1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/migrate.h> 61 #include <linux/hugetlb.h> 62 #include <linux/sched/rt.h> 63 #include <linux/sched/mm.h> 64 #include <linux/page_owner.h> 65 #include <linux/kthread.h> 66 #include <linux/memcontrol.h> 67 #include <linux/ftrace.h> 68 #include <linux/lockdep.h> 69 #include <linux/nmi.h> 70 #include <linux/psi.h> 71 #include <linux/padata.h> 72 73 #include <asm/sections.h> 74 #include <asm/tlbflush.h> 75 #include <asm/div64.h> 76 #include "internal.h" 77 #include "shuffle.h" 78 #include "page_reporting.h" 79 80 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 81 static DEFINE_MUTEX(pcp_batch_high_lock); 82 #define MIN_PERCPU_PAGELIST_FRACTION (8) 83 84 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 85 DEFINE_PER_CPU(int, numa_node); 86 EXPORT_PER_CPU_SYMBOL(numa_node); 87 #endif 88 89 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 90 91 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 92 /* 93 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 94 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 95 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 96 * defined in <linux/topology.h>. 97 */ 98 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 99 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 100 #endif 101 102 /* work_structs for global per-cpu drains */ 103 struct pcpu_drain { 104 struct zone *zone; 105 struct work_struct work; 106 }; 107 static DEFINE_MUTEX(pcpu_drain_mutex); 108 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 109 110 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 111 volatile unsigned long latent_entropy __latent_entropy; 112 EXPORT_SYMBOL(latent_entropy); 113 #endif 114 115 /* 116 * Array of node states. 117 */ 118 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 119 [N_POSSIBLE] = NODE_MASK_ALL, 120 [N_ONLINE] = { { [0] = 1UL } }, 121 #ifndef CONFIG_NUMA 122 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 123 #ifdef CONFIG_HIGHMEM 124 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 125 #endif 126 [N_MEMORY] = { { [0] = 1UL } }, 127 [N_CPU] = { { [0] = 1UL } }, 128 #endif /* NUMA */ 129 }; 130 EXPORT_SYMBOL(node_states); 131 132 atomic_long_t _totalram_pages __read_mostly; 133 EXPORT_SYMBOL(_totalram_pages); 134 unsigned long totalreserve_pages __read_mostly; 135 unsigned long totalcma_pages __read_mostly; 136 137 int percpu_pagelist_fraction; 138 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 139 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON 140 DEFINE_STATIC_KEY_TRUE(init_on_alloc); 141 #else 142 DEFINE_STATIC_KEY_FALSE(init_on_alloc); 143 #endif 144 EXPORT_SYMBOL(init_on_alloc); 145 146 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON 147 DEFINE_STATIC_KEY_TRUE(init_on_free); 148 #else 149 DEFINE_STATIC_KEY_FALSE(init_on_free); 150 #endif 151 EXPORT_SYMBOL(init_on_free); 152 153 static int __init early_init_on_alloc(char *buf) 154 { 155 int ret; 156 bool bool_result; 157 158 if (!buf) 159 return -EINVAL; 160 ret = kstrtobool(buf, &bool_result); 161 if (bool_result && page_poisoning_enabled()) 162 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n"); 163 if (bool_result) 164 static_branch_enable(&init_on_alloc); 165 else 166 static_branch_disable(&init_on_alloc); 167 return ret; 168 } 169 early_param("init_on_alloc", early_init_on_alloc); 170 171 static int __init early_init_on_free(char *buf) 172 { 173 int ret; 174 bool bool_result; 175 176 if (!buf) 177 return -EINVAL; 178 ret = kstrtobool(buf, &bool_result); 179 if (bool_result && page_poisoning_enabled()) 180 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n"); 181 if (bool_result) 182 static_branch_enable(&init_on_free); 183 else 184 static_branch_disable(&init_on_free); 185 return ret; 186 } 187 early_param("init_on_free", early_init_on_free); 188 189 /* 190 * A cached value of the page's pageblock's migratetype, used when the page is 191 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 192 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 193 * Also the migratetype set in the page does not necessarily match the pcplist 194 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 195 * other index - this ensures that it will be put on the correct CMA freelist. 196 */ 197 static inline int get_pcppage_migratetype(struct page *page) 198 { 199 return page->index; 200 } 201 202 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 203 { 204 page->index = migratetype; 205 } 206 207 #ifdef CONFIG_PM_SLEEP 208 /* 209 * The following functions are used by the suspend/hibernate code to temporarily 210 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 211 * while devices are suspended. To avoid races with the suspend/hibernate code, 212 * they should always be called with system_transition_mutex held 213 * (gfp_allowed_mask also should only be modified with system_transition_mutex 214 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 215 * with that modification). 216 */ 217 218 static gfp_t saved_gfp_mask; 219 220 void pm_restore_gfp_mask(void) 221 { 222 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 223 if (saved_gfp_mask) { 224 gfp_allowed_mask = saved_gfp_mask; 225 saved_gfp_mask = 0; 226 } 227 } 228 229 void pm_restrict_gfp_mask(void) 230 { 231 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 232 WARN_ON(saved_gfp_mask); 233 saved_gfp_mask = gfp_allowed_mask; 234 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 235 } 236 237 bool pm_suspended_storage(void) 238 { 239 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 240 return false; 241 return true; 242 } 243 #endif /* CONFIG_PM_SLEEP */ 244 245 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 246 unsigned int pageblock_order __read_mostly; 247 #endif 248 249 static void __free_pages_ok(struct page *page, unsigned int order); 250 251 /* 252 * results with 256, 32 in the lowmem_reserve sysctl: 253 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 254 * 1G machine -> (16M dma, 784M normal, 224M high) 255 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 256 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 257 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 258 * 259 * TBD: should special case ZONE_DMA32 machines here - in those we normally 260 * don't need any ZONE_NORMAL reservation 261 */ 262 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 263 #ifdef CONFIG_ZONE_DMA 264 [ZONE_DMA] = 256, 265 #endif 266 #ifdef CONFIG_ZONE_DMA32 267 [ZONE_DMA32] = 256, 268 #endif 269 [ZONE_NORMAL] = 32, 270 #ifdef CONFIG_HIGHMEM 271 [ZONE_HIGHMEM] = 0, 272 #endif 273 [ZONE_MOVABLE] = 0, 274 }; 275 276 static char * const zone_names[MAX_NR_ZONES] = { 277 #ifdef CONFIG_ZONE_DMA 278 "DMA", 279 #endif 280 #ifdef CONFIG_ZONE_DMA32 281 "DMA32", 282 #endif 283 "Normal", 284 #ifdef CONFIG_HIGHMEM 285 "HighMem", 286 #endif 287 "Movable", 288 #ifdef CONFIG_ZONE_DEVICE 289 "Device", 290 #endif 291 }; 292 293 const char * const migratetype_names[MIGRATE_TYPES] = { 294 "Unmovable", 295 "Movable", 296 "Reclaimable", 297 "HighAtomic", 298 #ifdef CONFIG_CMA 299 "CMA", 300 #endif 301 #ifdef CONFIG_MEMORY_ISOLATION 302 "Isolate", 303 #endif 304 }; 305 306 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 307 [NULL_COMPOUND_DTOR] = NULL, 308 [COMPOUND_PAGE_DTOR] = free_compound_page, 309 #ifdef CONFIG_HUGETLB_PAGE 310 [HUGETLB_PAGE_DTOR] = free_huge_page, 311 #endif 312 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 313 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 314 #endif 315 }; 316 317 int min_free_kbytes = 1024; 318 int user_min_free_kbytes = -1; 319 #ifdef CONFIG_DISCONTIGMEM 320 /* 321 * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges 322 * are not on separate NUMA nodes. Functionally this works but with 323 * watermark_boost_factor, it can reclaim prematurely as the ranges can be 324 * quite small. By default, do not boost watermarks on discontigmem as in 325 * many cases very high-order allocations like THP are likely to be 326 * unsupported and the premature reclaim offsets the advantage of long-term 327 * fragmentation avoidance. 328 */ 329 int watermark_boost_factor __read_mostly; 330 #else 331 int watermark_boost_factor __read_mostly = 15000; 332 #endif 333 int watermark_scale_factor = 10; 334 335 static unsigned long nr_kernel_pages __initdata; 336 static unsigned long nr_all_pages __initdata; 337 static unsigned long dma_reserve __initdata; 338 339 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 340 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 341 static unsigned long required_kernelcore __initdata; 342 static unsigned long required_kernelcore_percent __initdata; 343 static unsigned long required_movablecore __initdata; 344 static unsigned long required_movablecore_percent __initdata; 345 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 346 static bool mirrored_kernelcore __meminitdata; 347 348 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 349 int movable_zone; 350 EXPORT_SYMBOL(movable_zone); 351 352 #if MAX_NUMNODES > 1 353 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 354 unsigned int nr_online_nodes __read_mostly = 1; 355 EXPORT_SYMBOL(nr_node_ids); 356 EXPORT_SYMBOL(nr_online_nodes); 357 #endif 358 359 int page_group_by_mobility_disabled __read_mostly; 360 361 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 362 /* 363 * During boot we initialize deferred pages on-demand, as needed, but once 364 * page_alloc_init_late() has finished, the deferred pages are all initialized, 365 * and we can permanently disable that path. 366 */ 367 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 368 369 /* 370 * Calling kasan_free_pages() only after deferred memory initialization 371 * has completed. Poisoning pages during deferred memory init will greatly 372 * lengthen the process and cause problem in large memory systems as the 373 * deferred pages initialization is done with interrupt disabled. 374 * 375 * Assuming that there will be no reference to those newly initialized 376 * pages before they are ever allocated, this should have no effect on 377 * KASAN memory tracking as the poison will be properly inserted at page 378 * allocation time. The only corner case is when pages are allocated by 379 * on-demand allocation and then freed again before the deferred pages 380 * initialization is done, but this is not likely to happen. 381 */ 382 static inline void kasan_free_nondeferred_pages(struct page *page, int order) 383 { 384 if (!static_branch_unlikely(&deferred_pages)) 385 kasan_free_pages(page, order); 386 } 387 388 /* Returns true if the struct page for the pfn is uninitialised */ 389 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 390 { 391 int nid = early_pfn_to_nid(pfn); 392 393 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 394 return true; 395 396 return false; 397 } 398 399 /* 400 * Returns true when the remaining initialisation should be deferred until 401 * later in the boot cycle when it can be parallelised. 402 */ 403 static bool __meminit 404 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 405 { 406 static unsigned long prev_end_pfn, nr_initialised; 407 408 /* 409 * prev_end_pfn static that contains the end of previous zone 410 * No need to protect because called very early in boot before smp_init. 411 */ 412 if (prev_end_pfn != end_pfn) { 413 prev_end_pfn = end_pfn; 414 nr_initialised = 0; 415 } 416 417 /* Always populate low zones for address-constrained allocations */ 418 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 419 return false; 420 421 /* 422 * We start only with one section of pages, more pages are added as 423 * needed until the rest of deferred pages are initialized. 424 */ 425 nr_initialised++; 426 if ((nr_initialised > PAGES_PER_SECTION) && 427 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 428 NODE_DATA(nid)->first_deferred_pfn = pfn; 429 return true; 430 } 431 return false; 432 } 433 #else 434 #define kasan_free_nondeferred_pages(p, o) kasan_free_pages(p, o) 435 436 static inline bool early_page_uninitialised(unsigned long pfn) 437 { 438 return false; 439 } 440 441 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 442 { 443 return false; 444 } 445 #endif 446 447 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 448 static inline unsigned long *get_pageblock_bitmap(struct page *page, 449 unsigned long pfn) 450 { 451 #ifdef CONFIG_SPARSEMEM 452 return section_to_usemap(__pfn_to_section(pfn)); 453 #else 454 return page_zone(page)->pageblock_flags; 455 #endif /* CONFIG_SPARSEMEM */ 456 } 457 458 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn) 459 { 460 #ifdef CONFIG_SPARSEMEM 461 pfn &= (PAGES_PER_SECTION-1); 462 #else 463 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 464 #endif /* CONFIG_SPARSEMEM */ 465 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 466 } 467 468 /** 469 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 470 * @page: The page within the block of interest 471 * @pfn: The target page frame number 472 * @mask: mask of bits that the caller is interested in 473 * 474 * Return: pageblock_bits flags 475 */ 476 static __always_inline 477 unsigned long __get_pfnblock_flags_mask(struct page *page, 478 unsigned long pfn, 479 unsigned long mask) 480 { 481 unsigned long *bitmap; 482 unsigned long bitidx, word_bitidx; 483 unsigned long word; 484 485 bitmap = get_pageblock_bitmap(page, pfn); 486 bitidx = pfn_to_bitidx(page, pfn); 487 word_bitidx = bitidx / BITS_PER_LONG; 488 bitidx &= (BITS_PER_LONG-1); 489 490 word = bitmap[word_bitidx]; 491 return (word >> bitidx) & mask; 492 } 493 494 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn, 495 unsigned long mask) 496 { 497 return __get_pfnblock_flags_mask(page, pfn, mask); 498 } 499 500 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn) 501 { 502 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 503 } 504 505 /** 506 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 507 * @page: The page within the block of interest 508 * @flags: The flags to set 509 * @pfn: The target page frame number 510 * @mask: mask of bits that the caller is interested in 511 */ 512 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 513 unsigned long pfn, 514 unsigned long mask) 515 { 516 unsigned long *bitmap; 517 unsigned long bitidx, word_bitidx; 518 unsigned long old_word, word; 519 520 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 521 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 522 523 bitmap = get_pageblock_bitmap(page, pfn); 524 bitidx = pfn_to_bitidx(page, pfn); 525 word_bitidx = bitidx / BITS_PER_LONG; 526 bitidx &= (BITS_PER_LONG-1); 527 528 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 529 530 mask <<= bitidx; 531 flags <<= bitidx; 532 533 word = READ_ONCE(bitmap[word_bitidx]); 534 for (;;) { 535 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 536 if (word == old_word) 537 break; 538 word = old_word; 539 } 540 } 541 542 void set_pageblock_migratetype(struct page *page, int migratetype) 543 { 544 if (unlikely(page_group_by_mobility_disabled && 545 migratetype < MIGRATE_PCPTYPES)) 546 migratetype = MIGRATE_UNMOVABLE; 547 548 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 549 page_to_pfn(page), MIGRATETYPE_MASK); 550 } 551 552 #ifdef CONFIG_DEBUG_VM 553 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 554 { 555 int ret = 0; 556 unsigned seq; 557 unsigned long pfn = page_to_pfn(page); 558 unsigned long sp, start_pfn; 559 560 do { 561 seq = zone_span_seqbegin(zone); 562 start_pfn = zone->zone_start_pfn; 563 sp = zone->spanned_pages; 564 if (!zone_spans_pfn(zone, pfn)) 565 ret = 1; 566 } while (zone_span_seqretry(zone, seq)); 567 568 if (ret) 569 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 570 pfn, zone_to_nid(zone), zone->name, 571 start_pfn, start_pfn + sp); 572 573 return ret; 574 } 575 576 static int page_is_consistent(struct zone *zone, struct page *page) 577 { 578 if (!pfn_valid_within(page_to_pfn(page))) 579 return 0; 580 if (zone != page_zone(page)) 581 return 0; 582 583 return 1; 584 } 585 /* 586 * Temporary debugging check for pages not lying within a given zone. 587 */ 588 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 589 { 590 if (page_outside_zone_boundaries(zone, page)) 591 return 1; 592 if (!page_is_consistent(zone, page)) 593 return 1; 594 595 return 0; 596 } 597 #else 598 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 599 { 600 return 0; 601 } 602 #endif 603 604 static void bad_page(struct page *page, const char *reason) 605 { 606 static unsigned long resume; 607 static unsigned long nr_shown; 608 static unsigned long nr_unshown; 609 610 /* 611 * Allow a burst of 60 reports, then keep quiet for that minute; 612 * or allow a steady drip of one report per second. 613 */ 614 if (nr_shown == 60) { 615 if (time_before(jiffies, resume)) { 616 nr_unshown++; 617 goto out; 618 } 619 if (nr_unshown) { 620 pr_alert( 621 "BUG: Bad page state: %lu messages suppressed\n", 622 nr_unshown); 623 nr_unshown = 0; 624 } 625 nr_shown = 0; 626 } 627 if (nr_shown++ == 0) 628 resume = jiffies + 60 * HZ; 629 630 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 631 current->comm, page_to_pfn(page)); 632 __dump_page(page, reason); 633 dump_page_owner(page); 634 635 print_modules(); 636 dump_stack(); 637 out: 638 /* Leave bad fields for debug, except PageBuddy could make trouble */ 639 page_mapcount_reset(page); /* remove PageBuddy */ 640 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 641 } 642 643 /* 644 * Higher-order pages are called "compound pages". They are structured thusly: 645 * 646 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 647 * 648 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 649 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 650 * 651 * The first tail page's ->compound_dtor holds the offset in array of compound 652 * page destructors. See compound_page_dtors. 653 * 654 * The first tail page's ->compound_order holds the order of allocation. 655 * This usage means that zero-order pages may not be compound. 656 */ 657 658 void free_compound_page(struct page *page) 659 { 660 mem_cgroup_uncharge(page); 661 __free_pages_ok(page, compound_order(page)); 662 } 663 664 void prep_compound_page(struct page *page, unsigned int order) 665 { 666 int i; 667 int nr_pages = 1 << order; 668 669 __SetPageHead(page); 670 for (i = 1; i < nr_pages; i++) { 671 struct page *p = page + i; 672 set_page_count(p, 0); 673 p->mapping = TAIL_MAPPING; 674 set_compound_head(p, page); 675 } 676 677 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 678 set_compound_order(page, order); 679 atomic_set(compound_mapcount_ptr(page), -1); 680 if (hpage_pincount_available(page)) 681 atomic_set(compound_pincount_ptr(page), 0); 682 } 683 684 #ifdef CONFIG_DEBUG_PAGEALLOC 685 unsigned int _debug_guardpage_minorder; 686 687 bool _debug_pagealloc_enabled_early __read_mostly 688 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 689 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 690 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 691 EXPORT_SYMBOL(_debug_pagealloc_enabled); 692 693 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 694 695 static int __init early_debug_pagealloc(char *buf) 696 { 697 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 698 } 699 early_param("debug_pagealloc", early_debug_pagealloc); 700 701 void init_debug_pagealloc(void) 702 { 703 if (!debug_pagealloc_enabled()) 704 return; 705 706 static_branch_enable(&_debug_pagealloc_enabled); 707 708 if (!debug_guardpage_minorder()) 709 return; 710 711 static_branch_enable(&_debug_guardpage_enabled); 712 } 713 714 static int __init debug_guardpage_minorder_setup(char *buf) 715 { 716 unsigned long res; 717 718 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 719 pr_err("Bad debug_guardpage_minorder value\n"); 720 return 0; 721 } 722 _debug_guardpage_minorder = res; 723 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 724 return 0; 725 } 726 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 727 728 static inline bool set_page_guard(struct zone *zone, struct page *page, 729 unsigned int order, int migratetype) 730 { 731 if (!debug_guardpage_enabled()) 732 return false; 733 734 if (order >= debug_guardpage_minorder()) 735 return false; 736 737 __SetPageGuard(page); 738 INIT_LIST_HEAD(&page->lru); 739 set_page_private(page, order); 740 /* Guard pages are not available for any usage */ 741 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 742 743 return true; 744 } 745 746 static inline void clear_page_guard(struct zone *zone, struct page *page, 747 unsigned int order, int migratetype) 748 { 749 if (!debug_guardpage_enabled()) 750 return; 751 752 __ClearPageGuard(page); 753 754 set_page_private(page, 0); 755 if (!is_migrate_isolate(migratetype)) 756 __mod_zone_freepage_state(zone, (1 << order), migratetype); 757 } 758 #else 759 static inline bool set_page_guard(struct zone *zone, struct page *page, 760 unsigned int order, int migratetype) { return false; } 761 static inline void clear_page_guard(struct zone *zone, struct page *page, 762 unsigned int order, int migratetype) {} 763 #endif 764 765 static inline void set_page_order(struct page *page, unsigned int order) 766 { 767 set_page_private(page, order); 768 __SetPageBuddy(page); 769 } 770 771 /* 772 * This function checks whether a page is free && is the buddy 773 * we can coalesce a page and its buddy if 774 * (a) the buddy is not in a hole (check before calling!) && 775 * (b) the buddy is in the buddy system && 776 * (c) a page and its buddy have the same order && 777 * (d) a page and its buddy are in the same zone. 778 * 779 * For recording whether a page is in the buddy system, we set PageBuddy. 780 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 781 * 782 * For recording page's order, we use page_private(page). 783 */ 784 static inline bool page_is_buddy(struct page *page, struct page *buddy, 785 unsigned int order) 786 { 787 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 788 return false; 789 790 if (page_order(buddy) != order) 791 return false; 792 793 /* 794 * zone check is done late to avoid uselessly calculating 795 * zone/node ids for pages that could never merge. 796 */ 797 if (page_zone_id(page) != page_zone_id(buddy)) 798 return false; 799 800 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 801 802 return true; 803 } 804 805 #ifdef CONFIG_COMPACTION 806 static inline struct capture_control *task_capc(struct zone *zone) 807 { 808 struct capture_control *capc = current->capture_control; 809 810 return unlikely(capc) && 811 !(current->flags & PF_KTHREAD) && 812 !capc->page && 813 capc->cc->zone == zone ? capc : NULL; 814 } 815 816 static inline bool 817 compaction_capture(struct capture_control *capc, struct page *page, 818 int order, int migratetype) 819 { 820 if (!capc || order != capc->cc->order) 821 return false; 822 823 /* Do not accidentally pollute CMA or isolated regions*/ 824 if (is_migrate_cma(migratetype) || 825 is_migrate_isolate(migratetype)) 826 return false; 827 828 /* 829 * Do not let lower order allocations polluate a movable pageblock. 830 * This might let an unmovable request use a reclaimable pageblock 831 * and vice-versa but no more than normal fallback logic which can 832 * have trouble finding a high-order free page. 833 */ 834 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 835 return false; 836 837 capc->page = page; 838 return true; 839 } 840 841 #else 842 static inline struct capture_control *task_capc(struct zone *zone) 843 { 844 return NULL; 845 } 846 847 static inline bool 848 compaction_capture(struct capture_control *capc, struct page *page, 849 int order, int migratetype) 850 { 851 return false; 852 } 853 #endif /* CONFIG_COMPACTION */ 854 855 /* Used for pages not on another list */ 856 static inline void add_to_free_list(struct page *page, struct zone *zone, 857 unsigned int order, int migratetype) 858 { 859 struct free_area *area = &zone->free_area[order]; 860 861 list_add(&page->lru, &area->free_list[migratetype]); 862 area->nr_free++; 863 } 864 865 /* Used for pages not on another list */ 866 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 867 unsigned int order, int migratetype) 868 { 869 struct free_area *area = &zone->free_area[order]; 870 871 list_add_tail(&page->lru, &area->free_list[migratetype]); 872 area->nr_free++; 873 } 874 875 /* Used for pages which are on another list */ 876 static inline void move_to_free_list(struct page *page, struct zone *zone, 877 unsigned int order, int migratetype) 878 { 879 struct free_area *area = &zone->free_area[order]; 880 881 list_move(&page->lru, &area->free_list[migratetype]); 882 } 883 884 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 885 unsigned int order) 886 { 887 /* clear reported state and update reported page count */ 888 if (page_reported(page)) 889 __ClearPageReported(page); 890 891 list_del(&page->lru); 892 __ClearPageBuddy(page); 893 set_page_private(page, 0); 894 zone->free_area[order].nr_free--; 895 } 896 897 /* 898 * If this is not the largest possible page, check if the buddy 899 * of the next-highest order is free. If it is, it's possible 900 * that pages are being freed that will coalesce soon. In case, 901 * that is happening, add the free page to the tail of the list 902 * so it's less likely to be used soon and more likely to be merged 903 * as a higher order page 904 */ 905 static inline bool 906 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 907 struct page *page, unsigned int order) 908 { 909 struct page *higher_page, *higher_buddy; 910 unsigned long combined_pfn; 911 912 if (order >= MAX_ORDER - 2) 913 return false; 914 915 if (!pfn_valid_within(buddy_pfn)) 916 return false; 917 918 combined_pfn = buddy_pfn & pfn; 919 higher_page = page + (combined_pfn - pfn); 920 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 921 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 922 923 return pfn_valid_within(buddy_pfn) && 924 page_is_buddy(higher_page, higher_buddy, order + 1); 925 } 926 927 /* 928 * Freeing function for a buddy system allocator. 929 * 930 * The concept of a buddy system is to maintain direct-mapped table 931 * (containing bit values) for memory blocks of various "orders". 932 * The bottom level table contains the map for the smallest allocatable 933 * units of memory (here, pages), and each level above it describes 934 * pairs of units from the levels below, hence, "buddies". 935 * At a high level, all that happens here is marking the table entry 936 * at the bottom level available, and propagating the changes upward 937 * as necessary, plus some accounting needed to play nicely with other 938 * parts of the VM system. 939 * At each level, we keep a list of pages, which are heads of continuous 940 * free pages of length of (1 << order) and marked with PageBuddy. 941 * Page's order is recorded in page_private(page) field. 942 * So when we are allocating or freeing one, we can derive the state of the 943 * other. That is, if we allocate a small block, and both were 944 * free, the remainder of the region must be split into blocks. 945 * If a block is freed, and its buddy is also free, then this 946 * triggers coalescing into a block of larger size. 947 * 948 * -- nyc 949 */ 950 951 static inline void __free_one_page(struct page *page, 952 unsigned long pfn, 953 struct zone *zone, unsigned int order, 954 int migratetype, bool report) 955 { 956 struct capture_control *capc = task_capc(zone); 957 unsigned long buddy_pfn; 958 unsigned long combined_pfn; 959 unsigned int max_order; 960 struct page *buddy; 961 bool to_tail; 962 963 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1); 964 965 VM_BUG_ON(!zone_is_initialized(zone)); 966 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 967 968 VM_BUG_ON(migratetype == -1); 969 if (likely(!is_migrate_isolate(migratetype))) 970 __mod_zone_freepage_state(zone, 1 << order, migratetype); 971 972 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 973 VM_BUG_ON_PAGE(bad_range(zone, page), page); 974 975 continue_merging: 976 while (order < max_order - 1) { 977 if (compaction_capture(capc, page, order, migratetype)) { 978 __mod_zone_freepage_state(zone, -(1 << order), 979 migratetype); 980 return; 981 } 982 buddy_pfn = __find_buddy_pfn(pfn, order); 983 buddy = page + (buddy_pfn - pfn); 984 985 if (!pfn_valid_within(buddy_pfn)) 986 goto done_merging; 987 if (!page_is_buddy(page, buddy, order)) 988 goto done_merging; 989 /* 990 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 991 * merge with it and move up one order. 992 */ 993 if (page_is_guard(buddy)) 994 clear_page_guard(zone, buddy, order, migratetype); 995 else 996 del_page_from_free_list(buddy, zone, order); 997 combined_pfn = buddy_pfn & pfn; 998 page = page + (combined_pfn - pfn); 999 pfn = combined_pfn; 1000 order++; 1001 } 1002 if (max_order < MAX_ORDER) { 1003 /* If we are here, it means order is >= pageblock_order. 1004 * We want to prevent merge between freepages on isolate 1005 * pageblock and normal pageblock. Without this, pageblock 1006 * isolation could cause incorrect freepage or CMA accounting. 1007 * 1008 * We don't want to hit this code for the more frequent 1009 * low-order merging. 1010 */ 1011 if (unlikely(has_isolate_pageblock(zone))) { 1012 int buddy_mt; 1013 1014 buddy_pfn = __find_buddy_pfn(pfn, order); 1015 buddy = page + (buddy_pfn - pfn); 1016 buddy_mt = get_pageblock_migratetype(buddy); 1017 1018 if (migratetype != buddy_mt 1019 && (is_migrate_isolate(migratetype) || 1020 is_migrate_isolate(buddy_mt))) 1021 goto done_merging; 1022 } 1023 max_order++; 1024 goto continue_merging; 1025 } 1026 1027 done_merging: 1028 set_page_order(page, order); 1029 1030 if (is_shuffle_order(order)) 1031 to_tail = shuffle_pick_tail(); 1032 else 1033 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1034 1035 if (to_tail) 1036 add_to_free_list_tail(page, zone, order, migratetype); 1037 else 1038 add_to_free_list(page, zone, order, migratetype); 1039 1040 /* Notify page reporting subsystem of freed page */ 1041 if (report) 1042 page_reporting_notify_free(order); 1043 } 1044 1045 /* 1046 * A bad page could be due to a number of fields. Instead of multiple branches, 1047 * try and check multiple fields with one check. The caller must do a detailed 1048 * check if necessary. 1049 */ 1050 static inline bool page_expected_state(struct page *page, 1051 unsigned long check_flags) 1052 { 1053 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1054 return false; 1055 1056 if (unlikely((unsigned long)page->mapping | 1057 page_ref_count(page) | 1058 #ifdef CONFIG_MEMCG 1059 (unsigned long)page->mem_cgroup | 1060 #endif 1061 (page->flags & check_flags))) 1062 return false; 1063 1064 return true; 1065 } 1066 1067 static const char *page_bad_reason(struct page *page, unsigned long flags) 1068 { 1069 const char *bad_reason = NULL; 1070 1071 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1072 bad_reason = "nonzero mapcount"; 1073 if (unlikely(page->mapping != NULL)) 1074 bad_reason = "non-NULL mapping"; 1075 if (unlikely(page_ref_count(page) != 0)) 1076 bad_reason = "nonzero _refcount"; 1077 if (unlikely(page->flags & flags)) { 1078 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1079 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1080 else 1081 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1082 } 1083 #ifdef CONFIG_MEMCG 1084 if (unlikely(page->mem_cgroup)) 1085 bad_reason = "page still charged to cgroup"; 1086 #endif 1087 return bad_reason; 1088 } 1089 1090 static void check_free_page_bad(struct page *page) 1091 { 1092 bad_page(page, 1093 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1094 } 1095 1096 static inline int check_free_page(struct page *page) 1097 { 1098 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1099 return 0; 1100 1101 /* Something has gone sideways, find it */ 1102 check_free_page_bad(page); 1103 return 1; 1104 } 1105 1106 static int free_tail_pages_check(struct page *head_page, struct page *page) 1107 { 1108 int ret = 1; 1109 1110 /* 1111 * We rely page->lru.next never has bit 0 set, unless the page 1112 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1113 */ 1114 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1115 1116 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1117 ret = 0; 1118 goto out; 1119 } 1120 switch (page - head_page) { 1121 case 1: 1122 /* the first tail page: ->mapping may be compound_mapcount() */ 1123 if (unlikely(compound_mapcount(page))) { 1124 bad_page(page, "nonzero compound_mapcount"); 1125 goto out; 1126 } 1127 break; 1128 case 2: 1129 /* 1130 * the second tail page: ->mapping is 1131 * deferred_list.next -- ignore value. 1132 */ 1133 break; 1134 default: 1135 if (page->mapping != TAIL_MAPPING) { 1136 bad_page(page, "corrupted mapping in tail page"); 1137 goto out; 1138 } 1139 break; 1140 } 1141 if (unlikely(!PageTail(page))) { 1142 bad_page(page, "PageTail not set"); 1143 goto out; 1144 } 1145 if (unlikely(compound_head(page) != head_page)) { 1146 bad_page(page, "compound_head not consistent"); 1147 goto out; 1148 } 1149 ret = 0; 1150 out: 1151 page->mapping = NULL; 1152 clear_compound_head(page); 1153 return ret; 1154 } 1155 1156 static void kernel_init_free_pages(struct page *page, int numpages) 1157 { 1158 int i; 1159 1160 /* s390's use of memset() could override KASAN redzones. */ 1161 kasan_disable_current(); 1162 for (i = 0; i < numpages; i++) 1163 clear_highpage(page + i); 1164 kasan_enable_current(); 1165 } 1166 1167 static __always_inline bool free_pages_prepare(struct page *page, 1168 unsigned int order, bool check_free) 1169 { 1170 int bad = 0; 1171 1172 VM_BUG_ON_PAGE(PageTail(page), page); 1173 1174 trace_mm_page_free(page, order); 1175 1176 /* 1177 * Check tail pages before head page information is cleared to 1178 * avoid checking PageCompound for order-0 pages. 