xref: /openbmc/linux/mm/page_alloc.c (revision 05bcf503)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/compaction.h>
55 #include <trace/events/kmem.h>
56 #include <linux/ftrace_event.h>
57 #include <linux/memcontrol.h>
58 #include <linux/prefetch.h>
59 #include <linux/migrate.h>
60 #include <linux/page-debug-flags.h>
61 
62 #include <asm/tlbflush.h>
63 #include <asm/div64.h>
64 #include "internal.h"
65 
66 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
67 DEFINE_PER_CPU(int, numa_node);
68 EXPORT_PER_CPU_SYMBOL(numa_node);
69 #endif
70 
71 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 /*
73  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
74  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
75  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
76  * defined in <linux/topology.h>.
77  */
78 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
79 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
80 #endif
81 
82 /*
83  * Array of node states.
84  */
85 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
86 	[N_POSSIBLE] = NODE_MASK_ALL,
87 	[N_ONLINE] = { { [0] = 1UL } },
88 #ifndef CONFIG_NUMA
89 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
90 #ifdef CONFIG_HIGHMEM
91 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
92 #endif
93 	[N_CPU] = { { [0] = 1UL } },
94 #endif	/* NUMA */
95 };
96 EXPORT_SYMBOL(node_states);
97 
98 unsigned long totalram_pages __read_mostly;
99 unsigned long totalreserve_pages __read_mostly;
100 /*
101  * When calculating the number of globally allowed dirty pages, there
102  * is a certain number of per-zone reserves that should not be
103  * considered dirtyable memory.  This is the sum of those reserves
104  * over all existing zones that contribute dirtyable memory.
105  */
106 unsigned long dirty_balance_reserve __read_mostly;
107 
108 int percpu_pagelist_fraction;
109 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
110 
111 #ifdef CONFIG_PM_SLEEP
112 /*
113  * The following functions are used by the suspend/hibernate code to temporarily
114  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
115  * while devices are suspended.  To avoid races with the suspend/hibernate code,
116  * they should always be called with pm_mutex held (gfp_allowed_mask also should
117  * only be modified with pm_mutex held, unless the suspend/hibernate code is
118  * guaranteed not to run in parallel with that modification).
119  */
120 
121 static gfp_t saved_gfp_mask;
122 
123 void pm_restore_gfp_mask(void)
124 {
125 	WARN_ON(!mutex_is_locked(&pm_mutex));
126 	if (saved_gfp_mask) {
127 		gfp_allowed_mask = saved_gfp_mask;
128 		saved_gfp_mask = 0;
129 	}
130 }
131 
132 void pm_restrict_gfp_mask(void)
133 {
134 	WARN_ON(!mutex_is_locked(&pm_mutex));
135 	WARN_ON(saved_gfp_mask);
136 	saved_gfp_mask = gfp_allowed_mask;
137 	gfp_allowed_mask &= ~GFP_IOFS;
138 }
139 
140 bool pm_suspended_storage(void)
141 {
142 	if ((gfp_allowed_mask & GFP_IOFS) == GFP_IOFS)
143 		return false;
144 	return true;
145 }
146 #endif /* CONFIG_PM_SLEEP */
147 
148 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
149 int pageblock_order __read_mostly;
150 #endif
151 
152 static void __free_pages_ok(struct page *page, unsigned int order);
153 
154 /*
155  * results with 256, 32 in the lowmem_reserve sysctl:
156  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
157  *	1G machine -> (16M dma, 784M normal, 224M high)
158  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
159  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
160  *	HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
161  *
162  * TBD: should special case ZONE_DMA32 machines here - in those we normally
163  * don't need any ZONE_NORMAL reservation
164  */
165 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
166 #ifdef CONFIG_ZONE_DMA
167 	 256,
168 #endif
169 #ifdef CONFIG_ZONE_DMA32
170 	 256,
171 #endif
172 #ifdef CONFIG_HIGHMEM
173 	 32,
174 #endif
175 	 32,
176 };
177 
178 EXPORT_SYMBOL(totalram_pages);
179 
180 static char * const zone_names[MAX_NR_ZONES] = {
181 #ifdef CONFIG_ZONE_DMA
182 	 "DMA",
183 #endif
184 #ifdef CONFIG_ZONE_DMA32
185 	 "DMA32",
186 #endif
187 	 "Normal",
188 #ifdef CONFIG_HIGHMEM
189 	 "HighMem",
190 #endif
191 	 "Movable",
192 };
193 
194 int min_free_kbytes = 1024;
195 
196 static unsigned long __meminitdata nr_kernel_pages;
197 static unsigned long __meminitdata nr_all_pages;
198 static unsigned long __meminitdata dma_reserve;
199 
200 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
201 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
202 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
203 static unsigned long __initdata required_kernelcore;
204 static unsigned long __initdata required_movablecore;
205 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
206 
207 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
208 int movable_zone;
209 EXPORT_SYMBOL(movable_zone);
210 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
211 
212 #if MAX_NUMNODES > 1
213 int nr_node_ids __read_mostly = MAX_NUMNODES;
214 int nr_online_nodes __read_mostly = 1;
215 EXPORT_SYMBOL(nr_node_ids);
216 EXPORT_SYMBOL(nr_online_nodes);
217 #endif
218 
219 int page_group_by_mobility_disabled __read_mostly;
220 
221 /*
222  * NOTE:
223  * Don't use set_pageblock_migratetype(page, MIGRATE_ISOLATE) directly.
224  * Instead, use {un}set_pageblock_isolate.
225  */
226 void set_pageblock_migratetype(struct page *page, int migratetype)
227 {
228 
229 	if (unlikely(page_group_by_mobility_disabled))
230 		migratetype = MIGRATE_UNMOVABLE;
231 
232 	set_pageblock_flags_group(page, (unsigned long)migratetype,
233 					PB_migrate, PB_migrate_end);
234 }
235 
236 bool oom_killer_disabled __read_mostly;
237 
238 #ifdef CONFIG_DEBUG_VM
239 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
240 {
241 	int ret = 0;
242 	unsigned seq;
243 	unsigned long pfn = page_to_pfn(page);
244 
245 	do {
246 		seq = zone_span_seqbegin(zone);
247 		if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
248 			ret = 1;
249 		else if (pfn < zone->zone_start_pfn)
250 			ret = 1;
251 	} while (zone_span_seqretry(zone, seq));
252 
253 	return ret;
254 }
255 
256 static int page_is_consistent(struct zone *zone, struct page *page)
257 {
258 	if (!pfn_valid_within(page_to_pfn(page)))
259 		return 0;
260 	if (zone != page_zone(page))
261 		return 0;
262 
263 	return 1;
264 }
265 /*
266  * Temporary debugging check for pages not lying within a given zone.
267  */
268 static int bad_range(struct zone *zone, struct page *page)
269 {
270 	if (page_outside_zone_boundaries(zone, page))
271 		return 1;
272 	if (!page_is_consistent(zone, page))
273 		return 1;
274 
275 	return 0;
276 }
277 #else
278 static inline int bad_range(struct zone *zone, struct page *page)
279 {
280 	return 0;
281 }
282 #endif
283 
284 static void bad_page(struct page *page)
285 {
286 	static unsigned long resume;
287 	static unsigned long nr_shown;
288 	static unsigned long nr_unshown;
289 
290 	/* Don't complain about poisoned pages */
291 	if (PageHWPoison(page)) {
292 		reset_page_mapcount(page); /* remove PageBuddy */
293 		return;
294 	}
295 
296 	/*
297 	 * Allow a burst of 60 reports, then keep quiet for that minute;
298 	 * or allow a steady drip of one report per second.
299 	 */
300 	if (nr_shown == 60) {
301 		if (time_before(jiffies, resume)) {
302 			nr_unshown++;
303 			goto out;
304 		}
305 		if (nr_unshown) {
306 			printk(KERN_ALERT
307 			      "BUG: Bad page state: %lu messages suppressed\n",
308 				nr_unshown);
309 			nr_unshown = 0;
310 		}
311 		nr_shown = 0;
312 	}
313 	if (nr_shown++ == 0)
314 		resume = jiffies + 60 * HZ;
315 
316 	printk(KERN_ALERT "BUG: Bad page state in process %s  pfn:%05lx\n",
317 		current->comm, page_to_pfn(page));
318 	dump_page(page);
319 
320 	print_modules();
321 	dump_stack();
322 out:
323 	/* Leave bad fields for debug, except PageBuddy could make trouble */
324 	reset_page_mapcount(page); /* remove PageBuddy */
325 	add_taint(TAINT_BAD_PAGE);
326 }
327 
328 /*
329  * Higher-order pages are called "compound pages".  They are structured thusly:
330  *
331  * The first PAGE_SIZE page is called the "head page".
332  *
333  * The remaining PAGE_SIZE pages are called "tail pages".
334  *
335  * All pages have PG_compound set.  All tail pages have their ->first_page
336  * pointing at the head page.
337  *
338  * The first tail page's ->lru.next holds the address of the compound page's
339  * put_page() function.  Its ->lru.prev holds the order of allocation.
340  * This usage means that zero-order pages may not be compound.
341  */
342 
343 static void free_compound_page(struct page *page)
344 {
345 	__free_pages_ok(page, compound_order(page));
346 }
347 
348 void prep_compound_page(struct page *page, unsigned long order)
349 {
350 	int i;
351 	int nr_pages = 1 << order;
352 
353 	set_compound_page_dtor(page, free_compound_page);
354 	set_compound_order(page, order);
355 	__SetPageHead(page);
356 	for (i = 1; i < nr_pages; i++) {
357 		struct page *p = page + i;
358 		__SetPageTail(p);
359 		set_page_count(p, 0);
360 		p->first_page = page;
361 	}
362 }
363 
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page *page, unsigned long order)
366 {
367 	int i;
368 	int nr_pages = 1 << order;
369 	int bad = 0;
370 
371 	if (unlikely(compound_order(page) != order) ||
372 	    unlikely(!PageHead(page))) {
373 		bad_page(page);
374 		bad++;
375 	}
376 
377 	__ClearPageHead(page);
378 
379 	for (i = 1; i < nr_pages; i++) {
380 		struct page *p = page + i;
381 
382 		if (unlikely(!PageTail(p) || (p->first_page != page))) {
383 			bad_page(page);
384 			bad++;
385 		}
386 		__ClearPageTail(p);
387 	}
388 
389 	return bad;
390 }
391 
392 static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
393 {
394 	int i;
395 
396 	/*
397 	 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 	 * and __GFP_HIGHMEM from hard or soft interrupt context.
399 	 */
400 	VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
401 	for (i = 0; i < (1 << order); i++)
402 		clear_highpage(page + i);
403 }
404 
405 #ifdef CONFIG_DEBUG_PAGEALLOC
406 unsigned int _debug_guardpage_minorder;
407 
408 static int __init debug_guardpage_minorder_setup(char *buf)
409 {
410 	unsigned long res;
411 
412 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
413 		printk(KERN_ERR "Bad debug_guardpage_minorder value\n");
414 		return 0;
415 	}
416 	_debug_guardpage_minorder = res;
417 	printk(KERN_INFO "Setting debug_guardpage_minorder to %lu\n", res);
418 	return 0;
419 }
420 __setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
421 
422 static inline void set_page_guard_flag(struct page *page)
423 {
424 	__set_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
425 }
426 
427 static inline void clear_page_guard_flag(struct page *page)
428 {
429 	__clear_bit(PAGE_DEBUG_FLAG_GUARD, &page->debug_flags);
430 }
431 #else
432 static inline void set_page_guard_flag(struct page *page) { }
433 static inline void clear_page_guard_flag(struct page *page) { }
434 #endif
435 
436 static inline void set_page_order(struct page *page, int order)
437 {
438 	set_page_private(page, order);
439 	__SetPageBuddy(page);
440 }
441 
442 static inline void rmv_page_order(struct page *page)
443 {
444 	__ClearPageBuddy(page);
445 	set_page_private(page, 0);
446 }
447 
448 /*
449  * Locate the struct page for both the matching buddy in our
450  * pair (buddy1) and the combined O(n+1) page they form (page).
451  *
452  * 1) Any buddy B1 will have an order O twin B2 which satisfies
453  * the following equation:
454  *     B2 = B1 ^ (1 << O)
455  * For example, if the starting buddy (buddy2) is #8 its order
456  * 1 buddy is #10:
457  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
458  *
459  * 2) Any buddy B will have an order O+1 parent P which
460  * satisfies the following equation:
461  *     P = B & ~(1 << O)
462  *
463  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
464  */
465 static inline unsigned long
466 __find_buddy_index(unsigned long page_idx, unsigned int order)
467 {
468 	return page_idx ^ (1 << order);
469 }
470 
471 /*
472  * This function checks whether a page is free && is the buddy
473  * we can do coalesce a page and its buddy if
474  * (a) the buddy is not in a hole &&
475  * (b) the buddy is in the buddy system &&
476  * (c) a page and its buddy have the same order &&
477  * (d) a page and its buddy are in the same zone.
478  *
479  * For recording whether a page is in the buddy system, we set ->_mapcount -2.
480  * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
481  *
482  * For recording page's order, we use page_private(page).
483  */
484 static inline int page_is_buddy(struct page *page, struct page *buddy,
485 								int order)
486 {
487 	if (!pfn_valid_within(page_to_pfn(buddy)))
488 		return 0;
489 
490 	if (page_zone_id(page) != page_zone_id(buddy))
491 		return 0;
492 
493 	if (page_is_guard(buddy) && page_order(buddy) == order) {
494 		VM_BUG_ON(page_count(buddy) != 0);
495 		return 1;
496 	}
497 
498 	if (PageBuddy(buddy) && page_order(buddy) == order) {
499 		VM_BUG_ON(page_count(buddy) != 0);
500 		return 1;
501 	}
502 	return 0;
503 }
504 
505 /*
506  * Freeing function for a buddy system allocator.
507  *
508  * The concept of a buddy system is to maintain direct-mapped table
509  * (containing bit values) for memory blocks of various "orders".
510  * The bottom level table contains the map for the smallest allocatable
511  * units of memory (here, pages), and each level above it describes
512  * pairs of units from the levels below, hence, "buddies".
513  * At a high level, all that happens here is marking the table entry
514  * at the bottom level available, and propagating the changes upward
515  * as necessary, plus some accounting needed to play nicely with other
516  * parts of the VM system.
517  * At each level, we keep a list of pages, which are heads of continuous
518  * free pages of length of (1 << order) and marked with _mapcount -2. Page's
519  * order is recorded in page_private(page) field.
520  * So when we are allocating or freeing one, we can derive the state of the
521  * other.  That is, if we allocate a small block, and both were
522  * free, the remainder of the region must be split into blocks.
523  * If a block is freed, and its buddy is also free, then this
524  * triggers coalescing into a block of larger size.
525  *
526  * -- wli
527  */
528 
529 static inline void __free_one_page(struct page *page,
530 		struct zone *zone, unsigned int order,
531 		int migratetype)
532 {
533 	unsigned long page_idx;
534 	unsigned long combined_idx;
535 	unsigned long uninitialized_var(buddy_idx);
536 	struct page *buddy;
537 
538 	if (unlikely(PageCompound(page)))
539 		if (unlikely(destroy_compound_page(page, order)))
540 			return;
541 
542 	VM_BUG_ON(migratetype == -1);
543 
544 	page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
545 
546 	VM_BUG_ON(page_idx & ((1 << order) - 1));
547 	VM_BUG_ON(bad_range(zone, page));
548 
549 	while (order < MAX_ORDER-1) {
550 		buddy_idx = __find_buddy_index(page_idx, order);
551 		buddy = page + (buddy_idx - page_idx);
552 		if (!page_is_buddy(page, buddy, order))
553 			break;
554 		/*
555 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
556 		 * merge with it and move up one order.
557 		 */
558 		if (page_is_guard(buddy)) {
559 			clear_page_guard_flag(buddy);
560 			set_page_private(page, 0);
561 			__mod_zone_freepage_state(zone, 1 << order,
562 						  migratetype);
563 		} else {
564 			list_del(&buddy->lru);
565 			zone->free_area[order].nr_free--;
566 			rmv_page_order(buddy);
567 		}
568 		combined_idx = buddy_idx & page_idx;
569 		page = page + (combined_idx - page_idx);
570 		page_idx = combined_idx;
571 		order++;
572 	}
573 	set_page_order(page, order);
574 
575 	/*
576 	 * If this is not the largest possible page, check if the buddy
577 	 * of the next-highest order is free. If it is, it's possible
578 	 * that pages are being freed that will coalesce soon. In case,
579 	 * that is happening, add the free page to the tail of the list
580 	 * so it's less likely to be used soon and more likely to be merged
581 	 * as a higher order page
582 	 */
583 	if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
584 		struct page *higher_page, *higher_buddy;
585 		combined_idx = buddy_idx & page_idx;
586 		higher_page = page + (combined_idx - page_idx);
587 		buddy_idx = __find_buddy_index(combined_idx, order + 1);
588 		higher_buddy = higher_page + (buddy_idx - combined_idx);
589 		if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
590 			list_add_tail(&page->lru,
591 				&zone->free_area[order].free_list[migratetype]);
592 			goto out;
593 		}
594 	}
595 
596 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
597 out:
598 	zone->free_area[order].nr_free++;
599 }
600 
601 static inline int free_pages_check(struct page *page)
602 {
603 	if (unlikely(page_mapcount(page) |
604 		(page->mapping != NULL)  |
605 		(atomic_read(&page->_count) != 0) |
606 		(page->flags & PAGE_FLAGS_CHECK_AT_FREE) |
607 		(mem_cgroup_bad_page_check(page)))) {
608 		bad_page(page);
609 		return 1;
610 	}
611 	if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
612 		page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
613 	return 0;
614 }
615 
616 /*
617  * Frees a number of pages from the PCP lists
618  * Assumes all pages on list are in same zone, and of same order.
619  * count is the number of pages to free.
620  *
621  * If the zone was previously in an "all pages pinned" state then look to
622  * see if this freeing clears that state.
623  *
624  * And clear the zone's pages_scanned counter, to hold off the "all pages are
625  * pinned" detection logic.
626  */
627 static void free_pcppages_bulk(struct zone *zone, int count,
628 					struct per_cpu_pages *pcp)
629 {
630 	int migratetype = 0;
631 	int batch_free = 0;
632 	int to_free = count;
633 
634 	spin_lock(&zone->lock);
635 	zone->all_unreclaimable = 0;
636 	zone->pages_scanned = 0;
637 
638 	while (to_free) {
639 		struct page *page;
640 		struct list_head *list;
641 
642 		/*
643 		 * Remove pages from lists in a round-robin fashion. A
644 		 * batch_free count is maintained that is incremented when an
645 		 * empty list is encountered.  This is so more pages are freed
646 		 * off fuller lists instead of spinning excessively around empty
647 		 * lists
648 		 */
649 		do {
650 			batch_free++;
651 			if (++migratetype == MIGRATE_PCPTYPES)
652 				migratetype = 0;
653 			list = &pcp->lists[migratetype];
654 		} while (list_empty(list));
655 
656 		/* This is the only non-empty list. Free them all. */
657 		if (batch_free == MIGRATE_PCPTYPES)
658 			batch_free = to_free;
659 
660 		do {
661 			int mt;	/* migratetype of the to-be-freed page */
662 
663 			page = list_entry(list->prev, struct page, lru);
664 			/* must delete as __free_one_page list manipulates */
665 			list_del(&page->lru);
666 			mt = get_freepage_migratetype(page);
667 			/* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
668 			__free_one_page(page, zone, 0, mt);
669 			trace_mm_page_pcpu_drain(page, 0, mt);
670 			if (is_migrate_cma(mt))
671 				__mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 1);
672 		} while (--to_free && --batch_free && !list_empty(list));
673 	}
674 	__mod_zone_page_state(zone, NR_FREE_PAGES, count);
675 	spin_unlock(&zone->lock);
676 }
677 
678 static void free_one_page(struct zone *zone, struct page *page, int order,
679 				int migratetype)
680 {
681 	spin_lock(&zone->lock);
682 	zone->all_unreclaimable = 0;
683 	zone->pages_scanned = 0;
684 
685 	__free_one_page(page, zone, order, migratetype);
686 	if (unlikely(migratetype != MIGRATE_ISOLATE))
687 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
688 	spin_unlock(&zone->lock);
689 }
690 
691 static bool free_pages_prepare(struct page *page, unsigned int order)
692 {
693 	int i;
694 	int bad = 0;
695 
696 	trace_mm_page_free(page, order);
697 	kmemcheck_free_shadow(page, order);
698 
699 	if (PageAnon(page))
700 		page->mapping = NULL;
701 	for (i = 0; i < (1 << order); i++)
702 		bad += free_pages_check(page + i);
703 	if (bad)
704 		return false;
705 
706 	if (!PageHighMem(page)) {
707 		debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
708 		debug_check_no_obj_freed(page_address(page),
709 					   PAGE_SIZE << order);
710 	}
711 	arch_free_page(page, order);
712 	kernel_map_pages(page, 1 << order, 0);
713 
714 	return true;
715 }
716 
717 static void __free_pages_ok(struct page *page, unsigned int order)
718 {
719 	unsigned long flags;
720 	int migratetype;
721 
722 	if (!free_pages_prepare(page, order))
723 		return;
724 
725 	local_irq_save(flags);
726 	__count_vm_events(PGFREE, 1 << order);
727 	migratetype = get_pageblock_migratetype(page);
728 	set_freepage_migratetype(page, migratetype);
729 	free_one_page(page_zone(page), page, order, migratetype);
730 	local_irq_restore(flags);
731 }
732 
733 void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
734 {
735 	unsigned int nr_pages = 1 << order;
736 	unsigned int loop;
737 
738 	prefetchw(page);
739 	for (loop = 0; loop < nr_pages; loop++) {
740 		struct page *p = &page[loop];
741 
742 		if (loop + 1 < nr_pages)
743 			prefetchw(p + 1);
744 		__ClearPageReserved(p);
745 		set_page_count(p, 0);
746 	}
747 
748 	set_page_refcounted(page);
749 	__free_pages(page, order);
750 }
751 
752 #ifdef CONFIG_CMA
753 /* Free whole pageblock and set it's migration type to MIGRATE_CMA. */
754 void __init init_cma_reserved_pageblock(struct page *page)
755 {
756 	unsigned i = pageblock_nr_pages;
757 	struct page *p = page;
758 
759 	do {
760 		__ClearPageReserved(p);
761 		set_page_count(p, 0);
762 	} while (++p, --i);
763 
764 	set_page_refcounted(page);
765 	set_pageblock_migratetype(page, MIGRATE_CMA);
766 	__free_pages(page, pageblock_order);
767 	totalram_pages += pageblock_nr_pages;
768 }
769 #endif
770 
771 /*
772  * The order of subdivision here is critical for the IO subsystem.
773  * Please do not alter this order without good reasons and regression
774  * testing. Specifically, as large blocks of memory are subdivided,
775  * the order in which smaller blocks are delivered depends on the order
776  * they're subdivided in this function. This is the primary factor
777  * influencing the order in which pages are delivered to the IO
778  * subsystem according to empirical testing, and this is also justified
779  * by considering the behavior of a buddy system containing a single
780  * large block of memory acted on by a series of small allocations.
781  * This behavior is a critical factor in sglist merging's success.
782  *
783  * -- wli
784  */
785 static inline void expand(struct zone *zone, struct page *page,
786 	int low, int high, struct free_area *area,
787 	int migratetype)
788 {
789 	unsigned long size = 1 << high;
790 
791 	while (high > low) {
792 		area--;
793 		high--;
794 		size >>= 1;
795 		VM_BUG_ON(bad_range(zone, &page[size]));
796 
797 #ifdef CONFIG_DEBUG_PAGEALLOC
798 		if (high < debug_guardpage_minorder()) {
799 			/*
800 			 * Mark as guard pages (or page), that will allow to
801 			 * merge back to allocator when buddy will be freed.
802 			 * Corresponding page table entries will not be touched,
803 			 * pages will stay not present in virtual address space
804 			 */
805 			INIT_LIST_HEAD(&page[size].lru);
806 			set_page_guard_flag(&page[size]);
807 			set_page_private(&page[size], high);
808 			/* Guard pages are not available for any usage */
809 			__mod_zone_freepage_state(zone, -(1 << high),
810 						  migratetype);
811 			continue;
812 		}
813 #endif
814 		list_add(&page[size].lru, &area->free_list[migratetype]);
815 		area->nr_free++;
816 		set_page_order(&page[size], high);
817 	}
818 }
819 
820 /*
821  * This page is about to be returned from the page allocator
822  */
823 static inline int check_new_page(struct page *page)
824 {
825 	if (unlikely(page_mapcount(page) |
826 		(page->mapping != NULL)  |
827 		(atomic_read(&page->_count) != 0)  |
828 		(page->flags & PAGE_FLAGS_CHECK_AT_PREP) |
829 		(mem_cgroup_bad_page_check(page)))) {
830 		bad_page(page);
831 		return 1;
832 	}
833 	return 0;
834 }
835 
836 static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
837 {
838 	int i;
839 
840 	for (i = 0; i < (1 << order); i++) {
841 		struct page *p = page + i;
842 		if (unlikely(check_new_page(p)))
843 			return 1;
844 	}
845 
846 	set_page_private(page, 0);
847 	set_page_refcounted(page);
848 
849 	arch_alloc_page(page, order);
850 	kernel_map_pages(page, 1 << order, 1);
851 
852 	if (gfp_flags & __GFP_ZERO)
853 		prep_zero_page(page, order, gfp_flags);
854 
855 	if (order && (gfp_flags & __GFP_COMP))
856 		prep_compound_page(page, order);
857 
858 	return 0;
859 }
860 
861 /*
862  * Go through the free lists for the given migratetype and remove
863  * the smallest available page from the freelists
864  */
865 static inline
866 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
867 						int migratetype)
868 {
869 	unsigned int current_order;
870 	struct free_area * area;
871 	struct page *page;
872 
873 	/* Find a page of the appropriate size in the preferred list */
874 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
875 		area = &(zone->free_area[current_order]);
876 		if (list_empty(&area->free_list[migratetype]))
877 			continue;
878 
879 		page = list_entry(area->free_list[migratetype].next,
880 							struct page, lru);
881 		list_del(&page->lru);
882 		rmv_page_order(page);
883 		area->nr_free--;
884 		expand(zone, page, order, current_order, area, migratetype);
885 		return page;
886 	}
887 
888 	return NULL;
889 }
890 
891 
892 /*
893  * This array describes the order lists are fallen back to when
894  * the free lists for the desirable migrate type are depleted
895  */
896 static int fallbacks[MIGRATE_TYPES][4] = {
897 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,     MIGRATE_RESERVE },
898 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,     MIGRATE_RESERVE },
899 #ifdef CONFIG_CMA
900 	[MIGRATE_MOVABLE]     = { MIGRATE_CMA,         MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
901 	[MIGRATE_CMA]         = { MIGRATE_RESERVE }, /* Never used */
902 #else
903 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE,   MIGRATE_RESERVE },
904 #endif
905 	[MIGRATE_RESERVE]     = { MIGRATE_RESERVE }, /* Never used */
906 	[MIGRATE_ISOLATE]     = { MIGRATE_RESERVE }, /* Never used */
907 };
908 
909 /*
910  * Move the free pages in a range to the free lists of the requested type.
