1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/interrupt.h> 23 #include <linux/pagemap.h> 24 #include <linux/jiffies.h> 25 #include <linux/memblock.h> 26 #include <linux/compiler.h> 27 #include <linux/kernel.h> 28 #include <linux/kasan.h> 29 #include <linux/module.h> 30 #include <linux/suspend.h> 31 #include <linux/pagevec.h> 32 #include <linux/blkdev.h> 33 #include <linux/slab.h> 34 #include <linux/ratelimit.h> 35 #include <linux/oom.h> 36 #include <linux/topology.h> 37 #include <linux/sysctl.h> 38 #include <linux/cpu.h> 39 #include <linux/cpuset.h> 40 #include <linux/memory_hotplug.h> 41 #include <linux/nodemask.h> 42 #include <linux/vmalloc.h> 43 #include <linux/vmstat.h> 44 #include <linux/mempolicy.h> 45 #include <linux/memremap.h> 46 #include <linux/stop_machine.h> 47 #include <linux/random.h> 48 #include <linux/sort.h> 49 #include <linux/pfn.h> 50 #include <linux/backing-dev.h> 51 #include <linux/fault-inject.h> 52 #include <linux/page-isolation.h> 53 #include <linux/debugobjects.h> 54 #include <linux/kmemleak.h> 55 #include <linux/compaction.h> 56 #include <trace/events/kmem.h> 57 #include <trace/events/oom.h> 58 #include <linux/prefetch.h> 59 #include <linux/mm_inline.h> 60 #include <linux/mmu_notifier.h> 61 #include <linux/migrate.h> 62 #include <linux/hugetlb.h> 63 #include <linux/sched/rt.h> 64 #include <linux/sched/mm.h> 65 #include <linux/page_owner.h> 66 #include <linux/kthread.h> 67 #include <linux/memcontrol.h> 68 #include <linux/ftrace.h> 69 #include <linux/lockdep.h> 70 #include <linux/nmi.h> 71 #include <linux/psi.h> 72 #include <linux/padata.h> 73 #include <linux/khugepaged.h> 74 #include <linux/buffer_head.h> 75 #include <asm/sections.h> 76 #include <asm/tlbflush.h> 77 #include <asm/div64.h> 78 #include "internal.h" 79 #include "shuffle.h" 80 #include "page_reporting.h" 81 82 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 83 typedef int __bitwise fpi_t; 84 85 /* No special request */ 86 #define FPI_NONE ((__force fpi_t)0) 87 88 /* 89 * Skip free page reporting notification for the (possibly merged) page. 90 * This does not hinder free page reporting from grabbing the page, 91 * reporting it and marking it "reported" - it only skips notifying 92 * the free page reporting infrastructure about a newly freed page. For 93 * example, used when temporarily pulling a page from a freelist and 94 * putting it back unmodified. 95 */ 96 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 97 98 /* 99 * Place the (possibly merged) page to the tail of the freelist. Will ignore 100 * page shuffling (relevant code - e.g., memory onlining - is expected to 101 * shuffle the whole zone). 102 * 103 * Note: No code should rely on this flag for correctness - it's purely 104 * to allow for optimizations when handing back either fresh pages 105 * (memory onlining) or untouched pages (page isolation, free page 106 * reporting). 107 */ 108 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 109 110 /* 111 * Don't poison memory with KASAN (only for the tag-based modes). 112 * During boot, all non-reserved memblock memory is exposed to page_alloc. 113 * Poisoning all that memory lengthens boot time, especially on systems with 114 * large amount of RAM. This flag is used to skip that poisoning. 115 * This is only done for the tag-based KASAN modes, as those are able to 116 * detect memory corruptions with the memory tags assigned by default. 117 * All memory allocated normally after boot gets poisoned as usual. 118 */ 119 #define FPI_SKIP_KASAN_POISON ((__force fpi_t)BIT(2)) 120 121 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 122 static DEFINE_MUTEX(pcp_batch_high_lock); 123 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 124 125 struct pagesets { 126 local_lock_t lock; 127 #if defined(CONFIG_DEBUG_INFO_BTF) && \ 128 !defined(CONFIG_DEBUG_LOCK_ALLOC) && \ 129 !defined(CONFIG_PAHOLE_HAS_ZEROSIZE_PERCPU_SUPPORT) 130 /* 131 * pahole 1.21 and earlier gets confused by zero-sized per-CPU 132 * variables and produces invalid BTF. Ensure that 133 * sizeof(struct pagesets) != 0 for older versions of pahole. 134 */ 135 char __pahole_hack; 136 #warning "pahole too old to support zero-sized struct pagesets" 137 #endif 138 }; 139 static DEFINE_PER_CPU(struct pagesets, pagesets) = { 140 .lock = INIT_LOCAL_LOCK(lock), 141 }; 142 143 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 144 DEFINE_PER_CPU(int, numa_node); 145 EXPORT_PER_CPU_SYMBOL(numa_node); 146 #endif 147 148 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 149 150 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 151 /* 152 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 153 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 154 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 155 * defined in <linux/topology.h>. 156 */ 157 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 158 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 159 #endif 160 161 /* work_structs for global per-cpu drains */ 162 struct pcpu_drain { 163 struct zone *zone; 164 struct work_struct work; 165 }; 166 static DEFINE_MUTEX(pcpu_drain_mutex); 167 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain); 168 169 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 170 volatile unsigned long latent_entropy __latent_entropy; 171 EXPORT_SYMBOL(latent_entropy); 172 #endif 173 174 /* 175 * Array of node states. 176 */ 177 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 178 [N_POSSIBLE] = NODE_MASK_ALL, 179 [N_ONLINE] = { { [0] = 1UL } }, 180 #ifndef CONFIG_NUMA 181 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 182 #ifdef CONFIG_HIGHMEM 183 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 184 #endif 185 [N_MEMORY] = { { [0] = 1UL } }, 186 [N_CPU] = { { [0] = 1UL } }, 187 #endif /* NUMA */ 188 }; 189 EXPORT_SYMBOL(node_states); 190 191 atomic_long_t _totalram_pages __read_mostly; 192 EXPORT_SYMBOL(_totalram_pages); 193 unsigned long totalreserve_pages __read_mostly; 194 unsigned long totalcma_pages __read_mostly; 195 196 int percpu_pagelist_high_fraction; 197 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 198 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 199 EXPORT_SYMBOL(init_on_alloc); 200 201 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 202 EXPORT_SYMBOL(init_on_free); 203 204 static bool _init_on_alloc_enabled_early __read_mostly 205 = IS_ENABLED(CONFIG_INIT_ON_ALLOC_DEFAULT_ON); 206 static int __init early_init_on_alloc(char *buf) 207 { 208 209 return kstrtobool(buf, &_init_on_alloc_enabled_early); 210 } 211 early_param("init_on_alloc", early_init_on_alloc); 212 213 static bool _init_on_free_enabled_early __read_mostly 214 = IS_ENABLED(CONFIG_INIT_ON_FREE_DEFAULT_ON); 215 static int __init early_init_on_free(char *buf) 216 { 217 return kstrtobool(buf, &_init_on_free_enabled_early); 218 } 219 early_param("init_on_free", early_init_on_free); 220 221 /* 222 * A cached value of the page's pageblock's migratetype, used when the page is 223 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 224 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 225 * Also the migratetype set in the page does not necessarily match the pcplist 226 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 227 * other index - this ensures that it will be put on the correct CMA freelist. 228 */ 229 static inline int get_pcppage_migratetype(struct page *page) 230 { 231 return page->index; 232 } 233 234 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 235 { 236 page->index = migratetype; 237 } 238 239 #ifdef CONFIG_PM_SLEEP 240 /* 241 * The following functions are used by the suspend/hibernate code to temporarily 242 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 243 * while devices are suspended. To avoid races with the suspend/hibernate code, 244 * they should always be called with system_transition_mutex held 245 * (gfp_allowed_mask also should only be modified with system_transition_mutex 246 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 247 * with that modification). 248 */ 249 250 static gfp_t saved_gfp_mask; 251 252 void pm_restore_gfp_mask(void) 253 { 254 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 255 if (saved_gfp_mask) { 256 gfp_allowed_mask = saved_gfp_mask; 257 saved_gfp_mask = 0; 258 } 259 } 260 261 void pm_restrict_gfp_mask(void) 262 { 263 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 264 WARN_ON(saved_gfp_mask); 265 saved_gfp_mask = gfp_allowed_mask; 266 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 267 } 268 269 bool pm_suspended_storage(void) 270 { 271 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 272 return false; 273 return true; 274 } 275 #endif /* CONFIG_PM_SLEEP */ 276 277 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 278 unsigned int pageblock_order __read_mostly; 279 #endif 280 281 static void __free_pages_ok(struct page *page, unsigned int order, 282 fpi_t fpi_flags); 283 284 /* 285 * results with 256, 32 in the lowmem_reserve sysctl: 286 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 287 * 1G machine -> (16M dma, 784M normal, 224M high) 288 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 289 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 290 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 291 * 292 * TBD: should special case ZONE_DMA32 machines here - in those we normally 293 * don't need any ZONE_NORMAL reservation 294 */ 295 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 296 #ifdef CONFIG_ZONE_DMA 297 [ZONE_DMA] = 256, 298 #endif 299 #ifdef CONFIG_ZONE_DMA32 300 [ZONE_DMA32] = 256, 301 #endif 302 [ZONE_NORMAL] = 32, 303 #ifdef CONFIG_HIGHMEM 304 [ZONE_HIGHMEM] = 0, 305 #endif 306 [ZONE_MOVABLE] = 0, 307 }; 308 309 static char * const zone_names[MAX_NR_ZONES] = { 310 #ifdef CONFIG_ZONE_DMA 311 "DMA", 312 #endif 313 #ifdef CONFIG_ZONE_DMA32 314 "DMA32", 315 #endif 316 "Normal", 317 #ifdef CONFIG_HIGHMEM 318 "HighMem", 319 #endif 320 "Movable", 321 #ifdef CONFIG_ZONE_DEVICE 322 "Device", 323 #endif 324 }; 325 326 const char * const migratetype_names[MIGRATE_TYPES] = { 327 "Unmovable", 328 "Movable", 329 "Reclaimable", 330 "HighAtomic", 331 #ifdef CONFIG_CMA 332 "CMA", 333 #endif 334 #ifdef CONFIG_MEMORY_ISOLATION 335 "Isolate", 336 #endif 337 }; 338 339 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 340 [NULL_COMPOUND_DTOR] = NULL, 341 [COMPOUND_PAGE_DTOR] = free_compound_page, 342 #ifdef CONFIG_HUGETLB_PAGE 343 [HUGETLB_PAGE_DTOR] = free_huge_page, 344 #endif 345 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 346 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 347 #endif 348 }; 349 350 int min_free_kbytes = 1024; 351 int user_min_free_kbytes = -1; 352 int watermark_boost_factor __read_mostly = 15000; 353 int watermark_scale_factor = 10; 354 355 static unsigned long nr_kernel_pages __initdata; 356 static unsigned long nr_all_pages __initdata; 357 static unsigned long dma_reserve __initdata; 358 359 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata; 360 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata; 361 static unsigned long required_kernelcore __initdata; 362 static unsigned long required_kernelcore_percent __initdata; 363 static unsigned long required_movablecore __initdata; 364 static unsigned long required_movablecore_percent __initdata; 365 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata; 366 static bool mirrored_kernelcore __meminitdata; 367 368 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 369 int movable_zone; 370 EXPORT_SYMBOL(movable_zone); 371 372 #if MAX_NUMNODES > 1 373 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 374 unsigned int nr_online_nodes __read_mostly = 1; 375 EXPORT_SYMBOL(nr_node_ids); 376 EXPORT_SYMBOL(nr_online_nodes); 377 #endif 378 379 int page_group_by_mobility_disabled __read_mostly; 380 381 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 382 /* 383 * During boot we initialize deferred pages on-demand, as needed, but once 384 * page_alloc_init_late() has finished, the deferred pages are all initialized, 385 * and we can permanently disable that path. 386 */ 387 static DEFINE_STATIC_KEY_TRUE(deferred_pages); 388 389 /* 390 * Calling kasan_free_pages() only after deferred memory initialization 391 * has completed. Poisoning pages during deferred memory init will greatly 392 * lengthen the process and cause problem in large memory systems as the 393 * deferred pages initialization is done with interrupt disabled. 394 * 395 * Assuming that there will be no reference to those newly initialized 396 * pages before they are ever allocated, this should have no effect on 397 * KASAN memory tracking as the poison will be properly inserted at page 398 * allocation time. The only corner case is when pages are allocated by 399 * on-demand allocation and then freed again before the deferred pages 400 * initialization is done, but this is not likely to happen. 401 */ 402 static inline void kasan_free_nondeferred_pages(struct page *page, int order, 403 bool init, fpi_t fpi_flags) 404 { 405 if (static_branch_unlikely(&deferred_pages)) 406 return; 407 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 408 (fpi_flags & FPI_SKIP_KASAN_POISON)) 409 return; 410 kasan_free_pages(page, order, init); 411 } 412 413 /* Returns true if the struct page for the pfn is uninitialised */ 414 static inline bool __meminit early_page_uninitialised(unsigned long pfn) 415 { 416 int nid = early_pfn_to_nid(pfn); 417 418 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn) 419 return true; 420 421 return false; 422 } 423 424 /* 425 * Returns true when the remaining initialisation should be deferred until 426 * later in the boot cycle when it can be parallelised. 427 */ 428 static bool __meminit 429 defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 430 { 431 static unsigned long prev_end_pfn, nr_initialised; 432 433 /* 434 * prev_end_pfn static that contains the end of previous zone 435 * No need to protect because called very early in boot before smp_init. 436 */ 437 if (prev_end_pfn != end_pfn) { 438 prev_end_pfn = end_pfn; 439 nr_initialised = 0; 440 } 441 442 /* Always populate low zones for address-constrained allocations */ 443 if (end_pfn < pgdat_end_pfn(NODE_DATA(nid))) 444 return false; 445 446 if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX) 447 return true; 448 /* 449 * We start only with one section of pages, more pages are added as 450 * needed until the rest of deferred pages are initialized. 451 */ 452 nr_initialised++; 453 if ((nr_initialised > PAGES_PER_SECTION) && 454 (pfn & (PAGES_PER_SECTION - 1)) == 0) { 455 NODE_DATA(nid)->first_deferred_pfn = pfn; 456 return true; 457 } 458 return false; 459 } 460 #else 461 static inline void kasan_free_nondeferred_pages(struct page *page, int order, 462 bool init, fpi_t fpi_flags) 463 { 464 if (!IS_ENABLED(CONFIG_KASAN_GENERIC) && 465 (fpi_flags & FPI_SKIP_KASAN_POISON)) 466 return; 467 kasan_free_pages(page, order, init); 468 } 469 470 static inline bool early_page_uninitialised(unsigned long pfn) 471 { 472 return false; 473 } 474 475 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn) 476 { 477 return false; 478 } 479 #endif 480 481 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 482 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 483 unsigned long pfn) 484 { 485 #ifdef CONFIG_SPARSEMEM 486 return section_to_usemap(__pfn_to_section(pfn)); 487 #else 488 return page_zone(page)->pageblock_flags; 489 #endif /* CONFIG_SPARSEMEM */ 490 } 491 492 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 493 { 494 #ifdef CONFIG_SPARSEMEM 495 pfn &= (PAGES_PER_SECTION-1); 496 #else 497 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages); 498 #endif /* CONFIG_SPARSEMEM */ 499 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 500 } 501 502 static __always_inline 503 unsigned long __get_pfnblock_flags_mask(const struct page *page, 504 unsigned long pfn, 505 unsigned long mask) 506 { 507 unsigned long *bitmap; 508 unsigned long bitidx, word_bitidx; 509 unsigned long word; 510 511 bitmap = get_pageblock_bitmap(page, pfn); 512 bitidx = pfn_to_bitidx(page, pfn); 513 word_bitidx = bitidx / BITS_PER_LONG; 514 bitidx &= (BITS_PER_LONG-1); 515 516 word = bitmap[word_bitidx]; 517 return (word >> bitidx) & mask; 518 } 519 520 /** 521 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 522 * @page: The page within the block of interest 523 * @pfn: The target page frame number 524 * @mask: mask of bits that the caller is interested in 525 * 526 * Return: pageblock_bits flags 527 */ 528 unsigned long get_pfnblock_flags_mask(const struct page *page, 529 unsigned long pfn, unsigned long mask) 530 { 531 return __get_pfnblock_flags_mask(page, pfn, mask); 532 } 533 534 static __always_inline int get_pfnblock_migratetype(const struct page *page, 535 unsigned long pfn) 536 { 537 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 538 } 539 540 /** 541 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 542 * @page: The page within the block of interest 543 * @flags: The flags to set 544 * @pfn: The target page frame number 545 * @mask: mask of bits that the caller is interested in 546 */ 547 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 548 unsigned long pfn, 549 unsigned long mask) 550 { 551 unsigned long *bitmap; 552 unsigned long bitidx, word_bitidx; 553 unsigned long old_word, word; 554 555 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 556 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 557 558 bitmap = get_pageblock_bitmap(page, pfn); 559 bitidx = pfn_to_bitidx(page, pfn); 560 word_bitidx = bitidx / BITS_PER_LONG; 561 bitidx &= (BITS_PER_LONG-1); 562 563 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 564 565 mask <<= bitidx; 566 flags <<= bitidx; 567 568 word = READ_ONCE(bitmap[word_bitidx]); 569 for (;;) { 570 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags); 571 if (word == old_word) 572 break; 573 word = old_word; 574 } 575 } 576 577 void set_pageblock_migratetype(struct page *page, int migratetype) 578 { 579 if (unlikely(page_group_by_mobility_disabled && 580 migratetype < MIGRATE_PCPTYPES)) 581 migratetype = MIGRATE_UNMOVABLE; 582 583 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 584 page_to_pfn(page), MIGRATETYPE_MASK); 585 } 586 587 #ifdef CONFIG_DEBUG_VM 588 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 589 { 590 int ret = 0; 591 unsigned seq; 592 unsigned long pfn = page_to_pfn(page); 593 unsigned long sp, start_pfn; 594 595 do { 596 seq = zone_span_seqbegin(zone); 597 start_pfn = zone->zone_start_pfn; 598 sp = zone->spanned_pages; 599 if (!zone_spans_pfn(zone, pfn)) 600 ret = 1; 601 } while (zone_span_seqretry(zone, seq)); 602 603 if (ret) 604 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 605 pfn, zone_to_nid(zone), zone->name, 606 start_pfn, start_pfn + sp); 607 608 return ret; 609 } 610 611 static int page_is_consistent(struct zone *zone, struct page *page) 612 { 613 if (!pfn_valid_within(page_to_pfn(page))) 614 return 0; 615 if (zone != page_zone(page)) 616 return 0; 617 618 return 1; 619 } 620 /* 621 * Temporary debugging check for pages not lying within a given zone. 622 */ 623 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 624 { 625 if (page_outside_zone_boundaries(zone, page)) 626 return 1; 627 if (!page_is_consistent(zone, page)) 628 return 1; 629 630 return 0; 631 } 632 #else 633 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 634 { 635 return 0; 636 } 637 #endif 638 639 static void bad_page(struct page *page, const char *reason) 640 { 641 static unsigned long resume; 642 static unsigned long nr_shown; 643 static unsigned long nr_unshown; 644 645 /* 646 * Allow a burst of 60 reports, then keep quiet for that minute; 647 * or allow a steady drip of one report per second. 648 */ 649 if (nr_shown == 60) { 650 if (time_before(jiffies, resume)) { 651 nr_unshown++; 652 goto out; 653 } 654 if (nr_unshown) { 655 pr_alert( 656 "BUG: Bad page state: %lu messages suppressed\n", 657 nr_unshown); 658 nr_unshown = 0; 659 } 660 nr_shown = 0; 661 } 662 if (nr_shown++ == 0) 663 resume = jiffies + 60 * HZ; 664 665 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 666 current->comm, page_to_pfn(page)); 667 dump_page(page, reason); 668 669 print_modules(); 670 dump_stack(); 671 out: 672 /* Leave bad fields for debug, except PageBuddy could make trouble */ 673 page_mapcount_reset(page); /* remove PageBuddy */ 674 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 675 } 676 677 static inline unsigned int order_to_pindex(int migratetype, int order) 678 { 679 int base = order; 680 681 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 682 if (order > PAGE_ALLOC_COSTLY_ORDER) { 683 VM_BUG_ON(order != pageblock_order); 684 base = PAGE_ALLOC_COSTLY_ORDER + 1; 685 } 686 #else 687 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 688 #endif 689 690 return (MIGRATE_PCPTYPES * base) + migratetype; 691 } 692 693 static inline int pindex_to_order(unsigned int pindex) 694 { 695 int order = pindex / MIGRATE_PCPTYPES; 696 697 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 698 if (order > PAGE_ALLOC_COSTLY_ORDER) { 699 order = pageblock_order; 700 VM_BUG_ON(order != pageblock_order); 701 } 702 #else 703 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 704 #endif 705 706 return order; 707 } 708 709 static inline bool pcp_allowed_order(unsigned int order) 710 { 711 if (order <= PAGE_ALLOC_COSTLY_ORDER) 712 return true; 713 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 714 if (order == pageblock_order) 715 return true; 716 #endif 717 return false; 718 } 719 720 static inline void free_the_page(struct page *page, unsigned int order) 721 { 722 if (pcp_allowed_order(order)) /* Via pcp? */ 723 free_unref_page(page, order); 724 else 725 __free_pages_ok(page, order, FPI_NONE); 726 } 727 728 /* 729 * Higher-order pages are called "compound pages". They are structured thusly: 730 * 731 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 732 * 733 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 734 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 735 * 736 * The first tail page's ->compound_dtor holds the offset in array of compound 737 * page destructors. See compound_page_dtors. 738 * 739 * The first tail page's ->compound_order holds the order of allocation. 740 * This usage means that zero-order pages may not be compound. 741 */ 742 743 void free_compound_page(struct page *page) 744 { 745 mem_cgroup_uncharge(page); 746 free_the_page(page, compound_order(page)); 747 } 748 749 void prep_compound_page(struct page *page, unsigned int order) 750 { 751 int i; 752 int nr_pages = 1 << order; 753 754 __SetPageHead(page); 755 for (i = 1; i < nr_pages; i++) { 756 struct page *p = page + i; 757 p->mapping = TAIL_MAPPING; 758 set_compound_head(p, page); 759 } 760 761 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR); 762 set_compound_order(page, order); 763 atomic_set(compound_mapcount_ptr(page), -1); 764 if (hpage_pincount_available(page)) 765 atomic_set(compound_pincount_ptr(page), 0); 766 } 767 768 #ifdef CONFIG_DEBUG_PAGEALLOC 769 unsigned int _debug_guardpage_minorder; 770 771 bool _debug_pagealloc_enabled_early __read_mostly 772 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 773 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 774 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 775 EXPORT_SYMBOL(_debug_pagealloc_enabled); 776 777 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 778 779 static int __init early_debug_pagealloc(char *buf) 780 { 781 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 782 } 783 early_param("debug_pagealloc", early_debug_pagealloc); 784 785 static int __init debug_guardpage_minorder_setup(char *buf) 786 { 787 unsigned long res; 788 789 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 790 pr_err("Bad debug_guardpage_minorder value\n"); 791 return 0; 792 } 793 _debug_guardpage_minorder = res; 794 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 795 return 0; 796 } 797 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 798 799 static inline bool set_page_guard(struct zone *zone, struct page *page, 800 unsigned int order, int migratetype) 801 { 802 if (!debug_guardpage_enabled()) 803 return false; 804 805 if (order >= debug_guardpage_minorder()) 806 return false; 807 808 __SetPageGuard(page); 809 INIT_LIST_HEAD(&page->lru); 810 set_page_private(page, order); 811 /* Guard pages are not available for any usage */ 812 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 813 814 return true; 815 } 816 817 static inline void clear_page_guard(struct zone *zone, struct page *page, 818 unsigned int order, int migratetype) 819 { 820 if (!debug_guardpage_enabled()) 821 return; 822 823 __ClearPageGuard(page); 824 825 set_page_private(page, 0); 826 if (!is_migrate_isolate(migratetype)) 827 __mod_zone_freepage_state(zone, (1 << order), migratetype); 828 } 829 #else 830 static inline bool set_page_guard(struct zone *zone, struct page *page, 831 unsigned int order, int migratetype) { return false; } 832 static inline void clear_page_guard(struct zone *zone, struct page *page, 833 unsigned int order, int migratetype) {} 834 #endif 835 836 /* 837 * Enable static keys related to various memory debugging and hardening options. 838 * Some override others, and depend on early params that are evaluated in the 839 * order of appearance. So we need to first gather the full picture of what was 840 * enabled, and then make decisions. 841 */ 842 void init_mem_debugging_and_hardening(void) 843 { 844 bool page_poisoning_requested = false; 845 846 #ifdef CONFIG_PAGE_POISONING 847 /* 848 * Page poisoning is debug page alloc for some arches. If 849 * either of those options are enabled, enable poisoning. 850 */ 851 if (page_poisoning_enabled() || 852 (!IS_ENABLED(CONFIG_ARCH_SUPPORTS_DEBUG_PAGEALLOC) && 853 debug_pagealloc_enabled())) { 854 static_branch_enable(&_page_poisoning_enabled); 855 page_poisoning_requested = true; 856 } 857 #endif 858 859 if (_init_on_alloc_enabled_early) { 860 if (page_poisoning_requested) 861 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 862 "will take precedence over init_on_alloc\n"); 863 else 864 static_branch_enable(&init_on_alloc); 865 } 866 if (_init_on_free_enabled_early) { 867 if (page_poisoning_requested) 868 pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, " 869 "will take precedence over init_on_free\n"); 870 else 871 static_branch_enable(&init_on_free); 872 } 873 874 #ifdef CONFIG_DEBUG_PAGEALLOC 875 if (!debug_pagealloc_enabled()) 876 return; 877 878 static_branch_enable(&_debug_pagealloc_enabled); 879 880 if (!debug_guardpage_minorder()) 881 return; 882 883 static_branch_enable(&_debug_guardpage_enabled); 884 #endif 885 } 886 887 static inline void set_buddy_order(struct page *page, unsigned int order) 888 { 889 set_page_private(page, order); 890 __SetPageBuddy(page); 891 } 892 893 /* 894 * This function checks whether a page is free && is the buddy 895 * we can coalesce a page and its buddy if 896 * (a) the buddy is not in a hole (check before calling!) && 897 * (b) the buddy is in the buddy system && 898 * (c) a page and its buddy have the same order && 899 * (d) a page and its buddy are in the same zone. 900 * 901 * For recording whether a page is in the buddy system, we set PageBuddy. 902 * Setting, clearing, and testing PageBuddy is serialized by zone->lock. 903 * 904 * For recording page's order, we use page_private(page). 905 */ 906 static inline bool page_is_buddy(struct page *page, struct page *buddy, 907 unsigned int order) 908 { 909 if (!page_is_guard(buddy) && !PageBuddy(buddy)) 910 return false; 911 912 if (buddy_order(buddy) != order) 913 return false; 914 915 /* 916 * zone check is done late to avoid uselessly calculating 917 * zone/node ids for pages that could never merge. 918 */ 919 if (page_zone_id(page) != page_zone_id(buddy)) 920 return false; 921 922 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy); 923 924 return true; 925 } 926 927 #ifdef CONFIG_COMPACTION 928 static inline struct capture_control *task_capc(struct zone *zone) 929 { 930 struct capture_control *capc = current->capture_control; 931 932 return unlikely(capc) && 933 !(current->flags & PF_KTHREAD) && 934 !capc->page && 935 capc->cc->zone == zone ? capc : NULL; 936 } 937 938 static inline bool 939 compaction_capture(struct capture_control *capc, struct page *page, 940 int order, int migratetype) 941 { 942 if (!capc || order != capc->cc->order) 943 return false; 944 945 /* Do not accidentally pollute CMA or isolated regions*/ 946 if (is_migrate_cma(migratetype) || 947 is_migrate_isolate(migratetype)) 948 return false; 949 950 /* 951 * Do not let lower order allocations pollute a movable pageblock. 952 * This might let an unmovable request use a reclaimable pageblock 953 * and vice-versa but no more than normal fallback logic which can 954 * have trouble finding a high-order free page. 955 */ 956 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 957 return false; 958 959 capc->page = page; 960 return true; 961 } 962 963 #else 964 static inline struct capture_control *task_capc(struct zone *zone) 965 { 966 return NULL; 967 } 968 969 static inline bool 970 compaction_capture(struct capture_control *capc, struct page *page, 971 int order, int migratetype) 972 { 973 return false; 974 } 975 #endif /* CONFIG_COMPACTION */ 976 977 /* Used for pages not on another list */ 978 static inline void add_to_free_list(struct page *page, struct zone *zone, 979 unsigned int order, int migratetype) 980 { 981 struct free_area *area = &zone->free_area[order]; 982 983 list_add(&page->lru, &area->free_list[migratetype]); 984 area->nr_free++; 985 } 986 987 /* Used for pages not on another list */ 988 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 989 unsigned int order, int migratetype) 990 { 991 struct free_area *area = &zone->free_area[order]; 992 993 list_add_tail(&page->lru, &area->free_list[migratetype]); 994 area->nr_free++; 995 } 996 997 /* 998 * Used for pages which are on another list. Move the pages to the tail 999 * of the list - so the moved pages won't immediately be considered for 1000 * allocation again (e.g., optimization for memory onlining). 1001 */ 1002 static inline void move_to_free_list(struct page *page, struct zone *zone, 1003 unsigned int order, int migratetype) 1004 { 1005 struct free_area *area = &zone->free_area[order]; 1006 1007 list_move_tail(&page->lru, &area->free_list[migratetype]); 1008 } 1009 1010 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 1011 unsigned int order) 1012 { 1013 /* clear reported state and update reported page count */ 1014 if (page_reported(page)) 1015 __ClearPageReported(page); 1016 1017 list_del(&page->lru); 1018 __ClearPageBuddy(page); 1019 set_page_private(page, 0); 1020 zone->free_area[order].nr_free--; 1021 } 1022 1023 /* 1024 * If this is not the largest possible page, check if the buddy 1025 * of the next-highest order is free. If it is, it's possible 1026 * that pages are being freed that will coalesce soon. In case, 1027 * that is happening, add the free page to the tail of the list 1028 * so it's less likely to be used soon and more likely to be merged 1029 * as a higher order page 1030 */ 1031 static inline bool 1032 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 1033 struct page *page, unsigned int order) 1034 { 1035 struct page *higher_page, *higher_buddy; 1036 unsigned long combined_pfn; 1037 1038 if (order >= MAX_ORDER - 2) 1039 return false; 1040 1041 if (!pfn_valid_within(buddy_pfn)) 1042 return false; 1043 1044 combined_pfn = buddy_pfn & pfn; 1045 higher_page = page + (combined_pfn - pfn); 1046 buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1); 1047 higher_buddy = higher_page + (buddy_pfn - combined_pfn); 1048 1049 return pfn_valid_within(buddy_pfn) && 1050 page_is_buddy(higher_page, higher_buddy, order + 1); 1051 } 1052 1053 /* 1054 * Freeing function for a buddy system allocator. 1055 * 1056 * The concept of a buddy system is to maintain direct-mapped table 1057 * (containing bit values) for memory blocks of various "orders". 1058 * The bottom level table contains the map for the smallest allocatable 1059 * units of memory (here, pages), and each level above it describes 1060 * pairs of units from the levels below, hence, "buddies". 1061 * At a high level, all that happens here is marking the table entry 1062 * at the bottom level available, and propagating the changes upward 1063 * as necessary, plus some accounting needed to play nicely with other 1064 * parts of the VM system. 1065 * At each level, we keep a list of pages, which are heads of continuous 1066 * free pages of length of (1 << order) and marked with PageBuddy. 1067 * Page's order is recorded in page_private(page) field. 1068 * So when we are allocating or freeing one, we can derive the state of the 1069 * other. That is, if we allocate a small block, and both were 1070 * free, the remainder of the region must be split into blocks. 1071 * If a block is freed, and its buddy is also free, then this 1072 * triggers coalescing into a block of larger size. 1073 * 1074 * -- nyc 1075 */ 1076 1077 static inline void __free_one_page(struct page *page, 1078 unsigned long pfn, 1079 struct zone *zone, unsigned int order, 1080 int migratetype, fpi_t fpi_flags) 1081 { 1082 struct capture_control *capc = task_capc(zone); 1083 unsigned long buddy_pfn; 1084 unsigned long combined_pfn; 1085 unsigned int max_order; 1086 struct page *buddy; 1087 bool to_tail; 1088 1089 max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order); 1090 1091 VM_BUG_ON(!zone_is_initialized(zone)); 1092 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 1093 1094 VM_BUG_ON(migratetype == -1); 1095 if (likely(!is_migrate_isolate(migratetype))) 1096 __mod_zone_freepage_state(zone, 1 << order, migratetype); 1097 1098 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 1099 VM_BUG_ON_PAGE(bad_range(zone, page), page); 1100 1101 continue_merging: 1102 while (order < max_order) { 1103 if (compaction_capture(capc, page, order, migratetype)) { 1104 __mod_zone_freepage_state(zone, -(1 << order), 1105 migratetype); 1106 return; 1107 } 1108 buddy_pfn = __find_buddy_pfn(pfn, order); 1109 buddy = page + (buddy_pfn - pfn); 1110 1111 if (!pfn_valid_within(buddy_pfn)) 1112 goto done_merging; 1113 if (!page_is_buddy(page, buddy, order)) 1114 goto done_merging; 1115 /* 1116 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 1117 * merge with it and move up one order. 1118 */ 1119 if (page_is_guard(buddy)) 1120 clear_page_guard(zone, buddy, order, migratetype); 1121 else 1122 del_page_from_free_list(buddy, zone, order); 1123 combined_pfn = buddy_pfn & pfn; 1124 page = page + (combined_pfn - pfn); 1125 pfn = combined_pfn; 1126 order++; 1127 } 1128 if (order < MAX_ORDER - 1) { 1129 /* If we are here, it means order is >= pageblock_order. 1130 * We want to prevent merge between freepages on isolate 1131 * pageblock and normal pageblock. Without this, pageblock 1132 * isolation could cause incorrect freepage or CMA accounting. 1133 * 1134 * We don't want to hit this code for the more frequent 1135 * low-order merging. 1136 */ 1137 if (unlikely(has_isolate_pageblock(zone))) { 1138 int buddy_mt; 1139 1140 buddy_pfn = __find_buddy_pfn(pfn, order); 1141 buddy = page + (buddy_pfn - pfn); 1142 buddy_mt = get_pageblock_migratetype(buddy); 1143 1144 if (migratetype != buddy_mt 1145 && (is_migrate_isolate(migratetype) || 1146 is_migrate_isolate(buddy_mt))) 1147 goto done_merging; 1148 } 1149 max_order = order + 1; 1150 goto continue_merging; 1151 } 1152 1153 done_merging: 1154 set_buddy_order(page, order); 1155 1156 if (fpi_flags & FPI_TO_TAIL) 1157 to_tail = true; 1158 else if (is_shuffle_order(order)) 1159 to_tail = shuffle_pick_tail(); 1160 else 1161 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1162 1163 if (to_tail) 1164 add_to_free_list_tail(page, zone, order, migratetype); 1165 else 1166 add_to_free_list(page, zone, order, migratetype); 1167 1168 /* Notify page reporting subsystem of freed page */ 1169 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1170 page_reporting_notify_free(order); 1171 } 1172 1173 /* 1174 * A bad page could be due to a number of fields. Instead of multiple branches, 1175 * try and check multiple fields with one check. The caller must do a detailed 1176 * check if necessary. 