1179 */ 1180 if (unlikely(order)) { 1181 bool compound = PageCompound(page); 1182 int i; 1183 1184 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1185 1186 if (compound) 1187 ClearPageDoubleMap(page); 1188 for (i = 1; i < (1 << order); i++) { 1189 if (compound) 1190 bad += free_tail_pages_check(page, page + i); 1191 if (unlikely(check_free_page(page + i))) { 1192 bad++; 1193 continue; 1194 } 1195 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1196 } 1197 } 1198 if (PageMappingFlags(page)) 1199 page->mapping = NULL; 1200 if (memcg_kmem_enabled() && PageKmemcg(page)) 1201 __memcg_kmem_uncharge_page(page, order); 1202 if (check_free) 1203 bad += check_free_page(page); 1204 if (bad) 1205 return false; 1206 1207 page_cpupid_reset_last(page); 1208 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1209 reset_page_owner(page, order); 1210 1211 if (!PageHighMem(page)) { 1212 debug_check_no_locks_freed(page_address(page), 1213 PAGE_SIZE << order); 1214 debug_check_no_obj_freed(page_address(page), 1215 PAGE_SIZE << order); 1216 } 1217 if (want_init_on_free()) 1218 kernel_init_free_pages(page, 1 << order); 1219 1220 kernel_poison_pages(page, 1 << order, 0); 1221 /* 1222 * arch_free_page() can make the page's contents inaccessible. s390 1223 * does this. So nothing which can access the page's contents should 1224 * happen after this. 1225 */ 1226 arch_free_page(page, order); 1227 1228 if (debug_pagealloc_enabled_static()) 1229 kernel_map_pages(page, 1 << order, 0); 1230 1231 kasan_free_nondeferred_pages(page, order); 1232 1233 return true; 1234 } 1235 1236 #ifdef CONFIG_DEBUG_VM 1237 /* 1238 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1239 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1240 * moved from pcp lists to free lists. 1241 */ 1242 static bool free_pcp_prepare(struct page *page) 1243 { 1244 return free_pages_prepare(page, 0, true); 1245 } 1246 1247 static bool bulkfree_pcp_prepare(struct page *page) 1248 { 1249 if (debug_pagealloc_enabled_static()) 1250 return check_free_page(page); 1251 else 1252 return false; 1253 } 1254 #else 1255 /* 1256 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1257 * moving from pcp lists to free list in order to reduce overhead. With 1258 * debug_pagealloc enabled, they are checked also immediately when being freed 1259 * to the pcp lists. 1260 */ 1261 static bool free_pcp_prepare(struct page *page) 1262 { 1263 if (debug_pagealloc_enabled_static()) 1264 return free_pages_prepare(page, 0, true); 1265 else 1266 return free_pages_prepare(page, 0, false); 1267 } 1268 1269 static bool bulkfree_pcp_prepare(struct page *page) 1270 { 1271 return check_free_page(page); 1272 } 1273 #endif /* CONFIG_DEBUG_VM */ 1274 1275 static inline void prefetch_buddy(struct page *page) 1276 { 1277 unsigned long pfn = page_to_pfn(page); 1278 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1279 struct page *buddy = page + (buddy_pfn - pfn); 1280 1281 prefetch(buddy); 1282 } 1283 1284 /* 1285 * Frees a number of pages from the PCP lists 1286 * Assumes all pages on list are in same zone, and of same order. 1287 * count is the number of pages to free. 1288 * 1289 * If the zone was previously in an "all pages pinned" state then look to 1290 * see if this freeing clears that state. 1291 * 1292 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1293 * pinned" detection logic. 1294 */ 1295 static void free_pcppages_bulk(struct zone *zone, int count, 1296 struct per_cpu_pages *pcp) 1297 { 1298 int migratetype = 0; 1299 int batch_free = 0; 1300 int prefetch_nr = 0; 1301 bool isolated_pageblocks; 1302 struct page *page, *tmp; 1303 LIST_HEAD(head); 1304 1305 /* 1306 * Ensure proper count is passed which otherwise would stuck in the 1307 * below while (list_empty(list)) loop. 1308 */ 1309 count = min(pcp->count, count); 1310 while (count) { 1311 struct list_head *list; 1312 1313 /* 1314 * Remove pages from lists in a round-robin fashion. A 1315 * batch_free count is maintained that is incremented when an 1316 * empty list is encountered. This is so more pages are freed 1317 * off fuller lists instead of spinning excessively around empty 1318 * lists 1319 */ 1320 do { 1321 batch_free++; 1322 if (++migratetype == MIGRATE_PCPTYPES) 1323 migratetype = 0; 1324 list = &pcp->lists[migratetype]; 1325 } while (list_empty(list)); 1326 1327 /* This is the only non-empty list. Free them all. */ 1328 if (batch_free == MIGRATE_PCPTYPES) 1329 batch_free = count; 1330 1331 do { 1332 page = list_last_entry(list, struct page, lru); 1333 /* must delete to avoid corrupting pcp list */ 1334 list_del(&page->lru); 1335 pcp->count--; 1336 1337 if (bulkfree_pcp_prepare(page)) 1338 continue; 1339 1340 list_add_tail(&page->lru, &head); 1341 1342 /* 1343 * We are going to put the page back to the global 1344 * pool, prefetch its buddy to speed up later access 1345 * under zone->lock. It is believed the overhead of 1346 * an additional test and calculating buddy_pfn here 1347 * can be offset by reduced memory latency later. To 1348 * avoid excessive prefetching due to large count, only 1349 * prefetch buddy for the first pcp->batch nr of pages. 1350 */ 1351 if (prefetch_nr++ < pcp->batch) 1352 prefetch_buddy(page); 1353 } while (--count && --batch_free && !list_empty(list)); 1354 } 1355 1356 spin_lock(&zone->lock); 1357 isolated_pageblocks = has_isolate_pageblock(zone); 1358 1359 /* 1360 * Use safe version since after __free_one_page(), 1361 * page->lru.next will not point to original list. 1362 */ 1363 list_for_each_entry_safe(page, tmp, &head, lru) { 1364 int mt = get_pcppage_migratetype(page); 1365 /* MIGRATE_ISOLATE page should not go to pcplists */ 1366 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1367 /* Pageblock could have been isolated meanwhile */ 1368 if (unlikely(isolated_pageblocks)) 1369 mt = get_pageblock_migratetype(page); 1370 1371 __free_one_page(page, page_to_pfn(page), zone, 0, mt, true); 1372 trace_mm_page_pcpu_drain(page, 0, mt); 1373 } 1374 spin_unlock(&zone->lock); 1375 } 1376 1377 static void free_one_page(struct zone *zone, 1378 struct page *page, unsigned long pfn, 1379 unsigned int order, 1380 int migratetype) 1381 { 1382 spin_lock(&zone->lock); 1383 if (unlikely(has_isolate_pageblock(zone) || 1384 is_migrate_isolate(migratetype))) { 1385 migratetype = get_pfnblock_migratetype(page, pfn); 1386 } 1387 __free_one_page(page, pfn, zone, order, migratetype, true); 1388 spin_unlock(&zone->lock); 1389 } 1390 1391 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1392 unsigned long zone, int nid) 1393 { 1394 mm_zero_struct_page(page); 1395 set_page_links(page, zone, nid, pfn); 1396 init_page_count(page); 1397 page_mapcount_reset(page); 1398 page_cpupid_reset_last(page); 1399 page_kasan_tag_reset(page); 1400 1401 INIT_LIST_HEAD(&page->lru); 1402 #ifdef WANT_PAGE_VIRTUAL 1403 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1404 if (!is_highmem_idx(zone)) 1405 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1406 #endif 1407 } 1408 1409 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1410 static void __meminit init_reserved_page(unsigned long pfn) 1411 { 1412 pg_data_t *pgdat; 1413 int nid, zid; 1414 1415 if (!early_page_uninitialised(pfn)) 1416 return; 1417 1418 nid = early_pfn_to_nid(pfn); 1419 pgdat = NODE_DATA(nid); 1420 1421 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1422 struct zone *zone = &pgdat->node_zones[zid]; 1423 1424 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1425 break; 1426 } 1427 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1428 } 1429 #else 1430 static inline void init_reserved_page(unsigned long pfn) 1431 { 1432 } 1433 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1434 1435 /* 1436 * Initialised pages do not have PageReserved set. This function is 1437 * called for each range allocated by the bootmem allocator and 1438 * marks the pages PageReserved. The remaining valid pages are later 1439 * sent to the buddy page allocator. 1440 */ 1441 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1442 { 1443 unsigned long start_pfn = PFN_DOWN(start); 1444 unsigned long end_pfn = PFN_UP(end); 1445 1446 for (; start_pfn < end_pfn; start_pfn++) { 1447 if (pfn_valid(start_pfn)) { 1448 struct page *page = pfn_to_page(start_pfn); 1449 1450 init_reserved_page(start_pfn); 1451 1452 /* Avoid false-positive PageTail() */ 1453 INIT_LIST_HEAD(&page->lru); 1454 1455 /* 1456 * no need for atomic set_bit because the struct 1457 * page is not visible yet so nobody should 1458 * access it yet. 1459 */ 1460 __SetPageReserved(page); 1461 } 1462 } 1463 } 1464 1465 static void __free_pages_ok(struct page *page, unsigned int order) 1466 { 1467 unsigned long flags; 1468 int migratetype; 1469 unsigned long pfn = page_to_pfn(page); 1470 1471 if (!free_pages_prepare(page, order, true)) 1472 return; 1473 1474 migratetype = get_pfnblock_migratetype(page, pfn); 1475 local_irq_save(flags); 1476 __count_vm_events(PGFREE, 1 << order); 1477 free_one_page(page_zone(page), page, pfn, order, migratetype); 1478 local_irq_restore(flags); 1479 } 1480 1481 void __free_pages_core(struct page *page, unsigned int order) 1482 { 1483 unsigned int nr_pages = 1 << order; 1484 struct page *p = page; 1485 unsigned int loop; 1486 1487 prefetchw(p); 1488 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1489 prefetchw(p + 1); 1490 __ClearPageReserved(p); 1491 set_page_count(p, 0); 1492 } 1493 __ClearPageReserved(p); 1494 set_page_count(p, 0); 1495 1496 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1497 set_page_refcounted(page); 1498 __free_pages(page, order); 1499 } 1500 1501 #ifdef CONFIG_NEED_MULTIPLE_NODES 1502 1503 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1504 1505 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 1506 1507 /* 1508 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1509 */ 1510 int __meminit __early_pfn_to_nid(unsigned long pfn, 1511 struct mminit_pfnnid_cache *state) 1512 { 1513 unsigned long start_pfn, end_pfn; 1514 int nid; 1515 1516 if (state->last_start <= pfn && pfn < state->last_end) 1517 return state->last_nid; 1518 1519 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1520 if (nid != NUMA_NO_NODE) { 1521 state->last_start = start_pfn; 1522 state->last_end = end_pfn; 1523 state->last_nid = nid; 1524 } 1525 1526 return nid; 1527 } 1528 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 1529 1530 int __meminit early_pfn_to_nid(unsigned long pfn) 1531 { 1532 static DEFINE_SPINLOCK(early_pfn_lock); 1533 int nid; 1534 1535 spin_lock(&early_pfn_lock); 1536 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1537 if (nid < 0) 1538 nid = first_online_node; 1539 spin_unlock(&early_pfn_lock); 1540 1541 return nid; 1542 } 1543 #endif /* CONFIG_NEED_MULTIPLE_NODES */ 1544 1545 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1546 unsigned int order) 1547 { 1548 if (early_page_uninitialised(pfn)) 1549 return; 1550 __free_pages_core(page, order); 1551 } 1552 1553 /* 1554 * Check that the whole (or subset of) a pageblock given by the interval of 1555 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1556 * with the migration of free compaction scanner. The scanners then need to 1557 * use only pfn_valid_within() check for arches that allow holes within 1558 * pageblocks. 1559 * 1560 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1561 * 1562 * It's possible on some configurations to have a setup like node0 node1 node0 1563 * i.e. it's possible that all pages within a zones range of pages do not 1564 * belong to a single zone. We assume that a border between node0 and node1 1565 * can occur within a single pageblock, but not a node0 node1 node0 1566 * interleaving within a single pageblock. It is therefore sufficient to check 1567 * the first and last page of a pageblock and avoid checking each individual 1568 * page in a pageblock. 1569 */ 1570 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1571 unsigned long end_pfn, struct zone *zone) 1572 { 1573 struct page *start_page; 1574 struct page *end_page; 1575 1576 /* end_pfn is one past the range we are checking */ 1577 end_pfn--; 1578 1579 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1580 return NULL; 1581 1582 start_page = pfn_to_online_page(start_pfn); 1583 if (!start_page) 1584 return NULL; 1585 1586 if (page_zone(start_page) != zone) 1587 return NULL; 1588 1589 end_page = pfn_to_page(end_pfn); 1590 1591 /* This gives a shorter code than deriving page_zone(end_page) */ 1592 if (page_zone_id(start_page) != page_zone_id(end_page)) 1593 return NULL; 1594 1595 return start_page; 1596 } 1597 1598 void set_zone_contiguous(struct zone *zone) 1599 { 1600 unsigned long block_start_pfn = zone->zone_start_pfn; 1601 unsigned long block_end_pfn; 1602 1603 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1604 for (; block_start_pfn < zone_end_pfn(zone); 1605 block_start_pfn = block_end_pfn, 1606 block_end_pfn += pageblock_nr_pages) { 1607 1608 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1609 1610 if (!__pageblock_pfn_to_page(block_start_pfn, 1611 block_end_pfn, zone)) 1612 return; 1613 cond_resched(); 1614 } 1615 1616 /* We confirm that there is no hole */ 1617 zone->contiguous = true; 1618 } 1619 1620 void clear_zone_contiguous(struct zone *zone) 1621 { 1622 zone->contiguous = false; 1623 } 1624 1625 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1626 static void __init deferred_free_range(unsigned long pfn, 1627 unsigned long nr_pages) 1628 { 1629 struct page *page; 1630 unsigned long i; 1631 1632 if (!nr_pages) 1633 return; 1634 1635 page = pfn_to_page(pfn); 1636 1637 /* Free a large naturally-aligned chunk if possible */ 1638 if (nr_pages == pageblock_nr_pages && 1639 (pfn & (pageblock_nr_pages - 1)) == 0) { 1640 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1641 __free_pages_core(page, pageblock_order); 1642 return; 1643 } 1644 1645 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1646 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1647 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1648 __free_pages_core(page, 0); 1649 } 1650 } 1651 1652 /* Completion tracking for deferred_init_memmap() threads */ 1653 static atomic_t pgdat_init_n_undone __initdata; 1654 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1655 1656 static inline void __init pgdat_init_report_one_done(void) 1657 { 1658 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1659 complete(&pgdat_init_all_done_comp); 1660 } 1661 1662 /* 1663 * Returns true if page needs to be initialized or freed to buddy allocator. 1664 * 1665 * First we check if pfn is valid on architectures where it is possible to have 1666 * holes within pageblock_nr_pages. On systems where it is not possible, this 1667 * function is optimized out. 1668 * 1669 * Then, we check if a current large page is valid by only checking the validity 1670 * of the head pfn. 1671 */ 1672 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1673 { 1674 if (!pfn_valid_within(pfn)) 1675 return false; 1676 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1677 return false; 1678 return true; 1679 } 1680 1681 /* 1682 * Free pages to buddy allocator. Try to free aligned pages in 1683 * pageblock_nr_pages sizes. 1684 */ 1685 static void __init deferred_free_pages(unsigned long pfn, 1686 unsigned long end_pfn) 1687 { 1688 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1689 unsigned long nr_free = 0; 1690 1691 for (; pfn < end_pfn; pfn++) { 1692 if (!deferred_pfn_valid(pfn)) { 1693 deferred_free_range(pfn - nr_free, nr_free); 1694 nr_free = 0; 1695 } else if (!(pfn & nr_pgmask)) { 1696 deferred_free_range(pfn - nr_free, nr_free); 1697 nr_free = 1; 1698 } else { 1699 nr_free++; 1700 } 1701 } 1702 /* Free the last block of pages to allocator */ 1703 deferred_free_range(pfn - nr_free, nr_free); 1704 } 1705 1706 /* 1707 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1708 * by performing it only once every pageblock_nr_pages. 1709 * Return number of pages initialized. 1710 */ 1711 static unsigned long __init deferred_init_pages(struct zone *zone, 1712 unsigned long pfn, 1713 unsigned long end_pfn) 1714 { 1715 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1716 int nid = zone_to_nid(zone); 1717 unsigned long nr_pages = 0; 1718 int zid = zone_idx(zone); 1719 struct page *page = NULL; 1720 1721 for (; pfn < end_pfn; pfn++) { 1722 if (!deferred_pfn_valid(pfn)) { 1723 page = NULL; 1724 continue; 1725 } else if (!page || !(pfn & nr_pgmask)) { 1726 page = pfn_to_page(pfn); 1727 } else { 1728 page++; 1729 } 1730 __init_single_page(page, pfn, zid, nid); 1731 nr_pages++; 1732 } 1733 return (nr_pages); 1734 } 1735 1736 /* 1737 * This function is meant to pre-load the iterator for the zone init. 1738 * Specifically it walks through the ranges until we are caught up to the 1739 * first_init_pfn value and exits there. If we never encounter the value we 1740 * return false indicating there are no valid ranges left. 1741 */ 1742 static bool __init 1743 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1744 unsigned long *spfn, unsigned long *epfn, 1745 unsigned long first_init_pfn) 1746 { 1747 u64 j; 1748 1749 /* 1750 * Start out by walking through the ranges in this zone that have 1751 * already been initialized. We don't need to do anything with them 1752 * so we just need to flush them out of the system. 1753 */ 1754 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1755 if (*epfn <= first_init_pfn) 1756 continue; 1757 if (*spfn < first_init_pfn) 1758 *spfn = first_init_pfn; 1759 *i = j; 1760 return true; 1761 } 1762 1763 return false; 1764 } 1765 1766 /* 1767 * Initialize and free pages. We do it in two loops: first we initialize 1768 * struct page, then free to buddy allocator, because while we are 1769 * freeing pages we can access pages that are ahead (computing buddy 1770 * page in __free_one_page()). 1771 * 1772 * In order to try and keep some memory in the cache we have the loop 1773 * broken along max page order boundaries. This way we will not cause 1774 * any issues with the buddy page computation. 1775 */ 1776 static unsigned long __init 1777 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1778 unsigned long *end_pfn) 1779 { 1780 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1781 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1782 unsigned long nr_pages = 0; 1783 u64 j = *i; 1784 1785 /* First we loop through and initialize the page values */ 1786 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1787 unsigned long t; 1788 1789 if (mo_pfn <= *start_pfn) 1790 break; 1791 1792 t = min(mo_pfn, *end_pfn); 1793 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1794 1795 if (mo_pfn < *end_pfn) { 1796 *start_pfn = mo_pfn; 1797 break; 1798 } 1799 } 1800 1801 /* Reset values and now loop through freeing pages as needed */ 1802 swap(j, *i); 1803 1804 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 1805 unsigned long t; 1806 1807 if (mo_pfn <= spfn) 1808 break; 1809 1810 t = min(mo_pfn, epfn); 1811 deferred_free_pages(spfn, t); 1812 1813 if (mo_pfn <= epfn) 1814 break; 1815 } 1816 1817 return nr_pages; 1818 } 1819 1820 static void __init 1821 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 1822 void *arg) 1823 { 1824 unsigned long spfn, epfn; 1825 struct zone *zone = arg; 1826 u64 i; 1827 1828 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 1829 1830 /* 1831 * Initialize and free pages in MAX_ORDER sized increments so that we 1832 * can avoid introducing any issues with the buddy allocator. 1833 */ 1834 while (spfn < end_pfn) { 1835 deferred_init_maxorder(&i, zone, &spfn, &epfn); 1836 cond_resched(); 1837 } 1838 } 1839 1840 /* An arch may override for more concurrency. */ 1841 __weak int __init 1842 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 1843 { 1844 return 1; 1845 } 1846 1847 /* Initialise remaining memory on a node */ 1848 static int __init deferred_init_memmap(void *data) 1849 { 1850 pg_data_t *pgdat = data; 1851 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 1852 unsigned long spfn = 0, epfn = 0; 1853 unsigned long first_init_pfn, flags; 1854 unsigned long start = jiffies; 1855 struct zone *zone; 1856 int zid, max_threads; 1857 u64 i; 1858 1859 /* Bind memory initialisation thread to a local node if possible */ 1860 if (!cpumask_empty(cpumask)) 1861 set_cpus_allowed_ptr(current, cpumask); 1862 1863 pgdat_resize_lock(pgdat, &flags); 1864 first_init_pfn = pgdat->first_deferred_pfn; 1865 if (first_init_pfn == ULONG_MAX) { 1866 pgdat_resize_unlock(pgdat, &flags); 1867 pgdat_init_report_one_done(); 1868 return 0; 1869 } 1870 1871 /* Sanity check boundaries */ 1872 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 1873 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 1874 pgdat->first_deferred_pfn = ULONG_MAX; 1875 1876 /* 1877 * Once we unlock here, the zone cannot be grown anymore, thus if an 1878 * interrupt thread must allocate this early in boot, zone must be 1879 * pre-grown prior to start of deferred page initialization. 1880 */ 1881 pgdat_resize_unlock(pgdat, &flags); 1882 1883 /* Only the highest zone is deferred so find it */ 1884 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1885 zone = pgdat->node_zones + zid; 1886 if (first_init_pfn < zone_end_pfn(zone)) 1887 break; 1888 } 1889 1890 /* If the zone is empty somebody else may have cleared out the zone */ 1891 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1892 first_init_pfn)) 1893 goto zone_empty; 1894 1895 max_threads = deferred_page_init_max_threads(cpumask); 1896 1897 while (spfn < epfn) { 1898 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 1899 struct padata_mt_job job = { 1900 .thread_fn = deferred_init_memmap_chunk, 1901 .fn_arg = zone, 1902 .start = spfn, 1903 .size = epfn_align - spfn, 1904 .align = PAGES_PER_SECTION, 1905 .min_chunk = PAGES_PER_SECTION, 1906 .max_threads = max_threads, 1907 }; 1908 1909 padata_do_multithreaded(&job); 1910 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1911 epfn_align); 1912 } 1913 zone_empty: 1914 /* Sanity check that the next zone really is unpopulated */ 1915 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 1916 1917 pr_info("node %d deferred pages initialised in %ums\n", 1918 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 1919 1920 pgdat_init_report_one_done(); 1921 return 0; 1922 } 1923 1924 /* 1925 * If this zone has deferred pages, try to grow it by initializing enough 1926 * deferred pages to satisfy the allocation specified by order, rounded up to 1927 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 1928 * of SECTION_SIZE bytes by initializing struct pages in increments of 1929 * PAGES_PER_SECTION * sizeof(struct page) bytes. 1930 * 1931 * Return true when zone was grown, otherwise return false. We return true even 1932 * when we grow less than requested, to let the caller decide if there are 1933 * enough pages to satisfy the allocation. 1934 * 1935 * Note: We use noinline because this function is needed only during boot, and 1936 * it is called from a __ref function _deferred_grow_zone. This way we are 1937 * making sure that it is not inlined into permanent text section. 1938 */ 1939 static noinline bool __init 1940 deferred_grow_zone(struct zone *zone, unsigned int order) 1941 { 1942 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 1943 pg_data_t *pgdat = zone->zone_pgdat; 1944 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 1945 unsigned long spfn, epfn, flags; 1946 unsigned long nr_pages = 0; 1947 u64 i; 1948 1949 /* Only the last zone may have deferred pages */ 1950 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 1951 return false; 1952 1953 pgdat_resize_lock(pgdat, &flags); 1954 1955 /* 1956 * If someone grew this zone while we were waiting for spinlock, return 1957 * true, as there might be enough pages already. 1958 */ 1959 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 1960 pgdat_resize_unlock(pgdat, &flags); 1961 return true; 1962 } 1963 1964 /* If the zone is empty somebody else may have cleared out the zone */ 1965 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 1966 first_deferred_pfn)) { 1967 pgdat->first_deferred_pfn = ULONG_MAX; 1968 pgdat_resize_unlock(pgdat, &flags); 1969 /* Retry only once. */ 1970 return first_deferred_pfn != ULONG_MAX; 1971 } 1972 1973 /* 1974 * Initialize and free pages in MAX_ORDER sized increments so 1975 * that we can avoid introducing any issues with the buddy 1976 * allocator. 1977 */ 1978 while (spfn < epfn) { 1979 /* update our first deferred PFN for this section */ 1980 first_deferred_pfn = spfn; 1981 1982 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 1983 touch_nmi_watchdog(); 1984 1985 /* We should only stop along section boundaries */ 1986 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 1987 continue; 1988 1989 /* If our quota has been met we can stop here */ 1990 if (nr_pages >= nr_pages_needed) 1991 break; 1992 } 1993 1994 pgdat->first_deferred_pfn = spfn; 1995 pgdat_resize_unlock(pgdat, &flags); 1996 1997 return nr_pages > 0; 1998 } 1999 2000 /* 2001 * deferred_grow_zone() is __init, but it is called from 2002 * get_page_from_freelist() during early boot until deferred_pages permanently 2003 * disables this call. This is why we have refdata wrapper to avoid warning, 2004 * and to ensure that the function body gets unloaded. 2005 */ 2006 static bool __ref 2007 _deferred_grow_zone(struct zone *zone, unsigned int order) 2008 { 2009 return deferred_grow_zone(zone, order); 2010 } 2011 2012 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2013 2014 void __init page_alloc_init_late(void) 2015 { 2016 struct zone *zone; 2017 int nid; 2018 2019 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2020 2021 /* There will be num_node_state(N_MEMORY) threads */ 2022 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2023 for_each_node_state(nid, N_MEMORY) { 2024 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2025 } 2026 2027 /* Block until all are initialised */ 2028 wait_for_completion(&pgdat_init_all_done_comp); 2029 2030 /* 2031 * The number of managed pages has changed due to the initialisation 2032 * so the pcpu batch and high limits needs to be updated or the limits 2033 * will be artificially small. 2034 */ 2035 for_each_populated_zone(zone) 2036 zone_pcp_update(zone); 2037 2038 /* 2039 * We initialized the rest of the deferred pages. Permanently disable 2040 * on-demand struct page initialization. 2041 */ 2042 static_branch_disable(&deferred_pages); 2043 2044 /* Reinit limits that are based on free pages after the kernel is up */ 2045 files_maxfiles_init(); 2046 #endif 2047 2048 /* Discard memblock private memory */ 2049 memblock_discard(); 2050 2051 for_each_node_state(nid, N_MEMORY) 2052 shuffle_free_memory(NODE_DATA(nid)); 2053 2054 for_each_populated_zone(zone) 2055 set_zone_contiguous(zone); 2056 } 2057 2058 #ifdef CONFIG_CMA 2059 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2060 void __init init_cma_reserved_pageblock(struct page *page) 2061 { 2062 unsigned i = pageblock_nr_pages; 2063 struct page *p = page; 2064 2065 do { 2066 __ClearPageReserved(p); 2067 set_page_count(p, 0); 2068 } while (++p, --i); 2069 2070 set_pageblock_migratetype(page, MIGRATE_CMA); 2071 2072 if (pageblock_order >= MAX_ORDER) { 2073 i = pageblock_nr_pages; 2074 p = page; 2075 do { 2076 set_page_refcounted(p); 2077 __free_pages(p, MAX_ORDER - 1); 2078 p += MAX_ORDER_NR_PAGES; 2079 } while (i -= MAX_ORDER_NR_PAGES); 2080 } else { 2081 set_page_refcounted(page); 2082 __free_pages(page, pageblock_order); 2083 } 2084 2085 adjust_managed_page_count(page, pageblock_nr_pages); 2086 } 2087 #endif 2088 2089 /* 2090 * The order of subdivision here is critical for the IO subsystem. 2091 * Please do not alter this order without good reasons and regression 2092 * testing. Specifically, as large blocks of memory are subdivided, 2093 * the order in which smaller blocks are delivered depends on the order 2094 * they're subdivided in this function. This is the primary factor 2095 * influencing the order in which pages are delivered to the IO 2096 * subsystem according to empirical testing, and this is also justified 2097 * by considering the behavior of a buddy system containing a single 2098 * large block of memory acted on by a series of small allocations. 2099 * This behavior is a critical factor in sglist merging's success. 2100 * 2101 * -- nyc 2102 */ 2103 static inline void expand(struct zone *zone, struct page *page, 2104 int low, int high, int migratetype) 2105 { 2106 unsigned long size = 1 << high; 2107 2108 while (high > low) { 2109 high--; 2110 size >>= 1; 2111 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2112 2113 /* 2114 * Mark as guard pages (or page), that will allow to 2115 * merge back to allocator when buddy will be freed. 2116 * Corresponding page table entries will not be touched, 2117 * pages will stay not present in virtual address space 2118 */ 2119 if (set_page_guard(zone, &page[size], high, migratetype)) 2120 continue; 2121 2122 add_to_free_list(&page[size], zone, high, migratetype); 2123 set_page_order(&page[size], high); 2124 } 2125 } 2126 2127 static void check_new_page_bad(struct page *page) 2128 { 2129 if (unlikely(page->flags & __PG_HWPOISON)) { 2130 /* Don't complain about hwpoisoned pages */ 2131 page_mapcount_reset(page); /* remove PageBuddy */ 2132 return; 2133 } 2134 2135 bad_page(page, 2136 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2137 } 2138 2139 /* 2140 * This page is about to be returned from the page allocator 2141 */ 2142 static inline int check_new_page(struct page *page) 2143 { 2144 if (likely(page_expected_state(page, 2145 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2146 return 0; 2147 2148 check_new_page_bad(page); 2149 return 1; 2150 } 2151 2152 static inline bool free_pages_prezeroed(void) 2153 { 2154 return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) && 2155 page_poisoning_enabled()) || want_init_on_free(); 2156 } 2157 2158 #ifdef CONFIG_DEBUG_VM 2159 /* 2160 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2161 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2162 * also checked when pcp lists are refilled from the free lists. 2163 */ 2164 static inline bool check_pcp_refill(struct page *page) 2165 { 2166 if (debug_pagealloc_enabled_static()) 2167 return check_new_page(page); 2168 else 2169 return false; 2170 } 2171 2172 static inline bool check_new_pcp(struct page *page) 2173 { 2174 return check_new_page(page); 2175 } 2176 #else 2177 /* 2178 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2179 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2180 * enabled, they are also checked when being allocated from the pcp lists. 2181 */ 2182 static inline bool check_pcp_refill(struct page *page) 2183 { 2184 return check_new_page(page); 2185 } 2186 static inline bool check_new_pcp(struct page *page) 2187 { 2188 if (debug_pagealloc_enabled_static()) 2189 return check_new_page(page); 2190 else 2191 return false; 2192 } 2193 #endif /* CONFIG_DEBUG_VM */ 2194 2195 static bool check_new_pages(struct page *page, unsigned int order) 2196 { 2197 int i; 2198 for (i = 0; i < (1 << order); i++) { 2199 struct page *p = page + i; 2200 2201 if (unlikely(check_new_page(p))) 2202 return true; 2203 } 2204 2205 return false; 2206 } 2207 2208 inline void post_alloc_hook(struct page *page, unsigned int order, 2209 gfp_t gfp_flags) 2210 { 2211 set_page_private(page, 0); 2212 set_page_refcounted(page); 2213 2214 arch_alloc_page(page, order); 2215 if (debug_pagealloc_enabled_static()) 2216 kernel_map_pages(page, 1 << order, 1); 2217 kasan_alloc_pages(page, order); 2218 kernel_poison_pages(page, 1 << order, 1); 2219 set_page_owner(page, order, gfp_flags); 2220 } 2221 2222 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2223 unsigned int alloc_flags) 2224 { 2225 post_alloc_hook(page, order, gfp_flags); 2226 2227 if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags)) 2228 kernel_init_free_pages(page, 1 << order); 2229 2230 if (order && (gfp_flags & __GFP_COMP)) 2231 prep_compound_page(page, order); 2232 2233 /* 2234 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2235 * allocate the page. The expectation is that the caller is taking 2236 * steps that will free more memory. The caller should avoid the page 2237 * being used for !PFMEMALLOC purposes. 