1 /* 2 * linux/mm/page_alloc.c 3 * 4 * Manages the free list, the system allocates free pages here. 5 * Note that kmalloc() lives in slab.c 6 * 7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 8 * Swap reorganised 29.12.95, Stephen Tweedie 9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 15 */ 16 17 #include <linux/stddef.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/interrupt.h> 21 #include <linux/pagemap.h> 22 #include <linux/jiffies.h> 23 #include <linux/bootmem.h> 24 #include <linux/memblock.h> 25 #include <linux/compiler.h> 26 #include <linux/kernel.h> 27 #include <linux/kmemcheck.h> 28 #include <linux/module.h> 29 #include <linux/suspend.h> 30 #include <linux/pagevec.h> 31 #include <linux/blkdev.h> 32 #include <linux/slab.h> 33 #include <linux/ratelimit.h> 34 #include <linux/oom.h> 35 #include <linux/notifier.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/stop_machine.h> 46 #include <linux/sort.h> 47 #include <linux/pfn.h> 48 #include <linux/backing-dev.h> 49 #include <linux/fault-inject.h> 50 #include <linux/page-isolation.h> 51 #include <linux/page_cgroup.h> 52 #include <linux/debugobjects.h> 53 #include <linux/kmemleak.h> 54 #include <linux/compaction.h> 55 #include <trace/events/kmem.h> 56 #include <linux/ftrace_event.h> 57 #include <linux/memcontrol.h> 58 #include <linux/prefetch.h> 59 #include <linux/migrate.h> 60 #include <linux/page-debug-flags.h> 61 62 #include <asm/tlbflush.h> 63 #include <asm/div64.h> 64 #include "internal.h" 65 66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 67 DEFINE_PER_CPU(int, numa_node); 68 EXPORT_PER_CPU_SYMBOL(numa_node); 69 #endif 70 71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 72 /* 73 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 74 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 75 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 76 * defined in <linux/topology.h>. 77 */ 78 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 79 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 80 #endif 81 82 /* 83 * Array of node states. 84 */ 85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 86 [N_POSSIBLE] = NODE_MASK_ALL, 87 [N_ONLINE] = { { [0] = 1UL } }, 88 #ifndef CONFIG_NUMA 89 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 90 #ifdef CONFIG_HIGHMEM 91 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 92 #endif 93 [N_CPU] = { { [0] = 1UL } }, 94 #endif /* NUMA */ 95 }; 96 EXPORT_SYMBOL(node_states); 97 98 unsigned long totalram_pages __read_mostly; 99 unsigned long totalreserve_pages __read_mostly; 100 /* 101 * When calculating the number of globally allowed dirty pages, there 102 * is a certain number of per-zone reserves that should not be 103 * considered dirtyable memory. This is the sum of those reserves 104 * over all existing zones that contribute dirtyable memory. 105 */ 106 unsigned long dirty_balance_reserve __read_mostly; 107 108 int percpu_pagelist_fraction; 109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 110 111 #ifdef CONFIG_PM_SLEEP 112 /* 113 * The following functions are used by the suspend/hibernate code to temporarily 114 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 115 * while devices are suspended. To avoid races with the suspend/hibernate code, 116 * they should always be called with pm_mutex held (gfp_allowed_mask also should 117 * only be modified with pm_mutex held, unless the suspend/hibernate code is 118 * guaranteed not to run in parallel with that modification). 119 */ 120 121 static gfp_t saved_gfp_mask; 122 123 void pm_restore_gfp_mask(void) 124 { 125 WARN_ON(!mutex_is_locked(&pm_mutex)); 126 if (saved_gfp_mask) { 127 gfp_allowed_mask = saved_gfp_mask; 128 saved_gfp_mask = 0; 129 } 130 } 131 132 void pm_restrict_gfp_mask(void) 133 { 134 WARN_ON(!mutex_is_locked(&pm_mutex)); 135 WARN_ON(saved_gfp_mask); 136 saved_gfp_mask = gfp_allowed_mask; 137 gfp_allowed_mask &= ~GFP_IOFS; 138 } 139 140 bool pm_suspended_storage(void) 141 { 142 if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS) 143 return false; 144 return true; 145 } 146 #endif /* CONFIG_PM_SLEEP */ 147 148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 149 int pageblock_order __read_mostly; 150 #endif 151 152 static void __free_pages_ok(struct page *page, unsigned int order); 153 154 /* 155 * results with 256, 32 in the lowmem_reserve sysctl: 156 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 157 * 1G machine -> (16M dma, 784M normal, 224M high) 158 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 159 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 160 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA 161 * 162 * TBD: should special case ZONE_DMA32 machines here - in those we normally 163 * don't need any ZONE_NORMAL reservation 164 */ 165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = { 166 #ifdef CONFIG_ZONE_DMA 167 256, 168 #endif 169 #ifdef CONFIG_ZONE_DMA32 170 256, 171 #endif 172 #ifdef CONFIG_HIGHMEM 173 32, 174 #endif 175 32, 176 }; 177 178 EXPORT_SYMBOL(totalram_pages); 179 180 static char * const zone_names[MAX_NR_ZONES] = { 181 #ifdef CONFIG_ZONE_DMA 182 "DMA", 183 #endif 184 #ifdef CONFIG_ZONE_DMA32 185 "DMA32", 186 #endif 187 "Normal", 188 #ifdef CONFIG_HIGHMEM 189 "HighMem", 190 #endif 191 "Movable", 192 }; 193 194 int min_free_kbytes = 1024; 195 196 static unsigned long __meminitdata nr_kernel_pages; 197 static unsigned long __meminitdata nr_all_pages; 198 static unsigned long __meminitdata dma_reserve; 199 200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES]; 202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES]; 203 static unsigned long __initdata required_kernelcore; 204 static unsigned long __initdata required_movablecore; 205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES]; 206 207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 208 int movable_zone; 209 EXPORT_SYMBOL(movable_zone); 210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 211 212 #if MAX_NUMNODES > 1 213 int nr_node_ids __read_mostly = MAX_NUMNODES; 214 int nr_online_nodes __read_mostly = 1; 215 EXPORT_SYMBOL(nr_node_ids); 216 EXPORT_SYMBOL(nr_online_nodes); 217 #endif 218 219 int page_group_by_mobility_disabled __read_mostly; 220 221 /* 222 * NOTE: 223 * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly. 224 * Instead, use {un}set_pageblock_isolate. 225 */ 226 void set_pageblock_migratetype(struct page *page, int migratetype) 227 { 228 229 if (unlikely(page_group_by_mobility_disabled)) 230 migratetype = MIGRATE_UNMOVABLE; 231 232 set_pageblock_flags_group(page, (unsigned long)migratetype, 233 PB_migrate, PB_migrate_end); 234 } 235 236 bool oom_killer_disabled __read_mostly; 237 238 #ifdef CONFIG_DEBUG_VM 239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 240 { 241 int ret = 0; 242 unsigned seq; 243 unsigned long pfn = page_to_pfn(page); 244 245 do { 246 seq = zone_span_seqbegin(zone); 247 if (pfn >= zone->zone_start_pfn + zone->spanned_pages) 248 ret = 1; 249 else if (pfn < zone->zone_start_pfn) 250 ret = 1; 251 } while (zone_span_seqretry(zone, seq)); 252 253 return ret; 254 } 255 256 static int page_is_consistent(struct zone *zone, struct page *page) 257 { 258 if (!pfn_valid_within(page_to_pfn(page))) 259 return 0; 260 if (zone != page_zone(page)) 261 return 0; 262 263 return 1; 264 } 265 /* 266 * Temporary debugging check for pages not lying within a given zone. 267 */ 268 static int bad_range(struct zone *zone, struct page *page) 269 { 270 if (page_outside_zone_boundaries(zone, page)) 271 return 1; 272 if (!page_is_consistent(zone, page)) 273 return 1; 274 275 return 0; 276 } 277 #else 278 static inline int bad_range(struct zone *zone, struct page *page) 279 { 280 return 0; 281 } 282 #endif 283 284 static void bad_page(struct page *page) 285 { 286 static unsigned long resume; 287 static unsigned long nr_shown; 288 static unsigned long nr_unshown; 289 290 /* Don't complain about poisoned pages */ 291 if (PageHWPoison(page)) { 292 reset_page_mapcount(page); /* remove PageBuddy */ 293 return; 294 } 295 296 /* 297 * Allow a burst of 60 reports, then keep quiet for that minute; 298 * or allow a steady drip of one report per second. 299 */ 300 if (nr_shown == 60) { 301 if (time_before(jiffies, resume)) { 302 nr_unshown++; 303 goto out; 304 } 305 if (nr_unshown) { 306 printk(KERN_ALERT 307 "BUG: Bad page state: %lu messages suppressed\n", 308 nr_unshown); 309 nr_unshown = 0; 310 } 311 nr_shown = 0; 312 } 313 if (nr_shown++ == 0) 314 resume = jiffies + 60 * HZ; 315 316 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n", 317 current->comm, page_to_pfn(page)); 318 dump_page(page); 319 320 print_modules(); 321 dump_stack(); 322 out: 323 /* Leave bad fields for debug, except PageBuddy could make trouble */ 324 reset_page_mapcount(page); /* remove PageBuddy */ 325 add_taint(TAINT_BAD_PAGE); 326 } 327 328 /* 329 * Higher-order pages are called "compound pages". They are structured thusly: 330 * 331 * The first PAGE_SIZE page is called the "head page". 332 * 333 * The remaining PAGE_SIZE pages are called "tail pages". 334 * 335 * All pages have PG_compound set. All tail pages have their ->first_page 336 * pointing at the head page. 337 * 338 * The first tail page's ->lru.next holds the address of the compound page's 339 * put_page() function. Its ->lru.prev holds the order of allocation. 340 * This usage means that zero-order pages may not be compound. 341 */ 342 343 static void free_compound_page(struct page *page) 344 { 345 __free_pages_ok(page, compound_order(page)); 346 } 347 348 void prep_compound_page(struct page *page, unsigned long order) 349 { 350 int i; 351 int nr_pages = 1 << order; 352 353 set_compound_page_dtor(page, free_compound_page); 354 set_compound_order(page, order); 355 __SetPageHead(page); 356 for (i = 1; i < nr_pages; i++) { 357 struct page *p = page + i; 358 __SetPageTail(p); 359 set_page_count(p, 0); 360 p->first_page = page; 361 } 362 } 363 364 /* update __split_huge_page_refcount if you change this function */ 365 static int destroy_compound_page(struct page *page, unsigned long order) 366 { 367 int i; 368 int nr_pages = 1 << order; 369 int bad = 0; 370 371 if (unlikely(compound_order(page) != order) || 372 unlikely(!PageHead(page))) { 373 bad_page(page); 374 bad++; 375 } 376 377 __ClearPageHead(page); 378 379 for (i = 1; i < nr_pages; i++) { 380 struct page *p = page + i; 381 382 if (unlikely(!PageTail(p) || (p->first_page != page))) { 383 bad_page(page); 384 bad++; 385 } 386 __ClearPageTail(p); 387 } 388 389 return bad; 390 } 391 392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags) 393 { 394 int i; 395 396 /* 397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO 398 * and __GFP_HIGHMEM from hard or soft interrupt context. 399 */ 400 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt()); 401 for (i = 0; i < (1 << order); i++) 402 clear_highpage(page + i); 403 } 404 405 #ifdef CONFIG_DEBUG_PAGEALLOC 406 unsigned int _debug_guardpage_minorder; 407 408 static int __init debug_guardpage_minorder_setup(char *buf) 409 { 410 unsigned long res; 411 412 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 413 printk(KERN_ERR "Bad debug_guardpage_minorder value\n"); 414 return 0; 415 } 416 _debug_guardpage_minorder = res; 417 printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res); 418 return 0; 419 } 420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup); 421 422 static inline void set_page_guard_flag(struct page *page) 423 { 424 __set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 425 } 426 427 static inline void clear_page_guard_flag(struct page *page) 428 { 429 __clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags); 430 } 431 #else 432 static inline void set_page_guard_flag(struct page *page) { } 433 static inline void clear_page_guard_flag(struct page *page) { } 434 #endif 435 436 static inline void set_page_order(struct page *page, int order) 437 { 438 set_page_private(page, order); 439 __SetPageBuddy(page); 440 } 441 442 static inline void rmv_page_order(struct page *page) 443 { 444 __ClearPageBuddy(page); 445 set_page_private(page, 0); 446 } 447 448 /* 449 * Locate the struct page for both the matching buddy in our 450 * pair (buddy1) and the combined O(n+1) page they form (page). 451 * 452 * 1) Any buddy B1 will have an order O twin B2 which satisfies 453 * the following equation: 454 * B2 = B1 ^ (1 << O) 455 * For example, if the starting buddy (buddy2) is #8 its order 456 * 1 buddy is #10: 457 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10 458 * 459 * 2) Any buddy B will have an order O+1 parent P which 460 * satisfies the following equation: 461 * P = B & ~(1 << O) 462 * 463 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER 464 */ 465 static inline unsigned long 466 __find_buddy_index(unsigned long page_idx, unsigned int order) 467 { 468 return page_idx ^ (1 << order); 469 } 470 471 /* 472 * This function checks whether a page is free && is the buddy 473 * we can do coalesce a page and its buddy if 474 * (a) the buddy is not in a hole && 475 * (b) the buddy is in the buddy system && 476 * (c) a page and its buddy have the same order && 477 * (d) a page and its buddy are in the same zone. 478 * 479 * For recording whether a page is in the buddy system, we set ->_mapcount -2. 480 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock. 481 * 482 * For recording page's order, we use page_private(page). 483 */ 484 static inline int page_is_buddy(struct page *page, struct page *buddy, 485 int order) 486 { 487 if (!pfn_valid_within(page_to_pfn(buddy))) 488 return 0; 489 490 if (page_zone_id(page) != page_zone_id(buddy)) 491 return 0; 492 493 if (page_is_guard(buddy) && page_order(buddy) == order) { 494 VM_BUG_ON(page_count(buddy) != 0); 495 return 1; 496 } 497 498 if (PageBuddy(buddy) && page_order(buddy) == order) { 499 VM_BUG_ON(page_count(buddy) != 0); 500 return 1; 501 } 502 return 0; 503 } 504 505 /* 506 * Freeing function for a buddy system allocator. 507 * 508 * The concept of a buddy system is to maintain direct-mapped table 509 * (containing bit values) for memory blocks of various "orders". 510 * The bottom level table contains the map for the smallest allocatable 511 * units of memory (here, pages), and each level above it describes 512 * pairs of units from the levels below, hence, "buddies". 513 * At a high level, all that happens here is marking the table entry 514 * at the bottom level available, and propagating the changes upward 515 * as necessary, plus some accounting needed to play nicely with other 516 * parts of the VM system. 517 * At each level, we keep a list of pages, which are heads of continuous 518 * free pages of length of (1 << order) and marked with _mapcount -2. Page's 519 * order is recorded in page_private(page) field. 520 * So when we are allocating or freeing one, we can derive the state of the 521 * other. That is, if we allocate a small block, and both were 522 * free, the remainder of the region must be split into blocks. 523 * If a block is freed, and its buddy is also free, then this 524 * triggers coalescing into a block of larger size. 525 * 526 * -- wli 527 */ 528 529 static inline void __free_one_page(struct page *page, 530 struct zone *zone, unsigned int order, 531 int migratetype) 532 { 533 unsigned long page_idx; 534 unsigned long combined_idx; 535 unsigned long uninitialized_var(buddy_idx); 536 struct page *buddy; 537 538 if (unlikely(PageCompound(page))) 539 if (unlikely(destroy_compound_page(page, order))) 540 return; 541 542 VM_BUG_ON(migratetype == -1); 543 544 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1); 545 546 VM_BUG_ON(page_idx & ((1 << order) - 1)); 547 VM_BUG_ON(bad_range(zone, page)); 548 549 while (order < MAX_ORDER-1) { 550 buddy_idx = __find_buddy_index(page_idx, order); 551 buddy = page + (buddy_idx - page_idx); 552 if (!page_is_buddy(page, buddy, order)) 553 break; 554 /* 555 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 556 * merge with it and move up one order. 557 */ 558 if (page_is_guard(buddy)) { 559 clear_page_guard_flag(buddy); 560 set_page_private(page, 0); 561 __mod_zone_freepage_state(zone, 1 << order, 562 migratetype); 563 } else { 564 list_del(&buddy->lru); 565 zone->free_area[order].nr_free--; 566 rmv_page_order(buddy); 567 } 568 combined_idx = buddy_idx & page_idx; 569 page = page + (combined_idx - page_idx); 570 page_idx = combined_idx; 571 order++; 572 } 573 set_page_order(page, order); 574 575 /* 576 * If this is not the largest possible page, check if the buddy 577 * of the next-highest order is free. If it is, it's possible 578 * that pages are being freed that will coalesce soon. In case, 579 * that is happening, add the free page to the tail of the list 580 * so it's less likely to be used soon and more likely to be merged 581 * as a higher order page 582 */ 583 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) { 584 struct page *higher_page, *higher_buddy; 585 combined_idx = buddy_idx & page_idx; 586 higher_page = page + (combined_idx - page_idx); 587 buddy_idx = __find_buddy_index(combined_idx, order + 1); 588 higher_buddy = higher_page + (buddy_idx - combined_idx); 589 if (page_is_buddy(higher_page, higher_buddy, order + 1)) { 590 list_add_tail(&page->lru, 591 &zone->free_area[order].free_list[migratetype]); 592 goto out; 593 } 594 } 595 596 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]); 597 out: 598 zone->free_area[order].nr_free++; 599 } 600 601 static inline int free_pages_check(struct page *page) 602 { 603 if (unlikely(page_mapcount(page) | 604 (page->mapping != NULL) | 605 (atomic_read(&page->_count) != 0) | 606 (page->flags & PAGE_FLAGS_CHECK_AT_FREE) | 607 (mem_cgroup_bad_page_check(page)))) { 608 bad_page(page); 609 return 1; 610 } 611 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP) 612 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 613 return 0; 614 } 615 616 /* 617 * Frees a number of pages from the PCP lists 618 * Assumes all pages on list are in same zone, and of same order. 619 * count is the number of pages to free. 620 * 621 * If the zone was previously in an "all pages pinned" state then look to 622 * see if this freeing clears that state. 623 * 624 * And clear the zone's pages_scanned counter, to hold off the "all pages are 625 * pinned" detection logic. 626 */ 627 static void free_pcppages_bulk(struct zone *zone, int count, 628 struct per_cpu_pages *pcp) 629 { 630 int migratetype = 0; 631 int batch_free = 0; 632 int to_free = count; 633 634 spin_lock(&zone->lock); 635 zone->all_unreclaimable = 0; 636 zone->pages_scanned = 0; 637 638 while (to_free) { 639 struct page *page; 640 struct list_head *list; 641 642 /* 643 * Remove pages from lists in a round-robin fashion. A 644 * batch_free count is maintained that is incremented when an 645 * empty list is encountered. This is so more pages are freed 646 * off fuller lists instead of spinning excessively around empty 647 * lists 648 */ 649 do { 650 batch_free++; 651 if (++migratetype == MIGRATE_PCPTYPES) 652 migratetype = 0; 653 list = &pcp->lists[migratetype]; 654 } while (list_empty(list)); 655 656 /* This is the only non-empty list. Free them all. */ 657 if (batch_free == MIGRATE_PCPTYPES) 658 batch_free = to_free; 659 660 do { 661 int mt; /* migratetype of the to-be-freed page */ 662 663 page = list_entry(list->prev, struct page, lru); 664 /* must delete as __free_one_page list manipulates */ 665 list_del(&page->lru); 666 mt = get_freepage_migratetype(page); 667 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */ 668 __free_one_page(page, zone, 0, mt); 669 trace_mm_page_pcpu_drain(page, 0, mt); 670 if (is_migrate_cma(mt)) 671 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1); 672 } while (--to_free && --batch_free && !list_empty(list)); 673 } 674 __mod_zone_page_state(zone, NR_FREE_PAGES, count); 675 spin_unlock(&zone->lock); 676 } 677 678 static void free_one_page(struct zone *zone, struct page *page, int order, 679 int migratetype) 680 { 681 spin_lock(&zone->lock); 682 zone->all_unreclaimable = 0; 683 zone->pages_scanned = 0; 684 685 __free_one_page(page, zone, order, migratetype); 686 if (unlikely(migratetype != MIGRATE_ISOLATE)) 687 __mod_zone_freepage_state(zone, 1 << order, migratetype); 688 spin_unlock(&zone->lock); 689 } 690 691 static bool free_pages_prepare(struct page *page, unsigned int order) 692 { 693 int i; 694 int bad = 0; 695 696 trace_mm_page_free(page, order); 697 kmemcheck_free_shadow(page, order); 698 699 if (PageAnon(page)) 700 page->mapping = NULL; 701 for (i = 0; i < (1 << order); i++) 702 bad += free_pages_check(page + i); 703 if (bad) 704 return false; 705 706 if (!PageHighMem(page)) { 707 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order); 708 debug_check_no_obj_freed(page_address(page), 709 PAGE_SIZE << order); 710 } 711 arch_free_page(page, order); 712 kernel_map_pages(page, 1 << order, 0); 713 714 return true; 715 } 716 717 static void __free_pages_ok(struct page *page, unsigned int order) 718 { 719 unsigned long flags; 720 int migratetype; 721 722 if (!free_pages_prepare(page, order)) 723 return; 724 725 local_irq_save(flags); 726 __count_vm_events(PGFREE, 1 << order); 727 migratetype = get_pageblock_migratetype(page); 728 set_freepage_migratetype(page, migratetype); 729 free_one_page(page_zone(page), page, order, migratetype); 730 local_irq_restore(flags); 731 } 732 733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order) 734 { 735 unsigned int nr_pages = 1 << order; 736 unsigned int loop; 737 738 prefetchw(page); 739 for (loop = 0; loop < nr_pages; loop++) { 740 struct page *p = &page[loop]; 741 742 if (loop + 1 < nr_pages) 743 prefetchw(p + 1); 744 __ClearPageReserved(p); 745 set_page_count(p, 0); 746 } 747 748 set_page_refcounted(page); 749 __free_pages(page, order); 750 } 751 752 #ifdef CONFIG_CMA 753 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */ 754 void __init init_cma_reserved_pageblock(struct page *page) 755 { 756 unsigned i = pageblock_nr_pages; 757 struct page *p = page; 758 759 do { 760 __ClearPageReserved(p); 761 set_page_count(p, 0); 762 } while (++p, --i); 763 764 set_page_refcounted(page); 765 set_pageblock_migratetype(page, MIGRATE_CMA); 766 __free_pages(page, pageblock_order); 767 totalram_pages += pageblock_nr_pages; 768 } 769 #endif 770 771 /* 772 * The order of subdivision here is critical for the IO subsystem. 773 * Please do not alter this order without good reasons and regression 774 * testing. Specifically, as large blocks of memory are subdivided, 775 * the order in which smaller blocks are delivered depends on the order 776 * they're subdivided in this function. This is the primary factor 777 * influencing the order in which pages are delivered to the IO 778 * subsystem according to empirical testing, and this is also justified 779 * by considering the behavior of a buddy system containing a single 780 * large block of memory acted on by a series of small allocations. 781 * This behavior is a critical factor in sglist merging's success. 782 * 783 * -- wli 784 */ 785 static inline void expand(struct zone *zone, struct page *page, 786 int low, int high, struct free_area *area, 787 int migratetype) 788 { 789 unsigned long size = 1 << high; 790 791 while (high > low) { 792 area--; 793 high--; 794 size >>= 1; 795 VM_BUG_ON(bad_range(zone, &page[size])); 796 797 #ifdef CONFIG_DEBUG_PAGEALLOC 798 if (high < debug_guardpage_minorder()) { 799 /* 800 * Mark as guard pages (or page), that will allow to 801 * merge back to allocator when buddy will be freed. 