1177 */ 1178 static inline bool page_expected_state(struct page *page, 1179 unsigned long check_flags) 1180 { 1181 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1182 return false; 1183 1184 if (unlikely((unsigned long)page->mapping | 1185 page_ref_count(page) | 1186 #ifdef CONFIG_MEMCG 1187 page->memcg_data | 1188 #endif 1189 (page->flags & check_flags))) 1190 return false; 1191 1192 return true; 1193 } 1194 1195 static const char *page_bad_reason(struct page *page, unsigned long flags) 1196 { 1197 const char *bad_reason = NULL; 1198 1199 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1200 bad_reason = "nonzero mapcount"; 1201 if (unlikely(page->mapping != NULL)) 1202 bad_reason = "non-NULL mapping"; 1203 if (unlikely(page_ref_count(page) != 0)) 1204 bad_reason = "nonzero _refcount"; 1205 if (unlikely(page->flags & flags)) { 1206 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1207 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1208 else 1209 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1210 } 1211 #ifdef CONFIG_MEMCG 1212 if (unlikely(page->memcg_data)) 1213 bad_reason = "page still charged to cgroup"; 1214 #endif 1215 return bad_reason; 1216 } 1217 1218 static void check_free_page_bad(struct page *page) 1219 { 1220 bad_page(page, 1221 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1222 } 1223 1224 static inline int check_free_page(struct page *page) 1225 { 1226 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1227 return 0; 1228 1229 /* Something has gone sideways, find it */ 1230 check_free_page_bad(page); 1231 return 1; 1232 } 1233 1234 static int free_tail_pages_check(struct page *head_page, struct page *page) 1235 { 1236 int ret = 1; 1237 1238 /* 1239 * We rely page->lru.next never has bit 0 set, unless the page 1240 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1241 */ 1242 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1243 1244 if (!IS_ENABLED(CONFIG_DEBUG_VM)) { 1245 ret = 0; 1246 goto out; 1247 } 1248 switch (page - head_page) { 1249 case 1: 1250 /* the first tail page: ->mapping may be compound_mapcount() */ 1251 if (unlikely(compound_mapcount(page))) { 1252 bad_page(page, "nonzero compound_mapcount"); 1253 goto out; 1254 } 1255 break; 1256 case 2: 1257 /* 1258 * the second tail page: ->mapping is 1259 * deferred_list.next -- ignore value. 1260 */ 1261 break; 1262 default: 1263 if (page->mapping != TAIL_MAPPING) { 1264 bad_page(page, "corrupted mapping in tail page"); 1265 goto out; 1266 } 1267 break; 1268 } 1269 if (unlikely(!PageTail(page))) { 1270 bad_page(page, "PageTail not set"); 1271 goto out; 1272 } 1273 if (unlikely(compound_head(page) != head_page)) { 1274 bad_page(page, "compound_head not consistent"); 1275 goto out; 1276 } 1277 ret = 0; 1278 out: 1279 page->mapping = NULL; 1280 clear_compound_head(page); 1281 return ret; 1282 } 1283 1284 static void kernel_init_free_pages(struct page *page, int numpages) 1285 { 1286 int i; 1287 1288 /* s390's use of memset() could override KASAN redzones. */ 1289 kasan_disable_current(); 1290 for (i = 0; i < numpages; i++) { 1291 u8 tag = page_kasan_tag(page + i); 1292 page_kasan_tag_reset(page + i); 1293 clear_highpage(page + i); 1294 page_kasan_tag_set(page + i, tag); 1295 } 1296 kasan_enable_current(); 1297 } 1298 1299 static __always_inline bool free_pages_prepare(struct page *page, 1300 unsigned int order, bool check_free, fpi_t fpi_flags) 1301 { 1302 int bad = 0; 1303 bool init; 1304 1305 VM_BUG_ON_PAGE(PageTail(page), page); 1306 1307 trace_mm_page_free(page, order); 1308 1309 if (unlikely(PageHWPoison(page)) && !order) { 1310 /* 1311 * Do not let hwpoison pages hit pcplists/buddy 1312 * Untie memcg state and reset page's owner 1313 */ 1314 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1315 __memcg_kmem_uncharge_page(page, order); 1316 reset_page_owner(page, order); 1317 return false; 1318 } 1319 1320 /* 1321 * Check tail pages before head page information is cleared to 1322 * avoid checking PageCompound for order-0 pages. 1323 */ 1324 if (unlikely(order)) { 1325 bool compound = PageCompound(page); 1326 int i; 1327 1328 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1329 1330 if (compound) 1331 ClearPageDoubleMap(page); 1332 for (i = 1; i < (1 << order); i++) { 1333 if (compound) 1334 bad += free_tail_pages_check(page, page + i); 1335 if (unlikely(check_free_page(page + i))) { 1336 bad++; 1337 continue; 1338 } 1339 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1340 } 1341 } 1342 if (PageMappingFlags(page)) 1343 page->mapping = NULL; 1344 if (memcg_kmem_enabled() && PageMemcgKmem(page)) 1345 __memcg_kmem_uncharge_page(page, order); 1346 if (check_free) 1347 bad += check_free_page(page); 1348 if (bad) 1349 return false; 1350 1351 page_cpupid_reset_last(page); 1352 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1353 reset_page_owner(page, order); 1354 1355 if (!PageHighMem(page)) { 1356 debug_check_no_locks_freed(page_address(page), 1357 PAGE_SIZE << order); 1358 debug_check_no_obj_freed(page_address(page), 1359 PAGE_SIZE << order); 1360 } 1361 1362 kernel_poison_pages(page, 1 << order); 1363 1364 /* 1365 * As memory initialization might be integrated into KASAN, 1366 * kasan_free_pages and kernel_init_free_pages must be 1367 * kept together to avoid discrepancies in behavior. 1368 * 1369 * With hardware tag-based KASAN, memory tags must be set before the 1370 * page becomes unavailable via debug_pagealloc or arch_free_page. 1371 */ 1372 init = want_init_on_free(); 1373 if (init && !kasan_has_integrated_init()) 1374 kernel_init_free_pages(page, 1 << order); 1375 kasan_free_nondeferred_pages(page, order, init, fpi_flags); 1376 1377 /* 1378 * arch_free_page() can make the page's contents inaccessible. s390 1379 * does this. So nothing which can access the page's contents should 1380 * happen after this. 1381 */ 1382 arch_free_page(page, order); 1383 1384 debug_pagealloc_unmap_pages(page, 1 << order); 1385 1386 return true; 1387 } 1388 1389 #ifdef CONFIG_DEBUG_VM 1390 /* 1391 * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed 1392 * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when 1393 * moved from pcp lists to free lists. 1394 */ 1395 static bool free_pcp_prepare(struct page *page, unsigned int order) 1396 { 1397 return free_pages_prepare(page, order, true, FPI_NONE); 1398 } 1399 1400 static bool bulkfree_pcp_prepare(struct page *page) 1401 { 1402 if (debug_pagealloc_enabled_static()) 1403 return check_free_page(page); 1404 else 1405 return false; 1406 } 1407 #else 1408 /* 1409 * With DEBUG_VM disabled, order-0 pages being freed are checked only when 1410 * moving from pcp lists to free list in order to reduce overhead. With 1411 * debug_pagealloc enabled, they are checked also immediately when being freed 1412 * to the pcp lists. 1413 */ 1414 static bool free_pcp_prepare(struct page *page, unsigned int order) 1415 { 1416 if (debug_pagealloc_enabled_static()) 1417 return free_pages_prepare(page, order, true, FPI_NONE); 1418 else 1419 return free_pages_prepare(page, order, false, FPI_NONE); 1420 } 1421 1422 static bool bulkfree_pcp_prepare(struct page *page) 1423 { 1424 return check_free_page(page); 1425 } 1426 #endif /* CONFIG_DEBUG_VM */ 1427 1428 static inline void prefetch_buddy(struct page *page) 1429 { 1430 unsigned long pfn = page_to_pfn(page); 1431 unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0); 1432 struct page *buddy = page + (buddy_pfn - pfn); 1433 1434 prefetch(buddy); 1435 } 1436 1437 /* 1438 * Frees a number of pages from the PCP lists 1439 * Assumes all pages on list are in same zone, and of same order. 1440 * count is the number of pages to free. 1441 * 1442 * If the zone was previously in an "all pages pinned" state then look to 1443 * see if this freeing clears that state. 1444 * 1445 * And clear the zone's pages_scanned counter, to hold off the "all pages are 1446 * pinned" detection logic. 1447 */ 1448 static void free_pcppages_bulk(struct zone *zone, int count, 1449 struct per_cpu_pages *pcp) 1450 { 1451 int pindex = 0; 1452 int batch_free = 0; 1453 int nr_freed = 0; 1454 unsigned int order; 1455 int prefetch_nr = READ_ONCE(pcp->batch); 1456 bool isolated_pageblocks; 1457 struct page *page, *tmp; 1458 LIST_HEAD(head); 1459 1460 /* 1461 * Ensure proper count is passed which otherwise would stuck in the 1462 * below while (list_empty(list)) loop. 1463 */ 1464 count = min(pcp->count, count); 1465 while (count > 0) { 1466 struct list_head *list; 1467 1468 /* 1469 * Remove pages from lists in a round-robin fashion. A 1470 * batch_free count is maintained that is incremented when an 1471 * empty list is encountered. This is so more pages are freed 1472 * off fuller lists instead of spinning excessively around empty 1473 * lists 1474 */ 1475 do { 1476 batch_free++; 1477 if (++pindex == NR_PCP_LISTS) 1478 pindex = 0; 1479 list = &pcp->lists[pindex]; 1480 } while (list_empty(list)); 1481 1482 /* This is the only non-empty list. Free them all. */ 1483 if (batch_free == NR_PCP_LISTS) 1484 batch_free = count; 1485 1486 order = pindex_to_order(pindex); 1487 BUILD_BUG_ON(MAX_ORDER >= (1<<NR_PCP_ORDER_WIDTH)); 1488 do { 1489 page = list_last_entry(list, struct page, lru); 1490 /* must delete to avoid corrupting pcp list */ 1491 list_del(&page->lru); 1492 nr_freed += 1 << order; 1493 count -= 1 << order; 1494 1495 if (bulkfree_pcp_prepare(page)) 1496 continue; 1497 1498 /* Encode order with the migratetype */ 1499 page->index <<= NR_PCP_ORDER_WIDTH; 1500 page->index |= order; 1501 1502 list_add_tail(&page->lru, &head); 1503 1504 /* 1505 * We are going to put the page back to the global 1506 * pool, prefetch its buddy to speed up later access 1507 * under zone->lock. It is believed the overhead of 1508 * an additional test and calculating buddy_pfn here 1509 * can be offset by reduced memory latency later. To 1510 * avoid excessive prefetching due to large count, only 1511 * prefetch buddy for the first pcp->batch nr of pages. 1512 */ 1513 if (prefetch_nr) { 1514 prefetch_buddy(page); 1515 prefetch_nr--; 1516 } 1517 } while (count > 0 && --batch_free && !list_empty(list)); 1518 } 1519 pcp->count -= nr_freed; 1520 1521 /* 1522 * local_lock_irq held so equivalent to spin_lock_irqsave for 1523 * both PREEMPT_RT and non-PREEMPT_RT configurations. 1524 */ 1525 spin_lock(&zone->lock); 1526 isolated_pageblocks = has_isolate_pageblock(zone); 1527 1528 /* 1529 * Use safe version since after __free_one_page(), 1530 * page->lru.next will not point to original list. 1531 */ 1532 list_for_each_entry_safe(page, tmp, &head, lru) { 1533 int mt = get_pcppage_migratetype(page); 1534 1535 /* mt has been encoded with the order (see above) */ 1536 order = mt & NR_PCP_ORDER_MASK; 1537 mt >>= NR_PCP_ORDER_WIDTH; 1538 1539 /* MIGRATE_ISOLATE page should not go to pcplists */ 1540 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1541 /* Pageblock could have been isolated meanwhile */ 1542 if (unlikely(isolated_pageblocks)) 1543 mt = get_pageblock_migratetype(page); 1544 1545 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1546 trace_mm_page_pcpu_drain(page, order, mt); 1547 } 1548 spin_unlock(&zone->lock); 1549 } 1550 1551 static void free_one_page(struct zone *zone, 1552 struct page *page, unsigned long pfn, 1553 unsigned int order, 1554 int migratetype, fpi_t fpi_flags) 1555 { 1556 unsigned long flags; 1557 1558 spin_lock_irqsave(&zone->lock, flags); 1559 if (unlikely(has_isolate_pageblock(zone) || 1560 is_migrate_isolate(migratetype))) { 1561 migratetype = get_pfnblock_migratetype(page, pfn); 1562 } 1563 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1564 spin_unlock_irqrestore(&zone->lock, flags); 1565 } 1566 1567 static void __meminit __init_single_page(struct page *page, unsigned long pfn, 1568 unsigned long zone, int nid) 1569 { 1570 mm_zero_struct_page(page); 1571 set_page_links(page, zone, nid, pfn); 1572 init_page_count(page); 1573 page_mapcount_reset(page); 1574 page_cpupid_reset_last(page); 1575 page_kasan_tag_reset(page); 1576 1577 INIT_LIST_HEAD(&page->lru); 1578 #ifdef WANT_PAGE_VIRTUAL 1579 /* The shift won't overflow because ZONE_NORMAL is below 4G. */ 1580 if (!is_highmem_idx(zone)) 1581 set_page_address(page, __va(pfn << PAGE_SHIFT)); 1582 #endif 1583 } 1584 1585 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1586 static void __meminit init_reserved_page(unsigned long pfn) 1587 { 1588 pg_data_t *pgdat; 1589 int nid, zid; 1590 1591 if (!early_page_uninitialised(pfn)) 1592 return; 1593 1594 nid = early_pfn_to_nid(pfn); 1595 pgdat = NODE_DATA(nid); 1596 1597 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 1598 struct zone *zone = &pgdat->node_zones[zid]; 1599 1600 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone)) 1601 break; 1602 } 1603 __init_single_page(pfn_to_page(pfn), pfn, zid, nid); 1604 } 1605 #else 1606 static inline void init_reserved_page(unsigned long pfn) 1607 { 1608 } 1609 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 1610 1611 /* 1612 * Initialised pages do not have PageReserved set. This function is 1613 * called for each range allocated by the bootmem allocator and 1614 * marks the pages PageReserved. The remaining valid pages are later 1615 * sent to the buddy page allocator. 1616 */ 1617 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end) 1618 { 1619 unsigned long start_pfn = PFN_DOWN(start); 1620 unsigned long end_pfn = PFN_UP(end); 1621 1622 for (; start_pfn < end_pfn; start_pfn++) { 1623 if (pfn_valid(start_pfn)) { 1624 struct page *page = pfn_to_page(start_pfn); 1625 1626 init_reserved_page(start_pfn); 1627 1628 /* Avoid false-positive PageTail() */ 1629 INIT_LIST_HEAD(&page->lru); 1630 1631 /* 1632 * no need for atomic set_bit because the struct 1633 * page is not visible yet so nobody should 1634 * access it yet. 1635 */ 1636 __SetPageReserved(page); 1637 } 1638 } 1639 } 1640 1641 static void __free_pages_ok(struct page *page, unsigned int order, 1642 fpi_t fpi_flags) 1643 { 1644 unsigned long flags; 1645 int migratetype; 1646 unsigned long pfn = page_to_pfn(page); 1647 struct zone *zone = page_zone(page); 1648 1649 if (!free_pages_prepare(page, order, true, fpi_flags)) 1650 return; 1651 1652 migratetype = get_pfnblock_migratetype(page, pfn); 1653 1654 spin_lock_irqsave(&zone->lock, flags); 1655 if (unlikely(has_isolate_pageblock(zone) || 1656 is_migrate_isolate(migratetype))) { 1657 migratetype = get_pfnblock_migratetype(page, pfn); 1658 } 1659 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1660 spin_unlock_irqrestore(&zone->lock, flags); 1661 1662 __count_vm_events(PGFREE, 1 << order); 1663 } 1664 1665 void __free_pages_core(struct page *page, unsigned int order) 1666 { 1667 unsigned int nr_pages = 1 << order; 1668 struct page *p = page; 1669 unsigned int loop; 1670 1671 /* 1672 * When initializing the memmap, __init_single_page() sets the refcount 1673 * of all pages to 1 ("allocated"/"not free"). We have to set the 1674 * refcount of all involved pages to 0. 1675 */ 1676 prefetchw(p); 1677 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1678 prefetchw(p + 1); 1679 __ClearPageReserved(p); 1680 set_page_count(p, 0); 1681 } 1682 __ClearPageReserved(p); 1683 set_page_count(p, 0); 1684 1685 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1686 1687 /* 1688 * Bypass PCP and place fresh pages right to the tail, primarily 1689 * relevant for memory onlining. 1690 */ 1691 __free_pages_ok(page, order, FPI_TO_TAIL | FPI_SKIP_KASAN_POISON); 1692 } 1693 1694 #ifdef CONFIG_NUMA 1695 1696 /* 1697 * During memory init memblocks map pfns to nids. The search is expensive and 1698 * this caches recent lookups. The implementation of __early_pfn_to_nid 1699 * treats start/end as pfns. 1700 */ 1701 struct mminit_pfnnid_cache { 1702 unsigned long last_start; 1703 unsigned long last_end; 1704 int last_nid; 1705 }; 1706 1707 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata; 1708 1709 /* 1710 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on. 1711 */ 1712 static int __meminit __early_pfn_to_nid(unsigned long pfn, 1713 struct mminit_pfnnid_cache *state) 1714 { 1715 unsigned long start_pfn, end_pfn; 1716 int nid; 1717 1718 if (state->last_start <= pfn && pfn < state->last_end) 1719 return state->last_nid; 1720 1721 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn); 1722 if (nid != NUMA_NO_NODE) { 1723 state->last_start = start_pfn; 1724 state->last_end = end_pfn; 1725 state->last_nid = nid; 1726 } 1727 1728 return nid; 1729 } 1730 1731 int __meminit early_pfn_to_nid(unsigned long pfn) 1732 { 1733 static DEFINE_SPINLOCK(early_pfn_lock); 1734 int nid; 1735 1736 spin_lock(&early_pfn_lock); 1737 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache); 1738 if (nid < 0) 1739 nid = first_online_node; 1740 spin_unlock(&early_pfn_lock); 1741 1742 return nid; 1743 } 1744 #endif /* CONFIG_NUMA */ 1745 1746 void __init memblock_free_pages(struct page *page, unsigned long pfn, 1747 unsigned int order) 1748 { 1749 if (early_page_uninitialised(pfn)) 1750 return; 1751 __free_pages_core(page, order); 1752 } 1753 1754 /* 1755 * Check that the whole (or subset of) a pageblock given by the interval of 1756 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1757 * with the migration of free compaction scanner. The scanners then need to 1758 * use only pfn_valid_within() check for arches that allow holes within 1759 * pageblocks. 1760 * 1761 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1762 * 1763 * It's possible on some configurations to have a setup like node0 node1 node0 1764 * i.e. it's possible that all pages within a zones range of pages do not 1765 * belong to a single zone. We assume that a border between node0 and node1 1766 * can occur within a single pageblock, but not a node0 node1 node0 1767 * interleaving within a single pageblock. It is therefore sufficient to check 1768 * the first and last page of a pageblock and avoid checking each individual 1769 * page in a pageblock. 1770 */ 1771 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1772 unsigned long end_pfn, struct zone *zone) 1773 { 1774 struct page *start_page; 1775 struct page *end_page; 1776 1777 /* end_pfn is one past the range we are checking */ 1778 end_pfn--; 1779 1780 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1781 return NULL; 1782 1783 start_page = pfn_to_online_page(start_pfn); 1784 if (!start_page) 1785 return NULL; 1786 1787 if (page_zone(start_page) != zone) 1788 return NULL; 1789 1790 end_page = pfn_to_page(end_pfn); 1791 1792 /* This gives a shorter code than deriving page_zone(end_page) */ 1793 if (page_zone_id(start_page) != page_zone_id(end_page)) 1794 return NULL; 1795 1796 return start_page; 1797 } 1798 1799 void set_zone_contiguous(struct zone *zone) 1800 { 1801 unsigned long block_start_pfn = zone->zone_start_pfn; 1802 unsigned long block_end_pfn; 1803 1804 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages); 1805 for (; block_start_pfn < zone_end_pfn(zone); 1806 block_start_pfn = block_end_pfn, 1807 block_end_pfn += pageblock_nr_pages) { 1808 1809 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1810 1811 if (!__pageblock_pfn_to_page(block_start_pfn, 1812 block_end_pfn, zone)) 1813 return; 1814 cond_resched(); 1815 } 1816 1817 /* We confirm that there is no hole */ 1818 zone->contiguous = true; 1819 } 1820 1821 void clear_zone_contiguous(struct zone *zone) 1822 { 1823 zone->contiguous = false; 1824 } 1825 1826 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 1827 static void __init deferred_free_range(unsigned long pfn, 1828 unsigned long nr_pages) 1829 { 1830 struct page *page; 1831 unsigned long i; 1832 1833 if (!nr_pages) 1834 return; 1835 1836 page = pfn_to_page(pfn); 1837 1838 /* Free a large naturally-aligned chunk if possible */ 1839 if (nr_pages == pageblock_nr_pages && 1840 (pfn & (pageblock_nr_pages - 1)) == 0) { 1841 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1842 __free_pages_core(page, pageblock_order); 1843 return; 1844 } 1845 1846 for (i = 0; i < nr_pages; i++, page++, pfn++) { 1847 if ((pfn & (pageblock_nr_pages - 1)) == 0) 1848 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 1849 __free_pages_core(page, 0); 1850 } 1851 } 1852 1853 /* Completion tracking for deferred_init_memmap() threads */ 1854 static atomic_t pgdat_init_n_undone __initdata; 1855 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp); 1856 1857 static inline void __init pgdat_init_report_one_done(void) 1858 { 1859 if (atomic_dec_and_test(&pgdat_init_n_undone)) 1860 complete(&pgdat_init_all_done_comp); 1861 } 1862 1863 /* 1864 * Returns true if page needs to be initialized or freed to buddy allocator. 1865 * 1866 * First we check if pfn is valid on architectures where it is possible to have 1867 * holes within pageblock_nr_pages. On systems where it is not possible, this 1868 * function is optimized out. 1869 * 1870 * Then, we check if a current large page is valid by only checking the validity 1871 * of the head pfn. 1872 */ 1873 static inline bool __init deferred_pfn_valid(unsigned long pfn) 1874 { 1875 if (!pfn_valid_within(pfn)) 1876 return false; 1877 if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn)) 1878 return false; 1879 return true; 1880 } 1881 1882 /* 1883 * Free pages to buddy allocator. Try to free aligned pages in 1884 * pageblock_nr_pages sizes. 1885 */ 1886 static void __init deferred_free_pages(unsigned long pfn, 1887 unsigned long end_pfn) 1888 { 1889 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1890 unsigned long nr_free = 0; 1891 1892 for (; pfn < end_pfn; pfn++) { 1893 if (!deferred_pfn_valid(pfn)) { 1894 deferred_free_range(pfn - nr_free, nr_free); 1895 nr_free = 0; 1896 } else if (!(pfn & nr_pgmask)) { 1897 deferred_free_range(pfn - nr_free, nr_free); 1898 nr_free = 1; 1899 } else { 1900 nr_free++; 1901 } 1902 } 1903 /* Free the last block of pages to allocator */ 1904 deferred_free_range(pfn - nr_free, nr_free); 1905 } 1906 1907 /* 1908 * Initialize struct pages. We minimize pfn page lookups and scheduler checks 1909 * by performing it only once every pageblock_nr_pages. 1910 * Return number of pages initialized. 1911 */ 1912 static unsigned long __init deferred_init_pages(struct zone *zone, 1913 unsigned long pfn, 1914 unsigned long end_pfn) 1915 { 1916 unsigned long nr_pgmask = pageblock_nr_pages - 1; 1917 int nid = zone_to_nid(zone); 1918 unsigned long nr_pages = 0; 1919 int zid = zone_idx(zone); 1920 struct page *page = NULL; 1921 1922 for (; pfn < end_pfn; pfn++) { 1923 if (!deferred_pfn_valid(pfn)) { 1924 page = NULL; 1925 continue; 1926 } else if (!page || !(pfn & nr_pgmask)) { 1927 page = pfn_to_page(pfn); 1928 } else { 1929 page++; 1930 } 1931 __init_single_page(page, pfn, zid, nid); 1932 nr_pages++; 1933 } 1934 return (nr_pages); 1935 } 1936 1937 /* 1938 * This function is meant to pre-load the iterator for the zone init. 1939 * Specifically it walks through the ranges until we are caught up to the 1940 * first_init_pfn value and exits there. If we never encounter the value we 1941 * return false indicating there are no valid ranges left. 1942 */ 1943 static bool __init 1944 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone, 1945 unsigned long *spfn, unsigned long *epfn, 1946 unsigned long first_init_pfn) 1947 { 1948 u64 j; 1949 1950 /* 1951 * Start out by walking through the ranges in this zone that have 1952 * already been initialized. We don't need to do anything with them 1953 * so we just need to flush them out of the system. 1954 */ 1955 for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) { 1956 if (*epfn <= first_init_pfn) 1957 continue; 1958 if (*spfn < first_init_pfn) 1959 *spfn = first_init_pfn; 1960 *i = j; 1961 return true; 1962 } 1963 1964 return false; 1965 } 1966 1967 /* 1968 * Initialize and free pages. We do it in two loops: first we initialize 1969 * struct page, then free to buddy allocator, because while we are 1970 * freeing pages we can access pages that are ahead (computing buddy 1971 * page in __free_one_page()). 1972 * 1973 * In order to try and keep some memory in the cache we have the loop 1974 * broken along max page order boundaries. This way we will not cause 1975 * any issues with the buddy page computation. 1976 */ 1977 static unsigned long __init 1978 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn, 1979 unsigned long *end_pfn) 1980 { 1981 unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES); 1982 unsigned long spfn = *start_pfn, epfn = *end_pfn; 1983 unsigned long nr_pages = 0; 1984 u64 j = *i; 1985 1986 /* First we loop through and initialize the page values */ 1987 for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) { 1988 unsigned long t; 1989 1990 if (mo_pfn <= *start_pfn) 1991 break; 1992 1993 t = min(mo_pfn, *end_pfn); 1994 nr_pages += deferred_init_pages(zone, *start_pfn, t); 1995 1996 if (mo_pfn < *end_pfn) { 1997 *start_pfn = mo_pfn; 1998 break; 1999 } 2000 } 2001 2002 /* Reset values and now loop through freeing pages as needed */ 2003 swap(j, *i); 2004 2005 for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) { 2006 unsigned long t; 2007 2008 if (mo_pfn <= spfn) 2009 break; 2010 2011 t = min(mo_pfn, epfn); 2012 deferred_free_pages(spfn, t); 2013 2014 if (mo_pfn <= epfn) 2015 break; 2016 } 2017 2018 return nr_pages; 2019 } 2020 2021 static void __init 2022 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn, 2023 void *arg) 2024 { 2025 unsigned long spfn, epfn; 2026 struct zone *zone = arg; 2027 u64 i; 2028 2029 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn); 2030 2031 /* 2032 * Initialize and free pages in MAX_ORDER sized increments so that we 2033 * can avoid introducing any issues with the buddy allocator. 2034 */ 2035 while (spfn < end_pfn) { 2036 deferred_init_maxorder(&i, zone, &spfn, &epfn); 2037 cond_resched(); 2038 } 2039 } 2040 2041 /* An arch may override for more concurrency. */ 2042 __weak int __init 2043 deferred_page_init_max_threads(const struct cpumask *node_cpumask) 2044 { 2045 return 1; 2046 } 2047 2048 /* Initialise remaining memory on a node */ 2049 static int __init deferred_init_memmap(void *data) 2050 { 2051 pg_data_t *pgdat = data; 2052 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id); 2053 unsigned long spfn = 0, epfn = 0; 2054 unsigned long first_init_pfn, flags; 2055 unsigned long start = jiffies; 2056 struct zone *zone; 2057 int zid, max_threads; 2058 u64 i; 2059 2060 /* Bind memory initialisation thread to a local node if possible */ 2061 if (!cpumask_empty(cpumask)) 2062 set_cpus_allowed_ptr(current, cpumask); 2063 2064 pgdat_resize_lock(pgdat, &flags); 2065 first_init_pfn = pgdat->first_deferred_pfn; 2066 if (first_init_pfn == ULONG_MAX) { 2067 pgdat_resize_unlock(pgdat, &flags); 2068 pgdat_init_report_one_done(); 2069 return 0; 2070 } 2071 2072 /* Sanity check boundaries */ 2073 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn); 2074 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat)); 2075 pgdat->first_deferred_pfn = ULONG_MAX; 2076 2077 /* 2078 * Once we unlock here, the zone cannot be grown anymore, thus if an 2079 * interrupt thread must allocate this early in boot, zone must be 2080 * pre-grown prior to start of deferred page initialization. 2081 */ 2082 pgdat_resize_unlock(pgdat, &flags); 2083 2084 /* Only the highest zone is deferred so find it */ 2085 for (zid = 0; zid < MAX_NR_ZONES; zid++) { 2086 zone = pgdat->node_zones + zid; 2087 if (first_init_pfn < zone_end_pfn(zone)) 2088 break; 2089 } 2090 2091 /* If the zone is empty somebody else may have cleared out the zone */ 2092 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2093 first_init_pfn)) 2094 goto zone_empty; 2095 2096 max_threads = deferred_page_init_max_threads(cpumask); 2097 2098 while (spfn < epfn) { 2099 unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION); 2100 struct padata_mt_job job = { 2101 .thread_fn = deferred_init_memmap_chunk, 2102 .fn_arg = zone, 2103 .start = spfn, 2104 .size = epfn_align - spfn, 2105 .align = PAGES_PER_SECTION, 2106 .min_chunk = PAGES_PER_SECTION, 2107 .max_threads = max_threads, 2108 }; 2109 2110 padata_do_multithreaded(&job); 2111 deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2112 epfn_align); 2113 } 2114 zone_empty: 2115 /* Sanity check that the next zone really is unpopulated */ 2116 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone)); 2117 2118 pr_info("node %d deferred pages initialised in %ums\n", 2119 pgdat->node_id, jiffies_to_msecs(jiffies - start)); 2120 2121 pgdat_init_report_one_done(); 2122 return 0; 2123 } 2124 2125 /* 2126 * If this zone has deferred pages, try to grow it by initializing enough 2127 * deferred pages to satisfy the allocation specified by order, rounded up to 2128 * the nearest PAGES_PER_SECTION boundary. So we're adding memory in increments 2129 * of SECTION_SIZE bytes by initializing struct pages in increments of 2130 * PAGES_PER_SECTION * sizeof(struct page) bytes. 2131 * 2132 * Return true when zone was grown, otherwise return false. We return true even 2133 * when we grow less than requested, to let the caller decide if there are 2134 * enough pages to satisfy the allocation. 2135 * 2136 * Note: We use noinline because this function is needed only during boot, and 2137 * it is called from a __ref function _deferred_grow_zone. This way we are 2138 * making sure that it is not inlined into permanent text section. 2139 */ 2140 static noinline bool __init 2141 deferred_grow_zone(struct zone *zone, unsigned int order) 2142 { 2143 unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION); 2144 pg_data_t *pgdat = zone->zone_pgdat; 2145 unsigned long first_deferred_pfn = pgdat->first_deferred_pfn; 2146 unsigned long spfn, epfn, flags; 2147 unsigned long nr_pages = 0; 2148 u64 i; 2149 2150 /* Only the last zone may have deferred pages */ 2151 if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat)) 2152 return false; 2153 2154 pgdat_resize_lock(pgdat, &flags); 2155 2156 /* 2157 * If someone grew this zone while we were waiting for spinlock, return 2158 * true, as there might be enough pages already. 2159 */ 2160 if (first_deferred_pfn != pgdat->first_deferred_pfn) { 2161 pgdat_resize_unlock(pgdat, &flags); 2162 return true; 2163 } 2164 2165 /* If the zone is empty somebody else may have cleared out the zone */ 2166 if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, 2167 first_deferred_pfn)) { 2168 pgdat->first_deferred_pfn = ULONG_MAX; 2169 pgdat_resize_unlock(pgdat, &flags); 2170 /* Retry only once. */ 2171 return first_deferred_pfn != ULONG_MAX; 2172 } 2173 2174 /* 2175 * Initialize and free pages in MAX_ORDER sized increments so 2176 * that we can avoid introducing any issues with the buddy 2177 * allocator. 2178 */ 2179 while (spfn < epfn) { 2180 /* update our first deferred PFN for this section */ 2181 first_deferred_pfn = spfn; 2182 2183 nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn); 2184 touch_nmi_watchdog(); 2185 2186 /* We should only stop along section boundaries */ 2187 if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION) 2188 continue; 2189 2190 /* If our quota has been met we can stop here */ 2191 if (nr_pages >= nr_pages_needed) 2192 break; 2193 } 2194 2195 pgdat->first_deferred_pfn = spfn; 2196 pgdat_resize_unlock(pgdat, &flags); 2197 2198 return nr_pages > 0; 2199 } 2200 2201 /* 2202 * deferred_grow_zone() is __init, but it is called from 2203 * get_page_from_freelist() during early boot until deferred_pages permanently 2204 * disables this call. This is why we have refdata wrapper to avoid warning, 2205 * and to ensure that the function body gets unloaded. 2206 */ 2207 static bool __ref 2208 _deferred_grow_zone(struct zone *zone, unsigned int order) 2209 { 2210 return deferred_grow_zone(zone, order); 2211 } 2212 2213 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 2214 2215 void __init page_alloc_init_late(void) 2216 { 2217 struct zone *zone; 2218 int nid; 2219 2220 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 2221 2222 /* There will be num_node_state(N_MEMORY) threads */ 2223 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY)); 2224 for_each_node_state(nid, N_MEMORY) { 2225 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid); 2226 } 2227 2228 /* Block until all are initialised */ 2229 wait_for_completion(&pgdat_init_all_done_comp); 2230 2231 /* 2232 * We initialized the rest of the deferred pages. Permanently disable 2233 * on-demand struct page initialization. 2234 */ 2235 static_branch_disable(&deferred_pages); 2236 2237 /* Reinit limits that are based on free pages after the kernel is up */ 2238 files_maxfiles_init(); 2239 #endif 2240 2241 buffer_init(); 2242 2243 /* Discard memblock private memory */ 2244 memblock_discard(); 2245 2246 for_each_node_state(nid, N_MEMORY) 2247 shuffle_free_memory(NODE_DATA(nid)); 2248 2249 for_each_populated_zone(zone) 2250 set_zone_contiguous(zone); 2251 } 2252 2253 #ifdef CONFIG_CMA 2254 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */ 2255 void __init init_cma_reserved_pageblock(struct page *page) 2256 { 2257 unsigned i = pageblock_nr_pages; 2258 struct page *p = page; 2259 2260 do { 2261 __ClearPageReserved(p); 2262 set_page_count(p, 0); 2263 } while (++p, --i); 2264 2265 set_pageblock_migratetype(page, MIGRATE_CMA); 2266 2267 if (pageblock_order >= MAX_ORDER) { 2268 i = pageblock_nr_pages; 2269 p = page; 2270 do { 2271 set_page_refcounted(p); 2272 __free_pages(p, MAX_ORDER - 1); 2273 p += MAX_ORDER_NR_PAGES; 2274 } while (i -= MAX_ORDER_NR_PAGES); 2275 } else { 2276 set_page_refcounted(page); 2277 __free_pages(page, pageblock_order); 2278 } 2279 2280 adjust_managed_page_count(page, pageblock_nr_pages); 2281 page_zone(page)->cma_pages += pageblock_nr_pages; 2282 } 2283 #endif 2284 2285 /* 2286 * The order of subdivision here is critical for the IO subsystem. 2287 * Please do not alter this order without good reasons and regression 2288 * testing. Specifically, as large blocks of memory are subdivided, 2289 * the order in which smaller blocks are delivered depends on the order 2290 * they're subdivided in this function. This is the primary factor 2291 * influencing the order in which pages are delivered to the IO 2292 * subsystem according to empirical testing, and this is also justified 2293 * by considering the behavior of a buddy system containing a single 2294 * large block of memory acted on by a series of small allocations. 2295 * This behavior is a critical factor in sglist merging's success. 2296 * 2297 * -- nyc 2298 */ 2299 static inline void expand(struct zone *zone, struct page *page, 2300 int low, int high, int migratetype) 2301 { 2302 unsigned long size = 1 << high; 2303 2304 while (high > low) { 2305 high--; 2306 size >>= 1; 2307 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 2308 2309 /* 2310 * Mark as guard pages (or page), that will allow to 2311 * merge back to allocator when buddy will be freed. 2312 * Corresponding page table entries will not be touched, 2313 * pages will stay not present in virtual address space 2314 */ 2315 if (set_page_guard(zone, &page[size], high, migratetype)) 2316 continue; 2317 2318 add_to_free_list(&page[size], zone, high, migratetype); 2319 set_buddy_order(&page[size], high); 2320 } 2321 } 2322 2323 static void check_new_page_bad(struct page *page) 2324 { 2325 if (unlikely(page->flags & __PG_HWPOISON)) { 2326 /* Don't complain about hwpoisoned pages */ 2327 page_mapcount_reset(page); /* remove PageBuddy */ 2328 return; 2329 } 2330 2331 bad_page(page, 2332 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 2333 } 2334 2335 /* 2336 * This page is about to be returned from the page allocator 2337 */ 2338 static inline int check_new_page(struct page *page) 2339 { 2340 if (likely(page_expected_state(page, 2341 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 2342 return 0; 2343 2344 check_new_page_bad(page); 2345 return 1; 2346 } 2347 2348 #ifdef CONFIG_DEBUG_VM 2349 /* 2350 * With DEBUG_VM enabled, order-0 pages are checked for expected state when 2351 * being allocated from pcp lists. With debug_pagealloc also enabled, they are 2352 * also checked when pcp lists are refilled from the free lists. 2353 */ 2354 static inline bool check_pcp_refill(struct page *page) 2355 { 2356 if (debug_pagealloc_enabled_static()) 2357 return check_new_page(page); 2358 else 2359 return false; 2360 } 2361 2362 static inline bool check_new_pcp(struct page *page) 2363 { 2364 return check_new_page(page); 2365 } 2366 #else 2367 /* 2368 * With DEBUG_VM disabled, free order-0 pages are checked for expected state 2369 * when pcp lists are being refilled from the free lists. With debug_pagealloc 2370 * enabled, they are also checked when being allocated from the pcp lists. 2371 */ 2372 static inline bool check_pcp_refill(struct page *page) 2373 { 2374 return check_new_page(page); 2375 } 2376 static inline bool check_new_pcp(struct page *page) 2377 { 2378 if (debug_pagealloc_enabled_static()) 2379 return check_new_page(page); 2380 else 2381 return false; 2382 } 2383 #endif /* CONFIG_DEBUG_VM */ 2384 2385 static bool check_new_pages(struct page *page, unsigned int order) 2386 { 2387 int i; 2388 for (i = 0; i < (1 << order); i++) { 2389 struct page *p = page + i; 2390 2391 if (unlikely(check_new_page(p))) 2392 return true; 2393 } 2394 2395 return false; 2396 } 2397 2398 inline void post_alloc_hook(struct page *page, unsigned int order, 2399 gfp_t gfp_flags) 2400 { 2401 bool init; 2402 2403 set_page_private(page, 0); 2404 set_page_refcounted(page); 2405 2406 arch_alloc_page(page, order); 2407 debug_pagealloc_map_pages(page, 1 << order); 2408 2409 /* 2410 * Page unpoisoning must happen before memory initialization. 