2238 */ 2239 if (alloc_flags & ALLOC_NO_WATERMARKS) 2240 set_page_pfmemalloc(page); 2241 else 2242 clear_page_pfmemalloc(page); 2243 } 2244 2245 /* 2246 * Go through the free lists for the given migratetype and remove 2247 * the smallest available page from the freelists 2248 */ 2249 static __always_inline 2250 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2251 int migratetype) 2252 { 2253 unsigned int current_order; 2254 struct free_area *area; 2255 struct page *page; 2256 2257 /* Find a page of the appropriate size in the preferred list */ 2258 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2259 area = &(zone->free_area[current_order]); 2260 page = get_page_from_free_area(area, migratetype); 2261 if (!page) 2262 continue; 2263 del_page_from_free_list(page, zone, current_order); 2264 expand(zone, page, order, current_order, migratetype); 2265 set_pcppage_migratetype(page, migratetype); 2266 return page; 2267 } 2268 2269 return NULL; 2270 } 2271 2272 2273 /* 2274 * This array describes the order lists are fallen back to when 2275 * the free lists for the desirable migrate type are depleted 2276 */ 2277 static int fallbacks[MIGRATE_TYPES][3] = { 2278 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2279 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2280 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2281 #ifdef CONFIG_CMA 2282 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2283 #endif 2284 #ifdef CONFIG_MEMORY_ISOLATION 2285 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2286 #endif 2287 }; 2288 2289 #ifdef CONFIG_CMA 2290 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2291 unsigned int order) 2292 { 2293 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2294 } 2295 #else 2296 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2297 unsigned int order) { return NULL; } 2298 #endif 2299 2300 /* 2301 * Move the free pages in a range to the free lists of the requested type. 2302 * Note that start_page and end_pages are not aligned on a pageblock 2303 * boundary. If alignment is required, use move_freepages_block() 2304 */ 2305 static int move_freepages(struct zone *zone, 2306 struct page *start_page, struct page *end_page, 2307 int migratetype, int *num_movable) 2308 { 2309 struct page *page; 2310 unsigned int order; 2311 int pages_moved = 0; 2312 2313 for (page = start_page; page <= end_page;) { 2314 if (!pfn_valid_within(page_to_pfn(page))) { 2315 page++; 2316 continue; 2317 } 2318 2319 if (!PageBuddy(page)) { 2320 /* 2321 * We assume that pages that could be isolated for 2322 * migration are movable. But we don't actually try 2323 * isolating, as that would be expensive. 2324 */ 2325 if (num_movable && 2326 (PageLRU(page) || __PageMovable(page))) 2327 (*num_movable)++; 2328 2329 page++; 2330 continue; 2331 } 2332 2333 /* Make sure we are not inadvertently changing nodes */ 2334 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2335 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2336 2337 order = page_order(page); 2338 move_to_free_list(page, zone, order, migratetype); 2339 page += 1 << order; 2340 pages_moved += 1 << order; 2341 } 2342 2343 return pages_moved; 2344 } 2345 2346 int move_freepages_block(struct zone *zone, struct page *page, 2347 int migratetype, int *num_movable) 2348 { 2349 unsigned long start_pfn, end_pfn; 2350 struct page *start_page, *end_page; 2351 2352 if (num_movable) 2353 *num_movable = 0; 2354 2355 start_pfn = page_to_pfn(page); 2356 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 2357 start_page = pfn_to_page(start_pfn); 2358 end_page = start_page + pageblock_nr_pages - 1; 2359 end_pfn = start_pfn + pageblock_nr_pages - 1; 2360 2361 /* Do not cross zone boundaries */ 2362 if (!zone_spans_pfn(zone, start_pfn)) 2363 start_page = page; 2364 if (!zone_spans_pfn(zone, end_pfn)) 2365 return 0; 2366 2367 return move_freepages(zone, start_page, end_page, migratetype, 2368 num_movable); 2369 } 2370 2371 static void change_pageblock_range(struct page *pageblock_page, 2372 int start_order, int migratetype) 2373 { 2374 int nr_pageblocks = 1 << (start_order - pageblock_order); 2375 2376 while (nr_pageblocks--) { 2377 set_pageblock_migratetype(pageblock_page, migratetype); 2378 pageblock_page += pageblock_nr_pages; 2379 } 2380 } 2381 2382 /* 2383 * When we are falling back to another migratetype during allocation, try to 2384 * steal extra free pages from the same pageblocks to satisfy further 2385 * allocations, instead of polluting multiple pageblocks. 2386 * 2387 * If we are stealing a relatively large buddy page, it is likely there will 2388 * be more free pages in the pageblock, so try to steal them all. For 2389 * reclaimable and unmovable allocations, we steal regardless of page size, 2390 * as fragmentation caused by those allocations polluting movable pageblocks 2391 * is worse than movable allocations stealing from unmovable and reclaimable 2392 * pageblocks. 2393 */ 2394 static bool can_steal_fallback(unsigned int order, int start_mt) 2395 { 2396 /* 2397 * Leaving this order check is intended, although there is 2398 * relaxed order check in next check. The reason is that 2399 * we can actually steal whole pageblock if this condition met, 2400 * but, below check doesn't guarantee it and that is just heuristic 2401 * so could be changed anytime. 2402 */ 2403 if (order >= pageblock_order) 2404 return true; 2405 2406 if (order >= pageblock_order / 2 || 2407 start_mt == MIGRATE_RECLAIMABLE || 2408 start_mt == MIGRATE_UNMOVABLE || 2409 page_group_by_mobility_disabled) 2410 return true; 2411 2412 return false; 2413 } 2414 2415 static inline void boost_watermark(struct zone *zone) 2416 { 2417 unsigned long max_boost; 2418 2419 if (!watermark_boost_factor) 2420 return; 2421 /* 2422 * Don't bother in zones that are unlikely to produce results. 2423 * On small machines, including kdump capture kernels running 2424 * in a small area, boosting the watermark can cause an out of 2425 * memory situation immediately. 2426 */ 2427 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2428 return; 2429 2430 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2431 watermark_boost_factor, 10000); 2432 2433 /* 2434 * high watermark may be uninitialised if fragmentation occurs 2435 * very early in boot so do not boost. We do not fall 2436 * through and boost by pageblock_nr_pages as failing 2437 * allocations that early means that reclaim is not going 2438 * to help and it may even be impossible to reclaim the 2439 * boosted watermark resulting in a hang. 2440 */ 2441 if (!max_boost) 2442 return; 2443 2444 max_boost = max(pageblock_nr_pages, max_boost); 2445 2446 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2447 max_boost); 2448 } 2449 2450 /* 2451 * This function implements actual steal behaviour. If order is large enough, 2452 * we can steal whole pageblock. If not, we first move freepages in this 2453 * pageblock to our migratetype and determine how many already-allocated pages 2454 * are there in the pageblock with a compatible migratetype. If at least half 2455 * of pages are free or compatible, we can change migratetype of the pageblock 2456 * itself, so pages freed in the future will be put on the correct free list. 2457 */ 2458 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2459 unsigned int alloc_flags, int start_type, bool whole_block) 2460 { 2461 unsigned int current_order = page_order(page); 2462 int free_pages, movable_pages, alike_pages; 2463 int old_block_type; 2464 2465 old_block_type = get_pageblock_migratetype(page); 2466 2467 /* 2468 * This can happen due to races and we want to prevent broken 2469 * highatomic accounting. 2470 */ 2471 if (is_migrate_highatomic(old_block_type)) 2472 goto single_page; 2473 2474 /* Take ownership for orders >= pageblock_order */ 2475 if (current_order >= pageblock_order) { 2476 change_pageblock_range(page, current_order, start_type); 2477 goto single_page; 2478 } 2479 2480 /* 2481 * Boost watermarks to increase reclaim pressure to reduce the 2482 * likelihood of future fallbacks. Wake kswapd now as the node 2483 * may be balanced overall and kswapd will not wake naturally. 2484 */ 2485 boost_watermark(zone); 2486 if (alloc_flags & ALLOC_KSWAPD) 2487 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2488 2489 /* We are not allowed to try stealing from the whole block */ 2490 if (!whole_block) 2491 goto single_page; 2492 2493 free_pages = move_freepages_block(zone, page, start_type, 2494 &movable_pages); 2495 /* 2496 * Determine how many pages are compatible with our allocation. 2497 * For movable allocation, it's the number of movable pages which 2498 * we just obtained. For other types it's a bit more tricky. 2499 */ 2500 if (start_type == MIGRATE_MOVABLE) { 2501 alike_pages = movable_pages; 2502 } else { 2503 /* 2504 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2505 * to MOVABLE pageblock, consider all non-movable pages as 2506 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2507 * vice versa, be conservative since we can't distinguish the 2508 * exact migratetype of non-movable pages. 2509 */ 2510 if (old_block_type == MIGRATE_MOVABLE) 2511 alike_pages = pageblock_nr_pages 2512 - (free_pages + movable_pages); 2513 else 2514 alike_pages = 0; 2515 } 2516 2517 /* moving whole block can fail due to zone boundary conditions */ 2518 if (!free_pages) 2519 goto single_page; 2520 2521 /* 2522 * If a sufficient number of pages in the block are either free or of 2523 * comparable migratability as our allocation, claim the whole block. 2524 */ 2525 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2526 page_group_by_mobility_disabled) 2527 set_pageblock_migratetype(page, start_type); 2528 2529 return; 2530 2531 single_page: 2532 move_to_free_list(page, zone, current_order, start_type); 2533 } 2534 2535 /* 2536 * Check whether there is a suitable fallback freepage with requested order. 2537 * If only_stealable is true, this function returns fallback_mt only if 2538 * we can steal other freepages all together. This would help to reduce 2539 * fragmentation due to mixed migratetype pages in one pageblock. 2540 */ 2541 int find_suitable_fallback(struct free_area *area, unsigned int order, 2542 int migratetype, bool only_stealable, bool *can_steal) 2543 { 2544 int i; 2545 int fallback_mt; 2546 2547 if (area->nr_free == 0) 2548 return -1; 2549 2550 *can_steal = false; 2551 for (i = 0;; i++) { 2552 fallback_mt = fallbacks[migratetype][i]; 2553 if (fallback_mt == MIGRATE_TYPES) 2554 break; 2555 2556 if (free_area_empty(area, fallback_mt)) 2557 continue; 2558 2559 if (can_steal_fallback(order, migratetype)) 2560 *can_steal = true; 2561 2562 if (!only_stealable) 2563 return fallback_mt; 2564 2565 if (*can_steal) 2566 return fallback_mt; 2567 } 2568 2569 return -1; 2570 } 2571 2572 /* 2573 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2574 * there are no empty page blocks that contain a page with a suitable order 2575 */ 2576 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2577 unsigned int alloc_order) 2578 { 2579 int mt; 2580 unsigned long max_managed, flags; 2581 2582 /* 2583 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2584 * Check is race-prone but harmless. 2585 */ 2586 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2587 if (zone->nr_reserved_highatomic >= max_managed) 2588 return; 2589 2590 spin_lock_irqsave(&zone->lock, flags); 2591 2592 /* Recheck the nr_reserved_highatomic limit under the lock */ 2593 if (zone->nr_reserved_highatomic >= max_managed) 2594 goto out_unlock; 2595 2596 /* Yoink! */ 2597 mt = get_pageblock_migratetype(page); 2598 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2599 && !is_migrate_cma(mt)) { 2600 zone->nr_reserved_highatomic += pageblock_nr_pages; 2601 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2602 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2603 } 2604 2605 out_unlock: 2606 spin_unlock_irqrestore(&zone->lock, flags); 2607 } 2608 2609 /* 2610 * Used when an allocation is about to fail under memory pressure. This 2611 * potentially hurts the reliability of high-order allocations when under 2612 * intense memory pressure but failed atomic allocations should be easier 2613 * to recover from than an OOM. 2614 * 2615 * If @force is true, try to unreserve a pageblock even though highatomic 2616 * pageblock is exhausted. 2617 */ 2618 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2619 bool force) 2620 { 2621 struct zonelist *zonelist = ac->zonelist; 2622 unsigned long flags; 2623 struct zoneref *z; 2624 struct zone *zone; 2625 struct page *page; 2626 int order; 2627 bool ret; 2628 2629 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2630 ac->nodemask) { 2631 /* 2632 * Preserve at least one pageblock unless memory pressure 2633 * is really high. 2634 */ 2635 if (!force && zone->nr_reserved_highatomic <= 2636 pageblock_nr_pages) 2637 continue; 2638 2639 spin_lock_irqsave(&zone->lock, flags); 2640 for (order = 0; order < MAX_ORDER; order++) { 2641 struct free_area *area = &(zone->free_area[order]); 2642 2643 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2644 if (!page) 2645 continue; 2646 2647 /* 2648 * In page freeing path, migratetype change is racy so 2649 * we can counter several free pages in a pageblock 2650 * in this loop althoug we changed the pageblock type 2651 * from highatomic to ac->migratetype. So we should 2652 * adjust the count once. 2653 */ 2654 if (is_migrate_highatomic_page(page)) { 2655 /* 2656 * It should never happen but changes to 2657 * locking could inadvertently allow a per-cpu 2658 * drain to add pages to MIGRATE_HIGHATOMIC 2659 * while unreserving so be safe and watch for 2660 * underflows. 2661 */ 2662 zone->nr_reserved_highatomic -= min( 2663 pageblock_nr_pages, 2664 zone->nr_reserved_highatomic); 2665 } 2666 2667 /* 2668 * Convert to ac->migratetype and avoid the normal 2669 * pageblock stealing heuristics. Minimally, the caller 2670 * is doing the work and needs the pages. More 2671 * importantly, if the block was always converted to 2672 * MIGRATE_UNMOVABLE or another type then the number 2673 * of pageblocks that cannot be completely freed 2674 * may increase. 2675 */ 2676 set_pageblock_migratetype(page, ac->migratetype); 2677 ret = move_freepages_block(zone, page, ac->migratetype, 2678 NULL); 2679 if (ret) { 2680 spin_unlock_irqrestore(&zone->lock, flags); 2681 return ret; 2682 } 2683 } 2684 spin_unlock_irqrestore(&zone->lock, flags); 2685 } 2686 2687 return false; 2688 } 2689 2690 /* 2691 * Try finding a free buddy page on the fallback list and put it on the free 2692 * list of requested migratetype, possibly along with other pages from the same 2693 * block, depending on fragmentation avoidance heuristics. Returns true if 2694 * fallback was found so that __rmqueue_smallest() can grab it. 2695 * 2696 * The use of signed ints for order and current_order is a deliberate 2697 * deviation from the rest of this file, to make the for loop 2698 * condition simpler. 2699 */ 2700 static __always_inline bool 2701 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2702 unsigned int alloc_flags) 2703 { 2704 struct free_area *area; 2705 int current_order; 2706 int min_order = order; 2707 struct page *page; 2708 int fallback_mt; 2709 bool can_steal; 2710 2711 /* 2712 * Do not steal pages from freelists belonging to other pageblocks 2713 * i.e. orders < pageblock_order. If there are no local zones free, 2714 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2715 */ 2716 if (alloc_flags & ALLOC_NOFRAGMENT) 2717 min_order = pageblock_order; 2718 2719 /* 2720 * Find the largest available free page in the other list. This roughly 2721 * approximates finding the pageblock with the most free pages, which 2722 * would be too costly to do exactly. 2723 */ 2724 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2725 --current_order) { 2726 area = &(zone->free_area[current_order]); 2727 fallback_mt = find_suitable_fallback(area, current_order, 2728 start_migratetype, false, &can_steal); 2729 if (fallback_mt == -1) 2730 continue; 2731 2732 /* 2733 * We cannot steal all free pages from the pageblock and the 2734 * requested migratetype is movable. In that case it's better to 2735 * steal and split the smallest available page instead of the 2736 * largest available page, because even if the next movable 2737 * allocation falls back into a different pageblock than this 2738 * one, it won't cause permanent fragmentation. 2739 */ 2740 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2741 && current_order > order) 2742 goto find_smallest; 2743 2744 goto do_steal; 2745 } 2746 2747 return false; 2748 2749 find_smallest: 2750 for (current_order = order; current_order < MAX_ORDER; 2751 current_order++) { 2752 area = &(zone->free_area[current_order]); 2753 fallback_mt = find_suitable_fallback(area, current_order, 2754 start_migratetype, false, &can_steal); 2755 if (fallback_mt != -1) 2756 break; 2757 } 2758 2759 /* 2760 * This should not happen - we already found a suitable fallback 2761 * when looking for the largest page. 2762 */ 2763 VM_BUG_ON(current_order == MAX_ORDER); 2764 2765 do_steal: 2766 page = get_page_from_free_area(area, fallback_mt); 2767 2768 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2769 can_steal); 2770 2771 trace_mm_page_alloc_extfrag(page, order, current_order, 2772 start_migratetype, fallback_mt); 2773 2774 return true; 2775 2776 } 2777 2778 /* 2779 * Do the hard work of removing an element from the buddy allocator. 2780 * Call me with the zone->lock already held. 2781 */ 2782 static __always_inline struct page * 2783 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2784 unsigned int alloc_flags) 2785 { 2786 struct page *page; 2787 2788 #ifdef CONFIG_CMA 2789 /* 2790 * Balance movable allocations between regular and CMA areas by 2791 * allocating from CMA when over half of the zone's free memory 2792 * is in the CMA area. 2793 */ 2794 if (alloc_flags & ALLOC_CMA && 2795 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2796 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2797 page = __rmqueue_cma_fallback(zone, order); 2798 if (page) 2799 return page; 2800 } 2801 #endif 2802 retry: 2803 page = __rmqueue_smallest(zone, order, migratetype); 2804 if (unlikely(!page)) { 2805 if (alloc_flags & ALLOC_CMA) 2806 page = __rmqueue_cma_fallback(zone, order); 2807 2808 if (!page && __rmqueue_fallback(zone, order, migratetype, 2809 alloc_flags)) 2810 goto retry; 2811 } 2812 2813 trace_mm_page_alloc_zone_locked(page, order, migratetype); 2814 return page; 2815 } 2816 2817 /* 2818 * Obtain a specified number of elements from the buddy allocator, all under 2819 * a single hold of the lock, for efficiency. Add them to the supplied list. 2820 * Returns the number of new pages which were placed at *list. 2821 */ 2822 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2823 unsigned long count, struct list_head *list, 2824 int migratetype, unsigned int alloc_flags) 2825 { 2826 int i, alloced = 0; 2827 2828 spin_lock(&zone->lock); 2829 for (i = 0; i < count; ++i) { 2830 struct page *page = __rmqueue(zone, order, migratetype, 2831 alloc_flags); 2832 if (unlikely(page == NULL)) 2833 break; 2834 2835 if (unlikely(check_pcp_refill(page))) 2836 continue; 2837 2838 /* 2839 * Split buddy pages returned by expand() are received here in 2840 * physical page order. The page is added to the tail of 2841 * caller's list. From the callers perspective, the linked list 2842 * is ordered by page number under some conditions. This is 2843 * useful for IO devices that can forward direction from the 2844 * head, thus also in the physical page order. This is useful 2845 * for IO devices that can merge IO requests if the physical 2846 * pages are ordered properly. 2847 */ 2848 list_add_tail(&page->lru, list); 2849 alloced++; 2850 if (is_migrate_cma(get_pcppage_migratetype(page))) 2851 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2852 -(1 << order)); 2853 } 2854 2855 /* 2856 * i pages were removed from the buddy list even if some leak due 2857 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 2858 * on i. Do not confuse with 'alloced' which is the number of 2859 * pages added to the pcp list. 2860 */ 2861 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2862 spin_unlock(&zone->lock); 2863 return alloced; 2864 } 2865 2866 #ifdef CONFIG_NUMA 2867 /* 2868 * Called from the vmstat counter updater to drain pagesets of this 2869 * currently executing processor on remote nodes after they have 2870 * expired. 2871 * 2872 * Note that this function must be called with the thread pinned to 2873 * a single processor. 2874 */ 2875 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2876 { 2877 unsigned long flags; 2878 int to_drain, batch; 2879 2880 local_irq_save(flags); 2881 batch = READ_ONCE(pcp->batch); 2882 to_drain = min(pcp->count, batch); 2883 if (to_drain > 0) 2884 free_pcppages_bulk(zone, to_drain, pcp); 2885 local_irq_restore(flags); 2886 } 2887 #endif 2888 2889 /* 2890 * Drain pcplists of the indicated processor and zone. 2891 * 2892 * The processor must either be the current processor and the 2893 * thread pinned to the current processor or a processor that 2894 * is not online. 2895 */ 2896 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2897 { 2898 unsigned long flags; 2899 struct per_cpu_pageset *pset; 2900 struct per_cpu_pages *pcp; 2901 2902 local_irq_save(flags); 2903 pset = per_cpu_ptr(zone->pageset, cpu); 2904 2905 pcp = &pset->pcp; 2906 if (pcp->count) 2907 free_pcppages_bulk(zone, pcp->count, pcp); 2908 local_irq_restore(flags); 2909 } 2910 2911 /* 2912 * Drain pcplists of all zones on the indicated processor. 2913 * 2914 * The processor must either be the current processor and the 2915 * thread pinned to the current processor or a processor that 2916 * is not online. 2917 */ 2918 static void drain_pages(unsigned int cpu) 2919 { 2920 struct zone *zone; 2921 2922 for_each_populated_zone(zone) { 2923 drain_pages_zone(cpu, zone); 2924 } 2925 } 2926 2927 /* 2928 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2929 * 2930 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 2931 * the single zone's pages. 2932 */ 2933 void drain_local_pages(struct zone *zone) 2934 { 2935 int cpu = smp_processor_id(); 2936 2937 if (zone) 2938 drain_pages_zone(cpu, zone); 2939 else 2940 drain_pages(cpu); 2941 } 2942 2943 static void drain_local_pages_wq(struct work_struct *work) 2944 { 2945 struct pcpu_drain *drain; 2946 2947 drain = container_of(work, struct pcpu_drain, work); 2948 2949 /* 2950 * drain_all_pages doesn't use proper cpu hotplug protection so 2951 * we can race with cpu offline when the WQ can move this from 2952 * a cpu pinned worker to an unbound one. We can operate on a different 2953 * cpu which is allright but we also have to make sure to not move to 2954 * a different one. 2955 */ 2956 preempt_disable(); 2957 drain_local_pages(drain->zone); 2958 preempt_enable(); 2959 } 2960 2961 /* 2962 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2963 * 2964 * When zone parameter is non-NULL, spill just the single zone's pages. 2965 * 2966 * Note that this can be extremely slow as the draining happens in a workqueue. 2967 */ 2968 void drain_all_pages(struct zone *zone) 2969 { 2970 int cpu; 2971 2972 /* 2973 * Allocate in the BSS so we wont require allocation in 2974 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2975 */ 2976 static cpumask_t cpus_with_pcps; 2977 2978 /* 2979 * Make sure nobody triggers this path before mm_percpu_wq is fully 2980 * initialized. 2981 */ 2982 if (WARN_ON_ONCE(!mm_percpu_wq)) 2983 return; 2984 2985 /* 2986 * Do not drain if one is already in progress unless it's specific to 2987 * a zone. Such callers are primarily CMA and memory hotplug and need 2988 * the drain to be complete when the call returns. 2989 */ 2990 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2991 if (!zone) 2992 return; 2993 mutex_lock(&pcpu_drain_mutex); 2994 } 2995 2996 /* 2997 * We don't care about racing with CPU hotplug event 2998 * as offline notification will cause the notified 2999 * cpu to drain that CPU pcps and on_each_cpu_mask 3000 * disables preemption as part of its processing 3001 */ 3002 for_each_online_cpu(cpu) { 3003 struct per_cpu_pageset *pcp; 3004 struct zone *z; 3005 bool has_pcps = false; 3006 3007 if (zone) { 3008 pcp = per_cpu_ptr(zone->pageset, cpu); 3009 if (pcp->pcp.count) 3010 has_pcps = true; 3011 } else { 3012 for_each_populated_zone(z) { 3013 pcp = per_cpu_ptr(z->pageset, cpu); 3014 if (pcp->pcp.count) { 3015 has_pcps = true; 3016 break; 3017 } 3018 } 3019 } 3020 3021 if (has_pcps) 3022 cpumask_set_cpu(cpu, &cpus_with_pcps); 3023 else 3024 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3025 } 3026 3027 for_each_cpu(cpu, &cpus_with_pcps) { 3028 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3029 3030 drain->zone = zone; 3031 INIT_WORK(&drain->work, drain_local_pages_wq); 3032 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3033 } 3034 for_each_cpu(cpu, &cpus_with_pcps) 3035 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3036 3037 mutex_unlock(&pcpu_drain_mutex); 3038 } 3039 3040 #ifdef CONFIG_HIBERNATION 3041 3042 /* 3043 * Touch the watchdog for every WD_PAGE_COUNT pages. 3044 */ 3045 #define WD_PAGE_COUNT (128*1024) 3046 3047 void mark_free_pages(struct zone *zone) 3048 { 3049 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3050 unsigned long flags; 3051 unsigned int order, t; 3052 struct page *page; 3053 3054 if (zone_is_empty(zone)) 3055 return; 3056 3057 spin_lock_irqsave(&zone->lock, flags); 3058 3059 max_zone_pfn = zone_end_pfn(zone); 3060 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3061 if (pfn_valid(pfn)) { 3062 page = pfn_to_page(pfn); 3063 3064 if (!--page_count) { 3065 touch_nmi_watchdog(); 3066 page_count = WD_PAGE_COUNT; 3067 } 3068 3069 if (page_zone(page) != zone) 3070 continue; 3071 3072 if (!swsusp_page_is_forbidden(page)) 3073 swsusp_unset_page_free(page); 3074 } 3075 3076 for_each_migratetype_order(order, t) { 3077 list_for_each_entry(page, 3078 &zone->free_area[order].free_list[t], lru) { 3079 unsigned long i; 3080 3081 pfn = page_to_pfn(page); 3082 for (i = 0; i < (1UL << order); i++) { 3083 if (!--page_count) { 3084 touch_nmi_watchdog(); 3085 page_count = WD_PAGE_COUNT; 3086 } 3087 swsusp_set_page_free(pfn_to_page(pfn + i)); 3088 } 3089 } 3090 } 3091 spin_unlock_irqrestore(&zone->lock, flags); 3092 } 3093 #endif /* CONFIG_PM */ 3094 3095 static bool free_unref_page_prepare(struct page *page, unsigned long pfn) 3096 { 3097 int migratetype; 3098 3099 if (!free_pcp_prepare(page)) 3100 return false; 3101 3102 migratetype = get_pfnblock_migratetype(page, pfn); 3103 set_pcppage_migratetype(page, migratetype); 3104 return true; 3105 } 3106 3107 static void free_unref_page_commit(struct page *page, unsigned long pfn) 3108 { 3109 struct zone *zone = page_zone(page); 3110 struct per_cpu_pages *pcp; 3111 int migratetype; 3112 3113 migratetype = get_pcppage_migratetype(page); 3114 __count_vm_event(PGFREE); 3115 3116 /* 3117 * We only track unmovable, reclaimable and movable on pcp lists. 3118 * Free ISOLATE pages back to the allocator because they are being 3119 * offlined but treat HIGHATOMIC as movable pages so we can get those 3120 * areas back if necessary. Otherwise, we may have to free 3121 * excessively into the page allocator 3122 */ 3123 if (migratetype >= MIGRATE_PCPTYPES) { 3124 if (unlikely(is_migrate_isolate(migratetype))) { 3125 free_one_page(zone, page, pfn, 0, migratetype); 3126 return; 3127 } 3128 migratetype = MIGRATE_MOVABLE; 3129 } 3130 3131 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3132 list_add(&page->lru, &pcp->lists[migratetype]); 3133 pcp->count++; 3134 if (pcp->count >= pcp->high) { 3135 unsigned long batch = READ_ONCE(pcp->batch); 3136 free_pcppages_bulk(zone, batch, pcp); 3137 } 3138 } 3139 3140 /* 3141 * Free a 0-order page 3142 */ 3143 void free_unref_page(struct page *page) 3144 { 3145 unsigned long flags; 3146 unsigned long pfn = page_to_pfn(page); 3147 3148 if (!free_unref_page_prepare(page, pfn)) 3149 return; 3150 3151 local_irq_save(flags); 3152 free_unref_page_commit(page, pfn); 3153 local_irq_restore(flags); 3154 } 3155 3156 /* 3157 * Free a list of 0-order pages 3158 */ 3159 void free_unref_page_list(struct list_head *list) 3160 { 3161 struct page *page, *next; 3162 unsigned long flags, pfn; 3163 int batch_count = 0; 3164 3165 /* Prepare pages for freeing */ 3166 list_for_each_entry_safe(page, next, list, lru) { 3167 pfn = page_to_pfn(page); 3168 if (!free_unref_page_prepare(page, pfn)) 3169 list_del(&page->lru); 3170 set_page_private(page, pfn); 3171 } 3172 3173 local_irq_save(flags); 3174 list_for_each_entry_safe(page, next, list, lru) { 3175 unsigned long pfn = page_private(page); 3176 3177 set_page_private(page, 0); 3178 trace_mm_page_free_batched(page); 3179 free_unref_page_commit(page, pfn); 3180 3181 /* 3182 * Guard against excessive IRQ disabled times when we get 3183 * a large list of pages to free. 3184 */ 3185 if (++batch_count == SWAP_CLUSTER_MAX) { 3186 local_irq_restore(flags); 3187 batch_count = 0; 3188 local_irq_save(flags); 3189 } 3190 } 3191 local_irq_restore(flags); 3192 } 3193 3194 /* 3195 * split_page takes a non-compound higher-order page, and splits it into 3196 * n (1<<order) sub-pages: page[0..n] 3197 * Each sub-page must be freed individually. 3198 * 3199 * Note: this is probably too low level an operation for use in drivers. 3200 * Please consult with lkml before using this in your driver. 3201 */ 3202 void split_page(struct page *page, unsigned int order) 3203 { 3204 int i; 3205 3206 VM_BUG_ON_PAGE(PageCompound(page), page); 3207 VM_BUG_ON_PAGE(!page_count(page), page); 3208 3209 for (i = 1; i < (1 << order); i++) 3210 set_page_refcounted(page + i); 3211 split_page_owner(page, order); 3212 } 3213 EXPORT_SYMBOL_GPL(split_page); 3214 3215 int __isolate_free_page(struct page *page, unsigned int order) 3216 { 3217 unsigned long watermark; 3218 struct zone *zone; 3219 int mt; 3220 3221 BUG_ON(!PageBuddy(page)); 3222 3223 zone = page_zone(page); 3224 mt = get_pageblock_migratetype(page); 3225 3226 if (!is_migrate_isolate(mt)) { 3227 /* 3228 * Obey watermarks as if the page was being allocated. We can 3229 * emulate a high-order watermark check with a raised order-0 3230 * watermark, because we already know our high-order page 3231 * exists. 3232 */ 3233 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3234 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3235 return 0; 3236 3237 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3238 } 3239 3240 /* Remove page from free list */ 3241 3242 del_page_from_free_list(page, zone, order); 3243 3244 /* 3245 * Set the pageblock if the isolated page is at least half of a 3246 * pageblock 3247 */ 3248 if (order >= pageblock_order - 1) { 3249 struct page *endpage = page + (1 << order) - 1; 3250 for (; page < endpage; page += pageblock_nr_pages) { 3251 int mt = get_pageblock_migratetype(page); 3252 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3253 && !is_migrate_highatomic(mt)) 3254 set_pageblock_migratetype(page, 3255 MIGRATE_MOVABLE); 3256 } 3257 } 3258 3259 3260 return 1UL << order; 3261 } 3262 3263 /** 3264 * __putback_isolated_page - Return a now-isolated page back where we got it 3265 * @page: Page that was isolated 3266 * @order: Order of the isolated page 3267 * @mt: The page's pageblock's migratetype 3268 * 3269 * This function is meant to return a page pulled from the free lists via 3270 * __isolate_free_page back to the free lists they were pulled from. 3271 */ 3272 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3273 { 3274 struct zone *zone = page_zone(page); 3275 3276 /* zone lock should be held when this function is called */ 3277 lockdep_assert_held(&zone->lock); 3278 3279 /* Return isolated page to tail of freelist. */ 3280 __free_one_page(page, page_to_pfn(page), zone, order, mt, false); 3281 } 3282 3283 /* 3284 * Update NUMA hit/miss statistics 3285 * 3286 * Must be called with interrupts disabled. 3287 */ 3288 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z) 3289 { 3290 #ifdef CONFIG_NUMA 3291 enum numa_stat_item local_stat = NUMA_LOCAL; 3292 3293 /* skip numa counters update if numa stats is disabled */ 3294 if (!static_branch_likely(&vm_numa_stat_key)) 3295 return; 3296 3297 if (zone_to_nid(z) != numa_node_id()) 3298 local_stat = NUMA_OTHER; 3299 3300 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3301 __inc_numa_state(z, NUMA_HIT); 3302 else { 3303 __inc_numa_state(z, NUMA_MISS); 3304 __inc_numa_state(preferred_zone, NUMA_FOREIGN); 3305 } 3306 __inc_numa_state(z, local_stat); 3307 #endif 3308 } 3309 3310 /* Remove page from the per-cpu list, caller must protect the list */ 3311 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype, 3312 unsigned int alloc_flags, 3313 struct per_cpu_pages *pcp, 3314 struct list_head *list) 3315 { 3316 struct page *page; 3317 3318 do { 3319 if (list_empty(list)) { 3320 pcp->count += rmqueue_bulk(zone, 0, 3321 pcp->batch, list, 3322 migratetype, alloc_flags); 3323 if (unlikely(list_empty(list))) 3324 return NULL; 3325 } 3326 3327 page = list_first_entry(list, struct page, lru); 3328 list_del(&page->lru); 3329 pcp->count--; 3330 } while (check_new_pcp(page)); 3331 3332 return page; 3333 } 3334 3335 /* Lock and remove page from the per-cpu list */ 3336 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3337 struct zone *zone, gfp_t gfp_flags, 3338 int migratetype, unsigned int alloc_flags) 3339 { 3340 struct per_cpu_pages *pcp; 3341 struct list_head *list; 3342 struct page *page; 3343 unsigned long flags; 3344 3345 local_irq_save(flags); 3346 pcp = &this_cpu_ptr(zone->pageset)->pcp; 3347 list = &pcp->lists[migratetype]; 3348 page = __rmqueue_pcplist(zone, migratetype, alloc_flags, pcp, list); 3349 if (page) { 3350 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3351 zone_statistics(preferred_zone, zone); 3352 } 3353 local_irq_restore(flags); 3354 return page; 3355 } 3356 3357 /* 3358 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3359 */ 3360 static inline 3361 struct page *rmqueue(struct zone *preferred_zone, 3362 struct zone *zone, unsigned int order, 3363 gfp_t gfp_flags, unsigned int alloc_flags, 3364 int migratetype) 3365 { 3366 unsigned long flags; 3367 struct page *page; 3368 3369 if (likely(order == 0)) { 3370 page = rmqueue_pcplist(preferred_zone, zone, gfp_flags, 3371 migratetype, alloc_flags); 3372 goto out; 3373 } 3374 3375 /* 3376 * We most definitely don't want callers attempting to 3377 * allocate greater than order-1 page units with __GFP_NOFAIL. 