1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 72 #include <asm/sections.h> 73 #include <asm/tlbflush.h> 74 #include <asm/div64.h> 75 #include "internal.h" 76 #include "shuffle.h" 77 78 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 79 static DEFINE_MUTEX(pcp_batch_high_lock); 80 #define MIN_PERCPU_PAGELIST_FRACTION (8) 81 82 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 83 DEFINE_PER_CPU(int, numa_node); 84 EXPORT_PER_CPU_SYMBOL(numa_node); 85 #endif 86 87 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 88 89 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 90 /* 91 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 92 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 93 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 94 * defined in <linux/topology.h>. 95 */ 96 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 97 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 98 int _node_numa_mem_[MAX_NUMNODES]; 99 #endif 100 101 /* work_structs for global per-cpu drains */ 102 struct pcpu_drain { 103 struct zone *zone; 104 struct work_struct work; 105 }; 106 DEFINE_MUTEX(pcpu_drain_mutex); 107 DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 108 109 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 110 volatile unsigned long latent_entropy __latent_entropy; 111 EXPORT_SYMBOL(latent_entropy); 112 #endif 113 114 /* 115 * Array of node states. 116 */ 117 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 118 [N_POSSIBLE] = NODE_MASK_ALL, 119 [N_ONLINE] = { { [0] = 1UL } }, 120 #ifndef CONFIG_NUMA 121 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 122 #ifdef CONFIG_HIGHMEM 123 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 124 #endif 125 [N_MEMORY] = { { [0] = 1UL } }, 126 [N_CPU] = { { [0] = 1UL } }, 127 #endif /* NUMA */ 128 }; 129 EXPORT_SYMBOL(node_states); 130 131 atomic_long_t _totalram_pages __read_mostly; 132 EXPORT_SYMBOL(_totalram_pages); 133 unsigned long totalreserve_pages __read_mostly; 134 unsigned long totalcma_pages __read_mostly; 135 136 int percpu_pagelist_fraction; 137 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 138 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 139 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 140 #else 141 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 142 #endif 143 EXPORT_SYMBOL(init_on_alloc); 144 145 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 146 DEFINE_STATIC_KEY_TRUE(init_on_free); 147 #else 148 DEFINE_STATIC_KEY_FALSE(init_on_free); 149 #endif 150 EXPORT_SYMBOL(init_on_free); 151 152 static int __init early_init_on_alloc(char *buf) 153 { 154 int ret; 155 bool bool_result; 156 157 if (!buf) 158 return -EINVAL; 159 ret = kstrtobool(buf, &bool_result); 160 if (bool_result && page_poisoning_enabled()) 161 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 162 if (bool_result) 163 static_branch_enable(&init_on_alloc); 164 else 165 static_branch_disable(&init_on_alloc); 166 return ret; 167 } 168 early_param("init_on_alloc", early_init_on_alloc); 169 170 static int __init early_init_on_free(char *buf) 171 { 172 int ret; 173 bool bool_result; 174 175 if (!buf) 176 return -EINVAL; 177 ret = kstrtobool(buf, &bool_result); 178 if (bool_result && page_poisoning_enabled()) 179 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 180 if (bool_result) 181 static_branch_enable(&init_on_free); 182 else 183 static_branch_disable(&init_on_free); 184 return ret; 185 } 186 early_param("init_on_free", early_init_on_free); 187 188 /* 189 * A cached value of the page's pageblock's migratetype, used when the page is 190 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 191 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 192 * Also the migratetype set in the page does not necessarily match the pcplist 193 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 194 * other index - this ensures that it will be put on the correct CMA freelist. 195 */ 196 static inline int get_pcppage_migratetype(struct page *page) 197 { 198 return page->index; 199 } 200 201 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 202 { 203 page->index = migratetype; 204 } 205 206 #ifdef CONFIG_PM_SLEEP 207 /* 208 * The following functions are used by the suspend/hibernate code to temporarily 209 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 210 * while devices are suspended. To avoid races with the suspend/hibernate code, 211 * they should always be called with system_transition_mutex held 212 * (gfp_allowed_mask also should only be modified with system_transition_mutex 213 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 214 * with that modification). 215 */ 216 217 static gfp_t saved_gfp_mask; 218 219 void pm_restore_gfp_mask(void) 220 { 221 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 222 if (saved_gfp_mask) { 223 gfp_allowed_mask = saved_gfp_mask; 224 saved_gfp_mask = 0; 225 } 226 } 227 228 void pm_restrict_gfp_mask(void) 229 { 230 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 231 WARN_ON(saved_gfp_mask); 232 saved_gfp_mask = gfp_allowed_mask; 233 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 234 } 235 236 bool pm_suspended_storage(void) 237 { 238 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 239 return false; 240 return true; 241 } 242 #endif /* CONFIG_PM_SLEEP */ 243 244 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 245 unsigned int pageblock_order __read_mostly; 246 #endif 247 248 static void __free_pages_ok(struct page *page, unsigned int order); 249 250 /* 251 * results with 256, 32 in the lowmem_reserve sysctl: 252 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 253 * 1G machine -> (16M dma, 784M normal, 224M high) 254 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 255 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 256 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 257 * 258 * TBD: should special case ZONE_DMA32 machines here - in those we normally 259 * don't need any ZONE_NORMAL reservation 260 */ 261 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 262 #ifdef CONFIG_ZONE_DMA 263 [ZONE_DMA] = 256, 264 #endif 265 #ifdef CONFIG_ZONE_DMA32 266 [ZONE_DMA32] = 256, 267 #endif 268 [ZONE_NORMAL] = 32, 269 #ifdef CONFIG_HIGHMEM 270 [ZONE_HIGHMEM] = 0, 271 #endif 272 [ZONE_MOVABLE] = 0, 273 }; 274 275 static char * const zone_names[MAX_NR_ZONES] = { 276 #ifdef CONFIG_ZONE_DMA 277 "DMA", 278 #endif 279 #ifdef CONFIG_ZONE_DMA32 280 "DMA32", 281 #endif 282 "Normal", 283 #ifdef CONFIG_HIGHMEM 284 "HighMem", 285 #endif 286 "Movable", 287 #ifdef CONFIG_ZONE_DEVICE 288 "Device", 289 #endif 290 }; 291 292 const char * const migratetype_names[MIGRATE_TYPES] = { 293 "Unmovable", 294 "Movable", 295 "Reclaimable", 296 "HighAtomic", 297 #ifdef CONFIG_CMA 298 "CMA", 299 #endif 300 #ifdef CONFIG_MEMORY_ISOLATION 301 "Isolate", 302 #endif 303 }; 304 305 compound_page_dtor * const compound_page_dtors[] = { 306 NULL, 307 free_compound_page, 308 #ifdef CONFIG_HUGETLB_PAGE 309 free_huge_page, 310 #endif 311 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 312 free_transhuge_page, 313 #endif 314 }; 315 316 int min_free_kbytes = 1024; 317 int user_min_free_kbytes = -1; 318 #ifdef CONFIG_DISCONTIGMEM 319 /* 320 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 321 * are not on separate NUMA nodes. Functionally this works but with 322 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 323 * quite small. By default, do not boost watermarks on discontigmem as in 324 * many cases very high-order allocations like THP are likely to be 325 * unsupported and the premature reclaim offsets the advantage of long-term 326 * fragmentation avoidance. 327 */ 328 int watermark_boost_factor __read_mostly; 329 #else 330 int watermark_boost_factor __read_mostly = 15000; 331 #endif 332 int watermark_scale_factor = 10; 333 334 static unsigned long nr_kernel_pages __initdata; 335 static unsigned long nr_all_pages __initdata; 336 static unsigned long dma_reserve __initdata; 337 338 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 352 353 #if MAX_NUMNODES > 1 354 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 355 unsigned int nr_online_nodes __read_mostly = 1; 356 EXPORT_SYMBOL(nr_node_ids); 357 EXPORT_SYMBOL(nr_online_nodes); 358 #endif 359 360 int page_group_by_mobility_disabled __read_mostly; 361 362 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 363 /* 364 * During boot we initialize deferred pages on-demand, as needed, but once 365 * page_alloc_init_late() has finished, the deferred pages are all initialized, 366 * and we can permanently disable that path. 367 */ 368 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 369 370 /* 371 * Calling kasan_free_pages() only after deferred memory initialization 372 * has completed. Poisoning pages during deferred memory init will greatly 373 * lengthen the process and cause problem in large memory systems as the 374 * deferred pages initialization is done with interrupt disabled. 375 * 376 * Assuming that there will be no reference to those newly initialized 377 * pages before they are ever allocated, this should have no effect on 378 * KASAN memory tracking as the poison will be properly inserted at page 379 * allocation time. The only corner case is when pages are allocated by 380 * on-demand allocation and then freed again before the deferred pages 381 * initialization is done, but this is not likely to happen. 382 */ 383 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 384 { 385 if (!static_branch_unlikely(&deferred_pages)) 386 kasan_free_pages(page, order); 387 } 388 389 /* Returns true if the struct page for the pfn is uninitialised */ 390 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 391 { 392 int nid = early_pfn_to_nid(pfn); 393 394 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 395 return true; 396 397 return false; 398 } 399 400 /* 401 * Returns true when the remaining initialisation should be deferred until 402 * later in the boot cycle when it can be parallelised. 403 */ 404 static bool __meminit 405 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 406 { 407 static unsigned long prev_end_pfn, nr_initialised; 408 409 /* 410 * prev_end_pfn static that contains the end of previous zone 411 * No need to protect because called very early in boot before smp_init. 412 */ 413 if (prev_end_pfn != end_pfn) { 414 prev_end_pfn = end_pfn; 415 nr_initialised = 0; 416 } 417 418 /* Always populate low zones for address-constrained allocations */ 419 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 420 return false; 421 422 /* 423 * We start only with one section of pages, more pages are added as 424 * needed until the rest of deferred pages are initialized. 425 */ 426 nr_initialised++; 427 if ((nr_initialised > PAGES_PER_SECTION) && 428 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 429 NODE_DATA(nid)->first_deferred_pfn = pfn; 430 return true; 431 } 432 return false; 433 } 434 #else 435 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 436 437 static inline bool early_page_uninitialised(unsigned long pfn) 438 { 439 return false; 440 } 441 442 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 443 { 444 return false; 445 } 446 #endif 447 448 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 449 static inline unsigned long *get_pageblock_bitmap(struct page *page, 450 unsigned long pfn) 451 { 452 #ifdef CONFIG_SPARSEMEM 453 return section_to_usemap(__pfn_to_section(pfn)); 454 #else 455 return page_zone(page)->pageblock_flags; 456 #endif /* CONFIG_SPARSEMEM */ 457 } 458 459 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 460 { 461 #ifdef CONFIG_SPARSEMEM 462 pfn &= (PAGES_PER_SECTION-1); 463 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 464 #else 465 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 466 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 467 #endif /* CONFIG_SPARSEMEM */ 468 } 469 470 /** 471 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 472 * @page: The page within the block of interest 473 * @pfn: The target page frame number 474 * @end_bitidx: The last bit of interest to retrieve 475 * @mask: mask of bits that the caller is interested in 476 * 477 * Return: pageblock_bits flags 478 */ 479 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page, 480 unsigned long pfn, 481 unsigned long end_bitidx, 482 unsigned long mask) 483 { 484 unsigned long *bitmap; 485 unsigned long bitidx, word_bitidx; 486 unsigned long word; 487 488 bitmap = get_pageblock_bitmap(page, pfn); 489 bitidx = pfn_to_bitidx(page, pfn); 490 word_bitidx = bitidx / BITS_PER_LONG; 491 bitidx &= (BITS_PER_LONG-1); 492 493 word = bitmap[word_bitidx]; 494 bitidx += end_bitidx; 495 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask; 496 } 497 498 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 499 unsigned long end_bitidx, 500 unsigned long mask) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask); 503 } 504 505 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 506 { 507 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK); 508 } 509 510 /** 511 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 512 * @page: The page within the block of interest 513 * @flags: The flags to set 514 * @pfn: The target page frame number 515 * @end_bitidx: The last bit of interest 516 * @mask: mask of bits that the caller is interested in 517 */ 518 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 519 unsigned long pfn, 520 unsigned long end_bitidx, 521 unsigned long mask) 522 { 523 unsigned long *bitmap; 524 unsigned long bitidx, word_bitidx; 525 unsigned long old_word, word; 526 527 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 528 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 529 530 bitmap = get_pageblock_bitmap(page, pfn); 531 bitidx = pfn_to_bitidx(page, pfn); 532 word_bitidx = bitidx / BITS_PER_LONG; 533 bitidx &= (BITS_PER_LONG-1); 534 535 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 536 537 bitidx += end_bitidx; 538 mask <<= (BITS_PER_LONG - bitidx - 1); 539 flags <<= (BITS_PER_LONG - bitidx - 1); 540 541 word = READ_ONCE(bitmap[word_bitidx]); 542 for (;;) { 543 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 544 if (word == old_word) 545 break; 546 word = old_word; 547 } 548 } 549 550 void set_pageblock_migratetype(struct page *page, int migratetype) 551 { 552 if (unlikely(page_group_by_mobility_disabled && 553 migratetype < MIGRATE_PCPTYPES)) 554 migratetype = MIGRATE_UNMOVABLE; 555 556 set_pageblock_flags_group(page, (unsigned long)migratetype, 557 PB_migrate, PB_migrate_end); 558 } 559 560 #ifdef CONFIG_DEBUG_VM 561 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 562 { 563 int ret = 0; 564 unsigned seq; 565 unsigned long pfn = page_to_pfn(page); 566 unsigned long sp, start_pfn; 567 568 do { 569 seq = zone_span_seqbegin(zone); 570 start_pfn = zone->zone_start_pfn; 571 sp = zone->spanned_pages; 572 if (!zone_spans_pfn(zone, pfn)) 573 ret = 1; 574 } while (zone_span_seqretry(zone, seq)); 575 576 if (ret) 577 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 578 pfn, zone_to_nid(zone), zone->name, 579 start_pfn, start_pfn + sp); 580 581 return ret; 582 } 583 584 static int page_is_consistent(struct zone *zone, struct page *page) 585 { 586 if (!pfn_valid_within(page_to_pfn(page))) 587 return 0; 588 if (zone != page_zone(page)) 589 return 0; 590 591 return 1; 592 } 593 /* 594 * Temporary debugging check for pages not lying within a given zone. 595 */ 596 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 597 { 598 if (page_outside_zone_boundaries(zone, page)) 599 return 1; 600 if (!page_is_consistent(zone, page)) 601 return 1; 602 603 return 0; 604 } 605 #else 606 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 607 { 608 return 0; 609 } 610 #endif 611 612 static void bad_page(struct page *page, const char *reason, 613 unsigned long bad_flags) 614 { 615 static unsigned long resume; 616 static unsigned long nr_shown; 617 static unsigned long nr_unshown; 618 619 /* 620 * Allow a burst of 60 reports, then keep quiet for that minute; 621 * or allow a steady drip of one report per second. 622 */ 623 if (nr_shown == 60) { 624 if (time_before(jiffies, resume)) { 625 nr_unshown++; 626 goto out; 627 } 628 if (nr_unshown) { 629 pr_alert( 630 "BUG: Bad page state: %lu messages suppressed\n", 631 nr_unshown); 632 nr_unshown = 0; 633 } 634 nr_shown = 0; 635 } 636 if (nr_shown++ == 0) 637 resume = jiffies + 60 * HZ; 638 639 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 640 current->comm, page_to_pfn(page)); 641 __dump_page(page, reason); 642 bad_flags &= page->flags; 643 if (bad_flags) 644 pr_alert("bad because of flags: %#lx(%pGp)\n", 645 bad_flags, &bad_flags); 646 dump_page_owner(page); 647 648 print_modules(); 649 dump_stack(); 650 out: 651 /* Leave bad fields for debug, except PageBuddy could make trouble */ 652 page_mapcount_reset(page); /* remove PageBuddy */ 653 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 654 } 655 656 /* 657 * Higher-order pages are called "compound pages". They are structured thusly: 658 * 659 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 660 * 661 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 662 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 663 * 664 * The first tail page's ->compound_dtor holds the offset in array of compound 665 * page destructors. See compound_page_dtors. 666 * 667 * The first tail page's ->compound_order holds the order of allocation. 668 * This usage means that zero-order pages may not be compound. 669 */ 670 671 void free_compound_page(struct page *page) 672 { 673 mem_cgroup_uncharge(page); 674 __free_pages_ok(page, compound_order(page)); 675 } 676 677 void prep_compound_page(struct page *page, unsigned int order) 678 { 679 int i; 680 int nr_pages = 1 << order; 681 682 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 683 set_compound_order(page, order); 684 __SetPageHead(page); 685 for (i = 1; i < nr_pages; i++) { 686 struct page *p = page + i; 687 set_page_count(p, 0); 688 p->mapping = TAIL_MAPPING; 689 set_compound_head(p, page); 690 } 691 atomic_set(compound_mapcount_ptr(page), -1); 692 } 693 694 #ifdef CONFIG_DEBUG_PAGEALLOC 695 unsigned int _debug_guardpage_minorder; 696 697 #ifdef CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT 698 DEFINE_STATIC_KEY_TRUE(_debug_pagealloc_enabled); 699 #else 700 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 701 #endif 702 EXPORT_SYMBOL(_debug_pagealloc_enabled); 703 704 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 705 706 static int __init early_debug_pagealloc(char *buf) 707 { 708 bool enable = false; 709 710 if (kstrtobool(buf, &enable)) 711 return -EINVAL; 712 713 if (enable) 714 static_branch_enable(&_debug_pagealloc_enabled); 715 716 return 0; 717 } 718 early_param("debug_pagealloc", early_debug_pagealloc); 719 720 static void init_debug_guardpage(void) 721 { 722 if (!debug_pagealloc_enabled()) 723 return; 724 725 if (!debug_guardpage_minorder()) 726 return; 727 728 static_branch_enable(&_debug_guardpage_enabled); 729 } 730 731 static int __init debug_guardpage_minorder_setup(char *buf) 732 { 733 unsigned long res; 734 735 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 736 pr_err("Bad debug_guardpage_minorder value\n"); 737 return 0; 738 } 739 _debug_guardpage_minorder = res; 740 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 741 return 0; 742 } 743 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 744 745 static inline bool set_page_guard(struct zone *zone, struct page *page, 746 unsigned int order, int migratetype) 747 { 748 if (!debug_guardpage_enabled()) 749 return false; 750 751 if (order >= debug_guardpage_minorder()) 752 return false; 753 754 __SetPageGuard(page); 755 INIT_LIST_HEAD(&page->lru); 756 set_page_private(page, order); 757 /* Guard pages are not available for any usage */ 758 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 759 760 return true; 761 } 762 763 static inline void clear_page_guard(struct zone *zone, struct page *page, 764 unsigned int order, int migratetype) 765 { 766 if (!debug_guardpage_enabled()) 767 return; 768 769 __ClearPageGuard(page); 770 771 set_page_private(page, 0); 772 if (!is_migrate_isolate(migratetype)) 773 __mod_zone_freepage_state(zone, (1 << order), migratetype); 774 } 775 #else 776 static inline bool set_page_guard(struct zone *zone, struct page *page, 777 unsigned int order, int migratetype) { return false; } 778 static inline void clear_page_guard(struct zone *zone, struct page *page, 779 unsigned int order, int migratetype) {} 780 #endif 781 782 static inline void set_page_order(struct page *page, unsigned int order) 783 { 784 set_page_private(page, order); 785 __SetPageBuddy(page); 786 } 787 788 /* 789 * This function checks whether a page is free && is the buddy 790 * we can coalesce a page and its buddy if 791 * (a) the buddy is not in a hole (check before calling!) && 792 * (b) the buddy is in the buddy system && 793 * (c) a page and its buddy have the same order && 794 * (d) a page and its buddy are in the same zone. 795 * 796 * For recording whether a page is in the buddy system, we set PageBuddy. 797 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 798 * 799 * For recording page's order, we use page_private(page). 800 */ 801 static inline int page_is_buddy(struct page *page, struct page *buddy, 802 unsigned int order) 803 { 804 if (page_is_guard(buddy) && page_order(buddy) == order) { 805 if (page_zone_id(page) != page_zone_id(buddy)) 806 return 0; 807 808 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 809 810 return 1; 811 } 812 813 if (PageBuddy(buddy) && page_order(buddy) == order) { 814 /* 815 * zone check is done late to avoid uselessly 816 * calculating zone/node ids for pages that could 817 * never merge. 818 */ 819 if (page_zone_id(page) != page_zone_id(buddy)) 820 return 0; 821 822 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 823 824 return 1; 825 } 826 return 0; 827 } 828 829 #ifdef CONFIG_COMPACTION 830 static inline struct capture_control *task_capc(struct zone *zone) 831 { 832 struct capture_control *capc = current->capture_control; 833 834 return capc && 835 !(current->flags & PF_KTHREAD) && 836 !capc->page && 837 capc->cc->zone == zone && 838 capc->cc->direct_compaction ? capc : NULL; 839 } 840 841 static inline bool 842 compaction_capture(struct capture_control *capc, struct page *page, 843 int order, int migratetype) 844 { 845 if (!capc || order != capc->cc->order) 846 return false; 847 848 /* Do not accidentally pollute CMA or isolated regions*/ 849 if (is_migrate_cma(migratetype) || 850 is_migrate_isolate(migratetype)) 851 return false; 852 853 /* 854 * Do not let lower order allocations polluate a movable pageblock. 855 * This might let an unmovable request use a reclaimable pageblock 856 * and vice-versa but no more than normal fallback logic which can 857 * have trouble finding a high-order free page. 858 */ 859 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 860 return false; 861 862 capc->page = page; 863 return true; 864 } 865 866 #else 867 static inline struct capture_control *task_capc(struct zone *zone) 868 { 869 return NULL; 870 } 871 872 static inline bool 873 compaction_capture(struct capture_control *capc, struct page *page, 874 int order, int migratetype) 875 { 876 return false; 877 } 878 #endif /* CONFIG_COMPACTION */ 879 880 /* 881 * Freeing function for a buddy system allocator. 882 * 883 * The concept of a buddy system is to maintain direct-mapped table 884 * (containing bit values) for memory blocks of various "orders". 885 * The bottom level table contains the map for the smallest allocatable 886 * units of memory (here, pages), and each level above it describes 887 * pairs of units from the levels below, hence, "buddies". 888 * At a high level, all that happens here is marking the table entry 889 * at the bottom level available, and propagating the changes upward 890 * as necessary, plus some accounting needed to play nicely with other 891 * parts of the VM system. 892 * At each level, we keep a list of pages, which are heads of continuous 893 * free pages of length of (1 << order) and marked with PageBuddy. 894 * Page's order is recorded in page_private(page) field. 895 * So when we are allocating or freeing one, we can derive the state of the 896 * other. That is, if we allocate a small block, and both were 897 * free, the remainder of the region must be split into blocks. 898 * If a block is freed, and its buddy is also free, then this 899 * triggers coalescing into a block of larger size. 900 * 901 * -- nyc 902 */ 903 904 static inline void __free_one_page(struct page *page, 905 unsigned long pfn, 906 struct zone *zone, unsigned int order, 907 int migratetype) 908 { 909 unsigned long combined_pfn; 910 unsigned long uninitialized_var(buddy_pfn); 911 struct page *buddy; 912 unsigned int max_order; 913 struct capture_control *capc = task_capc(zone); 914 915 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 916 917 VM_BUG_ON(!zone_is_initialized(zone)); 918 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 919 920 VM_BUG_ON(migratetype == -1); 921 if (likely(!is_migrate_isolate(migratetype))) 922 __mod_zone_freepage_state(zone, 1 << order, migratetype); 923 924 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 925 VM_BUG_ON_PAGE(bad_range(zone, page), page); 926 927 continue_merging: 928 while (order < max_order - 1) { 929 if (compaction_capture(capc, page, order, migratetype)) { 930 __mod_zone_freepage_state(zone, -(1 << order), 931 migratetype); 932 return; 933 } 934 buddy_pfn = __find_buddy_pfn(pfn, order); 935 buddy = page + (buddy_pfn - pfn); 936 937 if (!pfn_valid_within(buddy_pfn)) 938 goto done_merging; 939 if (!page_is_buddy(page, buddy, order)) 940 goto done_merging; 941 /* 942 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 943 * merge with it and move up one order. 944 */ 945 if (page_is_guard(buddy)) 946 clear_page_guard(zone, buddy, order, migratetype); 947 else 948 del_page_from_free_area(buddy, &zone->free_area[order]); 949 combined_pfn = buddy_pfn & pfn; 950 page = page + (combined_pfn - pfn); 951 pfn = combined_pfn; 952 order++; 953 } 954 if (max_order < MAX_ORDER) { 955 /* If we are here, it means order is >= pageblock_order. 956 * We want to prevent merge between freepages on isolate 957 * pageblock and normal pageblock. Without this, pageblock 958 * isolation could cause incorrect freepage or CMA accounting. 959 * 960 * We don't want to hit this code for the more frequent 961 * low-order merging. 962 */ 963 if (unlikely(has_isolate_pageblock(zone))) { 964 int buddy_mt; 965 966 buddy_pfn = __find_buddy_pfn(pfn, order); 967 buddy = page + (buddy_pfn - pfn); 968 buddy_mt = get_pageblock_migratetype(buddy); 969 970 if (migratetype != buddy_mt 971 && (is_migrate_isolate(migratetype) || 972 is_migrate_isolate(buddy_mt))) 973 goto done_merging; 974 } 975 max_order++; 976 goto continue_merging; 977 } 978 979 done_merging: 980 set_page_order(page, order); 981 982 /* 983 * If this is not the largest possible page, check if the buddy 984 * of the next-highest order is free. If it is, it's possible 985 * that pages are being freed that will coalesce soon. In case, 986 * that is happening, add the free page to the tail of the list 987 * so it's less likely to be used soon and more likely to be merged 988 * as a higher order page 989 */ 990 if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn) 991 && !is_shuffle_order(order)) { 992 struct page *higher_page, *higher_buddy; 993 combined_pfn = buddy_pfn & pfn; 994 higher_page = page + (combined_pfn - pfn); 995 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 996 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 997 if (pfn_valid_within(buddy_pfn) && 998 page_is_buddy(higher_page, higher_buddy, order + 1)) { 999 add_to_free_area_tail(page, &zone->free_area[order], 1000 migratetype); 1001 return; 1002 } 1003 } 1004 1005 if (is_shuffle_order(order)) 1006 add_to_free_area_random(page, &zone->free_area[order], 1007 migratetype); 1008 else 1009 add_to_free_area(page, &zone->free_area[order], migratetype); 1010 1011 } 1012 1013 /* 1014 * A bad page could be due to a number of fields. Instead of multiple branches, 1015 * try and check multiple fields with one check. The caller must do a detailed 1016 * check if necessary. 1017 */ 1018 static inline bool page_expected_state(struct page *page, 1019 unsigned long check_flags) 1020 { 1021 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1022 return false; 1023 1024 if (unlikely((unsigned long)page->mapping | 1025 page_ref_count(page) | 1026 #ifdef CONFIG_MEMCG 1027 (unsigned long)page->mem_cgroup | 1028 #endif 1029 (page->flags & check_flags))) 1030 return false; 1031 1032 return true; 1033 } 1034 1035 static void free_pages_check_bad(struct page *page) 1036 { 1037 const char *bad_reason; 1038 unsigned long bad_flags; 1039 1040 bad_reason = NULL; 1041 bad_flags = 0; 1042 1043 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1044 bad_reason = "nonzero mapcount"; 1045 if (unlikely(page->mapping != NULL)) 1046 bad_reason = "non-NULL mapping"; 1047 if (unlikely(page_ref_count(page) != 0)) 1048 bad_reason = "nonzero _refcount"; 1049 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) { 1050 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1051 bad_flags = PAGE_FLAGS_CHECK_AT_FREE; 1052 } 1053 #ifdef CONFIG_MEMCG 1054 if (unlikely(page->mem_cgroup)) 1055 bad_reason = "page still charged to cgroup"; 1056 #endif 1057 bad_page(page, bad_reason, bad_flags); 1058 } 1059 1060 static inline int free_pages_check(struct page *page) 1061 { 1062 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1063 return 0; 1064 1065 /* Something has gone sideways, find it */ 1066 free_pages_check_bad(page); 1067 return 1; 1068 } 1069 1070 static int free_tail_pages_check(struct page *head_page, struct page *page) 1071 { 1072 int ret = 1; 1073 1074 /* 1075 * We rely page->lru.next never has bit 0 set, unless the page 1076 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1077 */ 1078 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1079 1080 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1081 ret = 0; 1082 goto out; 1083 } 1084 switch (page - head_page) { 1085 case 1: 1086 /* the first tail page: ->mapping may be compound_mapcount() */ 1087 if (unlikely(compound_mapcount(page))) { 1088 bad_page(page, "nonzero compound_mapcount", 0); 1089 goto out; 1090 } 1091 break; 1092 case 2: 1093 /* 1094 * the second tail page: ->mapping is 1095 * deferred_list.next -- ignore value. 1096 */ 1097 break; 1098 default: 1099 if (page->mapping != TAIL_MAPPING) { 1100 bad_page(page, "corrupted mapping in tail page", 0); 1101 goto out; 1102 } 1103 break; 1104 } 1105 if (unlikely(!PageTail(page))) { 1106 bad_page(page, "PageTail not set", 0); 1107 goto out; 1108 } 1109 if (unlikely(compound_head(page) != head_page)) { 1110 bad_page(page, "compound_head not consistent", 0); 1111 goto out; 1112 } 1113 ret = 0; 1114 out: 1115 page->mapping = NULL; 1116 clear_compound_head(page); 1117 return ret; 1118 } 1119 1120 static void kernel_init_free_pages(struct page *page, int numpages) 1121 { 1122 int i; 1123 1124 for (i = 0; i < numpages; i++) 1125 clear_highpage(page + i); 1126 } 1127 1128 static __always_inline bool free_pages_prepare(struct page *page, 1129 unsigned int order, bool check_free) 1130 { 1131 int bad = 0; 1132 1133 VM_BUG_ON_PAGE(PageTail(page), page); 1134 1135 trace_mm_page_free(page, order); 1136 1137 /* 1138 * Check tail pages before head page information is cleared to 1139 * avoid checking PageCompound for order-0 pages. 1140 */ 1141 if (unlikely(order)) { 1142 bool compound = PageCompound(page); 1143 int i; 1144 1145 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1146 1147 if (compound) 1148 ClearPageDoubleMap(page); 1149 for (i = 1; i < (1 << order); i++) { 1150 if (compound) 1151 bad += free_tail_pages_check(page, page + i); 1152 if (unlikely(free_pages_check(page + i))) { 1153 bad++; 1154 continue; 1155 } 1156 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1157 } 1158 } 1159 if (PageMappingFlags(page)) 1160 page->mapping = NULL; 1161 if (memcg_kmem_enabled() && PageKmemcg(page)) 1162 __memcg_kmem_uncharge(page, order); 1163 if (check_free) 1164 bad += free_pages_check(page); 1165 if (bad) 1166 return false; 1167 1168 page_cpupid_reset_last(page); 1169 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1170 reset_page_owner(page, order); 1171 1172 if (!PageHighMem(page)) { 1173 debug_check_no_locks_freed(page_address(page), 1174 PAGE_SIZE << order); 1175 debug_check_no_obj_freed(page_address(page), 1176 PAGE_SIZE << order); 1177 } 1178 if (want_init_on_free()) 1179 kernel_init_free_pages(page, 1 << order); 1180 1181 kernel_poison_pages(page, 1 << order, 0); 1182 /* 1183 * arch_free_page() can make the page's contents inaccessible. s390 1184 * does this. So nothing which can access the page's contents should 1185 * happen after this. 1186 */ 1187 arch_free_page(page, order); 1188 1189 if (debug_pagealloc_enabled()) 1190 kernel_map_pages(page, 1 << order, 0); 1191 1192 kasan_free_nondeferred_pages(page, order); 1193 1194 return true; 1195 } 1196 1197 #ifdef CONFIG_DEBUG_VM 1198 /* 1199 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1200 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1201 * moved from pcp lists to free lists. 