alloc_hook(struct page *page, unsigned int order,
2141 				gfp_t gfp_flags)
2142 {
2143 	set_page_private(page, 0);
2144 	set_page_refcounted(page);
2145 
2146 	arch_alloc_page(page, order);
2147 	if (debug_pagealloc_enabled_static())
2148 		kernel_map_pages(page, 1 << order, 1);
2149 	kasan_alloc_pages(page, order);
2150 	kernel_poison_pages(page, 1 << order, 1);
2151 	set_page_owner(page, order, gfp_flags);
2152 }
2153 
2154 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2155 							unsigned int alloc_flags)
2156 {
2157 	post_alloc_hook(page, order, gfp_flags);
2158 
2159 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2160 		kernel_init_free_pages(page, 1 << order);
2161 
2162 	if (order && (gfp_flags & __GFP_COMP))
2163 		prep_compound_page(page, order);
2164 
2165 	/*
2166 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2167 	 * allocate the page. The expectation is that the caller is taking
2168 	 * steps that will free more memory. The caller should avoid the page
2169 	 * being used for !PFMEMALLOC purposes.
2170 	 */
2171 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2172 		set_page_pfmemalloc(page);
2173 	else
2174 		clear_page_pfmemalloc(page);
2175 }
2176 
2177 /*
2178  * Go through the free lists for the given migratetype and remove
2179  * the smallest available page from the freelists
2180  */
2181 static __always_inline
2182 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2183 						int migratetype)
2184 {
2185 	unsigned int current_order;
2186 	struct free_area *area;
2187 	struct page *page;
2188 
2189 	/* Find a page of the appropriate size in the preferred list */
2190 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2191 		area = &(zone->free_area[current_order]);
2192 		page = get_page_from_free_area(area, migratetype);
2193 		if (!page)
2194 			continue;
2195 		del_page_from_free_area(page, area);
2196 		expand(zone, page, order, current_order, area, migratetype);
2197 		set_pcppage_migratetype(page, migratetype);
2198 		return page;
2199 	}
2200 
2201 	return NULL;
2202 }
2203 
2204 
2205 /*
2206  * This array describes the order lists are fallen back to when
2207  * the free lists for the desirable migrate type are depleted
2208  */
2209 static int fallbacks[MIGRATE_TYPES][4] = {
2210 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2211 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2212 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2213 #ifdef CONFIG_CMA
2214 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2215 #endif
2216 #ifdef CONFIG_MEMORY_ISOLATION
2217 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2218 #endif
2219 };
2220 
2221 #ifdef CONFIG_CMA
2222 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2223 					unsigned int order)
2224 {
2225 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2226 }
2227 #else
2228 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2229 					unsigned int order) { return NULL; }
2230 #endif
2231 
2232 /*
2233  * Move the free pages in a range to the free lists of the requested type.
2234  * Note that start_page and end_pages are not aligned on a pageblock
2235  * boundary. If alignment is required, use move_freepages_block()
2236  */
2237 static int move_freepages(struct zone *zone,
2238 			  struct page *start_page, struct page *end_page,
2239 			  int migratetype, int *num_movable)
2240 {
2241 	struct page *page;
2242 	unsigned int order;
2243 	int pages_moved = 0;
2244 
2245 	for (page = start_page; page <= end_page;) {
2246 		if (!pfn_valid_within(page_to_pfn(page))) {
2247 			page++;
2248 			continue;
2249 		}
2250 
2251 		if (!PageBuddy(page)) {
2252 			/*
2253 			 * We assume that pages that could be isolated for
2254 			 * migration are movable. But we don't actually try
2255 			 * isolating, as that would be expensive.
2256 			 */
2257 			if (num_movable &&
2258 					(PageLRU(page) || __PageMovable(page)))
2259 				(*num_movable)++;
2260 
2261 			page++;
2262 			continue;
2263 		}
2264 
2265 		/* Make sure we are not inadvertently changing nodes */
2266 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2267 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2268 
2269 		order = page_order(page);
2270 		move_to_free_area(page, &zone->free_area[order], migratetype);
2271 		page += 1 << order;
2272 		pages_moved += 1 << order;
2273 	}
2274 
2275 	return pages_moved;
2276 }
2277 
2278 int move_freepages_block(struct zone *zone, struct page *page,
2279 				int migratetype, int *num_movable)
2280 {
2281 	unsigned long start_pfn, end_pfn;
2282 	struct page *start_page, *end_page;
2283 
2284 	if (num_movable)
2285 		*num_movable = 0;
2286 
2287 	start_pfn = page_to_pfn(page);
2288 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
2289 	start_page = pfn_to_page(start_pfn);
2290 	end_page = start_page + pageblock_nr_pages - 1;
2291 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2292 
2293 	/* Do not cross zone boundaries */
2294 	if (!zone_spans_pfn(zone, start_pfn))
2295 		start_page = page;
2296 	if (!zone_spans_pfn(zone, end_pfn))
2297 		return 0;
2298 
2299 	return move_freepages(zone, start_page, end_page, migratetype,
2300 								num_movable);
2301 }
2302 
2303 static void change_pageblock_range(struct page *pageblock_page,
2304 					int start_order, int migratetype)
2305 {
2306 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2307 
2308 	while (nr_pageblocks--) {
2309 		set_pageblock_migratetype(pageblock_page, migratetype);
2310 		pageblock_page += pageblock_nr_pages;
2311 	}
2312 }
2313 
2314 /*
2315  * When we are falling back to another migratetype during allocation, try to
2316  * steal extra free pages from the same pageblocks to satisfy further
2317  * allocations, instead of polluting multiple pageblocks.
2318  *
2319  * If we are stealing a relatively large buddy page, it is likely there will
2320  * be more free pages in the pageblock, so try to steal them all. For
2321  * reclaimable and unmovable allocations, we steal regardless of page size,
2322  * as fragmentation caused by those allocations polluting movable pageblocks
2323  * is worse than movable allocations stealing from unmovable and reclaimable
2324  * pageblocks.
2325  */
2326 static bool can_steal_fallback(unsigned int order, int start_mt)
2327 {
2328 	/*
2329 	 * Leaving this order check is intended, although there is
2330 	 * relaxed order check in next check. The reason is that
2331 	 * we can actually steal whole pageblock if this condition met,
2332 	 * but, below check doesn't guarantee it and that is just heuristic
2333 	 * so could be changed anytime.
2334 	 */
2335 	if (order >= pageblock_order)
2336 		return true;
2337 
2338 	if (order >= pageblock_order / 2 ||
2339 		start_mt == MIGRATE_RECLAIMABLE ||
2340 		start_mt == MIGRATE_UNMOVABLE ||
2341 		page_group_by_mobility_disabled)
2342 		return true;
2343 
2344 	return false;
2345 }
2346 
2347 static inline void boost_watermark(struct zone *zone)
2348 {
2349 	unsigned long max_boost;
2350 
2351 	if (!watermark_boost_factor)
2352 		return;
2353 
2354 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2355 			watermark_boost_factor, 10000);
2356 
2357 	/*
2358 	 * high watermark may be uninitialised if fragmentation occurs
2359 	 * very early in boot so do not boost. We do not fall
2360 	 * through and boost by pageblock_nr_pages as failing
2361 	 * allocations that early means that reclaim is not going
2362 	 * to help and it may even be impossible to reclaim the
2363 	 * boosted watermark resulting in a hang.
2364 	 */
2365 	if (!max_boost)
2366 		return;
2367 
2368 	max_boost = max(pageblock_nr_pages, max_boost);
2369 
2370 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2371 		max_boost);
2372 }
2373 
2374 /*
2375  * This function implements actual steal behaviour. If order is large enough,
2376  * we can steal whole pageblock. If not, we first move freepages in this
2377  * pageblock to our migratetype and determine how many already-allocated pages
2378  * are there in the pageblock with a compatible migratetype. If at least half
2379  * of pages are free or compatible, we can change migratetype of the pageblock
2380  * itself, so pages freed in the future will be put on the correct free list.
2381  */
2382 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2383 		unsigned int alloc_flags, int start_type, bool whole_block)
2384 {
2385 	unsigned int current_order = page_order(page);
2386 	struct free_area *area;
2387 	int free_pages, movable_pages, alike_pages;
2388 	int old_block_type;
2389 
2390 	old_block_type = get_pageblock_migratetype(page);
2391 
2392 	/*
2393 	 * This can happen due to races and we want to prevent broken
2394 	 * highatomic accounting.
2395 	 */
2396 	if (is_migrate_highatomic(old_block_type))
2397 		goto single_page;
2398 
2399 	/* Take ownership for orders >= pageblock_order */
2400 	if (current_order >= pageblock_order) {
2401 		change_pageblock_range(page, current_order, start_type);
2402 		goto single_page;
2403 	}
2404 
2405 	/*
2406 	 * Boost watermarks to increase reclaim pressure to reduce the
2407 	 * likelihood of future fallbacks. Wake kswapd now as the node
2408 	 * may be balanced overall and kswapd will not wake naturally.
2409 	 */
2410 	boost_watermark(zone);
2411 	if (alloc_flags & ALLOC_KSWAPD)
2412 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2413 
2414 	/* We are not allowed to try stealing from the whole block */
2415 	if (!whole_block)
2416 		goto single_page;
2417 
2418 	free_pages = move_freepages_block(zone, page, start_type,
2419 						&movable_pages);
2420 	/*
2421 	 * Determine how many pages are compatible with our allocation.
2422 	 * For movable allocation, it's the number of movable pages which
2423 	 * we just obtained. For other types it's a bit more tricky.
2424 	 */
2425 	if (start_type == MIGRATE_MOVABLE) {
2426 		alike_pages = movable_pages;
2427 	} else {
2428 		/*
2429 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2430 		 * to MOVABLE pageblock, consider all non-movable pages as
2431 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2432 		 * vice versa, be conservative since we can't distinguish the
2433 		 * exact migratetype of non-movable pages.
2434 		 */
2435 		if (old_block_type == MIGRATE_MOVABLE)
2436 			alike_pages = pageblock_nr_pages
2437 						- (free_pages + movable_pages);
2438 		else
2439 			alike_pages = 0;
2440 	}
2441 
2442 	/* moving whole block can fail due to zone boundary conditions */
2443 	if (!free_pages)
2444 		goto single_page;
2445 
2446 	/*
2447 	 * If a sufficient number of pages in the block are either free or of
2448 	 * comparable migratability as our allocation, claim the whole block.
2449 	 */
2450 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2451 			page_group_by_mobility_disabled)
2452 		set_pageblock_migratetype(page, start_type);
2453 
2454 	return;
2455 
2456 single_page:
2457 	area = &zone->free_area[current_order];
2458 	move_to_free_area(page, area, start_type);
2459 }
2460 
2461 /*
2462  * Check whether there is a suitable fallback freepage with requested order.
2463  * If only_stealable is true, this function returns fallback_mt only if
2464  * we can steal other freepages all together. This would help to reduce
2465  * fragmentation due to mixed migratetype pages in one pageblock.
2466  */
2467 int find_suitable_fallback(struct free_area *area, unsigned int order,
2468 			int migratetype, bool only_stealable, bool *can_steal)
2469 {
2470 	int i;
2471 	int fallback_mt;
2472 
2473 	if (area->nr_free == 0)
2474 		return -1;
2475 
2476 	*can_steal = false;
2477 	for (i = 0;; i++) {
2478 		fallback_mt = fallbacks[migratetype][i];
2479 		if (fallback_mt == MIGRATE_TYPES)
2480 			break;
2481 
2482 		if (free_area_empty(area, fallback_mt))
2483 			continue;
2484 
2485 		if (can_steal_fallback(order, migratetype))
2486 			*can_steal = true;
2487 
2488 		if (!only_stealable)
2489 			return fallback_mt;
2490 
2491 		if (*can_steal)
2492 			return fallback_mt;
2493 	}
2494 
2495 	return -1;
2496 }
2497 
2498 /*
2499  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2500  * there are no empty page blocks that contain a page with a suitable order
2501  */
2502 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2503 				unsigned int alloc_order)
2504 {
2505 	int mt;
2506 	unsigned long max_managed, flags;
2507 
2508 	/*
2509 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2510 	 * Check is race-prone but harmless.
2511 	 */
2512 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2513 	if (zone->nr_reserved_highatomic >= max_managed)
2514 		return;
2515 
2516 	spin_lock_irqsave(&zone->lock, flags);
2517 
2518 	/* Recheck the nr_reserved_highatomic limit under the lock */
2519 	if (zone->nr_reserved_highatomic >= max_managed)
2520 		goto out_unlock;
2521 
2522 	/* Yoink! */
2523 	mt = get_pageblock_migratetype(page);
2524 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2525 	    && !is_migrate_cma(mt)) {
2526 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2527 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2528 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2529 	}
2530 
2531 out_unlock:
2532 	spin_unlock_irqrestore(&zone->lock, flags);
2533 }
2534 
2535 /*
2536  * Used when an allocation is about to fail under memory pressure. This
2537  * potentially hurts the reliability of high-order allocations when under
2538  * intense memory pressure but failed atomic allocations should be easier
2539  * to recover from than an OOM.
2540  *
2541  * If @force is true, try to unreserve a pageblock even though highatomic
2542  * pageblock is exhausted.
2543  */
2544 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2545 						bool force)
2546 {
2547 	struct zonelist *zonelist = ac->zonelist;
2548 	unsigned long flags;
2549 	struct zoneref *z;
2550 	struct zone *zone;
2551 	struct page *page;
2552 	int order;
2553 	bool ret;
2554 
2555 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2556 								ac->nodemask) {
2557 		/*
2558 		 * Preserve at least one pageblock unless memory pressure
2559 		 * is really high.
2560 		 */
2561 		if (!force && zone->nr_reserved_highatomic <=
2562 					pageblock_nr_pages)
2563 			continue;
2564 
2565 		spin_lock_irqsave(&zone->lock, flags);
2566 		for (order = 0; order < MAX_ORDER; order++) {
2567 			struct free_area *area = &(zone->free_area[order]);
2568 
2569 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2570 			if (!page)
2571 				continue;
2572 
2573 			/*
2574 			 * In page freeing path, migratetype change is racy so
2575 			 * we can counter several free pages in a pageblock
2576 			 * in this loop althoug we changed the pageblock type
2577 			 * from highatomic to ac->migratetype. So we should
2578 			 * adjust the count once.
2579 			 */
2580 			if (is_migrate_highatomic_page(page)) {
2581 				/*
2582 				 * It should never happen but changes to
2583 				 * locking could inadvertently allow a per-cpu
2584 				 * drain to add pages to MIGRATE_HIGHATOMIC
2585 				 * while unreserving so be safe and watch for
2586 				 * underflows.
2587 				 */
2588 				zone->nr_reserved_highatomic -= min(
2589 						pageblock_nr_pages,
2590 						zone->nr_reserved_highatomic);
2591 			}
2592 
2593 			/*
2594 			 * Convert to ac->migratetype and avoid the normal
2595 			 * pageblock stealing heuristics. Minimally, the caller
2596 			 * is doing the work and needs the pages. More
2597 			 * importantly, if the block was always converted to
2598 			 * MIGRATE_UNMOVABLE or another type then the number
2599 			 * of pageblocks that cannot be completely freed
2600 			 * may increase.
2601 			 */
2602 			set_pageblock_migratetype(page, ac->migratetype);
2603 			ret = move_freepages_block(zone, page, ac->migratetype,
2604 									NULL);
2605 			if (ret) {
2606 				spin_unlock_irqrestore(&zone->lock, flags);
2607 				return ret;
2608 			}
2609 		}
2610 		spin_unlock_irqrestore(&zone->lock, flags);
2611 	}
2612 
2613 	return false;
2614 }
2615 
2616 /*
2617  * Try finding a free buddy page on the fallback list and put it on the free
2618  * list of requested migratetype, possibly along with other pages from the same
2619  * block, depending on fragmentation avoidance heuristics. Returns true if
2620  * fallback was found so that __rmqueue_smallest() can grab it.
2621  *
2622  * The use of signed ints for order and current_order is a deliberate
2623  * deviation from the rest of this file, to make the for loop
2624  * condition simpler.
2625  */
2626 static __always_inline bool
2627 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2628 						unsigned int alloc_flags)
2629 {
2630 	struct free_area *area;
2631 	int current_order;
2632 	int min_order = order;
2633 	struct page *page;
2634 	int fallback_mt;
2635 	bool can_steal;
2636 
2637 	/*
2638 	 * Do not steal pages from freelists belonging to other pageblocks
2639 	 * i.e. orders < pageblock_order. If there are no local zones free,
2640 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2641 	 */
2642 	if (alloc_flags & ALLOC_NOFRAGMENT)
2643 		min_order = pageblock_order;
2644 
2645 	/*
2646 	 * Find the largest available free page in the other list. This roughly
2647 	 * approximates finding the pageblock with the most free pages, which
2648 	 * would be too costly to do exactly.
2649 	 */
2650 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2651 				--current_order) {
2652 		area = &(zone->free_area[current_order]);
2653 		fallback_mt = find_suitable_fallback(area, current_order,
2654 				start_migratetype, false, &can_steal);
2655 		if (fallback_mt == -1)
2656 			continue;
2657 
2658 		/*
2659 		 * We cannot steal all free pages from the pageblock and the
2660 		 * requested migratetype is movable. In that case it's better to
2661 		 * steal and split the smallest available page instead of the
2662 		 * largest available page, because even if the next movable
2663 		 * allocation falls back into a different pageblock than this
2664 		 * one, it won't cause permanent fragmentation.
2665 		 */
2666 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2667 					&& current_order > order)
2668 			goto find_smallest;
2669 
2670 		goto do_steal;
2671 	}
2672 
2673 	return false;
2674 
2675 find_smallest:
2676 	for (current_order = order; current_order < MAX_ORDER;
2677 							current_order++) {
2678 		area = &(zone->free_area[current_order]);
2679 		fallback_mt = find_suitable_fallback(area, current_order,
2680 				start_migratetype, false, &can_steal);
2681 		if (fallback_mt != -1)
2682 			break;
2683 	}
2684 
2685 	/*
2686 	 * This should not happen - we already found a suitable fallback
2687 	 * when looking for the largest page.
2688 	 */
2689 	VM_BUG_ON(current_order == MAX_ORDER);
2690 
2691 do_steal:
2692 	page = get_page_from_free_area(area, fallback_mt);
2693 
2694 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2695 								can_steal);
2696 
2697 	trace_mm_page_alloc_extfrag(page, order, current_order,
2698 		start_migratetype, fallback_mt);
2699 
2700 	return true;
2701 
2702 }
2703 
2704 /*
2705  * Do the hard work of removing an element from the buddy allocator.
2706  * Call me with the zone->lock already held.
2707  */
2708 static __always_inline struct page *
2709 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2710 						unsigned int alloc_flags)
2711 {
2712 	struct page *page;
2713 
2714 retry:
2715 	page = __rmqueue_smallest(zone, order, migratetype);
2716 	if (unlikely(!page)) {
2717 		if (migratetype == MIGRATE_MOVABLE)
2718 			page = __rmqueue_cma_fallback(zone, order);
2719 
2720 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2721 								alloc_flags))
2722 			goto retry;
2723 	}
2724 
2725 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2726 	return page;
2727 }
2728 
2729 /*
2730  * Obtain a specified number of elements from the buddy allocator, all under
2731  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2732  * Returns the number of new pages which were placed at *list.
2733  */
2734 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2735 			unsigned long count, struct list_head *list,
2736 			int migratetype, unsigned int alloc_flags)
2737 {
2738 	int i, alloced = 0;
2739 
2740 	spin_lock(&zone->lock);
2741 	for (i = 0; i < count; ++i) {
2742 		struct page *page = __rmqueue(zone, order, migratetype,
2743 								alloc_flags);
2744 		if (unlikely(page == NULL))
2745 			break;
2746 
2747 		if (unlikely(check_pcp_refill(page)))
2748 			continue;
2749 
2750 		/*
2751 		 * Split buddy pages returned by expand() are received here in
2752 		 * physical page order. The page is added to the tail of
2753 		 * caller's list. From the callers perspective, the linked list
2754 		 * is ordered by page number under some conditions. This is
2755 		 * useful for IO devices that can forward direction from the
2756 		 * head, thus also in the physical page order. This is useful
2757 		 * for IO devices that can merge IO requests if the physical
2758 		 * pages are ordered properly.
2759 		 */
2760 		list_add_tail(&page->lru, list);
2761 		alloced++;
2762 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2763 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2764 					      -(1 << order));
2765 	}
2766 
2767 	/*
2768 	 * i pages were removed from the buddy list even if some leak due
2769 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2770 	 * on i. Do not confuse with 'alloced' which is the number of
2771 	 * pages added to the pcp list.
2772 	 */
2773 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2774 	spin_unlock(&zone->lock);
2775 	return alloced;
2776 }
2777 
2778 #ifdef CONFIG_NUMA
2779 /*
2780  * Called from the vmstat counter updater to drain pagesets of this
2781  * currently executing processor on remote nodes after they have
2782  * expired.
2783  *
2784  * Note that this function must be called with the thread pinned to
2785  * a single processor.
2786  */
2787 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2788 {
2789 	unsigned long flags;
2790 	int to_drain, batch;
2791 
2792 	local_irq_save(flags);
2793 	batch = READ_ONCE(pcp->batch);
2794 	to_drain = min(pcp->count, batch);
2795 	if (to_drain > 0)
2796 		free_pcppages_bulk(zone, to_drain, pcp);
2797 	local_irq_restore(flags);
2798 }
2799 #endif
2800 
2801 /*
2802  * Drain pcplists of the indicated processor and zone.
2803  *
2804  * The processor must either be the current processor and the
2805  * thread pinned to the current processor or a processor that
2806  * is not online.
2807  */
2808 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2809 {
2810 	unsigned long flags;
2811 	struct per_cpu_pageset *pset;
2812 	struct per_cpu_pages *pcp;
2813 
2814 	local_irq_save(flags);
2815 	pset = per_cpu_ptr(zone->pageset, cpu);
2816 
2817 	pcp = &pset->pcp;
2818 	if (pcp->count)
2819 		free_pcppages_bulk(zone, pcp->count, pcp);
2820 	local_irq_restore(flags);
2821 }
2822 
2823 /*
2824  * Drain pcplists of all zones on the indicated processor.
2825  *
2826  * The processor must either be the current processor and the
2827  * thread pinned to the current processor or a processor that
2828  * is not online.
2829  */
2830 static void drain_pages(unsigned int cpu)
2831 {
2832 	struct zone *zone;
2833 
2834 	for_each_populated_zone(zone) {
2835 		drain_pages_zone(cpu, zone);
2836 	}
2837 }
2838 
2839 /*
2840  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2841  *
2842  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2843  * the single zone's pages.
2844  */
2845 void drain_local_pages(struct zone *zone)
2846 {
2847 	int cpu = smp_processor_id();
2848 
2849 	if (zone)
2850 		drain_pages_zone(cpu, zone);
2851 	else
2852 		drain_pages(cpu);
2853 }
2854 
2855 static void drain_local_pages_wq(struct work_struct *work)
2856 {
2857 	struct pcpu_drain *drain;
2858 
2859 	drain = container_of(work, struct pcpu_drain, work);
2860 
2861 	/*
2862 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2863 	 * we can race with cpu offline when the WQ can move this from
2864 	 * a cpu pinned worker to an unbound one. We can operate on a different
2865 	 * cpu which is allright but we also have to make sure to not move to
2866 	 * a different one.
2867 	 */
2868 	preempt_disable();
2869 	drain_local_pages(drain->zone);
2870 	preempt_enable();
2871 }
2872 
2873 /*
2874  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2875  *
2876  * When zone parameter is non-NULL, spill just the single zone's pages.
2877  *
2878  * Note that this can be extremely slow as the draining happens in a workqueue.
2879  */
2880 void drain_all_pages(struct zone *zone)
2881 {
2882 	int cpu;
2883 
2884 	/*
2885 	 * Allocate in the BSS so we wont require allocation in
2886 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2887 	 */
2888 	static cpumask_t cpus_with_pcps;
2889 
2890 	/*
2891 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2892 	 * initialized.
2893 	 */
2894 	if (WARN_ON_ONCE(!mm_percpu_wq))
2895 		return;
2896 
2897 	/*
2898 	 * Do not drain if one is already in progress unless it's specific to
2899 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2900 	 * the drain to be complete when the call returns.
2901 	 */
2902 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2903 		if (!zone)
2904 			return;
2905 		mutex_lock(&pcpu_drain_mutex);
2906 	}
2907 
2908 	/*
2909 	 * We don't care about racing with CPU hotplug event
2910 	 * as offline notification will cause the notified
2911 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2912 	 * disables preemption as part of its processing
2913 	 */
2914 	for_each_online_cpu(cpu) {
2915 		struct per_cpu_pageset *pcp;
2916 		struct zone *z;
2917 		bool has_pcps = false;
2918 
2919 		if (zone) {
2920 			pcp = per_cpu_ptr(zone->pageset, cpu);
2921 			if (pcp->pcp.count)
2922 				has_pcps = true;
2923 		} else {
2924 			for_each_populated_zone(z) {
2925 				pcp = per_cpu_ptr(z->pageset, cpu);
2926 				if (pcp->pcp.count) {
2927 					has_pcps = true;
2928 					break;
2929 				}
2930 			}
2931 		}
2932 
2933 		if (has_pcps)
2934 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2935 		else
2936 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2937 	}
2938 
2939 	for_each_cpu(cpu, &cpus_with_pcps) {
2940 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
2941 
2942 		drain->zone = zone;
2943 		INIT_WORK(&drain->work, drain_local_pages_wq);
2944 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
2945 	}
2946 	for_each_cpu(cpu, &cpus_with_pcps)
2947 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
2948 
2949 	mutex_unlock(&pcpu_drain_mutex);
2950 }
2951 
2952 #ifdef CONFIG_HIBERNATION
2953 
2954 /*
2955  * Touch the watchdog for every WD_PAGE_COUNT pages.