3378 */ 3379 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3380 spin_lock_irqsave(&zone->lock, flags); 3381 3382 do { 3383 page = NULL; 3384 if (alloc_flags & ALLOC_HARDER) { 3385 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3386 if (page) 3387 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3388 } 3389 if (!page) 3390 page = __rmqueue(zone, order, migratetype, alloc_flags); 3391 } while (page && check_new_pages(page, order)); 3392 spin_unlock(&zone->lock); 3393 if (!page) 3394 goto failed; 3395 __mod_zone_freepage_state(zone, -(1 << order), 3396 get_pcppage_migratetype(page)); 3397 3398 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3399 zone_statistics(preferred_zone, zone); 3400 local_irq_restore(flags); 3401 3402 out: 3403 /* Separate test+clear to avoid unnecessary atomics */ 3404 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3405 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3406 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3407 } 3408 3409 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3410 return page; 3411 3412 failed: 3413 local_irq_restore(flags); 3414 return NULL; 3415 } 3416 3417 #ifdef CONFIG_FAIL_PAGE_ALLOC 3418 3419 static struct { 3420 struct fault_attr attr; 3421 3422 bool ignore_gfp_highmem; 3423 bool ignore_gfp_reclaim; 3424 u32 min_order; 3425 } fail_page_alloc = { 3426 .attr = FAULT_ATTR_INITIALIZER, 3427 .ignore_gfp_reclaim = true, 3428 .ignore_gfp_highmem = true, 3429 .min_order = 1, 3430 }; 3431 3432 static int __init setup_fail_page_alloc(char *str) 3433 { 3434 return setup_fault_attr(&fail_page_alloc.attr, str); 3435 } 3436 __setup("fail_page_alloc=", setup_fail_page_alloc); 3437 3438 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3439 { 3440 if (order < fail_page_alloc.min_order) 3441 return false; 3442 if (gfp_mask & __GFP_NOFAIL) 3443 return false; 3444 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3445 return false; 3446 if (fail_page_alloc.ignore_gfp_reclaim && 3447 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3448 return false; 3449 3450 return should_fail(&fail_page_alloc.attr, 1 << order); 3451 } 3452 3453 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3454 3455 static int __init fail_page_alloc_debugfs(void) 3456 { 3457 umode_t mode = S_IFREG | 0600; 3458 struct dentry *dir; 3459 3460 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3461 &fail_page_alloc.attr); 3462 3463 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3464 &fail_page_alloc.ignore_gfp_reclaim); 3465 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3466 &fail_page_alloc.ignore_gfp_highmem); 3467 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3468 3469 return 0; 3470 } 3471 3472 late_initcall(fail_page_alloc_debugfs); 3473 3474 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3475 3476 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3477 3478 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3479 { 3480 return false; 3481 } 3482 3483 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3484 3485 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3486 { 3487 return __should_fail_alloc_page(gfp_mask, order); 3488 } 3489 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3490 3491 static inline long __zone_watermark_unusable_free(struct zone *z, 3492 unsigned int order, unsigned int alloc_flags) 3493 { 3494 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3495 long unusable_free = (1 << order) - 1; 3496 3497 /* 3498 * If the caller does not have rights to ALLOC_HARDER then subtract 3499 * the high-atomic reserves. This will over-estimate the size of the 3500 * atomic reserve but it avoids a search. 3501 */ 3502 if (likely(!alloc_harder)) 3503 unusable_free += z->nr_reserved_highatomic; 3504 3505 #ifdef CONFIG_CMA 3506 /* If allocation can't use CMA areas don't use free CMA pages */ 3507 if (!(alloc_flags & ALLOC_CMA)) 3508 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3509 #endif 3510 3511 return unusable_free; 3512 } 3513 3514 /* 3515 * Return true if free base pages are above 'mark'. For high-order checks it 3516 * will return true of the order-0 watermark is reached and there is at least 3517 * one free page of a suitable size. Checking now avoids taking the zone lock 3518 * to check in the allocation paths if no pages are free. 3519 */ 3520 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3521 int highest_zoneidx, unsigned int alloc_flags, 3522 long free_pages) 3523 { 3524 long min = mark; 3525 int o; 3526 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3527 3528 /* free_pages may go negative - that's OK */ 3529 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3530 3531 if (alloc_flags & ALLOC_HIGH) 3532 min -= min / 2; 3533 3534 if (unlikely(alloc_harder)) { 3535 /* 3536 * OOM victims can try even harder than normal ALLOC_HARDER 3537 * users on the grounds that it's definitely going to be in 3538 * the exit path shortly and free memory. Any allocation it 3539 * makes during the free path will be small and short-lived. 3540 */ 3541 if (alloc_flags & ALLOC_OOM) 3542 min -= min / 2; 3543 else 3544 min -= min / 4; 3545 } 3546 3547 /* 3548 * Check watermarks for an order-0 allocation request. If these 3549 * are not met, then a high-order request also cannot go ahead 3550 * even if a suitable page happened to be free. 3551 */ 3552 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3553 return false; 3554 3555 /* If this is an order-0 request then the watermark is fine */ 3556 if (!order) 3557 return true; 3558 3559 /* For a high-order request, check at least one suitable page is free */ 3560 for (o = order; o < MAX_ORDER; o++) { 3561 struct free_area *area = &z->free_area[o]; 3562 int mt; 3563 3564 if (!area->nr_free) 3565 continue; 3566 3567 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3568 if (!free_area_empty(area, mt)) 3569 return true; 3570 } 3571 3572 #ifdef CONFIG_CMA 3573 if ((alloc_flags & ALLOC_CMA) && 3574 !free_area_empty(area, MIGRATE_CMA)) { 3575 return true; 3576 } 3577 #endif 3578 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3579 return true; 3580 } 3581 return false; 3582 } 3583 3584 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3585 int highest_zoneidx, unsigned int alloc_flags) 3586 { 3587 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3588 zone_page_state(z, NR_FREE_PAGES)); 3589 } 3590 3591 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3592 unsigned long mark, int highest_zoneidx, 3593 unsigned int alloc_flags, gfp_t gfp_mask) 3594 { 3595 long free_pages; 3596 3597 free_pages = zone_page_state(z, NR_FREE_PAGES); 3598 3599 /* 3600 * Fast check for order-0 only. If this fails then the reserves 3601 * need to be calculated. 3602 */ 3603 if (!order) { 3604 long fast_free; 3605 3606 fast_free = free_pages; 3607 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3608 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3609 return true; 3610 } 3611 3612 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3613 free_pages)) 3614 return true; 3615 /* 3616 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3617 * when checking the min watermark. The min watermark is the 3618 * point where boosting is ignored so that kswapd is woken up 3619 * when below the low watermark. 3620 */ 3621 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3622 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3623 mark = z->_watermark[WMARK_MIN]; 3624 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3625 alloc_flags, free_pages); 3626 } 3627 3628 return false; 3629 } 3630 3631 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3632 unsigned long mark, int highest_zoneidx) 3633 { 3634 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3635 3636 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3637 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3638 3639 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3640 free_pages); 3641 } 3642 3643 #ifdef CONFIG_NUMA 3644 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3645 { 3646 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3647 node_reclaim_distance; 3648 } 3649 #else /* CONFIG_NUMA */ 3650 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3651 { 3652 return true; 3653 } 3654 #endif /* CONFIG_NUMA */ 3655 3656 /* 3657 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3658 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3659 * premature use of a lower zone may cause lowmem pressure problems that 3660 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3661 * probably too small. It only makes sense to spread allocations to avoid 3662 * fragmentation between the Normal and DMA32 zones. 3663 */ 3664 static inline unsigned int 3665 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3666 { 3667 unsigned int alloc_flags; 3668 3669 /* 3670 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3671 * to save a branch. 3672 */ 3673 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3674 3675 #ifdef CONFIG_ZONE_DMA32 3676 if (!zone) 3677 return alloc_flags; 3678 3679 if (zone_idx(zone) != ZONE_NORMAL) 3680 return alloc_flags; 3681 3682 /* 3683 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3684 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3685 * on UMA that if Normal is populated then so is DMA32. 3686 */ 3687 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3688 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3689 return alloc_flags; 3690 3691 alloc_flags |= ALLOC_NOFRAGMENT; 3692 #endif /* CONFIG_ZONE_DMA32 */ 3693 return alloc_flags; 3694 } 3695 3696 static inline unsigned int current_alloc_flags(gfp_t gfp_mask, 3697 unsigned int alloc_flags) 3698 { 3699 #ifdef CONFIG_CMA 3700 unsigned int pflags = current->flags; 3701 3702 if (!(pflags & PF_MEMALLOC_NOCMA) && 3703 gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3704 alloc_flags |= ALLOC_CMA; 3705 3706 #endif 3707 return alloc_flags; 3708 } 3709 3710 /* 3711 * get_page_from_freelist goes through the zonelist trying to allocate 3712 * a page. 3713 */ 3714 static struct page * 3715 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3716 const struct alloc_context *ac) 3717 { 3718 struct zoneref *z; 3719 struct zone *zone; 3720 struct pglist_data *last_pgdat_dirty_limit = NULL; 3721 bool no_fallback; 3722 3723 retry: 3724 /* 3725 * Scan zonelist, looking for a zone with enough free. 3726 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 3727 */ 3728 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3729 z = ac->preferred_zoneref; 3730 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, 3731 ac->highest_zoneidx, ac->nodemask) { 3732 struct page *page; 3733 unsigned long mark; 3734 3735 if (cpusets_enabled() && 3736 (alloc_flags & ALLOC_CPUSET) && 3737 !__cpuset_zone_allowed(zone, gfp_mask)) 3738 continue; 3739 /* 3740 * When allocating a page cache page for writing, we 3741 * want to get it from a node that is within its dirty 3742 * limit, such that no single node holds more than its 3743 * proportional share of globally allowed dirty pages. 3744 * The dirty limits take into account the node's 3745 * lowmem reserves and high watermark so that kswapd 3746 * should be able to balance it without having to 3747 * write pages from its LRU list. 3748 * 3749 * XXX: For now, allow allocations to potentially 3750 * exceed the per-node dirty limit in the slowpath 3751 * (spread_dirty_pages unset) before going into reclaim, 3752 * which is important when on a NUMA setup the allowed 3753 * nodes are together not big enough to reach the 3754 * global limit. The proper fix for these situations 3755 * will require awareness of nodes in the 3756 * dirty-throttling and the flusher threads. 3757 */ 3758 if (ac->spread_dirty_pages) { 3759 if (last_pgdat_dirty_limit == zone->zone_pgdat) 3760 continue; 3761 3762 if (!node_dirty_ok(zone->zone_pgdat)) { 3763 last_pgdat_dirty_limit = zone->zone_pgdat; 3764 continue; 3765 } 3766 } 3767 3768 if (no_fallback && nr_online_nodes > 1 && 3769 zone != ac->preferred_zoneref->zone) { 3770 int local_nid; 3771 3772 /* 3773 * If moving to a remote node, retry but allow 3774 * fragmenting fallbacks. Locality is more important 3775 * than fragmentation avoidance. 3776 */ 3777 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3778 if (zone_to_nid(zone) != local_nid) { 3779 alloc_flags &= ~ALLOC_NOFRAGMENT; 3780 goto retry; 3781 } 3782 } 3783 3784 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3785 if (!zone_watermark_fast(zone, order, mark, 3786 ac->highest_zoneidx, alloc_flags, 3787 gfp_mask)) { 3788 int ret; 3789 3790 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3791 /* 3792 * Watermark failed for this zone, but see if we can 3793 * grow this zone if it contains deferred pages. 3794 */ 3795 if (static_branch_unlikely(&deferred_pages)) { 3796 if (_deferred_grow_zone(zone, order)) 3797 goto try_this_zone; 3798 } 3799 #endif 3800 /* Checked here to keep the fast path fast */ 3801 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3802 if (alloc_flags & ALLOC_NO_WATERMARKS) 3803 goto try_this_zone; 3804 3805 if (node_reclaim_mode == 0 || 3806 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3807 continue; 3808 3809 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3810 switch (ret) { 3811 case NODE_RECLAIM_NOSCAN: 3812 /* did not scan */ 3813 continue; 3814 case NODE_RECLAIM_FULL: 3815 /* scanned but unreclaimable */ 3816 continue; 3817 default: 3818 /* did we reclaim enough */ 3819 if (zone_watermark_ok(zone, order, mark, 3820 ac->highest_zoneidx, alloc_flags)) 3821 goto try_this_zone; 3822 3823 continue; 3824 } 3825 } 3826 3827 try_this_zone: 3828 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3829 gfp_mask, alloc_flags, ac->migratetype); 3830 if (page) { 3831 prep_new_page(page, order, gfp_mask, alloc_flags); 3832 3833 /* 3834 * If this is a high-order atomic allocation then check 3835 * if the pageblock should be reserved for the future 3836 */ 3837 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 3838 reserve_highatomic_pageblock(page, zone, order); 3839 3840 return page; 3841 } else { 3842 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3843 /* Try again if zone has deferred pages */ 3844 if (static_branch_unlikely(&deferred_pages)) { 3845 if (_deferred_grow_zone(zone, order)) 3846 goto try_this_zone; 3847 } 3848 #endif 3849 } 3850 } 3851 3852 /* 3853 * It's possible on a UMA machine to get through all zones that are 3854 * fragmented. If avoiding fragmentation, reset and try again. 3855 */ 3856 if (no_fallback) { 3857 alloc_flags &= ~ALLOC_NOFRAGMENT; 3858 goto retry; 3859 } 3860 3861 return NULL; 3862 } 3863 3864 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3865 { 3866 unsigned int filter = SHOW_MEM_FILTER_NODES; 3867 3868 /* 3869 * This documents exceptions given to allocations in certain 3870 * contexts that are allowed to allocate outside current's set 3871 * of allowed nodes. 3872 */ 3873 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3874 if (tsk_is_oom_victim(current) || 3875 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3876 filter &= ~SHOW_MEM_FILTER_NODES; 3877 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3878 filter &= ~SHOW_MEM_FILTER_NODES; 3879 3880 show_mem(filter, nodemask); 3881 } 3882 3883 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3884 { 3885 struct va_format vaf; 3886 va_list args; 3887 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3888 3889 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 3890 return; 3891 3892 va_start(args, fmt); 3893 vaf.fmt = fmt; 3894 vaf.va = &args; 3895 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3896 current->comm, &vaf, gfp_mask, &gfp_mask, 3897 nodemask_pr_args(nodemask)); 3898 va_end(args); 3899 3900 cpuset_print_current_mems_allowed(); 3901 pr_cont("\n"); 3902 dump_stack(); 3903 warn_alloc_show_mem(gfp_mask, nodemask); 3904 } 3905 3906 static inline struct page * 3907 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3908 unsigned int alloc_flags, 3909 const struct alloc_context *ac) 3910 { 3911 struct page *page; 3912 3913 page = get_page_from_freelist(gfp_mask, order, 3914 alloc_flags|ALLOC_CPUSET, ac); 3915 /* 3916 * fallback to ignore cpuset restriction if our nodes 3917 * are depleted 3918 */ 3919 if (!page) 3920 page = get_page_from_freelist(gfp_mask, order, 3921 alloc_flags, ac); 3922 3923 return page; 3924 } 3925 3926 static inline struct page * 3927 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3928 const struct alloc_context *ac, unsigned long *did_some_progress) 3929 { 3930 struct oom_control oc = { 3931 .zonelist = ac->zonelist, 3932 .nodemask = ac->nodemask, 3933 .memcg = NULL, 3934 .gfp_mask = gfp_mask, 3935 .order = order, 3936 }; 3937 struct page *page; 3938 3939 *did_some_progress = 0; 3940 3941 /* 3942 * Acquire the oom lock. If that fails, somebody else is 3943 * making progress for us. 3944 */ 3945 if (!mutex_trylock(&oom_lock)) { 3946 *did_some_progress = 1; 3947 schedule_timeout_uninterruptible(1); 3948 return NULL; 3949 } 3950 3951 /* 3952 * Go through the zonelist yet one more time, keep very high watermark 3953 * here, this is only to catch a parallel oom killing, we must fail if 3954 * we're still under heavy pressure. But make sure that this reclaim 3955 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3956 * allocation which will never fail due to oom_lock already held. 3957 */ 3958 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3959 ~__GFP_DIRECT_RECLAIM, order, 3960 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3961 if (page) 3962 goto out; 3963 3964 /* Coredumps can quickly deplete all memory reserves */ 3965 if (current->flags & PF_DUMPCORE) 3966 goto out; 3967 /* The OOM killer will not help higher order allocs */ 3968 if (order > PAGE_ALLOC_COSTLY_ORDER) 3969 goto out; 3970 /* 3971 * We have already exhausted all our reclaim opportunities without any 3972 * success so it is time to admit defeat. We will skip the OOM killer 3973 * because it is very likely that the caller has a more reasonable 3974 * fallback than shooting a random task. 3975 */ 3976 if (gfp_mask & __GFP_RETRY_MAYFAIL) 3977 goto out; 3978 /* The OOM killer does not needlessly kill tasks for lowmem */ 3979 if (ac->highest_zoneidx < ZONE_NORMAL) 3980 goto out; 3981 if (pm_suspended_storage()) 3982 goto out; 3983 /* 3984 * XXX: GFP_NOFS allocations should rather fail than rely on 3985 * other request to make a forward progress. 3986 * We are in an unfortunate situation where out_of_memory cannot 3987 * do much for this context but let's try it to at least get 3988 * access to memory reserved if the current task is killed (see 3989 * out_of_memory). Once filesystems are ready to handle allocation 3990 * failures more gracefully we should just bail out here. 3991 */ 3992 3993 /* The OOM killer may not free memory on a specific node */ 3994 if (gfp_mask & __GFP_THISNODE) 3995 goto out; 3996 3997 /* Exhausted what can be done so it's blame time */ 3998 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 3999 *did_some_progress = 1; 4000 4001 /* 4002 * Help non-failing allocations by giving them access to memory 4003 * reserves 4004 */ 4005 if (gfp_mask & __GFP_NOFAIL) 4006 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4007 ALLOC_NO_WATERMARKS, ac); 4008 } 4009 out: 4010 mutex_unlock(&oom_lock); 4011 return page; 4012 } 4013 4014 /* 4015 * Maximum number of compaction retries wit a progress before OOM 4016 * killer is consider as the only way to move forward. 4017 */ 4018 #define MAX_COMPACT_RETRIES 16 4019 4020 #ifdef CONFIG_COMPACTION 4021 /* Try memory compaction for high-order allocations before reclaim */ 4022 static struct page * 4023 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4024 unsigned int alloc_flags, const struct alloc_context *ac, 4025 enum compact_priority prio, enum compact_result *compact_result) 4026 { 4027 struct page *page = NULL; 4028 unsigned long pflags; 4029 unsigned int noreclaim_flag; 4030 4031 if (!order) 4032 return NULL; 4033 4034 psi_memstall_enter(&pflags); 4035 noreclaim_flag = memalloc_noreclaim_save(); 4036 4037 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4038 prio, &page); 4039 4040 memalloc_noreclaim_restore(noreclaim_flag); 4041 psi_memstall_leave(&pflags); 4042 4043 /* 4044 * At least in one zone compaction wasn't deferred or skipped, so let's 4045 * count a compaction stall 4046 */ 4047 count_vm_event(COMPACTSTALL); 4048 4049 /* Prep a captured page if available */ 4050 if (page) 4051 prep_new_page(page, order, gfp_mask, alloc_flags); 4052 4053 /* Try get a page from the freelist if available */ 4054 if (!page) 4055 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4056 4057 if (page) { 4058 struct zone *zone = page_zone(page); 4059 4060 zone->compact_blockskip_flush = false; 4061 compaction_defer_reset(zone, order, true); 4062 count_vm_event(COMPACTSUCCESS); 4063 return page; 4064 } 4065 4066 /* 4067 * It's bad if compaction run occurs and fails. The most likely reason 4068 * is that pages exist, but not enough to satisfy watermarks. 4069 */ 4070 count_vm_event(COMPACTFAIL); 4071 4072 cond_resched(); 4073 4074 return NULL; 4075 } 4076 4077 static inline bool 4078 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4079 enum compact_result compact_result, 4080 enum compact_priority *compact_priority, 4081 int *compaction_retries) 4082 { 4083 int max_retries = MAX_COMPACT_RETRIES; 4084 int min_priority; 4085 bool ret = false; 4086 int retries = *compaction_retries; 4087 enum compact_priority priority = *compact_priority; 4088 4089 if (!order) 4090 return false; 4091 4092 if (compaction_made_progress(compact_result)) 4093 (*compaction_retries)++; 4094 4095 /* 4096 * compaction considers all the zone as desperately out of memory 4097 * so it doesn't really make much sense to retry except when the 4098 * failure could be caused by insufficient priority 4099 */ 4100 if (compaction_failed(compact_result)) 4101 goto check_priority; 4102 4103 /* 4104 * compaction was skipped because there are not enough order-0 pages 4105 * to work with, so we retry only if it looks like reclaim can help. 4106 */ 4107 if (compaction_needs_reclaim(compact_result)) { 4108 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4109 goto out; 4110 } 4111 4112 /* 4113 * make sure the compaction wasn't deferred or didn't bail out early 4114 * due to locks contention before we declare that we should give up. 4115 * But the next retry should use a higher priority if allowed, so 4116 * we don't just keep bailing out endlessly. 4117 */ 4118 if (compaction_withdrawn(compact_result)) { 4119 goto check_priority; 4120 } 4121 4122 /* 4123 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4124 * costly ones because they are de facto nofail and invoke OOM 4125 * killer to move on while costly can fail and users are ready 4126 * to cope with that. 1/4 retries is rather arbitrary but we 4127 * would need much more detailed feedback from compaction to 4128 * make a better decision. 4129 */ 4130 if (order > PAGE_ALLOC_COSTLY_ORDER) 4131 max_retries /= 4; 4132 if (*compaction_retries <= max_retries) { 4133 ret = true; 4134 goto out; 4135 } 4136 4137 /* 4138 * Make sure there are attempts at the highest priority if we exhausted 4139 * all retries or failed at the lower priorities. 4140 */ 4141 check_priority: 4142 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4143 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4144 4145 if (*compact_priority > min_priority) { 4146 (*compact_priority)--; 4147 *compaction_retries = 0; 4148 ret = true; 4149 } 4150 out: 4151 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4152 return ret; 4153 } 4154 #else 4155 static inline struct page * 4156 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4157 unsigned int alloc_flags, const struct alloc_context *ac, 4158 enum compact_priority prio, enum compact_result *compact_result) 4159 { 4160 *compact_result = COMPACT_SKIPPED; 4161 return NULL; 4162 } 4163 4164 static inline bool 4165 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4166 enum compact_result compact_result, 4167 enum compact_priority *compact_priority, 4168 int *compaction_retries) 4169 { 4170 struct zone *zone; 4171 struct zoneref *z; 4172 4173 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4174 return false; 4175 4176 /* 4177 * There are setups with compaction disabled which would prefer to loop 4178 * inside the allocator rather than hit the oom killer prematurely. 4179 * Let's give them a good hope and keep retrying while the order-0 4180 * watermarks are OK. 4181 */ 4182 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4183 ac->highest_zoneidx, ac->nodemask) { 4184 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4185 ac->highest_zoneidx, alloc_flags)) 4186 return true; 4187 } 4188 return false; 4189 } 4190 #endif /* CONFIG_COMPACTION */ 4191 4192 #ifdef CONFIG_LOCKDEP 4193 static struct lockdep_map __fs_reclaim_map = 4194 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4195 4196 static bool __need_fs_reclaim(gfp_t gfp_mask) 4197 { 4198 gfp_mask = current_gfp_context(gfp_mask); 4199 4200 /* no reclaim without waiting on it */ 4201 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4202 return false; 4203 4204 /* this guy won't enter reclaim */ 4205 if (current->flags & PF_MEMALLOC) 4206 return false; 4207 4208 /* We're only interested __GFP_FS allocations for now */ 4209 if (!(gfp_mask & __GFP_FS)) 4210 return false; 4211 4212 if (gfp_mask & __GFP_NOLOCKDEP) 4213 return false; 4214 4215 return true; 4216 } 4217 4218 void __fs_reclaim_acquire(void) 4219 { 4220 lock_map_acquire(&__fs_reclaim_map); 4221 } 4222 4223 void __fs_reclaim_release(void) 4224 { 4225 lock_map_release(&__fs_reclaim_map); 4226 } 4227 4228 void fs_reclaim_acquire(gfp_t gfp_mask) 4229 { 4230 if (__need_fs_reclaim(gfp_mask)) 4231 __fs_reclaim_acquire(); 4232 } 4233 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4234 4235 void fs_reclaim_release(gfp_t gfp_mask) 4236 { 4237 if (__need_fs_reclaim(gfp_mask)) 4238 __fs_reclaim_release(); 4239 } 4240 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4241 #endif 4242 4243 /* Perform direct synchronous page reclaim */ 4244 static int 4245 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4246 const struct alloc_context *ac) 4247 { 4248 int progress; 4249 unsigned int noreclaim_flag; 4250 unsigned long pflags; 4251 4252 cond_resched(); 4253 4254 /* We now go into synchronous reclaim */ 4255 cpuset_memory_pressure_bump(); 4256 psi_memstall_enter(&pflags); 4257 fs_reclaim_acquire(gfp_mask); 4258 noreclaim_flag = memalloc_noreclaim_save(); 4259 4260 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4261 ac->nodemask); 4262 4263 memalloc_noreclaim_restore(noreclaim_flag); 4264 fs_reclaim_release(gfp_mask); 4265 psi_memstall_leave(&pflags); 4266 4267 cond_resched(); 4268 4269 return progress; 4270 } 4271 4272 /* The really slow allocator path where we enter direct reclaim */ 4273 static inline struct page * 4274 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4275 unsigned int alloc_flags, const struct alloc_context *ac, 4276 unsigned long *did_some_progress) 4277 { 4278 struct page *page = NULL; 4279 bool drained = false; 4280 4281 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4282 if (unlikely(!(*did_some_progress))) 4283 return NULL; 4284 4285 retry: 4286 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4287 4288 /* 4289 * If an allocation failed after direct reclaim, it could be because 4290 * pages are pinned on the per-cpu lists or in high alloc reserves. 4291 * Shrink them and try again 4292 */ 4293 if (!page && !drained) { 4294 unreserve_highatomic_pageblock(ac, false); 4295 drain_all_pages(NULL); 4296 drained = true; 4297 goto retry; 4298 } 4299 4300 return page; 4301 } 4302 4303 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4304 const struct alloc_context *ac) 4305 { 4306 struct zoneref *z; 4307 struct zone *zone; 4308 pg_data_t *last_pgdat = NULL; 4309 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4310 4311 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4312 ac->nodemask) { 4313 if (last_pgdat != zone->zone_pgdat) 4314 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4315 last_pgdat = zone->zone_pgdat; 4316 } 4317 } 4318 4319 static inline unsigned int 4320 gfp_to_alloc_flags(gfp_t gfp_mask) 4321 { 4322 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4323 4324 /* 4325 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4326 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4327 * to save two branches. 4328 */ 4329 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4330 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4331 4332 /* 4333 * The caller may dip into page reserves a bit more if the caller 4334 * cannot run direct reclaim, or if the caller has realtime scheduling 4335 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4336 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4337 */ 4338 alloc_flags |= (__force int) 4339 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4340 4341 if (gfp_mask & __GFP_ATOMIC) { 4342 /* 4343 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4344 * if it can't schedule. 4345 */ 4346 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4347 alloc_flags |= ALLOC_HARDER; 4348 /* 4349 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4350 * comment for __cpuset_node_allowed(). 4351 */ 4352 alloc_flags &= ~ALLOC_CPUSET; 4353 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4354 alloc_flags |= ALLOC_HARDER; 4355 4356 alloc_flags = current_alloc_flags(gfp_mask, alloc_flags); 4357 4358 return alloc_flags; 4359 } 4360 4361 static bool oom_reserves_allowed(struct task_struct *tsk) 4362 { 4363 if (!tsk_is_oom_victim(tsk)) 4364 return false; 4365 4366 /* 4367 * !MMU doesn't have oom reaper so give access to memory reserves 4368 * only to the thread with TIF_MEMDIE set 4369 */ 4370 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4371 return false; 4372 4373 return true; 4374 } 4375 4376 /* 4377 * Distinguish requests which really need access to full memory 4378 * reserves from oom victims which can live with a portion of it 4379 */ 4380 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4381 { 4382 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4383 return 0; 4384 if (gfp_mask & __GFP_MEMALLOC) 4385 return ALLOC_NO_WATERMARKS; 4386 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4387 return ALLOC_NO_WATERMARKS; 4388 if (!in_interrupt()) { 4389 if (current->flags & PF_MEMALLOC) 4390 return ALLOC_NO_WATERMARKS; 4391 else if (oom_reserves_allowed(current)) 4392 return ALLOC_OOM; 4393 } 4394 4395 return 0; 4396 } 4397 4398 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4399 { 4400 return !!__gfp_pfmemalloc_flags(gfp_mask); 4401 } 4402 4403 /* 4404 * Checks whether it makes sense to retry the reclaim to make a forward progress 4405 * for the given allocation request. 4406 * 4407 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4408 * without success, or when we couldn't even meet the watermark if we 4409 * reclaimed all remaining pages on the LRU lists. 4410 * 4411 * Returns true if a retry is viable or false to enter the oom path. 4412 */ 4413 static inline bool 4414 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4415 struct alloc_context *ac, int alloc_flags, 4416 bool did_some_progress, int *no_progress_loops) 4417 { 4418 struct zone *zone; 4419 struct zoneref *z; 4420 bool ret = false; 4421 4422 /* 4423 * Costly allocations might have made a progress but this doesn't mean 4424 * their order will become available due to high fragmentation so 4425 * always increment the no progress counter for them 4426 */ 4427 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4428 *no_progress_loops = 0; 4429 else 4430 (*no_progress_loops)++; 4431 4432 /* 4433 * Make sure we converge to OOM if we cannot make any progress 4434 * several times in the row. 4435 */ 4436 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4437 /* Before OOM, exhaust highatomic_reserve */ 4438 return unreserve_highatomic_pageblock(ac, true); 4439 } 4440 4441 /* 4442 * Keep reclaiming pages while there is a chance this will lead 4443 * somewhere. If none of the target zones can satisfy our allocation 4444 * request even if all reclaimable pages are considered then we are 4445 * screwed and have to go OOM. 4446 */ 4447 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4448 ac->highest_zoneidx, ac->nodemask) { 4449 unsigned long available; 4450 unsigned long reclaimable; 4451 unsigned long min_wmark = min_wmark_pages(zone); 4452 bool wmark; 4453 4454 available = reclaimable = zone_reclaimable_pages(zone); 4455 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4456 4457 /* 4458 * Would the allocation succeed if we reclaimed all 4459 * reclaimable pages? 4460 */ 4461 wmark = __zone_watermark_ok(zone, order, min_wmark, 4462 ac->highest_zoneidx, alloc_flags, available); 4463 trace_reclaim_retry_zone(z, order, reclaimable, 4464 available, min_wmark, *no_progress_loops, wmark); 4465 if (wmark) { 4466 /* 4467 * If we didn't make any progress and have a lot of 4468 * dirty + writeback pages then we should wait for 4469 * an IO to complete to slow down the reclaim and 4470 * prevent from pre mature OOM 4471 */ 4472 if (!did_some_progress) { 4473 unsigned long write_pending; 4474 4475 write_pending = zone_page_state_snapshot(zone, 4476 NR_ZONE_WRITE_PENDING); 4477 4478 if (2 * write_pending > reclaimable) { 4479 congestion_wait(BLK_RW_ASYNC, HZ/10); 4480 return true; 4481 } 4482 } 4483 4484 ret = true; 4485 goto out; 4486 } 4487 } 4488 4489 out: 4490 /* 4491 * Memory allocation/reclaim might be called from a WQ context and the 4492 * current implementation of the WQ concurrency control doesn't 4493 * recognize that a particular WQ is congested if the worker thread is 4494 * looping without ever sleeping. Therefore we have to do a short sleep 4495 * here rather than calling cond_resched(). 