1202 */ 1203 static bool free_pcp_prepare(struct page *page) 1204 { 1205 return free_pages_prepare(page, 0, true); 1206 } 1207 1208 static bool bulkfree_pcp_prepare(struct page *page) 1209 { 1210 if (debug_pagealloc_enabled()) 1211 return free_pages_check(page); 1212 else 1213 return false; 1214 } 1215 #else 1216 /* 1217 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1218 * moving from pcp lists to free list in order to reduce overhead. With 1219 * debug_pagealloc enabled, they are checked also immediately when being freed 1220 * to the pcp lists. 1221 */ 1222 static bool free_pcp_prepare(struct page *page) 1223 { 1224 if (debug_pagealloc_enabled()) 1225 return free_pages_prepare(page, 0, true); 1226 else 1227 return free_pages_prepare(page, 0, false); 1228 } 1229 1230 static bool bulkfree_pcp_prepare(struct page *page) 1231 { 1232 return free_pages_check(page); 1233 } 1234 #endif /* CONFIG_DEBUG_VM */ 1235 1236 static inline void prefetch_buddy(struct page *page) 1237 { 1238 unsigned long pfn = page_to_pfn(page); 1239 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1240 struct page *buddy = page + (buddy_pfn - pfn); 1241 1242 prefetch(buddy); 1243 } 1244 1245 /* 1246 * Frees a number of pages from the PCP lists 1247 * Assumes all pages on list are in same zone, and of same order. 1248 * count is the number of pages to free. 1249 * 1250 * If the zone was previously in an "all pages pinned" state then look to 1251 * see if this freeing clears that state. 1252 * 1253 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1254 * pinned" detection logic. 1255 */ 1256 static void free_pcppages_bulk(struct zone *zone, int count, 1257 struct per_cpu_pages *pcp) 1258 { 1259 int migratetype = 0; 1260 int batch_free = 0; 1261 int prefetch_nr = 0; 1262 bool isolated_pageblocks; 1263 struct page *page, *tmp; 1264 LIST_HEAD(head); 1265 1266 while (count) { 1267 struct list_head *list; 1268 1269 /* 1270 * Remove pages from lists in a round-robin fashion. A 1271 * batch_free count is maintained that is incremented when an 1272 * empty list is encountered. This is so more pages are freed 1273 * off fuller lists instead of spinning excessively around empty 1274 * lists 1275 */ 1276 do { 1277 batch_free++; 1278 if (++migratetype == MIGRATE_PCPTYPES) 1279 migratetype = 0; 1280 list = &pcp->lists[migratetype]; 1281 } while (list_empty(list)); 1282 1283 /* This is the only non-empty list. Free them all. */ 1284 if (batch_free == MIGRATE_PCPTYPES) 1285 batch_free = count; 1286 1287 do { 1288 page = list_last_entry(list, struct page, lru); 1289 /* must delete to avoid corrupting pcp list */ 1290 list_del(&page->lru); 1291 pcp->count--; 1292 1293 if (bulkfree_pcp_prepare(page)) 1294 continue; 1295 1296 list_add_tail(&page->lru, &head); 1297 1298 /* 1299 * We are going to put the page back to the global 1300 * pool, prefetch its buddy to speed up later access 1301 * under zone->lock. It is believed the overhead of 1302 * an additional test and calculating buddy_pfn here 1303 * can be offset by reduced memory latency later. To 1304 * avoid excessive prefetching due to large count, only 1305 * prefetch buddy for the first pcp->batch nr of pages. 1306 */ 1307 if (prefetch_nr++ < pcp->batch) 1308 prefetch_buddy(page); 1309 } while (--count && --batch_free && !list_empty(list)); 1310 } 1311 1312 spin_lock(&zone->lock); 1313 isolated_pageblocks = has_isolate_pageblock(zone); 1314 1315 /* 1316 * Use safe version since after __free_one_page(), 1317 * page->lru.next will not point to original list. 1318 */ 1319 list_for_each_entry_safe(page, tmp, &head, lru) { 1320 int mt = get_pcppage_migratetype(page); 1321 /* MIGRATE_ISOLATE page should not go to pcplists */ 1322 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1323 /* Pageblock could have been isolated meanwhile */ 1324 if (unlikely(isolated_pageblocks)) 1325 mt = get_pageblock_migratetype(page); 1326 1327 __free_one_page(page, page_to_pfn(page), zone, 0, mt); 1328 trace_mm_page_pcpu_drain(page, 0, mt); 1329 } 1330 spin_unlock(&zone->lock); 1331 } 1332 1333 static void free_one_page(struct zone *zone, 1334 struct page *page, unsigned long pfn, 1335 unsigned int order, 1336 int migratetype) 1337 { 1338 spin_lock(&zone->lock); 1339 if (unlikely(has_isolate_pageblock(zone) || 1340 is_migrate_isolate(migratetype))) { 1341 migratetype = get_pfnblock_migratetype(page, pfn); 1342 } 1343 __free_one_page(page, pfn, zone, order, migratetype); 1344 spin_unlock(&zone->lock); 1345 } 1346 1347 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1348 unsigned long zone, int nid) 1349 { 1350 mm_zero_struct_page(page); 1351 set_page_links(page, zone, nid, pfn); 1352 init_page_count(page); 1353 page_mapcount_reset(page); 1354 page_cpupid_reset_last(page); 1355 page_kasan_tag_reset(page); 1356 1357 INIT_LIST_HEAD(&page->lru); 1358 #ifdef WANT_PAGE_VIRTUAL 1359 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1360 if (!is_highmem_idx(zone)) 1361 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1362 #endif 1363 } 1364 1365 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1366 static void __meminit init_reserved_page(unsigned long pfn) 1367 { 1368 pg_data_t *pgdat; 1369 int nid, zid; 1370 1371 if (!early_page_uninitialised(pfn)) 1372 return; 1373 1374 nid = early_pfn_to_nid(pfn); 1375 pgdat = NODE_DATA(nid); 1376 1377 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1378 struct zone *zone = &pgdat->node_zones[zid]; 1379 1380 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1381 break; 1382 } 1383 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1384 } 1385 #else 1386 static inline void init_reserved_page(unsigned long pfn) 1387 { 1388 } 1389 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1390 1391 /* 1392 * Initialised pages do not have PageReserved set. This function is 1393 * called for each range allocated by the bootmem allocator and 1394 * marks the pages PageReserved. The remaining valid pages are later 1395 * sent to the buddy page allocator. 1396 */ 1397 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1398 { 1399 unsigned long start_pfn = PFN_DOWN(start); 1400 unsigned long end_pfn = PFN_UP(end); 1401 1402 for (; start_pfn < end_pfn; start_pfn++) { 1403 if (pfn_valid(start_pfn)) { 1404 struct page *page = pfn_to_page(start_pfn); 1405 1406 init_reserved_page(start_pfn); 1407 1408 /* Avoid false-positive PageTail() */ 1409 INIT_LIST_HEAD(&page->lru); 1410 1411 /* 1412 * no need for atomic set_bit because the struct 1413 * page is not visible yet so nobody should 1414 * access it yet. 1415 */ 1416 __SetPageReserved(page); 1417 } 1418 } 1419 } 1420 1421 static void __free_pages_ok(struct page *page, unsigned int order) 1422 { 1423 unsigned long flags; 1424 int migratetype; 1425 unsigned long pfn = page_to_pfn(page); 1426 1427 if (!free_pages_prepare(page, order, true)) 1428 return; 1429 1430 migratetype = get_pfnblock_migratetype(page, pfn); 1431 local_irq_save(flags); 1432 __count_vm_events(PGFREE, 1 << order); 1433 free_one_page(page_zone(page), page, pfn, order, migratetype); 1434 local_irq_restore(flags); 1435 } 1436 1437 void __free_pages_core(struct page *page, unsigned int order) 1438 { 1439 unsigned int nr_pages = 1 << order; 1440 struct page *p = page; 1441 unsigned int loop; 1442 1443 prefetchw(p); 1444 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1445 prefetchw(p + 1); 1446 __ClearPageReserved(p); 1447 set_page_count(p, 0); 1448 } 1449 __ClearPageReserved(p); 1450 set_page_count(p, 0); 1451 1452 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1453 set_page_refcounted(page); 1454 __free_pages(page, order); 1455 } 1456 1457 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \ 1458 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) 1459 1460 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1461 1462 int __meminit early_pfn_to_nid(unsigned long pfn) 1463 { 1464 static DEFINE_SPINLOCK(early_pfn_lock); 1465 int nid; 1466 1467 spin_lock(&early_pfn_lock); 1468 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1469 if (nid < 0) 1470 nid = first_online_node; 1471 spin_unlock(&early_pfn_lock); 1472 1473 return nid; 1474 } 1475 #endif 1476 1477 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 1478 /* Only safe to use early in boot when initialisation is single-threaded */ 1479 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1480 { 1481 int nid; 1482 1483 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1484 if (nid >= 0 && nid != node) 1485 return false; 1486 return true; 1487 } 1488 1489 #else 1490 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 1491 { 1492 return true; 1493 } 1494 #endif 1495 1496 1497 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1498 unsigned int order) 1499 { 1500 if (early_page_uninitialised(pfn)) 1501 return; 1502 __free_pages_core(page, order); 1503 } 1504 1505 /* 1506 * Check that the whole (or subset of) a pageblock given by the interval of 1507 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1508 * with the migration of free compaction scanner. The scanners then need to 1509 * use only pfn_valid_within() check for arches that allow holes within 1510 * pageblocks. 1511 * 1512 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1513 * 1514 * It's possible on some configurations to have a setup like node0 node1 node0 1515 * i.e. it's possible that all pages within a zones range of pages do not 1516 * belong to a single zone. We assume that a border between node0 and node1 1517 * can occur within a single pageblock, but not a node0 node1 node0 1518 * interleaving within a single pageblock. It is therefore sufficient to check 1519 * the first and last page of a pageblock and avoid checking each individual 1520 * page in a pageblock. 1521 */ 1522 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1523 unsigned long end_pfn, struct zone *zone) 1524 { 1525 struct page *start_page; 1526 struct page *end_page; 1527 1528 /* end_pfn is one past the range we are checking */ 1529 end_pfn--; 1530 1531 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1532 return NULL; 1533 1534 start_page = pfn_to_online_page(start_pfn); 1535 if (!start_page) 1536 return NULL; 1537 1538 if (page_zone(start_page) != zone) 1539 return NULL; 1540 1541 end_page = pfn_to_page(end_pfn); 1542 1543 /* This gives a shorter code than deriving page_zone(end_page) */ 1544 if (page_zone_id(start_page) != page_zone_id(end_page)) 1545 return NULL; 1546 1547 return start_page; 1548 } 1549 1550 void set_zone_contiguous(struct zone *zone) 1551 { 1552 unsigned long block_start_pfn = zone->zone_start_pfn; 1553 unsigned long block_end_pfn; 1554 1555 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1556 for (; block_start_pfn < zone_end_pfn(zone); 1557 block_start_pfn = block_end_pfn, 1558 block_end_pfn += pageblock_nr_pages) { 1559 1560 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1561 1562 if (!__pageblock_pfn_to_page(block_start_pfn, 1563 block_end_pfn, zone)) 1564 return; 1565 } 1566 1567 /* We confirm that there is no hole */ 1568 zone->contiguous = true; 1569 } 1570 1571 void clear_zone_contiguous(struct zone *zone) 1572 { 1573 zone->contiguous = false; 1574 } 1575 1576 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1577 static void __init deferred_free_range(unsigned long pfn, 1578 unsigned long nr_pages) 1579 { 1580 struct page *page; 1581 unsigned long i; 1582 1583 if (!nr_pages) 1584 return; 1585 1586 page = pfn_to_page(pfn); 1587 1588 /* Free a large naturally-aligned chunk if possible */ 1589 if (nr_pages == pageblock_nr_pages && 1590 (pfn & (pageblock_nr_pages - 1)) == 0) { 1591 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1592 __free_pages_core(page, pageblock_order); 1593 return; 1594 } 1595 1596 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1597 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1598 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1599 __free_pages_core(page, 0); 1600 } 1601 } 1602 1603 /* Completion tracking for deferred_init_memmap() threads */ 1604 static atomic_t pgdat_init_n_undone __initdata; 1605 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1606 1607 static inline void __init pgdat_init_report_one_done(void) 1608 { 1609 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1610 complete(&pgdat_init_all_done_comp); 1611 } 1612 1613 /* 1614 * Returns true if page needs to be initialized or freed to buddy allocator. 1615 * 1616 * First we check if pfn is valid on architectures where it is possible to have 1617 * holes within pageblock_nr_pages. On systems where it is not possible, this 1618 * function is optimized out. 1619 * 1620 * Then, we check if a current large page is valid by only checking the validity 1621 * of the head pfn. 1622 */ 1623 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1624 { 1625 if (!pfn_valid_within(pfn)) 1626 return false; 1627 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1628 return false; 1629 return true; 1630 } 1631 1632 /* 1633 * Free pages to buddy allocator. Try to free aligned pages in 1634 * pageblock_nr_pages sizes. 1635 */ 1636 static void __init deferred_free_pages(unsigned long pfn, 1637 unsigned long end_pfn) 1638 { 1639 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1640 unsigned long nr_free = 0; 1641 1642 for (; pfn < end_pfn; pfn++) { 1643 if (!deferred_pfn_valid(pfn)) { 1644 deferred_free_range(pfn - nr_free, nr_free); 1645 nr_free = 0; 1646 } else if (!(pfn & nr_pgmask)) { 1647 deferred_free_range(pfn - nr_free, nr_free); 1648 nr_free = 1; 1649 touch_nmi_watchdog(); 1650 } else { 1651 nr_free++; 1652 } 1653 } 1654 /* Free the last block of pages to allocator */ 1655 deferred_free_range(pfn - nr_free, nr_free); 1656 } 1657 1658 /* 1659 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1660 * by performing it only once every pageblock_nr_pages. 1661 * Return number of pages initialized. 1662 */ 1663 static unsigned long __init deferred_init_pages(struct zone *zone, 1664 unsigned long pfn, 1665 unsigned long end_pfn) 1666 { 1667 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1668 int nid = zone_to_nid(zone); 1669 unsigned long nr_pages = 0; 1670 int zid = zone_idx(zone); 1671 struct page *page = NULL; 1672 1673 for (; pfn < end_pfn; pfn++) { 1674 if (!deferred_pfn_valid(pfn)) { 1675 page = NULL; 1676 continue; 1677 } else if (!page || !(pfn & nr_pgmask)) { 1678 page = pfn_to_page(pfn); 1679 touch_nmi_watchdog(); 1680 } else { 1681 page++; 1682 } 1683 __init_single_page(page, pfn, zid, nid); 1684 nr_pages++; 1685 } 1686 return (nr_pages); 1687 } 1688 1689 /* 1690 * This function is meant to pre-load the iterator for the zone init. 1691 * Specifically it walks through the ranges until we are caught up to the 1692 * first_init_pfn value and exits there. If we never encounter the value we 1693 * return false indicating there are no valid ranges left. 1694 */ 1695 static bool __init 1696 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1697 unsigned long *spfn, unsigned long *epfn, 1698 unsigned long first_init_pfn) 1699 { 1700 u64 j; 1701 1702 /* 1703 * Start out by walking through the ranges in this zone that have 1704 * already been initialized. We don't need to do anything with them 1705 * so we just need to flush them out of the system. 1706 */ 1707 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1708 if (*epfn <= first_init_pfn) 1709 continue; 1710 if (*spfn < first_init_pfn) 1711 *spfn = first_init_pfn; 1712 *i = j; 1713 return true; 1714 } 1715 1716 return false; 1717 } 1718 1719 /* 1720 * Initialize and free pages. We do it in two loops: first we initialize 1721 * struct page, then free to buddy allocator, because while we are 1722 * freeing pages we can access pages that are ahead (computing buddy 1723 * page in __free_one_page()). 1724 * 1725 * In order to try and keep some memory in the cache we have the loop 1726 * broken along max page order boundaries. This way we will not cause 1727 * any issues with the buddy page computation. 1728 */ 1729 static unsigned long __init 1730 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1731 unsigned long *end_pfn) 1732 { 1733 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1734 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1735 unsigned long nr_pages = 0; 1736 u64 j = *i; 1737 1738 /* First we loop through and initialize the page values */ 1739 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1740 unsigned long t; 1741 1742 if (mo_pfn <= *start_pfn) 1743 break; 1744 1745 t = min(mo_pfn, *end_pfn); 1746 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1747 1748 if (mo_pfn < *end_pfn) { 1749 *start_pfn = mo_pfn; 1750 break; 1751 } 1752 } 1753 1754 /* Reset values and now loop through freeing pages as needed */ 1755 swap(j, *i); 1756 1757 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1758 unsigned long t; 1759 1760 if (mo_pfn <= spfn) 1761 break; 1762 1763 t = min(mo_pfn, epfn); 1764 deferred_free_pages(spfn, t); 1765 1766 if (mo_pfn <= epfn) 1767 break; 1768 } 1769 1770 return nr_pages; 1771 } 1772 1773 /* Initialise remaining memory on a node */ 1774 static int __init deferred_init_memmap(void *data) 1775 { 1776 pg_data_t *pgdat = data; 1777 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1778 unsigned long spfn = 0, epfn = 0, nr_pages = 0; 1779 unsigned long first_init_pfn, flags; 1780 unsigned long start = jiffies; 1781 struct zone *zone; 1782 int zid; 1783 u64 i; 1784 1785 /* Bind memory initialisation thread to a local node if possible */ 1786 if (!cpumask_empty(cpumask)) 1787 set_cpus_allowed_ptr(current, cpumask); 1788 1789 pgdat_resize_lock(pgdat, &flags); 1790 first_init_pfn = pgdat->first_deferred_pfn; 1791 if (first_init_pfn == ULONG_MAX) { 1792 pgdat_resize_unlock(pgdat, &flags); 1793 pgdat_init_report_one_done(); 1794 return 0; 1795 } 1796 1797 /* Sanity check boundaries */ 1798 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1799 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1800 pgdat->first_deferred_pfn = ULONG_MAX; 1801 1802 /* Only the highest zone is deferred so find it */ 1803 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1804 zone = pgdat->node_zones + zid; 1805 if (first_init_pfn < zone_end_pfn(zone)) 1806 break; 1807 } 1808 1809 /* If the zone is empty somebody else may have cleared out the zone */ 1810 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1811 first_init_pfn)) 1812 goto zone_empty; 1813 1814 /* 1815 * Initialize and free pages in MAX_ORDER sized increments so 1816 * that we can avoid introducing any issues with the buddy 1817 * allocator. 1818 */ 1819 while (spfn < epfn) 1820 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1821 zone_empty: 1822 pgdat_resize_unlock(pgdat, &flags); 1823 1824 /* Sanity check that the next zone really is unpopulated */ 1825 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1826 1827 pr_info("node %d initialised, %lu pages in %ums\n", 1828 pgdat->node_id, nr_pages, jiffies_to_msecs(jiffies - start)); 1829 1830 pgdat_init_report_one_done(); 1831 return 0; 1832 } 1833 1834 /* 1835 * If this zone has deferred pages, try to grow it by initializing enough 1836 * deferred pages to satisfy the allocation specified by order, rounded up to 1837 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1838 * of SECTION_SIZE bytes by initializing struct pages in increments of 1839 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1840 * 1841 * Return true when zone was grown, otherwise return false. We return true even 1842 * when we grow less than requested, to let the caller decide if there are 1843 * enough pages to satisfy the allocation. 1844 * 1845 * Note: We use noinline because this function is needed only during boot, and 1846 * it is called from a __ref function _deferred_grow_zone. This way we are 1847 * making sure that it is not inlined into permanent text section. 1848 */ 1849 static noinline bool __init 1850 deferred_grow_zone(struct zone *zone, unsigned int order) 1851 { 1852 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1853 pg_data_t *pgdat = zone->zone_pgdat; 1854 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1855 unsigned long spfn, epfn, flags; 1856 unsigned long nr_pages = 0; 1857 u64 i; 1858 1859 /* Only the last zone may have deferred pages */ 1860 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1861 return false; 1862 1863 pgdat_resize_lock(pgdat, &flags); 1864 1865 /* 1866 * If deferred pages have been initialized while we were waiting for 1867 * the lock, return true, as the zone was grown. The caller will retry 1868 * this zone. We won't return to this function since the caller also 1869 * has this static branch. 1870 */ 1871 if (!static_branch_unlikely(&deferred_pages)) { 1872 pgdat_resize_unlock(pgdat, &flags); 1873 return true; 1874 } 1875 1876 /* 1877 * If someone grew this zone while we were waiting for spinlock, return 1878 * true, as there might be enough pages already. 1879 */ 1880 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1881 pgdat_resize_unlock(pgdat, &flags); 1882 return true; 1883 } 1884 1885 /* If the zone is empty somebody else may have cleared out the zone */ 1886 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1887 first_deferred_pfn)) { 1888 pgdat->first_deferred_pfn = ULONG_MAX; 1889 pgdat_resize_unlock(pgdat, &flags); 1890 /* Retry only once. */ 1891 return first_deferred_pfn != ULONG_MAX; 1892 } 1893 1894 /* 1895 * Initialize and free pages in MAX_ORDER sized increments so 1896 * that we can avoid introducing any issues with the buddy 1897 * allocator. 1898 */ 1899 while (spfn < epfn) { 1900 /* update our first deferred PFN for this section */ 1901 first_deferred_pfn = spfn; 1902 1903 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1904 1905 /* We should only stop along section boundaries */ 1906 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1907 continue; 1908 1909 /* If our quota has been met we can stop here */ 1910 if (nr_pages >= nr_pages_needed) 1911 break; 1912 } 1913 1914 pgdat->first_deferred_pfn = spfn; 1915 pgdat_resize_unlock(pgdat, &flags); 1916 1917 return nr_pages > 0; 1918 } 1919 1920 /* 1921 * deferred_grow_zone() is __init, but it is called from 1922 * get_page_from_freelist() during early boot until deferred_pages permanently 1923 * disables this call. This is why we have refdata wrapper to avoid warning, 1924 * and to ensure that the function body gets unloaded. 1925 */ 1926 static bool __ref 1927 _deferred_grow_zone(struct zone *zone, unsigned int order) 1928 { 1929 return deferred_grow_zone(zone, order); 1930 } 1931 1932 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1933 1934 void __init page_alloc_init_late(void) 1935 { 1936 struct zone *zone; 1937 int nid; 1938 1939 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1940 1941 /* There will be num_node_state(N_MEMORY) threads */ 1942 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 1943 for_each_node_state(nid, N_MEMORY) { 1944 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 1945 } 1946 1947 /* Block until all are initialised */ 1948 wait_for_completion(&pgdat_init_all_done_comp); 1949 1950 /* 1951 * The number of managed pages has changed due to the initialisation 1952 * so the pcpu batch and high limits needs to be updated or the limits 1953 * will be artificially small. 1954 */ 1955 for_each_populated_zone(zone) 1956 zone_pcp_update(zone); 1957 1958 /* 1959 * We initialized the rest of the deferred pages. Permanently disable 1960 * on-demand struct page initialization. 1961 */ 1962 static_branch_disable(&deferred_pages); 1963 1964 /* Reinit limits that are based on free pages after the kernel is up */ 1965 files_maxfiles_init(); 1966 #endif 1967 1968 /* Discard memblock private memory */ 1969 memblock_discard(); 1970 1971 for_each_node_state(nid, N_MEMORY) 1972 shuffle_free_memory(NODE_DATA(nid)); 1973 1974 for_each_populated_zone(zone) 1975 set_zone_contiguous(zone); 1976 1977 #ifdef CONFIG_DEBUG_PAGEALLOC 1978 init_debug_guardpage(); 1979 #endif 1980 } 1981 1982 #ifdef CONFIG_CMA 1983 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 1984 void __init init_cma_reserved_pageblock(struct page *page) 1985 { 1986 unsigned i = pageblock_nr_pages; 1987 struct page *p = page; 1988 1989 do { 1990 __ClearPageReserved(p); 1991 set_page_count(p, 0); 1992 } while (++p, --i); 1993 1994 set_pageblock_migratetype(page, MIGRATE_CMA); 1995 1996 if (pageblock_order >= MAX_ORDER) { 1997 i = pageblock_nr_pages; 1998 p = page; 1999 do { 2000 set_page_refcounted(p); 2001 __free_pages(p, MAX_ORDER - 1); 2002 p += MAX_ORDER_NR_PAGES; 2003 } while (i -= MAX_ORDER_NR_PAGES); 2004 } else { 2005 set_page_refcounted(page); 2006 __free_pages(page, pageblock_order); 2007 } 2008 2009 adjust_managed_page_count(page, pageblock_nr_pages); 2010 } 2011 #endif 2012 2013 /* 2014 * The order of subdivision here is critical for the IO subsystem. 2015 * Please do not alter this order without good reasons and regression 2016 * testing. Specifically, as large blocks of memory are subdivided, 2017 * the order in which smaller blocks are delivered depends on the order 2018 * they're subdivided in this function. This is the primary factor 2019 * influencing the order in which pages are delivered to the IO 2020 * subsystem according to empirical testing, and this is also justified 2021 * by considering the behavior of a buddy system containing a single 2022 * large block of memory acted on by a series of small allocations. 2023 * This behavior is a critical factor in sglist merging's success. 2024 * 2025 * -- nyc 2026 */ 2027 static inline void expand(struct zone *zone, struct page *page, 2028 int low, int high, struct free_area *area, 2029 int migratetype) 2030 { 2031 unsigned long size = 1 << high; 2032 2033 while (high > low) { 2034 area--; 2035 high--; 2036 size >>= 1; 2037 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2038 2039 /* 2040 * Mark as guard pages (or page), that will allow to 2041 * merge back to allocator when buddy will be freed. 2042 * Corresponding page table entries will not be touched, 2043 * pages will stay not present in virtual address space 2044 */ 2045 if (set_page_guard(zone, &page[size], high, migratetype)) 2046 continue; 2047 2048 add_to_free_area(&page[size], area, migratetype); 2049 set_page_order(&page[size], high); 2050 } 2051 } 2052 2053 static void check_new_page_bad(struct page *page) 2054 { 2055 const char *bad_reason = NULL; 2056 unsigned long bad_flags = 0; 2057 2058 if (unlikely(atomic_read(&page->_mapcount) != -1)) 2059 bad_reason = "nonzero mapcount"; 2060 if (unlikely(page->mapping != NULL)) 2061 bad_reason = "non-NULL mapping"; 2062 if (unlikely(page_ref_count(page) != 0)) 2063 bad_reason = "nonzero _refcount"; 2064 if (unlikely(page->flags & __PG_HWPOISON)) { 2065 bad_reason = "HWPoisoned (hardware-corrupted)"; 2066 bad_flags = __PG_HWPOISON; 2067 /* Don't complain about hwpoisoned pages */ 2068 page_mapcount_reset(page); /* remove PageBuddy */ 2069 return; 2070 } 2071 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) { 2072 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set"; 2073 bad_flags = PAGE_FLAGS_CHECK_AT_PREP; 2074 } 2075 #ifdef CONFIG_MEMCG 2076 if (unlikely(page->mem_cgroup)) 2077 bad_reason = "page still charged to cgroup"; 2078 #endif 2079 bad_page(page, bad_reason, bad_flags); 2080 } 2081 2082 /* 2083 * This page is about to be returned from the page allocator 2084 */ 2085 static inline int check_new_page(struct page *page) 2086 { 2087 if (likely(page_expected_state(page, 2088 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2089 return 0; 2090 2091 check_new_page_bad(page); 2092 return 1; 2093 } 2094 2095 static inline bool free_pages_prezeroed(void) 2096 { 2097 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2098 page_poisoning_enabled()) || want_init_on_free(); 2099 } 2100 2101 #ifdef CONFIG_DEBUG_VM 2102 /* 2103 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2104 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2105 * also checked when pcp lists are refilled from the free lists. 2106 */ 2107 static inline bool check_pcp_refill(struct page *page) 2108 { 2109 if (debug_pagealloc_enabled()) 2110 return check_new_page(page); 2111 else 2112 return false; 2113 } 2114 2115 static inline bool check_new_pcp(struct page *page) 2116 { 2117 return check_new_page(page); 2118 } 2119 #else 2120 /* 2121 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2122 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2123 * enabled, they are also checked when being allocated from the pcp lists. 2124 */ 2125 static inline bool check_pcp_refill(struct page *page) 2126 { 2127 return check_new_page(page); 2128 } 2129 static inline bool check_new_pcp(struct page *page) 2130 { 2131 if (debug_pagealloc_enabled()) 2132 return check_new_page(page); 2133 else 2134 return false; 2135 } 2136 #endif /* CONFIG_DEBUG_VM */ 2137 2138 static bool check_new_pages(struct page *page, unsigned int order) 2139 { 2140 int i; 2141 for (i = 0; i < (1 << order); i++) { 2142 struct page *p = page + i; 2143 2144 if (unlikely(check_new_page(p))) 2145 return true; 2146 } 2147 2148 return false; 2149 } 2150 2151 inline void post_alloc_hook(struct page *page, unsigned int order, 2152 gfp_t gfp_flags) 2153 { 2154 set_page_private(page, 0); 2155 set_page_refcounted(page); 2156 2157 arch_alloc_page(page, order); 2158 if (debug_pagealloc_enabled()) 2159 kernel_map_pages(page, 1 << order, 1); 2160 kasan_alloc_pages(page, order); 2161 kernel_poison_pages(page, 1 << order, 1); 2162 set_page_owner(page, order, gfp_flags); 2163 } 2164 2165 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2166 unsigned int alloc_flags) 2167 { 2168 post_alloc_hook(page, order, gfp_flags); 2169 2170 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2171 kernel_init_free_pages(page, 1 << order); 2172 2173 if (order && (gfp_flags & __GFP_COMP)) 2174 prep_compound_page(page, order); 2175 2176 /* 2177 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2178 * allocate the page. The expectation is that the caller is taking 2179 * steps that will free more memory. The caller should avoid the page 2180 * being used for !PFMEMALLOC purposes. 2181 */ 2182 if (alloc_flags & ALLOC_NO_WATERMARKS) 2183 set_page_pfmemalloc(page); 2184 else 2185 clear_page_pfmemalloc(page); 2186 } 2187 2188 /* 2189 * Go through the free lists for the given migratetype and remove 2190 * the smallest available page from the freelists 2191 */ 2192 static __always_inline 2193 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2194 int migratetype) 2195 { 2196 unsigned int current_order; 2197 struct free_area *area; 2198 struct page *page; 2199 2200 /* Find a page of the appropriate size in the preferred list */ 2201 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2202 area = &(zone->free_area[current_order]); 2203 page = get_page_from_free_area(area, migratetype); 2204 if (!page) 2205 continue; 2206 del_page_from_free_area(page, area); 2207 expand(zone, page, order, current_order, area, migratetype); 2208 set_pcppage_migratetype(page, migratetype); 2209 return page; 2210 } 2211 2212 return NULL; 2213 } 2214 2215 2216 /* 2217 * This array describes the order lists are fallen back to when 2218 * the free lists for the desirable migrate type are depleted 2219 */ 2220 static int fallbacks[MIGRATE_TYPES][4] = { 2221 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2222 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2223 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2224 #ifdef CONFIG_CMA 2225 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2226 #endif 2227 #ifdef CONFIG_MEMORY_ISOLATION 2228 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2229 #endif 2230 }; 2231 2232 #ifdef CONFIG_CMA 2233 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2234 unsigned int order) 2235 { 2236 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2237 } 2238 #else 2239 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2240 unsigned int order) { return NULL; } 2241 #endif 2242 2243 /* 2244 * Move the free pages in a range to the free lists of the requested type. 2245 * Note that start_page and end_pages are not aligned on a pageblock 2246 * boundary. If alignment is required, use move_freepages_block() 2247 */ 2248 static int move_freepages(struct zone *zone, 2249 struct page *start_page, struct page *end_page, 2250 int migratetype, int *num_movable) 2251 { 2252 struct page *page; 2253 unsigned int order; 2254 int pages_moved = 0; 2255 2256 for (page = start_page; page <= end_page;) { 2257 if (!pfn_valid_within(page_to_pfn(page))) { 2258 page++; 2259 continue; 2260 } 2261 2262 if (!PageBuddy(page)) { 2263 /* 2264 * We assume that pages that could be isolated for 2265 * migration are movable. But we don't actually try 2266 * isolating, as that would be expensive. 