2956  */
2957 #define WD_PAGE_COUNT	(128*1024)
2958 
2959 void mark_free_pages(struct zone *zone)
2960 {
2961 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
2962 	unsigned long flags;
2963 	unsigned int order, t;
2964 	struct page *page;
2965 
2966 	if (zone_is_empty(zone))
2967 		return;
2968 
2969 	spin_lock_irqsave(&zone->lock, flags);
2970 
2971 	max_zone_pfn = zone_end_pfn(zone);
2972 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2973 		if (pfn_valid(pfn)) {
2974 			page = pfn_to_page(pfn);
2975 
2976 			if (!--page_count) {
2977 				touch_nmi_watchdog();
2978 				page_count = WD_PAGE_COUNT;
2979 			}
2980 
2981 			if (page_zone(page) != zone)
2982 				continue;
2983 
2984 			if (!swsusp_page_is_forbidden(page))
2985 				swsusp_unset_page_free(page);
2986 		}
2987 
2988 	for_each_migratetype_order(order, t) {
2989 		list_for_each_entry(page,
2990 				&zone->free_area[order].free_list[t], lru) {
2991 			unsigned long i;
2992 
2993 			pfn = page_to_pfn(page);
2994 			for (i = 0; i < (1UL << order); i++) {
2995 				if (!--page_count) {
2996 					touch_nmi_watchdog();
2997 					page_count = WD_PAGE_COUNT;
2998 				}
2999 				swsusp_set_page_free(pfn_to_page(pfn + i));
3000 			}
3001 		}
3002 	}
3003 	spin_unlock_irqrestore(&zone->lock, flags);
3004 }
3005 #endif /* CONFIG_PM */
3006 
3007 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3008 {
3009 	int migratetype;
3010 
3011 	if (!free_pcp_prepare(page))
3012 		return false;
3013 
3014 	migratetype = get_pfnblock_migratetype(page, pfn);
3015 	set_pcppage_migratetype(page, migratetype);
3016 	return true;
3017 }
3018 
3019 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3020 {
3021 	struct zone *zone = page_zone(page);
3022 	struct per_cpu_pages *pcp;
3023 	int migratetype;
3024 
3025 	migratetype = get_pcppage_migratetype(page);
3026 	__count_vm_event(PGFREE);
3027 
3028 	/*
3029 	 * We only track unmovable, reclaimable and movable on pcp lists.
3030 	 * Free ISOLATE pages back to the allocator because they are being
3031 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3032 	 * areas back if necessary. Otherwise, we may have to free
3033 	 * excessively into the page allocator
3034 	 */
3035 	if (migratetype >= MIGRATE_PCPTYPES) {
3036 		if (unlikely(is_migrate_isolate(migratetype))) {
3037 			free_one_page(zone, page, pfn, 0, migratetype);
3038 			return;
3039 		}
3040 		migratetype = MIGRATE_MOVABLE;
3041 	}
3042 
3043 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3044 	list_add(&page->lru, &pcp->lists[migratetype]);
3045 	pcp->count++;
3046 	if (pcp->count >= pcp->high) {
3047 		unsigned long batch = READ_ONCE(pcp->batch);
3048 		free_pcppages_bulk(zone, batch, pcp);
3049 	}
3050 }
3051 
3052 /*
3053  * Free a 0-order page
3054  */
3055 void free_unref_page(struct page *page)
3056 {
3057 	unsigned long flags;
3058 	unsigned long pfn = page_to_pfn(page);
3059 
3060 	if (!free_unref_page_prepare(page, pfn))
3061 		return;
3062 
3063 	local_irq_save(flags);
3064 	free_unref_page_commit(page, pfn);
3065 	local_irq_restore(flags);
3066 }
3067 
3068 /*
3069  * Free a list of 0-order pages
3070  */
3071 void free_unref_page_list(struct list_head *list)
3072 {
3073 	struct page *page, *next;
3074 	unsigned long flags, pfn;
3075 	int batch_count = 0;
3076 
3077 	/* Prepare pages for freeing */
3078 	list_for_each_entry_safe(page, next, list, lru) {
3079 		pfn = page_to_pfn(page);
3080 		if (!free_unref_page_prepare(page, pfn))
3081 			list_del(&page->lru);
3082 		set_page_private(page, pfn);
3083 	}
3084 
3085 	local_irq_save(flags);
3086 	list_for_each_entry_safe(page, next, list, lru) {
3087 		unsigned long pfn = page_private(page);
3088 
3089 		set_page_private(page, 0);
3090 		trace_mm_page_free_batched(page);
3091 		free_unref_page_commit(page, pfn);
3092 
3093 		/*
3094 		 * Guard against excessive IRQ disabled times when we get
3095 		 * a large list of pages to free.
3096 		 */
3097 		if (++batch_count == SWAP_CLUSTER_MAX) {
3098 			local_irq_restore(flags);
3099 			batch_count = 0;
3100 			local_irq_save(flags);
3101 		}
3102 	}
3103 	local_irq_restore(flags);
3104 }
3105 
3106 /*
3107  * split_page takes a non-compound higher-order page, and splits it into
3108  * n (1<<order) sub-pages: page[0..n]
3109  * Each sub-page must be freed individually.
3110  *
3111  * Note: this is probably too low level an operation for use in drivers.
3112  * Please consult with lkml before using this in your driver.
3113  */
3114 void split_page(struct page *page, unsigned int order)
3115 {
3116 	int i;
3117 
3118 	VM_BUG_ON_PAGE(PageCompound(page), page);
3119 	VM_BUG_ON_PAGE(!page_count(page), page);
3120 
3121 	for (i = 1; i < (1 << order); i++)
3122 		set_page_refcounted(page + i);
3123 	split_page_owner(page, order);
3124 }
3125 EXPORT_SYMBOL_GPL(split_page);
3126 
3127 int __isolate_free_page(struct page *page, unsigned int order)
3128 {
3129 	struct free_area *area = &page_zone(page)->free_area[order];
3130 	unsigned long watermark;
3131 	struct zone *zone;
3132 	int mt;
3133 
3134 	BUG_ON(!PageBuddy(page));
3135 
3136 	zone = page_zone(page);
3137 	mt = get_pageblock_migratetype(page);
3138 
3139 	if (!is_migrate_isolate(mt)) {
3140 		/*
3141 		 * Obey watermarks as if the page was being allocated. We can
3142 		 * emulate a high-order watermark check with a raised order-0
3143 		 * watermark, because we already know our high-order page
3144 		 * exists.
3145 		 */
3146 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3147 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3148 			return 0;
3149 
3150 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3151 	}
3152 
3153 	/* Remove page from free list */
3154 
3155 	del_page_from_free_area(page, area);
3156 
3157 	/*
3158 	 * Set the pageblock if the isolated page is at least half of a
3159 	 * pageblock
3160 	 */
3161 	if (order >= pageblock_order - 1) {
3162 		struct page *endpage = page + (1 << order) - 1;
3163 		for (; page < endpage; page += pageblock_nr_pages) {
3164 			int mt = get_pageblock_migratetype(page);
3165 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3166 			    && !is_migrate_highatomic(mt))
3167 				set_pageblock_migratetype(page,
3168 							  MIGRATE_MOVABLE);
3169 		}
3170 	}
3171 
3172 
3173 	return 1UL << order;
3174 }
3175 
3176 /*
3177  * Update NUMA hit/miss statistics
3178  *
3179  * Must be called with interrupts disabled.
3180  */
3181 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3182 {
3183 #ifdef CONFIG_NUMA
3184 	enum numa_stat_item local_stat = NUMA_LOCAL;
3185 
3186 	/* skip numa counters update if numa stats is disabled */
3187 	if (!static_branch_likely(&vm_numa_stat_key))
3188 		return;
3189 
3190 	if (zone_to_nid(z) != numa_node_id())
3191 		local_stat = NUMA_OTHER;
3192 
3193 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3194 		__inc_numa_state(z, NUMA_HIT);
3195 	else {
3196 		__inc_numa_state(z, NUMA_MISS);
3197 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3198 	}
3199 	__inc_numa_state(z, local_stat);
3200 #endif
3201 }
3202 
3203 /* Remove page from the per-cpu list, caller must protect the list */
3204 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3205 			unsigned int alloc_flags,
3206 			struct per_cpu_pages *pcp,
3207 			struct list_head *list)
3208 {
3209 	struct page *page;
3210 
3211 	do {
3212 		if (list_empty(list)) {
3213 			pcp->count += rmqueue_bulk(zone, 0,
3214 					pcp->batch, list,
3215 					migratetype, alloc_flags);
3216 			if (unlikely(list_empty(list)))
3217 				return NULL;
3218 		}
3219 
3220 		page = list_first_entry(list, struct page, lru);
3221 		list_del(&page->lru);
3222 		pcp->count--;
3223 	} while (check_new_pcp(page));
3224 
3225 	return page;
3226 }
3227 
3228 /* Lock and remove page from the per-cpu list */
3229 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3230 			struct zone *zone, gfp_t gfp_flags,
3231 			int migratetype, unsigned int alloc_flags)
3232 {
3233 	struct per_cpu_pages *pcp;
3234 	struct list_head *list;
3235 	struct page *page;
3236 	unsigned long flags;
3237 
3238 	local_irq_save(flags);
3239 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3240 	list = &pcp->lists[migratetype];
3241 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3242 	if (page) {
3243 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3244 		zone_statistics(preferred_zone, zone);
3245 	}
3246 	local_irq_restore(flags);
3247 	return page;
3248 }
3249 
3250 /*
3251  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3252  */
3253 static inline
3254 struct page *rmqueue(struct zone *preferred_zone,
3255 			struct zone *zone, unsigned int order,
3256 			gfp_t gfp_flags, unsigned int alloc_flags,
3257 			int migratetype)
3258 {
3259 	unsigned long flags;
3260 	struct page *page;
3261 
3262 	if (likely(order == 0)) {
3263 		page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3264 					migratetype, alloc_flags);
3265 		goto out;
3266 	}
3267 
3268 	/*
3269 	 * We most definitely don't want callers attempting to
3270 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3271 	 */
3272 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3273 	spin_lock_irqsave(&zone->lock, flags);
3274 
3275 	do {
3276 		page = NULL;
3277 		if (alloc_flags & ALLOC_HARDER) {
3278 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3279 			if (page)
3280 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3281 		}
3282 		if (!page)
3283 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3284 	} while (page && check_new_pages(page, order));
3285 	spin_unlock(&zone->lock);
3286 	if (!page)
3287 		goto failed;
3288 	__mod_zone_freepage_state(zone, -(1 << order),
3289 				  get_pcppage_migratetype(page));
3290 
3291 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3292 	zone_statistics(preferred_zone, zone);
3293 	local_irq_restore(flags);
3294 
3295 out:
3296 	/* Separate test+clear to avoid unnecessary atomics */
3297 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3298 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3299 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3300 	}
3301 
3302 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3303 	return page;
3304 
3305 failed:
3306 	local_irq_restore(flags);
3307 	return NULL;
3308 }
3309 
3310 #ifdef CONFIG_FAIL_PAGE_ALLOC
3311 
3312 static struct {
3313 	struct fault_attr attr;
3314 
3315 	bool ignore_gfp_highmem;
3316 	bool ignore_gfp_reclaim;
3317 	u32 min_order;
3318 } fail_page_alloc = {
3319 	.attr = FAULT_ATTR_INITIALIZER,
3320 	.ignore_gfp_reclaim = true,
3321 	.ignore_gfp_highmem = true,
3322 	.min_order = 1,
3323 };
3324 
3325 static int __init setup_fail_page_alloc(char *str)
3326 {
3327 	return setup_fault_attr(&fail_page_alloc.attr, str);
3328 }
3329 __setup("fail_page_alloc=", setup_fail_page_alloc);
3330 
3331 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3332 {
3333 	if (order < fail_page_alloc.min_order)
3334 		return false;
3335 	if (gfp_mask & __GFP_NOFAIL)
3336 		return false;
3337 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3338 		return false;
3339 	if (fail_page_alloc.ignore_gfp_reclaim &&
3340 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3341 		return false;
3342 
3343 	return should_fail(&fail_page_alloc.attr, 1 << order);
3344 }
3345 
3346 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3347 
3348 static int __init fail_page_alloc_debugfs(void)
3349 {
3350 	umode_t mode = S_IFREG | 0600;
3351 	struct dentry *dir;
3352 
3353 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3354 					&fail_page_alloc.attr);
3355 
3356 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3357 			    &fail_page_alloc.ignore_gfp_reclaim);
3358 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3359 			    &fail_page_alloc.ignore_gfp_highmem);
3360 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3361 
3362 	return 0;
3363 }
3364 
3365 late_initcall(fail_page_alloc_debugfs);
3366 
3367 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3368 
3369 #else /* CONFIG_FAIL_PAGE_ALLOC */
3370 
3371 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3372 {
3373 	return false;
3374 }
3375 
3376 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3377 
3378 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3379 {
3380 	return __should_fail_alloc_page(gfp_mask, order);
3381 }
3382 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3383 
3384 /*
3385  * Return true if free base pages are above 'mark'. For high-order checks it
3386  * will return true of the order-0 watermark is reached and there is at least
3387  * one free page of a suitable size. Checking now avoids taking the zone lock
3388  * to check in the allocation paths if no pages are free.
3389  */
3390 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3391 			 int classzone_idx, unsigned int alloc_flags,
3392 			 long free_pages)
3393 {
3394 	long min = mark;
3395 	int o;
3396 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3397 
3398 	/* free_pages may go negative - that's OK */
3399 	free_pages -= (1 << order) - 1;
3400 
3401 	if (alloc_flags & ALLOC_HIGH)
3402 		min -= min / 2;
3403 
3404 	/*
3405 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3406 	 * the high-atomic reserves. This will over-estimate the size of the
3407 	 * atomic reserve but it avoids a search.
3408 	 */
3409 	if (likely(!alloc_harder)) {
3410 		free_pages -= z->nr_reserved_highatomic;
3411 	} else {
3412 		/*
3413 		 * OOM victims can try even harder than normal ALLOC_HARDER
3414 		 * users on the grounds that it's definitely going to be in
3415 		 * the exit path shortly and free memory. Any allocation it
3416 		 * makes during the free path will be small and short-lived.
3417 		 */
3418 		if (alloc_flags & ALLOC_OOM)
3419 			min -= min / 2;
3420 		else
3421 			min -= min / 4;
3422 	}
3423 
3424 
3425 #ifdef CONFIG_CMA
3426 	/* If allocation can't use CMA areas don't use free CMA pages */
3427 	if (!(alloc_flags & ALLOC_CMA))
3428 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
3429 #endif
3430 
3431 	/*
3432 	 * Check watermarks for an order-0 allocation request. If these
3433 	 * are not met, then a high-order request also cannot go ahead
3434 	 * even if a suitable page happened to be free.
3435 	 */
3436 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
3437 		return false;
3438 
3439 	/* If this is an order-0 request then the watermark is fine */
3440 	if (!order)
3441 		return true;
3442 
3443 	/* For a high-order request, check at least one suitable page is free */
3444 	for (o = order; o < MAX_ORDER; o++) {
3445 		struct free_area *area = &z->free_area[o];
3446 		int mt;
3447 
3448 		if (!area->nr_free)
3449 			continue;
3450 
3451 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3452 			if (!free_area_empty(area, mt))
3453 				return true;
3454 		}
3455 
3456 #ifdef CONFIG_CMA
3457 		if ((alloc_flags & ALLOC_CMA) &&
3458 		    !free_area_empty(area, MIGRATE_CMA)) {
3459 			return true;
3460 		}
3461 #endif
3462 		if (alloc_harder &&
3463 			!list_empty(&area->free_list[MIGRATE_HIGHATOMIC]))
3464 			return true;
3465 	}
3466 	return false;
3467 }
3468 
3469 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3470 		      int classzone_idx, unsigned int alloc_flags)
3471 {
3472 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3473 					zone_page_state(z, NR_FREE_PAGES));
3474 }
3475 
3476 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3477 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
3478 {
3479 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3480 	long cma_pages = 0;
3481 
3482 #ifdef CONFIG_CMA
3483 	/* If allocation can't use CMA areas don't use free CMA pages */
3484 	if (!(alloc_flags & ALLOC_CMA))
3485 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
3486 #endif
3487 
3488 	/*
3489 	 * Fast check for order-0 only. If this fails then the reserves
3490 	 * need to be calculated. There is a corner case where the check
3491 	 * passes but only the high-order atomic reserve are free. If
3492 	 * the caller is !atomic then it'll uselessly search the free
3493 	 * list. That corner case is then slower but it is harmless.
3494 	 */
3495 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
3496 		return true;
3497 
3498 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
3499 					free_pages);
3500 }
3501 
3502 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3503 			unsigned long mark, int classzone_idx)
3504 {
3505 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3506 
3507 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3508 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3509 
3510 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
3511 								free_pages);
3512 }
3513 
3514 #ifdef CONFIG_NUMA
3515 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3516 {
3517 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3518 				node_reclaim_distance;
3519 }
3520 #else	/* CONFIG_NUMA */
3521 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3522 {
3523 	return true;
3524 }
3525 #endif	/* CONFIG_NUMA */
3526 
3527 /*
3528  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3529  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3530  * premature use of a lower zone may cause lowmem pressure problems that
3531  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3532  * probably too small. It only makes sense to spread allocations to avoid
3533  * fragmentation between the Normal and DMA32 zones.
3534  */
3535 static inline unsigned int
3536 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3537 {
3538 	unsigned int alloc_flags = 0;
3539 
3540 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3541 		alloc_flags |= ALLOC_KSWAPD;
3542 
3543 #ifdef CONFIG_ZONE_DMA32
3544 	if (!zone)
3545 		return alloc_flags;
3546 
3547 	if (zone_idx(zone) != ZONE_NORMAL)
3548 		return alloc_flags;
3549 
3550 	/*
3551 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3552 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3553 	 * on UMA that if Normal is populated then so is DMA32.
3554 	 */
3555 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3556 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3557 		return alloc_flags;
3558 
3559 	alloc_flags |= ALLOC_NOFRAGMENT;
3560 #endif /* CONFIG_ZONE_DMA32 */
3561 	return alloc_flags;
3562 }
3563 
3564 /*
3565  * get_page_from_freelist goes through the zonelist trying to allocate
3566  * a page.
3567  */
3568 static struct page *
3569 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3570 						const struct alloc_context *ac)
3571 {
3572 	struct zoneref *z;
3573 	struct zone *zone;
3574 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3575 	bool no_fallback;
3576 
3577 retry:
3578 	/*
3579 	 * Scan zonelist, looking for a zone with enough free.
3580 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3581 	 */
3582 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3583 	z = ac->preferred_zoneref;
3584 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3585 								ac->nodemask) {
3586 		struct page *page;
3587 		unsigned long mark;
3588 
3589 		if (cpusets_enabled() &&
3590 			(alloc_flags & ALLOC_CPUSET) &&
3591 			!__cpuset_zone_allowed(zone, gfp_mask))
3592 				continue;
3593 		/*
3594 		 * When allocating a page cache page for writing, we
3595 		 * want to get it from a node that is within its dirty
3596 		 * limit, such that no single node holds more than its
3597 		 * proportional share of globally allowed dirty pages.
3598 		 * The dirty limits take into account the node's
3599 		 * lowmem reserves and high watermark so that kswapd
3600 		 * should be able to balance it without having to
3601 		 * write pages from its LRU list.
3602 		 *
3603 		 * XXX: For now, allow allocations to potentially
3604 		 * exceed the per-node dirty limit in the slowpath
3605 		 * (spread_dirty_pages unset) before going into reclaim,
3606 		 * which is important when on a NUMA setup the allowed
3607 		 * nodes are together not big enough to reach the
3608 		 * global limit.  The proper fix for these situations
3609 		 * will require awareness of nodes in the
3610 		 * dirty-throttling and the flusher threads.
3611 		 */
3612 		if (ac->spread_dirty_pages) {
3613 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3614 				continue;
3615 
3616 			if (!node_dirty_ok(zone->zone_pgdat)) {
3617 				last_pgdat_dirty_limit = zone->zone_pgdat;
3618 				continue;
3619 			}
3620 		}
3621 
3622 		if (no_fallback && nr_online_nodes > 1 &&
3623 		    zone != ac->preferred_zoneref->zone) {
3624 			int local_nid;
3625 
3626 			/*
3627 			 * If moving to a remote node, retry but allow
3628 			 * fragmenting fallbacks. Locality is more important
3629 			 * than fragmentation avoidance.
3630 			 */
3631 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3632 			if (zone_to_nid(zone) != local_nid) {
3633 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3634 				goto retry;
3635 			}
3636 		}
3637 
3638 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3639 		if (!zone_watermark_fast(zone, order, mark,
3640 				       ac_classzone_idx(ac), alloc_flags)) {
3641 			int ret;
3642 
3643 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3644 			/*
3645 			 * Watermark failed for this zone, but see if we can
3646 			 * grow this zone if it contains deferred pages.
3647 			 */
3648 			if (static_branch_unlikely(&deferred_pages)) {
3649 				if (_deferred_grow_zone(zone, order))
3650 					goto try_this_zone;
3651 			}
3652 #endif
3653 			/* Checked here to keep the fast path fast */
3654 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3655 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3656 				goto try_this_zone;
3657 
3658 			if (node_reclaim_mode == 0 ||
3659 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3660 				continue;
3661 
3662 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3663 			switch (ret) {
3664 			case NODE_RECLAIM_NOSCAN:
3665 				/* did not scan */
3666 				continue;
3667 			case NODE_RECLAIM_FULL:
3668 				/* scanned but unreclaimable */
3669 				continue;
3670 			default:
3671 				/* did we reclaim enough */
3672 				if (zone_watermark_ok(zone, order, mark,
3673 						ac_classzone_idx(ac), alloc_flags))
3674 					goto try_this_zone;
3675 
3676 				continue;
3677 			}
3678 		}
3679 
3680 try_this_zone:
3681 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3682 				gfp_mask, alloc_flags, ac->migratetype);
3683 		if (page) {
3684 			prep_new_page(page, order, gfp_mask, alloc_flags);
3685 
3686 			/*
3687 			 * If this is a high-order atomic allocation then check
3688 			 * if the pageblock should be reserved for the future
3689 			 */
3690 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3691 				reserve_highatomic_pageblock(page, zone, order);
3692 
3693 			return page;
3694 		} else {
3695 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3696 			/* Try again if zone has deferred pages */
3697 			if (static_branch_unlikely(&deferred_pages)) {
3698 				if (_deferred_grow_zone(zone, order))
3699 					goto try_this_zone;
3700 			}
3701 #endif
3702 		}
3703 	}
3704 
3705 	/*
3706 	 * It's possible on a UMA machine to get through all zones that are
3707 	 * fragmented. If avoiding fragmentation, reset and try again.
3708 	 */
3709 	if (no_fallback) {
3710 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3711 		goto retry;
3712 	}
3713 
3714 	return NULL;
3715 }
3716 
3717 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3718 {
3719 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3720 
3721 	/*
3722 	 * This documents exceptions given to allocations in certain
3723 	 * contexts that are allowed to allocate outside current's set
3724 	 * of allowed nodes.
3725 	 */
3726 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3727 		if (tsk_is_oom_victim(current) ||
3728 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3729 			filter &= ~SHOW_MEM_FILTER_NODES;
3730 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3731 		filter &= ~SHOW_MEM_FILTER_NODES;
3732 
3733 	show_mem(filter, nodemask);
3734 }
3735 
3736 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3737 {
3738 	struct va_format vaf;
3739 	va_list args;
3740 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
3741 
3742 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3743 		return;
3744 
3745 	va_start(args, fmt);
3746 	vaf.fmt = fmt;
3747 	vaf.va = &args;
3748 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
3749 			current->comm, &vaf, gfp_mask, &gfp_mask,
3750 			nodemask_pr_args(nodemask));
3751 	va_end(args);
3752 
3753 	cpuset_print_current_mems_allowed();
3754 	pr_cont("\n");
3755 	dump_stack();
3756 	warn_alloc_show_mem(gfp_mask, nodemask);
3757 }
3758 
3759 static inline struct page *
3760 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3761 			      unsigned int alloc_flags,
3762 			      const struct alloc_context *ac)
3763 {
3764 	struct page *page;
3765 
3766 	page = get_page_from_freelist(gfp_mask, order,
3767 			alloc_flags|ALLOC_CPUSET, ac);
3768 	/*
3769 	 * fallback to ignore cpuset restriction if our nodes
3770 	 * are depleted
3771 	 */
3772 	if (!page)
3773 		page = get_page_from_freelist(gfp_mask, order,
3774 				alloc_flags, ac);
3775 
3776 	return page;
3777 }
3778 
3779 static inline struct page *
3780 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3781 	const struct alloc_context *ac, unsigned long *did_some_progress)
3782 {
3783 	struct oom_control oc = {
3784 		.zonelist = ac->zonelist,
3785 		.nodemask = ac->nodemask,
3786 		.memcg = NULL,
3787 		.gfp_mask = gfp_mask,
3788 		.order = order,
3789 	};
3790 	struct page *page;
3791 
3792 	*did_some_progress = 0;
3793 
3794 	/*
3795 	 * Acquire the oom lock.  If that fails, somebody else is
3796 	 * making progress for us.
3797 	 */
3798 	if (!mutex_trylock(&oom_lock)) {
3799 		*did_some_progress = 1;
3800 		schedule_timeout_uninterruptible(1);
3801 		return NULL;
3802 	}
3803 
3804 	/*
3805 	 * Go through the zonelist yet one more time, keep very high watermark
3806 	 * here, this is only to catch a parallel oom killing, we must fail if
3807 	 * we're still under heavy pressure. But make sure that this reclaim
3808 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3809 	 * allocation which will never fail due to oom_lock already held.
3810 	 */
3811 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
3812 				      ~__GFP_DIRECT_RECLAIM, order,
3813 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3814 	if (page)
3815 		goto out;
3816 
3817 	/* Coredumps can quickly deplete all memory reserves */
3818 	if (current->flags & PF_DUMPCORE)
3819 		goto out;
3820 	/* The OOM killer will not help higher order allocs */
3821 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3822 		goto out;
3823 	/*
3824 	 * We have already exhausted all our reclaim opportunities without any
3825 	 * success so it is time to admit defeat. We will skip the OOM killer
3826 	 * because it is very likely that the caller has a more reasonable
3827 	 * fallback than shooting a random task.
3828 	 */
3829 	if (gfp_mask & __GFP_RETRY_MAYFAIL)
3830 		goto out;
3831 	/* The OOM killer does not needlessly kill tasks for lowmem */
3832 	if (ac->high_zoneidx < ZONE_NORMAL)
3833 		goto out;
3834 	if (pm_suspended_storage())
3835 		goto out;
3836 	/*
3837 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3838 	 * other request to make a forward progress.
3839 	 * We are in an unfortunate situation where out_of_memory cannot
3840 	 * do much for this context but let's try it to at least get
3841 	 * access to memory reserved if the current task is killed (see
3842 	 * out_of_memory). Once filesystems are ready to handle allocation
3843 	 * failures more gracefully we should just bail out here.
