1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/page_alloc.c 4 * 5 * Manages the free list, the system allocates free pages here. 6 * Note that kmalloc() lives in slab.c 7 * 8 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds 9 * Swap reorganised 29.12.95, Stephen Tweedie 10 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999 11 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999 12 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999 13 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000 14 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002 15 * (lots of bits borrowed from Ingo Molnar & Andrew Morton) 16 */ 17 18 #include <linux/stddef.h> 19 #include <linux/mm.h> 20 #include <linux/highmem.h> 21 #include <linux/swap.h> 22 #include <linux/swapops.h> 23 #include <linux/interrupt.h> 24 #include <linux/pagemap.h> 25 #include <linux/jiffies.h> 26 #include <linux/memblock.h> 27 #include <linux/compiler.h> 28 #include <linux/kernel.h> 29 #include <linux/kasan.h> 30 #include <linux/kmsan.h> 31 #include <linux/module.h> 32 #include <linux/suspend.h> 33 #include <linux/pagevec.h> 34 #include <linux/blkdev.h> 35 #include <linux/slab.h> 36 #include <linux/ratelimit.h> 37 #include <linux/oom.h> 38 #include <linux/topology.h> 39 #include <linux/sysctl.h> 40 #include <linux/cpu.h> 41 #include <linux/cpuset.h> 42 #include <linux/memory_hotplug.h> 43 #include <linux/nodemask.h> 44 #include <linux/vmalloc.h> 45 #include <linux/vmstat.h> 46 #include <linux/mempolicy.h> 47 #include <linux/memremap.h> 48 #include <linux/stop_machine.h> 49 #include <linux/random.h> 50 #include <linux/sort.h> 51 #include <linux/pfn.h> 52 #include <linux/backing-dev.h> 53 #include <linux/fault-inject.h> 54 #include <linux/page-isolation.h> 55 #include <linux/debugobjects.h> 56 #include <linux/kmemleak.h> 57 #include <linux/compaction.h> 58 #include <trace/events/kmem.h> 59 #include <trace/events/oom.h> 60 #include <linux/prefetch.h> 61 #include <linux/mm_inline.h> 62 #include <linux/mmu_notifier.h> 63 #include <linux/migrate.h> 64 #include <linux/hugetlb.h> 65 #include <linux/sched/rt.h> 66 #include <linux/sched/mm.h> 67 #include <linux/page_owner.h> 68 #include <linux/page_table_check.h> 69 #include <linux/kthread.h> 70 #include <linux/memcontrol.h> 71 #include <linux/ftrace.h> 72 #include <linux/lockdep.h> 73 #include <linux/nmi.h> 74 #include <linux/psi.h> 75 #include <linux/khugepaged.h> 76 #include <linux/delayacct.h> 77 #include <asm/sections.h> 78 #include <asm/tlbflush.h> 79 #include <asm/div64.h> 80 #include "internal.h" 81 #include "shuffle.h" 82 #include "page_reporting.h" 83 #include "swap.h" 84 85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */ 86 typedef int __bitwise fpi_t; 87 88 /* No special request */ 89 #define FPI_NONE ((__force fpi_t)0) 90 91 /* 92 * Skip free page reporting notification for the (possibly merged) page. 93 * This does not hinder free page reporting from grabbing the page, 94 * reporting it and marking it "reported" - it only skips notifying 95 * the free page reporting infrastructure about a newly freed page. For 96 * example, used when temporarily pulling a page from a freelist and 97 * putting it back unmodified. 98 */ 99 #define FPI_SKIP_REPORT_NOTIFY ((__force fpi_t)BIT(0)) 100 101 /* 102 * Place the (possibly merged) page to the tail of the freelist. Will ignore 103 * page shuffling (relevant code - e.g., memory onlining - is expected to 104 * shuffle the whole zone). 105 * 106 * Note: No code should rely on this flag for correctness - it's purely 107 * to allow for optimizations when handing back either fresh pages 108 * (memory onlining) or untouched pages (page isolation, free page 109 * reporting). 110 */ 111 #define FPI_TO_TAIL ((__force fpi_t)BIT(1)) 112 113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */ 114 static DEFINE_MUTEX(pcp_batch_high_lock); 115 #define MIN_PERCPU_PAGELIST_HIGH_FRACTION (8) 116 117 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT_RT) 118 /* 119 * On SMP, spin_trylock is sufficient protection. 120 * On PREEMPT_RT, spin_trylock is equivalent on both SMP and UP. 121 */ 122 #define pcp_trylock_prepare(flags) do { } while (0) 123 #define pcp_trylock_finish(flag) do { } while (0) 124 #else 125 126 /* UP spin_trylock always succeeds so disable IRQs to prevent re-entrancy. */ 127 #define pcp_trylock_prepare(flags) local_irq_save(flags) 128 #define pcp_trylock_finish(flags) local_irq_restore(flags) 129 #endif 130 131 /* 132 * Locking a pcp requires a PCP lookup followed by a spinlock. To avoid 133 * a migration causing the wrong PCP to be locked and remote memory being 134 * potentially allocated, pin the task to the CPU for the lookup+lock. 135 * preempt_disable is used on !RT because it is faster than migrate_disable. 136 * migrate_disable is used on RT because otherwise RT spinlock usage is 137 * interfered with and a high priority task cannot preempt the allocator. 138 */ 139 #ifndef CONFIG_PREEMPT_RT 140 #define pcpu_task_pin() preempt_disable() 141 #define pcpu_task_unpin() preempt_enable() 142 #else 143 #define pcpu_task_pin() migrate_disable() 144 #define pcpu_task_unpin() migrate_enable() 145 #endif 146 147 /* 148 * Generic helper to lookup and a per-cpu variable with an embedded spinlock. 149 * Return value should be used with equivalent unlock helper. 150 */ 151 #define pcpu_spin_lock(type, member, ptr) \ 152 ({ \ 153 type *_ret; \ 154 pcpu_task_pin(); \ 155 _ret = this_cpu_ptr(ptr); \ 156 spin_lock(&_ret->member); \ 157 _ret; \ 158 }) 159 160 #define pcpu_spin_trylock(type, member, ptr) \ 161 ({ \ 162 type *_ret; \ 163 pcpu_task_pin(); \ 164 _ret = this_cpu_ptr(ptr); \ 165 if (!spin_trylock(&_ret->member)) { \ 166 pcpu_task_unpin(); \ 167 _ret = NULL; \ 168 } \ 169 _ret; \ 170 }) 171 172 #define pcpu_spin_unlock(member, ptr) \ 173 ({ \ 174 spin_unlock(&ptr->member); \ 175 pcpu_task_unpin(); \ 176 }) 177 178 /* struct per_cpu_pages specific helpers. */ 179 #define pcp_spin_lock(ptr) \ 180 pcpu_spin_lock(struct per_cpu_pages, lock, ptr) 181 182 #define pcp_spin_trylock(ptr) \ 183 pcpu_spin_trylock(struct per_cpu_pages, lock, ptr) 184 185 #define pcp_spin_unlock(ptr) \ 186 pcpu_spin_unlock(lock, ptr) 187 188 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID 189 DEFINE_PER_CPU(int, numa_node); 190 EXPORT_PER_CPU_SYMBOL(numa_node); 191 #endif 192 193 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key); 194 195 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 196 /* 197 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly. 198 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined. 199 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem() 200 * defined in <linux/topology.h>. 201 */ 202 DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */ 203 EXPORT_PER_CPU_SYMBOL(_numa_mem_); 204 #endif 205 206 static DEFINE_MUTEX(pcpu_drain_mutex); 207 208 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY 209 volatile unsigned long latent_entropy __latent_entropy; 210 EXPORT_SYMBOL(latent_entropy); 211 #endif 212 213 /* 214 * Array of node states. 215 */ 216 nodemask_t node_states[NR_NODE_STATES] __read_mostly = { 217 [N_POSSIBLE] = NODE_MASK_ALL, 218 [N_ONLINE] = { { [0] = 1UL } }, 219 #ifndef CONFIG_NUMA 220 [N_NORMAL_MEMORY] = { { [0] = 1UL } }, 221 #ifdef CONFIG_HIGHMEM 222 [N_HIGH_MEMORY] = { { [0] = 1UL } }, 223 #endif 224 [N_MEMORY] = { { [0] = 1UL } }, 225 [N_CPU] = { { [0] = 1UL } }, 226 #endif /* NUMA */ 227 }; 228 EXPORT_SYMBOL(node_states); 229 230 atomic_long_t _totalram_pages __read_mostly; 231 EXPORT_SYMBOL(_totalram_pages); 232 unsigned long totalreserve_pages __read_mostly; 233 unsigned long totalcma_pages __read_mostly; 234 235 int percpu_pagelist_high_fraction; 236 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK; 237 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_ALLOC_DEFAULT_ON, init_on_alloc); 238 EXPORT_SYMBOL(init_on_alloc); 239 240 DEFINE_STATIC_KEY_MAYBE(CONFIG_INIT_ON_FREE_DEFAULT_ON, init_on_free); 241 EXPORT_SYMBOL(init_on_free); 242 243 /* 244 * A cached value of the page's pageblock's migratetype, used when the page is 245 * put on a pcplist. Used to avoid the pageblock migratetype lookup when 246 * freeing from pcplists in most cases, at the cost of possibly becoming stale. 247 * Also the migratetype set in the page does not necessarily match the pcplist 248 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any 249 * other index - this ensures that it will be put on the correct CMA freelist. 