2411 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 2412 * allocations and the page unpoisoning code will complain. 2413 */ 2414 kernel_unpoison_pages(page, 1 << order); 2415 2416 /* 2417 * As memory initialization might be integrated into KASAN, 2418 * kasan_alloc_pages and kernel_init_free_pages must be 2419 * kept together to avoid discrepancies in behavior. 2420 */ 2421 init = !want_init_on_free() && want_init_on_alloc(gfp_flags); 2422 kasan_alloc_pages(page, order, init); 2423 if (init && !kasan_has_integrated_init()) 2424 kernel_init_free_pages(page, 1 << order); 2425 2426 set_page_owner(page, order, gfp_flags); 2427 } 2428 2429 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 2430 unsigned int alloc_flags) 2431 { 2432 post_alloc_hook(page, order, gfp_flags); 2433 2434 if (order && (gfp_flags & __GFP_COMP)) 2435 prep_compound_page(page, order); 2436 2437 /* 2438 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 2439 * allocate the page. The expectation is that the caller is taking 2440 * steps that will free more memory. The caller should avoid the page 2441 * being used for !PFMEMALLOC purposes. 2442 */ 2443 if (alloc_flags & ALLOC_NO_WATERMARKS) 2444 set_page_pfmemalloc(page); 2445 else 2446 clear_page_pfmemalloc(page); 2447 } 2448 2449 /* 2450 * Go through the free lists for the given migratetype and remove 2451 * the smallest available page from the freelists 2452 */ 2453 static __always_inline 2454 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 2455 int migratetype) 2456 { 2457 unsigned int current_order; 2458 struct free_area *area; 2459 struct page *page; 2460 2461 /* Find a page of the appropriate size in the preferred list */ 2462 for (current_order = order; current_order < MAX_ORDER; ++current_order) { 2463 area = &(zone->free_area[current_order]); 2464 page = get_page_from_free_area(area, migratetype); 2465 if (!page) 2466 continue; 2467 del_page_from_free_list(page, zone, current_order); 2468 expand(zone, page, order, current_order, migratetype); 2469 set_pcppage_migratetype(page, migratetype); 2470 return page; 2471 } 2472 2473 return NULL; 2474 } 2475 2476 2477 /* 2478 * This array describes the order lists are fallen back to when 2479 * the free lists for the desirable migrate type are depleted 2480 */ 2481 static int fallbacks[MIGRATE_TYPES][3] = { 2482 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2483 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES }, 2484 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES }, 2485 #ifdef CONFIG_CMA 2486 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */ 2487 #endif 2488 #ifdef CONFIG_MEMORY_ISOLATION 2489 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */ 2490 #endif 2491 }; 2492 2493 #ifdef CONFIG_CMA 2494 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2495 unsigned int order) 2496 { 2497 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 2498 } 2499 #else 2500 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 2501 unsigned int order) { return NULL; } 2502 #endif 2503 2504 /* 2505 * Move the free pages in a range to the freelist tail of the requested type. 2506 * Note that start_page and end_pages are not aligned on a pageblock 2507 * boundary. If alignment is required, use move_freepages_block() 2508 */ 2509 static int move_freepages(struct zone *zone, 2510 unsigned long start_pfn, unsigned long end_pfn, 2511 int migratetype, int *num_movable) 2512 { 2513 struct page *page; 2514 unsigned long pfn; 2515 unsigned int order; 2516 int pages_moved = 0; 2517 2518 for (pfn = start_pfn; pfn <= end_pfn;) { 2519 if (!pfn_valid_within(pfn)) { 2520 pfn++; 2521 continue; 2522 } 2523 2524 page = pfn_to_page(pfn); 2525 if (!PageBuddy(page)) { 2526 /* 2527 * We assume that pages that could be isolated for 2528 * migration are movable. But we don't actually try 2529 * isolating, as that would be expensive. 2530 */ 2531 if (num_movable && 2532 (PageLRU(page) || __PageMovable(page))) 2533 (*num_movable)++; 2534 pfn++; 2535 continue; 2536 } 2537 2538 /* Make sure we are not inadvertently changing nodes */ 2539 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 2540 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 2541 2542 order = buddy_order(page); 2543 move_to_free_list(page, zone, order, migratetype); 2544 pfn += 1 << order; 2545 pages_moved += 1 << order; 2546 } 2547 2548 return pages_moved; 2549 } 2550 2551 int move_freepages_block(struct zone *zone, struct page *page, 2552 int migratetype, int *num_movable) 2553 { 2554 unsigned long start_pfn, end_pfn, pfn; 2555 2556 if (num_movable) 2557 *num_movable = 0; 2558 2559 pfn = page_to_pfn(page); 2560 start_pfn = pfn & ~(pageblock_nr_pages - 1); 2561 end_pfn = start_pfn + pageblock_nr_pages - 1; 2562 2563 /* Do not cross zone boundaries */ 2564 if (!zone_spans_pfn(zone, start_pfn)) 2565 start_pfn = pfn; 2566 if (!zone_spans_pfn(zone, end_pfn)) 2567 return 0; 2568 2569 return move_freepages(zone, start_pfn, end_pfn, migratetype, 2570 num_movable); 2571 } 2572 2573 static void change_pageblock_range(struct page *pageblock_page, 2574 int start_order, int migratetype) 2575 { 2576 int nr_pageblocks = 1 << (start_order - pageblock_order); 2577 2578 while (nr_pageblocks--) { 2579 set_pageblock_migratetype(pageblock_page, migratetype); 2580 pageblock_page += pageblock_nr_pages; 2581 } 2582 } 2583 2584 /* 2585 * When we are falling back to another migratetype during allocation, try to 2586 * steal extra free pages from the same pageblocks to satisfy further 2587 * allocations, instead of polluting multiple pageblocks. 2588 * 2589 * If we are stealing a relatively large buddy page, it is likely there will 2590 * be more free pages in the pageblock, so try to steal them all. For 2591 * reclaimable and unmovable allocations, we steal regardless of page size, 2592 * as fragmentation caused by those allocations polluting movable pageblocks 2593 * is worse than movable allocations stealing from unmovable and reclaimable 2594 * pageblocks. 2595 */ 2596 static bool can_steal_fallback(unsigned int order, int start_mt) 2597 { 2598 /* 2599 * Leaving this order check is intended, although there is 2600 * relaxed order check in next check. The reason is that 2601 * we can actually steal whole pageblock if this condition met, 2602 * but, below check doesn't guarantee it and that is just heuristic 2603 * so could be changed anytime. 2604 */ 2605 if (order >= pageblock_order) 2606 return true; 2607 2608 if (order >= pageblock_order / 2 || 2609 start_mt == MIGRATE_RECLAIMABLE || 2610 start_mt == MIGRATE_UNMOVABLE || 2611 page_group_by_mobility_disabled) 2612 return true; 2613 2614 return false; 2615 } 2616 2617 static inline bool boost_watermark(struct zone *zone) 2618 { 2619 unsigned long max_boost; 2620 2621 if (!watermark_boost_factor) 2622 return false; 2623 /* 2624 * Don't bother in zones that are unlikely to produce results. 2625 * On small machines, including kdump capture kernels running 2626 * in a small area, boosting the watermark can cause an out of 2627 * memory situation immediately. 2628 */ 2629 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 2630 return false; 2631 2632 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 2633 watermark_boost_factor, 10000); 2634 2635 /* 2636 * high watermark may be uninitialised if fragmentation occurs 2637 * very early in boot so do not boost. We do not fall 2638 * through and boost by pageblock_nr_pages as failing 2639 * allocations that early means that reclaim is not going 2640 * to help and it may even be impossible to reclaim the 2641 * boosted watermark resulting in a hang. 2642 */ 2643 if (!max_boost) 2644 return false; 2645 2646 max_boost = max(pageblock_nr_pages, max_boost); 2647 2648 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 2649 max_boost); 2650 2651 return true; 2652 } 2653 2654 /* 2655 * This function implements actual steal behaviour. If order is large enough, 2656 * we can steal whole pageblock. If not, we first move freepages in this 2657 * pageblock to our migratetype and determine how many already-allocated pages 2658 * are there in the pageblock with a compatible migratetype. If at least half 2659 * of pages are free or compatible, we can change migratetype of the pageblock 2660 * itself, so pages freed in the future will be put on the correct free list. 2661 */ 2662 static void steal_suitable_fallback(struct zone *zone, struct page *page, 2663 unsigned int alloc_flags, int start_type, bool whole_block) 2664 { 2665 unsigned int current_order = buddy_order(page); 2666 int free_pages, movable_pages, alike_pages; 2667 int old_block_type; 2668 2669 old_block_type = get_pageblock_migratetype(page); 2670 2671 /* 2672 * This can happen due to races and we want to prevent broken 2673 * highatomic accounting. 2674 */ 2675 if (is_migrate_highatomic(old_block_type)) 2676 goto single_page; 2677 2678 /* Take ownership for orders >= pageblock_order */ 2679 if (current_order >= pageblock_order) { 2680 change_pageblock_range(page, current_order, start_type); 2681 goto single_page; 2682 } 2683 2684 /* 2685 * Boost watermarks to increase reclaim pressure to reduce the 2686 * likelihood of future fallbacks. Wake kswapd now as the node 2687 * may be balanced overall and kswapd will not wake naturally. 2688 */ 2689 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 2690 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 2691 2692 /* We are not allowed to try stealing from the whole block */ 2693 if (!whole_block) 2694 goto single_page; 2695 2696 free_pages = move_freepages_block(zone, page, start_type, 2697 &movable_pages); 2698 /* 2699 * Determine how many pages are compatible with our allocation. 2700 * For movable allocation, it's the number of movable pages which 2701 * we just obtained. For other types it's a bit more tricky. 2702 */ 2703 if (start_type == MIGRATE_MOVABLE) { 2704 alike_pages = movable_pages; 2705 } else { 2706 /* 2707 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2708 * to MOVABLE pageblock, consider all non-movable pages as 2709 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2710 * vice versa, be conservative since we can't distinguish the 2711 * exact migratetype of non-movable pages. 2712 */ 2713 if (old_block_type == MIGRATE_MOVABLE) 2714 alike_pages = pageblock_nr_pages 2715 - (free_pages + movable_pages); 2716 else 2717 alike_pages = 0; 2718 } 2719 2720 /* moving whole block can fail due to zone boundary conditions */ 2721 if (!free_pages) 2722 goto single_page; 2723 2724 /* 2725 * If a sufficient number of pages in the block are either free or of 2726 * comparable migratability as our allocation, claim the whole block. 2727 */ 2728 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2729 page_group_by_mobility_disabled) 2730 set_pageblock_migratetype(page, start_type); 2731 2732 return; 2733 2734 single_page: 2735 move_to_free_list(page, zone, current_order, start_type); 2736 } 2737 2738 /* 2739 * Check whether there is a suitable fallback freepage with requested order. 2740 * If only_stealable is true, this function returns fallback_mt only if 2741 * we can steal other freepages all together. This would help to reduce 2742 * fragmentation due to mixed migratetype pages in one pageblock. 2743 */ 2744 int find_suitable_fallback(struct free_area *area, unsigned int order, 2745 int migratetype, bool only_stealable, bool *can_steal) 2746 { 2747 int i; 2748 int fallback_mt; 2749 2750 if (area->nr_free == 0) 2751 return -1; 2752 2753 *can_steal = false; 2754 for (i = 0;; i++) { 2755 fallback_mt = fallbacks[migratetype][i]; 2756 if (fallback_mt == MIGRATE_TYPES) 2757 break; 2758 2759 if (free_area_empty(area, fallback_mt)) 2760 continue; 2761 2762 if (can_steal_fallback(order, migratetype)) 2763 *can_steal = true; 2764 2765 if (!only_stealable) 2766 return fallback_mt; 2767 2768 if (*can_steal) 2769 return fallback_mt; 2770 } 2771 2772 return -1; 2773 } 2774 2775 /* 2776 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2777 * there are no empty page blocks that contain a page with a suitable order 2778 */ 2779 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2780 unsigned int alloc_order) 2781 { 2782 int mt; 2783 unsigned long max_managed, flags; 2784 2785 /* 2786 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2787 * Check is race-prone but harmless. 2788 */ 2789 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2790 if (zone->nr_reserved_highatomic >= max_managed) 2791 return; 2792 2793 spin_lock_irqsave(&zone->lock, flags); 2794 2795 /* Recheck the nr_reserved_highatomic limit under the lock */ 2796 if (zone->nr_reserved_highatomic >= max_managed) 2797 goto out_unlock; 2798 2799 /* Yoink! */ 2800 mt = get_pageblock_migratetype(page); 2801 if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt) 2802 && !is_migrate_cma(mt)) { 2803 zone->nr_reserved_highatomic += pageblock_nr_pages; 2804 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2805 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2806 } 2807 2808 out_unlock: 2809 spin_unlock_irqrestore(&zone->lock, flags); 2810 } 2811 2812 /* 2813 * Used when an allocation is about to fail under memory pressure. This 2814 * potentially hurts the reliability of high-order allocations when under 2815 * intense memory pressure but failed atomic allocations should be easier 2816 * to recover from than an OOM. 2817 * 2818 * If @force is true, try to unreserve a pageblock even though highatomic 2819 * pageblock is exhausted. 2820 */ 2821 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2822 bool force) 2823 { 2824 struct zonelist *zonelist = ac->zonelist; 2825 unsigned long flags; 2826 struct zoneref *z; 2827 struct zone *zone; 2828 struct page *page; 2829 int order; 2830 bool ret; 2831 2832 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2833 ac->nodemask) { 2834 /* 2835 * Preserve at least one pageblock unless memory pressure 2836 * is really high. 2837 */ 2838 if (!force && zone->nr_reserved_highatomic <= 2839 pageblock_nr_pages) 2840 continue; 2841 2842 spin_lock_irqsave(&zone->lock, flags); 2843 for (order = 0; order < MAX_ORDER; order++) { 2844 struct free_area *area = &(zone->free_area[order]); 2845 2846 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2847 if (!page) 2848 continue; 2849 2850 /* 2851 * In page freeing path, migratetype change is racy so 2852 * we can counter several free pages in a pageblock 2853 * in this loop although we changed the pageblock type 2854 * from highatomic to ac->migratetype. So we should 2855 * adjust the count once. 2856 */ 2857 if (is_migrate_highatomic_page(page)) { 2858 /* 2859 * It should never happen but changes to 2860 * locking could inadvertently allow a per-cpu 2861 * drain to add pages to MIGRATE_HIGHATOMIC 2862 * while unreserving so be safe and watch for 2863 * underflows. 2864 */ 2865 zone->nr_reserved_highatomic -= min( 2866 pageblock_nr_pages, 2867 zone->nr_reserved_highatomic); 2868 } 2869 2870 /* 2871 * Convert to ac->migratetype and avoid the normal 2872 * pageblock stealing heuristics. Minimally, the caller 2873 * is doing the work and needs the pages. More 2874 * importantly, if the block was always converted to 2875 * MIGRATE_UNMOVABLE or another type then the number 2876 * of pageblocks that cannot be completely freed 2877 * may increase. 2878 */ 2879 set_pageblock_migratetype(page, ac->migratetype); 2880 ret = move_freepages_block(zone, page, ac->migratetype, 2881 NULL); 2882 if (ret) { 2883 spin_unlock_irqrestore(&zone->lock, flags); 2884 return ret; 2885 } 2886 } 2887 spin_unlock_irqrestore(&zone->lock, flags); 2888 } 2889 2890 return false; 2891 } 2892 2893 /* 2894 * Try finding a free buddy page on the fallback list and put it on the free 2895 * list of requested migratetype, possibly along with other pages from the same 2896 * block, depending on fragmentation avoidance heuristics. Returns true if 2897 * fallback was found so that __rmqueue_smallest() can grab it. 2898 * 2899 * The use of signed ints for order and current_order is a deliberate 2900 * deviation from the rest of this file, to make the for loop 2901 * condition simpler. 2902 */ 2903 static __always_inline bool 2904 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2905 unsigned int alloc_flags) 2906 { 2907 struct free_area *area; 2908 int current_order; 2909 int min_order = order; 2910 struct page *page; 2911 int fallback_mt; 2912 bool can_steal; 2913 2914 /* 2915 * Do not steal pages from freelists belonging to other pageblocks 2916 * i.e. orders < pageblock_order. If there are no local zones free, 2917 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2918 */ 2919 if (alloc_flags & ALLOC_NOFRAGMENT) 2920 min_order = pageblock_order; 2921 2922 /* 2923 * Find the largest available free page in the other list. This roughly 2924 * approximates finding the pageblock with the most free pages, which 2925 * would be too costly to do exactly. 2926 */ 2927 for (current_order = MAX_ORDER - 1; current_order >= min_order; 2928 --current_order) { 2929 area = &(zone->free_area[current_order]); 2930 fallback_mt = find_suitable_fallback(area, current_order, 2931 start_migratetype, false, &can_steal); 2932 if (fallback_mt == -1) 2933 continue; 2934 2935 /* 2936 * We cannot steal all free pages from the pageblock and the 2937 * requested migratetype is movable. In that case it's better to 2938 * steal and split the smallest available page instead of the 2939 * largest available page, because even if the next movable 2940 * allocation falls back into a different pageblock than this 2941 * one, it won't cause permanent fragmentation. 2942 */ 2943 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2944 && current_order > order) 2945 goto find_smallest; 2946 2947 goto do_steal; 2948 } 2949 2950 return false; 2951 2952 find_smallest: 2953 for (current_order = order; current_order < MAX_ORDER; 2954 current_order++) { 2955 area = &(zone->free_area[current_order]); 2956 fallback_mt = find_suitable_fallback(area, current_order, 2957 start_migratetype, false, &can_steal); 2958 if (fallback_mt != -1) 2959 break; 2960 } 2961 2962 /* 2963 * This should not happen - we already found a suitable fallback 2964 * when looking for the largest page. 2965 */ 2966 VM_BUG_ON(current_order == MAX_ORDER); 2967 2968 do_steal: 2969 page = get_page_from_free_area(area, fallback_mt); 2970 2971 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2972 can_steal); 2973 2974 trace_mm_page_alloc_extfrag(page, order, current_order, 2975 start_migratetype, fallback_mt); 2976 2977 return true; 2978 2979 } 2980 2981 /* 2982 * Do the hard work of removing an element from the buddy allocator. 2983 * Call me with the zone->lock already held. 2984 */ 2985 static __always_inline struct page * 2986 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2987 unsigned int alloc_flags) 2988 { 2989 struct page *page; 2990 2991 if (IS_ENABLED(CONFIG_CMA)) { 2992 /* 2993 * Balance movable allocations between regular and CMA areas by 2994 * allocating from CMA when over half of the zone's free memory 2995 * is in the CMA area. 2996 */ 2997 if (alloc_flags & ALLOC_CMA && 2998 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2999 zone_page_state(zone, NR_FREE_PAGES) / 2) { 3000 page = __rmqueue_cma_fallback(zone, order); 3001 if (page) 3002 goto out; 3003 } 3004 } 3005 retry: 3006 page = __rmqueue_smallest(zone, order, migratetype); 3007 if (unlikely(!page)) { 3008 if (alloc_flags & ALLOC_CMA) 3009 page = __rmqueue_cma_fallback(zone, order); 3010 3011 if (!page && __rmqueue_fallback(zone, order, migratetype, 3012 alloc_flags)) 3013 goto retry; 3014 } 3015 out: 3016 if (page) 3017 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3018 return page; 3019 } 3020 3021 /* 3022 * Obtain a specified number of elements from the buddy allocator, all under 3023 * a single hold of the lock, for efficiency. Add them to the supplied list. 3024 * Returns the number of new pages which were placed at *list. 3025 */ 3026 static int rmqueue_bulk(struct zone *zone, unsigned int order, 3027 unsigned long count, struct list_head *list, 3028 int migratetype, unsigned int alloc_flags) 3029 { 3030 int i, allocated = 0; 3031 3032 /* 3033 * local_lock_irq held so equivalent to spin_lock_irqsave for 3034 * both PREEMPT_RT and non-PREEMPT_RT configurations. 3035 */ 3036 spin_lock(&zone->lock); 3037 for (i = 0; i < count; ++i) { 3038 struct page *page = __rmqueue(zone, order, migratetype, 3039 alloc_flags); 3040 if (unlikely(page == NULL)) 3041 break; 3042 3043 if (unlikely(check_pcp_refill(page))) 3044 continue; 3045 3046 /* 3047 * Split buddy pages returned by expand() are received here in 3048 * physical page order. The page is added to the tail of 3049 * caller's list. From the callers perspective, the linked list 3050 * is ordered by page number under some conditions. This is 3051 * useful for IO devices that can forward direction from the 3052 * head, thus also in the physical page order. This is useful 3053 * for IO devices that can merge IO requests if the physical 3054 * pages are ordered properly. 3055 */ 3056 list_add_tail(&page->lru, list); 3057 allocated++; 3058 if (is_migrate_cma(get_pcppage_migratetype(page))) 3059 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 3060 -(1 << order)); 3061 } 3062 3063 /* 3064 * i pages were removed from the buddy list even if some leak due 3065 * to check_pcp_refill failing so adjust NR_FREE_PAGES based 3066 * on i. Do not confuse with 'allocated' which is the number of 3067 * pages added to the pcp list. 3068 */ 3069 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 3070 spin_unlock(&zone->lock); 3071 return allocated; 3072 } 3073 3074 #ifdef CONFIG_NUMA 3075 /* 3076 * Called from the vmstat counter updater to drain pagesets of this 3077 * currently executing processor on remote nodes after they have 3078 * expired. 3079 * 3080 * Note that this function must be called with the thread pinned to 3081 * a single processor. 3082 */ 3083 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 3084 { 3085 unsigned long flags; 3086 int to_drain, batch; 3087 3088 local_lock_irqsave(&pagesets.lock, flags); 3089 batch = READ_ONCE(pcp->batch); 3090 to_drain = min(pcp->count, batch); 3091 if (to_drain > 0) 3092 free_pcppages_bulk(zone, to_drain, pcp); 3093 local_unlock_irqrestore(&pagesets.lock, flags); 3094 } 3095 #endif 3096 3097 /* 3098 * Drain pcplists of the indicated processor and zone. 3099 * 3100 * The processor must either be the current processor and the 3101 * thread pinned to the current processor or a processor that 3102 * is not online. 3103 */ 3104 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 3105 { 3106 unsigned long flags; 3107 struct per_cpu_pages *pcp; 3108 3109 local_lock_irqsave(&pagesets.lock, flags); 3110 3111 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3112 if (pcp->count) 3113 free_pcppages_bulk(zone, pcp->count, pcp); 3114 3115 local_unlock_irqrestore(&pagesets.lock, flags); 3116 } 3117 3118 /* 3119 * Drain pcplists of all zones on the indicated processor. 3120 * 3121 * The processor must either be the current processor and the 3122 * thread pinned to the current processor or a processor that 3123 * is not online. 3124 */ 3125 static void drain_pages(unsigned int cpu) 3126 { 3127 struct zone *zone; 3128 3129 for_each_populated_zone(zone) { 3130 drain_pages_zone(cpu, zone); 3131 } 3132 } 3133 3134 /* 3135 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 3136 * 3137 * The CPU has to be pinned. When zone parameter is non-NULL, spill just 3138 * the single zone's pages. 3139 */ 3140 void drain_local_pages(struct zone *zone) 3141 { 3142 int cpu = smp_processor_id(); 3143 3144 if (zone) 3145 drain_pages_zone(cpu, zone); 3146 else 3147 drain_pages(cpu); 3148 } 3149 3150 static void drain_local_pages_wq(struct work_struct *work) 3151 { 3152 struct pcpu_drain *drain; 3153 3154 drain = container_of(work, struct pcpu_drain, work); 3155 3156 /* 3157 * drain_all_pages doesn't use proper cpu hotplug protection so 3158 * we can race with cpu offline when the WQ can move this from 3159 * a cpu pinned worker to an unbound one. We can operate on a different 3160 * cpu which is alright but we also have to make sure to not move to 3161 * a different one. 3162 */ 3163 preempt_disable(); 3164 drain_local_pages(drain->zone); 3165 preempt_enable(); 3166 } 3167 3168 /* 3169 * The implementation of drain_all_pages(), exposing an extra parameter to 3170 * drain on all cpus. 3171 * 3172 * drain_all_pages() is optimized to only execute on cpus where pcplists are 3173 * not empty. The check for non-emptiness can however race with a free to 3174 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 3175 * that need the guarantee that every CPU has drained can disable the 3176 * optimizing racy check. 3177 */ 3178 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 3179 { 3180 int cpu; 3181 3182 /* 3183 * Allocate in the BSS so we won't require allocation in 3184 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 3185 */ 3186 static cpumask_t cpus_with_pcps; 3187 3188 /* 3189 * Make sure nobody triggers this path before mm_percpu_wq is fully 3190 * initialized. 3191 */ 3192 if (WARN_ON_ONCE(!mm_percpu_wq)) 3193 return; 3194 3195 /* 3196 * Do not drain if one is already in progress unless it's specific to 3197 * a zone. Such callers are primarily CMA and memory hotplug and need 3198 * the drain to be complete when the call returns. 3199 */ 3200 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 3201 if (!zone) 3202 return; 3203 mutex_lock(&pcpu_drain_mutex); 3204 } 3205 3206 /* 3207 * We don't care about racing with CPU hotplug event 3208 * as offline notification will cause the notified 3209 * cpu to drain that CPU pcps and on_each_cpu_mask 3210 * disables preemption as part of its processing 3211 */ 3212 for_each_online_cpu(cpu) { 3213 struct per_cpu_pages *pcp; 3214 struct zone *z; 3215 bool has_pcps = false; 3216 3217 if (force_all_cpus) { 3218 /* 3219 * The pcp.count check is racy, some callers need a 3220 * guarantee that no cpu is missed. 3221 */ 3222 has_pcps = true; 3223 } else if (zone) { 3224 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 3225 if (pcp->count) 3226 has_pcps = true; 3227 } else { 3228 for_each_populated_zone(z) { 3229 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 3230 if (pcp->count) { 3231 has_pcps = true; 3232 break; 3233 } 3234 } 3235 } 3236 3237 if (has_pcps) 3238 cpumask_set_cpu(cpu, &cpus_with_pcps); 3239 else 3240 cpumask_clear_cpu(cpu, &cpus_with_pcps); 3241 } 3242 3243 for_each_cpu(cpu, &cpus_with_pcps) { 3244 struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu); 3245 3246 drain->zone = zone; 3247 INIT_WORK(&drain->work, drain_local_pages_wq); 3248 queue_work_on(cpu, mm_percpu_wq, &drain->work); 3249 } 3250 for_each_cpu(cpu, &cpus_with_pcps) 3251 flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work); 3252 3253 mutex_unlock(&pcpu_drain_mutex); 3254 } 3255 3256 /* 3257 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 3258 * 3259 * When zone parameter is non-NULL, spill just the single zone's pages. 3260 * 3261 * Note that this can be extremely slow as the draining happens in a workqueue. 3262 */ 3263 void drain_all_pages(struct zone *zone) 3264 { 3265 __drain_all_pages(zone, false); 3266 } 3267 3268 #ifdef CONFIG_HIBERNATION 3269 3270 /* 3271 * Touch the watchdog for every WD_PAGE_COUNT pages. 3272 */ 3273 #define WD_PAGE_COUNT (128*1024) 3274 3275 void mark_free_pages(struct zone *zone) 3276 { 3277 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 3278 unsigned long flags; 3279 unsigned int order, t; 3280 struct page *page; 3281 3282 if (zone_is_empty(zone)) 3283 return; 3284 3285 spin_lock_irqsave(&zone->lock, flags); 3286 3287 max_zone_pfn = zone_end_pfn(zone); 3288 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 3289 if (pfn_valid(pfn)) { 3290 page = pfn_to_page(pfn); 3291 3292 if (!--page_count) { 3293 touch_nmi_watchdog(); 3294 page_count = WD_PAGE_COUNT; 3295 } 3296 3297 if (page_zone(page) != zone) 3298 continue; 3299 3300 if (!swsusp_page_is_forbidden(page)) 3301 swsusp_unset_page_free(page); 3302 } 3303 3304 for_each_migratetype_order(order, t) { 3305 list_for_each_entry(page, 3306 &zone->free_area[order].free_list[t], lru) { 3307 unsigned long i; 3308 3309 pfn = page_to_pfn(page); 3310 for (i = 0; i < (1UL << order); i++) { 3311 if (!--page_count) { 3312 touch_nmi_watchdog(); 3313 page_count = WD_PAGE_COUNT; 3314 } 3315 swsusp_set_page_free(pfn_to_page(pfn + i)); 3316 } 3317 } 3318 } 3319 spin_unlock_irqrestore(&zone->lock, flags); 3320 } 3321 #endif /* CONFIG_PM */ 3322 3323 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 3324 unsigned int order) 3325 { 3326 int migratetype; 3327 3328 if (!free_pcp_prepare(page, order)) 3329 return false; 3330 3331 migratetype = get_pfnblock_migratetype(page, pfn); 3332 set_pcppage_migratetype(page, migratetype); 3333 return true; 3334 } 3335 3336 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch) 3337 { 3338 int min_nr_free, max_nr_free; 3339 3340 /* Check for PCP disabled or boot pageset */ 3341 if (unlikely(high < batch)) 3342 return 1; 3343 3344 /* Leave at least pcp->batch pages on the list */ 3345 min_nr_free = batch; 3346 max_nr_free = high - batch; 3347 3348 /* 3349 * Double the number of pages freed each time there is subsequent 3350 * freeing of pages without any allocation. 3351 */ 3352 batch <<= pcp->free_factor; 3353 if (batch < max_nr_free) 3354 pcp->free_factor++; 3355 batch = clamp(batch, min_nr_free, max_nr_free); 3356 3357 return batch; 3358 } 3359 3360 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone) 3361 { 3362 int high = READ_ONCE(pcp->high); 3363 3364 if (unlikely(!high)) 3365 return 0; 3366 3367 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 3368 return high; 3369 3370 /* 3371 * If reclaim is active, limit the number of pages that can be 3372 * stored on pcp lists 3373 */ 3374 return min(READ_ONCE(pcp->batch) << 2, high); 3375 } 3376 3377 static void free_unref_page_commit(struct page *page, unsigned long pfn, 3378 int migratetype, unsigned int order) 3379 { 3380 struct zone *zone = page_zone(page); 3381 struct per_cpu_pages *pcp; 3382 int high; 3383 int pindex; 3384 3385 __count_vm_event(PGFREE); 3386 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3387 pindex = order_to_pindex(migratetype, order); 3388 list_add(&page->lru, &pcp->lists[pindex]); 3389 pcp->count += 1 << order; 3390 high = nr_pcp_high(pcp, zone); 3391 if (pcp->count >= high) { 3392 int batch = READ_ONCE(pcp->batch); 3393 3394 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch), pcp); 3395 } 3396 } 3397 3398 /* 3399 * Free a pcp page 3400 */ 3401 void free_unref_page(struct page *page, unsigned int order) 3402 { 3403 unsigned long flags; 3404 unsigned long pfn = page_to_pfn(page); 3405 int migratetype; 3406 3407 if (!free_unref_page_prepare(page, pfn, order)) 3408 return; 3409 3410 /* 3411 * We only track unmovable, reclaimable and movable on pcp lists. 3412 * Place ISOLATE pages on the isolated list because they are being 3413 * offlined but treat HIGHATOMIC as movable pages so we can get those 3414 * areas back if necessary. Otherwise, we may have to free 3415 * excessively into the page allocator 3416 */ 3417 migratetype = get_pcppage_migratetype(page); 3418 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3419 if (unlikely(is_migrate_isolate(migratetype))) { 3420 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 3421 return; 3422 } 3423 migratetype = MIGRATE_MOVABLE; 3424 } 3425 3426 local_lock_irqsave(&pagesets.lock, flags); 3427 free_unref_page_commit(page, pfn, migratetype, order); 3428 local_unlock_irqrestore(&pagesets.lock, flags); 3429 } 3430 3431 /* 3432 * Free a list of 0-order pages 3433 */ 3434 void free_unref_page_list(struct list_head *list) 3435 { 3436 struct page *page, *next; 3437 unsigned long flags, pfn; 3438 int batch_count = 0; 3439 int migratetype; 3440 3441 /* Prepare pages for freeing */ 3442 list_for_each_entry_safe(page, next, list, lru) { 3443 pfn = page_to_pfn(page); 3444 if (!free_unref_page_prepare(page, pfn, 0)) 3445 list_del(&page->lru); 3446 3447 /* 3448 * Free isolated pages directly to the allocator, see 3449 * comment in free_unref_page. 3450 */ 3451 migratetype = get_pcppage_migratetype(page); 3452 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 3453 if (unlikely(is_migrate_isolate(migratetype))) { 3454 list_del(&page->lru); 3455 free_one_page(page_zone(page), page, pfn, 0, 3456 migratetype, FPI_NONE); 3457 continue; 3458 } 3459 3460 /* 3461 * Non-isolated types over MIGRATE_PCPTYPES get added 3462 * to the MIGRATE_MOVABLE pcp list. 3463 */ 3464 set_pcppage_migratetype(page, MIGRATE_MOVABLE); 3465 } 3466 3467 set_page_private(page, pfn); 3468 } 3469 3470 local_lock_irqsave(&pagesets.lock, flags); 3471 list_for_each_entry_safe(page, next, list, lru) { 3472 pfn = page_private(page); 3473 set_page_private(page, 0); 3474 migratetype = get_pcppage_migratetype(page); 3475 trace_mm_page_free_batched(page); 3476 free_unref_page_commit(page, pfn, migratetype, 0); 3477 3478 /* 3479 * Guard against excessive IRQ disabled times when we get 3480 * a large list of pages to free. 3481 */ 3482 if (++batch_count == SWAP_CLUSTER_MAX) { 3483 local_unlock_irqrestore(&pagesets.lock, flags); 3484 batch_count = 0; 3485 local_lock_irqsave(&pagesets.lock, flags); 3486 } 3487 } 3488 local_unlock_irqrestore(&pagesets.lock, flags); 3489 } 3490 3491 /* 3492 * split_page takes a non-compound higher-order page, and splits it into 3493 * n (1<<order) sub-pages: page[0..n] 3494 * Each sub-page must be freed individually. 3495 * 3496 * Note: this is probably too low level an operation for use in drivers. 3497 * Please consult with lkml before using this in your driver. 3498 */ 3499 void split_page(struct page *page, unsigned int order) 3500 { 3501 int i; 3502 3503 VM_BUG_ON_PAGE(PageCompound(page), page); 3504 VM_BUG_ON_PAGE(!page_count(page), page); 3505 3506 for (i = 1; i < (1 << order); i++) 3507 set_page_refcounted(page + i); 3508 split_page_owner(page, 1 << order); 3509 split_page_memcg(page, 1 << order); 3510 } 3511 EXPORT_SYMBOL_GPL(split_page); 3512 3513 int __isolate_free_page(struct page *page, unsigned int order) 3514 { 3515 unsigned long watermark; 3516 struct zone *zone; 3517 int mt; 3518 3519 BUG_ON(!PageBuddy(page)); 3520 3521 zone = page_zone(page); 3522 mt = get_pageblock_migratetype(page); 3523 3524 if (!is_migrate_isolate(mt)) { 3525 /* 3526 * Obey watermarks as if the page was being allocated. We can 3527 * emulate a high-order watermark check with a raised order-0 3528 * watermark, because we already know our high-order page 3529 * exists. 3530 */ 3531 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 3532 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 3533 return 0; 3534 3535 __mod_zone_freepage_state(zone, -(1UL << order), mt); 3536 } 3537 3538 /* Remove page from free list */ 3539 3540 del_page_from_free_list(page, zone, order); 3541 3542 /* 3543 * Set the pageblock if the isolated page is at least half of a 3544 * pageblock 3545 */ 3546 if (order >= pageblock_order - 1) { 3547 struct page *endpage = page + (1 << order) - 1; 3548 for (; page < endpage; page += pageblock_nr_pages) { 3549 int mt = get_pageblock_migratetype(page); 3550 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt) 3551 && !is_migrate_highatomic(mt)) 3552 set_pageblock_migratetype(page, 3553 MIGRATE_MOVABLE); 3554 } 3555 } 3556 3557 3558 return 1UL << order; 3559 } 3560 3561 /** 3562 * __putback_isolated_page - Return a now-isolated page back where we got it 3563 * @page: Page that was isolated 3564 * @order: Order of the isolated page 3565 * @mt: The page's pageblock's migratetype 3566 * 3567 * This function is meant to return a page pulled from the free lists via 3568 * __isolate_free_page back to the free lists they were pulled from. 3569 */ 3570 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 3571 { 3572 struct zone *zone = page_zone(page); 3573 3574 /* zone lock should be held when this function is called */ 3575 lockdep_assert_held(&zone->lock); 3576 3577 /* Return isolated page to tail of freelist. */ 3578 __free_one_page(page, page_to_pfn(page), zone, order, mt, 3579 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 3580 } 3581 3582 /* 3583 * Update NUMA hit/miss statistics 3584 * 3585 * Must be called with interrupts disabled. 