4496 */ 4497 if (current->flags & PF_WQ_WORKER) 4498 schedule_timeout_uninterruptible(1); 4499 else 4500 cond_resched(); 4501 return ret; 4502 } 4503 4504 static inline bool 4505 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4506 { 4507 /* 4508 * It's possible that cpuset's mems_allowed and the nodemask from 4509 * mempolicy don't intersect. This should be normally dealt with by 4510 * policy_nodemask(), but it's possible to race with cpuset update in 4511 * such a way the check therein was true, and then it became false 4512 * before we got our cpuset_mems_cookie here. 4513 * This assumes that for all allocations, ac->nodemask can come only 4514 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4515 * when it does not intersect with the cpuset restrictions) or the 4516 * caller can deal with a violated nodemask. 4517 */ 4518 if (cpusets_enabled() && ac->nodemask && 4519 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4520 ac->nodemask = NULL; 4521 return true; 4522 } 4523 4524 /* 4525 * When updating a task's mems_allowed or mempolicy nodemask, it is 4526 * possible to race with parallel threads in such a way that our 4527 * allocation can fail while the mask is being updated. If we are about 4528 * to fail, check if the cpuset changed during allocation and if so, 4529 * retry. 4530 */ 4531 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4532 return true; 4533 4534 return false; 4535 } 4536 4537 static inline struct page * 4538 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4539 struct alloc_context *ac) 4540 { 4541 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4542 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4543 struct page *page = NULL; 4544 unsigned int alloc_flags; 4545 unsigned long did_some_progress; 4546 enum compact_priority compact_priority; 4547 enum compact_result compact_result; 4548 int compaction_retries; 4549 int no_progress_loops; 4550 unsigned int cpuset_mems_cookie; 4551 int reserve_flags; 4552 4553 /* 4554 * We also sanity check to catch abuse of atomic reserves being used by 4555 * callers that are not in atomic context. 4556 */ 4557 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4558 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4559 gfp_mask &= ~__GFP_ATOMIC; 4560 4561 retry_cpuset: 4562 compaction_retries = 0; 4563 no_progress_loops = 0; 4564 compact_priority = DEF_COMPACT_PRIORITY; 4565 cpuset_mems_cookie = read_mems_allowed_begin(); 4566 4567 /* 4568 * The fast path uses conservative alloc_flags to succeed only until 4569 * kswapd needs to be woken up, and to avoid the cost of setting up 4570 * alloc_flags precisely. So we do that now. 4571 */ 4572 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4573 4574 /* 4575 * We need to recalculate the starting point for the zonelist iterator 4576 * because we might have used different nodemask in the fast path, or 4577 * there was a cpuset modification and we are retrying - otherwise we 4578 * could end up iterating over non-eligible zones endlessly. 4579 */ 4580 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4581 ac->highest_zoneidx, ac->nodemask); 4582 if (!ac->preferred_zoneref->zone) 4583 goto nopage; 4584 4585 if (alloc_flags & ALLOC_KSWAPD) 4586 wake_all_kswapds(order, gfp_mask, ac); 4587 4588 /* 4589 * The adjusted alloc_flags might result in immediate success, so try 4590 * that first 4591 */ 4592 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4593 if (page) 4594 goto got_pg; 4595 4596 /* 4597 * For costly allocations, try direct compaction first, as it's likely 4598 * that we have enough base pages and don't need to reclaim. For non- 4599 * movable high-order allocations, do that as well, as compaction will 4600 * try prevent permanent fragmentation by migrating from blocks of the 4601 * same migratetype. 4602 * Don't try this for allocations that are allowed to ignore 4603 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4604 */ 4605 if (can_direct_reclaim && 4606 (costly_order || 4607 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4608 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4609 page = __alloc_pages_direct_compact(gfp_mask, order, 4610 alloc_flags, ac, 4611 INIT_COMPACT_PRIORITY, 4612 &compact_result); 4613 if (page) 4614 goto got_pg; 4615 4616 /* 4617 * Checks for costly allocations with __GFP_NORETRY, which 4618 * includes some THP page fault allocations 4619 */ 4620 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4621 /* 4622 * If allocating entire pageblock(s) and compaction 4623 * failed because all zones are below low watermarks 4624 * or is prohibited because it recently failed at this 4625 * order, fail immediately unless the allocator has 4626 * requested compaction and reclaim retry. 4627 * 4628 * Reclaim is 4629 * - potentially very expensive because zones are far 4630 * below their low watermarks or this is part of very 4631 * bursty high order allocations, 4632 * - not guaranteed to help because isolate_freepages() 4633 * may not iterate over freed pages as part of its 4634 * linear scan, and 4635 * - unlikely to make entire pageblocks free on its 4636 * own. 4637 */ 4638 if (compact_result == COMPACT_SKIPPED || 4639 compact_result == COMPACT_DEFERRED) 4640 goto nopage; 4641 4642 /* 4643 * Looks like reclaim/compaction is worth trying, but 4644 * sync compaction could be very expensive, so keep 4645 * using async compaction. 4646 */ 4647 compact_priority = INIT_COMPACT_PRIORITY; 4648 } 4649 } 4650 4651 retry: 4652 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4653 if (alloc_flags & ALLOC_KSWAPD) 4654 wake_all_kswapds(order, gfp_mask, ac); 4655 4656 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4657 if (reserve_flags) 4658 alloc_flags = current_alloc_flags(gfp_mask, reserve_flags); 4659 4660 /* 4661 * Reset the nodemask and zonelist iterators if memory policies can be 4662 * ignored. These allocations are high priority and system rather than 4663 * user oriented. 4664 */ 4665 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4666 ac->nodemask = NULL; 4667 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4668 ac->highest_zoneidx, ac->nodemask); 4669 } 4670 4671 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4672 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4673 if (page) 4674 goto got_pg; 4675 4676 /* Caller is not willing to reclaim, we can't balance anything */ 4677 if (!can_direct_reclaim) 4678 goto nopage; 4679 4680 /* Avoid recursion of direct reclaim */ 4681 if (current->flags & PF_MEMALLOC) 4682 goto nopage; 4683 4684 /* Try direct reclaim and then allocating */ 4685 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4686 &did_some_progress); 4687 if (page) 4688 goto got_pg; 4689 4690 /* Try direct compaction and then allocating */ 4691 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4692 compact_priority, &compact_result); 4693 if (page) 4694 goto got_pg; 4695 4696 /* Do not loop if specifically requested */ 4697 if (gfp_mask & __GFP_NORETRY) 4698 goto nopage; 4699 4700 /* 4701 * Do not retry costly high order allocations unless they are 4702 * __GFP_RETRY_MAYFAIL 4703 */ 4704 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4705 goto nopage; 4706 4707 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4708 did_some_progress > 0, &no_progress_loops)) 4709 goto retry; 4710 4711 /* 4712 * It doesn't make any sense to retry for the compaction if the order-0 4713 * reclaim is not able to make any progress because the current 4714 * implementation of the compaction depends on the sufficient amount 4715 * of free memory (see __compaction_suitable) 4716 */ 4717 if (did_some_progress > 0 && 4718 should_compact_retry(ac, order, alloc_flags, 4719 compact_result, &compact_priority, 4720 &compaction_retries)) 4721 goto retry; 4722 4723 4724 /* Deal with possible cpuset update races before we start OOM killing */ 4725 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4726 goto retry_cpuset; 4727 4728 /* Reclaim has failed us, start killing things */ 4729 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4730 if (page) 4731 goto got_pg; 4732 4733 /* Avoid allocations with no watermarks from looping endlessly */ 4734 if (tsk_is_oom_victim(current) && 4735 (alloc_flags & ALLOC_OOM || 4736 (gfp_mask & __GFP_NOMEMALLOC))) 4737 goto nopage; 4738 4739 /* Retry as long as the OOM killer is making progress */ 4740 if (did_some_progress) { 4741 no_progress_loops = 0; 4742 goto retry; 4743 } 4744 4745 nopage: 4746 /* Deal with possible cpuset update races before we fail */ 4747 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 4748 goto retry_cpuset; 4749 4750 /* 4751 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4752 * we always retry 4753 */ 4754 if (gfp_mask & __GFP_NOFAIL) { 4755 /* 4756 * All existing users of the __GFP_NOFAIL are blockable, so warn 4757 * of any new users that actually require GFP_NOWAIT 4758 */ 4759 if (WARN_ON_ONCE(!can_direct_reclaim)) 4760 goto fail; 4761 4762 /* 4763 * PF_MEMALLOC request from this context is rather bizarre 4764 * because we cannot reclaim anything and only can loop waiting 4765 * for somebody to do a work for us 4766 */ 4767 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 4768 4769 /* 4770 * non failing costly orders are a hard requirement which we 4771 * are not prepared for much so let's warn about these users 4772 * so that we can identify them and convert them to something 4773 * else. 4774 */ 4775 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 4776 4777 /* 4778 * Help non-failing allocations by giving them access to memory 4779 * reserves but do not use ALLOC_NO_WATERMARKS because this 4780 * could deplete whole memory reserves which would just make 4781 * the situation worse 4782 */ 4783 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 4784 if (page) 4785 goto got_pg; 4786 4787 cond_resched(); 4788 goto retry; 4789 } 4790 fail: 4791 warn_alloc(gfp_mask, ac->nodemask, 4792 "page allocation failure: order:%u", order); 4793 got_pg: 4794 return page; 4795 } 4796 4797 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4798 int preferred_nid, nodemask_t *nodemask, 4799 struct alloc_context *ac, gfp_t *alloc_mask, 4800 unsigned int *alloc_flags) 4801 { 4802 ac->highest_zoneidx = gfp_zone(gfp_mask); 4803 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4804 ac->nodemask = nodemask; 4805 ac->migratetype = gfp_migratetype(gfp_mask); 4806 4807 if (cpusets_enabled()) { 4808 *alloc_mask |= __GFP_HARDWALL; 4809 /* 4810 * When we are in the interrupt context, it is irrelevant 4811 * to the current task context. It means that any node ok. 4812 */ 4813 if (!in_interrupt() && !ac->nodemask) 4814 ac->nodemask = &cpuset_current_mems_allowed; 4815 else 4816 *alloc_flags |= ALLOC_CPUSET; 4817 } 4818 4819 fs_reclaim_acquire(gfp_mask); 4820 fs_reclaim_release(gfp_mask); 4821 4822 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 4823 4824 if (should_fail_alloc_page(gfp_mask, order)) 4825 return false; 4826 4827 *alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags); 4828 4829 return true; 4830 } 4831 4832 /* Determine whether to spread dirty pages and what the first usable zone */ 4833 static inline void finalise_ac(gfp_t gfp_mask, struct alloc_context *ac) 4834 { 4835 /* Dirty zone balancing only done in the fast path */ 4836 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4837 4838 /* 4839 * The preferred zone is used for statistics but crucially it is 4840 * also used as the starting point for the zonelist iterator. It 4841 * may get reset for allocations that ignore memory policies. 4842 */ 4843 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4844 ac->highest_zoneidx, ac->nodemask); 4845 } 4846 4847 /* 4848 * This is the 'heart' of the zoned buddy allocator. 4849 */ 4850 struct page * 4851 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid, 4852 nodemask_t *nodemask) 4853 { 4854 struct page *page; 4855 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4856 gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */ 4857 struct alloc_context ac = { }; 4858 4859 /* 4860 * There are several places where we assume that the order value is sane 4861 * so bail out early if the request is out of bound. 4862 */ 4863 if (unlikely(order >= MAX_ORDER)) { 4864 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 4865 return NULL; 4866 } 4867 4868 gfp_mask &= gfp_allowed_mask; 4869 alloc_mask = gfp_mask; 4870 if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags)) 4871 return NULL; 4872 4873 finalise_ac(gfp_mask, &ac); 4874 4875 /* 4876 * Forbid the first pass from falling back to types that fragment 4877 * memory until all local zones are considered. 4878 */ 4879 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask); 4880 4881 /* First allocation attempt */ 4882 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac); 4883 if (likely(page)) 4884 goto out; 4885 4886 /* 4887 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4888 * resp. GFP_NOIO which has to be inherited for all allocation requests 4889 * from a particular context which has been marked by 4890 * memalloc_no{fs,io}_{save,restore}. 4891 */ 4892 alloc_mask = current_gfp_context(gfp_mask); 4893 ac.spread_dirty_pages = false; 4894 4895 /* 4896 * Restore the original nodemask if it was potentially replaced with 4897 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4898 */ 4899 ac.nodemask = nodemask; 4900 4901 page = __alloc_pages_slowpath(alloc_mask, order, &ac); 4902 4903 out: 4904 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page && 4905 unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) { 4906 __free_pages(page, order); 4907 page = NULL; 4908 } 4909 4910 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype); 4911 4912 return page; 4913 } 4914 EXPORT_SYMBOL(__alloc_pages_nodemask); 4915 4916 /* 4917 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4918 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4919 * you need to access high mem. 4920 */ 4921 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4922 { 4923 struct page *page; 4924 4925 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4926 if (!page) 4927 return 0; 4928 return (unsigned long) page_address(page); 4929 } 4930 EXPORT_SYMBOL(__get_free_pages); 4931 4932 unsigned long get_zeroed_page(gfp_t gfp_mask) 4933 { 4934 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 4935 } 4936 EXPORT_SYMBOL(get_zeroed_page); 4937 4938 static inline void free_the_page(struct page *page, unsigned int order) 4939 { 4940 if (order == 0) /* Via pcp? */ 4941 free_unref_page(page); 4942 else 4943 __free_pages_ok(page, order); 4944 } 4945 4946 void __free_pages(struct page *page, unsigned int order) 4947 { 4948 if (put_page_testzero(page)) 4949 free_the_page(page, order); 4950 } 4951 EXPORT_SYMBOL(__free_pages); 4952 4953 void free_pages(unsigned long addr, unsigned int order) 4954 { 4955 if (addr != 0) { 4956 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4957 __free_pages(virt_to_page((void *)addr), order); 4958 } 4959 } 4960 4961 EXPORT_SYMBOL(free_pages); 4962 4963 /* 4964 * Page Fragment: 4965 * An arbitrary-length arbitrary-offset area of memory which resides 4966 * within a 0 or higher order page. Multiple fragments within that page 4967 * are individually refcounted, in the page's reference counter. 4968 * 4969 * The page_frag functions below provide a simple allocation framework for 4970 * page fragments. This is used by the network stack and network device 4971 * drivers to provide a backing region of memory for use as either an 4972 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4973 */ 4974 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4975 gfp_t gfp_mask) 4976 { 4977 struct page *page = NULL; 4978 gfp_t gfp = gfp_mask; 4979 4980 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4981 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4982 __GFP_NOMEMALLOC; 4983 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4984 PAGE_FRAG_CACHE_MAX_ORDER); 4985 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4986 #endif 4987 if (unlikely(!page)) 4988 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4989 4990 nc->va = page ? page_address(page) : NULL; 4991 4992 return page; 4993 } 4994 4995 void __page_frag_cache_drain(struct page *page, unsigned int count) 4996 { 4997 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4998 4999 if (page_ref_sub_and_test(page, count)) 5000 free_the_page(page, compound_order(page)); 5001 } 5002 EXPORT_SYMBOL(__page_frag_cache_drain); 5003 5004 void *page_frag_alloc(struct page_frag_cache *nc, 5005 unsigned int fragsz, gfp_t gfp_mask) 5006 { 5007 unsigned int size = PAGE_SIZE; 5008 struct page *page; 5009 int offset; 5010 5011 if (unlikely(!nc->va)) { 5012 refill: 5013 page = __page_frag_cache_refill(nc, gfp_mask); 5014 if (!page) 5015 return NULL; 5016 5017 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5018 /* if size can vary use size else just use PAGE_SIZE */ 5019 size = nc->size; 5020 #endif 5021 /* Even if we own the page, we do not use atomic_set(). 5022 * This would break get_page_unless_zero() users. 5023 */ 5024 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5025 5026 /* reset page count bias and offset to start of new frag */ 5027 nc->pfmemalloc = page_is_pfmemalloc(page); 5028 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5029 nc->offset = size; 5030 } 5031 5032 offset = nc->offset - fragsz; 5033 if (unlikely(offset < 0)) { 5034 page = virt_to_page(nc->va); 5035 5036 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5037 goto refill; 5038 5039 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5040 /* if size can vary use size else just use PAGE_SIZE */ 5041 size = nc->size; 5042 #endif 5043 /* OK, page count is 0, we can safely set it */ 5044 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5045 5046 /* reset page count bias and offset to start of new frag */ 5047 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5048 offset = size - fragsz; 5049 } 5050 5051 nc->pagecnt_bias--; 5052 nc->offset = offset; 5053 5054 return nc->va + offset; 5055 } 5056 EXPORT_SYMBOL(page_frag_alloc); 5057 5058 /* 5059 * Frees a page fragment allocated out of either a compound or order 0 page. 5060 */ 5061 void page_frag_free(void *addr) 5062 { 5063 struct page *page = virt_to_head_page(addr); 5064 5065 if (unlikely(put_page_testzero(page))) 5066 free_the_page(page, compound_order(page)); 5067 } 5068 EXPORT_SYMBOL(page_frag_free); 5069 5070 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5071 size_t size) 5072 { 5073 if (addr) { 5074 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5075 unsigned long used = addr + PAGE_ALIGN(size); 5076 5077 split_page(virt_to_page((void *)addr), order); 5078 while (used < alloc_end) { 5079 free_page(used); 5080 used += PAGE_SIZE; 5081 } 5082 } 5083 return (void *)addr; 5084 } 5085 5086 /** 5087 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5088 * @size: the number of bytes to allocate 5089 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5090 * 5091 * This function is similar to alloc_pages(), except that it allocates the 5092 * minimum number of pages to satisfy the request. alloc_pages() can only 5093 * allocate memory in power-of-two pages. 5094 * 5095 * This function is also limited by MAX_ORDER. 5096 * 5097 * Memory allocated by this function must be released by free_pages_exact(). 5098 * 5099 * Return: pointer to the allocated area or %NULL in case of error. 5100 */ 5101 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5102 { 5103 unsigned int order = get_order(size); 5104 unsigned long addr; 5105 5106 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5107 gfp_mask &= ~__GFP_COMP; 5108 5109 addr = __get_free_pages(gfp_mask, order); 5110 return make_alloc_exact(addr, order, size); 5111 } 5112 EXPORT_SYMBOL(alloc_pages_exact); 5113 5114 /** 5115 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5116 * pages on a node. 5117 * @nid: the preferred node ID where memory should be allocated 5118 * @size: the number of bytes to allocate 5119 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5120 * 5121 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5122 * back. 5123 * 5124 * Return: pointer to the allocated area or %NULL in case of error. 5125 */ 5126 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5127 { 5128 unsigned int order = get_order(size); 5129 struct page *p; 5130 5131 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5132 gfp_mask &= ~__GFP_COMP; 5133 5134 p = alloc_pages_node(nid, gfp_mask, order); 5135 if (!p) 5136 return NULL; 5137 return make_alloc_exact((unsigned long)page_address(p), order, size); 5138 } 5139 5140 /** 5141 * free_pages_exact - release memory allocated via alloc_pages_exact() 5142 * @virt: the value returned by alloc_pages_exact. 5143 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5144 * 5145 * Release the memory allocated by a previous call to alloc_pages_exact. 5146 */ 5147 void free_pages_exact(void *virt, size_t size) 5148 { 5149 unsigned long addr = (unsigned long)virt; 5150 unsigned long end = addr + PAGE_ALIGN(size); 5151 5152 while (addr < end) { 5153 free_page(addr); 5154 addr += PAGE_SIZE; 5155 } 5156 } 5157 EXPORT_SYMBOL(free_pages_exact); 5158 5159 /** 5160 * nr_free_zone_pages - count number of pages beyond high watermark 5161 * @offset: The zone index of the highest zone 5162 * 5163 * nr_free_zone_pages() counts the number of pages which are beyond the 5164 * high watermark within all zones at or below a given zone index. For each 5165 * zone, the number of pages is calculated as: 5166 * 5167 * nr_free_zone_pages = managed_pages - high_pages 5168 * 5169 * Return: number of pages beyond high watermark. 5170 */ 5171 static unsigned long nr_free_zone_pages(int offset) 5172 { 5173 struct zoneref *z; 5174 struct zone *zone; 5175 5176 /* Just pick one node, since fallback list is circular */ 5177 unsigned long sum = 0; 5178 5179 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5180 5181 for_each_zone_zonelist(zone, z, zonelist, offset) { 5182 unsigned long size = zone_managed_pages(zone); 5183 unsigned long high = high_wmark_pages(zone); 5184 if (size > high) 5185 sum += size - high; 5186 } 5187 5188 return sum; 5189 } 5190 5191 /** 5192 * nr_free_buffer_pages - count number of pages beyond high watermark 5193 * 5194 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5195 * watermark within ZONE_DMA and ZONE_NORMAL. 5196 * 5197 * Return: number of pages beyond high watermark within ZONE_DMA and 5198 * ZONE_NORMAL. 5199 */ 5200 unsigned long nr_free_buffer_pages(void) 5201 { 5202 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5203 } 5204 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5205 5206 static inline void show_node(struct zone *zone) 5207 { 5208 if (IS_ENABLED(CONFIG_NUMA)) 5209 printk("Node %d ", zone_to_nid(zone)); 5210 } 5211 5212 long si_mem_available(void) 5213 { 5214 long available; 5215 unsigned long pagecache; 5216 unsigned long wmark_low = 0; 5217 unsigned long pages[NR_LRU_LISTS]; 5218 unsigned long reclaimable; 5219 struct zone *zone; 5220 int lru; 5221 5222 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5223 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5224 5225 for_each_zone(zone) 5226 wmark_low += low_wmark_pages(zone); 5227 5228 /* 5229 * Estimate the amount of memory available for userspace allocations, 5230 * without causing swapping. 5231 */ 5232 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5233 5234 /* 5235 * Not all the page cache can be freed, otherwise the system will 5236 * start swapping. Assume at least half of the page cache, or the 5237 * low watermark worth of cache, needs to stay. 5238 */ 5239 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5240 pagecache -= min(pagecache / 2, wmark_low); 5241 available += pagecache; 5242 5243 /* 5244 * Part of the reclaimable slab and other kernel memory consists of 5245 * items that are in use, and cannot be freed. Cap this estimate at the 5246 * low watermark. 5247 */ 5248 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5249 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5250 available += reclaimable - min(reclaimable / 2, wmark_low); 5251 5252 if (available < 0) 5253 available = 0; 5254 return available; 5255 } 5256 EXPORT_SYMBOL_GPL(si_mem_available); 5257 5258 void si_meminfo(struct sysinfo *val) 5259 { 5260 val->totalram = totalram_pages(); 5261 val->sharedram = global_node_page_state(NR_SHMEM); 5262 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5263 val->bufferram = nr_blockdev_pages(); 5264 val->totalhigh = totalhigh_pages(); 5265 val->freehigh = nr_free_highpages(); 5266 val->mem_unit = PAGE_SIZE; 5267 } 5268 5269 EXPORT_SYMBOL(si_meminfo); 5270 5271 #ifdef CONFIG_NUMA 5272 void si_meminfo_node(struct sysinfo *val, int nid) 5273 { 5274 int zone_type; /* needs to be signed */ 5275 unsigned long managed_pages = 0; 5276 unsigned long managed_highpages = 0; 5277 unsigned long free_highpages = 0; 5278 pg_data_t *pgdat = NODE_DATA(nid); 5279 5280 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5281 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5282 val->totalram = managed_pages; 5283 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5284 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5285 #ifdef CONFIG_HIGHMEM 5286 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5287 struct zone *zone = &pgdat->node_zones[zone_type]; 5288 5289 if (is_highmem(zone)) { 5290 managed_highpages += zone_managed_pages(zone); 5291 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5292 } 5293 } 5294 val->totalhigh = managed_highpages; 5295 val->freehigh = free_highpages; 5296 #else 5297 val->totalhigh = managed_highpages; 5298 val->freehigh = free_highpages; 5299 #endif 5300 val->mem_unit = PAGE_SIZE; 5301 } 5302 #endif 5303 5304 /* 5305 * Determine whether the node should be displayed or not, depending on whether 5306 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5307 */ 5308 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5309 { 5310 if (!(flags & SHOW_MEM_FILTER_NODES)) 5311 return false; 5312 5313 /* 5314 * no node mask - aka implicit memory numa policy. Do not bother with 5315 * the synchronization - read_mems_allowed_begin - because we do not 5316 * have to be precise here. 5317 */ 5318 if (!nodemask) 5319 nodemask = &cpuset_current_mems_allowed; 5320 5321 return !node_isset(nid, *nodemask); 5322 } 5323 5324 #define K(x) ((x) << (PAGE_SHIFT-10)) 5325 5326 static void show_migration_types(unsigned char type) 5327 { 5328 static const char types[MIGRATE_TYPES] = { 5329 [MIGRATE_UNMOVABLE] = 'U', 5330 [MIGRATE_MOVABLE] = 'M', 5331 [MIGRATE_RECLAIMABLE] = 'E', 5332 [MIGRATE_HIGHATOMIC] = 'H', 5333 #ifdef CONFIG_CMA 5334 [MIGRATE_CMA] = 'C', 5335 #endif 5336 #ifdef CONFIG_MEMORY_ISOLATION 5337 [MIGRATE_ISOLATE] = 'I', 5338 #endif 5339 }; 5340 char tmp[MIGRATE_TYPES + 1]; 5341 char *p = tmp; 5342 int i; 5343 5344 for (i = 0; i < MIGRATE_TYPES; i++) { 5345 if (type & (1 << i)) 5346 *p++ = types[i]; 5347 } 5348 5349 *p = '\0'; 5350 printk(KERN_CONT "(%s) ", tmp); 5351 } 5352 5353 /* 5354 * Show free area list (used inside shift_scroll-lock stuff) 5355 * We also calculate the percentage fragmentation. We do this by counting the 5356 * memory on each free list with the exception of the first item on the list. 5357 * 5358 * Bits in @filter: 5359 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5360 * cpuset. 5361 */ 5362 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5363 { 5364 unsigned long free_pcp = 0; 5365 int cpu; 5366 struct zone *zone; 5367 pg_data_t *pgdat; 5368 5369 for_each_populated_zone(zone) { 5370 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5371 continue; 5372 5373 for_each_online_cpu(cpu) 5374 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5375 } 5376 5377 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5378 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5379 " unevictable:%lu dirty:%lu writeback:%lu\n" 5380 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5381 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5382 " free:%lu free_pcp:%lu free_cma:%lu\n", 5383 global_node_page_state(NR_ACTIVE_ANON), 5384 global_node_page_state(NR_INACTIVE_ANON), 5385 global_node_page_state(NR_ISOLATED_ANON), 5386 global_node_page_state(NR_ACTIVE_FILE), 5387 global_node_page_state(NR_INACTIVE_FILE), 5388 global_node_page_state(NR_ISOLATED_FILE), 5389 global_node_page_state(NR_UNEVICTABLE), 5390 global_node_page_state(NR_FILE_DIRTY), 5391 global_node_page_state(NR_WRITEBACK), 5392 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5393 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5394 global_node_page_state(NR_FILE_MAPPED), 5395 global_node_page_state(NR_SHMEM), 5396 global_zone_page_state(NR_PAGETABLE), 5397 global_zone_page_state(NR_BOUNCE), 5398 global_zone_page_state(NR_FREE_PAGES), 5399 free_pcp, 5400 global_zone_page_state(NR_FREE_CMA_PAGES)); 5401 5402 for_each_online_pgdat(pgdat) { 5403 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5404 continue; 5405 5406 printk("Node %d" 5407 " active_anon:%lukB" 5408 " inactive_anon:%lukB" 5409 " active_file:%lukB" 5410 " inactive_file:%lukB" 5411 " unevictable:%lukB" 5412 " isolated(anon):%lukB" 5413 " isolated(file):%lukB" 5414 " mapped:%lukB" 5415 " dirty:%lukB" 5416 " writeback:%lukB" 5417 " shmem:%lukB" 5418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5419 " shmem_thp: %lukB" 5420 " shmem_pmdmapped: %lukB" 5421 " anon_thp: %lukB" 5422 #endif 5423 " writeback_tmp:%lukB" 5424 " kernel_stack:%lukB" 5425 #ifdef CONFIG_SHADOW_CALL_STACK 5426 " shadow_call_stack:%lukB" 5427 #endif 5428 " all_unreclaimable? %s" 5429 "\n", 5430 pgdat->node_id, 5431 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5432 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5433 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5434 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5435 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5436 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5437 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5438 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5439 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5440 K(node_page_state(pgdat, NR_WRITEBACK)), 5441 K(node_page_state(pgdat, NR_SHMEM)), 5442 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5443 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR), 5444 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED) 5445 * HPAGE_PMD_NR), 5446 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR), 5447 #endif 5448 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5449 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5450 #ifdef CONFIG_SHADOW_CALL_STACK 5451 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5452 #endif 5453 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5454 "yes" : "no"); 5455 } 5456 5457 for_each_populated_zone(zone) { 5458 int i; 5459 5460 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5461 continue; 5462 5463 free_pcp = 0; 5464 for_each_online_cpu(cpu) 5465 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count; 5466 5467 show_node(zone); 5468 printk(KERN_CONT 5469 "%s" 5470 " free:%lukB" 5471 " min:%lukB" 5472 " low:%lukB" 5473 " high:%lukB" 5474 " reserved_highatomic:%luKB" 5475 " active_anon:%lukB" 5476 " inactive_anon:%lukB" 5477 " active_file:%lukB" 5478 " inactive_file:%lukB" 5479 " unevictable:%lukB" 5480 " writepending:%lukB" 5481 " present:%lukB" 5482 " managed:%lukB" 5483 " mlocked:%lukB" 5484 " pagetables:%lukB" 5485 " bounce:%lukB" 5486 " free_pcp:%lukB" 5487 " local_pcp:%ukB" 5488 " free_cma:%lukB" 5489 "\n", 5490 zone->name, 5491 K(zone_page_state(zone, NR_FREE_PAGES)), 5492 K(min_wmark_pages(zone)), 5493 K(low_wmark_pages(zone)), 5494 K(high_wmark_pages(zone)), 5495 K(zone->nr_reserved_highatomic), 5496 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5497 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5498 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5499 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5500 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5501 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5502 K(zone->present_pages), 5503 K(zone_managed_pages(zone)), 5504 K(zone_page_state(zone, NR_MLOCK)), 5505 K(zone_page_state(zone, NR_PAGETABLE)), 5506 K(zone_page_state(zone, NR_BOUNCE)), 5507 K(free_pcp), 5508 K(this_cpu_read(zone->pageset->pcp.count)), 5509 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5510 printk("lowmem_reserve[]:"); 5511 for (i = 0; i < MAX_NR_ZONES; i++) 5512 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5513 printk(KERN_CONT "\n"); 5514 } 5515 5516 for_each_populated_zone(zone) { 5517 unsigned int order; 5518 unsigned long nr[MAX_ORDER], flags, total = 0; 5519 unsigned char types[MAX_ORDER]; 5520 5521 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5522 continue; 5523 show_node(zone); 5524 printk(KERN_CONT "%s: ", zone->name); 5525 5526 spin_lock_irqsave(&zone->lock, flags); 5527 for (order = 0; order < MAX_ORDER; order++) { 5528 struct free_area *area = &zone->free_area[order]; 5529 int type; 5530 5531 nr[order] = area->nr_free; 5532 total += nr[order] << order; 5533 5534 types[order] = 0; 5535 for (type = 0; type < MIGRATE_TYPES; type++) { 5536 if (!free_area_empty(area, type)) 5537 types[order] |= 1 << type; 5538 } 5539 } 5540 spin_unlock_irqrestore(&zone->lock, flags); 5541 for (order = 0; order < MAX_ORDER; order++) { 5542 printk(KERN_CONT "%lu*%lukB ", 5543 nr[order], K(1UL) << order); 5544 if (nr[order]) 5545 show_migration_types(types[order]); 5546 } 5547 printk(KERN_CONT "= %lukB\n", K(total)); 5548 } 5549 5550 hugetlb_show_meminfo(); 5551 5552 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5553 5554 show_swap_cache_info(); 5555 } 5556 5557 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5558 { 5559 zoneref->zone = zone; 5560 zoneref->zone_idx = zone_idx(zone); 5561 } 5562 5563 /* 5564 * Builds allocation fallback zone lists. 