250 */ 251 static inline int get_pcppage_migratetype(struct page *page) 252 { 253 return page->index; 254 } 255 256 static inline void set_pcppage_migratetype(struct page *page, int migratetype) 257 { 258 page->index = migratetype; 259 } 260 261 #ifdef CONFIG_PM_SLEEP 262 /* 263 * The following functions are used by the suspend/hibernate code to temporarily 264 * change gfp_allowed_mask in order to avoid using I/O during memory allocations 265 * while devices are suspended. To avoid races with the suspend/hibernate code, 266 * they should always be called with system_transition_mutex held 267 * (gfp_allowed_mask also should only be modified with system_transition_mutex 268 * held, unless the suspend/hibernate code is guaranteed not to run in parallel 269 * with that modification). 270 */ 271 272 static gfp_t saved_gfp_mask; 273 274 void pm_restore_gfp_mask(void) 275 { 276 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 277 if (saved_gfp_mask) { 278 gfp_allowed_mask = saved_gfp_mask; 279 saved_gfp_mask = 0; 280 } 281 } 282 283 void pm_restrict_gfp_mask(void) 284 { 285 WARN_ON(!mutex_is_locked(&system_transition_mutex)); 286 WARN_ON(saved_gfp_mask); 287 saved_gfp_mask = gfp_allowed_mask; 288 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS); 289 } 290 291 bool pm_suspended_storage(void) 292 { 293 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS)) 294 return false; 295 return true; 296 } 297 #endif /* CONFIG_PM_SLEEP */ 298 299 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE 300 unsigned int pageblock_order __read_mostly; 301 #endif 302 303 static void __free_pages_ok(struct page *page, unsigned int order, 304 fpi_t fpi_flags); 305 306 /* 307 * results with 256, 32 in the lowmem_reserve sysctl: 308 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high) 309 * 1G machine -> (16M dma, 784M normal, 224M high) 310 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA 311 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL 312 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA 313 * 314 * TBD: should special case ZONE_DMA32 machines here - in those we normally 315 * don't need any ZONE_NORMAL reservation 316 */ 317 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = { 318 #ifdef CONFIG_ZONE_DMA 319 [ZONE_DMA] = 256, 320 #endif 321 #ifdef CONFIG_ZONE_DMA32 322 [ZONE_DMA32] = 256, 323 #endif 324 [ZONE_NORMAL] = 32, 325 #ifdef CONFIG_HIGHMEM 326 [ZONE_HIGHMEM] = 0, 327 #endif 328 [ZONE_MOVABLE] = 0, 329 }; 330 331 char * const zone_names[MAX_NR_ZONES] = { 332 #ifdef CONFIG_ZONE_DMA 333 "DMA", 334 #endif 335 #ifdef CONFIG_ZONE_DMA32 336 "DMA32", 337 #endif 338 "Normal", 339 #ifdef CONFIG_HIGHMEM 340 "HighMem", 341 #endif 342 "Movable", 343 #ifdef CONFIG_ZONE_DEVICE 344 "Device", 345 #endif 346 }; 347 348 const char * const migratetype_names[MIGRATE_TYPES] = { 349 "Unmovable", 350 "Movable", 351 "Reclaimable", 352 "HighAtomic", 353 #ifdef CONFIG_CMA 354 "CMA", 355 #endif 356 #ifdef CONFIG_MEMORY_ISOLATION 357 "Isolate", 358 #endif 359 }; 360 361 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = { 362 [NULL_COMPOUND_DTOR] = NULL, 363 [COMPOUND_PAGE_DTOR] = free_compound_page, 364 #ifdef CONFIG_HUGETLB_PAGE 365 [HUGETLB_PAGE_DTOR] = free_huge_page, 366 #endif 367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 368 [TRANSHUGE_PAGE_DTOR] = free_transhuge_page, 369 #endif 370 }; 371 372 int min_free_kbytes = 1024; 373 int user_min_free_kbytes = -1; 374 int watermark_boost_factor __read_mostly = 15000; 375 int watermark_scale_factor = 10; 376 377 bool mirrored_kernelcore __initdata_memblock; 378 379 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */ 380 int movable_zone; 381 EXPORT_SYMBOL(movable_zone); 382 383 #if MAX_NUMNODES > 1 384 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES; 385 unsigned int nr_online_nodes __read_mostly = 1; 386 EXPORT_SYMBOL(nr_node_ids); 387 EXPORT_SYMBOL(nr_online_nodes); 388 #endif 389 390 int page_group_by_mobility_disabled __read_mostly; 391 392 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 393 /* 394 * During boot we initialize deferred pages on-demand, as needed, but once 395 * page_alloc_init_late() has finished, the deferred pages are all initialized, 396 * and we can permanently disable that path. 397 */ 398 DEFINE_STATIC_KEY_TRUE(deferred_pages); 399 400 static inline bool deferred_pages_enabled(void) 401 { 402 return static_branch_unlikely(&deferred_pages); 403 } 404 405 /* 406 * deferred_grow_zone() is __init, but it is called from 407 * get_page_from_freelist() during early boot until deferred_pages permanently 408 * disables this call. This is why we have refdata wrapper to avoid warning, 409 * and to ensure that the function body gets unloaded. 410 */ 411 static bool __ref 412 _deferred_grow_zone(struct zone *zone, unsigned int order) 413 { 414 return deferred_grow_zone(zone, order); 415 } 416 #else 417 static inline bool deferred_pages_enabled(void) 418 { 419 return false; 420 } 421 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */ 422 423 /* Return a pointer to the bitmap storing bits affecting a block of pages */ 424 static inline unsigned long *get_pageblock_bitmap(const struct page *page, 425 unsigned long pfn) 426 { 427 #ifdef CONFIG_SPARSEMEM 428 return section_to_usemap(__pfn_to_section(pfn)); 429 #else 430 return page_zone(page)->pageblock_flags; 431 #endif /* CONFIG_SPARSEMEM */ 432 } 433 434 static inline int pfn_to_bitidx(const struct page *page, unsigned long pfn) 435 { 436 #ifdef CONFIG_SPARSEMEM 437 pfn &= (PAGES_PER_SECTION-1); 438 #else 439 pfn = pfn - pageblock_start_pfn(page_zone(page)->zone_start_pfn); 440 #endif /* CONFIG_SPARSEMEM */ 441 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS; 442 } 443 444 static __always_inline 445 unsigned long __get_pfnblock_flags_mask(const struct page *page, 446 unsigned long pfn, 447 unsigned long mask) 448 { 449 unsigned long *bitmap; 450 unsigned long bitidx, word_bitidx; 451 unsigned long word; 452 453 bitmap = get_pageblock_bitmap(page, pfn); 454 bitidx = pfn_to_bitidx(page, pfn); 455 word_bitidx = bitidx / BITS_PER_LONG; 456 bitidx &= (BITS_PER_LONG-1); 457 /* 458 * This races, without locks, with set_pfnblock_flags_mask(). Ensure 459 * a consistent read of the memory array, so that results, even though 460 * racy, are not corrupted. 461 */ 462 word = READ_ONCE(bitmap[word_bitidx]); 463 return (word >> bitidx) & mask; 464 } 465 466 /** 467 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages 468 * @page: The page within the block of interest 469 * @pfn: The target page frame number 470 * @mask: mask of bits that the caller is interested in 471 * 472 * Return: pageblock_bits flags 473 */ 474 unsigned long get_pfnblock_flags_mask(const struct page *page, 475 unsigned long pfn, unsigned long mask) 476 { 477 return __get_pfnblock_flags_mask(page, pfn, mask); 478 } 479 480 static __always_inline int get_pfnblock_migratetype(const struct page *page, 481 unsigned long pfn) 482 { 483 return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK); 484 } 485 486 /** 487 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages 488 * @page: The page within the block of interest 489 * @flags: The flags to set 490 * @pfn: The target page frame number 491 * @mask: mask of bits that the caller is interested in 492 */ 493 void set_pfnblock_flags_mask(struct page *page, unsigned long flags, 494 unsigned long pfn, 495 unsigned long mask) 496 { 497 unsigned long *bitmap; 498 unsigned long bitidx, word_bitidx; 499 unsigned long word; 500 501 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4); 502 BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits)); 503 504 bitmap = get_pageblock_bitmap(page, pfn); 505 bitidx = pfn_to_bitidx(page, pfn); 506 word_bitidx = bitidx / BITS_PER_LONG; 507 bitidx &= (BITS_PER_LONG-1); 508 509 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page); 510 511 mask <<= bitidx; 512 flags <<= bitidx; 513 514 word = READ_ONCE(bitmap[word_bitidx]); 515 do { 516 } while (!try_cmpxchg(&bitmap[word_bitidx], &word, (word & ~mask) | flags)); 517 } 518 519 void set_pageblock_migratetype(struct page *page, int migratetype) 520 { 521 if (unlikely(page_group_by_mobility_disabled && 522 migratetype < MIGRATE_PCPTYPES)) 523 migratetype = MIGRATE_UNMOVABLE; 524 525 set_pfnblock_flags_mask(page, (unsigned long)migratetype, 526 page_to_pfn(page), MIGRATETYPE_MASK); 527 } 528 529 #ifdef CONFIG_DEBUG_VM 530 static int page_outside_zone_boundaries(struct zone *zone, struct page *page) 531 { 532 int ret = 0; 533 unsigned seq; 534 unsigned long pfn = page_to_pfn(page); 535 unsigned long sp, start_pfn; 536 537 do { 538 seq = zone_span_seqbegin(zone); 539 start_pfn = zone->zone_start_pfn; 540 sp = zone->spanned_pages; 541 if (!zone_spans_pfn(zone, pfn)) 542 ret = 1; 543 } while (zone_span_seqretry(zone, seq)); 544 545 if (ret) 546 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n", 547 pfn, zone_to_nid(zone), zone->name, 548 start_pfn, start_pfn + sp); 549 550 return ret; 551 } 552 553 static int page_is_consistent(struct zone *zone, struct page *page) 554 { 555 if (zone != page_zone(page)) 556 return 0; 557 558 return 1; 559 } 560 /* 561 * Temporary debugging check for pages not lying within a given zone. 562 */ 563 static int __maybe_unused bad_range(struct zone *zone, struct page *page) 564 { 565 if (page_outside_zone_boundaries(zone, page)) 566 return 1; 567 if (!page_is_consistent(zone, page)) 568 return 1; 569 570 return 0; 571 } 572 #else 573 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page) 574 { 575 return 0; 576 } 577 #endif 578 579 static void bad_page(struct page *page, const char *reason) 580 { 581 static unsigned long resume; 582 static unsigned long nr_shown; 583 static unsigned long nr_unshown; 584 585 /* 586 * Allow a burst of 60 reports, then keep quiet for that minute; 587 * or allow a steady drip of one report per second. 