3586 */ 3587 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 3588 long nr_account) 3589 { 3590 #ifdef CONFIG_NUMA 3591 enum numa_stat_item local_stat = NUMA_LOCAL; 3592 3593 /* skip numa counters update if numa stats is disabled */ 3594 if (!static_branch_likely(&vm_numa_stat_key)) 3595 return; 3596 3597 if (zone_to_nid(z) != numa_node_id()) 3598 local_stat = NUMA_OTHER; 3599 3600 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 3601 __count_numa_events(z, NUMA_HIT, nr_account); 3602 else { 3603 __count_numa_events(z, NUMA_MISS, nr_account); 3604 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 3605 } 3606 __count_numa_events(z, local_stat, nr_account); 3607 #endif 3608 } 3609 3610 /* Remove page from the per-cpu list, caller must protect the list */ 3611 static inline 3612 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 3613 int migratetype, 3614 unsigned int alloc_flags, 3615 struct per_cpu_pages *pcp, 3616 struct list_head *list) 3617 { 3618 struct page *page; 3619 3620 do { 3621 if (list_empty(list)) { 3622 int batch = READ_ONCE(pcp->batch); 3623 int alloced; 3624 3625 /* 3626 * Scale batch relative to order if batch implies 3627 * free pages can be stored on the PCP. Batch can 3628 * be 1 for small zones or for boot pagesets which 3629 * should never store free pages as the pages may 3630 * belong to arbitrary zones. 3631 */ 3632 if (batch > 1) 3633 batch = max(batch >> order, 2); 3634 alloced = rmqueue_bulk(zone, order, 3635 batch, list, 3636 migratetype, alloc_flags); 3637 3638 pcp->count += alloced << order; 3639 if (unlikely(list_empty(list))) 3640 return NULL; 3641 } 3642 3643 page = list_first_entry(list, struct page, lru); 3644 list_del(&page->lru); 3645 pcp->count -= 1 << order; 3646 } while (check_new_pcp(page)); 3647 3648 return page; 3649 } 3650 3651 /* Lock and remove page from the per-cpu list */ 3652 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 3653 struct zone *zone, unsigned int order, 3654 gfp_t gfp_flags, int migratetype, 3655 unsigned int alloc_flags) 3656 { 3657 struct per_cpu_pages *pcp; 3658 struct list_head *list; 3659 struct page *page; 3660 unsigned long flags; 3661 3662 local_lock_irqsave(&pagesets.lock, flags); 3663 3664 /* 3665 * On allocation, reduce the number of pages that are batch freed. 3666 * See nr_pcp_free() where free_factor is increased for subsequent 3667 * frees. 3668 */ 3669 pcp = this_cpu_ptr(zone->per_cpu_pageset); 3670 pcp->free_factor >>= 1; 3671 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3672 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3673 local_unlock_irqrestore(&pagesets.lock, flags); 3674 if (page) { 3675 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1); 3676 zone_statistics(preferred_zone, zone, 1); 3677 } 3678 return page; 3679 } 3680 3681 /* 3682 * Allocate a page from the given zone. Use pcplists for order-0 allocations. 3683 */ 3684 static inline 3685 struct page *rmqueue(struct zone *preferred_zone, 3686 struct zone *zone, unsigned int order, 3687 gfp_t gfp_flags, unsigned int alloc_flags, 3688 int migratetype) 3689 { 3690 unsigned long flags; 3691 struct page *page; 3692 3693 if (likely(pcp_allowed_order(order))) { 3694 /* 3695 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3696 * we need to skip it when CMA area isn't allowed. 3697 */ 3698 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3699 migratetype != MIGRATE_MOVABLE) { 3700 page = rmqueue_pcplist(preferred_zone, zone, order, 3701 gfp_flags, migratetype, alloc_flags); 3702 goto out; 3703 } 3704 } 3705 3706 /* 3707 * We most definitely don't want callers attempting to 3708 * allocate greater than order-1 page units with __GFP_NOFAIL. 3709 */ 3710 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3711 spin_lock_irqsave(&zone->lock, flags); 3712 3713 do { 3714 page = NULL; 3715 /* 3716 * order-0 request can reach here when the pcplist is skipped 3717 * due to non-CMA allocation context. HIGHATOMIC area is 3718 * reserved for high-order atomic allocation, so order-0 3719 * request should skip it. 3720 */ 3721 if (order > 0 && alloc_flags & ALLOC_HARDER) { 3722 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 3723 if (page) 3724 trace_mm_page_alloc_zone_locked(page, order, migratetype); 3725 } 3726 if (!page) 3727 page = __rmqueue(zone, order, migratetype, alloc_flags); 3728 } while (page && check_new_pages(page, order)); 3729 if (!page) 3730 goto failed; 3731 3732 __mod_zone_freepage_state(zone, -(1 << order), 3733 get_pcppage_migratetype(page)); 3734 spin_unlock_irqrestore(&zone->lock, flags); 3735 3736 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3737 zone_statistics(preferred_zone, zone, 1); 3738 3739 out: 3740 /* Separate test+clear to avoid unnecessary atomics */ 3741 if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) { 3742 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3743 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3744 } 3745 3746 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3747 return page; 3748 3749 failed: 3750 spin_unlock_irqrestore(&zone->lock, flags); 3751 return NULL; 3752 } 3753 3754 #ifdef CONFIG_FAIL_PAGE_ALLOC 3755 3756 static struct { 3757 struct fault_attr attr; 3758 3759 bool ignore_gfp_highmem; 3760 bool ignore_gfp_reclaim; 3761 u32 min_order; 3762 } fail_page_alloc = { 3763 .attr = FAULT_ATTR_INITIALIZER, 3764 .ignore_gfp_reclaim = true, 3765 .ignore_gfp_highmem = true, 3766 .min_order = 1, 3767 }; 3768 3769 static int __init setup_fail_page_alloc(char *str) 3770 { 3771 return setup_fault_attr(&fail_page_alloc.attr, str); 3772 } 3773 __setup("fail_page_alloc=", setup_fail_page_alloc); 3774 3775 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3776 { 3777 if (order < fail_page_alloc.min_order) 3778 return false; 3779 if (gfp_mask & __GFP_NOFAIL) 3780 return false; 3781 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3782 return false; 3783 if (fail_page_alloc.ignore_gfp_reclaim && 3784 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3785 return false; 3786 3787 return should_fail(&fail_page_alloc.attr, 1 << order); 3788 } 3789 3790 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3791 3792 static int __init fail_page_alloc_debugfs(void) 3793 { 3794 umode_t mode = S_IFREG | 0600; 3795 struct dentry *dir; 3796 3797 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3798 &fail_page_alloc.attr); 3799 3800 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3801 &fail_page_alloc.ignore_gfp_reclaim); 3802 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3803 &fail_page_alloc.ignore_gfp_highmem); 3804 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3805 3806 return 0; 3807 } 3808 3809 late_initcall(fail_page_alloc_debugfs); 3810 3811 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3812 3813 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3814 3815 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3816 { 3817 return false; 3818 } 3819 3820 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3821 3822 static noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3823 { 3824 return __should_fail_alloc_page(gfp_mask, order); 3825 } 3826 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3827 3828 static inline long __zone_watermark_unusable_free(struct zone *z, 3829 unsigned int order, unsigned int alloc_flags) 3830 { 3831 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3832 long unusable_free = (1 << order) - 1; 3833 3834 /* 3835 * If the caller does not have rights to ALLOC_HARDER then subtract 3836 * the high-atomic reserves. This will over-estimate the size of the 3837 * atomic reserve but it avoids a search. 3838 */ 3839 if (likely(!alloc_harder)) 3840 unusable_free += z->nr_reserved_highatomic; 3841 3842 #ifdef CONFIG_CMA 3843 /* If allocation can't use CMA areas don't use free CMA pages */ 3844 if (!(alloc_flags & ALLOC_CMA)) 3845 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3846 #endif 3847 3848 return unusable_free; 3849 } 3850 3851 /* 3852 * Return true if free base pages are above 'mark'. For high-order checks it 3853 * will return true of the order-0 watermark is reached and there is at least 3854 * one free page of a suitable size. Checking now avoids taking the zone lock 3855 * to check in the allocation paths if no pages are free. 3856 */ 3857 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3858 int highest_zoneidx, unsigned int alloc_flags, 3859 long free_pages) 3860 { 3861 long min = mark; 3862 int o; 3863 const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM)); 3864 3865 /* free_pages may go negative - that's OK */ 3866 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3867 3868 if (alloc_flags & ALLOC_HIGH) 3869 min -= min / 2; 3870 3871 if (unlikely(alloc_harder)) { 3872 /* 3873 * OOM victims can try even harder than normal ALLOC_HARDER 3874 * users on the grounds that it's definitely going to be in 3875 * the exit path shortly and free memory. Any allocation it 3876 * makes during the free path will be small and short-lived. 3877 */ 3878 if (alloc_flags & ALLOC_OOM) 3879 min -= min / 2; 3880 else 3881 min -= min / 4; 3882 } 3883 3884 /* 3885 * Check watermarks for an order-0 allocation request. If these 3886 * are not met, then a high-order request also cannot go ahead 3887 * even if a suitable page happened to be free. 3888 */ 3889 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3890 return false; 3891 3892 /* If this is an order-0 request then the watermark is fine */ 3893 if (!order) 3894 return true; 3895 3896 /* For a high-order request, check at least one suitable page is free */ 3897 for (o = order; o < MAX_ORDER; o++) { 3898 struct free_area *area = &z->free_area[o]; 3899 int mt; 3900 3901 if (!area->nr_free) 3902 continue; 3903 3904 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3905 if (!free_area_empty(area, mt)) 3906 return true; 3907 } 3908 3909 #ifdef CONFIG_CMA 3910 if ((alloc_flags & ALLOC_CMA) && 3911 !free_area_empty(area, MIGRATE_CMA)) { 3912 return true; 3913 } 3914 #endif 3915 if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC)) 3916 return true; 3917 } 3918 return false; 3919 } 3920 3921 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3922 int highest_zoneidx, unsigned int alloc_flags) 3923 { 3924 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3925 zone_page_state(z, NR_FREE_PAGES)); 3926 } 3927 3928 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3929 unsigned long mark, int highest_zoneidx, 3930 unsigned int alloc_flags, gfp_t gfp_mask) 3931 { 3932 long free_pages; 3933 3934 free_pages = zone_page_state(z, NR_FREE_PAGES); 3935 3936 /* 3937 * Fast check for order-0 only. If this fails then the reserves 3938 * need to be calculated. 3939 */ 3940 if (!order) { 3941 long fast_free; 3942 3943 fast_free = free_pages; 3944 fast_free -= __zone_watermark_unusable_free(z, 0, alloc_flags); 3945 if (fast_free > mark + z->lowmem_reserve[highest_zoneidx]) 3946 return true; 3947 } 3948 3949 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3950 free_pages)) 3951 return true; 3952 /* 3953 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations 3954 * when checking the min watermark. The min watermark is the 3955 * point where boosting is ignored so that kswapd is woken up 3956 * when below the low watermark. 3957 */ 3958 if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost 3959 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3960 mark = z->_watermark[WMARK_MIN]; 3961 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3962 alloc_flags, free_pages); 3963 } 3964 3965 return false; 3966 } 3967 3968 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3969 unsigned long mark, int highest_zoneidx) 3970 { 3971 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3972 3973 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3974 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3975 3976 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3977 free_pages); 3978 } 3979 3980 #ifdef CONFIG_NUMA 3981 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3982 { 3983 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3984 node_reclaim_distance; 3985 } 3986 #else /* CONFIG_NUMA */ 3987 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3988 { 3989 return true; 3990 } 3991 #endif /* CONFIG_NUMA */ 3992 3993 /* 3994 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3995 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3996 * premature use of a lower zone may cause lowmem pressure problems that 3997 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3998 * probably too small. It only makes sense to spread allocations to avoid 3999 * fragmentation between the Normal and DMA32 zones. 4000 */ 4001 static inline unsigned int 4002 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 4003 { 4004 unsigned int alloc_flags; 4005 4006 /* 4007 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4008 * to save a branch. 4009 */ 4010 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 4011 4012 #ifdef CONFIG_ZONE_DMA32 4013 if (!zone) 4014 return alloc_flags; 4015 4016 if (zone_idx(zone) != ZONE_NORMAL) 4017 return alloc_flags; 4018 4019 /* 4020 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 4021 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 4022 * on UMA that if Normal is populated then so is DMA32. 4023 */ 4024 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 4025 if (nr_online_nodes > 1 && !populated_zone(--zone)) 4026 return alloc_flags; 4027 4028 alloc_flags |= ALLOC_NOFRAGMENT; 4029 #endif /* CONFIG_ZONE_DMA32 */ 4030 return alloc_flags; 4031 } 4032 4033 /* Must be called after current_gfp_context() which can change gfp_mask */ 4034 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 4035 unsigned int alloc_flags) 4036 { 4037 #ifdef CONFIG_CMA 4038 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 4039 alloc_flags |= ALLOC_CMA; 4040 #endif 4041 return alloc_flags; 4042 } 4043 4044 /* 4045 * get_page_from_freelist goes through the zonelist trying to allocate 4046 * a page. 4047 */ 4048 static struct page * 4049 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 4050 const struct alloc_context *ac) 4051 { 4052 struct zoneref *z; 4053 struct zone *zone; 4054 struct pglist_data *last_pgdat_dirty_limit = NULL; 4055 bool no_fallback; 4056 4057 retry: 4058 /* 4059 * Scan zonelist, looking for a zone with enough free. 4060 * See also __cpuset_node_allowed() comment in kernel/cpuset.c. 4061 */ 4062 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 4063 z = ac->preferred_zoneref; 4064 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 4065 ac->nodemask) { 4066 struct page *page; 4067 unsigned long mark; 4068 4069 if (cpusets_enabled() && 4070 (alloc_flags & ALLOC_CPUSET) && 4071 !__cpuset_zone_allowed(zone, gfp_mask)) 4072 continue; 4073 /* 4074 * When allocating a page cache page for writing, we 4075 * want to get it from a node that is within its dirty 4076 * limit, such that no single node holds more than its 4077 * proportional share of globally allowed dirty pages. 4078 * The dirty limits take into account the node's 4079 * lowmem reserves and high watermark so that kswapd 4080 * should be able to balance it without having to 4081 * write pages from its LRU list. 4082 * 4083 * XXX: For now, allow allocations to potentially 4084 * exceed the per-node dirty limit in the slowpath 4085 * (spread_dirty_pages unset) before going into reclaim, 4086 * which is important when on a NUMA setup the allowed 4087 * nodes are together not big enough to reach the 4088 * global limit. The proper fix for these situations 4089 * will require awareness of nodes in the 4090 * dirty-throttling and the flusher threads. 4091 */ 4092 if (ac->spread_dirty_pages) { 4093 if (last_pgdat_dirty_limit == zone->zone_pgdat) 4094 continue; 4095 4096 if (!node_dirty_ok(zone->zone_pgdat)) { 4097 last_pgdat_dirty_limit = zone->zone_pgdat; 4098 continue; 4099 } 4100 } 4101 4102 if (no_fallback && nr_online_nodes > 1 && 4103 zone != ac->preferred_zoneref->zone) { 4104 int local_nid; 4105 4106 /* 4107 * If moving to a remote node, retry but allow 4108 * fragmenting fallbacks. Locality is more important 4109 * than fragmentation avoidance. 4110 */ 4111 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 4112 if (zone_to_nid(zone) != local_nid) { 4113 alloc_flags &= ~ALLOC_NOFRAGMENT; 4114 goto retry; 4115 } 4116 } 4117 4118 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 4119 if (!zone_watermark_fast(zone, order, mark, 4120 ac->highest_zoneidx, alloc_flags, 4121 gfp_mask)) { 4122 int ret; 4123 4124 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4125 /* 4126 * Watermark failed for this zone, but see if we can 4127 * grow this zone if it contains deferred pages. 4128 */ 4129 if (static_branch_unlikely(&deferred_pages)) { 4130 if (_deferred_grow_zone(zone, order)) 4131 goto try_this_zone; 4132 } 4133 #endif 4134 /* Checked here to keep the fast path fast */ 4135 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 4136 if (alloc_flags & ALLOC_NO_WATERMARKS) 4137 goto try_this_zone; 4138 4139 if (!node_reclaim_enabled() || 4140 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 4141 continue; 4142 4143 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 4144 switch (ret) { 4145 case NODE_RECLAIM_NOSCAN: 4146 /* did not scan */ 4147 continue; 4148 case NODE_RECLAIM_FULL: 4149 /* scanned but unreclaimable */ 4150 continue; 4151 default: 4152 /* did we reclaim enough */ 4153 if (zone_watermark_ok(zone, order, mark, 4154 ac->highest_zoneidx, alloc_flags)) 4155 goto try_this_zone; 4156 4157 continue; 4158 } 4159 } 4160 4161 try_this_zone: 4162 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 4163 gfp_mask, alloc_flags, ac->migratetype); 4164 if (page) { 4165 prep_new_page(page, order, gfp_mask, alloc_flags); 4166 4167 /* 4168 * If this is a high-order atomic allocation then check 4169 * if the pageblock should be reserved for the future 4170 */ 4171 if (unlikely(order && (alloc_flags & ALLOC_HARDER))) 4172 reserve_highatomic_pageblock(page, zone, order); 4173 4174 return page; 4175 } else { 4176 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 4177 /* Try again if zone has deferred pages */ 4178 if (static_branch_unlikely(&deferred_pages)) { 4179 if (_deferred_grow_zone(zone, order)) 4180 goto try_this_zone; 4181 } 4182 #endif 4183 } 4184 } 4185 4186 /* 4187 * It's possible on a UMA machine to get through all zones that are 4188 * fragmented. If avoiding fragmentation, reset and try again. 4189 */ 4190 if (no_fallback) { 4191 alloc_flags &= ~ALLOC_NOFRAGMENT; 4192 goto retry; 4193 } 4194 4195 return NULL; 4196 } 4197 4198 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 4199 { 4200 unsigned int filter = SHOW_MEM_FILTER_NODES; 4201 4202 /* 4203 * This documents exceptions given to allocations in certain 4204 * contexts that are allowed to allocate outside current's set 4205 * of allowed nodes. 4206 */ 4207 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4208 if (tsk_is_oom_victim(current) || 4209 (current->flags & (PF_MEMALLOC | PF_EXITING))) 4210 filter &= ~SHOW_MEM_FILTER_NODES; 4211 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 4212 filter &= ~SHOW_MEM_FILTER_NODES; 4213 4214 show_mem(filter, nodemask); 4215 } 4216 4217 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 4218 { 4219 struct va_format vaf; 4220 va_list args; 4221 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 4222 4223 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs)) 4224 return; 4225 4226 va_start(args, fmt); 4227 vaf.fmt = fmt; 4228 vaf.va = &args; 4229 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 4230 current->comm, &vaf, gfp_mask, &gfp_mask, 4231 nodemask_pr_args(nodemask)); 4232 va_end(args); 4233 4234 cpuset_print_current_mems_allowed(); 4235 pr_cont("\n"); 4236 dump_stack(); 4237 warn_alloc_show_mem(gfp_mask, nodemask); 4238 } 4239 4240 static inline struct page * 4241 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 4242 unsigned int alloc_flags, 4243 const struct alloc_context *ac) 4244 { 4245 struct page *page; 4246 4247 page = get_page_from_freelist(gfp_mask, order, 4248 alloc_flags|ALLOC_CPUSET, ac); 4249 /* 4250 * fallback to ignore cpuset restriction if our nodes 4251 * are depleted 4252 */ 4253 if (!page) 4254 page = get_page_from_freelist(gfp_mask, order, 4255 alloc_flags, ac); 4256 4257 return page; 4258 } 4259 4260 static inline struct page * 4261 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 4262 const struct alloc_context *ac, unsigned long *did_some_progress) 4263 { 4264 struct oom_control oc = { 4265 .zonelist = ac->zonelist, 4266 .nodemask = ac->nodemask, 4267 .memcg = NULL, 4268 .gfp_mask = gfp_mask, 4269 .order = order, 4270 }; 4271 struct page *page; 4272 4273 *did_some_progress = 0; 4274 4275 /* 4276 * Acquire the oom lock. If that fails, somebody else is 4277 * making progress for us. 4278 */ 4279 if (!mutex_trylock(&oom_lock)) { 4280 *did_some_progress = 1; 4281 schedule_timeout_uninterruptible(1); 4282 return NULL; 4283 } 4284 4285 /* 4286 * Go through the zonelist yet one more time, keep very high watermark 4287 * here, this is only to catch a parallel oom killing, we must fail if 4288 * we're still under heavy pressure. But make sure that this reclaim 4289 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 4290 * allocation which will never fail due to oom_lock already held. 4291 */ 4292 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 4293 ~__GFP_DIRECT_RECLAIM, order, 4294 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 4295 if (page) 4296 goto out; 4297 4298 /* Coredumps can quickly deplete all memory reserves */ 4299 if (current->flags & PF_DUMPCORE) 4300 goto out; 4301 /* The OOM killer will not help higher order allocs */ 4302 if (order > PAGE_ALLOC_COSTLY_ORDER) 4303 goto out; 4304 /* 4305 * We have already exhausted all our reclaim opportunities without any 4306 * success so it is time to admit defeat. We will skip the OOM killer 4307 * because it is very likely that the caller has a more reasonable 4308 * fallback than shooting a random task. 4309 * 4310 * The OOM killer may not free memory on a specific node. 4311 */ 4312 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 4313 goto out; 4314 /* The OOM killer does not needlessly kill tasks for lowmem */ 4315 if (ac->highest_zoneidx < ZONE_NORMAL) 4316 goto out; 4317 if (pm_suspended_storage()) 4318 goto out; 4319 /* 4320 * XXX: GFP_NOFS allocations should rather fail than rely on 4321 * other request to make a forward progress. 4322 * We are in an unfortunate situation where out_of_memory cannot 4323 * do much for this context but let's try it to at least get 4324 * access to memory reserved if the current task is killed (see 4325 * out_of_memory). Once filesystems are ready to handle allocation 4326 * failures more gracefully we should just bail out here. 4327 */ 4328 4329 /* Exhausted what can be done so it's blame time */ 4330 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) { 4331 *did_some_progress = 1; 4332 4333 /* 4334 * Help non-failing allocations by giving them access to memory 4335 * reserves 4336 */ 4337 if (gfp_mask & __GFP_NOFAIL) 4338 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 4339 ALLOC_NO_WATERMARKS, ac); 4340 } 4341 out: 4342 mutex_unlock(&oom_lock); 4343 return page; 4344 } 4345 4346 /* 4347 * Maximum number of compaction retries with a progress before OOM 4348 * killer is consider as the only way to move forward. 4349 */ 4350 #define MAX_COMPACT_RETRIES 16 4351 4352 #ifdef CONFIG_COMPACTION 4353 /* Try memory compaction for high-order allocations before reclaim */ 4354 static struct page * 4355 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4356 unsigned int alloc_flags, const struct alloc_context *ac, 4357 enum compact_priority prio, enum compact_result *compact_result) 4358 { 4359 struct page *page = NULL; 4360 unsigned long pflags; 4361 unsigned int noreclaim_flag; 4362 4363 if (!order) 4364 return NULL; 4365 4366 psi_memstall_enter(&pflags); 4367 noreclaim_flag = memalloc_noreclaim_save(); 4368 4369 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 4370 prio, &page); 4371 4372 memalloc_noreclaim_restore(noreclaim_flag); 4373 psi_memstall_leave(&pflags); 4374 4375 if (*compact_result == COMPACT_SKIPPED) 4376 return NULL; 4377 /* 4378 * At least in one zone compaction wasn't deferred or skipped, so let's 4379 * count a compaction stall 4380 */ 4381 count_vm_event(COMPACTSTALL); 4382 4383 /* Prep a captured page if available */ 4384 if (page) 4385 prep_new_page(page, order, gfp_mask, alloc_flags); 4386 4387 /* Try get a page from the freelist if available */ 4388 if (!page) 4389 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4390 4391 if (page) { 4392 struct zone *zone = page_zone(page); 4393 4394 zone->compact_blockskip_flush = false; 4395 compaction_defer_reset(zone, order, true); 4396 count_vm_event(COMPACTSUCCESS); 4397 return page; 4398 } 4399 4400 /* 4401 * It's bad if compaction run occurs and fails. The most likely reason 4402 * is that pages exist, but not enough to satisfy watermarks. 4403 */ 4404 count_vm_event(COMPACTFAIL); 4405 4406 cond_resched(); 4407 4408 return NULL; 4409 } 4410 4411 static inline bool 4412 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 4413 enum compact_result compact_result, 4414 enum compact_priority *compact_priority, 4415 int *compaction_retries) 4416 { 4417 int max_retries = MAX_COMPACT_RETRIES; 4418 int min_priority; 4419 bool ret = false; 4420 int retries = *compaction_retries; 4421 enum compact_priority priority = *compact_priority; 4422 4423 if (!order) 4424 return false; 4425 4426 if (fatal_signal_pending(current)) 4427 return false; 4428 4429 if (compaction_made_progress(compact_result)) 4430 (*compaction_retries)++; 4431 4432 /* 4433 * compaction considers all the zone as desperately out of memory 4434 * so it doesn't really make much sense to retry except when the 4435 * failure could be caused by insufficient priority 4436 */ 4437 if (compaction_failed(compact_result)) 4438 goto check_priority; 4439 4440 /* 4441 * compaction was skipped because there are not enough order-0 pages 4442 * to work with, so we retry only if it looks like reclaim can help. 4443 */ 4444 if (compaction_needs_reclaim(compact_result)) { 4445 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 4446 goto out; 4447 } 4448 4449 /* 4450 * make sure the compaction wasn't deferred or didn't bail out early 4451 * due to locks contention before we declare that we should give up. 4452 * But the next retry should use a higher priority if allowed, so 4453 * we don't just keep bailing out endlessly. 4454 */ 4455 if (compaction_withdrawn(compact_result)) { 4456 goto check_priority; 4457 } 4458 4459 /* 4460 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 4461 * costly ones because they are de facto nofail and invoke OOM 4462 * killer to move on while costly can fail and users are ready 4463 * to cope with that. 1/4 retries is rather arbitrary but we 4464 * would need much more detailed feedback from compaction to 4465 * make a better decision. 4466 */ 4467 if (order > PAGE_ALLOC_COSTLY_ORDER) 4468 max_retries /= 4; 4469 if (*compaction_retries <= max_retries) { 4470 ret = true; 4471 goto out; 4472 } 4473 4474 /* 4475 * Make sure there are attempts at the highest priority if we exhausted 4476 * all retries or failed at the lower priorities. 4477 */ 4478 check_priority: 4479 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 4480 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 4481 4482 if (*compact_priority > min_priority) { 4483 (*compact_priority)--; 4484 *compaction_retries = 0; 4485 ret = true; 4486 } 4487 out: 4488 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 4489 return ret; 4490 } 4491 #else 4492 static inline struct page * 4493 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 4494 unsigned int alloc_flags, const struct alloc_context *ac, 4495 enum compact_priority prio, enum compact_result *compact_result) 4496 { 4497 *compact_result = COMPACT_SKIPPED; 4498 return NULL; 4499 } 4500 4501 static inline bool 4502 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 4503 enum compact_result compact_result, 4504 enum compact_priority *compact_priority, 4505 int *compaction_retries) 4506 { 4507 struct zone *zone; 4508 struct zoneref *z; 4509 4510 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 4511 return false; 4512 4513 /* 4514 * There are setups with compaction disabled which would prefer to loop 4515 * inside the allocator rather than hit the oom killer prematurely. 4516 * Let's give them a good hope and keep retrying while the order-0 4517 * watermarks are OK. 4518 */ 4519 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4520 ac->highest_zoneidx, ac->nodemask) { 4521 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 4522 ac->highest_zoneidx, alloc_flags)) 4523 return true; 4524 } 4525 return false; 4526 } 4527 #endif /* CONFIG_COMPACTION */ 4528 4529 #ifdef CONFIG_LOCKDEP 4530 static struct lockdep_map __fs_reclaim_map = 4531 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 4532 4533 static bool __need_reclaim(gfp_t gfp_mask) 4534 { 4535 /* no reclaim without waiting on it */ 4536 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 4537 return false; 4538 4539 /* this guy won't enter reclaim */ 4540 if (current->flags & PF_MEMALLOC) 4541 return false; 4542 4543 if (gfp_mask & __GFP_NOLOCKDEP) 4544 return false; 4545 4546 return true; 4547 } 4548 4549 void __fs_reclaim_acquire(void) 4550 { 4551 lock_map_acquire(&__fs_reclaim_map); 4552 } 4553 4554 void __fs_reclaim_release(void) 4555 { 4556 lock_map_release(&__fs_reclaim_map); 4557 } 4558 4559 void fs_reclaim_acquire(gfp_t gfp_mask) 4560 { 4561 gfp_mask = current_gfp_context(gfp_mask); 4562 4563 if (__need_reclaim(gfp_mask)) { 4564 if (gfp_mask & __GFP_FS) 4565 __fs_reclaim_acquire(); 4566 4567 #ifdef CONFIG_MMU_NOTIFIER 4568 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 4569 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 4570 #endif 4571 4572 } 4573 } 4574 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 4575 4576 void fs_reclaim_release(gfp_t gfp_mask) 4577 { 4578 gfp_mask = current_gfp_context(gfp_mask); 4579 4580 if (__need_reclaim(gfp_mask)) { 4581 if (gfp_mask & __GFP_FS) 4582 __fs_reclaim_release(); 4583 } 4584 } 4585 EXPORT_SYMBOL_GPL(fs_reclaim_release); 4586 #endif 4587 4588 /* Perform direct synchronous page reclaim */ 4589 static unsigned long 4590 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 4591 const struct alloc_context *ac) 4592 { 4593 unsigned int noreclaim_flag; 4594 unsigned long pflags, progress; 4595 4596 cond_resched(); 4597 4598 /* We now go into synchronous reclaim */ 4599 cpuset_memory_pressure_bump(); 4600 psi_memstall_enter(&pflags); 4601 fs_reclaim_acquire(gfp_mask); 4602 noreclaim_flag = memalloc_noreclaim_save(); 4603 4604 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 4605 ac->nodemask); 4606 4607 memalloc_noreclaim_restore(noreclaim_flag); 4608 fs_reclaim_release(gfp_mask); 4609 psi_memstall_leave(&pflags); 4610 4611 cond_resched(); 4612 4613 return progress; 4614 } 4615 4616 /* The really slow allocator path where we enter direct reclaim */ 4617 static inline struct page * 4618 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 4619 unsigned int alloc_flags, const struct alloc_context *ac, 4620 unsigned long *did_some_progress) 4621 { 4622 struct page *page = NULL; 4623 bool drained = false; 4624 4625 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 4626 if (unlikely(!(*did_some_progress))) 4627 return NULL; 4628 4629 retry: 4630 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4631 4632 /* 4633 * If an allocation failed after direct reclaim, it could be because 4634 * pages are pinned on the per-cpu lists or in high alloc reserves. 4635 * Shrink them and try again 4636 */ 4637 if (!page && !drained) { 4638 unreserve_highatomic_pageblock(ac, false); 4639 drain_all_pages(NULL); 4640 drained = true; 4641 goto retry; 4642 } 4643 4644 return page; 4645 } 4646 4647 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4648 const struct alloc_context *ac) 4649 { 4650 struct zoneref *z; 4651 struct zone *zone; 4652 pg_data_t *last_pgdat = NULL; 4653 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4654 4655 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4656 ac->nodemask) { 4657 if (last_pgdat != zone->zone_pgdat) 4658 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4659 last_pgdat = zone->zone_pgdat; 4660 } 4661 } 4662 4663 static inline unsigned int 4664 gfp_to_alloc_flags(gfp_t gfp_mask) 4665 { 4666 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4667 4668 /* 4669 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH 4670 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4671 * to save two branches. 4672 */ 4673 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH); 4674 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4675 4676 /* 4677 * The caller may dip into page reserves a bit more if the caller 4678 * cannot run direct reclaim, or if the caller has realtime scheduling 4679 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4680 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH). 4681 */ 4682 alloc_flags |= (__force int) 4683 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4684 4685 if (gfp_mask & __GFP_ATOMIC) { 4686 /* 4687 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4688 * if it can't schedule. 4689 */ 4690 if (!(gfp_mask & __GFP_NOMEMALLOC)) 4691 alloc_flags |= ALLOC_HARDER; 4692 /* 4693 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the 4694 * comment for __cpuset_node_allowed(). 4695 */ 4696 alloc_flags &= ~ALLOC_CPUSET; 4697 } else if (unlikely(rt_task(current)) && !in_interrupt()) 4698 alloc_flags |= ALLOC_HARDER; 4699 4700 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4701 4702 return alloc_flags; 4703 } 4704 4705 static bool oom_reserves_allowed(struct task_struct *tsk) 4706 { 4707 if (!tsk_is_oom_victim(tsk)) 4708 return false; 4709 4710 /* 4711 * !MMU doesn't have oom reaper so give access to memory reserves 4712 * only to the thread with TIF_MEMDIE set 4713 */ 4714 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4715 return false; 4716 4717 return true; 4718 } 4719 4720 /* 4721 * Distinguish requests which really need access to full memory 4722 * reserves from oom victims which can live with a portion of it 4723 */ 4724 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4725 { 4726 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4727 return 0; 4728 if (gfp_mask & __GFP_MEMALLOC) 4729 return ALLOC_NO_WATERMARKS; 4730 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4731 return ALLOC_NO_WATERMARKS; 4732 if (!in_interrupt()) { 4733 if (current->flags & PF_MEMALLOC) 4734 return ALLOC_NO_WATERMARKS; 4735 else if (oom_reserves_allowed(current)) 4736 return ALLOC_OOM; 4737 } 4738 4739 return 0; 4740 } 4741 4742 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4743 { 4744 return !!__gfp_pfmemalloc_flags(gfp_mask); 4745 } 4746 4747 /* 4748 * Checks whether it makes sense to retry the reclaim to make a forward progress 4749 * for the given allocation request. 4750 * 4751 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4752 * without success, or when we couldn't even meet the watermark if we 4753 * reclaimed all remaining pages on the LRU lists. 4754 * 4755 * Returns true if a retry is viable or false to enter the oom path. 4756 */ 4757 static inline bool 4758 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4759 struct alloc_context *ac, int alloc_flags, 4760 bool did_some_progress, int *no_progress_loops) 4761 { 4762 struct zone *zone; 4763 struct zoneref *z; 4764 bool ret = false; 4765 4766 /* 4767 * Costly allocations might have made a progress but this doesn't mean 4768 * their order will become available due to high fragmentation so 4769 * always increment the no progress counter for them 4770 */ 4771 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4772 *no_progress_loops = 0; 4773 else 4774 (*no_progress_loops)++; 4775 4776 /* 4777 * Make sure we converge to OOM if we cannot make any progress 4778 * several times in the row. 4779 */ 4780 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4781 /* Before OOM, exhaust highatomic_reserve */ 4782 return unreserve_highatomic_pageblock(ac, true); 4783 } 4784 4785 /* 4786 * Keep reclaiming pages while there is a chance this will lead 4787 * somewhere. If none of the target zones can satisfy our allocation 4788 * request even if all reclaimable pages are considered then we are 4789 * screwed and have to go OOM. 4790 */ 4791 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4792 ac->highest_zoneidx, ac->nodemask) { 4793 unsigned long available; 4794 unsigned long reclaimable; 4795 unsigned long min_wmark = min_wmark_pages(zone); 4796 bool wmark; 4797 4798 available = reclaimable = zone_reclaimable_pages(zone); 4799 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4800 4801 /* 4802 * Would the allocation succeed if we reclaimed all 4803 * reclaimable pages? 