3844 	 */
3845 
3846 	/* The OOM killer may not free memory on a specific node */
3847 	if (gfp_mask & __GFP_THISNODE)
3848 		goto out;
3849 
3850 	/* Exhausted what can be done so it's blame time */
3851 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3852 		*did_some_progress = 1;
3853 
3854 		/*
3855 		 * Help non-failing allocations by giving them access to memory
3856 		 * reserves
3857 		 */
3858 		if (gfp_mask & __GFP_NOFAIL)
3859 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3860 					ALLOC_NO_WATERMARKS, ac);
3861 	}
3862 out:
3863 	mutex_unlock(&oom_lock);
3864 	return page;
3865 }
3866 
3867 /*
3868  * Maximum number of compaction retries wit a progress before OOM
3869  * killer is consider as the only way to move forward.
3870  */
3871 #define MAX_COMPACT_RETRIES 16
3872 
3873 #ifdef CONFIG_COMPACTION
3874 /* Try memory compaction for high-order allocations before reclaim */
3875 static struct page *
3876 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3877 		unsigned int alloc_flags, const struct alloc_context *ac,
3878 		enum compact_priority prio, enum compact_result *compact_result)
3879 {
3880 	struct page *page = NULL;
3881 	unsigned long pflags;
3882 	unsigned int noreclaim_flag;
3883 
3884 	if (!order)
3885 		return NULL;
3886 
3887 	psi_memstall_enter(&pflags);
3888 	noreclaim_flag = memalloc_noreclaim_save();
3889 
3890 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3891 								prio, &page);
3892 
3893 	memalloc_noreclaim_restore(noreclaim_flag);
3894 	psi_memstall_leave(&pflags);
3895 
3896 	/*
3897 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3898 	 * count a compaction stall
3899 	 */
3900 	count_vm_event(COMPACTSTALL);
3901 
3902 	/* Prep a captured page if available */
3903 	if (page)
3904 		prep_new_page(page, order, gfp_mask, alloc_flags);
3905 
3906 	/* Try get a page from the freelist if available */
3907 	if (!page)
3908 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3909 
3910 	if (page) {
3911 		struct zone *zone = page_zone(page);
3912 
3913 		zone->compact_blockskip_flush = false;
3914 		compaction_defer_reset(zone, order, true);
3915 		count_vm_event(COMPACTSUCCESS);
3916 		return page;
3917 	}
3918 
3919 	/*
3920 	 * It's bad if compaction run occurs and fails. The most likely reason
3921 	 * is that pages exist, but not enough to satisfy watermarks.
3922 	 */
3923 	count_vm_event(COMPACTFAIL);
3924 
3925 	cond_resched();
3926 
3927 	return NULL;
3928 }
3929 
3930 static inline bool
3931 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3932 		     enum compact_result compact_result,
3933 		     enum compact_priority *compact_priority,
3934 		     int *compaction_retries)
3935 {
3936 	int max_retries = MAX_COMPACT_RETRIES;
3937 	int min_priority;
3938 	bool ret = false;
3939 	int retries = *compaction_retries;
3940 	enum compact_priority priority = *compact_priority;
3941 
3942 	if (!order)
3943 		return false;
3944 
3945 	if (compaction_made_progress(compact_result))
3946 		(*compaction_retries)++;
3947 
3948 	/*
3949 	 * compaction considers all the zone as desperately out of memory
3950 	 * so it doesn't really make much sense to retry except when the
3951 	 * failure could be caused by insufficient priority
3952 	 */
3953 	if (compaction_failed(compact_result))
3954 		goto check_priority;
3955 
3956 	/*
3957 	 * compaction was skipped because there are not enough order-0 pages
3958 	 * to work with, so we retry only if it looks like reclaim can help.
3959 	 */
3960 	if (compaction_needs_reclaim(compact_result)) {
3961 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3962 		goto out;
3963 	}
3964 
3965 	/*
3966 	 * make sure the compaction wasn't deferred or didn't bail out early
3967 	 * due to locks contention before we declare that we should give up.
3968 	 * But the next retry should use a higher priority if allowed, so
3969 	 * we don't just keep bailing out endlessly.
3970 	 */
3971 	if (compaction_withdrawn(compact_result)) {
3972 		goto check_priority;
3973 	}
3974 
3975 	/*
3976 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3977 	 * costly ones because they are de facto nofail and invoke OOM
3978 	 * killer to move on while costly can fail and users are ready
3979 	 * to cope with that. 1/4 retries is rather arbitrary but we
3980 	 * would need much more detailed feedback from compaction to
3981 	 * make a better decision.
3982 	 */
3983 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3984 		max_retries /= 4;
3985 	if (*compaction_retries <= max_retries) {
3986 		ret = true;
3987 		goto out;
3988 	}
3989 
3990 	/*
3991 	 * Make sure there are attempts at the highest priority if we exhausted
3992 	 * all retries or failed at the lower priorities.
3993 	 */
3994 check_priority:
3995 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3996 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3997 
3998 	if (*compact_priority > min_priority) {
3999 		(*compact_priority)--;
4000 		*compaction_retries = 0;
4001 		ret = true;
4002 	}
4003 out:
4004 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4005 	return ret;
4006 }
4007 #else
4008 static inline struct page *
4009 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4010 		unsigned int alloc_flags, const struct alloc_context *ac,
4011 		enum compact_priority prio, enum compact_result *compact_result)
4012 {
4013 	*compact_result = COMPACT_SKIPPED;
4014 	return NULL;
4015 }
4016 
4017 static inline bool
4018 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4019 		     enum compact_result compact_result,
4020 		     enum compact_priority *compact_priority,
4021 		     int *compaction_retries)
4022 {
4023 	struct zone *zone;
4024 	struct zoneref *z;
4025 
4026 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4027 		return false;
4028 
4029 	/*
4030 	 * There are setups with compaction disabled which would prefer to loop
4031 	 * inside the allocator rather than hit the oom killer prematurely.
4032 	 * Let's give them a good hope and keep retrying while the order-0
4033 	 * watermarks are OK.
4034 	 */
4035 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4036 					ac->nodemask) {
4037 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4038 					ac_classzone_idx(ac), alloc_flags))
4039 			return true;
4040 	}
4041 	return false;
4042 }
4043 #endif /* CONFIG_COMPACTION */
4044 
4045 #ifdef CONFIG_LOCKDEP
4046 static struct lockdep_map __fs_reclaim_map =
4047 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4048 
4049 static bool __need_fs_reclaim(gfp_t gfp_mask)
4050 {
4051 	gfp_mask = current_gfp_context(gfp_mask);
4052 
4053 	/* no reclaim without waiting on it */
4054 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4055 		return false;
4056 
4057 	/* this guy won't enter reclaim */
4058 	if (current->flags & PF_MEMALLOC)
4059 		return false;
4060 
4061 	/* We're only interested __GFP_FS allocations for now */
4062 	if (!(gfp_mask & __GFP_FS))
4063 		return false;
4064 
4065 	if (gfp_mask & __GFP_NOLOCKDEP)
4066 		return false;
4067 
4068 	return true;
4069 }
4070 
4071 void __fs_reclaim_acquire(void)
4072 {
4073 	lock_map_acquire(&__fs_reclaim_map);
4074 }
4075 
4076 void __fs_reclaim_release(void)
4077 {
4078 	lock_map_release(&__fs_reclaim_map);
4079 }
4080 
4081 void fs_reclaim_acquire(gfp_t gfp_mask)
4082 {
4083 	if (__need_fs_reclaim(gfp_mask))
4084 		__fs_reclaim_acquire();
4085 }
4086 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4087 
4088 void fs_reclaim_release(gfp_t gfp_mask)
4089 {
4090 	if (__need_fs_reclaim(gfp_mask))
4091 		__fs_reclaim_release();
4092 }
4093 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4094 #endif
4095 
4096 /* Perform direct synchronous page reclaim */
4097 static int
4098 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4099 					const struct alloc_context *ac)
4100 {
4101 	int progress;
4102 	unsigned int noreclaim_flag;
4103 	unsigned long pflags;
4104 
4105 	cond_resched();
4106 
4107 	/* We now go into synchronous reclaim */
4108 	cpuset_memory_pressure_bump();
4109 	psi_memstall_enter(&pflags);
4110 	fs_reclaim_acquire(gfp_mask);
4111 	noreclaim_flag = memalloc_noreclaim_save();
4112 
4113 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4114 								ac->nodemask);
4115 
4116 	memalloc_noreclaim_restore(noreclaim_flag);
4117 	fs_reclaim_release(gfp_mask);
4118 	psi_memstall_leave(&pflags);
4119 
4120 	cond_resched();
4121 
4122 	return progress;
4123 }
4124 
4125 /* The really slow allocator path where we enter direct reclaim */
4126 static inline struct page *
4127 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4128 		unsigned int alloc_flags, const struct alloc_context *ac,
4129 		unsigned long *did_some_progress)
4130 {
4131 	struct page *page = NULL;
4132 	bool drained = false;
4133 
4134 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4135 	if (unlikely(!(*did_some_progress)))
4136 		return NULL;
4137 
4138 retry:
4139 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4140 
4141 	/*
4142 	 * If an allocation failed after direct reclaim, it could be because
4143 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4144 	 * Shrink them them and try again
4145 	 */
4146 	if (!page && !drained) {
4147 		unreserve_highatomic_pageblock(ac, false);
4148 		drain_all_pages(NULL);
4149 		drained = true;
4150 		goto retry;
4151 	}
4152 
4153 	return page;
4154 }
4155 
4156 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4157 			     const struct alloc_context *ac)
4158 {
4159 	struct zoneref *z;
4160 	struct zone *zone;
4161 	pg_data_t *last_pgdat = NULL;
4162 	enum zone_type high_zoneidx = ac->high_zoneidx;
4163 
4164 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx,
4165 					ac->nodemask) {
4166 		if (last_pgdat != zone->zone_pgdat)
4167 			wakeup_kswapd(zone, gfp_mask, order, high_zoneidx);
4168 		last_pgdat = zone->zone_pgdat;
4169 	}
4170 }
4171 
4172 static inline unsigned int
4173 gfp_to_alloc_flags(gfp_t gfp_mask)
4174 {
4175 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4176 
4177 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
4178 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4179 
4180 	/*
4181 	 * The caller may dip into page reserves a bit more if the caller
4182 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4183 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4184 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4185 	 */
4186 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
4187 
4188 	if (gfp_mask & __GFP_ATOMIC) {
4189 		/*
4190 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4191 		 * if it can't schedule.
4192 		 */
4193 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4194 			alloc_flags |= ALLOC_HARDER;
4195 		/*
4196 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4197 		 * comment for __cpuset_node_allowed().
4198 		 */
4199 		alloc_flags &= ~ALLOC_CPUSET;
4200 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4201 		alloc_flags |= ALLOC_HARDER;
4202 
4203 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4204 		alloc_flags |= ALLOC_KSWAPD;
4205 
4206 #ifdef CONFIG_CMA
4207 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
4208 		alloc_flags |= ALLOC_CMA;
4209 #endif
4210 	return alloc_flags;
4211 }
4212 
4213 static bool oom_reserves_allowed(struct task_struct *tsk)
4214 {
4215 	if (!tsk_is_oom_victim(tsk))
4216 		return false;
4217 
4218 	/*
4219 	 * !MMU doesn't have oom reaper so give access to memory reserves
4220 	 * only to the thread with TIF_MEMDIE set
4221 	 */
4222 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4223 		return false;
4224 
4225 	return true;
4226 }
4227 
4228 /*
4229  * Distinguish requests which really need access to full memory
4230  * reserves from oom victims which can live with a portion of it
4231  */
4232 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4233 {
4234 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4235 		return 0;
4236 	if (gfp_mask & __GFP_MEMALLOC)
4237 		return ALLOC_NO_WATERMARKS;
4238 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4239 		return ALLOC_NO_WATERMARKS;
4240 	if (!in_interrupt()) {
4241 		if (current->flags & PF_MEMALLOC)
4242 			return ALLOC_NO_WATERMARKS;
4243 		else if (oom_reserves_allowed(current))
4244 			return ALLOC_OOM;
4245 	}
4246 
4247 	return 0;
4248 }
4249 
4250 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4251 {
4252 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4253 }
4254 
4255 /*
4256  * Checks whether it makes sense to retry the reclaim to make a forward progress
4257  * for the given allocation request.
4258  *
4259  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4260  * without success, or when we couldn't even meet the watermark if we
4261  * reclaimed all remaining pages on the LRU lists.
4262  *
4263  * Returns true if a retry is viable or false to enter the oom path.
4264  */
4265 static inline bool
4266 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4267 		     struct alloc_context *ac, int alloc_flags,
4268 		     bool did_some_progress, int *no_progress_loops)
4269 {
4270 	struct zone *zone;
4271 	struct zoneref *z;
4272 	bool ret = false;
4273 
4274 	/*
4275 	 * Costly allocations might have made a progress but this doesn't mean
4276 	 * their order will become available due to high fragmentation so
4277 	 * always increment the no progress counter for them
4278 	 */
4279 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4280 		*no_progress_loops = 0;
4281 	else
4282 		(*no_progress_loops)++;
4283 
4284 	/*
4285 	 * Make sure we converge to OOM if we cannot make any progress
4286 	 * several times in the row.
4287 	 */
4288 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4289 		/* Before OOM, exhaust highatomic_reserve */
4290 		return unreserve_highatomic_pageblock(ac, true);
4291 	}
4292 
4293 	/*
4294 	 * Keep reclaiming pages while there is a chance this will lead
4295 	 * somewhere.  If none of the target zones can satisfy our allocation
4296 	 * request even if all reclaimable pages are considered then we are
4297 	 * screwed and have to go OOM.
4298 	 */
4299 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
4300 					ac->nodemask) {
4301 		unsigned long available;
4302 		unsigned long reclaimable;
4303 		unsigned long min_wmark = min_wmark_pages(zone);
4304 		bool wmark;
4305 
4306 		available = reclaimable = zone_reclaimable_pages(zone);
4307 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4308 
4309 		/*
4310 		 * Would the allocation succeed if we reclaimed all
4311 		 * reclaimable pages?
4312 		 */
4313 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4314 				ac_classzone_idx(ac), alloc_flags, available);
4315 		trace_reclaim_retry_zone(z, order, reclaimable,
4316 				available, min_wmark, *no_progress_loops, wmark);
4317 		if (wmark) {
4318 			/*
4319 			 * If we didn't make any progress and have a lot of
4320 			 * dirty + writeback pages then we should wait for
4321 			 * an IO to complete to slow down the reclaim and
4322 			 * prevent from pre mature OOM
4323 			 */
4324 			if (!did_some_progress) {
4325 				unsigned long write_pending;
4326 
4327 				write_pending = zone_page_state_snapshot(zone,
4328 							NR_ZONE_WRITE_PENDING);
4329 
4330 				if (2 * write_pending > reclaimable) {
4331 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4332 					return true;
4333 				}
4334 			}
4335 
4336 			ret = true;
4337 			goto out;
4338 		}
4339 	}
4340 
4341 out:
4342 	/*
4343 	 * Memory allocation/reclaim might be called from a WQ context and the
4344 	 * current implementation of the WQ concurrency control doesn't
4345 	 * recognize that a particular WQ is congested if the worker thread is
4346 	 * looping without ever sleeping. Therefore we have to do a short sleep
4347 	 * here rather than calling cond_resched().
4348 	 */
4349 	if (current->flags & PF_WQ_WORKER)
4350 		schedule_timeout_uninterruptible(1);
4351 	else
4352 		cond_resched();
4353 	return ret;
4354 }
4355 
4356 static inline bool
4357 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4358 {
4359 	/*
4360 	 * It's possible that cpuset's mems_allowed and the nodemask from
4361 	 * mempolicy don't intersect. This should be normally dealt with by
4362 	 * policy_nodemask(), but it's possible to race with cpuset update in
4363 	 * such a way the check therein was true, and then it became false
4364 	 * before we got our cpuset_mems_cookie here.
4365 	 * This assumes that for all allocations, ac->nodemask can come only
4366 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4367 	 * when it does not intersect with the cpuset restrictions) or the
4368 	 * caller can deal with a violated nodemask.
4369 	 */
4370 	if (cpusets_enabled() && ac->nodemask &&
4371 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4372 		ac->nodemask = NULL;
4373 		return true;
4374 	}
4375 
4376 	/*
4377 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4378 	 * possible to race with parallel threads in such a way that our
4379 	 * allocation can fail while the mask is being updated. If we are about
4380 	 * to fail, check if the cpuset changed during allocation and if so,
4381 	 * retry.
4382 	 */
4383 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4384 		return true;
4385 
4386 	return false;
4387 }
4388 
4389 static inline struct page *
4390 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4391 						struct alloc_context *ac)
4392 {
4393 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4394 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4395 	struct page *page = NULL;
4396 	unsigned int alloc_flags;
4397 	unsigned long did_some_progress;
4398 	enum compact_priority compact_priority;
4399 	enum compact_result compact_result;
4400 	int compaction_retries;
4401 	int no_progress_loops;
4402 	unsigned int cpuset_mems_cookie;
4403 	int reserve_flags;
4404 
4405 	/*
4406 	 * We also sanity check to catch abuse of atomic reserves being used by
4407 	 * callers that are not in atomic context.
4408 	 */
4409 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4410 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4411 		gfp_mask &= ~__GFP_ATOMIC;
4412 
4413 retry_cpuset:
4414 	compaction_retries = 0;
4415 	no_progress_loops = 0;
4416 	compact_priority = DEF_COMPACT_PRIORITY;
4417 	cpuset_mems_cookie = read_mems_allowed_begin();
4418 
4419 	/*
4420 	 * The fast path uses conservative alloc_flags to succeed only until
4421 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4422 	 * alloc_flags precisely. So we do that now.
4423 	 */
4424 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4425 
4426 	/*
4427 	 * We need to recalculate the starting point for the zonelist iterator
4428 	 * because we might have used different nodemask in the fast path, or
4429 	 * there was a cpuset modification and we are retrying - otherwise we
4430 	 * could end up iterating over non-eligible zones endlessly.
4431 	 */
4432 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4433 					ac->high_zoneidx, ac->nodemask);
4434 	if (!ac->preferred_zoneref->zone)
4435 		goto nopage;
4436 
4437 	if (alloc_flags & ALLOC_KSWAPD)
4438 		wake_all_kswapds(order, gfp_mask, ac);
4439 
4440 	/*
4441 	 * The adjusted alloc_flags might result in immediate success, so try
4442 	 * that first
4443 	 */
4444 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4445 	if (page)
4446 		goto got_pg;
4447 
4448 	/*
4449 	 * For costly allocations, try direct compaction first, as it's likely
4450 	 * that we have enough base pages and don't need to reclaim. For non-
4451 	 * movable high-order allocations, do that as well, as compaction will
4452 	 * try prevent permanent fragmentation by migrating from blocks of the
4453 	 * same migratetype.
4454 	 * Don't try this for allocations that are allowed to ignore
4455 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4456 	 */
4457 	if (can_direct_reclaim &&
4458 			(costly_order ||
4459 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4460 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4461 		page = __alloc_pages_direct_compact(gfp_mask, order,
4462 						alloc_flags, ac,
4463 						INIT_COMPACT_PRIORITY,
4464 						&compact_result);
4465 		if (page)
4466 			goto got_pg;
4467 
4468 		/*
4469 		 * Checks for costly allocations with __GFP_NORETRY, which
4470 		 * includes some THP page fault allocations
4471 		 */
4472 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4473 			/*
4474 			 * If allocating entire pageblock(s) and compaction
4475 			 * failed because all zones are below low watermarks
4476 			 * or is prohibited because it recently failed at this
4477 			 * order, fail immediately unless the allocator has
4478 			 * requested compaction and reclaim retry.
4479 			 *
4480 			 * Reclaim is
4481 			 *  - potentially very expensive because zones are far
4482 			 *    below their low watermarks or this is part of very
4483 			 *    bursty high order allocations,
4484 			 *  - not guaranteed to help because isolate_freepages()
4485 			 *    may not iterate over freed pages as part of its
4486 			 *    linear scan, and
4487 			 *  - unlikely to make entire pageblocks free on its
4488 			 *    own.
4489 			 */
4490 			if (compact_result == COMPACT_SKIPPED ||
4491 			    compact_result == COMPACT_DEFERRED)
4492 				goto nopage;
4493 
4494 			/*
4495 			 * Looks like reclaim/compaction is worth trying, but
4496 			 * sync compaction could be very expensive, so keep
4497 			 * using async compaction.
4498 			 */
4499 			compact_priority = INIT_COMPACT_PRIORITY;
4500 		}
4501 	}
4502 
4503 retry:
4504 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4505 	if (alloc_flags & ALLOC_KSWAPD)
4506 		wake_all_kswapds(order, gfp_mask, ac);
4507 
4508 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4509 	if (reserve_flags)
4510 		alloc_flags = reserve_flags;
4511 
4512 	/*
4513 	 * Reset the nodemask and zonelist iterators if memory policies can be
4514 	 * ignored. These allocations are high priority and system rather than
4515 	 * user oriented.
4516 	 */
4517 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4518 		ac->nodemask = NULL;
4519 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4520 					ac->high_zoneidx, ac->nodemask);
4521 	}
4522 
4523 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4524 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4525 	if (page)
4526 		goto got_pg;
4527 
4528 	/* Caller is not willing to reclaim, we can't balance anything */
4529 	if (!can_direct_reclaim)
4530 		goto nopage;
4531 
4532 	/* Avoid recursion of direct reclaim */
4533 	if (current->flags & PF_MEMALLOC)
4534 		goto nopage;
4535 
4536 	/* Try direct reclaim and then allocating */
4537 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4538 							&did_some_progress);
4539 	if (page)
4540 		goto got_pg;
4541 
4542 	/* Try direct compaction and then allocating */
4543 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4544 					compact_priority, &compact_result);
4545 	if (page)
4546 		goto got_pg;
4547 
4548 	/* Do not loop if specifically requested */
4549 	if (gfp_mask & __GFP_NORETRY)
4550 		goto nopage;
4551 
4552 	/*
4553 	 * Do not retry costly high order allocations unless they are
4554 	 * __GFP_RETRY_MAYFAIL
4555 	 */
4556 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4557 		goto nopage;
4558 
4559 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4560 				 did_some_progress > 0, &no_progress_loops))
4561 		goto retry;
4562 
4563 	/*
4564 	 * It doesn't make any sense to retry for the compaction if the order-0
4565 	 * reclaim is not able to make any progress because the current
4566 	 * implementation of the compaction depends on the sufficient amount
4567 	 * of free memory (see __compaction_suitable)
4568 	 */
4569 	if (did_some_progress > 0 &&
4570 			should_compact_retry(ac, order, alloc_flags,
4571 				compact_result, &compact_priority,
4572 				&compaction_retries))
4573 		goto retry;
4574 
4575 
4576 	/* Deal with possible cpuset update races before we start OOM killing */
4577 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4578 		goto retry_cpuset;
4579 
4580 	/* Reclaim has failed us, start killing things */
4581 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4582 	if (page)
4583 		goto got_pg;
4584 
4585 	/* Avoid allocations with no watermarks from looping endlessly */
4586 	if (tsk_is_oom_victim(current) &&
4587 	    (alloc_flags == ALLOC_OOM ||
4588 	     (gfp_mask & __GFP_NOMEMALLOC)))
4589 		goto nopage;
4590 
4591 	/* Retry as long as the OOM killer is making progress */
4592 	if (did_some_progress) {
4593 		no_progress_loops = 0;
4594 		goto retry;
4595 	}
4596 
4597 nopage:
4598 	/* Deal with possible cpuset update races before we fail */
4599 	if (check_retry_cpuset(cpuset_mems_cookie, ac))
4600 		goto retry_cpuset;
4601 
4602 	/*
4603 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4604 	 * we always retry
4605 	 */
4606 	if (gfp_mask & __GFP_NOFAIL) {
4607 		/*
4608 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4609 		 * of any new users that actually require GFP_NOWAIT
4610 		 */
4611 		if (WARN_ON_ONCE(!can_direct_reclaim))
4612 			goto fail;
4613 
4614 		/*
4615 		 * PF_MEMALLOC request from this context is rather bizarre
4616 		 * because we cannot reclaim anything and only can loop waiting
4617 		 * for somebody to do a work for us
4618 		 */
4619 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4620 
4621 		/*
4622 		 * non failing costly orders are a hard requirement which we
4623 		 * are not prepared for much so let's warn about these users
4624 		 * so that we can identify them and convert them to something
4625 		 * else.
4626 		 */
4627 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4628 
4629 		/*
4630 		 * Help non-failing allocations by giving them access to memory
4631 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4632 		 * could deplete whole memory reserves which would just make
4633 		 * the situation worse
4634 		 */
4635 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4636 		if (page)
4637 			goto got_pg;
4638 
4639 		cond_resched();
4640 		goto retry;
4641 	}
4642 fail:
4643 	warn_alloc(gfp_mask, ac->nodemask,
4644 			"page allocation failure: order:%u", order);
4645 got_pg:
4646 	return page;
4647 }
4648 
4649 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4650 		int preferred_nid, nodemask_t *nodemask,
4651 		struct alloc_context *ac, gfp_t *alloc_mask,
4652 		unsigned int *alloc_flags)
4653 {
4654 	ac->high_zoneidx = gfp_zone(gfp_mask);
4655 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4656 	ac->nodemask = nodemask;
4657 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
4658 
4659 	if (cpusets_enabled()) {
4660 		*alloc_mask |= __GFP_HARDWALL;
4661 		if (!ac->nodemask)
4662 			ac->nodemask = &cpuset_current_mems_allowed;
4663 		else
4664 			*alloc_flags |= ALLOC_CPUSET;
4665 	}
4666 
4667 	fs_reclaim_acquire(gfp_mask);
4668 	fs_reclaim_release(gfp_mask);
4669 
4670 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4671 
4672 	if (should_fail_alloc_page(gfp_mask, order))
4673 		return false;
4674 
4675 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
4676 		*alloc_flags |= ALLOC_CMA;
4677 
4678 	return true;
4679 }
4680 
4681 /* Determine whether to spread dirty pages and what the first usable zone */
4682 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac)
4683 {
4684 	/* Dirty zone balancing only done in the fast path */
4685 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4686 
4687 	/*
4688 	 * The preferred zone is used for statistics but crucially it is
4689 	 * also used as the starting point for the zonelist iterator. It
4690 	 * may get reset for allocations that ignore memory policies.