2267 */ 2268 if (num_movable && 2269 (PageLRU(page) || __PageMovable(page))) 2270 (*num_movable)++; 2271 2272 page++; 2273 continue; 2274 } 2275 2276 /* Make sure we are not inadvertently changing nodes */ 2277 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2278 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2279 2280 order = page_order(page); 2281 move_to_free_area(page, &zone->free_area[order], migratetype); 2282 page += 1 << order; 2283 pages_moved += 1 << order; 2284 } 2285 2286 return pages_moved; 2287 } 2288 2289 int move_freepages_block(struct zone *zone, struct page *page, 2290 int migratetype, int *num_movable) 2291 { 2292 unsigned long start_pfn, end_pfn; 2293 struct page *start_page, *end_page; 2294 2295 if (num_movable) 2296 *num_movable = 0; 2297 2298 start_pfn = page_to_pfn(page); 2299 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2300 start_page = pfn_to_page(start_pfn); 2301 end_page = start_page + pageblock_nr_pages - 1; 2302 end_pfn = start_pfn + pageblock_nr_pages - 1; 2303 2304 /* Do not cross zone boundaries */ 2305 if (!zone_spans_pfn(zone, start_pfn)) 2306 start_page = page; 2307 if (!zone_spans_pfn(zone, end_pfn)) 2308 return 0; 2309 2310 return move_freepages(zone, start_page, end_page, migratetype, 2311 num_movable); 2312 } 2313 2314 static void change_pageblock_range(struct page *pageblock_page, 2315 int start_order, int migratetype) 2316 { 2317 int nr_pageblocks = 1 << (start_order - pageblock_order); 2318 2319 while (nr_pageblocks--) { 2320 set_pageblock_migratetype(pageblock_page, migratetype); 2321 pageblock_page += pageblock_nr_pages; 2322 } 2323 } 2324 2325 /* 2326 * When we are falling back to another migratetype during allocation, try to 2327 * steal extra free pages from the same pageblocks to satisfy further 2328 * allocations, instead of polluting multiple pageblocks. 2329 * 2330 * If we are stealing a relatively large buddy page, it is likely there will 2331 * be more free pages in the pageblock, so try to steal them all. For 2332 * reclaimable and unmovable allocations, we steal regardless of page size, 2333 * as fragmentation caused by those allocations polluting movable pageblocks 2334 * is worse than movable allocations stealing from unmovable and reclaimable 2335 * pageblocks. 2336 */ 2337 static bool can_steal_fallback(unsigned int order, int start_mt) 2338 { 2339 /* 2340 * Leaving this order check is intended, although there is 2341 * relaxed order check in next check. The reason is that 2342 * we can actually steal whole pageblock if this condition met, 2343 * but, below check doesn't guarantee it and that is just heuristic 2344 * so could be changed anytime. 2345 */ 2346 if (order >= pageblock_order) 2347 return true; 2348 2349 if (order >= pageblock_order / 2 || 2350 start_mt == MIGRATE_RECLAIMABLE || 2351 start_mt == MIGRATE_UNMOVABLE || 2352 page_group_by_mobility_disabled) 2353 return true; 2354 2355 return false; 2356 } 2357 2358 static inline void boost_watermark(struct zone *zone) 2359 { 2360 unsigned long max_boost; 2361 2362 if (!watermark_boost_factor) 2363 return; 2364 2365 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2366 watermark_boost_factor, 10000); 2367 2368 /* 2369 * high watermark may be uninitialised if fragmentation occurs 2370 * very early in boot so do not boost. We do not fall 2371 * through and boost by pageblock_nr_pages as failing 2372 * allocations that early means that reclaim is not going 2373 * to help and it may even be impossible to reclaim the 2374 * boosted watermark resulting in a hang. 2375 */ 2376 if (!max_boost) 2377 return; 2378 2379 max_boost = max(pageblock_nr_pages, max_boost); 2380 2381 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2382 max_boost); 2383 } 2384 2385 /* 2386 * This function implements actual steal behaviour. If order is large enough, 2387 * we can steal whole pageblock. If not, we first move freepages in this 2388 * pageblock to our migratetype and determine how many already-allocated pages 2389 * are there in the pageblock with a compatible migratetype. If at least half 2390 * of pages are free or compatible, we can change migratetype of the pageblock 2391 * itself, so pages freed in the future will be put on the correct free list. 2392 */ 2393 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2394 unsigned int alloc_flags, int start_type, bool whole_block) 2395 { 2396 unsigned int current_order = page_order(page); 2397 struct free_area *area; 2398 int free_pages, movable_pages, alike_pages; 2399 int old_block_type; 2400 2401 old_block_type = get_pageblock_migratetype(page); 2402 2403 /* 2404 * This can happen due to races and we want to prevent broken 2405 * highatomic accounting. 2406 */ 2407 if (is_migrate_highatomic(old_block_type)) 2408 goto single_page; 2409 2410 /* Take ownership for orders >= pageblock_order */ 2411 if (current_order >= pageblock_order) { 2412 change_pageblock_range(page, current_order, start_type); 2413 goto single_page; 2414 } 2415 2416 /* 2417 * Boost watermarks to increase reclaim pressure to reduce the 2418 * likelihood of future fallbacks. Wake kswapd now as the node 2419 * may be balanced overall and kswapd will not wake naturally. 2420 */ 2421 boost_watermark(zone); 2422 if (alloc_flags & ALLOC_KSWAPD) 2423 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2424 2425 /* We are not allowed to try stealing from the whole block */ 2426 if (!whole_block) 2427 goto single_page; 2428 2429 free_pages = move_freepages_block(zone, page, start_type, 2430 &movable_pages); 2431 /* 2432 * Determine how many pages are compatible with our allocation. 2433 * For movable allocation, it's the number of movable pages which 2434 * we just obtained. For other types it's a bit more tricky. 2435 */ 2436 if (start_type == MIGRATE_MOVABLE) { 2437 alike_pages = movable_pages; 2438 } else { 2439 /* 2440 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2441 * to MOVABLE pageblock, consider all non-movable pages as 2442 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2443 * vice versa, be conservative since we can't distinguish the 2444 * exact migratetype of non-movable pages. 2445 */ 2446 if (old_block_type == MIGRATE_MOVABLE) 2447 alike_pages = pageblock_nr_pages 2448 - (free_pages + movable_pages); 2449 else 2450 alike_pages = 0; 2451 } 2452 2453 /* moving whole block can fail due to zone boundary conditions */ 2454 if (!free_pages) 2455 goto single_page; 2456 2457 /* 2458 * If a sufficient number of pages in the block are either free or of 2459 * comparable migratability as our allocation, claim the whole block. 2460 */ 2461 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2462 page_group_by_mobility_disabled) 2463 set_pageblock_migratetype(page, start_type); 2464 2465 return; 2466 2467 single_page: 2468 area = &zone->free_area[current_order]; 2469 move_to_free_area(page, area, start_type); 2470 } 2471 2472 /* 2473 * Check whether there is a suitable fallback freepage with requested order. 2474 * If only_stealable is true, this function returns fallback_mt only if 2475 * we can steal other freepages all together. This would help to reduce 2476 * fragmentation due to mixed migratetype pages in one pageblock. 2477 */ 2478 int find_suitable_fallback(struct free_area *area, unsigned int order, 2479 int migratetype, bool only_stealable, bool *can_steal) 2480 { 2481 int i; 2482 int fallback_mt; 2483 2484 if (area->nr_free == 0) 2485 return -1; 2486 2487 *can_steal = false; 2488 for (i = 0;; i++) { 2489 fallback_mt = fallbacks[migratetype][i]; 2490 if (fallback_mt == MIGRATE_TYPES) 2491 break; 2492 2493 if (free_area_empty(area, fallback_mt)) 2494 continue; 2495 2496 if (can_steal_fallback(order, migratetype)) 2497 *can_steal = true; 2498 2499 if (!only_stealable) 2500 return fallback_mt; 2501 2502 if (*can_steal) 2503 return fallback_mt; 2504 } 2505 2506 return -1; 2507 } 2508 2509 /* 2510 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2511 * there are no empty page blocks that contain a page with a suitable order 2512 */ 2513 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2514 unsigned int alloc_order) 2515 { 2516 int mt; 2517 unsigned long max_managed, flags; 2518 2519 /* 2520 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2521 * Check is race-prone but harmless. 2522 */ 2523 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2524 if (zone->nr_reserved_highatomic >= max_managed) 2525 return; 2526 2527 spin_lock_irqsave(&zone->lock, flags); 2528 2529 /* Recheck the nr_reserved_highatomic limit under the lock */ 2530 if (zone->nr_reserved_highatomic >= max_managed) 2531 goto out_unlock; 2532 2533 /* Yoink! */ 2534 mt = get_pageblock_migratetype(page); 2535 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2536 && !is_migrate_cma(mt)) { 2537 zone->nr_reserved_highatomic += pageblock_nr_pages; 2538 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2539 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2540 } 2541 2542 out_unlock: 2543 spin_unlock_irqrestore(&zone->lock, flags); 2544 } 2545 2546 /* 2547 * Used when an allocation is about to fail under memory pressure. This 2548 * potentially hurts the reliability of high-order allocations when under 2549 * intense memory pressure but failed atomic allocations should be easier 2550 * to recover from than an OOM. 2551 * 2552 * If @force is true, try to unreserve a pageblock even though highatomic 2553 * pageblock is exhausted. 2554 */ 2555 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2556 bool force) 2557 { 2558 struct zonelist *zonelist = ac->zonelist; 2559 unsigned long flags; 2560 struct zoneref *z; 2561 struct zone *zone; 2562 struct page *page; 2563 int order; 2564 bool ret; 2565 2566 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx, 2567 ac->nodemask) { 2568 /* 2569 * Preserve at least one pageblock unless memory pressure 2570 * is really high. 2571 */ 2572 if (!force && zone->nr_reserved_highatomic <= 2573 pageblock_nr_pages) 2574 continue; 2575 2576 spin_lock_irqsave(&zone->lock, flags); 2577 for (order = 0; order < MAX_ORDER; order++) { 2578 struct free_area *area = &(zone->free_area[order]); 2579 2580 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2581 if (!page) 2582 continue; 2583 2584 /* 2585 * In page freeing path, migratetype change is racy so 2586 * we can counter several free pages in a pageblock 2587 * in this loop althoug we changed the pageblock type 2588 * from highatomic to ac->migratetype. So we should 2589 * adjust the count once. 2590 */ 2591 if (is_migrate_highatomic_page(page)) { 2592 /* 2593 * It should never happen but changes to 2594 * locking could inadvertently allow a per-cpu 2595 * drain to add pages to MIGRATE_HIGHATOMIC 2596 * while unreserving so be safe and watch for 2597 * underflows. 2598 */ 2599 zone->nr_reserved_highatomic -= min( 2600 pageblock_nr_pages, 2601 zone->nr_reserved_highatomic); 2602 } 2603 2604 /* 2605 * Convert to ac->migratetype and avoid the normal 2606 * pageblock stealing heuristics. Minimally, the caller 2607 * is doing the work and needs the pages. More 2608 * importantly, if the block was always converted to 2609 * MIGRATE_UNMOVABLE or another type then the number 2610 * of pageblocks that cannot be completely freed 2611 * may increase. 2612 */ 2613 set_pageblock_migratetype(page, ac->migratetype); 2614 ret = move_freepages_block(zone, page, ac->migratetype, 2615 NULL); 2616 if (ret) { 2617 spin_unlock_irqrestore(&zone->lock, flags); 2618 return ret; 2619 } 2620 } 2621 spin_unlock_irqrestore(&zone->lock, flags); 2622 } 2623 2624 return false; 2625 } 2626 2627 /* 2628 * Try finding a free buddy page on the fallback list and put it on the free 2629 * list of requested migratetype, possibly along with other pages from the same 2630 * block, depending on fragmentation avoidance heuristics. Returns true if 2631 * fallback was found so that __rmqueue_smallest() can grab it. 2632 * 2633 * The use of signed ints for order and current_order is a deliberate 2634 * deviation from the rest of this file, to make the for loop 2635 * condition simpler. 2636 */ 2637 static __always_inline bool 2638 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2639 unsigned int alloc_flags) 2640 { 2641 struct free_area *area; 2642 int current_order; 2643 int min_order = order; 2644 struct page *page; 2645 int fallback_mt; 2646 bool can_steal; 2647 2648 /* 2649 * Do not steal pages from freelists belonging to other pageblocks 2650 * i.e. orders < pageblock_order. If there are no local zones free, 2651 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2652 */ 2653 if (alloc_flags & ALLOC_NOFRAGMENT) 2654 min_order = pageblock_order; 2655 2656 /* 2657 * Find the largest available free page in the other list. This roughly 2658 * approximates finding the pageblock with the most free pages, which 2659 * would be too costly to do exactly. 2660 */ 2661 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2662 --current_order) { 2663 area = &(zone->free_area[current_order]); 2664 fallback_mt = find_suitable_fallback(area, current_order, 2665 start_migratetype, false, &can_steal); 2666 if (fallback_mt == -1) 2667 continue; 2668 2669 /* 2670 * We cannot steal all free pages from the pageblock and the 2671 * requested migratetype is movable. In that case it's better to 2672 * steal and split the smallest available page instead of the 2673 * largest available page, because even if the next movable 2674 * allocation falls back into a different pageblock than this 2675 * one, it won't cause permanent fragmentation. 2676 */ 2677 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2678 && current_order > order) 2679 goto find_smallest; 2680 2681 goto do_steal; 2682 } 2683 2684 return false; 2685 2686 find_smallest: 2687 for (current_order = order; current_order < MAX_ORDER; 2688 current_order++) { 2689 area = &(zone->free_area[current_order]); 2690 fallback_mt = find_suitable_fallback(area, current_order, 2691 start_migratetype, false, &can_steal); 2692 if (fallback_mt != -1) 2693 break; 2694 } 2695 2696 /* 2697 * This should not happen - we already found a suitable fallback 2698 * when looking for the largest page. 2699 */ 2700 VM_BUG_ON(current_order == MAX_ORDER); 2701 2702 do_steal: 2703 page = get_page_from_free_area(area, fallback_mt); 2704 2705 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2706 can_steal); 2707 2708 trace_mm_page_alloc_extfrag(page, order, current_order, 2709 start_migratetype, fallback_mt); 2710 2711 return true; 2712 2713 } 2714 2715 /* 2716 * Do the hard work of removing an element from the buddy allocator. 2717 * Call me with the zone->lock already held. 2718 */ 2719 static __always_inline struct page * 2720 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2721 unsigned int alloc_flags) 2722 { 2723 struct page *page; 2724 2725 retry: 2726 page = __rmqueue_smallest(zone, order, migratetype); 2727 if (unlikely(!page)) { 2728 if (migratetype == MIGRATE_MOVABLE) 2729 page = __rmqueue_cma_fallback(zone, order); 2730 2731 if (!page && __rmqueue_fallback(zone, order, migratetype, 2732 alloc_flags)) 2733 goto retry; 2734 } 2735 2736 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2737 return page; 2738 } 2739 2740 /* 2741 * Obtain a specified number of elements from the buddy allocator, all under 2742 * a single hold of the lock, for efficiency. Add them to the supplied list. 2743 * Returns the number of new pages which were placed at *list. 2744 */ 2745 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2746 unsigned long count, struct list_head *list, 2747 int migratetype, unsigned int alloc_flags) 2748 { 2749 int i, alloced = 0; 2750 2751 spin_lock(&zone->lock); 2752 for (i = 0; i < count; ++i) { 2753 struct page *page = __rmqueue(zone, order, migratetype, 2754 alloc_flags); 2755 if (unlikely(page == NULL)) 2756 break; 2757 2758 if (unlikely(check_pcp_refill(page))) 2759 continue; 2760 2761 /* 2762 * Split buddy pages returned by expand() are received here in 2763 * physical page order. The page is added to the tail of 2764 * caller's list. From the callers perspective, the linked list 2765 * is ordered by page number under some conditions. This is 2766 * useful for IO devices that can forward direction from the 2767 * head, thus also in the physical page order. This is useful 2768 * for IO devices that can merge IO requests if the physical 2769 * pages are ordered properly. 2770 */ 2771 list_add_tail(&page->lru, list); 2772 alloced++; 2773 if (is_migrate_cma(get_pcppage_migratetype(page))) 2774 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2775 -(1 << order)); 2776 } 2777 2778 /* 2779 * i pages were removed from the buddy list even if some leak due 2780 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2781 * on i. Do not confuse with 'alloced' which is the number of 2782 * pages added to the pcp list. 2783 */ 2784 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2785 spin_unlock(&zone->lock); 2786 return alloced; 2787 } 2788 2789 #ifdef CONFIG_NUMA 2790 /* 2791 * Called from the vmstat counter updater to drain pagesets of this 2792 * currently executing processor on remote nodes after they have 2793 * expired. 2794 * 2795 * Note that this function must be called with the thread pinned to 2796 * a single processor. 2797 */ 2798 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2799 { 2800 unsigned long flags; 2801 int to_drain, batch; 2802 2803 local_irq_save(flags); 2804 batch = READ_ONCE(pcp->batch); 2805 to_drain = min(pcp->count, batch); 2806 if (to_drain > 0) 2807 free_pcppages_bulk(zone, to_drain, pcp); 2808 local_irq_restore(flags); 2809 } 2810 #endif 2811 2812 /* 2813 * Drain pcplists of the indicated processor and zone. 2814 * 2815 * The processor must either be the current processor and the 2816 * thread pinned to the current processor or a processor that 2817 * is not online. 2818 */ 2819 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2820 { 2821 unsigned long flags; 2822 struct per_cpu_pageset *pset; 2823 struct per_cpu_pages *pcp; 2824 2825 local_irq_save(flags); 2826 pset = per_cpu_ptr(zone->pageset, cpu); 2827 2828 pcp = &pset->pcp; 2829 if (pcp->count) 2830 free_pcppages_bulk(zone, pcp->count, pcp); 2831 local_irq_restore(flags); 2832 } 2833 2834 /* 2835 * Drain pcplists of all zones on the indicated processor. 2836 * 2837 * The processor must either be the current processor and the 2838 * thread pinned to the current processor or a processor that 2839 * is not online. 2840 */ 2841 static void drain_pages(unsigned int cpu) 2842 { 2843 struct zone *zone; 2844 2845 for_each_populated_zone(zone) { 2846 drain_pages_zone(cpu, zone); 2847 } 2848 } 2849 2850 /* 2851 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2852 * 2853 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2854 * the single zone's pages. 2855 */ 2856 void drain_local_pages(struct zone *zone) 2857 { 2858 int cpu = smp_processor_id(); 2859 2860 if (zone) 2861 drain_pages_zone(cpu, zone); 2862 else 2863 drain_pages(cpu); 2864 } 2865 2866 static void drain_local_pages_wq(struct work_struct *work) 2867 { 2868 struct pcpu_drain *drain; 2869 2870 drain = container_of(work, struct pcpu_drain, work); 2871 2872 /* 2873 * drain_all_pages doesn't use proper cpu hotplug protection so 2874 * we can race with cpu offline when the WQ can move this from 2875 * a cpu pinned worker to an unbound one. We can operate on a different 2876 * cpu which is allright but we also have to make sure to not move to 2877 * a different one. 2878 */ 2879 preempt_disable(); 2880 drain_local_pages(drain->zone); 2881 preempt_enable(); 2882 } 2883 2884 /* 2885 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2886 * 2887 * When zone parameter is non-NULL, spill just the single zone's pages. 2888 * 2889 * Note that this can be extremely slow as the draining happens in a workqueue. 2890 */ 2891 void drain_all_pages(struct zone *zone) 2892 { 2893 int cpu; 2894 2895 /* 2896 * Allocate in the BSS so we wont require allocation in 2897 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2898 */ 2899 static cpumask_t cpus_with_pcps; 2900 2901 /* 2902 * Make sure nobody triggers this path before mm_percpu_wq is fully 2903 * initialized. 2904 */ 2905 if (WARN_ON_ONCE(!mm_percpu_wq)) 2906 return; 2907 2908 /* 2909 * Do not drain if one is already in progress unless it's specific to 2910 * a zone. Such callers are primarily CMA and memory hotplug and need 2911 * the drain to be complete when the call returns. 2912 */ 2913 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2914 if (!zone) 2915 return; 2916 mutex_lock(&pcpu_drain_mutex); 2917 } 2918 2919 /* 2920 * We don't care about racing with CPU hotplug event 2921 * as offline notification will cause the notified 2922 * cpu to drain that CPU pcps and on_each_cpu_mask 2923 * disables preemption as part of its processing 2924 */ 2925 for_each_online_cpu(cpu) { 2926 struct per_cpu_pageset *pcp; 2927 struct zone *z; 2928 bool has_pcps = false; 2929 2930 if (zone) { 2931 pcp = per_cpu_ptr(zone->pageset, cpu); 2932 if (pcp->pcp.count) 2933 has_pcps = true; 2934 } else { 2935 for_each_populated_zone(z) { 2936 pcp = per_cpu_ptr(z->pageset, cpu); 2937 if (pcp->pcp.count) { 2938 has_pcps = true; 2939 break; 2940 } 2941 } 2942 } 2943 2944 if (has_pcps) 2945 cpumask_set_cpu(cpu, &cpus_with_pcps); 2946 else 2947 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2948 } 2949 2950 for_each_cpu(cpu, &cpus_with_pcps) { 2951 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 2952 2953 drain->zone = zone; 2954 INIT_WORK(&drain->work, drain_local_pages_wq); 2955 queue_work_on(cpu, mm_percpu_wq, &drain->work); 2956 } 2957 for_each_cpu(cpu, &cpus_with_pcps) 2958 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 2959 2960 mutex_unlock(&pcpu_drain_mutex); 2961 } 2962 2963 #ifdef CONFIG_HIBERNATION 2964 2965 /* 2966 * Touch the watchdog for every WD_PAGE_COUNT pages. 2967 */ 2968 #define WD_PAGE_COUNT (128*1024) 2969 2970 void mark_free_pages(struct zone *zone) 2971 { 2972 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2973 unsigned long flags; 2974 unsigned int order, t; 2975 struct page *page; 2976 2977 if (zone_is_empty(zone)) 2978 return; 2979 2980 spin_lock_irqsave(&zone->lock, flags); 2981 2982 max_zone_pfn = zone_end_pfn(zone); 2983 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2984 if (pfn_valid(pfn)) { 2985 page = pfn_to_page(pfn); 2986 2987 if (!--page_count) { 2988 touch_nmi_watchdog(); 2989 page_count = WD_PAGE_COUNT; 2990 } 2991 2992 if (page_zone(page) != zone) 2993 continue; 2994 2995 if (!swsusp_page_is_forbidden(page)) 2996 swsusp_unset_page_free(page); 2997 } 2998 2999 for_each_migratetype_order(order, t) { 3000 list_for_each_entry(page, 3001 &zone->free_area[order].free_list[t], lru) { 3002 unsigned long i; 3003 3004 pfn = page_to_pfn(page); 3005 for (i = 0; i < (1UL << order); i++) { 3006 if (!--page_count) { 3007 touch_nmi_watchdog(); 3008 page_count = WD_PAGE_COUNT; 3009 } 3010 swsusp_set_page_free(pfn_to_page(pfn + i)); 3011 } 3012 } 3013 } 3014 spin_unlock_irqrestore(&zone->lock, flags); 3015 } 3016 #endif /* CONFIG_PM */ 3017 3018 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3019 { 3020 int migratetype; 3021 3022 if (!free_pcp_prepare(page)) 3023 return false; 3024 3025 migratetype = get_pfnblock_migratetype(page, pfn); 3026 set_pcppage_migratetype(page, migratetype); 3027 return true; 3028 } 3029 3030 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3031 { 3032 struct zone *zone = page_zone(page); 3033 struct per_cpu_pages *pcp; 3034 int migratetype; 3035 3036 migratetype = get_pcppage_migratetype(page); 3037 __count_vm_event(PGFREE); 3038 3039 /* 3040 * We only track unmovable, reclaimable and movable on pcp lists. 3041 * Free ISOLATE pages back to the allocator because they are being 3042 * offlined but treat HIGHATOMIC as movable pages so we can get those 3043 * areas back if necessary. Otherwise, we may have to free 3044 * excessively into the page allocator 3045 */ 3046 if (migratetype >= MIGRATE_PCPTYPES) { 3047 if (unlikely(is_migrate_isolate(migratetype))) { 3048 free_one_page(zone, page, pfn, 0, migratetype); 3049 return; 3050 } 3051 migratetype = MIGRATE_MOVABLE; 3052 } 3053 3054 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3055 list_add(&page->lru, &pcp->lists[migratetype]); 3056 pcp->count++; 3057 if (pcp->count >= pcp->high) { 3058 unsigned long batch = READ_ONCE(pcp->batch); 3059 free_pcppages_bulk(zone, batch, pcp); 3060 } 3061 } 3062 3063 /* 3064 * Free a 0-order page 3065 */ 3066 void free_unref_page(struct page *page) 3067 { 3068 unsigned long flags; 3069 unsigned long pfn = page_to_pfn(page); 3070 3071 if (!free_unref_page_prepare(page, pfn)) 3072 return; 3073 3074 local_irq_save(flags); 3075 free_unref_page_commit(page, pfn); 3076 local_irq_restore(flags); 3077 } 3078 3079 /* 3080 * Free a list of 0-order pages 3081 */ 3082 void free_unref_page_list(struct list_head *list) 3083 { 3084 struct page *page, *next; 3085 unsigned long flags, pfn; 3086 int batch_count = 0; 3087 3088 /* Prepare pages for freeing */ 3089 list_for_each_entry_safe(page, next, list, lru) { 3090 pfn = page_to_pfn(page); 3091 if (!free_unref_page_prepare(page, pfn)) 3092 list_del(&page->lru); 3093 set_page_private(page, pfn); 3094 } 3095 3096 local_irq_save(flags); 3097 list_for_each_entry_safe(page, next, list, lru) { 3098 unsigned long pfn = page_private(page); 3099 3100 set_page_private(page, 0); 3101 trace_mm_page_free_batched(page); 3102 free_unref_page_commit(page, pfn); 3103 3104 /* 3105 * Guard against excessive IRQ disabled times when we get 3106 * a large list of pages to free. 3107 */ 3108 if (++batch_count == SWAP_CLUSTER_MAX) { 3109 local_irq_restore(flags); 3110 batch_count = 0; 3111 local_irq_save(flags); 3112 } 3113 } 3114 local_irq_restore(flags); 3115 } 3116 3117 /* 3118 * split_page takes a non-compound higher-order page, and splits it into 3119 * n (1<<order) sub-pages: page[0..n] 3120 * Each sub-page must be freed individually. 3121 * 3122 * Note: this is probably too low level an operation for use in drivers. 3123 * Please consult with lkml before using this in your driver. 3124 */ 3125 void split_page(struct page *page, unsigned int order) 3126 { 3127 int i; 3128 3129 VM_BUG_ON_PAGE(PageCompound(page), page); 3130 VM_BUG_ON_PAGE(!page_count(page), page); 3131 3132 for (i = 1; i < (1 << order); i++) 3133 set_page_refcounted(page + i); 3134 split_page_owner(page, order); 3135 } 3136 EXPORT_SYMBOL_GPL(split_page); 3137 3138 int __isolate_free_page(struct page *page, unsigned int order) 3139 { 3140 struct free_area *area = &page_zone(page)->free_area[order]; 3141 unsigned long watermark; 3142 struct zone *zone; 3143 int mt; 3144 3145 BUG_ON(!PageBuddy(page)); 3146 3147 zone = page_zone(page); 3148 mt = get_pageblock_migratetype(page); 3149 3150 if (!is_migrate_isolate(mt)) { 3151 /* 3152 * Obey watermarks as if the page was being allocated. We can 3153 * emulate a high-order watermark check with a raised order-0 3154 * watermark, because we already know our high-order page 3155 * exists. 3156 */ 3157 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3158 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3159 return 0; 3160 3161 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3162 } 3163 3164 /* Remove page from free list */ 3165 3166 del_page_from_free_area(page, area); 3167 3168 /* 3169 * Set the pageblock if the isolated page is at least half of a 3170 * pageblock 3171 */ 3172 if (order >= pageblock_order - 1) { 3173 struct page *endpage = page + (1 << order) - 1; 3174 for (; page < endpage; page += pageblock_nr_pages) { 3175 int mt = get_pageblock_migratetype(page); 3176 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3177 && !is_migrate_highatomic(mt)) 3178 set_pageblock_migratetype(page, 3179 MIGRATE_MOVABLE); 3180 } 3181 } 3182 3183 3184 return 1UL << order; 3185 } 3186 3187 /* 3188 * Update NUMA hit/miss statistics 3189 * 3190 * Must be called with interrupts disabled. 3191 */ 3192 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3193 { 3194 #ifdef CONFIG_NUMA 3195 enum numa_stat_item local_stat = NUMA_LOCAL; 3196 3197 /* skip numa counters update if numa stats is disabled */ 3198 if (!static_branch_likely(&vm_numa_stat_key)) 3199 return; 3200 3201 if (zone_to_nid(z) != numa_node_id()) 3202 local_stat = NUMA_OTHER; 3203 3204 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3205 __inc_numa_state(z, NUMA_HIT); 3206 else { 3207 __inc_numa_state(z, NUMA_MISS); 3208 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3209 } 3210 __inc_numa_state(z, local_stat); 3211 #endif 3212 } 3213 3214 /* Remove page from the per-cpu list, caller must protect the list */ 3215 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3216 unsigned int alloc_flags, 3217 struct per_cpu_pages *pcp, 3218 struct list_head *list) 3219 { 3220 struct page *page; 3221 3222 do { 3223 if (list_empty(list)) { 3224 pcp->count += rmqueue_bulk(zone, 0, 3225 pcp->batch, list, 3226 migratetype, alloc_flags); 3227 if (unlikely(list_empty(list))) 3228 return NULL; 3229 } 3230 3231 page = list_first_entry(list, struct page, lru); 3232 list_del(&page->lru); 3233 pcp->count--; 3234 } while (check_new_pcp(page)); 3235 3236 return page; 3237 } 3238 3239 /* Lock and remove page from the per-cpu list */ 3240 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3241 struct zone *zone, gfp_t gfp_flags, 3242 int migratetype, unsigned int alloc_flags) 3243 { 3244 struct per_cpu_pages *pcp; 3245 struct list_head *list; 3246 struct page *page; 3247 unsigned long flags; 3248 3249 local_irq_save(flags); 3250 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3251 list = &pcp->lists[migratetype]; 3252 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3253 if (page) { 3254 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3255 zone_statistics(preferred_zone, zone); 3256 } 3257 local_irq_restore(flags); 3258 return page; 3259 } 3260 3261 /* 3262 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3263 */ 3264 static inline 3265 struct page *rmqueue(struct zone *preferred_zone, 3266 struct zone *zone, unsigned int order, 3267 gfp_t gfp_flags, unsigned int alloc_flags, 3268 int migratetype) 3269 { 3270 unsigned long flags; 3271 struct page *page; 3272 3273 if (likely(order == 0)) { 3274 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3275 migratetype, alloc_flags); 3276 goto out; 3277 } 3278 3279 /* 3280 * We most definitely don't want callers attempting to 3281 * allocate greater than order-1 page units with __GFP_NOFAIL. 3282 */ 3283 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3284 spin_lock_irqsave(&zone->lock, flags); 3285 3286 do { 3287 page = NULL; 3288 if (alloc_flags & ALLOC_HARDER) { 3289 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3290 if (page) 3291 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3292 } 3293 if (!page) 3294 page = __rmqueue(zone, order, migratetype, alloc_flags); 3295 } while (page && check_new_pages(page, order)); 3296 spin_unlock(&zone->lock); 3297 if (!page) 3298 goto failed; 3299 __mod_zone_freepage_state(zone, -(1 << order), 3300 get_pcppage_migratetype(page)); 3301 3302 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3303 zone_statistics(preferred_zone, zone); 3304 local_irq_restore(flags); 3305 3306 out: 3307 /* Separate test+clear to avoid unnecessary atomics */ 3308 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3309 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3310 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3311 } 3312 3313 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3314 return page; 3315 3316 failed: 3317 local_irq_restore(flags); 3318 return NULL; 3319 } 3320 3321 #ifdef CONFIG_FAIL_PAGE_ALLOC 3322 3323 static struct { 3324 struct fault_attr attr; 3325 3326 bool ignore_gfp_highmem; 3327 bool ignore_gfp_reclaim; 3328 u32 min_order; 3329 } fail_page_alloc = { 3330 .attr = FAULT_ATTR_INITIALIZER, 3331 .ignore_gfp_reclaim = true, 3332 .ignore_gfp_highmem = true, 3333 .min_order = 1, 3334 }; 3335 3336 static int __init setup_fail_page_alloc(char *str) 3337 { 3338 return setup_fault_attr(&fail_page_alloc.attr, str); 3339 } 3340 __setup("fail_page_alloc=", setup_fail_page_alloc); 3341 3342 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3343 { 3344 if (order < fail_page_alloc.min_order) 3345 return false; 3346 if (gfp_mask & __GFP_NOFAIL) 3347 return false; 3348 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3349 return false; 3350 if (fail_page_alloc.ignore_gfp_reclaim && 3351 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3352 return false; 3353 3354 return should_fail(&fail_page_alloc.attr, 1 << order); 3355 } 3356 3357 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3358 3359 static int __init fail_page_alloc_debugfs(void) 3360 { 3361 umode_t mode = S_IFREG | 0600; 3362 struct dentry *dir; 3363 3364 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3365 &fail_page_alloc.attr); 3366 3367 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3368 &fail_page_alloc.ignore_gfp_reclaim); 3369 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3370 &fail_page_alloc.ignore_gfp_highmem); 3371 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3372 3373 return 0; 3374 } 3375 3376 late_initcall(fail_page_alloc_debugfs); 3377 3378 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3379 3380 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3381 3382 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3383 { 3384 return false; 3385 } 3386 3387 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3388 3389 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3390 { 3391 return __should_fail_alloc_page(gfp_mask, order); 3392 } 3393 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3394 3395 /* 3396 * Return true if free base pages are above 'mark'. For high-order checks it 3397 * will return true of the order-0 watermark is reached and there is at least 3398 * one free page of a suitable size. Checking now avoids taking the zone lock 3399 * to check in the allocation paths if no pages are free. 3400 */ 3401 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3402 int classzone_idx, unsigned int alloc_flags, 3403 long free_pages) 3404 { 3405 long min = mark; 3406 int o; 3407 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3408 3409 /* free_pages may go negative - that's OK */ 3410 free_pages -= (1 << order) - 1; 3411 3412 if (alloc_flags & ALLOC_HIGH) 3413 min -= min / 2; 3414 3415 /* 3416 * If the caller does not have rights to ALLOC_HARDER then subtract 3417 * the high-atomic reserves. This will over-estimate the size of the 3418 * atomic reserve but it avoids a search. 