5565 * 5566 * Add all populated zones of a node to the zonelist. 5567 */ 5568 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5569 { 5570 struct zone *zone; 5571 enum zone_type zone_type = MAX_NR_ZONES; 5572 int nr_zones = 0; 5573 5574 do { 5575 zone_type--; 5576 zone = pgdat->node_zones + zone_type; 5577 if (managed_zone(zone)) { 5578 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5579 check_highest_zone(zone_type); 5580 } 5581 } while (zone_type); 5582 5583 return nr_zones; 5584 } 5585 5586 #ifdef CONFIG_NUMA 5587 5588 static int __parse_numa_zonelist_order(char *s) 5589 { 5590 /* 5591 * We used to support different zonlists modes but they turned 5592 * out to be just not useful. Let's keep the warning in place 5593 * if somebody still use the cmd line parameter so that we do 5594 * not fail it silently 5595 */ 5596 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5597 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5598 return -EINVAL; 5599 } 5600 return 0; 5601 } 5602 5603 char numa_zonelist_order[] = "Node"; 5604 5605 /* 5606 * sysctl handler for numa_zonelist_order 5607 */ 5608 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5609 void *buffer, size_t *length, loff_t *ppos) 5610 { 5611 if (write) 5612 return __parse_numa_zonelist_order(buffer); 5613 return proc_dostring(table, write, buffer, length, ppos); 5614 } 5615 5616 5617 #define MAX_NODE_LOAD (nr_online_nodes) 5618 static int node_load[MAX_NUMNODES]; 5619 5620 /** 5621 * find_next_best_node - find the next node that should appear in a given node's fallback list 5622 * @node: node whose fallback list we're appending 5623 * @used_node_mask: nodemask_t of already used nodes 5624 * 5625 * We use a number of factors to determine which is the next node that should 5626 * appear on a given node's fallback list. The node should not have appeared 5627 * already in @node's fallback list, and it should be the next closest node 5628 * according to the distance array (which contains arbitrary distance values 5629 * from each node to each node in the system), and should also prefer nodes 5630 * with no CPUs, since presumably they'll have very little allocation pressure 5631 * on them otherwise. 5632 * 5633 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5634 */ 5635 static int find_next_best_node(int node, nodemask_t *used_node_mask) 5636 { 5637 int n, val; 5638 int min_val = INT_MAX; 5639 int best_node = NUMA_NO_NODE; 5640 const struct cpumask *tmp = cpumask_of_node(0); 5641 5642 /* Use the local node if we haven't already */ 5643 if (!node_isset(node, *used_node_mask)) { 5644 node_set(node, *used_node_mask); 5645 return node; 5646 } 5647 5648 for_each_node_state(n, N_MEMORY) { 5649 5650 /* Don't want a node to appear more than once */ 5651 if (node_isset(n, *used_node_mask)) 5652 continue; 5653 5654 /* Use the distance array to find the distance */ 5655 val = node_distance(node, n); 5656 5657 /* Penalize nodes under us ("prefer the next node") */ 5658 val += (n < node); 5659 5660 /* Give preference to headless and unused nodes */ 5661 tmp = cpumask_of_node(n); 5662 if (!cpumask_empty(tmp)) 5663 val += PENALTY_FOR_NODE_WITH_CPUS; 5664 5665 /* Slight preference for less loaded node */ 5666 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 5667 val += node_load[n]; 5668 5669 if (val < min_val) { 5670 min_val = val; 5671 best_node = n; 5672 } 5673 } 5674 5675 if (best_node >= 0) 5676 node_set(best_node, *used_node_mask); 5677 5678 return best_node; 5679 } 5680 5681 5682 /* 5683 * Build zonelists ordered by node and zones within node. 5684 * This results in maximum locality--normal zone overflows into local 5685 * DMA zone, if any--but risks exhausting DMA zone. 5686 */ 5687 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5688 unsigned nr_nodes) 5689 { 5690 struct zoneref *zonerefs; 5691 int i; 5692 5693 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5694 5695 for (i = 0; i < nr_nodes; i++) { 5696 int nr_zones; 5697 5698 pg_data_t *node = NODE_DATA(node_order[i]); 5699 5700 nr_zones = build_zonerefs_node(node, zonerefs); 5701 zonerefs += nr_zones; 5702 } 5703 zonerefs->zone = NULL; 5704 zonerefs->zone_idx = 0; 5705 } 5706 5707 /* 5708 * Build gfp_thisnode zonelists 5709 */ 5710 static void build_thisnode_zonelists(pg_data_t *pgdat) 5711 { 5712 struct zoneref *zonerefs; 5713 int nr_zones; 5714 5715 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5716 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5717 zonerefs += nr_zones; 5718 zonerefs->zone = NULL; 5719 zonerefs->zone_idx = 0; 5720 } 5721 5722 /* 5723 * Build zonelists ordered by zone and nodes within zones. 5724 * This results in conserving DMA zone[s] until all Normal memory is 5725 * exhausted, but results in overflowing to remote node while memory 5726 * may still exist in local DMA zone. 5727 */ 5728 5729 static void build_zonelists(pg_data_t *pgdat) 5730 { 5731 static int node_order[MAX_NUMNODES]; 5732 int node, load, nr_nodes = 0; 5733 nodemask_t used_mask = NODE_MASK_NONE; 5734 int local_node, prev_node; 5735 5736 /* NUMA-aware ordering of nodes */ 5737 local_node = pgdat->node_id; 5738 load = nr_online_nodes; 5739 prev_node = local_node; 5740 5741 memset(node_order, 0, sizeof(node_order)); 5742 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5743 /* 5744 * We don't want to pressure a particular node. 5745 * So adding penalty to the first node in same 5746 * distance group to make it round-robin. 5747 */ 5748 if (node_distance(local_node, node) != 5749 node_distance(local_node, prev_node)) 5750 node_load[node] = load; 5751 5752 node_order[nr_nodes++] = node; 5753 prev_node = node; 5754 load--; 5755 } 5756 5757 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5758 build_thisnode_zonelists(pgdat); 5759 } 5760 5761 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5762 /* 5763 * Return node id of node used for "local" allocations. 5764 * I.e., first node id of first zone in arg node's generic zonelist. 5765 * Used for initializing percpu 'numa_mem', which is used primarily 5766 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5767 */ 5768 int local_memory_node(int node) 5769 { 5770 struct zoneref *z; 5771 5772 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5773 gfp_zone(GFP_KERNEL), 5774 NULL); 5775 return zone_to_nid(z->zone); 5776 } 5777 #endif 5778 5779 static void setup_min_unmapped_ratio(void); 5780 static void setup_min_slab_ratio(void); 5781 #else /* CONFIG_NUMA */ 5782 5783 static void build_zonelists(pg_data_t *pgdat) 5784 { 5785 int node, local_node; 5786 struct zoneref *zonerefs; 5787 int nr_zones; 5788 5789 local_node = pgdat->node_id; 5790 5791 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5792 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5793 zonerefs += nr_zones; 5794 5795 /* 5796 * Now we build the zonelist so that it contains the zones 5797 * of all the other nodes. 5798 * We don't want to pressure a particular node, so when 5799 * building the zones for node N, we make sure that the 5800 * zones coming right after the local ones are those from 5801 * node N+1 (modulo N) 5802 */ 5803 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5804 if (!node_online(node)) 5805 continue; 5806 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5807 zonerefs += nr_zones; 5808 } 5809 for (node = 0; node < local_node; node++) { 5810 if (!node_online(node)) 5811 continue; 5812 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5813 zonerefs += nr_zones; 5814 } 5815 5816 zonerefs->zone = NULL; 5817 zonerefs->zone_idx = 0; 5818 } 5819 5820 #endif /* CONFIG_NUMA */ 5821 5822 /* 5823 * Boot pageset table. One per cpu which is going to be used for all 5824 * zones and all nodes. The parameters will be set in such a way 5825 * that an item put on a list will immediately be handed over to 5826 * the buddy list. This is safe since pageset manipulation is done 5827 * with interrupts disabled. 5828 * 5829 * The boot_pagesets must be kept even after bootup is complete for 5830 * unused processors and/or zones. They do play a role for bootstrapping 5831 * hotplugged processors. 5832 * 5833 * zoneinfo_show() and maybe other functions do 5834 * not check if the processor is online before following the pageset pointer. 5835 * Other parts of the kernel may not check if the zone is available. 5836 */ 5837 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 5838 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 5839 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 5840 5841 static void __build_all_zonelists(void *data) 5842 { 5843 int nid; 5844 int __maybe_unused cpu; 5845 pg_data_t *self = data; 5846 static DEFINE_SPINLOCK(lock); 5847 5848 spin_lock(&lock); 5849 5850 #ifdef CONFIG_NUMA 5851 memset(node_load, 0, sizeof(node_load)); 5852 #endif 5853 5854 /* 5855 * This node is hotadded and no memory is yet present. So just 5856 * building zonelists is fine - no need to touch other nodes. 5857 */ 5858 if (self && !node_online(self->node_id)) { 5859 build_zonelists(self); 5860 } else { 5861 for_each_online_node(nid) { 5862 pg_data_t *pgdat = NODE_DATA(nid); 5863 5864 build_zonelists(pgdat); 5865 } 5866 5867 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5868 /* 5869 * We now know the "local memory node" for each node-- 5870 * i.e., the node of the first zone in the generic zonelist. 5871 * Set up numa_mem percpu variable for on-line cpus. During 5872 * boot, only the boot cpu should be on-line; we'll init the 5873 * secondary cpus' numa_mem as they come on-line. During 5874 * node/memory hotplug, we'll fixup all on-line cpus. 5875 */ 5876 for_each_online_cpu(cpu) 5877 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5878 #endif 5879 } 5880 5881 spin_unlock(&lock); 5882 } 5883 5884 static noinline void __init 5885 build_all_zonelists_init(void) 5886 { 5887 int cpu; 5888 5889 __build_all_zonelists(NULL); 5890 5891 /* 5892 * Initialize the boot_pagesets that are going to be used 5893 * for bootstrapping processors. The real pagesets for 5894 * each zone will be allocated later when the per cpu 5895 * allocator is available. 5896 * 5897 * boot_pagesets are used also for bootstrapping offline 5898 * cpus if the system is already booted because the pagesets 5899 * are needed to initialize allocators on a specific cpu too. 5900 * F.e. the percpu allocator needs the page allocator which 5901 * needs the percpu allocator in order to allocate its pagesets 5902 * (a chicken-egg dilemma). 5903 */ 5904 for_each_possible_cpu(cpu) 5905 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 5906 5907 mminit_verify_zonelist(); 5908 cpuset_init_current_mems_allowed(); 5909 } 5910 5911 /* 5912 * unless system_state == SYSTEM_BOOTING. 5913 * 5914 * __ref due to call of __init annotated helper build_all_zonelists_init 5915 * [protected by SYSTEM_BOOTING]. 5916 */ 5917 void __ref build_all_zonelists(pg_data_t *pgdat) 5918 { 5919 unsigned long vm_total_pages; 5920 5921 if (system_state == SYSTEM_BOOTING) { 5922 build_all_zonelists_init(); 5923 } else { 5924 __build_all_zonelists(pgdat); 5925 /* cpuset refresh routine should be here */ 5926 } 5927 /* Get the number of free pages beyond high watermark in all zones. */ 5928 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5929 /* 5930 * Disable grouping by mobility if the number of pages in the 5931 * system is too low to allow the mechanism to work. It would be 5932 * more accurate, but expensive to check per-zone. This check is 5933 * made on memory-hotadd so a system can start with mobility 5934 * disabled and enable it later 5935 */ 5936 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5937 page_group_by_mobility_disabled = 1; 5938 else 5939 page_group_by_mobility_disabled = 0; 5940 5941 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5942 nr_online_nodes, 5943 page_group_by_mobility_disabled ? "off" : "on", 5944 vm_total_pages); 5945 #ifdef CONFIG_NUMA 5946 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5947 #endif 5948 } 5949 5950 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 5951 static bool __meminit 5952 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 5953 { 5954 static struct memblock_region *r; 5955 5956 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 5957 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 5958 for_each_memblock(memory, r) { 5959 if (*pfn < memblock_region_memory_end_pfn(r)) 5960 break; 5961 } 5962 } 5963 if (*pfn >= memblock_region_memory_base_pfn(r) && 5964 memblock_is_mirror(r)) { 5965 *pfn = memblock_region_memory_end_pfn(r); 5966 return true; 5967 } 5968 } 5969 return false; 5970 } 5971 5972 /* 5973 * Initially all pages are reserved - free ones are freed 5974 * up by memblock_free_all() once the early boot process is 5975 * done. Non-atomic initialization, single-pass. 5976 */ 5977 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 5978 unsigned long start_pfn, enum memmap_context context, 5979 struct vmem_altmap *altmap) 5980 { 5981 unsigned long pfn, end_pfn = start_pfn + size; 5982 struct page *page; 5983 5984 if (highest_memmap_pfn < end_pfn - 1) 5985 highest_memmap_pfn = end_pfn - 1; 5986 5987 #ifdef CONFIG_ZONE_DEVICE 5988 /* 5989 * Honor reservation requested by the driver for this ZONE_DEVICE 5990 * memory. We limit the total number of pages to initialize to just 5991 * those that might contain the memory mapping. We will defer the 5992 * ZONE_DEVICE page initialization until after we have released 5993 * the hotplug lock. 5994 */ 5995 if (zone == ZONE_DEVICE) { 5996 if (!altmap) 5997 return; 5998 5999 if (start_pfn == altmap->base_pfn) 6000 start_pfn += altmap->reserve; 6001 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6002 } 6003 #endif 6004 6005 for (pfn = start_pfn; pfn < end_pfn; ) { 6006 /* 6007 * There can be holes in boot-time mem_map[]s handed to this 6008 * function. They do not exist on hotplugged memory. 6009 */ 6010 if (context == MEMMAP_EARLY) { 6011 if (overlap_memmap_init(zone, &pfn)) 6012 continue; 6013 if (defer_init(nid, pfn, end_pfn)) 6014 break; 6015 } 6016 6017 page = pfn_to_page(pfn); 6018 __init_single_page(page, pfn, zone, nid); 6019 if (context == MEMMAP_HOTPLUG) 6020 __SetPageReserved(page); 6021 6022 /* 6023 * Mark the block movable so that blocks are reserved for 6024 * movable at startup. This will force kernel allocations 6025 * to reserve their blocks rather than leaking throughout 6026 * the address space during boot when many long-lived 6027 * kernel allocations are made. 6028 * 6029 * bitmap is created for zone's valid pfn range. but memmap 6030 * can be created for invalid pages (for alignment) 6031 * check here not to call set_pageblock_migratetype() against 6032 * pfn out of zone. 6033 */ 6034 if (!(pfn & (pageblock_nr_pages - 1))) { 6035 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6036 cond_resched(); 6037 } 6038 pfn++; 6039 } 6040 } 6041 6042 #ifdef CONFIG_ZONE_DEVICE 6043 void __ref memmap_init_zone_device(struct zone *zone, 6044 unsigned long start_pfn, 6045 unsigned long nr_pages, 6046 struct dev_pagemap *pgmap) 6047 { 6048 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6049 struct pglist_data *pgdat = zone->zone_pgdat; 6050 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6051 unsigned long zone_idx = zone_idx(zone); 6052 unsigned long start = jiffies; 6053 int nid = pgdat->node_id; 6054 6055 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6056 return; 6057 6058 /* 6059 * The call to memmap_init_zone should have already taken care 6060 * of the pages reserved for the memmap, so we can just jump to 6061 * the end of that region and start processing the device pages. 6062 */ 6063 if (altmap) { 6064 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6065 nr_pages = end_pfn - start_pfn; 6066 } 6067 6068 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6069 struct page *page = pfn_to_page(pfn); 6070 6071 __init_single_page(page, pfn, zone_idx, nid); 6072 6073 /* 6074 * Mark page reserved as it will need to wait for onlining 6075 * phase for it to be fully associated with a zone. 6076 * 6077 * We can use the non-atomic __set_bit operation for setting 6078 * the flag as we are still initializing the pages. 6079 */ 6080 __SetPageReserved(page); 6081 6082 /* 6083 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6084 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6085 * ever freed or placed on a driver-private list. 6086 */ 6087 page->pgmap = pgmap; 6088 page->zone_device_data = NULL; 6089 6090 /* 6091 * Mark the block movable so that blocks are reserved for 6092 * movable at startup. This will force kernel allocations 6093 * to reserve their blocks rather than leaking throughout 6094 * the address space during boot when many long-lived 6095 * kernel allocations are made. 6096 * 6097 * bitmap is created for zone's valid pfn range. but memmap 6098 * can be created for invalid pages (for alignment) 6099 * check here not to call set_pageblock_migratetype() against 6100 * pfn out of zone. 6101 * 6102 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap 6103 * because this is done early in section_activate() 6104 */ 6105 if (!(pfn & (pageblock_nr_pages - 1))) { 6106 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6107 cond_resched(); 6108 } 6109 } 6110 6111 pr_info("%s initialised %lu pages in %ums\n", __func__, 6112 nr_pages, jiffies_to_msecs(jiffies - start)); 6113 } 6114 6115 #endif 6116 static void __meminit zone_init_free_lists(struct zone *zone) 6117 { 6118 unsigned int order, t; 6119 for_each_migratetype_order(order, t) { 6120 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6121 zone->free_area[order].nr_free = 0; 6122 } 6123 } 6124 6125 void __meminit __weak memmap_init(unsigned long size, int nid, 6126 unsigned long zone, 6127 unsigned long range_start_pfn) 6128 { 6129 unsigned long start_pfn, end_pfn; 6130 unsigned long range_end_pfn = range_start_pfn + size; 6131 int i; 6132 6133 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6134 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6135 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6136 6137 if (end_pfn > start_pfn) { 6138 size = end_pfn - start_pfn; 6139 memmap_init_zone(size, nid, zone, start_pfn, 6140 MEMMAP_EARLY, NULL); 6141 } 6142 } 6143 } 6144 6145 static int zone_batchsize(struct zone *zone) 6146 { 6147 #ifdef CONFIG_MMU 6148 int batch; 6149 6150 /* 6151 * The per-cpu-pages pools are set to around 1000th of the 6152 * size of the zone. 6153 */ 6154 batch = zone_managed_pages(zone) / 1024; 6155 /* But no more than a meg. */ 6156 if (batch * PAGE_SIZE > 1024 * 1024) 6157 batch = (1024 * 1024) / PAGE_SIZE; 6158 batch /= 4; /* We effectively *= 4 below */ 6159 if (batch < 1) 6160 batch = 1; 6161 6162 /* 6163 * Clamp the batch to a 2^n - 1 value. Having a power 6164 * of 2 value was found to be more likely to have 6165 * suboptimal cache aliasing properties in some cases. 6166 * 6167 * For example if 2 tasks are alternately allocating 6168 * batches of pages, one task can end up with a lot 6169 * of pages of one half of the possible page colors 6170 * and the other with pages of the other colors. 6171 */ 6172 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6173 6174 return batch; 6175 6176 #else 6177 /* The deferral and batching of frees should be suppressed under NOMMU 6178 * conditions. 6179 * 6180 * The problem is that NOMMU needs to be able to allocate large chunks 6181 * of contiguous memory as there's no hardware page translation to 6182 * assemble apparent contiguous memory from discontiguous pages. 6183 * 6184 * Queueing large contiguous runs of pages for batching, however, 6185 * causes the pages to actually be freed in smaller chunks. As there 6186 * can be a significant delay between the individual batches being 6187 * recycled, this leads to the once large chunks of space being 6188 * fragmented and becoming unavailable for high-order allocations. 6189 */ 6190 return 0; 6191 #endif 6192 } 6193 6194 /* 6195 * pcp->high and pcp->batch values are related and dependent on one another: 6196 * ->batch must never be higher then ->high. 6197 * The following function updates them in a safe manner without read side 6198 * locking. 6199 * 6200 * Any new users of pcp->batch and pcp->high should ensure they can cope with 6201 * those fields changing asynchronously (acording to the above rule). 6202 * 6203 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6204 * outside of boot time (or some other assurance that no concurrent updaters 6205 * exist). 6206 */ 6207 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6208 unsigned long batch) 6209 { 6210 /* start with a fail safe value for batch */ 6211 pcp->batch = 1; 6212 smp_wmb(); 6213 6214 /* Update high, then batch, in order */ 6215 pcp->high = high; 6216 smp_wmb(); 6217 6218 pcp->batch = batch; 6219 } 6220 6221 /* a companion to pageset_set_high() */ 6222 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch) 6223 { 6224 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch)); 6225 } 6226 6227 static void pageset_init(struct per_cpu_pageset *p) 6228 { 6229 struct per_cpu_pages *pcp; 6230 int migratetype; 6231 6232 memset(p, 0, sizeof(*p)); 6233 6234 pcp = &p->pcp; 6235 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 6236 INIT_LIST_HEAD(&pcp->lists[migratetype]); 6237 } 6238 6239 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 6240 { 6241 pageset_init(p); 6242 pageset_set_batch(p, batch); 6243 } 6244 6245 /* 6246 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist 6247 * to the value high for the pageset p. 6248 */ 6249 static void pageset_set_high(struct per_cpu_pageset *p, 6250 unsigned long high) 6251 { 6252 unsigned long batch = max(1UL, high / 4); 6253 if ((high / 4) > (PAGE_SHIFT * 8)) 6254 batch = PAGE_SHIFT * 8; 6255 6256 pageset_update(&p->pcp, high, batch); 6257 } 6258 6259 static void pageset_set_high_and_batch(struct zone *zone, 6260 struct per_cpu_pageset *pcp) 6261 { 6262 if (percpu_pagelist_fraction) 6263 pageset_set_high(pcp, 6264 (zone_managed_pages(zone) / 6265 percpu_pagelist_fraction)); 6266 else 6267 pageset_set_batch(pcp, zone_batchsize(zone)); 6268 } 6269 6270 static void __meminit zone_pageset_init(struct zone *zone, int cpu) 6271 { 6272 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 6273 6274 pageset_init(pcp); 6275 pageset_set_high_and_batch(zone, pcp); 6276 } 6277 6278 void __meminit setup_zone_pageset(struct zone *zone) 6279 { 6280 int cpu; 6281 zone->pageset = alloc_percpu(struct per_cpu_pageset); 6282 for_each_possible_cpu(cpu) 6283 zone_pageset_init(zone, cpu); 6284 } 6285 6286 /* 6287 * Allocate per cpu pagesets and initialize them. 6288 * Before this call only boot pagesets were available. 6289 */ 6290 void __init setup_per_cpu_pageset(void) 6291 { 6292 struct pglist_data *pgdat; 6293 struct zone *zone; 6294 int __maybe_unused cpu; 6295 6296 for_each_populated_zone(zone) 6297 setup_zone_pageset(zone); 6298 6299 #ifdef CONFIG_NUMA 6300 /* 6301 * Unpopulated zones continue using the boot pagesets. 6302 * The numa stats for these pagesets need to be reset. 6303 * Otherwise, they will end up skewing the stats of 6304 * the nodes these zones are associated with. 6305 */ 6306 for_each_possible_cpu(cpu) { 6307 struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu); 6308 memset(pcp->vm_numa_stat_diff, 0, 6309 sizeof(pcp->vm_numa_stat_diff)); 6310 } 6311 #endif 6312 6313 for_each_online_pgdat(pgdat) 6314 pgdat->per_cpu_nodestats = 6315 alloc_percpu(struct per_cpu_nodestat); 6316 } 6317 6318 static __meminit void zone_pcp_init(struct zone *zone) 6319 { 6320 /* 6321 * per cpu subsystem is not up at this point. The following code 6322 * relies on the ability of the linker to provide the 6323 * offset of a (static) per cpu variable into the per cpu area. 6324 */ 6325 zone->pageset = &boot_pageset; 6326 6327 if (populated_zone(zone)) 6328 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 6329 zone->name, zone->present_pages, 6330 zone_batchsize(zone)); 6331 } 6332 6333 void __meminit init_currently_empty_zone(struct zone *zone, 6334 unsigned long zone_start_pfn, 6335 unsigned long size) 6336 { 6337 struct pglist_data *pgdat = zone->zone_pgdat; 6338 int zone_idx = zone_idx(zone) + 1; 6339 6340 if (zone_idx > pgdat->nr_zones) 6341 pgdat->nr_zones = zone_idx; 6342 6343 zone->zone_start_pfn = zone_start_pfn; 6344 6345 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6346 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6347 pgdat->node_id, 6348 (unsigned long)zone_idx(zone), 6349 zone_start_pfn, (zone_start_pfn + size)); 6350 6351 zone_init_free_lists(zone); 6352 zone->initialized = 1; 6353 } 6354 6355 /** 6356 * get_pfn_range_for_nid - Return the start and end page frames for a node 6357 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 6358 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 6359 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 6360 * 6361 * It returns the start and end page frame of a node based on information 6362 * provided by memblock_set_node(). If called for a node 6363 * with no available memory, a warning is printed and the start and end 6364 * PFNs will be 0. 6365 */ 6366 void __init get_pfn_range_for_nid(unsigned int nid, 6367 unsigned long *start_pfn, unsigned long *end_pfn) 6368 { 6369 unsigned long this_start_pfn, this_end_pfn; 6370 int i; 6371 6372 *start_pfn = -1UL; 6373 *end_pfn = 0; 6374 6375 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 6376 *start_pfn = min(*start_pfn, this_start_pfn); 6377 *end_pfn = max(*end_pfn, this_end_pfn); 6378 } 6379 6380 if (*start_pfn == -1UL) 6381 *start_pfn = 0; 6382 } 6383 6384 /* 6385 * This finds a zone that can be used for ZONE_MOVABLE pages. The 6386 * assumption is made that zones within a node are ordered in monotonic 6387 * increasing memory addresses so that the "highest" populated zone is used 6388 */ 6389 static void __init find_usable_zone_for_movable(void) 6390 { 6391 int zone_index; 6392 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 6393 if (zone_index == ZONE_MOVABLE) 6394 continue; 6395 6396 if (arch_zone_highest_possible_pfn[zone_index] > 6397 arch_zone_lowest_possible_pfn[zone_index]) 6398 break; 6399 } 6400 6401 VM_BUG_ON(zone_index == -1); 6402 movable_zone = zone_index; 6403 } 6404 6405 /* 6406 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 6407 * because it is sized independent of architecture. Unlike the other zones, 6408 * the starting point for ZONE_MOVABLE is not fixed. It may be different 6409 * in each node depending on the size of each node and how evenly kernelcore 6410 * is distributed. This helper function adjusts the zone ranges 6411 * provided by the architecture for a given node by using the end of the 6412 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 6413 * zones within a node are in order of monotonic increases memory addresses 6414 */ 6415 static void __init adjust_zone_range_for_zone_movable(int nid, 6416 unsigned long zone_type, 6417 unsigned long node_start_pfn, 6418 unsigned long node_end_pfn, 6419 unsigned long *zone_start_pfn, 6420 unsigned long *zone_end_pfn) 6421 { 6422 /* Only adjust if ZONE_MOVABLE is on this node */ 6423 if (zone_movable_pfn[nid]) { 6424 /* Size ZONE_MOVABLE */ 6425 if (zone_type == ZONE_MOVABLE) { 6426 *zone_start_pfn = zone_movable_pfn[nid]; 6427 *zone_end_pfn = min(node_end_pfn, 6428 arch_zone_highest_possible_pfn[movable_zone]); 6429 6430 /* Adjust for ZONE_MOVABLE starting within this range */ 6431 } else if (!mirrored_kernelcore && 6432 *zone_start_pfn < zone_movable_pfn[nid] && 6433 *zone_end_pfn > zone_movable_pfn[nid]) { 6434 *zone_end_pfn = zone_movable_pfn[nid]; 6435 6436 /* Check if this whole range is within ZONE_MOVABLE */ 6437 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 6438 *zone_start_pfn = *zone_end_pfn; 6439 } 6440 } 6441 6442 /* 6443 * Return the number of pages a zone spans in a node, including holes 6444 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 6445 */ 6446 static unsigned long __init zone_spanned_pages_in_node(int nid, 6447 unsigned long zone_type, 6448 unsigned long node_start_pfn, 6449 unsigned long node_end_pfn, 6450 unsigned long *zone_start_pfn, 6451 unsigned long *zone_end_pfn) 6452 { 6453 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6454 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6455 /* When hotadd a new node from cpu_up(), the node should be empty */ 6456 if (!node_start_pfn && !node_end_pfn) 6457 return 0; 6458 6459 /* Get the start and end of the zone */ 6460 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6461 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6462 adjust_zone_range_for_zone_movable(nid, zone_type, 6463 node_start_pfn, node_end_pfn, 6464 zone_start_pfn, zone_end_pfn); 6465 6466 /* Check that this node has pages within the zone's required range */ 6467 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 6468 return 0; 6469 6470 /* Move the zone boundaries inside the node if necessary */ 6471 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 6472 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 6473 6474 /* Return the spanned pages */ 6475 return *zone_end_pfn - *zone_start_pfn; 6476 } 6477 6478 /* 6479 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 6480 * then all holes in the requested range will be accounted for. 6481 */ 6482 unsigned long __init __absent_pages_in_range(int nid, 6483 unsigned long range_start_pfn, 6484 unsigned long range_end_pfn) 6485 { 6486 unsigned long nr_absent = range_end_pfn - range_start_pfn; 6487 unsigned long start_pfn, end_pfn; 6488 int i; 6489 6490 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 6491 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 6492 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 6493 nr_absent -= end_pfn - start_pfn; 6494 } 6495 return nr_absent; 6496 } 6497 6498 /** 6499 * absent_pages_in_range - Return number of page frames in holes within a range 6500 * @start_pfn: The start PFN to start searching for holes 6501 * @end_pfn: The end PFN to stop searching for holes 6502 * 6503 * Return: the number of pages frames in memory holes within a range. 6504 */ 6505 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 6506 unsigned long end_pfn) 6507 { 6508 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 6509 } 6510 6511 /* Return the number of page frames in holes in a zone on a node */ 6512 static unsigned long __init zone_absent_pages_in_node(int nid, 6513 unsigned long zone_type, 6514 unsigned long node_start_pfn, 6515 unsigned long node_end_pfn) 6516 { 6517 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 6518 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 6519 unsigned long zone_start_pfn, zone_end_pfn; 6520 unsigned long nr_absent; 6521 6522 /* When hotadd a new node from cpu_up(), the node should be empty */ 6523 if (!node_start_pfn && !node_end_pfn) 6524 return 0; 6525 6526 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 6527 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 6528 6529 adjust_zone_range_for_zone_movable(nid, zone_type, 6530 node_start_pfn, node_end_pfn, 6531 &zone_start_pfn, &zone_end_pfn); 6532 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 6533 6534 /* 6535 * ZONE_MOVABLE handling. 6536 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 6537 * and vice versa. 6538 */ 6539 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 6540 unsigned long start_pfn, end_pfn; 6541 struct memblock_region *r; 6542 6543 for_each_memblock(memory, r) { 6544 start_pfn = clamp(memblock_region_memory_base_pfn(r), 6545 zone_start_pfn, zone_end_pfn); 6546 end_pfn = clamp(memblock_region_memory_end_pfn(r), 6547 zone_start_pfn, zone_end_pfn); 6548 6549 if (zone_type == ZONE_MOVABLE && 6550 memblock_is_mirror(r)) 6551 nr_absent += end_pfn - start_pfn; 6552 6553 if (zone_type == ZONE_NORMAL && 6554 !memblock_is_mirror(r)) 6555 nr_absent += end_pfn - start_pfn; 6556 } 6557 } 6558 6559 return nr_absent; 6560 } 6561 6562 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 6563 unsigned long node_start_pfn, 6564 unsigned long node_end_pfn) 6565 { 6566 unsigned long realtotalpages = 0, totalpages = 0; 6567 enum zone_type i; 6568 6569 for (i = 0; i < MAX_NR_ZONES; i++) { 6570 struct zone *zone = pgdat->node_zones + i; 6571 unsigned long zone_start_pfn, zone_end_pfn; 6572 unsigned long spanned, absent; 6573 unsigned long size, real_size; 6574 6575 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 6576 node_start_pfn, 6577 node_end_pfn, 6578 &zone_start_pfn, 6579 &zone_end_pfn); 6580 absent = zone_absent_pages_in_node(pgdat->node_id, i, 6581 node_start_pfn, 6582 node_end_pfn); 6583 6584 size = spanned; 6585 real_size = size - absent; 6586 6587 if (size) 6588 zone->zone_start_pfn = zone_start_pfn; 6589 else 6590 zone->zone_start_pfn = 0; 6591 zone->spanned_pages = size; 6592 zone->present_pages = real_size; 6593 6594 totalpages += size; 6595 realtotalpages += real_size; 6596 } 6597 6598 pgdat->node_spanned_pages = totalpages; 6599 pgdat->node_present_pages = realtotalpages; 6600 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 6601 realtotalpages); 6602 } 6603 6604 #ifndef CONFIG_SPARSEMEM 6605 /* 6606 * Calculate the size of the zone->blockflags rounded to an unsigned long 6607 * Start by making sure zonesize is a multiple of pageblock_order by rounding 6608 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 6609 * round what is now in bits to nearest long in bits, then return it in 6610 * bytes. 