911  * Note that start_page and end_pages are not aligned on a pageblock
912  * boundary. If alignment is required, use move_freepages_block()
913  */
914 int move_freepages(struct zone *zone,
915 			  struct page *start_page, struct page *end_page,
916 			  int migratetype)
917 {
918 	struct page *page;
919 	unsigned long order;
920 	int pages_moved = 0;
921 
922 #ifndef CONFIG_HOLES_IN_ZONE
923 	/*
924 	 * page_zone is not safe to call in this context when
925 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
926 	 * anyway as we check zone boundaries in move_freepages_block().
927 	 * Remove at a later date when no bug reports exist related to
928 	 * grouping pages by mobility
929 	 */
930 	BUG_ON(page_zone(start_page) != page_zone(end_page));
931 #endif
932 
933 	for (page = start_page; page <= end_page;) {
934 		/* Make sure we are not inadvertently changing nodes */
935 		VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
936 
937 		if (!pfn_valid_within(page_to_pfn(page))) {
938 			page++;
939 			continue;
940 		}
941 
942 		if (!PageBuddy(page)) {
943 			page++;
944 			continue;
945 		}
946 
947 		order = page_order(page);
948 		list_move(&page->lru,
949 			  &zone->free_area[order].free_list[migratetype]);
950 		set_freepage_migratetype(page, migratetype);
951 		page += 1 << order;
952 		pages_moved += 1 << order;
953 	}
954 
955 	return pages_moved;
956 }
957 
958 int move_freepages_block(struct zone *zone, struct page *page,
959 				int migratetype)
960 {
961 	unsigned long start_pfn, end_pfn;
962 	struct page *start_page, *end_page;
963 
964 	start_pfn = page_to_pfn(page);
965 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
966 	start_page = pfn_to_page(start_pfn);
967 	end_page = start_page + pageblock_nr_pages - 1;
968 	end_pfn = start_pfn + pageblock_nr_pages - 1;
969 
970 	/* Do not cross zone boundaries */
971 	if (start_pfn < zone->zone_start_pfn)
972 		start_page = page;
973 	if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
974 		return 0;
975 
976 	return move_freepages(zone, start_page, end_page, migratetype);
977 }
978 
979 static void change_pageblock_range(struct page *pageblock_page,
980 					int start_order, int migratetype)
981 {
982 	int nr_pageblocks = 1 << (start_order - pageblock_order);
983 
984 	while (nr_pageblocks--) {
985 		set_pageblock_migratetype(pageblock_page, migratetype);
986 		pageblock_page += pageblock_nr_pages;
987 	}
988 }
989 
990 /* Remove an element from the buddy allocator from the fallback list */
991 static inline struct page *
992 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
993 {
994 	struct free_area * area;
995 	int current_order;
996 	struct page *page;
997 	int migratetype, i;
998 
999 	/* Find the largest possible block of pages in the other list */
1000 	for (current_order = MAX_ORDER-1; current_order >= order;
1001 						--current_order) {
1002 		for (i = 0;; i++) {
1003 			migratetype = fallbacks[start_migratetype][i];
1004 
1005 			/* MIGRATE_RESERVE handled later if necessary */
1006 			if (migratetype == MIGRATE_RESERVE)
1007 				break;
1008 
1009 			area = &(zone->free_area[current_order]);
1010 			if (list_empty(&area->free_list[migratetype]))
1011 				continue;
1012 
1013 			page = list_entry(area->free_list[migratetype].next,
1014 					struct page, lru);
1015 			area->nr_free--;
1016 
1017 			/*
1018 			 * If breaking a large block of pages, move all free
1019 			 * pages to the preferred allocation list. If falling
1020 			 * back for a reclaimable kernel allocation, be more
1021 			 * aggressive about taking ownership of free pages
1022 			 *
1023 			 * On the other hand, never change migration
1024 			 * type of MIGRATE_CMA pageblocks nor move CMA
1025 			 * pages on different free lists. We don't
1026 			 * want unmovable pages to be allocated from
1027 			 * MIGRATE_CMA areas.
1028 			 */
1029 			if (!is_migrate_cma(migratetype) &&
1030 			    (unlikely(current_order >= pageblock_order / 2) ||
1031 			     start_migratetype == MIGRATE_RECLAIMABLE ||
1032 			     page_group_by_mobility_disabled)) {
1033 				int pages;
1034 				pages = move_freepages_block(zone, page,
1035 								start_migratetype);
1036 
1037 				/* Claim the whole block if over half of it is free */
1038 				if (pages >= (1 << (pageblock_order-1)) ||
1039 						page_group_by_mobility_disabled)
1040 					set_pageblock_migratetype(page,
1041 								start_migratetype);
1042 
1043 				migratetype = start_migratetype;
1044 			}
1045 
1046 			/* Remove the page from the freelists */
1047 			list_del(&page->lru);
1048 			rmv_page_order(page);
1049 
1050 			/* Take ownership for orders >= pageblock_order */
1051 			if (current_order >= pageblock_order &&
1052 			    !is_migrate_cma(migratetype))
1053 				change_pageblock_range(page, current_order,
1054 							start_migratetype);
1055 
1056 			expand(zone, page, order, current_order, area,
1057 			       is_migrate_cma(migratetype)
1058 			     ? migratetype : start_migratetype);
1059 
1060 			trace_mm_page_alloc_extfrag(page, order, current_order,
1061 				start_migratetype, migratetype);
1062 
1063 			return page;
1064 		}
1065 	}
1066 
1067 	return NULL;
1068 }
1069 
1070 /*
1071  * Do the hard work of removing an element from the buddy allocator.
1072  * Call me with the zone->lock already held.
1073  */
1074 static struct page *__rmqueue(struct zone *zone, unsigned int order,
1075 						int migratetype)
1076 {
1077 	struct page *page;
1078 
1079 retry_reserve:
1080 	page = __rmqueue_smallest(zone, order, migratetype);
1081 
1082 	if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
1083 		page = __rmqueue_fallback(zone, order, migratetype);
1084 
1085 		/*
1086 		 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1087 		 * is used because __rmqueue_smallest is an inline function
1088 		 * and we want just one call site
1089 		 */
1090 		if (!page) {
1091 			migratetype = MIGRATE_RESERVE;
1092 			goto retry_reserve;
1093 		}
1094 	}
1095 
1096 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
1097 	return page;
1098 }
1099 
1100 /*
1101  * Obtain a specified number of elements from the buddy allocator, all under
1102  * a single hold of the lock, for efficiency.  Add them to the supplied list.
1103  * Returns the number of new pages which were placed at *list.
1104  */
1105 static int rmqueue_bulk(struct zone *zone, unsigned int order,
1106 			unsigned long count, struct list_head *list,
1107 			int migratetype, int cold)
1108 {
1109 	int mt = migratetype, i;
1110 
1111 	spin_lock(&zone->lock);
1112 	for (i = 0; i < count; ++i) {
1113 		struct page *page = __rmqueue(zone, order, migratetype);
1114 		if (unlikely(page == NULL))
1115 			break;
1116 
1117 		/*
1118 		 * Split buddy pages returned by expand() are received here
1119 		 * in physical page order. The page is added to the callers and
1120 		 * list and the list head then moves forward. From the callers
1121 		 * perspective, the linked list is ordered by page number in
1122 		 * some conditions. This is useful for IO devices that can
1123 		 * merge IO requests if the physical pages are ordered
1124 		 * properly.
1125 		 */
1126 		if (likely(cold == 0))
1127 			list_add(&page->lru, list);
1128 		else
1129 			list_add_tail(&page->lru, list);
1130 		if (IS_ENABLED(CONFIG_CMA)) {
1131 			mt = get_pageblock_migratetype(page);
1132 			if (!is_migrate_cma(mt) && mt != MIGRATE_ISOLATE)
1133 				mt = migratetype;
1134 		}
1135 		set_freepage_migratetype(page, mt);
1136 		list = &page->lru;
1137 		if (is_migrate_cma(mt))
1138 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
1139 					      -(1 << order));
1140 	}
1141 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
1142 	spin_unlock(&zone->lock);
1143 	return i;
1144 }
1145 
1146 #ifdef CONFIG_NUMA
1147 /*
1148  * Called from the vmstat counter updater to drain pagesets of this
1149  * currently executing processor on remote nodes after they have
1150  * expired.
1151  *
1152  * Note that this function must be called with the thread pinned to
1153  * a single processor.
1154  */
1155 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
1156 {
1157 	unsigned long flags;
1158 	int to_drain;
1159 
1160 	local_irq_save(flags);
1161 	if (pcp->count >= pcp->batch)
1162 		to_drain = pcp->batch;
1163 	else
1164 		to_drain = pcp->count;
1165 	if (to_drain > 0) {
1166 		free_pcppages_bulk(zone, to_drain, pcp);
1167 		pcp->count -= to_drain;
1168 	}
1169 	local_irq_restore(flags);
1170 }
1171 #endif
1172 
1173 /*
1174  * Drain pages of the indicated processor.
1175  *
1176  * The processor must either be the current processor and the
1177  * thread pinned to the current processor or a processor that
1178  * is not online.
1179  */
1180 static void drain_pages(unsigned int cpu)
1181 {
1182 	unsigned long flags;
1183 	struct zone *zone;
1184 
1185 	for_each_populated_zone(zone) {
1186 		struct per_cpu_pageset *pset;
1187 		struct per_cpu_pages *pcp;
1188 
1189 		local_irq_save(flags);
1190 		pset = per_cpu_ptr(zone->pageset, cpu);
1191 
1192 		pcp = &pset->pcp;
1193 		if (pcp->count) {
1194 			free_pcppages_bulk(zone, pcp->count, pcp);
1195 			pcp->count = 0;
1196 		}
1197 		local_irq_restore(flags);
1198 	}
1199 }
1200 
1201 /*
1202  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1203  */
1204 void drain_local_pages(void *arg)
1205 {
1206 	drain_pages(smp_processor_id());
1207 }
1208 
1209 /*
1210  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
1211  *
1212  * Note that this code is protected against sending an IPI to an offline
1213  * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
1214  * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
1215  * nothing keeps CPUs from showing up after we populated the cpumask and
1216  * before the call to on_each_cpu_mask().
1217  */
1218 void drain_all_pages(void)
1219 {
1220 	int cpu;
1221 	struct per_cpu_pageset *pcp;
1222 	struct zone *zone;
1223 
1224 	/*
1225 	 * Allocate in the BSS so we wont require allocation in
1226 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
1227 	 */
1228 	static cpumask_t cpus_with_pcps;
1229 
1230 	/*
1231 	 * We don't care about racing with CPU hotplug event
1232 	 * as offline notification will cause the notified
1233 	 * cpu to drain that CPU pcps and on_each_cpu_mask
1234 	 * disables preemption as part of its processing
1235 	 */
1236 	for_each_online_cpu(cpu) {
1237 		bool has_pcps = false;
1238 		for_each_populated_zone(zone) {
1239 			pcp = per_cpu_ptr(zone->pageset, cpu);
1240 			if (pcp->pcp.count) {
1241 				has_pcps = true;
1242 				break;
1243 			}
1244 		}
1245 		if (has_pcps)
1246 			cpumask_set_cpu(cpu, &cpus_with_pcps);
1247 		else
1248 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
1249 	}
1250 	on_each_cpu_mask(&cpus_with_pcps, drain_local_pages, NULL, 1);
1251 }
1252 
1253 #ifdef CONFIG_HIBERNATION
1254 
1255 void mark_free_pages(struct zone *zone)
1256 {
1257 	unsigned long pfn, max_zone_pfn;
1258 	unsigned long flags;
1259 	int order, t;
1260 	struct list_head *curr;
1261 
1262 	if (!zone->spanned_pages)
1263 		return;
1264 
1265 	spin_lock_irqsave(&zone->lock, flags);
1266 
1267 	max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
1268 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
1269 		if (pfn_valid(pfn)) {
1270 			struct page *page = pfn_to_page(pfn);
1271 
1272 			if (!swsusp_page_is_forbidden(page))
1273 				swsusp_unset_page_free(page);
1274 		}
1275 
1276 	for_each_migratetype_order(order, t) {
1277 		list_for_each(curr, &zone->free_area[order].free_list[t]) {
1278 			unsigned long i;
1279 
1280 			pfn = page_to_pfn(list_entry(curr, struct page, lru));
1281 			for (i = 0; i < (1UL << order); i++)
1282 				swsusp_set_page_free(pfn_to_page(pfn + i));
1283 		}
1284 	}
1285 	spin_unlock_irqrestore(&zone->lock, flags);
1286 }
1287 #endif /* CONFIG_PM */
1288 
1289 /*
1290  * Free a 0-order page
1291  * cold == 1 ? free a cold page : free a hot page
1292  */
1293 void free_hot_cold_page(struct page *page, int cold)
1294 {
1295 	struct zone *zone = page_zone(page);
1296 	struct per_cpu_pages *pcp;
1297 	unsigned long flags;
1298 	int migratetype;
1299 
1300 	if (!free_pages_prepare(page, 0))
1301 		return;
1302 
1303 	migratetype = get_pageblock_migratetype(page);
1304 	set_freepage_migratetype(page, migratetype);
1305 	local_irq_save(flags);
1306 	__count_vm_event(PGFREE);
1307 
1308 	/*
1309 	 * We only track unmovable, reclaimable and movable on pcp lists.
1310 	 * Free ISOLATE pages back to the allocator because they are being
1311 	 * offlined but treat RESERVE as movable pages so we can get those
1312 	 * areas back if necessary. Otherwise, we may have to free
1313 	 * excessively into the page allocator
1314 	 */
1315 	if (migratetype >= MIGRATE_PCPTYPES) {
1316 		if (unlikely(migratetype == MIGRATE_ISOLATE)) {
1317 			free_one_page(zone, page, 0, migratetype);
1318 			goto out;
1319 		}
1320 		migratetype = MIGRATE_MOVABLE;
1321 	}
1322 
1323 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
1324 	if (cold)
1325 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
1326 	else
1327 		list_add(&page->lru, &pcp->lists[migratetype]);
1328 	pcp->count++;
1329 	if (pcp->count >= pcp->high) {
1330 		free_pcppages_bulk(zone, pcp->batch, pcp);
1331 		pcp->count -= pcp->batch;
1332 	}
1333 
1334 out:
1335 	local_irq_restore(flags);
1336 }
1337 
1338 /*
1339  * Free a list of 0-order pages
1340  */
1341 void free_hot_cold_page_list(struct list_head *list, int cold)
1342 {
1343 	struct page *page, *next;
1344 
1345 	list_for_each_entry_safe(page, next, list, lru) {
1346 		trace_mm_page_free_batched(page, cold);
1347 		free_hot_cold_page(page, cold);
1348 	}
1349 }
1350 
1351 /*
1352  * split_page takes a non-compound higher-order page, and splits it into
1353  * n (1<<order) sub-pages: page[0..n]
1354  * Each sub-page must be freed individually.
1355  *
1356  * Note: this is probably too low level an operation for use in drivers.
1357  * Please consult with lkml before using this in your driver.
1358  */
1359 void split_page(struct page *page, unsigned int order)
1360 {
1361 	int i;
1362 
1363 	VM_BUG_ON(PageCompound(page));
1364 	VM_BUG_ON(!page_count(page));
1365 
1366 #ifdef CONFIG_KMEMCHECK
1367 	/*
1368 	 * Split shadow pages too, because free(page[0]) would
1369 	 * otherwise free the whole shadow.
1370 	 */
1371 	if (kmemcheck_page_is_tracked(page))
1372 		split_page(virt_to_page(page[0].shadow), order);
1373 #endif
1374 
1375 	for (i = 1; i < (1 << order); i++)
1376 		set_page_refcounted(page + i);
1377 }
1378 
1379 /*
1380  * Similar to the split_page family of functions except that the page
1381  * required at the given order and being isolated now to prevent races
1382  * with parallel allocators
1383  */
1384 int capture_free_page(struct page *page, int alloc_order, int migratetype)
1385 {
1386 	unsigned int order;
1387 	unsigned long watermark;
1388 	struct zone *zone;
1389 	int mt;
1390 
1391 	BUG_ON(!PageBuddy(page));
1392 
1393 	zone = page_zone(page);
1394 	order = page_order(page);
1395 
1396 	/* Obey watermarks as if the page was being allocated */
1397 	watermark = low_wmark_pages(zone) + (1 << order);
1398 	if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1399 		return 0;
1400 
1401 	/* Remove page from free list */
1402 	list_del(&page->lru);
1403 	zone->free_area[order].nr_free--;
1404 	rmv_page_order(page);
1405 
1406 	mt = get_pageblock_migratetype(page);
1407 	if (unlikely(mt != MIGRATE_ISOLATE))
1408 		__mod_zone_freepage_state(zone, -(1UL << alloc_order), mt);
1409 
1410 	if (alloc_order != order)
1411 		expand(zone, page, alloc_order, order,
1412 			&zone->free_area[order], migratetype);
1413 
1414 	/* Set the pageblock if the captured page is at least a pageblock */
1415 	if (order >= pageblock_order - 1) {
1416 		struct page *endpage = page + (1 << order) - 1;
1417 		for (; page < endpage; page += pageblock_nr_pages) {
1418 			int mt = get_pageblock_migratetype(page);
1419 			if (mt != MIGRATE_ISOLATE && !is_migrate_cma(mt))
1420 				set_pageblock_migratetype(page,
1421 							  MIGRATE_MOVABLE);
1422 		}
1423 	}
1424 
1425 	return 1UL << order;
1426 }
1427 
1428 /*
1429  * Similar to split_page except the page is already free. As this is only
1430  * being used for migration, the migratetype of the block also changes.
1431  * As this is called with interrupts disabled, the caller is responsible
1432  * for calling arch_alloc_page() and kernel_map_page() after interrupts
1433  * are enabled.
1434  *
1435  * Note: this is probably too low level an operation for use in drivers.
1436  * Please consult with lkml before using this in your driver.
1437  */
1438 int split_free_page(struct page *page)
1439 {
1440 	unsigned int order;
1441 	int nr_pages;
1442 
1443 	BUG_ON(!PageBuddy(page));
1444 	order = page_order(page);
1445 
1446 	nr_pages = capture_free_page(page, order, 0);
1447 	if (!nr_pages)
1448 		return 0;
1449 
1450 	/* Split into individual pages */
1451 	set_page_refcounted(page);
1452 	split_page(page, order);
1453 	return nr_pages;
1454 }
1455 
1456 /*
1457  * Really, prep_compound_page() should be called from __rmqueue_bulk().  But
1458  * we cheat by calling it from here, in the order > 0 path.  Saves a branch
1459  * or two.
1460  */
1461 static inline
1462 struct page *buffered_rmqueue(struct zone *preferred_zone,
1463 			struct zone *zone, int order, gfp_t gfp_flags,
1464 			int migratetype)
1465 {
1466 	unsigned long flags;
1467 	struct page *page;
1468 	int cold = !!(gfp_flags & __GFP_COLD);
1469 
1470 again:
1471 	if (likely(order == 0)) {
1472 		struct per_cpu_pages *pcp;
1473 		struct list_head *list;
1474 
1475 		local_irq_save(flags);
1476 		pcp = &this_cpu_ptr(zone->pageset)->pcp;
1477 		list = &pcp->lists[migratetype];
1478 		if (list_empty(list)) {
1479 			pcp->count += rmqueue_bulk(zone, 0,
1480 					pcp->batch, list,
1481 					migratetype, cold);
1482 			if (unlikely(list_empty(list)))
1483 				goto failed;
1484 		}
1485 
1486 		if (cold)
1487 			page = list_entry(list->prev, struct page, lru);
1488 		else
1489 			page = list_entry(list->next, struct page, lru);
1490 
1491 		list_del(&page->lru);
1492 		pcp->count--;
1493 	} else {
1494 		if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1495 			/*
1496 			 * __GFP_NOFAIL is not to be used in new code.
1497 			 *
1498 			 * All __GFP_NOFAIL callers should be fixed so that they
1499 			 * properly detect and handle allocation failures.
1500 			 *
1501 			 * We most definitely don't want callers attempting to
1502 			 * allocate greater than order-1 page units with
1503 			 * __GFP_NOFAIL.
1504 			 */
1505 			WARN_ON_ONCE(order > 1);
1506 		}
1507 		spin_lock_irqsave(&zone->lock, flags);
1508 		page = __rmqueue(zone, order, migratetype);
1509 		spin_unlock(&zone->lock);
1510 		if (!page)
1511 			goto failed;
1512 		__mod_zone_freepage_state(zone, -(1 << order),
1513 					  get_pageblock_migratetype(page));
1514 	}
1515 
1516 	__count_zone_vm_events(PGALLOC, zone, 1 << order);
1517 	zone_statistics(preferred_zone, zone, gfp_flags);
1518 	local_irq_restore(flags);
1519 
1520 	VM_BUG_ON(bad_range(zone, page));
1521 	if (prep_new_page(page, order, gfp_flags))
1522 		goto again;
1523 	return page;
1524 
1525 failed:
1526 	local_irq_restore(flags);
1527 	return NULL;
1528 }
1529 
1530 #ifdef CONFIG_FAIL_PAGE_ALLOC
1531 
1532 static struct {
1533 	struct fault_attr attr;
1534 
1535 	u32 ignore_gfp_highmem;
1536 	u32 ignore_gfp_wait;
1537 	u32 min_order;
1538 } fail_page_alloc = {
1539 	.attr = FAULT_ATTR_INITIALIZER,
1540 	.ignore_gfp_wait = 1,
1541 	.ignore_gfp_highmem = 1,
1542 	.min_order = 1,
1543 };
1544 
1545 static int __init setup_fail_page_alloc(char *str)
1546 {
1547 	return setup_fault_attr(&fail_page_alloc.attr, str);
1548 }
1549 __setup("fail_page_alloc=", setup_fail_page_alloc);
1550 
1551 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1552 {
1553 	if (order < fail_page_alloc.min_order)
1554 		return false;
1555 	if (gfp_mask & __GFP_NOFAIL)
1556 		return false;
1557 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1558 		return false;
1559 	if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1560 		return false;
1561 
1562 	return should_fail(&fail_page_alloc.attr, 1 << order);
1563 }
1564 
1565 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1566 
1567 static int __init fail_page_alloc_debugfs(void)
1568 {
1569 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1570 	struct dentry *dir;
1571 
1572 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
1573 					&fail_page_alloc.attr);
1574 	if (IS_ERR(dir))
1575 		return PTR_ERR(dir);
1576 
1577 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
1578 				&fail_page_alloc.ignore_gfp_wait))
1579 		goto fail;
1580 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1581 				&fail_page_alloc.ignore_gfp_highmem))
1582 		goto fail;
1583 	if (!debugfs_create_u32("min-order", mode, dir,
1584 				&fail_page_alloc.min_order))
1585 		goto fail;
1586 
1587 	return 0;
1588 fail:
1589 	debugfs_remove_recursive(dir);
1590 
1591 	return -ENOMEM;
1592 }
1593 
1594 late_initcall(fail_page_alloc_debugfs);
1595 
1596 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1597 
1598 #else /* CONFIG_FAIL_PAGE_ALLOC */
1599 
1600 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1601 {
1602 	return false;
1603 }
1604 
1605 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1606 
1607 /*
1608  * Return true if free pages are above 'mark'. This takes into account the order
1609  * of the allocation.
1610  */
1611 static bool __zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1612 		      int classzone_idx, int alloc_flags, long free_pages)
1613 {
1614 	/* free_pages my go negative - that's OK */
1615 	long min = mark;
1616 	long lowmem_reserve = z->lowmem_reserve[classzone_idx];
1617 	int o;
1618 
1619 	free_pages -= (1 << order) - 1;
1620 	if (alloc_flags & ALLOC_HIGH)
1621 		min -= min / 2;
1622 	if (alloc_flags & ALLOC_HARDER)
1623 		min -= min / 4;
1624 #ifdef CONFIG_CMA
1625 	/* If allocation can't use CMA areas don't use free CMA pages */
1626 	if (!(alloc_flags & ALLOC_CMA))
1627 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
1628 #endif
1629 	if (free_pages <= min + lowmem_reserve)
1630 		return false;
1631 	for (o = 0; o < order; o++) {
1632 		/* At the next order, this order's pages become unavailable */
1633 		free_pages -= z->free_area[o].nr_free << o;
1634 
1635 		/* Require fewer higher order pages to be free */
1636 		min >>= 1;
1637 
1638 		if (free_pages <= min)
1639 			return false;
1640 	}
1641 	return true;
1642 }
1643 
1644 #ifdef CONFIG_MEMORY_ISOLATION
1645 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1646 {
1647 	if (unlikely(zone->nr_pageblock_isolate))
1648 		return zone->nr_pageblock_isolate * pageblock_nr_pages;
1649 	return 0;
1650 }
1651 #else
1652 static inline unsigned long nr_zone_isolate_freepages(struct zone *zone)
1653 {
1654 	return 0;
1655 }
1656 #endif
1657 
1658 bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
1659 		      int classzone_idx, int alloc_flags)
1660 {
1661 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1662 					zone_page_state(z, NR_FREE_PAGES));
1663 }
1664 
1665 bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
1666 		      int classzone_idx, int alloc_flags)
1667 {
1668 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
1669 
1670 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
1671 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
1672 
1673 	/*
1674 	 * If the zone has MIGRATE_ISOLATE type free pages, we should consider
1675 	 * it.  nr_zone_isolate_freepages is never accurate so kswapd might not
1676 	 * sleep although it could do so.  But this is more desirable for memory
1677 	 * hotplug than sleeping which can cause a livelock in the direct
1678 	 * reclaim path.