3419 */ 3420 if (likely(!alloc_harder)) { 3421 free_pages -= z->nr_reserved_highatomic; 3422 } else { 3423 /* 3424 * OOM victims can try even harder than normal ALLOC_HARDER 3425 * users on the grounds that it's definitely going to be in 3426 * the exit path shortly and free memory. Any allocation it 3427 * makes during the free path will be small and short-lived. 3428 */ 3429 if (alloc_flags & ALLOC_OOM) 3430 min -= min / 2; 3431 else 3432 min -= min / 4; 3433 } 3434 3435 3436 #ifdef CONFIG_CMA 3437 /* If allocation can't use CMA areas don't use free CMA pages */ 3438 if (!(alloc_flags & ALLOC_CMA)) 3439 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 3440 #endif 3441 3442 /* 3443 * Check watermarks for an order-0 allocation request. If these 3444 * are not met, then a high-order request also cannot go ahead 3445 * even if a suitable page happened to be free. 3446 */ 3447 if (free_pages <= min + z->lowmem_reserve[classzone_idx]) 3448 return false; 3449 3450 /* If this is an order-0 request then the watermark is fine */ 3451 if (!order) 3452 return true; 3453 3454 /* For a high-order request, check at least one suitable page is free */ 3455 for (o = order; o < MAX_ORDER; o++) { 3456 struct free_area *area = &z->free_area[o]; 3457 int mt; 3458 3459 if (!area->nr_free) 3460 continue; 3461 3462 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3463 if (!free_area_empty(area, mt)) 3464 return true; 3465 } 3466 3467 #ifdef CONFIG_CMA 3468 if ((alloc_flags & ALLOC_CMA) && 3469 !free_area_empty(area, MIGRATE_CMA)) { 3470 return true; 3471 } 3472 #endif 3473 if (alloc_harder && 3474 !list_empty(&area->free_list[MIGRATE_HIGHATOMIC])) 3475 return true; 3476 } 3477 return false; 3478 } 3479 3480 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3481 int classzone_idx, unsigned int alloc_flags) 3482 { 3483 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3484 zone_page_state(z, NR_FREE_PAGES)); 3485 } 3486 3487 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3488 unsigned long mark, int classzone_idx, unsigned int alloc_flags) 3489 { 3490 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3491 long cma_pages = 0; 3492 3493 #ifdef CONFIG_CMA 3494 /* If allocation can't use CMA areas don't use free CMA pages */ 3495 if (!(alloc_flags & ALLOC_CMA)) 3496 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES); 3497 #endif 3498 3499 /* 3500 * Fast check for order-0 only. If this fails then the reserves 3501 * need to be calculated. There is a corner case where the check 3502 * passes but only the high-order atomic reserve are free. If 3503 * the caller is !atomic then it'll uselessly search the free 3504 * list. That corner case is then slower but it is harmless. 3505 */ 3506 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx]) 3507 return true; 3508 3509 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 3510 free_pages); 3511 } 3512 3513 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3514 unsigned long mark, int classzone_idx) 3515 { 3516 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3517 3518 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3519 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3520 3521 return __zone_watermark_ok(z, order, mark, classzone_idx, 0, 3522 free_pages); 3523 } 3524 3525 #ifdef CONFIG_NUMA 3526 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3527 { 3528 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3529 node_reclaim_distance; 3530 } 3531 #else /* CONFIG_NUMA */ 3532 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3533 { 3534 return true; 3535 } 3536 #endif /* CONFIG_NUMA */ 3537 3538 /* 3539 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3540 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3541 * premature use of a lower zone may cause lowmem pressure problems that 3542 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3543 * probably too small. It only makes sense to spread allocations to avoid 3544 * fragmentation between the Normal and DMA32 zones. 3545 */ 3546 static inline unsigned int 3547 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3548 { 3549 unsigned int alloc_flags = 0; 3550 3551 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 3552 alloc_flags |= ALLOC_KSWAPD; 3553 3554 #ifdef CONFIG_ZONE_DMA32 3555 if (!zone) 3556 return alloc_flags; 3557 3558 if (zone_idx(zone) != ZONE_NORMAL) 3559 return alloc_flags; 3560 3561 /* 3562 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3563 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3564 * on UMA that if Normal is populated then so is DMA32. 3565 */ 3566 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3567 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3568 return alloc_flags; 3569 3570 alloc_flags |= ALLOC_NOFRAGMENT; 3571 #endif /* CONFIG_ZONE_DMA32 */ 3572 return alloc_flags; 3573 } 3574 3575 /* 3576 * get_page_from_freelist goes through the zonelist trying to allocate 3577 * a page. 3578 */ 3579 static struct page * 3580 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3581 const struct alloc_context *ac) 3582 { 3583 struct zoneref *z; 3584 struct zone *zone; 3585 struct pglist_data *last_pgdat_dirty_limit = NULL; 3586 bool no_fallback; 3587 3588 retry: 3589 /* 3590 * Scan zonelist, looking for a zone with enough free. 3591 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3592 */ 3593 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3594 z = ac->preferred_zoneref; 3595 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 3596 ac->nodemask) { 3597 struct page *page; 3598 unsigned long mark; 3599 3600 if (cpusets_enabled() && 3601 (alloc_flags & ALLOC_CPUSET) && 3602 !__cpuset_zone_allowed(zone, gfp_mask)) 3603 continue; 3604 /* 3605 * When allocating a page cache page for writing, we 3606 * want to get it from a node that is within its dirty 3607 * limit, such that no single node holds more than its 3608 * proportional share of globally allowed dirty pages. 3609 * The dirty limits take into account the node's 3610 * lowmem reserves and high watermark so that kswapd 3611 * should be able to balance it without having to 3612 * write pages from its LRU list. 3613 * 3614 * XXX: For now, allow allocations to potentially 3615 * exceed the per-node dirty limit in the slowpath 3616 * (spread_dirty_pages unset) before going into reclaim, 3617 * which is important when on a NUMA setup the allowed 3618 * nodes are together not big enough to reach the 3619 * global limit. The proper fix for these situations 3620 * will require awareness of nodes in the 3621 * dirty-throttling and the flusher threads. 3622 */ 3623 if (ac->spread_dirty_pages) { 3624 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3625 continue; 3626 3627 if (!node_dirty_ok(zone->zone_pgdat)) { 3628 last_pgdat_dirty_limit = zone->zone_pgdat; 3629 continue; 3630 } 3631 } 3632 3633 if (no_fallback && nr_online_nodes > 1 && 3634 zone != ac->preferred_zoneref->zone) { 3635 int local_nid; 3636 3637 /* 3638 * If moving to a remote node, retry but allow 3639 * fragmenting fallbacks. Locality is more important 3640 * than fragmentation avoidance. 3641 */ 3642 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3643 if (zone_to_nid(zone) != local_nid) { 3644 alloc_flags &= ~ALLOC_NOFRAGMENT; 3645 goto retry; 3646 } 3647 } 3648 3649 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3650 if (!zone_watermark_fast(zone, order, mark, 3651 ac_classzone_idx(ac), alloc_flags)) { 3652 int ret; 3653 3654 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3655 /* 3656 * Watermark failed for this zone, but see if we can 3657 * grow this zone if it contains deferred pages. 3658 */ 3659 if (static_branch_unlikely(&deferred_pages)) { 3660 if (_deferred_grow_zone(zone, order)) 3661 goto try_this_zone; 3662 } 3663 #endif 3664 /* Checked here to keep the fast path fast */ 3665 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3666 if (alloc_flags & ALLOC_NO_WATERMARKS) 3667 goto try_this_zone; 3668 3669 if (node_reclaim_mode == 0 || 3670 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3671 continue; 3672 3673 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3674 switch (ret) { 3675 case NODE_RECLAIM_NOSCAN: 3676 /* did not scan */ 3677 continue; 3678 case NODE_RECLAIM_FULL: 3679 /* scanned but unreclaimable */ 3680 continue; 3681 default: 3682 /* did we reclaim enough */ 3683 if (zone_watermark_ok(zone, order, mark, 3684 ac_classzone_idx(ac), alloc_flags)) 3685 goto try_this_zone; 3686 3687 continue; 3688 } 3689 } 3690 3691 try_this_zone: 3692 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3693 gfp_mask, alloc_flags, ac->migratetype); 3694 if (page) { 3695 prep_new_page(page, order, gfp_mask, alloc_flags); 3696 3697 /* 3698 * If this is a high-order atomic allocation then check 3699 * if the pageblock should be reserved for the future 3700 */ 3701 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3702 reserve_highatomic_pageblock(page, zone, order); 3703 3704 return page; 3705 } else { 3706 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3707 /* Try again if zone has deferred pages */ 3708 if (static_branch_unlikely(&deferred_pages)) { 3709 if (_deferred_grow_zone(zone, order)) 3710 goto try_this_zone; 3711 } 3712 #endif 3713 } 3714 } 3715 3716 /* 3717 * It's possible on a UMA machine to get through all zones that are 3718 * fragmented. If avoiding fragmentation, reset and try again. 3719 */ 3720 if (no_fallback) { 3721 alloc_flags &= ~ALLOC_NOFRAGMENT; 3722 goto retry; 3723 } 3724 3725 return NULL; 3726 } 3727 3728 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3729 { 3730 unsigned int filter = SHOW_MEM_FILTER_NODES; 3731 3732 /* 3733 * This documents exceptions given to allocations in certain 3734 * contexts that are allowed to allocate outside current's set 3735 * of allowed nodes. 3736 */ 3737 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3738 if (tsk_is_oom_victim(current) || 3739 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3740 filter &= ~SHOW_MEM_FILTER_NODES; 3741 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3742 filter &= ~SHOW_MEM_FILTER_NODES; 3743 3744 show_mem(filter, nodemask); 3745 } 3746 3747 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3748 { 3749 struct va_format vaf; 3750 va_list args; 3751 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3752 3753 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3754 return; 3755 3756 va_start(args, fmt); 3757 vaf.fmt = fmt; 3758 vaf.va = &args; 3759 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3760 current->comm, &vaf, gfp_mask, &gfp_mask, 3761 nodemask_pr_args(nodemask)); 3762 va_end(args); 3763 3764 cpuset_print_current_mems_allowed(); 3765 pr_cont("\n"); 3766 dump_stack(); 3767 warn_alloc_show_mem(gfp_mask, nodemask); 3768 } 3769 3770 static inline struct page * 3771 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3772 unsigned int alloc_flags, 3773 const struct alloc_context *ac) 3774 { 3775 struct page *page; 3776 3777 page = get_page_from_freelist(gfp_mask, order, 3778 alloc_flags|ALLOC_CPUSET, ac); 3779 /* 3780 * fallback to ignore cpuset restriction if our nodes 3781 * are depleted 3782 */ 3783 if (!page) 3784 page = get_page_from_freelist(gfp_mask, order, 3785 alloc_flags, ac); 3786 3787 return page; 3788 } 3789 3790 static inline struct page * 3791 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3792 const struct alloc_context *ac, unsigned long *did_some_progress) 3793 { 3794 struct oom_control oc = { 3795 .zonelist = ac->zonelist, 3796 .nodemask = ac->nodemask, 3797 .memcg = NULL, 3798 .gfp_mask = gfp_mask, 3799 .order = order, 3800 }; 3801 struct page *page; 3802 3803 *did_some_progress = 0; 3804 3805 /* 3806 * Acquire the oom lock. If that fails, somebody else is 3807 * making progress for us. 3808 */ 3809 if (!mutex_trylock(&oom_lock)) { 3810 *did_some_progress = 1; 3811 schedule_timeout_uninterruptible(1); 3812 return NULL; 3813 } 3814 3815 /* 3816 * Go through the zonelist yet one more time, keep very high watermark 3817 * here, this is only to catch a parallel oom killing, we must fail if 3818 * we're still under heavy pressure. But make sure that this reclaim 3819 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3820 * allocation which will never fail due to oom_lock already held. 3821 */ 3822 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3823 ~__GFP_DIRECT_RECLAIM, order, 3824 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3825 if (page) 3826 goto out; 3827 3828 /* Coredumps can quickly deplete all memory reserves */ 3829 if (current->flags & PF_DUMPCORE) 3830 goto out; 3831 /* The OOM killer will not help higher order allocs */ 3832 if (order > PAGE_ALLOC_COSTLY_ORDER) 3833 goto out; 3834 /* 3835 * We have already exhausted all our reclaim opportunities without any 3836 * success so it is time to admit defeat. We will skip the OOM killer 3837 * because it is very likely that the caller has a more reasonable 3838 * fallback than shooting a random task. 3839 */ 3840 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3841 goto out; 3842 /* The OOM killer does not needlessly kill tasks for lowmem */ 3843 if (ac->high_zoneidx < ZONE_NORMAL) 3844 goto out; 3845 if (pm_suspended_storage()) 3846 goto out; 3847 /* 3848 * XXX: GFP_NOFS allocations should rather fail than rely on 3849 * other request to make a forward progress. 3850 * We are in an unfortunate situation where out_of_memory cannot 3851 * do much for this context but let's try it to at least get 3852 * access to memory reserved if the current task is killed (see 3853 * out_of_memory). Once filesystems are ready to handle allocation 3854 * failures more gracefully we should just bail out here. 3855 */ 3856 3857 /* The OOM killer may not free memory on a specific node */ 3858 if (gfp_mask & __GFP_THISNODE) 3859 goto out; 3860 3861 /* Exhausted what can be done so it's blame time */ 3862 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3863 *did_some_progress = 1; 3864 3865 /* 3866 * Help non-failing allocations by giving them access to memory 3867 * reserves 3868 */ 3869 if (gfp_mask & __GFP_NOFAIL) 3870 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3871 ALLOC_NO_WATERMARKS, ac); 3872 } 3873 out: 3874 mutex_unlock(&oom_lock); 3875 return page; 3876 } 3877 3878 /* 3879 * Maximum number of compaction retries wit a progress before OOM 3880 * killer is consider as the only way to move forward. 3881 */ 3882 #define MAX_COMPACT_RETRIES 16 3883 3884 #ifdef CONFIG_COMPACTION 3885 /* Try memory compaction for high-order allocations before reclaim */ 3886 static struct page * 3887 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3888 unsigned int alloc_flags, const struct alloc_context *ac, 3889 enum compact_priority prio, enum compact_result *compact_result) 3890 { 3891 struct page *page = NULL; 3892 unsigned long pflags; 3893 unsigned int noreclaim_flag; 3894 3895 if (!order) 3896 return NULL; 3897 3898 psi_memstall_enter(&pflags); 3899 noreclaim_flag = memalloc_noreclaim_save(); 3900 3901 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3902 prio, &page); 3903 3904 memalloc_noreclaim_restore(noreclaim_flag); 3905 psi_memstall_leave(&pflags); 3906 3907 /* 3908 * At least in one zone compaction wasn't deferred or skipped, so let's 3909 * count a compaction stall 3910 */ 3911 count_vm_event(COMPACTSTALL); 3912 3913 /* Prep a captured page if available */ 3914 if (page) 3915 prep_new_page(page, order, gfp_mask, alloc_flags); 3916 3917 /* Try get a page from the freelist if available */ 3918 if (!page) 3919 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3920 3921 if (page) { 3922 struct zone *zone = page_zone(page); 3923 3924 zone->compact_blockskip_flush = false; 3925 compaction_defer_reset(zone, order, true); 3926 count_vm_event(COMPACTSUCCESS); 3927 return page; 3928 } 3929 3930 /* 3931 * It's bad if compaction run occurs and fails. The most likely reason 3932 * is that pages exist, but not enough to satisfy watermarks. 3933 */ 3934 count_vm_event(COMPACTFAIL); 3935 3936 cond_resched(); 3937 3938 return NULL; 3939 } 3940 3941 static inline bool 3942 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3943 enum compact_result compact_result, 3944 enum compact_priority *compact_priority, 3945 int *compaction_retries) 3946 { 3947 int max_retries = MAX_COMPACT_RETRIES; 3948 int min_priority; 3949 bool ret = false; 3950 int retries = *compaction_retries; 3951 enum compact_priority priority = *compact_priority; 3952 3953 if (!order) 3954 return false; 3955 3956 if (compaction_made_progress(compact_result)) 3957 (*compaction_retries)++; 3958 3959 /* 3960 * compaction considers all the zone as desperately out of memory 3961 * so it doesn't really make much sense to retry except when the 3962 * failure could be caused by insufficient priority 3963 */ 3964 if (compaction_failed(compact_result)) 3965 goto check_priority; 3966 3967 /* 3968 * compaction was skipped because there are not enough order-0 pages 3969 * to work with, so we retry only if it looks like reclaim can help. 3970 */ 3971 if (compaction_needs_reclaim(compact_result)) { 3972 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3973 goto out; 3974 } 3975 3976 /* 3977 * make sure the compaction wasn't deferred or didn't bail out early 3978 * due to locks contention before we declare that we should give up. 3979 * But the next retry should use a higher priority if allowed, so 3980 * we don't just keep bailing out endlessly. 3981 */ 3982 if (compaction_withdrawn(compact_result)) { 3983 goto check_priority; 3984 } 3985 3986 /* 3987 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3988 * costly ones because they are de facto nofail and invoke OOM 3989 * killer to move on while costly can fail and users are ready 3990 * to cope with that. 1/4 retries is rather arbitrary but we 3991 * would need much more detailed feedback from compaction to 3992 * make a better decision. 3993 */ 3994 if (order > PAGE_ALLOC_COSTLY_ORDER) 3995 max_retries /= 4; 3996 if (*compaction_retries <= max_retries) { 3997 ret = true; 3998 goto out; 3999 } 4000 4001 /* 4002 * Make sure there are attempts at the highest priority if we exhausted 4003 * all retries or failed at the lower priorities. 4004 */ 4005 check_priority: 4006 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4007 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4008 4009 if (*compact_priority > min_priority) { 4010 (*compact_priority)--; 4011 *compaction_retries = 0; 4012 ret = true; 4013 } 4014 out: 4015 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4016 return ret; 4017 } 4018 #else 4019 static inline struct page * 4020 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4021 unsigned int alloc_flags, const struct alloc_context *ac, 4022 enum compact_priority prio, enum compact_result *compact_result) 4023 { 4024 *compact_result = COMPACT_SKIPPED; 4025 return NULL; 4026 } 4027 4028 static inline bool 4029 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4030 enum compact_result compact_result, 4031 enum compact_priority *compact_priority, 4032 int *compaction_retries) 4033 { 4034 struct zone *zone; 4035 struct zoneref *z; 4036 4037 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4038 return false; 4039 4040 /* 4041 * There are setups with compaction disabled which would prefer to loop 4042 * inside the allocator rather than hit the oom killer prematurely. 4043 * Let's give them a good hope and keep retrying while the order-0 4044 * watermarks are OK. 4045 */ 4046 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4047 ac->nodemask) { 4048 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4049 ac_classzone_idx(ac), alloc_flags)) 4050 return true; 4051 } 4052 return false; 4053 } 4054 #endif /* CONFIG_COMPACTION */ 4055 4056 #ifdef CONFIG_LOCKDEP 4057 static struct lockdep_map __fs_reclaim_map = 4058 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4059 4060 static bool __need_fs_reclaim(gfp_t gfp_mask) 4061 { 4062 gfp_mask = current_gfp_context(gfp_mask); 4063 4064 /* no reclaim without waiting on it */ 4065 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4066 return false; 4067 4068 /* this guy won't enter reclaim */ 4069 if (current->flags & PF_MEMALLOC) 4070 return false; 4071 4072 /* We're only interested __GFP_FS allocations for now */ 4073 if (!(gfp_mask & __GFP_FS)) 4074 return false; 4075 4076 if (gfp_mask & __GFP_NOLOCKDEP) 4077 return false; 4078 4079 return true; 4080 } 4081 4082 void __fs_reclaim_acquire(void) 4083 { 4084 lock_map_acquire(&__fs_reclaim_map); 4085 } 4086 4087 void __fs_reclaim_release(void) 4088 { 4089 lock_map_release(&__fs_reclaim_map); 4090 } 4091 4092 void fs_reclaim_acquire(gfp_t gfp_mask) 4093 { 4094 if (__need_fs_reclaim(gfp_mask)) 4095 __fs_reclaim_acquire(); 4096 } 4097 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4098 4099 void fs_reclaim_release(gfp_t gfp_mask) 4100 { 4101 if (__need_fs_reclaim(gfp_mask)) 4102 __fs_reclaim_release(); 4103 } 4104 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4105 #endif 4106 4107 /* Perform direct synchronous page reclaim */ 4108 static int 4109 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4110 const struct alloc_context *ac) 4111 { 4112 int progress; 4113 unsigned int noreclaim_flag; 4114 unsigned long pflags; 4115 4116 cond_resched(); 4117 4118 /* We now go into synchronous reclaim */ 4119 cpuset_memory_pressure_bump(); 4120 psi_memstall_enter(&pflags); 4121 fs_reclaim_acquire(gfp_mask); 4122 noreclaim_flag = memalloc_noreclaim_save(); 4123 4124 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4125 ac->nodemask); 4126 4127 memalloc_noreclaim_restore(noreclaim_flag); 4128 fs_reclaim_release(gfp_mask); 4129 psi_memstall_leave(&pflags); 4130 4131 cond_resched(); 4132 4133 return progress; 4134 } 4135 4136 /* The really slow allocator path where we enter direct reclaim */ 4137 static inline struct page * 4138 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4139 unsigned int alloc_flags, const struct alloc_context *ac, 4140 unsigned long *did_some_progress) 4141 { 4142 struct page *page = NULL; 4143 bool drained = false; 4144 4145 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4146 if (unlikely(!(*did_some_progress))) 4147 return NULL; 4148 4149 retry: 4150 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4151 4152 /* 4153 * If an allocation failed after direct reclaim, it could be because 4154 * pages are pinned on the per-cpu lists or in high alloc reserves. 4155 * Shrink them them and try again 4156 */ 4157 if (!page && !drained) { 4158 unreserve_highatomic_pageblock(ac, false); 4159 drain_all_pages(NULL); 4160 drained = true; 4161 goto retry; 4162 } 4163 4164 return page; 4165 } 4166 4167 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4168 const struct alloc_context *ac) 4169 { 4170 struct zoneref *z; 4171 struct zone *zone; 4172 pg_data_t *last_pgdat = NULL; 4173 enum zone_type high_zoneidx = ac->high_zoneidx; 4174 4175 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, high_zoneidx, 4176 ac->nodemask) { 4177 if (last_pgdat != zone->zone_pgdat) 4178 wakeup_kswapd(zone, gfp_mask, order, high_zoneidx); 4179 last_pgdat = zone->zone_pgdat; 4180 } 4181 } 4182 4183 static inline unsigned int 4184 gfp_to_alloc_flags(gfp_t gfp_mask) 4185 { 4186 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4187 4188 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 4189 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4190 4191 /* 4192 * The caller may dip into page reserves a bit more if the caller 4193 * cannot run direct reclaim, or if the caller has realtime scheduling 4194 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4195 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4196 */ 4197 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 4198 4199 if (gfp_mask & __GFP_ATOMIC) { 4200 /* 4201 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4202 * if it can't schedule. 4203 */ 4204 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4205 alloc_flags |= ALLOC_HARDER; 4206 /* 4207 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4208 * comment for __cpuset_node_allowed(). 4209 */ 4210 alloc_flags &= ~ALLOC_CPUSET; 4211 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4212 alloc_flags |= ALLOC_HARDER; 4213 4214 if (gfp_mask & __GFP_KSWAPD_RECLAIM) 4215 alloc_flags |= ALLOC_KSWAPD; 4216 4217 #ifdef CONFIG_CMA 4218 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4219 alloc_flags |= ALLOC_CMA; 4220 #endif 4221 return alloc_flags; 4222 } 4223 4224 static bool oom_reserves_allowed(struct task_struct *tsk) 4225 { 4226 if (!tsk_is_oom_victim(tsk)) 4227 return false; 4228 4229 /* 4230 * !MMU doesn't have oom reaper so give access to memory reserves 4231 * only to the thread with TIF_MEMDIE set 4232 */ 4233 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4234 return false; 4235 4236 return true; 4237 } 4238 4239 /* 4240 * Distinguish requests which really need access to full memory 4241 * reserves from oom victims which can live with a portion of it 4242 */ 4243 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4244 { 4245 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4246 return 0; 4247 if (gfp_mask & __GFP_MEMALLOC) 4248 return ALLOC_NO_WATERMARKS; 4249 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4250 return ALLOC_NO_WATERMARKS; 4251 if (!in_interrupt()) { 4252 if (current->flags & PF_MEMALLOC) 4253 return ALLOC_NO_WATERMARKS; 4254 else if (oom_reserves_allowed(current)) 4255 return ALLOC_OOM; 4256 } 4257 4258 return 0; 4259 } 4260 4261 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4262 { 4263 return !!__gfp_pfmemalloc_flags(gfp_mask); 4264 } 4265 4266 /* 4267 * Checks whether it makes sense to retry the reclaim to make a forward progress 4268 * for the given allocation request. 4269 * 4270 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4271 * without success, or when we couldn't even meet the watermark if we 4272 * reclaimed all remaining pages on the LRU lists. 4273 * 4274 * Returns true if a retry is viable or false to enter the oom path. 4275 */ 4276 static inline bool 4277 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4278 struct alloc_context *ac, int alloc_flags, 4279 bool did_some_progress, int *no_progress_loops) 4280 { 4281 struct zone *zone; 4282 struct zoneref *z; 4283 bool ret = false; 4284 4285 /* 4286 * Costly allocations might have made a progress but this doesn't mean 4287 * their order will become available due to high fragmentation so 4288 * always increment the no progress counter for them 4289 */ 4290 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4291 *no_progress_loops = 0; 4292 else 4293 (*no_progress_loops)++; 4294 4295 /* 4296 * Make sure we converge to OOM if we cannot make any progress 4297 * several times in the row. 4298 */ 4299 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4300 /* Before OOM, exhaust highatomic_reserve */ 4301 return unreserve_highatomic_pageblock(ac, true); 4302 } 4303 4304 /* 4305 * Keep reclaiming pages while there is a chance this will lead 4306 * somewhere. If none of the target zones can satisfy our allocation 4307 * request even if all reclaimable pages are considered then we are 4308 * screwed and have to go OOM. 4309 */ 4310 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx, 4311 ac->nodemask) { 4312 unsigned long available; 4313 unsigned long reclaimable; 4314 unsigned long min_wmark = min_wmark_pages(zone); 4315 bool wmark; 4316 4317 available = reclaimable = zone_reclaimable_pages(zone); 4318 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4319 4320 /* 4321 * Would the allocation succeed if we reclaimed all 4322 * reclaimable pages? 4323 */ 4324 wmark = __zone_watermark_ok(zone, order, min_wmark, 4325 ac_classzone_idx(ac), alloc_flags, available); 4326 trace_reclaim_retry_zone(z, order, reclaimable, 4327 available, min_wmark, *no_progress_loops, wmark); 4328 if (wmark) { 4329 /* 4330 * If we didn't make any progress and have a lot of 4331 * dirty + writeback pages then we should wait for 4332 * an IO to complete to slow down the reclaim and 4333 * prevent from pre mature OOM 4334 */ 4335 if (!did_some_progress) { 4336 unsigned long write_pending; 4337 4338 write_pending = zone_page_state_snapshot(zone, 4339 NR_ZONE_WRITE_PENDING); 4340 4341 if (2 * write_pending > reclaimable) { 4342 congestion_wait(BLK_RW_ASYNC, HZ/10); 4343 return true; 4344 } 4345 } 4346 4347 ret = true; 4348 goto out; 4349 } 4350 } 4351 4352 out: 4353 /* 4354 * Memory allocation/reclaim might be called from a WQ context and the 4355 * current implementation of the WQ concurrency control doesn't 4356 * recognize that a particular WQ is congested if the worker thread is 4357 * looping without ever sleeping. Therefore we have to do a short sleep 4358 * here rather than calling cond_resched(). 4359 */ 4360 if (current->flags & PF_WQ_WORKER) 4361 schedule_timeout_uninterruptible(1); 4362 else 4363 cond_resched(); 4364 return ret; 4365 } 4366 4367 static inline bool 4368 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4369 { 4370 /* 4371 * It's possible that cpuset's mems_allowed and the nodemask from 4372 * mempolicy don't intersect. This should be normally dealt with by 4373 * policy_nodemask(), but it's possible to race with cpuset update in 4374 * such a way the check therein was true, and then it became false 4375 * before we got our cpuset_mems_cookie here. 4376 * This assumes that for all allocations, ac->nodemask can come only 4377 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4378 * when it does not intersect with the cpuset restrictions) or the 4379 * caller can deal with a violated nodemask. 4380 */ 4381 if (cpusets_enabled() && ac->nodemask && 4382 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4383 ac->nodemask = NULL; 4384 return true; 4385 } 4386 4387 /* 4388 * When updating a task's mems_allowed or mempolicy nodemask, it is 4389 * possible to race with parallel threads in such a way that our 4390 * allocation can fail while the mask is being updated. If we are about 4391 * to fail, check if the cpuset changed during allocation and if so, 4392 * retry. 4393 */ 4394 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4395 return true; 4396 4397 return false; 4398 } 4399 4400 static inline struct page * 4401 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4402 struct alloc_context *ac) 4403 { 4404 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4405 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4406 struct page *page = NULL; 4407 unsigned int alloc_flags; 4408 unsigned long did_some_progress; 4409 enum compact_priority compact_priority; 4410 enum compact_result compact_result; 4411 int compaction_retries; 4412 int no_progress_loops; 4413 unsigned int cpuset_mems_cookie; 4414 int reserve_flags; 4415 4416 /* 4417 * We also sanity check to catch abuse of atomic reserves being used by 4418 * callers that are not in atomic context. 