4804 */ 4805 wmark = __zone_watermark_ok(zone, order, min_wmark, 4806 ac->highest_zoneidx, alloc_flags, available); 4807 trace_reclaim_retry_zone(z, order, reclaimable, 4808 available, min_wmark, *no_progress_loops, wmark); 4809 if (wmark) { 4810 /* 4811 * If we didn't make any progress and have a lot of 4812 * dirty + writeback pages then we should wait for 4813 * an IO to complete to slow down the reclaim and 4814 * prevent from pre mature OOM 4815 */ 4816 if (!did_some_progress) { 4817 unsigned long write_pending; 4818 4819 write_pending = zone_page_state_snapshot(zone, 4820 NR_ZONE_WRITE_PENDING); 4821 4822 if (2 * write_pending > reclaimable) { 4823 congestion_wait(BLK_RW_ASYNC, HZ/10); 4824 return true; 4825 } 4826 } 4827 4828 ret = true; 4829 goto out; 4830 } 4831 } 4832 4833 out: 4834 /* 4835 * Memory allocation/reclaim might be called from a WQ context and the 4836 * current implementation of the WQ concurrency control doesn't 4837 * recognize that a particular WQ is congested if the worker thread is 4838 * looping without ever sleeping. Therefore we have to do a short sleep 4839 * here rather than calling cond_resched(). 4840 */ 4841 if (current->flags & PF_WQ_WORKER) 4842 schedule_timeout_uninterruptible(1); 4843 else 4844 cond_resched(); 4845 return ret; 4846 } 4847 4848 static inline bool 4849 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4850 { 4851 /* 4852 * It's possible that cpuset's mems_allowed and the nodemask from 4853 * mempolicy don't intersect. This should be normally dealt with by 4854 * policy_nodemask(), but it's possible to race with cpuset update in 4855 * such a way the check therein was true, and then it became false 4856 * before we got our cpuset_mems_cookie here. 4857 * This assumes that for all allocations, ac->nodemask can come only 4858 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4859 * when it does not intersect with the cpuset restrictions) or the 4860 * caller can deal with a violated nodemask. 4861 */ 4862 if (cpusets_enabled() && ac->nodemask && 4863 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4864 ac->nodemask = NULL; 4865 return true; 4866 } 4867 4868 /* 4869 * When updating a task's mems_allowed or mempolicy nodemask, it is 4870 * possible to race with parallel threads in such a way that our 4871 * allocation can fail while the mask is being updated. If we are about 4872 * to fail, check if the cpuset changed during allocation and if so, 4873 * retry. 4874 */ 4875 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4876 return true; 4877 4878 return false; 4879 } 4880 4881 static inline struct page * 4882 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4883 struct alloc_context *ac) 4884 { 4885 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4886 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4887 struct page *page = NULL; 4888 unsigned int alloc_flags; 4889 unsigned long did_some_progress; 4890 enum compact_priority compact_priority; 4891 enum compact_result compact_result; 4892 int compaction_retries; 4893 int no_progress_loops; 4894 unsigned int cpuset_mems_cookie; 4895 int reserve_flags; 4896 4897 /* 4898 * We also sanity check to catch abuse of atomic reserves being used by 4899 * callers that are not in atomic context. 4900 */ 4901 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) == 4902 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM))) 4903 gfp_mask &= ~__GFP_ATOMIC; 4904 4905 retry_cpuset: 4906 compaction_retries = 0; 4907 no_progress_loops = 0; 4908 compact_priority = DEF_COMPACT_PRIORITY; 4909 cpuset_mems_cookie = read_mems_allowed_begin(); 4910 4911 /* 4912 * The fast path uses conservative alloc_flags to succeed only until 4913 * kswapd needs to be woken up, and to avoid the cost of setting up 4914 * alloc_flags precisely. So we do that now. 4915 */ 4916 alloc_flags = gfp_to_alloc_flags(gfp_mask); 4917 4918 /* 4919 * We need to recalculate the starting point for the zonelist iterator 4920 * because we might have used different nodemask in the fast path, or 4921 * there was a cpuset modification and we are retrying - otherwise we 4922 * could end up iterating over non-eligible zones endlessly. 4923 */ 4924 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4925 ac->highest_zoneidx, ac->nodemask); 4926 if (!ac->preferred_zoneref->zone) 4927 goto nopage; 4928 4929 if (alloc_flags & ALLOC_KSWAPD) 4930 wake_all_kswapds(order, gfp_mask, ac); 4931 4932 /* 4933 * The adjusted alloc_flags might result in immediate success, so try 4934 * that first 4935 */ 4936 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4937 if (page) 4938 goto got_pg; 4939 4940 /* 4941 * For costly allocations, try direct compaction first, as it's likely 4942 * that we have enough base pages and don't need to reclaim. For non- 4943 * movable high-order allocations, do that as well, as compaction will 4944 * try prevent permanent fragmentation by migrating from blocks of the 4945 * same migratetype. 4946 * Don't try this for allocations that are allowed to ignore 4947 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4948 */ 4949 if (can_direct_reclaim && 4950 (costly_order || 4951 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4952 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4953 page = __alloc_pages_direct_compact(gfp_mask, order, 4954 alloc_flags, ac, 4955 INIT_COMPACT_PRIORITY, 4956 &compact_result); 4957 if (page) 4958 goto got_pg; 4959 4960 /* 4961 * Checks for costly allocations with __GFP_NORETRY, which 4962 * includes some THP page fault allocations 4963 */ 4964 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4965 /* 4966 * If allocating entire pageblock(s) and compaction 4967 * failed because all zones are below low watermarks 4968 * or is prohibited because it recently failed at this 4969 * order, fail immediately unless the allocator has 4970 * requested compaction and reclaim retry. 4971 * 4972 * Reclaim is 4973 * - potentially very expensive because zones are far 4974 * below their low watermarks or this is part of very 4975 * bursty high order allocations, 4976 * - not guaranteed to help because isolate_freepages() 4977 * may not iterate over freed pages as part of its 4978 * linear scan, and 4979 * - unlikely to make entire pageblocks free on its 4980 * own. 4981 */ 4982 if (compact_result == COMPACT_SKIPPED || 4983 compact_result == COMPACT_DEFERRED) 4984 goto nopage; 4985 4986 /* 4987 * Looks like reclaim/compaction is worth trying, but 4988 * sync compaction could be very expensive, so keep 4989 * using async compaction. 4990 */ 4991 compact_priority = INIT_COMPACT_PRIORITY; 4992 } 4993 } 4994 4995 retry: 4996 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4997 if (alloc_flags & ALLOC_KSWAPD) 4998 wake_all_kswapds(order, gfp_mask, ac); 4999 5000 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 5001 if (reserve_flags) 5002 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags); 5003 5004 /* 5005 * Reset the nodemask and zonelist iterators if memory policies can be 5006 * ignored. These allocations are high priority and system rather than 5007 * user oriented. 5008 */ 5009 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 5010 ac->nodemask = NULL; 5011 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5012 ac->highest_zoneidx, ac->nodemask); 5013 } 5014 5015 /* Attempt with potentially adjusted zonelist and alloc_flags */ 5016 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 5017 if (page) 5018 goto got_pg; 5019 5020 /* Caller is not willing to reclaim, we can't balance anything */ 5021 if (!can_direct_reclaim) 5022 goto nopage; 5023 5024 /* Avoid recursion of direct reclaim */ 5025 if (current->flags & PF_MEMALLOC) 5026 goto nopage; 5027 5028 /* Try direct reclaim and then allocating */ 5029 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 5030 &did_some_progress); 5031 if (page) 5032 goto got_pg; 5033 5034 /* Try direct compaction and then allocating */ 5035 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 5036 compact_priority, &compact_result); 5037 if (page) 5038 goto got_pg; 5039 5040 /* Do not loop if specifically requested */ 5041 if (gfp_mask & __GFP_NORETRY) 5042 goto nopage; 5043 5044 /* 5045 * Do not retry costly high order allocations unless they are 5046 * __GFP_RETRY_MAYFAIL 5047 */ 5048 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 5049 goto nopage; 5050 5051 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 5052 did_some_progress > 0, &no_progress_loops)) 5053 goto retry; 5054 5055 /* 5056 * It doesn't make any sense to retry for the compaction if the order-0 5057 * reclaim is not able to make any progress because the current 5058 * implementation of the compaction depends on the sufficient amount 5059 * of free memory (see __compaction_suitable) 5060 */ 5061 if (did_some_progress > 0 && 5062 should_compact_retry(ac, order, alloc_flags, 5063 compact_result, &compact_priority, 5064 &compaction_retries)) 5065 goto retry; 5066 5067 5068 /* Deal with possible cpuset update races before we start OOM killing */ 5069 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5070 goto retry_cpuset; 5071 5072 /* Reclaim has failed us, start killing things */ 5073 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 5074 if (page) 5075 goto got_pg; 5076 5077 /* Avoid allocations with no watermarks from looping endlessly */ 5078 if (tsk_is_oom_victim(current) && 5079 (alloc_flags & ALLOC_OOM || 5080 (gfp_mask & __GFP_NOMEMALLOC))) 5081 goto nopage; 5082 5083 /* Retry as long as the OOM killer is making progress */ 5084 if (did_some_progress) { 5085 no_progress_loops = 0; 5086 goto retry; 5087 } 5088 5089 nopage: 5090 /* Deal with possible cpuset update races before we fail */ 5091 if (check_retry_cpuset(cpuset_mems_cookie, ac)) 5092 goto retry_cpuset; 5093 5094 /* 5095 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 5096 * we always retry 5097 */ 5098 if (gfp_mask & __GFP_NOFAIL) { 5099 /* 5100 * All existing users of the __GFP_NOFAIL are blockable, so warn 5101 * of any new users that actually require GFP_NOWAIT 5102 */ 5103 if (WARN_ON_ONCE(!can_direct_reclaim)) 5104 goto fail; 5105 5106 /* 5107 * PF_MEMALLOC request from this context is rather bizarre 5108 * because we cannot reclaim anything and only can loop waiting 5109 * for somebody to do a work for us 5110 */ 5111 WARN_ON_ONCE(current->flags & PF_MEMALLOC); 5112 5113 /* 5114 * non failing costly orders are a hard requirement which we 5115 * are not prepared for much so let's warn about these users 5116 * so that we can identify them and convert them to something 5117 * else. 5118 */ 5119 WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER); 5120 5121 /* 5122 * Help non-failing allocations by giving them access to memory 5123 * reserves but do not use ALLOC_NO_WATERMARKS because this 5124 * could deplete whole memory reserves which would just make 5125 * the situation worse 5126 */ 5127 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac); 5128 if (page) 5129 goto got_pg; 5130 5131 cond_resched(); 5132 goto retry; 5133 } 5134 fail: 5135 warn_alloc(gfp_mask, ac->nodemask, 5136 "page allocation failure: order:%u", order); 5137 got_pg: 5138 return page; 5139 } 5140 5141 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 5142 int preferred_nid, nodemask_t *nodemask, 5143 struct alloc_context *ac, gfp_t *alloc_gfp, 5144 unsigned int *alloc_flags) 5145 { 5146 ac->highest_zoneidx = gfp_zone(gfp_mask); 5147 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 5148 ac->nodemask = nodemask; 5149 ac->migratetype = gfp_migratetype(gfp_mask); 5150 5151 if (cpusets_enabled()) { 5152 *alloc_gfp |= __GFP_HARDWALL; 5153 /* 5154 * When we are in the interrupt context, it is irrelevant 5155 * to the current task context. It means that any node ok. 5156 */ 5157 if (!in_interrupt() && !ac->nodemask) 5158 ac->nodemask = &cpuset_current_mems_allowed; 5159 else 5160 *alloc_flags |= ALLOC_CPUSET; 5161 } 5162 5163 fs_reclaim_acquire(gfp_mask); 5164 fs_reclaim_release(gfp_mask); 5165 5166 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM); 5167 5168 if (should_fail_alloc_page(gfp_mask, order)) 5169 return false; 5170 5171 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 5172 5173 /* Dirty zone balancing only done in the fast path */ 5174 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 5175 5176 /* 5177 * The preferred zone is used for statistics but crucially it is 5178 * also used as the starting point for the zonelist iterator. It 5179 * may get reset for allocations that ignore memory policies. 5180 */ 5181 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 5182 ac->highest_zoneidx, ac->nodemask); 5183 5184 return true; 5185 } 5186 5187 /* 5188 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 5189 * @gfp: GFP flags for the allocation 5190 * @preferred_nid: The preferred NUMA node ID to allocate from 5191 * @nodemask: Set of nodes to allocate from, may be NULL 5192 * @nr_pages: The number of pages desired on the list or array 5193 * @page_list: Optional list to store the allocated pages 5194 * @page_array: Optional array to store the pages 5195 * 5196 * This is a batched version of the page allocator that attempts to 5197 * allocate nr_pages quickly. Pages are added to page_list if page_list 5198 * is not NULL, otherwise it is assumed that the page_array is valid. 5199 * 5200 * For lists, nr_pages is the number of pages that should be allocated. 5201 * 5202 * For arrays, only NULL elements are populated with pages and nr_pages 5203 * is the maximum number of pages that will be stored in the array. 5204 * 5205 * Returns the number of pages on the list or array. 5206 */ 5207 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 5208 nodemask_t *nodemask, int nr_pages, 5209 struct list_head *page_list, 5210 struct page **page_array) 5211 { 5212 struct page *page; 5213 unsigned long flags; 5214 struct zone *zone; 5215 struct zoneref *z; 5216 struct per_cpu_pages *pcp; 5217 struct list_head *pcp_list; 5218 struct alloc_context ac; 5219 gfp_t alloc_gfp; 5220 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5221 int nr_populated = 0, nr_account = 0; 5222 5223 if (unlikely(nr_pages <= 0)) 5224 return 0; 5225 5226 /* 5227 * Skip populated array elements to determine if any pages need 5228 * to be allocated before disabling IRQs. 5229 */ 5230 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 5231 nr_populated++; 5232 5233 /* Already populated array? */ 5234 if (unlikely(page_array && nr_pages - nr_populated == 0)) 5235 return nr_populated; 5236 5237 /* Use the single page allocator for one page. */ 5238 if (nr_pages - nr_populated == 1) 5239 goto failed; 5240 5241 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 5242 gfp &= gfp_allowed_mask; 5243 alloc_gfp = gfp; 5244 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 5245 return 0; 5246 gfp = alloc_gfp; 5247 5248 /* Find an allowed local zone that meets the low watermark. */ 5249 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 5250 unsigned long mark; 5251 5252 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 5253 !__cpuset_zone_allowed(zone, gfp)) { 5254 continue; 5255 } 5256 5257 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 5258 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 5259 goto failed; 5260 } 5261 5262 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 5263 if (zone_watermark_fast(zone, 0, mark, 5264 zonelist_zone_idx(ac.preferred_zoneref), 5265 alloc_flags, gfp)) { 5266 break; 5267 } 5268 } 5269 5270 /* 5271 * If there are no allowed local zones that meets the watermarks then 5272 * try to allocate a single page and reclaim if necessary. 5273 */ 5274 if (unlikely(!zone)) 5275 goto failed; 5276 5277 /* Attempt the batch allocation */ 5278 local_lock_irqsave(&pagesets.lock, flags); 5279 pcp = this_cpu_ptr(zone->per_cpu_pageset); 5280 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 5281 5282 while (nr_populated < nr_pages) { 5283 5284 /* Skip existing pages */ 5285 if (page_array && page_array[nr_populated]) { 5286 nr_populated++; 5287 continue; 5288 } 5289 5290 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 5291 pcp, pcp_list); 5292 if (unlikely(!page)) { 5293 /* Try and get at least one page */ 5294 if (!nr_populated) 5295 goto failed_irq; 5296 break; 5297 } 5298 nr_account++; 5299 5300 prep_new_page(page, 0, gfp, 0); 5301 if (page_list) 5302 list_add(&page->lru, page_list); 5303 else 5304 page_array[nr_populated] = page; 5305 nr_populated++; 5306 } 5307 5308 local_unlock_irqrestore(&pagesets.lock, flags); 5309 5310 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 5311 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 5312 5313 return nr_populated; 5314 5315 failed_irq: 5316 local_unlock_irqrestore(&pagesets.lock, flags); 5317 5318 failed: 5319 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 5320 if (page) { 5321 if (page_list) 5322 list_add(&page->lru, page_list); 5323 else 5324 page_array[nr_populated] = page; 5325 nr_populated++; 5326 } 5327 5328 return nr_populated; 5329 } 5330 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 5331 5332 /* 5333 * This is the 'heart' of the zoned buddy allocator. 5334 */ 5335 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 5336 nodemask_t *nodemask) 5337 { 5338 struct page *page; 5339 unsigned int alloc_flags = ALLOC_WMARK_LOW; 5340 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 5341 struct alloc_context ac = { }; 5342 5343 /* 5344 * There are several places where we assume that the order value is sane 5345 * so bail out early if the request is out of bound. 5346 */ 5347 if (unlikely(order >= MAX_ORDER)) { 5348 WARN_ON_ONCE(!(gfp & __GFP_NOWARN)); 5349 return NULL; 5350 } 5351 5352 gfp &= gfp_allowed_mask; 5353 /* 5354 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 5355 * resp. GFP_NOIO which has to be inherited for all allocation requests 5356 * from a particular context which has been marked by 5357 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 5358 * movable zones are not used during allocation. 5359 */ 5360 gfp = current_gfp_context(gfp); 5361 alloc_gfp = gfp; 5362 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 5363 &alloc_gfp, &alloc_flags)) 5364 return NULL; 5365 5366 /* 5367 * Forbid the first pass from falling back to types that fragment 5368 * memory until all local zones are considered. 5369 */ 5370 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 5371 5372 /* First allocation attempt */ 5373 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 5374 if (likely(page)) 5375 goto out; 5376 5377 alloc_gfp = gfp; 5378 ac.spread_dirty_pages = false; 5379 5380 /* 5381 * Restore the original nodemask if it was potentially replaced with 5382 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 5383 */ 5384 ac.nodemask = nodemask; 5385 5386 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 5387 5388 out: 5389 if (memcg_kmem_enabled() && (gfp & __GFP_ACCOUNT) && page && 5390 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 5391 __free_pages(page, order); 5392 page = NULL; 5393 } 5394 5395 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 5396 5397 return page; 5398 } 5399 EXPORT_SYMBOL(__alloc_pages); 5400 5401 /* 5402 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 5403 * address cannot represent highmem pages. Use alloc_pages and then kmap if 5404 * you need to access high mem. 5405 */ 5406 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 5407 { 5408 struct page *page; 5409 5410 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 5411 if (!page) 5412 return 0; 5413 return (unsigned long) page_address(page); 5414 } 5415 EXPORT_SYMBOL(__get_free_pages); 5416 5417 unsigned long get_zeroed_page(gfp_t gfp_mask) 5418 { 5419 return __get_free_pages(gfp_mask | __GFP_ZERO, 0); 5420 } 5421 EXPORT_SYMBOL(get_zeroed_page); 5422 5423 /** 5424 * __free_pages - Free pages allocated with alloc_pages(). 5425 * @page: The page pointer returned from alloc_pages(). 5426 * @order: The order of the allocation. 5427 * 5428 * This function can free multi-page allocations that are not compound 5429 * pages. It does not check that the @order passed in matches that of 5430 * the allocation, so it is easy to leak memory. Freeing more memory 5431 * than was allocated will probably emit a warning. 5432 * 5433 * If the last reference to this page is speculative, it will be released 5434 * by put_page() which only frees the first page of a non-compound 5435 * allocation. To prevent the remaining pages from being leaked, we free 5436 * the subsequent pages here. If you want to use the page's reference 5437 * count to decide when to free the allocation, you should allocate a 5438 * compound page, and use put_page() instead of __free_pages(). 5439 * 5440 * Context: May be called in interrupt context or while holding a normal 5441 * spinlock, but not in NMI context or while holding a raw spinlock. 5442 */ 5443 void __free_pages(struct page *page, unsigned int order) 5444 { 5445 if (put_page_testzero(page)) 5446 free_the_page(page, order); 5447 else if (!PageHead(page)) 5448 while (order-- > 0) 5449 free_the_page(page + (1 << order), order); 5450 } 5451 EXPORT_SYMBOL(__free_pages); 5452 5453 void free_pages(unsigned long addr, unsigned int order) 5454 { 5455 if (addr != 0) { 5456 VM_BUG_ON(!virt_addr_valid((void *)addr)); 5457 __free_pages(virt_to_page((void *)addr), order); 5458 } 5459 } 5460 5461 EXPORT_SYMBOL(free_pages); 5462 5463 /* 5464 * Page Fragment: 5465 * An arbitrary-length arbitrary-offset area of memory which resides 5466 * within a 0 or higher order page. Multiple fragments within that page 5467 * are individually refcounted, in the page's reference counter. 5468 * 5469 * The page_frag functions below provide a simple allocation framework for 5470 * page fragments. This is used by the network stack and network device 5471 * drivers to provide a backing region of memory for use as either an 5472 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 5473 */ 5474 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 5475 gfp_t gfp_mask) 5476 { 5477 struct page *page = NULL; 5478 gfp_t gfp = gfp_mask; 5479 5480 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5481 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 5482 __GFP_NOMEMALLOC; 5483 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 5484 PAGE_FRAG_CACHE_MAX_ORDER); 5485 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 5486 #endif 5487 if (unlikely(!page)) 5488 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 5489 5490 nc->va = page ? page_address(page) : NULL; 5491 5492 return page; 5493 } 5494 5495 void __page_frag_cache_drain(struct page *page, unsigned int count) 5496 { 5497 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 5498 5499 if (page_ref_sub_and_test(page, count)) 5500 free_the_page(page, compound_order(page)); 5501 } 5502 EXPORT_SYMBOL(__page_frag_cache_drain); 5503 5504 void *page_frag_alloc_align(struct page_frag_cache *nc, 5505 unsigned int fragsz, gfp_t gfp_mask, 5506 unsigned int align_mask) 5507 { 5508 unsigned int size = PAGE_SIZE; 5509 struct page *page; 5510 int offset; 5511 5512 if (unlikely(!nc->va)) { 5513 refill: 5514 page = __page_frag_cache_refill(nc, gfp_mask); 5515 if (!page) 5516 return NULL; 5517 5518 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5519 /* if size can vary use size else just use PAGE_SIZE */ 5520 size = nc->size; 5521 #endif 5522 /* Even if we own the page, we do not use atomic_set(). 5523 * This would break get_page_unless_zero() users. 5524 */ 5525 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 5526 5527 /* reset page count bias and offset to start of new frag */ 5528 nc->pfmemalloc = page_is_pfmemalloc(page); 5529 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5530 nc->offset = size; 5531 } 5532 5533 offset = nc->offset - fragsz; 5534 if (unlikely(offset < 0)) { 5535 page = virt_to_page(nc->va); 5536 5537 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 5538 goto refill; 5539 5540 if (unlikely(nc->pfmemalloc)) { 5541 free_the_page(page, compound_order(page)); 5542 goto refill; 5543 } 5544 5545 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 5546 /* if size can vary use size else just use PAGE_SIZE */ 5547 size = nc->size; 5548 #endif 5549 /* OK, page count is 0, we can safely set it */ 5550 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 5551 5552 /* reset page count bias and offset to start of new frag */ 5553 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 5554 offset = size - fragsz; 5555 } 5556 5557 nc->pagecnt_bias--; 5558 offset &= align_mask; 5559 nc->offset = offset; 5560 5561 return nc->va + offset; 5562 } 5563 EXPORT_SYMBOL(page_frag_alloc_align); 5564 5565 /* 5566 * Frees a page fragment allocated out of either a compound or order 0 page. 5567 */ 5568 void page_frag_free(void *addr) 5569 { 5570 struct page *page = virt_to_head_page(addr); 5571 5572 if (unlikely(put_page_testzero(page))) 5573 free_the_page(page, compound_order(page)); 5574 } 5575 EXPORT_SYMBOL(page_frag_free); 5576 5577 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5578 size_t size) 5579 { 5580 if (addr) { 5581 unsigned long alloc_end = addr + (PAGE_SIZE << order); 5582 unsigned long used = addr + PAGE_ALIGN(size); 5583 5584 split_page(virt_to_page((void *)addr), order); 5585 while (used < alloc_end) { 5586 free_page(used); 5587 used += PAGE_SIZE; 5588 } 5589 } 5590 return (void *)addr; 5591 } 5592 5593 /** 5594 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5595 * @size: the number of bytes to allocate 5596 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5597 * 5598 * This function is similar to alloc_pages(), except that it allocates the 5599 * minimum number of pages to satisfy the request. alloc_pages() can only 5600 * allocate memory in power-of-two pages. 5601 * 5602 * This function is also limited by MAX_ORDER. 5603 * 5604 * Memory allocated by this function must be released by free_pages_exact(). 5605 * 5606 * Return: pointer to the allocated area or %NULL in case of error. 5607 */ 5608 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5609 { 5610 unsigned int order = get_order(size); 5611 unsigned long addr; 5612 5613 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5614 gfp_mask &= ~__GFP_COMP; 5615 5616 addr = __get_free_pages(gfp_mask, order); 5617 return make_alloc_exact(addr, order, size); 5618 } 5619 EXPORT_SYMBOL(alloc_pages_exact); 5620 5621 /** 5622 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5623 * pages on a node. 5624 * @nid: the preferred node ID where memory should be allocated 5625 * @size: the number of bytes to allocate 5626 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5627 * 5628 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5629 * back. 5630 * 5631 * Return: pointer to the allocated area or %NULL in case of error. 5632 */ 5633 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5634 { 5635 unsigned int order = get_order(size); 5636 struct page *p; 5637 5638 if (WARN_ON_ONCE(gfp_mask & __GFP_COMP)) 5639 gfp_mask &= ~__GFP_COMP; 5640 5641 p = alloc_pages_node(nid, gfp_mask, order); 5642 if (!p) 5643 return NULL; 5644 return make_alloc_exact((unsigned long)page_address(p), order, size); 5645 } 5646 5647 /** 5648 * free_pages_exact - release memory allocated via alloc_pages_exact() 5649 * @virt: the value returned by alloc_pages_exact. 5650 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5651 * 5652 * Release the memory allocated by a previous call to alloc_pages_exact. 5653 */ 5654 void free_pages_exact(void *virt, size_t size) 5655 { 5656 unsigned long addr = (unsigned long)virt; 5657 unsigned long end = addr + PAGE_ALIGN(size); 5658 5659 while (addr < end) { 5660 free_page(addr); 5661 addr += PAGE_SIZE; 5662 } 5663 } 5664 EXPORT_SYMBOL(free_pages_exact); 5665 5666 /** 5667 * nr_free_zone_pages - count number of pages beyond high watermark 5668 * @offset: The zone index of the highest zone 5669 * 5670 * nr_free_zone_pages() counts the number of pages which are beyond the 5671 * high watermark within all zones at or below a given zone index. For each 5672 * zone, the number of pages is calculated as: 5673 * 5674 * nr_free_zone_pages = managed_pages - high_pages 5675 * 5676 * Return: number of pages beyond high watermark. 5677 */ 5678 static unsigned long nr_free_zone_pages(int offset) 5679 { 5680 struct zoneref *z; 5681 struct zone *zone; 5682 5683 /* Just pick one node, since fallback list is circular */ 5684 unsigned long sum = 0; 5685 5686 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5687 5688 for_each_zone_zonelist(zone, z, zonelist, offset) { 5689 unsigned long size = zone_managed_pages(zone); 5690 unsigned long high = high_wmark_pages(zone); 5691 if (size > high) 5692 sum += size - high; 5693 } 5694 5695 return sum; 5696 } 5697 5698 /** 5699 * nr_free_buffer_pages - count number of pages beyond high watermark 5700 * 5701 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5702 * watermark within ZONE_DMA and ZONE_NORMAL. 5703 * 5704 * Return: number of pages beyond high watermark within ZONE_DMA and 5705 * ZONE_NORMAL. 5706 */ 5707 unsigned long nr_free_buffer_pages(void) 5708 { 5709 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5710 } 5711 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5712 5713 static inline void show_node(struct zone *zone) 5714 { 5715 if (IS_ENABLED(CONFIG_NUMA)) 5716 printk("Node %d ", zone_to_nid(zone)); 5717 } 5718 5719 long si_mem_available(void) 5720 { 5721 long available; 5722 unsigned long pagecache; 5723 unsigned long wmark_low = 0; 5724 unsigned long pages[NR_LRU_LISTS]; 5725 unsigned long reclaimable; 5726 struct zone *zone; 5727 int lru; 5728 5729 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5730 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5731 5732 for_each_zone(zone) 5733 wmark_low += low_wmark_pages(zone); 5734 5735 /* 5736 * Estimate the amount of memory available for userspace allocations, 5737 * without causing swapping. 5738 */ 5739 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5740 5741 /* 5742 * Not all the page cache can be freed, otherwise the system will 5743 * start swapping. Assume at least half of the page cache, or the 5744 * low watermark worth of cache, needs to stay. 5745 */ 5746 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5747 pagecache -= min(pagecache / 2, wmark_low); 5748 available += pagecache; 5749 5750 /* 5751 * Part of the reclaimable slab and other kernel memory consists of 5752 * items that are in use, and cannot be freed. Cap this estimate at the 5753 * low watermark. 5754 */ 5755 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5756 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5757 available += reclaimable - min(reclaimable / 2, wmark_low); 5758 5759 if (available < 0) 5760 available = 0; 5761 return available; 5762 } 5763 EXPORT_SYMBOL_GPL(si_mem_available); 5764 5765 void si_meminfo(struct sysinfo *val) 5766 { 5767 val->totalram = totalram_pages(); 5768 val->sharedram = global_node_page_state(NR_SHMEM); 5769 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5770 val->bufferram = nr_blockdev_pages(); 5771 val->totalhigh = totalhigh_pages(); 5772 val->freehigh = nr_free_highpages(); 5773 val->mem_unit = PAGE_SIZE; 5774 } 5775 5776 EXPORT_SYMBOL(si_meminfo); 5777 5778 #ifdef CONFIG_NUMA 5779 void si_meminfo_node(struct sysinfo *val, int nid) 5780 { 5781 int zone_type; /* needs to be signed */ 5782 unsigned long managed_pages = 0; 5783 unsigned long managed_highpages = 0; 5784 unsigned long free_highpages = 0; 5785 pg_data_t *pgdat = NODE_DATA(nid); 5786 5787 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5788 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5789 val->totalram = managed_pages; 5790 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5791 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5792 #ifdef CONFIG_HIGHMEM 5793 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5794 struct zone *zone = &pgdat->node_zones[zone_type]; 5795 5796 if (is_highmem(zone)) { 5797 managed_highpages += zone_managed_pages(zone); 5798 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5799 } 5800 } 5801 val->totalhigh = managed_highpages; 5802 val->freehigh = free_highpages; 5803 #else 5804 val->totalhigh = managed_highpages; 5805 val->freehigh = free_highpages; 5806 #endif 5807 val->mem_unit = PAGE_SIZE; 5808 } 5809 #endif 5810 5811 /* 5812 * Determine whether the node should be displayed or not, depending on whether 5813 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5814 */ 5815 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5816 { 5817 if (!(flags & SHOW_MEM_FILTER_NODES)) 5818 return false; 5819 5820 /* 5821 * no node mask - aka implicit memory numa policy. Do not bother with 5822 * the synchronization - read_mems_allowed_begin - because we do not 5823 * have to be precise here. 5824 */ 5825 if (!nodemask) 5826 nodemask = &cpuset_current_mems_allowed; 5827 5828 return !node_isset(nid, *nodemask); 5829 } 5830 5831 #define K(x) ((x) << (PAGE_SHIFT-10)) 5832 5833 static void show_migration_types(unsigned char type) 5834 { 5835 static const char types[MIGRATE_TYPES] = { 5836 [MIGRATE_UNMOVABLE] = 'U', 5837 [MIGRATE_MOVABLE] = 'M', 5838 [MIGRATE_RECLAIMABLE] = 'E', 5839 [MIGRATE_HIGHATOMIC] = 'H', 5840 #ifdef CONFIG_CMA 5841 [MIGRATE_CMA] = 'C', 5842 #endif 5843 #ifdef CONFIG_MEMORY_ISOLATION 5844 [MIGRATE_ISOLATE] = 'I', 5845 #endif 5846 }; 5847 char tmp[MIGRATE_TYPES + 1]; 5848 char *p = tmp; 5849 int i; 5850 5851 for (i = 0; i < MIGRATE_TYPES; i++) { 5852 if (type & (1 << i)) 5853 *p++ = types[i]; 5854 } 5855 5856 *p = '\0'; 5857 printk(KERN_CONT "(%s) ", tmp); 5858 } 5859 5860 /* 5861 * Show free area list (used inside shift_scroll-lock stuff) 5862 * We also calculate the percentage fragmentation. We do this by counting the 5863 * memory on each free list with the exception of the first item on the list. 5864 * 5865 * Bits in @filter: 5866 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5867 * cpuset. 