1679 	 */
1680 	free_pages -= nr_zone_isolate_freepages(z);
1681 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
1682 								free_pages);
1683 }
1684 
1685 #ifdef CONFIG_NUMA
1686 /*
1687  * zlc_setup - Setup for "zonelist cache".  Uses cached zone data to
1688  * skip over zones that are not allowed by the cpuset, or that have
1689  * been recently (in last second) found to be nearly full.  See further
1690  * comments in mmzone.h.  Reduces cache footprint of zonelist scans
1691  * that have to skip over a lot of full or unallowed zones.
1692  *
1693  * If the zonelist cache is present in the passed in zonelist, then
1694  * returns a pointer to the allowed node mask (either the current
1695  * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1696  *
1697  * If the zonelist cache is not available for this zonelist, does
1698  * nothing and returns NULL.
1699  *
1700  * If the fullzones BITMAP in the zonelist cache is stale (more than
1701  * a second since last zap'd) then we zap it out (clear its bits.)
1702  *
1703  * We hold off even calling zlc_setup, until after we've checked the
1704  * first zone in the zonelist, on the theory that most allocations will
1705  * be satisfied from that first zone, so best to examine that zone as
1706  * quickly as we can.
1707  */
1708 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1709 {
1710 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1711 	nodemask_t *allowednodes;	/* zonelist_cache approximation */
1712 
1713 	zlc = zonelist->zlcache_ptr;
1714 	if (!zlc)
1715 		return NULL;
1716 
1717 	if (time_after(jiffies, zlc->last_full_zap + HZ)) {
1718 		bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1719 		zlc->last_full_zap = jiffies;
1720 	}
1721 
1722 	allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1723 					&cpuset_current_mems_allowed :
1724 					&node_states[N_HIGH_MEMORY];
1725 	return allowednodes;
1726 }
1727 
1728 /*
1729  * Given 'z' scanning a zonelist, run a couple of quick checks to see
1730  * if it is worth looking at further for free memory:
1731  *  1) Check that the zone isn't thought to be full (doesn't have its
1732  *     bit set in the zonelist_cache fullzones BITMAP).
1733  *  2) Check that the zones node (obtained from the zonelist_cache
1734  *     z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1735  * Return true (non-zero) if zone is worth looking at further, or
1736  * else return false (zero) if it is not.
1737  *
1738  * This check -ignores- the distinction between various watermarks,
1739  * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ...  If a zone is
1740  * found to be full for any variation of these watermarks, it will
1741  * be considered full for up to one second by all requests, unless
1742  * we are so low on memory on all allowed nodes that we are forced
1743  * into the second scan of the zonelist.
1744  *
1745  * In the second scan we ignore this zonelist cache and exactly
1746  * apply the watermarks to all zones, even it is slower to do so.
1747  * We are low on memory in the second scan, and should leave no stone
1748  * unturned looking for a free page.
1749  */
1750 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1751 						nodemask_t *allowednodes)
1752 {
1753 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1754 	int i;				/* index of *z in zonelist zones */
1755 	int n;				/* node that zone *z is on */
1756 
1757 	zlc = zonelist->zlcache_ptr;
1758 	if (!zlc)
1759 		return 1;
1760 
1761 	i = z - zonelist->_zonerefs;
1762 	n = zlc->z_to_n[i];
1763 
1764 	/* This zone is worth trying if it is allowed but not full */
1765 	return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1766 }
1767 
1768 /*
1769  * Given 'z' scanning a zonelist, set the corresponding bit in
1770  * zlc->fullzones, so that subsequent attempts to allocate a page
1771  * from that zone don't waste time re-examining it.
1772  */
1773 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1774 {
1775 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1776 	int i;				/* index of *z in zonelist zones */
1777 
1778 	zlc = zonelist->zlcache_ptr;
1779 	if (!zlc)
1780 		return;
1781 
1782 	i = z - zonelist->_zonerefs;
1783 
1784 	set_bit(i, zlc->fullzones);
1785 }
1786 
1787 /*
1788  * clear all zones full, called after direct reclaim makes progress so that
1789  * a zone that was recently full is not skipped over for up to a second
1790  */
1791 static void zlc_clear_zones_full(struct zonelist *zonelist)
1792 {
1793 	struct zonelist_cache *zlc;	/* cached zonelist speedup info */
1794 
1795 	zlc = zonelist->zlcache_ptr;
1796 	if (!zlc)
1797 		return;
1798 
1799 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1800 }
1801 
1802 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1803 {
1804 	return node_isset(local_zone->node, zone->zone_pgdat->reclaim_nodes);
1805 }
1806 
1807 static void __paginginit init_zone_allows_reclaim(int nid)
1808 {
1809 	int i;
1810 
1811 	for_each_online_node(i)
1812 		if (node_distance(nid, i) <= RECLAIM_DISTANCE)
1813 			node_set(i, NODE_DATA(nid)->reclaim_nodes);
1814 		else
1815 			zone_reclaim_mode = 1;
1816 }
1817 
1818 #else	/* CONFIG_NUMA */
1819 
1820 static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1821 {
1822 	return NULL;
1823 }
1824 
1825 static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
1826 				nodemask_t *allowednodes)
1827 {
1828 	return 1;
1829 }
1830 
1831 static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
1832 {
1833 }
1834 
1835 static void zlc_clear_zones_full(struct zonelist *zonelist)
1836 {
1837 }
1838 
1839 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
1840 {
1841 	return true;
1842 }
1843 
1844 static inline void init_zone_allows_reclaim(int nid)
1845 {
1846 }
1847 #endif	/* CONFIG_NUMA */
1848 
1849 /*
1850  * get_page_from_freelist goes through the zonelist trying to allocate
1851  * a page.
1852  */
1853 static struct page *
1854 get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
1855 		struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
1856 		struct zone *preferred_zone, int migratetype)
1857 {
1858 	struct zoneref *z;
1859 	struct page *page = NULL;
1860 	int classzone_idx;
1861 	struct zone *zone;
1862 	nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1863 	int zlc_active = 0;		/* set if using zonelist_cache */
1864 	int did_zlc_setup = 0;		/* just call zlc_setup() one time */
1865 
1866 	classzone_idx = zone_idx(preferred_zone);
1867 zonelist_scan:
1868 	/*
1869 	 * Scan zonelist, looking for a zone with enough free.
1870 	 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1871 	 */
1872 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
1873 						high_zoneidx, nodemask) {
1874 		if (NUMA_BUILD && zlc_active &&
1875 			!zlc_zone_worth_trying(zonelist, z, allowednodes))
1876 				continue;
1877 		if ((alloc_flags & ALLOC_CPUSET) &&
1878 			!cpuset_zone_allowed_softwall(zone, gfp_mask))
1879 				continue;
1880 		/*
1881 		 * When allocating a page cache page for writing, we
1882 		 * want to get it from a zone that is within its dirty
1883 		 * limit, such that no single zone holds more than its
1884 		 * proportional share of globally allowed dirty pages.
1885 		 * The dirty limits take into account the zone's
1886 		 * lowmem reserves and high watermark so that kswapd
1887 		 * should be able to balance it without having to
1888 		 * write pages from its LRU list.
1889 		 *
1890 		 * This may look like it could increase pressure on
1891 		 * lower zones by failing allocations in higher zones
1892 		 * before they are full.  But the pages that do spill
1893 		 * over are limited as the lower zones are protected
1894 		 * by this very same mechanism.  It should not become
1895 		 * a practical burden to them.
1896 		 *
1897 		 * XXX: For now, allow allocations to potentially
1898 		 * exceed the per-zone dirty limit in the slowpath
1899 		 * (ALLOC_WMARK_LOW unset) before going into reclaim,
1900 		 * which is important when on a NUMA setup the allowed
1901 		 * zones are together not big enough to reach the
1902 		 * global limit.  The proper fix for these situations
1903 		 * will require awareness of zones in the
1904 		 * dirty-throttling and the flusher threads.
1905 		 */
1906 		if ((alloc_flags & ALLOC_WMARK_LOW) &&
1907 		    (gfp_mask & __GFP_WRITE) && !zone_dirty_ok(zone))
1908 			goto this_zone_full;
1909 
1910 		BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
1911 		if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
1912 			unsigned long mark;
1913 			int ret;
1914 
1915 			mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
1916 			if (zone_watermark_ok(zone, order, mark,
1917 				    classzone_idx, alloc_flags))
1918 				goto try_this_zone;
1919 
1920 			if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
1921 				/*
1922 				 * we do zlc_setup if there are multiple nodes
1923 				 * and before considering the first zone allowed
1924 				 * by the cpuset.
1925 				 */
1926 				allowednodes = zlc_setup(zonelist, alloc_flags);
1927 				zlc_active = 1;
1928 				did_zlc_setup = 1;
1929 			}
1930 
1931 			if (zone_reclaim_mode == 0 ||
1932 			    !zone_allows_reclaim(preferred_zone, zone))
1933 				goto this_zone_full;
1934 
1935 			/*
1936 			 * As we may have just activated ZLC, check if the first
1937 			 * eligible zone has failed zone_reclaim recently.
1938 			 */
1939 			if (NUMA_BUILD && zlc_active &&
1940 				!zlc_zone_worth_trying(zonelist, z, allowednodes))
1941 				continue;
1942 
1943 			ret = zone_reclaim(zone, gfp_mask, order);
1944 			switch (ret) {
1945 			case ZONE_RECLAIM_NOSCAN:
1946 				/* did not scan */
1947 				continue;
1948 			case ZONE_RECLAIM_FULL:
1949 				/* scanned but unreclaimable */
1950 				continue;
1951 			default:
1952 				/* did we reclaim enough */
1953 				if (!zone_watermark_ok(zone, order, mark,
1954 						classzone_idx, alloc_flags))
1955 					goto this_zone_full;
1956 			}
1957 		}
1958 
1959 try_this_zone:
1960 		page = buffered_rmqueue(preferred_zone, zone, order,
1961 						gfp_mask, migratetype);
1962 		if (page)
1963 			break;
1964 this_zone_full:
1965 		if (NUMA_BUILD)
1966 			zlc_mark_zone_full(zonelist, z);
1967 	}
1968 
1969 	if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1970 		/* Disable zlc cache for second zonelist scan */
1971 		zlc_active = 0;
1972 		goto zonelist_scan;
1973 	}
1974 
1975 	if (page)
1976 		/*
1977 		 * page->pfmemalloc is set when ALLOC_NO_WATERMARKS was
1978 		 * necessary to allocate the page. The expectation is
1979 		 * that the caller is taking steps that will free more
1980 		 * memory. The caller should avoid the page being used
1981 		 * for !PFMEMALLOC purposes.
1982 		 */
1983 		page->pfmemalloc = !!(alloc_flags & ALLOC_NO_WATERMARKS);
1984 
1985 	return page;
1986 }
1987 
1988 /*
1989  * Large machines with many possible nodes should not always dump per-node
1990  * meminfo in irq context.
1991  */
1992 static inline bool should_suppress_show_mem(void)
1993 {
1994 	bool ret = false;
1995 
1996 #if NODES_SHIFT > 8
1997 	ret = in_interrupt();
1998 #endif
1999 	return ret;
2000 }
2001 
2002 static DEFINE_RATELIMIT_STATE(nopage_rs,
2003 		DEFAULT_RATELIMIT_INTERVAL,
2004 		DEFAULT_RATELIMIT_BURST);
2005 
2006 void warn_alloc_failed(gfp_t gfp_mask, int order, const char *fmt, ...)
2007 {
2008 	unsigned int filter = SHOW_MEM_FILTER_NODES;
2009 
2010 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2011 	    debug_guardpage_minorder() > 0)
2012 		return;
2013 
2014 	/*
2015 	 * This documents exceptions given to allocations in certain
2016 	 * contexts that are allowed to allocate outside current's set
2017 	 * of allowed nodes.
2018 	 */
2019 	if (!(gfp_mask & __GFP_NOMEMALLOC))
2020 		if (test_thread_flag(TIF_MEMDIE) ||
2021 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
2022 			filter &= ~SHOW_MEM_FILTER_NODES;
2023 	if (in_interrupt() || !(gfp_mask & __GFP_WAIT))
2024 		filter &= ~SHOW_MEM_FILTER_NODES;
2025 
2026 	if (fmt) {
2027 		struct va_format vaf;
2028 		va_list args;
2029 
2030 		va_start(args, fmt);
2031 
2032 		vaf.fmt = fmt;
2033 		vaf.va = &args;
2034 
2035 		pr_warn("%pV", &vaf);
2036 
2037 		va_end(args);
2038 	}
2039 
2040 	pr_warn("%s: page allocation failure: order:%d, mode:0x%x\n",
2041 		current->comm, order, gfp_mask);
2042 
2043 	dump_stack();
2044 	if (!should_suppress_show_mem())
2045 		show_mem(filter);
2046 }
2047 
2048 static inline int
2049 should_alloc_retry(gfp_t gfp_mask, unsigned int order,
2050 				unsigned long did_some_progress,
2051 				unsigned long pages_reclaimed)
2052 {
2053 	/* Do not loop if specifically requested */
2054 	if (gfp_mask & __GFP_NORETRY)
2055 		return 0;
2056 
2057 	/* Always retry if specifically requested */
2058 	if (gfp_mask & __GFP_NOFAIL)
2059 		return 1;
2060 
2061 	/*
2062 	 * Suspend converts GFP_KERNEL to __GFP_WAIT which can prevent reclaim
2063 	 * making forward progress without invoking OOM. Suspend also disables
2064 	 * storage devices so kswapd will not help. Bail if we are suspending.
2065 	 */
2066 	if (!did_some_progress && pm_suspended_storage())
2067 		return 0;
2068 
2069 	/*
2070 	 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
2071 	 * means __GFP_NOFAIL, but that may not be true in other
2072 	 * implementations.
2073 	 */
2074 	if (order <= PAGE_ALLOC_COSTLY_ORDER)
2075 		return 1;
2076 
2077 	/*
2078 	 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
2079 	 * specified, then we retry until we no longer reclaim any pages
2080 	 * (above), or we've reclaimed an order of pages at least as
2081 	 * large as the allocation's order. In both cases, if the
2082 	 * allocation still fails, we stop retrying.
2083 	 */
2084 	if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
2085 		return 1;
2086 
2087 	return 0;
2088 }
2089 
2090 static inline struct page *
2091 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
2092 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2093 	nodemask_t *nodemask, struct zone *preferred_zone,
2094 	int migratetype)
2095 {
2096 	struct page *page;
2097 
2098 	/* Acquire the OOM killer lock for the zones in zonelist */
2099 	if (!try_set_zonelist_oom(zonelist, gfp_mask)) {
2100 		schedule_timeout_uninterruptible(1);
2101 		return NULL;
2102 	}
2103 
2104 	/*
2105 	 * Go through the zonelist yet one more time, keep very high watermark
2106 	 * here, this is only to catch a parallel oom killing, we must fail if
2107 	 * we're still under heavy pressure.
2108 	 */
2109 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
2110 		order, zonelist, high_zoneidx,
2111 		ALLOC_WMARK_HIGH|ALLOC_CPUSET,
2112 		preferred_zone, migratetype);
2113 	if (page)
2114 		goto out;
2115 
2116 	if (!(gfp_mask & __GFP_NOFAIL)) {
2117 		/* The OOM killer will not help higher order allocs */
2118 		if (order > PAGE_ALLOC_COSTLY_ORDER)
2119 			goto out;
2120 		/* The OOM killer does not needlessly kill tasks for lowmem */
2121 		if (high_zoneidx < ZONE_NORMAL)
2122 			goto out;
2123 		/*
2124 		 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
2125 		 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
2126 		 * The caller should handle page allocation failure by itself if
2127 		 * it specifies __GFP_THISNODE.
2128 		 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
2129 		 */
2130 		if (gfp_mask & __GFP_THISNODE)
2131 			goto out;
2132 	}
2133 	/* Exhausted what can be done so it's blamo time */
2134 	out_of_memory(zonelist, gfp_mask, order, nodemask, false);
2135 
2136 out:
2137 	clear_zonelist_oom(zonelist, gfp_mask);
2138 	return page;
2139 }
2140 
2141 #ifdef CONFIG_COMPACTION
2142 /* Try memory compaction for high-order allocations before reclaim */
2143 static struct page *
2144 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2145 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2146 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2147 	int migratetype, bool sync_migration,
2148 	bool *contended_compaction, bool *deferred_compaction,
2149 	unsigned long *did_some_progress)
2150 {
2151 	struct page *page = NULL;
2152 
2153 	if (!order)
2154 		return NULL;
2155 
2156 	if (compaction_deferred(preferred_zone, order)) {
2157 		*deferred_compaction = true;
2158 		return NULL;
2159 	}
2160 
2161 	current->flags |= PF_MEMALLOC;
2162 	*did_some_progress = try_to_compact_pages(zonelist, order, gfp_mask,
2163 						nodemask, sync_migration,
2164 						contended_compaction, &page);
2165 	current->flags &= ~PF_MEMALLOC;
2166 
2167 	/* If compaction captured a page, prep and use it */
2168 	if (page) {
2169 		prep_new_page(page, order, gfp_mask);
2170 		goto got_page;
2171 	}
2172 
2173 	if (*did_some_progress != COMPACT_SKIPPED) {
2174 		/* Page migration frees to the PCP lists but we want merging */
2175 		drain_pages(get_cpu());
2176 		put_cpu();
2177 
2178 		page = get_page_from_freelist(gfp_mask, nodemask,
2179 				order, zonelist, high_zoneidx,
2180 				alloc_flags & ~ALLOC_NO_WATERMARKS,
2181 				preferred_zone, migratetype);
2182 		if (page) {
2183 got_page:
2184 			preferred_zone->compact_blockskip_flush = false;
2185 			preferred_zone->compact_considered = 0;
2186 			preferred_zone->compact_defer_shift = 0;
2187 			if (order >= preferred_zone->compact_order_failed)
2188 				preferred_zone->compact_order_failed = order + 1;
2189 			count_vm_event(COMPACTSUCCESS);
2190 			return page;
2191 		}
2192 
2193 		/*
2194 		 * It's bad if compaction run occurs and fails.
2195 		 * The most likely reason is that pages exist,
2196 		 * but not enough to satisfy watermarks.
2197 		 */
2198 		count_vm_event(COMPACTFAIL);
2199 
2200 		/*
2201 		 * As async compaction considers a subset of pageblocks, only
2202 		 * defer if the failure was a sync compaction failure.
2203 		 */
2204 		if (sync_migration)
2205 			defer_compaction(preferred_zone, order);
2206 
2207 		cond_resched();
2208 	}
2209 
2210 	return NULL;
2211 }
2212 #else
2213 static inline struct page *
2214 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
2215 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2216 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2217 	int migratetype, bool sync_migration,
2218 	bool *contended_compaction, bool *deferred_compaction,
2219 	unsigned long *did_some_progress)
2220 {
2221 	return NULL;
2222 }
2223 #endif /* CONFIG_COMPACTION */
2224 
2225 /* Perform direct synchronous page reclaim */
2226 static int
2227 __perform_reclaim(gfp_t gfp_mask, unsigned int order, struct zonelist *zonelist,
2228 		  nodemask_t *nodemask)
2229 {
2230 	struct reclaim_state reclaim_state;
2231 	int progress;
2232 
2233 	cond_resched();
2234 
2235 	/* We now go into synchronous reclaim */
2236 	cpuset_memory_pressure_bump();
2237 	current->flags |= PF_MEMALLOC;
2238 	lockdep_set_current_reclaim_state(gfp_mask);
2239 	reclaim_state.reclaimed_slab = 0;
2240 	current->reclaim_state = &reclaim_state;
2241 
2242 	progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
2243 
2244 	current->reclaim_state = NULL;
2245 	lockdep_clear_current_reclaim_state();
2246 	current->flags &= ~PF_MEMALLOC;
2247 
2248 	cond_resched();
2249 
2250 	return progress;
2251 }
2252 
2253 /* The really slow allocator path where we enter direct reclaim */
2254 static inline struct page *
2255 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
2256 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2257 	nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
2258 	int migratetype, unsigned long *did_some_progress)
2259 {
2260 	struct page *page = NULL;
2261 	bool drained = false;
2262 
2263 	*did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
2264 					       nodemask);
2265 	if (unlikely(!(*did_some_progress)))
2266 		return NULL;
2267 
2268 	/* After successful reclaim, reconsider all zones for allocation */
2269 	if (NUMA_BUILD)
2270 		zlc_clear_zones_full(zonelist);
2271 
2272 retry:
2273 	page = get_page_from_freelist(gfp_mask, nodemask, order,
2274 					zonelist, high_zoneidx,
2275 					alloc_flags & ~ALLOC_NO_WATERMARKS,
2276 					preferred_zone, migratetype);
2277 
2278 	/*
2279 	 * If an allocation failed after direct reclaim, it could be because
2280 	 * pages are pinned on the per-cpu lists. Drain them and try again
2281 	 */
2282 	if (!page && !drained) {
2283 		drain_all_pages();
2284 		drained = true;
2285 		goto retry;
2286 	}
2287 
2288 	return page;
2289 }
2290 
2291 /*
2292  * This is called in the allocator slow-path if the allocation request is of
2293  * sufficient urgency to ignore watermarks and take other desperate measures
2294  */
2295 static inline struct page *
2296 __alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
2297 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2298 	nodemask_t *nodemask, struct zone *preferred_zone,
2299 	int migratetype)
2300 {
2301 	struct page *page;
2302 
2303 	do {
2304 		page = get_page_from_freelist(gfp_mask, nodemask, order,
2305 			zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
2306 			preferred_zone, migratetype);
2307 
2308 		if (!page && gfp_mask & __GFP_NOFAIL)
2309 			wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2310 	} while (!page && (gfp_mask & __GFP_NOFAIL));
2311 
2312 	return page;
2313 }
2314 
2315 static inline
2316 void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
2317 						enum zone_type high_zoneidx,
2318 						enum zone_type classzone_idx)
2319 {
2320 	struct zoneref *z;
2321 	struct zone *zone;
2322 
2323 	for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
2324 		wakeup_kswapd(zone, order, classzone_idx);
2325 }
2326 
2327 static inline int
2328 gfp_to_alloc_flags(gfp_t gfp_mask)
2329 {
2330 	int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
2331 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2332 
2333 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2334 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
2335 
2336 	/*
2337 	 * The caller may dip into page reserves a bit more if the caller
2338 	 * cannot run direct reclaim, or if the caller has realtime scheduling
2339 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
2340 	 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2341 	 */
2342 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
2343 
2344 	if (!wait) {
2345 		/*
2346 		 * Not worth trying to allocate harder for
2347 		 * __GFP_NOMEMALLOC even if it can't schedule.
2348 		 */
2349 		if  (!(gfp_mask & __GFP_NOMEMALLOC))
2350 			alloc_flags |= ALLOC_HARDER;
2351 		/*
2352 		 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2353 		 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2354 		 */
2355 		alloc_flags &= ~ALLOC_CPUSET;
2356 	} else if (unlikely(rt_task(current)) && !in_interrupt())
2357 		alloc_flags |= ALLOC_HARDER;
2358 
2359 	if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
2360 		if (gfp_mask & __GFP_MEMALLOC)
2361 			alloc_flags |= ALLOC_NO_WATERMARKS;
2362 		else if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
2363 			alloc_flags |= ALLOC_NO_WATERMARKS;
2364 		else if (!in_interrupt() &&
2365 				((current->flags & PF_MEMALLOC) ||
2366 				 unlikely(test_thread_flag(TIF_MEMDIE))))
2367 			alloc_flags |= ALLOC_NO_WATERMARKS;
2368 	}
2369 #ifdef CONFIG_CMA
2370 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2371 		alloc_flags |= ALLOC_CMA;
2372 #endif
2373 	return alloc_flags;
2374 }
2375 
2376 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
2377 {
2378 	return !!(gfp_to_alloc_flags(gfp_mask) & ALLOC_NO_WATERMARKS);
2379 }
2380 
2381 static inline struct page *
2382 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
2383 	struct zonelist *zonelist, enum zone_type high_zoneidx,
2384 	nodemask_t *nodemask, struct zone *preferred_zone,
2385 	int migratetype)
2386 {
2387 	const gfp_t wait = gfp_mask & __GFP_WAIT;
2388 	struct page *page = NULL;
2389 	int alloc_flags;
2390 	unsigned long pages_reclaimed = 0;
2391 	unsigned long did_some_progress;
2392 	bool sync_migration = false;
2393 	bool deferred_compaction = false;
2394 	bool contended_compaction = false;
2395 
2396 	/*
2397 	 * In the slowpath, we sanity check order to avoid ever trying to
2398 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2399 	 * be using allocators in order of preference for an area that is
2400 	 * too large.
2401 	 */
2402 	if (order >= MAX_ORDER) {
2403 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
2404 		return NULL;
2405 	}
2406 
2407 	/*
2408 	 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2409 	 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2410 	 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2411 	 * using a larger set of nodes after it has established that the
2412 	 * allowed per node queues are empty and that nodes are
2413 	 * over allocated.