4691 	 */
4692 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4693 					ac->high_zoneidx, ac->nodemask);
4694 }
4695 
4696 /*
4697  * This is the 'heart' of the zoned buddy allocator.
4698  */
4699 struct page *
4700 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
4701 							nodemask_t *nodemask)
4702 {
4703 	struct page *page;
4704 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
4705 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
4706 	struct alloc_context ac = { };
4707 
4708 	/*
4709 	 * There are several places where we assume that the order value is sane
4710 	 * so bail out early if the request is out of bound.
4711 	 */
4712 	if (unlikely(order >= MAX_ORDER)) {
4713 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
4714 		return NULL;
4715 	}
4716 
4717 	gfp_mask &= gfp_allowed_mask;
4718 	alloc_mask = gfp_mask;
4719 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
4720 		return NULL;
4721 
4722 	finalise_ac(gfp_mask, &ac);
4723 
4724 	/*
4725 	 * Forbid the first pass from falling back to types that fragment
4726 	 * memory until all local zones are considered.
4727 	 */
4728 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
4729 
4730 	/* First allocation attempt */
4731 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4732 	if (likely(page))
4733 		goto out;
4734 
4735 	/*
4736 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4737 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4738 	 * from a particular context which has been marked by
4739 	 * memalloc_no{fs,io}_{save,restore}.
4740 	 */
4741 	alloc_mask = current_gfp_context(gfp_mask);
4742 	ac.spread_dirty_pages = false;
4743 
4744 	/*
4745 	 * Restore the original nodemask if it was potentially replaced with
4746 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4747 	 */
4748 	if (unlikely(ac.nodemask != nodemask))
4749 		ac.nodemask = nodemask;
4750 
4751 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4752 
4753 out:
4754 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4755 	    unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4756 		__free_pages(page, order);
4757 		page = NULL;
4758 	}
4759 
4760 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4761 
4762 	return page;
4763 }
4764 EXPORT_SYMBOL(__alloc_pages_nodemask);
4765 
4766 /*
4767  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
4768  * address cannot represent highmem pages. Use alloc_pages and then kmap if
4769  * you need to access high mem.
4770  */
4771 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4772 {
4773 	struct page *page;
4774 
4775 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
4776 	if (!page)
4777 		return 0;
4778 	return (unsigned long) page_address(page);
4779 }
4780 EXPORT_SYMBOL(__get_free_pages);
4781 
4782 unsigned long get_zeroed_page(gfp_t gfp_mask)
4783 {
4784 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4785 }
4786 EXPORT_SYMBOL(get_zeroed_page);
4787 
4788 static inline void free_the_page(struct page *page, unsigned int order)
4789 {
4790 	if (order == 0)		/* Via pcp? */
4791 		free_unref_page(page);
4792 	else
4793 		__free_pages_ok(page, order);
4794 }
4795 
4796 void __free_pages(struct page *page, unsigned int order)
4797 {
4798 	if (put_page_testzero(page))
4799 		free_the_page(page, order);
4800 }
4801 EXPORT_SYMBOL(__free_pages);
4802 
4803 void free_pages(unsigned long addr, unsigned int order)
4804 {
4805 	if (addr != 0) {
4806 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4807 		__free_pages(virt_to_page((void *)addr), order);
4808 	}
4809 }
4810 
4811 EXPORT_SYMBOL(free_pages);
4812 
4813 /*
4814  * Page Fragment:
4815  *  An arbitrary-length arbitrary-offset area of memory which resides
4816  *  within a 0 or higher order page.  Multiple fragments within that page
4817  *  are individually refcounted, in the page's reference counter.
4818  *
4819  * The page_frag functions below provide a simple allocation framework for
4820  * page fragments.  This is used by the network stack and network device
4821  * drivers to provide a backing region of memory for use as either an
4822  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4823  */
4824 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4825 					     gfp_t gfp_mask)
4826 {
4827 	struct page *page = NULL;
4828 	gfp_t gfp = gfp_mask;
4829 
4830 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4831 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4832 		    __GFP_NOMEMALLOC;
4833 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4834 				PAGE_FRAG_CACHE_MAX_ORDER);
4835 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4836 #endif
4837 	if (unlikely(!page))
4838 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4839 
4840 	nc->va = page ? page_address(page) : NULL;
4841 
4842 	return page;
4843 }
4844 
4845 void __page_frag_cache_drain(struct page *page, unsigned int count)
4846 {
4847 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4848 
4849 	if (page_ref_sub_and_test(page, count))
4850 		free_the_page(page, compound_order(page));
4851 }
4852 EXPORT_SYMBOL(__page_frag_cache_drain);
4853 
4854 void *page_frag_alloc(struct page_frag_cache *nc,
4855 		      unsigned int fragsz, gfp_t gfp_mask)
4856 {
4857 	unsigned int size = PAGE_SIZE;
4858 	struct page *page;
4859 	int offset;
4860 
4861 	if (unlikely(!nc->va)) {
4862 refill:
4863 		page = __page_frag_cache_refill(nc, gfp_mask);
4864 		if (!page)
4865 			return NULL;
4866 
4867 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4868 		/* if size can vary use size else just use PAGE_SIZE */
4869 		size = nc->size;
4870 #endif
4871 		/* Even if we own the page, we do not use atomic_set().
4872 		 * This would break get_page_unless_zero() users.
4873 		 */
4874 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
4875 
4876 		/* reset page count bias and offset to start of new frag */
4877 		nc->pfmemalloc = page_is_pfmemalloc(page);
4878 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4879 		nc->offset = size;
4880 	}
4881 
4882 	offset = nc->offset - fragsz;
4883 	if (unlikely(offset < 0)) {
4884 		page = virt_to_page(nc->va);
4885 
4886 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4887 			goto refill;
4888 
4889 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4890 		/* if size can vary use size else just use PAGE_SIZE */
4891 		size = nc->size;
4892 #endif
4893 		/* OK, page count is 0, we can safely set it */
4894 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
4895 
4896 		/* reset page count bias and offset to start of new frag */
4897 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
4898 		offset = size - fragsz;
4899 	}
4900 
4901 	nc->pagecnt_bias--;
4902 	nc->offset = offset;
4903 
4904 	return nc->va + offset;
4905 }
4906 EXPORT_SYMBOL(page_frag_alloc);
4907 
4908 /*
4909  * Frees a page fragment allocated out of either a compound or order 0 page.
4910  */
4911 void page_frag_free(void *addr)
4912 {
4913 	struct page *page = virt_to_head_page(addr);
4914 
4915 	if (unlikely(put_page_testzero(page)))
4916 		free_the_page(page, compound_order(page));
4917 }
4918 EXPORT_SYMBOL(page_frag_free);
4919 
4920 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4921 		size_t size)
4922 {
4923 	if (addr) {
4924 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4925 		unsigned long used = addr + PAGE_ALIGN(size);
4926 
4927 		split_page(virt_to_page((void *)addr), order);
4928 		while (used < alloc_end) {
4929 			free_page(used);
4930 			used += PAGE_SIZE;
4931 		}
4932 	}
4933 	return (void *)addr;
4934 }
4935 
4936 /**
4937  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4938  * @size: the number of bytes to allocate
4939  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4940  *
4941  * This function is similar to alloc_pages(), except that it allocates the
4942  * minimum number of pages to satisfy the request.  alloc_pages() can only
4943  * allocate memory in power-of-two pages.
4944  *
4945  * This function is also limited by MAX_ORDER.
4946  *
4947  * Memory allocated by this function must be released by free_pages_exact().
4948  *
4949  * Return: pointer to the allocated area or %NULL in case of error.
4950  */
4951 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4952 {
4953 	unsigned int order = get_order(size);
4954 	unsigned long addr;
4955 
4956 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4957 		gfp_mask &= ~__GFP_COMP;
4958 
4959 	addr = __get_free_pages(gfp_mask, order);
4960 	return make_alloc_exact(addr, order, size);
4961 }
4962 EXPORT_SYMBOL(alloc_pages_exact);
4963 
4964 /**
4965  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4966  *			   pages on a node.
4967  * @nid: the preferred node ID where memory should be allocated
4968  * @size: the number of bytes to allocate
4969  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
4970  *
4971  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4972  * back.
4973  *
4974  * Return: pointer to the allocated area or %NULL in case of error.
4975  */
4976 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4977 {
4978 	unsigned int order = get_order(size);
4979 	struct page *p;
4980 
4981 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
4982 		gfp_mask &= ~__GFP_COMP;
4983 
4984 	p = alloc_pages_node(nid, gfp_mask, order);
4985 	if (!p)
4986 		return NULL;
4987 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4988 }
4989 
4990 /**
4991  * free_pages_exact - release memory allocated via alloc_pages_exact()
4992  * @virt: the value returned by alloc_pages_exact.
4993  * @size: size of allocation, same value as passed to alloc_pages_exact().
4994  *
4995  * Release the memory allocated by a previous call to alloc_pages_exact.
4996  */
4997 void free_pages_exact(void *virt, size_t size)
4998 {
4999 	unsigned long addr = (unsigned long)virt;
5000 	unsigned long end = addr + PAGE_ALIGN(size);
5001 
5002 	while (addr < end) {
5003 		free_page(addr);
5004 		addr += PAGE_SIZE;
5005 	}
5006 }
5007 EXPORT_SYMBOL(free_pages_exact);
5008 
5009 /**
5010  * nr_free_zone_pages - count number of pages beyond high watermark
5011  * @offset: The zone index of the highest zone
5012  *
5013  * nr_free_zone_pages() counts the number of pages which are beyond the
5014  * high watermark within all zones at or below a given zone index.  For each
5015  * zone, the number of pages is calculated as:
5016  *
5017  *     nr_free_zone_pages = managed_pages - high_pages
5018  *
5019  * Return: number of pages beyond high watermark.
5020  */
5021 static unsigned long nr_free_zone_pages(int offset)
5022 {
5023 	struct zoneref *z;
5024 	struct zone *zone;
5025 
5026 	/* Just pick one node, since fallback list is circular */
5027 	unsigned long sum = 0;
5028 
5029 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5030 
5031 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5032 		unsigned long size = zone_managed_pages(zone);
5033 		unsigned long high = high_wmark_pages(zone);
5034 		if (size > high)
5035 			sum += size - high;
5036 	}
5037 
5038 	return sum;
5039 }
5040 
5041 /**
5042  * nr_free_buffer_pages - count number of pages beyond high watermark
5043  *
5044  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5045  * watermark within ZONE_DMA and ZONE_NORMAL.
5046  *
5047  * Return: number of pages beyond high watermark within ZONE_DMA and
5048  * ZONE_NORMAL.
5049  */
5050 unsigned long nr_free_buffer_pages(void)
5051 {
5052 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5053 }
5054 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5055 
5056 /**
5057  * nr_free_pagecache_pages - count number of pages beyond high watermark
5058  *
5059  * nr_free_pagecache_pages() counts the number of pages which are beyond the
5060  * high watermark within all zones.
5061  *
5062  * Return: number of pages beyond high watermark within all zones.
5063  */
5064 unsigned long nr_free_pagecache_pages(void)
5065 {
5066 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
5067 }
5068 
5069 static inline void show_node(struct zone *zone)
5070 {
5071 	if (IS_ENABLED(CONFIG_NUMA))
5072 		printk("Node %d ", zone_to_nid(zone));
5073 }
5074 
5075 long si_mem_available(void)
5076 {
5077 	long available;
5078 	unsigned long pagecache;
5079 	unsigned long wmark_low = 0;
5080 	unsigned long pages[NR_LRU_LISTS];
5081 	unsigned long reclaimable;
5082 	struct zone *zone;
5083 	int lru;
5084 
5085 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5086 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5087 
5088 	for_each_zone(zone)
5089 		wmark_low += low_wmark_pages(zone);
5090 
5091 	/*
5092 	 * Estimate the amount of memory available for userspace allocations,
5093 	 * without causing swapping.
5094 	 */
5095 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5096 
5097 	/*
5098 	 * Not all the page cache can be freed, otherwise the system will
5099 	 * start swapping. Assume at least half of the page cache, or the
5100 	 * low watermark worth of cache, needs to stay.
5101 	 */
5102 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5103 	pagecache -= min(pagecache / 2, wmark_low);
5104 	available += pagecache;
5105 
5106 	/*
5107 	 * Part of the reclaimable slab and other kernel memory consists of
5108 	 * items that are in use, and cannot be freed. Cap this estimate at the
5109 	 * low watermark.
5110 	 */
5111 	reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) +
5112 			global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5113 	available += reclaimable - min(reclaimable / 2, wmark_low);
5114 
5115 	if (available < 0)
5116 		available = 0;
5117 	return available;
5118 }
5119 EXPORT_SYMBOL_GPL(si_mem_available);
5120 
5121 void si_meminfo(struct sysinfo *val)
5122 {
5123 	val->totalram = totalram_pages();
5124 	val->sharedram = global_node_page_state(NR_SHMEM);
5125 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5126 	val->bufferram = nr_blockdev_pages();
5127 	val->totalhigh = totalhigh_pages();
5128 	val->freehigh = nr_free_highpages();
5129 	val->mem_unit = PAGE_SIZE;
5130 }
5131 
5132 EXPORT_SYMBOL(si_meminfo);
5133 
5134 #ifdef CONFIG_NUMA
5135 void si_meminfo_node(struct sysinfo *val, int nid)
5136 {
5137 	int zone_type;		/* needs to be signed */
5138 	unsigned long managed_pages = 0;
5139 	unsigned long managed_highpages = 0;
5140 	unsigned long free_highpages = 0;
5141 	pg_data_t *pgdat = NODE_DATA(nid);
5142 
5143 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5144 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5145 	val->totalram = managed_pages;
5146 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5147 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5148 #ifdef CONFIG_HIGHMEM
5149 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5150 		struct zone *zone = &pgdat->node_zones[zone_type];
5151 
5152 		if (is_highmem(zone)) {
5153 			managed_highpages += zone_managed_pages(zone);
5154 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5155 		}
5156 	}
5157 	val->totalhigh = managed_highpages;
5158 	val->freehigh = free_highpages;
5159 #else
5160 	val->totalhigh = managed_highpages;
5161 	val->freehigh = free_highpages;
5162 #endif
5163 	val->mem_unit = PAGE_SIZE;
5164 }
5165 #endif
5166 
5167 /*
5168  * Determine whether the node should be displayed or not, depending on whether
5169  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5170  */
5171 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5172 {
5173 	if (!(flags & SHOW_MEM_FILTER_NODES))
5174 		return false;
5175 
5176 	/*
5177 	 * no node mask - aka implicit memory numa policy. Do not bother with
5178 	 * the synchronization - read_mems_allowed_begin - because we do not
5179 	 * have to be precise here.
5180 	 */
5181 	if (!nodemask)
5182 		nodemask = &cpuset_current_mems_allowed;
5183 
5184 	return !node_isset(nid, *nodemask);
5185 }
5186 
5187 #define K(x) ((x) << (PAGE_SHIFT-10))
5188 
5189 static void show_migration_types(unsigned char type)
5190 {
5191 	static const char types[MIGRATE_TYPES] = {
5192 		[MIGRATE_UNMOVABLE]	= 'U',
5193 		[MIGRATE_MOVABLE]	= 'M',
5194 		[MIGRATE_RECLAIMABLE]	= 'E',
5195 		[MIGRATE_HIGHATOMIC]	= 'H',
5196 #ifdef CONFIG_CMA
5197 		[MIGRATE_CMA]		= 'C',
5198 #endif
5199 #ifdef CONFIG_MEMORY_ISOLATION
5200 		[MIGRATE_ISOLATE]	= 'I',
5201 #endif
5202 	};
5203 	char tmp[MIGRATE_TYPES + 1];
5204 	char *p = tmp;
5205 	int i;
5206 
5207 	for (i = 0; i < MIGRATE_TYPES; i++) {
5208 		if (type & (1 << i))
5209 			*p++ = types[i];
5210 	}
5211 
5212 	*p = '\0';
5213 	printk(KERN_CONT "(%s) ", tmp);
5214 }
5215 
5216 /*
5217  * Show free area list (used inside shift_scroll-lock stuff)
5218  * We also calculate the percentage fragmentation. We do this by counting the
5219  * memory on each free list with the exception of the first item on the list.
5220  *
5221  * Bits in @filter:
5222  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5223  *   cpuset.
5224  */
5225 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5226 {
5227 	unsigned long free_pcp = 0;
5228 	int cpu;
5229 	struct zone *zone;
5230 	pg_data_t *pgdat;
5231 
5232 	for_each_populated_zone(zone) {
5233 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5234 			continue;
5235 
5236 		for_each_online_cpu(cpu)
5237 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5238 	}
5239 
5240 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5241 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5242 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
5243 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5244 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5245 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5246 		global_node_page_state(NR_ACTIVE_ANON),
5247 		global_node_page_state(NR_INACTIVE_ANON),
5248 		global_node_page_state(NR_ISOLATED_ANON),
5249 		global_node_page_state(NR_ACTIVE_FILE),
5250 		global_node_page_state(NR_INACTIVE_FILE),
5251 		global_node_page_state(NR_ISOLATED_FILE),
5252 		global_node_page_state(NR_UNEVICTABLE),
5253 		global_node_page_state(NR_FILE_DIRTY),
5254 		global_node_page_state(NR_WRITEBACK),
5255 		global_node_page_state(NR_UNSTABLE_NFS),
5256 		global_node_page_state(NR_SLAB_RECLAIMABLE),
5257 		global_node_page_state(NR_SLAB_UNRECLAIMABLE),
5258 		global_node_page_state(NR_FILE_MAPPED),
5259 		global_node_page_state(NR_SHMEM),
5260 		global_zone_page_state(NR_PAGETABLE),
5261 		global_zone_page_state(NR_BOUNCE),
5262 		global_zone_page_state(NR_FREE_PAGES),
5263 		free_pcp,
5264 		global_zone_page_state(NR_FREE_CMA_PAGES));
5265 
5266 	for_each_online_pgdat(pgdat) {
5267 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5268 			continue;
5269 
5270 		printk("Node %d"
5271 			" active_anon:%lukB"
5272 			" inactive_anon:%lukB"
5273 			" active_file:%lukB"
5274 			" inactive_file:%lukB"
5275 			" unevictable:%lukB"
5276 			" isolated(anon):%lukB"
5277 			" isolated(file):%lukB"
5278 			" mapped:%lukB"
5279 			" dirty:%lukB"
5280 			" writeback:%lukB"
5281 			" shmem:%lukB"
5282 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5283 			" shmem_thp: %lukB"
5284 			" shmem_pmdmapped: %lukB"
5285 			" anon_thp: %lukB"
5286 #endif
5287 			" writeback_tmp:%lukB"
5288 			" unstable:%lukB"
5289 			" all_unreclaimable? %s"
5290 			"\n",
5291 			pgdat->node_id,
5292 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5293 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5294 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5295 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5296 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5297 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5298 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5299 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5300 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5301 			K(node_page_state(pgdat, NR_WRITEBACK)),
5302 			K(node_page_state(pgdat, NR_SHMEM)),
5303 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5304 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5305 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5306 					* HPAGE_PMD_NR),
5307 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5308 #endif
5309 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5310 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
5311 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5312 				"yes" : "no");
5313 	}
5314 
5315 	for_each_populated_zone(zone) {
5316 		int i;
5317 
5318 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5319 			continue;
5320 
5321 		free_pcp = 0;
5322 		for_each_online_cpu(cpu)
5323 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5324 
5325 		show_node(zone);
5326 		printk(KERN_CONT
5327 			"%s"
5328 			" free:%lukB"
5329 			" min:%lukB"
5330 			" low:%lukB"
5331 			" high:%lukB"
5332 			" reserved_highatomic:%luKB"
5333 			" active_anon:%lukB"
5334 			" inactive_anon:%lukB"
5335 			" active_file:%lukB"
5336 			" inactive_file:%lukB"
5337 			" unevictable:%lukB"
5338 			" writepending:%lukB"
5339 			" present:%lukB"
5340 			" managed:%lukB"
5341 			" mlocked:%lukB"
5342 			" kernel_stack:%lukB"
5343 			" pagetables:%lukB"
5344 			" bounce:%lukB"
5345 			" free_pcp:%lukB"
5346 			" local_pcp:%ukB"
5347 			" free_cma:%lukB"
5348 			"\n",
5349 			zone->name,
5350 			K(zone_page_state(zone, NR_FREE_PAGES)),
5351 			K(min_wmark_pages(zone)),
5352 			K(low_wmark_pages(zone)),
5353 			K(high_wmark_pages(zone)),
5354 			K(zone->nr_reserved_highatomic),
5355 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5356 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5357 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5358 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5359 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5360 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5361 			K(zone->present_pages),
5362 			K(zone_managed_pages(zone)),
5363 			K(zone_page_state(zone, NR_MLOCK)),
5364 			zone_page_state(zone, NR_KERNEL_STACK_KB),
5365 			K(zone_page_state(zone, NR_PAGETABLE)),
5366 			K(zone_page_state(zone, NR_BOUNCE)),
5367 			K(free_pcp),
5368 			K(this_cpu_read(zone->pageset->pcp.count)),
5369 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5370 		printk("lowmem_reserve[]:");
5371 		for (i = 0; i < MAX_NR_ZONES; i++)
5372 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5373 		printk(KERN_CONT "\n");
5374 	}
5375 
5376 	for_each_populated_zone(zone) {
5377 		unsigned int order;
5378 		unsigned long nr[MAX_ORDER], flags, total = 0;
5379 		unsigned char types[MAX_ORDER];
5380 
5381 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5382 			continue;
5383 		show_node(zone);
5384 		printk(KERN_CONT "%s: ", zone->name);
5385 
5386 		spin_lock_irqsave(&zone->lock, flags);
5387 		for (order = 0; order < MAX_ORDER; order++) {
5388 			struct free_area *area = &zone->free_area[order];
5389 			int type;
5390 
5391 			nr[order] = area->nr_free;
5392 			total += nr[order] << order;
5393 
5394 			types[order] = 0;
5395 			for (type = 0; type < MIGRATE_TYPES; type++) {
5396 				if (!free_area_empty(area, type))
5397 					types[order] |= 1 << type;
5398 			}
5399 		}
5400 		spin_unlock_irqrestore(&zone->lock, flags);
5401 		for (order = 0; order < MAX_ORDER; order++) {
5402 			printk(KERN_CONT "%lu*%lukB ",
5403 			       nr[order], K(1UL) << order);
5404 			if (nr[order])
5405 				show_migration_types(types[order]);
5406 		}
5407 		printk(KERN_CONT "= %lukB\n", K(total));
5408 	}
5409 
5410 	hugetlb_show_meminfo();
5411 
5412 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5413 
5414 	show_swap_cache_info();
5415 }
5416 
5417 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5418 {
5419 	zoneref->zone = zone;
5420 	zoneref->zone_idx = zone_idx(zone);
5421 }
5422 
5423 /*
5424  * Builds allocation fallback zone lists.
5425  *
5426  * Add all populated zones of a node to the zonelist.
5427  */
5428 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5429 {
5430 	struct zone *zone;
5431 	enum zone_type zone_type = MAX_NR_ZONES;
5432 	int nr_zones = 0;
5433 
5434 	do {
5435 		zone_type--;
5436 		zone = pgdat->node_zones + zone_type;
5437 		if (managed_zone(zone)) {
5438 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5439 			check_highest_zone(zone_type);
5440 		}
5441 	} while (zone_type);
5442 
5443 	return nr_zones;
5444 }
5445 
5446 #ifdef CONFIG_NUMA
5447 
5448 static int __parse_numa_zonelist_order(char *s)
5449 {
5450 	/*
5451 	 * We used to support different zonlists modes but they turned
5452 	 * out to be just not useful. Let's keep the warning in place
5453 	 * if somebody still use the cmd line parameter so that we do
5454 	 * not fail it silently
5455 	 */
5456 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5457 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5458 		return -EINVAL;
5459 	}
5460 	return 0;
5461 }
5462 
5463 static __init int setup_numa_zonelist_order(char *s)
5464 {
5465 	if (!s)
5466 		return 0;
5467 
5468 	return __parse_numa_zonelist_order(s);
5469 }
5470 early_param("numa_zonelist_order", setup_numa_zonelist_order);
5471 
5472 char numa_zonelist_order[] = "Node";
5473 
5474 /*
5475  * sysctl handler for numa_zonelist_order
5476  */
5477 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5478 		void __user *buffer, size_t *length,
5479 		loff_t *ppos)
5480 {
5481 	char *str;
5482 	int ret;
5483 
5484 	if (!write)
5485 		return proc_dostring(table, write, buffer, length, ppos);
5486 	str = memdup_user_nul(buffer, 16);
5487 	if (IS_ERR(str))
5488 		return PTR_ERR(str);
5489 
5490 	ret = __parse_numa_zonelist_order(str);
5491 	kfree(str);
5492 	return ret;
5493 }
5494 
5495 
5496 #define MAX_NODE_LOAD (nr_online_nodes)
5497 static int node_load[MAX_NUMNODES];
5498 
5499 /**
5500  * find_next_best_node - find the next node that should appear in a given node's fallback list
5501  * @node: node whose fallback list we're appending
5502  * @used_node_mask: nodemask_t of already used nodes
5503  *
5504  * We use a number of factors to determine which is the next node that should
5505  * appear on a given node's fallback list.  The node should not have appeared
5506  * already in @node's fallback list, and it should be the next closest node
5507  * according to the distance array (which contains arbitrary distance values
5508  * from each node to each node in the system), and should also prefer nodes
5509  * with no CPUs, since presumably they'll have very little allocation pressure
5510  * on them otherwise.