802 * Corresponding page table entries will not be touched, 803 * pages will stay not present in virtual address space 804 */ 805 INIT_LIST_HEAD(&page[size].lru); 806 set_page_guard_flag(&page[size]); 807 set_page_private(&page[size], high); 808 /* Guard pages are not available for any usage */ 809 __mod_zone_freepage_state(zone, -(1 << high), 810 migratetype); 811 continue; 812 } 813 #endif 814 list_add(&page[size].lru, &area->free_list[migratetype]); 815 area->nr_free++; 816 set_page_order(&page[size], high); 817 } 818 } 819 820 /* 821 * This page is about to be returned from the page allocator 822 */ 823 static inline int check_new_page(struct page *page) 824 { 825 if (unlikely(page_mapcount(page) | 826 (page->mapping != NULL) | 827 (atomic_read(&page->_count) != 0) | 828 (page->flags & PAGE_FLAGS_CHECK_AT_PREP) | 829 (mem_cgroup_bad_page_check(page)))) { 830 bad_page(page); 831 return 1; 832 } 833 return 0; 834 } 835 836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags) 837 { 838 int i; 839 840 for (i = 0; i < (1 << order); i++) { 841 struct page *p = page + i; 842 if (unlikely(check_new_page(p))) 843 return 1; 844 } 845 846 set_page_private(page, 0); 847 set_page_refcounted(page); 848 849 arch_alloc_page(page, order); 850 kernel_map_pages(page, 1 << order, 1); 851 852 if (gfp_flags & __GFP_ZERO) 853 prep_zero_page(page, order, gfp_flags); 854 855 if (order && (gfp_flags & __GFP_COMP)) 856 prep_compound_page(page, order); 857 858 return 0; 859 } 860 861 /* 862 * Go through the free lists for the given migratetype and remove 863 * the smallest available page from the freelists 864 */ 865 static inline 866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 867 int migratetype) 868 { 869 unsigned int current_order; 870 struct free_area * area; 871 struct page *page; 872 873 /* Find a page of the appropriate size in the preferred list */ 874 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 875 area = &(zone->free_area[current_order]); 876 if (list_empty(&area->free_list[migratetype])) 877 continue; 878 879 page = list_entry(area->free_list[migratetype].next, 880 struct page, lru); 881 list_del(&page->lru); 882 rmv_page_order(page); 883 area->nr_free--; 884 expand(zone, page, order, current_order, area, migratetype); 885 return page; 886 } 887 888 return NULL; 889 } 890 891 892 /* 893 * This array describes the order lists are fallen back to when 894 * the free lists for the desirable migrate type are depleted 895 */ 896 static int fallbacks[MIGRATE_TYPES][4] = { 897 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 898 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE }, 899 #ifdef CONFIG_CMA 900 [MIGRATE_MOVABLE] = { MIGRATE_CMA, MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 901 [MIGRATE_CMA] = { MIGRATE_RESERVE }, /* Never used */ 902 #else 903 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE }, 904 #endif 905 [MIGRATE_RESERVE] = { MIGRATE_RESERVE }, /* Never used */ 906 [MIGRATE_ISOLATE] = { MIGRATE_RESERVE }, /* Never used */ 907 }; 908 909 /* 910 * Move the free pages in a range to the free lists of the requested type. 911 * Note that start_page and end_pages are not aligned on a pageblock 912 * boundary. If alignment is required, use move_freepages_block() 913 */ 914 int move_freepages(struct zone *zone, 915 struct page *start_page, struct page *end_page, 916 int migratetype) 917 { 918 struct page *page; 919 unsigned long order; 920 int pages_moved = 0; 921 922 #ifndef CONFIG_HOLES_IN_ZONE 923 /* 924 * page_zone is not safe to call in this context when 925 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant 926 * anyway as we check zone boundaries in move_freepages_block(). 927 * Remove at a later date when no bug reports exist related to 928 * grouping pages by mobility 929 */ 930 BUG_ON(page_zone(start_page) != page_zone(end_page)); 931 #endif 932 933 for (page = start_page; page <= end_page;) { 934 /* Make sure we are not inadvertently changing nodes */ 935 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone)); 936 937 if (!pfn_valid_within(page_to_pfn(page))) { 938 page++; 939 continue; 940 } 941 942 if (!PageBuddy(page)) { 943 page++; 944 continue; 945 } 946 947 order = page_order(page); 948 list_move(&page->lru, 949 &zone->free_area[order].free_list[migratetype]); 950 set_freepage_migratetype(page, migratetype); 951 page += 1 << order; 952 pages_moved += 1 << order; 953 } 954 955 return pages_moved; 956 } 957 958 int move_freepages_block(struct zone *zone, struct page *page, 959 int migratetype) 960 { 961 unsigned long start_pfn, end_pfn; 962 struct page *start_page, *end_page; 963 964 start_pfn = page_to_pfn(page); 965 start_pfn = start_pfn & ~(pageblock_nr_pages-1); 966 start_page = pfn_to_page(start_pfn); 967 end_page = start_page + pageblock_nr_pages - 1; 968 end_pfn = start_pfn + pageblock_nr_pages - 1; 969 970 /* Do not cross zone boundaries */ 971 if (start_pfn < zone->zone_start_pfn) 972 start_page = page; 973 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages) 974 return 0; 975 976 return move_freepages(zone, start_page, end_page, migratetype); 977 } 978 979 static void change_pageblock_range(struct page *pageblock_page, 980 int start_order, int migratetype) 981 { 982 int nr_pageblocks = 1 << (start_order - pageblock_order); 983 984 while (nr_pageblocks--) { 985 set_pageblock_migratetype(pageblock_page, migratetype); 986 pageblock_page += pageblock_nr_pages; 987 } 988 } 989 990 /* Remove an element from the buddy allocator from the fallback list */ 991 static inline struct page * 992 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype) 993 { 994 struct free_area * area; 995 int current_order; 996 struct page *page; 997 int migratetype, i; 998 999 /* Find the largest possible block of pages in the other list */ 1000 for (current_order = MAX_ORDER-1; current_order >= order; 1001 --current_order) { 1002 for (i = 0;; i++) { 1003 migratetype = fallbacks[start_migratetype][i]; 1004 1005 /* MIGRATE_RESERVE handled later if necessary */ 1006 if (migratetype == MIGRATE_RESERVE) 1007 break; 1008 1009 area = &(zone->free_area[current_order]); 1010 if (list_empty(&area->free_list[migratetype])) 1011 continue; 1012 1013 page = list_entry(area->free_list[migratetype].next, 1014 struct page, lru); 1015 area->nr_free--; 1016 1017 /* 1018 * If breaking a large block of pages, move all free 1019 * pages to the preferred allocation list. If falling 1020 * back for a reclaimable kernel allocation, be more 1021 * aggressive about taking ownership of free pages 1022 * 1023 * On the other hand, never change migration 1024 * type of MIGRATE_CMA pageblocks nor move CMA 1025 * pages on different free lists. We don't 1026 * want unmovable pages to be allocated from 1027 * MIGRATE_CMA areas. 1028 */ 1029 if (!is_migrate_cma(migratetype) && 1030 (unlikely(current_order >= pageblock_order / 2) || 1031 start_migratetype == MIGRATE_RECLAIMABLE || 1032 page_group_by_mobility_disabled)) { 1033 int pages; 1034 pages = move_freepages_block(zone, page, 1035 start_migratetype); 1036 1037 /* Claim the whole block if over half of it is free */ 1038 if (pages >= (1 << (pageblock_order-1)) || 1039 page_group_by_mobility_disabled) 1040 set_pageblock_migratetype(page, 1041 start_migratetype); 1042 1043 migratetype = start_migratetype; 1044 } 1045 1046 /* Remove the page from the freelists */ 1047 list_del(&page->lru); 1048 rmv_page_order(page); 1049 1050 /* Take ownership for orders >= pageblock_order */ 1051 if (current_order >= pageblock_order && 1052 !is_migrate_cma(migratetype)) 1053 change_pageblock_range(page, current_order, 1054 start_migratetype); 1055 1056 expand(zone, page, order, current_order, area, 1057 is_migrate_cma(migratetype) 1058 ? migratetype : start_migratetype); 1059 1060 trace_mm_page_alloc_extfrag(page, order, current_order, 1061 start_migratetype, migratetype); 1062 1063 return page; 1064 } 1065 } 1066 1067 return NULL; 1068 } 1069 1070 /* 1071 * Do the hard work of removing an element from the buddy allocator. 1072 * Call me with the zone->lock already held. 1073 */ 1074 static struct page *__rmqueue(struct zone *zone, unsigned int order, 1075 int migratetype) 1076 { 1077 struct page *page; 1078 1079 retry_reserve: 1080 page = __rmqueue_smallest(zone, order, migratetype); 1081 1082 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) { 1083 page = __rmqueue_fallback(zone, order, migratetype); 1084 1085 /* 1086 * Use MIGRATE_RESERVE rather than fail an allocation. goto 1087 * is used because __rmqueue_smallest is an inline function 1088 * and we want just one call site 1089 */ 1090 if (!page) { 1091 migratetype = MIGRATE_RESERVE; 1092 goto retry_reserve; 1093 } 1094 } 1095 1096 trace_mm_page_alloc_zone_locked(page, order, migratetype); 1097 return page; 1098 } 1099 1100 /* 1101 * Obtain a specified number of elements from the buddy allocator, all under 1102 * a single hold of the lock, for efficiency. Add them to the supplied list. 1103 * Returns the number of new pages which were placed at *list. 1104 */ 1105 static int rmqueue_bulk(struct zone *zone, unsigned int order, 1106 unsigned long count, struct list_head *list, 1107 int migratetype, int cold) 1108 { 1109 int mt = migratetype, i; 1110 1111 spin_lock(&zone->lock); 1112 for (i = 0; i < count; ++i) { 1113 struct page *page = __rmqueue(zone, order, migratetype); 1114 if (unlikely(page == NULL)) 1115 break; 1116 1117 /* 1118 * Split buddy pages returned by expand() are received here 1119 * in physical page order. The page is added to the callers and 1120 * list and the list head then moves forward. From the callers 1121 * perspective, the linked list is ordered by page number in 1122 * some conditions. This is useful for IO devices that can 1123 * merge IO requests if the physical pages are ordered 1124 * properly. 1125 */ 1126 if (likely(cold == 0)) 1127 list_add(&page->lru, list); 1128 else 1129 list_add_tail(&page->lru, list); 1130 if (IS_ENABLED(CONFIG_CMA)) { 1131 mt = get_pageblock_migratetype(page); 1132 if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE) 1133 mt = migratetype; 1134 } 1135 set_freepage_migratetype(page, mt); 1136 list = &page->lru; 1137 if (is_migrate_cma(mt)) 1138 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1139 -(1 << order)); 1140 } 1141 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 1142 spin_unlock(&zone->lock); 1143 return i; 1144 } 1145 1146 #ifdef CONFIG_NUMA 1147 /* 1148 * Called from the vmstat counter updater to drain pagesets of this 1149 * currently executing processor on remote nodes after they have 1150 * expired. 1151 * 1152 * Note that this function must be called with the thread pinned to 1153 * a single processor. 1154 */ 1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 1156 { 1157 unsigned long flags; 1158 int to_drain; 1159 1160 local_irq_save(flags); 1161 if (pcp->count >= pcp->batch) 1162 to_drain = pcp->batch; 1163 else 1164 to_drain = pcp->count; 1165 if (to_drain > 0) { 1166 free_pcppages_bulk(zone, to_drain, pcp); 1167 pcp->count -= to_drain; 1168 } 1169 local_irq_restore(flags); 1170 } 1171 #endif 1172 1173 /* 1174 * Drain pages of the indicated processor. 1175 * 1176 * The processor must either be the current processor and the 1177 * thread pinned to the current processor or a processor that 1178 * is not online. 1179 */ 1180 static void drain_pages(unsigned int cpu) 1181 { 1182 unsigned long flags; 1183 struct zone *zone; 1184 1185 for_each_populated_zone(zone) { 1186 struct per_cpu_pageset *pset; 1187 struct per_cpu_pages *pcp; 1188 1189 local_irq_save(flags); 1190 pset = per_cpu_ptr(zone->pageset, cpu); 1191 1192 pcp = &pset->pcp; 1193 if (pcp->count) { 1194 free_pcppages_bulk(zone, pcp->count, pcp); 1195 pcp->count = 0; 1196 } 1197 local_irq_restore(flags); 1198 } 1199 } 1200 1201 /* 1202 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 1203 */ 1204 void drain_local_pages(void *arg) 1205 { 1206 drain_pages(smp_processor_id()); 1207 } 1208 1209 /* 1210 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 1211 * 1212 * Note that this code is protected against sending an IPI to an offline 1213 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs: 1214 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but 1215 * nothing keeps CPUs from showing up after we populated the cpumask and 1216 * before the call to on_each_cpu_mask(). 1217 */ 1218 void drain_all_pages(void) 1219 { 1220 int cpu; 1221 struct per_cpu_pageset *pcp; 1222 struct zone *zone; 1223 1224 /* 1225 * Allocate in the BSS so we wont require allocation in 1226 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 1227 */ 1228 static cpumask_t cpus_with_pcps; 1229 1230 /* 1231 * We don't care about racing with CPU hotplug event 1232 * as offline notification will cause the notified 1233 * cpu to drain that CPU pcps and on_each_cpu_mask 1234 * disables preemption as part of its processing 1235 */ 1236 for_each_online_cpu(cpu) { 1237 bool has_pcps = false; 1238 for_each_populated_zone(zone) { 1239 pcp = per_cpu_ptr(zone->pageset, cpu); 1240 if (pcp->pcp.count) { 1241 has_pcps = true; 1242 break; 1243 } 1244 } 1245 if (has_pcps) 1246 cpumask_set_cpu(cpu, &cpus_with_pcps); 1247 else 1248 cpumask_clear_cpu(cpu, &cpus_with_pcps); 1249 } 1250 on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1); 1251 } 1252 1253 #ifdef CONFIG_HIBERNATION 1254 1255 void mark_free_pages(struct zone *zone) 1256 { 1257 unsigned long pfn, max_zone_pfn; 1258 unsigned long flags; 1259 int order, t; 1260 struct list_head *curr; 1261 1262 if (!zone->spanned_pages) 1263 return; 1264 1265 spin_lock_irqsave(&zone->lock, flags); 1266 1267 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages; 1268 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 1269 if (pfn_valid(pfn)) { 1270 struct page *page = pfn_to_page(pfn); 1271 1272 if (!swsusp_page_is_forbidden(page)) 1273 swsusp_unset_page_free(page); 1274 } 1275 1276 for_each_migratetype_order(order, t) { 1277 list_for_each(curr, &zone->free_area[order].free_list[t]) { 1278 unsigned long i; 1279 1280 pfn = page_to_pfn(list_entry(curr, struct page, lru)); 1281 for (i = 0; i < (1UL << order); i++) 1282 swsusp_set_page_free(pfn_to_page(pfn + i)); 1283 } 1284 } 1285 spin_unlock_irqrestore(&zone->lock, flags); 1286 } 1287 #endif /* CONFIG_PM */ 1288 1289 /* 1290 * Free a 0-order page 1291 * cold == 1 ? free a cold page : free a hot page 1292 */ 1293 void free_hot_cold_page(struct page *page, int cold) 1294 { 1295 struct zone *zone = page_zone(page); 1296 struct per_cpu_pages *pcp; 1297 unsigned long flags; 1298 int migratetype; 1299 1300 if (!free_pages_prepare(page, 0)) 1301 return; 1302 1303 migratetype = get_pageblock_migratetype(page); 1304 set_freepage_migratetype(page, migratetype); 1305 local_irq_save(flags); 1306 __count_vm_event(PGFREE); 1307 1308 /* 1309 * We only track unmovable, reclaimable and movable on pcp lists. 1310 * Free ISOLATE pages back to the allocator because they are being 1311 * offlined but treat RESERVE as movable pages so we can get those 1312 * areas back if necessary. Otherwise, we may have to free 1313 * excessively into the page allocator 1314 */ 1315 if (migratetype >= MIGRATE_PCPTYPES) { 1316 if (unlikely(migratetype == MIGRATE_ISOLATE)) { 1317 free_one_page(zone, page, 0, migratetype); 1318 goto out; 1319 } 1320 migratetype = MIGRATE_MOVABLE; 1321 } 1322 1323 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1324 if (cold) 1325 list_add_tail(&page->lru, &pcp->lists[migratetype]); 1326 else 1327 list_add(&page->lru, &pcp->lists[migratetype]); 1328 pcp->count++; 1329 if (pcp->count >= pcp->high) { 1330 free_pcppages_bulk(zone, pcp->batch, pcp); 1331 pcp->count -= pcp->batch; 1332 } 1333 1334 out: 1335 local_irq_restore(flags); 1336 } 1337 1338 /* 1339 * Free a list of 0-order pages 1340 */ 1341 void free_hot_cold_page_list(struct list_head *list, int cold) 1342 { 1343 struct page *page, *next; 1344 1345 list_for_each_entry_safe(page, next, list, lru) { 1346 trace_mm_page_free_batched(page, cold); 1347 free_hot_cold_page(page, cold); 1348 } 1349 } 1350 1351 /* 1352 * split_page takes a non-compound higher-order page, and splits it into 1353 * n (1<<order) sub-pages: page[0..n] 1354 * Each sub-page must be freed individually. 1355 * 1356 * Note: this is probably too low level an operation for use in drivers. 1357 * Please consult with lkml before using this in your driver. 1358 */ 1359 void split_page(struct page *page, unsigned int order) 1360 { 1361 int i; 1362 1363 VM_BUG_ON(PageCompound(page)); 1364 VM_BUG_ON(!page_count(page)); 1365 1366 #ifdef CONFIG_KMEMCHECK 1367 /* 1368 * Split shadow pages too, because free(page[0]) would 1369 * otherwise free the whole shadow. 1370 */ 1371 if (kmemcheck_page_is_tracked(page)) 1372 split_page(virt_to_page(page[0].shadow), order); 1373 #endif 1374 1375 for (i = 1; i < (1 << order); i++) 1376 set_page_refcounted(page + i); 1377 } 1378 1379 /* 1380 * Similar to the split_page family of functions except that the page 1381 * required at the given order and being isolated now to prevent races 1382 * with parallel allocators 1383 */ 1384 int capture_free_page(struct page *page, int alloc_order, int migratetype) 1385 { 1386 unsigned int order; 1387 unsigned long watermark; 1388 struct zone *zone; 1389 int mt; 1390 1391 BUG_ON(!PageBuddy(page)); 1392 1393 zone = page_zone(page); 1394 order = page_order(page); 1395 1396 /* Obey watermarks as if the page was being allocated */ 1397 watermark = low_wmark_pages(zone) + (1 << order); 1398 if (!zone_watermark_ok(zone, 0, watermark, 0, 0)) 1399 return 0; 1400 1401 /* Remove page from free list */ 1402 list_del(&page->lru); 1403 zone->free_area[order].nr_free--; 1404 rmv_page_order(page); 1405 1406 mt = get_pageblock_migratetype(page); 1407 if (unlikely(mt != MIGRATE_ISOLATE)) 1408 __mod_zone_freepage_state(zone, -(1UL << alloc_order), mt); 1409 1410 if (alloc_order != order) 1411 expand(zone, page, alloc_order, order, 1412 &zone->free_area[order], migratetype); 1413 1414 /* Set the pageblock if the captured page is at least a pageblock */ 1415 if (order >= pageblock_order - 1) { 1416 struct page *endpage = page + (1 << order) - 1; 1417 for (; page < endpage; page += pageblock_nr_pages) { 1418 int mt = get_pageblock_migratetype(page); 1419 if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt)) 1420 set_pageblock_migratetype(page, 1421 MIGRATE_MOVABLE); 1422 } 1423 } 1424 1425 return 1UL << order; 1426 } 1427 1428 /* 1429 * Similar to split_page except the page is already free. As this is only 1430 * being used for migration, the migratetype of the block also changes. 1431 * As this is called with interrupts disabled, the caller is responsible 1432 * for calling arch_alloc_page() and kernel_map_page() after interrupts 1433 * are enabled. 1434 * 1435 * Note: this is probably too low level an operation for use in drivers. 1436 * Please consult with lkml before using this in your driver. 1437 */ 1438 int split_free_page(struct page *page) 1439 { 1440 unsigned int order; 1441 int nr_pages; 1442 1443 BUG_ON(!PageBuddy(page)); 1444 order = page_order(page); 1445 1446 nr_pages = capture_free_page(page, order, 0); 1447 if (!nr_pages) 1448 return 0; 1449 1450 /* Split into individual pages */ 1451 set_page_refcounted(page); 1452 split_page(page, order); 1453 return nr_pages; 1454 } 1455 1456 /* 1457 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But 1458 * we cheat by calling it from here, in the order > 0 path. Saves a branch 1459 * or two. 1460 */ 1461 static inline 1462 struct page *buffered_rmqueue(struct zone *preferred_zone, 1463 struct zone *zone, int order, gfp_t gfp_flags, 1464 int migratetype) 1465 { 1466 unsigned long flags; 1467 struct page *page; 1468 int cold = !!(gfp_flags & __GFP_COLD); 1469 1470 again: 1471 if (likely(order == 0)) { 1472 struct per_cpu_pages *pcp; 1473 struct list_head *list; 1474 1475 local_irq_save(flags); 1476 pcp = &this_cpu_ptr(zone->pageset)->pcp; 1477 list = &pcp->lists[migratetype]; 1478 if (list_empty(list)) { 1479 pcp->count += rmqueue_bulk(zone, 0, 1480 pcp->batch, list, 1481 migratetype, cold); 1482 if (unlikely(list_empty(list))) 1483 goto failed; 1484 } 1485 1486 if (cold) 1487 page = list_entry(list->prev, struct page, lru); 1488 else 1489 page = list_entry(list->next, struct page, lru); 1490 1491 list_del(&page->lru); 1492 pcp->count--; 1493 } else { 1494 if (unlikely(gfp_flags & __GFP_NOFAIL)) { 1495 /* 1496 * __GFP_NOFAIL is not to be used in new code. 1497 * 1498 * All __GFP_NOFAIL callers should be fixed so that they 1499 * properly detect and handle allocation failures. 1500 * 1501 * We most definitely don't want callers attempting to 1502 * allocate greater than order-1 page units with 1503 * __GFP_NOFAIL. 1504 */ 1505 WARN_ON_ONCE(order > 1); 1506 } 1507 spin_lock_irqsave(&zone->lock, flags); 1508 page = __rmqueue(zone, order, migratetype); 1509 spin_unlock(&zone->lock); 1510 if (!page) 1511 goto failed; 1512 __mod_zone_freepage_state(zone, -(1 << order), 1513 get_pageblock_migratetype(page)); 1514 } 1515 1516 __count_zone_vm_events(PGALLOC, zone, 1 << order); 1517 zone_statistics(preferred_zone, zone, gfp_flags); 1518 local_irq_restore(flags); 1519 1520 VM_BUG_ON(bad_range(zone, page)); 1521 if (prep_new_page(page, order, gfp_flags)) 1522 goto again; 1523 return page; 1524 1525 failed: 1526 local_irq_restore(flags); 1527 return NULL; 1528 } 1529 1530 #ifdef CONFIG_FAIL_PAGE_ALLOC 1531 1532 static struct { 1533 struct fault_attr attr; 1534 1535 u32 ignore_gfp_highmem; 1536 u32 ignore_gfp_wait; 1537 u32 min_order; 1538 } fail_page_alloc = { 1539 .attr = FAULT_ATTR_INITIALIZER, 1540 .ignore_gfp_wait = 1, 1541 .ignore_gfp_highmem = 1, 1542 .min_order = 1, 1543 }; 1544 1545 static int __init setup_fail_page_alloc(char *str) 1546 { 1547 return setup_fault_attr(&fail_page_alloc.attr, str); 1548 } 1549 __setup("fail_page_alloc=", setup_fail_page_alloc); 1550 1551 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1552 { 1553 if (order < fail_page_alloc.min_order) 1554 return false; 1555 if (gfp_mask & __GFP_NOFAIL) 1556 return false; 1557 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 1558 return false; 1559 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT)) 1560 return false; 1561 1562 return should_fail(&fail_page_alloc.attr, 1 << order); 1563 } 1564 1565 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 1566 1567 static int __init fail_page_alloc_debugfs(void) 1568 { 1569 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR; 1570 struct dentry *dir; 1571 1572 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 1573 &fail_page_alloc.attr); 1574 if (IS_ERR(dir)) 1575 return PTR_ERR(dir); 1576 1577 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir, 1578 &fail_page_alloc.ignore_gfp_wait)) 1579 goto fail; 1580 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir, 1581 &fail_page_alloc.ignore_gfp_highmem)) 1582 goto fail; 1583 if (!debugfs_create_u32("min-order", mode, dir, 1584 &fail_page_alloc.min_order)) 1585 goto fail; 1586 1587 return 0; 1588 fail: 1589 debugfs_remove_recursive(dir); 1590 1591 return -ENOMEM; 1592 } 1593 1594 late_initcall(fail_page_alloc_debugfs); 1595 1596 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 1597 1598 #else /* CONFIG_FAIL_PAGE_ALLOC */ 1599 1600 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 1601 { 1602 return false; 1603 } 1604 1605 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 1606 1607 /* 1608 * Return true if free pages are above 'mark'. This takes into account the order 1609 * of the allocation. 