2414 	 */
2415 	if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
2416 		goto nopage;
2417 
2418 restart:
2419 	wake_all_kswapd(order, zonelist, high_zoneidx,
2420 					zone_idx(preferred_zone));
2421 
2422 	/*
2423 	 * OK, we're below the kswapd watermark and have kicked background
2424 	 * reclaim. Now things get more complex, so set up alloc_flags according
2425 	 * to how we want to proceed.
2426 	 */
2427 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
2428 
2429 	/*
2430 	 * Find the true preferred zone if the allocation is unconstrained by
2431 	 * cpusets.
2432 	 */
2433 	if (!(alloc_flags & ALLOC_CPUSET) && !nodemask)
2434 		first_zones_zonelist(zonelist, high_zoneidx, NULL,
2435 					&preferred_zone);
2436 
2437 rebalance:
2438 	/* This is the last chance, in general, before the goto nopage. */
2439 	page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
2440 			high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
2441 			preferred_zone, migratetype);
2442 	if (page)
2443 		goto got_pg;
2444 
2445 	/* Allocate without watermarks if the context allows */
2446 	if (alloc_flags & ALLOC_NO_WATERMARKS) {
2447 		/*
2448 		 * Ignore mempolicies if ALLOC_NO_WATERMARKS on the grounds
2449 		 * the allocation is high priority and these type of
2450 		 * allocations are system rather than user orientated
2451 		 */
2452 		zonelist = node_zonelist(numa_node_id(), gfp_mask);
2453 
2454 		page = __alloc_pages_high_priority(gfp_mask, order,
2455 				zonelist, high_zoneidx, nodemask,
2456 				preferred_zone, migratetype);
2457 		if (page) {
2458 			goto got_pg;
2459 		}
2460 	}
2461 
2462 	/* Atomic allocations - we can't balance anything */
2463 	if (!wait)
2464 		goto nopage;
2465 
2466 	/* Avoid recursion of direct reclaim */
2467 	if (current->flags & PF_MEMALLOC)
2468 		goto nopage;
2469 
2470 	/* Avoid allocations with no watermarks from looping endlessly */
2471 	if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
2472 		goto nopage;
2473 
2474 	/*
2475 	 * Try direct compaction. The first pass is asynchronous. Subsequent
2476 	 * attempts after direct reclaim are synchronous
2477 	 */
2478 	page = __alloc_pages_direct_compact(gfp_mask, order,
2479 					zonelist, high_zoneidx,
2480 					nodemask,
2481 					alloc_flags, preferred_zone,
2482 					migratetype, sync_migration,
2483 					&contended_compaction,
2484 					&deferred_compaction,
2485 					&did_some_progress);
2486 	if (page)
2487 		goto got_pg;
2488 	sync_migration = true;
2489 
2490 	/*
2491 	 * If compaction is deferred for high-order allocations, it is because
2492 	 * sync compaction recently failed. In this is the case and the caller
2493 	 * requested a movable allocation that does not heavily disrupt the
2494 	 * system then fail the allocation instead of entering direct reclaim.
2495 	 */
2496 	if ((deferred_compaction || contended_compaction) &&
2497 	    (gfp_mask & (__GFP_MOVABLE|__GFP_REPEAT)) == __GFP_MOVABLE)
2498 		goto nopage;
2499 
2500 	/* Try direct reclaim and then allocating */
2501 	page = __alloc_pages_direct_reclaim(gfp_mask, order,
2502 					zonelist, high_zoneidx,
2503 					nodemask,
2504 					alloc_flags, preferred_zone,
2505 					migratetype, &did_some_progress);
2506 	if (page)
2507 		goto got_pg;
2508 
2509 	/*
2510 	 * If we failed to make any progress reclaiming, then we are
2511 	 * running out of options and have to consider going OOM
2512 	 */
2513 	if (!did_some_progress) {
2514 		if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
2515 			if (oom_killer_disabled)
2516 				goto nopage;
2517 			/* Coredumps can quickly deplete all memory reserves */
2518 			if ((current->flags & PF_DUMPCORE) &&
2519 			    !(gfp_mask & __GFP_NOFAIL))
2520 				goto nopage;
2521 			page = __alloc_pages_may_oom(gfp_mask, order,
2522 					zonelist, high_zoneidx,
2523 					nodemask, preferred_zone,
2524 					migratetype);
2525 			if (page)
2526 				goto got_pg;
2527 
2528 			if (!(gfp_mask & __GFP_NOFAIL)) {
2529 				/*
2530 				 * The oom killer is not called for high-order
2531 				 * allocations that may fail, so if no progress
2532 				 * is being made, there are no other options and
2533 				 * retrying is unlikely to help.
2534 				 */
2535 				if (order > PAGE_ALLOC_COSTLY_ORDER)
2536 					goto nopage;
2537 				/*
2538 				 * The oom killer is not called for lowmem
2539 				 * allocations to prevent needlessly killing
2540 				 * innocent tasks.
2541 				 */
2542 				if (high_zoneidx < ZONE_NORMAL)
2543 					goto nopage;
2544 			}
2545 
2546 			goto restart;
2547 		}
2548 	}
2549 
2550 	/* Check if we should retry the allocation */
2551 	pages_reclaimed += did_some_progress;
2552 	if (should_alloc_retry(gfp_mask, order, did_some_progress,
2553 						pages_reclaimed)) {
2554 		/* Wait for some write requests to complete then retry */
2555 		wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/50);
2556 		goto rebalance;
2557 	} else {
2558 		/*
2559 		 * High-order allocations do not necessarily loop after
2560 		 * direct reclaim and reclaim/compaction depends on compaction
2561 		 * being called after reclaim so call directly if necessary
2562 		 */
2563 		page = __alloc_pages_direct_compact(gfp_mask, order,
2564 					zonelist, high_zoneidx,
2565 					nodemask,
2566 					alloc_flags, preferred_zone,
2567 					migratetype, sync_migration,
2568 					&contended_compaction,
2569 					&deferred_compaction,
2570 					&did_some_progress);
2571 		if (page)
2572 			goto got_pg;
2573 	}
2574 
2575 nopage:
2576 	warn_alloc_failed(gfp_mask, order, NULL);
2577 	return page;
2578 got_pg:
2579 	if (kmemcheck_enabled)
2580 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
2581 
2582 	return page;
2583 }
2584 
2585 /*
2586  * This is the 'heart' of the zoned buddy allocator.
2587  */
2588 struct page *
2589 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
2590 			struct zonelist *zonelist, nodemask_t *nodemask)
2591 {
2592 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
2593 	struct zone *preferred_zone;
2594 	struct page *page = NULL;
2595 	int migratetype = allocflags_to_migratetype(gfp_mask);
2596 	unsigned int cpuset_mems_cookie;
2597 	int alloc_flags = ALLOC_WMARK_LOW|ALLOC_CPUSET;
2598 
2599 	gfp_mask &= gfp_allowed_mask;
2600 
2601 	lockdep_trace_alloc(gfp_mask);
2602 
2603 	might_sleep_if(gfp_mask & __GFP_WAIT);
2604 
2605 	if (should_fail_alloc_page(gfp_mask, order))
2606 		return NULL;
2607 
2608 	/*
2609 	 * Check the zones suitable for the gfp_mask contain at least one
2610 	 * valid zone. It's possible to have an empty zonelist as a result
2611 	 * of GFP_THISNODE and a memoryless node
2612 	 */
2613 	if (unlikely(!zonelist->_zonerefs->zone))
2614 		return NULL;
2615 
2616 retry_cpuset:
2617 	cpuset_mems_cookie = get_mems_allowed();
2618 
2619 	/* The preferred zone is used for statistics later */
2620 	first_zones_zonelist(zonelist, high_zoneidx,
2621 				nodemask ? : &cpuset_current_mems_allowed,
2622 				&preferred_zone);
2623 	if (!preferred_zone)
2624 		goto out;
2625 
2626 #ifdef CONFIG_CMA
2627 	if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
2628 		alloc_flags |= ALLOC_CMA;
2629 #endif
2630 	/* First allocation attempt */
2631 	page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
2632 			zonelist, high_zoneidx, alloc_flags,
2633 			preferred_zone, migratetype);
2634 	if (unlikely(!page))
2635 		page = __alloc_pages_slowpath(gfp_mask, order,
2636 				zonelist, high_zoneidx, nodemask,
2637 				preferred_zone, migratetype);
2638 
2639 	trace_mm_page_alloc(page, order, gfp_mask, migratetype);
2640 
2641 out:
2642 	/*
2643 	 * When updating a task's mems_allowed, it is possible to race with
2644 	 * parallel threads in such a way that an allocation can fail while
2645 	 * the mask is being updated. If a page allocation is about to fail,
2646 	 * check if the cpuset changed during allocation and if so, retry.
2647 	 */
2648 	if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
2649 		goto retry_cpuset;
2650 
2651 	return page;
2652 }
2653 EXPORT_SYMBOL(__alloc_pages_nodemask);
2654 
2655 /*
2656  * Common helper functions.
2657  */
2658 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
2659 {
2660 	struct page *page;
2661 
2662 	/*
2663 	 * __get_free_pages() returns a 32-bit address, which cannot represent
2664 	 * a highmem page
2665 	 */
2666 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
2667 
2668 	page = alloc_pages(gfp_mask, order);
2669 	if (!page)
2670 		return 0;
2671 	return (unsigned long) page_address(page);
2672 }
2673 EXPORT_SYMBOL(__get_free_pages);
2674 
2675 unsigned long get_zeroed_page(gfp_t gfp_mask)
2676 {
2677 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
2678 }
2679 EXPORT_SYMBOL(get_zeroed_page);
2680 
2681 void __free_pages(struct page *page, unsigned int order)
2682 {
2683 	if (put_page_testzero(page)) {
2684 		if (order == 0)
2685 			free_hot_cold_page(page, 0);
2686 		else
2687 			__free_pages_ok(page, order);
2688 	}
2689 }
2690 
2691 EXPORT_SYMBOL(__free_pages);
2692 
2693 void free_pages(unsigned long addr, unsigned int order)
2694 {
2695 	if (addr != 0) {
2696 		VM_BUG_ON(!virt_addr_valid((void *)addr));
2697 		__free_pages(virt_to_page((void *)addr), order);
2698 	}
2699 }
2700 
2701 EXPORT_SYMBOL(free_pages);
2702 
2703 static void *make_alloc_exact(unsigned long addr, unsigned order, size_t size)
2704 {
2705 	if (addr) {
2706 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
2707 		unsigned long used = addr + PAGE_ALIGN(size);
2708 
2709 		split_page(virt_to_page((void *)addr), order);
2710 		while (used < alloc_end) {
2711 			free_page(used);
2712 			used += PAGE_SIZE;
2713 		}
2714 	}
2715 	return (void *)addr;
2716 }
2717 
2718 /**
2719  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2720  * @size: the number of bytes to allocate
2721  * @gfp_mask: GFP flags for the allocation
2722  *
2723  * This function is similar to alloc_pages(), except that it allocates the
2724  * minimum number of pages to satisfy the request.  alloc_pages() can only
2725  * allocate memory in power-of-two pages.
2726  *
2727  * This function is also limited by MAX_ORDER.
2728  *
2729  * Memory allocated by this function must be released by free_pages_exact().
2730  */
2731 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
2732 {
2733 	unsigned int order = get_order(size);
2734 	unsigned long addr;
2735 
2736 	addr = __get_free_pages(gfp_mask, order);
2737 	return make_alloc_exact(addr, order, size);
2738 }
2739 EXPORT_SYMBOL(alloc_pages_exact);
2740 
2741 /**
2742  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2743  *			   pages on a node.
2744  * @nid: the preferred node ID where memory should be allocated
2745  * @size: the number of bytes to allocate
2746  * @gfp_mask: GFP flags for the allocation
2747  *
2748  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2749  * back.
2750  * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2751  * but is not exact.
2752  */
2753 void *alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
2754 {
2755 	unsigned order = get_order(size);
2756 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
2757 	if (!p)
2758 		return NULL;
2759 	return make_alloc_exact((unsigned long)page_address(p), order, size);
2760 }
2761 EXPORT_SYMBOL(alloc_pages_exact_nid);
2762 
2763 /**
2764  * free_pages_exact - release memory allocated via alloc_pages_exact()
2765  * @virt: the value returned by alloc_pages_exact.
2766  * @size: size of allocation, same value as passed to alloc_pages_exact().
2767  *
2768  * Release the memory allocated by a previous call to alloc_pages_exact.
2769  */
2770 void free_pages_exact(void *virt, size_t size)
2771 {
2772 	unsigned long addr = (unsigned long)virt;
2773 	unsigned long end = addr + PAGE_ALIGN(size);
2774 
2775 	while (addr < end) {
2776 		free_page(addr);
2777 		addr += PAGE_SIZE;
2778 	}
2779 }
2780 EXPORT_SYMBOL(free_pages_exact);
2781 
2782 static unsigned int nr_free_zone_pages(int offset)
2783 {
2784 	struct zoneref *z;
2785 	struct zone *zone;
2786 
2787 	/* Just pick one node, since fallback list is circular */
2788 	unsigned int sum = 0;
2789 
2790 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
2791 
2792 	for_each_zone_zonelist(zone, z, zonelist, offset) {
2793 		unsigned long size = zone->present_pages;
2794 		unsigned long high = high_wmark_pages(zone);
2795 		if (size > high)
2796 			sum += size - high;
2797 	}
2798 
2799 	return sum;
2800 }
2801 
2802 /*
2803  * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2804  */
2805 unsigned int nr_free_buffer_pages(void)
2806 {
2807 	return nr_free_zone_pages(gfp_zone(GFP_USER));
2808 }
2809 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
2810 
2811 /*
2812  * Amount of free RAM allocatable within all zones
2813  */
2814 unsigned int nr_free_pagecache_pages(void)
2815 {
2816 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
2817 }
2818 
2819 static inline void show_node(struct zone *zone)
2820 {
2821 	if (NUMA_BUILD)
2822 		printk("Node %d ", zone_to_nid(zone));
2823 }
2824 
2825 void si_meminfo(struct sysinfo *val)
2826 {
2827 	val->totalram = totalram_pages;
2828 	val->sharedram = 0;
2829 	val->freeram = global_page_state(NR_FREE_PAGES);
2830 	val->bufferram = nr_blockdev_pages();
2831 	val->totalhigh = totalhigh_pages;
2832 	val->freehigh = nr_free_highpages();
2833 	val->mem_unit = PAGE_SIZE;
2834 }
2835 
2836 EXPORT_SYMBOL(si_meminfo);
2837 
2838 #ifdef CONFIG_NUMA
2839 void si_meminfo_node(struct sysinfo *val, int nid)
2840 {
2841 	pg_data_t *pgdat = NODE_DATA(nid);
2842 
2843 	val->totalram = pgdat->node_present_pages;
2844 	val->freeram = node_page_state(nid, NR_FREE_PAGES);
2845 #ifdef CONFIG_HIGHMEM
2846 	val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
2847 	val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2848 			NR_FREE_PAGES);
2849 #else
2850 	val->totalhigh = 0;
2851 	val->freehigh = 0;
2852 #endif
2853 	val->mem_unit = PAGE_SIZE;
2854 }
2855 #endif
2856 
2857 /*
2858  * Determine whether the node should be displayed or not, depending on whether
2859  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2860  */
2861 bool skip_free_areas_node(unsigned int flags, int nid)
2862 {
2863 	bool ret = false;
2864 	unsigned int cpuset_mems_cookie;
2865 
2866 	if (!(flags & SHOW_MEM_FILTER_NODES))
2867 		goto out;
2868 
2869 	do {
2870 		cpuset_mems_cookie = get_mems_allowed();
2871 		ret = !node_isset(nid, cpuset_current_mems_allowed);
2872 	} while (!put_mems_allowed(cpuset_mems_cookie));
2873 out:
2874 	return ret;
2875 }
2876 
2877 #define K(x) ((x) << (PAGE_SHIFT-10))
2878 
2879 /*
2880  * Show free area list (used inside shift_scroll-lock stuff)
2881  * We also calculate the percentage fragmentation. We do this by counting the
2882  * memory on each free list with the exception of the first item on the list.
2883  * Suppresses nodes that are not allowed by current's cpuset if
2884  * SHOW_MEM_FILTER_NODES is passed.
2885  */
2886 void show_free_areas(unsigned int filter)
2887 {
2888 	int cpu;
2889 	struct zone *zone;
2890 
2891 	for_each_populated_zone(zone) {
2892 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2893 			continue;
2894 		show_node(zone);
2895 		printk("%s per-cpu:\n", zone->name);
2896 
2897 		for_each_online_cpu(cpu) {
2898 			struct per_cpu_pageset *pageset;
2899 
2900 			pageset = per_cpu_ptr(zone->pageset, cpu);
2901 
2902 			printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2903 			       cpu, pageset->pcp.high,
2904 			       pageset->pcp.batch, pageset->pcp.count);
2905 		}
2906 	}
2907 
2908 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2909 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2910 		" unevictable:%lu"
2911 		" dirty:%lu writeback:%lu unstable:%lu\n"
2912 		" free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2913 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
2914 		" free_cma:%lu\n",
2915 		global_page_state(NR_ACTIVE_ANON),
2916 		global_page_state(NR_INACTIVE_ANON),
2917 		global_page_state(NR_ISOLATED_ANON),
2918 		global_page_state(NR_ACTIVE_FILE),
2919 		global_page_state(NR_INACTIVE_FILE),
2920 		global_page_state(NR_ISOLATED_FILE),
2921 		global_page_state(NR_UNEVICTABLE),
2922 		global_page_state(NR_FILE_DIRTY),
2923 		global_page_state(NR_WRITEBACK),
2924 		global_page_state(NR_UNSTABLE_NFS),
2925 		global_page_state(NR_FREE_PAGES),
2926 		global_page_state(NR_SLAB_RECLAIMABLE),
2927 		global_page_state(NR_SLAB_UNRECLAIMABLE),
2928 		global_page_state(NR_FILE_MAPPED),
2929 		global_page_state(NR_SHMEM),
2930 		global_page_state(NR_PAGETABLE),
2931 		global_page_state(NR_BOUNCE),
2932 		global_page_state(NR_FREE_CMA_PAGES));
2933 
2934 	for_each_populated_zone(zone) {
2935 		int i;
2936 
2937 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
2938 			continue;
2939 		show_node(zone);
2940 		printk("%s"
2941 			" free:%lukB"
2942 			" min:%lukB"
2943 			" low:%lukB"
2944 			" high:%lukB"
2945 			" active_anon:%lukB"
2946 			" inactive_anon:%lukB"
2947 			" active_file:%lukB"
2948 			" inactive_file:%lukB"
2949 			" unevictable:%lukB"
2950 			" isolated(anon):%lukB"
2951 			" isolated(file):%lukB"
2952 			" present:%lukB"
2953 			" mlocked:%lukB"
2954 			" dirty:%lukB"
2955 			" writeback:%lukB"
2956 			" mapped:%lukB"
2957 			" shmem:%lukB"
2958 			" slab_reclaimable:%lukB"
2959 			" slab_unreclaimable:%lukB"
2960 			" kernel_stack:%lukB"
2961 			" pagetables:%lukB"
2962 			" unstable:%lukB"
2963 			" bounce:%lukB"
2964 			" free_cma:%lukB"
2965 			" writeback_tmp:%lukB"
2966 			" pages_scanned:%lu"
2967 			" all_unreclaimable? %s"
2968 			"\n",
2969 			zone->name,
2970 			K(zone_page_state(zone, NR_FREE_PAGES)),
2971 			K(min_wmark_pages(zone)),
2972 			K(low_wmark_pages(zone)),
2973 			K(high_wmark_pages(zone)),
2974 			K(zone_page_state(zone, NR_ACTIVE_ANON)),
2975 			K(zone_page_state(zone, NR_INACTIVE_ANON)),
2976 			K(zone_page_state(zone, NR_ACTIVE_FILE)),
2977 			K(zone_page_state(zone, NR_INACTIVE_FILE)),
2978 			K(zone_page_state(zone, NR_UNEVICTABLE)),
2979 			K(zone_page_state(zone, NR_ISOLATED_ANON)),
2980 			K(zone_page_state(zone, NR_ISOLATED_FILE)),
2981 			K(zone->present_pages),
2982 			K(zone_page_state(zone, NR_MLOCK)),
2983 			K(zone_page_state(zone, NR_FILE_DIRTY)),
2984 			K(zone_page_state(zone, NR_WRITEBACK)),
2985 			K(zone_page_state(zone, NR_FILE_MAPPED)),
2986 			K(zone_page_state(zone, NR_SHMEM)),
2987 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
2988 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
2989 			zone_page_state(zone, NR_KERNEL_STACK) *
2990 				THREAD_SIZE / 1024,
2991 			K(zone_page_state(zone, NR_PAGETABLE)),
2992 			K(zone_page_state(zone, NR_UNSTABLE_NFS)),
2993 			K(zone_page_state(zone, NR_BOUNCE)),
2994 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)),
2995 			K(zone_page_state(zone, NR_WRITEBACK_TEMP)),
2996 			zone->pages_scanned,
2997 			(zone->all_unreclaimable ? "yes" : "no")
2998 			);
2999 		printk("lowmem_reserve[]:");
3000 		for (i = 0; i < MAX_NR_ZONES; i++)
3001 			printk(" %lu", zone->lowmem_reserve[i]);
3002 		printk("\n");
3003 	}
3004 
3005 	for_each_populated_zone(zone) {
3006  		unsigned long nr[MAX_ORDER], flags, order, total = 0;
3007 
3008 		if (skip_free_areas_node(filter, zone_to_nid(zone)))
3009 			continue;
3010 		show_node(zone);
3011 		printk("%s: ", zone->name);
3012 
3013 		spin_lock_irqsave(&zone->lock, flags);
3014 		for (order = 0; order < MAX_ORDER; order++) {
3015 			nr[order] = zone->free_area[order].nr_free;
3016 			total += nr[order] << order;
3017 		}
3018 		spin_unlock_irqrestore(&zone->lock, flags);
3019 		for (order = 0; order < MAX_ORDER; order++)
3020 			printk("%lu*%lukB ", nr[order], K(1UL) << order);
3021 		printk("= %lukB\n", K(total));
3022 	}
3023 
3024 	printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
3025 
3026 	show_swap_cache_info();
3027 }
3028 
3029 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
3030 {
3031 	zoneref->zone = zone;
3032 	zoneref->zone_idx = zone_idx(zone);
3033 }
3034 
3035 /*
3036  * Builds allocation fallback zone lists.
3037  *
3038  * Add all populated zones of a node to the zonelist.
3039  */
3040 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
3041 				int nr_zones, enum zone_type zone_type)
3042 {
3043 	struct zone *zone;
3044 
3045 	BUG_ON(zone_type >= MAX_NR_ZONES);
3046 	zone_type++;
3047 
3048 	do {
3049 		zone_type--;
3050 		zone = pgdat->node_zones + zone_type;
3051 		if (populated_zone(zone)) {
3052 			zoneref_set_zone(zone,
3053 				&zonelist->_zonerefs[nr_zones++]);
3054 			check_highest_zone(zone_type);
3055 		}
3056 
3057 	} while (zone_type);
3058 	return nr_zones;
3059 }
3060 
3061 
3062 /*
3063  *  zonelist_order:
3064  *  0 = automatic detection of better ordering.
3065  *  1 = order by ([node] distance, -zonetype)
3066  *  2 = order by (-zonetype, [node] distance)
3067  *
3068  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
3069  *  the same zonelist. So only NUMA can configure this param.
3070  */
3071 #define ZONELIST_ORDER_DEFAULT  0
3072 #define ZONELIST_ORDER_NODE     1
3073 #define ZONELIST_ORDER_ZONE     2
3074 
3075 /* zonelist order in the kernel.
3076  * set_zonelist_order() will set this to NODE or ZONE.
3077  */
3078 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
3079 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
3080 
3081 
3082 #ifdef CONFIG_NUMA
3083 /* The value user specified ....changed by config */
3084 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3085 /* string for sysctl */
3086 #define NUMA_ZONELIST_ORDER_LEN	16
3087 char numa_zonelist_order[16] = "default";
3088 
3089 /*
3090  * interface for configure zonelist ordering.
3091  * command line option "numa_zonelist_order"
3092  *	= "[dD]efault	- default, automatic configuration.