588 */ 589 if (nr_shown == 60) { 590 if (time_before(jiffies, resume)) { 591 nr_unshown++; 592 goto out; 593 } 594 if (nr_unshown) { 595 pr_alert( 596 "BUG: Bad page state: %lu messages suppressed\n", 597 nr_unshown); 598 nr_unshown = 0; 599 } 600 nr_shown = 0; 601 } 602 if (nr_shown++ == 0) 603 resume = jiffies + 60 * HZ; 604 605 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n", 606 current->comm, page_to_pfn(page)); 607 dump_page(page, reason); 608 609 print_modules(); 610 dump_stack(); 611 out: 612 /* Leave bad fields for debug, except PageBuddy could make trouble */ 613 page_mapcount_reset(page); /* remove PageBuddy */ 614 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE); 615 } 616 617 static inline unsigned int order_to_pindex(int migratetype, int order) 618 { 619 int base = order; 620 621 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 622 if (order > PAGE_ALLOC_COSTLY_ORDER) { 623 VM_BUG_ON(order != pageblock_order); 624 return NR_LOWORDER_PCP_LISTS; 625 } 626 #else 627 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 628 #endif 629 630 return (MIGRATE_PCPTYPES * base) + migratetype; 631 } 632 633 static inline int pindex_to_order(unsigned int pindex) 634 { 635 int order = pindex / MIGRATE_PCPTYPES; 636 637 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 638 if (pindex == NR_LOWORDER_PCP_LISTS) 639 order = pageblock_order; 640 #else 641 VM_BUG_ON(order > PAGE_ALLOC_COSTLY_ORDER); 642 #endif 643 644 return order; 645 } 646 647 static inline bool pcp_allowed_order(unsigned int order) 648 { 649 if (order <= PAGE_ALLOC_COSTLY_ORDER) 650 return true; 651 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 652 if (order == pageblock_order) 653 return true; 654 #endif 655 return false; 656 } 657 658 static inline void free_the_page(struct page *page, unsigned int order) 659 { 660 if (pcp_allowed_order(order)) /* Via pcp? */ 661 free_unref_page(page, order); 662 else 663 __free_pages_ok(page, order, FPI_NONE); 664 } 665 666 /* 667 * Higher-order pages are called "compound pages". They are structured thusly: 668 * 669 * The first PAGE_SIZE page is called the "head page" and have PG_head set. 670 * 671 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded 672 * in bit 0 of page->compound_head. The rest of bits is pointer to head page. 673 * 674 * The first tail page's ->compound_dtor holds the offset in array of compound 675 * page destructors. See compound_page_dtors. 676 * 677 * The first tail page's ->compound_order holds the order of allocation. 678 * This usage means that zero-order pages may not be compound. 679 */ 680 681 void free_compound_page(struct page *page) 682 { 683 mem_cgroup_uncharge(page_folio(page)); 684 free_the_page(page, compound_order(page)); 685 } 686 687 void prep_compound_page(struct page *page, unsigned int order) 688 { 689 int i; 690 int nr_pages = 1 << order; 691 692 __SetPageHead(page); 693 for (i = 1; i < nr_pages; i++) 694 prep_compound_tail(page, i); 695 696 prep_compound_head(page, order); 697 } 698 699 void destroy_large_folio(struct folio *folio) 700 { 701 enum compound_dtor_id dtor = folio->_folio_dtor; 702 703 VM_BUG_ON_FOLIO(dtor >= NR_COMPOUND_DTORS, folio); 704 compound_page_dtors[dtor](&folio->page); 705 } 706 707 #ifdef CONFIG_DEBUG_PAGEALLOC 708 unsigned int _debug_guardpage_minorder; 709 710 bool _debug_pagealloc_enabled_early __read_mostly 711 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT); 712 EXPORT_SYMBOL(_debug_pagealloc_enabled_early); 713 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled); 714 EXPORT_SYMBOL(_debug_pagealloc_enabled); 715 716 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled); 717 718 static int __init early_debug_pagealloc(char *buf) 719 { 720 return kstrtobool(buf, &_debug_pagealloc_enabled_early); 721 } 722 early_param("debug_pagealloc", early_debug_pagealloc); 723 724 static int __init debug_guardpage_minorder_setup(char *buf) 725 { 726 unsigned long res; 727 728 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) { 729 pr_err("Bad debug_guardpage_minorder value\n"); 730 return 0; 731 } 732 _debug_guardpage_minorder = res; 733 pr_info("Setting debug_guardpage_minorder to %lu\n", res); 734 return 0; 735 } 736 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup); 737 738 static inline bool set_page_guard(struct zone *zone, struct page *page, 739 unsigned int order, int migratetype) 740 { 741 if (!debug_guardpage_enabled()) 742 return false; 743 744 if (order >= debug_guardpage_minorder()) 745 return false; 746 747 __SetPageGuard(page); 748 INIT_LIST_HEAD(&page->buddy_list); 749 set_page_private(page, order); 750 /* Guard pages are not available for any usage */ 751 if (!is_migrate_isolate(migratetype)) 752 __mod_zone_freepage_state(zone, -(1 << order), migratetype); 753 754 return true; 755 } 756 757 static inline void clear_page_guard(struct zone *zone, struct page *page, 758 unsigned int order, int migratetype) 759 { 760 if (!debug_guardpage_enabled()) 761 return; 762 763 __ClearPageGuard(page); 764 765 set_page_private(page, 0); 766 if (!is_migrate_isolate(migratetype)) 767 __mod_zone_freepage_state(zone, (1 << order), migratetype); 768 } 769 #else 770 static inline bool set_page_guard(struct zone *zone, struct page *page, 771 unsigned int order, int migratetype) { return false; } 772 static inline void clear_page_guard(struct zone *zone, struct page *page, 773 unsigned int order, int migratetype) {} 774 #endif 775 776 static inline void set_buddy_order(struct page *page, unsigned int order) 777 { 778 set_page_private(page, order); 779 __SetPageBuddy(page); 780 } 781 782 #ifdef CONFIG_COMPACTION 783 static inline struct capture_control *task_capc(struct zone *zone) 784 { 785 struct capture_control *capc = current->capture_control; 786 787 return unlikely(capc) && 788 !(current->flags & PF_KTHREAD) && 789 !capc->page && 790 capc->cc->zone == zone ? capc : NULL; 791 } 792 793 static inline bool 794 compaction_capture(struct capture_control *capc, struct page *page, 795 int order, int migratetype) 796 { 797 if (!capc || order != capc->cc->order) 798 return false; 799 800 /* Do not accidentally pollute CMA or isolated regions*/ 801 if (is_migrate_cma(migratetype) || 802 is_migrate_isolate(migratetype)) 803 return false; 804 805 /* 806 * Do not let lower order allocations pollute a movable pageblock. 807 * This might let an unmovable request use a reclaimable pageblock 808 * and vice-versa but no more than normal fallback logic which can 809 * have trouble finding a high-order free page. 810 */ 811 if (order < pageblock_order && migratetype == MIGRATE_MOVABLE) 812 return false; 813 814 capc->page = page; 815 return true; 816 } 817 818 #else 819 static inline struct capture_control *task_capc(struct zone *zone) 820 { 821 return NULL; 822 } 823 824 static inline bool 825 compaction_capture(struct capture_control *capc, struct page *page, 826 int order, int migratetype) 827 { 828 return false; 829 } 830 #endif /* CONFIG_COMPACTION */ 831 832 /* Used for pages not on another list */ 833 static inline void add_to_free_list(struct page *page, struct zone *zone, 834 unsigned int order, int migratetype) 835 { 836 struct free_area *area = &zone->free_area[order]; 837 838 list_add(&page->buddy_list, &area->free_list[migratetype]); 839 area->nr_free++; 840 } 841 842 /* Used for pages not on another list */ 843 static inline void add_to_free_list_tail(struct page *page, struct zone *zone, 844 unsigned int order, int migratetype) 845 { 846 struct free_area *area = &zone->free_area[order]; 847 848 list_add_tail(&page->buddy_list, &area->free_list[migratetype]); 849 area->nr_free++; 850 } 851 852 /* 853 * Used for pages which are on another list. Move the pages to the tail 854 * of the list - so the moved pages won't immediately be considered for 855 * allocation again (e.g., optimization for memory onlining). 