1610 */ 1611 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1612 int classzone_idx, int alloc_flags, long free_pages) 1613 { 1614 /* free_pages my go negative - that's OK */ 1615 long min = mark; 1616 long lowmem_reserve = z->lowmem_reserve[classzone_idx]; 1617 int o; 1618 1619 free_pages -= (1 << order) - 1; 1620 if (alloc_flags & ALLOC_HIGH) 1621 min -= min / 2; 1622 if (alloc_flags & ALLOC_HARDER) 1623 min -= min / 4; 1624 #ifdef CONFIG_CMA 1625 /* If allocation can't use CMA areas don't use free CMA pages */ 1626 if (!(alloc_flags & ALLOC_CMA)) 1627 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES); 1628 #endif 1629 if (free_pages <= min + lowmem_reserve) 1630 return false; 1631 for (o = 0; o < order; o++) { 1632 /* At the next order, this order's pages become unavailable */ 1633 free_pages -= z->free_area[o].nr_free << o; 1634 1635 /* Require fewer higher order pages to be free */ 1636 min >>= 1; 1637 1638 if (free_pages <= min) 1639 return false; 1640 } 1641 return true; 1642 } 1643 1644 #ifdef CONFIG_MEMORY_ISOLATION 1645 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1646 { 1647 if (unlikely(zone->nr_pageblock_isolate)) 1648 return zone->nr_pageblock_isolate * pageblock_nr_pages; 1649 return 0; 1650 } 1651 #else 1652 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone) 1653 { 1654 return 0; 1655 } 1656 #endif 1657 1658 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark, 1659 int classzone_idx, int alloc_flags) 1660 { 1661 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1662 zone_page_state(z, NR_FREE_PAGES)); 1663 } 1664 1665 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark, 1666 int classzone_idx, int alloc_flags) 1667 { 1668 long free_pages = zone_page_state(z, NR_FREE_PAGES); 1669 1670 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 1671 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 1672 1673 /* 1674 * If the zone has MIGRATE_ISOLATE type free pages, we should consider 1675 * it. nr_zone_isolate_freepages is never accurate so kswapd might not 1676 * sleep although it could do so. But this is more desirable for memory 1677 * hotplug than sleeping which can cause a livelock in the direct 1678 * reclaim path. 1679 */ 1680 free_pages -= nr_zone_isolate_freepages(z); 1681 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags, 1682 free_pages); 1683 } 1684 1685 #ifdef CONFIG_NUMA 1686 /* 1687 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to 1688 * skip over zones that are not allowed by the cpuset, or that have 1689 * been recently (in last second) found to be nearly full. See further 1690 * comments in mmzone.h. Reduces cache footprint of zonelist scans 1691 * that have to skip over a lot of full or unallowed zones. 1692 * 1693 * If the zonelist cache is present in the passed in zonelist, then 1694 * returns a pointer to the allowed node mask (either the current 1695 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].) 1696 * 1697 * If the zonelist cache is not available for this zonelist, does 1698 * nothing and returns NULL. 1699 * 1700 * If the fullzones BITMAP in the zonelist cache is stale (more than 1701 * a second since last zap'd) then we zap it out (clear its bits.) 1702 * 1703 * We hold off even calling zlc_setup, until after we've checked the 1704 * first zone in the zonelist, on the theory that most allocations will 1705 * be satisfied from that first zone, so best to examine that zone as 1706 * quickly as we can. 1707 */ 1708 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1709 { 1710 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1711 nodemask_t *allowednodes; /* zonelist_cache approximation */ 1712 1713 zlc = zonelist->zlcache_ptr; 1714 if (!zlc) 1715 return NULL; 1716 1717 if (time_after(jiffies, zlc->last_full_zap + HZ)) { 1718 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1719 zlc->last_full_zap = jiffies; 1720 } 1721 1722 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ? 1723 &cpuset_current_mems_allowed : 1724 &node_states[N_HIGH_MEMORY]; 1725 return allowednodes; 1726 } 1727 1728 /* 1729 * Given 'z' scanning a zonelist, run a couple of quick checks to see 1730 * if it is worth looking at further for free memory: 1731 * 1) Check that the zone isn't thought to be full (doesn't have its 1732 * bit set in the zonelist_cache fullzones BITMAP). 1733 * 2) Check that the zones node (obtained from the zonelist_cache 1734 * z_to_n[] mapping) is allowed in the passed in allowednodes mask. 1735 * Return true (non-zero) if zone is worth looking at further, or 1736 * else return false (zero) if it is not. 1737 * 1738 * This check -ignores- the distinction between various watermarks, 1739 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is 1740 * found to be full for any variation of these watermarks, it will 1741 * be considered full for up to one second by all requests, unless 1742 * we are so low on memory on all allowed nodes that we are forced 1743 * into the second scan of the zonelist. 1744 * 1745 * In the second scan we ignore this zonelist cache and exactly 1746 * apply the watermarks to all zones, even it is slower to do so. 1747 * We are low on memory in the second scan, and should leave no stone 1748 * unturned looking for a free page. 1749 */ 1750 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1751 nodemask_t *allowednodes) 1752 { 1753 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1754 int i; /* index of *z in zonelist zones */ 1755 int n; /* node that zone *z is on */ 1756 1757 zlc = zonelist->zlcache_ptr; 1758 if (!zlc) 1759 return 1; 1760 1761 i = z - zonelist->_zonerefs; 1762 n = zlc->z_to_n[i]; 1763 1764 /* This zone is worth trying if it is allowed but not full */ 1765 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones); 1766 } 1767 1768 /* 1769 * Given 'z' scanning a zonelist, set the corresponding bit in 1770 * zlc->fullzones, so that subsequent attempts to allocate a page 1771 * from that zone don't waste time re-examining it. 1772 */ 1773 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1774 { 1775 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1776 int i; /* index of *z in zonelist zones */ 1777 1778 zlc = zonelist->zlcache_ptr; 1779 if (!zlc) 1780 return; 1781 1782 i = z - zonelist->_zonerefs; 1783 1784 set_bit(i, zlc->fullzones); 1785 } 1786 1787 /* 1788 * clear all zones full, called after direct reclaim makes progress so that 1789 * a zone that was recently full is not skipped over for up to a second 1790 */ 1791 static void zlc_clear_zones_full(struct zonelist *zonelist) 1792 { 1793 struct zonelist_cache *zlc; /* cached zonelist speedup info */ 1794 1795 zlc = zonelist->zlcache_ptr; 1796 if (!zlc) 1797 return; 1798 1799 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 1800 } 1801 1802 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1803 { 1804 return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes); 1805 } 1806 1807 static void __paginginit init_zone_allows_reclaim(int nid) 1808 { 1809 int i; 1810 1811 for_each_online_node(i) 1812 if (node_distance(nid, i) <= RECLAIM_DISTANCE) 1813 node_set(i, NODE_DATA(nid)->reclaim_nodes); 1814 else 1815 zone_reclaim_mode = 1; 1816 } 1817 1818 #else /* CONFIG_NUMA */ 1819 1820 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags) 1821 { 1822 return NULL; 1823 } 1824 1825 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z, 1826 nodemask_t *allowednodes) 1827 { 1828 return 1; 1829 } 1830 1831 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z) 1832 { 1833 } 1834 1835 static void zlc_clear_zones_full(struct zonelist *zonelist) 1836 { 1837 } 1838 1839 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 1840 { 1841 return true; 1842 } 1843 1844 static inline void init_zone_allows_reclaim(int nid) 1845 { 1846 } 1847 #endif /* CONFIG_NUMA */ 1848 1849 /* 1850 * get_page_from_freelist goes through the zonelist trying to allocate 1851 * a page. 1852 */ 1853 static struct page * 1854 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order, 1855 struct zonelist *zonelist, int high_zoneidx, int alloc_flags, 1856 struct zone *preferred_zone, int migratetype) 1857 { 1858 struct zoneref *z; 1859 struct page *page = NULL; 1860 int classzone_idx; 1861 struct zone *zone; 1862 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */ 1863 int zlc_active = 0; /* set if using zonelist_cache */ 1864 int did_zlc_setup = 0; /* just call zlc_setup() one time */ 1865 1866 classzone_idx = zone_idx(preferred_zone); 1867 zonelist_scan: 1868 /* 1869 * Scan zonelist, looking for a zone with enough free. 1870 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 1871 */ 1872 for_each_zone_zonelist_nodemask(zone, z, zonelist, 1873 high_zoneidx, nodemask) { 1874 if (NUMA_BUILD && zlc_active && 1875 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1876 continue; 1877 if ((alloc_flags & ALLOC_CPUSET) && 1878 !cpuset_zone_allowed_softwall(zone, gfp_mask)) 1879 continue; 1880 /* 1881 * When allocating a page cache page for writing, we 1882 * want to get it from a zone that is within its dirty 1883 * limit, such that no single zone holds more than its 1884 * proportional share of globally allowed dirty pages. 1885 * The dirty limits take into account the zone's 1886 * lowmem reserves and high watermark so that kswapd 1887 * should be able to balance it without having to 1888 * write pages from its LRU list. 1889 * 1890 * This may look like it could increase pressure on 1891 * lower zones by failing allocations in higher zones 1892 * before they are full. But the pages that do spill 1893 * over are limited as the lower zones are protected 1894 * by this very same mechanism. It should not become 1895 * a practical burden to them. 1896 * 1897 * XXX: For now, allow allocations to potentially 1898 * exceed the per-zone dirty limit in the slowpath 1899 * (ALLOC_WMARK_LOW unset) before going into reclaim, 1900 * which is important when on a NUMA setup the allowed 1901 * zones are together not big enough to reach the 1902 * global limit. The proper fix for these situations 1903 * will require awareness of zones in the 1904 * dirty-throttling and the flusher threads. 1905 */ 1906 if ((alloc_flags & ALLOC_WMARK_LOW) && 1907 (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone)) 1908 goto this_zone_full; 1909 1910 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 1911 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) { 1912 unsigned long mark; 1913 int ret; 1914 1915 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK]; 1916 if (zone_watermark_ok(zone, order, mark, 1917 classzone_idx, alloc_flags)) 1918 goto try_this_zone; 1919 1920 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) { 1921 /* 1922 * we do zlc_setup if there are multiple nodes 1923 * and before considering the first zone allowed 1924 * by the cpuset. 1925 */ 1926 allowednodes = zlc_setup(zonelist, alloc_flags); 1927 zlc_active = 1; 1928 did_zlc_setup = 1; 1929 } 1930 1931 if (zone_reclaim_mode == 0 || 1932 !zone_allows_reclaim(preferred_zone, zone)) 1933 goto this_zone_full; 1934 1935 /* 1936 * As we may have just activated ZLC, check if the first 1937 * eligible zone has failed zone_reclaim recently. 1938 */ 1939 if (NUMA_BUILD && zlc_active && 1940 !zlc_zone_worth_trying(zonelist, z, allowednodes)) 1941 continue; 1942 1943 ret = zone_reclaim(zone, gfp_mask, order); 1944 switch (ret) { 1945 case ZONE_RECLAIM_NOSCAN: 1946 /* did not scan */ 1947 continue; 1948 case ZONE_RECLAIM_FULL: 1949 /* scanned but unreclaimable */ 1950 continue; 1951 default: 1952 /* did we reclaim enough */ 1953 if (!zone_watermark_ok(zone, order, mark, 1954 classzone_idx, alloc_flags)) 1955 goto this_zone_full; 1956 } 1957 } 1958 1959 try_this_zone: 1960 page = buffered_rmqueue(preferred_zone, zone, order, 1961 gfp_mask, migratetype); 1962 if (page) 1963 break; 1964 this_zone_full: 1965 if (NUMA_BUILD) 1966 zlc_mark_zone_full(zonelist, z); 1967 } 1968 1969 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) { 1970 /* Disable zlc cache for second zonelist scan */ 1971 zlc_active = 0; 1972 goto zonelist_scan; 1973 } 1974 1975 if (page) 1976 /* 1977 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was 1978 * necessary to allocate the page. The expectation is 1979 * that the caller is taking steps that will free more 1980 * memory. The caller should avoid the page being used 1981 * for !PFMEMALLOC purposes. 1982 */ 1983 page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS); 1984 1985 return page; 1986 } 1987 1988 /* 1989 * Large machines with many possible nodes should not always dump per-node 1990 * meminfo in irq context. 1991 */ 1992 static inline bool should_suppress_show_mem(void) 1993 { 1994 bool ret = false; 1995 1996 #if NODES_SHIFT > 8 1997 ret = in_interrupt(); 1998 #endif 1999 return ret; 2000 } 2001 2002 static DEFINE_RATELIMIT_STATE(nopage_rs, 2003 DEFAULT_RATELIMIT_INTERVAL, 2004 DEFAULT_RATELIMIT_BURST); 2005 2006 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...) 2007 { 2008 unsigned int filter = SHOW_MEM_FILTER_NODES; 2009 2010 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) || 2011 debug_guardpage_minorder() > 0) 2012 return; 2013 2014 /* 2015 * This documents exceptions given to allocations in certain 2016 * contexts that are allowed to allocate outside current's set 2017 * of allowed nodes. 2018 */ 2019 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2020 if (test_thread_flag(TIF_MEMDIE) || 2021 (current->flags & (PF_MEMALLOC | PF_EXITING))) 2022 filter &= ~SHOW_MEM_FILTER_NODES; 2023 if (in_interrupt() || !(gfp_mask & __GFP_WAIT)) 2024 filter &= ~SHOW_MEM_FILTER_NODES; 2025 2026 if (fmt) { 2027 struct va_format vaf; 2028 va_list args; 2029 2030 va_start(args, fmt); 2031 2032 vaf.fmt = fmt; 2033 vaf.va = &args; 2034 2035 pr_warn("%pV", &vaf); 2036 2037 va_end(args); 2038 } 2039 2040 pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n", 2041 current->comm, order, gfp_mask); 2042 2043 dump_stack(); 2044 if (!should_suppress_show_mem()) 2045 show_mem(filter); 2046 } 2047 2048 static inline int 2049 should_alloc_retry(gfp_t gfp_mask, unsigned int order, 2050 unsigned long did_some_progress, 2051 unsigned long pages_reclaimed) 2052 { 2053 /* Do not loop if specifically requested */ 2054 if (gfp_mask & __GFP_NORETRY) 2055 return 0; 2056 2057 /* Always retry if specifically requested */ 2058 if (gfp_mask & __GFP_NOFAIL) 2059 return 1; 2060 2061 /* 2062 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim 2063 * making forward progress without invoking OOM. Suspend also disables 2064 * storage devices so kswapd will not help. Bail if we are suspending. 2065 */ 2066 if (!did_some_progress && pm_suspended_storage()) 2067 return 0; 2068 2069 /* 2070 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER 2071 * means __GFP_NOFAIL, but that may not be true in other 2072 * implementations. 2073 */ 2074 if (order <= PAGE_ALLOC_COSTLY_ORDER) 2075 return 1; 2076 2077 /* 2078 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is 2079 * specified, then we retry until we no longer reclaim any pages 2080 * (above), or we've reclaimed an order of pages at least as 2081 * large as the allocation's order. In both cases, if the 2082 * allocation still fails, we stop retrying. 2083 */ 2084 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order)) 2085 return 1; 2086 2087 return 0; 2088 } 2089 2090 static inline struct page * 2091 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 2092 struct zonelist *zonelist, enum zone_type high_zoneidx, 2093 nodemask_t *nodemask, struct zone *preferred_zone, 2094 int migratetype) 2095 { 2096 struct page *page; 2097 2098 /* Acquire the OOM killer lock for the zones in zonelist */ 2099 if (!try_set_zonelist_oom(zonelist, gfp_mask)) { 2100 schedule_timeout_uninterruptible(1); 2101 return NULL; 2102 } 2103 2104 /* 2105 * Go through the zonelist yet one more time, keep very high watermark 2106 * here, this is only to catch a parallel oom killing, we must fail if 2107 * we're still under heavy pressure. 2108 */ 2109 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, 2110 order, zonelist, high_zoneidx, 2111 ALLOC_WMARK_HIGH|ALLOC_CPUSET, 2112 preferred_zone, migratetype); 2113 if (page) 2114 goto out; 2115 2116 if (!(gfp_mask & __GFP_NOFAIL)) { 2117 /* The OOM killer will not help higher order allocs */ 2118 if (order > PAGE_ALLOC_COSTLY_ORDER) 2119 goto out; 2120 /* The OOM killer does not needlessly kill tasks for lowmem */ 2121 if (high_zoneidx < ZONE_NORMAL) 2122 goto out; 2123 /* 2124 * GFP_THISNODE contains __GFP_NORETRY and we never hit this. 2125 * Sanity check for bare calls of __GFP_THISNODE, not real OOM. 2126 * The caller should handle page allocation failure by itself if 2127 * it specifies __GFP_THISNODE. 2128 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER. 2129 */ 2130 if (gfp_mask & __GFP_THISNODE) 2131 goto out; 2132 } 2133 /* Exhausted what can be done so it's blamo time */ 2134 out_of_memory(zonelist, gfp_mask, order, nodemask, false); 2135 2136 out: 2137 clear_zonelist_oom(zonelist, gfp_mask); 2138 return page; 2139 } 2140 2141 #ifdef CONFIG_COMPACTION 2142 /* Try memory compaction for high-order allocations before reclaim */ 2143 static struct page * 2144 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2145 struct zonelist *zonelist, enum zone_type high_zoneidx, 2146 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2147 int migratetype, bool sync_migration, 2148 bool *contended_compaction, bool *deferred_compaction, 2149 unsigned long *did_some_progress) 2150 { 2151 struct page *page = NULL; 2152 2153 if (!order) 2154 return NULL; 2155 2156 if (compaction_deferred(preferred_zone, order)) { 2157 *deferred_compaction = true; 2158 return NULL; 2159 } 2160 2161 current->flags |= PF_MEMALLOC; 2162 *did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask, 2163 nodemask, sync_migration, 2164 contended_compaction, &page); 2165 current->flags &= ~PF_MEMALLOC; 2166 2167 /* If compaction captured a page, prep and use it */ 2168 if (page) { 2169 prep_new_page(page, order, gfp_mask); 2170 goto got_page; 2171 } 2172 2173 if (*did_some_progress != COMPACT_SKIPPED) { 2174 /* Page migration frees to the PCP lists but we want merging */ 2175 drain_pages(get_cpu()); 2176 put_cpu(); 2177 2178 page = get_page_from_freelist(gfp_mask, nodemask, 2179 order, zonelist, high_zoneidx, 2180 alloc_flags & ~ALLOC_NO_WATERMARKS, 2181 preferred_zone, migratetype); 2182 if (page) { 2183 got_page: 2184 preferred_zone->compact_blockskip_flush = false; 2185 preferred_zone->compact_considered = 0; 2186 preferred_zone->compact_defer_shift = 0; 2187 if (order >= preferred_zone->compact_order_failed) 2188 preferred_zone->compact_order_failed = order + 1; 2189 count_vm_event(COMPACTSUCCESS); 2190 return page; 2191 } 2192 2193 /* 2194 * It's bad if compaction run occurs and fails. 2195 * The most likely reason is that pages exist, 2196 * but not enough to satisfy watermarks. 2197 */ 2198 count_vm_event(COMPACTFAIL); 2199 2200 /* 2201 * As async compaction considers a subset of pageblocks, only 2202 * defer if the failure was a sync compaction failure. 2203 */ 2204 if (sync_migration) 2205 defer_compaction(preferred_zone, order); 2206 2207 cond_resched(); 2208 } 2209 2210 return NULL; 2211 } 2212 #else 2213 static inline struct page * 2214 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 2215 struct zonelist *zonelist, enum zone_type high_zoneidx, 2216 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2217 int migratetype, bool sync_migration, 2218 bool *contended_compaction, bool *deferred_compaction, 2219 unsigned long *did_some_progress) 2220 { 2221 return NULL; 2222 } 2223 #endif /* CONFIG_COMPACTION */ 2224 2225 /* Perform direct synchronous page reclaim */ 2226 static int 2227 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist, 2228 nodemask_t *nodemask) 2229 { 2230 struct reclaim_state reclaim_state; 2231 int progress; 2232 2233 cond_resched(); 2234 2235 /* We now go into synchronous reclaim */ 2236 cpuset_memory_pressure_bump(); 2237 current->flags |= PF_MEMALLOC; 2238 lockdep_set_current_reclaim_state(gfp_mask); 2239 reclaim_state.reclaimed_slab = 0; 2240 current->reclaim_state = &reclaim_state; 2241 2242 progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask); 2243 2244 current->reclaim_state = NULL; 2245 lockdep_clear_current_reclaim_state(); 2246 current->flags &= ~PF_MEMALLOC; 2247 2248 cond_resched(); 2249 2250 return progress; 2251 } 2252 2253 /* The really slow allocator path where we enter direct reclaim */ 2254 static inline struct page * 2255 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 2256 struct zonelist *zonelist, enum zone_type high_zoneidx, 2257 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone, 2258 int migratetype, unsigned long *did_some_progress) 2259 { 2260 struct page *page = NULL; 2261 bool drained = false; 2262 2263 *did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 2264 nodemask); 2265 if (unlikely(!(*did_some_progress))) 2266 return NULL; 2267 2268 /* After successful reclaim, reconsider all zones for allocation */ 2269 if (NUMA_BUILD) 2270 zlc_clear_zones_full(zonelist); 2271 2272 retry: 2273 page = get_page_from_freelist(gfp_mask, nodemask, order, 2274 zonelist, high_zoneidx, 2275 alloc_flags & ~ALLOC_NO_WATERMARKS, 2276 preferred_zone, migratetype); 2277 2278 /* 2279 * If an allocation failed after direct reclaim, it could be because 2280 * pages are pinned on the per-cpu lists. Drain them and try again 2281 */ 2282 if (!page && !drained) { 2283 drain_all_pages(); 2284 drained = true; 2285 goto retry; 2286 } 2287 2288 return page; 2289 } 2290 2291 /* 2292 * This is called in the allocator slow-path if the allocation request is of 2293 * sufficient urgency to ignore watermarks and take other desperate measures 2294 */ 2295 static inline struct page * 2296 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order, 2297 struct zonelist *zonelist, enum zone_type high_zoneidx, 2298 nodemask_t *nodemask, struct zone *preferred_zone, 2299 int migratetype) 2300 { 2301 struct page *page; 2302 2303 do { 2304 page = get_page_from_freelist(gfp_mask, nodemask, order, 2305 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS, 2306 preferred_zone, migratetype); 2307 2308 if (!page && gfp_mask & __GFP_NOFAIL) 2309 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2310 } while (!page && (gfp_mask & __GFP_NOFAIL)); 2311 2312 return page; 2313 } 2314 2315 static inline 2316 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist, 2317 enum zone_type high_zoneidx, 2318 enum zone_type classzone_idx) 2319 { 2320 struct zoneref *z; 2321 struct zone *zone; 2322 2323 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 2324 wakeup_kswapd(zone, order, classzone_idx); 2325 } 2326 2327 static inline int 2328 gfp_to_alloc_flags(gfp_t gfp_mask) 2329 { 2330 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 2331 const gfp_t wait = gfp_mask & __GFP_WAIT; 2332 2333 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */ 2334 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 2335 2336 /* 2337 * The caller may dip into page reserves a bit more if the caller 2338 * cannot run direct reclaim, or if the caller has realtime scheduling 2339 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 2340 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH). 2341 */ 2342 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH); 2343 2344 if (!wait) { 2345 /* 2346 * Not worth trying to allocate harder for 2347 * __GFP_NOMEMALLOC even if it can't schedule. 2348 */ 2349 if (!