3093  *	= "[nN]ode 	- order by node locality, then by zone within node
3094  *	= "[zZ]one      - order by zone, then by locality within zone
3095  */
3096 
3097 static int __parse_numa_zonelist_order(char *s)
3098 {
3099 	if (*s == 'd' || *s == 'D') {
3100 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
3101 	} else if (*s == 'n' || *s == 'N') {
3102 		user_zonelist_order = ZONELIST_ORDER_NODE;
3103 	} else if (*s == 'z' || *s == 'Z') {
3104 		user_zonelist_order = ZONELIST_ORDER_ZONE;
3105 	} else {
3106 		printk(KERN_WARNING
3107 			"Ignoring invalid numa_zonelist_order value:  "
3108 			"%s\n", s);
3109 		return -EINVAL;
3110 	}
3111 	return 0;
3112 }
3113 
3114 static __init int setup_numa_zonelist_order(char *s)
3115 {
3116 	int ret;
3117 
3118 	if (!s)
3119 		return 0;
3120 
3121 	ret = __parse_numa_zonelist_order(s);
3122 	if (ret == 0)
3123 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
3124 
3125 	return ret;
3126 }
3127 early_param("numa_zonelist_order", setup_numa_zonelist_order);
3128 
3129 /*
3130  * sysctl handler for numa_zonelist_order
3131  */
3132 int numa_zonelist_order_handler(ctl_table *table, int write,
3133 		void __user *buffer, size_t *length,
3134 		loff_t *ppos)
3135 {
3136 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
3137 	int ret;
3138 	static DEFINE_MUTEX(zl_order_mutex);
3139 
3140 	mutex_lock(&zl_order_mutex);
3141 	if (write)
3142 		strcpy(saved_string, (char*)table->data);
3143 	ret = proc_dostring(table, write, buffer, length, ppos);
3144 	if (ret)
3145 		goto out;
3146 	if (write) {
3147 		int oldval = user_zonelist_order;
3148 		if (__parse_numa_zonelist_order((char*)table->data)) {
3149 			/*
3150 			 * bogus value.  restore saved string
3151 			 */
3152 			strncpy((char*)table->data, saved_string,
3153 				NUMA_ZONELIST_ORDER_LEN);
3154 			user_zonelist_order = oldval;
3155 		} else if (oldval != user_zonelist_order) {
3156 			mutex_lock(&zonelists_mutex);
3157 			build_all_zonelists(NULL, NULL);
3158 			mutex_unlock(&zonelists_mutex);
3159 		}
3160 	}
3161 out:
3162 	mutex_unlock(&zl_order_mutex);
3163 	return ret;
3164 }
3165 
3166 
3167 #define MAX_NODE_LOAD (nr_online_nodes)
3168 static int node_load[MAX_NUMNODES];
3169 
3170 /**
3171  * find_next_best_node - find the next node that should appear in a given node's fallback list
3172  * @node: node whose fallback list we're appending
3173  * @used_node_mask: nodemask_t of already used nodes
3174  *
3175  * We use a number of factors to determine which is the next node that should
3176  * appear on a given node's fallback list.  The node should not have appeared
3177  * already in @node's fallback list, and it should be the next closest node
3178  * according to the distance array (which contains arbitrary distance values
3179  * from each node to each node in the system), and should also prefer nodes
3180  * with no CPUs, since presumably they'll have very little allocation pressure
3181  * on them otherwise.
3182  * It returns -1 if no node is found.
3183  */
3184 static int find_next_best_node(int node, nodemask_t *used_node_mask)
3185 {
3186 	int n, val;
3187 	int min_val = INT_MAX;
3188 	int best_node = -1;
3189 	const struct cpumask *tmp = cpumask_of_node(0);
3190 
3191 	/* Use the local node if we haven't already */
3192 	if (!node_isset(node, *used_node_mask)) {
3193 		node_set(node, *used_node_mask);
3194 		return node;
3195 	}
3196 
3197 	for_each_node_state(n, N_HIGH_MEMORY) {
3198 
3199 		/* Don't want a node to appear more than once */
3200 		if (node_isset(n, *used_node_mask))
3201 			continue;
3202 
3203 		/* Use the distance array to find the distance */
3204 		val = node_distance(node, n);
3205 
3206 		/* Penalize nodes under us ("prefer the next node") */
3207 		val += (n < node);
3208 
3209 		/* Give preference to headless and unused nodes */
3210 		tmp = cpumask_of_node(n);
3211 		if (!cpumask_empty(tmp))
3212 			val += PENALTY_FOR_NODE_WITH_CPUS;
3213 
3214 		/* Slight preference for less loaded node */
3215 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
3216 		val += node_load[n];
3217 
3218 		if (val < min_val) {
3219 			min_val = val;
3220 			best_node = n;
3221 		}
3222 	}
3223 
3224 	if (best_node >= 0)
3225 		node_set(best_node, *used_node_mask);
3226 
3227 	return best_node;
3228 }
3229 
3230 
3231 /*
3232  * Build zonelists ordered by node and zones within node.
3233  * This results in maximum locality--normal zone overflows into local
3234  * DMA zone, if any--but risks exhausting DMA zone.
3235  */
3236 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
3237 {
3238 	int j;
3239 	struct zonelist *zonelist;
3240 
3241 	zonelist = &pgdat->node_zonelists[0];
3242 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
3243 		;
3244 	j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3245 							MAX_NR_ZONES - 1);
3246 	zonelist->_zonerefs[j].zone = NULL;
3247 	zonelist->_zonerefs[j].zone_idx = 0;
3248 }
3249 
3250 /*
3251  * Build gfp_thisnode zonelists
3252  */
3253 static void build_thisnode_zonelists(pg_data_t *pgdat)
3254 {
3255 	int j;
3256 	struct zonelist *zonelist;
3257 
3258 	zonelist = &pgdat->node_zonelists[1];
3259 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3260 	zonelist->_zonerefs[j].zone = NULL;
3261 	zonelist->_zonerefs[j].zone_idx = 0;
3262 }
3263 
3264 /*
3265  * Build zonelists ordered by zone and nodes within zones.
3266  * This results in conserving DMA zone[s] until all Normal memory is
3267  * exhausted, but results in overflowing to remote node while memory
3268  * may still exist in local DMA zone.
3269  */
3270 static int node_order[MAX_NUMNODES];
3271 
3272 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
3273 {
3274 	int pos, j, node;
3275 	int zone_type;		/* needs to be signed */
3276 	struct zone *z;
3277 	struct zonelist *zonelist;
3278 
3279 	zonelist = &pgdat->node_zonelists[0];
3280 	pos = 0;
3281 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
3282 		for (j = 0; j < nr_nodes; j++) {
3283 			node = node_order[j];
3284 			z = &NODE_DATA(node)->node_zones[zone_type];
3285 			if (populated_zone(z)) {
3286 				zoneref_set_zone(z,
3287 					&zonelist->_zonerefs[pos++]);
3288 				check_highest_zone(zone_type);
3289 			}
3290 		}
3291 	}
3292 	zonelist->_zonerefs[pos].zone = NULL;
3293 	zonelist->_zonerefs[pos].zone_idx = 0;
3294 }
3295 
3296 static int default_zonelist_order(void)
3297 {
3298 	int nid, zone_type;
3299 	unsigned long low_kmem_size,total_size;
3300 	struct zone *z;
3301 	int average_size;
3302 	/*
3303          * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
3304 	 * If they are really small and used heavily, the system can fall
3305 	 * into OOM very easily.
3306 	 * This function detect ZONE_DMA/DMA32 size and configures zone order.
3307 	 */
3308 	/* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
3309 	low_kmem_size = 0;
3310 	total_size = 0;
3311 	for_each_online_node(nid) {
3312 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3313 			z = &NODE_DATA(nid)->node_zones[zone_type];
3314 			if (populated_zone(z)) {
3315 				if (zone_type < ZONE_NORMAL)
3316 					low_kmem_size += z->present_pages;
3317 				total_size += z->present_pages;
3318 			} else if (zone_type == ZONE_NORMAL) {
3319 				/*
3320 				 * If any node has only lowmem, then node order
3321 				 * is preferred to allow kernel allocations
3322 				 * locally; otherwise, they can easily infringe
3323 				 * on other nodes when there is an abundance of
3324 				 * lowmem available to allocate from.
3325 				 */
3326 				return ZONELIST_ORDER_NODE;
3327 			}
3328 		}
3329 	}
3330 	if (!low_kmem_size ||  /* there are no DMA area. */
3331 	    low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
3332 		return ZONELIST_ORDER_NODE;
3333 	/*
3334 	 * look into each node's config.
3335   	 * If there is a node whose DMA/DMA32 memory is very big area on
3336  	 * local memory, NODE_ORDER may be suitable.
3337          */
3338 	average_size = total_size /
3339 				(nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
3340 	for_each_online_node(nid) {
3341 		low_kmem_size = 0;
3342 		total_size = 0;
3343 		for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
3344 			z = &NODE_DATA(nid)->node_zones[zone_type];
3345 			if (populated_zone(z)) {
3346 				if (zone_type < ZONE_NORMAL)
3347 					low_kmem_size += z->present_pages;
3348 				total_size += z->present_pages;
3349 			}
3350 		}
3351 		if (low_kmem_size &&
3352 		    total_size > average_size && /* ignore small node */
3353 		    low_kmem_size > total_size * 70/100)
3354 			return ZONELIST_ORDER_NODE;
3355 	}
3356 	return ZONELIST_ORDER_ZONE;
3357 }
3358 
3359 static void set_zonelist_order(void)
3360 {
3361 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
3362 		current_zonelist_order = default_zonelist_order();
3363 	else
3364 		current_zonelist_order = user_zonelist_order;
3365 }
3366 
3367 static void build_zonelists(pg_data_t *pgdat)
3368 {
3369 	int j, node, load;
3370 	enum zone_type i;
3371 	nodemask_t used_mask;
3372 	int local_node, prev_node;
3373 	struct zonelist *zonelist;
3374 	int order = current_zonelist_order;
3375 
3376 	/* initialize zonelists */
3377 	for (i = 0; i < MAX_ZONELISTS; i++) {
3378 		zonelist = pgdat->node_zonelists + i;
3379 		zonelist->_zonerefs[0].zone = NULL;
3380 		zonelist->_zonerefs[0].zone_idx = 0;
3381 	}
3382 
3383 	/* NUMA-aware ordering of nodes */
3384 	local_node = pgdat->node_id;
3385 	load = nr_online_nodes;
3386 	prev_node = local_node;
3387 	nodes_clear(used_mask);
3388 
3389 	memset(node_order, 0, sizeof(node_order));
3390 	j = 0;
3391 
3392 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
3393 		/*
3394 		 * We don't want to pressure a particular node.
3395 		 * So adding penalty to the first node in same
3396 		 * distance group to make it round-robin.
3397 		 */
3398 		if (node_distance(local_node, node) !=
3399 		    node_distance(local_node, prev_node))
3400 			node_load[node] = load;
3401 
3402 		prev_node = node;
3403 		load--;
3404 		if (order == ZONELIST_ORDER_NODE)
3405 			build_zonelists_in_node_order(pgdat, node);
3406 		else
3407 			node_order[j++] = node;	/* remember order */
3408 	}
3409 
3410 	if (order == ZONELIST_ORDER_ZONE) {
3411 		/* calculate node order -- i.e., DMA last! */
3412 		build_zonelists_in_zone_order(pgdat, j);
3413 	}
3414 
3415 	build_thisnode_zonelists(pgdat);
3416 }
3417 
3418 /* Construct the zonelist performance cache - see further mmzone.h */
3419 static void build_zonelist_cache(pg_data_t *pgdat)
3420 {
3421 	struct zonelist *zonelist;
3422 	struct zonelist_cache *zlc;
3423 	struct zoneref *z;
3424 
3425 	zonelist = &pgdat->node_zonelists[0];
3426 	zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
3427 	bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
3428 	for (z = zonelist->_zonerefs; z->zone; z++)
3429 		zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
3430 }
3431 
3432 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3433 /*
3434  * Return node id of node used for "local" allocations.
3435  * I.e., first node id of first zone in arg node's generic zonelist.
3436  * Used for initializing percpu 'numa_mem', which is used primarily
3437  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3438  */
3439 int local_memory_node(int node)
3440 {
3441 	struct zone *zone;
3442 
3443 	(void)first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
3444 				   gfp_zone(GFP_KERNEL),
3445 				   NULL,
3446 				   &zone);
3447 	return zone->node;
3448 }
3449 #endif
3450 
3451 #else	/* CONFIG_NUMA */
3452 
3453 static void set_zonelist_order(void)
3454 {
3455 	current_zonelist_order = ZONELIST_ORDER_ZONE;
3456 }
3457 
3458 static void build_zonelists(pg_data_t *pgdat)
3459 {
3460 	int node, local_node;
3461 	enum zone_type j;
3462 	struct zonelist *zonelist;
3463 
3464 	local_node = pgdat->node_id;
3465 
3466 	zonelist = &pgdat->node_zonelists[0];
3467 	j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
3468 
3469 	/*
3470 	 * Now we build the zonelist so that it contains the zones
3471 	 * of all the other nodes.
3472 	 * We don't want to pressure a particular node, so when
3473 	 * building the zones for node N, we make sure that the
3474 	 * zones coming right after the local ones are those from
3475 	 * node N+1 (modulo N)
3476 	 */
3477 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
3478 		if (!node_online(node))
3479 			continue;
3480 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3481 							MAX_NR_ZONES - 1);
3482 	}
3483 	for (node = 0; node < local_node; node++) {
3484 		if (!node_online(node))
3485 			continue;
3486 		j = build_zonelists_node(NODE_DATA(node), zonelist, j,
3487 							MAX_NR_ZONES - 1);
3488 	}
3489 
3490 	zonelist->_zonerefs[j].zone = NULL;
3491 	zonelist->_zonerefs[j].zone_idx = 0;
3492 }
3493 
3494 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3495 static void build_zonelist_cache(pg_data_t *pgdat)
3496 {
3497 	pgdat->node_zonelists[0].zlcache_ptr = NULL;
3498 }
3499 
3500 #endif	/* CONFIG_NUMA */
3501 
3502 /*
3503  * Boot pageset table. One per cpu which is going to be used for all
3504  * zones and all nodes. The parameters will be set in such a way
3505  * that an item put on a list will immediately be handed over to
3506  * the buddy list. This is safe since pageset manipulation is done
3507  * with interrupts disabled.
3508  *
3509  * The boot_pagesets must be kept even after bootup is complete for
3510  * unused processors and/or zones. They do play a role for bootstrapping
3511  * hotplugged processors.
3512  *
3513  * zoneinfo_show() and maybe other functions do
3514  * not check if the processor is online before following the pageset pointer.
3515  * Other parts of the kernel may not check if the zone is available.
3516  */
3517 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
3518 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
3519 static void setup_zone_pageset(struct zone *zone);
3520 
3521 /*
3522  * Global mutex to protect against size modification of zonelists
3523  * as well as to serialize pageset setup for the new populated zone.
3524  */
3525 DEFINE_MUTEX(zonelists_mutex);
3526 
3527 /* return values int ....just for stop_machine() */
3528 static int __build_all_zonelists(void *data)
3529 {
3530 	int nid;
3531 	int cpu;
3532 	pg_data_t *self = data;
3533 
3534 #ifdef CONFIG_NUMA
3535 	memset(node_load, 0, sizeof(node_load));
3536 #endif
3537 
3538 	if (self && !node_online(self->node_id)) {
3539 		build_zonelists(self);
3540 		build_zonelist_cache(self);
3541 	}
3542 
3543 	for_each_online_node(nid) {
3544 		pg_data_t *pgdat = NODE_DATA(nid);
3545 
3546 		build_zonelists(pgdat);
3547 		build_zonelist_cache(pgdat);
3548 	}
3549 
3550 	/*
3551 	 * Initialize the boot_pagesets that are going to be used
3552 	 * for bootstrapping processors. The real pagesets for
3553 	 * each zone will be allocated later when the per cpu
3554 	 * allocator is available.
3555 	 *
3556 	 * boot_pagesets are used also for bootstrapping offline
3557 	 * cpus if the system is already booted because the pagesets
3558 	 * are needed to initialize allocators on a specific cpu too.
3559 	 * F.e. the percpu allocator needs the page allocator which
3560 	 * needs the percpu allocator in order to allocate its pagesets
3561 	 * (a chicken-egg dilemma).
3562 	 */
3563 	for_each_possible_cpu(cpu) {
3564 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
3565 
3566 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3567 		/*
3568 		 * We now know the "local memory node" for each node--
3569 		 * i.e., the node of the first zone in the generic zonelist.
3570 		 * Set up numa_mem percpu variable for on-line cpus.  During
3571 		 * boot, only the boot cpu should be on-line;  we'll init the
3572 		 * secondary cpus' numa_mem as they come on-line.  During
3573 		 * node/memory hotplug, we'll fixup all on-line cpus.
3574 		 */
3575 		if (cpu_online(cpu))
3576 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
3577 #endif
3578 	}
3579 
3580 	return 0;
3581 }
3582 
3583 /*
3584  * Called with zonelists_mutex held always
3585  * unless system_state == SYSTEM_BOOTING.
3586  */
3587 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
3588 {
3589 	set_zonelist_order();
3590 
3591 	if (system_state == SYSTEM_BOOTING) {
3592 		__build_all_zonelists(NULL);
3593 		mminit_verify_zonelist();
3594 		cpuset_init_current_mems_allowed();
3595 	} else {
3596 		/* we have to stop all cpus to guarantee there is no user
3597 		   of zonelist */
3598 #ifdef CONFIG_MEMORY_HOTPLUG
3599 		if (zone)
3600 			setup_zone_pageset(zone);
3601 #endif
3602 		stop_machine(__build_all_zonelists, pgdat, NULL);
3603 		/* cpuset refresh routine should be here */
3604 	}
3605 	vm_total_pages = nr_free_pagecache_pages();
3606 	/*
3607 	 * Disable grouping by mobility if the number of pages in the
3608 	 * system is too low to allow the mechanism to work. It would be
3609 	 * more accurate, but expensive to check per-zone. This check is
3610 	 * made on memory-hotadd so a system can start with mobility
3611 	 * disabled and enable it later
3612 	 */
3613 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
3614 		page_group_by_mobility_disabled = 1;
3615 	else
3616 		page_group_by_mobility_disabled = 0;
3617 
3618 	printk("Built %i zonelists in %s order, mobility grouping %s.  "
3619 		"Total pages: %ld\n",
3620 			nr_online_nodes,
3621 			zonelist_order_name[current_zonelist_order],
3622 			page_group_by_mobility_disabled ? "off" : "on",
3623 			vm_total_pages);
3624 #ifdef CONFIG_NUMA
3625 	printk("Policy zone: %s\n", zone_names[policy_zone]);
3626 #endif
3627 }
3628 
3629 /*
3630  * Helper functions to size the waitqueue hash table.
3631  * Essentially these want to choose hash table sizes sufficiently
3632  * large so that collisions trying to wait on pages are rare.
3633  * But in fact, the number of active page waitqueues on typical
3634  * systems is ridiculously low, less than 200. So this is even
3635  * conservative, even though it seems large.
3636  *
3637  * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3638  * waitqueues, i.e. the size of the waitq table given the number of pages.
3639  */
3640 #define PAGES_PER_WAITQUEUE	256
3641 
3642 #ifndef CONFIG_MEMORY_HOTPLUG
3643 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3644 {
3645 	unsigned long size = 1;
3646 
3647 	pages /= PAGES_PER_WAITQUEUE;
3648 
3649 	while (size < pages)
3650 		size <<= 1;
3651 
3652 	/*
3653 	 * Once we have dozens or even hundreds of threads sleeping
3654 	 * on IO we've got bigger problems than wait queue collision.
3655 	 * Limit the size of the wait table to a reasonable size.
3656 	 */
3657 	size = min(size, 4096UL);
3658 
3659 	return max(size, 4UL);
3660 }
3661 #else
3662 /*
3663  * A zone's size might be changed by hot-add, so it is not possible to determine
3664  * a suitable size for its wait_table.  So we use the maximum size now.
3665  *
3666  * The max wait table size = 4096 x sizeof(wait_queue_head_t).   ie:
3667  *
3668  *    i386 (preemption config)    : 4096 x 16 = 64Kbyte.
3669  *    ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3670  *    ia64, x86-64 (preemption)   : 4096 x 24 = 96Kbyte.
3671  *
3672  * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3673  * or more by the traditional way. (See above).  It equals:
3674  *
3675  *    i386, x86-64, powerpc(4K page size) : =  ( 2G + 1M)byte.
3676  *    ia64(16K page size)                 : =  ( 8G + 4M)byte.
3677  *    powerpc (64K page size)             : =  (32G +16M)byte.
3678  */
3679 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
3680 {
3681 	return 4096UL;
3682 }
3683 #endif
3684 
3685 /*
3686  * This is an integer logarithm so that shifts can be used later
3687  * to extract the more random high bits from the multiplicative
3688  * hash function before the remainder is taken.
3689  */
3690 static inline unsigned long wait_table_bits(unsigned long size)
3691 {
3692 	return ffz(~size);
3693 }
3694 
3695 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3696 
3697 /*
3698  * Check if a pageblock contains reserved pages
3699  */
3700 static int pageblock_is_reserved(unsigned long start_pfn, unsigned long end_pfn)
3701 {
3702 	unsigned long pfn;
3703 
3704 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3705 		if (!pfn_valid_within(pfn) || PageReserved(pfn_to_page(pfn)))
3706 			return 1;
3707 	}
3708 	return 0;
3709 }
3710 
3711 /*
3712  * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3713  * of blocks reserved is based on min_wmark_pages(zone). The memory within
3714  * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3715  * higher will lead to a bigger reserve which will get freed as contiguous
3716  * blocks as reclaim kicks in
3717  */
3718 static void setup_zone_migrate_reserve(struct zone *zone)
3719 {
3720 	unsigned long start_pfn, pfn, end_pfn, block_end_pfn;
3721 	struct page *page;
3722 	unsigned long block_migratetype;
3723 	int reserve;
3724 
3725 	/*
3726 	 * Get the start pfn, end pfn and the number of blocks to reserve
3727 	 * We have to be careful to be aligned to pageblock_nr_pages to
3728 	 * make sure that we always check pfn_valid for the first page in
3729 	 * the block.
3730 	 */
3731 	start_pfn = zone->zone_start_pfn;
3732 	end_pfn = start_pfn + zone->spanned_pages;
3733 	start_pfn = roundup(start_pfn, pageblock_nr_pages);
3734 	reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
3735 							pageblock_order;
3736 
3737 	/*
3738 	 * Reserve blocks are generally in place to help high-order atomic
3739 	 * allocations that are short-lived. A min_free_kbytes value that
3740 	 * would result in more than 2 reserve blocks for atomic allocations
3741 	 * is assumed to be in place to help anti-fragmentation for the
3742 	 * future allocation of hugepages at runtime.
3743 	 */
3744 	reserve = min(2, reserve);
3745 
3746 	for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
3747 		if (!pfn_valid(pfn))
3748 			continue;
3749 		page = pfn_to_page(pfn);
3750 
3751 		/* Watch out for overlapping nodes */
3752 		if (page_to_nid(page) != zone_to_nid(zone))
3753 			continue;
3754 
3755 		block_migratetype = get_pageblock_migratetype(page);
3756 
3757 		/* Only test what is necessary when the reserves are not met */
3758 		if (reserve > 0) {
3759 			/*
3760 			 * Blocks with reserved pages will never free, skip
3761 			 * them.
3762 			 */
3763 			block_end_pfn = min(pfn + pageblock_nr_pages, end_pfn);
3764 			if (pageblock_is_reserved(pfn, block_end_pfn))
3765 				continue;
3766 
3767 			/* If this block is reserved, account for it */
3768 			if (block_migratetype == MIGRATE_RESERVE) {
3769 				reserve--;
3770 				continue;
3771 			}
3772 
3773 			/* Suitable for reserving if this block is movable */
3774 			if (block_migratetype == MIGRATE_MOVABLE) {
3775 				set_pageblock_migratetype(page,
3776 							MIGRATE_RESERVE);
3777 				move_freepages_block(zone, page,
3778 							MIGRATE_RESERVE);
3779 				reserve--;
3780 				continue;
3781 			}
3782 		}
3783 
3784 		/*
3785 		 * If the reserve is met and this is a previous reserved block,
3786 		 * take it back
3787 		 */
3788 		if (block_migratetype == MIGRATE_RESERVE) {
3789 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3790 			move_freepages_block(zone, page, MIGRATE_MOVABLE);
3791 		}
3792 	}
3793 }
3794 
3795 /*
3796  * Initially all pages are reserved - free ones are freed
3797  * up by free_all_bootmem() once the early boot process is
3798  * done. Non-atomic initialization, single-pass.
3799  */
3800 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
3801 		unsigned long start_pfn, enum memmap_context context)
3802 {
3803 	struct page *page;
3804 	unsigned long end_pfn = start_pfn + size;
3805 	unsigned long pfn;
3806 	struct zone *z;
3807 
3808 	if (highest_memmap_pfn < end_pfn - 1)
3809 		highest_memmap_pfn = end_pfn - 1;
3810 
3811 	z = &NODE_DATA(nid)->node_zones[zone];
3812 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
3813 		/*
3814 		 * There can be holes in boot-time mem_map[]s
3815 		 * handed to this function.  They do not
3816 		 * exist on hotplugged memory.
3817 		 */
3818 		if (context == MEMMAP_EARLY) {
3819 			if (!early_pfn_valid(pfn))
3820 				continue;
3821 			if (!early_pfn_in_nid(pfn, nid))
3822 				continue;
3823 		}
3824 		page = pfn_to_page(pfn);
3825 		set_page_links(page, zone, nid, pfn);
3826 		mminit_verify_page_links(page, zone, nid, pfn);
3827 		init_page_count(page);
3828 		reset_page_mapcount(page);
3829 		SetPageReserved(page);
3830 		/*
3831 		 * Mark the block movable so that blocks are reserved for
3832 		 * movable at startup. This will force kernel allocations
3833 		 * to reserve their blocks rather than leaking throughout
3834 		 * the address space during boot when many long-lived
3835 		 * kernel allocations are made. Later some blocks near
3836 		 * the start are marked MIGRATE_RESERVE by
3837 		 * setup_zone_migrate_reserve()
3838 		 *
3839 		 * bitmap is created for zone's valid pfn range. but memmap
3840 		 * can be created for invalid pages (for alignment)
3841 		 * check here not to call set_pageblock_migratetype() against
3842 		 * pfn out of zone.
3843 		 */
3844 		if ((z->zone_start_pfn <= pfn)
3845 		    && (pfn < z->zone_start_pfn + z->spanned_pages)
3846 		    && !(pfn & (pageblock_nr_pages - 1)))
3847 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
3848 
3849 		INIT_LIST_HEAD(&page->lru);
3850 #ifdef WANT_PAGE_VIRTUAL
3851 		/* The shift won't overflow because ZONE_NORMAL is below 4G. */
3852 		if (!is_highmem_idx(zone))
3853 			set_page_address(page, __va(pfn << PAGE_SHIFT));
3854 #endif
3855 	}
3856 }
3857 
3858 static void __meminit zone_init_free_lists(struct zone *zone)
3859 {
3860 	int order, t;
3861 	for_each_migratetype_order(order, t) {
3862 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
3863 		zone->free_area[order].nr_free = 0;
3864 	}
3865 }
3866 
3867 #ifndef __HAVE_ARCH_MEMMAP_INIT
3868 #define memmap_init(size, nid, zone, start_pfn) \
3869 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3870 #endif
3871 
3872 static int __meminit zone_batchsize(struct zone *zone)
3873 {
3874 #ifdef CONFIG_MMU
3875 	int batch;
3876 
3877 	/*
3878 	 * The per-cpu-pages pools are set to around 1000th of the
3879 	 * size of the zone.  But no more than 1/2 of a meg.