856 */ 857 static inline void move_to_free_list(struct page *page, struct zone *zone, 858 unsigned int order, int migratetype) 859 { 860 struct free_area *area = &zone->free_area[order]; 861 862 list_move_tail(&page->buddy_list, &area->free_list[migratetype]); 863 } 864 865 static inline void del_page_from_free_list(struct page *page, struct zone *zone, 866 unsigned int order) 867 { 868 /* clear reported state and update reported page count */ 869 if (page_reported(page)) 870 __ClearPageReported(page); 871 872 list_del(&page->buddy_list); 873 __ClearPageBuddy(page); 874 set_page_private(page, 0); 875 zone->free_area[order].nr_free--; 876 } 877 878 static inline struct page *get_page_from_free_area(struct free_area *area, 879 int migratetype) 880 { 881 return list_first_entry_or_null(&area->free_list[migratetype], 882 struct page, lru); 883 } 884 885 /* 886 * If this is not the largest possible page, check if the buddy 887 * of the next-highest order is free. If it is, it's possible 888 * that pages are being freed that will coalesce soon. In case, 889 * that is happening, add the free page to the tail of the list 890 * so it's less likely to be used soon and more likely to be merged 891 * as a higher order page 892 */ 893 static inline bool 894 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn, 895 struct page *page, unsigned int order) 896 { 897 unsigned long higher_page_pfn; 898 struct page *higher_page; 899 900 if (order >= MAX_ORDER - 1) 901 return false; 902 903 higher_page_pfn = buddy_pfn & pfn; 904 higher_page = page + (higher_page_pfn - pfn); 905 906 return find_buddy_page_pfn(higher_page, higher_page_pfn, order + 1, 907 NULL) != NULL; 908 } 909 910 /* 911 * Freeing function for a buddy system allocator. 912 * 913 * The concept of a buddy system is to maintain direct-mapped table 914 * (containing bit values) for memory blocks of various "orders". 915 * The bottom level table contains the map for the smallest allocatable 916 * units of memory (here, pages), and each level above it describes 917 * pairs of units from the levels below, hence, "buddies". 918 * At a high level, all that happens here is marking the table entry 919 * at the bottom level available, and propagating the changes upward 920 * as necessary, plus some accounting needed to play nicely with other 921 * parts of the VM system. 922 * At each level, we keep a list of pages, which are heads of continuous 923 * free pages of length of (1 << order) and marked with PageBuddy. 924 * Page's order is recorded in page_private(page) field. 925 * So when we are allocating or freeing one, we can derive the state of the 926 * other. That is, if we allocate a small block, and both were 927 * free, the remainder of the region must be split into blocks. 928 * If a block is freed, and its buddy is also free, then this 929 * triggers coalescing into a block of larger size. 930 * 931 * -- nyc 932 */ 933 934 static inline void __free_one_page(struct page *page, 935 unsigned long pfn, 936 struct zone *zone, unsigned int order, 937 int migratetype, fpi_t fpi_flags) 938 { 939 struct capture_control *capc = task_capc(zone); 940 unsigned long buddy_pfn = 0; 941 unsigned long combined_pfn; 942 struct page *buddy; 943 bool to_tail; 944 945 VM_BUG_ON(!zone_is_initialized(zone)); 946 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page); 947 948 VM_BUG_ON(migratetype == -1); 949 if (likely(!is_migrate_isolate(migratetype))) 950 __mod_zone_freepage_state(zone, 1 << order, migratetype); 951 952 VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page); 953 VM_BUG_ON_PAGE(bad_range(zone, page), page); 954 955 while (order < MAX_ORDER) { 956 if (compaction_capture(capc, page, order, migratetype)) { 957 __mod_zone_freepage_state(zone, -(1 << order), 958 migratetype); 959 return; 960 } 961 962 buddy = find_buddy_page_pfn(page, pfn, order, &buddy_pfn); 963 if (!buddy) 964 goto done_merging; 965 966 if (unlikely(order >= pageblock_order)) { 967 /* 968 * We want to prevent merge between freepages on pageblock 969 * without fallbacks and normal pageblock. Without this, 970 * pageblock isolation could cause incorrect freepage or CMA 971 * accounting or HIGHATOMIC accounting. 972 */ 973 int buddy_mt = get_pageblock_migratetype(buddy); 974 975 if (migratetype != buddy_mt 976 && (!migratetype_is_mergeable(migratetype) || 977 !migratetype_is_mergeable(buddy_mt))) 978 goto done_merging; 979 } 980 981 /* 982 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page, 983 * merge with it and move up one order. 984 */ 985 if (page_is_guard(buddy)) 986 clear_page_guard(zone, buddy, order, migratetype); 987 else 988 del_page_from_free_list(buddy, zone, order); 989 combined_pfn = buddy_pfn & pfn; 990 page = page + (combined_pfn - pfn); 991 pfn = combined_pfn; 992 order++; 993 } 994 995 done_merging: 996 set_buddy_order(page, order); 997 998 if (fpi_flags & FPI_TO_TAIL) 999 to_tail = true; 1000 else if (is_shuffle_order(order)) 1001 to_tail = shuffle_pick_tail(); 1002 else 1003 to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order); 1004 1005 if (to_tail) 1006 add_to_free_list_tail(page, zone, order, migratetype); 1007 else 1008 add_to_free_list(page, zone, order, migratetype); 1009 1010 /* Notify page reporting subsystem of freed page */ 1011 if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY)) 1012 page_reporting_notify_free(order); 1013 } 1014 1015 /** 1016 * split_free_page() -- split a free page at split_pfn_offset 1017 * @free_page: the original free page 1018 * @order: the order of the page 1019 * @split_pfn_offset: split offset within the page 1020 * 1021 * Return -ENOENT if the free page is changed, otherwise 0 1022 * 1023 * It is used when the free page crosses two pageblocks with different migratetypes 1024 * at split_pfn_offset within the page. The split free page will be put into 1025 * separate migratetype lists afterwards. Otherwise, the function achieves 1026 * nothing. 1027 */ 1028 int split_free_page(struct page *free_page, 1029 unsigned int order, unsigned long split_pfn_offset) 1030 { 1031 struct zone *zone = page_zone(free_page); 1032 unsigned long free_page_pfn = page_to_pfn(free_page); 1033 unsigned long pfn; 1034 unsigned long flags; 1035 int free_page_order; 1036 int mt; 1037 int ret = 0; 1038 1039 if (split_pfn_offset == 0) 1040 return ret; 1041 1042 spin_lock_irqsave(&zone->lock, flags); 1043 1044 if (!PageBuddy(free_page) || buddy_order(free_page) != order) { 1045 ret = -ENOENT; 1046 goto out; 1047 } 1048 1049 mt = get_pageblock_migratetype(free_page); 1050 if (likely(!is_migrate_isolate(mt))) 1051 __mod_zone_freepage_state(zone, -(1UL << order), mt); 1052 1053 del_page_from_free_list(free_page, zone, order); 1054 for (pfn = free_page_pfn; 1055 pfn < free_page_pfn + (1UL << order);) { 1056 int mt = get_pfnblock_migratetype(pfn_to_page(pfn), pfn); 1057 1058 free_page_order = min_t(unsigned int, 1059 pfn ? __ffs(pfn) : order, 1060 __fls(split_pfn_offset)); 1061 __free_one_page(pfn_to_page(pfn), pfn, zone, free_page_order, 1062 mt, FPI_NONE); 1063 pfn += 1UL << free_page_order; 1064 split_pfn_offset -= (1UL << free_page_order); 1065 /* we have done the first part, now switch to second part */ 1066 if (split_pfn_offset == 0) 1067 split_pfn_offset = (1UL << order) - (pfn - free_page_pfn); 1068 } 1069 out: 1070 spin_unlock_irqrestore(&zone->lock, flags); 1071 return ret; 1072 } 1073 /* 1074 * A bad page could be due to a number of fields. Instead of multiple branches, 1075 * try and check multiple fields with one check. The caller must do a detailed 1076 * check if necessary. 1077 */ 1078 static inline bool page_expected_state(struct page *page, 1079 unsigned long check_flags) 1080 { 1081 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1082 return false; 1083 1084 if (unlikely((unsigned long)page->mapping | 1085 page_ref_count(page) | 1086 #ifdef CONFIG_MEMCG 1087 page->memcg_data | 1088 #endif 1089 (page->flags & check_flags))) 1090 return false; 1091 1092 return true; 1093 } 1094 1095 static const char *page_bad_reason(struct page *page, unsigned long flags) 1096 { 1097 const char *bad_reason = NULL; 1098 1099 if (unlikely(atomic_read(&page->_mapcount) != -1)) 1100 bad_reason = "nonzero mapcount"; 1101 if (unlikely(page->mapping != NULL)) 1102 bad_reason = "non-NULL mapping"; 1103 if (unlikely(page_ref_count(page) != 0)) 1104 bad_reason = "nonzero _refcount"; 1105 if (unlikely(page->flags & flags)) { 1106 if (flags == PAGE_FLAGS_CHECK_AT_PREP) 1107 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set"; 1108 else 1109 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set"; 1110 } 1111 #ifdef CONFIG_MEMCG 1112 if (unlikely(page->memcg_data)) 1113 bad_reason = "page still charged to cgroup"; 1114 #endif 1115 return bad_reason; 1116 } 1117 1118 static void free_page_is_bad_report(struct page *page) 1119 { 1120 bad_page(page, 1121 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE)); 1122 } 1123 1124 static inline bool free_page_is_bad(struct page *page) 1125 { 1126 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE))) 1127 return false; 1128 1129 /* Something has gone sideways, find it */ 1130 free_page_is_bad_report(page); 1131 return true; 1132 } 1133 1134 static int free_tail_page_prepare(struct page *head_page, struct page *page) 1135 { 1136 struct folio *folio = (struct folio *)head_page; 1137 int ret = 1; 1138 1139 /* 1140 * We rely page->lru.next never has bit 0 set, unless the page 1141 * is PageTail(). Let's make sure that's true even for poisoned ->lru. 1142 */ 1143 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1); 1144 1145 if (!static_branch_unlikely(&check_pages_enabled)) { 1146 ret = 0; 1147 goto out; 1148 } 1149 switch (page - head_page) { 1150 case 1: 1151 /* the first tail page: these may be in place of ->mapping */ 1152 if (unlikely(folio_entire_mapcount(folio))) { 1153 bad_page(page, "nonzero entire_mapcount"); 1154 goto out; 1155 } 1156 if (unlikely(atomic_read(&folio->_nr_pages_mapped))) { 1157 bad_page(page, "nonzero nr_pages_mapped"); 1158 goto out; 1159 } 1160 if (unlikely(atomic_read(&folio->_pincount))) { 1161 bad_page(page, "nonzero pincount"); 1162 goto out; 1163 } 1164 break; 1165 case 2: 1166 /* 1167 * the second tail page: ->mapping is 1168 * deferred_list.next -- ignore value. 