(gfp_mask & __GFP_NOMEMALLOC)) 2350 alloc_flags |= ALLOC_HARDER; 2351 /* 2352 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc. 2353 * See also cpuset_zone_allowed() comment in kernel/cpuset.c. 2354 */ 2355 alloc_flags &= ~ALLOC_CPUSET; 2356 } else if (unlikely(rt_task(current)) && !in_interrupt()) 2357 alloc_flags |= ALLOC_HARDER; 2358 2359 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) { 2360 if (gfp_mask & __GFP_MEMALLOC) 2361 alloc_flags |= ALLOC_NO_WATERMARKS; 2362 else if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 2363 alloc_flags |= ALLOC_NO_WATERMARKS; 2364 else if (!in_interrupt() && 2365 ((current->flags & PF_MEMALLOC) || 2366 unlikely(test_thread_flag(TIF_MEMDIE)))) 2367 alloc_flags |= ALLOC_NO_WATERMARKS; 2368 } 2369 #ifdef CONFIG_CMA 2370 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2371 alloc_flags |= ALLOC_CMA; 2372 #endif 2373 return alloc_flags; 2374 } 2375 2376 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 2377 { 2378 return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS); 2379 } 2380 2381 static inline struct page * 2382 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 2383 struct zonelist *zonelist, enum zone_type high_zoneidx, 2384 nodemask_t *nodemask, struct zone *preferred_zone, 2385 int migratetype) 2386 { 2387 const gfp_t wait = gfp_mask & __GFP_WAIT; 2388 struct page *page = NULL; 2389 int alloc_flags; 2390 unsigned long pages_reclaimed = 0; 2391 unsigned long did_some_progress; 2392 bool sync_migration = false; 2393 bool deferred_compaction = false; 2394 bool contended_compaction = false; 2395 2396 /* 2397 * In the slowpath, we sanity check order to avoid ever trying to 2398 * reclaim >= MAX_ORDER areas which will never succeed. Callers may 2399 * be using allocators in order of preference for an area that is 2400 * too large. 2401 */ 2402 if (order >= MAX_ORDER) { 2403 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN)); 2404 return NULL; 2405 } 2406 2407 /* 2408 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and 2409 * __GFP_NOWARN set) should not cause reclaim since the subsystem 2410 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim 2411 * using a larger set of nodes after it has established that the 2412 * allowed per node queues are empty and that nodes are 2413 * over allocated. 2414 */ 2415 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE) 2416 goto nopage; 2417 2418 restart: 2419 wake_all_kswapd(order, zonelist, high_zoneidx, 2420 zone_idx(preferred_zone)); 2421 2422 /* 2423 * OK, we're below the kswapd watermark and have kicked background 2424 * reclaim. Now things get more complex, so set up alloc_flags according 2425 * to how we want to proceed. 2426 */ 2427 alloc_flags = gfp_to_alloc_flags(gfp_mask); 2428 2429 /* 2430 * Find the true preferred zone if the allocation is unconstrained by 2431 * cpusets. 2432 */ 2433 if (!(alloc_flags & ALLOC_CPUSET) && !nodemask) 2434 first_zones_zonelist(zonelist, high_zoneidx, NULL, 2435 &preferred_zone); 2436 2437 rebalance: 2438 /* This is the last chance, in general, before the goto nopage. */ 2439 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist, 2440 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS, 2441 preferred_zone, migratetype); 2442 if (page) 2443 goto got_pg; 2444 2445 /* Allocate without watermarks if the context allows */ 2446 if (alloc_flags & ALLOC_NO_WATERMARKS) { 2447 /* 2448 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds 2449 * the allocation is high priority and these type of 2450 * allocations are system rather than user orientated 2451 */ 2452 zonelist = node_zonelist(numa_node_id(), gfp_mask); 2453 2454 page = __alloc_pages_high_priority(gfp_mask, order, 2455 zonelist, high_zoneidx, nodemask, 2456 preferred_zone, migratetype); 2457 if (page) { 2458 goto got_pg; 2459 } 2460 } 2461 2462 /* Atomic allocations - we can't balance anything */ 2463 if (!wait) 2464 goto nopage; 2465 2466 /* Avoid recursion of direct reclaim */ 2467 if (current->flags & PF_MEMALLOC) 2468 goto nopage; 2469 2470 /* Avoid allocations with no watermarks from looping endlessly */ 2471 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL)) 2472 goto nopage; 2473 2474 /* 2475 * Try direct compaction. The first pass is asynchronous. Subsequent 2476 * attempts after direct reclaim are synchronous 2477 */ 2478 page = __alloc_pages_direct_compact(gfp_mask, order, 2479 zonelist, high_zoneidx, 2480 nodemask, 2481 alloc_flags, preferred_zone, 2482 migratetype, sync_migration, 2483 &contended_compaction, 2484 &deferred_compaction, 2485 &did_some_progress); 2486 if (page) 2487 goto got_pg; 2488 sync_migration = true; 2489 2490 /* 2491 * If compaction is deferred for high-order allocations, it is because 2492 * sync compaction recently failed. In this is the case and the caller 2493 * requested a movable allocation that does not heavily disrupt the 2494 * system then fail the allocation instead of entering direct reclaim. 2495 */ 2496 if ((deferred_compaction || contended_compaction) && 2497 (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE) 2498 goto nopage; 2499 2500 /* Try direct reclaim and then allocating */ 2501 page = __alloc_pages_direct_reclaim(gfp_mask, order, 2502 zonelist, high_zoneidx, 2503 nodemask, 2504 alloc_flags, preferred_zone, 2505 migratetype, &did_some_progress); 2506 if (page) 2507 goto got_pg; 2508 2509 /* 2510 * If we failed to make any progress reclaiming, then we are 2511 * running out of options and have to consider going OOM 2512 */ 2513 if (!did_some_progress) { 2514 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) { 2515 if (oom_killer_disabled) 2516 goto nopage; 2517 /* Coredumps can quickly deplete all memory reserves */ 2518 if ((current->flags & PF_DUMPCORE) && 2519 !(gfp_mask & __GFP_NOFAIL)) 2520 goto nopage; 2521 page = __alloc_pages_may_oom(gfp_mask, order, 2522 zonelist, high_zoneidx, 2523 nodemask, preferred_zone, 2524 migratetype); 2525 if (page) 2526 goto got_pg; 2527 2528 if (!(gfp_mask & __GFP_NOFAIL)) { 2529 /* 2530 * The oom killer is not called for high-order 2531 * allocations that may fail, so if no progress 2532 * is being made, there are no other options and 2533 * retrying is unlikely to help. 2534 */ 2535 if (order > PAGE_ALLOC_COSTLY_ORDER) 2536 goto nopage; 2537 /* 2538 * The oom killer is not called for lowmem 2539 * allocations to prevent needlessly killing 2540 * innocent tasks. 2541 */ 2542 if (high_zoneidx < ZONE_NORMAL) 2543 goto nopage; 2544 } 2545 2546 goto restart; 2547 } 2548 } 2549 2550 /* Check if we should retry the allocation */ 2551 pages_reclaimed += did_some_progress; 2552 if (should_alloc_retry(gfp_mask, order, did_some_progress, 2553 pages_reclaimed)) { 2554 /* Wait for some write requests to complete then retry */ 2555 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50); 2556 goto rebalance; 2557 } else { 2558 /* 2559 * High-order allocations do not necessarily loop after 2560 * direct reclaim and reclaim/compaction depends on compaction 2561 * being called after reclaim so call directly if necessary 2562 */ 2563 page = __alloc_pages_direct_compact(gfp_mask, order, 2564 zonelist, high_zoneidx, 2565 nodemask, 2566 alloc_flags, preferred_zone, 2567 migratetype, sync_migration, 2568 &contended_compaction, 2569 &deferred_compaction, 2570 &did_some_progress); 2571 if (page) 2572 goto got_pg; 2573 } 2574 2575 nopage: 2576 warn_alloc_failed(gfp_mask, order, NULL); 2577 return page; 2578 got_pg: 2579 if (kmemcheck_enabled) 2580 kmemcheck_pagealloc_alloc(page, order, gfp_mask); 2581 2582 return page; 2583 } 2584 2585 /* 2586 * This is the 'heart' of the zoned buddy allocator. 2587 */ 2588 struct page * 2589 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, 2590 struct zonelist *zonelist, nodemask_t *nodemask) 2591 { 2592 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 2593 struct zone *preferred_zone; 2594 struct page *page = NULL; 2595 int migratetype = allocflags_to_migratetype(gfp_mask); 2596 unsigned int cpuset_mems_cookie; 2597 int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET; 2598 2599 gfp_mask &= gfp_allowed_mask; 2600 2601 lockdep_trace_alloc(gfp_mask); 2602 2603 might_sleep_if(gfp_mask & __GFP_WAIT); 2604 2605 if (should_fail_alloc_page(gfp_mask, order)) 2606 return NULL; 2607 2608 /* 2609 * Check the zones suitable for the gfp_mask contain at least one 2610 * valid zone. It's possible to have an empty zonelist as a result 2611 * of GFP_THISNODE and a memoryless node 2612 */ 2613 if (unlikely(!zonelist->_zonerefs->zone)) 2614 return NULL; 2615 2616 retry_cpuset: 2617 cpuset_mems_cookie = get_mems_allowed(); 2618 2619 /* The preferred zone is used for statistics later */ 2620 first_zones_zonelist(zonelist, high_zoneidx, 2621 nodemask ? : &cpuset_current_mems_allowed, 2622 &preferred_zone); 2623 if (!preferred_zone) 2624 goto out; 2625 2626 #ifdef CONFIG_CMA 2627 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE) 2628 alloc_flags |= ALLOC_CMA; 2629 #endif 2630 /* First allocation attempt */ 2631 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order, 2632 zonelist, high_zoneidx, alloc_flags, 2633 preferred_zone, migratetype); 2634 if (unlikely(!page)) 2635 page = __alloc_pages_slowpath(gfp_mask, order, 2636 zonelist, high_zoneidx, nodemask, 2637 preferred_zone, migratetype); 2638 2639 trace_mm_page_alloc(page, order, gfp_mask, migratetype); 2640 2641 out: 2642 /* 2643 * When updating a task's mems_allowed, it is possible to race with 2644 * parallel threads in such a way that an allocation can fail while 2645 * the mask is being updated. If a page allocation is about to fail, 2646 * check if the cpuset changed during allocation and if so, retry. 2647 */ 2648 if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page)) 2649 goto retry_cpuset; 2650 2651 return page; 2652 } 2653 EXPORT_SYMBOL(__alloc_pages_nodemask); 2654 2655 /* 2656 * Common helper functions. 2657 */ 2658 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 2659 { 2660 struct page *page; 2661 2662 /* 2663 * __get_free_pages() returns a 32-bit address, which cannot represent 2664 * a highmem page 2665 */ 2666 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0); 2667 2668 page = alloc_pages(gfp_mask, order); 2669 if (!page) 2670 return 0; 2671 return (unsigned long) page_address(page); 2672 } 2673 EXPORT_SYMBOL(__get_free_pages); 2674 2675 unsigned long get_zeroed_page(gfp_t gfp_mask) 2676 { 2677 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 2678 } 2679 EXPORT_SYMBOL(get_zeroed_page); 2680 2681 void __free_pages(struct page *page, unsigned int order) 2682 { 2683 if (put_page_testzero(page)) { 2684 if (order == 0) 2685 free_hot_cold_page(page, 0); 2686 else 2687 __free_pages_ok(page, order); 2688 } 2689 } 2690 2691 EXPORT_SYMBOL(__free_pages); 2692 2693 void free_pages(unsigned long addr, unsigned int order) 2694 { 2695 if (addr != 0) { 2696 VM_BUG_ON(!virt_addr_valid((void *)addr)); 2697 __free_pages(virt_to_page((void *)addr), order); 2698 } 2699 } 2700 2701 EXPORT_SYMBOL(free_pages); 2702 2703 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size) 2704 { 2705 if (addr) { 2706 unsigned long alloc_end = addr + (PAGE_SIZE << order); 2707 unsigned long used = addr + PAGE_ALIGN(size); 2708 2709 split_page(virt_to_page((void *)addr), order); 2710 while (used < alloc_end) { 2711 free_page(used); 2712 used += PAGE_SIZE; 2713 } 2714 } 2715 return (void *)addr; 2716 } 2717 2718 /** 2719 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 2720 * @size: the number of bytes to allocate 2721 * @gfp_mask: GFP flags for the allocation 2722 * 2723 * This function is similar to alloc_pages(), except that it allocates the 2724 * minimum number of pages to satisfy the request. alloc_pages() can only 2725 * allocate memory in power-of-two pages. 2726 * 2727 * This function is also limited by MAX_ORDER. 2728 * 2729 * Memory allocated by this function must be released by free_pages_exact(). 2730 */ 2731 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 2732 { 2733 unsigned int order = get_order(size); 2734 unsigned long addr; 2735 2736 addr = __get_free_pages(gfp_mask, order); 2737 return make_alloc_exact(addr, order, size); 2738 } 2739 EXPORT_SYMBOL(alloc_pages_exact); 2740 2741 /** 2742 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 2743 * pages on a node. 2744 * @nid: the preferred node ID where memory should be allocated 2745 * @size: the number of bytes to allocate 2746 * @gfp_mask: GFP flags for the allocation 2747 * 2748 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 2749 * back. 2750 * Note this is not alloc_pages_exact_node() which allocates on a specific node, 2751 * but is not exact. 2752 */ 2753 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 2754 { 2755 unsigned order = get_order(size); 2756 struct page *p = alloc_pages_node(nid, gfp_mask, order); 2757 if (!p) 2758 return NULL; 2759 return make_alloc_exact((unsigned long)page_address(p), order, size); 2760 } 2761 EXPORT_SYMBOL(alloc_pages_exact_nid); 2762 2763 /** 2764 * free_pages_exact - release memory allocated via alloc_pages_exact() 2765 * @virt: the value returned by alloc_pages_exact. 2766 * @size: size of allocation, same value as passed to alloc_pages_exact(). 2767 * 2768 * Release the memory allocated by a previous call to alloc_pages_exact. 2769 */ 2770 void free_pages_exact(void *virt, size_t size) 2771 { 2772 unsigned long addr = (unsigned long)virt; 2773 unsigned long end = addr + PAGE_ALIGN(size); 2774 2775 while (addr < end) { 2776 free_page(addr); 2777 addr += PAGE_SIZE; 2778 } 2779 } 2780 EXPORT_SYMBOL(free_pages_exact); 2781 2782 static unsigned int nr_free_zone_pages(int offset) 2783 { 2784 struct zoneref *z; 2785 struct zone *zone; 2786 2787 /* Just pick one node, since fallback list is circular */ 2788 unsigned int sum = 0; 2789 2790 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 2791 2792 for_each_zone_zonelist(zone, z, zonelist, offset) { 2793 unsigned long size = zone->present_pages; 2794 unsigned long high = high_wmark_pages(zone); 2795 if (size > high) 2796 sum += size - high; 2797 } 2798 2799 return sum; 2800 } 2801 2802 /* 2803 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL 2804 */ 2805 unsigned int nr_free_buffer_pages(void) 2806 { 2807 return nr_free_zone_pages(gfp_zone(GFP_USER)); 2808 } 2809 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 2810 2811 /* 2812 * Amount of free RAM allocatable within all zones 2813 */ 2814 unsigned int nr_free_pagecache_pages(void) 2815 { 2816 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 2817 } 2818 2819 static inline void show_node(struct zone *zone) 2820 { 2821 if (NUMA_BUILD) 2822 printk("Node %d ", zone_to_nid(zone)); 2823 } 2824 2825 void si_meminfo(struct sysinfo *val) 2826 { 2827 val->totalram = totalram_pages; 2828 val->sharedram = 0; 2829 val->freeram = global_page_state(NR_FREE_PAGES); 2830 val->bufferram = nr_blockdev_pages(); 2831 val->totalhigh = totalhigh_pages; 2832 val->freehigh = nr_free_highpages(); 2833 val->mem_unit = PAGE_SIZE; 2834 } 2835 2836 EXPORT_SYMBOL(si_meminfo); 2837 2838 #ifdef CONFIG_NUMA 2839 void si_meminfo_node(struct sysinfo *val, int nid) 2840 { 2841 pg_data_t *pgdat = NODE_DATA(nid); 2842 2843 val->totalram = pgdat->node_present_pages; 2844 val->freeram = node_page_state(nid, NR_FREE_PAGES); 2845 #ifdef CONFIG_HIGHMEM 2846 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages; 2847 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM], 2848 NR_FREE_PAGES); 2849 #else 2850 val->totalhigh = 0; 2851 val->freehigh = 0; 2852 #endif 2853 val->mem_unit = PAGE_SIZE; 2854 } 2855 #endif 2856 2857 /* 2858 * Determine whether the node should be displayed or not, depending on whether 2859 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 2860 */ 2861 bool skip_free_areas_node(unsigned int flags, int nid) 2862 { 2863 bool ret = false; 2864 unsigned int cpuset_mems_cookie; 2865 2866 if (!(flags & SHOW_MEM_FILTER_NODES)) 2867 goto out; 2868 2869 do { 2870 cpuset_mems_cookie = get_mems_allowed(); 2871 ret = !node_isset(nid, cpuset_current_mems_allowed); 2872 } while (!put_mems_allowed(cpuset_mems_cookie)); 2873 out: 2874 return ret; 2875 } 2876 2877 #define K(x) ((x) << (PAGE_SHIFT-10)) 2878 2879 /* 2880 * Show free area list (used inside shift_scroll-lock stuff) 2881 * We also calculate the percentage fragmentation. We do this by counting the 2882 * memory on each free list with the exception of the first item on the list. 2883 * Suppresses nodes that are not allowed by current's cpuset if 2884 * SHOW_MEM_FILTER_NODES is passed. 2885 */ 2886 void show_free_areas(unsigned int filter) 2887 { 2888 int cpu; 2889 struct zone *zone; 2890 2891 for_each_populated_zone(zone) { 2892 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2893 continue; 2894 show_node(zone); 2895 printk("%s per-cpu:\n", zone->name); 2896 2897 for_each_online_cpu(cpu) { 2898 struct per_cpu_pageset *pageset; 2899 2900 pageset = per_cpu_ptr(zone->pageset, cpu); 2901 2902 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n", 2903 cpu, pageset->pcp.high, 2904 pageset->pcp.batch, pageset->pcp.count); 2905 } 2906 } 2907 2908 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 2909 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 2910 " unevictable:%lu" 2911 " dirty:%lu writeback:%lu unstable:%lu\n" 2912 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n" 2913 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 2914 " free_cma:%lu\n", 2915 global_page_state(NR_ACTIVE_ANON), 2916 global_page_state(NR_INACTIVE_ANON), 2917 global_page_state(NR_ISOLATED_ANON), 2918 global_page_state(NR_ACTIVE_FILE), 2919 global_page_state(NR_INACTIVE_FILE), 2920 global_page_state(NR_ISOLATED_FILE), 2921 global_page_state(NR_UNEVICTABLE), 2922 global_page_state(NR_FILE_DIRTY), 2923 global_page_state(NR_WRITEBACK), 2924 global_page_state(NR_UNSTABLE_NFS), 2925 global_page_state(NR_FREE_PAGES), 2926 global_page_state(NR_SLAB_RECLAIMABLE), 2927 global_page_state(NR_SLAB_UNRECLAIMABLE), 2928 global_page_state(NR_FILE_MAPPED), 2929 global_page_state(NR_SHMEM), 2930 global_page_state(NR_PAGETABLE), 2931 global_page_state(NR_BOUNCE), 2932 global_page_state(NR_FREE_CMA_PAGES)); 2933 2934 for_each_populated_zone(zone) { 2935 int i; 2936 2937 if (skip_free_areas_node(filter, zone_to_nid(zone))) 2938 continue; 2939 show_node(zone); 2940 printk("%s" 2941 " free:%lukB" 2942 " min:%lukB" 2943 " low:%lukB" 2944 " high:%lukB" 2945 " active_anon:%lukB" 2946 " inactive_anon:%lukB" 2947 " active_file:%lukB" 2948 " inactive_file:%lukB" 2949 " unevictable:%lukB" 2950 " isolated(anon):%lukB" 2951 " isolated(file):%lukB" 2952 " present:%lukB" 2953 " mlocked:%lukB" 2954 " dirty:%lukB" 2955 " writeback:%lukB" 2956 " mapped:%lukB" 2957 " shmem:%lukB" 2958 " slab_reclaimable:%lukB" 2959 " slab_unreclaimable:%lukB" 2960 " kernel_stack:%lukB" 2961 " pagetables:%lukB" 2962 " unstable:%lukB" 2963 " bounce:%lukB" 2964 " free_cma:%lukB" 2965 " writeback_tmp:%lukB" 2966 " pages_scanned:%lu" 2967 " all_unreclaimable? %s" 2968 "\n", 2969 zone->name, 2970 K(zone_page_state(zone, NR_FREE_PAGES)), 2971 K(min_wmark_pages(zone)), 2972 K(low_wmark_pages(zone)), 2973 K(high_wmark_pages(zone)), 2974 K(zone_page_state(zone, NR_ACTIVE_ANON)), 2975 K(zone_page_state(zone, NR_INACTIVE_ANON)), 2976 K(zone_page_state(zone, NR_ACTIVE_FILE)), 2977 K(zone_page_state(zone, NR_INACTIVE_FILE)), 2978 K(zone_page_state(zone, NR_UNEVICTABLE)), 2979 K(zone_page_state(zone, NR_ISOLATED_ANON)), 2980 K(zone_page_state(zone, NR_ISOLATED_FILE)), 2981 K(zone->present_pages), 2982 K(zone_page_state(zone, NR_MLOCK)), 2983 K(zone_page_state(zone, NR_FILE_DIRTY)), 2984 K(zone_page_state(zone, NR_WRITEBACK)), 2985 K(zone_page_state(zone, NR_FILE_MAPPED)), 2986 K(zone_page_state(zone, NR_SHMEM)), 2987 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)), 2988 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)), 2989 zone_page_state(zone, NR_KERNEL_STACK) * 2990 THREAD_SIZE / 1024, 2991 K(zone_page_state(zone, NR_PAGETABLE)), 2992 K(zone_page_state(zone, NR_UNSTABLE_NFS)), 2993 K(zone_page_state(zone, NR_BOUNCE)), 2994 K(zone_page_state(zone, NR_FREE_CMA_PAGES)), 2995 K(zone_page_state(zone, NR_WRITEBACK_TEMP)), 2996 zone->pages_scanned, 2997 (zone->all_unreclaimable ? "yes" : "no") 2998 ); 2999 printk("lowmem_reserve[]:"); 3000 for (i = 0; i < MAX_NR_ZONES; i++) 3001 printk(" %lu", zone->lowmem_reserve[i]); 3002 printk("\n"); 3003 } 3004 3005 for_each_populated_zone(zone) { 3006 unsigned long nr[MAX_ORDER], flags, order, total = 0; 3007 3008 if (skip_free_areas_node(filter, zone_to_nid(zone))) 3009 continue; 3010 show_node(zone); 3011 printk("%s: ", zone->name); 3012 3013 spin_lock_irqsave(&zone->lock, flags); 3014 for (order = 0; order < MAX_ORDER; order++) { 3015 nr[order] = zone->free_area[order].nr_free; 3016 total += nr[order] << order; 3017 } 3018 spin_unlock_irqrestore(&zone->lock, flags); 3019 for (order = 0; order < MAX_ORDER; order++) 3020 printk("%lu*%lukB ", nr[order], K(1UL) << order); 3021 printk("= %lukB\n", K(total)); 3022 } 3023 3024 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES)); 3025 3026 show_swap_cache_info(); 3027 } 3028 3029 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 3030 { 3031 zoneref->zone = zone; 3032 zoneref->zone_idx = zone_idx(zone); 3033 } 3034 3035 /* 3036 * Builds allocation fallback zone lists. 3037 * 3038 * Add all populated zones of a node to the zonelist. 3039 */ 3040 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist, 3041 int nr_zones, enum zone_type zone_type) 3042 { 3043 struct zone *zone; 3044 3045 BUG_ON(zone_type >= MAX_NR_ZONES); 3046 zone_type++; 3047 3048 do { 3049 zone_type--; 3050 zone = pgdat->node_zones + zone_type; 3051 if (populated_zone(zone)) { 3052 zoneref_set_zone(zone, 3053 &zonelist->_zonerefs[nr_zones++]); 3054 check_highest_zone(zone_type); 3055 } 3056 3057 } while (zone_type); 3058 return nr_zones; 3059 } 3060 3061 3062 /* 3063 * zonelist_order: 3064 * 0 = automatic detection of better ordering. 3065 * 1 = order by ([node] distance, -zonetype) 3066 * 2 = order by (-zonetype, [node] distance) 3067 * 3068 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create 3069 * the same zonelist. So only NUMA can configure this param. 3070 */ 3071 #define ZONELIST_ORDER_DEFAULT 0 3072 #define ZONELIST_ORDER_NODE 1 3073 #define ZONELIST_ORDER_ZONE 2 3074 3075 /* zonelist order in the kernel. 3076 * set_zonelist_order() will set this to NODE or ZONE. 3077 */ 3078 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT; 3079 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"}; 3080 3081 3082 #ifdef CONFIG_NUMA 3083 /* The value user specified ....changed by config */ 3084 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3085 /* string for sysctl */ 3086 #define NUMA_ZONELIST_ORDER_LEN 16 3087 char numa_zonelist_order[16] = "default"; 3088 3089 /* 3090 * interface for configure zonelist ordering. 3091 * command line option "numa_zonelist_order" 3092 * = "[dD]efault - default, automatic configuration. 