3880 	 *
3881 	 * OK, so we don't know how big the cache is.  So guess.
3882 	 */
3883 	batch = zone->present_pages / 1024;
3884 	if (batch * PAGE_SIZE > 512 * 1024)
3885 		batch = (512 * 1024) / PAGE_SIZE;
3886 	batch /= 4;		/* We effectively *= 4 below */
3887 	if (batch < 1)
3888 		batch = 1;
3889 
3890 	/*
3891 	 * Clamp the batch to a 2^n - 1 value. Having a power
3892 	 * of 2 value was found to be more likely to have
3893 	 * suboptimal cache aliasing properties in some cases.
3894 	 *
3895 	 * For example if 2 tasks are alternately allocating
3896 	 * batches of pages, one task can end up with a lot
3897 	 * of pages of one half of the possible page colors
3898 	 * and the other with pages of the other colors.
3899 	 */
3900 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
3901 
3902 	return batch;
3903 
3904 #else
3905 	/* The deferral and batching of frees should be suppressed under NOMMU
3906 	 * conditions.
3907 	 *
3908 	 * The problem is that NOMMU needs to be able to allocate large chunks
3909 	 * of contiguous memory as there's no hardware page translation to
3910 	 * assemble apparent contiguous memory from discontiguous pages.
3911 	 *
3912 	 * Queueing large contiguous runs of pages for batching, however,
3913 	 * causes the pages to actually be freed in smaller chunks.  As there
3914 	 * can be a significant delay between the individual batches being
3915 	 * recycled, this leads to the once large chunks of space being
3916 	 * fragmented and becoming unavailable for high-order allocations.
3917 	 */
3918 	return 0;
3919 #endif
3920 }
3921 
3922 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
3923 {
3924 	struct per_cpu_pages *pcp;
3925 	int migratetype;
3926 
3927 	memset(p, 0, sizeof(*p));
3928 
3929 	pcp = &p->pcp;
3930 	pcp->count = 0;
3931 	pcp->high = 6 * batch;
3932 	pcp->batch = max(1UL, 1 * batch);
3933 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
3934 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
3935 }
3936 
3937 /*
3938  * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3939  * to the value high for the pageset p.
3940  */
3941 
3942 static void setup_pagelist_highmark(struct per_cpu_pageset *p,
3943 				unsigned long high)
3944 {
3945 	struct per_cpu_pages *pcp;
3946 
3947 	pcp = &p->pcp;
3948 	pcp->high = high;
3949 	pcp->batch = max(1UL, high/4);
3950 	if ((high/4) > (PAGE_SHIFT * 8))
3951 		pcp->batch = PAGE_SHIFT * 8;
3952 }
3953 
3954 static void __meminit setup_zone_pageset(struct zone *zone)
3955 {
3956 	int cpu;
3957 
3958 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
3959 
3960 	for_each_possible_cpu(cpu) {
3961 		struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
3962 
3963 		setup_pageset(pcp, zone_batchsize(zone));
3964 
3965 		if (percpu_pagelist_fraction)
3966 			setup_pagelist_highmark(pcp,
3967 				(zone->present_pages /
3968 					percpu_pagelist_fraction));
3969 	}
3970 }
3971 
3972 /*
3973  * Allocate per cpu pagesets and initialize them.
3974  * Before this call only boot pagesets were available.
3975  */
3976 void __init setup_per_cpu_pageset(void)
3977 {
3978 	struct zone *zone;
3979 
3980 	for_each_populated_zone(zone)
3981 		setup_zone_pageset(zone);
3982 }
3983 
3984 static noinline __init_refok
3985 int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
3986 {
3987 	int i;
3988 	struct pglist_data *pgdat = zone->zone_pgdat;
3989 	size_t alloc_size;
3990 
3991 	/*
3992 	 * The per-page waitqueue mechanism uses hashed waitqueues
3993 	 * per zone.
3994 	 */
3995 	zone->wait_table_hash_nr_entries =
3996 		 wait_table_hash_nr_entries(zone_size_pages);
3997 	zone->wait_table_bits =
3998 		wait_table_bits(zone->wait_table_hash_nr_entries);
3999 	alloc_size = zone->wait_table_hash_nr_entries
4000 					* sizeof(wait_queue_head_t);
4001 
4002 	if (!slab_is_available()) {
4003 		zone->wait_table = (wait_queue_head_t *)
4004 			alloc_bootmem_node_nopanic(pgdat, alloc_size);
4005 	} else {
4006 		/*
4007 		 * This case means that a zone whose size was 0 gets new memory
4008 		 * via memory hot-add.
4009 		 * But it may be the case that a new node was hot-added.  In
4010 		 * this case vmalloc() will not be able to use this new node's
4011 		 * memory - this wait_table must be initialized to use this new
4012 		 * node itself as well.
4013 		 * To use this new node's memory, further consideration will be
4014 		 * necessary.
4015 		 */
4016 		zone->wait_table = vmalloc(alloc_size);
4017 	}
4018 	if (!zone->wait_table)
4019 		return -ENOMEM;
4020 
4021 	for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
4022 		init_waitqueue_head(zone->wait_table + i);
4023 
4024 	return 0;
4025 }
4026 
4027 static __meminit void zone_pcp_init(struct zone *zone)
4028 {
4029 	/*
4030 	 * per cpu subsystem is not up at this point. The following code
4031 	 * relies on the ability of the linker to provide the
4032 	 * offset of a (static) per cpu variable into the per cpu area.
4033 	 */
4034 	zone->pageset = &boot_pageset;
4035 
4036 	if (zone->present_pages)
4037 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
4038 			zone->name, zone->present_pages,
4039 					 zone_batchsize(zone));
4040 }
4041 
4042 int __meminit init_currently_empty_zone(struct zone *zone,
4043 					unsigned long zone_start_pfn,
4044 					unsigned long size,
4045 					enum memmap_context context)
4046 {
4047 	struct pglist_data *pgdat = zone->zone_pgdat;
4048 	int ret;
4049 	ret = zone_wait_table_init(zone, size);
4050 	if (ret)
4051 		return ret;
4052 	pgdat->nr_zones = zone_idx(zone) + 1;
4053 
4054 	zone->zone_start_pfn = zone_start_pfn;
4055 
4056 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
4057 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
4058 			pgdat->node_id,
4059 			(unsigned long)zone_idx(zone),
4060 			zone_start_pfn, (zone_start_pfn + size));
4061 
4062 	zone_init_free_lists(zone);
4063 
4064 	return 0;
4065 }
4066 
4067 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4068 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
4069 /*
4070  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
4071  * Architectures may implement their own version but if add_active_range()
4072  * was used and there are no special requirements, this is a convenient
4073  * alternative
4074  */
4075 int __meminit __early_pfn_to_nid(unsigned long pfn)
4076 {
4077 	unsigned long start_pfn, end_pfn;
4078 	int i, nid;
4079 
4080 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4081 		if (start_pfn <= pfn && pfn < end_pfn)
4082 			return nid;
4083 	/* This is a memory hole */
4084 	return -1;
4085 }
4086 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
4087 
4088 int __meminit early_pfn_to_nid(unsigned long pfn)
4089 {
4090 	int nid;
4091 
4092 	nid = __early_pfn_to_nid(pfn);
4093 	if (nid >= 0)
4094 		return nid;
4095 	/* just returns 0 */
4096 	return 0;
4097 }
4098 
4099 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
4100 bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
4101 {
4102 	int nid;
4103 
4104 	nid = __early_pfn_to_nid(pfn);
4105 	if (nid >= 0 && nid != node)
4106 		return false;
4107 	return true;
4108 }
4109 #endif
4110 
4111 /**
4112  * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
4113  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
4114  * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
4115  *
4116  * If an architecture guarantees that all ranges registered with
4117  * add_active_ranges() contain no holes and may be freed, this
4118  * this function may be used instead of calling free_bootmem() manually.
4119  */
4120 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
4121 {
4122 	unsigned long start_pfn, end_pfn;
4123 	int i, this_nid;
4124 
4125 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
4126 		start_pfn = min(start_pfn, max_low_pfn);
4127 		end_pfn = min(end_pfn, max_low_pfn);
4128 
4129 		if (start_pfn < end_pfn)
4130 			free_bootmem_node(NODE_DATA(this_nid),
4131 					  PFN_PHYS(start_pfn),
4132 					  (end_pfn - start_pfn) << PAGE_SHIFT);
4133 	}
4134 }
4135 
4136 /**
4137  * sparse_memory_present_with_active_regions - Call memory_present for each active range
4138  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
4139  *
4140  * If an architecture guarantees that all ranges registered with
4141  * add_active_ranges() contain no holes and may be freed, this
4142  * function may be used instead of calling memory_present() manually.
4143  */
4144 void __init sparse_memory_present_with_active_regions(int nid)
4145 {
4146 	unsigned long start_pfn, end_pfn;
4147 	int i, this_nid;
4148 
4149 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
4150 		memory_present(this_nid, start_pfn, end_pfn);
4151 }
4152 
4153 /**
4154  * get_pfn_range_for_nid - Return the start and end page frames for a node
4155  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
4156  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
4157  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
4158  *
4159  * It returns the start and end page frame of a node based on information
4160  * provided by an arch calling add_active_range(). If called for a node
4161  * with no available memory, a warning is printed and the start and end
4162  * PFNs will be 0.
4163  */
4164 void __meminit get_pfn_range_for_nid(unsigned int nid,
4165 			unsigned long *start_pfn, unsigned long *end_pfn)
4166 {
4167 	unsigned long this_start_pfn, this_end_pfn;
4168 	int i;
4169 
4170 	*start_pfn = -1UL;
4171 	*end_pfn = 0;
4172 
4173 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
4174 		*start_pfn = min(*start_pfn, this_start_pfn);
4175 		*end_pfn = max(*end_pfn, this_end_pfn);
4176 	}
4177 
4178 	if (*start_pfn == -1UL)
4179 		*start_pfn = 0;
4180 }
4181 
4182 /*
4183  * This finds a zone that can be used for ZONE_MOVABLE pages. The
4184  * assumption is made that zones within a node are ordered in monotonic
4185  * increasing memory addresses so that the "highest" populated zone is used
4186  */
4187 static void __init find_usable_zone_for_movable(void)
4188 {
4189 	int zone_index;
4190 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
4191 		if (zone_index == ZONE_MOVABLE)
4192 			continue;
4193 
4194 		if (arch_zone_highest_possible_pfn[zone_index] >
4195 				arch_zone_lowest_possible_pfn[zone_index])
4196 			break;
4197 	}
4198 
4199 	VM_BUG_ON(zone_index == -1);
4200 	movable_zone = zone_index;
4201 }
4202 
4203 /*
4204  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4205  * because it is sized independent of architecture. Unlike the other zones,
4206  * the starting point for ZONE_MOVABLE is not fixed. It may be different
4207  * in each node depending on the size of each node and how evenly kernelcore
4208  * is distributed. This helper function adjusts the zone ranges
4209  * provided by the architecture for a given node by using the end of the
4210  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4211  * zones within a node are in order of monotonic increases memory addresses
4212  */
4213 static void __meminit adjust_zone_range_for_zone_movable(int nid,
4214 					unsigned long zone_type,
4215 					unsigned long node_start_pfn,
4216 					unsigned long node_end_pfn,
4217 					unsigned long *zone_start_pfn,
4218 					unsigned long *zone_end_pfn)
4219 {
4220 	/* Only adjust if ZONE_MOVABLE is on this node */
4221 	if (zone_movable_pfn[nid]) {
4222 		/* Size ZONE_MOVABLE */
4223 		if (zone_type == ZONE_MOVABLE) {
4224 			*zone_start_pfn = zone_movable_pfn[nid];
4225 			*zone_end_pfn = min(node_end_pfn,
4226 				arch_zone_highest_possible_pfn[movable_zone]);
4227 
4228 		/* Adjust for ZONE_MOVABLE starting within this range */
4229 		} else if (*zone_start_pfn < zone_movable_pfn[nid] &&
4230 				*zone_end_pfn > zone_movable_pfn[nid]) {
4231 			*zone_end_pfn = zone_movable_pfn[nid];
4232 
4233 		/* Check if this whole range is within ZONE_MOVABLE */
4234 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
4235 			*zone_start_pfn = *zone_end_pfn;
4236 	}
4237 }
4238 
4239 /*
4240  * Return the number of pages a zone spans in a node, including holes
4241  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4242  */
4243 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
4244 					unsigned long zone_type,
4245 					unsigned long *ignored)
4246 {
4247 	unsigned long node_start_pfn, node_end_pfn;
4248 	unsigned long zone_start_pfn, zone_end_pfn;
4249 
4250 	/* Get the start and end of the node and zone */
4251 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4252 	zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
4253 	zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
4254 	adjust_zone_range_for_zone_movable(nid, zone_type,
4255 				node_start_pfn, node_end_pfn,
4256 				&zone_start_pfn, &zone_end_pfn);
4257 
4258 	/* Check that this node has pages within the zone's required range */
4259 	if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
4260 		return 0;
4261 
4262 	/* Move the zone boundaries inside the node if necessary */
4263 	zone_end_pfn = min(zone_end_pfn, node_end_pfn);
4264 	zone_start_pfn = max(zone_start_pfn, node_start_pfn);
4265 
4266 	/* Return the spanned pages */
4267 	return zone_end_pfn - zone_start_pfn;
4268 }
4269 
4270 /*
4271  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4272  * then all holes in the requested range will be accounted for.
4273  */
4274 unsigned long __meminit __absent_pages_in_range(int nid,
4275 				unsigned long range_start_pfn,
4276 				unsigned long range_end_pfn)
4277 {
4278 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
4279 	unsigned long start_pfn, end_pfn;
4280 	int i;
4281 
4282 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4283 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
4284 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
4285 		nr_absent -= end_pfn - start_pfn;
4286 	}
4287 	return nr_absent;
4288 }
4289 
4290 /**
4291  * absent_pages_in_range - Return number of page frames in holes within a range
4292  * @start_pfn: The start PFN to start searching for holes
4293  * @end_pfn: The end PFN to stop searching for holes
4294  *
4295  * It returns the number of pages frames in memory holes within a range.
4296  */
4297 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
4298 							unsigned long end_pfn)
4299 {
4300 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
4301 }
4302 
4303 /* Return the number of page frames in holes in a zone on a node */
4304 static unsigned long __meminit zone_absent_pages_in_node(int nid,
4305 					unsigned long zone_type,
4306 					unsigned long *ignored)
4307 {
4308 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
4309 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
4310 	unsigned long node_start_pfn, node_end_pfn;
4311 	unsigned long zone_start_pfn, zone_end_pfn;
4312 
4313 	get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
4314 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
4315 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
4316 
4317 	adjust_zone_range_for_zone_movable(nid, zone_type,
4318 			node_start_pfn, node_end_pfn,
4319 			&zone_start_pfn, &zone_end_pfn);
4320 	return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
4321 }
4322 
4323 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4324 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
4325 					unsigned long zone_type,
4326 					unsigned long *zones_size)
4327 {
4328 	return zones_size[zone_type];
4329 }
4330 
4331 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
4332 						unsigned long zone_type,
4333 						unsigned long *zholes_size)
4334 {
4335 	if (!zholes_size)
4336 		return 0;
4337 
4338 	return zholes_size[zone_type];
4339 }
4340 
4341 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4342 
4343 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
4344 		unsigned long *zones_size, unsigned long *zholes_size)
4345 {
4346 	unsigned long realtotalpages, totalpages = 0;
4347 	enum zone_type i;
4348 
4349 	for (i = 0; i < MAX_NR_ZONES; i++)
4350 		totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
4351 								zones_size);
4352 	pgdat->node_spanned_pages = totalpages;
4353 
4354 	realtotalpages = totalpages;
4355 	for (i = 0; i < MAX_NR_ZONES; i++)
4356 		realtotalpages -=
4357 			zone_absent_pages_in_node(pgdat->node_id, i,
4358 								zholes_size);
4359 	pgdat->node_present_pages = realtotalpages;
4360 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
4361 							realtotalpages);
4362 }
4363 
4364 #ifndef CONFIG_SPARSEMEM
4365 /*
4366  * Calculate the size of the zone->blockflags rounded to an unsigned long
4367  * Start by making sure zonesize is a multiple of pageblock_order by rounding
4368  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4369  * round what is now in bits to nearest long in bits, then return it in
4370  * bytes.
4371  */
4372 static unsigned long __init usemap_size(unsigned long zonesize)
4373 {
4374 	unsigned long usemapsize;
4375 
4376 	usemapsize = roundup(zonesize, pageblock_nr_pages);
4377 	usemapsize = usemapsize >> pageblock_order;
4378 	usemapsize *= NR_PAGEBLOCK_BITS;
4379 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
4380 
4381 	return usemapsize / 8;
4382 }
4383 
4384 static void __init setup_usemap(struct pglist_data *pgdat,
4385 				struct zone *zone, unsigned long zonesize)
4386 {
4387 	unsigned long usemapsize = usemap_size(zonesize);
4388 	zone->pageblock_flags = NULL;
4389 	if (usemapsize)
4390 		zone->pageblock_flags = alloc_bootmem_node_nopanic(pgdat,
4391 								   usemapsize);
4392 }
4393 #else
4394 static inline void setup_usemap(struct pglist_data *pgdat,
4395 				struct zone *zone, unsigned long zonesize) {}
4396 #endif /* CONFIG_SPARSEMEM */
4397 
4398 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4399 
4400 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4401 void __init set_pageblock_order(void)
4402 {
4403 	unsigned int order;
4404 
4405 	/* Check that pageblock_nr_pages has not already been setup */
4406 	if (pageblock_order)
4407 		return;
4408 
4409 	if (HPAGE_SHIFT > PAGE_SHIFT)
4410 		order = HUGETLB_PAGE_ORDER;
4411 	else
4412 		order = MAX_ORDER - 1;
4413 
4414 	/*
4415 	 * Assume the largest contiguous order of interest is a huge page.
4416 	 * This value may be variable depending on boot parameters on IA64 and
4417 	 * powerpc.
4418 	 */
4419 	pageblock_order = order;
4420 }
4421 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4422 
4423 /*
4424  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4425  * is unused as pageblock_order is set at compile-time. See
4426  * include/linux/pageblock-flags.h for the values of pageblock_order based on
4427  * the kernel config
4428  */
4429 void __init set_pageblock_order(void)
4430 {
4431 }
4432 
4433 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4434 
4435 /*
4436  * Set up the zone data structures:
4437  *   - mark all pages reserved
4438  *   - mark all memory queues empty
4439  *   - clear the memory bitmaps
4440  *
4441  * NOTE: pgdat should get zeroed by caller.
4442  */
4443 static void __paginginit free_area_init_core(struct pglist_data *pgdat,
4444 		unsigned long *zones_size, unsigned long *zholes_size)
4445 {
4446 	enum zone_type j;
4447 	int nid = pgdat->node_id;
4448 	unsigned long zone_start_pfn = pgdat->node_start_pfn;
4449 	int ret;
4450 
4451 	pgdat_resize_init(pgdat);
4452 	init_waitqueue_head(&pgdat->kswapd_wait);
4453 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
4454 	pgdat_page_cgroup_init(pgdat);
4455 
4456 	for (j = 0; j < MAX_NR_ZONES; j++) {
4457 		struct zone *zone = pgdat->node_zones + j;
4458 		unsigned long size, realsize, memmap_pages;
4459 
4460 		size = zone_spanned_pages_in_node(nid, j, zones_size);
4461 		realsize = size - zone_absent_pages_in_node(nid, j,
4462 								zholes_size);
4463 
4464 		/*
4465 		 * Adjust realsize so that it accounts for how much memory
4466 		 * is used by this zone for memmap. This affects the watermark
4467 		 * and per-cpu initialisations
4468 		 */
4469 		memmap_pages =
4470 			PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
4471 		if (realsize >= memmap_pages) {
4472 			realsize -= memmap_pages;
4473 			if (memmap_pages)
4474 				printk(KERN_DEBUG
4475 				       "  %s zone: %lu pages used for memmap\n",
4476 				       zone_names[j], memmap_pages);
4477 		} else
4478 			printk(KERN_WARNING
4479 				"  %s zone: %lu pages exceeds realsize %lu\n",
4480 				zone_names[j], memmap_pages, realsize);
4481 
4482 		/* Account for reserved pages */
4483 		if (j == 0 && realsize > dma_reserve) {
4484 			realsize -= dma_reserve;
4485 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
4486 					zone_names[0], dma_reserve);
4487 		}
4488 
4489 		if (!is_highmem_idx(j))
4490 			nr_kernel_pages += realsize;
4491 		nr_all_pages += realsize;
4492 
4493 		zone->spanned_pages = size;
4494 		zone->present_pages = realsize;
4495 #ifdef CONFIG_NUMA
4496 		zone->node = nid;
4497 		zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
4498 						/ 100;
4499 		zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
4500 #endif
4501 		zone->name = zone_names[j];
4502 		spin_lock_init(&zone->lock);
4503 		spin_lock_init(&zone->lru_lock);
4504 		zone_seqlock_init(zone);
4505 		zone->zone_pgdat = pgdat;
4506 
4507 		zone_pcp_init(zone);
4508 		lruvec_init(&zone->lruvec);
4509 		if (!size)
4510 			continue;
4511 
4512 		set_pageblock_order();
4513 		setup_usemap(pgdat, zone, size);
4514 		ret = init_currently_empty_zone(zone, zone_start_pfn,
4515 						size, MEMMAP_EARLY);
4516 		BUG_ON(ret);
4517 		memmap_init(size, nid, j, zone_start_pfn);
4518 		zone_start_pfn += size;
4519 	}
4520 }
4521 
4522 static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
4523 {
4524 	/* Skip empty nodes */
4525 	if (!pgdat->node_spanned_pages)
4526 		return;
4527 
4528 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4529 	/* ia64 gets its own node_mem_map, before this, without bootmem */
4530 	if (!pgdat->node_mem_map) {
4531 		unsigned long size, start, end;
4532 		struct page *map;
4533 
4534 		/*
4535 		 * The zone's endpoints aren't required to be MAX_ORDER
4536 		 * aligned but the node_mem_map endpoints must be in order
4537 		 * for the buddy allocator to function correctly.
4538 		 */
4539 		start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
4540 		end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
4541 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
4542 		size =  (end - start) * sizeof(struct page);
4543 		map = alloc_remap(pgdat->node_id, size);
4544 		if (!map)
4545 			map = alloc_bootmem_node_nopanic(pgdat, size);
4546 		pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
4547 	}
4548 #ifndef CONFIG_NEED_MULTIPLE_NODES
4549 	/*
4550 	 * With no DISCONTIG, the global mem_map is just set as node 0's
4551 	 */
4552 	if (pgdat == NODE_DATA(0)) {
4553 		mem_map = NODE_DATA(0)->node_mem_map;
4554 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4555 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
4556 			mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
4557 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4558 	}
4559 #endif
4560 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4561 }
4562 
4563 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
4564 		unsigned long node_start_pfn, unsigned long *zholes_size)
4565 {
4566 	pg_data_t *pgdat = NODE_DATA(nid);
4567 
4568 	/* pg_data_t should be reset to zero when it's allocated */
4569 	WARN_ON(pgdat->nr_zones || pgdat->classzone_idx);
4570 
4571 	pgdat->node_id = nid;
4572 	pgdat->node_start_pfn = node_start_pfn;
4573 	init_zone_allows_reclaim(nid);
4574 	calculate_node_totalpages(pgdat, zones_size, zholes_size);
4575 
4576 	alloc_node_mem_map(pgdat);
4577 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4578 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4579 		nid, (unsigned long)pgdat,
4580 		(unsigned long)pgdat->node_mem_map);
4581 #endif
4582 
4583 	free_area_init_core(pgdat, zones_size, zholes_size);
4584 }
4585 
4586 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4587 
4588 #if MAX_NUMNODES > 1
4589 /*
4590  * Figure out the number of possible node ids.
4591  */
4592 static void __init setup_nr_node_ids(void)
4593 {
4594 	unsigned int node;
4595 	unsigned int highest = 0;
4596 
4597 	for_each_node_mask(node, node_possible_map)
4598 		highest = node;
4599 	nr_node_ids = highest + 1;
4600 }
4601 #else
4602 static inline void setup_nr_node_ids(void)
4603 {
4604 }
4605 #endif
4606 
4607 /**
4608  * node_map_pfn_alignment - determine the maximum internode alignment
4609  *
4610  * This function should be called after node map is populated and sorted.
4611  * It calculates the maximum power of two alignment which can distinguish
4612  * all the nodes.
4613  *
4614  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4615  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
4616  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
4617  * shifted, 1GiB is enough and this function will indicate so.
4618  *
4619  * This is used to test whether pfn -> nid mapping of the chosen memory
4620  * model has fine enough granularity to avoid incorrect mapping for the
4621  * populated node map.
4622  *
4623  * Returns the determined alignment in pfn's.  0 if there is no alignment
4624  * requirement (single node).
4625  */
4626 unsigned long __init node_map_pfn_alignment(void)
4627 {
4628 	unsigned long accl_mask = 0, last_end = 0;
4629 	unsigned long start, end, mask;
4630 	int last_nid = -1;
4631 	int i, nid;
4632 
4633 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
4634 		if (!start || last_nid < 0 || last_nid == nid) {
4635 			last_nid = nid;
4636 			last_end = end;
4637 			continue;
4638 		}
4639 
4640 		/*
4641 		 * Start with a mask granular enough to pin-point to the
4642 		 * start pfn and tick off bits one-by-one until it becomes
4643 		 * too coarse to separate the current node from the last.