1169 */ 1170 break; 1171 default: 1172 if (page->mapping != TAIL_MAPPING) { 1173 bad_page(page, "corrupted mapping in tail page"); 1174 goto out; 1175 } 1176 break; 1177 } 1178 if (unlikely(!PageTail(page))) { 1179 bad_page(page, "PageTail not set"); 1180 goto out; 1181 } 1182 if (unlikely(compound_head(page) != head_page)) { 1183 bad_page(page, "compound_head not consistent"); 1184 goto out; 1185 } 1186 ret = 0; 1187 out: 1188 page->mapping = NULL; 1189 clear_compound_head(page); 1190 return ret; 1191 } 1192 1193 /* 1194 * Skip KASAN memory poisoning when either: 1195 * 1196 * 1. For generic KASAN: deferred memory initialization has not yet completed. 1197 * Tag-based KASAN modes skip pages freed via deferred memory initialization 1198 * using page tags instead (see below). 1199 * 2. For tag-based KASAN modes: the page has a match-all KASAN tag, indicating 1200 * that error detection is disabled for accesses via the page address. 1201 * 1202 * Pages will have match-all tags in the following circumstances: 1203 * 1204 * 1. Pages are being initialized for the first time, including during deferred 1205 * memory init; see the call to page_kasan_tag_reset in __init_single_page. 1206 * 2. The allocation was not unpoisoned due to __GFP_SKIP_KASAN, with the 1207 * exception of pages unpoisoned by kasan_unpoison_vmalloc. 1208 * 3. The allocation was excluded from being checked due to sampling, 1209 * see the call to kasan_unpoison_pages. 1210 * 1211 * Poisoning pages during deferred memory init will greatly lengthen the 1212 * process and cause problem in large memory systems as the deferred pages 1213 * initialization is done with interrupt disabled. 1214 * 1215 * Assuming that there will be no reference to those newly initialized 1216 * pages before they are ever allocated, this should have no effect on 1217 * KASAN memory tracking as the poison will be properly inserted at page 1218 * allocation time. The only corner case is when pages are allocated by 1219 * on-demand allocation and then freed again before the deferred pages 1220 * initialization is done, but this is not likely to happen. 1221 */ 1222 static inline bool should_skip_kasan_poison(struct page *page, fpi_t fpi_flags) 1223 { 1224 if (IS_ENABLED(CONFIG_KASAN_GENERIC)) 1225 return deferred_pages_enabled(); 1226 1227 return page_kasan_tag(page) == 0xff; 1228 } 1229 1230 static void kernel_init_pages(struct page *page, int numpages) 1231 { 1232 int i; 1233 1234 /* s390's use of memset() could override KASAN redzones. */ 1235 kasan_disable_current(); 1236 for (i = 0; i < numpages; i++) 1237 clear_highpage_kasan_tagged(page + i); 1238 kasan_enable_current(); 1239 } 1240 1241 static __always_inline bool free_pages_prepare(struct page *page, 1242 unsigned int order, fpi_t fpi_flags) 1243 { 1244 int bad = 0; 1245 bool skip_kasan_poison = should_skip_kasan_poison(page, fpi_flags); 1246 bool init = want_init_on_free(); 1247 1248 VM_BUG_ON_PAGE(PageTail(page), page); 1249 1250 trace_mm_page_free(page, order); 1251 kmsan_free_page(page, order); 1252 1253 if (unlikely(PageHWPoison(page)) && !order) { 1254 /* 1255 * Do not let hwpoison pages hit pcplists/buddy 1256 * Untie memcg state and reset page's owner 1257 */ 1258 if (memcg_kmem_online() && PageMemcgKmem(page)) 1259 __memcg_kmem_uncharge_page(page, order); 1260 reset_page_owner(page, order); 1261 page_table_check_free(page, order); 1262 return false; 1263 } 1264 1265 /* 1266 * Check tail pages before head page information is cleared to 1267 * avoid checking PageCompound for order-0 pages. 1268 */ 1269 if (unlikely(order)) { 1270 bool compound = PageCompound(page); 1271 int i; 1272 1273 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page); 1274 1275 if (compound) 1276 ClearPageHasHWPoisoned(page); 1277 for (i = 1; i < (1 << order); i++) { 1278 if (compound) 1279 bad += free_tail_page_prepare(page, page + i); 1280 if (is_check_pages_enabled()) { 1281 if (free_page_is_bad(page + i)) { 1282 bad++; 1283 continue; 1284 } 1285 } 1286 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1287 } 1288 } 1289 if (PageMappingFlags(page)) 1290 page->mapping = NULL; 1291 if (memcg_kmem_online() && PageMemcgKmem(page)) 1292 __memcg_kmem_uncharge_page(page, order); 1293 if (is_check_pages_enabled()) { 1294 if (free_page_is_bad(page)) 1295 bad++; 1296 if (bad) 1297 return false; 1298 } 1299 1300 page_cpupid_reset_last(page); 1301 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP; 1302 reset_page_owner(page, order); 1303 page_table_check_free(page, order); 1304 1305 if (!PageHighMem(page)) { 1306 debug_check_no_locks_freed(page_address(page), 1307 PAGE_SIZE << order); 1308 debug_check_no_obj_freed(page_address(page), 1309 PAGE_SIZE << order); 1310 } 1311 1312 kernel_poison_pages(page, 1 << order); 1313 1314 /* 1315 * As memory initialization might be integrated into KASAN, 1316 * KASAN poisoning and memory initialization code must be 1317 * kept together to avoid discrepancies in behavior. 1318 * 1319 * With hardware tag-based KASAN, memory tags must be set before the 1320 * page becomes unavailable via debug_pagealloc or arch_free_page. 1321 */ 1322 if (!skip_kasan_poison) { 1323 kasan_poison_pages(page, order, init); 1324 1325 /* Memory is already initialized if KASAN did it internally. */ 1326 if (kasan_has_integrated_init()) 1327 init = false; 1328 } 1329 if (init) 1330 kernel_init_pages(page, 1 << order); 1331 1332 /* 1333 * arch_free_page() can make the page's contents inaccessible. s390 1334 * does this. So nothing which can access the page's contents should 1335 * happen after this. 1336 */ 1337 arch_free_page(page, order); 1338 1339 debug_pagealloc_unmap_pages(page, 1 << order); 1340 1341 return true; 1342 } 1343 1344 /* 1345 * Frees a number of pages from the PCP lists 1346 * Assumes all pages on list are in same zone. 1347 * count is the number of pages to free. 1348 */ 1349 static void free_pcppages_bulk(struct zone *zone, int count, 1350 struct per_cpu_pages *pcp, 1351 int pindex) 1352 { 1353 unsigned long flags; 1354 int min_pindex = 0; 1355 int max_pindex = NR_PCP_LISTS - 1; 1356 unsigned int order; 1357 bool isolated_pageblocks; 1358 struct page *page; 1359 1360 /* 1361 * Ensure proper count is passed which otherwise would stuck in the 1362 * below while (list_empty(list)) loop. 1363 */ 1364 count = min(pcp->count, count); 1365 1366 /* Ensure requested pindex is drained first. */ 1367 pindex = pindex - 1; 1368 1369 spin_lock_irqsave(&zone->lock, flags); 1370 isolated_pageblocks = has_isolate_pageblock(zone); 1371 1372 while (count > 0) { 1373 struct list_head *list; 1374 int nr_pages; 1375 1376 /* Remove pages from lists in a round-robin fashion. */ 1377 do { 1378 if (++pindex > max_pindex) 1379 pindex = min_pindex; 1380 list = &pcp->lists[pindex]; 1381 if (!list_empty(list)) 1382 break; 1383 1384 if (pindex == max_pindex) 1385 max_pindex--; 1386 if (pindex == min_pindex) 1387 min_pindex++; 1388 } while (1); 1389 1390 order = pindex_to_order(pindex); 1391 nr_pages = 1 << order; 1392 do { 1393 int mt; 1394 1395 page = list_last_entry(list, struct page, pcp_list); 1396 mt = get_pcppage_migratetype(page); 1397 1398 /* must delete to avoid corrupting pcp list */ 1399 list_del(&page->pcp_list); 1400 count -= nr_pages; 1401 pcp->count -= nr_pages; 1402 1403 /* MIGRATE_ISOLATE page should not go to pcplists */ 1404 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page); 1405 /* Pageblock could have been isolated meanwhile */ 1406 if (unlikely(isolated_pageblocks)) 1407 mt = get_pageblock_migratetype(page); 1408 1409 __free_one_page(page, page_to_pfn(page), zone, order, mt, FPI_NONE); 1410 trace_mm_page_pcpu_drain(page, order, mt); 1411 } while (count > 0 && !list_empty(list)); 1412 } 1413 1414 spin_unlock_irqrestore(&zone->lock, flags); 1415 } 1416 1417 static