4419 */ 4420 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4421 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4422 gfp_mask &= ~__GFP_ATOMIC; 4423 4424 retry_cpuset: 4425 compaction_retries = 0; 4426 no_progress_loops = 0; 4427 compact_priority = DEF_COMPACT_PRIORITY; 4428 cpuset_mems_cookie = read_mems_allowed_begin(); 4429 4430 /* 4431 * The fast path uses conservative alloc_flags to succeed only until 4432 * kswapd needs to be woken up, and to avoid the cost of setting up 4433 * alloc_flags precisely. So we do that now. 4434 */ 4435 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4436 4437 /* 4438 * We need to recalculate the starting point for the zonelist iterator 4439 * because we might have used different nodemask in the fast path, or 4440 * there was a cpuset modification and we are retrying - otherwise we 4441 * could end up iterating over non-eligible zones endlessly. 4442 */ 4443 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4444 ac->high_zoneidx, ac->nodemask); 4445 if (!ac->preferred_zoneref->zone) 4446 goto nopage; 4447 4448 if (alloc_flags & ALLOC_KSWAPD) 4449 wake_all_kswapds(order, gfp_mask, ac); 4450 4451 /* 4452 * The adjusted alloc_flags might result in immediate success, so try 4453 * that first 4454 */ 4455 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4456 if (page) 4457 goto got_pg; 4458 4459 /* 4460 * For costly allocations, try direct compaction first, as it's likely 4461 * that we have enough base pages and don't need to reclaim. For non- 4462 * movable high-order allocations, do that as well, as compaction will 4463 * try prevent permanent fragmentation by migrating from blocks of the 4464 * same migratetype. 4465 * Don't try this for allocations that are allowed to ignore 4466 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4467 */ 4468 if (can_direct_reclaim && 4469 (costly_order || 4470 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4471 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4472 page = __alloc_pages_direct_compact(gfp_mask, order, 4473 alloc_flags, ac, 4474 INIT_COMPACT_PRIORITY, 4475 &compact_result); 4476 if (page) 4477 goto got_pg; 4478 4479 if (order >= pageblock_order && (gfp_mask & __GFP_IO) && 4480 !(gfp_mask & __GFP_RETRY_MAYFAIL)) { 4481 /* 4482 * If allocating entire pageblock(s) and compaction 4483 * failed because all zones are below low watermarks 4484 * or is prohibited because it recently failed at this 4485 * order, fail immediately unless the allocator has 4486 * requested compaction and reclaim retry. 4487 * 4488 * Reclaim is 4489 * - potentially very expensive because zones are far 4490 * below their low watermarks or this is part of very 4491 * bursty high order allocations, 4492 * - not guaranteed to help because isolate_freepages() 4493 * may not iterate over freed pages as part of its 4494 * linear scan, and 4495 * - unlikely to make entire pageblocks free on its 4496 * own. 4497 */ 4498 if (compact_result == COMPACT_SKIPPED || 4499 compact_result == COMPACT_DEFERRED) 4500 goto nopage; 4501 } 4502 4503 /* 4504 * Checks for costly allocations with __GFP_NORETRY, which 4505 * includes THP page fault allocations 4506 */ 4507 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4508 /* 4509 * If compaction is deferred for high-order allocations, 4510 * it is because sync compaction recently failed. If 4511 * this is the case and the caller requested a THP 4512 * allocation, we do not want to heavily disrupt the 4513 * system, so we fail the allocation instead of entering 4514 * direct reclaim. 4515 */ 4516 if (compact_result == COMPACT_DEFERRED) 4517 goto nopage; 4518 4519 /* 4520 * Looks like reclaim/compaction is worth trying, but 4521 * sync compaction could be very expensive, so keep 4522 * using async compaction. 4523 */ 4524 compact_priority = INIT_COMPACT_PRIORITY; 4525 } 4526 } 4527 4528 retry: 4529 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4530 if (alloc_flags & ALLOC_KSWAPD) 4531 wake_all_kswapds(order, gfp_mask, ac); 4532 4533 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4534 if (reserve_flags) 4535 alloc_flags = reserve_flags; 4536 4537 /* 4538 * Reset the nodemask and zonelist iterators if memory policies can be 4539 * ignored. These allocations are high priority and system rather than 4540 * user oriented. 4541 */ 4542 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4543 ac->nodemask = NULL; 4544 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4545 ac->high_zoneidx, ac->nodemask); 4546 } 4547 4548 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4549 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4550 if (page) 4551 goto got_pg; 4552 4553 /* Caller is not willing to reclaim, we can't balance anything */ 4554 if (!can_direct_reclaim) 4555 goto nopage; 4556 4557 /* Avoid recursion of direct reclaim */ 4558 if (current->flags & PF_MEMALLOC) 4559 goto nopage; 4560 4561 /* Try direct reclaim and then allocating */ 4562 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4563 &did_some_progress); 4564 if (page) 4565 goto got_pg; 4566 4567 /* Try direct compaction and then allocating */ 4568 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4569 compact_priority, &compact_result); 4570 if (page) 4571 goto got_pg; 4572 4573 /* Do not loop if specifically requested */ 4574 if (gfp_mask & __GFP_NORETRY) 4575 goto nopage; 4576 4577 /* 4578 * Do not retry costly high order allocations unless they are 4579 * __GFP_RETRY_MAYFAIL 4580 */ 4581 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4582 goto nopage; 4583 4584 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4585 did_some_progress > 0, &no_progress_loops)) 4586 goto retry; 4587 4588 /* 4589 * It doesn't make any sense to retry for the compaction if the order-0 4590 * reclaim is not able to make any progress because the current 4591 * implementation of the compaction depends on the sufficient amount 4592 * of free memory (see __compaction_suitable) 4593 */ 4594 if (did_some_progress > 0 && 4595 should_compact_retry(ac, order, alloc_flags, 4596 compact_result, &compact_priority, 4597 &compaction_retries)) 4598 goto retry; 4599 4600 4601 /* Deal with possible cpuset update races before we start OOM killing */ 4602 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4603 goto retry_cpuset; 4604 4605 /* Reclaim has failed us, start killing things */ 4606 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4607 if (page) 4608 goto got_pg; 4609 4610 /* Avoid allocations with no watermarks from looping endlessly */ 4611 if (tsk_is_oom_victim(current) && 4612 (alloc_flags == ALLOC_OOM || 4613 (gfp_mask & __GFP_NOMEMALLOC))) 4614 goto nopage; 4615 4616 /* Retry as long as the OOM killer is making progress */ 4617 if (did_some_progress) { 4618 no_progress_loops = 0; 4619 goto retry; 4620 } 4621 4622 nopage: 4623 /* Deal with possible cpuset update races before we fail */ 4624 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4625 goto retry_cpuset; 4626 4627 /* 4628 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4629 * we always retry 4630 */ 4631 if (gfp_mask & __GFP_NOFAIL) { 4632 /* 4633 * All existing users of the __GFP_NOFAIL are blockable, so warn 4634 * of any new users that actually require GFP_NOWAIT 4635 */ 4636 if (WARN_ON_ONCE(!can_direct_reclaim)) 4637 goto fail; 4638 4639 /* 4640 * PF_MEMALLOC request from this context is rather bizarre 4641 * because we cannot reclaim anything and only can loop waiting 4642 * for somebody to do a work for us 4643 */ 4644 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4645 4646 /* 4647 * non failing costly orders are a hard requirement which we 4648 * are not prepared for much so let's warn about these users 4649 * so that we can identify them and convert them to something 4650 * else. 4651 */ 4652 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4653 4654 /* 4655 * Help non-failing allocations by giving them access to memory 4656 * reserves but do not use ALLOC_NO_WATERMARKS because this 4657 * could deplete whole memory reserves which would just make 4658 * the situation worse 4659 */ 4660 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4661 if (page) 4662 goto got_pg; 4663 4664 cond_resched(); 4665 goto retry; 4666 } 4667 fail: 4668 warn_alloc(gfp_mask, ac->nodemask, 4669 "page allocation failure: order:%u", order); 4670 got_pg: 4671 return page; 4672 } 4673 4674 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4675 int preferred_nid, nodemask_t *nodemask, 4676 struct alloc_context *ac, gfp_t *alloc_mask, 4677 unsigned int *alloc_flags) 4678 { 4679 ac->high_zoneidx = gfp_zone(gfp_mask); 4680 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4681 ac->nodemask = nodemask; 4682 ac->migratetype = gfpflags_to_migratetype(gfp_mask); 4683 4684 if (cpusets_enabled()) { 4685 *alloc_mask |= __GFP_HARDWALL; 4686 if (!ac->nodemask) 4687 ac->nodemask = &cpuset_current_mems_allowed; 4688 else 4689 *alloc_flags |= ALLOC_CPUSET; 4690 } 4691 4692 fs_reclaim_acquire(gfp_mask); 4693 fs_reclaim_release(gfp_mask); 4694 4695 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4696 4697 if (should_fail_alloc_page(gfp_mask, order)) 4698 return false; 4699 4700 if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE) 4701 *alloc_flags |= ALLOC_CMA; 4702 4703 return true; 4704 } 4705 4706 /* Determine whether to spread dirty pages and what the first usable zone */ 4707 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4708 { 4709 /* Dirty zone balancing only done in the fast path */ 4710 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4711 4712 /* 4713 * The preferred zone is used for statistics but crucially it is 4714 * also used as the starting point for the zonelist iterator. It 4715 * may get reset for allocations that ignore memory policies. 4716 */ 4717 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4718 ac->high_zoneidx, ac->nodemask); 4719 } 4720 4721 /* 4722 * This is the 'heart' of the zoned buddy allocator. 4723 */ 4724 struct page * 4725 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4726 nodemask_t *nodemask) 4727 { 4728 struct page *page; 4729 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4730 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4731 struct alloc_context ac = { }; 4732 4733 /* 4734 * There are several places where we assume that the order value is sane 4735 * so bail out early if the request is out of bound. 4736 */ 4737 if (unlikely(order >= MAX_ORDER)) { 4738 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4739 return NULL; 4740 } 4741 4742 gfp_mask &= gfp_allowed_mask; 4743 alloc_mask = gfp_mask; 4744 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4745 return NULL; 4746 4747 finalise_ac(gfp_mask, &ac); 4748 4749 /* 4750 * Forbid the first pass from falling back to types that fragment 4751 * memory until all local zones are considered. 4752 */ 4753 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4754 4755 /* First allocation attempt */ 4756 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4757 if (likely(page)) 4758 goto out; 4759 4760 /* 4761 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4762 * resp. GFP_NOIO which has to be inherited for all allocation requests 4763 * from a particular context which has been marked by 4764 * memalloc_no{fs,io}_{save,restore}. 4765 */ 4766 alloc_mask = current_gfp_context(gfp_mask); 4767 ac.spread_dirty_pages = false; 4768 4769 /* 4770 * Restore the original nodemask if it was potentially replaced with 4771 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4772 */ 4773 if (unlikely(ac.nodemask != nodemask)) 4774 ac.nodemask = nodemask; 4775 4776 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4777 4778 out: 4779 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4780 unlikely(__memcg_kmem_charge(page, gfp_mask, order) != 0)) { 4781 __free_pages(page, order); 4782 page = NULL; 4783 } 4784 4785 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4786 4787 return page; 4788 } 4789 EXPORT_SYMBOL(__alloc_pages_nodemask); 4790 4791 /* 4792 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4793 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4794 * you need to access high mem. 4795 */ 4796 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4797 { 4798 struct page *page; 4799 4800 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4801 if (!page) 4802 return 0; 4803 return (unsigned long) page_address(page); 4804 } 4805 EXPORT_SYMBOL(__get_free_pages); 4806 4807 unsigned long get_zeroed_page(gfp_t gfp_mask) 4808 { 4809 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4810 } 4811 EXPORT_SYMBOL(get_zeroed_page); 4812 4813 static inline void free_the_page(struct page *page, unsigned int order) 4814 { 4815 if (order == 0) /* Via pcp? */ 4816 free_unref_page(page); 4817 else 4818 __free_pages_ok(page, order); 4819 } 4820 4821 void __free_pages(struct page *page, unsigned int order) 4822 { 4823 if (put_page_testzero(page)) 4824 free_the_page(page, order); 4825 } 4826 EXPORT_SYMBOL(__free_pages); 4827 4828 void free_pages(unsigned long addr, unsigned int order) 4829 { 4830 if (addr != 0) { 4831 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4832 __free_pages(virt_to_page((void *)addr), order); 4833 } 4834 } 4835 4836 EXPORT_SYMBOL(free_pages); 4837 4838 /* 4839 * Page Fragment: 4840 * An arbitrary-length arbitrary-offset area of memory which resides 4841 * within a 0 or higher order page. Multiple fragments within that page 4842 * are individually refcounted, in the page's reference counter. 4843 * 4844 * The page_frag functions below provide a simple allocation framework for 4845 * page fragments. This is used by the network stack and network device 4846 * drivers to provide a backing region of memory for use as either an 4847 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4848 */ 4849 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4850 gfp_t gfp_mask) 4851 { 4852 struct page *page = NULL; 4853 gfp_t gfp = gfp_mask; 4854 4855 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4856 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4857 __GFP_NOMEMALLOC; 4858 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4859 PAGE_FRAG_CACHE_MAX_ORDER); 4860 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4861 #endif 4862 if (unlikely(!page)) 4863 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4864 4865 nc->va = page ? page_address(page) : NULL; 4866 4867 return page; 4868 } 4869 4870 void __page_frag_cache_drain(struct page *page, unsigned int count) 4871 { 4872 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4873 4874 if (page_ref_sub_and_test(page, count)) 4875 free_the_page(page, compound_order(page)); 4876 } 4877 EXPORT_SYMBOL(__page_frag_cache_drain); 4878 4879 void *page_frag_alloc(struct page_frag_cache *nc, 4880 unsigned int fragsz, gfp_t gfp_mask) 4881 { 4882 unsigned int size = PAGE_SIZE; 4883 struct page *page; 4884 int offset; 4885 4886 if (unlikely(!nc->va)) { 4887 refill: 4888 page = __page_frag_cache_refill(nc, gfp_mask); 4889 if (!page) 4890 return NULL; 4891 4892 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4893 /* if size can vary use size else just use PAGE_SIZE */ 4894 size = nc->size; 4895 #endif 4896 /* Even if we own the page, we do not use atomic_set(). 4897 * This would break get_page_unless_zero() users. 4898 */ 4899 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4900 4901 /* reset page count bias and offset to start of new frag */ 4902 nc->pfmemalloc = page_is_pfmemalloc(page); 4903 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4904 nc->offset = size; 4905 } 4906 4907 offset = nc->offset - fragsz; 4908 if (unlikely(offset < 0)) { 4909 page = virt_to_page(nc->va); 4910 4911 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4912 goto refill; 4913 4914 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4915 /* if size can vary use size else just use PAGE_SIZE */ 4916 size = nc->size; 4917 #endif 4918 /* OK, page count is 0, we can safely set it */ 4919 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4920 4921 /* reset page count bias and offset to start of new frag */ 4922 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4923 offset = size - fragsz; 4924 } 4925 4926 nc->pagecnt_bias--; 4927 nc->offset = offset; 4928 4929 return nc->va + offset; 4930 } 4931 EXPORT_SYMBOL(page_frag_alloc); 4932 4933 /* 4934 * Frees a page fragment allocated out of either a compound or order 0 page. 4935 */ 4936 void page_frag_free(void *addr) 4937 { 4938 struct page *page = virt_to_head_page(addr); 4939 4940 if (unlikely(put_page_testzero(page))) 4941 free_the_page(page, compound_order(page)); 4942 } 4943 EXPORT_SYMBOL(page_frag_free); 4944 4945 static void *make_alloc_exact(unsigned long addr, unsigned int order, 4946 size_t size) 4947 { 4948 if (addr) { 4949 unsigned long alloc_end = addr + (PAGE_SIZE << order); 4950 unsigned long used = addr + PAGE_ALIGN(size); 4951 4952 split_page(virt_to_page((void *)addr), order); 4953 while (used < alloc_end) { 4954 free_page(used); 4955 used += PAGE_SIZE; 4956 } 4957 } 4958 return (void *)addr; 4959 } 4960 4961 /** 4962 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 4963 * @size: the number of bytes to allocate 4964 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4965 * 4966 * This function is similar to alloc_pages(), except that it allocates the 4967 * minimum number of pages to satisfy the request. alloc_pages() can only 4968 * allocate memory in power-of-two pages. 4969 * 4970 * This function is also limited by MAX_ORDER. 4971 * 4972 * Memory allocated by this function must be released by free_pages_exact(). 4973 * 4974 * Return: pointer to the allocated area or %NULL in case of error. 4975 */ 4976 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 4977 { 4978 unsigned int order = get_order(size); 4979 unsigned long addr; 4980 4981 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 4982 gfp_mask &= ~__GFP_COMP; 4983 4984 addr = __get_free_pages(gfp_mask, order); 4985 return make_alloc_exact(addr, order, size); 4986 } 4987 EXPORT_SYMBOL(alloc_pages_exact); 4988 4989 /** 4990 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 4991 * pages on a node. 4992 * @nid: the preferred node ID where memory should be allocated 4993 * @size: the number of bytes to allocate 4994 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 4995 * 4996 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 4997 * back. 4998 * 4999 * Return: pointer to the allocated area or %NULL in case of error. 5000 */ 5001 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5002 { 5003 unsigned int order = get_order(size); 5004 struct page *p; 5005 5006 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5007 gfp_mask &= ~__GFP_COMP; 5008 5009 p = alloc_pages_node(nid, gfp_mask, order); 5010 if (!p) 5011 return NULL; 5012 return make_alloc_exact((unsigned long)page_address(p), order, size); 5013 } 5014 5015 /** 5016 * free_pages_exact - release memory allocated via alloc_pages_exact() 5017 * @virt: the value returned by alloc_pages_exact. 5018 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5019 * 5020 * Release the memory allocated by a previous call to alloc_pages_exact. 5021 */ 5022 void free_pages_exact(void *virt, size_t size) 5023 { 5024 unsigned long addr = (unsigned long)virt; 5025 unsigned long end = addr + PAGE_ALIGN(size); 5026 5027 while (addr < end) { 5028 free_page(addr); 5029 addr += PAGE_SIZE; 5030 } 5031 } 5032 EXPORT_SYMBOL(free_pages_exact); 5033 5034 /** 5035 * nr_free_zone_pages - count number of pages beyond high watermark 5036 * @offset: The zone index of the highest zone 5037 * 5038 * nr_free_zone_pages() counts the number of pages which are beyond the 5039 * high watermark within all zones at or below a given zone index. For each 5040 * zone, the number of pages is calculated as: 5041 * 5042 * nr_free_zone_pages = managed_pages - high_pages 5043 * 5044 * Return: number of pages beyond high watermark. 5045 */ 5046 static unsigned long nr_free_zone_pages(int offset) 5047 { 5048 struct zoneref *z; 5049 struct zone *zone; 5050 5051 /* Just pick one node, since fallback list is circular */ 5052 unsigned long sum = 0; 5053 5054 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5055 5056 for_each_zone_zonelist(zone, z, zonelist, offset) { 5057 unsigned long size = zone_managed_pages(zone); 5058 unsigned long high = high_wmark_pages(zone); 5059 if (size > high) 5060 sum += size - high; 5061 } 5062 5063 return sum; 5064 } 5065 5066 /** 5067 * nr_free_buffer_pages - count number of pages beyond high watermark 5068 * 5069 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5070 * watermark within ZONE_DMA and ZONE_NORMAL. 5071 * 5072 * Return: number of pages beyond high watermark within ZONE_DMA and 5073 * ZONE_NORMAL. 5074 */ 5075 unsigned long nr_free_buffer_pages(void) 5076 { 5077 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5078 } 5079 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5080 5081 /** 5082 * nr_free_pagecache_pages - count number of pages beyond high watermark 5083 * 5084 * nr_free_pagecache_pages() counts the number of pages which are beyond the 5085 * high watermark within all zones. 5086 * 5087 * Return: number of pages beyond high watermark within all zones. 5088 */ 5089 unsigned long nr_free_pagecache_pages(void) 5090 { 5091 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5092 } 5093 5094 static inline void show_node(struct zone *zone) 5095 { 5096 if (IS_ENABLED(CONFIG_NUMA)) 5097 printk("Node %d ", zone_to_nid(zone)); 5098 } 5099 5100 long si_mem_available(void) 5101 { 5102 long available; 5103 unsigned long pagecache; 5104 unsigned long wmark_low = 0; 5105 unsigned long pages[NR_LRU_LISTS]; 5106 unsigned long reclaimable; 5107 struct zone *zone; 5108 int lru; 5109 5110 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5111 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5112 5113 for_each_zone(zone) 5114 wmark_low += low_wmark_pages(zone); 5115 5116 /* 5117 * Estimate the amount of memory available for userspace allocations, 5118 * without causing swapping. 5119 */ 5120 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5121 5122 /* 5123 * Not all the page cache can be freed, otherwise the system will 5124 * start swapping. Assume at least half of the page cache, or the 5125 * low watermark worth of cache, needs to stay. 5126 */ 5127 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5128 pagecache -= min(pagecache / 2, wmark_low); 5129 available += pagecache; 5130 5131 /* 5132 * Part of the reclaimable slab and other kernel memory consists of 5133 * items that are in use, and cannot be freed. Cap this estimate at the 5134 * low watermark. 5135 */ 5136 reclaimable = global_node_page_state(NR_SLAB_RECLAIMABLE) + 5137 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5138 available += reclaimable - min(reclaimable / 2, wmark_low); 5139 5140 if (available < 0) 5141 available = 0; 5142 return available; 5143 } 5144 EXPORT_SYMBOL_GPL(si_mem_available); 5145 5146 void si_meminfo(struct sysinfo *val) 5147 { 5148 val->totalram = totalram_pages(); 5149 val->sharedram = global_node_page_state(NR_SHMEM); 5150 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5151 val->bufferram = nr_blockdev_pages(); 5152 val->totalhigh = totalhigh_pages(); 5153 val->freehigh = nr_free_highpages(); 5154 val->mem_unit = PAGE_SIZE; 5155 } 5156 5157 EXPORT_SYMBOL(si_meminfo); 5158 5159 #ifdef CONFIG_NUMA 5160 void si_meminfo_node(struct sysinfo *val, int nid) 5161 { 5162 int zone_type; /* needs to be signed */ 5163 unsigned long managed_pages = 0; 5164 unsigned long managed_highpages = 0; 5165 unsigned long free_highpages = 0; 5166 pg_data_t *pgdat = NODE_DATA(nid); 5167 5168 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5169 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5170 val->totalram = managed_pages; 5171 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5172 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5173 #ifdef CONFIG_HIGHMEM 5174 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5175 struct zone *zone = &pgdat->node_zones[zone_type]; 5176 5177 if (is_highmem(zone)) { 5178 managed_highpages += zone_managed_pages(zone); 5179 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5180 } 5181 } 5182 val->totalhigh = managed_highpages; 5183 val->freehigh = free_highpages; 5184 #else 5185 val->totalhigh = managed_highpages; 5186 val->freehigh = free_highpages; 5187 #endif 5188 val->mem_unit = PAGE_SIZE; 5189 } 5190 #endif 5191 5192 /* 5193 * Determine whether the node should be displayed or not, depending on whether 5194 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5195 */ 5196 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5197 { 5198 if (!(flags & SHOW_MEM_FILTER_NODES)) 5199 return false; 5200 5201 /* 5202 * no node mask - aka implicit memory numa policy. Do not bother with 5203 * the synchronization - read_mems_allowed_begin - because we do not 5204 * have to be precise here. 5205 */ 5206 if (!nodemask) 5207 nodemask = &cpuset_current_mems_allowed; 5208 5209 return !node_isset(nid, *nodemask); 5210 } 5211 5212 #define K(x) ((x) << (PAGE_SHIFT-10)) 5213 5214 static void show_migration_types(unsigned char type) 5215 { 5216 static const char types[MIGRATE_TYPES] = { 5217 [MIGRATE_UNMOVABLE] = 'U', 5218 [MIGRATE_MOVABLE] = 'M', 5219 [MIGRATE_RECLAIMABLE] = 'E', 5220 [MIGRATE_HIGHATOMIC] = 'H', 5221 #ifdef CONFIG_CMA 5222 [MIGRATE_CMA] = 'C', 5223 #endif 5224 #ifdef CONFIG_MEMORY_ISOLATION 5225 [MIGRATE_ISOLATE] = 'I', 5226 #endif 5227 }; 5228 char tmp[MIGRATE_TYPES + 1]; 5229 char *p = tmp; 5230 int i; 5231 5232 for (i = 0; i < MIGRATE_TYPES; i++) { 5233 if (type & (1 << i)) 5234 *p++ = types[i]; 5235 } 5236 5237 *p = '\0'; 5238 printk(KERN_CONT "(%s) ", tmp); 5239 } 5240 5241 /* 5242 * Show free area list (used inside shift_scroll-lock stuff) 5243 * We also calculate the percentage fragmentation. We do this by counting the 5244 * memory on each free list with the exception of the first item on the list. 5245 * 5246 * Bits in @filter: 5247 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5248 * cpuset. 5249 */ 5250 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5251 { 5252 unsigned long free_pcp = 0; 5253 int cpu; 5254 struct zone *zone; 5255 pg_data_t *pgdat; 5256 5257 for_each_populated_zone(zone) { 5258 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5259 continue; 5260 5261 for_each_online_cpu(cpu) 5262 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5263 } 5264 5265 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5266 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5267 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n" 5268 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5269 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5270 " free:%lu free_pcp:%lu free_cma:%lu\n", 5271 global_node_page_state(NR_ACTIVE_ANON), 5272 global_node_page_state(NR_INACTIVE_ANON), 5273 global_node_page_state(NR_ISOLATED_ANON), 5274 global_node_page_state(NR_ACTIVE_FILE), 5275 global_node_page_state(NR_INACTIVE_FILE), 5276 global_node_page_state(NR_ISOLATED_FILE), 5277 global_node_page_state(NR_UNEVICTABLE), 5278 global_node_page_state(NR_FILE_DIRTY), 5279 global_node_page_state(NR_WRITEBACK), 5280 global_node_page_state(NR_UNSTABLE_NFS), 5281 global_node_page_state(NR_SLAB_RECLAIMABLE), 5282 global_node_page_state(NR_SLAB_UNRECLAIMABLE), 5283 global_node_page_state(NR_FILE_MAPPED), 5284 global_node_page_state(NR_SHMEM), 5285 global_zone_page_state(NR_PAGETABLE), 5286 global_zone_page_state(NR_BOUNCE), 5287 global_zone_page_state(NR_FREE_PAGES), 5288 free_pcp, 5289 global_zone_page_state(NR_FREE_CMA_PAGES)); 5290 5291 for_each_online_pgdat(pgdat) { 5292 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5293 continue; 5294 5295 printk("Node %d" 5296 " active_anon:%lukB" 5297 " inactive_anon:%lukB" 5298 " active_file:%lukB" 5299 " inactive_file:%lukB" 5300 " unevictable:%lukB" 5301 " isolated(anon):%lukB" 5302 " isolated(file):%lukB" 5303 " mapped:%lukB" 5304 " dirty:%lukB" 5305 " writeback:%lukB" 5306 " shmem:%lukB" 5307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5308 " shmem_thp: %lukB" 5309 " shmem_pmdmapped: %lukB" 5310 " anon_thp: %lukB" 5311 #endif 5312 " writeback_tmp:%lukB" 5313 " unstable:%lukB" 5314 " all_unreclaimable? %s" 5315 "\n", 5316 pgdat->node_id, 5317 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5318 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5319 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5320 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5321 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5322 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5323 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5324 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5325 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5326 K(node_page_state(pgdat, NR_WRITEBACK)), 5327 K(node_page_state(pgdat, NR_SHMEM)), 5328 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5329 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5330 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5331 * HPAGE_PMD_NR), 5332 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5333 #endif 5334 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5335 K(node_page_state(pgdat, NR_UNSTABLE_NFS)), 5336 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5337 "yes" : "no"); 5338 } 5339 5340 for_each_populated_zone(zone) { 5341 int i; 5342 5343 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5344 continue; 5345 5346 free_pcp = 0; 5347 for_each_online_cpu(cpu) 5348 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5349 5350 show_node(zone); 5351 printk(KERN_CONT 5352 "%s" 5353 " free:%lukB" 5354 " min:%lukB" 5355 " low:%lukB" 5356 " high:%lukB" 5357 " active_anon:%lukB" 5358 " inactive_anon:%lukB" 5359 " active_file:%lukB" 5360 " inactive_file:%lukB" 5361 " unevictable:%lukB" 5362 " writepending:%lukB" 5363 " present:%lukB" 5364 " managed:%lukB" 5365 " mlocked:%lukB" 5366 " kernel_stack:%lukB" 5367 " pagetables:%lukB" 5368 " bounce:%lukB" 5369 " free_pcp:%lukB" 5370 " local_pcp:%ukB" 5371 " free_cma:%lukB" 5372 "\n", 5373 zone->name, 5374 K(zone_page_state(zone, NR_FREE_PAGES)), 5375 K(min_wmark_pages(zone)), 5376 K(low_wmark_pages(zone)), 5377 K(high_wmark_pages(zone)), 5378 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5379 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5380 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5381 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5382 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5383 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5384 K(zone->present_pages), 5385 K(zone_managed_pages(zone)), 5386 K(zone_page_state(zone, NR_MLOCK)), 5387 zone_page_state(zone, NR_KERNEL_STACK_KB), 5388 K(zone_page_state(zone, NR_PAGETABLE)), 5389 K(zone_page_state(zone, NR_BOUNCE)), 5390 K(free_pcp), 5391 K(this_cpu_read(zone->pageset->pcp.count)), 5392 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5393 printk("lowmem_reserve[]:"); 5394 for (i = 0; i < MAX_NR_ZONES; i++) 5395 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5396 printk(KERN_CONT "\n"); 5397 } 5398 5399 for_each_populated_zone(zone) { 5400 unsigned int order; 5401 unsigned long nr[MAX_ORDER], flags, total = 0; 5402 unsigned char types[MAX_ORDER]; 5403 5404 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5405 continue; 5406 show_node(zone); 5407 printk(KERN_CONT "%s: ", zone->name); 5408 5409 spin_lock_irqsave(&zone->lock, flags); 5410 for (order = 0; order < MAX_ORDER; order++) { 5411 struct free_area *area = &zone->free_area[order]; 5412 int type; 5413 5414 nr[order] = area->nr_free; 5415 total += nr[order] << order; 5416 5417 types[order] = 0; 5418 for (type = 0; type < MIGRATE_TYPES; type++) { 5419 if (!free_area_empty(area, type)) 5420 types[order] |= 1 << type; 5421 } 5422 } 5423 spin_unlock_irqrestore(&zone->lock, flags); 5424 for (order = 0; order < MAX_ORDER; order++) { 5425 printk(KERN_CONT "%lu*%lukB ", 5426 nr[order], K(1UL) << order); 5427 if (nr[order]) 5428 show_migration_types(types[order]); 5429 } 5430 printk(KERN_CONT "= %lukB\n", K(total)); 5431 } 5432 5433 hugetlb_show_meminfo(); 5434 5435 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5436 5437 show_swap_cache_info(); 5438 } 5439 5440 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5441 { 5442 zoneref->zone = zone; 5443 zoneref->zone_idx = zone_idx(zone); 5444 } 5445 5446 /* 5447 * Builds allocation fallback zone lists. 5448 * 5449 * Add all populated zones of a node to the zonelist. 