6611 */ 6612 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 6613 { 6614 unsigned long usemapsize; 6615 6616 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 6617 usemapsize = roundup(zonesize, pageblock_nr_pages); 6618 usemapsize = usemapsize >> pageblock_order; 6619 usemapsize *= NR_PAGEBLOCK_BITS; 6620 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 6621 6622 return usemapsize / 8; 6623 } 6624 6625 static void __ref setup_usemap(struct pglist_data *pgdat, 6626 struct zone *zone, 6627 unsigned long zone_start_pfn, 6628 unsigned long zonesize) 6629 { 6630 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize); 6631 zone->pageblock_flags = NULL; 6632 if (usemapsize) { 6633 zone->pageblock_flags = 6634 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 6635 pgdat->node_id); 6636 if (!zone->pageblock_flags) 6637 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 6638 usemapsize, zone->name, pgdat->node_id); 6639 } 6640 } 6641 #else 6642 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone, 6643 unsigned long zone_start_pfn, unsigned long zonesize) {} 6644 #endif /* CONFIG_SPARSEMEM */ 6645 6646 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 6647 6648 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 6649 void __init set_pageblock_order(void) 6650 { 6651 unsigned int order; 6652 6653 /* Check that pageblock_nr_pages has not already been setup */ 6654 if (pageblock_order) 6655 return; 6656 6657 if (HPAGE_SHIFT > PAGE_SHIFT) 6658 order = HUGETLB_PAGE_ORDER; 6659 else 6660 order = MAX_ORDER - 1; 6661 6662 /* 6663 * Assume the largest contiguous order of interest is a huge page. 6664 * This value may be variable depending on boot parameters on IA64 and 6665 * powerpc. 6666 */ 6667 pageblock_order = order; 6668 } 6669 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6670 6671 /* 6672 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 6673 * is unused as pageblock_order is set at compile-time. See 6674 * include/linux/pageblock-flags.h for the values of pageblock_order based on 6675 * the kernel config 6676 */ 6677 void __init set_pageblock_order(void) 6678 { 6679 } 6680 6681 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 6682 6683 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 6684 unsigned long present_pages) 6685 { 6686 unsigned long pages = spanned_pages; 6687 6688 /* 6689 * Provide a more accurate estimation if there are holes within 6690 * the zone and SPARSEMEM is in use. If there are holes within the 6691 * zone, each populated memory region may cost us one or two extra 6692 * memmap pages due to alignment because memmap pages for each 6693 * populated regions may not be naturally aligned on page boundary. 6694 * So the (present_pages >> 4) heuristic is a tradeoff for that. 6695 */ 6696 if (spanned_pages > present_pages + (present_pages >> 4) && 6697 IS_ENABLED(CONFIG_SPARSEMEM)) 6698 pages = present_pages; 6699 6700 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 6701 } 6702 6703 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6704 static void pgdat_init_split_queue(struct pglist_data *pgdat) 6705 { 6706 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 6707 6708 spin_lock_init(&ds_queue->split_queue_lock); 6709 INIT_LIST_HEAD(&ds_queue->split_queue); 6710 ds_queue->split_queue_len = 0; 6711 } 6712 #else 6713 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 6714 #endif 6715 6716 #ifdef CONFIG_COMPACTION 6717 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 6718 { 6719 init_waitqueue_head(&pgdat->kcompactd_wait); 6720 } 6721 #else 6722 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 6723 #endif 6724 6725 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 6726 { 6727 pgdat_resize_init(pgdat); 6728 6729 pgdat_init_split_queue(pgdat); 6730 pgdat_init_kcompactd(pgdat); 6731 6732 init_waitqueue_head(&pgdat->kswapd_wait); 6733 init_waitqueue_head(&pgdat->pfmemalloc_wait); 6734 6735 pgdat_page_ext_init(pgdat); 6736 spin_lock_init(&pgdat->lru_lock); 6737 lruvec_init(&pgdat->__lruvec); 6738 } 6739 6740 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 6741 unsigned long remaining_pages) 6742 { 6743 atomic_long_set(&zone->managed_pages, remaining_pages); 6744 zone_set_nid(zone, nid); 6745 zone->name = zone_names[idx]; 6746 zone->zone_pgdat = NODE_DATA(nid); 6747 spin_lock_init(&zone->lock); 6748 zone_seqlock_init(zone); 6749 zone_pcp_init(zone); 6750 } 6751 6752 /* 6753 * Set up the zone data structures 6754 * - init pgdat internals 6755 * - init all zones belonging to this node 6756 * 6757 * NOTE: this function is only called during memory hotplug 6758 */ 6759 #ifdef CONFIG_MEMORY_HOTPLUG 6760 void __ref free_area_init_core_hotplug(int nid) 6761 { 6762 enum zone_type z; 6763 pg_data_t *pgdat = NODE_DATA(nid); 6764 6765 pgdat_init_internals(pgdat); 6766 for (z = 0; z < MAX_NR_ZONES; z++) 6767 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 6768 } 6769 #endif 6770 6771 /* 6772 * Set up the zone data structures: 6773 * - mark all pages reserved 6774 * - mark all memory queues empty 6775 * - clear the memory bitmaps 6776 * 6777 * NOTE: pgdat should get zeroed by caller. 6778 * NOTE: this function is only called during early init. 6779 */ 6780 static void __init free_area_init_core(struct pglist_data *pgdat) 6781 { 6782 enum zone_type j; 6783 int nid = pgdat->node_id; 6784 6785 pgdat_init_internals(pgdat); 6786 pgdat->per_cpu_nodestats = &boot_nodestats; 6787 6788 for (j = 0; j < MAX_NR_ZONES; j++) { 6789 struct zone *zone = pgdat->node_zones + j; 6790 unsigned long size, freesize, memmap_pages; 6791 unsigned long zone_start_pfn = zone->zone_start_pfn; 6792 6793 size = zone->spanned_pages; 6794 freesize = zone->present_pages; 6795 6796 /* 6797 * Adjust freesize so that it accounts for how much memory 6798 * is used by this zone for memmap. This affects the watermark 6799 * and per-cpu initialisations 6800 */ 6801 memmap_pages = calc_memmap_size(size, freesize); 6802 if (!is_highmem_idx(j)) { 6803 if (freesize >= memmap_pages) { 6804 freesize -= memmap_pages; 6805 if (memmap_pages) 6806 printk(KERN_DEBUG 6807 " %s zone: %lu pages used for memmap\n", 6808 zone_names[j], memmap_pages); 6809 } else 6810 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n", 6811 zone_names[j], memmap_pages, freesize); 6812 } 6813 6814 /* Account for reserved pages */ 6815 if (j == 0 && freesize > dma_reserve) { 6816 freesize -= dma_reserve; 6817 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 6818 zone_names[0], dma_reserve); 6819 } 6820 6821 if (!is_highmem_idx(j)) 6822 nr_kernel_pages += freesize; 6823 /* Charge for highmem memmap if there are enough kernel pages */ 6824 else if (nr_kernel_pages > memmap_pages * 2) 6825 nr_kernel_pages -= memmap_pages; 6826 nr_all_pages += freesize; 6827 6828 /* 6829 * Set an approximate value for lowmem here, it will be adjusted 6830 * when the bootmem allocator frees pages into the buddy system. 6831 * And all highmem pages will be managed by the buddy system. 6832 */ 6833 zone_init_internals(zone, j, nid, freesize); 6834 6835 if (!size) 6836 continue; 6837 6838 set_pageblock_order(); 6839 setup_usemap(pgdat, zone, zone_start_pfn, size); 6840 init_currently_empty_zone(zone, zone_start_pfn, size); 6841 memmap_init(size, nid, j, zone_start_pfn); 6842 } 6843 } 6844 6845 #ifdef CONFIG_FLAT_NODE_MEM_MAP 6846 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 6847 { 6848 unsigned long __maybe_unused start = 0; 6849 unsigned long __maybe_unused offset = 0; 6850 6851 /* Skip empty nodes */ 6852 if (!pgdat->node_spanned_pages) 6853 return; 6854 6855 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 6856 offset = pgdat->node_start_pfn - start; 6857 /* ia64 gets its own node_mem_map, before this, without bootmem */ 6858 if (!pgdat->node_mem_map) { 6859 unsigned long size, end; 6860 struct page *map; 6861 6862 /* 6863 * The zone's endpoints aren't required to be MAX_ORDER 6864 * aligned but the node_mem_map endpoints must be in order 6865 * for the buddy allocator to function correctly. 6866 */ 6867 end = pgdat_end_pfn(pgdat); 6868 end = ALIGN(end, MAX_ORDER_NR_PAGES); 6869 size = (end - start) * sizeof(struct page); 6870 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 6871 pgdat->node_id); 6872 if (!map) 6873 panic("Failed to allocate %ld bytes for node %d memory map\n", 6874 size, pgdat->node_id); 6875 pgdat->node_mem_map = map + offset; 6876 } 6877 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 6878 __func__, pgdat->node_id, (unsigned long)pgdat, 6879 (unsigned long)pgdat->node_mem_map); 6880 #ifndef CONFIG_NEED_MULTIPLE_NODES 6881 /* 6882 * With no DISCONTIG, the global mem_map is just set as node 0's 6883 */ 6884 if (pgdat == NODE_DATA(0)) { 6885 mem_map = NODE_DATA(0)->node_mem_map; 6886 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 6887 mem_map -= offset; 6888 } 6889 #endif 6890 } 6891 #else 6892 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 6893 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 6894 6895 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 6896 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 6897 { 6898 pgdat->first_deferred_pfn = ULONG_MAX; 6899 } 6900 #else 6901 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 6902 #endif 6903 6904 static void __init free_area_init_node(int nid) 6905 { 6906 pg_data_t *pgdat = NODE_DATA(nid); 6907 unsigned long start_pfn = 0; 6908 unsigned long end_pfn = 0; 6909 6910 /* pg_data_t should be reset to zero when it's allocated */ 6911 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 6912 6913 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 6914 6915 pgdat->node_id = nid; 6916 pgdat->node_start_pfn = start_pfn; 6917 pgdat->per_cpu_nodestats = NULL; 6918 6919 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 6920 (u64)start_pfn << PAGE_SHIFT, 6921 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 6922 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 6923 6924 alloc_node_mem_map(pgdat); 6925 pgdat_set_deferred_range(pgdat); 6926 6927 free_area_init_core(pgdat); 6928 } 6929 6930 void __init free_area_init_memoryless_node(int nid) 6931 { 6932 free_area_init_node(nid); 6933 } 6934 6935 #if !defined(CONFIG_FLAT_NODE_MEM_MAP) 6936 /* 6937 * Initialize all valid struct pages in the range [spfn, epfn) and mark them 6938 * PageReserved(). Return the number of struct pages that were initialized. 6939 */ 6940 static u64 __init init_unavailable_range(unsigned long spfn, unsigned long epfn) 6941 { 6942 unsigned long pfn; 6943 u64 pgcnt = 0; 6944 6945 for (pfn = spfn; pfn < epfn; pfn++) { 6946 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6947 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6948 + pageblock_nr_pages - 1; 6949 continue; 6950 } 6951 /* 6952 * Use a fake node/zone (0) for now. Some of these pages 6953 * (in memblock.reserved but not in memblock.memory) will 6954 * get re-initialized via reserve_bootmem_region() later. 6955 */ 6956 __init_single_page(pfn_to_page(pfn), pfn, 0, 0); 6957 __SetPageReserved(pfn_to_page(pfn)); 6958 pgcnt++; 6959 } 6960 6961 return pgcnt; 6962 } 6963 6964 /* 6965 * Only struct pages that are backed by physical memory are zeroed and 6966 * initialized by going through __init_single_page(). But, there are some 6967 * struct pages which are reserved in memblock allocator and their fields 6968 * may be accessed (for example page_to_pfn() on some configuration accesses 6969 * flags). We must explicitly initialize those struct pages. 6970 * 6971 * This function also addresses a similar issue where struct pages are left 6972 * uninitialized because the physical address range is not covered by 6973 * memblock.memory or memblock.reserved. That could happen when memblock 6974 * layout is manually configured via memmap=, or when the highest physical 6975 * address (max_pfn) does not end on a section boundary. 6976 */ 6977 static void __init init_unavailable_mem(void) 6978 { 6979 phys_addr_t start, end; 6980 u64 i, pgcnt; 6981 phys_addr_t next = 0; 6982 6983 /* 6984 * Loop through unavailable ranges not covered by memblock.memory. 6985 */ 6986 pgcnt = 0; 6987 for_each_mem_range(i, &memblock.memory, NULL, 6988 NUMA_NO_NODE, MEMBLOCK_NONE, &start, &end, NULL) { 6989 if (next < start) 6990 pgcnt += init_unavailable_range(PFN_DOWN(next), 6991 PFN_UP(start)); 6992 next = end; 6993 } 6994 6995 /* 6996 * Early sections always have a fully populated memmap for the whole 6997 * section - see pfn_valid(). If the last section has holes at the 6998 * end and that section is marked "online", the memmap will be 6999 * considered initialized. Make sure that memmap has a well defined 7000 * state. 7001 */ 7002 pgcnt += init_unavailable_range(PFN_DOWN(next), 7003 round_up(max_pfn, PAGES_PER_SECTION)); 7004 7005 /* 7006 * Struct pages that do not have backing memory. This could be because 7007 * firmware is using some of this memory, or for some other reasons. 7008 */ 7009 if (pgcnt) 7010 pr_info("Zeroed struct page in unavailable ranges: %lld pages", pgcnt); 7011 } 7012 #else 7013 static inline void __init init_unavailable_mem(void) 7014 { 7015 } 7016 #endif /* !CONFIG_FLAT_NODE_MEM_MAP */ 7017 7018 #if MAX_NUMNODES > 1 7019 /* 7020 * Figure out the number of possible node ids. 7021 */ 7022 void __init setup_nr_node_ids(void) 7023 { 7024 unsigned int highest; 7025 7026 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7027 nr_node_ids = highest + 1; 7028 } 7029 #endif 7030 7031 /** 7032 * node_map_pfn_alignment - determine the maximum internode alignment 7033 * 7034 * This function should be called after node map is populated and sorted. 7035 * It calculates the maximum power of two alignment which can distinguish 7036 * all the nodes. 7037 * 7038 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7039 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7040 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7041 * shifted, 1GiB is enough and this function will indicate so. 7042 * 7043 * This is used to test whether pfn -> nid mapping of the chosen memory 7044 * model has fine enough granularity to avoid incorrect mapping for the 7045 * populated node map. 7046 * 7047 * Return: the determined alignment in pfn's. 0 if there is no alignment 7048 * requirement (single node). 7049 */ 7050 unsigned long __init node_map_pfn_alignment(void) 7051 { 7052 unsigned long accl_mask = 0, last_end = 0; 7053 unsigned long start, end, mask; 7054 int last_nid = NUMA_NO_NODE; 7055 int i, nid; 7056 7057 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7058 if (!start || last_nid < 0 || last_nid == nid) { 7059 last_nid = nid; 7060 last_end = end; 7061 continue; 7062 } 7063 7064 /* 7065 * Start with a mask granular enough to pin-point to the 7066 * start pfn and tick off bits one-by-one until it becomes 7067 * too coarse to separate the current node from the last. 7068 */ 7069 mask = ~((1 << __ffs(start)) - 1); 7070 while (mask && last_end <= (start & (mask << 1))) 7071 mask <<= 1; 7072 7073 /* accumulate all internode masks */ 7074 accl_mask |= mask; 7075 } 7076 7077 /* convert mask to number of pages */ 7078 return ~accl_mask + 1; 7079 } 7080 7081 /** 7082 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7083 * 7084 * Return: the minimum PFN based on information provided via 7085 * memblock_set_node(). 7086 */ 7087 unsigned long __init find_min_pfn_with_active_regions(void) 7088 { 7089 return PHYS_PFN(memblock_start_of_DRAM()); 7090 } 7091 7092 /* 7093 * early_calculate_totalpages() 7094 * Sum pages in active regions for movable zone. 7095 * Populate N_MEMORY for calculating usable_nodes. 7096 */ 7097 static unsigned long __init early_calculate_totalpages(void) 7098 { 7099 unsigned long totalpages = 0; 7100 unsigned long start_pfn, end_pfn; 7101 int i, nid; 7102 7103 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7104 unsigned long pages = end_pfn - start_pfn; 7105 7106 totalpages += pages; 7107 if (pages) 7108 node_set_state(nid, N_MEMORY); 7109 } 7110 return totalpages; 7111 } 7112 7113 /* 7114 * Find the PFN the Movable zone begins in each node. Kernel memory 7115 * is spread evenly between nodes as long as the nodes have enough 7116 * memory. When they don't, some nodes will have more kernelcore than 7117 * others 7118 */ 7119 static void __init find_zone_movable_pfns_for_nodes(void) 7120 { 7121 int i, nid; 7122 unsigned long usable_startpfn; 7123 unsigned long kernelcore_node, kernelcore_remaining; 7124 /* save the state before borrow the nodemask */ 7125 nodemask_t saved_node_state = node_states[N_MEMORY]; 7126 unsigned long totalpages = early_calculate_totalpages(); 7127 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7128 struct memblock_region *r; 7129 7130 /* Need to find movable_zone earlier when movable_node is specified. */ 7131 find_usable_zone_for_movable(); 7132 7133 /* 7134 * If movable_node is specified, ignore kernelcore and movablecore 7135 * options. 7136 */ 7137 if (movable_node_is_enabled()) { 7138 for_each_memblock(memory, r) { 7139 if (!memblock_is_hotpluggable(r)) 7140 continue; 7141 7142 nid = memblock_get_region_node(r); 7143 7144 usable_startpfn = PFN_DOWN(r->base); 7145 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7146 min(usable_startpfn, zone_movable_pfn[nid]) : 7147 usable_startpfn; 7148 } 7149 7150 goto out2; 7151 } 7152 7153 /* 7154 * If kernelcore=mirror is specified, ignore movablecore option 7155 */ 7156 if (mirrored_kernelcore) { 7157 bool mem_below_4gb_not_mirrored = false; 7158 7159 for_each_memblock(memory, r) { 7160 if (memblock_is_mirror(r)) 7161 continue; 7162 7163 nid = memblock_get_region_node(r); 7164 7165 usable_startpfn = memblock_region_memory_base_pfn(r); 7166 7167 if (usable_startpfn < 0x100000) { 7168 mem_below_4gb_not_mirrored = true; 7169 continue; 7170 } 7171 7172 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7173 min(usable_startpfn, zone_movable_pfn[nid]) : 7174 usable_startpfn; 7175 } 7176 7177 if (mem_below_4gb_not_mirrored) 7178 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7179 7180 goto out2; 7181 } 7182 7183 /* 7184 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7185 * amount of necessary memory. 7186 */ 7187 if (required_kernelcore_percent) 7188 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7189 10000UL; 7190 if (required_movablecore_percent) 7191 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7192 10000UL; 7193 7194 /* 7195 * If movablecore= was specified, calculate what size of 7196 * kernelcore that corresponds so that memory usable for 7197 * any allocation type is evenly spread. If both kernelcore 7198 * and movablecore are specified, then the value of kernelcore 7199 * will be used for required_kernelcore if it's greater than 7200 * what movablecore would have allowed. 7201 */ 7202 if (required_movablecore) { 7203 unsigned long corepages; 7204 7205 /* 7206 * Round-up so that ZONE_MOVABLE is at least as large as what 7207 * was requested by the user 7208 */ 7209 required_movablecore = 7210 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7211 required_movablecore = min(totalpages, required_movablecore); 7212 corepages = totalpages - required_movablecore; 7213 7214 required_kernelcore = max(required_kernelcore, corepages); 7215 } 7216 7217 /* 7218 * If kernelcore was not specified or kernelcore size is larger 7219 * than totalpages, there is no ZONE_MOVABLE. 7220 */ 7221 if (!required_kernelcore || required_kernelcore >= totalpages) 7222 goto out; 7223 7224 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7225 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7226 7227 restart: 7228 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7229 kernelcore_node = required_kernelcore / usable_nodes; 7230 for_each_node_state(nid, N_MEMORY) { 7231 unsigned long start_pfn, end_pfn; 7232 7233 /* 7234 * Recalculate kernelcore_node if the division per node 7235 * now exceeds what is necessary to satisfy the requested 7236 * amount of memory for the kernel 7237 */ 7238 if (required_kernelcore < kernelcore_node) 7239 kernelcore_node = required_kernelcore / usable_nodes; 7240 7241 /* 7242 * As the map is walked, we track how much memory is usable 7243 * by the kernel using kernelcore_remaining. When it is 7244 * 0, the rest of the node is usable by ZONE_MOVABLE 7245 */ 7246 kernelcore_remaining = kernelcore_node; 7247 7248 /* Go through each range of PFNs within this node */ 7249 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7250 unsigned long size_pages; 7251 7252 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7253 if (start_pfn >= end_pfn) 7254 continue; 7255 7256 /* Account for what is only usable for kernelcore */ 7257 if (start_pfn < usable_startpfn) { 7258 unsigned long kernel_pages; 7259 kernel_pages = min(end_pfn, usable_startpfn) 7260 - start_pfn; 7261 7262 kernelcore_remaining -= min(kernel_pages, 7263 kernelcore_remaining); 7264 required_kernelcore -= min(kernel_pages, 7265 required_kernelcore); 7266 7267 /* Continue if range is now fully accounted */ 7268 if (end_pfn <= usable_startpfn) { 7269 7270 /* 7271 * Push zone_movable_pfn to the end so 7272 * that if we have to rebalance 7273 * kernelcore across nodes, we will 7274 * not double account here 7275 */ 7276 zone_movable_pfn[nid] = end_pfn; 7277 continue; 7278 } 7279 start_pfn = usable_startpfn; 7280 } 7281 7282 /* 7283 * The usable PFN range for ZONE_MOVABLE is from 7284 * start_pfn->end_pfn. Calculate size_pages as the 7285 * number of pages used as kernelcore 7286 */ 7287 size_pages = end_pfn - start_pfn; 7288 if (size_pages > kernelcore_remaining) 7289 size_pages = kernelcore_remaining; 7290 zone_movable_pfn[nid] = start_pfn + size_pages; 7291 7292 /* 7293 * Some kernelcore has been met, update counts and 7294 * break if the kernelcore for this node has been 7295 * satisfied 7296 */ 7297 required_kernelcore -= min(required_kernelcore, 7298 size_pages); 7299 kernelcore_remaining -= size_pages; 7300 if (!kernelcore_remaining) 7301 break; 7302 } 7303 } 7304 7305 /* 7306 * If there is still required_kernelcore, we do another pass with one 7307 * less node in the count. This will push zone_movable_pfn[nid] further 7308 * along on the nodes that still have memory until kernelcore is 7309 * satisfied 7310 */ 7311 usable_nodes--; 7312 if (usable_nodes && required_kernelcore > usable_nodes) 7313 goto restart; 7314 7315 out2: 7316 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7317 for (nid = 0; nid < MAX_NUMNODES; nid++) 7318 zone_movable_pfn[nid] = 7319 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7320 7321 out: 7322 /* restore the node_state */ 7323 node_states[N_MEMORY] = saved_node_state; 7324 } 7325 7326 /* Any regular or high memory on that node ? */ 7327 static void check_for_memory(pg_data_t *pgdat, int nid) 7328 { 7329 enum zone_type zone_type; 7330 7331 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7332 struct zone *zone = &pgdat->node_zones[zone_type]; 7333 if (populated_zone(zone)) { 7334 if (IS_ENABLED(CONFIG_HIGHMEM)) 7335 node_set_state(nid, N_HIGH_MEMORY); 7336 if (zone_type <= ZONE_NORMAL) 7337 node_set_state(nid, N_NORMAL_MEMORY); 7338 break; 7339 } 7340 } 7341 } 7342 7343 /* 7344 * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7345 * such cases we allow max_zone_pfn sorted in the descending order 7346 */ 7347 bool __weak arch_has_descending_max_zone_pfns(void) 7348 { 7349 return false; 7350 } 7351 7352 /** 7353 * free_area_init - Initialise all pg_data_t and zone data 7354 * @max_zone_pfn: an array of max PFNs for each zone 7355 * 7356 * This will call free_area_init_node() for each active node in the system. 7357 * Using the page ranges provided by memblock_set_node(), the size of each 7358 * zone in each node and their holes is calculated. If the maximum PFN 7359 * between two adjacent zones match, it is assumed that the zone is empty. 7360 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7361 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7362 * starts where the previous one ended. For example, ZONE_DMA32 starts 7363 * at arch_max_dma_pfn. 7364 */ 7365 void __init free_area_init(unsigned long *max_zone_pfn) 7366 { 7367 unsigned long start_pfn, end_pfn; 7368 int i, nid, zone; 7369 bool descending; 7370 7371 /* Record where the zone boundaries are */ 7372 memset(arch_zone_lowest_possible_pfn, 0, 7373 sizeof(arch_zone_lowest_possible_pfn)); 7374 memset(arch_zone_highest_possible_pfn, 0, 7375 sizeof(arch_zone_highest_possible_pfn)); 7376 7377 start_pfn = find_min_pfn_with_active_regions(); 7378 descending = arch_has_descending_max_zone_pfns(); 7379 7380 for (i = 0; i < MAX_NR_ZONES; i++) { 7381 if (descending) 7382 zone = MAX_NR_ZONES - i - 1; 7383 else 7384 zone = i; 7385 7386 if (zone == ZONE_MOVABLE) 7387 continue; 7388 7389 end_pfn = max(max_zone_pfn[zone], start_pfn); 7390 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7391 arch_zone_highest_possible_pfn[zone] = end_pfn; 7392 7393 start_pfn = end_pfn; 7394 } 7395 7396 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7397 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7398 find_zone_movable_pfns_for_nodes(); 7399 7400 /* Print out the zone ranges */ 7401 pr_info("Zone ranges:\n"); 7402 for (i = 0; i < MAX_NR_ZONES; i++) { 7403 if (i == ZONE_MOVABLE) 7404 continue; 7405 pr_info(" %-8s ", zone_names[i]); 7406 if (arch_zone_lowest_possible_pfn[i] == 7407 arch_zone_highest_possible_pfn[i]) 7408 pr_cont("empty\n"); 7409 else 7410 pr_cont("[mem %#018Lx-%#018Lx]\n", 7411 (u64)arch_zone_lowest_possible_pfn[i] 7412 << PAGE_SHIFT, 7413 ((u64)arch_zone_highest_possible_pfn[i] 7414 << PAGE_SHIFT) - 1); 7415 } 7416 7417 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7418 pr_info("Movable zone start for each node\n"); 7419 for (i = 0; i < MAX_NUMNODES; i++) { 7420 if (zone_movable_pfn[i]) 7421 pr_info(" Node %d: %#018Lx\n", i, 7422 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7423 } 7424 7425 /* 7426 * Print out the early node map, and initialize the 7427 * subsection-map relative to active online memory ranges to 7428 * enable future "sub-section" extensions of the memory map. 7429 */ 7430 pr_info("Early memory node ranges\n"); 7431 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7432 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7433 (u64)start_pfn << PAGE_SHIFT, 7434 ((u64)end_pfn << PAGE_SHIFT) - 1); 7435 subsection_map_init(start_pfn, end_pfn - start_pfn); 7436 } 7437 7438 /* Initialise every node */ 7439 mminit_verify_pageflags_layout(); 7440 setup_nr_node_ids(); 7441 init_unavailable_mem(); 7442 for_each_online_node(nid) { 7443 pg_data_t *pgdat = NODE_DATA(nid); 7444 free_area_init_node(nid); 7445 7446 /* Any memory on that node */ 7447 if (pgdat->node_present_pages) 7448 node_set_state(nid, N_MEMORY); 7449 check_for_memory(pgdat, nid); 7450 } 7451 } 7452 7453 static int __init cmdline_parse_core(char *p, unsigned long *core, 7454 unsigned long *percent) 7455 { 7456 unsigned long long coremem; 7457 char *endptr; 7458 7459 if (!p) 7460 return -EINVAL; 7461 7462 /* Value may be a percentage of total memory, otherwise bytes */ 7463 coremem = simple_strtoull(p, &endptr, 0); 7464 if (*endptr == '%') { 7465 /* Paranoid check for percent values greater than 100 */ 7466 WARN_ON(coremem > 100); 7467 7468 *percent = coremem; 7469 } else { 7470 coremem = memparse(p, &p); 7471 /* Paranoid check that UL is enough for the coremem value */ 7472 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 7473 7474 *core = coremem >> PAGE_SHIFT; 7475 *percent = 0UL; 7476 } 7477 return 0; 7478 } 7479 7480 /* 7481 * kernelcore=size sets the amount of memory for use for allocations that 7482 * cannot be reclaimed or migrated. 7483 */ 7484 static int __init cmdline_parse_kernelcore(char *p) 7485 { 7486 /* parse kernelcore=mirror */ 7487 if (parse_option_str(p, "mirror")) { 7488 mirrored_kernelcore = true; 7489 return 0; 7490 } 7491 7492 return cmdline_parse_core(p, &required_kernelcore, 7493 &required_kernelcore_percent); 7494 } 7495 7496 /* 7497 * movablecore=size sets the amount of memory for use for allocations that 7498 * can be reclaimed or migrated. 7499 */ 7500 static int __init cmdline_parse_movablecore(char *p) 7501 { 7502 return cmdline_parse_core(p, &required_movablecore, 7503 &required_movablecore_percent); 7504 } 7505 7506 early_param("kernelcore", cmdline_parse_kernelcore); 7507 early_param("movablecore", cmdline_parse_movablecore); 7508 7509 void adjust_managed_page_count(struct page *page, long count) 7510 { 7511 atomic_long_add(count, &page_zone(page)->managed_pages); 7512 totalram_pages_add(count); 7513 #ifdef CONFIG_HIGHMEM 7514 if (PageHighMem(page)) 7515 totalhigh_pages_add(count); 7516 #endif 7517 } 7518 EXPORT_SYMBOL(adjust_managed_page_count); 7519 7520 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 7521 { 7522 void *pos; 7523 unsigned long pages = 0; 7524 7525 start = (void *)PAGE_ALIGN((unsigned long)start); 7526 end = (void *)((unsigned long)end & PAGE_MASK); 7527 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 7528 struct page *page = virt_to_page(pos); 7529 void *direct_map_addr; 7530 7531 /* 7532 * 'direct_map_addr' might be different from 'pos' 7533 * because some architectures' virt_to_page() 7534 * work with aliases. Getting the direct map 7535 * address ensures that we get a _writeable_ 7536 * alias for the memset(). 7537 */ 7538 direct_map_addr = page_address(page); 7539 if ((unsigned int)poison <= 0xFF) 7540 memset(direct_map_addr, poison, PAGE_SIZE); 7541 7542 free_reserved_page(page); 7543 } 7544 7545 if (pages && s) 7546 pr_info("Freeing %s memory: %ldK\n", 7547 s, pages << (PAGE_SHIFT - 10)); 7548 7549 return pages; 7550 } 7551 7552 #ifdef CONFIG_HIGHMEM 7553 void free_highmem_page(struct page *page) 7554 { 7555 __free_reserved_page(page); 7556 totalram_pages_inc(); 7557 atomic_long_inc(&page_zone(page)->managed_pages); 7558 totalhigh_pages_inc(); 7559 } 7560 #endif 7561 7562 7563 void __init mem_init_print_info(const char *str) 7564 { 7565 unsigned long physpages, codesize, datasize, rosize, bss_size; 7566 unsigned long init_code_size, init_data_size; 7567 7568 physpages = get_num_physpages(); 7569 codesize = _etext - _stext; 7570 datasize = _edata - _sdata; 7571 rosize = __end_rodata - __start_rodata; 7572 bss_size = __bss_stop - __bss_start; 7573 init_data_size = __init_end - __init_begin; 7574 init_code_size = _einittext - _sinittext; 7575 7576 /* 7577 * Detect special cases and adjust section sizes accordingly: 7578 * 1) .init.* may be embedded into .data sections 7579 * 2) .init.text.* may be out of [__init_begin, __init_end], 7580 * please refer to arch/tile/kernel/vmlinux.lds.S. 7581 * 3) .rodata.* may be embedded into .text or .data sections. 7582 */ 7583 #define adj_init_size(start, end, size, pos, adj) \ 7584 do { \ 7585 if (start <= pos && pos < end && size > adj) \ 7586 size -= adj; \ 7587 } while (0) 7588 7589 adj_init_size(__init_begin, __init_end, init_data_size, 7590 _sinittext, init_code_size); 7591 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 7592 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 7593 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 7594 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 7595 7596 #undef adj_init_size 7597 7598 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 7599 #ifdef CONFIG_HIGHMEM 7600 ", %luK highmem" 7601 #endif 7602 "%s%s)\n", 7603 nr_free_pages() << (PAGE_SHIFT - 10), 7604 physpages << (PAGE_SHIFT - 10), 7605 codesize >> 10, datasize >> 10, rosize >> 10, 7606 (init_data_size + init_code_size) >> 10, bss_size >> 10, 7607 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 7608 totalcma_pages << (PAGE_SHIFT - 10), 7609 #ifdef CONFIG_HIGHMEM 7610 totalhigh_pages() << (PAGE_SHIFT - 10), 7611 #endif 7612 str ? ", " : "", str ? str : ""); 7613 } 7614 7615 /** 7616 * set_dma_reserve - set the specified number of pages reserved in the first zone 7617 * @new_dma_reserve: The number of pages to mark reserved 7618 * 7619 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 7620 * In the DMA zone, a significant percentage may be consumed by kernel image 7621 * and other unfreeable allocations which can skew the watermarks badly. This 7622 * function may optionally be used to account for unfreeable pages in the 7623 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 7624 * smaller per-cpu batchsize. 7625 */ 7626 void __init set_dma_reserve(unsigned long new_dma_reserve) 7627 { 7628 dma_reserve = new_dma_reserve; 7629 } 7630 7631 static int page_alloc_cpu_dead(unsigned int cpu) 7632 { 7633 7634 lru_add_drain_cpu(cpu); 7635 drain_pages(cpu); 7636 7637 /* 7638 * Spill the event counters of the dead processor 7639 * into the current processors event counters. 7640 * This artificially elevates the count of the current 7641 * processor. 7642 */ 7643 vm_events_fold_cpu(cpu); 7644 7645 /* 7646 * Zero the differential counters of the dead processor 7647 * so that the vm statistics are consistent. 7648 * 7649 * This is only okay since the processor is dead and cannot 7650 * race with what we are doing. 7651 */ 7652 cpu_vm_stats_fold(cpu); 7653 return 0; 7654 } 7655 7656 #ifdef CONFIG_NUMA 7657 int hashdist = HASHDIST_DEFAULT; 7658 7659 static int __init set_hashdist(char *str) 7660 { 7661 if (!str) 7662 return 0; 7663 hashdist = simple_strtoul(str, &str, 0); 7664 return 1; 7665 } 7666 __setup("hashdist=", set_hashdist); 7667 #endif 7668 7669 void __init page_alloc_init(void) 7670 { 7671 int ret; 7672 7673 #ifdef CONFIG_NUMA 7674 if (num_node_state(N_MEMORY) == 1) 7675 hashdist = 0; 7676 #endif 7677 7678 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD, 7679 "mm/page_alloc:dead", NULL, 7680 page_alloc_cpu_dead); 7681 WARN_ON(ret < 0); 7682 } 7683 7684 /* 7685 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 7686 * or min_free_kbytes changes. 