void free_one_page(struct zone *zone, 1418 struct page *page, unsigned long pfn, 1419 unsigned int order, 1420 int migratetype, fpi_t fpi_flags) 1421 { 1422 unsigned long flags; 1423 1424 spin_lock_irqsave(&zone->lock, flags); 1425 if (unlikely(has_isolate_pageblock(zone) || 1426 is_migrate_isolate(migratetype))) { 1427 migratetype = get_pfnblock_migratetype(page, pfn); 1428 } 1429 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1430 spin_unlock_irqrestore(&zone->lock, flags); 1431 } 1432 1433 static void __free_pages_ok(struct page *page, unsigned int order, 1434 fpi_t fpi_flags) 1435 { 1436 unsigned long flags; 1437 int migratetype; 1438 unsigned long pfn = page_to_pfn(page); 1439 struct zone *zone = page_zone(page); 1440 1441 if (!free_pages_prepare(page, order, fpi_flags)) 1442 return; 1443 1444 /* 1445 * Calling get_pfnblock_migratetype() without spin_lock_irqsave() here 1446 * is used to avoid calling get_pfnblock_migratetype() under the lock. 1447 * This will reduce the lock holding time. 1448 */ 1449 migratetype = get_pfnblock_migratetype(page, pfn); 1450 1451 spin_lock_irqsave(&zone->lock, flags); 1452 if (unlikely(has_isolate_pageblock(zone) || 1453 is_migrate_isolate(migratetype))) { 1454 migratetype = get_pfnblock_migratetype(page, pfn); 1455 } 1456 __free_one_page(page, pfn, zone, order, migratetype, fpi_flags); 1457 spin_unlock_irqrestore(&zone->lock, flags); 1458 1459 __count_vm_events(PGFREE, 1 << order); 1460 } 1461 1462 void __free_pages_core(struct page *page, unsigned int order) 1463 { 1464 unsigned int nr_pages = 1 << order; 1465 struct page *p = page; 1466 unsigned int loop; 1467 1468 /* 1469 * When initializing the memmap, __init_single_page() sets the refcount 1470 * of all pages to 1 ("allocated"/"not free"). We have to set the 1471 * refcount of all involved pages to 0. 1472 */ 1473 prefetchw(p); 1474 for (loop = 0; loop < (nr_pages - 1); loop++, p++) { 1475 prefetchw(p + 1); 1476 __ClearPageReserved(p); 1477 set_page_count(p, 0); 1478 } 1479 __ClearPageReserved(p); 1480 set_page_count(p, 0); 1481 1482 atomic_long_add(nr_pages, &page_zone(page)->managed_pages); 1483 1484 /* 1485 * Bypass PCP and place fresh pages right to the tail, primarily 1486 * relevant for memory onlining. 1487 */ 1488 __free_pages_ok(page, order, FPI_TO_TAIL); 1489 } 1490 1491 /* 1492 * Check that the whole (or subset of) a pageblock given by the interval of 1493 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it 1494 * with the migration of free compaction scanner. 1495 * 1496 * Return struct page pointer of start_pfn, or NULL if checks were not passed. 1497 * 1498 * It's possible on some configurations to have a setup like node0 node1 node0 1499 * i.e. it's possible that all pages within a zones range of pages do not 1500 * belong to a single zone. We assume that a border between node0 and node1 1501 * can occur within a single pageblock, but not a node0 node1 node0 1502 * interleaving within a single pageblock. It is therefore sufficient to check 1503 * the first and last page of a pageblock and avoid checking each individual 1504 * page in a pageblock. 1505 * 1506 * Note: the function may return non-NULL struct page even for a page block 1507 * which contains a memory hole (i.e. there is no physical memory for a subset 1508 * of the pfn range). For example, if the pageblock order is MAX_ORDER, which 1509 * will fall into 2 sub-sections, and the end pfn of the pageblock may be hole 1510 * even though the start pfn is online and valid. This should be safe most of 1511 * the time because struct pages are still initialized via init_unavailable_range() 1512 * and pfn walkers shouldn't touch any physical memory range for which they do 1513 * not recognize any specific metadata in struct pages. 1514 */ 1515 struct page *__pageblock_pfn_to_page(unsigned long start_pfn, 1516 unsigned long end_pfn, struct zone *zone) 1517 { 1518 struct page *start_page; 1519 struct page *end_page; 1520 1521 /* end_pfn is one past the range we are checking */ 1522 end_pfn--; 1523 1524 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn)) 1525 return NULL; 1526 1527 start_page = pfn_to_online_page(start_pfn); 1528 if (!start_page) 1529 return NULL; 1530 1531 if (page_zone(start_page) != zone) 1532 return NULL; 1533 1534 end_page = pfn_to_page(end_pfn); 1535 1536 /* This gives a shorter code than deriving page_zone(end_page) */ 1537 if (page_zone_id(start_page) != page_zone_id(end_page)) 1538 return NULL; 1539 1540 return start_page; 1541 } 1542 1543 void set_zone_contiguous(struct zone *zone) 1544 { 1545 unsigned long block_start_pfn = zone->zone_start_pfn; 1546 unsigned long block_end_pfn; 1547 1548 block_end_pfn = pageblock_end_pfn(block_start_pfn); 1549 for (; block_start_pfn < zone_end_pfn(zone); 1550 block_start_pfn = block_end_pfn, 1551 block_end_pfn += pageblock_nr_pages) { 1552 1553 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone)); 1554 1555 if (!__pageblock_pfn_to_page(block_start_pfn, 1556 block_end_pfn, zone)) 1557 return; 1558 cond_resched(); 1559 } 1560 1561 /* We confirm that there is no hole */ 1562 zone->contiguous = true; 1563 } 1564 1565 void clear_zone_contiguous(struct zone *zone) 1566 { 1567 zone->contiguous = false; 1568 } 1569 1570 /* 1571 * The order of subdivision here is critical for the IO subsystem. 1572 * Please do not alter this order without good reasons and regression 1573 * testing. Specifically, as large blocks of memory are subdivided, 1574 * the order in which smaller blocks are delivered depends on the order 1575 * they're subdivided in this function. This is the primary factor 1576 * influencing the order in which pages are delivered to the IO 1577 * subsystem according to empirical testing, and this is also justified 1578 * by considering the behavior of a buddy system containing a single 1579 * large block of memory acted on by a series of small allocations. 1580 * This behavior is a critical factor in sglist merging's success. 1581 * 1582 * -- nyc 1583 */ 1584 static inline void expand(struct zone *zone, struct page *page, 1585 int low, int high, int migratetype) 1586 { 1587 unsigned long size = 1 << high; 1588 1589 while (high > low) { 1590 high--; 1591 size >>= 1; 1592 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]); 1593 1594 /* 1595 * Mark as guard pages (or page), that will allow to 1596 * merge back to allocator when buddy will be freed. 1597 * Corresponding page table entries will not be touched, 1598 * pages will stay not present in virtual address space 1599 */ 1600 if (set_page_guard(zone, &page[size], high, migratetype)) 1601 continue; 1602 1603 add_to_free_list(&page[size], zone, high, migratetype); 1604 set_buddy_order(&page[size], high); 1605 } 1606 } 1607 1608 static void check_new_page_bad(struct page *page) 1609 { 1610 if (unlikely(page->flags & __PG_HWPOISON)) { 1611 /* Don't complain about hwpoisoned pages */ 1612 page_mapcount_reset(page); /* remove PageBuddy */ 1613 return; 1614 } 1615 1616 bad_page(page, 1617 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP)); 1618 } 1619 1620 /* 1621 * This page is about to be returned from the page allocator 1622 */ 1623 static int check_new_page(struct page *page) 1624 { 1625 if (likely(page_expected_state(page, 1626 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON))) 1627 return 0; 1628 1629 check_new_page_bad(page); 1630 return 1; 1631 } 1632 1633 static inline bool check_new_pages(struct page *page, unsigned int order) 1634 { 1635 if (is_check_pages_enabled()) { 1636 for (int i = 0; i < (1 << order); i++) { 1637 struct page *p = page + i; 1638 1639 if (check_new_page(p)) 1640 return true; 1641 } 1642 } 1643 1644 return false; 1645 } 1646 1647 static inline bool should_skip_kasan_unpoison(gfp_t flags) 1648 { 1649 /* Don't skip if a software KASAN mode is enabled. */ 1650 if (IS_ENABLED(CONFIG_KASAN_GENERIC) || 1651 IS_ENABLED(CONFIG_KASAN_SW_TAGS)) 1652 return false; 1653 1654 /* Skip, if hardware tag-based KASAN is not enabled. */ 1655 if (!kasan_hw_tags_enabled()) 1656 return true; 1657 1658 /* 1659 * With hardware tag-based KASAN enabled, skip if this has been 1660 * requested via __GFP_SKIP_KASAN. 1661 */ 1662 return flags & __GFP_SKIP_KASAN; 1663 } 1664 1665 static inline bool should_skip_init(gfp_t flags) 1666 { 1667 /* Don't skip, if hardware tag-based KASAN is not enabled. */ 1668 if (!kasan_hw_tags_enabled()) 1669 return false; 1670 1671 /* For hardware tag-based KASAN, skip if requested. */ 1672 return (flags & __GFP_SKIP_ZERO); 1673 } 1674 1675 inline void post_alloc_hook(struct page *page, unsigned int order, 1676 gfp_t gfp_flags) 1677 { 1678 bool init = !want_init_on_free() && want_init_on_alloc(gfp_flags) && 1679 !should_skip_init(gfp_flags); 1680 bool zero_tags = init && (gfp_flags & __GFP_ZEROTAGS); 1681 int i; 1682 1683 set_page_private(page, 0); 1684 set_page_refcounted(page); 1685 1686 arch_alloc_page(page, order); 1687 debug_pagealloc_map_pages(page, 1 << order); 1688 1689 /* 1690 * Page unpoisoning must happen before memory initialization. 