5511  *
5512  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5513  */
5514 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5515 {
5516 	int n, val;
5517 	int min_val = INT_MAX;
5518 	int best_node = NUMA_NO_NODE;
5519 	const struct cpumask *tmp = cpumask_of_node(0);
5520 
5521 	/* Use the local node if we haven't already */
5522 	if (!node_isset(node, *used_node_mask)) {
5523 		node_set(node, *used_node_mask);
5524 		return node;
5525 	}
5526 
5527 	for_each_node_state(n, N_MEMORY) {
5528 
5529 		/* Don't want a node to appear more than once */
5530 		if (node_isset(n, *used_node_mask))
5531 			continue;
5532 
5533 		/* Use the distance array to find the distance */
5534 		val = node_distance(node, n);
5535 
5536 		/* Penalize nodes under us ("prefer the next node") */
5537 		val += (n < node);
5538 
5539 		/* Give preference to headless and unused nodes */
5540 		tmp = cpumask_of_node(n);
5541 		if (!cpumask_empty(tmp))
5542 			val += PENALTY_FOR_NODE_WITH_CPUS;
5543 
5544 		/* Slight preference for less loaded node */
5545 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5546 		val += node_load[n];
5547 
5548 		if (val < min_val) {
5549 			min_val = val;
5550 			best_node = n;
5551 		}
5552 	}
5553 
5554 	if (best_node >= 0)
5555 		node_set(best_node, *used_node_mask);
5556 
5557 	return best_node;
5558 }
5559 
5560 
5561 /*
5562  * Build zonelists ordered by node and zones within node.
5563  * This results in maximum locality--normal zone overflows into local
5564  * DMA zone, if any--but risks exhausting DMA zone.
5565  */
5566 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5567 		unsigned nr_nodes)
5568 {
5569 	struct zoneref *zonerefs;
5570 	int i;
5571 
5572 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5573 
5574 	for (i = 0; i < nr_nodes; i++) {
5575 		int nr_zones;
5576 
5577 		pg_data_t *node = NODE_DATA(node_order[i]);
5578 
5579 		nr_zones = build_zonerefs_node(node, zonerefs);
5580 		zonerefs += nr_zones;
5581 	}
5582 	zonerefs->zone = NULL;
5583 	zonerefs->zone_idx = 0;
5584 }
5585 
5586 /*
5587  * Build gfp_thisnode zonelists
5588  */
5589 static void build_thisnode_zonelists(pg_data_t *pgdat)
5590 {
5591 	struct zoneref *zonerefs;
5592 	int nr_zones;
5593 
5594 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5595 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5596 	zonerefs += nr_zones;
5597 	zonerefs->zone = NULL;
5598 	zonerefs->zone_idx = 0;
5599 }
5600 
5601 /*
5602  * Build zonelists ordered by zone and nodes within zones.
5603  * This results in conserving DMA zone[s] until all Normal memory is
5604  * exhausted, but results in overflowing to remote node while memory
5605  * may still exist in local DMA zone.
5606  */
5607 
5608 static void build_zonelists(pg_data_t *pgdat)
5609 {
5610 	static int node_order[MAX_NUMNODES];
5611 	int node, load, nr_nodes = 0;
5612 	nodemask_t used_mask;
5613 	int local_node, prev_node;
5614 
5615 	/* NUMA-aware ordering of nodes */
5616 	local_node = pgdat->node_id;
5617 	load = nr_online_nodes;
5618 	prev_node = local_node;
5619 	nodes_clear(used_mask);
5620 
5621 	memset(node_order, 0, sizeof(node_order));
5622 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5623 		/*
5624 		 * We don't want to pressure a particular node.
5625 		 * So adding penalty to the first node in same
5626 		 * distance group to make it round-robin.
5627 		 */
5628 		if (node_distance(local_node, node) !=
5629 		    node_distance(local_node, prev_node))
5630 			node_load[node] = load;
5631 
5632 		node_order[nr_nodes++] = node;
5633 		prev_node = node;
5634 		load--;
5635 	}
5636 
5637 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5638 	build_thisnode_zonelists(pgdat);
5639 }
5640 
5641 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5642 /*
5643  * Return node id of node used for "local" allocations.
5644  * I.e., first node id of first zone in arg node's generic zonelist.
5645  * Used for initializing percpu 'numa_mem', which is used primarily
5646  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5647  */
5648 int local_memory_node(int node)
5649 {
5650 	struct zoneref *z;
5651 
5652 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5653 				   gfp_zone(GFP_KERNEL),
5654 				   NULL);
5655 	return zone_to_nid(z->zone);
5656 }
5657 #endif
5658 
5659 static void setup_min_unmapped_ratio(void);
5660 static void setup_min_slab_ratio(void);
5661 #else	/* CONFIG_NUMA */
5662 
5663 static void build_zonelists(pg_data_t *pgdat)
5664 {
5665 	int node, local_node;
5666 	struct zoneref *zonerefs;
5667 	int nr_zones;
5668 
5669 	local_node = pgdat->node_id;
5670 
5671 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5672 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5673 	zonerefs += nr_zones;
5674 
5675 	/*
5676 	 * Now we build the zonelist so that it contains the zones
5677 	 * of all the other nodes.
5678 	 * We don't want to pressure a particular node, so when
5679 	 * building the zones for node N, we make sure that the
5680 	 * zones coming right after the local ones are those from
5681 	 * node N+1 (modulo N)
5682 	 */
5683 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5684 		if (!node_online(node))
5685 			continue;
5686 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5687 		zonerefs += nr_zones;
5688 	}
5689 	for (node = 0; node < local_node; node++) {
5690 		if (!node_online(node))
5691 			continue;
5692 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
5693 		zonerefs += nr_zones;
5694 	}
5695 
5696 	zonerefs->zone = NULL;
5697 	zonerefs->zone_idx = 0;
5698 }
5699 
5700 #endif	/* CONFIG_NUMA */
5701 
5702 /*
5703  * Boot pageset table. One per cpu which is going to be used for all
5704  * zones and all nodes. The parameters will be set in such a way
5705  * that an item put on a list will immediately be handed over to
5706  * the buddy list. This is safe since pageset manipulation is done
5707  * with interrupts disabled.
5708  *
5709  * The boot_pagesets must be kept even after bootup is complete for
5710  * unused processors and/or zones. They do play a role for bootstrapping
5711  * hotplugged processors.
5712  *
5713  * zoneinfo_show() and maybe other functions do
5714  * not check if the processor is online before following the pageset pointer.
5715  * Other parts of the kernel may not check if the zone is available.
5716  */
5717 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5718 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5719 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
5720 
5721 static void __build_all_zonelists(void *data)
5722 {
5723 	int nid;
5724 	int __maybe_unused cpu;
5725 	pg_data_t *self = data;
5726 	static DEFINE_SPINLOCK(lock);
5727 
5728 	spin_lock(&lock);
5729 
5730 #ifdef CONFIG_NUMA
5731 	memset(node_load, 0, sizeof(node_load));
5732 #endif
5733 
5734 	/*
5735 	 * This node is hotadded and no memory is yet present.   So just
5736 	 * building zonelists is fine - no need to touch other nodes.
5737 	 */
5738 	if (self && !node_online(self->node_id)) {
5739 		build_zonelists(self);
5740 	} else {
5741 		for_each_online_node(nid) {
5742 			pg_data_t *pgdat = NODE_DATA(nid);
5743 
5744 			build_zonelists(pgdat);
5745 		}
5746 
5747 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5748 		/*
5749 		 * We now know the "local memory node" for each node--
5750 		 * i.e., the node of the first zone in the generic zonelist.
5751 		 * Set up numa_mem percpu variable for on-line cpus.  During
5752 		 * boot, only the boot cpu should be on-line;  we'll init the
5753 		 * secondary cpus' numa_mem as they come on-line.  During
5754 		 * node/memory hotplug, we'll fixup all on-line cpus.
5755 		 */
5756 		for_each_online_cpu(cpu)
5757 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5758 #endif
5759 	}
5760 
5761 	spin_unlock(&lock);
5762 }
5763 
5764 static noinline void __init
5765 build_all_zonelists_init(void)
5766 {
5767 	int cpu;
5768 
5769 	__build_all_zonelists(NULL);
5770 
5771 	/*
5772 	 * Initialize the boot_pagesets that are going to be used
5773 	 * for bootstrapping processors. The real pagesets for
5774 	 * each zone will be allocated later when the per cpu
5775 	 * allocator is available.
5776 	 *
5777 	 * boot_pagesets are used also for bootstrapping offline
5778 	 * cpus if the system is already booted because the pagesets
5779 	 * are needed to initialize allocators on a specific cpu too.
5780 	 * F.e. the percpu allocator needs the page allocator which
5781 	 * needs the percpu allocator in order to allocate its pagesets
5782 	 * (a chicken-egg dilemma).
5783 	 */
5784 	for_each_possible_cpu(cpu)
5785 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5786 
5787 	mminit_verify_zonelist();
5788 	cpuset_init_current_mems_allowed();
5789 }
5790 
5791 /*
5792  * unless system_state == SYSTEM_BOOTING.
5793  *
5794  * __ref due to call of __init annotated helper build_all_zonelists_init
5795  * [protected by SYSTEM_BOOTING].
5796  */
5797 void __ref build_all_zonelists(pg_data_t *pgdat)
5798 {
5799 	if (system_state == SYSTEM_BOOTING) {
5800 		build_all_zonelists_init();
5801 	} else {
5802 		__build_all_zonelists(pgdat);
5803 		/* cpuset refresh routine should be here */
5804 	}
5805 	vm_total_pages = nr_free_pagecache_pages();
5806 	/*
5807 	 * Disable grouping by mobility if the number of pages in the
5808 	 * system is too low to allow the mechanism to work. It would be
5809 	 * more accurate, but expensive to check per-zone. This check is
5810 	 * made on memory-hotadd so a system can start with mobility
5811 	 * disabled and enable it later
5812 	 */
5813 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5814 		page_group_by_mobility_disabled = 1;
5815 	else
5816 		page_group_by_mobility_disabled = 0;
5817 
5818 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
5819 		nr_online_nodes,
5820 		page_group_by_mobility_disabled ? "off" : "on",
5821 		vm_total_pages);
5822 #ifdef CONFIG_NUMA
5823 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5824 #endif
5825 }
5826 
5827 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
5828 static bool __meminit
5829 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
5830 {
5831 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5832 	static struct memblock_region *r;
5833 
5834 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5835 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
5836 			for_each_memblock(memory, r) {
5837 				if (*pfn < memblock_region_memory_end_pfn(r))
5838 					break;
5839 			}
5840 		}
5841 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
5842 		    memblock_is_mirror(r)) {
5843 			*pfn = memblock_region_memory_end_pfn(r);
5844 			return true;
5845 		}
5846 	}
5847 #endif
5848 	return false;
5849 }
5850 
5851 #ifdef CONFIG_SPARSEMEM
5852 /* Skip PFNs that belong to non-present sections */
5853 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5854 {
5855 	const unsigned long section_nr = pfn_to_section_nr(++pfn);
5856 
5857 	if (present_section_nr(section_nr))
5858 		return pfn;
5859 	return section_nr_to_pfn(next_present_section_nr(section_nr));
5860 }
5861 #else
5862 static inline __meminit unsigned long next_pfn(unsigned long pfn)
5863 {
5864 	return pfn++;
5865 }
5866 #endif
5867 
5868 /*
5869  * Initially all pages are reserved - free ones are freed
5870  * up by memblock_free_all() once the early boot process is
5871  * done. Non-atomic initialization, single-pass.
5872  */
5873 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5874 		unsigned long start_pfn, enum memmap_context context,
5875 		struct vmem_altmap *altmap)
5876 {
5877 	unsigned long pfn, end_pfn = start_pfn + size;
5878 	struct page *page;
5879 
5880 	if (highest_memmap_pfn < end_pfn - 1)
5881 		highest_memmap_pfn = end_pfn - 1;
5882 
5883 #ifdef CONFIG_ZONE_DEVICE
5884 	/*
5885 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5886 	 * memory. We limit the total number of pages to initialize to just
5887 	 * those that might contain the memory mapping. We will defer the
5888 	 * ZONE_DEVICE page initialization until after we have released
5889 	 * the hotplug lock.
5890 	 */
5891 	if (zone == ZONE_DEVICE) {
5892 		if (!altmap)
5893 			return;
5894 
5895 		if (start_pfn == altmap->base_pfn)
5896 			start_pfn += altmap->reserve;
5897 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5898 	}
5899 #endif
5900 
5901 	for (pfn = start_pfn; pfn < end_pfn; ) {
5902 		/*
5903 		 * There can be holes in boot-time mem_map[]s handed to this
5904 		 * function.  They do not exist on hotplugged memory.
5905 		 */
5906 		if (context == MEMMAP_EARLY) {
5907 			if (!early_pfn_valid(pfn)) {
5908 				pfn = next_pfn(pfn);
5909 				continue;
5910 			}
5911 			if (!early_pfn_in_nid(pfn, nid)) {
5912 				pfn++;
5913 				continue;
5914 			}
5915 			if (overlap_memmap_init(zone, &pfn))
5916 				continue;
5917 			if (defer_init(nid, pfn, end_pfn))
5918 				break;
5919 		}
5920 
5921 		page = pfn_to_page(pfn);
5922 		__init_single_page(page, pfn, zone, nid);
5923 		if (context == MEMMAP_HOTPLUG)
5924 			__SetPageReserved(page);
5925 
5926 		/*
5927 		 * Mark the block movable so that blocks are reserved for
5928 		 * movable at startup. This will force kernel allocations
5929 		 * to reserve their blocks rather than leaking throughout
5930 		 * the address space during boot when many long-lived
5931 		 * kernel allocations are made.
5932 		 *
5933 		 * bitmap is created for zone's valid pfn range. but memmap
5934 		 * can be created for invalid pages (for alignment)
5935 		 * check here not to call set_pageblock_migratetype() against
5936 		 * pfn out of zone.
5937 		 */
5938 		if (!(pfn & (pageblock_nr_pages - 1))) {
5939 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5940 			cond_resched();
5941 		}
5942 		pfn++;
5943 	}
5944 }
5945 
5946 #ifdef CONFIG_ZONE_DEVICE
5947 void __ref memmap_init_zone_device(struct zone *zone,
5948 				   unsigned long start_pfn,
5949 				   unsigned long nr_pages,
5950 				   struct dev_pagemap *pgmap)
5951 {
5952 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
5953 	struct pglist_data *pgdat = zone->zone_pgdat;
5954 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
5955 	unsigned long zone_idx = zone_idx(zone);
5956 	unsigned long start = jiffies;
5957 	int nid = pgdat->node_id;
5958 
5959 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
5960 		return;
5961 
5962 	/*
5963 	 * The call to memmap_init_zone should have already taken care
5964 	 * of the pages reserved for the memmap, so we can just jump to
5965 	 * the end of that region and start processing the device pages.
5966 	 */
5967 	if (altmap) {
5968 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
5969 		nr_pages = end_pfn - start_pfn;
5970 	}
5971 
5972 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5973 		struct page *page = pfn_to_page(pfn);
5974 
5975 		__init_single_page(page, pfn, zone_idx, nid);
5976 
5977 		/*
5978 		 * Mark page reserved as it will need to wait for onlining
5979 		 * phase for it to be fully associated with a zone.
5980 		 *
5981 		 * We can use the non-atomic __set_bit operation for setting
5982 		 * the flag as we are still initializing the pages.
5983 		 */
5984 		__SetPageReserved(page);
5985 
5986 		/*
5987 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
5988 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
5989 		 * ever freed or placed on a driver-private list.
5990 		 */
5991 		page->pgmap = pgmap;
5992 		page->zone_device_data = NULL;
5993 
5994 		/*
5995 		 * Mark the block movable so that blocks are reserved for
5996 		 * movable at startup. This will force kernel allocations
5997 		 * to reserve their blocks rather than leaking throughout
5998 		 * the address space during boot when many long-lived
5999 		 * kernel allocations are made.
6000 		 *
6001 		 * bitmap is created for zone's valid pfn range. but memmap
6002 		 * can be created for invalid pages (for alignment)
6003 		 * check here not to call set_pageblock_migratetype() against
6004 		 * pfn out of zone.
6005 		 *
6006 		 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
6007 		 * because this is done early in section_activate()
6008 		 */
6009 		if (!(pfn & (pageblock_nr_pages - 1))) {
6010 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6011 			cond_resched();
6012 		}
6013 	}
6014 
6015 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6016 		nr_pages, jiffies_to_msecs(jiffies - start));
6017 }
6018 
6019 #endif
6020 static void __meminit zone_init_free_lists(struct zone *zone)
6021 {
6022 	unsigned int order, t;
6023 	for_each_migratetype_order(order, t) {
6024 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6025 		zone->free_area[order].nr_free = 0;
6026 	}
6027 }
6028 
6029 void __meminit __weak memmap_init(unsigned long size, int nid,
6030 				  unsigned long zone, unsigned long start_pfn)
6031 {
6032 	memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL);
6033 }
6034 
6035 static int zone_batchsize(struct zone *zone)
6036 {
6037 #ifdef CONFIG_MMU
6038 	int batch;
6039 
6040 	/*
6041 	 * The per-cpu-pages pools are set to around 1000th of the
6042 	 * size of the zone.
6043 	 */
6044 	batch = zone_managed_pages(zone) / 1024;
6045 	/* But no more than a meg. */
6046 	if (batch * PAGE_SIZE > 1024 * 1024)
6047 		batch = (1024 * 1024) / PAGE_SIZE;
6048 	batch /= 4;		/* We effectively *= 4 below */
6049 	if (batch < 1)
6050 		batch = 1;
6051 
6052 	/*
6053 	 * Clamp the batch to a 2^n - 1 value. Having a power
6054 	 * of 2 value was found to be more likely to have
6055 	 * suboptimal cache aliasing properties in some cases.
6056 	 *
6057 	 * For example if 2 tasks are alternately allocating
6058 	 * batches of pages, one task can end up with a lot
6059 	 * of pages of one half of the possible page colors
6060 	 * and the other with pages of the other colors.
6061 	 */
6062 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6063 
6064 	return batch;
6065 
6066 #else
6067 	/* The deferral and batching of frees should be suppressed under NOMMU
6068 	 * conditions.
6069 	 *
6070 	 * The problem is that NOMMU needs to be able to allocate large chunks
6071 	 * of contiguous memory as there's no hardware page translation to
6072 	 * assemble apparent contiguous memory from discontiguous pages.
6073 	 *
6074 	 * Queueing large contiguous runs of pages for batching, however,
6075 	 * causes the pages to actually be freed in smaller chunks.  As there
6076 	 * can be a significant delay between the individual batches being
6077 	 * recycled, this leads to the once large chunks of space being
6078 	 * fragmented and becoming unavailable for high-order allocations.
6079 	 */
6080 	return 0;
6081 #endif
6082 }
6083 
6084 /*
6085  * pcp->high and pcp->batch values are related and dependent on one another:
6086  * ->batch must never be higher then ->high.
6087  * The following function updates them in a safe manner without read side
6088  * locking.
6089  *
6090  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6091  * those fields changing asynchronously (acording the the above rule).
6092  *
6093  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6094  * outside of boot time (or some other assurance that no concurrent updaters
6095  * exist).
6096  */
6097 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6098 		unsigned long batch)
6099 {
6100        /* start with a fail safe value for batch */
6101 	pcp->batch = 1;
6102 	smp_wmb();
6103 
6104        /* Update high, then batch, in order */
6105 	pcp->high = high;
6106 	smp_wmb();
6107 
6108 	pcp->batch = batch;
6109 }
6110 
6111 /* a companion to pageset_set_high() */
6112 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6113 {
6114 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6115 }
6116 
6117 static void pageset_init(struct per_cpu_pageset *p)
6118 {
6119 	struct per_cpu_pages *pcp;
6120 	int migratetype;
6121 
6122 	memset(p, 0, sizeof(*p));
6123 
6124 	pcp = &p->pcp;
6125 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6126 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6127 }
6128 
6129 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6130 {
6131 	pageset_init(p);
6132 	pageset_set_batch(p, batch);
6133 }
6134 
6135 /*
6136  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6137  * to the value high for the pageset p.
6138  */
6139 static void pageset_set_high(struct per_cpu_pageset *p,
6140 				unsigned long high)
6141 {
6142 	unsigned long batch = max(1UL, high / 4);
6143 	if ((high / 4) > (PAGE_SHIFT * 8))
6144 		batch = PAGE_SHIFT * 8;
6145 
6146 	pageset_update(&p->pcp, high, batch);
6147 }
6148 
6149 static void pageset_set_high_and_batch(struct zone *zone,
6150 				       struct per_cpu_pageset *pcp)
6151 {
6152 	if (percpu_pagelist_fraction)
6153 		pageset_set_high(pcp,
6154 			(zone_managed_pages(zone) /
6155 				percpu_pagelist_fraction));
6156 	else
6157 		pageset_set_batch(pcp, zone_batchsize(zone));
6158 }
6159 
6160 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6161 {
6162 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6163 
6164 	pageset_init(pcp);
6165 	pageset_set_high_and_batch(zone, pcp);
6166 }
6167 
6168 void __meminit setup_zone_pageset(struct zone *zone)
6169 {
6170 	int cpu;
6171 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6172 	for_each_possible_cpu(cpu)
6173 		zone_pageset_init(zone, cpu);
6174 }
6175 
6176 /*
6177  * Allocate per cpu pagesets and initialize them.
6178  * Before this call only boot pagesets were available.
6179  */
6180 void __init setup_per_cpu_pageset(void)
6181 {
6182 	struct pglist_data *pgdat;
6183 	struct zone *zone;
6184 
6185 	for_each_populated_zone(zone)
6186 		setup_zone_pageset(zone);
6187 
6188 	for_each_online_pgdat(pgdat)
6189 		pgdat->per_cpu_nodestats =
6190 			alloc_percpu(struct per_cpu_nodestat);
6191 }
6192 
6193 static __meminit void zone_pcp_init(struct zone *zone)
6194 {
6195 	/*
6196 	 * per cpu subsystem is not up at this point. The following code
6197 	 * relies on the ability of the linker to provide the
6198 	 * offset of a (static) per cpu variable into the per cpu area.
6199 	 */
6200 	zone->pageset = &boot_pageset;
6201 
6202 	if (populated_zone(zone))
6203 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6204 			zone->name, zone->present_pages,
6205 					 zone_batchsize(zone));
6206 }
6207 
6208 void __meminit init_currently_empty_zone(struct zone *zone,
6209 					unsigned long zone_start_pfn,
6210 					unsigned long size)
6211 {
6212 	struct pglist_data *pgdat = zone->zone_pgdat;
6213 	int zone_idx = zone_idx(zone) + 1;
6214 
6215 	if (zone_idx > pgdat->nr_zones)
6216 		pgdat->nr_zones = zone_idx;
6217 
6218 	zone->zone_start_pfn = zone_start_pfn;
6219 
6220 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6221 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6222 			pgdat->node_id,
6223 			(unsigned long)zone_idx(zone),
6224 			zone_start_pfn, (zone_start_pfn + size));
6225 
6226 	zone_init_free_lists(zone);
6227 	zone->initialized = 1;
6228 }
6229 
6230 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6231 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
6232 
6233 /*
6234  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
6235  */
6236 int __meminit __early_pfn_to_nid(unsigned long pfn,
6237 					struct mminit_pfnnid_cache *state)
6238 {
6239 	unsigned long start_pfn, end_pfn;
6240 	int nid;
6241 
6242 	if (state->last_start <= pfn && pfn < state->last_end)
6243 		return state->last_nid;
6244 
6245 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
6246 	if (nid != NUMA_NO_NODE) {
6247 		state->last_start = start_pfn;
6248 		state->last_end = end_pfn;
6249 		state->last_nid = nid;
6250 	}
6251 
6252 	return nid;
6253 }
6254 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
6255 
6256 /**
6257  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
6258  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6259  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
6260  *
6261  * If an architecture guarantees that all ranges registered contain no holes
6262  * and may be freed, this this function may be used instead of calling
6263  * memblock_free_early_nid() manually.
6264  */
6265 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
6266 {
6267 	unsigned long start_pfn, end_pfn;
6268 	int i, this_nid;
6269 
6270 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
6271 		start_pfn = min(start_pfn, max_low_pfn);
6272 		end_pfn = min(end_pfn, max_low_pfn);
6273 
6274 		if (start_pfn < end_pfn)
6275 			memblock_free_early_nid(PFN_PHYS(start_pfn),
6276 					(end_pfn - start_pfn) << PAGE_SHIFT,
6277 					this_nid);
6278 	}
6279 }
6280 
6281 /**
6282  * sparse_memory_present_with_active_regions - Call memory_present for each active range
6283  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
6284  *
6285  * If an architecture guarantees that all ranges registered contain no holes and may
6286  * be freed, this function may be used instead of calling memory_present() manually.
6287  */
6288 void __init sparse_memory_present_with_active_regions(int nid)
6289 {
6290 	unsigned long start_pfn, end_pfn;
6291 	int i, this_nid;
6292 
6293 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
6294 		memory_present(this_nid, start_pfn, end_pfn);
6295 }
6296 
6297 /**
6298  * get_pfn_range_for_nid - Return the start and end page frames for a node
6299  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6300  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6301  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6302  *
6303  * It returns the start and end page frame of a node based on information
6304  * provided by memblock_set_node(). If called for a node
6305  * with no available memory, a warning is printed and the start and end
6306  * PFNs will be 0.