4644 		 */
4645 		mask = ~((1 << __ffs(start)) - 1);
4646 		while (mask && last_end <= (start & (mask << 1)))
4647 			mask <<= 1;
4648 
4649 		/* accumulate all internode masks */
4650 		accl_mask |= mask;
4651 	}
4652 
4653 	/* convert mask to number of pages */
4654 	return ~accl_mask + 1;
4655 }
4656 
4657 /* Find the lowest pfn for a node */
4658 static unsigned long __init find_min_pfn_for_node(int nid)
4659 {
4660 	unsigned long min_pfn = ULONG_MAX;
4661 	unsigned long start_pfn;
4662 	int i;
4663 
4664 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
4665 		min_pfn = min(min_pfn, start_pfn);
4666 
4667 	if (min_pfn == ULONG_MAX) {
4668 		printk(KERN_WARNING
4669 			"Could not find start_pfn for node %d\n", nid);
4670 		return 0;
4671 	}
4672 
4673 	return min_pfn;
4674 }
4675 
4676 /**
4677  * find_min_pfn_with_active_regions - Find the minimum PFN registered
4678  *
4679  * It returns the minimum PFN based on information provided via
4680  * add_active_range().
4681  */
4682 unsigned long __init find_min_pfn_with_active_regions(void)
4683 {
4684 	return find_min_pfn_for_node(MAX_NUMNODES);
4685 }
4686 
4687 /*
4688  * early_calculate_totalpages()
4689  * Sum pages in active regions for movable zone.
4690  * Populate N_HIGH_MEMORY for calculating usable_nodes.
4691  */
4692 static unsigned long __init early_calculate_totalpages(void)
4693 {
4694 	unsigned long totalpages = 0;
4695 	unsigned long start_pfn, end_pfn;
4696 	int i, nid;
4697 
4698 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
4699 		unsigned long pages = end_pfn - start_pfn;
4700 
4701 		totalpages += pages;
4702 		if (pages)
4703 			node_set_state(nid, N_HIGH_MEMORY);
4704 	}
4705   	return totalpages;
4706 }
4707 
4708 /*
4709  * Find the PFN the Movable zone begins in each node. Kernel memory
4710  * is spread evenly between nodes as long as the nodes have enough
4711  * memory. When they don't, some nodes will have more kernelcore than
4712  * others
4713  */
4714 static void __init find_zone_movable_pfns_for_nodes(void)
4715 {
4716 	int i, nid;
4717 	unsigned long usable_startpfn;
4718 	unsigned long kernelcore_node, kernelcore_remaining;
4719 	/* save the state before borrow the nodemask */
4720 	nodemask_t saved_node_state = node_states[N_HIGH_MEMORY];
4721 	unsigned long totalpages = early_calculate_totalpages();
4722 	int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
4723 
4724 	/*
4725 	 * If movablecore was specified, calculate what size of
4726 	 * kernelcore that corresponds so that memory usable for
4727 	 * any allocation type is evenly spread. If both kernelcore
4728 	 * and movablecore are specified, then the value of kernelcore
4729 	 * will be used for required_kernelcore if it's greater than
4730 	 * what movablecore would have allowed.
4731 	 */
4732 	if (required_movablecore) {
4733 		unsigned long corepages;
4734 
4735 		/*
4736 		 * Round-up so that ZONE_MOVABLE is at least as large as what
4737 		 * was requested by the user
4738 		 */
4739 		required_movablecore =
4740 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4741 		corepages = totalpages - required_movablecore;
4742 
4743 		required_kernelcore = max(required_kernelcore, corepages);
4744 	}
4745 
4746 	/* If kernelcore was not specified, there is no ZONE_MOVABLE */
4747 	if (!required_kernelcore)
4748 		goto out;
4749 
4750 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4751 	find_usable_zone_for_movable();
4752 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4753 
4754 restart:
4755 	/* Spread kernelcore memory as evenly as possible throughout nodes */
4756 	kernelcore_node = required_kernelcore / usable_nodes;
4757 	for_each_node_state(nid, N_HIGH_MEMORY) {
4758 		unsigned long start_pfn, end_pfn;
4759 
4760 		/*
4761 		 * Recalculate kernelcore_node if the division per node
4762 		 * now exceeds what is necessary to satisfy the requested
4763 		 * amount of memory for the kernel
4764 		 */
4765 		if (required_kernelcore < kernelcore_node)
4766 			kernelcore_node = required_kernelcore / usable_nodes;
4767 
4768 		/*
4769 		 * As the map is walked, we track how much memory is usable
4770 		 * by the kernel using kernelcore_remaining. When it is
4771 		 * 0, the rest of the node is usable by ZONE_MOVABLE
4772 		 */
4773 		kernelcore_remaining = kernelcore_node;
4774 
4775 		/* Go through each range of PFNs within this node */
4776 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
4777 			unsigned long size_pages;
4778 
4779 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
4780 			if (start_pfn >= end_pfn)
4781 				continue;
4782 
4783 			/* Account for what is only usable for kernelcore */
4784 			if (start_pfn < usable_startpfn) {
4785 				unsigned long kernel_pages;
4786 				kernel_pages = min(end_pfn, usable_startpfn)
4787 								- start_pfn;
4788 
4789 				kernelcore_remaining -= min(kernel_pages,
4790 							kernelcore_remaining);
4791 				required_kernelcore -= min(kernel_pages,
4792 							required_kernelcore);
4793 
4794 				/* Continue if range is now fully accounted */
4795 				if (end_pfn <= usable_startpfn) {
4796 
4797 					/*
4798 					 * Push zone_movable_pfn to the end so
4799 					 * that if we have to rebalance
4800 					 * kernelcore across nodes, we will
4801 					 * not double account here
4802 					 */
4803 					zone_movable_pfn[nid] = end_pfn;
4804 					continue;
4805 				}
4806 				start_pfn = usable_startpfn;
4807 			}
4808 
4809 			/*
4810 			 * The usable PFN range for ZONE_MOVABLE is from
4811 			 * start_pfn->end_pfn. Calculate size_pages as the
4812 			 * number of pages used as kernelcore
4813 			 */
4814 			size_pages = end_pfn - start_pfn;
4815 			if (size_pages > kernelcore_remaining)
4816 				size_pages = kernelcore_remaining;
4817 			zone_movable_pfn[nid] = start_pfn + size_pages;
4818 
4819 			/*
4820 			 * Some kernelcore has been met, update counts and
4821 			 * break if the kernelcore for this node has been
4822 			 * satisified
4823 			 */
4824 			required_kernelcore -= min(required_kernelcore,
4825 								size_pages);
4826 			kernelcore_remaining -= size_pages;
4827 			if (!kernelcore_remaining)
4828 				break;
4829 		}
4830 	}
4831 
4832 	/*
4833 	 * If there is still required_kernelcore, we do another pass with one
4834 	 * less node in the count. This will push zone_movable_pfn[nid] further
4835 	 * along on the nodes that still have memory until kernelcore is
4836 	 * satisified
4837 	 */
4838 	usable_nodes--;
4839 	if (usable_nodes && required_kernelcore > usable_nodes)
4840 		goto restart;
4841 
4842 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4843 	for (nid = 0; nid < MAX_NUMNODES; nid++)
4844 		zone_movable_pfn[nid] =
4845 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4846 
4847 out:
4848 	/* restore the node_state */
4849 	node_states[N_HIGH_MEMORY] = saved_node_state;
4850 }
4851 
4852 /* Any regular memory on that node ? */
4853 static void __init check_for_regular_memory(pg_data_t *pgdat)
4854 {
4855 #ifdef CONFIG_HIGHMEM
4856 	enum zone_type zone_type;
4857 
4858 	for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4859 		struct zone *zone = &pgdat->node_zones[zone_type];
4860 		if (zone->present_pages) {
4861 			node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4862 			break;
4863 		}
4864 	}
4865 #endif
4866 }
4867 
4868 /**
4869  * free_area_init_nodes - Initialise all pg_data_t and zone data
4870  * @max_zone_pfn: an array of max PFNs for each zone
4871  *
4872  * This will call free_area_init_node() for each active node in the system.
4873  * Using the page ranges provided by add_active_range(), the size of each
4874  * zone in each node and their holes is calculated. If the maximum PFN
4875  * between two adjacent zones match, it is assumed that the zone is empty.
4876  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4877  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4878  * starts where the previous one ended. For example, ZONE_DMA32 starts
4879  * at arch_max_dma_pfn.
4880  */
4881 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4882 {
4883 	unsigned long start_pfn, end_pfn;
4884 	int i, nid;
4885 
4886 	/* Record where the zone boundaries are */
4887 	memset(arch_zone_lowest_possible_pfn, 0,
4888 				sizeof(arch_zone_lowest_possible_pfn));
4889 	memset(arch_zone_highest_possible_pfn, 0,
4890 				sizeof(arch_zone_highest_possible_pfn));
4891 	arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4892 	arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4893 	for (i = 1; i < MAX_NR_ZONES; i++) {
4894 		if (i == ZONE_MOVABLE)
4895 			continue;
4896 		arch_zone_lowest_possible_pfn[i] =
4897 			arch_zone_highest_possible_pfn[i-1];
4898 		arch_zone_highest_possible_pfn[i] =
4899 			max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4900 	}
4901 	arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4902 	arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4903 
4904 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
4905 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4906 	find_zone_movable_pfns_for_nodes();
4907 
4908 	/* Print out the zone ranges */
4909 	printk("Zone ranges:\n");
4910 	for (i = 0; i < MAX_NR_ZONES; i++) {
4911 		if (i == ZONE_MOVABLE)
4912 			continue;
4913 		printk(KERN_CONT "  %-8s ", zone_names[i]);
4914 		if (arch_zone_lowest_possible_pfn[i] ==
4915 				arch_zone_highest_possible_pfn[i])
4916 			printk(KERN_CONT "empty\n");
4917 		else
4918 			printk(KERN_CONT "[mem %0#10lx-%0#10lx]\n",
4919 				arch_zone_lowest_possible_pfn[i] << PAGE_SHIFT,
4920 				(arch_zone_highest_possible_pfn[i]
4921 					<< PAGE_SHIFT) - 1);
4922 	}
4923 
4924 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
4925 	printk("Movable zone start for each node\n");
4926 	for (i = 0; i < MAX_NUMNODES; i++) {
4927 		if (zone_movable_pfn[i])
4928 			printk("  Node %d: %#010lx\n", i,
4929 			       zone_movable_pfn[i] << PAGE_SHIFT);
4930 	}
4931 
4932 	/* Print out the early node map */
4933 	printk("Early memory node ranges\n");
4934 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
4935 		printk("  node %3d: [mem %#010lx-%#010lx]\n", nid,
4936 		       start_pfn << PAGE_SHIFT, (end_pfn << PAGE_SHIFT) - 1);
4937 
4938 	/* Initialise every node */
4939 	mminit_verify_pageflags_layout();
4940 	setup_nr_node_ids();
4941 	for_each_online_node(nid) {
4942 		pg_data_t *pgdat = NODE_DATA(nid);
4943 		free_area_init_node(nid, NULL,
4944 				find_min_pfn_for_node(nid), NULL);
4945 
4946 		/* Any memory on that node */
4947 		if (pgdat->node_present_pages)
4948 			node_set_state(nid, N_HIGH_MEMORY);
4949 		check_for_regular_memory(pgdat);
4950 	}
4951 }
4952 
4953 static int __init cmdline_parse_core(char *p, unsigned long *core)
4954 {
4955 	unsigned long long coremem;
4956 	if (!p)
4957 		return -EINVAL;
4958 
4959 	coremem = memparse(p, &p);
4960 	*core = coremem >> PAGE_SHIFT;
4961 
4962 	/* Paranoid check that UL is enough for the coremem value */
4963 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4964 
4965 	return 0;
4966 }
4967 
4968 /*
4969  * kernelcore=size sets the amount of memory for use for allocations that
4970  * cannot be reclaimed or migrated.
4971  */
4972 static int __init cmdline_parse_kernelcore(char *p)
4973 {
4974 	return cmdline_parse_core(p, &required_kernelcore);
4975 }
4976 
4977 /*
4978  * movablecore=size sets the amount of memory for use for allocations that
4979  * can be reclaimed or migrated.
4980  */
4981 static int __init cmdline_parse_movablecore(char *p)
4982 {
4983 	return cmdline_parse_core(p, &required_movablecore);
4984 }
4985 
4986 early_param("kernelcore", cmdline_parse_kernelcore);
4987 early_param("movablecore", cmdline_parse_movablecore);
4988 
4989 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
4990 
4991 /**
4992  * set_dma_reserve - set the specified number of pages reserved in the first zone
4993  * @new_dma_reserve: The number of pages to mark reserved
4994  *
4995  * The per-cpu batchsize and zone watermarks are determined by present_pages.
4996  * In the DMA zone, a significant percentage may be consumed by kernel image
4997  * and other unfreeable allocations which can skew the watermarks badly. This
4998  * function may optionally be used to account for unfreeable pages in the
4999  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
5000  * smaller per-cpu batchsize.
5001  */
5002 void __init set_dma_reserve(unsigned long new_dma_reserve)
5003 {
5004 	dma_reserve = new_dma_reserve;
5005 }
5006 
5007 void __init free_area_init(unsigned long *zones_size)
5008 {
5009 	free_area_init_node(0, zones_size,
5010 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
5011 }
5012 
5013 static int page_alloc_cpu_notify(struct notifier_block *self,
5014 				 unsigned long action, void *hcpu)
5015 {
5016 	int cpu = (unsigned long)hcpu;
5017 
5018 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
5019 		lru_add_drain_cpu(cpu);
5020 		drain_pages(cpu);
5021 
5022 		/*
5023 		 * Spill the event counters of the dead processor
5024 		 * into the current processors event counters.
5025 		 * This artificially elevates the count of the current
5026 		 * processor.
5027 		 */
5028 		vm_events_fold_cpu(cpu);
5029 
5030 		/*
5031 		 * Zero the differential counters of the dead processor
5032 		 * so that the vm statistics are consistent.
5033 		 *
5034 		 * This is only okay since the processor is dead and cannot
5035 		 * race with what we are doing.
5036 		 */
5037 		refresh_cpu_vm_stats(cpu);
5038 	}
5039 	return NOTIFY_OK;
5040 }
5041 
5042 void __init page_alloc_init(void)
5043 {
5044 	hotcpu_notifier(page_alloc_cpu_notify, 0);
5045 }
5046 
5047 /*
5048  * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5049  *	or min_free_kbytes changes.
5050  */
5051 static void calculate_totalreserve_pages(void)
5052 {
5053 	struct pglist_data *pgdat;
5054 	unsigned long reserve_pages = 0;
5055 	enum zone_type i, j;
5056 
5057 	for_each_online_pgdat(pgdat) {
5058 		for (i = 0; i < MAX_NR_ZONES; i++) {
5059 			struct zone *zone = pgdat->node_zones + i;
5060 			unsigned long max = 0;
5061 
5062 			/* Find valid and maximum lowmem_reserve in the zone */
5063 			for (j = i; j < MAX_NR_ZONES; j++) {
5064 				if (zone->lowmem_reserve[j] > max)
5065 					max = zone->lowmem_reserve[j];
5066 			}
5067 
5068 			/* we treat the high watermark as reserved pages. */
5069 			max += high_wmark_pages(zone);
5070 
5071 			if (max > zone->present_pages)
5072 				max = zone->present_pages;
5073 			reserve_pages += max;
5074 			/*
5075 			 * Lowmem reserves are not available to
5076 			 * GFP_HIGHUSER page cache allocations and
5077 			 * kswapd tries to balance zones to their high
5078 			 * watermark.  As a result, neither should be
5079 			 * regarded as dirtyable memory, to prevent a
5080 			 * situation where reclaim has to clean pages
5081 			 * in order to balance the zones.
5082 			 */
5083 			zone->dirty_balance_reserve = max;
5084 		}
5085 	}
5086 	dirty_balance_reserve = reserve_pages;
5087 	totalreserve_pages = reserve_pages;
5088 }
5089 
5090 /*
5091  * setup_per_zone_lowmem_reserve - called whenever
5092  *	sysctl_lower_zone_reserve_ratio changes.  Ensures that each zone
5093  *	has a correct pages reserved value, so an adequate number of
5094  *	pages are left in the zone after a successful __alloc_pages().
5095  */
5096 static void setup_per_zone_lowmem_reserve(void)
5097 {
5098 	struct pglist_data *pgdat;
5099 	enum zone_type j, idx;
5100 
5101 	for_each_online_pgdat(pgdat) {
5102 		for (j = 0; j < MAX_NR_ZONES; j++) {
5103 			struct zone *zone = pgdat->node_zones + j;
5104 			unsigned long present_pages = zone->present_pages;
5105 
5106 			zone->lowmem_reserve[j] = 0;
5107 
5108 			idx = j;
5109 			while (idx) {
5110 				struct zone *lower_zone;
5111 
5112 				idx--;
5113 
5114 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
5115 					sysctl_lowmem_reserve_ratio[idx] = 1;
5116 
5117 				lower_zone = pgdat->node_zones + idx;
5118 				lower_zone->lowmem_reserve[j] = present_pages /
5119 					sysctl_lowmem_reserve_ratio[idx];
5120 				present_pages += lower_zone->present_pages;
5121 			}
5122 		}
5123 	}
5124 
5125 	/* update totalreserve_pages */
5126 	calculate_totalreserve_pages();
5127 }
5128 
5129 static void __setup_per_zone_wmarks(void)
5130 {
5131 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
5132 	unsigned long lowmem_pages = 0;
5133 	struct zone *zone;
5134 	unsigned long flags;
5135 
5136 	/* Calculate total number of !ZONE_HIGHMEM pages */
5137 	for_each_zone(zone) {
5138 		if (!is_highmem(zone))
5139 			lowmem_pages += zone->present_pages;
5140 	}
5141 
5142 	for_each_zone(zone) {
5143 		u64 tmp;
5144 
5145 		spin_lock_irqsave(&zone->lock, flags);
5146 		tmp = (u64)pages_min * zone->present_pages;
5147 		do_div(tmp, lowmem_pages);
5148 		if (is_highmem(zone)) {
5149 			/*
5150 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5151 			 * need highmem pages, so cap pages_min to a small
5152 			 * value here.
5153 			 *
5154 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5155 			 * deltas controls asynch page reclaim, and so should
5156 			 * not be capped for highmem.
5157 			 */
5158 			int min_pages;
5159 
5160 			min_pages = zone->present_pages / 1024;
5161 			if (min_pages < SWAP_CLUSTER_MAX)
5162 				min_pages = SWAP_CLUSTER_MAX;
5163 			if (min_pages > 128)
5164 				min_pages = 128;
5165 			zone->watermark[WMARK_MIN] = min_pages;
5166 		} else {
5167 			/*
5168 			 * If it's a lowmem zone, reserve a number of pages
5169 			 * proportionate to the zone's size.
5170 			 */
5171 			zone->watermark[WMARK_MIN] = tmp;
5172 		}
5173 
5174 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + (tmp >> 2);
5175 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
5176 
5177 		zone->watermark[WMARK_MIN] += cma_wmark_pages(zone);
5178 		zone->watermark[WMARK_LOW] += cma_wmark_pages(zone);
5179 		zone->watermark[WMARK_HIGH] += cma_wmark_pages(zone);
5180 
5181 		setup_zone_migrate_reserve(zone);
5182 		spin_unlock_irqrestore(&zone->lock, flags);
5183 	}
5184 
5185 	/* update totalreserve_pages */
5186 	calculate_totalreserve_pages();
5187 }
5188 
5189 /**
5190  * setup_per_zone_wmarks - called when min_free_kbytes changes
5191  * or when memory is hot-{added|removed}
5192  *
5193  * Ensures that the watermark[min,low,high] values for each zone are set
5194  * correctly with respect to min_free_kbytes.
5195  */
5196 void setup_per_zone_wmarks(void)
5197 {
5198 	mutex_lock(&zonelists_mutex);
5199 	__setup_per_zone_wmarks();
5200 	mutex_unlock(&zonelists_mutex);
5201 }
5202 
5203 /*
5204  * The inactive anon list should be small enough that the VM never has to
5205  * do too much work, but large enough that each inactive page has a chance
5206  * to be referenced again before it is swapped out.
5207  *
5208  * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5209  * INACTIVE_ANON pages on this zone's LRU, maintained by the
5210  * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5211  * the anonymous pages are kept on the inactive list.
5212  *
5213  * total     target    max
5214  * memory    ratio     inactive anon
5215  * -------------------------------------
5216  *   10MB       1         5MB
5217  *  100MB       1        50MB
5218  *    1GB       3       250MB
5219  *   10GB      10       0.9GB
5220  *  100GB      31         3GB
5221  *    1TB     101        10GB
5222  *   10TB     320        32GB
5223  */
5224 static void __meminit calculate_zone_inactive_ratio(struct zone *zone)
5225 {
5226 	unsigned int gb, ratio;
5227 
5228 	/* Zone size in gigabytes */
5229 	gb = zone->present_pages >> (30 - PAGE_SHIFT);
5230 	if (gb)
5231 		ratio = int_sqrt(10 * gb);
5232 	else
5233 		ratio = 1;
5234 
5235 	zone->inactive_ratio = ratio;
5236 }
5237 
5238 static void __meminit setup_per_zone_inactive_ratio(void)
5239 {
5240 	struct zone *zone;
5241 
5242 	for_each_zone(zone)
5243 		calculate_zone_inactive_ratio(zone);
5244 }
5245 
5246 /*
5247  * Initialise min_free_kbytes.
5248  *
5249  * For small machines we want it small (128k min).  For large machines
5250  * we want it large (64MB max).  But it is not linear, because network
5251  * bandwidth does not increase linearly with machine size.  We use
5252  *
5253  * 	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5254  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
5255  *
5256  * which yields
5257  *
5258  * 16MB:	512k
5259  * 32MB:	724k
5260  * 64MB:	1024k
5261  * 128MB:	1448k
5262  * 256MB:	2048k
5263  * 512MB:	2896k
5264  * 1024MB:	4096k
5265  * 2048MB:	5792k
5266  * 4096MB:	8192k
5267  * 8192MB:	11584k
5268  * 16384MB:	16384k
5269  */
5270 int __meminit init_per_zone_wmark_min(void)
5271 {
5272 	unsigned long lowmem_kbytes;
5273 
5274 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5275 
5276 	min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
5277 	if (min_free_kbytes < 128)
5278 		min_free_kbytes = 128;
5279 	if (min_free_kbytes > 65536)
5280 		min_free_kbytes = 65536;
5281 	setup_per_zone_wmarks();
5282 	refresh_zone_stat_thresholds();
5283 	setup_per_zone_lowmem_reserve();
5284 	setup_per_zone_inactive_ratio();
5285 	return 0;
5286 }
5287 module_init(init_per_zone_wmark_min)
5288 
5289 /*
5290  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5291  *	that we can call two helper functions whenever min_free_kbytes
5292  *	changes.
5293  */
5294 int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
5295 	void __user *buffer, size_t *length, loff_t *ppos)
5296 {
5297 	proc_dointvec(table, write, buffer, length, ppos);
5298 	if (write)
5299 		setup_per_zone_wmarks();
5300 	return 0;
5301 }
5302 
5303 #ifdef CONFIG_NUMA
5304 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
5305 	void __user *buffer, size_t *length, loff_t *ppos)
5306 {
5307 	struct zone *zone;
5308 	int rc;
5309 
5310 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5311 	if (rc)
5312 		return rc;
5313 
5314 	for_each_zone(zone)
5315 		zone->min_unmapped_pages = (zone->present_pages *
5316 				sysctl_min_unmapped_ratio) / 100;
5317 	return 0;
5318 }
5319 
5320 int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
5321 	void __user *buffer, size_t *length, loff_t *ppos)
5322 {
5323 	struct zone *zone;
5324 	int rc;
5325 
5326 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
5327 	if (rc)
5328 		return rc;
5329 
5330 	for_each_zone(zone)
5331 		zone->min_slab_pages = (zone->present_pages *
5332 				sysctl_min_slab_ratio) / 100;
5333 	return 0;
5334 }
5335 #endif
5336 
5337 /*
5338  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5339  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5340  *	whenever sysctl_lowmem_reserve_ratio changes.
5341  *
5342  * The reserve ratio obviously has absolutely no relation with the
5343  * minimum watermarks. The lowmem reserve ratio can only make sense
5344  * if in function of the boot time zone sizes.
5345  */
5346 int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
5347 	void __user *buffer, size_t *length, loff_t *ppos)
5348 {
5349 	proc_dointvec_minmax(table, write, buffer, length, ppos);
5350 	setup_per_zone_lowmem_reserve();
5351 	return 0;
5352 }
5353 
5354 /*
5355  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5356  * cpu.  It is the fraction of total pages in each zone that a hot per cpu pagelist
5357  * can have before it gets flushed back to buddy allocator.