7687 */ 7688 static void calculate_totalreserve_pages(void) 7689 { 7690 struct pglist_data *pgdat; 7691 unsigned long reserve_pages = 0; 7692 enum zone_type i, j; 7693 7694 for_each_online_pgdat(pgdat) { 7695 7696 pgdat->totalreserve_pages = 0; 7697 7698 for (i = 0; i < MAX_NR_ZONES; i++) { 7699 struct zone *zone = pgdat->node_zones + i; 7700 long max = 0; 7701 unsigned long managed_pages = zone_managed_pages(zone); 7702 7703 /* Find valid and maximum lowmem_reserve in the zone */ 7704 for (j = i; j < MAX_NR_ZONES; j++) { 7705 if (zone->lowmem_reserve[j] > max) 7706 max = zone->lowmem_reserve[j]; 7707 } 7708 7709 /* we treat the high watermark as reserved pages. */ 7710 max += high_wmark_pages(zone); 7711 7712 if (max > managed_pages) 7713 max = managed_pages; 7714 7715 pgdat->totalreserve_pages += max; 7716 7717 reserve_pages += max; 7718 } 7719 } 7720 totalreserve_pages = reserve_pages; 7721 } 7722 7723 /* 7724 * setup_per_zone_lowmem_reserve - called whenever 7725 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 7726 * has a correct pages reserved value, so an adequate number of 7727 * pages are left in the zone after a successful __alloc_pages(). 7728 */ 7729 static void setup_per_zone_lowmem_reserve(void) 7730 { 7731 struct pglist_data *pgdat; 7732 enum zone_type j, idx; 7733 7734 for_each_online_pgdat(pgdat) { 7735 for (j = 0; j < MAX_NR_ZONES; j++) { 7736 struct zone *zone = pgdat->node_zones + j; 7737 unsigned long managed_pages = zone_managed_pages(zone); 7738 7739 zone->lowmem_reserve[j] = 0; 7740 7741 idx = j; 7742 while (idx) { 7743 struct zone *lower_zone; 7744 7745 idx--; 7746 lower_zone = pgdat->node_zones + idx; 7747 7748 if (!sysctl_lowmem_reserve_ratio[idx] || 7749 !zone_managed_pages(lower_zone)) { 7750 lower_zone->lowmem_reserve[j] = 0; 7751 continue; 7752 } else { 7753 lower_zone->lowmem_reserve[j] = 7754 managed_pages / sysctl_lowmem_reserve_ratio[idx]; 7755 } 7756 managed_pages += zone_managed_pages(lower_zone); 7757 } 7758 } 7759 } 7760 7761 /* update totalreserve_pages */ 7762 calculate_totalreserve_pages(); 7763 } 7764 7765 static void __setup_per_zone_wmarks(void) 7766 { 7767 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 7768 unsigned long lowmem_pages = 0; 7769 struct zone *zone; 7770 unsigned long flags; 7771 7772 /* Calculate total number of !ZONE_HIGHMEM pages */ 7773 for_each_zone(zone) { 7774 if (!is_highmem(zone)) 7775 lowmem_pages += zone_managed_pages(zone); 7776 } 7777 7778 for_each_zone(zone) { 7779 u64 tmp; 7780 7781 spin_lock_irqsave(&zone->lock, flags); 7782 tmp = (u64)pages_min * zone_managed_pages(zone); 7783 do_div(tmp, lowmem_pages); 7784 if (is_highmem(zone)) { 7785 /* 7786 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 7787 * need highmem pages, so cap pages_min to a small 7788 * value here. 7789 * 7790 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 7791 * deltas control async page reclaim, and so should 7792 * not be capped for highmem. 7793 */ 7794 unsigned long min_pages; 7795 7796 min_pages = zone_managed_pages(zone) / 1024; 7797 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 7798 zone->_watermark[WMARK_MIN] = min_pages; 7799 } else { 7800 /* 7801 * If it's a lowmem zone, reserve a number of pages 7802 * proportionate to the zone's size. 7803 */ 7804 zone->_watermark[WMARK_MIN] = tmp; 7805 } 7806 7807 /* 7808 * Set the kswapd watermarks distance according to the 7809 * scale factor in proportion to available memory, but 7810 * ensure a minimum size on small systems. 7811 */ 7812 tmp = max_t(u64, tmp >> 2, 7813 mult_frac(zone_managed_pages(zone), 7814 watermark_scale_factor, 10000)); 7815 7816 zone->watermark_boost = 0; 7817 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 7818 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 7819 7820 spin_unlock_irqrestore(&zone->lock, flags); 7821 } 7822 7823 /* update totalreserve_pages */ 7824 calculate_totalreserve_pages(); 7825 } 7826 7827 /** 7828 * setup_per_zone_wmarks - called when min_free_kbytes changes 7829 * or when memory is hot-{added|removed} 7830 * 7831 * Ensures that the watermark[min,low,high] values for each zone are set 7832 * correctly with respect to min_free_kbytes. 7833 */ 7834 void setup_per_zone_wmarks(void) 7835 { 7836 static DEFINE_SPINLOCK(lock); 7837 7838 spin_lock(&lock); 7839 __setup_per_zone_wmarks(); 7840 spin_unlock(&lock); 7841 } 7842 7843 /* 7844 * Initialise min_free_kbytes. 7845 * 7846 * For small machines we want it small (128k min). For large machines 7847 * we want it large (256MB max). But it is not linear, because network 7848 * bandwidth does not increase linearly with machine size. We use 7849 * 7850 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 7851 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 7852 * 7853 * which yields 7854 * 7855 * 16MB: 512k 7856 * 32MB: 724k 7857 * 64MB: 1024k 7858 * 128MB: 1448k 7859 * 256MB: 2048k 7860 * 512MB: 2896k 7861 * 1024MB: 4096k 7862 * 2048MB: 5792k 7863 * 4096MB: 8192k 7864 * 8192MB: 11584k 7865 * 16384MB: 16384k 7866 */ 7867 int __meminit init_per_zone_wmark_min(void) 7868 { 7869 unsigned long lowmem_kbytes; 7870 int new_min_free_kbytes; 7871 7872 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 7873 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 7874 7875 if (new_min_free_kbytes > user_min_free_kbytes) { 7876 min_free_kbytes = new_min_free_kbytes; 7877 if (min_free_kbytes < 128) 7878 min_free_kbytes = 128; 7879 if (min_free_kbytes > 262144) 7880 min_free_kbytes = 262144; 7881 } else { 7882 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 7883 new_min_free_kbytes, user_min_free_kbytes); 7884 } 7885 setup_per_zone_wmarks(); 7886 refresh_zone_stat_thresholds(); 7887 setup_per_zone_lowmem_reserve(); 7888 7889 #ifdef CONFIG_NUMA 7890 setup_min_unmapped_ratio(); 7891 setup_min_slab_ratio(); 7892 #endif 7893 7894 return 0; 7895 } 7896 postcore_initcall(init_per_zone_wmark_min) 7897 7898 /* 7899 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 7900 * that we can call two helper functions whenever min_free_kbytes 7901 * changes. 7902 */ 7903 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 7904 void *buffer, size_t *length, loff_t *ppos) 7905 { 7906 int rc; 7907 7908 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7909 if (rc) 7910 return rc; 7911 7912 if (write) { 7913 user_min_free_kbytes = min_free_kbytes; 7914 setup_per_zone_wmarks(); 7915 } 7916 return 0; 7917 } 7918 7919 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 7920 void *buffer, size_t *length, loff_t *ppos) 7921 { 7922 int rc; 7923 7924 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7925 if (rc) 7926 return rc; 7927 7928 if (write) 7929 setup_per_zone_wmarks(); 7930 7931 return 0; 7932 } 7933 7934 #ifdef CONFIG_NUMA 7935 static void setup_min_unmapped_ratio(void) 7936 { 7937 pg_data_t *pgdat; 7938 struct zone *zone; 7939 7940 for_each_online_pgdat(pgdat) 7941 pgdat->min_unmapped_pages = 0; 7942 7943 for_each_zone(zone) 7944 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 7945 sysctl_min_unmapped_ratio) / 100; 7946 } 7947 7948 7949 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 7950 void *buffer, size_t *length, loff_t *ppos) 7951 { 7952 int rc; 7953 7954 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7955 if (rc) 7956 return rc; 7957 7958 setup_min_unmapped_ratio(); 7959 7960 return 0; 7961 } 7962 7963 static void setup_min_slab_ratio(void) 7964 { 7965 pg_data_t *pgdat; 7966 struct zone *zone; 7967 7968 for_each_online_pgdat(pgdat) 7969 pgdat->min_slab_pages = 0; 7970 7971 for_each_zone(zone) 7972 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 7973 sysctl_min_slab_ratio) / 100; 7974 } 7975 7976 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 7977 void *buffer, size_t *length, loff_t *ppos) 7978 { 7979 int rc; 7980 7981 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 7982 if (rc) 7983 return rc; 7984 7985 setup_min_slab_ratio(); 7986 7987 return 0; 7988 } 7989 #endif 7990 7991 /* 7992 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 7993 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 7994 * whenever sysctl_lowmem_reserve_ratio changes. 7995 * 7996 * The reserve ratio obviously has absolutely no relation with the 7997 * minimum watermarks. The lowmem reserve ratio can only make sense 7998 * if in function of the boot time zone sizes. 7999 */ 8000 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8001 void *buffer, size_t *length, loff_t *ppos) 8002 { 8003 int i; 8004 8005 proc_dointvec_minmax(table, write, buffer, length, ppos); 8006 8007 for (i = 0; i < MAX_NR_ZONES; i++) { 8008 if (sysctl_lowmem_reserve_ratio[i] < 1) 8009 sysctl_lowmem_reserve_ratio[i] = 0; 8010 } 8011 8012 setup_per_zone_lowmem_reserve(); 8013 return 0; 8014 } 8015 8016 static void __zone_pcp_update(struct zone *zone) 8017 { 8018 unsigned int cpu; 8019 8020 for_each_possible_cpu(cpu) 8021 pageset_set_high_and_batch(zone, 8022 per_cpu_ptr(zone->pageset, cpu)); 8023 } 8024 8025 /* 8026 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 8027 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8028 * pagelist can have before it gets flushed back to buddy allocator. 8029 */ 8030 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write, 8031 void *buffer, size_t *length, loff_t *ppos) 8032 { 8033 struct zone *zone; 8034 int old_percpu_pagelist_fraction; 8035 int ret; 8036 8037 mutex_lock(&pcp_batch_high_lock); 8038 old_percpu_pagelist_fraction = percpu_pagelist_fraction; 8039 8040 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8041 if (!write || ret < 0) 8042 goto out; 8043 8044 /* Sanity checking to avoid pcp imbalance */ 8045 if (percpu_pagelist_fraction && 8046 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) { 8047 percpu_pagelist_fraction = old_percpu_pagelist_fraction; 8048 ret = -EINVAL; 8049 goto out; 8050 } 8051 8052 /* No change? */ 8053 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction) 8054 goto out; 8055 8056 for_each_populated_zone(zone) 8057 __zone_pcp_update(zone); 8058 out: 8059 mutex_unlock(&pcp_batch_high_lock); 8060 return ret; 8061 } 8062 8063 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8064 /* 8065 * Returns the number of pages that arch has reserved but 8066 * is not known to alloc_large_system_hash(). 8067 */ 8068 static unsigned long __init arch_reserved_kernel_pages(void) 8069 { 8070 return 0; 8071 } 8072 #endif 8073 8074 /* 8075 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8076 * machines. As memory size is increased the scale is also increased but at 8077 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8078 * quadruples the scale is increased by one, which means the size of hash table 8079 * only doubles, instead of quadrupling as well. 8080 * Because 32-bit systems cannot have large physical memory, where this scaling 8081 * makes sense, it is disabled on such platforms. 8082 */ 8083 #if __BITS_PER_LONG > 32 8084 #define ADAPT_SCALE_BASE (64ul << 30) 8085 #define ADAPT_SCALE_SHIFT 2 8086 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8087 #endif 8088 8089 /* 8090 * allocate a large system hash table from bootmem 8091 * - it is assumed that the hash table must contain an exact power-of-2 8092 * quantity of entries 8093 * - limit is the number of hash buckets, not the total allocation size 8094 */ 8095 void *__init alloc_large_system_hash(const char *tablename, 8096 unsigned long bucketsize, 8097 unsigned long numentries, 8098 int scale, 8099 int flags, 8100 unsigned int *_hash_shift, 8101 unsigned int *_hash_mask, 8102 unsigned long low_limit, 8103 unsigned long high_limit) 8104 { 8105 unsigned long long max = high_limit; 8106 unsigned long log2qty, size; 8107 void *table = NULL; 8108 gfp_t gfp_flags; 8109 bool virt; 8110 8111 /* allow the kernel cmdline to have a say */ 8112 if (!numentries) { 8113 /* round applicable memory size up to nearest megabyte */ 8114 numentries = nr_kernel_pages; 8115 numentries -= arch_reserved_kernel_pages(); 8116 8117 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8118 if (PAGE_SHIFT < 20) 8119 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8120 8121 #if __BITS_PER_LONG > 32 8122 if (!high_limit) { 8123 unsigned long adapt; 8124 8125 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8126 adapt <<= ADAPT_SCALE_SHIFT) 8127 scale++; 8128 } 8129 #endif 8130 8131 /* limit to 1 bucket per 2^scale bytes of low memory */ 8132 if (scale > PAGE_SHIFT) 8133 numentries >>= (scale - PAGE_SHIFT); 8134 else 8135 numentries <<= (PAGE_SHIFT - scale); 8136 8137 /* Make sure we've got at least a 0-order allocation.. */ 8138 if (unlikely(flags & HASH_SMALL)) { 8139 /* Makes no sense without HASH_EARLY */ 8140 WARN_ON(!(flags & HASH_EARLY)); 8141 if (!(numentries >> *_hash_shift)) { 8142 numentries = 1UL << *_hash_shift; 8143 BUG_ON(!numentries); 8144 } 8145 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8146 numentries = PAGE_SIZE / bucketsize; 8147 } 8148 numentries = roundup_pow_of_two(numentries); 8149 8150 /* limit allocation size to 1/16 total memory by default */ 8151 if (max == 0) { 8152 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8153 do_div(max, bucketsize); 8154 } 8155 max = min(max, 0x80000000ULL); 8156 8157 if (numentries < low_limit) 8158 numentries = low_limit; 8159 if (numentries > max) 8160 numentries = max; 8161 8162 log2qty = ilog2(numentries); 8163 8164 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8165 do { 8166 virt = false; 8167 size = bucketsize << log2qty; 8168 if (flags & HASH_EARLY) { 8169 if (flags & HASH_ZERO) 8170 table = memblock_alloc(size, SMP_CACHE_BYTES); 8171 else 8172 table = memblock_alloc_raw(size, 8173 SMP_CACHE_BYTES); 8174 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8175 table = __vmalloc(size, gfp_flags); 8176 virt = true; 8177 } else { 8178 /* 8179 * If bucketsize is not a power-of-two, we may free 8180 * some pages at the end of hash table which 8181 * alloc_pages_exact() automatically does 8182 */ 8183 table = alloc_pages_exact(size, gfp_flags); 8184 kmemleak_alloc(table, size, 1, gfp_flags); 8185 } 8186 } while (!table && size > PAGE_SIZE && --log2qty); 8187 8188 if (!table) 8189 panic("Failed to allocate %s hash table\n", tablename); 8190 8191 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8192 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8193 virt ? "vmalloc" : "linear"); 8194 8195 if (_hash_shift) 8196 *_hash_shift = log2qty; 8197 if (_hash_mask) 8198 *_hash_mask = (1 << log2qty) - 1; 8199 8200 return table; 8201 } 8202 8203 /* 8204 * This function checks whether pageblock includes unmovable pages or not. 8205 * 8206 * PageLRU check without isolation or lru_lock could race so that 8207 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8208 * check without lock_page also may miss some movable non-lru pages at 8209 * race condition. So you can't expect this function should be exact. 8210 * 8211 * Returns a page without holding a reference. If the caller wants to 8212 * dereference that page (e.g., dumping), it has to make sure that it 8213 * cannot get removed (e.g., via memory unplug) concurrently. 8214 * 8215 */ 8216 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8217 int migratetype, int flags) 8218 { 8219 unsigned long iter = 0; 8220 unsigned long pfn = page_to_pfn(page); 8221 8222 /* 8223 * TODO we could make this much more efficient by not checking every 8224 * page in the range if we know all of them are in MOVABLE_ZONE and 8225 * that the movable zone guarantees that pages are migratable but 8226 * the later is not the case right now unfortunatelly. E.g. movablecore 8227 * can still lead to having bootmem allocations in zone_movable. 8228 */ 8229 8230 if (is_migrate_cma_page(page)) { 8231 /* 8232 * CMA allocations (alloc_contig_range) really need to mark 8233 * isolate CMA pageblocks even when they are not movable in fact 8234 * so consider them movable here. 8235 */ 8236 if (is_migrate_cma(migratetype)) 8237 return NULL; 8238 8239 return page; 8240 } 8241 8242 for (; iter < pageblock_nr_pages; iter++) { 8243 if (!pfn_valid_within(pfn + iter)) 8244 continue; 8245 8246 page = pfn_to_page(pfn + iter); 8247 8248 if (PageReserved(page)) 8249 return page; 8250 8251 /* 8252 * If the zone is movable and we have ruled out all reserved 8253 * pages then it should be reasonably safe to assume the rest 8254 * is movable. 8255 */ 8256 if (zone_idx(zone) == ZONE_MOVABLE) 8257 continue; 8258 8259 /* 8260 * Hugepages are not in LRU lists, but they're movable. 8261 * THPs are on the LRU, but need to be counted as #small pages. 8262 * We need not scan over tail pages because we don't 8263 * handle each tail page individually in migration. 8264 */ 8265 if (PageHuge(page) || PageTransCompound(page)) { 8266 struct page *head = compound_head(page); 8267 unsigned int skip_pages; 8268 8269 if (PageHuge(page)) { 8270 if (!hugepage_migration_supported(page_hstate(head))) 8271 return page; 8272 } else if (!PageLRU(head) && !__PageMovable(head)) { 8273 return page; 8274 } 8275 8276 skip_pages = compound_nr(head) - (page - head); 8277 iter += skip_pages - 1; 8278 continue; 8279 } 8280 8281 /* 8282 * We can't use page_count without pin a page 8283 * because another CPU can free compound page. 8284 * This check already skips compound tails of THP 8285 * because their page->_refcount is zero at all time. 8286 */ 8287 if (!page_ref_count(page)) { 8288 if (PageBuddy(page)) 8289 iter += (1 << page_order(page)) - 1; 8290 continue; 8291 } 8292 8293 /* 8294 * The HWPoisoned page may be not in buddy system, and 8295 * page_count() is not 0. 8296 */ 8297 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8298 continue; 8299 8300 /* 8301 * We treat all PageOffline() pages as movable when offlining 8302 * to give drivers a chance to decrement their reference count 8303 * in MEM_GOING_OFFLINE in order to indicate that these pages 8304 * can be offlined as there are no direct references anymore. 8305 * For actually unmovable PageOffline() where the driver does 8306 * not support this, we will fail later when trying to actually 8307 * move these pages that still have a reference count > 0. 8308 * (false negatives in this function only) 8309 */ 8310 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8311 continue; 8312 8313 if (__PageMovable(page) || PageLRU(page)) 8314 continue; 8315 8316 /* 8317 * If there are RECLAIMABLE pages, we need to check 8318 * it. But now, memory offline itself doesn't call 8319 * shrink_node_slabs() and it still to be fixed. 8320 */ 8321 /* 8322 * If the page is not RAM, page_count()should be 0. 8323 * we don't need more check. This is an _used_ not-movable page. 8324 * 8325 * The problematic thing here is PG_reserved pages. PG_reserved 8326 * is set to both of a memory hole page and a _used_ kernel 8327 * page at boot. 8328 */ 8329 return page; 8330 } 8331 return NULL; 8332 } 8333 8334 #ifdef CONFIG_CONTIG_ALLOC 8335 static unsigned long pfn_max_align_down(unsigned long pfn) 8336 { 8337 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8338 pageblock_nr_pages) - 1); 8339 } 8340 8341 static unsigned long pfn_max_align_up(unsigned long pfn) 8342 { 8343 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8344 pageblock_nr_pages)); 8345 } 8346 8347 /* [start, end) must belong to a single zone. */ 8348 static int __alloc_contig_migrate_range(struct compact_control *cc, 8349 unsigned long start, unsigned long end) 8350 { 8351 /* This function is based on compact_zone() from compaction.c. */ 8352 unsigned int nr_reclaimed; 8353 unsigned long pfn = start; 8354 unsigned int tries = 0; 8355 int ret = 0; 8356 struct migration_target_control mtc = { 8357 .nid = zone_to_nid(cc->zone), 8358 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8359 }; 8360 8361 migrate_prep(); 8362 8363 while (pfn < end || !list_empty(&cc->migratepages)) { 8364 if (fatal_signal_pending(current)) { 8365 ret = -EINTR; 8366 break; 8367 } 8368 8369 if (list_empty(&cc->migratepages)) { 8370 cc->nr_migratepages = 0; 8371 pfn = isolate_migratepages_range(cc, pfn, end); 8372 if (!pfn) { 8373 ret = -EINTR; 8374 break; 8375 } 8376 tries = 0; 8377 } else if (++tries == 5) { 8378 ret = ret < 0 ? ret : -EBUSY; 8379 break; 8380 } 8381 8382 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8383 &cc->migratepages); 8384 cc->nr_migratepages -= nr_reclaimed; 8385 8386 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8387 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8388 } 8389 if (ret < 0) { 8390 putback_movable_pages(&cc->migratepages); 8391 return ret; 8392 } 8393 return 0; 8394 } 8395 8396 /** 8397 * alloc_contig_range() -- tries to allocate given range of pages 8398 * @start: start PFN to allocate 8399 * @end: one-past-the-last PFN to allocate 8400 * @migratetype: migratetype of the underlaying pageblocks (either 8401 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8402 * in range must have the same migratetype and it must 8403 * be either of the two. 8404 * @gfp_mask: GFP mask to use during compaction 8405 * 8406 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8407 * aligned. The PFN range must belong to a single zone. 8408 * 8409 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8410 * pageblocks in the range. Once isolated, the pageblocks should not 8411 * be modified by others. 8412 * 8413 * Return: zero on success or negative error code. On success all 8414 * pages which PFN is in [start, end) are allocated for the caller and 8415 * need to be freed with free_contig_range(). 8416 */ 8417 int alloc_contig_range(unsigned long start, unsigned long end, 8418 unsigned migratetype, gfp_t gfp_mask) 8419 { 8420 unsigned long outer_start, outer_end; 8421 unsigned int order; 8422 int ret = 0; 8423 8424 struct compact_control cc = { 8425 .nr_migratepages = 0, 8426 .order = -1, 8427 .zone = page_zone(pfn_to_page(start)), 8428 .mode = MIGRATE_SYNC, 8429 .ignore_skip_hint = true, 8430 .no_set_skip_hint = true, 8431 .gfp_mask = current_gfp_context(gfp_mask), 8432 .alloc_contig = true, 8433 }; 8434 INIT_LIST_HEAD(&cc.migratepages); 8435 8436 /* 8437 * What we do here is we mark all pageblocks in range as 8438 * MIGRATE_ISOLATE. Because pageblock and max order pages may 8439 * have different sizes, and due to the way page allocator 8440 * work, we align the range to biggest of the two pages so 8441 * that page allocator won't try to merge buddies from 8442 * different pageblocks and change MIGRATE_ISOLATE to some 8443 * other migration type. 8444 * 8445 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 8446 * migrate the pages from an unaligned range (ie. pages that 8447 * we are interested in). This will put all the pages in 8448 * range back to page allocator as MIGRATE_ISOLATE. 8449 * 8450 * When this is done, we take the pages in range from page 8451 * allocator removing them from the buddy system. This way 8452 * page allocator will never consider using them. 8453 * 8454 * This lets us mark the pageblocks back as 8455 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 8456 * aligned range but not in the unaligned, original range are 8457 * put back to page allocator so that buddy can use them. 8458 */ 8459 8460 ret = start_isolate_page_range(pfn_max_align_down(start), 8461 pfn_max_align_up(end), migratetype, 0); 8462 if (ret < 0) 8463 return ret; 8464 8465 /* 8466 * In case of -EBUSY, we'd like to know which page causes problem. 8467 * So, just fall through. test_pages_isolated() has a tracepoint 8468 * which will report the busy page. 8469 * 8470 * It is possible that busy pages could become available before 8471 * the call to test_pages_isolated, and the range will actually be 8472 * allocated. So, if we fall through be sure to clear ret so that 8473 * -EBUSY is not accidentally used or returned to caller. 8474 */ 8475 ret = __alloc_contig_migrate_range(&cc, start, end); 8476 if (ret && ret != -EBUSY) 8477 goto done; 8478 ret =0; 8479 8480 /* 8481 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 8482 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 8483 * more, all pages in [start, end) are free in page allocator. 8484 * What we are going to do is to allocate all pages from 8485 * [start, end) (that is remove them from page allocator). 8486 * 8487 * The only problem is that pages at the beginning and at the 8488 * end of interesting range may be not aligned with pages that 8489 * page allocator holds, ie. they can be part of higher order 8490 * pages. Because of this, we reserve the bigger range and 8491 * once this is done free the pages we are not interested in. 8492 * 8493 * We don't have to hold zone->lock here because the pages are 8494 * isolated thus they won't get removed from buddy. 8495 */ 8496 8497 lru_add_drain_all(); 8498 8499 order = 0; 8500 outer_start = start; 8501 while (!PageBuddy(pfn_to_page(outer_start))) { 8502 if (++order >= MAX_ORDER) { 8503 outer_start = start; 8504 break; 8505 } 8506 outer_start &= ~0UL << order; 8507 } 8508 8509 if (outer_start != start) { 8510 order = page_order(pfn_to_page(outer_start)); 8511 8512 /* 8513 * outer_start page could be small order buddy page and 8514 * it doesn't include start page. Adjust outer_start 8515 * in this case to report failed page properly 8516 * on tracepoint in test_pages_isolated() 8517 */ 8518 if (outer_start + (1UL << order) <= start) 8519 outer_start = start; 8520 } 8521 8522 /* Make sure the range is really isolated. */ 8523 if (test_pages_isolated(outer_start, end, 0)) { 8524 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n", 8525 __func__, outer_start, end); 8526 ret = -EBUSY; 8527 goto done; 8528 } 8529 8530 /* Grab isolated pages from freelists. */ 8531 outer_end = isolate_freepages_range(&cc, outer_start, end); 8532 if (!outer_end) { 8533 ret = -EBUSY; 8534 goto done; 8535 } 8536 8537 /* Free head and tail (if any) */ 8538 if (start != outer_start) 8539 free_contig_range(outer_start, start - outer_start); 8540 if (end != outer_end) 8541 free_contig_range(end, outer_end - end); 8542 8543 done: 8544 undo_isolate_page_range(pfn_max_align_down(start), 8545 pfn_max_align_up(end), migratetype); 8546 return ret; 8547 } 8548 EXPORT_SYMBOL(alloc_contig_range); 8549 8550 static int __alloc_contig_pages(unsigned long start_pfn, 8551 unsigned long nr_pages, gfp_t gfp_mask) 8552 { 8553 unsigned long end_pfn = start_pfn + nr_pages; 8554 8555 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 8556 gfp_mask); 8557 } 8558 8559 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 8560 unsigned long nr_pages) 8561 { 8562 unsigned long i, end_pfn = start_pfn + nr_pages; 8563 struct page *page; 8564 8565 for (i = start_pfn; i < end_pfn; i++) { 8566 page = pfn_to_online_page(i); 8567 if (!page) 8568 return false; 8569 8570 if (page_zone(page) != z) 8571 return false; 8572 8573 if (PageReserved(page)) 8574 return false; 8575 8576 if (page_count(page) > 0) 8577 return false; 8578 8579 if (PageHuge(page)) 8580 return false; 8581 } 8582 return true; 8583 } 8584 8585 static bool zone_spans_last_pfn(const struct zone *zone, 8586 unsigned long start_pfn, unsigned long nr_pages) 8587 { 8588 unsigned long last_pfn = start_pfn + nr_pages - 1; 8589 8590 return zone_spans_pfn(zone, last_pfn); 8591 } 8592 8593 /** 8594 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 8595 * @nr_pages: Number of contiguous pages to allocate 8596 * @gfp_mask: GFP mask to limit search and used during compaction 8597 * @nid: Target node 8598 * @nodemask: Mask for other possible nodes 8599 * 8600 * This routine is a wrapper around alloc_contig_range(). It scans over zones 8601 * on an applicable zonelist to find a contiguous pfn range which can then be 8602 * tried for allocation with alloc_contig_range(). This routine is intended 8603 * for allocation requests which can not be fulfilled with the buddy allocator. 8604 * 8605 * The allocated memory is always aligned to a page boundary. If nr_pages is a 8606 * power of two then the alignment is guaranteed to be to the given nr_pages 8607 * (e.g. 1GB request would be aligned to 1GB). 8608 * 8609 * Allocated pages can be freed with free_contig_range() or by manually calling 8610 * __free_page() on each allocated page. 8611 * 8612 * Return: pointer to contiguous pages on success, or NULL if not successful. 8613 */ 8614 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 8615 int nid, nodemask_t *nodemask) 8616 { 8617 unsigned long ret, pfn, flags; 8618 struct zonelist *zonelist; 8619 struct zone *zone; 8620 struct zoneref *z; 8621 8622 zonelist = node_zonelist(nid, gfp_mask); 8623 for_each_zone_zonelist_nodemask(zone, z, zonelist, 8624 gfp_zone(gfp_mask), nodemask) { 8625 spin_lock_irqsave(&zone->lock, flags); 8626 8627 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 8628 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 8629 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 8630 /* 8631 * We release the zone lock here because 8632 * alloc_contig_range() will also lock the zone 8633 * at some point. If there's an allocation 8634 * spinning on this lock, it may win the race 8635 * and cause alloc_contig_range() to fail... 8636 */ 8637 spin_unlock_irqrestore(&zone->lock, flags); 8638 ret = __alloc_contig_pages(pfn, nr_pages, 8639 gfp_mask); 8640 if (!ret) 8641 return pfn_to_page(pfn); 8642 spin_lock_irqsave(&zone->lock, flags); 8643 } 8644 pfn += nr_pages; 8645 } 8646 spin_unlock_irqrestore(&zone->lock, flags); 8647 } 8648 return NULL; 8649 } 8650 #endif /* CONFIG_CONTIG_ALLOC */ 8651 8652 void free_contig_range(unsigned long pfn, unsigned int nr_pages) 8653 { 8654 unsigned int count = 0; 8655 8656 for (; nr_pages--; pfn++) { 8657 struct page *page = pfn_to_page(pfn); 8658 8659 count += page_count(page) != 1; 8660 __free_page(page); 8661 } 8662 WARN(count != 0, "%d pages are still in use!\n", count); 8663 } 8664 EXPORT_SYMBOL(free_contig_range); 8665 8666 /* 8667 * The zone indicated has a new number of managed_pages; batch sizes and percpu 8668 * page high values need to be recalulated. 8669 */ 8670 void __meminit zone_pcp_update(struct zone *zone) 8671 { 8672 mutex_lock(&pcp_batch_high_lock); 8673 __zone_pcp_update(zone); 8674 mutex_unlock(&pcp_batch_high_lock); 8675 } 8676 8677 void zone_pcp_reset(struct zone *zone) 8678 { 8679 unsigned long flags; 8680 int cpu; 8681 struct per_cpu_pageset *pset; 8682 8683 /* avoid races with drain_pages() */ 8684 local_irq_save(flags); 8685 if (zone->pageset != &boot_pageset) { 8686 for_each_online_cpu(cpu) { 8687 pset = per_cpu_ptr(zone->pageset, cpu); 8688 drain_zonestat(zone, pset); 8689 } 8690 free_percpu(zone->pageset); 8691 zone->pageset = &boot_pageset; 8692 } 8693 local_irq_restore(flags); 8694 } 8695 8696 #ifdef CONFIG_MEMORY_HOTREMOVE 8697 /* 8698 * All pages in the range must be in a single zone and isolated 8699 * before calling this. 8700 */ 8701 unsigned long 8702 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 8703 { 8704 struct page *page; 8705 struct zone *zone; 8706 unsigned int order; 8707 unsigned long pfn; 8708 unsigned long flags; 8709 unsigned long offlined_pages = 0; 8710 8711 /* find the first valid pfn */ 8712 for (pfn = start_pfn; pfn < end_pfn; pfn++) 8713 if (pfn_valid(pfn)) 8714 break; 8715 if (pfn == end_pfn) 8716 return offlined_pages; 8717 8718 offline_mem_sections(pfn, end_pfn); 8719 zone = page_zone(pfn_to_page(pfn)); 8720 spin_lock_irqsave(&zone->lock, flags); 8721 pfn = start_pfn; 8722 while (pfn < end_pfn) { 8723 if (!pfn_valid(pfn)) { 8724 pfn++; 8725 continue; 8726 } 8727 page = pfn_to_page(pfn); 8728 /* 8729 * The HWPoisoned page may be not in buddy system, and 8730 * page_count() is not 0. 8731 */ 8732 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 8733 pfn++; 8734 offlined_pages++; 8735 continue; 8736 } 8737 /* 8738 * At this point all remaining PageOffline() pages have a 8739 * reference count of 0 and can simply be skipped. 8740 */ 8741 if (PageOffline(page)) { 8742 BUG_ON(page_count(page)); 8743 BUG_ON(PageBuddy(page)); 8744 pfn++; 8745 offlined_pages++; 8746 continue; 8747 } 8748 8749 BUG_ON(page_count(page)); 8750 BUG_ON(!PageBuddy(page)); 8751 order = page_order(page); 8752 offlined_pages += 1 << order; 8753 del_page_from_free_list(page, zone, order); 8754 pfn += (1 << order); 8755 } 8756 spin_unlock_irqrestore(&zone->lock, flags); 8757 8758 return offlined_pages; 8759 } 8760 #endif 8761 8762 bool is_free_buddy_page(struct page *page) 8763 { 8764 struct zone *zone = page_zone(page); 8765 unsigned long pfn = page_to_pfn(page); 8766 unsigned long flags; 8767 unsigned int order; 8768 8769 spin_lock_irqsave(&zone->lock, flags); 8770 for (order = 0; order < MAX_ORDER; order++) { 8771 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8772 8773 if (PageBuddy(page_head) && page_order(page_head) >= order) 8774 break; 8775 } 8776 spin_unlock_irqrestore(&zone->lock, flags); 8777 8778 return order < MAX_ORDER; 8779 } 8780 8781 #ifdef CONFIG_MEMORY_FAILURE 8782 /* 8783 * Set PG_hwpoison flag if a given page is confirmed to be a free page. This 8784 * test is performed under the zone lock to prevent a race against page 8785 * allocation. 8786 */ 8787 bool set_hwpoison_free_buddy_page(struct page *page) 8788 { 8789 struct zone *zone = page_zone(page); 8790 unsigned long pfn = page_to_pfn(page); 8791 unsigned long flags; 8792 unsigned int order; 8793 bool hwpoisoned = false; 8794 8795 spin_lock_irqsave(&zone->lock, flags); 8796 for (order = 0; order < MAX_ORDER; order++) { 8797 struct page *page_head = page - (pfn & ((1 << order) - 1)); 8798 8799 if (PageBuddy(page_head) && page_order(page_head) >= order) { 8800 if (!TestSetPageHWPoison(page)) 8801 hwpoisoned = true; 8802 break; 8803 } 8804 } 8805 spin_unlock_irqrestore(&zone->lock, flags); 8806 8807 return hwpoisoned; 8808 } 8809 #endif 8810