3093 * = "[nN]ode - order by node locality, then by zone within node 3094 * = "[zZ]one - order by zone, then by locality within zone 3095 */ 3096 3097 static int __parse_numa_zonelist_order(char *s) 3098 { 3099 if (*s == 'd' || *s == 'D') { 3100 user_zonelist_order = ZONELIST_ORDER_DEFAULT; 3101 } else if (*s == 'n' || *s == 'N') { 3102 user_zonelist_order = ZONELIST_ORDER_NODE; 3103 } else if (*s == 'z' || *s == 'Z') { 3104 user_zonelist_order = ZONELIST_ORDER_ZONE; 3105 } else { 3106 printk(KERN_WARNING 3107 "Ignoring invalid numa_zonelist_order value: " 3108 "%s\n", s); 3109 return -EINVAL; 3110 } 3111 return 0; 3112 } 3113 3114 static __init int setup_numa_zonelist_order(char *s) 3115 { 3116 int ret; 3117 3118 if (!s) 3119 return 0; 3120 3121 ret = __parse_numa_zonelist_order(s); 3122 if (ret == 0) 3123 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN); 3124 3125 return ret; 3126 } 3127 early_param("numa_zonelist_order", setup_numa_zonelist_order); 3128 3129 /* 3130 * sysctl handler for numa_zonelist_order 3131 */ 3132 int numa_zonelist_order_handler(ctl_table *table, int write, 3133 void __user *buffer, size_t *length, 3134 loff_t *ppos) 3135 { 3136 char saved_string[NUMA_ZONELIST_ORDER_LEN]; 3137 int ret; 3138 static DEFINE_MUTEX(zl_order_mutex); 3139 3140 mutex_lock(&zl_order_mutex); 3141 if (write) 3142 strcpy(saved_string, (char*)table->data); 3143 ret = proc_dostring(table, write, buffer, length, ppos); 3144 if (ret) 3145 goto out; 3146 if (write) { 3147 int oldval = user_zonelist_order; 3148 if (__parse_numa_zonelist_order((char*)table->data)) { 3149 /* 3150 * bogus value. restore saved string 3151 */ 3152 strncpy((char*)table->data, saved_string, 3153 NUMA_ZONELIST_ORDER_LEN); 3154 user_zonelist_order = oldval; 3155 } else if (oldval != user_zonelist_order) { 3156 mutex_lock(&zonelists_mutex); 3157 build_all_zonelists(NULL, NULL); 3158 mutex_unlock(&zonelists_mutex); 3159 } 3160 } 3161 out: 3162 mutex_unlock(&zl_order_mutex); 3163 return ret; 3164 } 3165 3166 3167 #define MAX_NODE_LOAD (nr_online_nodes) 3168 static int node_load[MAX_NUMNODES]; 3169 3170 /** 3171 * find_next_best_node - find the next node that should appear in a given node's fallback list 3172 * @node: node whose fallback list we're appending 3173 * @used_node_mask: nodemask_t of already used nodes 3174 * 3175 * We use a number of factors to determine which is the next node that should 3176 * appear on a given node's fallback list. The node should not have appeared 3177 * already in @node's fallback list, and it should be the next closest node 3178 * according to the distance array (which contains arbitrary distance values 3179 * from each node to each node in the system), and should also prefer nodes 3180 * with no CPUs, since presumably they'll have very little allocation pressure 3181 * on them otherwise. 3182 * It returns -1 if no node is found. 3183 */ 3184 static int find_next_best_node(int node, nodemask_t *used_node_mask) 3185 { 3186 int n, val; 3187 int min_val = INT_MAX; 3188 int best_node = -1; 3189 const struct cpumask *tmp = cpumask_of_node(0); 3190 3191 /* Use the local node if we haven't already */ 3192 if (!node_isset(node, *used_node_mask)) { 3193 node_set(node, *used_node_mask); 3194 return node; 3195 } 3196 3197 for_each_node_state(n, N_HIGH_MEMORY) { 3198 3199 /* Don't want a node to appear more than once */ 3200 if (node_isset(n, *used_node_mask)) 3201 continue; 3202 3203 /* Use the distance array to find the distance */ 3204 val = node_distance(node, n); 3205 3206 /* Penalize nodes under us ("prefer the next node") */ 3207 val += (n < node); 3208 3209 /* Give preference to headless and unused nodes */ 3210 tmp = cpumask_of_node(n); 3211 if (!cpumask_empty(tmp)) 3212 val += PENALTY_FOR_NODE_WITH_CPUS; 3213 3214 /* Slight preference for less loaded node */ 3215 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 3216 val += node_load[n]; 3217 3218 if (val < min_val) { 3219 min_val = val; 3220 best_node = n; 3221 } 3222 } 3223 3224 if (best_node >= 0) 3225 node_set(best_node, *used_node_mask); 3226 3227 return best_node; 3228 } 3229 3230 3231 /* 3232 * Build zonelists ordered by node and zones within node. 3233 * This results in maximum locality--normal zone overflows into local 3234 * DMA zone, if any--but risks exhausting DMA zone. 3235 */ 3236 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node) 3237 { 3238 int j; 3239 struct zonelist *zonelist; 3240 3241 zonelist = &pgdat->node_zonelists[0]; 3242 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++) 3243 ; 3244 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3245 MAX_NR_ZONES - 1); 3246 zonelist->_zonerefs[j].zone = NULL; 3247 zonelist->_zonerefs[j].zone_idx = 0; 3248 } 3249 3250 /* 3251 * Build gfp_thisnode zonelists 3252 */ 3253 static void build_thisnode_zonelists(pg_data_t *pgdat) 3254 { 3255 int j; 3256 struct zonelist *zonelist; 3257 3258 zonelist = &pgdat->node_zonelists[1]; 3259 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3260 zonelist->_zonerefs[j].zone = NULL; 3261 zonelist->_zonerefs[j].zone_idx = 0; 3262 } 3263 3264 /* 3265 * Build zonelists ordered by zone and nodes within zones. 3266 * This results in conserving DMA zone[s] until all Normal memory is 3267 * exhausted, but results in overflowing to remote node while memory 3268 * may still exist in local DMA zone. 3269 */ 3270 static int node_order[MAX_NUMNODES]; 3271 3272 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes) 3273 { 3274 int pos, j, node; 3275 int zone_type; /* needs to be signed */ 3276 struct zone *z; 3277 struct zonelist *zonelist; 3278 3279 zonelist = &pgdat->node_zonelists[0]; 3280 pos = 0; 3281 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) { 3282 for (j = 0; j < nr_nodes; j++) { 3283 node = node_order[j]; 3284 z = &NODE_DATA(node)->node_zones[zone_type]; 3285 if (populated_zone(z)) { 3286 zoneref_set_zone(z, 3287 &zonelist->_zonerefs[pos++]); 3288 check_highest_zone(zone_type); 3289 } 3290 } 3291 } 3292 zonelist->_zonerefs[pos].zone = NULL; 3293 zonelist->_zonerefs[pos].zone_idx = 0; 3294 } 3295 3296 static int default_zonelist_order(void) 3297 { 3298 int nid, zone_type; 3299 unsigned long low_kmem_size,total_size; 3300 struct zone *z; 3301 int average_size; 3302 /* 3303 * ZONE_DMA and ZONE_DMA32 can be very small area in the system. 3304 * If they are really small and used heavily, the system can fall 3305 * into OOM very easily. 3306 * This function detect ZONE_DMA/DMA32 size and configures zone order. 3307 */ 3308 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */ 3309 low_kmem_size = 0; 3310 total_size = 0; 3311 for_each_online_node(nid) { 3312 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3313 z = &NODE_DATA(nid)->node_zones[zone_type]; 3314 if (populated_zone(z)) { 3315 if (zone_type < ZONE_NORMAL) 3316 low_kmem_size += z->present_pages; 3317 total_size += z->present_pages; 3318 } else if (zone_type == ZONE_NORMAL) { 3319 /* 3320 * If any node has only lowmem, then node order 3321 * is preferred to allow kernel allocations 3322 * locally; otherwise, they can easily infringe 3323 * on other nodes when there is an abundance of 3324 * lowmem available to allocate from. 3325 */ 3326 return ZONELIST_ORDER_NODE; 3327 } 3328 } 3329 } 3330 if (!low_kmem_size || /* there are no DMA area. */ 3331 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */ 3332 return ZONELIST_ORDER_NODE; 3333 /* 3334 * look into each node's config. 3335 * If there is a node whose DMA/DMA32 memory is very big area on 3336 * local memory, NODE_ORDER may be suitable. 3337 */ 3338 average_size = total_size / 3339 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1); 3340 for_each_online_node(nid) { 3341 low_kmem_size = 0; 3342 total_size = 0; 3343 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 3344 z = &NODE_DATA(nid)->node_zones[zone_type]; 3345 if (populated_zone(z)) { 3346 if (zone_type < ZONE_NORMAL) 3347 low_kmem_size += z->present_pages; 3348 total_size += z->present_pages; 3349 } 3350 } 3351 if (low_kmem_size && 3352 total_size > average_size && /* ignore small node */ 3353 low_kmem_size > total_size * 70/100) 3354 return ZONELIST_ORDER_NODE; 3355 } 3356 return ZONELIST_ORDER_ZONE; 3357 } 3358 3359 static void set_zonelist_order(void) 3360 { 3361 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT) 3362 current_zonelist_order = default_zonelist_order(); 3363 else 3364 current_zonelist_order = user_zonelist_order; 3365 } 3366 3367 static void build_zonelists(pg_data_t *pgdat) 3368 { 3369 int j, node, load; 3370 enum zone_type i; 3371 nodemask_t used_mask; 3372 int local_node, prev_node; 3373 struct zonelist *zonelist; 3374 int order = current_zonelist_order; 3375 3376 /* initialize zonelists */ 3377 for (i = 0; i < MAX_ZONELISTS; i++) { 3378 zonelist = pgdat->node_zonelists + i; 3379 zonelist->_zonerefs[0].zone = NULL; 3380 zonelist->_zonerefs[0].zone_idx = 0; 3381 } 3382 3383 /* NUMA-aware ordering of nodes */ 3384 local_node = pgdat->node_id; 3385 load = nr_online_nodes; 3386 prev_node = local_node; 3387 nodes_clear(used_mask); 3388 3389 memset(node_order, 0, sizeof(node_order)); 3390 j = 0; 3391 3392 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 3393 /* 3394 * We don't want to pressure a particular node. 3395 * So adding penalty to the first node in same 3396 * distance group to make it round-robin. 3397 */ 3398 if (node_distance(local_node, node) != 3399 node_distance(local_node, prev_node)) 3400 node_load[node] = load; 3401 3402 prev_node = node; 3403 load--; 3404 if (order == ZONELIST_ORDER_NODE) 3405 build_zonelists_in_node_order(pgdat, node); 3406 else 3407 node_order[j++] = node; /* remember order */ 3408 } 3409 3410 if (order == ZONELIST_ORDER_ZONE) { 3411 /* calculate node order -- i.e., DMA last! */ 3412 build_zonelists_in_zone_order(pgdat, j); 3413 } 3414 3415 build_thisnode_zonelists(pgdat); 3416 } 3417 3418 /* Construct the zonelist performance cache - see further mmzone.h */ 3419 static void build_zonelist_cache(pg_data_t *pgdat) 3420 { 3421 struct zonelist *zonelist; 3422 struct zonelist_cache *zlc; 3423 struct zoneref *z; 3424 3425 zonelist = &pgdat->node_zonelists[0]; 3426 zonelist->zlcache_ptr = zlc = &zonelist->zlcache; 3427 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST); 3428 for (z = zonelist->_zonerefs; z->zone; z++) 3429 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z); 3430 } 3431 3432 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3433 /* 3434 * Return node id of node used for "local" allocations. 3435 * I.e., first node id of first zone in arg node's generic zonelist. 3436 * Used for initializing percpu 'numa_mem', which is used primarily 3437 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 3438 */ 3439 int local_memory_node(int node) 3440 { 3441 struct zone *zone; 3442 3443 (void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 3444 gfp_zone(GFP_KERNEL), 3445 NULL, 3446 &zone); 3447 return zone->node; 3448 } 3449 #endif 3450 3451 #else /* CONFIG_NUMA */ 3452 3453 static void set_zonelist_order(void) 3454 { 3455 current_zonelist_order = ZONELIST_ORDER_ZONE; 3456 } 3457 3458 static void build_zonelists(pg_data_t *pgdat) 3459 { 3460 int node, local_node; 3461 enum zone_type j; 3462 struct zonelist *zonelist; 3463 3464 local_node = pgdat->node_id; 3465 3466 zonelist = &pgdat->node_zonelists[0]; 3467 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1); 3468 3469 /* 3470 * Now we build the zonelist so that it contains the zones 3471 * of all the other nodes. 3472 * We don't want to pressure a particular node, so when 3473 * building the zones for node N, we make sure that the 3474 * zones coming right after the local ones are those from 3475 * node N+1 (modulo N) 3476 */ 3477 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 3478 if (!node_online(node)) 3479 continue; 3480 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3481 MAX_NR_ZONES - 1); 3482 } 3483 for (node = 0; node < local_node; node++) { 3484 if (!node_online(node)) 3485 continue; 3486 j = build_zonelists_node(NODE_DATA(node), zonelist, j, 3487 MAX_NR_ZONES - 1); 3488 } 3489 3490 zonelist->_zonerefs[j].zone = NULL; 3491 zonelist->_zonerefs[j].zone_idx = 0; 3492 } 3493 3494 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */ 3495 static void build_zonelist_cache(pg_data_t *pgdat) 3496 { 3497 pgdat->node_zonelists[0].zlcache_ptr = NULL; 3498 } 3499 3500 #endif /* CONFIG_NUMA */ 3501 3502 /* 3503 * Boot pageset table. One per cpu which is going to be used for all 3504 * zones and all nodes. The parameters will be set in such a way 3505 * that an item put on a list will immediately be handed over to 3506 * the buddy list. This is safe since pageset manipulation is done 3507 * with interrupts disabled. 3508 * 3509 * The boot_pagesets must be kept even after bootup is complete for 3510 * unused processors and/or zones. They do play a role for bootstrapping 3511 * hotplugged processors. 3512 * 3513 * zoneinfo_show() and maybe other functions do 3514 * not check if the processor is online before following the pageset pointer. 3515 * Other parts of the kernel may not check if the zone is available. 3516 */ 3517 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch); 3518 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset); 3519 static void setup_zone_pageset(struct zone *zone); 3520 3521 /* 3522 * Global mutex to protect against size modification of zonelists 3523 * as well as to serialize pageset setup for the new populated zone. 3524 */ 3525 DEFINE_MUTEX(zonelists_mutex); 3526 3527 /* return values int ....just for stop_machine() */ 3528 static int __build_all_zonelists(void *data) 3529 { 3530 int nid; 3531 int cpu; 3532 pg_data_t *self = data; 3533 3534 #ifdef CONFIG_NUMA 3535 memset(node_load, 0, sizeof(node_load)); 3536 #endif 3537 3538 if (self && !node_online(self->node_id)) { 3539 build_zonelists(self); 3540 build_zonelist_cache(self); 3541 } 3542 3543 for_each_online_node(nid) { 3544 pg_data_t *pgdat = NODE_DATA(nid); 3545 3546 build_zonelists(pgdat); 3547 build_zonelist_cache(pgdat); 3548 } 3549 3550 /* 3551 * Initialize the boot_pagesets that are going to be used 3552 * for bootstrapping processors. The real pagesets for 3553 * each zone will be allocated later when the per cpu 3554 * allocator is available. 3555 * 3556 * boot_pagesets are used also for bootstrapping offline 3557 * cpus if the system is already booted because the pagesets 3558 * are needed to initialize allocators on a specific cpu too. 3559 * F.e. the percpu allocator needs the page allocator which 3560 * needs the percpu allocator in order to allocate its pagesets 3561 * (a chicken-egg dilemma). 3562 */ 3563 for_each_possible_cpu(cpu) { 3564 setup_pageset(&per_cpu(boot_pageset, cpu), 0); 3565 3566 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 3567 /* 3568 * We now know the "local memory node" for each node-- 3569 * i.e., the node of the first zone in the generic zonelist. 3570 * Set up numa_mem percpu variable for on-line cpus. During 3571 * boot, only the boot cpu should be on-line; we'll init the 3572 * secondary cpus' numa_mem as they come on-line. During 3573 * node/memory hotplug, we'll fixup all on-line cpus. 3574 */ 3575 if (cpu_online(cpu)) 3576 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 3577 #endif 3578 } 3579 3580 return 0; 3581 } 3582 3583 /* 3584 * Called with zonelists_mutex held always 3585 * unless system_state == SYSTEM_BOOTING. 3586 */ 3587 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone) 3588 { 3589 set_zonelist_order(); 3590 3591 if (system_state == SYSTEM_BOOTING) { 3592 __build_all_zonelists(NULL); 3593 mminit_verify_zonelist(); 3594 cpuset_init_current_mems_allowed(); 3595 } else { 3596 /* we have to stop all cpus to guarantee there is no user 3597 of zonelist */ 3598 #ifdef CONFIG_MEMORY_HOTPLUG 3599 if (zone) 3600 setup_zone_pageset(zone); 3601 #endif 3602 stop_machine(__build_all_zonelists, pgdat, NULL); 3603 /* cpuset refresh routine should be here */ 3604 } 3605 vm_total_pages = nr_free_pagecache_pages(); 3606 /* 3607 * Disable grouping by mobility if the number of pages in the 3608 * system is too low to allow the mechanism to work. It would be 3609 * more accurate, but expensive to check per-zone. This check is 3610 * made on memory-hotadd so a system can start with mobility 3611 * disabled and enable it later 3612 */ 3613 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 3614 page_group_by_mobility_disabled = 1; 3615 else 3616 page_group_by_mobility_disabled = 0; 3617 3618 printk("Built %i zonelists in %s order, mobility grouping %s. " 3619 "Total pages: %ld\n", 3620 nr_online_nodes, 3621 zonelist_order_name[current_zonelist_order], 3622 page_group_by_mobility_disabled ? "off" : "on", 3623 vm_total_pages); 3624 #ifdef CONFIG_NUMA 3625 printk("Policy zone: %s\n", zone_names[policy_zone]); 3626 #endif 3627 } 3628 3629 /* 3630 * Helper functions to size the waitqueue hash table. 3631 * Essentially these want to choose hash table sizes sufficiently 3632 * large so that collisions trying to wait on pages are rare. 3633 * But in fact, the number of active page waitqueues on typical 3634 * systems is ridiculously low, less than 200. So this is even 3635 * conservative, even though it seems large. 3636 * 3637 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to 3638 * waitqueues, i.e. the size of the waitq table given the number of pages. 3639 */ 3640 #define PAGES_PER_WAITQUEUE 256 3641 3642 #ifndef CONFIG_MEMORY_HOTPLUG 3643 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3644 { 3645 unsigned long size = 1; 3646 3647 pages /= PAGES_PER_WAITQUEUE; 3648 3649 while (size < pages) 3650 size <<= 1; 3651 3652 /* 3653 * Once we have dozens or even hundreds of threads sleeping 3654 * on IO we've got bigger problems than wait queue collision. 3655 * Limit the size of the wait table to a reasonable size. 3656 */ 3657 size = min(size, 4096UL); 3658 3659 return max(size, 4UL); 3660 } 3661 #else 3662 /* 3663 * A zone's size might be changed by hot-add, so it is not possible to determine 3664 * a suitable size for its wait_table. So we use the maximum size now. 3665 * 3666 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie: 3667 * 3668 * i386 (preemption config) : 4096 x 16 = 64Kbyte. 3669 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte. 3670 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte. 3671 * 3672 * The maximum entries are prepared when a zone's memory is (512K + 256) pages 3673 * or more by the traditional way. (See above). It equals: 3674 * 3675 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte. 3676 * ia64(16K page size) : = ( 8G + 4M)byte. 3677 * powerpc (64K page size) : = (32G +16M)byte. 3678 */ 3679 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages) 3680 { 3681 return 4096UL; 3682 } 3683 #endif 3684 3685 /* 3686 * This is an integer logarithm so that shifts can be used later 3687 * to extract the more random high bits from the multiplicative 3688 * hash function before the remainder is taken. 3689 */ 3690 static inline unsigned long wait_table_bits(unsigned long size) 3691 { 3692 return ffz(~size); 3693 } 3694 3695 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1)) 3696 3697 /* 3698 * Check if a pageblock contains reserved pages 3699 */ 3700 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn) 3701 { 3702 unsigned long pfn; 3703 3704 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3705 if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn))) 3706 return 1; 3707 } 3708 return 0; 3709 } 3710 3711 /* 3712 * Mark a number of pageblocks as MIGRATE_RESERVE. The number 3713 * of blocks reserved is based on min_wmark_pages(zone). The memory within 3714 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes 3715 * higher will lead to a bigger reserve which will get freed as contiguous 3716 * blocks as reclaim kicks in 3717 */ 3718 static void setup_zone_migrate_reserve(struct zone *zone) 3719 { 3720 unsigned long start_pfn, pfn, end_pfn, block_end_pfn; 3721 struct page *page; 3722 unsigned long block_migratetype; 3723 int reserve; 3724 3725 /* 3726 * Get the start pfn, end pfn and the number of blocks to reserve 3727 * We have to be careful to be aligned to pageblock_nr_pages to 3728 * make sure that we always check pfn_valid for the first page in 3729 * the block. 3730 */ 3731 start_pfn = zone->zone_start_pfn; 3732 end_pfn = start_pfn + zone->spanned_pages; 3733 start_pfn = roundup(start_pfn, pageblock_nr_pages); 3734 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >> 3735 pageblock_order; 3736 3737 /* 3738 * Reserve blocks are generally in place to help high-order atomic 3739 * allocations that are short-lived. A min_free_kbytes value that 3740 * would result in more than 2 reserve blocks for atomic allocations 3741 * is assumed to be in place to help anti-fragmentation for the 3742 * future allocation of hugepages at runtime. 3743 */ 3744 reserve = min(2, reserve); 3745 3746 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) { 3747 if (!pfn_valid(pfn)) 3748 continue; 3749 page = pfn_to_page(pfn); 3750 3751 /* Watch out for overlapping nodes */ 3752 if (page_to_nid(page) != zone_to_nid(zone)) 3753 continue; 3754 3755 block_migratetype = get_pageblock_migratetype(page); 3756 3757 /* Only test what is necessary when the reserves are not met */ 3758 if (reserve > 0) { 3759 /* 3760 * Blocks with reserved pages will never free, skip 3761 * them. 3762 */ 3763 block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn); 3764 if (pageblock_is_reserved(pfn, block_end_pfn)) 3765 continue; 3766 3767 /* If this block is reserved, account for it */ 3768 if (block_migratetype == MIGRATE_RESERVE) { 3769 reserve--; 3770 continue; 3771 } 3772 3773 /* Suitable for reserving if this block is movable */ 3774 if (block_migratetype == MIGRATE_MOVABLE) { 3775 set_pageblock_migratetype(page, 3776 MIGRATE_RESERVE); 3777 move_freepages_block(zone, page, 3778 MIGRATE_RESERVE); 3779 reserve--; 3780 continue; 3781 } 3782 } 3783 3784 /* 3785 * If the reserve is met and this is a previous reserved block, 3786 * take it back 3787 */ 3788 if (block_migratetype == MIGRATE_RESERVE) { 3789 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3790 move_freepages_block(zone, page, MIGRATE_MOVABLE); 3791 } 3792 } 3793 } 3794 3795 /* 3796 * Initially all pages are reserved - free ones are freed 3797 * up by free_all_bootmem() once the early boot process is 3798 * done. Non-atomic initialization, single-pass. 3799 */ 3800 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone, 3801 unsigned long start_pfn, enum memmap_context context) 3802 { 3803 struct page *page; 3804 unsigned long end_pfn = start_pfn + size; 3805 unsigned long pfn; 3806 struct zone *z; 3807 3808 if (highest_memmap_pfn < end_pfn - 1) 3809 highest_memmap_pfn = end_pfn - 1; 3810 3811 z = &NODE_DATA(nid)->node_zones[zone]; 3812 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 3813 /* 3814 * There can be holes in boot-time mem_map[]s 3815 * handed to this function. They do not 3816 * exist on hotplugged memory. 3817 */ 3818 if (context == MEMMAP_EARLY) { 3819 if (!early_pfn_valid(pfn)) 3820 continue; 3821 if (!early_pfn_in_nid(pfn, nid)) 3822 continue; 3823 } 3824 page = pfn_to_page(pfn); 3825 set_page_links(page, zone, nid, pfn); 3826 mminit_verify_page_links(page, zone, nid, pfn); 3827 init_page_count(page); 3828 reset_page_mapcount(page); 3829 SetPageReserved(page); 3830 /* 3831 * Mark the block movable so that blocks are reserved for 3832 * movable at startup. This will force kernel allocations 3833 * to reserve their blocks rather than leaking throughout 3834 * the address space during boot when many long-lived 3835 * kernel allocations are made. Later some blocks near 3836 * the start are marked MIGRATE_RESERVE by 3837 * setup_zone_migrate_reserve() 3838 * 3839 * bitmap is created for zone's valid pfn range. but memmap 3840 * can be created for invalid pages (for alignment) 3841 * check here not to call set_pageblock_migratetype() against 3842 * pfn out of zone. 3843 */ 3844 if ((z->zone_start_pfn <= pfn) 3845 && (pfn < z->zone_start_pfn + z->spanned_pages) 3846 && !