5450 */ 5451 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5452 { 5453 struct zone *zone; 5454 enum zone_type zone_type = MAX_NR_ZONES; 5455 int nr_zones = 0; 5456 5457 do { 5458 zone_type--; 5459 zone = pgdat->node_zones + zone_type; 5460 if (managed_zone(zone)) { 5461 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5462 check_highest_zone(zone_type); 5463 } 5464 } while (zone_type); 5465 5466 return nr_zones; 5467 } 5468 5469 #ifdef CONFIG_NUMA 5470 5471 static int __parse_numa_zonelist_order(char *s) 5472 { 5473 /* 5474 * We used to support different zonlists modes but they turned 5475 * out to be just not useful. Let's keep the warning in place 5476 * if somebody still use the cmd line parameter so that we do 5477 * not fail it silently 5478 */ 5479 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5480 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5481 return -EINVAL; 5482 } 5483 return 0; 5484 } 5485 5486 static __init int setup_numa_zonelist_order(char *s) 5487 { 5488 if (!s) 5489 return 0; 5490 5491 return __parse_numa_zonelist_order(s); 5492 } 5493 early_param("numa_zonelist_order", setup_numa_zonelist_order); 5494 5495 char numa_zonelist_order[] = "Node"; 5496 5497 /* 5498 * sysctl handler for numa_zonelist_order 5499 */ 5500 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5501 void __user *buffer, size_t *length, 5502 loff_t *ppos) 5503 { 5504 char *str; 5505 int ret; 5506 5507 if (!write) 5508 return proc_dostring(table, write, buffer, length, ppos); 5509 str = memdup_user_nul(buffer, 16); 5510 if (IS_ERR(str)) 5511 return PTR_ERR(str); 5512 5513 ret = __parse_numa_zonelist_order(str); 5514 kfree(str); 5515 return ret; 5516 } 5517 5518 5519 #define MAX_NODE_LOAD (nr_online_nodes) 5520 static int node_load[MAX_NUMNODES]; 5521 5522 /** 5523 * find_next_best_node - find the next node that should appear in a given node's fallback list 5524 * @node: node whose fallback list we're appending 5525 * @used_node_mask: nodemask_t of already used nodes 5526 * 5527 * We use a number of factors to determine which is the next node that should 5528 * appear on a given node's fallback list. The node should not have appeared 5529 * already in @node's fallback list, and it should be the next closest node 5530 * according to the distance array (which contains arbitrary distance values 5531 * from each node to each node in the system), and should also prefer nodes 5532 * with no CPUs, since presumably they'll have very little allocation pressure 5533 * on them otherwise. 5534 * 5535 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5536 */ 5537 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5538 { 5539 int n, val; 5540 int min_val = INT_MAX; 5541 int best_node = NUMA_NO_NODE; 5542 const struct cpumask *tmp = cpumask_of_node(0); 5543 5544 /* Use the local node if we haven't already */ 5545 if (!node_isset(node, *used_node_mask)) { 5546 node_set(node, *used_node_mask); 5547 return node; 5548 } 5549 5550 for_each_node_state(n, N_MEMORY) { 5551 5552 /* Don't want a node to appear more than once */ 5553 if (node_isset(n, *used_node_mask)) 5554 continue; 5555 5556 /* Use the distance array to find the distance */ 5557 val = node_distance(node, n); 5558 5559 /* Penalize nodes under us ("prefer the next node") */ 5560 val += (n < node); 5561 5562 /* Give preference to headless and unused nodes */ 5563 tmp = cpumask_of_node(n); 5564 if (!cpumask_empty(tmp)) 5565 val += PENALTY_FOR_NODE_WITH_CPUS; 5566 5567 /* Slight preference for less loaded node */ 5568 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5569 val += node_load[n]; 5570 5571 if (val < min_val) { 5572 min_val = val; 5573 best_node = n; 5574 } 5575 } 5576 5577 if (best_node >= 0) 5578 node_set(best_node, *used_node_mask); 5579 5580 return best_node; 5581 } 5582 5583 5584 /* 5585 * Build zonelists ordered by node and zones within node. 5586 * This results in maximum locality--normal zone overflows into local 5587 * DMA zone, if any--but risks exhausting DMA zone. 5588 */ 5589 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5590 unsigned nr_nodes) 5591 { 5592 struct zoneref *zonerefs; 5593 int i; 5594 5595 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5596 5597 for (i = 0; i < nr_nodes; i++) { 5598 int nr_zones; 5599 5600 pg_data_t *node = NODE_DATA(node_order[i]); 5601 5602 nr_zones = build_zonerefs_node(node, zonerefs); 5603 zonerefs += nr_zones; 5604 } 5605 zonerefs->zone = NULL; 5606 zonerefs->zone_idx = 0; 5607 } 5608 5609 /* 5610 * Build gfp_thisnode zonelists 5611 */ 5612 static void build_thisnode_zonelists(pg_data_t *pgdat) 5613 { 5614 struct zoneref *zonerefs; 5615 int nr_zones; 5616 5617 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5618 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5619 zonerefs += nr_zones; 5620 zonerefs->zone = NULL; 5621 zonerefs->zone_idx = 0; 5622 } 5623 5624 /* 5625 * Build zonelists ordered by zone and nodes within zones. 5626 * This results in conserving DMA zone[s] until all Normal memory is 5627 * exhausted, but results in overflowing to remote node while memory 5628 * may still exist in local DMA zone. 5629 */ 5630 5631 static void build_zonelists(pg_data_t *pgdat) 5632 { 5633 static int node_order[MAX_NUMNODES]; 5634 int node, load, nr_nodes = 0; 5635 nodemask_t used_mask; 5636 int local_node, prev_node; 5637 5638 /* NUMA-aware ordering of nodes */ 5639 local_node = pgdat->node_id; 5640 load = nr_online_nodes; 5641 prev_node = local_node; 5642 nodes_clear(used_mask); 5643 5644 memset(node_order, 0, sizeof(node_order)); 5645 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5646 /* 5647 * We don't want to pressure a particular node. 5648 * So adding penalty to the first node in same 5649 * distance group to make it round-robin. 5650 */ 5651 if (node_distance(local_node, node) != 5652 node_distance(local_node, prev_node)) 5653 node_load[node] = load; 5654 5655 node_order[nr_nodes++] = node; 5656 prev_node = node; 5657 load--; 5658 } 5659 5660 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5661 build_thisnode_zonelists(pgdat); 5662 } 5663 5664 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5665 /* 5666 * Return node id of node used for "local" allocations. 5667 * I.e., first node id of first zone in arg node's generic zonelist. 5668 * Used for initializing percpu 'numa_mem', which is used primarily 5669 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5670 */ 5671 int local_memory_node(int node) 5672 { 5673 struct zoneref *z; 5674 5675 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5676 gfp_zone(GFP_KERNEL), 5677 NULL); 5678 return zone_to_nid(z->zone); 5679 } 5680 #endif 5681 5682 static void setup_min_unmapped_ratio(void); 5683 static void setup_min_slab_ratio(void); 5684 #else /* CONFIG_NUMA */ 5685 5686 static void build_zonelists(pg_data_t *pgdat) 5687 { 5688 int node, local_node; 5689 struct zoneref *zonerefs; 5690 int nr_zones; 5691 5692 local_node = pgdat->node_id; 5693 5694 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5695 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5696 zonerefs += nr_zones; 5697 5698 /* 5699 * Now we build the zonelist so that it contains the zones 5700 * of all the other nodes. 5701 * We don't want to pressure a particular node, so when 5702 * building the zones for node N, we make sure that the 5703 * zones coming right after the local ones are those from 5704 * node N+1 (modulo N) 5705 */ 5706 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5707 if (!node_online(node)) 5708 continue; 5709 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5710 zonerefs += nr_zones; 5711 } 5712 for (node = 0; node < local_node; node++) { 5713 if (!node_online(node)) 5714 continue; 5715 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5716 zonerefs += nr_zones; 5717 } 5718 5719 zonerefs->zone = NULL; 5720 zonerefs->zone_idx = 0; 5721 } 5722 5723 #endif /* CONFIG_NUMA */ 5724 5725 /* 5726 * Boot pageset table. One per cpu which is going to be used for all 5727 * zones and all nodes. The parameters will be set in such a way 5728 * that an item put on a list will immediately be handed over to 5729 * the buddy list. This is safe since pageset manipulation is done 5730 * with interrupts disabled. 5731 * 5732 * The boot_pagesets must be kept even after bootup is complete for 5733 * unused processors and/or zones. They do play a role for bootstrapping 5734 * hotplugged processors. 5735 * 5736 * zoneinfo_show() and maybe other functions do 5737 * not check if the processor is online before following the pageset pointer. 5738 * Other parts of the kernel may not check if the zone is available. 5739 */ 5740 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5741 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5742 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5743 5744 static void __build_all_zonelists(void *data) 5745 { 5746 int nid; 5747 int __maybe_unused cpu; 5748 pg_data_t *self = data; 5749 static DEFINE_SPINLOCK(lock); 5750 5751 spin_lock(&lock); 5752 5753 #ifdef CONFIG_NUMA 5754 memset(node_load, 0, sizeof(node_load)); 5755 #endif 5756 5757 /* 5758 * This node is hotadded and no memory is yet present. So just 5759 * building zonelists is fine - no need to touch other nodes. 5760 */ 5761 if (self && !node_online(self->node_id)) { 5762 build_zonelists(self); 5763 } else { 5764 for_each_online_node(nid) { 5765 pg_data_t *pgdat = NODE_DATA(nid); 5766 5767 build_zonelists(pgdat); 5768 } 5769 5770 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5771 /* 5772 * We now know the "local memory node" for each node-- 5773 * i.e., the node of the first zone in the generic zonelist. 5774 * Set up numa_mem percpu variable for on-line cpus. During 5775 * boot, only the boot cpu should be on-line; we'll init the 5776 * secondary cpus' numa_mem as they come on-line. During 5777 * node/memory hotplug, we'll fixup all on-line cpus. 5778 */ 5779 for_each_online_cpu(cpu) 5780 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5781 #endif 5782 } 5783 5784 spin_unlock(&lock); 5785 } 5786 5787 static noinline void __init 5788 build_all_zonelists_init(void) 5789 { 5790 int cpu; 5791 5792 __build_all_zonelists(NULL); 5793 5794 /* 5795 * Initialize the boot_pagesets that are going to be used 5796 * for bootstrapping processors. The real pagesets for 5797 * each zone will be allocated later when the per cpu 5798 * allocator is available. 5799 * 5800 * boot_pagesets are used also for bootstrapping offline 5801 * cpus if the system is already booted because the pagesets 5802 * are needed to initialize allocators on a specific cpu too. 5803 * F.e. the percpu allocator needs the page allocator which 5804 * needs the percpu allocator in order to allocate its pagesets 5805 * (a chicken-egg dilemma). 5806 */ 5807 for_each_possible_cpu(cpu) 5808 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5809 5810 mminit_verify_zonelist(); 5811 cpuset_init_current_mems_allowed(); 5812 } 5813 5814 /* 5815 * unless system_state == SYSTEM_BOOTING. 5816 * 5817 * __ref due to call of __init annotated helper build_all_zonelists_init 5818 * [protected by SYSTEM_BOOTING]. 5819 */ 5820 void __ref build_all_zonelists(pg_data_t *pgdat) 5821 { 5822 if (system_state == SYSTEM_BOOTING) { 5823 build_all_zonelists_init(); 5824 } else { 5825 __build_all_zonelists(pgdat); 5826 /* cpuset refresh routine should be here */ 5827 } 5828 vm_total_pages = nr_free_pagecache_pages(); 5829 /* 5830 * Disable grouping by mobility if the number of pages in the 5831 * system is too low to allow the mechanism to work. It would be 5832 * more accurate, but expensive to check per-zone. This check is 5833 * made on memory-hotadd so a system can start with mobility 5834 * disabled and enable it later 5835 */ 5836 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5837 page_group_by_mobility_disabled = 1; 5838 else 5839 page_group_by_mobility_disabled = 0; 5840 5841 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5842 nr_online_nodes, 5843 page_group_by_mobility_disabled ? "off" : "on", 5844 vm_total_pages); 5845 #ifdef CONFIG_NUMA 5846 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5847 #endif 5848 } 5849 5850 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5851 static bool __meminit 5852 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5853 { 5854 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 5855 static struct memblock_region *r; 5856 5857 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5858 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5859 for_each_memblock(memory, r) { 5860 if (*pfn < memblock_region_memory_end_pfn(r)) 5861 break; 5862 } 5863 } 5864 if (*pfn >= memblock_region_memory_base_pfn(r) && 5865 memblock_is_mirror(r)) { 5866 *pfn = memblock_region_memory_end_pfn(r); 5867 return true; 5868 } 5869 } 5870 #endif 5871 return false; 5872 } 5873 5874 /* 5875 * Initially all pages are reserved - free ones are freed 5876 * up by memblock_free_all() once the early boot process is 5877 * done. Non-atomic initialization, single-pass. 5878 */ 5879 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5880 unsigned long start_pfn, enum memmap_context context, 5881 struct vmem_altmap *altmap) 5882 { 5883 unsigned long pfn, end_pfn = start_pfn + size; 5884 struct page *page; 5885 5886 if (highest_memmap_pfn < end_pfn - 1) 5887 highest_memmap_pfn = end_pfn - 1; 5888 5889 #ifdef CONFIG_ZONE_DEVICE 5890 /* 5891 * Honor reservation requested by the driver for this ZONE_DEVICE 5892 * memory. We limit the total number of pages to initialize to just 5893 * those that might contain the memory mapping. We will defer the 5894 * ZONE_DEVICE page initialization until after we have released 5895 * the hotplug lock. 5896 */ 5897 if (zone == ZONE_DEVICE) { 5898 if (!altmap) 5899 return; 5900 5901 if (start_pfn == altmap->base_pfn) 5902 start_pfn += altmap->reserve; 5903 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5904 } 5905 #endif 5906 5907 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5908 /* 5909 * There can be holes in boot-time mem_map[]s handed to this 5910 * function. They do not exist on hotplugged memory. 5911 */ 5912 if (context == MEMMAP_EARLY) { 5913 if (!early_pfn_valid(pfn)) 5914 continue; 5915 if (!early_pfn_in_nid(pfn, nid)) 5916 continue; 5917 if (overlap_memmap_init(zone, &pfn)) 5918 continue; 5919 if (defer_init(nid, pfn, end_pfn)) 5920 break; 5921 } 5922 5923 page = pfn_to_page(pfn); 5924 __init_single_page(page, pfn, zone, nid); 5925 if (context == MEMMAP_HOTPLUG) 5926 __SetPageReserved(page); 5927 5928 /* 5929 * Mark the block movable so that blocks are reserved for 5930 * movable at startup. This will force kernel allocations 5931 * to reserve their blocks rather than leaking throughout 5932 * the address space during boot when many long-lived 5933 * kernel allocations are made. 5934 * 5935 * bitmap is created for zone's valid pfn range. but memmap 5936 * can be created for invalid pages (for alignment) 5937 * check here not to call set_pageblock_migratetype() against 5938 * pfn out of zone. 5939 */ 5940 if (!(pfn & (pageblock_nr_pages - 1))) { 5941 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 5942 cond_resched(); 5943 } 5944 } 5945 } 5946 5947 #ifdef CONFIG_ZONE_DEVICE 5948 void __ref memmap_init_zone_device(struct zone *zone, 5949 unsigned long start_pfn, 5950 unsigned long size, 5951 struct dev_pagemap *pgmap) 5952 { 5953 unsigned long pfn, end_pfn = start_pfn + size; 5954 struct pglist_data *pgdat = zone->zone_pgdat; 5955 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 5956 unsigned long zone_idx = zone_idx(zone); 5957 unsigned long start = jiffies; 5958 int nid = pgdat->node_id; 5959 5960 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 5961 return; 5962 5963 /* 5964 * The call to memmap_init_zone should have already taken care 5965 * of the pages reserved for the memmap, so we can just jump to 5966 * the end of that region and start processing the device pages. 5967 */ 5968 if (altmap) { 5969 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 5970 size = end_pfn - start_pfn; 5971 } 5972 5973 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 5974 struct page *page = pfn_to_page(pfn); 5975 5976 __init_single_page(page, pfn, zone_idx, nid); 5977 5978 /* 5979 * Mark page reserved as it will need to wait for onlining 5980 * phase for it to be fully associated with a zone. 5981 * 5982 * We can use the non-atomic __set_bit operation for setting 5983 * the flag as we are still initializing the pages. 5984 */ 5985 __SetPageReserved(page); 5986 5987 /* 5988 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 5989 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 5990 * ever freed or placed on a driver-private list. 5991 */ 5992 page->pgmap = pgmap; 5993 page->zone_device_data = NULL; 5994 5995 /* 5996 * Mark the block movable so that blocks are reserved for 5997 * movable at startup. This will force kernel allocations 5998 * to reserve their blocks rather than leaking throughout 5999 * the address space during boot when many long-lived 6000 * kernel allocations are made. 6001 * 6002 * bitmap is created for zone's valid pfn range. but memmap 6003 * can be created for invalid pages (for alignment) 6004 * check here not to call set_pageblock_migratetype() against 6005 * pfn out of zone. 6006 * 6007 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6008 * because this is done early in section_activate() 6009 */ 6010 if (!(pfn & (pageblock_nr_pages - 1))) { 6011 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6012 cond_resched(); 6013 } 6014 } 6015 6016 pr_info("%s initialised %lu pages in %ums\n", __func__, 6017 size, jiffies_to_msecs(jiffies - start)); 6018 } 6019 6020 #endif 6021 static void __meminit zone_init_free_lists(struct zone *zone) 6022 { 6023 unsigned int order, t; 6024 for_each_migratetype_order(order, t) { 6025 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6026 zone->free_area[order].nr_free = 0; 6027 } 6028 } 6029 6030 void __meminit __weak memmap_init(unsigned long size, int nid, 6031 unsigned long zone, unsigned long start_pfn) 6032 { 6033 memmap_init_zone(size, nid, zone, start_pfn, MEMMAP_EARLY, NULL); 6034 } 6035 6036 static int zone_batchsize(struct zone *zone) 6037 { 6038 #ifdef CONFIG_MMU 6039 int batch; 6040 6041 /* 6042 * The per-cpu-pages pools are set to around 1000th of the 6043 * size of the zone. 6044 */ 6045 batch = zone_managed_pages(zone) / 1024; 6046 /* But no more than a meg. */ 6047 if (batch * PAGE_SIZE > 1024 * 1024) 6048 batch = (1024 * 1024) / PAGE_SIZE; 6049 batch /= 4; /* We effectively *= 4 below */ 6050 if (batch < 1) 6051 batch = 1; 6052 6053 /* 6054 * Clamp the batch to a 2^n - 1 value. Having a power 6055 * of 2 value was found to be more likely to have 6056 * suboptimal cache aliasing properties in some cases. 6057 * 6058 * For example if 2 tasks are alternately allocating 6059 * batches of pages, one task can end up with a lot 6060 * of pages of one half of the possible page colors 6061 * and the other with pages of the other colors. 6062 */ 6063 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6064 6065 return batch; 6066 6067 #else 6068 /* The deferral and batching of frees should be suppressed under NOMMU 6069 * conditions. 6070 * 6071 * The problem is that NOMMU needs to be able to allocate large chunks 6072 * of contiguous memory as there's no hardware page translation to 6073 * assemble apparent contiguous memory from discontiguous pages. 6074 * 6075 * Queueing large contiguous runs of pages for batching, however, 6076 * causes the pages to actually be freed in smaller chunks. As there 6077 * can be a significant delay between the individual batches being 6078 * recycled, this leads to the once large chunks of space being 6079 * fragmented and becoming unavailable for high-order allocations. 6080 */ 6081 return 0; 6082 #endif 6083 } 6084 6085 /* 6086 * pcp->high and pcp->batch values are related and dependent on one another: 6087 * ->batch must never be higher then ->high. 6088 * The following function updates them in a safe manner without read side 6089 * locking. 6090 * 6091 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6092 * those fields changing asynchronously (acording the the above rule). 6093 * 6094 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6095 * outside of boot time (or some other assurance that no concurrent updaters 6096 * exist). 6097 */ 6098 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6099 unsigned long batch) 6100 { 6101 /* start with a fail safe value for batch */ 6102 pcp->batch = 1; 6103 smp_wmb(); 6104 6105 /* Update high, then batch, in order */ 6106 pcp->high = high; 6107 smp_wmb(); 6108 6109 pcp->batch = batch; 6110 } 6111 6112 /* a companion to pageset_set_high() */ 6113 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6114 { 6115 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6116 } 6117 6118 static void pageset_init(struct per_cpu_pageset *p) 6119 { 6120 struct per_cpu_pages *pcp; 6121 int migratetype; 6122 6123 memset(p, 0, sizeof(*p)); 6124 6125 pcp = &p->pcp; 6126 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6127 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6128 } 6129 6130 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6131 { 6132 pageset_init(p); 6133 pageset_set_batch(p, batch); 6134 } 6135 6136 /* 6137 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6138 * to the value high for the pageset p. 6139 */ 6140 static void pageset_set_high(struct per_cpu_pageset *p, 6141 unsigned long high) 6142 { 6143 unsigned long batch = max(1UL, high / 4); 6144 if ((high / 4) > (PAGE_SHIFT * 8)) 6145 batch = PAGE_SHIFT * 8; 6146 6147 pageset_update(&p->pcp, high, batch); 6148 } 6149 6150 static void pageset_set_high_and_batch(struct zone *zone, 6151 struct per_cpu_pageset *pcp) 6152 { 6153 if (percpu_pagelist_fraction) 6154 pageset_set_high(pcp, 6155 (zone_managed_pages(zone) / 6156 percpu_pagelist_fraction)); 6157 else 6158 pageset_set_batch(pcp, zone_batchsize(zone)); 6159 } 6160 6161 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6162 { 6163 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6164 6165 pageset_init(pcp); 6166 pageset_set_high_and_batch(zone, pcp); 6167 } 6168 6169 void __meminit setup_zone_pageset(struct zone *zone) 6170 { 6171 int cpu; 6172 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6173 for_each_possible_cpu(cpu) 6174 zone_pageset_init(zone, cpu); 6175 } 6176 6177 /* 6178 * Allocate per cpu pagesets and initialize them. 6179 * Before this call only boot pagesets were available. 6180 */ 6181 void __init setup_per_cpu_pageset(void) 6182 { 6183 struct pglist_data *pgdat; 6184 struct zone *zone; 6185 6186 for_each_populated_zone(zone) 6187 setup_zone_pageset(zone); 6188 6189 for_each_online_pgdat(pgdat) 6190 pgdat->per_cpu_nodestats = 6191 alloc_percpu(struct per_cpu_nodestat); 6192 } 6193 6194 static __meminit void zone_pcp_init(struct zone *zone) 6195 { 6196 /* 6197 * per cpu subsystem is not up at this point. The following code 6198 * relies on the ability of the linker to provide the 6199 * offset of a (static) per cpu variable into the per cpu area. 6200 */ 6201 zone->pageset = &boot_pageset; 6202 6203 if (populated_zone(zone)) 6204 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6205 zone->name, zone->present_pages, 6206 zone_batchsize(zone)); 6207 } 6208 6209 void __meminit init_currently_empty_zone(struct zone *zone, 6210 unsigned long zone_start_pfn, 6211 unsigned long size) 6212 { 6213 struct pglist_data *pgdat = zone->zone_pgdat; 6214 int zone_idx = zone_idx(zone) + 1; 6215 6216 if (zone_idx > pgdat->nr_zones) 6217 pgdat->nr_zones = zone_idx; 6218 6219 zone->zone_start_pfn = zone_start_pfn; 6220 6221 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6222 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6223 pgdat->node_id, 6224 (unsigned long)zone_idx(zone), 6225 zone_start_pfn, (zone_start_pfn + size)); 6226 6227 zone_init_free_lists(zone); 6228 zone->initialized = 1; 6229 } 6230 6231 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6232 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 6233 6234 /* 6235 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 6236 */ 6237 int __meminit __early_pfn_to_nid(unsigned long pfn, 6238 struct mminit_pfnnid_cache *state) 6239 { 6240 unsigned long start_pfn, end_pfn; 6241 int nid; 6242 6243 if (state->last_start <= pfn && pfn < state->last_end) 6244 return state->last_nid; 6245 6246 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 6247 if (nid != NUMA_NO_NODE) { 6248 state->last_start = start_pfn; 6249 state->last_end = end_pfn; 6250 state->last_nid = nid; 6251 } 6252 6253 return nid; 6254 } 6255 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 6256 6257 /** 6258 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range 6259 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 6260 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid 6261 * 6262 * If an architecture guarantees that all ranges registered contain no holes 6263 * and may be freed, this this function may be used instead of calling 6264 * memblock_free_early_nid() manually. 6265 */ 6266 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 6267 { 6268 unsigned long start_pfn, end_pfn; 6269 int i, this_nid; 6270 6271 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 6272 start_pfn = min(start_pfn, max_low_pfn); 6273 end_pfn = min(end_pfn, max_low_pfn); 6274 6275 if (start_pfn < end_pfn) 6276 memblock_free_early_nid(PFN_PHYS(start_pfn), 6277 (end_pfn - start_pfn) << PAGE_SHIFT, 6278 this_nid); 6279 } 6280 } 6281 6282 /** 6283 * sparse_memory_present_with_active_regions - Call memory_present for each active range 6284 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 6285 * 6286 * If an architecture guarantees that all ranges registered contain no holes and may 6287 * be freed, this function may be used instead of calling memory_present() manually. 6288 */ 6289 void __init sparse_memory_present_with_active_regions(int nid) 6290 { 6291 unsigned long start_pfn, end_pfn; 6292 int i, this_nid; 6293 6294 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 6295 memory_present(this_nid, start_pfn, end_pfn); 6296 } 6297 6298 /** 6299 * get_pfn_range_for_nid - Return the start and end page frames for a node 6300 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6301 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6302 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6303 * 6304 * It returns the start and end page frame of a node based on information 6305 * provided by memblock_set_node(). If called for a node 6306 * with no available memory, a warning is printed and the start and end 6307 * PFNs will be 0. 6308 */ 6309 void __init get_pfn_range_for_nid(unsigned int nid, 6310 unsigned long *start_pfn, unsigned long *end_pfn) 6311 { 6312 unsigned long this_start_pfn, this_end_pfn; 6313 int i; 6314 6315 *start_pfn = -1UL; 6316 *end_pfn = 0; 6317 6318 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6319 *start_pfn = min(*start_pfn, this_start_pfn); 6320 *end_pfn = max(*end_pfn, this_end_pfn); 6321 } 6322 6323 if (*start_pfn == -1UL) 6324 *start_pfn = 0; 6325 } 6326 6327 /* 6328 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6329 * assumption is made that zones within a node are ordered in monotonic 6330 * increasing memory addresses so that the "highest" populated zone is used 6331 */ 6332 static void __init find_usable_zone_for_movable(void) 6333 { 6334 int zone_index; 6335 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6336 if (zone_index == ZONE_MOVABLE) 6337 continue; 6338 6339 if (arch_zone_highest_possible_pfn[zone_index] > 6340 arch_zone_lowest_possible_pfn[zone_index]) 6341 break; 6342 } 6343 6344 VM_BUG_ON(zone_index == -1); 6345 movable_zone = zone_index; 6346 } 6347 6348 /* 6349 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6350 * because it is sized independent of architecture. Unlike the other zones, 6351 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6352 * in each node depending on the size of each node and how evenly kernelcore 6353 * is distributed. This helper function adjusts the zone ranges 6354 * provided by the architecture for a given node by using the end of the 6355 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6356 * zones within a node are in order of monotonic increases memory addresses 6357 */ 6358 static void __init adjust_zone_range_for_zone_movable(int nid, 6359 unsigned long zone_type, 6360 unsigned long node_start_pfn, 6361 unsigned long node_end_pfn, 6362 unsigned long *zone_start_pfn, 6363 unsigned long *zone_end_pfn) 6364 { 6365 /* Only adjust if ZONE_MOVABLE is on this node */ 6366 if (zone_movable_pfn[nid]) { 6367 /* Size ZONE_MOVABLE */ 6368 if (zone_type == ZONE_MOVABLE) { 6369 *zone_start_pfn = zone_movable_pfn[nid]; 6370 *zone_end_pfn = min(node_end_pfn, 6371 arch_zone_highest_possible_pfn[movable_zone]); 6372 6373 /* Adjust for ZONE_MOVABLE starting within this range */ 6374 } else if (!mirrored_kernelcore && 6375 *zone_start_pfn < zone_movable_pfn[nid] && 6376 *zone_end_pfn > zone_movable_pfn[nid]) { 6377 *zone_end_pfn = zone_movable_pfn[nid]; 6378 6379 /* Check if this whole range is within ZONE_MOVABLE */ 6380 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6381 *zone_start_pfn = *zone_end_pfn; 6382 } 6383 } 6384 6385 /* 6386 * Return the number of pages a zone spans in a node, including holes 6387 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6388 */ 6389 static unsigned long __init zone_spanned_pages_in_node(int nid, 6390 unsigned long zone_type, 6391 unsigned long node_start_pfn, 6392 unsigned long node_end_pfn, 6393 unsigned long *zone_start_pfn, 6394 unsigned long *zone_end_pfn, 6395 unsigned long *ignored) 6396 { 6397 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6398 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6399 /* When hotadd a new node from cpu_up(), the node should be empty */ 6400 if (!node_start_pfn && !node_end_pfn) 6401 return 0; 6402 6403 /* Get the start and end of the zone */ 6404 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6405 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6406 adjust_zone_range_for_zone_movable(nid, zone_type, 6407 node_start_pfn, node_end_pfn, 6408 zone_start_pfn, zone_end_pfn); 6409 6410 /* Check that this node has pages within the zone's required range */ 6411 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6412 return 0; 6413 6414 /* Move the zone boundaries inside the node if necessary */ 6415 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6416 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6417 6418 /* Return the spanned pages */ 6419 return *zone_end_pfn - *zone_start_pfn; 6420 } 6421 6422 /* 6423 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6424 * then all holes in the requested range will be accounted for. 6425 */ 6426 unsigned long __init __absent_pages_in_range(int nid, 6427 unsigned long range_start_pfn, 6428 unsigned long range_end_pfn) 6429 { 6430 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6431 unsigned long start_pfn, end_pfn; 6432 int i; 6433 6434 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6435 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6436 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6437 nr_absent -= end_pfn - start_pfn; 6438 } 6439 return nr_absent; 6440 } 6441 6442 /** 6443 * absent_pages_in_range - Return number of page frames in holes within a range 6444 * @start_pfn: The start PFN to start searching for holes 6445 * @end_pfn: The end PFN to stop searching for holes 6446 * 6447 * Return: the number of pages frames in memory holes within a range. 6448 */ 6449 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6450 unsigned long end_pfn) 6451 { 6452 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6453 } 6454 6455 /* Return the number of page frames in holes in a zone on a node */ 6456 static unsigned long __init zone_absent_pages_in_node(int nid, 6457 unsigned long zone_type, 6458 unsigned long node_start_pfn, 6459 unsigned long node_end_pfn, 6460 unsigned long *ignored) 6461 { 6462 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6463 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6464 unsigned long zone_start_pfn, zone_end_pfn; 6465 unsigned long nr_absent; 6466 6467 /* When hotadd a new node from cpu_up(), the node should be empty */ 6468 if (!node_start_pfn && !node_end_pfn) 6469 return 0; 6470 6471 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6472 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6473 6474 adjust_zone_range_for_zone_movable(nid, zone_type, 6475 node_start_pfn, node_end_pfn, 6476 &zone_start_pfn, &zone_end_pfn); 6477 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6478 6479 /* 6480 * ZONE_MOVABLE handling. 6481 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6482 * and vice versa. 