6307  */
6308 void __init get_pfn_range_for_nid(unsigned int nid,
6309 			unsigned long *start_pfn, unsigned long *end_pfn)
6310 {
6311 	unsigned long this_start_pfn, this_end_pfn;
6312 	int i;
6313 
6314 	*start_pfn = -1UL;
6315 	*end_pfn = 0;
6316 
6317 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6318 		*start_pfn = min(*start_pfn, this_start_pfn);
6319 		*end_pfn = max(*end_pfn, this_end_pfn);
6320 	}
6321 
6322 	if (*start_pfn == -1UL)
6323 		*start_pfn = 0;
6324 }
6325 
6326 /*
6327  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6328  * assumption is made that zones within a node are ordered in monotonic
6329  * increasing memory addresses so that the "highest" populated zone is used
6330  */
6331 static void __init find_usable_zone_for_movable(void)
6332 {
6333 	int zone_index;
6334 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6335 		if (zone_index == ZONE_MOVABLE)
6336 			continue;
6337 
6338 		if (arch_zone_highest_possible_pfn[zone_index] >
6339 				arch_zone_lowest_possible_pfn[zone_index])
6340 			break;
6341 	}
6342 
6343 	VM_BUG_ON(zone_index == -1);
6344 	movable_zone = zone_index;
6345 }
6346 
6347 /*
6348  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6349  * because it is sized independent of architecture. Unlike the other zones,
6350  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6351  * in each node depending on the size of each node and how evenly kernelcore
6352  * is distributed. This helper function adjusts the zone ranges
6353  * provided by the architecture for a given node by using the end of the
6354  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6355  * zones within a node are in order of monotonic increases memory addresses
6356  */
6357 static void __init adjust_zone_range_for_zone_movable(int nid,
6358 					unsigned long zone_type,
6359 					unsigned long node_start_pfn,
6360 					unsigned long node_end_pfn,
6361 					unsigned long *zone_start_pfn,
6362 					unsigned long *zone_end_pfn)
6363 {
6364 	/* Only adjust if ZONE_MOVABLE is on this node */
6365 	if (zone_movable_pfn[nid]) {
6366 		/* Size ZONE_MOVABLE */
6367 		if (zone_type == ZONE_MOVABLE) {
6368 			*zone_start_pfn = zone_movable_pfn[nid];
6369 			*zone_end_pfn = min(node_end_pfn,
6370 				arch_zone_highest_possible_pfn[movable_zone]);
6371 
6372 		/* Adjust for ZONE_MOVABLE starting within this range */
6373 		} else if (!mirrored_kernelcore &&
6374 			*zone_start_pfn < zone_movable_pfn[nid] &&
6375 			*zone_end_pfn > zone_movable_pfn[nid]) {
6376 			*zone_end_pfn = zone_movable_pfn[nid];
6377 
6378 		/* Check if this whole range is within ZONE_MOVABLE */
6379 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6380 			*zone_start_pfn = *zone_end_pfn;
6381 	}
6382 }
6383 
6384 /*
6385  * Return the number of pages a zone spans in a node, including holes
6386  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6387  */
6388 static unsigned long __init zone_spanned_pages_in_node(int nid,
6389 					unsigned long zone_type,
6390 					unsigned long node_start_pfn,
6391 					unsigned long node_end_pfn,
6392 					unsigned long *zone_start_pfn,
6393 					unsigned long *zone_end_pfn,
6394 					unsigned long *ignored)
6395 {
6396 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6397 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6398 	/* When hotadd a new node from cpu_up(), the node should be empty */
6399 	if (!node_start_pfn && !node_end_pfn)
6400 		return 0;
6401 
6402 	/* Get the start and end of the zone */
6403 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6404 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6405 	adjust_zone_range_for_zone_movable(nid, zone_type,
6406 				node_start_pfn, node_end_pfn,
6407 				zone_start_pfn, zone_end_pfn);
6408 
6409 	/* Check that this node has pages within the zone's required range */
6410 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6411 		return 0;
6412 
6413 	/* Move the zone boundaries inside the node if necessary */
6414 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6415 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6416 
6417 	/* Return the spanned pages */
6418 	return *zone_end_pfn - *zone_start_pfn;
6419 }
6420 
6421 /*
6422  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6423  * then all holes in the requested range will be accounted for.
6424  */
6425 unsigned long __init __absent_pages_in_range(int nid,
6426 				unsigned long range_start_pfn,
6427 				unsigned long range_end_pfn)
6428 {
6429 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6430 	unsigned long start_pfn, end_pfn;
6431 	int i;
6432 
6433 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6434 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6435 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6436 		nr_absent -= end_pfn - start_pfn;
6437 	}
6438 	return nr_absent;
6439 }
6440 
6441 /**
6442  * absent_pages_in_range - Return number of page frames in holes within a range
6443  * @start_pfn: The start PFN to start searching for holes
6444  * @end_pfn: The end PFN to stop searching for holes
6445  *
6446  * Return: the number of pages frames in memory holes within a range.
6447  */
6448 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6449 							unsigned long end_pfn)
6450 {
6451 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6452 }
6453 
6454 /* Return the number of page frames in holes in a zone on a node */
6455 static unsigned long __init zone_absent_pages_in_node(int nid,
6456 					unsigned long zone_type,
6457 					unsigned long node_start_pfn,
6458 					unsigned long node_end_pfn,
6459 					unsigned long *ignored)
6460 {
6461 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6462 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6463 	unsigned long zone_start_pfn, zone_end_pfn;
6464 	unsigned long nr_absent;
6465 
6466 	/* When hotadd a new node from cpu_up(), the node should be empty */
6467 	if (!node_start_pfn && !node_end_pfn)
6468 		return 0;
6469 
6470 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6471 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6472 
6473 	adjust_zone_range_for_zone_movable(nid, zone_type,
6474 			node_start_pfn, node_end_pfn,
6475 			&zone_start_pfn, &zone_end_pfn);
6476 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6477 
6478 	/*
6479 	 * ZONE_MOVABLE handling.
6480 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6481 	 * and vice versa.
6482 	 */
6483 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6484 		unsigned long start_pfn, end_pfn;
6485 		struct memblock_region *r;
6486 
6487 		for_each_memblock(memory, r) {
6488 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6489 					  zone_start_pfn, zone_end_pfn);
6490 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6491 					zone_start_pfn, zone_end_pfn);
6492 
6493 			if (zone_type == ZONE_MOVABLE &&
6494 			    memblock_is_mirror(r))
6495 				nr_absent += end_pfn - start_pfn;
6496 
6497 			if (zone_type == ZONE_NORMAL &&
6498 			    !memblock_is_mirror(r))
6499 				nr_absent += end_pfn - start_pfn;
6500 		}
6501 	}
6502 
6503 	return nr_absent;
6504 }
6505 
6506 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6507 static inline unsigned long __init zone_spanned_pages_in_node(int nid,
6508 					unsigned long zone_type,
6509 					unsigned long node_start_pfn,
6510 					unsigned long node_end_pfn,
6511 					unsigned long *zone_start_pfn,
6512 					unsigned long *zone_end_pfn,
6513 					unsigned long *zones_size)
6514 {
6515 	unsigned int zone;
6516 
6517 	*zone_start_pfn = node_start_pfn;
6518 	for (zone = 0; zone < zone_type; zone++)
6519 		*zone_start_pfn += zones_size[zone];
6520 
6521 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
6522 
6523 	return zones_size[zone_type];
6524 }
6525 
6526 static inline unsigned long __init zone_absent_pages_in_node(int nid,
6527 						unsigned long zone_type,
6528 						unsigned long node_start_pfn,
6529 						unsigned long node_end_pfn,
6530 						unsigned long *zholes_size)
6531 {
6532 	if (!zholes_size)
6533 		return 0;
6534 
6535 	return zholes_size[zone_type];
6536 }
6537 
6538 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6539 
6540 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6541 						unsigned long node_start_pfn,
6542 						unsigned long node_end_pfn,
6543 						unsigned long *zones_size,
6544 						unsigned long *zholes_size)
6545 {
6546 	unsigned long realtotalpages = 0, totalpages = 0;
6547 	enum zone_type i;
6548 
6549 	for (i = 0; i < MAX_NR_ZONES; i++) {
6550 		struct zone *zone = pgdat->node_zones + i;
6551 		unsigned long zone_start_pfn, zone_end_pfn;
6552 		unsigned long size, real_size;
6553 
6554 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
6555 						  node_start_pfn,
6556 						  node_end_pfn,
6557 						  &zone_start_pfn,
6558 						  &zone_end_pfn,
6559 						  zones_size);
6560 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
6561 						  node_start_pfn, node_end_pfn,
6562 						  zholes_size);
6563 		if (size)
6564 			zone->zone_start_pfn = zone_start_pfn;
6565 		else
6566 			zone->zone_start_pfn = 0;
6567 		zone->spanned_pages = size;
6568 		zone->present_pages = real_size;
6569 
6570 		totalpages += size;
6571 		realtotalpages += real_size;
6572 	}
6573 
6574 	pgdat->node_spanned_pages = totalpages;
6575 	pgdat->node_present_pages = realtotalpages;
6576 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6577 							realtotalpages);
6578 }
6579 
6580 #ifndef CONFIG_SPARSEMEM
6581 /*
6582  * Calculate the size of the zone->blockflags rounded to an unsigned long
6583  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6584  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6585  * round what is now in bits to nearest long in bits, then return it in
6586  * bytes.
6587  */
6588 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6589 {
6590 	unsigned long usemapsize;
6591 
6592 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6593 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6594 	usemapsize = usemapsize >> pageblock_order;
6595 	usemapsize *= NR_PAGEBLOCK_BITS;
6596 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6597 
6598 	return usemapsize / 8;
6599 }
6600 
6601 static void __ref setup_usemap(struct pglist_data *pgdat,
6602 				struct zone *zone,
6603 				unsigned long zone_start_pfn,
6604 				unsigned long zonesize)
6605 {
6606 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6607 	zone->pageblock_flags = NULL;
6608 	if (usemapsize) {
6609 		zone->pageblock_flags =
6610 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6611 					    pgdat->node_id);
6612 		if (!zone->pageblock_flags)
6613 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6614 			      usemapsize, zone->name, pgdat->node_id);
6615 	}
6616 }
6617 #else
6618 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6619 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6620 #endif /* CONFIG_SPARSEMEM */
6621 
6622 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6623 
6624 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6625 void __init set_pageblock_order(void)
6626 {
6627 	unsigned int order;
6628 
6629 	/* Check that pageblock_nr_pages has not already been setup */
6630 	if (pageblock_order)
6631 		return;
6632 
6633 	if (HPAGE_SHIFT > PAGE_SHIFT)
6634 		order = HUGETLB_PAGE_ORDER;
6635 	else
6636 		order = MAX_ORDER - 1;
6637 
6638 	/*
6639 	 * Assume the largest contiguous order of interest is a huge page.
6640 	 * This value may be variable depending on boot parameters on IA64 and
6641 	 * powerpc.
6642 	 */
6643 	pageblock_order = order;
6644 }
6645 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6646 
6647 /*
6648  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6649  * is unused as pageblock_order is set at compile-time. See
6650  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6651  * the kernel config
6652  */
6653 void __init set_pageblock_order(void)
6654 {
6655 }
6656 
6657 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6658 
6659 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
6660 						unsigned long present_pages)
6661 {
6662 	unsigned long pages = spanned_pages;
6663 
6664 	/*
6665 	 * Provide a more accurate estimation if there are holes within
6666 	 * the zone and SPARSEMEM is in use. If there are holes within the
6667 	 * zone, each populated memory region may cost us one or two extra
6668 	 * memmap pages due to alignment because memmap pages for each
6669 	 * populated regions may not be naturally aligned on page boundary.
6670 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6671 	 */
6672 	if (spanned_pages > present_pages + (present_pages >> 4) &&
6673 	    IS_ENABLED(CONFIG_SPARSEMEM))
6674 		pages = present_pages;
6675 
6676 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
6677 }
6678 
6679 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6680 static void pgdat_init_split_queue(struct pglist_data *pgdat)
6681 {
6682 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
6683 
6684 	spin_lock_init(&ds_queue->split_queue_lock);
6685 	INIT_LIST_HEAD(&ds_queue->split_queue);
6686 	ds_queue->split_queue_len = 0;
6687 }
6688 #else
6689 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
6690 #endif
6691 
6692 #ifdef CONFIG_COMPACTION
6693 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
6694 {
6695 	init_waitqueue_head(&pgdat->kcompactd_wait);
6696 }
6697 #else
6698 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
6699 #endif
6700 
6701 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
6702 {
6703 	pgdat_resize_init(pgdat);
6704 
6705 	pgdat_init_split_queue(pgdat);
6706 	pgdat_init_kcompactd(pgdat);
6707 
6708 	init_waitqueue_head(&pgdat->kswapd_wait);
6709 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6710 
6711 	pgdat_page_ext_init(pgdat);
6712 	spin_lock_init(&pgdat->lru_lock);
6713 	lruvec_init(&pgdat->__lruvec);
6714 }
6715 
6716 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
6717 							unsigned long remaining_pages)
6718 {
6719 	atomic_long_set(&zone->managed_pages, remaining_pages);
6720 	zone_set_nid(zone, nid);
6721 	zone->name = zone_names[idx];
6722 	zone->zone_pgdat = NODE_DATA(nid);
6723 	spin_lock_init(&zone->lock);
6724 	zone_seqlock_init(zone);
6725 	zone_pcp_init(zone);
6726 }
6727 
6728 /*
6729  * Set up the zone data structures
6730  * - init pgdat internals
6731  * - init all zones belonging to this node
6732  *
6733  * NOTE: this function is only called during memory hotplug
6734  */
6735 #ifdef CONFIG_MEMORY_HOTPLUG
6736 void __ref free_area_init_core_hotplug(int nid)
6737 {
6738 	enum zone_type z;
6739 	pg_data_t *pgdat = NODE_DATA(nid);
6740 
6741 	pgdat_init_internals(pgdat);
6742 	for (z = 0; z < MAX_NR_ZONES; z++)
6743 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
6744 }
6745 #endif
6746 
6747 /*
6748  * Set up the zone data structures:
6749  *   - mark all pages reserved
6750  *   - mark all memory queues empty
6751  *   - clear the memory bitmaps
6752  *
6753  * NOTE: pgdat should get zeroed by caller.
6754  * NOTE: this function is only called during early init.
6755  */
6756 static void __init free_area_init_core(struct pglist_data *pgdat)
6757 {
6758 	enum zone_type j;
6759 	int nid = pgdat->node_id;
6760 
6761 	pgdat_init_internals(pgdat);
6762 	pgdat->per_cpu_nodestats = &boot_nodestats;
6763 
6764 	for (j = 0; j < MAX_NR_ZONES; j++) {
6765 		struct zone *zone = pgdat->node_zones + j;
6766 		unsigned long size, freesize, memmap_pages;
6767 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6768 
6769 		size = zone->spanned_pages;
6770 		freesize = zone->present_pages;
6771 
6772 		/*
6773 		 * Adjust freesize so that it accounts for how much memory
6774 		 * is used by this zone for memmap. This affects the watermark
6775 		 * and per-cpu initialisations
6776 		 */
6777 		memmap_pages = calc_memmap_size(size, freesize);
6778 		if (!is_highmem_idx(j)) {
6779 			if (freesize >= memmap_pages) {
6780 				freesize -= memmap_pages;
6781 				if (memmap_pages)
6782 					printk(KERN_DEBUG
6783 					       "  %s zone: %lu pages used for memmap\n",
6784 					       zone_names[j], memmap_pages);
6785 			} else
6786 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6787 					zone_names[j], memmap_pages, freesize);
6788 		}
6789 
6790 		/* Account for reserved pages */
6791 		if (j == 0 && freesize > dma_reserve) {
6792 			freesize -= dma_reserve;
6793 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6794 					zone_names[0], dma_reserve);
6795 		}
6796 
6797 		if (!is_highmem_idx(j))
6798 			nr_kernel_pages += freesize;
6799 		/* Charge for highmem memmap if there are enough kernel pages */
6800 		else if (nr_kernel_pages > memmap_pages * 2)
6801 			nr_kernel_pages -= memmap_pages;
6802 		nr_all_pages += freesize;
6803 
6804 		/*
6805 		 * Set an approximate value for lowmem here, it will be adjusted
6806 		 * when the bootmem allocator frees pages into the buddy system.
6807 		 * And all highmem pages will be managed by the buddy system.
6808 		 */
6809 		zone_init_internals(zone, j, nid, freesize);
6810 
6811 		if (!size)
6812 			continue;
6813 
6814 		set_pageblock_order();
6815 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6816 		init_currently_empty_zone(zone, zone_start_pfn, size);
6817 		memmap_init(size, nid, j, zone_start_pfn);
6818 	}
6819 }
6820 
6821 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6822 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6823 {
6824 	unsigned long __maybe_unused start = 0;
6825 	unsigned long __maybe_unused offset = 0;
6826 
6827 	/* Skip empty nodes */
6828 	if (!pgdat->node_spanned_pages)
6829 		return;
6830 
6831 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6832 	offset = pgdat->node_start_pfn - start;
6833 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6834 	if (!pgdat->node_mem_map) {
6835 		unsigned long size, end;
6836 		struct page *map;
6837 
6838 		/*
6839 		 * The zone's endpoints aren't required to be MAX_ORDER
6840 		 * aligned but the node_mem_map endpoints must be in order
6841 		 * for the buddy allocator to function correctly.
6842 		 */
6843 		end = pgdat_end_pfn(pgdat);
6844 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6845 		size =  (end - start) * sizeof(struct page);
6846 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
6847 					  pgdat->node_id);
6848 		if (!map)
6849 			panic("Failed to allocate %ld bytes for node %d memory map\n",
6850 			      size, pgdat->node_id);
6851 		pgdat->node_mem_map = map + offset;
6852 	}
6853 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6854 				__func__, pgdat->node_id, (unsigned long)pgdat,
6855 				(unsigned long)pgdat->node_mem_map);
6856 #ifndef CONFIG_NEED_MULTIPLE_NODES
6857 	/*
6858 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6859 	 */
6860 	if (pgdat == NODE_DATA(0)) {
6861 		mem_map = NODE_DATA(0)->node_mem_map;
6862 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6863 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6864 			mem_map -= offset;
6865 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6866 	}
6867 #endif
6868 }
6869 #else
6870 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
6871 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6872 
6873 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
6874 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
6875 {
6876 	pgdat->first_deferred_pfn = ULONG_MAX;
6877 }
6878 #else
6879 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
6880 #endif
6881 
6882 void __init free_area_init_node(int nid, unsigned long *zones_size,
6883 				   unsigned long node_start_pfn,
6884 				   unsigned long *zholes_size)
6885 {
6886 	pg_data_t *pgdat = NODE_DATA(nid);
6887 	unsigned long start_pfn = 0;
6888 	unsigned long end_pfn = 0;
6889 
6890 	/* pg_data_t should be reset to zero when it's allocated */
6891 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6892 
6893 	pgdat->node_id = nid;
6894 	pgdat->node_start_pfn = node_start_pfn;
6895 	pgdat->per_cpu_nodestats = NULL;
6896 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6897 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6898 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6899 		(u64)start_pfn << PAGE_SHIFT,
6900 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6901 #else
6902 	start_pfn = node_start_pfn;
6903 #endif
6904 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6905 				  zones_size, zholes_size);
6906 
6907 	alloc_node_mem_map(pgdat);
6908 	pgdat_set_deferred_range(pgdat);
6909 
6910 	free_area_init_core(pgdat);
6911 }
6912 
6913 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6914 /*
6915  * Initialize all valid struct pages in the range [spfn, epfn) and mark them
6916  * PageReserved(). Return the number of struct pages that were initialized.
6917  */
6918 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn)
6919 {
6920 	unsigned long pfn;
6921 	u64 pgcnt = 0;
6922 
6923 	for (pfn = spfn; pfn < epfn; pfn++) {
6924 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6925 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6926 				+ pageblock_nr_pages - 1;
6927 			continue;
6928 		}
6929 		/*
6930 		 * Use a fake node/zone (0) for now. Some of these pages
6931 		 * (in memblock.reserved but not in memblock.memory) will
6932 		 * get re-initialized via reserve_bootmem_region() later.
6933 		 */
6934 		__init_single_page(pfn_to_page(pfn), pfn, 0, 0);
6935 		__SetPageReserved(pfn_to_page(pfn));
6936 		pgcnt++;
6937 	}
6938 
6939 	return pgcnt;
6940 }
6941 
6942 /*
6943  * Only struct pages that are backed by physical memory are zeroed and
6944  * initialized by going through __init_single_page(). But, there are some
6945  * struct pages which are reserved in memblock allocator and their fields
6946  * may be accessed (for example page_to_pfn() on some configuration accesses
6947  * flags). We must explicitly initialize those struct pages.
6948  *
6949  * This function also addresses a similar issue where struct pages are left
6950  * uninitialized because the physical address range is not covered by
6951  * memblock.memory or memblock.reserved. That could happen when memblock
6952  * layout is manually configured via memmap=, or when the highest physical
6953  * address (max_pfn) does not end on a section boundary.
6954  */
6955 static void __init init_unavailable_mem(void)
6956 {
6957 	phys_addr_t start, end;
6958 	u64 i, pgcnt;
6959 	phys_addr_t next = 0;
6960 
6961 	/*
6962 	 * Loop through unavailable ranges not covered by memblock.memory.
6963 	 */
6964 	pgcnt = 0;
6965 	for_each_mem_range(i, &memblock.memory, NULL,
6966 			NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) {
6967 		if (next < start)
6968 			pgcnt += init_unavailable_range(PFN_DOWN(next),
6969 							PFN_UP(start));
6970 		next = end;
6971 	}
6972 
6973 	/*
6974 	 * Early sections always have a fully populated memmap for the whole
6975 	 * section - see pfn_valid(). If the last section has holes at the
6976 	 * end and that section is marked "online", the memmap will be
6977 	 * considered initialized. Make sure that memmap has a well defined
6978 	 * state.
6979 	 */
6980 	pgcnt += init_unavailable_range(PFN_DOWN(next),
6981 					round_up(max_pfn, PAGES_PER_SECTION));
6982 
6983 	/*
6984 	 * Struct pages that do not have backing memory. This could be because
6985 	 * firmware is using some of this memory, or for some other reasons.
6986 	 */
6987 	if (pgcnt)
6988 		pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt);
6989 }
6990 #else
6991 static inline void __init init_unavailable_mem(void)
6992 {
6993 }
6994 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */
6995 
6996 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6997 
6998 #if MAX_NUMNODES > 1
6999 /*
7000  * Figure out the number of possible node ids.
7001  */
7002 void __init setup_nr_node_ids(void)
7003 {
7004 	unsigned int highest;
7005 
7006 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7007 	nr_node_ids = highest + 1;
7008 }
7009 #endif
7010 
7011 /**
7012  * node_map_pfn_alignment - determine the maximum internode alignment
7013  *
7014  * This function should be called after node map is populated and sorted.
7015  * It calculates the maximum power of two alignment which can distinguish
7016  * all the nodes.
7017  *
7018  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7019  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7020  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7021  * shifted, 1GiB is enough and this function will indicate so.
7022  *
7023  * This is used to test whether pfn -> nid mapping of the chosen memory
7024  * model has fine enough granularity to avoid incorrect mapping for the
7025  * populated node map.
7026  *
7027  * Return: the determined alignment in pfn's.  0 if there is no alignment
7028  * requirement (single node).
7029  */
7030 unsigned long __init node_map_pfn_alignment(void)
7031 {
7032 	unsigned long accl_mask = 0, last_end = 0;
7033 	unsigned long start, end, mask;
7034 	int last_nid = NUMA_NO_NODE;
7035 	int i, nid;
7036 
7037 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7038 		if (!start || last_nid < 0 || last_nid == nid) {
7039 			last_nid = nid;
7040 			last_end = end;
7041 			continue;
7042 		}
7043 
7044 		/*
7045 		 * Start with a mask granular enough to pin-point to the
7046 		 * start pfn and tick off bits one-by-one until it becomes
7047 		 * too coarse to separate the current node from the last.
7048 		 */
7049 		mask = ~((1 << __ffs(start)) - 1);
7050 		while (mask && last_end <= (start & (mask << 1)))
7051 			mask <<= 1;
7052 
7053 		/* accumulate all internode masks */
7054 		accl_mask |= mask;
7055 	}
7056 
7057 	/* convert mask to number of pages */
7058 	return ~accl_mask + 1;
7059 }
7060 
7061 /* Find the lowest pfn for a node */
7062 static unsigned long __init find_min_pfn_for_node(int nid)
7063 {
7064 	unsigned long min_pfn = ULONG_MAX;
7065 	unsigned long start_pfn;
7066 	int i;
7067 
7068 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
7069 		min_pfn = min(min_pfn, start_pfn);
7070 
7071 	if (min_pfn == ULONG_MAX) {
7072 		pr_warn("Could not find start_pfn for node %d\n", nid);
7073 		return 0;
7074 	}
7075 
7076 	return min_pfn;
7077 }
7078 
7079 /**
7080  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7081  *
7082  * Return: the minimum PFN based on information provided via
7083  * memblock_set_node().
7084  */
7085 unsigned long __init find_min_pfn_with_active_regions(void)
7086 {
7087 	return find_min_pfn_for_node(MAX_NUMNODES);
7088 }
7089 
7090 /*
7091  * early_calculate_totalpages()
7092  * Sum pages in active regions for movable zone.
7093  * Populate N_MEMORY for calculating usable_nodes.
7094  */
7095 static unsigned long __init early_calculate_totalpages(void)
7096 {
7097 	unsigned long totalpages = 0;
7098 	unsigned long start_pfn, end_pfn;
7099 	int i, nid;
7100 
7101 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7102 		unsigned long pages = end_pfn - start_pfn;
7103 
7104 		totalpages += pages;
7105 		if (pages)
7106 			node_set_state(nid, N_MEMORY);
7107 	}
7108 	return totalpages;
7109 }
7110 
7111 /*
7112  * Find the PFN the Movable zone begins in each node. Kernel memory
7113  * is spread evenly between nodes as long as the nodes have enough
7114  * memory. When they don't, some nodes will have more kernelcore than
7115  * others
7116  */
7117 static void __init find_zone_movable_pfns_for_nodes(void)
7118 {
7119 	int i, nid;
7120 	unsigned long usable_startpfn;
7121 	unsigned long kernelcore_node, kernelcore_remaining;
7122 	/* save the state before borrow the nodemask */
7123 	nodemask_t saved_node_state = node_states[N_MEMORY];
7124 	unsigned long totalpages = early_calculate_totalpages();
7125 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7126 	struct memblock_region *r;
7127 
7128 	/* Need to find movable_zone earlier when movable_node is specified. */
7129 	find_usable_zone_for_movable();
7130 
7131 	/*
7132 	 * If movable_node is specified, ignore kernelcore and movablecore
7133 	 * options.
7134 	 */
7135 	if (movable_node_is_enabled()) {
7136 		for_each_memblock(memory, r) {
7137 			if (!memblock_is_hotpluggable(r))
7138 				continue;
7139 
7140 			nid = r->nid;
7141 
7142 			usable_startpfn = PFN_DOWN(r->base);
7143 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7144 				min(usable_startpfn, zone_movable_pfn[nid]) :
7145 				usable_startpfn;
7146 		}
7147 
7148 		goto out2;
7149 	}
7150 
7151 	/*
7152 	 * If kernelcore=mirror is specified, ignore movablecore option
7153 	 */
7154 	if (mirrored_kernelcore) {
7155 		bool mem_below_4gb_not_mirrored = false;
7156 
7157 		for_each_memblock(memory, r) {
7158 			if (memblock_is_mirror(r))
7159 				continue;
7160 
7161 			nid = r->nid;
7162 
7163 			usable_startpfn = memblock_region_memory_base_pfn(r);
7164 
7165 			if (usable_startpfn < 0x100000) {
7166 				mem_below_4gb_not_mirrored = true;
7167 				continue;
7168 			}
7169 
7170 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7171 				min(usable_startpfn, zone_movable_pfn[nid]) :
7172 				usable_startpfn;
7173 		}
7174 
7175 		if (mem_below_4gb_not_mirrored)
7176 			pr_warn("This configuration results in unmirrored kernel memory.");
7177 
7178 		goto out2;
7179 	}
7180 
7181 	/*
7182 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7183 	 * amount of necessary memory.