(pfn & (pageblock_nr_pages - 1))) 3847 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 3848 3849 INIT_LIST_HEAD(&page->lru); 3850 #ifdef WANT_PAGE_VIRTUAL 3851 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 3852 if (!is_highmem_idx(zone)) 3853 set_page_address(page, __va(pfn << PAGE_SHIFT)); 3854 #endif 3855 } 3856 } 3857 3858 static void __meminit zone_init_free_lists(struct zone *zone) 3859 { 3860 int order, t; 3861 for_each_migratetype_order(order, t) { 3862 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 3863 zone->free_area[order].nr_free = 0; 3864 } 3865 } 3866 3867 #ifndef __HAVE_ARCH_MEMMAP_INIT 3868 #define memmap_init(size, nid, zone, start_pfn) \ 3869 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY) 3870 #endif 3871 3872 static int __meminit zone_batchsize(struct zone *zone) 3873 { 3874 #ifdef CONFIG_MMU 3875 int batch; 3876 3877 /* 3878 * The per-cpu-pages pools are set to around 1000th of the 3879 * size of the zone. But no more than 1/2 of a meg. 3880 * 3881 * OK, so we don't know how big the cache is. So guess. 3882 */ 3883 batch = zone->present_pages / 1024; 3884 if (batch * PAGE_SIZE > 512 * 1024) 3885 batch = (512 * 1024) / PAGE_SIZE; 3886 batch /= 4; /* We effectively *= 4 below */ 3887 if (batch < 1) 3888 batch = 1; 3889 3890 /* 3891 * Clamp the batch to a 2^n - 1 value. Having a power 3892 * of 2 value was found to be more likely to have 3893 * suboptimal cache aliasing properties in some cases. 3894 * 3895 * For example if 2 tasks are alternately allocating 3896 * batches of pages, one task can end up with a lot 3897 * of pages of one half of the possible page colors 3898 * and the other with pages of the other colors. 3899 */ 3900 batch = rounddown_pow_of_two(batch + batch/2) - 1; 3901 3902 return batch; 3903 3904 #else 3905 /* The deferral and batching of frees should be suppressed under NOMMU 3906 * conditions. 3907 * 3908 * The problem is that NOMMU needs to be able to allocate large chunks 3909 * of contiguous memory as there's no hardware page translation to 3910 * assemble apparent contiguous memory from discontiguous pages. 3911 * 3912 * Queueing large contiguous runs of pages for batching, however, 3913 * causes the pages to actually be freed in smaller chunks. As there 3914 * can be a significant delay between the individual batches being 3915 * recycled, this leads to the once large chunks of space being 3916 * fragmented and becoming unavailable for high-order allocations. 3917 */ 3918 return 0; 3919 #endif 3920 } 3921 3922 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch) 3923 { 3924 struct per_cpu_pages *pcp; 3925 int migratetype; 3926 3927 memset(p, 0, sizeof(*p)); 3928 3929 pcp = &p->pcp; 3930 pcp->count = 0; 3931 pcp->high = 6 * batch; 3932 pcp->batch = max(1UL, 1 * batch); 3933 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++) 3934 INIT_LIST_HEAD(&pcp->lists[migratetype]); 3935 } 3936 3937 /* 3938 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist 3939 * to the value high for the pageset p. 3940 */ 3941 3942 static void setup_pagelist_highmark(struct per_cpu_pageset *p, 3943 unsigned long high) 3944 { 3945 struct per_cpu_pages *pcp; 3946 3947 pcp = &p->pcp; 3948 pcp->high = high; 3949 pcp->batch = max(1UL, high/4); 3950 if ((high/4) > (PAGE_SHIFT * 8)) 3951 pcp->batch = PAGE_SHIFT * 8; 3952 } 3953 3954 static void __meminit setup_zone_pageset(struct zone *zone) 3955 { 3956 int cpu; 3957 3958 zone->pageset = alloc_percpu(struct per_cpu_pageset); 3959 3960 for_each_possible_cpu(cpu) { 3961 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu); 3962 3963 setup_pageset(pcp, zone_batchsize(zone)); 3964 3965 if (percpu_pagelist_fraction) 3966 setup_pagelist_highmark(pcp, 3967 (zone->present_pages / 3968 percpu_pagelist_fraction)); 3969 } 3970 } 3971 3972 /* 3973 * Allocate per cpu pagesets and initialize them. 3974 * Before this call only boot pagesets were available. 3975 */ 3976 void __init setup_per_cpu_pageset(void) 3977 { 3978 struct zone *zone; 3979 3980 for_each_populated_zone(zone) 3981 setup_zone_pageset(zone); 3982 } 3983 3984 static noinline __init_refok 3985 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages) 3986 { 3987 int i; 3988 struct pglist_data *pgdat = zone->zone_pgdat; 3989 size_t alloc_size; 3990 3991 /* 3992 * The per-page waitqueue mechanism uses hashed waitqueues 3993 * per zone. 3994 */ 3995 zone->wait_table_hash_nr_entries = 3996 wait_table_hash_nr_entries(zone_size_pages); 3997 zone->wait_table_bits = 3998 wait_table_bits(zone->wait_table_hash_nr_entries); 3999 alloc_size = zone->wait_table_hash_nr_entries 4000 * sizeof(wait_queue_head_t); 4001 4002 if (!slab_is_available()) { 4003 zone->wait_table = (wait_queue_head_t *) 4004 alloc_bootmem_node_nopanic(pgdat, alloc_size); 4005 } else { 4006 /* 4007 * This case means that a zone whose size was 0 gets new memory 4008 * via memory hot-add. 4009 * But it may be the case that a new node was hot-added. In 4010 * this case vmalloc() will not be able to use this new node's 4011 * memory - this wait_table must be initialized to use this new 4012 * node itself as well. 4013 * To use this new node's memory, further consideration will be 4014 * necessary. 4015 */ 4016 zone->wait_table = vmalloc(alloc_size); 4017 } 4018 if (!zone->wait_table) 4019 return -ENOMEM; 4020 4021 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i) 4022 init_waitqueue_head(zone->wait_table + i); 4023 4024 return 0; 4025 } 4026 4027 static __meminit void zone_pcp_init(struct zone *zone) 4028 { 4029 /* 4030 * per cpu subsystem is not up at this point. The following code 4031 * relies on the ability of the linker to provide the 4032 * offset of a (static) per cpu variable into the per cpu area. 4033 */ 4034 zone->pageset = &boot_pageset; 4035 4036 if (zone->present_pages) 4037 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n", 4038 zone->name, zone->present_pages, 4039 zone_batchsize(zone)); 4040 } 4041 4042 int __meminit init_currently_empty_zone(struct zone *zone, 4043 unsigned long zone_start_pfn, 4044 unsigned long size, 4045 enum memmap_context context) 4046 { 4047 struct pglist_data *pgdat = zone->zone_pgdat; 4048 int ret; 4049 ret = zone_wait_table_init(zone, size); 4050 if (ret) 4051 return ret; 4052 pgdat->nr_zones = zone_idx(zone) + 1; 4053 4054 zone->zone_start_pfn = zone_start_pfn; 4055 4056 mminit_dprintk(MMINIT_TRACE, "memmap_init", 4057 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 4058 pgdat->node_id, 4059 (unsigned long)zone_idx(zone), 4060 zone_start_pfn, (zone_start_pfn + size)); 4061 4062 zone_init_free_lists(zone); 4063 4064 return 0; 4065 } 4066 4067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4068 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID 4069 /* 4070 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 4071 * Architectures may implement their own version but if add_active_range() 4072 * was used and there are no special requirements, this is a convenient 4073 * alternative 4074 */ 4075 int __meminit __early_pfn_to_nid(unsigned long pfn) 4076 { 4077 unsigned long start_pfn, end_pfn; 4078 int i, nid; 4079 4080 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4081 if (start_pfn <= pfn && pfn < end_pfn) 4082 return nid; 4083 /* This is a memory hole */ 4084 return -1; 4085 } 4086 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */ 4087 4088 int __meminit early_pfn_to_nid(unsigned long pfn) 4089 { 4090 int nid; 4091 4092 nid = __early_pfn_to_nid(pfn); 4093 if (nid >= 0) 4094 return nid; 4095 /* just returns 0 */ 4096 return 0; 4097 } 4098 4099 #ifdef CONFIG_NODES_SPAN_OTHER_NODES 4100 bool __meminit early_pfn_in_nid(unsigned long pfn, int node) 4101 { 4102 int nid; 4103 4104 nid = __early_pfn_to_nid(pfn); 4105 if (nid >= 0 && nid != node) 4106 return false; 4107 return true; 4108 } 4109 #endif 4110 4111 /** 4112 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range 4113 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed. 4114 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node 4115 * 4116 * If an architecture guarantees that all ranges registered with 4117 * add_active_ranges() contain no holes and may be freed, this 4118 * this function may be used instead of calling free_bootmem() manually. 4119 */ 4120 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn) 4121 { 4122 unsigned long start_pfn, end_pfn; 4123 int i, this_nid; 4124 4125 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) { 4126 start_pfn = min(start_pfn, max_low_pfn); 4127 end_pfn = min(end_pfn, max_low_pfn); 4128 4129 if (start_pfn < end_pfn) 4130 free_bootmem_node(NODE_DATA(this_nid), 4131 PFN_PHYS(start_pfn), 4132 (end_pfn - start_pfn) << PAGE_SHIFT); 4133 } 4134 } 4135 4136 /** 4137 * sparse_memory_present_with_active_regions - Call memory_present for each active range 4138 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used. 4139 * 4140 * If an architecture guarantees that all ranges registered with 4141 * add_active_ranges() contain no holes and may be freed, this 4142 * function may be used instead of calling memory_present() manually. 4143 */ 4144 void __init sparse_memory_present_with_active_regions(int nid) 4145 { 4146 unsigned long start_pfn, end_pfn; 4147 int i, this_nid; 4148 4149 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) 4150 memory_present(this_nid, start_pfn, end_pfn); 4151 } 4152 4153 /** 4154 * get_pfn_range_for_nid - Return the start and end page frames for a node 4155 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 4156 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 4157 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 4158 * 4159 * It returns the start and end page frame of a node based on information 4160 * provided by an arch calling add_active_range(). If called for a node 4161 * with no available memory, a warning is printed and the start and end 4162 * PFNs will be 0. 4163 */ 4164 void __meminit get_pfn_range_for_nid(unsigned int nid, 4165 unsigned long *start_pfn, unsigned long *end_pfn) 4166 { 4167 unsigned long this_start_pfn, this_end_pfn; 4168 int i; 4169 4170 *start_pfn = -1UL; 4171 *end_pfn = 0; 4172 4173 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 4174 *start_pfn = min(*start_pfn, this_start_pfn); 4175 *end_pfn = max(*end_pfn, this_end_pfn); 4176 } 4177 4178 if (*start_pfn == -1UL) 4179 *start_pfn = 0; 4180 } 4181 4182 /* 4183 * This finds a zone that can be used for ZONE_MOVABLE pages. The 4184 * assumption is made that zones within a node are ordered in monotonic 4185 * increasing memory addresses so that the "highest" populated zone is used 4186 */ 4187 static void __init find_usable_zone_for_movable(void) 4188 { 4189 int zone_index; 4190 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 4191 if (zone_index == ZONE_MOVABLE) 4192 continue; 4193 4194 if (arch_zone_highest_possible_pfn[zone_index] > 4195 arch_zone_lowest_possible_pfn[zone_index]) 4196 break; 4197 } 4198 4199 VM_BUG_ON(zone_index == -1); 4200 movable_zone = zone_index; 4201 } 4202 4203 /* 4204 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 4205 * because it is sized independent of architecture. Unlike the other zones, 4206 * the starting point for ZONE_MOVABLE is not fixed. It may be different 4207 * in each node depending on the size of each node and how evenly kernelcore 4208 * is distributed. This helper function adjusts the zone ranges 4209 * provided by the architecture for a given node by using the end of the 4210 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 4211 * zones within a node are in order of monotonic increases memory addresses 4212 */ 4213 static void __meminit adjust_zone_range_for_zone_movable(int nid, 4214 unsigned long zone_type, 4215 unsigned long node_start_pfn, 4216 unsigned long node_end_pfn, 4217 unsigned long *zone_start_pfn, 4218 unsigned long *zone_end_pfn) 4219 { 4220 /* Only adjust if ZONE_MOVABLE is on this node */ 4221 if (zone_movable_pfn[nid]) { 4222 /* Size ZONE_MOVABLE */ 4223 if (zone_type == ZONE_MOVABLE) { 4224 *zone_start_pfn = zone_movable_pfn[nid]; 4225 *zone_end_pfn = min(node_end_pfn, 4226 arch_zone_highest_possible_pfn[movable_zone]); 4227 4228 /* Adjust for ZONE_MOVABLE starting within this range */ 4229 } else if (*zone_start_pfn < zone_movable_pfn[nid] && 4230 *zone_end_pfn > zone_movable_pfn[nid]) { 4231 *zone_end_pfn = zone_movable_pfn[nid]; 4232 4233 /* Check if this whole range is within ZONE_MOVABLE */ 4234 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 4235 *zone_start_pfn = *zone_end_pfn; 4236 } 4237 } 4238 4239 /* 4240 * Return the number of pages a zone spans in a node, including holes 4241 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 4242 */ 4243 static unsigned long __meminit zone_spanned_pages_in_node(int nid, 4244 unsigned long zone_type, 4245 unsigned long *ignored) 4246 { 4247 unsigned long node_start_pfn, node_end_pfn; 4248 unsigned long zone_start_pfn, zone_end_pfn; 4249 4250 /* Get the start and end of the node and zone */ 4251 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4252 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type]; 4253 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type]; 4254 adjust_zone_range_for_zone_movable(nid, zone_type, 4255 node_start_pfn, node_end_pfn, 4256 &zone_start_pfn, &zone_end_pfn); 4257 4258 /* Check that this node has pages within the zone's required range */ 4259 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn) 4260 return 0; 4261 4262 /* Move the zone boundaries inside the node if necessary */ 4263 zone_end_pfn = min(zone_end_pfn, node_end_pfn); 4264 zone_start_pfn = max(zone_start_pfn, node_start_pfn); 4265 4266 /* Return the spanned pages */ 4267 return zone_end_pfn - zone_start_pfn; 4268 } 4269 4270 /* 4271 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 4272 * then all holes in the requested range will be accounted for. 4273 */ 4274 unsigned long __meminit __absent_pages_in_range(int nid, 4275 unsigned long range_start_pfn, 4276 unsigned long range_end_pfn) 4277 { 4278 unsigned long nr_absent = range_end_pfn - range_start_pfn; 4279 unsigned long start_pfn, end_pfn; 4280 int i; 4281 4282 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4283 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 4284 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 4285 nr_absent -= end_pfn - start_pfn; 4286 } 4287 return nr_absent; 4288 } 4289 4290 /** 4291 * absent_pages_in_range - Return number of page frames in holes within a range 4292 * @start_pfn: The start PFN to start searching for holes 4293 * @end_pfn: The end PFN to stop searching for holes 4294 * 4295 * It returns the number of pages frames in memory holes within a range. 4296 */ 4297 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 4298 unsigned long end_pfn) 4299 { 4300 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 4301 } 4302 4303 /* Return the number of page frames in holes in a zone on a node */ 4304 static unsigned long __meminit zone_absent_pages_in_node(int nid, 4305 unsigned long zone_type, 4306 unsigned long *ignored) 4307 { 4308 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 4309 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 4310 unsigned long node_start_pfn, node_end_pfn; 4311 unsigned long zone_start_pfn, zone_end_pfn; 4312 4313 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn); 4314 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 4315 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 4316 4317 adjust_zone_range_for_zone_movable(nid, zone_type, 4318 node_start_pfn, node_end_pfn, 4319 &zone_start_pfn, &zone_end_pfn); 4320 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 4321 } 4322 4323 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4324 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid, 4325 unsigned long zone_type, 4326 unsigned long *zones_size) 4327 { 4328 return zones_size[zone_type]; 4329 } 4330 4331 static inline unsigned long __meminit zone_absent_pages_in_node(int nid, 4332 unsigned long zone_type, 4333 unsigned long *zholes_size) 4334 { 4335 if (!zholes_size) 4336 return 0; 4337 4338 return zholes_size[zone_type]; 4339 } 4340 4341 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4342 4343 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat, 4344 unsigned long *zones_size, unsigned long *zholes_size) 4345 { 4346 unsigned long realtotalpages, totalpages = 0; 4347 enum zone_type i; 4348 4349 for (i = 0; i < MAX_NR_ZONES; i++) 4350 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i, 4351 zones_size); 4352 pgdat->node_spanned_pages = totalpages; 4353 4354 realtotalpages = totalpages; 4355 for (i = 0; i < MAX_NR_ZONES; i++) 4356 realtotalpages -= 4357 zone_absent_pages_in_node(pgdat->node_id, i, 4358 zholes_size); 4359 pgdat->node_present_pages = realtotalpages; 4360 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id, 4361 realtotalpages); 4362 } 4363 4364 #ifndef CONFIG_SPARSEMEM 4365 /* 4366 * Calculate the size of the zone->blockflags rounded to an unsigned long 4367 * Start by making sure zonesize is a multiple of pageblock_order by rounding 4368 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 4369 * round what is now in bits to nearest long in bits, then return it in 4370 * bytes. 4371 */ 4372 static unsigned long __init usemap_size(unsigned long zonesize) 4373 { 4374 unsigned long usemapsize; 4375 4376 usemapsize = roundup(zonesize, pageblock_nr_pages); 4377 usemapsize = usemapsize >> pageblock_order; 4378 usemapsize *= NR_PAGEBLOCK_BITS; 4379 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 4380 4381 return usemapsize / 8; 4382 } 4383 4384 static void __init setup_usemap(struct pglist_data *pgdat, 4385 struct zone *zone, unsigned long zonesize) 4386 { 4387 unsigned long usemapsize = usemap_size(zonesize); 4388 zone->pageblock_flags = NULL; 4389 if (usemapsize) 4390 zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat, 4391 usemapsize); 4392 } 4393 #else 4394 static inline void setup_usemap(struct pglist_data *pgdat, 4395 struct zone *zone, unsigned long zonesize) {} 4396 #endif /* CONFIG_SPARSEMEM */ 4397 4398 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 4399 4400 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 4401 void __init set_pageblock_order(void) 4402 { 4403 unsigned int order; 4404 4405 /* Check that pageblock_nr_pages has not already been setup */ 4406 if (pageblock_order) 4407 return; 4408 4409 if (HPAGE_SHIFT > PAGE_SHIFT) 4410 order = HUGETLB_PAGE_ORDER; 4411 else 4412 order = MAX_ORDER - 1; 4413 4414 /* 4415 * Assume the largest contiguous order of interest is a huge page. 4416 * This value may be variable depending on boot parameters on IA64 and 4417 * powerpc. 4418 */ 4419 pageblock_order = order; 4420 } 4421 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4422 4423 /* 4424 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 4425 * is unused as pageblock_order is set at compile-time. See 4426 * include/linux/pageblock-flags.h for the values of pageblock_order based on 4427 * the kernel config 4428 */ 4429 void __init set_pageblock_order(void) 4430 { 4431 } 4432 4433 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 4434 4435 /* 4436 * Set up the zone data structures: 4437 * - mark all pages reserved 4438 * - mark all memory queues empty 4439 * - clear the memory bitmaps 4440 * 4441 * NOTE: pgdat should get zeroed by caller. 4442 */ 4443 static void __paginginit free_area_init_core(struct pglist_data *pgdat, 4444 unsigned long *zones_size, unsigned long *zholes_size) 4445 { 4446 enum zone_type j; 4447 int nid = pgdat->node_id; 4448 unsigned long zone_start_pfn = pgdat->node_start_pfn; 4449 int ret; 4450 4451 pgdat_resize_init(pgdat); 4452 init_waitqueue_head(&pgdat->kswapd_wait); 4453 init_waitqueue_head(&pgdat->pfmemalloc_wait); 4454 pgdat_page_cgroup_init(pgdat); 4455 4456 for (j = 0; j < MAX_NR_ZONES; j++) { 4457 struct zone *zone = pgdat->node_zones + j; 4458 unsigned long size, realsize, memmap_pages; 4459 4460 size = zone_spanned_pages_in_node(nid, j, zones_size); 4461 realsize = size - zone_absent_pages_in_node(nid, j, 4462 zholes_size); 4463 4464 /* 4465 * Adjust realsize so that it accounts for how much memory 4466 * is used by this zone for memmap. This affects the watermark 4467 * and per-cpu initialisations 4468 */ 4469 memmap_pages = 4470 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT; 4471 if (realsize >= memmap_pages) { 4472 realsize -= memmap_pages; 4473 if (memmap_pages) 4474 printk(KERN_DEBUG 4475 " %s zone: %lu pages used for memmap\n", 4476 zone_names[j], memmap_pages); 4477 } else 4478 printk(KERN_WARNING 4479 " %s zone: %lu pages exceeds realsize %lu\n", 4480 zone_names[j], memmap_pages, realsize); 4481 4482 /* Account for reserved pages */ 4483 if (j == 0 && realsize > dma_reserve) { 4484 realsize -= dma_reserve; 4485 printk(KERN_DEBUG " %s zone: %lu pages reserved\n", 4486 zone_names[0], dma_reserve); 4487 } 4488 4489 if (!is_highmem_idx(j)) 4490 nr_kernel_pages += realsize; 4491 nr_all_pages += realsize; 4492 4493 zone->spanned_pages = size; 4494 zone->present_pages = realsize; 4495 #ifdef CONFIG_NUMA 4496 zone->node = nid; 4497 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio) 4498 / 100; 4499 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100; 4500 #endif 4501 zone->name = zone_names[j]; 4502 spin_lock_init(&zone->lock); 4503 spin_lock_init(&zone->lru_lock); 4504 zone_seqlock_init(zone); 4505 zone->zone_pgdat = pgdat; 4506 4507 zone_pcp_init(zone); 4508 lruvec_init(&zone->lruvec); 4509 if (!size) 4510 continue; 4511 4512 set_pageblock_order(); 4513 setup_usemap(pgdat, zone, size); 4514 ret = init_currently_empty_zone(zone, zone_start_pfn, 4515 size, MEMMAP_EARLY); 4516 BUG_ON(ret); 4517 memmap_init(size, nid, j, zone_start_pfn); 4518 zone_start_pfn += size; 4519 } 4520 } 4521 4522 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat) 4523 { 4524 /* Skip empty nodes */ 4525 if (!pgdat->node_spanned_pages) 4526 return; 4527 4528 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4529 /* ia64 gets its own node_mem_map, before this, without bootmem */ 4530 if (!pgdat->node_mem_map) { 4531 unsigned long size, start, end; 4532 struct page *map; 4533 4534 /* 4535 * The zone's endpoints aren't required to be MAX_ORDER 4536 * aligned but the node_mem_map endpoints must be in order 4537 * for the buddy allocator to function correctly. 4538 */ 4539 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 4540 end = pgdat->node_start_pfn + pgdat->node_spanned_pages; 4541 end = ALIGN(end, MAX_ORDER_NR_PAGES); 4542 size = (end - start) * sizeof(struct page); 4543 map = alloc_remap(pgdat->node_id, size); 4544 if (!map) 4545 map = alloc_bootmem_node_nopanic(pgdat, size); 4546 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start); 4547 } 4548 #ifndef CONFIG_NEED_MULTIPLE_NODES 4549 /* 4550 * With no DISCONTIG, the global mem_map is just set as node 0's 4551 */ 4552 if (pgdat == NODE_DATA(0)) { 4553 mem_map = NODE_DATA(0)->node_mem_map; 4554 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4555 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 4556 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET); 4557 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4558 } 4559 #endif 4560 #endif /* CONFIG_FLAT_NODE_MEM_MAP */ 4561 } 4562 4563 void __paginginit free_area_init_node(int nid, unsigned long *zones_size, 4564 unsigned long node_start_pfn, unsigned long *zholes_size) 4565 { 4566 pg_data_t *pgdat = NODE_DATA(nid); 4567 4568 /* pg_data_t should be reset to zero when it's allocated */ 4569 WARN_ON(pgdat->nr_zones || pgdat->classzone_idx); 4570 4571 pgdat->node_id = nid; 4572 pgdat->node_start_pfn = node_start_pfn; 4573 init_zone_allows_reclaim(nid); 4574 calculate_node_totalpages(pgdat, zones_size, zholes_size); 4575 4576 alloc_node_mem_map(pgdat); 4577 #ifdef CONFIG_FLAT_NODE_MEM_MAP 4578 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n", 4579 nid, (unsigned long)pgdat, 4580 (unsigned long)pgdat->node_mem_map); 4581 #endif 4582 4583 free_area_init_core(pgdat, zones_size, zholes_size); 4584 } 4585 4586 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP 4587 4588 #if MAX_NUMNODES > 1 4589 /* 4590 * Figure out the number of possible node ids. 4591 */ 4592 static void __init setup_nr_node_ids(void) 4593 { 4594 unsigned int node; 4595 unsigned int highest = 0; 4596 4597 for_each_node_mask(node, node_possible_map) 4598 highest = node; 4599 nr_node_ids = highest + 1; 4600 } 4601 #else 4602 static inline void setup_nr_node_ids(void) 4603 { 4604 } 4605 #endif 4606 4607 /** 4608 * node_map_pfn_alignment - determine the maximum internode alignment 4609 * 4610 * This function should be called after node map is populated and sorted. 