6483 */ 6484 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6485 unsigned long start_pfn, end_pfn; 6486 struct memblock_region *r; 6487 6488 for_each_memblock(memory, r) { 6489 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6490 zone_start_pfn, zone_end_pfn); 6491 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6492 zone_start_pfn, zone_end_pfn); 6493 6494 if (zone_type == ZONE_MOVABLE && 6495 memblock_is_mirror(r)) 6496 nr_absent += end_pfn - start_pfn; 6497 6498 if (zone_type == ZONE_NORMAL && 6499 !memblock_is_mirror(r)) 6500 nr_absent += end_pfn - start_pfn; 6501 } 6502 } 6503 6504 return nr_absent; 6505 } 6506 6507 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6508 static inline unsigned long __init zone_spanned_pages_in_node(int nid, 6509 unsigned long zone_type, 6510 unsigned long node_start_pfn, 6511 unsigned long node_end_pfn, 6512 unsigned long *zone_start_pfn, 6513 unsigned long *zone_end_pfn, 6514 unsigned long *zones_size) 6515 { 6516 unsigned int zone; 6517 6518 *zone_start_pfn = node_start_pfn; 6519 for (zone = 0; zone < zone_type; zone++) 6520 *zone_start_pfn += zones_size[zone]; 6521 6522 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type]; 6523 6524 return zones_size[zone_type]; 6525 } 6526 6527 static inline unsigned long __init zone_absent_pages_in_node(int nid, 6528 unsigned long zone_type, 6529 unsigned long node_start_pfn, 6530 unsigned long node_end_pfn, 6531 unsigned long *zholes_size) 6532 { 6533 if (!zholes_size) 6534 return 0; 6535 6536 return zholes_size[zone_type]; 6537 } 6538 6539 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6540 6541 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6542 unsigned long node_start_pfn, 6543 unsigned long node_end_pfn, 6544 unsigned long *zones_size, 6545 unsigned long *zholes_size) 6546 { 6547 unsigned long realtotalpages = 0, totalpages = 0; 6548 enum zone_type i; 6549 6550 for (i = 0; i < MAX_NR_ZONES; i++) { 6551 struct zone *zone = pgdat->node_zones + i; 6552 unsigned long zone_start_pfn, zone_end_pfn; 6553 unsigned long size, real_size; 6554 6555 size = zone_spanned_pages_in_node(pgdat->node_id, i, 6556 node_start_pfn, 6557 node_end_pfn, 6558 &zone_start_pfn, 6559 &zone_end_pfn, 6560 zones_size); 6561 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i, 6562 node_start_pfn, node_end_pfn, 6563 zholes_size); 6564 if (size) 6565 zone->zone_start_pfn = zone_start_pfn; 6566 else 6567 zone->zone_start_pfn = 0; 6568 zone->spanned_pages = size; 6569 zone->present_pages = real_size; 6570 6571 totalpages += size; 6572 realtotalpages += real_size; 6573 } 6574 6575 pgdat->node_spanned_pages = totalpages; 6576 pgdat->node_present_pages = realtotalpages; 6577 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6578 realtotalpages); 6579 } 6580 6581 #ifndef CONFIG_SPARSEMEM 6582 /* 6583 * Calculate the size of the zone->blockflags rounded to an unsigned long 6584 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6585 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6586 * round what is now in bits to nearest long in bits, then return it in 6587 * bytes. 6588 */ 6589 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6590 { 6591 unsigned long usemapsize; 6592 6593 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6594 usemapsize = roundup(zonesize, pageblock_nr_pages); 6595 usemapsize = usemapsize >> pageblock_order; 6596 usemapsize *= NR_PAGEBLOCK_BITS; 6597 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6598 6599 return usemapsize / 8; 6600 } 6601 6602 static void __ref setup_usemap(struct pglist_data *pgdat, 6603 struct zone *zone, 6604 unsigned long zone_start_pfn, 6605 unsigned long zonesize) 6606 { 6607 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6608 zone->pageblock_flags = NULL; 6609 if (usemapsize) { 6610 zone->pageblock_flags = 6611 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6612 pgdat->node_id); 6613 if (!zone->pageblock_flags) 6614 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6615 usemapsize, zone->name, pgdat->node_id); 6616 } 6617 } 6618 #else 6619 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6620 unsigned long zone_start_pfn, unsigned long zonesize) {} 6621 #endif /* CONFIG_SPARSEMEM */ 6622 6623 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6624 6625 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6626 void __init set_pageblock_order(void) 6627 { 6628 unsigned int order; 6629 6630 /* Check that pageblock_nr_pages has not already been setup */ 6631 if (pageblock_order) 6632 return; 6633 6634 if (HPAGE_SHIFT > PAGE_SHIFT) 6635 order = HUGETLB_PAGE_ORDER; 6636 else 6637 order = MAX_ORDER - 1; 6638 6639 /* 6640 * Assume the largest contiguous order of interest is a huge page. 6641 * This value may be variable depending on boot parameters on IA64 and 6642 * powerpc. 6643 */ 6644 pageblock_order = order; 6645 } 6646 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6647 6648 /* 6649 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6650 * is unused as pageblock_order is set at compile-time. See 6651 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6652 * the kernel config 6653 */ 6654 void __init set_pageblock_order(void) 6655 { 6656 } 6657 6658 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6659 6660 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6661 unsigned long present_pages) 6662 { 6663 unsigned long pages = spanned_pages; 6664 6665 /* 6666 * Provide a more accurate estimation if there are holes within 6667 * the zone and SPARSEMEM is in use. If there are holes within the 6668 * zone, each populated memory region may cost us one or two extra 6669 * memmap pages due to alignment because memmap pages for each 6670 * populated regions may not be naturally aligned on page boundary. 6671 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6672 */ 6673 if (spanned_pages > present_pages + (present_pages >> 4) && 6674 IS_ENABLED(CONFIG_SPARSEMEM)) 6675 pages = present_pages; 6676 6677 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6678 } 6679 6680 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6681 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6682 { 6683 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6684 6685 spin_lock_init(&ds_queue->split_queue_lock); 6686 INIT_LIST_HEAD(&ds_queue->split_queue); 6687 ds_queue->split_queue_len = 0; 6688 } 6689 #else 6690 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6691 #endif 6692 6693 #ifdef CONFIG_COMPACTION 6694 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6695 { 6696 init_waitqueue_head(&pgdat->kcompactd_wait); 6697 } 6698 #else 6699 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6700 #endif 6701 6702 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6703 { 6704 pgdat_resize_init(pgdat); 6705 6706 pgdat_init_split_queue(pgdat); 6707 pgdat_init_kcompactd(pgdat); 6708 6709 init_waitqueue_head(&pgdat->kswapd_wait); 6710 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6711 6712 pgdat_page_ext_init(pgdat); 6713 spin_lock_init(&pgdat->lru_lock); 6714 lruvec_init(node_lruvec(pgdat)); 6715 } 6716 6717 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6718 unsigned long remaining_pages) 6719 { 6720 atomic_long_set(&zone->managed_pages, remaining_pages); 6721 zone_set_nid(zone, nid); 6722 zone->name = zone_names[idx]; 6723 zone->zone_pgdat = NODE_DATA(nid); 6724 spin_lock_init(&zone->lock); 6725 zone_seqlock_init(zone); 6726 zone_pcp_init(zone); 6727 } 6728 6729 /* 6730 * Set up the zone data structures 6731 * - init pgdat internals 6732 * - init all zones belonging to this node 6733 * 6734 * NOTE: this function is only called during memory hotplug 6735 */ 6736 #ifdef CONFIG_MEMORY_HOTPLUG 6737 void __ref free_area_init_core_hotplug(int nid) 6738 { 6739 enum zone_type z; 6740 pg_data_t *pgdat = NODE_DATA(nid); 6741 6742 pgdat_init_internals(pgdat); 6743 for (z = 0; z < MAX_NR_ZONES; z++) 6744 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6745 } 6746 #endif 6747 6748 /* 6749 * Set up the zone data structures: 6750 * - mark all pages reserved 6751 * - mark all memory queues empty 6752 * - clear the memory bitmaps 6753 * 6754 * NOTE: pgdat should get zeroed by caller. 6755 * NOTE: this function is only called during early init. 6756 */ 6757 static void __init free_area_init_core(struct pglist_data *pgdat) 6758 { 6759 enum zone_type j; 6760 int nid = pgdat->node_id; 6761 6762 pgdat_init_internals(pgdat); 6763 pgdat->per_cpu_nodestats = &boot_nodestats; 6764 6765 for (j = 0; j < MAX_NR_ZONES; j++) { 6766 struct zone *zone = pgdat->node_zones + j; 6767 unsigned long size, freesize, memmap_pages; 6768 unsigned long zone_start_pfn = zone->zone_start_pfn; 6769 6770 size = zone->spanned_pages; 6771 freesize = zone->present_pages; 6772 6773 /* 6774 * Adjust freesize so that it accounts for how much memory 6775 * is used by this zone for memmap. This affects the watermark 6776 * and per-cpu initialisations 6777 */ 6778 memmap_pages = calc_memmap_size(size, freesize); 6779 if (!is_highmem_idx(j)) { 6780 if (freesize >= memmap_pages) { 6781 freesize -= memmap_pages; 6782 if (memmap_pages) 6783 printk(KERN_DEBUG 6784 " %s zone: %lu pages used for memmap\n", 6785 zone_names[j], memmap_pages); 6786 } else 6787 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6788 zone_names[j], memmap_pages, freesize); 6789 } 6790 6791 /* Account for reserved pages */ 6792 if (j == 0 && freesize > dma_reserve) { 6793 freesize -= dma_reserve; 6794 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6795 zone_names[0], dma_reserve); 6796 } 6797 6798 if (!is_highmem_idx(j)) 6799 nr_kernel_pages += freesize; 6800 /* Charge for highmem memmap if there are enough kernel pages */ 6801 else if (nr_kernel_pages > memmap_pages * 2) 6802 nr_kernel_pages -= memmap_pages; 6803 nr_all_pages += freesize; 6804 6805 /* 6806 * Set an approximate value for lowmem here, it will be adjusted 6807 * when the bootmem allocator frees pages into the buddy system. 6808 * And all highmem pages will be managed by the buddy system. 6809 */ 6810 zone_init_internals(zone, j, nid, freesize); 6811 6812 if (!size) 6813 continue; 6814 6815 set_pageblock_order(); 6816 setup_usemap(pgdat, zone, zone_start_pfn, size); 6817 init_currently_empty_zone(zone, zone_start_pfn, size); 6818 memmap_init(size, nid, j, zone_start_pfn); 6819 } 6820 } 6821 6822 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6823 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6824 { 6825 unsigned long __maybe_unused start = 0; 6826 unsigned long __maybe_unused offset = 0; 6827 6828 /* Skip empty nodes */ 6829 if (!pgdat->node_spanned_pages) 6830 return; 6831 6832 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6833 offset = pgdat->node_start_pfn - start; 6834 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6835 if (!pgdat->node_mem_map) { 6836 unsigned long size, end; 6837 struct page *map; 6838 6839 /* 6840 * The zone's endpoints aren't required to be MAX_ORDER 6841 * aligned but the node_mem_map endpoints must be in order 6842 * for the buddy allocator to function correctly. 6843 */ 6844 end = pgdat_end_pfn(pgdat); 6845 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6846 size = (end - start) * sizeof(struct page); 6847 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6848 pgdat->node_id); 6849 if (!map) 6850 panic("Failed to allocate %ld bytes for node %d memory map\n", 6851 size, pgdat->node_id); 6852 pgdat->node_mem_map = map + offset; 6853 } 6854 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6855 __func__, pgdat->node_id, (unsigned long)pgdat, 6856 (unsigned long)pgdat->node_mem_map); 6857 #ifndef CONFIG_NEED_MULTIPLE_NODES 6858 /* 6859 * With no DISCONTIG, the global mem_map is just set as node 0's 6860 */ 6861 if (pgdat == NODE_DATA(0)) { 6862 mem_map = NODE_DATA(0)->node_mem_map; 6863 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM) 6864 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6865 mem_map -= offset; 6866 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 6867 } 6868 #endif 6869 } 6870 #else 6871 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6872 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6873 6874 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6875 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6876 { 6877 pgdat->first_deferred_pfn = ULONG_MAX; 6878 } 6879 #else 6880 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6881 #endif 6882 6883 void __init free_area_init_node(int nid, unsigned long *zones_size, 6884 unsigned long node_start_pfn, 6885 unsigned long *zholes_size) 6886 { 6887 pg_data_t *pgdat = NODE_DATA(nid); 6888 unsigned long start_pfn = 0; 6889 unsigned long end_pfn = 0; 6890 6891 /* pg_data_t should be reset to zero when it's allocated */ 6892 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx); 6893 6894 pgdat->node_id = nid; 6895 pgdat->node_start_pfn = node_start_pfn; 6896 pgdat->per_cpu_nodestats = NULL; 6897 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6898 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6899 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6900 (u64)start_pfn << PAGE_SHIFT, 6901 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6902 #else 6903 start_pfn = node_start_pfn; 6904 #endif 6905 calculate_node_totalpages(pgdat, start_pfn, end_pfn, 6906 zones_size, zholes_size); 6907 6908 alloc_node_mem_map(pgdat); 6909 pgdat_set_deferred_range(pgdat); 6910 6911 free_area_init_core(pgdat); 6912 } 6913 6914 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6915 /* 6916 * Zero all valid struct pages in range [spfn, epfn), return number of struct 6917 * pages zeroed 6918 */ 6919 static u64 zero_pfn_range(unsigned long spfn, unsigned long epfn) 6920 { 6921 unsigned long pfn; 6922 u64 pgcnt = 0; 6923 6924 for (pfn = spfn; pfn < epfn; pfn++) { 6925 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6926 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6927 + pageblock_nr_pages - 1; 6928 continue; 6929 } 6930 mm_zero_struct_page(pfn_to_page(pfn)); 6931 pgcnt++; 6932 } 6933 6934 return pgcnt; 6935 } 6936 6937 /* 6938 * Only struct pages that are backed by physical memory are zeroed and 6939 * initialized by going through __init_single_page(). But, there are some 6940 * struct pages which are reserved in memblock allocator and their fields 6941 * may be accessed (for example page_to_pfn() on some configuration accesses 6942 * flags). We must explicitly zero those struct pages. 6943 * 6944 * This function also addresses a similar issue where struct pages are left 6945 * uninitialized because the physical address range is not covered by 6946 * memblock.memory or memblock.reserved. That could happen when memblock 6947 * layout is manually configured via memmap=. 6948 */ 6949 void __init zero_resv_unavail(void) 6950 { 6951 phys_addr_t start, end; 6952 u64 i, pgcnt; 6953 phys_addr_t next = 0; 6954 6955 /* 6956 * Loop through unavailable ranges not covered by memblock.memory. 6957 */ 6958 pgcnt = 0; 6959 for_each_mem_range(i, &memblock.memory, NULL, 6960 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6961 if (next < start) 6962 pgcnt += zero_pfn_range(PFN_DOWN(next), PFN_UP(start)); 6963 next = end; 6964 } 6965 pgcnt += zero_pfn_range(PFN_DOWN(next), max_pfn); 6966 6967 /* 6968 * Struct pages that do not have backing memory. This could be because 6969 * firmware is using some of this memory, or for some other reasons. 6970 */ 6971 if (pgcnt) 6972 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 6973 } 6974 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 6975 6976 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 6977 6978 #if MAX_NUMNODES > 1 6979 /* 6980 * Figure out the number of possible node ids. 6981 */ 6982 void __init setup_nr_node_ids(void) 6983 { 6984 unsigned int highest; 6985 6986 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 6987 nr_node_ids = highest + 1; 6988 } 6989 #endif 6990 6991 /** 6992 * node_map_pfn_alignment - determine the maximum internode alignment 6993 * 6994 * This function should be called after node map is populated and sorted. 6995 * It calculates the maximum power of two alignment which can distinguish 6996 * all the nodes. 6997 * 6998 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 6999 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7000 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7001 * shifted, 1GiB is enough and this function will indicate so. 7002 * 7003 * This is used to test whether pfn -> nid mapping of the chosen memory 7004 * model has fine enough granularity to avoid incorrect mapping for the 7005 * populated node map. 7006 * 7007 * Return: the determined alignment in pfn's. 0 if there is no alignment 7008 * requirement (single node). 7009 */ 7010 unsigned long __init node_map_pfn_alignment(void) 7011 { 7012 unsigned long accl_mask = 0, last_end = 0; 7013 unsigned long start, end, mask; 7014 int last_nid = NUMA_NO_NODE; 7015 int i, nid; 7016 7017 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7018 if (!start || last_nid < 0 || last_nid == nid) { 7019 last_nid = nid; 7020 last_end = end; 7021 continue; 7022 } 7023 7024 /* 7025 * Start with a mask granular enough to pin-point to the 7026 * start pfn and tick off bits one-by-one until it becomes 7027 * too coarse to separate the current node from the last. 7028 */ 7029 mask = ~((1 << __ffs(start)) - 1); 7030 while (mask && last_end <= (start & (mask << 1))) 7031 mask <<= 1; 7032 7033 /* accumulate all internode masks */ 7034 accl_mask |= mask; 7035 } 7036 7037 /* convert mask to number of pages */ 7038 return ~accl_mask + 1; 7039 } 7040 7041 /* Find the lowest pfn for a node */ 7042 static unsigned long __init find_min_pfn_for_node(int nid) 7043 { 7044 unsigned long min_pfn = ULONG_MAX; 7045 unsigned long start_pfn; 7046 int i; 7047 7048 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 7049 min_pfn = min(min_pfn, start_pfn); 7050 7051 if (min_pfn == ULONG_MAX) { 7052 pr_warn("Could not find start_pfn for node %d\n", nid); 7053 return 0; 7054 } 7055 7056 return min_pfn; 7057 } 7058 7059 /** 7060 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7061 * 7062 * Return: the minimum PFN based on information provided via 7063 * memblock_set_node(). 7064 */ 7065 unsigned long __init find_min_pfn_with_active_regions(void) 7066 { 7067 return find_min_pfn_for_node(MAX_NUMNODES); 7068 } 7069 7070 /* 7071 * early_calculate_totalpages() 7072 * Sum pages in active regions for movable zone. 7073 * Populate N_MEMORY for calculating usable_nodes. 7074 */ 7075 static unsigned long __init early_calculate_totalpages(void) 7076 { 7077 unsigned long totalpages = 0; 7078 unsigned long start_pfn, end_pfn; 7079 int i, nid; 7080 7081 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7082 unsigned long pages = end_pfn - start_pfn; 7083 7084 totalpages += pages; 7085 if (pages) 7086 node_set_state(nid, N_MEMORY); 7087 } 7088 return totalpages; 7089 } 7090 7091 /* 7092 * Find the PFN the Movable zone begins in each node. Kernel memory 7093 * is spread evenly between nodes as long as the nodes have enough 7094 * memory. When they don't, some nodes will have more kernelcore than 7095 * others 7096 */ 7097 static void __init find_zone_movable_pfns_for_nodes(void) 7098 { 7099 int i, nid; 7100 unsigned long usable_startpfn; 7101 unsigned long kernelcore_node, kernelcore_remaining; 7102 /* save the state before borrow the nodemask */ 7103 nodemask_t saved_node_state = node_states[N_MEMORY]; 7104 unsigned long totalpages = early_calculate_totalpages(); 7105 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7106 struct memblock_region *r; 7107 7108 /* Need to find movable_zone earlier when movable_node is specified. */ 7109 find_usable_zone_for_movable(); 7110 7111 /* 7112 * If movable_node is specified, ignore kernelcore and movablecore 7113 * options. 7114 */ 7115 if (movable_node_is_enabled()) { 7116 for_each_memblock(memory, r) { 7117 if (!memblock_is_hotpluggable(r)) 7118 continue; 7119 7120 nid = r->nid; 7121 7122 usable_startpfn = PFN_DOWN(r->base); 7123 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7124 min(usable_startpfn, zone_movable_pfn[nid]) : 7125 usable_startpfn; 7126 } 7127 7128 goto out2; 7129 } 7130 7131 /* 7132 * If kernelcore=mirror is specified, ignore movablecore option 7133 */ 7134 if (mirrored_kernelcore) { 7135 bool mem_below_4gb_not_mirrored = false; 7136 7137 for_each_memblock(memory, r) { 7138 if (memblock_is_mirror(r)) 7139 continue; 7140 7141 nid = r->nid; 7142 7143 usable_startpfn = memblock_region_memory_base_pfn(r); 7144 7145 if (usable_startpfn < 0x100000) { 7146 mem_below_4gb_not_mirrored = true; 7147 continue; 7148 } 7149 7150 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7151 min(usable_startpfn, zone_movable_pfn[nid]) : 7152 usable_startpfn; 7153 } 7154 7155 if (mem_below_4gb_not_mirrored) 7156 pr_warn("This configuration results in unmirrored kernel memory."); 7157 7158 goto out2; 7159 } 7160 7161 /* 7162 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7163 * amount of necessary memory. 7164 */ 7165 if (required_kernelcore_percent) 7166 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7167 10000UL; 7168 if (required_movablecore_percent) 7169 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7170 10000UL; 7171 7172 /* 7173 * If movablecore= was specified, calculate what size of 7174 * kernelcore that corresponds so that memory usable for 7175 * any allocation type is evenly spread. If both kernelcore 7176 * and movablecore are specified, then the value of kernelcore 7177 * will be used for required_kernelcore if it's greater than 7178 * what movablecore would have allowed. 7179 */ 7180 if (required_movablecore) { 7181 unsigned long corepages; 7182 7183 /* 7184 * Round-up so that ZONE_MOVABLE is at least as large as what 7185 * was requested by the user 7186 */ 7187 required_movablecore = 7188 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7189 required_movablecore = min(totalpages, required_movablecore); 7190 corepages = totalpages - required_movablecore; 7191 7192 required_kernelcore = max(required_kernelcore, corepages); 7193 } 7194 7195 /* 7196 * If kernelcore was not specified or kernelcore size is larger 7197 * than totalpages, there is no ZONE_MOVABLE. 7198 */ 7199 if (!required_kernelcore || required_kernelcore >= totalpages) 7200 goto out; 7201 7202 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7203 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7204 7205 restart: 7206 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7207 kernelcore_node = required_kernelcore / usable_nodes; 7208 for_each_node_state(nid, N_MEMORY) { 7209 unsigned long start_pfn, end_pfn; 7210 7211 /* 7212 * Recalculate kernelcore_node if the division per node 7213 * now exceeds what is necessary to satisfy the requested 7214 * amount of memory for the kernel 7215 */ 7216 if (required_kernelcore < kernelcore_node) 7217 kernelcore_node = required_kernelcore / usable_nodes; 7218 7219 /* 7220 * As the map is walked, we track how much memory is usable 7221 * by the kernel using kernelcore_remaining. When it is 7222 * 0, the rest of the node is usable by ZONE_MOVABLE 7223 */ 7224 kernelcore_remaining = kernelcore_node; 7225 7226 /* Go through each range of PFNs within this node */ 7227 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7228 unsigned long size_pages; 7229 7230 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7231 if (start_pfn >= end_pfn) 7232 continue; 7233 7234 /* Account for what is only usable for kernelcore */ 7235 if (start_pfn < usable_startpfn) { 7236 unsigned long kernel_pages; 7237 kernel_pages = min(end_pfn, usable_startpfn) 7238 - start_pfn; 7239 7240 kernelcore_remaining -= min(kernel_pages, 7241 kernelcore_remaining); 7242 required_kernelcore -= min(kernel_pages, 7243 required_kernelcore); 7244 7245 /* Continue if range is now fully accounted */ 7246 if (end_pfn <= usable_startpfn) { 7247 7248 /* 7249 * Push zone_movable_pfn to the end so 7250 * that if we have to rebalance 7251 * kernelcore across nodes, we will 7252 * not double account here 7253 */ 7254 zone_movable_pfn[nid] = end_pfn; 7255 continue; 7256 } 7257 start_pfn = usable_startpfn; 7258 } 7259 7260 /* 7261 * The usable PFN range for ZONE_MOVABLE is from 7262 * start_pfn->end_pfn. Calculate size_pages as the 7263 * number of pages used as kernelcore 7264 */ 7265 size_pages = end_pfn - start_pfn; 7266 if (size_pages > kernelcore_remaining) 7267 size_pages = kernelcore_remaining; 7268 zone_movable_pfn[nid] = start_pfn + size_pages; 7269 7270 /* 7271 * Some kernelcore has been met, update counts and 7272 * break if the kernelcore for this node has been 7273 * satisfied 7274 */ 7275 required_kernelcore -= min(required_kernelcore, 7276 size_pages); 7277 kernelcore_remaining -= size_pages; 7278 if (!kernelcore_remaining) 7279 break; 7280 } 7281 } 7282 7283 /* 7284 * If there is still required_kernelcore, we do another pass with one 7285 * less node in the count. This will push zone_movable_pfn[nid] further 7286 * along on the nodes that still have memory until kernelcore is 7287 * satisfied 7288 */ 7289 usable_nodes--; 7290 if (usable_nodes && required_kernelcore > usable_nodes) 7291 goto restart; 7292 7293 out2: 7294 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7295 for (nid = 0; nid < MAX_NUMNODES; nid++) 7296 zone_movable_pfn[nid] = 7297 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7298 7299 out: 7300 /* restore the node_state */ 7301 node_states[N_MEMORY] = saved_node_state; 7302 } 7303 7304 /* Any regular or high memory on that node ? */ 7305 static void check_for_memory(pg_data_t *pgdat, int nid) 7306 { 7307 enum zone_type zone_type; 7308 7309 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7310 struct zone *zone = &pgdat->node_zones[zone_type]; 7311 if (populated_zone(zone)) { 7312 if (IS_ENABLED(CONFIG_HIGHMEM)) 7313 node_set_state(nid, N_HIGH_MEMORY); 7314 if (zone_type <= ZONE_NORMAL) 7315 node_set_state(nid, N_NORMAL_MEMORY); 7316 break; 7317 } 7318 } 7319 } 7320 7321 /** 7322 * free_area_init_nodes - Initialise all pg_data_t and zone data 7323 * @max_zone_pfn: an array of max PFNs for each zone 7324 * 7325 * This will call free_area_init_node() for each active node in the system. 7326 * Using the page ranges provided by memblock_set_node(), the size of each 7327 * zone in each node and their holes is calculated. If the maximum PFN 7328 * between two adjacent zones match, it is assumed that the zone is empty. 7329 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7330 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7331 * starts where the previous one ended. For example, ZONE_DMA32 starts 7332 * at arch_max_dma_pfn. 7333 */ 7334 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 7335 { 7336 unsigned long start_pfn, end_pfn; 7337 int i, nid; 7338 7339 /* Record where the zone boundaries are */ 7340 memset(arch_zone_lowest_possible_pfn, 0, 7341 sizeof(arch_zone_lowest_possible_pfn)); 7342 memset(arch_zone_highest_possible_pfn, 0, 7343 sizeof(arch_zone_highest_possible_pfn)); 7344 7345 start_pfn = find_min_pfn_with_active_regions(); 7346 7347 for (i = 0; i < MAX_NR_ZONES; i++) { 7348 if (i == ZONE_MOVABLE) 7349 continue; 7350 7351 end_pfn = max(max_zone_pfn[i], start_pfn); 7352 arch_zone_lowest_possible_pfn[i] = start_pfn; 7353 arch_zone_highest_possible_pfn[i] = end_pfn; 7354 7355 start_pfn = end_pfn; 7356 } 7357 7358 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7359 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7360 find_zone_movable_pfns_for_nodes(); 7361 7362 /* Print out the zone ranges */ 7363 pr_info("Zone ranges:\n"); 7364 for (i = 0; i < MAX_NR_ZONES; i++) { 7365 if (i == ZONE_MOVABLE) 7366 continue; 7367 pr_info(" %-8s ", zone_names[i]); 7368 if (arch_zone_lowest_possible_pfn[i] == 7369 arch_zone_highest_possible_pfn[i]) 7370 pr_cont("empty\n"); 7371 else 7372 pr_cont("[mem %#018Lx-%#018Lx]\n", 7373 (u64)arch_zone_lowest_possible_pfn[i] 7374 << PAGE_SHIFT, 7375 ((u64)arch_zone_highest_possible_pfn[i] 7376 << PAGE_SHIFT) - 1); 7377 } 7378 7379 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7380 pr_info("Movable zone start for each node\n"); 7381 for (i = 0; i < MAX_NUMNODES; i++) { 7382 if (zone_movable_pfn[i]) 7383 pr_info(" Node %d: %#018Lx\n", i, 7384 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7385 } 7386 7387 /* 7388 * Print out the early node map, and initialize the 7389 * subsection-map relative to active online memory ranges to 7390 * enable future "sub-section" extensions of the memory map. 7391 */ 7392 pr_info("Early memory node ranges\n"); 7393 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7394 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7395 (u64)start_pfn << PAGE_SHIFT, 7396 ((u64)end_pfn << PAGE_SHIFT) - 1); 7397 subsection_map_init(start_pfn, end_pfn - start_pfn); 7398 } 7399 7400 /* Initialise every node */ 7401 mminit_verify_pageflags_layout(); 7402 setup_nr_node_ids(); 7403 zero_resv_unavail(); 7404 for_each_online_node(nid) { 7405 pg_data_t *pgdat = NODE_DATA(nid); 7406 free_area_init_node(nid, NULL, 7407 find_min_pfn_for_node(nid), NULL); 7408 7409 /* Any memory on that node */ 7410 if (pgdat->node_present_pages) 7411 node_set_state(nid, N_MEMORY); 7412 check_for_memory(pgdat, nid); 7413 } 7414 } 7415 7416 static int __init cmdline_parse_core(char *p, unsigned long *core, 7417 unsigned long *percent) 7418 { 7419 unsigned long long coremem; 7420 char *endptr; 7421 7422 if (!p) 7423 return -EINVAL; 7424 7425 /* Value may be a percentage of total memory, otherwise bytes */ 7426 coremem = simple_strtoull(p, &endptr, 0); 7427 if (*endptr == '%') { 7428 /* Paranoid check for percent values greater than 100 */ 7429 WARN_ON(coremem > 100); 7430 7431 *percent = coremem; 7432 } else { 7433 coremem = memparse(p, &p); 7434 /* Paranoid check that UL is enough for the coremem value */ 7435 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7436 7437 *core = coremem >> PAGE_SHIFT; 7438 *percent = 0UL; 7439 } 7440 return 0; 7441 } 7442 7443 /* 7444 * kernelcore=size sets the amount of memory for use for allocations that 7445 * cannot be reclaimed or migrated. 7446 */ 7447 static int __init cmdline_parse_kernelcore(char *p) 7448 { 7449 /* parse kernelcore=mirror */ 7450 if (parse_option_str(p, "mirror")) { 7451 mirrored_kernelcore = true; 7452 return 0; 7453 } 7454 7455 return cmdline_parse_core(p, &required_kernelcore, 7456 &required_kernelcore_percent); 7457 } 7458 7459 /* 7460 * movablecore=size sets the amount of memory for use for allocations that 7461 * can be reclaimed or migrated. 7462 */ 7463 static int __init cmdline_parse_movablecore(char *p) 7464 { 7465 return cmdline_parse_core(p, &required_movablecore, 7466 &required_movablecore_percent); 7467 } 7468 7469 early_param("kernelcore", cmdline_parse_kernelcore); 7470 early_param("movablecore", cmdline_parse_movablecore); 7471 7472 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 7473 7474 void adjust_managed_page_count(struct page *page, long count) 7475 { 7476 atomic_long_add(count, &page_zone(page)->managed_pages); 7477 totalram_pages_add(count); 7478 #ifdef CONFIG_HIGHMEM 7479 if (PageHighMem(page)) 7480 totalhigh_pages_add(count); 7481 #endif 7482 } 7483 EXPORT_SYMBOL(adjust_managed_page_count); 7484 7485 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7486 { 7487 void *pos; 7488 unsigned long pages = 0; 7489 7490 start = (void *)PAGE_ALIGN((unsigned long)start); 7491 end = (void *)((unsigned long)end & PAGE_MASK); 7492 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7493 struct page *page = virt_to_page(pos); 7494 void *direct_map_addr; 7495 7496 /* 7497 * 'direct_map_addr' might be different from 'pos' 7498 * because some architectures' virt_to_page() 7499 * work with aliases. Getting the direct map 7500 * address ensures that we get a _writeable_ 7501 * alias for the memset(). 7502 */ 7503 direct_map_addr = page_address(page); 7504 if ((unsigned int)poison <= 0xFF) 7505 memset(direct_map_addr, poison, PAGE_SIZE); 7506 7507 free_reserved_page(page); 7508 } 7509 7510 if (pages && s) 7511 pr_info("Freeing %s memory: %ldK\n", 7512 s, pages << (PAGE_SHIFT - 10)); 7513 7514 return pages; 7515 } 7516 7517 #ifdef CONFIG_HIGHMEM 7518 void free_highmem_page(struct page *page) 7519 { 7520 __free_reserved_page(page); 7521 totalram_pages_inc(); 7522 atomic_long_inc(&page_zone(page)->managed_pages); 7523 totalhigh_pages_inc(); 7524 } 7525 #endif 7526 7527 7528 void __init mem_init_print_info(const char *str) 7529 { 7530 unsigned long physpages, codesize, datasize, rosize, bss_size; 7531 unsigned long init_code_size, init_data_size; 7532 7533 physpages = get_num_physpages(); 7534 codesize = _etext - _stext; 7535 datasize = _edata - _sdata; 7536 rosize = __end_rodata - __start_rodata; 7537 bss_size = __bss_stop - __bss_start; 7538 init_data_size = __init_end - __init_begin; 7539 init_code_size = _einittext - _sinittext; 7540 7541 /* 7542 * Detect special cases and adjust section sizes accordingly: 7543 * 1) .init.* may be embedded into .data sections 7544 * 2) .init.text.* may be out of [__init_begin, __init_end], 7545 * please refer to arch/tile/kernel/vmlinux.lds.S. 7546 * 3) .rodata.* may be embedded into .text or .data sections. 