1691 * Otherwise, the poison pattern will be overwritten for __GFP_ZERO 1692 * allocations and the page unpoisoning code will complain. 1693 */ 1694 kernel_unpoison_pages(page, 1 << order); 1695 1696 /* 1697 * As memory initialization might be integrated into KASAN, 1698 * KASAN unpoisoning and memory initializion code must be 1699 * kept together to avoid discrepancies in behavior. 1700 */ 1701 1702 /* 1703 * If memory tags should be zeroed 1704 * (which happens only when memory should be initialized as well). 1705 */ 1706 if (zero_tags) { 1707 /* Initialize both memory and memory tags. */ 1708 for (i = 0; i != 1 << order; ++i) 1709 tag_clear_highpage(page + i); 1710 1711 /* Take note that memory was initialized by the loop above. */ 1712 init = false; 1713 } 1714 if (!should_skip_kasan_unpoison(gfp_flags) && 1715 kasan_unpoison_pages(page, order, init)) { 1716 /* Take note that memory was initialized by KASAN. */ 1717 if (kasan_has_integrated_init()) 1718 init = false; 1719 } else { 1720 /* 1721 * If memory tags have not been set by KASAN, reset the page 1722 * tags to ensure page_address() dereferencing does not fault. 1723 */ 1724 for (i = 0; i != 1 << order; ++i) 1725 page_kasan_tag_reset(page + i); 1726 } 1727 /* If memory is still not initialized, initialize it now. */ 1728 if (init) 1729 kernel_init_pages(page, 1 << order); 1730 1731 set_page_owner(page, order, gfp_flags); 1732 page_table_check_alloc(page, order); 1733 } 1734 1735 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags, 1736 unsigned int alloc_flags) 1737 { 1738 post_alloc_hook(page, order, gfp_flags); 1739 1740 if (order && (gfp_flags & __GFP_COMP)) 1741 prep_compound_page(page, order); 1742 1743 /* 1744 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to 1745 * allocate the page. The expectation is that the caller is taking 1746 * steps that will free more memory. The caller should avoid the page 1747 * being used for !PFMEMALLOC purposes. 1748 */ 1749 if (alloc_flags & ALLOC_NO_WATERMARKS) 1750 set_page_pfmemalloc(page); 1751 else 1752 clear_page_pfmemalloc(page); 1753 } 1754 1755 /* 1756 * Go through the free lists for the given migratetype and remove 1757 * the smallest available page from the freelists 1758 */ 1759 static __always_inline 1760 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order, 1761 int migratetype) 1762 { 1763 unsigned int current_order; 1764 struct free_area *area; 1765 struct page *page; 1766 1767 /* Find a page of the appropriate size in the preferred list */ 1768 for (current_order = order; current_order <= MAX_ORDER; ++current_order) { 1769 area = &(zone->free_area[current_order]); 1770 page = get_page_from_free_area(area, migratetype); 1771 if (!page) 1772 continue; 1773 del_page_from_free_list(page, zone, current_order); 1774 expand(zone, page, order, current_order, migratetype); 1775 set_pcppage_migratetype(page, migratetype); 1776 trace_mm_page_alloc_zone_locked(page, order, migratetype, 1777 pcp_allowed_order(order) && 1778 migratetype < MIGRATE_PCPTYPES); 1779 return page; 1780 } 1781 1782 return NULL; 1783 } 1784 1785 1786 /* 1787 * This array describes the order lists are fallen back to when 1788 * the free lists for the desirable migrate type are depleted 1789 * 1790 * The other migratetypes do not have fallbacks. 1791 */ 1792 static int fallbacks[MIGRATE_TYPES][MIGRATE_PCPTYPES - 1] = { 1793 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE }, 1794 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE }, 1795 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE }, 1796 }; 1797 1798 #ifdef CONFIG_CMA 1799 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1800 unsigned int order) 1801 { 1802 return __rmqueue_smallest(zone, order, MIGRATE_CMA); 1803 } 1804 #else 1805 static inline struct page *__rmqueue_cma_fallback(struct zone *zone, 1806 unsigned int order) { return NULL; } 1807 #endif 1808 1809 /* 1810 * Move the free pages in a range to the freelist tail of the requested type. 1811 * Note that start_page and end_pages are not aligned on a pageblock 1812 * boundary. If alignment is required, use move_freepages_block() 1813 */ 1814 static int move_freepages(struct zone *zone, 1815 unsigned long start_pfn, unsigned long end_pfn, 1816 int migratetype, int *num_movable) 1817 { 1818 struct page *page; 1819 unsigned long pfn; 1820 unsigned int order; 1821 int pages_moved = 0; 1822 1823 for (pfn = start_pfn; pfn <= end_pfn;) { 1824 page = pfn_to_page(pfn); 1825 if (!PageBuddy(page)) { 1826 /* 1827 * We assume that pages that could be isolated for 1828 * migration are movable. But we don't actually try 1829 * isolating, as that would be expensive. 1830 */ 1831 if (num_movable && 1832 (PageLRU(page) || __PageMovable(page))) 1833 (*num_movable)++; 1834 pfn++; 1835 continue; 1836 } 1837 1838 /* Make sure we are not inadvertently changing nodes */ 1839 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page); 1840 VM_BUG_ON_PAGE(page_zone(page) != zone, page); 1841 1842 order = buddy_order(page); 1843 move_to_free_list(page, zone, order, migratetype); 1844 pfn += 1 << order; 1845 pages_moved += 1 << order; 1846 } 1847 1848 return pages_moved; 1849 } 1850 1851 int move_freepages_block(struct zone *zone, struct page *page, 1852 int migratetype, int *num_movable) 1853 { 1854 unsigned long start_pfn, end_pfn, pfn; 1855 1856 if (num_movable) 1857 *num_movable = 0; 1858 1859 pfn = page_to_pfn(page); 1860 start_pfn = pageblock_start_pfn(pfn); 1861 end_pfn = pageblock_end_pfn(pfn) - 1; 1862 1863 /* Do not cross zone boundaries */ 1864 if (!zone_spans_pfn(zone, start_pfn)) 1865 start_pfn = pfn; 1866 if (!zone_spans_pfn(zone, end_pfn)) 1867 return 0; 1868 1869 return move_freepages(zone, start_pfn, end_pfn, migratetype, 1870 num_movable); 1871 } 1872 1873 static void change_pageblock_range(struct page *pageblock_page, 1874 int start_order, int migratetype) 1875 { 1876 int nr_pageblocks = 1 << (start_order - pageblock_order); 1877 1878 while (nr_pageblocks--) { 1879 set_pageblock_migratetype(pageblock_page, migratetype); 1880 pageblock_page += pageblock_nr_pages; 1881 } 1882 } 1883 1884 /* 1885 * When we are falling back to another migratetype during allocation, try to 1886 * steal extra free pages from the same pageblocks to satisfy further 1887 * allocations, instead of polluting multiple pageblocks. 1888 * 1889 * If we are stealing a relatively large buddy page, it is likely there will 1890 * be more free pages in the pageblock, so try to steal them all. For 1891 * reclaimable and unmovable allocations, we steal regardless of page size, 1892 * as fragmentation caused by those allocations polluting movable pageblocks 1893 * is worse than movable allocations stealing from unmovable and reclaimable 1894 * pageblocks. 1895 */ 1896 static bool can_steal_fallback(unsigned int order, int start_mt) 1897 { 1898 /* 1899 * Leaving this order check is intended, although there is 1900 * relaxed order check in next check. The reason is that 1901 * we can actually steal whole pageblock if this condition met, 1902 * but, below check doesn't guarantee it and that is just heuristic 1903 * so could be changed anytime. 1904 */ 1905 if (order >= pageblock_order) 1906 return true; 1907 1908 if (order >= pageblock_order / 2 || 1909 start_mt == MIGRATE_RECLAIMABLE || 1910 start_mt == MIGRATE_UNMOVABLE || 1911 page_group_by_mobility_disabled) 1912 return true; 1913 1914 return false; 1915 } 1916 1917 static inline bool boost_watermark(struct zone *zone) 1918 { 1919 unsigned long max_boost; 1920 1921 if (!watermark_boost_factor) 1922 return false; 1923 /* 1924 * Don't bother in zones that are unlikely to produce results. 1925 * On small machines, including kdump capture kernels running 1926 * in a small area, boosting the watermark can cause an out of 1927 * memory situation immediately. 1928 */ 1929 if ((pageblock_nr_pages * 4) > zone_managed_pages(zone)) 1930 return false; 1931 1932 max_boost = mult_frac(zone->_watermark[WMARK_HIGH], 1933 watermark_boost_factor, 10000); 1934 1935 /* 1936 * high watermark may be uninitialised if fragmentation occurs 1937 * very early in boot so do not boost. We do not fall 1938 * through and boost by pageblock_nr_pages as failing 1939 * allocations that early means that reclaim is not going 1940 * to help and it may even be impossible to reclaim the 1941 * boosted watermark resulting in a hang. 1942 */ 1943 if (!max_boost) 1944 return false; 1945 1946 max_boost = max(pageblock_nr_pages, max_boost); 1947 1948 zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages, 1949 max_boost); 1950 1951 return true; 1952 } 1953 1954 /* 1955 * This function implements actual steal behaviour. If order is large enough, 1956 * we can steal whole pageblock. If not, we first move freepages in this 1957 * pageblock to our migratetype and determine how many already-allocated pages 1958 * are there in the pageblock with a compatible migratetype. If at least half 1959 * of pages are free or compatible, we can change migratetype of the pageblock 1960 * itself, so pages freed in the future will be put on the correct free list. 1961 */ 1962 static void steal_suitable_fallback(struct zone *zone, struct page *page, 1963 unsigned int alloc_flags, int start_type, bool whole_block) 1964 { 1965 unsigned int current_order = buddy_order(page); 1966 int free_pages, movable_pages, alike_pages; 1967 int old_block_type; 1968 1969 old_block_type = get_pageblock_migratetype(page); 1970 1971 /* 1972 * This can happen due to races and we want to prevent broken 1973 * highatomic accounting. 