4611 * It calculates the maximum power of two alignment which can distinguish 4612 * all the nodes. 4613 * 4614 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 4615 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 4616 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 4617 * shifted, 1GiB is enough and this function will indicate so. 4618 * 4619 * This is used to test whether pfn -> nid mapping of the chosen memory 4620 * model has fine enough granularity to avoid incorrect mapping for the 4621 * populated node map. 4622 * 4623 * Returns the determined alignment in pfn's. 0 if there is no alignment 4624 * requirement (single node). 4625 */ 4626 unsigned long __init node_map_pfn_alignment(void) 4627 { 4628 unsigned long accl_mask = 0, last_end = 0; 4629 unsigned long start, end, mask; 4630 int last_nid = -1; 4631 int i, nid; 4632 4633 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 4634 if (!start || last_nid < 0 || last_nid == nid) { 4635 last_nid = nid; 4636 last_end = end; 4637 continue; 4638 } 4639 4640 /* 4641 * Start with a mask granular enough to pin-point to the 4642 * start pfn and tick off bits one-by-one until it becomes 4643 * too coarse to separate the current node from the last. 4644 */ 4645 mask = ~((1 << __ffs(start)) - 1); 4646 while (mask && last_end <= (start & (mask << 1))) 4647 mask <<= 1; 4648 4649 /* accumulate all internode masks */ 4650 accl_mask |= mask; 4651 } 4652 4653 /* convert mask to number of pages */ 4654 return ~accl_mask + 1; 4655 } 4656 4657 /* Find the lowest pfn for a node */ 4658 static unsigned long __init find_min_pfn_for_node(int nid) 4659 { 4660 unsigned long min_pfn = ULONG_MAX; 4661 unsigned long start_pfn; 4662 int i; 4663 4664 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL) 4665 min_pfn = min(min_pfn, start_pfn); 4666 4667 if (min_pfn == ULONG_MAX) { 4668 printk(KERN_WARNING 4669 "Could not find start_pfn for node %d\n", nid); 4670 return 0; 4671 } 4672 4673 return min_pfn; 4674 } 4675 4676 /** 4677 * find_min_pfn_with_active_regions - Find the minimum PFN registered 4678 * 4679 * It returns the minimum PFN based on information provided via 4680 * add_active_range(). 4681 */ 4682 unsigned long __init find_min_pfn_with_active_regions(void) 4683 { 4684 return find_min_pfn_for_node(MAX_NUMNODES); 4685 } 4686 4687 /* 4688 * early_calculate_totalpages() 4689 * Sum pages in active regions for movable zone. 4690 * Populate N_HIGH_MEMORY for calculating usable_nodes. 4691 */ 4692 static unsigned long __init early_calculate_totalpages(void) 4693 { 4694 unsigned long totalpages = 0; 4695 unsigned long start_pfn, end_pfn; 4696 int i, nid; 4697 4698 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 4699 unsigned long pages = end_pfn - start_pfn; 4700 4701 totalpages += pages; 4702 if (pages) 4703 node_set_state(nid, N_HIGH_MEMORY); 4704 } 4705 return totalpages; 4706 } 4707 4708 /* 4709 * Find the PFN the Movable zone begins in each node. Kernel memory 4710 * is spread evenly between nodes as long as the nodes have enough 4711 * memory. When they don't, some nodes will have more kernelcore than 4712 * others 4713 */ 4714 static void __init find_zone_movable_pfns_for_nodes(void) 4715 { 4716 int i, nid; 4717 unsigned long usable_startpfn; 4718 unsigned long kernelcore_node, kernelcore_remaining; 4719 /* save the state before borrow the nodemask */ 4720 nodemask_t saved_node_state = node_states[N_HIGH_MEMORY]; 4721 unsigned long totalpages = early_calculate_totalpages(); 4722 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]); 4723 4724 /* 4725 * If movablecore was specified, calculate what size of 4726 * kernelcore that corresponds so that memory usable for 4727 * any allocation type is evenly spread. If both kernelcore 4728 * and movablecore are specified, then the value of kernelcore 4729 * will be used for required_kernelcore if it's greater than 4730 * what movablecore would have allowed. 4731 */ 4732 if (required_movablecore) { 4733 unsigned long corepages; 4734 4735 /* 4736 * Round-up so that ZONE_MOVABLE is at least as large as what 4737 * was requested by the user 4738 */ 4739 required_movablecore = 4740 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 4741 corepages = totalpages - required_movablecore; 4742 4743 required_kernelcore = max(required_kernelcore, corepages); 4744 } 4745 4746 /* If kernelcore was not specified, there is no ZONE_MOVABLE */ 4747 if (!required_kernelcore) 4748 goto out; 4749 4750 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 4751 find_usable_zone_for_movable(); 4752 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 4753 4754 restart: 4755 /* Spread kernelcore memory as evenly as possible throughout nodes */ 4756 kernelcore_node = required_kernelcore / usable_nodes; 4757 for_each_node_state(nid, N_HIGH_MEMORY) { 4758 unsigned long start_pfn, end_pfn; 4759 4760 /* 4761 * Recalculate kernelcore_node if the division per node 4762 * now exceeds what is necessary to satisfy the requested 4763 * amount of memory for the kernel 4764 */ 4765 if (required_kernelcore < kernelcore_node) 4766 kernelcore_node = required_kernelcore / usable_nodes; 4767 4768 /* 4769 * As the map is walked, we track how much memory is usable 4770 * by the kernel using kernelcore_remaining. When it is 4771 * 0, the rest of the node is usable by ZONE_MOVABLE 4772 */ 4773 kernelcore_remaining = kernelcore_node; 4774 4775 /* Go through each range of PFNs within this node */ 4776 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 4777 unsigned long size_pages; 4778 4779 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 4780 if (start_pfn >= end_pfn) 4781 continue; 4782 4783 /* Account for what is only usable for kernelcore */ 4784 if (start_pfn < usable_startpfn) { 4785 unsigned long kernel_pages; 4786 kernel_pages = min(end_pfn, usable_startpfn) 4787 - start_pfn; 4788 4789 kernelcore_remaining -= min(kernel_pages, 4790 kernelcore_remaining); 4791 required_kernelcore -= min(kernel_pages, 4792 required_kernelcore); 4793 4794 /* Continue if range is now fully accounted */ 4795 if (end_pfn <= usable_startpfn) { 4796 4797 /* 4798 * Push zone_movable_pfn to the end so 4799 * that if we have to rebalance 4800 * kernelcore across nodes, we will 4801 * not double account here 4802 */ 4803 zone_movable_pfn[nid] = end_pfn; 4804 continue; 4805 } 4806 start_pfn = usable_startpfn; 4807 } 4808 4809 /* 4810 * The usable PFN range for ZONE_MOVABLE is from 4811 * start_pfn->end_pfn. Calculate size_pages as the 4812 * number of pages used as kernelcore 4813 */ 4814 size_pages = end_pfn - start_pfn; 4815 if (size_pages > kernelcore_remaining) 4816 size_pages = kernelcore_remaining; 4817 zone_movable_pfn[nid] = start_pfn + size_pages; 4818 4819 /* 4820 * Some kernelcore has been met, update counts and 4821 * break if the kernelcore for this node has been 4822 * satisified 4823 */ 4824 required_kernelcore -= min(required_kernelcore, 4825 size_pages); 4826 kernelcore_remaining -= size_pages; 4827 if (!kernelcore_remaining) 4828 break; 4829 } 4830 } 4831 4832 /* 4833 * If there is still required_kernelcore, we do another pass with one 4834 * less node in the count. This will push zone_movable_pfn[nid] further 4835 * along on the nodes that still have memory until kernelcore is 4836 * satisified 4837 */ 4838 usable_nodes--; 4839 if (usable_nodes && required_kernelcore > usable_nodes) 4840 goto restart; 4841 4842 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 4843 for (nid = 0; nid < MAX_NUMNODES; nid++) 4844 zone_movable_pfn[nid] = 4845 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 4846 4847 out: 4848 /* restore the node_state */ 4849 node_states[N_HIGH_MEMORY] = saved_node_state; 4850 } 4851 4852 /* Any regular memory on that node ? */ 4853 static void __init check_for_regular_memory(pg_data_t *pgdat) 4854 { 4855 #ifdef CONFIG_HIGHMEM 4856 enum zone_type zone_type; 4857 4858 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) { 4859 struct zone *zone = &pgdat->node_zones[zone_type]; 4860 if (zone->present_pages) { 4861 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY); 4862 break; 4863 } 4864 } 4865 #endif 4866 } 4867 4868 /** 4869 * free_area_init_nodes - Initialise all pg_data_t and zone data 4870 * @max_zone_pfn: an array of max PFNs for each zone 4871 * 4872 * This will call free_area_init_node() for each active node in the system. 4873 * Using the page ranges provided by add_active_range(), the size of each 4874 * zone in each node and their holes is calculated. If the maximum PFN 4875 * between two adjacent zones match, it is assumed that the zone is empty. 4876 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 4877 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 4878 * starts where the previous one ended. For example, ZONE_DMA32 starts 4879 * at arch_max_dma_pfn. 4880 */ 4881 void __init free_area_init_nodes(unsigned long *max_zone_pfn) 4882 { 4883 unsigned long start_pfn, end_pfn; 4884 int i, nid; 4885 4886 /* Record where the zone boundaries are */ 4887 memset(arch_zone_lowest_possible_pfn, 0, 4888 sizeof(arch_zone_lowest_possible_pfn)); 4889 memset(arch_zone_highest_possible_pfn, 0, 4890 sizeof(arch_zone_highest_possible_pfn)); 4891 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions(); 4892 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0]; 4893 for (i = 1; i < MAX_NR_ZONES; i++) { 4894 if (i == ZONE_MOVABLE) 4895 continue; 4896 arch_zone_lowest_possible_pfn[i] = 4897 arch_zone_highest_possible_pfn[i-1]; 4898 arch_zone_highest_possible_pfn[i] = 4899 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]); 4900 } 4901 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0; 4902 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0; 4903 4904 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 4905 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 4906 find_zone_movable_pfns_for_nodes(); 4907 4908 /* Print out the zone ranges */ 4909 printk("Zone ranges:\n"); 4910 for (i = 0; i < MAX_NR_ZONES; i++) { 4911 if (i == ZONE_MOVABLE) 4912 continue; 4913 printk(KERN_CONT " %-8s ", zone_names[i]); 4914 if (arch_zone_lowest_possible_pfn[i] == 4915 arch_zone_highest_possible_pfn[i]) 4916 printk(KERN_CONT "empty\n"); 4917 else 4918 printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n", 4919 arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT, 4920 (arch_zone_highest_possible_pfn[i] 4921 << PAGE_SHIFT) - 1); 4922 } 4923 4924 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 4925 printk("Movable zone start for each node\n"); 4926 for (i = 0; i < MAX_NUMNODES; i++) { 4927 if (zone_movable_pfn[i]) 4928 printk(" Node %d: %#010lx\n", i, 4929 zone_movable_pfn[i] << PAGE_SHIFT); 4930 } 4931 4932 /* Print out the early node map */ 4933 printk("Early memory node ranges\n"); 4934 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) 4935 printk(" node %3d: [mem %#010lx-%#010lx]\n", nid, 4936 start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1); 4937 4938 /* Initialise every node */ 4939 mminit_verify_pageflags_layout(); 4940 setup_nr_node_ids(); 4941 for_each_online_node(nid) { 4942 pg_data_t *pgdat = NODE_DATA(nid); 4943 free_area_init_node(nid, NULL, 4944 find_min_pfn_for_node(nid), NULL); 4945 4946 /* Any memory on that node */ 4947 if (pgdat->node_present_pages) 4948 node_set_state(nid, N_HIGH_MEMORY); 4949 check_for_regular_memory(pgdat); 4950 } 4951 } 4952 4953 static int __init cmdline_parse_core(char *p, unsigned long *core) 4954 { 4955 unsigned long long coremem; 4956 if (!p) 4957 return -EINVAL; 4958 4959 coremem = memparse(p, &p); 4960 *core = coremem >> PAGE_SHIFT; 4961 4962 /* Paranoid check that UL is enough for the coremem value */ 4963 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 4964 4965 return 0; 4966 } 4967 4968 /* 4969 * kernelcore=size sets the amount of memory for use for allocations that 4970 * cannot be reclaimed or migrated. 4971 */ 4972 static int __init cmdline_parse_kernelcore(char *p) 4973 { 4974 return cmdline_parse_core(p, &required_kernelcore); 4975 } 4976 4977 /* 4978 * movablecore=size sets the amount of memory for use for allocations that 4979 * can be reclaimed or migrated. 4980 */ 4981 static int __init cmdline_parse_movablecore(char *p) 4982 { 4983 return cmdline_parse_core(p, &required_movablecore); 4984 } 4985 4986 early_param("kernelcore", cmdline_parse_kernelcore); 4987 early_param("movablecore", cmdline_parse_movablecore); 4988 4989 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */ 4990 4991 /** 4992 * set_dma_reserve - set the specified number of pages reserved in the first zone 4993 * @new_dma_reserve: The number of pages to mark reserved 4994 * 4995 * The per-cpu batchsize and zone watermarks are determined by present_pages. 4996 * In the DMA zone, a significant percentage may be consumed by kernel image 4997 * and other unfreeable allocations which can skew the watermarks badly. This 4998 * function may optionally be used to account for unfreeable pages in the 4999 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 5000 * smaller per-cpu batchsize. 5001 */ 5002 void __init set_dma_reserve(unsigned long new_dma_reserve) 5003 { 5004 dma_reserve = new_dma_reserve; 5005 } 5006 5007 void __init free_area_init(unsigned long *zones_size) 5008 { 5009 free_area_init_node(0, zones_size, 5010 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL); 5011 } 5012 5013 static int page_alloc_cpu_notify(struct notifier_block *self, 5014 unsigned long action, void *hcpu) 5015 { 5016 int cpu = (unsigned long)hcpu; 5017 5018 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) { 5019 lru_add_drain_cpu(cpu); 5020 drain_pages(cpu); 5021 5022 /* 5023 * Spill the event counters of the dead processor 5024 * into the current processors event counters. 5025 * This artificially elevates the count of the current 5026 * processor. 5027 */ 5028 vm_events_fold_cpu(cpu); 5029 5030 /* 5031 * Zero the differential counters of the dead processor 5032 * so that the vm statistics are consistent. 5033 * 5034 * This is only okay since the processor is dead and cannot 5035 * race with what we are doing. 5036 */ 5037 refresh_cpu_vm_stats(cpu); 5038 } 5039 return NOTIFY_OK; 5040 } 5041 5042 void __init page_alloc_init(void) 5043 { 5044 hotcpu_notifier(page_alloc_cpu_notify, 0); 5045 } 5046 5047 /* 5048 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio 5049 * or min_free_kbytes changes. 5050 */ 5051 static void calculate_totalreserve_pages(void) 5052 { 5053 struct pglist_data *pgdat; 5054 unsigned long reserve_pages = 0; 5055 enum zone_type i, j; 5056 5057 for_each_online_pgdat(pgdat) { 5058 for (i = 0; i < MAX_NR_ZONES; i++) { 5059 struct zone *zone = pgdat->node_zones + i; 5060 unsigned long max = 0; 5061 5062 /* Find valid and maximum lowmem_reserve in the zone */ 5063 for (j = i; j < MAX_NR_ZONES; j++) { 5064 if (zone->lowmem_reserve[j] > max) 5065 max = zone->lowmem_reserve[j]; 5066 } 5067 5068 /* we treat the high watermark as reserved pages. */ 5069 max += high_wmark_pages(zone); 5070 5071 if (max > zone->present_pages) 5072 max = zone->present_pages; 5073 reserve_pages += max; 5074 /* 5075 * Lowmem reserves are not available to 5076 * GFP_HIGHUSER page cache allocations and 5077 * kswapd tries to balance zones to their high 5078 * watermark. As a result, neither should be 5079 * regarded as dirtyable memory, to prevent a 5080 * situation where reclaim has to clean pages 5081 * in order to balance the zones. 5082 */ 5083 zone->dirty_balance_reserve = max; 5084 } 5085 } 5086 dirty_balance_reserve = reserve_pages; 5087 totalreserve_pages = reserve_pages; 5088 } 5089 5090 /* 5091 * setup_per_zone_lowmem_reserve - called whenever 5092 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone 5093 * has a correct pages reserved value, so an adequate number of 5094 * pages are left in the zone after a successful __alloc_pages(). 5095 */ 5096 static void setup_per_zone_lowmem_reserve(void) 5097 { 5098 struct pglist_data *pgdat; 5099 enum zone_type j, idx; 5100 5101 for_each_online_pgdat(pgdat) { 5102 for (j = 0; j < MAX_NR_ZONES; j++) { 5103 struct zone *zone = pgdat->node_zones + j; 5104 unsigned long present_pages = zone->present_pages; 5105 5106 zone->lowmem_reserve[j] = 0; 5107 5108 idx = j; 5109 while (idx) { 5110 struct zone *lower_zone; 5111 5112 idx--; 5113 5114 if (sysctl_lowmem_reserve_ratio[idx] < 1) 5115 sysctl_lowmem_reserve_ratio[idx] = 1; 5116 5117 lower_zone = pgdat->node_zones + idx; 5118 lower_zone->lowmem_reserve[j] = present_pages / 5119 sysctl_lowmem_reserve_ratio[idx]; 5120 present_pages += lower_zone->present_pages; 5121 } 5122 } 5123 } 5124 5125 /* update totalreserve_pages */ 5126 calculate_totalreserve_pages(); 5127 } 5128 5129 static void __setup_per_zone_wmarks(void) 5130 { 5131 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 5132 unsigned long lowmem_pages = 0; 5133 struct zone *zone; 5134 unsigned long flags; 5135 5136 /* Calculate total number of !ZONE_HIGHMEM pages */ 5137 for_each_zone(zone) { 5138 if (!is_highmem(zone)) 5139 lowmem_pages += zone->present_pages; 5140 } 5141 5142 for_each_zone(zone) { 5143 u64 tmp; 5144 5145 spin_lock_irqsave(&zone->lock, flags); 5146 tmp = (u64)pages_min * zone->present_pages; 5147 do_div(tmp, lowmem_pages); 5148 if (is_highmem(zone)) { 5149 /* 5150 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 5151 * need highmem pages, so cap pages_min to a small 5152 * value here. 5153 * 5154 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 5155 * deltas controls asynch page reclaim, and so should 5156 * not be capped for highmem. 5157 */ 5158 int min_pages; 5159 5160 min_pages = zone->present_pages / 1024; 5161 if (min_pages < SWAP_CLUSTER_MAX) 5162 min_pages = SWAP_CLUSTER_MAX; 5163 if (min_pages > 128) 5164 min_pages = 128; 5165 zone->watermark[WMARK_MIN] = min_pages; 5166 } else { 5167 /* 5168 * If it's a lowmem zone, reserve a number of pages 5169 * proportionate to the zone's size. 5170 */ 5171 zone->watermark[WMARK_MIN] = tmp; 5172 } 5173 5174 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2); 5175 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1); 5176 5177 zone->watermark[WMARK_MIN] += cma_wmark_pages(zone); 5178 zone->watermark[WMARK_LOW] += cma_wmark_pages(zone); 5179 zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone); 5180 5181 setup_zone_migrate_reserve(zone); 5182 spin_unlock_irqrestore(&zone->lock, flags); 5183 } 5184 5185 /* update totalreserve_pages */ 5186 calculate_totalreserve_pages(); 5187 } 5188 5189 /** 5190 * setup_per_zone_wmarks - called when min_free_kbytes changes 5191 * or when memory is hot-{added|removed} 5192 * 5193 * Ensures that the watermark[min,low,high] values for each zone are set 5194 * correctly with respect to min_free_kbytes. 5195 */ 5196 void setup_per_zone_wmarks(void) 5197 { 5198 mutex_lock(&zonelists_mutex); 5199 __setup_per_zone_wmarks(); 5200 mutex_unlock(&zonelists_mutex); 5201 } 5202 5203 /* 5204 * The inactive anon list should be small enough that the VM never has to 5205 * do too much work, but large enough that each inactive page has a chance 5206 * to be referenced again before it is swapped out. 5207 * 5208 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to 5209 * INACTIVE_ANON pages on this zone's LRU, maintained by the 5210 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of 5211 * the anonymous pages are kept on the inactive list. 5212 * 5213 * total target max 5214 * memory ratio inactive anon 5215 * ------------------------------------- 5216 * 10MB 1 5MB 5217 * 100MB 1 50MB 5218 * 1GB 3 250MB 5219 * 10GB 10 0.9GB 5220 * 100GB 31 3GB 5221 * 1TB 101 10GB 5222 * 10TB 320 32GB 5223 */ 5224 static void __meminit calculate_zone_inactive_ratio(struct zone *zone) 5225 { 5226 unsigned int gb, ratio; 5227 5228 /* Zone size in gigabytes */ 5229 gb = zone->present_pages >> (30 - PAGE_SHIFT); 5230 if (gb) 5231 ratio = int_sqrt(10 * gb); 5232 else 5233 ratio = 1; 5234 5235 zone->inactive_ratio = ratio; 5236 } 5237 5238 static void __meminit setup_per_zone_inactive_ratio(void) 5239 { 5240 struct zone *zone; 5241 5242 for_each_zone(zone) 5243 calculate_zone_inactive_ratio(zone); 5244 } 5245 5246 /* 5247 * Initialise min_free_kbytes. 5248 * 5249 * For small machines we want it small (128k min). For large machines 5250 * we want it large (64MB max). But it is not linear, because network 5251 * bandwidth does not increase linearly with machine size. We use 5252 * 5253 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 5254 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 5255 * 5256 * which yields 5257 * 5258 * 16MB: 512k 5259 * 32MB: 724k 5260 * 64MB: 1024k 5261 * 128MB: 1448k 5262 * 256MB: 2048k 5263 * 512MB: 2896k 5264 * 1024MB: 4096k 5265 * 2048MB: 5792k 5266 * 4096MB: 8192k 5267 * 8192MB: 11584k 5268 * 16384MB: 16384k 5269 */ 5270 int __meminit init_per_zone_wmark_min(void) 5271 { 5272 unsigned long lowmem_kbytes; 5273 5274 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 5275 5276 min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 5277 if (min_free_kbytes < 128) 5278 min_free_kbytes = 128; 5279 if (min_free_kbytes > 65536) 5280 min_free_kbytes = 65536; 5281 setup_per_zone_wmarks(); 5282 refresh_zone_stat_thresholds(); 5283 setup_per_zone_lowmem_reserve(); 5284 setup_per_zone_inactive_ratio(); 5285 return 0; 5286 } 5287 module_init(init_per_zone_wmark_min) 5288 5289 /* 5290 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 5291 * that we can call two helper functions whenever min_free_kbytes 5292 * changes. 5293 */ 5294 int min_free_kbytes_sysctl_handler(ctl_table *table, int write, 5295 void __user *buffer, size_t *length, loff_t *ppos) 5296 { 5297 proc_dointvec(table, write, buffer, length, ppos); 5298 if (write) 5299 setup_per_zone_wmarks(); 5300 return 0; 5301 } 5302 5303 #ifdef CONFIG_NUMA 5304 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write, 5305 void __user *buffer, size_t *length, loff_t *ppos) 5306 { 5307 struct zone *zone; 5308 int rc; 5309 5310 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5311 if (rc) 5312 return rc; 5313 5314 for_each_zone(zone) 5315 zone->min_unmapped_pages = (zone->present_pages * 5316 sysctl_min_unmapped_ratio) / 100; 5317 return 0; 5318 } 5319 5320 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write, 5321 void __user *buffer, size_t *length, loff_t *ppos) 5322 { 5323 struct zone *zone; 5324 int rc; 5325 5326 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 5327 if (rc) 5328 return rc; 5329 5330 for_each_zone(zone) 5331 zone->min_slab_pages = (zone->present_pages * 5332 sysctl_min_slab_ratio) / 100; 5333 return 0; 5334 } 5335 #endif 5336 5337 /* 5338 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 5339 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 5340 * whenever sysctl_lowmem_reserve_ratio changes. 