7547 */ 7548 #define adj_init_size(start, end, size, pos, adj) \ 7549 do { \ 7550 if (start <= pos && pos < end && size > adj) \ 7551 size -= adj; \ 7552 } while (0) 7553 7554 adj_init_size(__init_begin, __init_end, init_data_size, 7555 _sinittext, init_code_size); 7556 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7557 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7558 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7559 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7560 7561 #undef adj_init_size 7562 7563 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7564 #ifdef CONFIG_HIGHMEM 7565 ", %luK highmem" 7566 #endif 7567 "%s%s)\n", 7568 nr_free_pages() << (PAGE_SHIFT - 10), 7569 physpages << (PAGE_SHIFT - 10), 7570 codesize >> 10, datasize >> 10, rosize >> 10, 7571 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7572 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7573 totalcma_pages << (PAGE_SHIFT - 10), 7574 #ifdef CONFIG_HIGHMEM 7575 totalhigh_pages() << (PAGE_SHIFT - 10), 7576 #endif 7577 str ? ", " : "", str ? str : ""); 7578 } 7579 7580 /** 7581 * set_dma_reserve - set the specified number of pages reserved in the first zone 7582 * @new_dma_reserve: The number of pages to mark reserved 7583 * 7584 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7585 * In the DMA zone, a significant percentage may be consumed by kernel image 7586 * and other unfreeable allocations which can skew the watermarks badly. This 7587 * function may optionally be used to account for unfreeable pages in the 7588 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7589 * smaller per-cpu batchsize. 7590 */ 7591 void __init set_dma_reserve(unsigned long new_dma_reserve) 7592 { 7593 dma_reserve = new_dma_reserve; 7594 } 7595 7596 void __init free_area_init(unsigned long *zones_size) 7597 { 7598 zero_resv_unavail(); 7599 free_area_init_node(0, zones_size, 7600 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 7601 } 7602 7603 static int page_alloc_cpu_dead(unsigned int cpu) 7604 { 7605 7606 lru_add_drain_cpu(cpu); 7607 drain_pages(cpu); 7608 7609 /* 7610 * Spill the event counters of the dead processor 7611 * into the current processors event counters. 7612 * This artificially elevates the count of the current 7613 * processor. 7614 */ 7615 vm_events_fold_cpu(cpu); 7616 7617 /* 7618 * Zero the differential counters of the dead processor 7619 * so that the vm statistics are consistent. 7620 * 7621 * This is only okay since the processor is dead and cannot 7622 * race with what we are doing. 7623 */ 7624 cpu_vm_stats_fold(cpu); 7625 return 0; 7626 } 7627 7628 #ifdef CONFIG_NUMA 7629 int hashdist = HASHDIST_DEFAULT; 7630 7631 static int __init set_hashdist(char *str) 7632 { 7633 if (!str) 7634 return 0; 7635 hashdist = simple_strtoul(str, &str, 0); 7636 return 1; 7637 } 7638 __setup("hashdist=", set_hashdist); 7639 #endif 7640 7641 void __init page_alloc_init(void) 7642 { 7643 int ret; 7644 7645 #ifdef CONFIG_NUMA 7646 if (num_node_state(N_MEMORY) == 1) 7647 hashdist = 0; 7648 #endif 7649 7650 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7651 "mm/page_alloc:dead", NULL, 7652 page_alloc_cpu_dead); 7653 WARN_ON(ret < 0); 7654 } 7655 7656 /* 7657 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7658 * or min_free_kbytes changes. 7659 */ 7660 static void calculate_totalreserve_pages(void) 7661 { 7662 struct pglist_data *pgdat; 7663 unsigned long reserve_pages = 0; 7664 enum zone_type i, j; 7665 7666 for_each_online_pgdat(pgdat) { 7667 7668 pgdat->totalreserve_pages = 0; 7669 7670 for (i = 0; i < MAX_NR_ZONES; i++) { 7671 struct zone *zone = pgdat->node_zones + i; 7672 long max = 0; 7673 unsigned long managed_pages = zone_managed_pages(zone); 7674 7675 /* Find valid and maximum lowmem_reserve in the zone */ 7676 for (j = i; j < MAX_NR_ZONES; j++) { 7677 if (zone->lowmem_reserve[j] > max) 7678 max = zone->lowmem_reserve[j]; 7679 } 7680 7681 /* we treat the high watermark as reserved pages. */ 7682 max += high_wmark_pages(zone); 7683 7684 if (max > managed_pages) 7685 max = managed_pages; 7686 7687 pgdat->totalreserve_pages += max; 7688 7689 reserve_pages += max; 7690 } 7691 } 7692 totalreserve_pages = reserve_pages; 7693 } 7694 7695 /* 7696 * setup_per_zone_lowmem_reserve - called whenever 7697 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7698 * has a correct pages reserved value, so an adequate number of 7699 * pages are left in the zone after a successful __alloc_pages(). 7700 */ 7701 static void setup_per_zone_lowmem_reserve(void) 7702 { 7703 struct pglist_data *pgdat; 7704 enum zone_type j, idx; 7705 7706 for_each_online_pgdat(pgdat) { 7707 for (j = 0; j < MAX_NR_ZONES; j++) { 7708 struct zone *zone = pgdat->node_zones + j; 7709 unsigned long managed_pages = zone_managed_pages(zone); 7710 7711 zone->lowmem_reserve[j] = 0; 7712 7713 idx = j; 7714 while (idx) { 7715 struct zone *lower_zone; 7716 7717 idx--; 7718 lower_zone = pgdat->node_zones + idx; 7719 7720 if (sysctl_lowmem_reserve_ratio[idx] < 1) { 7721 sysctl_lowmem_reserve_ratio[idx] = 0; 7722 lower_zone->lowmem_reserve[j] = 0; 7723 } else { 7724 lower_zone->lowmem_reserve[j] = 7725 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7726 } 7727 managed_pages += zone_managed_pages(lower_zone); 7728 } 7729 } 7730 } 7731 7732 /* update totalreserve_pages */ 7733 calculate_totalreserve_pages(); 7734 } 7735 7736 static void __setup_per_zone_wmarks(void) 7737 { 7738 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7739 unsigned long lowmem_pages = 0; 7740 struct zone *zone; 7741 unsigned long flags; 7742 7743 /* Calculate total number of !ZONE_HIGHMEM pages */ 7744 for_each_zone(zone) { 7745 if (!is_highmem(zone)) 7746 lowmem_pages += zone_managed_pages(zone); 7747 } 7748 7749 for_each_zone(zone) { 7750 u64 tmp; 7751 7752 spin_lock_irqsave(&zone->lock, flags); 7753 tmp = (u64)pages_min * zone_managed_pages(zone); 7754 do_div(tmp, lowmem_pages); 7755 if (is_highmem(zone)) { 7756 /* 7757 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7758 * need highmem pages, so cap pages_min to a small 7759 * value here. 7760 * 7761 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7762 * deltas control async page reclaim, and so should 7763 * not be capped for highmem. 7764 */ 7765 unsigned long min_pages; 7766 7767 min_pages = zone_managed_pages(zone) / 1024; 7768 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7769 zone->_watermark[WMARK_MIN] = min_pages; 7770 } else { 7771 /* 7772 * If it's a lowmem zone, reserve a number of pages 7773 * proportionate to the zone's size. 7774 */ 7775 zone->_watermark[WMARK_MIN] = tmp; 7776 } 7777 7778 /* 7779 * Set the kswapd watermarks distance according to the 7780 * scale factor in proportion to available memory, but 7781 * ensure a minimum size on small systems. 7782 */ 7783 tmp = max_t(u64, tmp >> 2, 7784 mult_frac(zone_managed_pages(zone), 7785 watermark_scale_factor, 10000)); 7786 7787 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7788 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7789 zone->watermark_boost = 0; 7790 7791 spin_unlock_irqrestore(&zone->lock, flags); 7792 } 7793 7794 /* update totalreserve_pages */ 7795 calculate_totalreserve_pages(); 7796 } 7797 7798 /** 7799 * setup_per_zone_wmarks - called when min_free_kbytes changes 7800 * or when memory is hot-{added|removed} 7801 * 7802 * Ensures that the watermark[min,low,high] values for each zone are set 7803 * correctly with respect to min_free_kbytes. 7804 */ 7805 void setup_per_zone_wmarks(void) 7806 { 7807 static DEFINE_SPINLOCK(lock); 7808 7809 spin_lock(&lock); 7810 __setup_per_zone_wmarks(); 7811 spin_unlock(&lock); 7812 } 7813 7814 /* 7815 * Initialise min_free_kbytes. 7816 * 7817 * For small machines we want it small (128k min). For large machines 7818 * we want it large (64MB max). But it is not linear, because network 7819 * bandwidth does not increase linearly with machine size. We use 7820 * 7821 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7822 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7823 * 7824 * which yields 7825 * 7826 * 16MB: 512k 7827 * 32MB: 724k 7828 * 64MB: 1024k 7829 * 128MB: 1448k 7830 * 256MB: 2048k 7831 * 512MB: 2896k 7832 * 1024MB: 4096k 7833 * 2048MB: 5792k 7834 * 4096MB: 8192k 7835 * 8192MB: 11584k 7836 * 16384MB: 16384k 7837 */ 7838 int __meminit init_per_zone_wmark_min(void) 7839 { 7840 unsigned long lowmem_kbytes; 7841 int new_min_free_kbytes; 7842 7843 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7844 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7845 7846 if (new_min_free_kbytes > user_min_free_kbytes) { 7847 min_free_kbytes = new_min_free_kbytes; 7848 if (min_free_kbytes < 128) 7849 min_free_kbytes = 128; 7850 if (min_free_kbytes > 65536) 7851 min_free_kbytes = 65536; 7852 } else { 7853 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7854 new_min_free_kbytes, user_min_free_kbytes); 7855 } 7856 setup_per_zone_wmarks(); 7857 refresh_zone_stat_thresholds(); 7858 setup_per_zone_lowmem_reserve(); 7859 7860 #ifdef CONFIG_NUMA 7861 setup_min_unmapped_ratio(); 7862 setup_min_slab_ratio(); 7863 #endif 7864 7865 return 0; 7866 } 7867 core_initcall(init_per_zone_wmark_min) 7868 7869 /* 7870 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7871 * that we can call two helper functions whenever min_free_kbytes 7872 * changes. 7873 */ 7874 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7875 void __user *buffer, size_t *length, loff_t *ppos) 7876 { 7877 int rc; 7878 7879 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7880 if (rc) 7881 return rc; 7882 7883 if (write) { 7884 user_min_free_kbytes = min_free_kbytes; 7885 setup_per_zone_wmarks(); 7886 } 7887 return 0; 7888 } 7889 7890 int watermark_boost_factor_sysctl_handler(struct ctl_table *table, int write, 7891 void __user *buffer, size_t *length, loff_t *ppos) 7892 { 7893 int rc; 7894 7895 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7896 if (rc) 7897 return rc; 7898 7899 return 0; 7900 } 7901 7902 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7903 void __user *buffer, size_t *length, loff_t *ppos) 7904 { 7905 int rc; 7906 7907 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7908 if (rc) 7909 return rc; 7910 7911 if (write) 7912 setup_per_zone_wmarks(); 7913 7914 return 0; 7915 } 7916 7917 #ifdef CONFIG_NUMA 7918 static void setup_min_unmapped_ratio(void) 7919 { 7920 pg_data_t *pgdat; 7921 struct zone *zone; 7922 7923 for_each_online_pgdat(pgdat) 7924 pgdat->min_unmapped_pages = 0; 7925 7926 for_each_zone(zone) 7927 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7928 sysctl_min_unmapped_ratio) / 100; 7929 } 7930 7931 7932 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7933 void __user *buffer, size_t *length, loff_t *ppos) 7934 { 7935 int rc; 7936 7937 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7938 if (rc) 7939 return rc; 7940 7941 setup_min_unmapped_ratio(); 7942 7943 return 0; 7944 } 7945 7946 static void setup_min_slab_ratio(void) 7947 { 7948 pg_data_t *pgdat; 7949 struct zone *zone; 7950 7951 for_each_online_pgdat(pgdat) 7952 pgdat->min_slab_pages = 0; 7953 7954 for_each_zone(zone) 7955 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7956 sysctl_min_slab_ratio) / 100; 7957 } 7958 7959 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7960 void __user *buffer, size_t *length, loff_t *ppos) 7961 { 7962 int rc; 7963 7964 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7965 if (rc) 7966 return rc; 7967 7968 setup_min_slab_ratio(); 7969 7970 return 0; 7971 } 7972 #endif 7973 7974 /* 7975 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7976 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7977 * whenever sysctl_lowmem_reserve_ratio changes. 7978 * 7979 * The reserve ratio obviously has absolutely no relation with the 7980 * minimum watermarks. The lowmem reserve ratio can only make sense 7981 * if in function of the boot time zone sizes. 7982 */ 7983 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 7984 void __user *buffer, size_t *length, loff_t *ppos) 7985 { 7986 proc_dointvec_minmax(table, write, buffer, length, ppos); 7987 setup_per_zone_lowmem_reserve(); 7988 return 0; 7989 } 7990 7991 /* 7992 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 7993 * cpu. It is the fraction of total pages in each zone that a hot per cpu 7994 * pagelist can have before it gets flushed back to buddy allocator. 7995 */ 7996 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 7997 void __user *buffer, size_t *length, loff_t *ppos) 7998 { 7999 struct zone *zone; 8000 int old_percpu_pagelist_fraction; 8001 int ret; 8002 8003 mutex_lock(&pcp_batch_high_lock); 8004 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8005 8006 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8007 if (!write || ret < 0) 8008 goto out; 8009 8010 /* Sanity checking to avoid pcp imbalance */ 8011 if (percpu_pagelist_fraction && 8012 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8013 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8014 ret = -EINVAL; 8015 goto out; 8016 } 8017 8018 /* No change? */ 8019 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8020 goto out; 8021 8022 for_each_populated_zone(zone) { 8023 unsigned int cpu; 8024 8025 for_each_possible_cpu(cpu) 8026 pageset_set_high_and_batch(zone, 8027 per_cpu_ptr(zone->pageset, cpu)); 8028 } 8029 out: 8030 mutex_unlock(&pcp_batch_high_lock); 8031 return ret; 8032 } 8033 8034 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8035 /* 8036 * Returns the number of pages that arch has reserved but 8037 * is not known to alloc_large_system_hash(). 8038 */ 8039 static unsigned long __init arch_reserved_kernel_pages(void) 8040 { 8041 return 0; 8042 } 8043 #endif 8044 8045 /* 8046 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8047 * machines. As memory size is increased the scale is also increased but at 8048 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8049 * quadruples the scale is increased by one, which means the size of hash table 8050 * only doubles, instead of quadrupling as well. 8051 * Because 32-bit systems cannot have large physical memory, where this scaling 8052 * makes sense, it is disabled on such platforms. 8053 */ 8054 #if __BITS_PER_LONG > 32 8055 #define ADAPT_SCALE_BASE (64ul << 30) 8056 #define ADAPT_SCALE_SHIFT 2 8057 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8058 #endif 8059 8060 /* 8061 * allocate a large system hash table from bootmem 8062 * - it is assumed that the hash table must contain an exact power-of-2 8063 * quantity of entries 8064 * - limit is the number of hash buckets, not the total allocation size 8065 */ 8066 void *__init alloc_large_system_hash(const char *tablename, 8067 unsigned long bucketsize, 8068 unsigned long numentries, 8069 int scale, 8070 int flags, 8071 unsigned int *_hash_shift, 8072 unsigned int *_hash_mask, 8073 unsigned long low_limit, 8074 unsigned long high_limit) 8075 { 8076 unsigned long long max = high_limit; 8077 unsigned long log2qty, size; 8078 void *table = NULL; 8079 gfp_t gfp_flags; 8080 bool virt; 8081 8082 /* allow the kernel cmdline to have a say */ 8083 if (!numentries) { 8084 /* round applicable memory size up to nearest megabyte */ 8085 numentries = nr_kernel_pages; 8086 numentries -= arch_reserved_kernel_pages(); 8087 8088 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8089 if (PAGE_SHIFT < 20) 8090 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8091 8092 #if __BITS_PER_LONG > 32 8093 if (!high_limit) { 8094 unsigned long adapt; 8095 8096 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8097 adapt <<= ADAPT_SCALE_SHIFT) 8098 scale++; 8099 } 8100 #endif 8101 8102 /* limit to 1 bucket per 2^scale bytes of low memory */ 8103 if (scale > PAGE_SHIFT) 8104 numentries >>= (scale - PAGE_SHIFT); 8105 else 8106 numentries <<= (PAGE_SHIFT - scale); 8107 8108 /* Make sure we've got at least a 0-order allocation.. */ 8109 if (unlikely(flags & HASH_SMALL)) { 8110 /* Makes no sense without HASH_EARLY */ 8111 WARN_ON(!(flags & HASH_EARLY)); 8112 if (!(numentries >> *_hash_shift)) { 8113 numentries = 1UL << *_hash_shift; 8114 BUG_ON(!numentries); 8115 } 8116 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8117 numentries = PAGE_SIZE / bucketsize; 8118 } 8119 numentries = roundup_pow_of_two(numentries); 8120 8121 /* limit allocation size to 1/16 total memory by default */ 8122 if (max == 0) { 8123 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8124 do_div(max, bucketsize); 8125 } 8126 max = min(max, 0x80000000ULL); 8127 8128 if (numentries < low_limit) 8129 numentries = low_limit; 8130 if (numentries > max) 8131 numentries = max; 8132 8133 log2qty = ilog2(numentries); 8134 8135 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8136 do { 8137 virt = false; 8138 size = bucketsize << log2qty; 8139 if (flags & HASH_EARLY) { 8140 if (flags & HASH_ZERO) 8141 table = memblock_alloc(size, SMP_CACHE_BYTES); 8142 else 8143 table = memblock_alloc_raw(size, 8144 SMP_CACHE_BYTES); 8145 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8146 table = __vmalloc(size, gfp_flags, PAGE_KERNEL); 8147 virt = true; 8148 } else { 8149 /* 8150 * If bucketsize is not a power-of-two, we may free 8151 * some pages at the end of hash table which 8152 * alloc_pages_exact() automatically does 8153 */ 8154 table = alloc_pages_exact(size, gfp_flags); 8155 kmemleak_alloc(table, size, 1, gfp_flags); 8156 } 8157 } while (!table && size > PAGE_SIZE && --log2qty); 8158 8159 if (!table) 8160 panic("Failed to allocate %s hash table\n", tablename); 8161 8162 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8163 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8164 virt ? "vmalloc" : "linear"); 8165 8166 if (_hash_shift) 8167 *_hash_shift = log2qty; 8168 if (_hash_mask) 8169 *_hash_mask = (1 << log2qty) - 1; 8170 8171 return table; 8172 } 8173 8174 /* 8175 * This function checks whether pageblock includes unmovable pages or not. 8176 * If @count is not zero, it is okay to include less @count unmovable pages 8177 * 8178 * PageLRU check without isolation or lru_lock could race so that 8179 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8180 * check without lock_page also may miss some movable non-lru pages at 8181 * race condition. So you can't expect this function should be exact. 8182 */ 8183 bool has_unmovable_pages(struct zone *zone, struct page *page, int count, 8184 int migratetype, int flags) 8185 { 8186 unsigned long found; 8187 unsigned long iter = 0; 8188 unsigned long pfn = page_to_pfn(page); 8189 const char *reason = "unmovable page"; 8190 8191 /* 8192 * TODO we could make this much more efficient by not checking every 8193 * page in the range if we know all of them are in MOVABLE_ZONE and 8194 * that the movable zone guarantees that pages are migratable but 8195 * the later is not the case right now unfortunatelly. E.g. movablecore 8196 * can still lead to having bootmem allocations in zone_movable. 8197 */ 8198 8199 if (is_migrate_cma_page(page)) { 8200 /* 8201 * CMA allocations (alloc_contig_range) really need to mark 8202 * isolate CMA pageblocks even when they are not movable in fact 8203 * so consider them movable here. 8204 */ 8205 if (is_migrate_cma(migratetype)) 8206 return false; 8207 8208 reason = "CMA page"; 8209 goto unmovable; 8210 } 8211 8212 for (found = 0; iter < pageblock_nr_pages; iter++) { 8213 unsigned long check = pfn + iter; 8214 8215 if (!pfn_valid_within(check)) 8216 continue; 8217 8218 page = pfn_to_page(check); 8219 8220 if (PageReserved(page)) 8221 goto unmovable; 8222 8223 /* 8224 * If the zone is movable and we have ruled out all reserved 8225 * pages then it should be reasonably safe to assume the rest 8226 * is movable. 8227 */ 8228 if (zone_idx(zone) == ZONE_MOVABLE) 8229 continue; 8230 8231 /* 8232 * Hugepages are not in LRU lists, but they're movable. 8233 * We need not scan over tail pages because we don't 8234 * handle each tail page individually in migration. 8235 */ 8236 if (PageHuge(page)) { 8237 struct page *head = compound_head(page); 8238 unsigned int skip_pages; 8239 8240 if (!hugepage_migration_supported(page_hstate(head))) 8241 goto unmovable; 8242 8243 skip_pages = compound_nr(head) - (page - head); 8244 iter += skip_pages - 1; 8245 continue; 8246 } 8247 8248 /* 8249 * We can't use page_count without pin a page 8250 * because another CPU can free compound page. 8251 * This check already skips compound tails of THP 8252 * because their page->_refcount is zero at all time. 8253 */ 8254 if (!page_ref_count(page)) { 8255 if (PageBuddy(page)) 8256 iter += (1 << page_order(page)) - 1; 8257 continue; 8258 } 8259 8260 /* 8261 * The HWPoisoned page may be not in buddy system, and 8262 * page_count() is not 0. 8263 */ 8264 if ((flags & SKIP_HWPOISON) && PageHWPoison(page)) 8265 continue; 8266 8267 if (__PageMovable(page)) 8268 continue; 8269 8270 if (!PageLRU(page)) 8271 found++; 8272 /* 8273 * If there are RECLAIMABLE pages, we need to check 8274 * it. But now, memory offline itself doesn't call 8275 * shrink_node_slabs() and it still to be fixed. 8276 */ 8277 /* 8278 * If the page is not RAM, page_count()should be 0. 8279 * we don't need more check. This is an _used_ not-movable page. 8280 * 8281 * The problematic thing here is PG_reserved pages. PG_reserved 8282 * is set to both of a memory hole page and a _used_ kernel 8283 * page at boot. 8284 */ 8285 if (found > count) 8286 goto unmovable; 8287 } 8288 return false; 8289 unmovable: 8290 WARN_ON_ONCE(zone_idx(zone) == ZONE_MOVABLE); 8291 if (flags & REPORT_FAILURE) 8292 dump_page(pfn_to_page(pfn + iter), reason); 8293 return true; 8294 } 8295 8296 #ifdef CONFIG_CONTIG_ALLOC 8297 static unsigned long pfn_max_align_down(unsigned long pfn) 8298 { 8299 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8300 pageblock_nr_pages) - 1); 8301 } 8302 8303 static unsigned long pfn_max_align_up(unsigned long pfn) 8304 { 8305 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8306 pageblock_nr_pages)); 8307 } 8308 8309 /* [start, end) must belong to a single zone. */ 8310 static int __alloc_contig_migrate_range(struct compact_control *cc, 8311 unsigned long start, unsigned long end) 8312 { 8313 /* This function is based on compact_zone() from compaction.c. */ 8314 unsigned long nr_reclaimed; 8315 unsigned long pfn = start; 8316 unsigned int tries = 0; 8317 int ret = 0; 8318 8319 migrate_prep(); 8320 8321 while (pfn < end || !list_empty(&cc->migratepages)) { 8322 if (fatal_signal_pending(current)) { 8323 ret = -EINTR; 8324 break; 8325 } 8326 8327 if (list_empty(&cc->migratepages)) { 8328 cc->nr_migratepages = 0; 8329 pfn = isolate_migratepages_range(cc, pfn, end); 8330 if (!pfn) { 8331 ret = -EINTR; 8332 break; 8333 } 8334 tries = 0; 8335 } else if (++tries == 5) { 8336 ret = ret < 0 ? ret : -EBUSY; 8337 break; 8338 } 8339 8340 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8341 &cc->migratepages); 8342 cc->nr_migratepages -= nr_reclaimed; 8343 8344 ret = migrate_pages(&cc->migratepages, alloc_migrate_target, 8345 NULL, 0, cc->mode, MR_CONTIG_RANGE); 8346 } 8347 if (ret < 0) { 8348 putback_movable_pages(&cc->migratepages); 8349 return ret; 8350 } 8351 return 0; 8352 } 8353 8354 /** 8355 * alloc_contig_range() -- tries to allocate given range of pages 8356 * @start: start PFN to allocate 8357 * @end: one-past-the-last PFN to allocate 8358 * @migratetype: migratetype of the underlaying pageblocks (either 8359 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8360 * in range must have the same migratetype and it must 8361 * be either of the two. 8362 * @gfp_mask: GFP mask to use during compaction 8363 * 8364 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8365 * aligned. The PFN range must belong to a single zone. 8366 * 8367 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8368 * pageblocks in the range. Once isolated, the pageblocks should not 8369 * be modified by others. 8370 * 8371 * Return: zero on success or negative error code. On success all 8372 * pages which PFN is in [start, end) are allocated for the caller and 8373 * need to be freed with free_contig_range(). 8374 */ 8375 int alloc_contig_range(unsigned long start, unsigned long end, 8376 unsigned migratetype, gfp_t gfp_mask) 8377 { 8378 unsigned long outer_start, outer_end; 8379 unsigned int order; 8380 int ret = 0; 8381 8382 struct compact_control cc = { 8383 .nr_migratepages = 0, 8384 .order = -1, 8385 .zone = page_zone(pfn_to_page(start)), 8386 .mode = MIGRATE_SYNC, 8387 .ignore_skip_hint = true, 8388 .no_set_skip_hint = true, 8389 .gfp_mask = current_gfp_context(gfp_mask), 8390 }; 8391 INIT_LIST_HEAD(&cc.migratepages); 8392 8393 /* 8394 * What we do here is we mark all pageblocks in range as 8395 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8396 * have different sizes, and due to the way page allocator 8397 * work, we align the range to biggest of the two pages so 8398 * that page allocator won't try to merge buddies from 8399 * different pageblocks and change MIGRATE_ISOLATE to some 8400 * other migration type. 8401 * 8402 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8403 * migrate the pages from an unaligned range (ie. pages that 8404 * we are interested in). This will put all the pages in 8405 * range back to page allocator as MIGRATE_ISOLATE. 8406 * 8407 * When this is done, we take the pages in range from page 8408 * allocator removing them from the buddy system. This way 8409 * page allocator will never consider using them. 8410 * 8411 * This lets us mark the pageblocks back as 8412 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8413 * aligned range but not in the unaligned, original range are 8414 * put back to page allocator so that buddy can use them. 8415 */ 8416 8417 ret = start_isolate_page_range(pfn_max_align_down(start), 8418 pfn_max_align_up(end), migratetype, 0); 8419 if (ret < 0) 8420 return ret; 8421 8422 /* 8423 * In case of -EBUSY, we'd like to know which page causes problem. 8424 * So, just fall through. test_pages_isolated() has a tracepoint 8425 * which will report the busy page. 8426 * 8427 * It is possible that busy pages could become available before 8428 * the call to test_pages_isolated, and the range will actually be 8429 * allocated. So, if we fall through be sure to clear ret so that 8430 * -EBUSY is not accidentally used or returned to caller. 8431 */ 8432 ret = __alloc_contig_migrate_range(&cc, start, end); 8433 if (ret && ret != -EBUSY) 8434 goto done; 8435 ret =0; 8436 8437 /* 8438 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8439 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8440 * more, all pages in [start, end) are free in page allocator. 8441 * What we are going to do is to allocate all pages from 8442 * [start, end) (that is remove them from page allocator). 8443 * 8444 * The only problem is that pages at the beginning and at the 8445 * end of interesting range may be not aligned with pages that 8446 * page allocator holds, ie. they can be part of higher order 8447 * pages. Because of this, we reserve the bigger range and 8448 * once this is done free the pages we are not interested in. 8449 * 8450 * We don't have to hold zone->lock here because the pages are 8451 * isolated thus they won't get removed from buddy. 8452 */ 8453 8454 lru_add_drain_all(); 8455 8456 order = 0; 8457 outer_start = start; 8458 while (!PageBuddy(pfn_to_page(outer_start))) { 8459 if (++order >= MAX_ORDER) { 8460 outer_start = start; 8461 break; 8462 } 8463 outer_start &= ~0UL << order; 8464 } 8465 8466 if (outer_start != start) { 8467 order = page_order(pfn_to_page(outer_start)); 8468 8469 /* 8470 * outer_start page could be small order buddy page and 8471 * it doesn't include start page. Adjust outer_start 8472 * in this case to report failed page properly 8473 * on tracepoint in test_pages_isolated() 8474 */ 8475 if (outer_start + (1UL << order) <= start) 8476 outer_start = start; 8477 } 8478 8479 /* Make sure the range is really isolated. */ 8480 if (test_pages_isolated(outer_start, end, false)) { 8481 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8482 __func__, outer_start, end); 8483 ret = -EBUSY; 8484 goto done; 8485 } 8486 8487 /* Grab isolated pages from freelists. */ 8488 outer_end = isolate_freepages_range(&cc, outer_start, end); 8489 if (!outer_end) { 8490 ret = -EBUSY; 8491 goto done; 8492 } 8493 8494 /* Free head and tail (if any) */ 8495 if (start != outer_start) 8496 free_contig_range(outer_start, start - outer_start); 8497 if (end != outer_end) 8498 free_contig_range(end, outer_end - end); 8499 8500 done: 8501 undo_isolate_page_range(pfn_max_align_down(start), 8502 pfn_max_align_up(end), migratetype); 8503 return ret; 8504 } 8505 #endif /* CONFIG_CONTIG_ALLOC */ 8506 8507 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8508 { 8509 unsigned int count = 0; 8510 8511 for (; nr_pages--; pfn++) { 8512 struct page *page = pfn_to_page(pfn); 8513 8514 count += page_count(page) != 1; 8515 __free_page(page); 8516 } 8517 WARN(count != 0, "%d pages are still in use!\n", count); 8518 } 8519 8520 /* 8521 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8522 * page high values need to be recalulated. 8523 */ 8524 void __meminit zone_pcp_update(struct zone *zone) 8525 { 8526 unsigned cpu; 8527 mutex_lock(&pcp_batch_high_lock); 8528 for_each_possible_cpu(cpu) 8529 pageset_set_high_and_batch(zone, 8530 per_cpu_ptr(zone->pageset, cpu)); 8531 mutex_unlock(&pcp_batch_high_lock); 8532 } 8533 8534 void zone_pcp_reset(struct zone *zone) 8535 { 8536 unsigned long flags; 8537 int cpu; 8538 struct per_cpu_pageset *pset; 8539 8540 /* avoid races with drain_pages() */ 8541 local_irq_save(flags); 8542 if (zone->pageset != &boot_pageset) { 8543 for_each_online_cpu(cpu) { 8544 pset = per_cpu_ptr(zone->pageset, cpu); 8545 drain_zonestat(zone, pset); 8546 } 8547 free_percpu(zone->pageset); 8548 zone->pageset = &boot_pageset; 8549 } 8550 local_irq_restore(flags); 8551 } 8552 8553 #ifdef CONFIG_MEMORY_HOTREMOVE 8554 /* 8555 * All pages in the range must be in a single zone and isolated 8556 * before calling this. 8557 */ 8558 unsigned long 8559 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8560 { 8561 struct page *page; 8562 struct zone *zone; 8563 unsigned int order, i; 8564 unsigned long pfn; 8565 unsigned long flags; 8566 unsigned long offlined_pages = 0; 8567 8568 /* find the first valid pfn */ 8569 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8570 if (pfn_valid(pfn)) 8571 break; 8572 if (pfn == end_pfn) 8573 return offlined_pages; 8574 8575 offline_mem_sections(pfn, end_pfn); 8576 zone = page_zone(pfn_to_page(pfn)); 8577 spin_lock_irqsave(&zone->lock, flags); 8578 pfn = start_pfn; 8579 while (pfn < end_pfn) { 8580 if (!pfn_valid(pfn)) { 8581 pfn++; 8582 continue; 8583 } 8584 page = pfn_to_page(pfn); 8585 /* 8586 * The HWPoisoned page may be not in buddy system, and 8587 * page_count() is not 0. 8588 */ 8589 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8590 pfn++; 8591 SetPageReserved(page); 8592 offlined_pages++; 8593 continue; 8594 } 8595 8596 BUG_ON(page_count(page)); 8597 BUG_ON(!PageBuddy(page)); 8598 order = page_order(page); 8599 offlined_pages += 1 << order; 8600 #ifdef CONFIG_DEBUG_VM 8601 pr_info("remove from free list %lx %d %lx\n", 8602 pfn, 1 << order, end_pfn); 8603 #endif 8604 del_page_from_free_area(page, &zone->free_area[order]); 8605 for (i = 0; i < (1 << order); i++) 8606 SetPageReserved((page+i)); 8607 pfn += (1 << order); 8608 } 8609 spin_unlock_irqrestore(&zone->lock, flags); 8610 8611 return offlined_pages; 8612 } 8613 #endif 8614 8615 bool is_free_buddy_page(struct page *page) 8616 { 8617 struct zone *zone = page_zone(page); 8618 unsigned long pfn = page_to_pfn(page); 8619 unsigned long flags; 8620 unsigned int order; 8621 8622 spin_lock_irqsave(&zone->lock, flags); 8623 for (order = 0; order < MAX_ORDER; order++) { 8624 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8625 8626 if (PageBuddy(page_head) && page_order(page_head) >= order) 8627 break; 8628 } 8629 spin_unlock_irqrestore(&zone->lock, flags); 8630 8631 return order < MAX_ORDER; 8632 } 8633 8634 #ifdef CONFIG_MEMORY_FAILURE 8635 /* 8636 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8637 * test is performed under the zone lock to prevent a race against page 8638 * allocation. 8639 */ 8640 bool set_hwpoison_free_buddy_page(struct page *page) 8641 { 8642 struct zone *zone = page_zone(page); 8643 unsigned long pfn = page_to_pfn(page); 8644 unsigned long flags; 8645 unsigned int order; 8646 bool hwpoisoned = false; 8647 8648 spin_lock_irqsave(&zone->lock, flags); 8649 for (order = 0; order < MAX_ORDER; order++) { 8650 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8651 8652 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8653 if (!TestSetPageHWPoison(page)) 8654 hwpoisoned = true; 8655 break; 8656 } 8657 } 8658 spin_unlock_irqrestore(&zone->lock, flags); 8659 8660 return hwpoisoned; 8661 } 8662 #endif 8663