5868 */ 5869 void show_free_areas(unsigned int filter, nodemask_t *nodemask) 5870 { 5871 unsigned long free_pcp = 0; 5872 int cpu; 5873 struct zone *zone; 5874 pg_data_t *pgdat; 5875 5876 for_each_populated_zone(zone) { 5877 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5878 continue; 5879 5880 for_each_online_cpu(cpu) 5881 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5882 } 5883 5884 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5885 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5886 " unevictable:%lu dirty:%lu writeback:%lu\n" 5887 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5888 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n" 5889 " free:%lu free_pcp:%lu free_cma:%lu\n", 5890 global_node_page_state(NR_ACTIVE_ANON), 5891 global_node_page_state(NR_INACTIVE_ANON), 5892 global_node_page_state(NR_ISOLATED_ANON), 5893 global_node_page_state(NR_ACTIVE_FILE), 5894 global_node_page_state(NR_INACTIVE_FILE), 5895 global_node_page_state(NR_ISOLATED_FILE), 5896 global_node_page_state(NR_UNEVICTABLE), 5897 global_node_page_state(NR_FILE_DIRTY), 5898 global_node_page_state(NR_WRITEBACK), 5899 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5900 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5901 global_node_page_state(NR_FILE_MAPPED), 5902 global_node_page_state(NR_SHMEM), 5903 global_node_page_state(NR_PAGETABLE), 5904 global_zone_page_state(NR_BOUNCE), 5905 global_zone_page_state(NR_FREE_PAGES), 5906 free_pcp, 5907 global_zone_page_state(NR_FREE_CMA_PAGES)); 5908 5909 for_each_online_pgdat(pgdat) { 5910 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5911 continue; 5912 5913 printk("Node %d" 5914 " active_anon:%lukB" 5915 " inactive_anon:%lukB" 5916 " active_file:%lukB" 5917 " inactive_file:%lukB" 5918 " unevictable:%lukB" 5919 " isolated(anon):%lukB" 5920 " isolated(file):%lukB" 5921 " mapped:%lukB" 5922 " dirty:%lukB" 5923 " writeback:%lukB" 5924 " shmem:%lukB" 5925 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5926 " shmem_thp: %lukB" 5927 " shmem_pmdmapped: %lukB" 5928 " anon_thp: %lukB" 5929 #endif 5930 " writeback_tmp:%lukB" 5931 " kernel_stack:%lukB" 5932 #ifdef CONFIG_SHADOW_CALL_STACK 5933 " shadow_call_stack:%lukB" 5934 #endif 5935 " pagetables:%lukB" 5936 " all_unreclaimable? %s" 5937 "\n", 5938 pgdat->node_id, 5939 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5940 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5941 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5942 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5943 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5944 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5945 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5946 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5947 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5948 K(node_page_state(pgdat, NR_WRITEBACK)), 5949 K(node_page_state(pgdat, NR_SHMEM)), 5950 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5951 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5952 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5953 K(node_page_state(pgdat, NR_ANON_THPS)), 5954 #endif 5955 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5956 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5957 #ifdef CONFIG_SHADOW_CALL_STACK 5958 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5959 #endif 5960 K(node_page_state(pgdat, NR_PAGETABLE)), 5961 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5962 "yes" : "no"); 5963 } 5964 5965 for_each_populated_zone(zone) { 5966 int i; 5967 5968 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5969 continue; 5970 5971 free_pcp = 0; 5972 for_each_online_cpu(cpu) 5973 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5974 5975 show_node(zone); 5976 printk(KERN_CONT 5977 "%s" 5978 " free:%lukB" 5979 " min:%lukB" 5980 " low:%lukB" 5981 " high:%lukB" 5982 " reserved_highatomic:%luKB" 5983 " active_anon:%lukB" 5984 " inactive_anon:%lukB" 5985 " active_file:%lukB" 5986 " inactive_file:%lukB" 5987 " unevictable:%lukB" 5988 " writepending:%lukB" 5989 " present:%lukB" 5990 " managed:%lukB" 5991 " mlocked:%lukB" 5992 " bounce:%lukB" 5993 " free_pcp:%lukB" 5994 " local_pcp:%ukB" 5995 " free_cma:%lukB" 5996 "\n", 5997 zone->name, 5998 K(zone_page_state(zone, NR_FREE_PAGES)), 5999 K(min_wmark_pages(zone)), 6000 K(low_wmark_pages(zone)), 6001 K(high_wmark_pages(zone)), 6002 K(zone->nr_reserved_highatomic), 6003 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 6004 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 6005 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 6006 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 6007 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 6008 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 6009 K(zone->present_pages), 6010 K(zone_managed_pages(zone)), 6011 K(zone_page_state(zone, NR_MLOCK)), 6012 K(zone_page_state(zone, NR_BOUNCE)), 6013 K(free_pcp), 6014 K(this_cpu_read(zone->per_cpu_pageset->count)), 6015 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 6016 printk("lowmem_reserve[]:"); 6017 for (i = 0; i < MAX_NR_ZONES; i++) 6018 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 6019 printk(KERN_CONT "\n"); 6020 } 6021 6022 for_each_populated_zone(zone) { 6023 unsigned int order; 6024 unsigned long nr[MAX_ORDER], flags, total = 0; 6025 unsigned char types[MAX_ORDER]; 6026 6027 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 6028 continue; 6029 show_node(zone); 6030 printk(KERN_CONT "%s: ", zone->name); 6031 6032 spin_lock_irqsave(&zone->lock, flags); 6033 for (order = 0; order < MAX_ORDER; order++) { 6034 struct free_area *area = &zone->free_area[order]; 6035 int type; 6036 6037 nr[order] = area->nr_free; 6038 total += nr[order] << order; 6039 6040 types[order] = 0; 6041 for (type = 0; type < MIGRATE_TYPES; type++) { 6042 if (!free_area_empty(area, type)) 6043 types[order] |= 1 << type; 6044 } 6045 } 6046 spin_unlock_irqrestore(&zone->lock, flags); 6047 for (order = 0; order < MAX_ORDER; order++) { 6048 printk(KERN_CONT "%lu*%lukB ", 6049 nr[order], K(1UL) << order); 6050 if (nr[order]) 6051 show_migration_types(types[order]); 6052 } 6053 printk(KERN_CONT "= %lukB\n", K(total)); 6054 } 6055 6056 hugetlb_show_meminfo(); 6057 6058 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 6059 6060 show_swap_cache_info(); 6061 } 6062 6063 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 6064 { 6065 zoneref->zone = zone; 6066 zoneref->zone_idx = zone_idx(zone); 6067 } 6068 6069 /* 6070 * Builds allocation fallback zone lists. 6071 * 6072 * Add all populated zones of a node to the zonelist. 6073 */ 6074 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 6075 { 6076 struct zone *zone; 6077 enum zone_type zone_type = MAX_NR_ZONES; 6078 int nr_zones = 0; 6079 6080 do { 6081 zone_type--; 6082 zone = pgdat->node_zones + zone_type; 6083 if (managed_zone(zone)) { 6084 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 6085 check_highest_zone(zone_type); 6086 } 6087 } while (zone_type); 6088 6089 return nr_zones; 6090 } 6091 6092 #ifdef CONFIG_NUMA 6093 6094 static int __parse_numa_zonelist_order(char *s) 6095 { 6096 /* 6097 * We used to support different zonelists modes but they turned 6098 * out to be just not useful. Let's keep the warning in place 6099 * if somebody still use the cmd line parameter so that we do 6100 * not fail it silently 6101 */ 6102 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 6103 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 6104 return -EINVAL; 6105 } 6106 return 0; 6107 } 6108 6109 char numa_zonelist_order[] = "Node"; 6110 6111 /* 6112 * sysctl handler for numa_zonelist_order 6113 */ 6114 int numa_zonelist_order_handler(struct ctl_table *table, int write, 6115 void *buffer, size_t *length, loff_t *ppos) 6116 { 6117 if (write) 6118 return __parse_numa_zonelist_order(buffer); 6119 return proc_dostring(table, write, buffer, length, ppos); 6120 } 6121 6122 6123 #define MAX_NODE_LOAD (nr_online_nodes) 6124 static int node_load[MAX_NUMNODES]; 6125 6126 /** 6127 * find_next_best_node - find the next node that should appear in a given node's fallback list 6128 * @node: node whose fallback list we're appending 6129 * @used_node_mask: nodemask_t of already used nodes 6130 * 6131 * We use a number of factors to determine which is the next node that should 6132 * appear on a given node's fallback list. The node should not have appeared 6133 * already in @node's fallback list, and it should be the next closest node 6134 * according to the distance array (which contains arbitrary distance values 6135 * from each node to each node in the system), and should also prefer nodes 6136 * with no CPUs, since presumably they'll have very little allocation pressure 6137 * on them otherwise. 6138 * 6139 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 6140 */ 6141 static int find_next_best_node(int node, nodemask_t *used_node_mask) 6142 { 6143 int n, val; 6144 int min_val = INT_MAX; 6145 int best_node = NUMA_NO_NODE; 6146 6147 /* Use the local node if we haven't already */ 6148 if (!node_isset(node, *used_node_mask)) { 6149 node_set(node, *used_node_mask); 6150 return node; 6151 } 6152 6153 for_each_node_state(n, N_MEMORY) { 6154 6155 /* Don't want a node to appear more than once */ 6156 if (node_isset(n, *used_node_mask)) 6157 continue; 6158 6159 /* Use the distance array to find the distance */ 6160 val = node_distance(node, n); 6161 6162 /* Penalize nodes under us ("prefer the next node") */ 6163 val += (n < node); 6164 6165 /* Give preference to headless and unused nodes */ 6166 if (!cpumask_empty(cpumask_of_node(n))) 6167 val += PENALTY_FOR_NODE_WITH_CPUS; 6168 6169 /* Slight preference for less loaded node */ 6170 val *= (MAX_NODE_LOAD*MAX_NUMNODES); 6171 val += node_load[n]; 6172 6173 if (val < min_val) { 6174 min_val = val; 6175 best_node = n; 6176 } 6177 } 6178 6179 if (best_node >= 0) 6180 node_set(best_node, *used_node_mask); 6181 6182 return best_node; 6183 } 6184 6185 6186 /* 6187 * Build zonelists ordered by node and zones within node. 6188 * This results in maximum locality--normal zone overflows into local 6189 * DMA zone, if any--but risks exhausting DMA zone. 6190 */ 6191 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 6192 unsigned nr_nodes) 6193 { 6194 struct zoneref *zonerefs; 6195 int i; 6196 6197 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6198 6199 for (i = 0; i < nr_nodes; i++) { 6200 int nr_zones; 6201 6202 pg_data_t *node = NODE_DATA(node_order[i]); 6203 6204 nr_zones = build_zonerefs_node(node, zonerefs); 6205 zonerefs += nr_zones; 6206 } 6207 zonerefs->zone = NULL; 6208 zonerefs->zone_idx = 0; 6209 } 6210 6211 /* 6212 * Build gfp_thisnode zonelists 6213 */ 6214 static void build_thisnode_zonelists(pg_data_t *pgdat) 6215 { 6216 struct zoneref *zonerefs; 6217 int nr_zones; 6218 6219 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 6220 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6221 zonerefs += nr_zones; 6222 zonerefs->zone = NULL; 6223 zonerefs->zone_idx = 0; 6224 } 6225 6226 /* 6227 * Build zonelists ordered by zone and nodes within zones. 6228 * This results in conserving DMA zone[s] until all Normal memory is 6229 * exhausted, but results in overflowing to remote node while memory 6230 * may still exist in local DMA zone. 6231 */ 6232 6233 static void build_zonelists(pg_data_t *pgdat) 6234 { 6235 static int node_order[MAX_NUMNODES]; 6236 int node, load, nr_nodes = 0; 6237 nodemask_t used_mask = NODE_MASK_NONE; 6238 int local_node, prev_node; 6239 6240 /* NUMA-aware ordering of nodes */ 6241 local_node = pgdat->node_id; 6242 load = nr_online_nodes; 6243 prev_node = local_node; 6244 6245 memset(node_order, 0, sizeof(node_order)); 6246 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 6247 /* 6248 * We don't want to pressure a particular node. 6249 * So adding penalty to the first node in same 6250 * distance group to make it round-robin. 6251 */ 6252 if (node_distance(local_node, node) != 6253 node_distance(local_node, prev_node)) 6254 node_load[node] = load; 6255 6256 node_order[nr_nodes++] = node; 6257 prev_node = node; 6258 load--; 6259 } 6260 6261 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 6262 build_thisnode_zonelists(pgdat); 6263 } 6264 6265 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6266 /* 6267 * Return node id of node used for "local" allocations. 6268 * I.e., first node id of first zone in arg node's generic zonelist. 6269 * Used for initializing percpu 'numa_mem', which is used primarily 6270 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 6271 */ 6272 int local_memory_node(int node) 6273 { 6274 struct zoneref *z; 6275 6276 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 6277 gfp_zone(GFP_KERNEL), 6278 NULL); 6279 return zone_to_nid(z->zone); 6280 } 6281 #endif 6282 6283 static void setup_min_unmapped_ratio(void); 6284 static void setup_min_slab_ratio(void); 6285 #else /* CONFIG_NUMA */ 6286 6287 static void build_zonelists(pg_data_t *pgdat) 6288 { 6289 int node, local_node; 6290 struct zoneref *zonerefs; 6291 int nr_zones; 6292 6293 local_node = pgdat->node_id; 6294 6295 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 6296 nr_zones = build_zonerefs_node(pgdat, zonerefs); 6297 zonerefs += nr_zones; 6298 6299 /* 6300 * Now we build the zonelist so that it contains the zones 6301 * of all the other nodes. 6302 * We don't want to pressure a particular node, so when 6303 * building the zones for node N, we make sure that the 6304 * zones coming right after the local ones are those from 6305 * node N+1 (modulo N) 6306 */ 6307 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 6308 if (!node_online(node)) 6309 continue; 6310 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6311 zonerefs += nr_zones; 6312 } 6313 for (node = 0; node < local_node; node++) { 6314 if (!node_online(node)) 6315 continue; 6316 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 6317 zonerefs += nr_zones; 6318 } 6319 6320 zonerefs->zone = NULL; 6321 zonerefs->zone_idx = 0; 6322 } 6323 6324 #endif /* CONFIG_NUMA */ 6325 6326 /* 6327 * Boot pageset table. One per cpu which is going to be used for all 6328 * zones and all nodes. The parameters will be set in such a way 6329 * that an item put on a list will immediately be handed over to 6330 * the buddy list. This is safe since pageset manipulation is done 6331 * with interrupts disabled. 6332 * 6333 * The boot_pagesets must be kept even after bootup is complete for 6334 * unused processors and/or zones. They do play a role for bootstrapping 6335 * hotplugged processors. 6336 * 6337 * zoneinfo_show() and maybe other functions do 6338 * not check if the processor is online before following the pageset pointer. 6339 * Other parts of the kernel may not check if the zone is available. 6340 */ 6341 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 6342 /* These effectively disable the pcplists in the boot pageset completely */ 6343 #define BOOT_PAGESET_HIGH 0 6344 #define BOOT_PAGESET_BATCH 1 6345 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 6346 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 6347 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats); 6348 6349 static void __build_all_zonelists(void *data) 6350 { 6351 int nid; 6352 int __maybe_unused cpu; 6353 pg_data_t *self = data; 6354 static DEFINE_SPINLOCK(lock); 6355 6356 spin_lock(&lock); 6357 6358 #ifdef CONFIG_NUMA 6359 memset(node_load, 0, sizeof(node_load)); 6360 #endif 6361 6362 /* 6363 * This node is hotadded and no memory is yet present. So just 6364 * building zonelists is fine - no need to touch other nodes. 6365 */ 6366 if (self && !node_online(self->node_id)) { 6367 build_zonelists(self); 6368 } else { 6369 for_each_online_node(nid) { 6370 pg_data_t *pgdat = NODE_DATA(nid); 6371 6372 build_zonelists(pgdat); 6373 } 6374 6375 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 6376 /* 6377 * We now know the "local memory node" for each node-- 6378 * i.e., the node of the first zone in the generic zonelist. 6379 * Set up numa_mem percpu variable for on-line cpus. During 6380 * boot, only the boot cpu should be on-line; we'll init the 6381 * secondary cpus' numa_mem as they come on-line. During 6382 * node/memory hotplug, we'll fixup all on-line cpus. 6383 */ 6384 for_each_online_cpu(cpu) 6385 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 6386 #endif 6387 } 6388 6389 spin_unlock(&lock); 6390 } 6391 6392 static noinline void __init 6393 build_all_zonelists_init(void) 6394 { 6395 int cpu; 6396 6397 __build_all_zonelists(NULL); 6398 6399 /* 6400 * Initialize the boot_pagesets that are going to be used 6401 * for bootstrapping processors. The real pagesets for 6402 * each zone will be allocated later when the per cpu 6403 * allocator is available. 6404 * 6405 * boot_pagesets are used also for bootstrapping offline 6406 * cpus if the system is already booted because the pagesets 6407 * are needed to initialize allocators on a specific cpu too. 6408 * F.e. the percpu allocator needs the page allocator which 6409 * needs the percpu allocator in order to allocate its pagesets 6410 * (a chicken-egg dilemma). 6411 */ 6412 for_each_possible_cpu(cpu) 6413 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 6414 6415 mminit_verify_zonelist(); 6416 cpuset_init_current_mems_allowed(); 6417 } 6418 6419 /* 6420 * unless system_state == SYSTEM_BOOTING. 6421 * 6422 * __ref due to call of __init annotated helper build_all_zonelists_init 6423 * [protected by SYSTEM_BOOTING]. 6424 */ 6425 void __ref build_all_zonelists(pg_data_t *pgdat) 6426 { 6427 unsigned long vm_total_pages; 6428 6429 if (system_state == SYSTEM_BOOTING) { 6430 build_all_zonelists_init(); 6431 } else { 6432 __build_all_zonelists(pgdat); 6433 /* cpuset refresh routine should be here */ 6434 } 6435 /* Get the number of free pages beyond high watermark in all zones. */ 6436 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 6437 /* 6438 * Disable grouping by mobility if the number of pages in the 6439 * system is too low to allow the mechanism to work. It would be 6440 * more accurate, but expensive to check per-zone. This check is 6441 * made on memory-hotadd so a system can start with mobility 6442 * disabled and enable it later 6443 */ 6444 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 6445 page_group_by_mobility_disabled = 1; 6446 else 6447 page_group_by_mobility_disabled = 0; 6448 6449 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 6450 nr_online_nodes, 6451 page_group_by_mobility_disabled ? "off" : "on", 6452 vm_total_pages); 6453 #ifdef CONFIG_NUMA 6454 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 6455 #endif 6456 } 6457 6458 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */ 6459 static bool __meminit 6460 overlap_memmap_init(unsigned long zone, unsigned long *pfn) 6461 { 6462 static struct memblock_region *r; 6463 6464 if (mirrored_kernelcore && zone == ZONE_MOVABLE) { 6465 if (!r || *pfn >= memblock_region_memory_end_pfn(r)) { 6466 for_each_mem_region(r) { 6467 if (*pfn < memblock_region_memory_end_pfn(r)) 6468 break; 6469 } 6470 } 6471 if (*pfn >= memblock_region_memory_base_pfn(r) && 6472 memblock_is_mirror(r)) { 6473 *pfn = memblock_region_memory_end_pfn(r); 6474 return true; 6475 } 6476 } 6477 return false; 6478 } 6479 6480 /* 6481 * Initially all pages are reserved - free ones are freed 6482 * up by memblock_free_all() once the early boot process is 6483 * done. Non-atomic initialization, single-pass. 6484 * 6485 * All aligned pageblocks are initialized to the specified migratetype 6486 * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related 6487 * zone stats (e.g., nr_isolate_pageblock) are touched. 6488 */ 6489 void __meminit memmap_init_range(unsigned long size, int nid, unsigned long zone, 6490 unsigned long start_pfn, unsigned long zone_end_pfn, 6491 enum meminit_context context, 6492 struct vmem_altmap *altmap, int migratetype) 6493 { 6494 unsigned long pfn, end_pfn = start_pfn + size; 6495 struct page *page; 6496 6497 if (highest_memmap_pfn < end_pfn - 1) 6498 highest_memmap_pfn = end_pfn - 1; 6499 6500 #ifdef CONFIG_ZONE_DEVICE 6501 /* 6502 * Honor reservation requested by the driver for this ZONE_DEVICE 6503 * memory. We limit the total number of pages to initialize to just 6504 * those that might contain the memory mapping. We will defer the 6505 * ZONE_DEVICE page initialization until after we have released 6506 * the hotplug lock. 6507 */ 6508 if (zone == ZONE_DEVICE) { 6509 if (!altmap) 6510 return; 6511 6512 if (start_pfn == altmap->base_pfn) 6513 start_pfn += altmap->reserve; 6514 end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6515 } 6516 #endif 6517 6518 for (pfn = start_pfn; pfn < end_pfn; ) { 6519 /* 6520 * There can be holes in boot-time mem_map[]s handed to this 6521 * function. They do not exist on hotplugged memory. 6522 */ 6523 if (context == MEMINIT_EARLY) { 6524 if (overlap_memmap_init(zone, &pfn)) 6525 continue; 6526 if (defer_init(nid, pfn, zone_end_pfn)) 6527 break; 6528 } 6529 6530 page = pfn_to_page(pfn); 6531 __init_single_page(page, pfn, zone, nid); 6532 if (context == MEMINIT_HOTPLUG) 6533 __SetPageReserved(page); 6534 6535 /* 6536 * Usually, we want to mark the pageblock MIGRATE_MOVABLE, 6537 * such that unmovable allocations won't be scattered all 6538 * over the place during system boot. 6539 */ 6540 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6541 set_pageblock_migratetype(page, migratetype); 6542 cond_resched(); 6543 } 6544 pfn++; 6545 } 6546 } 6547 6548 #ifdef CONFIG_ZONE_DEVICE 6549 void __ref memmap_init_zone_device(struct zone *zone, 6550 unsigned long start_pfn, 6551 unsigned long nr_pages, 6552 struct dev_pagemap *pgmap) 6553 { 6554 unsigned long pfn, end_pfn = start_pfn + nr_pages; 6555 struct pglist_data *pgdat = zone->zone_pgdat; 6556 struct vmem_altmap *altmap = pgmap_altmap(pgmap); 6557 unsigned long zone_idx = zone_idx(zone); 6558 unsigned long start = jiffies; 6559 int nid = pgdat->node_id; 6560 6561 if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE)) 6562 return; 6563 6564 /* 6565 * The call to memmap_init should have already taken care 6566 * of the pages reserved for the memmap, so we can just jump to 6567 * the end of that region and start processing the device pages. 6568 */ 6569 if (altmap) { 6570 start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap); 6571 nr_pages = end_pfn - start_pfn; 6572 } 6573 6574 for (pfn = start_pfn; pfn < end_pfn; pfn++) { 6575 struct page *page = pfn_to_page(pfn); 6576 6577 __init_single_page(page, pfn, zone_idx, nid); 6578 6579 /* 6580 * Mark page reserved as it will need to wait for onlining 6581 * phase for it to be fully associated with a zone. 6582 * 6583 * We can use the non-atomic __set_bit operation for setting 6584 * the flag as we are still initializing the pages. 6585 */ 6586 __SetPageReserved(page); 6587 6588 /* 6589 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer 6590 * and zone_device_data. It is a bug if a ZONE_DEVICE page is 6591 * ever freed or placed on a driver-private list. 6592 */ 6593 page->pgmap = pgmap; 6594 page->zone_device_data = NULL; 6595 6596 /* 6597 * Mark the block movable so that blocks are reserved for 6598 * movable at startup. This will force kernel allocations 6599 * to reserve their blocks rather than leaking throughout 6600 * the address space during boot when many long-lived 6601 * kernel allocations are made. 6602 * 6603 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap 6604 * because this is done early in section_activate() 6605 */ 6606 if (IS_ALIGNED(pfn, pageblock_nr_pages)) { 6607 set_pageblock_migratetype(page, MIGRATE_MOVABLE); 6608 cond_resched(); 6609 } 6610 } 6611 6612 pr_info("%s initialised %lu pages in %ums\n", __func__, 6613 nr_pages, jiffies_to_msecs(jiffies - start)); 6614 } 6615 6616 #endif 6617 static void __meminit zone_init_free_lists(struct zone *zone) 6618 { 6619 unsigned int order, t; 6620 for_each_migratetype_order(order, t) { 6621 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]); 6622 zone->free_area[order].nr_free = 0; 6623 } 6624 } 6625 6626 #if !defined(CONFIG_FLATMEM) 6627 /* 6628 * Only struct pages that correspond to ranges defined by memblock.memory 6629 * are zeroed and initialized by going through __init_single_page() during 6630 * memmap_init_zone_range(). 6631 * 6632 * But, there could be struct pages that correspond to holes in 6633 * memblock.memory. This can happen because of the following reasons: 6634 * - physical memory bank size is not necessarily the exact multiple of the 6635 * arbitrary section size 6636 * - early reserved memory may not be listed in memblock.memory 6637 * - memory layouts defined with memmap= kernel parameter may not align 6638 * nicely with memmap sections 6639 * 6640 * Explicitly initialize those struct pages so that: 6641 * - PG_Reserved is set 6642 * - zone and node links point to zone and node that span the page if the 6643 * hole is in the middle of a zone 6644 * - zone and node links point to adjacent zone/node if the hole falls on 6645 * the zone boundary; the pages in such holes will be prepended to the 6646 * zone/node above the hole except for the trailing pages in the last 6647 * section that will be appended to the zone/node below. 6648 */ 6649 static void __init init_unavailable_range(unsigned long spfn, 6650 unsigned long epfn, 6651 int zone, int node) 6652 { 6653 unsigned long pfn; 6654 u64 pgcnt = 0; 6655 6656 for (pfn = spfn; pfn < epfn; pfn++) { 6657 if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) { 6658 pfn = ALIGN_DOWN(pfn, pageblock_nr_pages) 6659 + pageblock_nr_pages - 1; 6660 continue; 6661 } 6662 __init_single_page(pfn_to_page(pfn), pfn, zone, node); 6663 __SetPageReserved(pfn_to_page(pfn)); 6664 pgcnt++; 6665 } 6666 6667 if (pgcnt) 6668 pr_info("On node %d, zone %s: %lld pages in unavailable ranges", 6669 node, zone_names[zone], pgcnt); 6670 } 6671 #else 6672 static inline void init_unavailable_range(unsigned long spfn, 6673 unsigned long epfn, 6674 int zone, int node) 6675 { 6676 } 6677 #endif 6678 6679 static void __init memmap_init_zone_range(struct zone *zone, 6680 unsigned long start_pfn, 6681 unsigned long end_pfn, 6682 unsigned long *hole_pfn) 6683 { 6684 unsigned long zone_start_pfn = zone->zone_start_pfn; 6685 unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages; 6686 int nid = zone_to_nid(zone), zone_id = zone_idx(zone); 6687 6688 start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn); 6689 end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn); 6690 6691 if (start_pfn >= end_pfn) 6692 return; 6693 6694 memmap_init_range(end_pfn - start_pfn, nid, zone_id, start_pfn, 6695 zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE); 6696 6697 if (*hole_pfn < start_pfn) 6698 init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid); 6699 6700 *hole_pfn = end_pfn; 6701 } 6702 6703 static void __init memmap_init(void) 6704 { 6705 unsigned long start_pfn, end_pfn; 6706 unsigned long hole_pfn = 0; 6707 int i, j, zone_id, nid; 6708 6709 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 6710 struct pglist_data *node = NODE_DATA(nid); 6711 6712 for (j = 0; j < MAX_NR_ZONES; j++) { 6713 struct zone *zone = node->node_zones + j; 6714 6715 if (!populated_zone(zone)) 6716 continue; 6717 6718 memmap_init_zone_range(zone, start_pfn, end_pfn, 6719 &hole_pfn); 6720 zone_id = j; 6721 } 6722 } 6723 6724 #ifdef CONFIG_SPARSEMEM 6725 /* 6726 * Initialize the memory map for hole in the range [memory_end, 6727 * section_end]. 6728 * Append the pages in this hole to the highest zone in the last 6729 * node. 6730 * The call to init_unavailable_range() is outside the ifdef to 6731 * silence the compiler warining about zone_id set but not used; 6732 * for FLATMEM it is a nop anyway 6733 */ 6734 end_pfn = round_up(end_pfn, PAGES_PER_SECTION); 6735 if (hole_pfn < end_pfn) 6736 #endif 6737 init_unavailable_range(hole_pfn, end_pfn, zone_id, nid); 6738 } 6739 6740 static int zone_batchsize(struct zone *zone) 6741 { 6742 #ifdef CONFIG_MMU 6743 int batch; 6744 6745 /* 6746 * The number of pages to batch allocate is either ~0.1% 6747 * of the zone or 1MB, whichever is smaller. The batch 6748 * size is striking a balance between allocation latency 6749 * and zone lock contention. 6750 */ 6751 batch = min(zone_managed_pages(zone) >> 10, (1024 * 1024) / PAGE_SIZE); 6752 batch /= 4; /* We effectively *= 4 below */ 6753 if (batch < 1) 6754 batch = 1; 6755 6756 /* 6757 * Clamp the batch to a 2^n - 1 value. Having a power 6758 * of 2 value was found to be more likely to have 6759 * suboptimal cache aliasing properties in some cases. 6760 * 6761 * For example if 2 tasks are alternately allocating 6762 * batches of pages, one task can end up with a lot 6763 * of pages of one half of the possible page colors 6764 * and the other with pages of the other colors. 6765 */ 6766 batch = rounddown_pow_of_two(batch + batch/2) - 1; 6767 6768 return batch; 6769 6770 #else 6771 /* The deferral and batching of frees should be suppressed under NOMMU 6772 * conditions. 6773 * 6774 * The problem is that NOMMU needs to be able to allocate large chunks 6775 * of contiguous memory as there's no hardware page translation to 6776 * assemble apparent contiguous memory from discontiguous pages. 6777 * 6778 * Queueing large contiguous runs of pages for batching, however, 6779 * causes the pages to actually be freed in smaller chunks. As there 6780 * can be a significant delay between the individual batches being 6781 * recycled, this leads to the once large chunks of space being 6782 * fragmented and becoming unavailable for high-order allocations. 6783 */ 6784 return 0; 6785 #endif 6786 } 6787 6788 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 6789 { 6790 #ifdef CONFIG_MMU 6791 int high; 6792 int nr_split_cpus; 6793 unsigned long total_pages; 6794 6795 if (!percpu_pagelist_high_fraction) { 6796 /* 6797 * By default, the high value of the pcp is based on the zone 6798 * low watermark so that if they are full then background 6799 * reclaim will not be started prematurely. 6800 */ 6801 total_pages = low_wmark_pages(zone); 6802 } else { 6803 /* 6804 * If percpu_pagelist_high_fraction is configured, the high 6805 * value is based on a fraction of the managed pages in the 6806 * zone. 6807 */ 6808 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6809 } 6810 6811 /* 6812 * Split the high value across all online CPUs local to the zone. Note 6813 * that early in boot that CPUs may not be online yet and that during 6814 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6815 * onlined. For memory nodes that have no CPUs, split pcp->high across 6816 * all online CPUs to mitigate the risk that reclaim is triggered 6817 * prematurely due to pages stored on pcp lists. 6818 */ 6819 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6820 if (!nr_split_cpus) 6821 nr_split_cpus = num_online_cpus(); 6822 high = total_pages / nr_split_cpus; 6823 6824 /* 6825 * Ensure high is at least batch*4. The multiple is based on the 6826 * historical relationship between high and batch. 6827 */ 6828 high = max(high, batch << 2); 6829 6830 return high; 6831 #else 6832 return 0; 6833 #endif 6834 } 6835 6836 /* 6837 * pcp->high and pcp->batch values are related and generally batch is lower 6838 * than high. They are also related to pcp->count such that count is lower 6839 * than high, and as soon as it reaches high, the pcplist is flushed. 6840 * 6841 * However, guaranteeing these relations at all times would require e.g. write 6842 * barriers here but also careful usage of read barriers at the read side, and 6843 * thus be prone to error and bad for performance. Thus the update only prevents 6844 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6845 * can cope with those fields changing asynchronously, and fully trust only the 6846 * pcp->count field on the local CPU with interrupts disabled. 6847 * 6848 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6849 * outside of boot time (or some other assurance that no concurrent updaters 6850 * exist). 6851 */ 6852 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6853 unsigned long batch) 6854 { 6855 WRITE_ONCE(pcp->batch, batch); 6856 WRITE_ONCE(pcp->high, high); 6857 } 6858 6859 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6860 { 6861 int pindex; 6862 6863 memset(pcp, 0, sizeof(*pcp)); 6864 memset(pzstats, 0, sizeof(*pzstats)); 6865 6866 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6867 INIT_LIST_HEAD(&pcp->lists[pindex]); 6868 6869 /* 6870 * Set batch and high values safe for a boot pageset. A true percpu 6871 * pageset's initialization will update them subsequently. Here we don't 6872 * need to be as careful as pageset_update() as nobody can access the 6873 * pageset yet. 6874 */ 6875 pcp->high = BOOT_PAGESET_HIGH; 6876 pcp->batch = BOOT_PAGESET_BATCH; 6877 pcp->free_factor = 0; 6878 } 6879 6880 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6881 unsigned long batch) 6882 { 6883 struct per_cpu_pages *pcp; 6884 int cpu; 6885 6886 for_each_possible_cpu(cpu) { 6887 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6888 pageset_update(pcp, high, batch); 6889 } 6890 } 6891 6892 /* 6893 * Calculate and set new high and batch values for all per-cpu pagesets of a 6894 * zone based on the zone's size. 6895 */ 6896 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6897 { 6898 int new_high, new_batch; 6899 6900 new_batch = max(1, zone_batchsize(zone)); 6901 new_high = zone_highsize(zone, new_batch, cpu_online); 6902 6903 if (zone->pageset_high == new_high && 6904 zone->pageset_batch == new_batch) 6905 return; 6906 6907 zone->pageset_high = new_high; 6908 zone->pageset_batch = new_batch; 6909 6910 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6911 } 6912 6913 void __meminit setup_zone_pageset(struct zone *zone) 6914 { 6915 int cpu; 6916 6917 /* Size may be 0 on !SMP && !NUMA */ 6918 if (sizeof(struct per_cpu_zonestat) > 0) 6919 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6920 6921 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6922 for_each_possible_cpu(cpu) { 6923 struct per_cpu_pages *pcp; 6924 struct per_cpu_zonestat *pzstats; 6925 6926 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6927 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6928 per_cpu_pages_init(pcp, pzstats); 6929 } 6930 6931 zone_set_pageset_high_and_batch(zone, 0); 6932 } 6933 6934 /* 6935 * Allocate per cpu pagesets and initialize them. 6936 * Before this call only boot pagesets were available. 6937 */ 6938 void __init setup_per_cpu_pageset(void) 6939 { 6940 struct pglist_data *pgdat; 6941 struct zone *zone; 6942 int __maybe_unused cpu; 6943 6944 for_each_populated_zone(zone) 6945 setup_zone_pageset(zone); 6946 6947 #ifdef CONFIG_NUMA 6948 /* 6949 * Unpopulated zones continue using the boot pagesets. 6950 * The numa stats for these pagesets need to be reset. 6951 * Otherwise, they will end up skewing the stats of 6952 * the nodes these zones are associated with. 6953 */ 6954 for_each_possible_cpu(cpu) { 6955 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6956 memset(pzstats->vm_numa_event, 0, 6957 sizeof(pzstats->vm_numa_event)); 6958 } 6959 #endif 6960 6961 for_each_online_pgdat(pgdat) 6962 pgdat->per_cpu_nodestats = 6963 alloc_percpu(struct per_cpu_nodestat); 6964 } 6965 6966 static __meminit void zone_pcp_init(struct zone *zone) 6967 { 6968 /* 6969 * per cpu subsystem is not up at this point. The following code 6970 * relies on the ability of the linker to provide the 6971 * offset of a (static) per cpu variable into the per cpu area. 6972 */ 6973 zone->per_cpu_pageset = &boot_pageset; 6974 zone->per_cpu_zonestats = &boot_zonestats; 6975 zone->pageset_high = BOOT_PAGESET_HIGH; 6976 zone->pageset_batch = BOOT_PAGESET_BATCH; 6977 6978 if (populated_zone(zone)) 6979 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6980 zone->present_pages, zone_batchsize(zone)); 6981 } 6982 6983 void __meminit init_currently_empty_zone(struct zone *zone, 6984 unsigned long zone_start_pfn, 6985 unsigned long size) 6986 { 6987 struct pglist_data *pgdat = zone->zone_pgdat; 6988 int zone_idx = zone_idx(zone) + 1; 6989 6990 if (zone_idx > pgdat->nr_zones) 6991 pgdat->nr_zones = zone_idx; 6992 6993 zone->zone_start_pfn = zone_start_pfn; 6994 6995 mminit_dprintk(MMINIT_TRACE, "memmap_init", 6996 "Initialising map node %d zone %lu pfns %lu -> %lu\n", 6997 pgdat->node_id, 6998 (unsigned long)zone_idx(zone), 6999 zone_start_pfn, (zone_start_pfn + size)); 7000 7001 zone_init_free_lists(zone); 7002 zone->initialized = 1; 7003 } 7004 7005 /** 7006 * get_pfn_range_for_nid - Return the start and end page frames for a node 7007 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned. 7008 * @start_pfn: Passed by reference. On return, it will have the node start_pfn. 7009 * @end_pfn: Passed by reference. On return, it will have the node end_pfn. 7010 * 7011 * It returns the start and end page frame of a node based on information 7012 * provided by memblock_set_node(). If called for a node 7013 * with no available memory, a warning is printed and the start and end 7014 * PFNs will be 0. 