7184 	 */
7185 	if (required_kernelcore_percent)
7186 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7187 				       10000UL;
7188 	if (required_movablecore_percent)
7189 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7190 					10000UL;
7191 
7192 	/*
7193 	 * If movablecore= was specified, calculate what size of
7194 	 * kernelcore that corresponds so that memory usable for
7195 	 * any allocation type is evenly spread. If both kernelcore
7196 	 * and movablecore are specified, then the value of kernelcore
7197 	 * will be used for required_kernelcore if it's greater than
7198 	 * what movablecore would have allowed.
7199 	 */
7200 	if (required_movablecore) {
7201 		unsigned long corepages;
7202 
7203 		/*
7204 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7205 		 * was requested by the user
7206 		 */
7207 		required_movablecore =
7208 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7209 		required_movablecore = min(totalpages, required_movablecore);
7210 		corepages = totalpages - required_movablecore;
7211 
7212 		required_kernelcore = max(required_kernelcore, corepages);
7213 	}
7214 
7215 	/*
7216 	 * If kernelcore was not specified or kernelcore size is larger
7217 	 * than totalpages, there is no ZONE_MOVABLE.
7218 	 */
7219 	if (!required_kernelcore || required_kernelcore >= totalpages)
7220 		goto out;
7221 
7222 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7223 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7224 
7225 restart:
7226 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7227 	kernelcore_node = required_kernelcore / usable_nodes;
7228 	for_each_node_state(nid, N_MEMORY) {
7229 		unsigned long start_pfn, end_pfn;
7230 
7231 		/*
7232 		 * Recalculate kernelcore_node if the division per node
7233 		 * now exceeds what is necessary to satisfy the requested
7234 		 * amount of memory for the kernel
7235 		 */
7236 		if (required_kernelcore < kernelcore_node)
7237 			kernelcore_node = required_kernelcore / usable_nodes;
7238 
7239 		/*
7240 		 * As the map is walked, we track how much memory is usable
7241 		 * by the kernel using kernelcore_remaining. When it is
7242 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7243 		 */
7244 		kernelcore_remaining = kernelcore_node;
7245 
7246 		/* Go through each range of PFNs within this node */
7247 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7248 			unsigned long size_pages;
7249 
7250 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7251 			if (start_pfn >= end_pfn)
7252 				continue;
7253 
7254 			/* Account for what is only usable for kernelcore */
7255 			if (start_pfn < usable_startpfn) {
7256 				unsigned long kernel_pages;
7257 				kernel_pages = min(end_pfn, usable_startpfn)
7258 								- start_pfn;
7259 
7260 				kernelcore_remaining -= min(kernel_pages,
7261 							kernelcore_remaining);
7262 				required_kernelcore -= min(kernel_pages,
7263 							required_kernelcore);
7264 
7265 				/* Continue if range is now fully accounted */
7266 				if (end_pfn <= usable_startpfn) {
7267 
7268 					/*
7269 					 * Push zone_movable_pfn to the end so
7270 					 * that if we have to rebalance
7271 					 * kernelcore across nodes, we will
7272 					 * not double account here
7273 					 */
7274 					zone_movable_pfn[nid] = end_pfn;
7275 					continue;
7276 				}
7277 				start_pfn = usable_startpfn;
7278 			}
7279 
7280 			/*
7281 			 * The usable PFN range for ZONE_MOVABLE is from
7282 			 * start_pfn->end_pfn. Calculate size_pages as the
7283 			 * number of pages used as kernelcore
7284 			 */
7285 			size_pages = end_pfn - start_pfn;
7286 			if (size_pages > kernelcore_remaining)
7287 				size_pages = kernelcore_remaining;
7288 			zone_movable_pfn[nid] = start_pfn + size_pages;
7289 
7290 			/*
7291 			 * Some kernelcore has been met, update counts and
7292 			 * break if the kernelcore for this node has been
7293 			 * satisfied
7294 			 */
7295 			required_kernelcore -= min(required_kernelcore,
7296 								size_pages);
7297 			kernelcore_remaining -= size_pages;
7298 			if (!kernelcore_remaining)
7299 				break;
7300 		}
7301 	}
7302 
7303 	/*
7304 	 * If there is still required_kernelcore, we do another pass with one
7305 	 * less node in the count. This will push zone_movable_pfn[nid] further
7306 	 * along on the nodes that still have memory until kernelcore is
7307 	 * satisfied
7308 	 */
7309 	usable_nodes--;
7310 	if (usable_nodes && required_kernelcore > usable_nodes)
7311 		goto restart;
7312 
7313 out2:
7314 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7315 	for (nid = 0; nid < MAX_NUMNODES; nid++)
7316 		zone_movable_pfn[nid] =
7317 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7318 
7319 out:
7320 	/* restore the node_state */
7321 	node_states[N_MEMORY] = saved_node_state;
7322 }
7323 
7324 /* Any regular or high memory on that node ? */
7325 static void check_for_memory(pg_data_t *pgdat, int nid)
7326 {
7327 	enum zone_type zone_type;
7328 
7329 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7330 		struct zone *zone = &pgdat->node_zones[zone_type];
7331 		if (populated_zone(zone)) {
7332 			if (IS_ENABLED(CONFIG_HIGHMEM))
7333 				node_set_state(nid, N_HIGH_MEMORY);
7334 			if (zone_type <= ZONE_NORMAL)
7335 				node_set_state(nid, N_NORMAL_MEMORY);
7336 			break;
7337 		}
7338 	}
7339 }
7340 
7341 /**
7342  * free_area_init_nodes - Initialise all pg_data_t and zone data
7343  * @max_zone_pfn: an array of max PFNs for each zone
7344  *
7345  * This will call free_area_init_node() for each active node in the system.
7346  * Using the page ranges provided by memblock_set_node(), the size of each
7347  * zone in each node and their holes is calculated. If the maximum PFN
7348  * between two adjacent zones match, it is assumed that the zone is empty.
7349  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7350  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7351  * starts where the previous one ended. For example, ZONE_DMA32 starts
7352  * at arch_max_dma_pfn.
7353  */
7354 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
7355 {
7356 	unsigned long start_pfn, end_pfn;
7357 	int i, nid;
7358 
7359 	/* Record where the zone boundaries are */
7360 	memset(arch_zone_lowest_possible_pfn, 0,
7361 				sizeof(arch_zone_lowest_possible_pfn));
7362 	memset(arch_zone_highest_possible_pfn, 0,
7363 				sizeof(arch_zone_highest_possible_pfn));
7364 
7365 	start_pfn = find_min_pfn_with_active_regions();
7366 
7367 	for (i = 0; i < MAX_NR_ZONES; i++) {
7368 		if (i == ZONE_MOVABLE)
7369 			continue;
7370 
7371 		end_pfn = max(max_zone_pfn[i], start_pfn);
7372 		arch_zone_lowest_possible_pfn[i] = start_pfn;
7373 		arch_zone_highest_possible_pfn[i] = end_pfn;
7374 
7375 		start_pfn = end_pfn;
7376 	}
7377 
7378 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7379 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7380 	find_zone_movable_pfns_for_nodes();
7381 
7382 	/* Print out the zone ranges */
7383 	pr_info("Zone ranges:\n");
7384 	for (i = 0; i < MAX_NR_ZONES; i++) {
7385 		if (i == ZONE_MOVABLE)
7386 			continue;
7387 		pr_info("  %-8s ", zone_names[i]);
7388 		if (arch_zone_lowest_possible_pfn[i] ==
7389 				arch_zone_highest_possible_pfn[i])
7390 			pr_cont("empty\n");
7391 		else
7392 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7393 				(u64)arch_zone_lowest_possible_pfn[i]
7394 					<< PAGE_SHIFT,
7395 				((u64)arch_zone_highest_possible_pfn[i]
7396 					<< PAGE_SHIFT) - 1);
7397 	}
7398 
7399 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7400 	pr_info("Movable zone start for each node\n");
7401 	for (i = 0; i < MAX_NUMNODES; i++) {
7402 		if (zone_movable_pfn[i])
7403 			pr_info("  Node %d: %#018Lx\n", i,
7404 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7405 	}
7406 
7407 	/*
7408 	 * Print out the early node map, and initialize the
7409 	 * subsection-map relative to active online memory ranges to
7410 	 * enable future "sub-section" extensions of the memory map.
7411 	 */
7412 	pr_info("Early memory node ranges\n");
7413 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7414 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7415 			(u64)start_pfn << PAGE_SHIFT,
7416 			((u64)end_pfn << PAGE_SHIFT) - 1);
7417 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7418 	}
7419 
7420 	/* Initialise every node */
7421 	mminit_verify_pageflags_layout();
7422 	setup_nr_node_ids();
7423 	init_unavailable_mem();
7424 	for_each_online_node(nid) {
7425 		pg_data_t *pgdat = NODE_DATA(nid);
7426 		free_area_init_node(nid, NULL,
7427 				find_min_pfn_for_node(nid), NULL);
7428 
7429 		/* Any memory on that node */
7430 		if (pgdat->node_present_pages)
7431 			node_set_state(nid, N_MEMORY);
7432 		check_for_memory(pgdat, nid);
7433 	}
7434 }
7435 
7436 static int __init cmdline_parse_core(char *p, unsigned long *core,
7437 				     unsigned long *percent)
7438 {
7439 	unsigned long long coremem;
7440 	char *endptr;
7441 
7442 	if (!p)
7443 		return -EINVAL;
7444 
7445 	/* Value may be a percentage of total memory, otherwise bytes */
7446 	coremem = simple_strtoull(p, &endptr, 0);
7447 	if (*endptr == '%') {
7448 		/* Paranoid check for percent values greater than 100 */
7449 		WARN_ON(coremem > 100);
7450 
7451 		*percent = coremem;
7452 	} else {
7453 		coremem = memparse(p, &p);
7454 		/* Paranoid check that UL is enough for the coremem value */
7455 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7456 
7457 		*core = coremem >> PAGE_SHIFT;
7458 		*percent = 0UL;
7459 	}
7460 	return 0;
7461 }
7462 
7463 /*
7464  * kernelcore=size sets the amount of memory for use for allocations that
7465  * cannot be reclaimed or migrated.
7466  */
7467 static int __init cmdline_parse_kernelcore(char *p)
7468 {
7469 	/* parse kernelcore=mirror */
7470 	if (parse_option_str(p, "mirror")) {
7471 		mirrored_kernelcore = true;
7472 		return 0;
7473 	}
7474 
7475 	return cmdline_parse_core(p, &required_kernelcore,
7476 				  &required_kernelcore_percent);
7477 }
7478 
7479 /*
7480  * movablecore=size sets the amount of memory for use for allocations that
7481  * can be reclaimed or migrated.
7482  */
7483 static int __init cmdline_parse_movablecore(char *p)
7484 {
7485 	return cmdline_parse_core(p, &required_movablecore,
7486 				  &required_movablecore_percent);
7487 }
7488 
7489 early_param("kernelcore", cmdline_parse_kernelcore);
7490 early_param("movablecore", cmdline_parse_movablecore);
7491 
7492 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
7493 
7494 void adjust_managed_page_count(struct page *page, long count)
7495 {
7496 	atomic_long_add(count, &page_zone(page)->managed_pages);
7497 	totalram_pages_add(count);
7498 #ifdef CONFIG_HIGHMEM
7499 	if (PageHighMem(page))
7500 		totalhigh_pages_add(count);
7501 #endif
7502 }
7503 EXPORT_SYMBOL(adjust_managed_page_count);
7504 
7505 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7506 {
7507 	void *pos;
7508 	unsigned long pages = 0;
7509 
7510 	start = (void *)PAGE_ALIGN((unsigned long)start);
7511 	end = (void *)((unsigned long)end & PAGE_MASK);
7512 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7513 		struct page *page = virt_to_page(pos);
7514 		void *direct_map_addr;
7515 
7516 		/*
7517 		 * 'direct_map_addr' might be different from 'pos'
7518 		 * because some architectures' virt_to_page()
7519 		 * work with aliases.  Getting the direct map
7520 		 * address ensures that we get a _writeable_
7521 		 * alias for the memset().
7522 		 */
7523 		direct_map_addr = page_address(page);
7524 		if ((unsigned int)poison <= 0xFF)
7525 			memset(direct_map_addr, poison, PAGE_SIZE);
7526 
7527 		free_reserved_page(page);
7528 	}
7529 
7530 	if (pages && s)
7531 		pr_info("Freeing %s memory: %ldK\n",
7532 			s, pages << (PAGE_SHIFT - 10));
7533 
7534 	return pages;
7535 }
7536 
7537 #ifdef	CONFIG_HIGHMEM
7538 void free_highmem_page(struct page *page)
7539 {
7540 	__free_reserved_page(page);
7541 	totalram_pages_inc();
7542 	atomic_long_inc(&page_zone(page)->managed_pages);
7543 	totalhigh_pages_inc();
7544 }
7545 #endif
7546 
7547 
7548 void __init mem_init_print_info(const char *str)
7549 {
7550 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7551 	unsigned long init_code_size, init_data_size;
7552 
7553 	physpages = get_num_physpages();
7554 	codesize = _etext - _stext;
7555 	datasize = _edata - _sdata;
7556 	rosize = __end_rodata - __start_rodata;
7557 	bss_size = __bss_stop - __bss_start;
7558 	init_data_size = __init_end - __init_begin;
7559 	init_code_size = _einittext - _sinittext;
7560 
7561 	/*
7562 	 * Detect special cases and adjust section sizes accordingly:
7563 	 * 1) .init.* may be embedded into .data sections
7564 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7565 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7566 	 * 3) .rodata.* may be embedded into .text or .data sections.
7567 	 */
7568 #define adj_init_size(start, end, size, pos, adj) \
7569 	do { \
7570 		if (start <= pos && pos < end && size > adj) \
7571 			size -= adj; \
7572 	} while (0)
7573 
7574 	adj_init_size(__init_begin, __init_end, init_data_size,
7575 		     _sinittext, init_code_size);
7576 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7577 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7578 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7579 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7580 
7581 #undef	adj_init_size
7582 
7583 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7584 #ifdef	CONFIG_HIGHMEM
7585 		", %luK highmem"
7586 #endif
7587 		"%s%s)\n",
7588 		nr_free_pages() << (PAGE_SHIFT - 10),
7589 		physpages << (PAGE_SHIFT - 10),
7590 		codesize >> 10, datasize >> 10, rosize >> 10,
7591 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7592 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7593 		totalcma_pages << (PAGE_SHIFT - 10),
7594 #ifdef	CONFIG_HIGHMEM
7595 		totalhigh_pages() << (PAGE_SHIFT - 10),
7596 #endif
7597 		str ? ", " : "", str ? str : "");
7598 }
7599 
7600 /**
7601  * set_dma_reserve - set the specified number of pages reserved in the first zone
7602  * @new_dma_reserve: The number of pages to mark reserved
7603  *
7604  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7605  * In the DMA zone, a significant percentage may be consumed by kernel image
7606  * and other unfreeable allocations which can skew the watermarks badly. This
7607  * function may optionally be used to account for unfreeable pages in the
7608  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7609  * smaller per-cpu batchsize.
7610  */
7611 void __init set_dma_reserve(unsigned long new_dma_reserve)
7612 {
7613 	dma_reserve = new_dma_reserve;
7614 }
7615 
7616 void __init free_area_init(unsigned long *zones_size)
7617 {
7618 	init_unavailable_mem();
7619 	free_area_init_node(0, zones_size,
7620 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
7621 }
7622 
7623 static int page_alloc_cpu_dead(unsigned int cpu)
7624 {
7625 
7626 	lru_add_drain_cpu(cpu);
7627 	drain_pages(cpu);
7628 
7629 	/*
7630 	 * Spill the event counters of the dead processor
7631 	 * into the current processors event counters.
7632 	 * This artificially elevates the count of the current
7633 	 * processor.
7634 	 */
7635 	vm_events_fold_cpu(cpu);
7636 
7637 	/*
7638 	 * Zero the differential counters of the dead processor
7639 	 * so that the vm statistics are consistent.
7640 	 *
7641 	 * This is only okay since the processor is dead and cannot
7642 	 * race with what we are doing.
7643 	 */
7644 	cpu_vm_stats_fold(cpu);
7645 	return 0;
7646 }
7647 
7648 #ifdef CONFIG_NUMA
7649 int hashdist = HASHDIST_DEFAULT;
7650 
7651 static int __init set_hashdist(char *str)
7652 {
7653 	if (!str)
7654 		return 0;
7655 	hashdist = simple_strtoul(str, &str, 0);
7656 	return 1;
7657 }
7658 __setup("hashdist=", set_hashdist);
7659 #endif
7660 
7661 void __init page_alloc_init(void)
7662 {
7663 	int ret;
7664 
7665 #ifdef CONFIG_NUMA
7666 	if (num_node_state(N_MEMORY) == 1)
7667 		hashdist = 0;
7668 #endif
7669 
7670 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7671 					"mm/page_alloc:dead", NULL,
7672 					page_alloc_cpu_dead);
7673 	WARN_ON(ret < 0);
7674 }
7675 
7676 /*
7677  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7678  *	or min_free_kbytes changes.
7679  */
7680 static void calculate_totalreserve_pages(void)
7681 {
7682 	struct pglist_data *pgdat;
7683 	unsigned long reserve_pages = 0;
7684 	enum zone_type i, j;
7685 
7686 	for_each_online_pgdat(pgdat) {
7687 
7688 		pgdat->totalreserve_pages = 0;
7689 
7690 		for (i = 0; i < MAX_NR_ZONES; i++) {
7691 			struct zone *zone = pgdat->node_zones + i;
7692 			long max = 0;
7693 			unsigned long managed_pages = zone_managed_pages(zone);
7694 
7695 			/* Find valid and maximum lowmem_reserve in the zone */
7696 			for (j = i; j < MAX_NR_ZONES; j++) {
7697 				if (zone->lowmem_reserve[j] > max)
7698 					max = zone->lowmem_reserve[j];
7699 			}
7700 
7701 			/* we treat the high watermark as reserved pages. */
7702 			max += high_wmark_pages(zone);
7703 
7704 			if (max > managed_pages)
7705 				max = managed_pages;
7706 
7707 			pgdat->totalreserve_pages += max;
7708 
7709 			reserve_pages += max;
7710 		}
7711 	}
7712 	totalreserve_pages = reserve_pages;
7713 }
7714 
7715 /*
7716  * setup_per_zone_lowmem_reserve - called whenever
7717  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7718  *	has a correct pages reserved value, so an adequate number of
7719  *	pages are left in the zone after a successful __alloc_pages().
7720  */
7721 static void setup_per_zone_lowmem_reserve(void)
7722 {
7723 	struct pglist_data *pgdat;
7724 	enum zone_type j, idx;
7725 
7726 	for_each_online_pgdat(pgdat) {
7727 		for (j = 0; j < MAX_NR_ZONES; j++) {
7728 			struct zone *zone = pgdat->node_zones + j;
7729 			unsigned long managed_pages = zone_managed_pages(zone);
7730 
7731 			zone->lowmem_reserve[j] = 0;
7732 
7733 			idx = j;
7734 			while (idx) {
7735 				struct zone *lower_zone;
7736 
7737 				idx--;
7738 				lower_zone = pgdat->node_zones + idx;
7739 
7740 				if (sysctl_lowmem_reserve_ratio[idx] < 1) {
7741 					sysctl_lowmem_reserve_ratio[idx] = 0;
7742 					lower_zone->lowmem_reserve[j] = 0;
7743 				} else {
7744 					lower_zone->lowmem_reserve[j] =
7745 						managed_pages / sysctl_lowmem_reserve_ratio[idx];
7746 				}
7747 				managed_pages += zone_managed_pages(lower_zone);
7748 			}
7749 		}
7750 	}
7751 
7752 	/* update totalreserve_pages */
7753 	calculate_totalreserve_pages();
7754 }
7755 
7756 static void __setup_per_zone_wmarks(void)
7757 {
7758 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
7759 	unsigned long lowmem_pages = 0;
7760 	struct zone *zone;
7761 	unsigned long flags;
7762 
7763 	/* Calculate total number of !ZONE_HIGHMEM pages */
7764 	for_each_zone(zone) {
7765 		if (!is_highmem(zone))
7766 			lowmem_pages += zone_managed_pages(zone);
7767 	}
7768 
7769 	for_each_zone(zone) {
7770 		u64 tmp;
7771 
7772 		spin_lock_irqsave(&zone->lock, flags);
7773 		tmp = (u64)pages_min * zone_managed_pages(zone);
7774 		do_div(tmp, lowmem_pages);
7775 		if (is_highmem(zone)) {
7776 			/*
7777 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7778 			 * need highmem pages, so cap pages_min to a small
7779 			 * value here.
7780 			 *
7781 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7782 			 * deltas control async page reclaim, and so should
7783 			 * not be capped for highmem.
7784 			 */
7785 			unsigned long min_pages;
7786 
7787 			min_pages = zone_managed_pages(zone) / 1024;
7788 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
7789 			zone->_watermark[WMARK_MIN] = min_pages;
7790 		} else {
7791 			/*
7792 			 * If it's a lowmem zone, reserve a number of pages
7793 			 * proportionate to the zone's size.
7794 			 */
7795 			zone->_watermark[WMARK_MIN] = tmp;
7796 		}
7797 
7798 		/*
7799 		 * Set the kswapd watermarks distance according to the
7800 		 * scale factor in proportion to available memory, but
7801 		 * ensure a minimum size on small systems.
7802 		 */
7803 		tmp = max_t(u64, tmp >> 2,
7804 			    mult_frac(zone_managed_pages(zone),
7805 				      watermark_scale_factor, 10000));
7806 
7807 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
7808 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
7809 		zone->watermark_boost = 0;
7810 
7811 		spin_unlock_irqrestore(&zone->lock, flags);
7812 	}
7813 
7814 	/* update totalreserve_pages */
7815 	calculate_totalreserve_pages();
7816 }
7817 
7818 /**
7819  * setup_per_zone_wmarks - called when min_free_kbytes changes
7820  * or when memory is hot-{added|removed}
7821  *
7822  * Ensures that the watermark[min,low,high] values for each zone are set
7823  * correctly with respect to min_free_kbytes.
7824  */
7825 void setup_per_zone_wmarks(void)
7826 {
7827 	static DEFINE_SPINLOCK(lock);
7828 
7829 	spin_lock(&lock);
7830 	__setup_per_zone_wmarks();
7831 	spin_unlock(&lock);
7832 }
7833 
7834 /*
7835  * Initialise min_free_kbytes.
7836  *
7837  * For small machines we want it small (128k min).  For large machines
7838  * we want it large (64MB max).  But it is not linear, because network
7839  * bandwidth does not increase linearly with machine size.  We use
7840  *
7841  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7842  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
7843  *
7844  * which yields
7845  *
7846  * 16MB:	512k
7847  * 32MB:	724k
7848  * 64MB:	1024k
7849  * 128MB:	1448k
7850  * 256MB:	2048k
7851  * 512MB:	2896k
7852  * 1024MB:	4096k
7853  * 2048MB:	5792k
7854  * 4096MB:	8192k
7855  * 8192MB:	11584k
7856  * 16384MB:	16384k
7857  */
7858 int __meminit init_per_zone_wmark_min(void)
7859 {
7860 	unsigned long lowmem_kbytes;
7861 	int new_min_free_kbytes;
7862 
7863 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
7864 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
7865 
7866 	if (new_min_free_kbytes > user_min_free_kbytes) {
7867 		min_free_kbytes = new_min_free_kbytes;
7868 		if (min_free_kbytes < 128)
7869 			min_free_kbytes = 128;
7870 		if (min_free_kbytes > 65536)
7871 			min_free_kbytes = 65536;
7872 	} else {
7873 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7874 				new_min_free_kbytes, user_min_free_kbytes);
7875 	}
7876 	setup_per_zone_wmarks();
7877 	refresh_zone_stat_thresholds();
7878 	setup_per_zone_lowmem_reserve();
7879 
7880 #ifdef CONFIG_NUMA
7881 	setup_min_unmapped_ratio();
7882 	setup_min_slab_ratio();
7883 #endif
7884 
7885 	return 0;
7886 }
7887 core_initcall(init_per_zone_wmark_min)
7888 
7889 /*
7890  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7891  *	that we can call two helper functions whenever min_free_kbytes
7892  *	changes.
7893  */
7894 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7895 	void __user *buffer, size_t *length, loff_t *ppos)
7896 {
7897 	int rc;
7898 
7899 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7900 	if (rc)
7901 		return rc;
7902 
7903 	if (write) {
7904 		user_min_free_kbytes = min_free_kbytes;
7905 		setup_per_zone_wmarks();
7906 	}
7907 	return 0;
7908 }
7909 
7910 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write,
7911 	void __user *buffer, size_t *length, loff_t *ppos)
7912 {
7913 	int rc;
7914 
7915 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7916 	if (rc)
7917 		return rc;
7918 
7919 	return 0;
7920 }
7921 
7922 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7923 	void __user *buffer, size_t *length, loff_t *ppos)
7924 {
7925 	int rc;
7926 
7927 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7928 	if (rc)
7929 		return rc;
7930 
7931 	if (write)
7932 		setup_per_zone_wmarks();
7933 
7934 	return 0;
7935 }
7936 
7937 #ifdef CONFIG_NUMA
7938 static void setup_min_unmapped_ratio(void)
7939 {
7940 	pg_data_t *pgdat;
7941 	struct zone *zone;
7942 
7943 	for_each_online_pgdat(pgdat)
7944 		pgdat->min_unmapped_pages = 0;
7945 
7946 	for_each_zone(zone)
7947 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
7948 						         sysctl_min_unmapped_ratio) / 100;
7949 }
7950 
7951 
7952 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7953 	void __user *buffer, size_t *length, loff_t *ppos)
7954 {
7955 	int rc;
7956 
7957 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7958 	if (rc)
7959 		return rc;
7960 
7961 	setup_min_unmapped_ratio();
7962 
7963 	return 0;
7964 }
7965 
7966 static void setup_min_slab_ratio(void)
7967 {
7968 	pg_data_t *pgdat;
7969 	struct zone *zone;
7970 
7971 	for_each_online_pgdat(pgdat)
7972 		pgdat->min_slab_pages = 0;
7973 
7974 	for_each_zone(zone)
7975 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
7976 						     sysctl_min_slab_ratio) / 100;
7977 }
7978 
7979 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7980 	void __user *buffer, size_t *length, loff_t *ppos)
7981 {
7982 	int rc;
7983 
7984 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7985 	if (rc)
7986 		return rc;
7987 
7988 	setup_min_slab_ratio();
7989 
7990 	return 0;
7991 }
7992 #endif
7993 
7994 /*
7995  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7996  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7997  *	whenever sysctl_lowmem_reserve_ratio changes.