5341 * 5342 * The reserve ratio obviously has absolutely no relation with the 5343 * minimum watermarks. The lowmem reserve ratio can only make sense 5344 * if in function of the boot time zone sizes. 5345 */ 5346 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write, 5347 void __user *buffer, size_t *length, loff_t *ppos) 5348 { 5349 proc_dointvec_minmax(table, write, buffer, length, ppos); 5350 setup_per_zone_lowmem_reserve(); 5351 return 0; 5352 } 5353 5354 /* 5355 * percpu_pagelist_fraction - changes the pcp->high for each zone on each 5356 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist 5357 * can have before it gets flushed back to buddy allocator. 5358 */ 5359 5360 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write, 5361 void __user *buffer, size_t *length, loff_t *ppos) 5362 { 5363 struct zone *zone; 5364 unsigned int cpu; 5365 int ret; 5366 5367 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 5368 if (!write || (ret < 0)) 5369 return ret; 5370 for_each_populated_zone(zone) { 5371 for_each_possible_cpu(cpu) { 5372 unsigned long high; 5373 high = zone->present_pages / percpu_pagelist_fraction; 5374 setup_pagelist_highmark( 5375 per_cpu_ptr(zone->pageset, cpu), high); 5376 } 5377 } 5378 return 0; 5379 } 5380 5381 int hashdist = HASHDIST_DEFAULT; 5382 5383 #ifdef CONFIG_NUMA 5384 static int __init set_hashdist(char *str) 5385 { 5386 if (!str) 5387 return 0; 5388 hashdist = simple_strtoul(str, &str, 0); 5389 return 1; 5390 } 5391 __setup("hashdist=", set_hashdist); 5392 #endif 5393 5394 /* 5395 * allocate a large system hash table from bootmem 5396 * - it is assumed that the hash table must contain an exact power-of-2 5397 * quantity of entries 5398 * - limit is the number of hash buckets, not the total allocation size 5399 */ 5400 void *__init alloc_large_system_hash(const char *tablename, 5401 unsigned long bucketsize, 5402 unsigned long numentries, 5403 int scale, 5404 int flags, 5405 unsigned int *_hash_shift, 5406 unsigned int *_hash_mask, 5407 unsigned long low_limit, 5408 unsigned long high_limit) 5409 { 5410 unsigned long long max = high_limit; 5411 unsigned long log2qty, size; 5412 void *table = NULL; 5413 5414 /* allow the kernel cmdline to have a say */ 5415 if (!numentries) { 5416 /* round applicable memory size up to nearest megabyte */ 5417 numentries = nr_kernel_pages; 5418 numentries += (1UL << (20 - PAGE_SHIFT)) - 1; 5419 numentries >>= 20 - PAGE_SHIFT; 5420 numentries <<= 20 - PAGE_SHIFT; 5421 5422 /* limit to 1 bucket per 2^scale bytes of low memory */ 5423 if (scale > PAGE_SHIFT) 5424 numentries >>= (scale - PAGE_SHIFT); 5425 else 5426 numentries <<= (PAGE_SHIFT - scale); 5427 5428 /* Make sure we've got at least a 0-order allocation.. */ 5429 if (unlikely(flags & HASH_SMALL)) { 5430 /* Makes no sense without HASH_EARLY */ 5431 WARN_ON(!(flags & HASH_EARLY)); 5432 if (!(numentries >> *_hash_shift)) { 5433 numentries = 1UL << *_hash_shift; 5434 BUG_ON(!numentries); 5435 } 5436 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 5437 numentries = PAGE_SIZE / bucketsize; 5438 } 5439 numentries = roundup_pow_of_two(numentries); 5440 5441 /* limit allocation size to 1/16 total memory by default */ 5442 if (max == 0) { 5443 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 5444 do_div(max, bucketsize); 5445 } 5446 max = min(max, 0x80000000ULL); 5447 5448 if (numentries < low_limit) 5449 numentries = low_limit; 5450 if (numentries > max) 5451 numentries = max; 5452 5453 log2qty = ilog2(numentries); 5454 5455 do { 5456 size = bucketsize << log2qty; 5457 if (flags & HASH_EARLY) 5458 table = alloc_bootmem_nopanic(size); 5459 else if (hashdist) 5460 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL); 5461 else { 5462 /* 5463 * If bucketsize is not a power-of-two, we may free 5464 * some pages at the end of hash table which 5465 * alloc_pages_exact() automatically does 5466 */ 5467 if (get_order(size) < MAX_ORDER) { 5468 table = alloc_pages_exact(size, GFP_ATOMIC); 5469 kmemleak_alloc(table, size, 1, GFP_ATOMIC); 5470 } 5471 } 5472 } while (!table && size > PAGE_SIZE && --log2qty); 5473 5474 if (!table) 5475 panic("Failed to allocate %s hash table\n", tablename); 5476 5477 printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n", 5478 tablename, 5479 (1UL << log2qty), 5480 ilog2(size) - PAGE_SHIFT, 5481 size); 5482 5483 if (_hash_shift) 5484 *_hash_shift = log2qty; 5485 if (_hash_mask) 5486 *_hash_mask = (1 << log2qty) - 1; 5487 5488 return table; 5489 } 5490 5491 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 5492 static inline unsigned long *get_pageblock_bitmap(struct zone *zone, 5493 unsigned long pfn) 5494 { 5495 #ifdef CONFIG_SPARSEMEM 5496 return __pfn_to_section(pfn)->pageblock_flags; 5497 #else 5498 return zone->pageblock_flags; 5499 #endif /* CONFIG_SPARSEMEM */ 5500 } 5501 5502 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn) 5503 { 5504 #ifdef CONFIG_SPARSEMEM 5505 pfn &= (PAGES_PER_SECTION-1); 5506 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5507 #else 5508 pfn = pfn - zone->zone_start_pfn; 5509 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 5510 #endif /* CONFIG_SPARSEMEM */ 5511 } 5512 5513 /** 5514 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages 5515 * @page: The page within the block of interest 5516 * @start_bitidx: The first bit of interest to retrieve 5517 * @end_bitidx: The last bit of interest 5518 * returns pageblock_bits flags 5519 */ 5520 unsigned long get_pageblock_flags_group(struct page *page, 5521 int start_bitidx, int end_bitidx) 5522 { 5523 struct zone *zone; 5524 unsigned long *bitmap; 5525 unsigned long pfn, bitidx; 5526 unsigned long flags = 0; 5527 unsigned long value = 1; 5528 5529 zone = page_zone(page); 5530 pfn = page_to_pfn(page); 5531 bitmap = get_pageblock_bitmap(zone, pfn); 5532 bitidx = pfn_to_bitidx(zone, pfn); 5533 5534 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5535 if (test_bit(bitidx + start_bitidx, bitmap)) 5536 flags |= value; 5537 5538 return flags; 5539 } 5540 5541 /** 5542 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages 5543 * @page: The page within the block of interest 5544 * @start_bitidx: The first bit of interest 5545 * @end_bitidx: The last bit of interest 5546 * @flags: The flags to set 5547 */ 5548 void set_pageblock_flags_group(struct page *page, unsigned long flags, 5549 int start_bitidx, int end_bitidx) 5550 { 5551 struct zone *zone; 5552 unsigned long *bitmap; 5553 unsigned long pfn, bitidx; 5554 unsigned long value = 1; 5555 5556 zone = page_zone(page); 5557 pfn = page_to_pfn(page); 5558 bitmap = get_pageblock_bitmap(zone, pfn); 5559 bitidx = pfn_to_bitidx(zone, pfn); 5560 VM_BUG_ON(pfn < zone->zone_start_pfn); 5561 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages); 5562 5563 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1) 5564 if (flags & value) 5565 __set_bit(bitidx + start_bitidx, bitmap); 5566 else 5567 __clear_bit(bitidx + start_bitidx, bitmap); 5568 } 5569 5570 /* 5571 * This function checks whether pageblock includes unmovable pages or not. 5572 * If @count is not zero, it is okay to include less @count unmovable pages 5573 * 5574 * PageLRU check wihtout isolation or lru_lock could race so that 5575 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't 5576 * expect this function should be exact. 5577 */ 5578 bool has_unmovable_pages(struct zone *zone, struct page *page, int count) 5579 { 5580 unsigned long pfn, iter, found; 5581 int mt; 5582 5583 /* 5584 * For avoiding noise data, lru_add_drain_all() should be called 5585 * If ZONE_MOVABLE, the zone never contains unmovable pages 5586 */ 5587 if (zone_idx(zone) == ZONE_MOVABLE) 5588 return false; 5589 mt = get_pageblock_migratetype(page); 5590 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt)) 5591 return false; 5592 5593 pfn = page_to_pfn(page); 5594 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) { 5595 unsigned long check = pfn + iter; 5596 5597 if (!pfn_valid_within(check)) 5598 continue; 5599 5600 page = pfn_to_page(check); 5601 /* 5602 * We can't use page_count without pin a page 5603 * because another CPU can free compound page. 5604 * This check already skips compound tails of THP 5605 * because their page->_count is zero at all time. 5606 */ 5607 if (!atomic_read(&page->_count)) { 5608 if (PageBuddy(page)) 5609 iter += (1 << page_order(page)) - 1; 5610 continue; 5611 } 5612 5613 if (!PageLRU(page)) 5614 found++; 5615 /* 5616 * If there are RECLAIMABLE pages, we need to check it. 5617 * But now, memory offline itself doesn't call shrink_slab() 5618 * and it still to be fixed. 5619 */ 5620 /* 5621 * If the page is not RAM, page_count()should be 0. 5622 * we don't need more check. This is an _used_ not-movable page. 5623 * 5624 * The problematic thing here is PG_reserved pages. PG_reserved 5625 * is set to both of a memory hole page and a _used_ kernel 5626 * page at boot. 5627 */ 5628 if (found > count) 5629 return true; 5630 } 5631 return false; 5632 } 5633 5634 bool is_pageblock_removable_nolock(struct page *page) 5635 { 5636 struct zone *zone; 5637 unsigned long pfn; 5638 5639 /* 5640 * We have to be careful here because we are iterating over memory 5641 * sections which are not zone aware so we might end up outside of 5642 * the zone but still within the section. 5643 * We have to take care about the node as well. If the node is offline 5644 * its NODE_DATA will be NULL - see page_zone. 5645 */ 5646 if (!node_online(page_to_nid(page))) 5647 return false; 5648 5649 zone = page_zone(page); 5650 pfn = page_to_pfn(page); 5651 if (zone->zone_start_pfn > pfn || 5652 zone->zone_start_pfn + zone->spanned_pages <= pfn) 5653 return false; 5654 5655 return !has_unmovable_pages(zone, page, 0); 5656 } 5657 5658 #ifdef CONFIG_CMA 5659 5660 static unsigned long pfn_max_align_down(unsigned long pfn) 5661 { 5662 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 5663 pageblock_nr_pages) - 1); 5664 } 5665 5666 static unsigned long pfn_max_align_up(unsigned long pfn) 5667 { 5668 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 5669 pageblock_nr_pages)); 5670 } 5671 5672 /* [start, end) must belong to a single zone. */ 5673 static int __alloc_contig_migrate_range(struct compact_control *cc, 5674 unsigned long start, unsigned long end) 5675 { 5676 /* This function is based on compact_zone() from compaction.c. */ 5677 unsigned long nr_reclaimed; 5678 unsigned long pfn = start; 5679 unsigned int tries = 0; 5680 int ret = 0; 5681 5682 migrate_prep_local(); 5683 5684 while (pfn < end || !list_empty(&cc->migratepages)) { 5685 if (fatal_signal_pending(current)) { 5686 ret = -EINTR; 5687 break; 5688 } 5689 5690 if (list_empty(&cc->migratepages)) { 5691 cc->nr_migratepages = 0; 5692 pfn = isolate_migratepages_range(cc->zone, cc, 5693 pfn, end, true); 5694 if (!pfn) { 5695 ret = -EINTR; 5696 break; 5697 } 5698 tries = 0; 5699 } else if (++tries == 5) { 5700 ret = ret < 0 ? ret : -EBUSY; 5701 break; 5702 } 5703 5704 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 5705 &cc->migratepages); 5706 cc->nr_migratepages -= nr_reclaimed; 5707 5708 ret = migrate_pages(&cc->migratepages, 5709 alloc_migrate_target, 5710 0, false, MIGRATE_SYNC); 5711 } 5712 5713 putback_lru_pages(&cc->migratepages); 5714 return ret > 0 ? 0 : ret; 5715 } 5716 5717 /* 5718 * Update zone's cma pages counter used for watermark level calculation. 5719 */ 5720 static inline void __update_cma_watermarks(struct zone *zone, int count) 5721 { 5722 unsigned long flags; 5723 spin_lock_irqsave(&zone->lock, flags); 5724 zone->min_cma_pages += count; 5725 spin_unlock_irqrestore(&zone->lock, flags); 5726 setup_per_zone_wmarks(); 5727 } 5728 5729 /* 5730 * Trigger memory pressure bump to reclaim some pages in order to be able to 5731 * allocate 'count' pages in single page units. Does similar work as 5732 *__alloc_pages_slowpath() function. 5733 */ 5734 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count) 5735 { 5736 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 5737 struct zonelist *zonelist = node_zonelist(0, gfp_mask); 5738 int did_some_progress = 0; 5739 int order = 1; 5740 5741 /* 5742 * Increase level of watermarks to force kswapd do his job 5743 * to stabilise at new watermark level. 5744 */ 5745 __update_cma_watermarks(zone, count); 5746 5747 /* Obey watermarks as if the page was being allocated */ 5748 while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) { 5749 wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone)); 5750 5751 did_some_progress = __perform_reclaim(gfp_mask, order, zonelist, 5752 NULL); 5753 if (!did_some_progress) { 5754 /* Exhausted what can be done so it's blamo time */ 5755 out_of_memory(zonelist, gfp_mask, order, NULL, false); 5756 } 5757 } 5758 5759 /* Restore original watermark levels. */ 5760 __update_cma_watermarks(zone, -count); 5761 5762 return count; 5763 } 5764 5765 /** 5766 * alloc_contig_range() -- tries to allocate given range of pages 5767 * @start: start PFN to allocate 5768 * @end: one-past-the-last PFN to allocate 5769 * @migratetype: migratetype of the underlaying pageblocks (either 5770 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 5771 * in range must have the same migratetype and it must 5772 * be either of the two. 5773 * 5774 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 5775 * aligned, however it's the caller's responsibility to guarantee that 5776 * we are the only thread that changes migrate type of pageblocks the 5777 * pages fall in. 5778 * 5779 * The PFN range must belong to a single zone. 5780 * 5781 * Returns zero on success or negative error code. On success all 5782 * pages which PFN is in [start, end) are allocated for the caller and 5783 * need to be freed with free_contig_range(). 5784 */ 5785 int alloc_contig_range(unsigned long start, unsigned long end, 5786 unsigned migratetype) 5787 { 5788 struct zone *zone = page_zone(pfn_to_page(start)); 5789 unsigned long outer_start, outer_end; 5790 int ret = 0, order; 5791 5792 struct compact_control cc = { 5793 .nr_migratepages = 0, 5794 .order = -1, 5795 .zone = page_zone(pfn_to_page(start)), 5796 .sync = true, 5797 .ignore_skip_hint = true, 5798 }; 5799 INIT_LIST_HEAD(&cc.migratepages); 5800 5801 /* 5802 * What we do here is we mark all pageblocks in range as 5803 * MIGRATE_ISOLATE. Because pageblock and max order pages may 5804 * have different sizes, and due to the way page allocator 5805 * work, we align the range to biggest of the two pages so 5806 * that page allocator won't try to merge buddies from 5807 * different pageblocks and change MIGRATE_ISOLATE to some 5808 * other migration type. 5809 * 5810 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 5811 * migrate the pages from an unaligned range (ie. pages that 5812 * we are interested in). This will put all the pages in 5813 * range back to page allocator as MIGRATE_ISOLATE. 5814 * 5815 * When this is done, we take the pages in range from page 5816 * allocator removing them from the buddy system. This way 5817 * page allocator will never consider using them. 5818 * 5819 * This lets us mark the pageblocks back as 5820 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 5821 * aligned range but not in the unaligned, original range are 5822 * put back to page allocator so that buddy can use them. 5823 */ 5824 5825 ret = start_isolate_page_range(pfn_max_align_down(start), 5826 pfn_max_align_up(end), migratetype); 5827 if (ret) 5828 return ret; 5829 5830 ret = __alloc_contig_migrate_range(&cc, start, end); 5831 if (ret) 5832 goto done; 5833 5834 /* 5835 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 5836 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 5837 * more, all pages in [start, end) are free in page allocator. 5838 * What we are going to do is to allocate all pages from 5839 * [start, end) (that is remove them from page allocator). 5840 * 5841 * The only problem is that pages at the beginning and at the 5842 * end of interesting range may be not aligned with pages that 5843 * page allocator holds, ie. they can be part of higher order 5844 * pages. Because of this, we reserve the bigger range and 5845 * once this is done free the pages we are not interested in. 5846 * 5847 * We don't have to hold zone->lock here because the pages are 5848 * isolated thus they won't get removed from buddy. 5849 */ 5850 5851 lru_add_drain_all(); 5852 drain_all_pages(); 5853 5854 order = 0; 5855 outer_start = start; 5856 while (!PageBuddy(pfn_to_page(outer_start))) { 5857 if (++order >= MAX_ORDER) { 5858 ret = -EBUSY; 5859 goto done; 5860 } 5861 outer_start &= ~0UL << order; 5862 } 5863 5864 /* Make sure the range is really isolated. */ 5865 if (test_pages_isolated(outer_start, end)) { 5866 pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n", 5867 outer_start, end); 5868 ret = -EBUSY; 5869 goto done; 5870 } 5871 5872 /* 5873 * Reclaim enough pages to make sure that contiguous allocation 5874 * will not starve the system. 5875 */ 5876 __reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start); 5877 5878 /* Grab isolated pages from freelists. */ 5879 outer_end = isolate_freepages_range(&cc, outer_start, end); 5880 if (!outer_end) { 5881 ret = -EBUSY; 5882 goto done; 5883 } 5884 5885 /* Free head and tail (if any) */ 5886 if (start != outer_start) 5887 free_contig_range(outer_start, start - outer_start); 5888 if (end != outer_end) 5889 free_contig_range(end, outer_end - end); 5890 5891 done: 5892 undo_isolate_page_range(pfn_max_align_down(start), 5893 pfn_max_align_up(end), migratetype); 5894 return ret; 5895 } 5896 5897 void free_contig_range(unsigned long pfn, unsigned nr_pages) 5898 { 5899 for (; nr_pages--; ++pfn) 5900 __free_page(pfn_to_page(pfn)); 5901 } 5902 #endif 5903 5904 #ifdef CONFIG_MEMORY_HOTPLUG 5905 static int __meminit __zone_pcp_update(void *data) 5906 { 5907 struct zone *zone = data; 5908 int cpu; 5909 unsigned long batch = zone_batchsize(zone), flags; 5910 5911 for_each_possible_cpu(cpu) { 5912 struct per_cpu_pageset *pset; 5913 struct per_cpu_pages *pcp; 5914 5915 pset = per_cpu_ptr(zone->pageset, cpu); 5916 pcp = &pset->pcp; 5917 5918 local_irq_save(flags); 5919 if (pcp->count > 0) 5920 free_pcppages_bulk(zone, pcp->count, pcp); 5921 drain_zonestat(zone, pset); 5922 setup_pageset(pset, batch); 5923 local_irq_restore(flags); 5924 } 5925 return 0; 5926 } 5927 5928 void __meminit zone_pcp_update(struct zone *zone) 5929 { 5930 stop_machine(__zone_pcp_update, zone, NULL); 5931 } 5932 #endif 5933 5934 #ifdef CONFIG_MEMORY_HOTREMOVE 5935 void zone_pcp_reset(struct zone *zone) 5936 { 5937 unsigned long flags; 5938 int cpu; 5939 struct per_cpu_pageset *pset; 5940 5941 /* avoid races with drain_pages() */ 5942 local_irq_save(flags); 5943 if (zone->pageset != &boot_pageset) { 5944 for_each_online_cpu(cpu) { 5945 pset = per_cpu_ptr(zone->pageset, cpu); 5946 drain_zonestat(zone, pset); 5947 } 5948 free_percpu(zone->pageset); 5949 zone->pageset = &boot_pageset; 5950 } 5951 local_irq_restore(flags); 5952 } 5953 5954 /* 5955 * All pages in the range must be isolated before calling this. 5956 */ 5957 void 5958 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 5959 { 5960 struct page *page; 5961 struct zone *zone; 5962 int order, i; 5963 unsigned long pfn; 5964 unsigned long flags; 5965 /* find the first valid pfn */ 5966 for (pfn = start_pfn; pfn < end_pfn; pfn++) 5967 if (pfn_valid(pfn)) 5968 break; 5969 if (pfn == end_pfn) 5970 return; 5971 zone = page_zone(pfn_to_page(pfn)); 5972 spin_lock_irqsave(&zone->lock, flags); 5973 pfn = start_pfn; 5974 while (pfn < end_pfn) { 5975 if (!pfn_valid(pfn)) { 5976 pfn++; 5977 continue; 5978 } 5979 page = pfn_to_page(pfn); 5980 BUG_ON(page_count(page)); 5981 BUG_ON(!PageBuddy(page)); 5982 order = page_order(page); 5983 #ifdef CONFIG_DEBUG_VM 5984 printk(KERN_INFO "remove from free list %lx %d %lx\n", 5985 pfn, 1 << order, end_pfn); 5986 #endif 5987 list_del(&page->lru); 5988 rmv_page_order(page); 5989 zone->free_area[order].nr_free--; 5990 __mod_zone_page_state(zone, NR_FREE_PAGES, 5991 - (1UL << order)); 5992 for (i = 0; i < (1 << order); i++) 5993 SetPageReserved((page+i)); 5994 pfn += (1 << order); 5995 } 5996 spin_unlock_irqrestore(&zone->lock, flags); 5997 } 5998 #endif 5999 6000 #ifdef CONFIG_MEMORY_FAILURE 6001 bool is_free_buddy_page(struct page *page) 6002 { 6003 struct zone *zone = page_zone(page); 6004 unsigned long pfn = page_to_pfn(page); 6005 unsigned long flags; 6006 int order; 6007 6008 spin_lock_irqsave(&zone->lock, flags); 6009 for (order = 0; order < MAX_ORDER; order++) { 6010 struct page *page_head = page - (pfn & ((1 << order) - 1)); 6011 6012 if (PageBuddy(page_head) && page_order(page_head) >= order) 6013 break; 6014 } 6015 spin_unlock_irqrestore(&zone->lock, flags); 6016 6017 return order < MAX_ORDER; 6018 } 6019 #endif 6020 6021 static const struct trace_print_flags pageflag_names[] = { 6022 {1UL << PG_locked, "locked" }, 6023 {1UL << PG_error, "error" }, 6024 {1UL << PG_referenced, "referenced" }, 6025 {1UL << PG_uptodate, "uptodate" }, 6026 {1UL << PG_dirty, "dirty" }, 6027 {1UL << PG_lru, "lru" }, 6028 {1UL << PG_active, "active" }, 6029 {1UL << PG_slab, "slab" }, 6030 {1UL << PG_owner_priv_1, "owner_priv_1" }, 6031 {1UL << PG_arch_1, "arch_1" }, 6032 {1UL << PG_reserved, "reserved" }, 6033 {1UL << PG_private, "private" }, 6034 {1UL << PG_private_2, "private_2" }, 6035 {1UL << PG_writeback, "writeback" }, 6036 #ifdef CONFIG_PAGEFLAGS_EXTENDED 6037 {1UL << PG_head, "head" }, 6038 {1UL << PG_tail, "tail" }, 6039 #else 6040 {1UL << PG_compound, "compound" }, 6041 #endif 6042 {1UL << PG_swapcache, "swapcache" }, 6043 {1UL << PG_mappedtodisk, "mappedtodisk" }, 6044 {1UL << PG_reclaim, "reclaim" }, 6045 {1UL << PG_swapbacked, "swapbacked" }, 6046 {1UL << PG_unevictable, "unevictable" }, 6047 #ifdef CONFIG_MMU 6048 {1UL << PG_mlocked, "mlocked" }, 6049 #endif 6050 #ifdef CONFIG_ARCH_USES_PG_UNCACHED 6051 {1UL << PG_uncached, "uncached" }, 6052 #endif 6053 #ifdef CONFIG_MEMORY_FAILURE 6054 {1UL << PG_hwpoison, "hwpoison" }, 6055 #endif 6056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 6057 {1UL << PG_compound_lock, "compound_lock" }, 6058 #endif 6059 }; 6060 6061 static void dump_page_flags(unsigned long flags) 6062 { 6063 const char *delim = ""; 6064 unsigned long mask; 6065 int i; 6066 6067 BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS); 6068 6069 printk(KERN_ALERT "page flags: %#lx(", flags); 6070 6071 /* remove zone id */ 6072 flags &= (1UL << NR_PAGEFLAGS) - 1; 6073 6074 for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) { 6075 6076 mask = pageflag_names[i].mask; 6077 if ((flags & mask) != mask) 6078 continue; 6079 6080 flags &= ~mask; 6081 printk("%s%s", delim, pageflag_names[i].name); 6082 delim = "|"; 6083 } 6084 6085 /* check for left over flags */ 6086 if (flags) 6087 printk("%s%#lx", delim, flags); 6088 6089 printk(")\n"); 6090 } 6091 6092 void dump_page(struct page *page) 6093 { 6094 printk(KERN_ALERT 6095 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n", 6096 page, atomic_read(&page->_count), page_mapcount(page), 6097 page->mapping, page->index); 6098 dump_page_flags(page->flags); 6099 mem_cgroup_print_bad_page(page); 6100 } 6101