7015 */ 7016 void __init get_pfn_range_for_nid(unsigned int nid, 7017 unsigned long *start_pfn, unsigned long *end_pfn) 7018 { 7019 unsigned long this_start_pfn, this_end_pfn; 7020 int i; 7021 7022 *start_pfn = -1UL; 7023 *end_pfn = 0; 7024 7025 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) { 7026 *start_pfn = min(*start_pfn, this_start_pfn); 7027 *end_pfn = max(*end_pfn, this_end_pfn); 7028 } 7029 7030 if (*start_pfn == -1UL) 7031 *start_pfn = 0; 7032 } 7033 7034 /* 7035 * This finds a zone that can be used for ZONE_MOVABLE pages. The 7036 * assumption is made that zones within a node are ordered in monotonic 7037 * increasing memory addresses so that the "highest" populated zone is used 7038 */ 7039 static void __init find_usable_zone_for_movable(void) 7040 { 7041 int zone_index; 7042 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) { 7043 if (zone_index == ZONE_MOVABLE) 7044 continue; 7045 7046 if (arch_zone_highest_possible_pfn[zone_index] > 7047 arch_zone_lowest_possible_pfn[zone_index]) 7048 break; 7049 } 7050 7051 VM_BUG_ON(zone_index == -1); 7052 movable_zone = zone_index; 7053 } 7054 7055 /* 7056 * The zone ranges provided by the architecture do not include ZONE_MOVABLE 7057 * because it is sized independent of architecture. Unlike the other zones, 7058 * the starting point for ZONE_MOVABLE is not fixed. It may be different 7059 * in each node depending on the size of each node and how evenly kernelcore 7060 * is distributed. This helper function adjusts the zone ranges 7061 * provided by the architecture for a given node by using the end of the 7062 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that 7063 * zones within a node are in order of monotonic increases memory addresses 7064 */ 7065 static void __init adjust_zone_range_for_zone_movable(int nid, 7066 unsigned long zone_type, 7067 unsigned long node_start_pfn, 7068 unsigned long node_end_pfn, 7069 unsigned long *zone_start_pfn, 7070 unsigned long *zone_end_pfn) 7071 { 7072 /* Only adjust if ZONE_MOVABLE is on this node */ 7073 if (zone_movable_pfn[nid]) { 7074 /* Size ZONE_MOVABLE */ 7075 if (zone_type == ZONE_MOVABLE) { 7076 *zone_start_pfn = zone_movable_pfn[nid]; 7077 *zone_end_pfn = min(node_end_pfn, 7078 arch_zone_highest_possible_pfn[movable_zone]); 7079 7080 /* Adjust for ZONE_MOVABLE starting within this range */ 7081 } else if (!mirrored_kernelcore && 7082 *zone_start_pfn < zone_movable_pfn[nid] && 7083 *zone_end_pfn > zone_movable_pfn[nid]) { 7084 *zone_end_pfn = zone_movable_pfn[nid]; 7085 7086 /* Check if this whole range is within ZONE_MOVABLE */ 7087 } else if (*zone_start_pfn >= zone_movable_pfn[nid]) 7088 *zone_start_pfn = *zone_end_pfn; 7089 } 7090 } 7091 7092 /* 7093 * Return the number of pages a zone spans in a node, including holes 7094 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node() 7095 */ 7096 static unsigned long __init zone_spanned_pages_in_node(int nid, 7097 unsigned long zone_type, 7098 unsigned long node_start_pfn, 7099 unsigned long node_end_pfn, 7100 unsigned long *zone_start_pfn, 7101 unsigned long *zone_end_pfn) 7102 { 7103 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7104 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7105 /* When hotadd a new node from cpu_up(), the node should be empty */ 7106 if (!node_start_pfn && !node_end_pfn) 7107 return 0; 7108 7109 /* Get the start and end of the zone */ 7110 *zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7111 *zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7112 adjust_zone_range_for_zone_movable(nid, zone_type, 7113 node_start_pfn, node_end_pfn, 7114 zone_start_pfn, zone_end_pfn); 7115 7116 /* Check that this node has pages within the zone's required range */ 7117 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn) 7118 return 0; 7119 7120 /* Move the zone boundaries inside the node if necessary */ 7121 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn); 7122 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn); 7123 7124 /* Return the spanned pages */ 7125 return *zone_end_pfn - *zone_start_pfn; 7126 } 7127 7128 /* 7129 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES, 7130 * then all holes in the requested range will be accounted for. 7131 */ 7132 unsigned long __init __absent_pages_in_range(int nid, 7133 unsigned long range_start_pfn, 7134 unsigned long range_end_pfn) 7135 { 7136 unsigned long nr_absent = range_end_pfn - range_start_pfn; 7137 unsigned long start_pfn, end_pfn; 7138 int i; 7139 7140 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7141 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn); 7142 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn); 7143 nr_absent -= end_pfn - start_pfn; 7144 } 7145 return nr_absent; 7146 } 7147 7148 /** 7149 * absent_pages_in_range - Return number of page frames in holes within a range 7150 * @start_pfn: The start PFN to start searching for holes 7151 * @end_pfn: The end PFN to stop searching for holes 7152 * 7153 * Return: the number of pages frames in memory holes within a range. 7154 */ 7155 unsigned long __init absent_pages_in_range(unsigned long start_pfn, 7156 unsigned long end_pfn) 7157 { 7158 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn); 7159 } 7160 7161 /* Return the number of page frames in holes in a zone on a node */ 7162 static unsigned long __init zone_absent_pages_in_node(int nid, 7163 unsigned long zone_type, 7164 unsigned long node_start_pfn, 7165 unsigned long node_end_pfn) 7166 { 7167 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type]; 7168 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type]; 7169 unsigned long zone_start_pfn, zone_end_pfn; 7170 unsigned long nr_absent; 7171 7172 /* When hotadd a new node from cpu_up(), the node should be empty */ 7173 if (!node_start_pfn && !node_end_pfn) 7174 return 0; 7175 7176 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high); 7177 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high); 7178 7179 adjust_zone_range_for_zone_movable(nid, zone_type, 7180 node_start_pfn, node_end_pfn, 7181 &zone_start_pfn, &zone_end_pfn); 7182 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn); 7183 7184 /* 7185 * ZONE_MOVABLE handling. 7186 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages 7187 * and vice versa. 7188 */ 7189 if (mirrored_kernelcore && zone_movable_pfn[nid]) { 7190 unsigned long start_pfn, end_pfn; 7191 struct memblock_region *r; 7192 7193 for_each_mem_region(r) { 7194 start_pfn = clamp(memblock_region_memory_base_pfn(r), 7195 zone_start_pfn, zone_end_pfn); 7196 end_pfn = clamp(memblock_region_memory_end_pfn(r), 7197 zone_start_pfn, zone_end_pfn); 7198 7199 if (zone_type == ZONE_MOVABLE && 7200 memblock_is_mirror(r)) 7201 nr_absent += end_pfn - start_pfn; 7202 7203 if (zone_type == ZONE_NORMAL && 7204 !memblock_is_mirror(r)) 7205 nr_absent += end_pfn - start_pfn; 7206 } 7207 } 7208 7209 return nr_absent; 7210 } 7211 7212 static void __init calculate_node_totalpages(struct pglist_data *pgdat, 7213 unsigned long node_start_pfn, 7214 unsigned long node_end_pfn) 7215 { 7216 unsigned long realtotalpages = 0, totalpages = 0; 7217 enum zone_type i; 7218 7219 for (i = 0; i < MAX_NR_ZONES; i++) { 7220 struct zone *zone = pgdat->node_zones + i; 7221 unsigned long zone_start_pfn, zone_end_pfn; 7222 unsigned long spanned, absent; 7223 unsigned long size, real_size; 7224 7225 spanned = zone_spanned_pages_in_node(pgdat->node_id, i, 7226 node_start_pfn, 7227 node_end_pfn, 7228 &zone_start_pfn, 7229 &zone_end_pfn); 7230 absent = zone_absent_pages_in_node(pgdat->node_id, i, 7231 node_start_pfn, 7232 node_end_pfn); 7233 7234 size = spanned; 7235 real_size = size - absent; 7236 7237 if (size) 7238 zone->zone_start_pfn = zone_start_pfn; 7239 else 7240 zone->zone_start_pfn = 0; 7241 zone->spanned_pages = size; 7242 zone->present_pages = real_size; 7243 7244 totalpages += size; 7245 realtotalpages += real_size; 7246 } 7247 7248 pgdat->node_spanned_pages = totalpages; 7249 pgdat->node_present_pages = realtotalpages; 7250 pr_debug("On node %d totalpages: %lu\n", pgdat->node_id, realtotalpages); 7251 } 7252 7253 #ifndef CONFIG_SPARSEMEM 7254 /* 7255 * Calculate the size of the zone->blockflags rounded to an unsigned long 7256 * Start by making sure zonesize is a multiple of pageblock_order by rounding 7257 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally 7258 * round what is now in bits to nearest long in bits, then return it in 7259 * bytes. 7260 */ 7261 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize) 7262 { 7263 unsigned long usemapsize; 7264 7265 zonesize += zone_start_pfn & (pageblock_nr_pages-1); 7266 usemapsize = roundup(zonesize, pageblock_nr_pages); 7267 usemapsize = usemapsize >> pageblock_order; 7268 usemapsize *= NR_PAGEBLOCK_BITS; 7269 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long)); 7270 7271 return usemapsize / 8; 7272 } 7273 7274 static void __ref setup_usemap(struct zone *zone) 7275 { 7276 unsigned long usemapsize = usemap_size(zone->zone_start_pfn, 7277 zone->spanned_pages); 7278 zone->pageblock_flags = NULL; 7279 if (usemapsize) { 7280 zone->pageblock_flags = 7281 memblock_alloc_node(usemapsize, SMP_CACHE_BYTES, 7282 zone_to_nid(zone)); 7283 if (!zone->pageblock_flags) 7284 panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n", 7285 usemapsize, zone->name, zone_to_nid(zone)); 7286 } 7287 } 7288 #else 7289 static inline void setup_usemap(struct zone *zone) {} 7290 #endif /* CONFIG_SPARSEMEM */ 7291 7292 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 7293 7294 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */ 7295 void __init set_pageblock_order(void) 7296 { 7297 unsigned int order; 7298 7299 /* Check that pageblock_nr_pages has not already been setup */ 7300 if (pageblock_order) 7301 return; 7302 7303 if (HPAGE_SHIFT > PAGE_SHIFT) 7304 order = HUGETLB_PAGE_ORDER; 7305 else 7306 order = MAX_ORDER - 1; 7307 7308 /* 7309 * Assume the largest contiguous order of interest is a huge page. 7310 * This value may be variable depending on boot parameters on IA64 and 7311 * powerpc. 7312 */ 7313 pageblock_order = order; 7314 } 7315 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7316 7317 /* 7318 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order() 7319 * is unused as pageblock_order is set at compile-time. See 7320 * include/linux/pageblock-flags.h for the values of pageblock_order based on 7321 * the kernel config 7322 */ 7323 void __init set_pageblock_order(void) 7324 { 7325 } 7326 7327 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */ 7328 7329 static unsigned long __init calc_memmap_size(unsigned long spanned_pages, 7330 unsigned long present_pages) 7331 { 7332 unsigned long pages = spanned_pages; 7333 7334 /* 7335 * Provide a more accurate estimation if there are holes within 7336 * the zone and SPARSEMEM is in use. If there are holes within the 7337 * zone, each populated memory region may cost us one or two extra 7338 * memmap pages due to alignment because memmap pages for each 7339 * populated regions may not be naturally aligned on page boundary. 7340 * So the (present_pages >> 4) heuristic is a tradeoff for that. 7341 */ 7342 if (spanned_pages > present_pages + (present_pages >> 4) && 7343 IS_ENABLED(CONFIG_SPARSEMEM)) 7344 pages = present_pages; 7345 7346 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT; 7347 } 7348 7349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 7350 static void pgdat_init_split_queue(struct pglist_data *pgdat) 7351 { 7352 struct deferred_split *ds_queue = &pgdat->deferred_split_queue; 7353 7354 spin_lock_init(&ds_queue->split_queue_lock); 7355 INIT_LIST_HEAD(&ds_queue->split_queue); 7356 ds_queue->split_queue_len = 0; 7357 } 7358 #else 7359 static void pgdat_init_split_queue(struct pglist_data *pgdat) {} 7360 #endif 7361 7362 #ifdef CONFIG_COMPACTION 7363 static void pgdat_init_kcompactd(struct pglist_data *pgdat) 7364 { 7365 init_waitqueue_head(&pgdat->kcompactd_wait); 7366 } 7367 #else 7368 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {} 7369 #endif 7370 7371 static void __meminit pgdat_init_internals(struct pglist_data *pgdat) 7372 { 7373 pgdat_resize_init(pgdat); 7374 7375 pgdat_init_split_queue(pgdat); 7376 pgdat_init_kcompactd(pgdat); 7377 7378 init_waitqueue_head(&pgdat->kswapd_wait); 7379 init_waitqueue_head(&pgdat->pfmemalloc_wait); 7380 7381 pgdat_page_ext_init(pgdat); 7382 lruvec_init(&pgdat->__lruvec); 7383 } 7384 7385 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid, 7386 unsigned long remaining_pages) 7387 { 7388 atomic_long_set(&zone->managed_pages, remaining_pages); 7389 zone_set_nid(zone, nid); 7390 zone->name = zone_names[idx]; 7391 zone->zone_pgdat = NODE_DATA(nid); 7392 spin_lock_init(&zone->lock); 7393 zone_seqlock_init(zone); 7394 zone_pcp_init(zone); 7395 } 7396 7397 /* 7398 * Set up the zone data structures 7399 * - init pgdat internals 7400 * - init all zones belonging to this node 7401 * 7402 * NOTE: this function is only called during memory hotplug 7403 */ 7404 #ifdef CONFIG_MEMORY_HOTPLUG 7405 void __ref free_area_init_core_hotplug(int nid) 7406 { 7407 enum zone_type z; 7408 pg_data_t *pgdat = NODE_DATA(nid); 7409 7410 pgdat_init_internals(pgdat); 7411 for (z = 0; z < MAX_NR_ZONES; z++) 7412 zone_init_internals(&pgdat->node_zones[z], z, nid, 0); 7413 } 7414 #endif 7415 7416 /* 7417 * Set up the zone data structures: 7418 * - mark all pages reserved 7419 * - mark all memory queues empty 7420 * - clear the memory bitmaps 7421 * 7422 * NOTE: pgdat should get zeroed by caller. 7423 * NOTE: this function is only called during early init. 7424 */ 7425 static void __init free_area_init_core(struct pglist_data *pgdat) 7426 { 7427 enum zone_type j; 7428 int nid = pgdat->node_id; 7429 7430 pgdat_init_internals(pgdat); 7431 pgdat->per_cpu_nodestats = &boot_nodestats; 7432 7433 for (j = 0; j < MAX_NR_ZONES; j++) { 7434 struct zone *zone = pgdat->node_zones + j; 7435 unsigned long size, freesize, memmap_pages; 7436 7437 size = zone->spanned_pages; 7438 freesize = zone->present_pages; 7439 7440 /* 7441 * Adjust freesize so that it accounts for how much memory 7442 * is used by this zone for memmap. This affects the watermark 7443 * and per-cpu initialisations 7444 */ 7445 memmap_pages = calc_memmap_size(size, freesize); 7446 if (!is_highmem_idx(j)) { 7447 if (freesize >= memmap_pages) { 7448 freesize -= memmap_pages; 7449 if (memmap_pages) 7450 pr_debug(" %s zone: %lu pages used for memmap\n", 7451 zone_names[j], memmap_pages); 7452 } else 7453 pr_warn(" %s zone: %lu memmap pages exceeds freesize %lu\n", 7454 zone_names[j], memmap_pages, freesize); 7455 } 7456 7457 /* Account for reserved pages */ 7458 if (j == 0 && freesize > dma_reserve) { 7459 freesize -= dma_reserve; 7460 pr_debug(" %s zone: %lu pages reserved\n", zone_names[0], dma_reserve); 7461 } 7462 7463 if (!is_highmem_idx(j)) 7464 nr_kernel_pages += freesize; 7465 /* Charge for highmem memmap if there are enough kernel pages */ 7466 else if (nr_kernel_pages > memmap_pages * 2) 7467 nr_kernel_pages -= memmap_pages; 7468 nr_all_pages += freesize; 7469 7470 /* 7471 * Set an approximate value for lowmem here, it will be adjusted 7472 * when the bootmem allocator frees pages into the buddy system. 7473 * And all highmem pages will be managed by the buddy system. 7474 */ 7475 zone_init_internals(zone, j, nid, freesize); 7476 7477 if (!size) 7478 continue; 7479 7480 set_pageblock_order(); 7481 setup_usemap(zone); 7482 init_currently_empty_zone(zone, zone->zone_start_pfn, size); 7483 } 7484 } 7485 7486 #ifdef CONFIG_FLATMEM 7487 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) 7488 { 7489 unsigned long __maybe_unused start = 0; 7490 unsigned long __maybe_unused offset = 0; 7491 7492 /* Skip empty nodes */ 7493 if (!pgdat->node_spanned_pages) 7494 return; 7495 7496 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1); 7497 offset = pgdat->node_start_pfn - start; 7498 /* ia64 gets its own node_mem_map, before this, without bootmem */ 7499 if (!pgdat->node_mem_map) { 7500 unsigned long size, end; 7501 struct page *map; 7502 7503 /* 7504 * The zone's endpoints aren't required to be MAX_ORDER 7505 * aligned but the node_mem_map endpoints must be in order 7506 * for the buddy allocator to function correctly. 7507 */ 7508 end = pgdat_end_pfn(pgdat); 7509 end = ALIGN(end, MAX_ORDER_NR_PAGES); 7510 size = (end - start) * sizeof(struct page); 7511 map = memblock_alloc_node(size, SMP_CACHE_BYTES, 7512 pgdat->node_id); 7513 if (!map) 7514 panic("Failed to allocate %ld bytes for node %d memory map\n", 7515 size, pgdat->node_id); 7516 pgdat->node_mem_map = map + offset; 7517 } 7518 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n", 7519 __func__, pgdat->node_id, (unsigned long)pgdat, 7520 (unsigned long)pgdat->node_mem_map); 7521 #ifndef CONFIG_NUMA 7522 /* 7523 * With no DISCONTIG, the global mem_map is just set as node 0's 7524 */ 7525 if (pgdat == NODE_DATA(0)) { 7526 mem_map = NODE_DATA(0)->node_mem_map; 7527 if (page_to_pfn(mem_map) != pgdat->node_start_pfn) 7528 mem_map -= offset; 7529 } 7530 #endif 7531 } 7532 #else 7533 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { } 7534 #endif /* CONFIG_FLATMEM */ 7535 7536 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 7537 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) 7538 { 7539 pgdat->first_deferred_pfn = ULONG_MAX; 7540 } 7541 #else 7542 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {} 7543 #endif 7544 7545 static void __init free_area_init_node(int nid) 7546 { 7547 pg_data_t *pgdat = NODE_DATA(nid); 7548 unsigned long start_pfn = 0; 7549 unsigned long end_pfn = 0; 7550 7551 /* pg_data_t should be reset to zero when it's allocated */ 7552 WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx); 7553 7554 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn); 7555 7556 pgdat->node_id = nid; 7557 pgdat->node_start_pfn = start_pfn; 7558 pgdat->per_cpu_nodestats = NULL; 7559 7560 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid, 7561 (u64)start_pfn << PAGE_SHIFT, 7562 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0); 7563 calculate_node_totalpages(pgdat, start_pfn, end_pfn); 7564 7565 alloc_node_mem_map(pgdat); 7566 pgdat_set_deferred_range(pgdat); 7567 7568 free_area_init_core(pgdat); 7569 } 7570 7571 void __init free_area_init_memoryless_node(int nid) 7572 { 7573 free_area_init_node(nid); 7574 } 7575 7576 #if MAX_NUMNODES > 1 7577 /* 7578 * Figure out the number of possible node ids. 7579 */ 7580 void __init setup_nr_node_ids(void) 7581 { 7582 unsigned int highest; 7583 7584 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES); 7585 nr_node_ids = highest + 1; 7586 } 7587 #endif 7588 7589 /** 7590 * node_map_pfn_alignment - determine the maximum internode alignment 7591 * 7592 * This function should be called after node map is populated and sorted. 7593 * It calculates the maximum power of two alignment which can distinguish 7594 * all the nodes. 7595 * 7596 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value 7597 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the 7598 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is 7599 * shifted, 1GiB is enough and this function will indicate so. 7600 * 7601 * This is used to test whether pfn -> nid mapping of the chosen memory 7602 * model has fine enough granularity to avoid incorrect mapping for the 7603 * populated node map. 7604 * 7605 * Return: the determined alignment in pfn's. 0 if there is no alignment 7606 * requirement (single node). 7607 */ 7608 unsigned long __init node_map_pfn_alignment(void) 7609 { 7610 unsigned long accl_mask = 0, last_end = 0; 7611 unsigned long start, end, mask; 7612 int last_nid = NUMA_NO_NODE; 7613 int i, nid; 7614 7615 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) { 7616 if (!start || last_nid < 0 || last_nid == nid) { 7617 last_nid = nid; 7618 last_end = end; 7619 continue; 7620 } 7621 7622 /* 7623 * Start with a mask granular enough to pin-point to the 7624 * start pfn and tick off bits one-by-one until it becomes 7625 * too coarse to separate the current node from the last. 7626 */ 7627 mask = ~((1 << __ffs(start)) - 1); 7628 while (mask && last_end <= (start & (mask << 1))) 7629 mask <<= 1; 7630 7631 /* accumulate all internode masks */ 7632 accl_mask |= mask; 7633 } 7634 7635 /* convert mask to number of pages */ 7636 return ~accl_mask + 1; 7637 } 7638 7639 /** 7640 * find_min_pfn_with_active_regions - Find the minimum PFN registered 7641 * 7642 * Return: the minimum PFN based on information provided via 7643 * memblock_set_node(). 7644 */ 7645 unsigned long __init find_min_pfn_with_active_regions(void) 7646 { 7647 return PHYS_PFN(memblock_start_of_DRAM()); 7648 } 7649 7650 /* 7651 * early_calculate_totalpages() 7652 * Sum pages in active regions for movable zone. 7653 * Populate N_MEMORY for calculating usable_nodes. 7654 */ 7655 static unsigned long __init early_calculate_totalpages(void) 7656 { 7657 unsigned long totalpages = 0; 7658 unsigned long start_pfn, end_pfn; 7659 int i, nid; 7660 7661 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7662 unsigned long pages = end_pfn - start_pfn; 7663 7664 totalpages += pages; 7665 if (pages) 7666 node_set_state(nid, N_MEMORY); 7667 } 7668 return totalpages; 7669 } 7670 7671 /* 7672 * Find the PFN the Movable zone begins in each node. Kernel memory 7673 * is spread evenly between nodes as long as the nodes have enough 7674 * memory. When they don't, some nodes will have more kernelcore than 7675 * others 7676 */ 7677 static void __init find_zone_movable_pfns_for_nodes(void) 7678 { 7679 int i, nid; 7680 unsigned long usable_startpfn; 7681 unsigned long kernelcore_node, kernelcore_remaining; 7682 /* save the state before borrow the nodemask */ 7683 nodemask_t saved_node_state = node_states[N_MEMORY]; 7684 unsigned long totalpages = early_calculate_totalpages(); 7685 int usable_nodes = nodes_weight(node_states[N_MEMORY]); 7686 struct memblock_region *r; 7687 7688 /* Need to find movable_zone earlier when movable_node is specified. */ 7689 find_usable_zone_for_movable(); 7690 7691 /* 7692 * If movable_node is specified, ignore kernelcore and movablecore 7693 * options. 7694 */ 7695 if (movable_node_is_enabled()) { 7696 for_each_mem_region(r) { 7697 if (!memblock_is_hotpluggable(r)) 7698 continue; 7699 7700 nid = memblock_get_region_node(r); 7701 7702 usable_startpfn = PFN_DOWN(r->base); 7703 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7704 min(usable_startpfn, zone_movable_pfn[nid]) : 7705 usable_startpfn; 7706 } 7707 7708 goto out2; 7709 } 7710 7711 /* 7712 * If kernelcore=mirror is specified, ignore movablecore option 7713 */ 7714 if (mirrored_kernelcore) { 7715 bool mem_below_4gb_not_mirrored = false; 7716 7717 for_each_mem_region(r) { 7718 if (memblock_is_mirror(r)) 7719 continue; 7720 7721 nid = memblock_get_region_node(r); 7722 7723 usable_startpfn = memblock_region_memory_base_pfn(r); 7724 7725 if (usable_startpfn < 0x100000) { 7726 mem_below_4gb_not_mirrored = true; 7727 continue; 7728 } 7729 7730 zone_movable_pfn[nid] = zone_movable_pfn[nid] ? 7731 min(usable_startpfn, zone_movable_pfn[nid]) : 7732 usable_startpfn; 7733 } 7734 7735 if (mem_below_4gb_not_mirrored) 7736 pr_warn("This configuration results in unmirrored kernel memory.\n"); 7737 7738 goto out2; 7739 } 7740 7741 /* 7742 * If kernelcore=nn% or movablecore=nn% was specified, calculate the 7743 * amount of necessary memory. 7744 */ 7745 if (required_kernelcore_percent) 7746 required_kernelcore = (totalpages * 100 * required_kernelcore_percent) / 7747 10000UL; 7748 if (required_movablecore_percent) 7749 required_movablecore = (totalpages * 100 * required_movablecore_percent) / 7750 10000UL; 7751 7752 /* 7753 * If movablecore= was specified, calculate what size of 7754 * kernelcore that corresponds so that memory usable for 7755 * any allocation type is evenly spread. If both kernelcore 7756 * and movablecore are specified, then the value of kernelcore 7757 * will be used for required_kernelcore if it's greater than 7758 * what movablecore would have allowed. 7759 */ 7760 if (required_movablecore) { 7761 unsigned long corepages; 7762 7763 /* 7764 * Round-up so that ZONE_MOVABLE is at least as large as what 7765 * was requested by the user 7766 */ 7767 required_movablecore = 7768 roundup(required_movablecore, MAX_ORDER_NR_PAGES); 7769 required_movablecore = min(totalpages, required_movablecore); 7770 corepages = totalpages - required_movablecore; 7771 7772 required_kernelcore = max(required_kernelcore, corepages); 7773 } 7774 7775 /* 7776 * If kernelcore was not specified or kernelcore size is larger 7777 * than totalpages, there is no ZONE_MOVABLE. 7778 */ 7779 if (!required_kernelcore || required_kernelcore >= totalpages) 7780 goto out; 7781 7782 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */ 7783 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone]; 7784 7785 restart: 7786 /* Spread kernelcore memory as evenly as possible throughout nodes */ 7787 kernelcore_node = required_kernelcore / usable_nodes; 7788 for_each_node_state(nid, N_MEMORY) { 7789 unsigned long start_pfn, end_pfn; 7790 7791 /* 7792 * Recalculate kernelcore_node if the division per node 7793 * now exceeds what is necessary to satisfy the requested 7794 * amount of memory for the kernel 7795 */ 7796 if (required_kernelcore < kernelcore_node) 7797 kernelcore_node = required_kernelcore / usable_nodes; 7798 7799 /* 7800 * As the map is walked, we track how much memory is usable 7801 * by the kernel using kernelcore_remaining. When it is 7802 * 0, the rest of the node is usable by ZONE_MOVABLE 7803 */ 7804 kernelcore_remaining = kernelcore_node; 7805 7806 /* Go through each range of PFNs within this node */ 7807 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) { 7808 unsigned long size_pages; 7809 7810 start_pfn = max(start_pfn, zone_movable_pfn[nid]); 7811 if (start_pfn >= end_pfn) 7812 continue; 7813 7814 /* Account for what is only usable for kernelcore */ 7815 if (start_pfn < usable_startpfn) { 7816 unsigned long kernel_pages; 7817 kernel_pages = min(end_pfn, usable_startpfn) 7818 - start_pfn; 7819 7820 kernelcore_remaining -= min(kernel_pages, 7821 kernelcore_remaining); 7822 required_kernelcore -= min(kernel_pages, 7823 required_kernelcore); 7824 7825 /* Continue if range is now fully accounted */ 7826 if (end_pfn <= usable_startpfn) { 7827 7828 /* 7829 * Push zone_movable_pfn to the end so 7830 * that if we have to rebalance 7831 * kernelcore across nodes, we will 7832 * not double account here 7833 */ 7834 zone_movable_pfn[nid] = end_pfn; 7835 continue; 7836 } 7837 start_pfn = usable_startpfn; 7838 } 7839 7840 /* 7841 * The usable PFN range for ZONE_MOVABLE is from 7842 * start_pfn->end_pfn. Calculate size_pages as the 7843 * number of pages used as kernelcore 7844 */ 7845 size_pages = end_pfn - start_pfn; 7846 if (size_pages > kernelcore_remaining) 7847 size_pages = kernelcore_remaining; 7848 zone_movable_pfn[nid] = start_pfn + size_pages; 7849 7850 /* 7851 * Some kernelcore has been met, update counts and 7852 * break if the kernelcore for this node has been 7853 * satisfied 7854 */ 7855 required_kernelcore -= min(required_kernelcore, 7856 size_pages); 7857 kernelcore_remaining -= size_pages; 7858 if (!kernelcore_remaining) 7859 break; 7860 } 7861 } 7862 7863 /* 7864 * If there is still required_kernelcore, we do another pass with one 7865 * less node in the count. This will push zone_movable_pfn[nid] further 7866 * along on the nodes that still have memory until kernelcore is 7867 * satisfied 7868 */ 7869 usable_nodes--; 7870 if (usable_nodes && required_kernelcore > usable_nodes) 7871 goto restart; 7872 7873 out2: 7874 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */ 7875 for (nid = 0; nid < MAX_NUMNODES; nid++) 7876 zone_movable_pfn[nid] = 7877 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES); 7878 7879 out: 7880 /* restore the node_state */ 7881 node_states[N_MEMORY] = saved_node_state; 7882 } 7883 7884 /* Any regular or high memory on that node ? */ 7885 static void check_for_memory(pg_data_t *pgdat, int nid) 7886 { 7887 enum zone_type zone_type; 7888 7889 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) { 7890 struct zone *zone = &pgdat->node_zones[zone_type]; 7891 if (populated_zone(zone)) { 7892 if (IS_ENABLED(CONFIG_HIGHMEM)) 7893 node_set_state(nid, N_HIGH_MEMORY); 7894 if (zone_type <= ZONE_NORMAL) 7895 node_set_state(nid, N_NORMAL_MEMORY); 7896 break; 7897 } 7898 } 7899 } 7900 7901 /* 7902 * Some architectures, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For 7903 * such cases we allow max_zone_pfn sorted in the descending order 7904 */ 7905 bool __weak arch_has_descending_max_zone_pfns(void) 7906 { 7907 return false; 7908 } 7909 7910 /** 7911 * free_area_init - Initialise all pg_data_t and zone data 7912 * @max_zone_pfn: an array of max PFNs for each zone 7913 * 7914 * This will call free_area_init_node() for each active node in the system. 7915 * Using the page ranges provided by memblock_set_node(), the size of each 7916 * zone in each node and their holes is calculated. If the maximum PFN 7917 * between two adjacent zones match, it is assumed that the zone is empty. 7918 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed 7919 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone 7920 * starts where the previous one ended. For example, ZONE_DMA32 starts 7921 * at arch_max_dma_pfn. 7922 */ 7923 void __init free_area_init(unsigned long *max_zone_pfn) 7924 { 7925 unsigned long start_pfn, end_pfn; 7926 int i, nid, zone; 7927 bool descending; 7928 7929 /* Record where the zone boundaries are */ 7930 memset(arch_zone_lowest_possible_pfn, 0, 7931 sizeof(arch_zone_lowest_possible_pfn)); 7932 memset(arch_zone_highest_possible_pfn, 0, 7933 sizeof(arch_zone_highest_possible_pfn)); 7934 7935 start_pfn = find_min_pfn_with_active_regions(); 7936 descending = arch_has_descending_max_zone_pfns(); 7937 7938 for (i = 0; i < MAX_NR_ZONES; i++) { 7939 if (descending) 7940 zone = MAX_NR_ZONES - i - 1; 7941 else 7942 zone = i; 7943 7944 if (zone == ZONE_MOVABLE) 7945 continue; 7946 7947 end_pfn = max(max_zone_pfn[zone], start_pfn); 7948 arch_zone_lowest_possible_pfn[zone] = start_pfn; 7949 arch_zone_highest_possible_pfn[zone] = end_pfn; 7950 7951 start_pfn = end_pfn; 7952 } 7953 7954 /* Find the PFNs that ZONE_MOVABLE begins at in each node */ 7955 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn)); 7956 find_zone_movable_pfns_for_nodes(); 7957 7958 /* Print out the zone ranges */ 7959 pr_info("Zone ranges:\n"); 7960 for (i = 0; i < MAX_NR_ZONES; i++) { 7961 if (i == ZONE_MOVABLE) 7962 continue; 7963 pr_info(" %-8s ", zone_names[i]); 7964 if (arch_zone_lowest_possible_pfn[i] == 7965 arch_zone_highest_possible_pfn[i]) 7966 pr_cont("empty\n"); 7967 else 7968 pr_cont("[mem %#018Lx-%#018Lx]\n", 7969 (u64)arch_zone_lowest_possible_pfn[i] 7970 << PAGE_SHIFT, 7971 ((u64)arch_zone_highest_possible_pfn[i] 7972 << PAGE_SHIFT) - 1); 7973 } 7974 7975 /* Print out the PFNs ZONE_MOVABLE begins at in each node */ 7976 pr_info("Movable zone start for each node\n"); 7977 for (i = 0; i < MAX_NUMNODES; i++) { 7978 if (zone_movable_pfn[i]) 7979 pr_info(" Node %d: %#018Lx\n", i, 7980 (u64)zone_movable_pfn[i] << PAGE_SHIFT); 7981 } 7982 7983 /* 7984 * Print out the early node map, and initialize the 7985 * subsection-map relative to active online memory ranges to 7986 * enable future "sub-section" extensions of the memory map. 7987 */ 7988 pr_info("Early memory node ranges\n"); 7989 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) { 7990 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid, 7991 (u64)start_pfn << PAGE_SHIFT, 7992 ((u64)end_pfn << PAGE_SHIFT) - 1); 7993 subsection_map_init(start_pfn, end_pfn - start_pfn); 7994 } 7995 7996 /* Initialise every node */ 7997 mminit_verify_pageflags_layout(); 7998 setup_nr_node_ids(); 7999 for_each_online_node(nid) { 8000 pg_data_t *pgdat = NODE_DATA(nid); 8001 free_area_init_node(nid); 8002 8003 /* Any memory on that node */ 8004 if (pgdat->node_present_pages) 8005 node_set_state(nid, N_MEMORY); 8006 check_for_memory(pgdat, nid); 8007 } 8008 8009 memmap_init(); 8010 } 8011 8012 static int __init cmdline_parse_core(char *p, unsigned long *core, 8013 unsigned long *percent) 8014 { 8015 unsigned long long coremem; 8016 char *endptr; 8017 8018 if (!p) 8019 return -EINVAL; 8020 8021 /* Value may be a percentage of total memory, otherwise bytes */ 8022 coremem = simple_strtoull(p, &endptr, 0); 8023 if (*endptr == '%') { 8024 /* Paranoid check for percent values greater than 100 */ 8025 WARN_ON(coremem > 100); 8026 8027 *percent = coremem; 8028 } else { 8029 coremem = memparse(p, &p); 8030 /* Paranoid check that UL is enough for the coremem value */ 8031 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX); 8032 8033 *core = coremem >> PAGE_SHIFT; 8034 *percent = 0UL; 8035 } 8036 return 0; 8037 } 8038 8039 /* 8040 * kernelcore=size sets the amount of memory for use for allocations that 8041 * cannot be reclaimed or migrated. 8042 */ 8043 static int __init cmdline_parse_kernelcore(char *p) 8044 { 8045 /* parse kernelcore=mirror */ 8046 if (parse_option_str(p, "mirror")) { 8047 mirrored_kernelcore = true; 8048 return 0; 8049 } 8050 8051 return cmdline_parse_core(p, &required_kernelcore, 8052 &required_kernelcore_percent); 8053 } 8054 8055 /* 8056 * movablecore=size sets the amount of memory for use for allocations that 8057 * can be reclaimed or migrated. 8058 */ 8059 static int __init cmdline_parse_movablecore(char *p) 8060 { 8061 return cmdline_parse_core(p, &required_movablecore, 8062 &required_movablecore_percent); 8063 } 8064 8065 early_param("kernelcore", cmdline_parse_kernelcore); 8066 early_param("movablecore", cmdline_parse_movablecore); 8067 8068 void adjust_managed_page_count(struct page *page, long count) 8069 { 8070 atomic_long_add(count, &page_zone(page)->managed_pages); 8071 totalram_pages_add(count); 8072 #ifdef CONFIG_HIGHMEM 8073 if (PageHighMem(page)) 8074 totalhigh_pages_add(count); 8075 #endif 8076 } 8077 EXPORT_SYMBOL(adjust_managed_page_count); 8078 8079 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 8080 { 8081 void *pos; 8082 unsigned long pages = 0; 8083 8084 start = (void *)PAGE_ALIGN((unsigned long)start); 8085 end = (void *)((unsigned long)end & PAGE_MASK); 8086 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 8087 struct page *page = virt_to_page(pos); 8088 void *direct_map_addr; 8089 8090 /* 8091 * 'direct_map_addr' might be different from 'pos' 8092 * because some architectures' virt_to_page() 8093 * work with aliases. Getting the direct map 8094 * address ensures that we get a _writeable_ 8095 * alias for the memset(). 8096 */ 8097 direct_map_addr = page_address(page); 8098 /* 8099 * Perform a kasan-unchecked memset() since this memory 8100 * has not been initialized. 8101 */ 8102 direct_map_addr = kasan_reset_tag(direct_map_addr); 8103 if ((unsigned int)poison <= 0xFF) 8104 memset(direct_map_addr, poison, PAGE_SIZE); 8105 8106 free_reserved_page(page); 8107 } 8108 8109 if (pages && s) 8110 pr_info("Freeing %s memory: %ldK\n", 8111 s, pages << (PAGE_SHIFT - 10)); 8112 8113 return pages; 8114 } 8115 8116 void __init mem_init_print_info(void) 8117 { 8118 unsigned long physpages, codesize, datasize, rosize, bss_size; 8119 unsigned long init_code_size, init_data_size; 8120 8121 physpages = get_num_physpages(); 8122 codesize = _etext - _stext; 8123 datasize = _edata - _sdata; 8124 rosize = __end_rodata - __start_rodata; 8125 bss_size = __bss_stop - __bss_start; 8126 init_data_size = __init_end - __init_begin; 8127 init_code_size = _einittext - _sinittext; 8128 8129 /* 8130 * Detect special cases and adjust section sizes accordingly: 8131 * 1) .init.* may be embedded into .data sections 8132 * 2) .init.text.* may be out of [__init_begin, __init_end], 8133 * please refer to arch/tile/kernel/vmlinux.lds.S. 8134 * 3) .rodata.* may be embedded into .text or .data sections. 8135 */ 8136 #define adj_init_size(start, end, size, pos, adj) \ 8137 do { \ 8138 if (start <= pos && pos < end && size > adj) \ 8139 size -= adj; \ 8140 } while (0) 8141 8142 adj_init_size(__init_begin, __init_end, init_data_size, 8143 _sinittext, init_code_size); 8144 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size); 8145 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size); 8146 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize); 8147 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize); 8148 8149 #undef adj_init_size 8150 8151 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved" 8152 #ifdef CONFIG_HIGHMEM 8153 ", %luK highmem" 8154 #endif 8155 ")\n", 8156 nr_free_pages() << (PAGE_SHIFT - 10), 8157 physpages << (PAGE_SHIFT - 10), 8158 codesize >> 10, datasize >> 10, rosize >> 10, 8159 (init_data_size + init_code_size) >> 10, bss_size >> 10, 8160 (physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10), 8161 totalcma_pages << (PAGE_SHIFT - 10) 8162 #ifdef CONFIG_HIGHMEM 8163 , totalhigh_pages() << (PAGE_SHIFT - 10) 8164 #endif 8165 ); 8166 } 8167 8168 /** 8169 * set_dma_reserve - set the specified number of pages reserved in the first zone 8170 * @new_dma_reserve: The number of pages to mark reserved 8171 * 8172 * The per-cpu batchsize and zone watermarks are determined by managed_pages. 8173 * In the DMA zone, a significant percentage may be consumed by kernel image 8174 * and other unfreeable allocations which can skew the watermarks badly. This 8175 * function may optionally be used to account for unfreeable pages in the 8176 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and 8177 * smaller per-cpu batchsize. 8178 */ 8179 void __init set_dma_reserve(unsigned long new_dma_reserve) 8180 { 8181 dma_reserve = new_dma_reserve; 8182 } 8183 8184 static int page_alloc_cpu_dead(unsigned int cpu) 8185 { 8186 struct zone *zone; 8187 8188 lru_add_drain_cpu(cpu); 8189 drain_pages(cpu); 8190 8191 /* 8192 * Spill the event counters of the dead processor 8193 * into the current processors event counters. 8194 * This artificially elevates the count of the current 8195 * processor. 8196 */ 8197 vm_events_fold_cpu(cpu); 8198 8199 /* 8200 * Zero the differential counters of the dead processor 8201 * so that the vm statistics are consistent. 8202 * 8203 * This is only okay since the processor is dead and cannot 8204 * race with what we are doing. 