5358  */
5359 
5360 int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
5361 	void __user *buffer, size_t *length, loff_t *ppos)
5362 {
5363 	struct zone *zone;
5364 	unsigned int cpu;
5365 	int ret;
5366 
5367 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
5368 	if (!write || (ret < 0))
5369 		return ret;
5370 	for_each_populated_zone(zone) {
5371 		for_each_possible_cpu(cpu) {
5372 			unsigned long  high;
5373 			high = zone->present_pages / percpu_pagelist_fraction;
5374 			setup_pagelist_highmark(
5375 				per_cpu_ptr(zone->pageset, cpu), high);
5376 		}
5377 	}
5378 	return 0;
5379 }
5380 
5381 int hashdist = HASHDIST_DEFAULT;
5382 
5383 #ifdef CONFIG_NUMA
5384 static int __init set_hashdist(char *str)
5385 {
5386 	if (!str)
5387 		return 0;
5388 	hashdist = simple_strtoul(str, &str, 0);
5389 	return 1;
5390 }
5391 __setup("hashdist=", set_hashdist);
5392 #endif
5393 
5394 /*
5395  * allocate a large system hash table from bootmem
5396  * - it is assumed that the hash table must contain an exact power-of-2
5397  *   quantity of entries
5398  * - limit is the number of hash buckets, not the total allocation size
5399  */
5400 void *__init alloc_large_system_hash(const char *tablename,
5401 				     unsigned long bucketsize,
5402 				     unsigned long numentries,
5403 				     int scale,
5404 				     int flags,
5405 				     unsigned int *_hash_shift,
5406 				     unsigned int *_hash_mask,
5407 				     unsigned long low_limit,
5408 				     unsigned long high_limit)
5409 {
5410 	unsigned long long max = high_limit;
5411 	unsigned long log2qty, size;
5412 	void *table = NULL;
5413 
5414 	/* allow the kernel cmdline to have a say */
5415 	if (!numentries) {
5416 		/* round applicable memory size up to nearest megabyte */
5417 		numentries = nr_kernel_pages;
5418 		numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
5419 		numentries >>= 20 - PAGE_SHIFT;
5420 		numentries <<= 20 - PAGE_SHIFT;
5421 
5422 		/* limit to 1 bucket per 2^scale bytes of low memory */
5423 		if (scale > PAGE_SHIFT)
5424 			numentries >>= (scale - PAGE_SHIFT);
5425 		else
5426 			numentries <<= (PAGE_SHIFT - scale);
5427 
5428 		/* Make sure we've got at least a 0-order allocation.. */
5429 		if (unlikely(flags & HASH_SMALL)) {
5430 			/* Makes no sense without HASH_EARLY */
5431 			WARN_ON(!(flags & HASH_EARLY));
5432 			if (!(numentries >> *_hash_shift)) {
5433 				numentries = 1UL << *_hash_shift;
5434 				BUG_ON(!numentries);
5435 			}
5436 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
5437 			numentries = PAGE_SIZE / bucketsize;
5438 	}
5439 	numentries = roundup_pow_of_two(numentries);
5440 
5441 	/* limit allocation size to 1/16 total memory by default */
5442 	if (max == 0) {
5443 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
5444 		do_div(max, bucketsize);
5445 	}
5446 	max = min(max, 0x80000000ULL);
5447 
5448 	if (numentries < low_limit)
5449 		numentries = low_limit;
5450 	if (numentries > max)
5451 		numentries = max;
5452 
5453 	log2qty = ilog2(numentries);
5454 
5455 	do {
5456 		size = bucketsize << log2qty;
5457 		if (flags & HASH_EARLY)
5458 			table = alloc_bootmem_nopanic(size);
5459 		else if (hashdist)
5460 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
5461 		else {
5462 			/*
5463 			 * If bucketsize is not a power-of-two, we may free
5464 			 * some pages at the end of hash table which
5465 			 * alloc_pages_exact() automatically does
5466 			 */
5467 			if (get_order(size) < MAX_ORDER) {
5468 				table = alloc_pages_exact(size, GFP_ATOMIC);
5469 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
5470 			}
5471 		}
5472 	} while (!table && size > PAGE_SIZE && --log2qty);
5473 
5474 	if (!table)
5475 		panic("Failed to allocate %s hash table\n", tablename);
5476 
5477 	printk(KERN_INFO "%s hash table entries: %ld (order: %d, %lu bytes)\n",
5478 	       tablename,
5479 	       (1UL << log2qty),
5480 	       ilog2(size) - PAGE_SHIFT,
5481 	       size);
5482 
5483 	if (_hash_shift)
5484 		*_hash_shift = log2qty;
5485 	if (_hash_mask)
5486 		*_hash_mask = (1 << log2qty) - 1;
5487 
5488 	return table;
5489 }
5490 
5491 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5492 static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
5493 							unsigned long pfn)
5494 {
5495 #ifdef CONFIG_SPARSEMEM
5496 	return __pfn_to_section(pfn)->pageblock_flags;
5497 #else
5498 	return zone->pageblock_flags;
5499 #endif /* CONFIG_SPARSEMEM */
5500 }
5501 
5502 static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
5503 {
5504 #ifdef CONFIG_SPARSEMEM
5505 	pfn &= (PAGES_PER_SECTION-1);
5506 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5507 #else
5508 	pfn = pfn - zone->zone_start_pfn;
5509 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
5510 #endif /* CONFIG_SPARSEMEM */
5511 }
5512 
5513 /**
5514  * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5515  * @page: The page within the block of interest
5516  * @start_bitidx: The first bit of interest to retrieve
5517  * @end_bitidx: The last bit of interest
5518  * returns pageblock_bits flags
5519  */
5520 unsigned long get_pageblock_flags_group(struct page *page,
5521 					int start_bitidx, int end_bitidx)
5522 {
5523 	struct zone *zone;
5524 	unsigned long *bitmap;
5525 	unsigned long pfn, bitidx;
5526 	unsigned long flags = 0;
5527 	unsigned long value = 1;
5528 
5529 	zone = page_zone(page);
5530 	pfn = page_to_pfn(page);
5531 	bitmap = get_pageblock_bitmap(zone, pfn);
5532 	bitidx = pfn_to_bitidx(zone, pfn);
5533 
5534 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5535 		if (test_bit(bitidx + start_bitidx, bitmap))
5536 			flags |= value;
5537 
5538 	return flags;
5539 }
5540 
5541 /**
5542  * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5543  * @page: The page within the block of interest
5544  * @start_bitidx: The first bit of interest
5545  * @end_bitidx: The last bit of interest
5546  * @flags: The flags to set
5547  */
5548 void set_pageblock_flags_group(struct page *page, unsigned long flags,
5549 					int start_bitidx, int end_bitidx)
5550 {
5551 	struct zone *zone;
5552 	unsigned long *bitmap;
5553 	unsigned long pfn, bitidx;
5554 	unsigned long value = 1;
5555 
5556 	zone = page_zone(page);
5557 	pfn = page_to_pfn(page);
5558 	bitmap = get_pageblock_bitmap(zone, pfn);
5559 	bitidx = pfn_to_bitidx(zone, pfn);
5560 	VM_BUG_ON(pfn < zone->zone_start_pfn);
5561 	VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
5562 
5563 	for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
5564 		if (flags & value)
5565 			__set_bit(bitidx + start_bitidx, bitmap);
5566 		else
5567 			__clear_bit(bitidx + start_bitidx, bitmap);
5568 }
5569 
5570 /*
5571  * This function checks whether pageblock includes unmovable pages or not.
5572  * If @count is not zero, it is okay to include less @count unmovable pages
5573  *
5574  * PageLRU check wihtout isolation or lru_lock could race so that
5575  * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
5576  * expect this function should be exact.
5577  */
5578 bool has_unmovable_pages(struct zone *zone, struct page *page, int count)
5579 {
5580 	unsigned long pfn, iter, found;
5581 	int mt;
5582 
5583 	/*
5584 	 * For avoiding noise data, lru_add_drain_all() should be called
5585 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
5586 	 */
5587 	if (zone_idx(zone) == ZONE_MOVABLE)
5588 		return false;
5589 	mt = get_pageblock_migratetype(page);
5590 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
5591 		return false;
5592 
5593 	pfn = page_to_pfn(page);
5594 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
5595 		unsigned long check = pfn + iter;
5596 
5597 		if (!pfn_valid_within(check))
5598 			continue;
5599 
5600 		page = pfn_to_page(check);
5601 		/*
5602 		 * We can't use page_count without pin a page
5603 		 * because another CPU can free compound page.
5604 		 * This check already skips compound tails of THP
5605 		 * because their page->_count is zero at all time.
5606 		 */
5607 		if (!atomic_read(&page->_count)) {
5608 			if (PageBuddy(page))
5609 				iter += (1 << page_order(page)) - 1;
5610 			continue;
5611 		}
5612 
5613 		if (!PageLRU(page))
5614 			found++;
5615 		/*
5616 		 * If there are RECLAIMABLE pages, we need to check it.
5617 		 * But now, memory offline itself doesn't call shrink_slab()
5618 		 * and it still to be fixed.
5619 		 */
5620 		/*
5621 		 * If the page is not RAM, page_count()should be 0.
5622 		 * we don't need more check. This is an _used_ not-movable page.
5623 		 *
5624 		 * The problematic thing here is PG_reserved pages. PG_reserved
5625 		 * is set to both of a memory hole page and a _used_ kernel
5626 		 * page at boot.
5627 		 */
5628 		if (found > count)
5629 			return true;
5630 	}
5631 	return false;
5632 }
5633 
5634 bool is_pageblock_removable_nolock(struct page *page)
5635 {
5636 	struct zone *zone;
5637 	unsigned long pfn;
5638 
5639 	/*
5640 	 * We have to be careful here because we are iterating over memory
5641 	 * sections which are not zone aware so we might end up outside of
5642 	 * the zone but still within the section.
5643 	 * We have to take care about the node as well. If the node is offline
5644 	 * its NODE_DATA will be NULL - see page_zone.
5645 	 */
5646 	if (!node_online(page_to_nid(page)))
5647 		return false;
5648 
5649 	zone = page_zone(page);
5650 	pfn = page_to_pfn(page);
5651 	if (zone->zone_start_pfn > pfn ||
5652 			zone->zone_start_pfn + zone->spanned_pages <= pfn)
5653 		return false;
5654 
5655 	return !has_unmovable_pages(zone, page, 0);
5656 }
5657 
5658 #ifdef CONFIG_CMA
5659 
5660 static unsigned long pfn_max_align_down(unsigned long pfn)
5661 {
5662 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
5663 			     pageblock_nr_pages) - 1);
5664 }
5665 
5666 static unsigned long pfn_max_align_up(unsigned long pfn)
5667 {
5668 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
5669 				pageblock_nr_pages));
5670 }
5671 
5672 /* [start, end) must belong to a single zone. */
5673 static int __alloc_contig_migrate_range(struct compact_control *cc,
5674 					unsigned long start, unsigned long end)
5675 {
5676 	/* This function is based on compact_zone() from compaction.c. */
5677 	unsigned long nr_reclaimed;
5678 	unsigned long pfn = start;
5679 	unsigned int tries = 0;
5680 	int ret = 0;
5681 
5682 	migrate_prep_local();
5683 
5684 	while (pfn < end || !list_empty(&cc->migratepages)) {
5685 		if (fatal_signal_pending(current)) {
5686 			ret = -EINTR;
5687 			break;
5688 		}
5689 
5690 		if (list_empty(&cc->migratepages)) {
5691 			cc->nr_migratepages = 0;
5692 			pfn = isolate_migratepages_range(cc->zone, cc,
5693 							 pfn, end, true);
5694 			if (!pfn) {
5695 				ret = -EINTR;
5696 				break;
5697 			}
5698 			tries = 0;
5699 		} else if (++tries == 5) {
5700 			ret = ret < 0 ? ret : -EBUSY;
5701 			break;
5702 		}
5703 
5704 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
5705 							&cc->migratepages);
5706 		cc->nr_migratepages -= nr_reclaimed;
5707 
5708 		ret = migrate_pages(&cc->migratepages,
5709 				    alloc_migrate_target,
5710 				    0, false, MIGRATE_SYNC);
5711 	}
5712 
5713 	putback_lru_pages(&cc->migratepages);
5714 	return ret > 0 ? 0 : ret;
5715 }
5716 
5717 /*
5718  * Update zone's cma pages counter used for watermark level calculation.
5719  */
5720 static inline void __update_cma_watermarks(struct zone *zone, int count)
5721 {
5722 	unsigned long flags;
5723 	spin_lock_irqsave(&zone->lock, flags);
5724 	zone->min_cma_pages += count;
5725 	spin_unlock_irqrestore(&zone->lock, flags);
5726 	setup_per_zone_wmarks();
5727 }
5728 
5729 /*
5730  * Trigger memory pressure bump to reclaim some pages in order to be able to
5731  * allocate 'count' pages in single page units. Does similar work as
5732  *__alloc_pages_slowpath() function.
5733  */
5734 static int __reclaim_pages(struct zone *zone, gfp_t gfp_mask, int count)
5735 {
5736 	enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5737 	struct zonelist *zonelist = node_zonelist(0, gfp_mask);
5738 	int did_some_progress = 0;
5739 	int order = 1;
5740 
5741 	/*
5742 	 * Increase level of watermarks to force kswapd do his job
5743 	 * to stabilise at new watermark level.
5744 	 */
5745 	__update_cma_watermarks(zone, count);
5746 
5747 	/* Obey watermarks as if the page was being allocated */
5748 	while (!zone_watermark_ok(zone, 0, low_wmark_pages(zone), 0, 0)) {
5749 		wake_all_kswapd(order, zonelist, high_zoneidx, zone_idx(zone));
5750 
5751 		did_some_progress = __perform_reclaim(gfp_mask, order, zonelist,
5752 						      NULL);
5753 		if (!did_some_progress) {
5754 			/* Exhausted what can be done so it's blamo time */
5755 			out_of_memory(zonelist, gfp_mask, order, NULL, false);
5756 		}
5757 	}
5758 
5759 	/* Restore original watermark levels. */
5760 	__update_cma_watermarks(zone, -count);
5761 
5762 	return count;
5763 }
5764 
5765 /**
5766  * alloc_contig_range() -- tries to allocate given range of pages
5767  * @start:	start PFN to allocate
5768  * @end:	one-past-the-last PFN to allocate
5769  * @migratetype:	migratetype of the underlaying pageblocks (either
5770  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
5771  *			in range must have the same migratetype and it must
5772  *			be either of the two.
5773  *
5774  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
5775  * aligned, however it's the caller's responsibility to guarantee that
5776  * we are the only thread that changes migrate type of pageblocks the
5777  * pages fall in.
5778  *
5779  * The PFN range must belong to a single zone.
5780  *
5781  * Returns zero on success or negative error code.  On success all
5782  * pages which PFN is in [start, end) are allocated for the caller and
5783  * need to be freed with free_contig_range().
5784  */
5785 int alloc_contig_range(unsigned long start, unsigned long end,
5786 		       unsigned migratetype)
5787 {
5788 	struct zone *zone = page_zone(pfn_to_page(start));
5789 	unsigned long outer_start, outer_end;
5790 	int ret = 0, order;
5791 
5792 	struct compact_control cc = {
5793 		.nr_migratepages = 0,
5794 		.order = -1,
5795 		.zone = page_zone(pfn_to_page(start)),
5796 		.sync = true,
5797 		.ignore_skip_hint = true,
5798 	};
5799 	INIT_LIST_HEAD(&cc.migratepages);
5800 
5801 	/*
5802 	 * What we do here is we mark all pageblocks in range as
5803 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
5804 	 * have different sizes, and due to the way page allocator
5805 	 * work, we align the range to biggest of the two pages so
5806 	 * that page allocator won't try to merge buddies from
5807 	 * different pageblocks and change MIGRATE_ISOLATE to some
5808 	 * other migration type.
5809 	 *
5810 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
5811 	 * migrate the pages from an unaligned range (ie. pages that
5812 	 * we are interested in).  This will put all the pages in
5813 	 * range back to page allocator as MIGRATE_ISOLATE.
5814 	 *
5815 	 * When this is done, we take the pages in range from page
5816 	 * allocator removing them from the buddy system.  This way
5817 	 * page allocator will never consider using them.
5818 	 *
5819 	 * This lets us mark the pageblocks back as
5820 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
5821 	 * aligned range but not in the unaligned, original range are
5822 	 * put back to page allocator so that buddy can use them.
5823 	 */
5824 
5825 	ret = start_isolate_page_range(pfn_max_align_down(start),
5826 				       pfn_max_align_up(end), migratetype);
5827 	if (ret)
5828 		return ret;
5829 
5830 	ret = __alloc_contig_migrate_range(&cc, start, end);
5831 	if (ret)
5832 		goto done;
5833 
5834 	/*
5835 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
5836 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
5837 	 * more, all pages in [start, end) are free in page allocator.
5838 	 * What we are going to do is to allocate all pages from
5839 	 * [start, end) (that is remove them from page allocator).
5840 	 *
5841 	 * The only problem is that pages at the beginning and at the
5842 	 * end of interesting range may be not aligned with pages that
5843 	 * page allocator holds, ie. they can be part of higher order
5844 	 * pages.  Because of this, we reserve the bigger range and
5845 	 * once this is done free the pages we are not interested in.
5846 	 *
5847 	 * We don't have to hold zone->lock here because the pages are
5848 	 * isolated thus they won't get removed from buddy.
5849 	 */
5850 
5851 	lru_add_drain_all();
5852 	drain_all_pages();
5853 
5854 	order = 0;
5855 	outer_start = start;
5856 	while (!PageBuddy(pfn_to_page(outer_start))) {
5857 		if (++order >= MAX_ORDER) {
5858 			ret = -EBUSY;
5859 			goto done;
5860 		}
5861 		outer_start &= ~0UL << order;
5862 	}
5863 
5864 	/* Make sure the range is really isolated. */
5865 	if (test_pages_isolated(outer_start, end)) {
5866 		pr_warn("alloc_contig_range test_pages_isolated(%lx, %lx) failed\n",
5867 		       outer_start, end);
5868 		ret = -EBUSY;
5869 		goto done;
5870 	}
5871 
5872 	/*
5873 	 * Reclaim enough pages to make sure that contiguous allocation
5874 	 * will not starve the system.
5875 	 */
5876 	__reclaim_pages(zone, GFP_HIGHUSER_MOVABLE, end-start);
5877 
5878 	/* Grab isolated pages from freelists. */
5879 	outer_end = isolate_freepages_range(&cc, outer_start, end);
5880 	if (!outer_end) {
5881 		ret = -EBUSY;
5882 		goto done;
5883 	}
5884 
5885 	/* Free head and tail (if any) */
5886 	if (start != outer_start)
5887 		free_contig_range(outer_start, start - outer_start);
5888 	if (end != outer_end)
5889 		free_contig_range(end, outer_end - end);
5890 
5891 done:
5892 	undo_isolate_page_range(pfn_max_align_down(start),
5893 				pfn_max_align_up(end), migratetype);
5894 	return ret;
5895 }
5896 
5897 void free_contig_range(unsigned long pfn, unsigned nr_pages)
5898 {
5899 	for (; nr_pages--; ++pfn)
5900 		__free_page(pfn_to_page(pfn));
5901 }
5902 #endif
5903 
5904 #ifdef CONFIG_MEMORY_HOTPLUG
5905 static int __meminit __zone_pcp_update(void *data)
5906 {
5907 	struct zone *zone = data;
5908 	int cpu;
5909 	unsigned long batch = zone_batchsize(zone), flags;
5910 
5911 	for_each_possible_cpu(cpu) {
5912 		struct per_cpu_pageset *pset;
5913 		struct per_cpu_pages *pcp;
5914 
5915 		pset = per_cpu_ptr(zone->pageset, cpu);
5916 		pcp = &pset->pcp;
5917 
5918 		local_irq_save(flags);
5919 		if (pcp->count > 0)
5920 			free_pcppages_bulk(zone, pcp->count, pcp);
5921 		drain_zonestat(zone, pset);
5922 		setup_pageset(pset, batch);
5923 		local_irq_restore(flags);
5924 	}
5925 	return 0;
5926 }
5927 
5928 void __meminit zone_pcp_update(struct zone *zone)
5929 {
5930 	stop_machine(__zone_pcp_update, zone, NULL);
5931 }
5932 #endif
5933 
5934 #ifdef CONFIG_MEMORY_HOTREMOVE
5935 void zone_pcp_reset(struct zone *zone)
5936 {
5937 	unsigned long flags;
5938 	int cpu;
5939 	struct per_cpu_pageset *pset;
5940 
5941 	/* avoid races with drain_pages()  */
5942 	local_irq_save(flags);
5943 	if (zone->pageset != &boot_pageset) {
5944 		for_each_online_cpu(cpu) {
5945 			pset = per_cpu_ptr(zone->pageset, cpu);
5946 			drain_zonestat(zone, pset);
5947 		}
5948 		free_percpu(zone->pageset);
5949 		zone->pageset = &boot_pageset;
5950 	}
5951 	local_irq_restore(flags);
5952 }
5953 
5954 /*
5955  * All pages in the range must be isolated before calling this.
5956  */
5957 void
5958 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
5959 {
5960 	struct page *page;
5961 	struct zone *zone;
5962 	int order, i;
5963 	unsigned long pfn;
5964 	unsigned long flags;
5965 	/* find the first valid pfn */
5966 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
5967 		if (pfn_valid(pfn))
5968 			break;
5969 	if (pfn == end_pfn)
5970 		return;
5971 	zone = page_zone(pfn_to_page(pfn));
5972 	spin_lock_irqsave(&zone->lock, flags);
5973 	pfn = start_pfn;
5974 	while (pfn < end_pfn) {
5975 		if (!pfn_valid(pfn)) {
5976 			pfn++;
5977 			continue;
5978 		}
5979 		page = pfn_to_page(pfn);
5980 		BUG_ON(page_count(page));
5981 		BUG_ON(!PageBuddy(page));
5982 		order = page_order(page);
5983 #ifdef CONFIG_DEBUG_VM
5984 		printk(KERN_INFO "remove from free list %lx %d %lx\n",
5985 		       pfn, 1 << order, end_pfn);
5986 #endif
5987 		list_del(&page->lru);
5988 		rmv_page_order(page);
5989 		zone->free_area[order].nr_free--;
5990 		__mod_zone_page_state(zone, NR_FREE_PAGES,
5991 				      - (1UL << order));
5992 		for (i = 0; i < (1 << order); i++)
5993 			SetPageReserved((page+i));
5994 		pfn += (1 << order);
5995 	}
5996 	spin_unlock_irqrestore(&zone->lock, flags);
5997 }
5998 #endif
5999 
6000 #ifdef CONFIG_MEMORY_FAILURE
6001 bool is_free_buddy_page(struct page *page)
6002 {
6003 	struct zone *zone = page_zone(page);
6004 	unsigned long pfn = page_to_pfn(page);
6005 	unsigned long flags;
6006 	int order;
6007 
6008 	spin_lock_irqsave(&zone->lock, flags);
6009 	for (order = 0; order < MAX_ORDER; order++) {
6010 		struct page *page_head = page - (pfn & ((1 << order) - 1));
6011 
6012 		if (PageBuddy(page_head) && page_order(page_head) >= order)
6013 			break;
6014 	}
6015 	spin_unlock_irqrestore(&zone->lock, flags);
6016 
6017 	return order < MAX_ORDER;
6018 }
6019 #endif
6020 
6021 static const struct trace_print_flags pageflag_names[] = {
6022 	{1UL << PG_locked,		"locked"	},
6023 	{1UL << PG_error,		"error"		},
6024 	{1UL << PG_referenced,		"referenced"	},
6025 	{1UL << PG_uptodate,		"uptodate"	},
6026 	{1UL << PG_dirty,		"dirty"		},
6027 	{1UL << PG_lru,			"lru"		},
6028 	{1UL << PG_active,		"active"	},
6029 	{1UL << PG_slab,		"slab"		},
6030 	{1UL << PG_owner_priv_1,	"owner_priv_1"	},
6031 	{1UL << PG_arch_1,		"arch_1"	},
6032 	{1UL << PG_reserved,		"reserved"	},
6033 	{1UL << PG_private,		"private"	},
6034 	{1UL << PG_private_2,		"private_2"	},
6035 	{1UL << PG_writeback,		"writeback"	},
6036 #ifdef CONFIG_PAGEFLAGS_EXTENDED
6037 	{1UL << PG_head,		"head"		},
6038 	{1UL << PG_tail,		"tail"		},
6039 #else
6040 	{1UL << PG_compound,		"compound"	},
6041 #endif
6042 	{1UL << PG_swapcache,		"swapcache"	},
6043 	{1UL << PG_mappedtodisk,	"mappedtodisk"	},
6044 	{1UL << PG_reclaim,		"reclaim"	},
6045 	{1UL << PG_swapbacked,		"swapbacked"	},
6046 	{1UL << PG_unevictable,		"unevictable"	},
6047 #ifdef CONFIG_MMU
6048 	{1UL << PG_mlocked,		"mlocked"	},
6049 #endif
6050 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
6051 	{1UL << PG_uncached,		"uncached"	},
6052 #endif
6053 #ifdef CONFIG_MEMORY_FAILURE
6054 	{1UL << PG_hwpoison,		"hwpoison"	},
6055 #endif
6056 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6057 	{1UL << PG_compound_lock,	"compound_lock"	},
6058 #endif
6059 };
6060 
6061 static void dump_page_flags(unsigned long flags)
6062 {
6063 	const char *delim = "";
6064 	unsigned long mask;
6065 	int i;
6066 
6067 	BUILD_BUG_ON(ARRAY_SIZE(pageflag_names) != __NR_PAGEFLAGS);
6068 
6069 	printk(KERN_ALERT "page flags: %#lx(", flags);
6070 
6071 	/* remove zone id */
6072 	flags &= (1UL << NR_PAGEFLAGS) - 1;
6073 
6074 	for (i = 0; i < ARRAY_SIZE(pageflag_names) && flags; i++) {
6075 
6076 		mask = pageflag_names[i].mask;
6077 		if ((flags & mask) != mask)
6078 			continue;
6079 
6080 		flags &= ~mask;
6081 		printk("%s%s", delim, pageflag_names[i].name);
6082 		delim = "|";
6083 	}
6084 
6085 	/* check for left over flags */
6086 	if (flags)
6087 		printk("%s%#lx", delim, flags);
6088 
6089 	printk(")\n");
6090 }
6091 
6092 void dump_page(struct page *page)
6093 {
6094 	printk(KERN_ALERT
6095 	       "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
6096 		page, atomic_read(&page->_count), page_mapcount(page),
6097 		page->mapping, page->index);
6098 	dump_page_flags(page->flags);
6099 	mem_cgroup_print_bad_page(page);
6100 }
6101