7998  *
7999  * The reserve ratio obviously has absolutely no relation with the
8000  * minimum watermarks. The lowmem reserve ratio can only make sense
8001  * if in function of the boot time zone sizes.
8002  */
8003 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8004 	void __user *buffer, size_t *length, loff_t *ppos)
8005 {
8006 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8007 	setup_per_zone_lowmem_reserve();
8008 	return 0;
8009 }
8010 
8011 static void __zone_pcp_update(struct zone *zone)
8012 {
8013 	unsigned int cpu;
8014 
8015 	for_each_possible_cpu(cpu)
8016 		pageset_set_high_and_batch(zone,
8017 				per_cpu_ptr(zone->pageset, cpu));
8018 }
8019 
8020 /*
8021  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8022  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8023  * pagelist can have before it gets flushed back to buddy allocator.
8024  */
8025 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8026 	void __user *buffer, size_t *length, loff_t *ppos)
8027 {
8028 	struct zone *zone;
8029 	int old_percpu_pagelist_fraction;
8030 	int ret;
8031 
8032 	mutex_lock(&pcp_batch_high_lock);
8033 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8034 
8035 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8036 	if (!write || ret < 0)
8037 		goto out;
8038 
8039 	/* Sanity checking to avoid pcp imbalance */
8040 	if (percpu_pagelist_fraction &&
8041 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8042 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8043 		ret = -EINVAL;
8044 		goto out;
8045 	}
8046 
8047 	/* No change? */
8048 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8049 		goto out;
8050 
8051 	for_each_populated_zone(zone)
8052 		__zone_pcp_update(zone);
8053 out:
8054 	mutex_unlock(&pcp_batch_high_lock);
8055 	return ret;
8056 }
8057 
8058 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8059 /*
8060  * Returns the number of pages that arch has reserved but
8061  * is not known to alloc_large_system_hash().
8062  */
8063 static unsigned long __init arch_reserved_kernel_pages(void)
8064 {
8065 	return 0;
8066 }
8067 #endif
8068 
8069 /*
8070  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8071  * machines. As memory size is increased the scale is also increased but at
8072  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8073  * quadruples the scale is increased by one, which means the size of hash table
8074  * only doubles, instead of quadrupling as well.
8075  * Because 32-bit systems cannot have large physical memory, where this scaling
8076  * makes sense, it is disabled on such platforms.
8077  */
8078 #if __BITS_PER_LONG > 32
8079 #define ADAPT_SCALE_BASE	(64ul << 30)
8080 #define ADAPT_SCALE_SHIFT	2
8081 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8082 #endif
8083 
8084 /*
8085  * allocate a large system hash table from bootmem
8086  * - it is assumed that the hash table must contain an exact power-of-2
8087  *   quantity of entries
8088  * - limit is the number of hash buckets, not the total allocation size
8089  */
8090 void *__init alloc_large_system_hash(const char *tablename,
8091 				     unsigned long bucketsize,
8092 				     unsigned long numentries,
8093 				     int scale,
8094 				     int flags,
8095 				     unsigned int *_hash_shift,
8096 				     unsigned int *_hash_mask,
8097 				     unsigned long low_limit,
8098 				     unsigned long high_limit)
8099 {
8100 	unsigned long long max = high_limit;
8101 	unsigned long log2qty, size;
8102 	void *table = NULL;
8103 	gfp_t gfp_flags;
8104 	bool virt;
8105 
8106 	/* allow the kernel cmdline to have a say */
8107 	if (!numentries) {
8108 		/* round applicable memory size up to nearest megabyte */
8109 		numentries = nr_kernel_pages;
8110 		numentries -= arch_reserved_kernel_pages();
8111 
8112 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8113 		if (PAGE_SHIFT < 20)
8114 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8115 
8116 #if __BITS_PER_LONG > 32
8117 		if (!high_limit) {
8118 			unsigned long adapt;
8119 
8120 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8121 			     adapt <<= ADAPT_SCALE_SHIFT)
8122 				scale++;
8123 		}
8124 #endif
8125 
8126 		/* limit to 1 bucket per 2^scale bytes of low memory */
8127 		if (scale > PAGE_SHIFT)
8128 			numentries >>= (scale - PAGE_SHIFT);
8129 		else
8130 			numentries <<= (PAGE_SHIFT - scale);
8131 
8132 		/* Make sure we've got at least a 0-order allocation.. */
8133 		if (unlikely(flags & HASH_SMALL)) {
8134 			/* Makes no sense without HASH_EARLY */
8135 			WARN_ON(!(flags & HASH_EARLY));
8136 			if (!(numentries >> *_hash_shift)) {
8137 				numentries = 1UL << *_hash_shift;
8138 				BUG_ON(!numentries);
8139 			}
8140 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8141 			numentries = PAGE_SIZE / bucketsize;
8142 	}
8143 	numentries = roundup_pow_of_two(numentries);
8144 
8145 	/* limit allocation size to 1/16 total memory by default */
8146 	if (max == 0) {
8147 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8148 		do_div(max, bucketsize);
8149 	}
8150 	max = min(max, 0x80000000ULL);
8151 
8152 	if (numentries < low_limit)
8153 		numentries = low_limit;
8154 	if (numentries > max)
8155 		numentries = max;
8156 
8157 	log2qty = ilog2(numentries);
8158 
8159 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8160 	do {
8161 		virt = false;
8162 		size = bucketsize << log2qty;
8163 		if (flags & HASH_EARLY) {
8164 			if (flags & HASH_ZERO)
8165 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8166 			else
8167 				table = memblock_alloc_raw(size,
8168 							   SMP_CACHE_BYTES);
8169 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8170 			table = __vmalloc(size, gfp_flags, PAGE_KERNEL);
8171 			virt = true;
8172 		} else {
8173 			/*
8174 			 * If bucketsize is not a power-of-two, we may free
8175 			 * some pages at the end of hash table which
8176 			 * alloc_pages_exact() automatically does
8177 			 */
8178 			table = alloc_pages_exact(size, gfp_flags);
8179 			kmemleak_alloc(table, size, 1, gfp_flags);
8180 		}
8181 	} while (!table && size > PAGE_SIZE && --log2qty);
8182 
8183 	if (!table)
8184 		panic("Failed to allocate %s hash table\n", tablename);
8185 
8186 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8187 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8188 		virt ? "vmalloc" : "linear");
8189 
8190 	if (_hash_shift)
8191 		*_hash_shift = log2qty;
8192 	if (_hash_mask)
8193 		*_hash_mask = (1 << log2qty) - 1;
8194 
8195 	return table;
8196 }
8197 
8198 /*
8199  * This function checks whether pageblock includes unmovable pages or not.
8200  *
8201  * PageLRU check without isolation or lru_lock could race so that
8202  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8203  * check without lock_page also may miss some movable non-lru pages at
8204  * race condition. So you can't expect this function should be exact.
8205  *
8206  * Returns a page without holding a reference. If the caller wants to
8207  * dereference that page (e.g., dumping), it has to make sure that that it
8208  * cannot get removed (e.g., via memory unplug) concurrently.
8209  *
8210  */
8211 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8212 				 int migratetype, int flags)
8213 {
8214 	unsigned long iter = 0;
8215 	unsigned long pfn = page_to_pfn(page);
8216 
8217 	/*
8218 	 * TODO we could make this much more efficient by not checking every
8219 	 * page in the range if we know all of them are in MOVABLE_ZONE and
8220 	 * that the movable zone guarantees that pages are migratable but
8221 	 * the later is not the case right now unfortunatelly. E.g. movablecore
8222 	 * can still lead to having bootmem allocations in zone_movable.
8223 	 */
8224 
8225 	if (is_migrate_cma_page(page)) {
8226 		/*
8227 		 * CMA allocations (alloc_contig_range) really need to mark
8228 		 * isolate CMA pageblocks even when they are not movable in fact
8229 		 * so consider them movable here.
8230 		 */
8231 		if (is_migrate_cma(migratetype))
8232 			return NULL;
8233 
8234 		return page;
8235 	}
8236 
8237 	for (; iter < pageblock_nr_pages; iter++) {
8238 		if (!pfn_valid_within(pfn + iter))
8239 			continue;
8240 
8241 		page = pfn_to_page(pfn + iter);
8242 
8243 		if (PageReserved(page))
8244 			return page;
8245 
8246 		/*
8247 		 * If the zone is movable and we have ruled out all reserved
8248 		 * pages then it should be reasonably safe to assume the rest
8249 		 * is movable.
8250 		 */
8251 		if (zone_idx(zone) == ZONE_MOVABLE)
8252 			continue;
8253 
8254 		/*
8255 		 * Hugepages are not in LRU lists, but they're movable.
8256 		 * We need not scan over tail pages because we don't
8257 		 * handle each tail page individually in migration.
8258 		 */
8259 		if (PageHuge(page)) {
8260 			struct page *head = compound_head(page);
8261 			unsigned int skip_pages;
8262 
8263 			if (!hugepage_migration_supported(page_hstate(head)))
8264 				return page;
8265 
8266 			skip_pages = compound_nr(head) - (page - head);
8267 			iter += skip_pages - 1;
8268 			continue;
8269 		}
8270 
8271 		/*
8272 		 * We can't use page_count without pin a page
8273 		 * because another CPU can free compound page.
8274 		 * This check already skips compound tails of THP
8275 		 * because their page->_refcount is zero at all time.
8276 		 */
8277 		if (!page_ref_count(page)) {
8278 			if (PageBuddy(page))
8279 				iter += (1 << page_order(page)) - 1;
8280 			continue;
8281 		}
8282 
8283 		/*
8284 		 * The HWPoisoned page may be not in buddy system, and
8285 		 * page_count() is not 0.
8286 		 */
8287 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8288 			continue;
8289 
8290 		if (__PageMovable(page) || PageLRU(page))
8291 			continue;
8292 
8293 		/*
8294 		 * If there are RECLAIMABLE pages, we need to check
8295 		 * it.  But now, memory offline itself doesn't call
8296 		 * shrink_node_slabs() and it still to be fixed.
8297 		 */
8298 		/*
8299 		 * If the page is not RAM, page_count()should be 0.
8300 		 * we don't need more check. This is an _used_ not-movable page.
8301 		 *
8302 		 * The problematic thing here is PG_reserved pages. PG_reserved
8303 		 * is set to both of a memory hole page and a _used_ kernel
8304 		 * page at boot.
8305 		 */
8306 		return page;
8307 	}
8308 	return NULL;
8309 }
8310 
8311 #ifdef CONFIG_CONTIG_ALLOC
8312 static unsigned long pfn_max_align_down(unsigned long pfn)
8313 {
8314 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8315 			     pageblock_nr_pages) - 1);
8316 }
8317 
8318 static unsigned long pfn_max_align_up(unsigned long pfn)
8319 {
8320 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8321 				pageblock_nr_pages));
8322 }
8323 
8324 /* [start, end) must belong to a single zone. */
8325 static int __alloc_contig_migrate_range(struct compact_control *cc,
8326 					unsigned long start, unsigned long end)
8327 {
8328 	/* This function is based on compact_zone() from compaction.c. */
8329 	unsigned long nr_reclaimed;
8330 	unsigned long pfn = start;
8331 	unsigned int tries = 0;
8332 	int ret = 0;
8333 
8334 	migrate_prep();
8335 
8336 	while (pfn < end || !list_empty(&cc->migratepages)) {
8337 		if (fatal_signal_pending(current)) {
8338 			ret = -EINTR;
8339 			break;
8340 		}
8341 
8342 		if (list_empty(&cc->migratepages)) {
8343 			cc->nr_migratepages = 0;
8344 			pfn = isolate_migratepages_range(cc, pfn, end);
8345 			if (!pfn) {
8346 				ret = -EINTR;
8347 				break;
8348 			}
8349 			tries = 0;
8350 		} else if (++tries == 5) {
8351 			ret = ret < 0 ? ret : -EBUSY;
8352 			break;
8353 		}
8354 
8355 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8356 							&cc->migratepages);
8357 		cc->nr_migratepages -= nr_reclaimed;
8358 
8359 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
8360 				    NULL, 0, cc->mode, MR_CONTIG_RANGE);
8361 	}
8362 	if (ret < 0) {
8363 		putback_movable_pages(&cc->migratepages);
8364 		return ret;
8365 	}
8366 	return 0;
8367 }
8368 
8369 /**
8370  * alloc_contig_range() -- tries to allocate given range of pages
8371  * @start:	start PFN to allocate
8372  * @end:	one-past-the-last PFN to allocate
8373  * @migratetype:	migratetype of the underlaying pageblocks (either
8374  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8375  *			in range must have the same migratetype and it must
8376  *			be either of the two.
8377  * @gfp_mask:	GFP mask to use during compaction
8378  *
8379  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8380  * aligned.  The PFN range must belong to a single zone.
8381  *
8382  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8383  * pageblocks in the range.  Once isolated, the pageblocks should not
8384  * be modified by others.
8385  *
8386  * Return: zero on success or negative error code.  On success all
8387  * pages which PFN is in [start, end) are allocated for the caller and
8388  * need to be freed with free_contig_range().
8389  */
8390 int alloc_contig_range(unsigned long start, unsigned long end,
8391 		       unsigned migratetype, gfp_t gfp_mask)
8392 {
8393 	unsigned long outer_start, outer_end;
8394 	unsigned int order;
8395 	int ret = 0;
8396 
8397 	struct compact_control cc = {
8398 		.nr_migratepages = 0,
8399 		.order = -1,
8400 		.zone = page_zone(pfn_to_page(start)),
8401 		.mode = MIGRATE_SYNC,
8402 		.ignore_skip_hint = true,
8403 		.no_set_skip_hint = true,
8404 		.gfp_mask = current_gfp_context(gfp_mask),
8405 	};
8406 	INIT_LIST_HEAD(&cc.migratepages);
8407 
8408 	/*
8409 	 * What we do here is we mark all pageblocks in range as
8410 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8411 	 * have different sizes, and due to the way page allocator
8412 	 * work, we align the range to biggest of the two pages so
8413 	 * that page allocator won't try to merge buddies from
8414 	 * different pageblocks and change MIGRATE_ISOLATE to some
8415 	 * other migration type.
8416 	 *
8417 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8418 	 * migrate the pages from an unaligned range (ie. pages that
8419 	 * we are interested in).  This will put all the pages in
8420 	 * range back to page allocator as MIGRATE_ISOLATE.
8421 	 *
8422 	 * When this is done, we take the pages in range from page
8423 	 * allocator removing them from the buddy system.  This way
8424 	 * page allocator will never consider using them.
8425 	 *
8426 	 * This lets us mark the pageblocks back as
8427 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8428 	 * aligned range but not in the unaligned, original range are
8429 	 * put back to page allocator so that buddy can use them.
8430 	 */
8431 
8432 	ret = start_isolate_page_range(pfn_max_align_down(start),
8433 				       pfn_max_align_up(end), migratetype, 0);
8434 	if (ret < 0)
8435 		return ret;
8436 
8437 	/*
8438 	 * In case of -EBUSY, we'd like to know which page causes problem.
8439 	 * So, just fall through. test_pages_isolated() has a tracepoint
8440 	 * which will report the busy page.
8441 	 *
8442 	 * It is possible that busy pages could become available before
8443 	 * the call to test_pages_isolated, and the range will actually be
8444 	 * allocated.  So, if we fall through be sure to clear ret so that
8445 	 * -EBUSY is not accidentally used or returned to caller.
8446 	 */
8447 	ret = __alloc_contig_migrate_range(&cc, start, end);
8448 	if (ret && ret != -EBUSY)
8449 		goto done;
8450 	ret =0;
8451 
8452 	/*
8453 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8454 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8455 	 * more, all pages in [start, end) are free in page allocator.
8456 	 * What we are going to do is to allocate all pages from
8457 	 * [start, end) (that is remove them from page allocator).
8458 	 *
8459 	 * The only problem is that pages at the beginning and at the
8460 	 * end of interesting range may be not aligned with pages that
8461 	 * page allocator holds, ie. they can be part of higher order
8462 	 * pages.  Because of this, we reserve the bigger range and
8463 	 * once this is done free the pages we are not interested in.
8464 	 *
8465 	 * We don't have to hold zone->lock here because the pages are
8466 	 * isolated thus they won't get removed from buddy.
8467 	 */
8468 
8469 	lru_add_drain_all();
8470 
8471 	order = 0;
8472 	outer_start = start;
8473 	while (!PageBuddy(pfn_to_page(outer_start))) {
8474 		if (++order >= MAX_ORDER) {
8475 			outer_start = start;
8476 			break;
8477 		}
8478 		outer_start &= ~0UL << order;
8479 	}
8480 
8481 	if (outer_start != start) {
8482 		order = page_order(pfn_to_page(outer_start));
8483 
8484 		/*
8485 		 * outer_start page could be small order buddy page and
8486 		 * it doesn't include start page. Adjust outer_start
8487 		 * in this case to report failed page properly
8488 		 * on tracepoint in test_pages_isolated()
8489 		 */
8490 		if (outer_start + (1UL << order) <= start)
8491 			outer_start = start;
8492 	}
8493 
8494 	/* Make sure the range is really isolated. */
8495 	if (test_pages_isolated(outer_start, end, 0)) {
8496 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8497 			__func__, outer_start, end);
8498 		ret = -EBUSY;
8499 		goto done;
8500 	}
8501 
8502 	/* Grab isolated pages from freelists. */
8503 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8504 	if (!outer_end) {
8505 		ret = -EBUSY;
8506 		goto done;
8507 	}
8508 
8509 	/* Free head and tail (if any) */
8510 	if (start != outer_start)
8511 		free_contig_range(outer_start, start - outer_start);
8512 	if (end != outer_end)
8513 		free_contig_range(end, outer_end - end);
8514 
8515 done:
8516 	undo_isolate_page_range(pfn_max_align_down(start),
8517 				pfn_max_align_up(end), migratetype);
8518 	return ret;
8519 }
8520 
8521 static int __alloc_contig_pages(unsigned long start_pfn,
8522 				unsigned long nr_pages, gfp_t gfp_mask)
8523 {
8524 	unsigned long end_pfn = start_pfn + nr_pages;
8525 
8526 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8527 				  gfp_mask);
8528 }
8529 
8530 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8531 				   unsigned long nr_pages)
8532 {
8533 	unsigned long i, end_pfn = start_pfn + nr_pages;
8534 	struct page *page;
8535 
8536 	for (i = start_pfn; i < end_pfn; i++) {
8537 		page = pfn_to_online_page(i);
8538 		if (!page)
8539 			return false;
8540 
8541 		if (page_zone(page) != z)
8542 			return false;
8543 
8544 		if (PageReserved(page))
8545 			return false;
8546 
8547 		if (page_count(page) > 0)
8548 			return false;
8549 
8550 		if (PageHuge(page))
8551 			return false;
8552 	}
8553 	return true;
8554 }
8555 
8556 static bool zone_spans_last_pfn(const struct zone *zone,
8557 				unsigned long start_pfn, unsigned long nr_pages)
8558 {
8559 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8560 
8561 	return zone_spans_pfn(zone, last_pfn);
8562 }
8563 
8564 /**
8565  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8566  * @nr_pages:	Number of contiguous pages to allocate
8567  * @gfp_mask:	GFP mask to limit search and used during compaction
8568  * @nid:	Target node
8569  * @nodemask:	Mask for other possible nodes
8570  *
8571  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8572  * on an applicable zonelist to find a contiguous pfn range which can then be
8573  * tried for allocation with alloc_contig_range(). This routine is intended
8574  * for allocation requests which can not be fulfilled with the buddy allocator.
8575  *
8576  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8577  * power of two then the alignment is guaranteed to be to the given nr_pages
8578  * (e.g. 1GB request would be aligned to 1GB).
8579  *
8580  * Allocated pages can be freed with free_contig_range() or by manually calling
8581  * __free_page() on each allocated page.
8582  *
8583  * Return: pointer to contiguous pages on success, or NULL if not successful.
8584  */
8585 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8586 				int nid, nodemask_t *nodemask)
8587 {
8588 	unsigned long ret, pfn, flags;
8589 	struct zonelist *zonelist;
8590 	struct zone *zone;
8591 	struct zoneref *z;
8592 
8593 	zonelist = node_zonelist(nid, gfp_mask);
8594 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8595 					gfp_zone(gfp_mask), nodemask) {
8596 		spin_lock_irqsave(&zone->lock, flags);
8597 
8598 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8599 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8600 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8601 				/*
8602 				 * We release the zone lock here because
8603 				 * alloc_contig_range() will also lock the zone
8604 				 * at some point. If there's an allocation
8605 				 * spinning on this lock, it may win the race
8606 				 * and cause alloc_contig_range() to fail...
8607 				 */
8608 				spin_unlock_irqrestore(&zone->lock, flags);
8609 				ret = __alloc_contig_pages(pfn, nr_pages,
8610 							gfp_mask);
8611 				if (!ret)
8612 					return pfn_to_page(pfn);
8613 				spin_lock_irqsave(&zone->lock, flags);
8614 			}
8615 			pfn += nr_pages;
8616 		}
8617 		spin_unlock_irqrestore(&zone->lock, flags);
8618 	}
8619 	return NULL;
8620 }
8621 #endif /* CONFIG_CONTIG_ALLOC */
8622 
8623 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8624 {
8625 	unsigned int count = 0;
8626 
8627 	for (; nr_pages--; pfn++) {
8628 		struct page *page = pfn_to_page(pfn);
8629 
8630 		count += page_count(page) != 1;
8631 		__free_page(page);
8632 	}
8633 	WARN(count != 0, "%d pages are still in use!\n", count);
8634 }
8635 
8636 /*
8637  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8638  * page high values need to be recalulated.
8639  */
8640 void __meminit zone_pcp_update(struct zone *zone)
8641 {
8642 	mutex_lock(&pcp_batch_high_lock);
8643 	__zone_pcp_update(zone);
8644 	mutex_unlock(&pcp_batch_high_lock);
8645 }
8646 
8647 void zone_pcp_reset(struct zone *zone)
8648 {
8649 	unsigned long flags;
8650 	int cpu;
8651 	struct per_cpu_pageset *pset;
8652 
8653 	/* avoid races with drain_pages()  */
8654 	local_irq_save(flags);
8655 	if (zone->pageset != &boot_pageset) {
8656 		for_each_online_cpu(cpu) {
8657 			pset = per_cpu_ptr(zone->pageset, cpu);
8658 			drain_zonestat(zone, pset);
8659 		}
8660 		free_percpu(zone->pageset);
8661 		zone->pageset = &boot_pageset;
8662 	}
8663 	local_irq_restore(flags);
8664 }
8665 
8666 #ifdef CONFIG_MEMORY_HOTREMOVE
8667 /*
8668  * All pages in the range must be in a single zone and isolated
8669  * before calling this.
8670  */
8671 unsigned long
8672 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8673 {
8674 	struct page *page;
8675 	struct zone *zone;
8676 	unsigned int order;
8677 	unsigned long pfn;
8678 	unsigned long flags;
8679 	unsigned long offlined_pages = 0;
8680 
8681 	/* find the first valid pfn */
8682 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
8683 		if (pfn_valid(pfn))
8684 			break;
8685 	if (pfn == end_pfn)
8686 		return offlined_pages;
8687 
8688 	offline_mem_sections(pfn, end_pfn);
8689 	zone = page_zone(pfn_to_page(pfn));
8690 	spin_lock_irqsave(&zone->lock, flags);
8691 	pfn = start_pfn;
8692 	while (pfn < end_pfn) {
8693 		if (!pfn_valid(pfn)) {
8694 			pfn++;
8695 			continue;
8696 		}
8697 		page = pfn_to_page(pfn);
8698 		/*
8699 		 * The HWPoisoned page may be not in buddy system, and
8700 		 * page_count() is not 0.
8701 		 */
8702 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8703 			pfn++;
8704 			offlined_pages++;
8705 			continue;
8706 		}
8707 
8708 		BUG_ON(page_count(page));
8709 		BUG_ON(!PageBuddy(page));
8710 		order = page_order(page);
8711 		offlined_pages += 1 << order;
8712 		del_page_from_free_area(page, &zone->free_area[order]);
8713 		pfn += (1 << order);
8714 	}
8715 	spin_unlock_irqrestore(&zone->lock, flags);
8716 
8717 	return offlined_pages;
8718 }
8719 #endif
8720 
8721 bool is_free_buddy_page(struct page *page)
8722 {
8723 	struct zone *zone = page_zone(page);
8724 	unsigned long pfn = page_to_pfn(page);
8725 	unsigned long flags;
8726 	unsigned int order;
8727 
8728 	spin_lock_irqsave(&zone->lock, flags);
8729 	for (order = 0; order < MAX_ORDER; order++) {
8730 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8731 
8732 		if (PageBuddy(page_head) && page_order(page_head) >= order)
8733 			break;
8734 	}
8735 	spin_unlock_irqrestore(&zone->lock, flags);
8736 
8737 	return order < MAX_ORDER;
8738 }
8739 
8740 #ifdef CONFIG_MEMORY_FAILURE
8741 /*
8742  * Set PG_hwpoison flag if a given page is confirmed to be a free page.  This
8743  * test is performed under the zone lock to prevent a race against page
8744  * allocation.
8745  */
8746 bool set_hwpoison_free_buddy_page(struct page *page)
8747 {
8748 	struct zone *zone = page_zone(page);
8749 	unsigned long pfn = page_to_pfn(page);
8750 	unsigned long flags;
8751 	unsigned int order;
8752 	bool hwpoisoned = false;
8753 
8754 	spin_lock_irqsave(&zone->lock, flags);
8755 	for (order = 0; order < MAX_ORDER; order++) {
8756 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8757 
8758 		if (PageBuddy(page_head) && page_order(page_head) >= order) {
8759 			if (!TestSetPageHWPoison(page))
8760 				hwpoisoned = true;
8761 			break;
8762 		}
8763 	}
8764 	spin_unlock_irqrestore(&zone->lock, flags);
8765 
8766 	return hwpoisoned;
8767 }
8768 #endif
8769