8205 */ 8206 cpu_vm_stats_fold(cpu); 8207 8208 for_each_populated_zone(zone) 8209 zone_pcp_update(zone, 0); 8210 8211 return 0; 8212 } 8213 8214 static int page_alloc_cpu_online(unsigned int cpu) 8215 { 8216 struct zone *zone; 8217 8218 for_each_populated_zone(zone) 8219 zone_pcp_update(zone, 1); 8220 return 0; 8221 } 8222 8223 #ifdef CONFIG_NUMA 8224 int hashdist = HASHDIST_DEFAULT; 8225 8226 static int __init set_hashdist(char *str) 8227 { 8228 if (!str) 8229 return 0; 8230 hashdist = simple_strtoul(str, &str, 0); 8231 return 1; 8232 } 8233 __setup("hashdist=", set_hashdist); 8234 #endif 8235 8236 void __init page_alloc_init(void) 8237 { 8238 int ret; 8239 8240 #ifdef CONFIG_NUMA 8241 if (num_node_state(N_MEMORY) == 1) 8242 hashdist = 0; 8243 #endif 8244 8245 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 8246 "mm/page_alloc:pcp", 8247 page_alloc_cpu_online, 8248 page_alloc_cpu_dead); 8249 WARN_ON(ret < 0); 8250 } 8251 8252 /* 8253 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 8254 * or min_free_kbytes changes. 8255 */ 8256 static void calculate_totalreserve_pages(void) 8257 { 8258 struct pglist_data *pgdat; 8259 unsigned long reserve_pages = 0; 8260 enum zone_type i, j; 8261 8262 for_each_online_pgdat(pgdat) { 8263 8264 pgdat->totalreserve_pages = 0; 8265 8266 for (i = 0; i < MAX_NR_ZONES; i++) { 8267 struct zone *zone = pgdat->node_zones + i; 8268 long max = 0; 8269 unsigned long managed_pages = zone_managed_pages(zone); 8270 8271 /* Find valid and maximum lowmem_reserve in the zone */ 8272 for (j = i; j < MAX_NR_ZONES; j++) { 8273 if (zone->lowmem_reserve[j] > max) 8274 max = zone->lowmem_reserve[j]; 8275 } 8276 8277 /* we treat the high watermark as reserved pages. */ 8278 max += high_wmark_pages(zone); 8279 8280 if (max > managed_pages) 8281 max = managed_pages; 8282 8283 pgdat->totalreserve_pages += max; 8284 8285 reserve_pages += max; 8286 } 8287 } 8288 totalreserve_pages = reserve_pages; 8289 } 8290 8291 /* 8292 * setup_per_zone_lowmem_reserve - called whenever 8293 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 8294 * has a correct pages reserved value, so an adequate number of 8295 * pages are left in the zone after a successful __alloc_pages(). 8296 */ 8297 static void setup_per_zone_lowmem_reserve(void) 8298 { 8299 struct pglist_data *pgdat; 8300 enum zone_type i, j; 8301 8302 for_each_online_pgdat(pgdat) { 8303 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 8304 struct zone *zone = &pgdat->node_zones[i]; 8305 int ratio = sysctl_lowmem_reserve_ratio[i]; 8306 bool clear = !ratio || !zone_managed_pages(zone); 8307 unsigned long managed_pages = 0; 8308 8309 for (j = i + 1; j < MAX_NR_ZONES; j++) { 8310 struct zone *upper_zone = &pgdat->node_zones[j]; 8311 8312 managed_pages += zone_managed_pages(upper_zone); 8313 8314 if (clear) 8315 zone->lowmem_reserve[j] = 0; 8316 else 8317 zone->lowmem_reserve[j] = managed_pages / ratio; 8318 } 8319 } 8320 } 8321 8322 /* update totalreserve_pages */ 8323 calculate_totalreserve_pages(); 8324 } 8325 8326 static void __setup_per_zone_wmarks(void) 8327 { 8328 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 8329 unsigned long lowmem_pages = 0; 8330 struct zone *zone; 8331 unsigned long flags; 8332 8333 /* Calculate total number of !ZONE_HIGHMEM pages */ 8334 for_each_zone(zone) { 8335 if (!is_highmem(zone)) 8336 lowmem_pages += zone_managed_pages(zone); 8337 } 8338 8339 for_each_zone(zone) { 8340 u64 tmp; 8341 8342 spin_lock_irqsave(&zone->lock, flags); 8343 tmp = (u64)pages_min * zone_managed_pages(zone); 8344 do_div(tmp, lowmem_pages); 8345 if (is_highmem(zone)) { 8346 /* 8347 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 8348 * need highmem pages, so cap pages_min to a small 8349 * value here. 8350 * 8351 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 8352 * deltas control async page reclaim, and so should 8353 * not be capped for highmem. 8354 */ 8355 unsigned long min_pages; 8356 8357 min_pages = zone_managed_pages(zone) / 1024; 8358 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 8359 zone->_watermark[WMARK_MIN] = min_pages; 8360 } else { 8361 /* 8362 * If it's a lowmem zone, reserve a number of pages 8363 * proportionate to the zone's size. 8364 */ 8365 zone->_watermark[WMARK_MIN] = tmp; 8366 } 8367 8368 /* 8369 * Set the kswapd watermarks distance according to the 8370 * scale factor in proportion to available memory, but 8371 * ensure a minimum size on small systems. 8372 */ 8373 tmp = max_t(u64, tmp >> 2, 8374 mult_frac(zone_managed_pages(zone), 8375 watermark_scale_factor, 10000)); 8376 8377 zone->watermark_boost = 0; 8378 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 8379 zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2; 8380 8381 spin_unlock_irqrestore(&zone->lock, flags); 8382 } 8383 8384 /* update totalreserve_pages */ 8385 calculate_totalreserve_pages(); 8386 } 8387 8388 /** 8389 * setup_per_zone_wmarks - called when min_free_kbytes changes 8390 * or when memory is hot-{added|removed} 8391 * 8392 * Ensures that the watermark[min,low,high] values for each zone are set 8393 * correctly with respect to min_free_kbytes. 8394 */ 8395 void setup_per_zone_wmarks(void) 8396 { 8397 struct zone *zone; 8398 static DEFINE_SPINLOCK(lock); 8399 8400 spin_lock(&lock); 8401 __setup_per_zone_wmarks(); 8402 spin_unlock(&lock); 8403 8404 /* 8405 * The watermark size have changed so update the pcpu batch 8406 * and high limits or the limits may be inappropriate. 8407 */ 8408 for_each_zone(zone) 8409 zone_pcp_update(zone, 0); 8410 } 8411 8412 /* 8413 * Initialise min_free_kbytes. 8414 * 8415 * For small machines we want it small (128k min). For large machines 8416 * we want it large (256MB max). But it is not linear, because network 8417 * bandwidth does not increase linearly with machine size. We use 8418 * 8419 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 8420 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 8421 * 8422 * which yields 8423 * 8424 * 16MB: 512k 8425 * 32MB: 724k 8426 * 64MB: 1024k 8427 * 128MB: 1448k 8428 * 256MB: 2048k 8429 * 512MB: 2896k 8430 * 1024MB: 4096k 8431 * 2048MB: 5792k 8432 * 4096MB: 8192k 8433 * 8192MB: 11584k 8434 * 16384MB: 16384k 8435 */ 8436 int __meminit init_per_zone_wmark_min(void) 8437 { 8438 unsigned long lowmem_kbytes; 8439 int new_min_free_kbytes; 8440 8441 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 8442 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 8443 8444 if (new_min_free_kbytes > user_min_free_kbytes) { 8445 min_free_kbytes = new_min_free_kbytes; 8446 if (min_free_kbytes < 128) 8447 min_free_kbytes = 128; 8448 if (min_free_kbytes > 262144) 8449 min_free_kbytes = 262144; 8450 } else { 8451 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 8452 new_min_free_kbytes, user_min_free_kbytes); 8453 } 8454 setup_per_zone_wmarks(); 8455 refresh_zone_stat_thresholds(); 8456 setup_per_zone_lowmem_reserve(); 8457 8458 #ifdef CONFIG_NUMA 8459 setup_min_unmapped_ratio(); 8460 setup_min_slab_ratio(); 8461 #endif 8462 8463 khugepaged_min_free_kbytes_update(); 8464 8465 return 0; 8466 } 8467 postcore_initcall(init_per_zone_wmark_min) 8468 8469 /* 8470 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 8471 * that we can call two helper functions whenever min_free_kbytes 8472 * changes. 8473 */ 8474 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 8475 void *buffer, size_t *length, loff_t *ppos) 8476 { 8477 int rc; 8478 8479 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8480 if (rc) 8481 return rc; 8482 8483 if (write) { 8484 user_min_free_kbytes = min_free_kbytes; 8485 setup_per_zone_wmarks(); 8486 } 8487 return 0; 8488 } 8489 8490 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 8491 void *buffer, size_t *length, loff_t *ppos) 8492 { 8493 int rc; 8494 8495 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8496 if (rc) 8497 return rc; 8498 8499 if (write) 8500 setup_per_zone_wmarks(); 8501 8502 return 0; 8503 } 8504 8505 #ifdef CONFIG_NUMA 8506 static void setup_min_unmapped_ratio(void) 8507 { 8508 pg_data_t *pgdat; 8509 struct zone *zone; 8510 8511 for_each_online_pgdat(pgdat) 8512 pgdat->min_unmapped_pages = 0; 8513 8514 for_each_zone(zone) 8515 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 8516 sysctl_min_unmapped_ratio) / 100; 8517 } 8518 8519 8520 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 8521 void *buffer, size_t *length, loff_t *ppos) 8522 { 8523 int rc; 8524 8525 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8526 if (rc) 8527 return rc; 8528 8529 setup_min_unmapped_ratio(); 8530 8531 return 0; 8532 } 8533 8534 static void setup_min_slab_ratio(void) 8535 { 8536 pg_data_t *pgdat; 8537 struct zone *zone; 8538 8539 for_each_online_pgdat(pgdat) 8540 pgdat->min_slab_pages = 0; 8541 8542 for_each_zone(zone) 8543 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 8544 sysctl_min_slab_ratio) / 100; 8545 } 8546 8547 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 8548 void *buffer, size_t *length, loff_t *ppos) 8549 { 8550 int rc; 8551 8552 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 8553 if (rc) 8554 return rc; 8555 8556 setup_min_slab_ratio(); 8557 8558 return 0; 8559 } 8560 #endif 8561 8562 /* 8563 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 8564 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 8565 * whenever sysctl_lowmem_reserve_ratio changes. 8566 * 8567 * The reserve ratio obviously has absolutely no relation with the 8568 * minimum watermarks. The lowmem reserve ratio can only make sense 8569 * if in function of the boot time zone sizes. 8570 */ 8571 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 8572 void *buffer, size_t *length, loff_t *ppos) 8573 { 8574 int i; 8575 8576 proc_dointvec_minmax(table, write, buffer, length, ppos); 8577 8578 for (i = 0; i < MAX_NR_ZONES; i++) { 8579 if (sysctl_lowmem_reserve_ratio[i] < 1) 8580 sysctl_lowmem_reserve_ratio[i] = 0; 8581 } 8582 8583 setup_per_zone_lowmem_reserve(); 8584 return 0; 8585 } 8586 8587 /* 8588 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 8589 * cpu. It is the fraction of total pages in each zone that a hot per cpu 8590 * pagelist can have before it gets flushed back to buddy allocator. 8591 */ 8592 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 8593 int write, void *buffer, size_t *length, loff_t *ppos) 8594 { 8595 struct zone *zone; 8596 int old_percpu_pagelist_high_fraction; 8597 int ret; 8598 8599 mutex_lock(&pcp_batch_high_lock); 8600 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 8601 8602 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 8603 if (!write || ret < 0) 8604 goto out; 8605 8606 /* Sanity checking to avoid pcp imbalance */ 8607 if (percpu_pagelist_high_fraction && 8608 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 8609 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 8610 ret = -EINVAL; 8611 goto out; 8612 } 8613 8614 /* No change? */ 8615 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 8616 goto out; 8617 8618 for_each_populated_zone(zone) 8619 zone_set_pageset_high_and_batch(zone, 0); 8620 out: 8621 mutex_unlock(&pcp_batch_high_lock); 8622 return ret; 8623 } 8624 8625 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES 8626 /* 8627 * Returns the number of pages that arch has reserved but 8628 * is not known to alloc_large_system_hash(). 8629 */ 8630 static unsigned long __init arch_reserved_kernel_pages(void) 8631 { 8632 return 0; 8633 } 8634 #endif 8635 8636 /* 8637 * Adaptive scale is meant to reduce sizes of hash tables on large memory 8638 * machines. As memory size is increased the scale is also increased but at 8639 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory 8640 * quadruples the scale is increased by one, which means the size of hash table 8641 * only doubles, instead of quadrupling as well. 8642 * Because 32-bit systems cannot have large physical memory, where this scaling 8643 * makes sense, it is disabled on such platforms. 8644 */ 8645 #if __BITS_PER_LONG > 32 8646 #define ADAPT_SCALE_BASE (64ul << 30) 8647 #define ADAPT_SCALE_SHIFT 2 8648 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT) 8649 #endif 8650 8651 /* 8652 * allocate a large system hash table from bootmem 8653 * - it is assumed that the hash table must contain an exact power-of-2 8654 * quantity of entries 8655 * - limit is the number of hash buckets, not the total allocation size 8656 */ 8657 void *__init alloc_large_system_hash(const char *tablename, 8658 unsigned long bucketsize, 8659 unsigned long numentries, 8660 int scale, 8661 int flags, 8662 unsigned int *_hash_shift, 8663 unsigned int *_hash_mask, 8664 unsigned long low_limit, 8665 unsigned long high_limit) 8666 { 8667 unsigned long long max = high_limit; 8668 unsigned long log2qty, size; 8669 void *table = NULL; 8670 gfp_t gfp_flags; 8671 bool virt; 8672 bool huge; 8673 8674 /* allow the kernel cmdline to have a say */ 8675 if (!numentries) { 8676 /* round applicable memory size up to nearest megabyte */ 8677 numentries = nr_kernel_pages; 8678 numentries -= arch_reserved_kernel_pages(); 8679 8680 /* It isn't necessary when PAGE_SIZE >= 1MB */ 8681 if (PAGE_SHIFT < 20) 8682 numentries = round_up(numentries, (1<<20)/PAGE_SIZE); 8683 8684 #if __BITS_PER_LONG > 32 8685 if (!high_limit) { 8686 unsigned long adapt; 8687 8688 for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries; 8689 adapt <<= ADAPT_SCALE_SHIFT) 8690 scale++; 8691 } 8692 #endif 8693 8694 /* limit to 1 bucket per 2^scale bytes of low memory */ 8695 if (scale > PAGE_SHIFT) 8696 numentries >>= (scale - PAGE_SHIFT); 8697 else 8698 numentries <<= (PAGE_SHIFT - scale); 8699 8700 /* Make sure we've got at least a 0-order allocation.. */ 8701 if (unlikely(flags & HASH_SMALL)) { 8702 /* Makes no sense without HASH_EARLY */ 8703 WARN_ON(!(flags & HASH_EARLY)); 8704 if (!(numentries >> *_hash_shift)) { 8705 numentries = 1UL << *_hash_shift; 8706 BUG_ON(!numentries); 8707 } 8708 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE)) 8709 numentries = PAGE_SIZE / bucketsize; 8710 } 8711 numentries = roundup_pow_of_two(numentries); 8712 8713 /* limit allocation size to 1/16 total memory by default */ 8714 if (max == 0) { 8715 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4; 8716 do_div(max, bucketsize); 8717 } 8718 max = min(max, 0x80000000ULL); 8719 8720 if (numentries < low_limit) 8721 numentries = low_limit; 8722 if (numentries > max) 8723 numentries = max; 8724 8725 log2qty = ilog2(numentries); 8726 8727 gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC; 8728 do { 8729 virt = false; 8730 size = bucketsize << log2qty; 8731 if (flags & HASH_EARLY) { 8732 if (flags & HASH_ZERO) 8733 table = memblock_alloc(size, SMP_CACHE_BYTES); 8734 else 8735 table = memblock_alloc_raw(size, 8736 SMP_CACHE_BYTES); 8737 } else if (get_order(size) >= MAX_ORDER || hashdist) { 8738 table = __vmalloc(size, gfp_flags); 8739 virt = true; 8740 huge = is_vm_area_hugepages(table); 8741 } else { 8742 /* 8743 * If bucketsize is not a power-of-two, we may free 8744 * some pages at the end of hash table which 8745 * alloc_pages_exact() automatically does 8746 */ 8747 table = alloc_pages_exact(size, gfp_flags); 8748 kmemleak_alloc(table, size, 1, gfp_flags); 8749 } 8750 } while (!table && size > PAGE_SIZE && --log2qty); 8751 8752 if (!table) 8753 panic("Failed to allocate %s hash table\n", tablename); 8754 8755 pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n", 8756 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size, 8757 virt ? (huge ? "vmalloc hugepage" : "vmalloc") : "linear"); 8758 8759 if (_hash_shift) 8760 *_hash_shift = log2qty; 8761 if (_hash_mask) 8762 *_hash_mask = (1 << log2qty) - 1; 8763 8764 return table; 8765 } 8766 8767 /* 8768 * This function checks whether pageblock includes unmovable pages or not. 8769 * 8770 * PageLRU check without isolation or lru_lock could race so that 8771 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable 8772 * check without lock_page also may miss some movable non-lru pages at 8773 * race condition. So you can't expect this function should be exact. 8774 * 8775 * Returns a page without holding a reference. If the caller wants to 8776 * dereference that page (e.g., dumping), it has to make sure that it 8777 * cannot get removed (e.g., via memory unplug) concurrently. 8778 * 8779 */ 8780 struct page *has_unmovable_pages(struct zone *zone, struct page *page, 8781 int migratetype, int flags) 8782 { 8783 unsigned long iter = 0; 8784 unsigned long pfn = page_to_pfn(page); 8785 unsigned long offset = pfn % pageblock_nr_pages; 8786 8787 if (is_migrate_cma_page(page)) { 8788 /* 8789 * CMA allocations (alloc_contig_range) really need to mark 8790 * isolate CMA pageblocks even when they are not movable in fact 8791 * so consider them movable here. 8792 */ 8793 if (is_migrate_cma(migratetype)) 8794 return NULL; 8795 8796 return page; 8797 } 8798 8799 for (; iter < pageblock_nr_pages - offset; iter++) { 8800 if (!pfn_valid_within(pfn + iter)) 8801 continue; 8802 8803 page = pfn_to_page(pfn + iter); 8804 8805 /* 8806 * Both, bootmem allocations and memory holes are marked 8807 * PG_reserved and are unmovable. We can even have unmovable 8808 * allocations inside ZONE_MOVABLE, for example when 8809 * specifying "movablecore". 8810 */ 8811 if (PageReserved(page)) 8812 return page; 8813 8814 /* 8815 * If the zone is movable and we have ruled out all reserved 8816 * pages then it should be reasonably safe to assume the rest 8817 * is movable. 8818 */ 8819 if (zone_idx(zone) == ZONE_MOVABLE) 8820 continue; 8821 8822 /* 8823 * Hugepages are not in LRU lists, but they're movable. 8824 * THPs are on the LRU, but need to be counted as #small pages. 8825 * We need not scan over tail pages because we don't 8826 * handle each tail page individually in migration. 8827 */ 8828 if (PageHuge(page) || PageTransCompound(page)) { 8829 struct page *head = compound_head(page); 8830 unsigned int skip_pages; 8831 8832 if (PageHuge(page)) { 8833 if (!hugepage_migration_supported(page_hstate(head))) 8834 return page; 8835 } else if (!PageLRU(head) && !__PageMovable(head)) { 8836 return page; 8837 } 8838 8839 skip_pages = compound_nr(head) - (page - head); 8840 iter += skip_pages - 1; 8841 continue; 8842 } 8843 8844 /* 8845 * We can't use page_count without pin a page 8846 * because another CPU can free compound page. 8847 * This check already skips compound tails of THP 8848 * because their page->_refcount is zero at all time. 8849 */ 8850 if (!page_ref_count(page)) { 8851 if (PageBuddy(page)) 8852 iter += (1 << buddy_order(page)) - 1; 8853 continue; 8854 } 8855 8856 /* 8857 * The HWPoisoned page may be not in buddy system, and 8858 * page_count() is not 0. 8859 */ 8860 if ((flags & MEMORY_OFFLINE) && PageHWPoison(page)) 8861 continue; 8862 8863 /* 8864 * We treat all PageOffline() pages as movable when offlining 8865 * to give drivers a chance to decrement their reference count 8866 * in MEM_GOING_OFFLINE in order to indicate that these pages 8867 * can be offlined as there are no direct references anymore. 8868 * For actually unmovable PageOffline() where the driver does 8869 * not support this, we will fail later when trying to actually 8870 * move these pages that still have a reference count > 0. 8871 * (false negatives in this function only) 8872 */ 8873 if ((flags & MEMORY_OFFLINE) && PageOffline(page)) 8874 continue; 8875 8876 if (__PageMovable(page) || PageLRU(page)) 8877 continue; 8878 8879 /* 8880 * If there are RECLAIMABLE pages, we need to check 8881 * it. But now, memory offline itself doesn't call 8882 * shrink_node_slabs() and it still to be fixed. 8883 */ 8884 return page; 8885 } 8886 return NULL; 8887 } 8888 8889 #ifdef CONFIG_CONTIG_ALLOC 8890 static unsigned long pfn_max_align_down(unsigned long pfn) 8891 { 8892 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES, 8893 pageblock_nr_pages) - 1); 8894 } 8895 8896 static unsigned long pfn_max_align_up(unsigned long pfn) 8897 { 8898 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES, 8899 pageblock_nr_pages)); 8900 } 8901 8902 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 8903 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 8904 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 8905 static void alloc_contig_dump_pages(struct list_head *page_list) 8906 { 8907 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 8908 8909 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 8910 struct page *page; 8911 8912 dump_stack(); 8913 list_for_each_entry(page, page_list, lru) 8914 dump_page(page, "migration failure"); 8915 } 8916 } 8917 #else 8918 static inline void alloc_contig_dump_pages(struct list_head *page_list) 8919 { 8920 } 8921 #endif 8922 8923 /* [start, end) must belong to a single zone. */ 8924 static int __alloc_contig_migrate_range(struct compact_control *cc, 8925 unsigned long start, unsigned long end) 8926 { 8927 /* This function is based on compact_zone() from compaction.c. */ 8928 unsigned int nr_reclaimed; 8929 unsigned long pfn = start; 8930 unsigned int tries = 0; 8931 int ret = 0; 8932 struct migration_target_control mtc = { 8933 .nid = zone_to_nid(cc->zone), 8934 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 8935 }; 8936 8937 lru_cache_disable(); 8938 8939 while (pfn < end || !list_empty(&cc->migratepages)) { 8940 if (fatal_signal_pending(current)) { 8941 ret = -EINTR; 8942 break; 8943 } 8944 8945 if (list_empty(&cc->migratepages)) { 8946 cc->nr_migratepages = 0; 8947 ret = isolate_migratepages_range(cc, pfn, end); 8948 if (ret && ret != -EAGAIN) 8949 break; 8950 pfn = cc->migrate_pfn; 8951 tries = 0; 8952 } else if (++tries == 5) { 8953 ret = -EBUSY; 8954 break; 8955 } 8956 8957 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 8958 &cc->migratepages); 8959 cc->nr_migratepages -= nr_reclaimed; 8960 8961 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 8962 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE); 8963 8964 /* 8965 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 8966 * to retry again over this error, so do the same here. 8967 */ 8968 if (ret == -ENOMEM) 8969 break; 8970 } 8971 8972 lru_cache_enable(); 8973 if (ret < 0) { 8974 if (ret == -EBUSY) 8975 alloc_contig_dump_pages(&cc->migratepages); 8976 putback_movable_pages(&cc->migratepages); 8977 return ret; 8978 } 8979 return 0; 8980 } 8981 8982 /** 8983 * alloc_contig_range() -- tries to allocate given range of pages 8984 * @start: start PFN to allocate 8985 * @end: one-past-the-last PFN to allocate 8986 * @migratetype: migratetype of the underlying pageblocks (either 8987 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 8988 * in range must have the same migratetype and it must 8989 * be either of the two. 8990 * @gfp_mask: GFP mask to use during compaction 8991 * 8992 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES 8993 * aligned. The PFN range must belong to a single zone. 8994 * 8995 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 8996 * pageblocks in the range. Once isolated, the pageblocks should not 8997 * be modified by others. 8998 * 8999 * Return: zero on success or negative error code. On success all 9000 * pages which PFN is in [start, end) are allocated for the caller and 9001 * need to be freed with free_contig_range(). 9002 */ 9003 int alloc_contig_range(unsigned long start, unsigned long end, 9004 unsigned migratetype, gfp_t gfp_mask) 9005 { 9006 unsigned long outer_start, outer_end; 9007 unsigned int order; 9008 int ret = 0; 9009 9010 struct compact_control cc = { 9011 .nr_migratepages = 0, 9012 .order = -1, 9013 .zone = page_zone(pfn_to_page(start)), 9014 .mode = MIGRATE_SYNC, 9015 .ignore_skip_hint = true, 9016 .no_set_skip_hint = true, 9017 .gfp_mask = current_gfp_context(gfp_mask), 9018 .alloc_contig = true, 9019 }; 9020 INIT_LIST_HEAD(&cc.migratepages); 9021 9022 /* 9023 * What we do here is we mark all pageblocks in range as 9024 * MIGRATE_ISOLATE. Because pageblock and max order pages may 9025 * have different sizes, and due to the way page allocator 9026 * work, we align the range to biggest of the two pages so 9027 * that page allocator won't try to merge buddies from 9028 * different pageblocks and change MIGRATE_ISOLATE to some 9029 * other migration type. 9030 * 9031 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 9032 * migrate the pages from an unaligned range (ie. pages that 9033 * we are interested in). This will put all the pages in 9034 * range back to page allocator as MIGRATE_ISOLATE. 9035 * 9036 * When this is done, we take the pages in range from page 9037 * allocator removing them from the buddy system. This way 9038 * page allocator will never consider using them. 9039 * 9040 * This lets us mark the pageblocks back as 9041 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 9042 * aligned range but not in the unaligned, original range are 9043 * put back to page allocator so that buddy can use them. 9044 */ 9045 9046 ret = start_isolate_page_range(pfn_max_align_down(start), 9047 pfn_max_align_up(end), migratetype, 0); 9048 if (ret) 9049 return ret; 9050 9051 drain_all_pages(cc.zone); 9052 9053 /* 9054 * In case of -EBUSY, we'd like to know which page causes problem. 9055 * So, just fall through. test_pages_isolated() has a tracepoint 9056 * which will report the busy page. 9057 * 9058 * It is possible that busy pages could become available before 9059 * the call to test_pages_isolated, and the range will actually be 9060 * allocated. So, if we fall through be sure to clear ret so that 9061 * -EBUSY is not accidentally used or returned to caller. 9062 */ 9063 ret = __alloc_contig_migrate_range(&cc, start, end); 9064 if (ret && ret != -EBUSY) 9065 goto done; 9066 ret = 0; 9067 9068 /* 9069 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES 9070 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 9071 * more, all pages in [start, end) are free in page allocator. 9072 * What we are going to do is to allocate all pages from 9073 * [start, end) (that is remove them from page allocator). 9074 * 9075 * The only problem is that pages at the beginning and at the 9076 * end of interesting range may be not aligned with pages that 9077 * page allocator holds, ie. they can be part of higher order 9078 * pages. Because of this, we reserve the bigger range and 9079 * once this is done free the pages we are not interested in. 9080 * 9081 * We don't have to hold zone->lock here because the pages are 9082 * isolated thus they won't get removed from buddy. 9083 */ 9084 9085 order = 0; 9086 outer_start = start; 9087 while (!PageBuddy(pfn_to_page(outer_start))) { 9088 if (++order >= MAX_ORDER) { 9089 outer_start = start; 9090 break; 9091 } 9092 outer_start &= ~0UL << order; 9093 } 9094 9095 if (outer_start != start) { 9096 order = buddy_order(pfn_to_page(outer_start)); 9097 9098 /* 9099 * outer_start page could be small order buddy page and 9100 * it doesn't include start page. Adjust outer_start 9101 * in this case to report failed page properly 9102 * on tracepoint in test_pages_isolated() 9103 */ 9104 if (outer_start + (1UL << order) <= start) 9105 outer_start = start; 9106 } 9107 9108 /* Make sure the range is really isolated. */ 9109 if (test_pages_isolated(outer_start, end, 0)) { 9110 ret = -EBUSY; 9111 goto done; 9112 } 9113 9114 /* Grab isolated pages from freelists. */ 9115 outer_end = isolate_freepages_range(&cc, outer_start, end); 9116 if (!outer_end) { 9117 ret = -EBUSY; 9118 goto done; 9119 } 9120 9121 /* Free head and tail (if any) */ 9122 if (start != outer_start) 9123 free_contig_range(outer_start, start - outer_start); 9124 if (end != outer_end) 9125 free_contig_range(end, outer_end - end); 9126 9127 done: 9128 undo_isolate_page_range(pfn_max_align_down(start), 9129 pfn_max_align_up(end), migratetype); 9130 return ret; 9131 } 9132 EXPORT_SYMBOL(alloc_contig_range); 9133 9134 static int __alloc_contig_pages(unsigned long start_pfn, 9135 unsigned long nr_pages, gfp_t gfp_mask) 9136 { 9137 unsigned long end_pfn = start_pfn + nr_pages; 9138 9139 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 9140 gfp_mask); 9141 } 9142 9143 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 9144 unsigned long nr_pages) 9145 { 9146 unsigned long i, end_pfn = start_pfn + nr_pages; 9147 struct page *page; 9148 9149 for (i = start_pfn; i < end_pfn; i++) { 9150 page = pfn_to_online_page(i); 9151 if (!page) 9152 return false; 9153 9154 if (page_zone(page) != z) 9155 return false; 9156 9157 if (PageReserved(page)) 9158 return false; 9159 } 9160 return true; 9161 } 9162 9163 static bool zone_spans_last_pfn(const struct zone *zone, 9164 unsigned long start_pfn, unsigned long nr_pages) 9165 { 9166 unsigned long last_pfn = start_pfn + nr_pages - 1; 9167 9168 return zone_spans_pfn(zone, last_pfn); 9169 } 9170 9171 /** 9172 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 9173 * @nr_pages: Number of contiguous pages to allocate 9174 * @gfp_mask: GFP mask to limit search and used during compaction 9175 * @nid: Target node 9176 * @nodemask: Mask for other possible nodes 9177 * 9178 * This routine is a wrapper around alloc_contig_range(). It scans over zones 9179 * on an applicable zonelist to find a contiguous pfn range which can then be 9180 * tried for allocation with alloc_contig_range(). This routine is intended 9181 * for allocation requests which can not be fulfilled with the buddy allocator. 9182 * 9183 * The allocated memory is always aligned to a page boundary. If nr_pages is a 9184 * power of two then the alignment is guaranteed to be to the given nr_pages 9185 * (e.g. 1GB request would be aligned to 1GB). 9186 * 9187 * Allocated pages can be freed with free_contig_range() or by manually calling 9188 * __free_page() on each allocated page. 9189 * 9190 * Return: pointer to contiguous pages on success, or NULL if not successful. 9191 */ 9192 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 9193 int nid, nodemask_t *nodemask) 9194 { 9195 unsigned long ret, pfn, flags; 9196 struct zonelist *zonelist; 9197 struct zone *zone; 9198 struct zoneref *z; 9199 9200 zonelist = node_zonelist(nid, gfp_mask); 9201 for_each_zone_zonelist_nodemask(zone, z, zonelist, 9202 gfp_zone(gfp_mask), nodemask) { 9203 spin_lock_irqsave(&zone->lock, flags); 9204 9205 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 9206 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 9207 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 9208 /* 9209 * We release the zone lock here because 9210 * alloc_contig_range() will also lock the zone 9211 * at some point. If there's an allocation 9212 * spinning on this lock, it may win the race 9213 * and cause alloc_contig_range() to fail... 9214 */ 9215 spin_unlock_irqrestore(&zone->lock, flags); 9216 ret = __alloc_contig_pages(pfn, nr_pages, 9217 gfp_mask); 9218 if (!ret) 9219 return pfn_to_page(pfn); 9220 spin_lock_irqsave(&zone->lock, flags); 9221 } 9222 pfn += nr_pages; 9223 } 9224 spin_unlock_irqrestore(&zone->lock, flags); 9225 } 9226 return NULL; 9227 } 9228 #endif /* CONFIG_CONTIG_ALLOC */ 9229 9230 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 9231 { 9232 unsigned long count = 0; 9233 9234 for (; nr_pages--; pfn++) { 9235 struct page *page = pfn_to_page(pfn); 9236 9237 count += page_count(page) != 1; 9238 __free_page(page); 9239 } 9240 WARN(count != 0, "%lu pages are still in use!\n", count); 9241 } 9242 EXPORT_SYMBOL(free_contig_range); 9243 9244 /* 9245 * The zone indicated has a new number of managed_pages; batch sizes and percpu 9246 * page high values need to be recalculated. 9247 */ 9248 void zone_pcp_update(struct zone *zone, int cpu_online) 9249 { 9250 mutex_lock(&pcp_batch_high_lock); 9251 zone_set_pageset_high_and_batch(zone, cpu_online); 9252 mutex_unlock(&pcp_batch_high_lock); 9253 } 9254 9255 /* 9256 * Effectively disable pcplists for the zone by setting the high limit to 0 9257 * and draining all cpus. A concurrent page freeing on another CPU that's about 9258 * to put the page on pcplist will either finish before the drain and the page 9259 * will be drained, or observe the new high limit and skip the pcplist. 9260 * 9261 * Must be paired with a call to zone_pcp_enable(). 9262 */ 9263 void zone_pcp_disable(struct zone *zone) 9264 { 9265 mutex_lock(&pcp_batch_high_lock); 9266 __zone_set_pageset_high_and_batch(zone, 0, 1); 9267 __drain_all_pages(zone, true); 9268 } 9269 9270 void zone_pcp_enable(struct zone *zone) 9271 { 9272 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 9273 mutex_unlock(&pcp_batch_high_lock); 9274 } 9275 9276 void zone_pcp_reset(struct zone *zone) 9277 { 9278 int cpu; 9279 struct per_cpu_zonestat *pzstats; 9280 9281 if (zone->per_cpu_pageset != &boot_pageset) { 9282 for_each_online_cpu(cpu) { 9283 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 9284 drain_zonestat(zone, pzstats); 9285 } 9286 free_percpu(zone->per_cpu_pageset); 9287 free_percpu(zone->per_cpu_zonestats); 9288 zone->per_cpu_pageset = &boot_pageset; 9289 zone->per_cpu_zonestats = &boot_zonestats; 9290 } 9291 } 9292 9293 #ifdef CONFIG_MEMORY_HOTREMOVE 9294 /* 9295 * All pages in the range must be in a single zone, must not contain holes, 9296 * must span full sections, and must be isolated before calling this function. 9297 */ 9298 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 9299 { 9300 unsigned long pfn = start_pfn; 9301 struct page *page; 9302 struct zone *zone; 9303 unsigned int order; 9304 unsigned long flags; 9305 9306 offline_mem_sections(pfn, end_pfn); 9307 zone = page_zone(pfn_to_page(pfn)); 9308 spin_lock_irqsave(&zone->lock, flags); 9309 while (pfn < end_pfn) { 9310 page = pfn_to_page(pfn); 9311 /* 9312 * The HWPoisoned page may be not in buddy system, and 9313 * page_count() is not 0. 9314 */ 9315 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 9316 pfn++; 9317 continue; 9318 } 9319 /* 9320 * At this point all remaining PageOffline() pages have a 9321 * reference count of 0 and can simply be skipped. 9322 */ 9323 if (PageOffline(page)) { 9324 BUG_ON(page_count(page)); 9325 BUG_ON(PageBuddy(page)); 9326 pfn++; 9327 continue; 9328 } 9329 9330 BUG_ON(page_count(page)); 9331 BUG_ON(!PageBuddy(page)); 9332 order = buddy_order(page); 9333 del_page_from_free_list(page, zone, order); 9334 pfn += (1 << order); 9335 } 9336 spin_unlock_irqrestore(&zone->lock, flags); 9337 } 9338 #endif 9339 9340 bool is_free_buddy_page(struct page *page) 9341 { 9342 struct zone *zone = page_zone(page); 9343 unsigned long pfn = page_to_pfn(page); 9344 unsigned long flags; 9345 unsigned int order; 9346 9347 spin_lock_irqsave(&zone->lock, flags); 9348 for (order = 0; order < MAX_ORDER; order++) { 9349 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9350 9351 if (PageBuddy(page_head) && buddy_order(page_head) >= order) 9352 break; 9353 } 9354 spin_unlock_irqrestore(&zone->lock, flags); 9355 9356 return order < MAX_ORDER; 9357 } 9358 9359 #ifdef CONFIG_MEMORY_FAILURE 9360 /* 9361 * Break down a higher-order page in sub-pages, and keep our target out of 9362 * buddy allocator. 9363 */ 9364 static void break_down_buddy_pages(struct zone *zone, struct page *page, 9365 struct page *target, int low, int high, 9366 int migratetype) 9367 { 9368 unsigned long size = 1 << high; 9369 struct page *current_buddy, *next_page; 9370 9371 while (high > low) { 9372 high--; 9373 size >>= 1; 9374 9375 if (target >= &page[size]) { 9376 next_page = page + size; 9377 current_buddy = page; 9378 } else { 9379 next_page = page; 9380 current_buddy = page + size; 9381 } 9382 9383 if (set_page_guard(zone, current_buddy, high, migratetype)) 9384 continue; 9385 9386 if (current_buddy != target) { 9387 add_to_free_list(current_buddy, zone, high, migratetype); 9388 set_buddy_order(current_buddy, high); 9389 page = next_page; 9390 } 9391 } 9392 } 9393 9394 /* 9395 * Take a page that will be marked as poisoned off the buddy allocator. 9396 */ 9397 bool take_page_off_buddy(struct page *page) 9398 { 9399 struct zone *zone = page_zone(page); 9400 unsigned long pfn = page_to_pfn(page); 9401 unsigned long flags; 9402 unsigned int order; 9403 bool ret = false; 9404 9405 spin_lock_irqsave(&zone->lock, flags); 9406 for (order = 0; order < MAX_ORDER; order++) { 9407 struct page *page_head = page - (pfn & ((1 << order) - 1)); 9408 int page_order = buddy_order(page_head); 9409 9410 if (PageBuddy(page_head) && page_order >= order) { 9411 unsigned long pfn_head = page_to_pfn(page_head); 9412 int migratetype = get_pfnblock_migratetype(page_head, 9413 pfn_head); 9414 9415 del_page_from_free_list(page_head, zone, page_order); 9416 break_down_buddy_pages(zone, page_head, page, 0, 9417 page_order, migratetype); 9418 if (!is_migrate_isolate(migratetype)) 9419 __mod_zone_freepage_state(zone, -1, migratetype); 9420 ret = true; 9421 break; 9422 } 9423 if (page_count(page_head) > 0) 9424 break; 9425 } 9426 spin_unlock_irqrestore(&zone->lock, flags); 9427 return ret; 9428 } 9429 #endif 9430