1974 */ 1975 if (is_migrate_highatomic(old_block_type)) 1976 goto single_page; 1977 1978 /* Take ownership for orders >= pageblock_order */ 1979 if (current_order >= pageblock_order) { 1980 change_pageblock_range(page, current_order, start_type); 1981 goto single_page; 1982 } 1983 1984 /* 1985 * Boost watermarks to increase reclaim pressure to reduce the 1986 * likelihood of future fallbacks. Wake kswapd now as the node 1987 * may be balanced overall and kswapd will not wake naturally. 1988 */ 1989 if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD)) 1990 set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 1991 1992 /* We are not allowed to try stealing from the whole block */ 1993 if (!whole_block) 1994 goto single_page; 1995 1996 free_pages = move_freepages_block(zone, page, start_type, 1997 &movable_pages); 1998 /* 1999 * Determine how many pages are compatible with our allocation. 2000 * For movable allocation, it's the number of movable pages which 2001 * we just obtained. For other types it's a bit more tricky. 2002 */ 2003 if (start_type == MIGRATE_MOVABLE) { 2004 alike_pages = movable_pages; 2005 } else { 2006 /* 2007 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation 2008 * to MOVABLE pageblock, consider all non-movable pages as 2009 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or 2010 * vice versa, be conservative since we can't distinguish the 2011 * exact migratetype of non-movable pages. 2012 */ 2013 if (old_block_type == MIGRATE_MOVABLE) 2014 alike_pages = pageblock_nr_pages 2015 - (free_pages + movable_pages); 2016 else 2017 alike_pages = 0; 2018 } 2019 2020 /* moving whole block can fail due to zone boundary conditions */ 2021 if (!free_pages) 2022 goto single_page; 2023 2024 /* 2025 * If a sufficient number of pages in the block are either free or of 2026 * comparable migratability as our allocation, claim the whole block. 2027 */ 2028 if (free_pages + alike_pages >= (1 << (pageblock_order-1)) || 2029 page_group_by_mobility_disabled) 2030 set_pageblock_migratetype(page, start_type); 2031 2032 return; 2033 2034 single_page: 2035 move_to_free_list(page, zone, current_order, start_type); 2036 } 2037 2038 /* 2039 * Check whether there is a suitable fallback freepage with requested order. 2040 * If only_stealable is true, this function returns fallback_mt only if 2041 * we can steal other freepages all together. This would help to reduce 2042 * fragmentation due to mixed migratetype pages in one pageblock. 2043 */ 2044 int find_suitable_fallback(struct free_area *area, unsigned int order, 2045 int migratetype, bool only_stealable, bool *can_steal) 2046 { 2047 int i; 2048 int fallback_mt; 2049 2050 if (area->nr_free == 0) 2051 return -1; 2052 2053 *can_steal = false; 2054 for (i = 0; i < MIGRATE_PCPTYPES - 1 ; i++) { 2055 fallback_mt = fallbacks[migratetype][i]; 2056 if (free_area_empty(area, fallback_mt)) 2057 continue; 2058 2059 if (can_steal_fallback(order, migratetype)) 2060 *can_steal = true; 2061 2062 if (!only_stealable) 2063 return fallback_mt; 2064 2065 if (*can_steal) 2066 return fallback_mt; 2067 } 2068 2069 return -1; 2070 } 2071 2072 /* 2073 * Reserve a pageblock for exclusive use of high-order atomic allocations if 2074 * there are no empty page blocks that contain a page with a suitable order 2075 */ 2076 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone, 2077 unsigned int alloc_order) 2078 { 2079 int mt; 2080 unsigned long max_managed, flags; 2081 2082 /* 2083 * Limit the number reserved to 1 pageblock or roughly 1% of a zone. 2084 * Check is race-prone but harmless. 2085 */ 2086 max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages; 2087 if (zone->nr_reserved_highatomic >= max_managed) 2088 return; 2089 2090 spin_lock_irqsave(&zone->lock, flags); 2091 2092 /* Recheck the nr_reserved_highatomic limit under the lock */ 2093 if (zone->nr_reserved_highatomic >= max_managed) 2094 goto out_unlock; 2095 2096 /* Yoink! */ 2097 mt = get_pageblock_migratetype(page); 2098 /* Only reserve normal pageblocks (i.e., they can merge with others) */ 2099 if (migratetype_is_mergeable(mt)) { 2100 zone->nr_reserved_highatomic += pageblock_nr_pages; 2101 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC); 2102 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL); 2103 } 2104 2105 out_unlock: 2106 spin_unlock_irqrestore(&zone->lock, flags); 2107 } 2108 2109 /* 2110 * Used when an allocation is about to fail under memory pressure. This 2111 * potentially hurts the reliability of high-order allocations when under 2112 * intense memory pressure but failed atomic allocations should be easier 2113 * to recover from than an OOM. 2114 * 2115 * If @force is true, try to unreserve a pageblock even though highatomic 2116 * pageblock is exhausted. 2117 */ 2118 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac, 2119 bool force) 2120 { 2121 struct zonelist *zonelist = ac->zonelist; 2122 unsigned long flags; 2123 struct zoneref *z; 2124 struct zone *zone; 2125 struct page *page; 2126 int order; 2127 bool ret; 2128 2129 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx, 2130 ac->nodemask) { 2131 /* 2132 * Preserve at least one pageblock unless memory pressure 2133 * is really high. 2134 */ 2135 if (!force && zone->nr_reserved_highatomic <= 2136 pageblock_nr_pages) 2137 continue; 2138 2139 spin_lock_irqsave(&zone->lock, flags); 2140 for (order = 0; order <= MAX_ORDER; order++) { 2141 struct free_area *area = &(zone->free_area[order]); 2142 2143 page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC); 2144 if (!page) 2145 continue; 2146 2147 /* 2148 * In page freeing path, migratetype change is racy so 2149 * we can counter several free pages in a pageblock 2150 * in this loop although we changed the pageblock type 2151 * from highatomic to ac->migratetype. So we should 2152 * adjust the count once. 2153 */ 2154 if (is_migrate_highatomic_page(page)) { 2155 /* 2156 * It should never happen but changes to 2157 * locking could inadvertently allow a per-cpu 2158 * drain to add pages to MIGRATE_HIGHATOMIC 2159 * while unreserving so be safe and watch for 2160 * underflows. 2161 */ 2162 zone->nr_reserved_highatomic -= min( 2163 pageblock_nr_pages, 2164 zone->nr_reserved_highatomic); 2165 } 2166 2167 /* 2168 * Convert to ac->migratetype and avoid the normal 2169 * pageblock stealing heuristics. Minimally, the caller 2170 * is doing the work and needs the pages. More 2171 * importantly, if the block was always converted to 2172 * MIGRATE_UNMOVABLE or another type then the number 2173 * of pageblocks that cannot be completely freed 2174 * may increase. 2175 */ 2176 set_pageblock_migratetype(page, ac->migratetype); 2177 ret = move_freepages_block(zone, page, ac->migratetype, 2178 NULL); 2179 if (ret) { 2180 spin_unlock_irqrestore(&zone->lock, flags); 2181 return ret; 2182 } 2183 } 2184 spin_unlock_irqrestore(&zone->lock, flags); 2185 } 2186 2187 return false; 2188 } 2189 2190 /* 2191 * Try finding a free buddy page on the fallback list and put it on the free 2192 * list of requested migratetype, possibly along with other pages from the same 2193 * block, depending on fragmentation avoidance heuristics. Returns true if 2194 * fallback was found so that __rmqueue_smallest() can grab it. 2195 * 2196 * The use of signed ints for order and current_order is a deliberate 2197 * deviation from the rest of this file, to make the for loop 2198 * condition simpler. 2199 */ 2200 static __always_inline bool 2201 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype, 2202 unsigned int alloc_flags) 2203 { 2204 struct free_area *area; 2205 int current_order; 2206 int min_order = order; 2207 struct page *page; 2208 int fallback_mt; 2209 bool can_steal; 2210 2211 /* 2212 * Do not steal pages from freelists belonging to other pageblocks 2213 * i.e. orders < pageblock_order. If there are no local zones free, 2214 * the zonelists will be reiterated without ALLOC_NOFRAGMENT. 2215 */ 2216 if (order < pageblock_order && alloc_flags & ALLOC_NOFRAGMENT) 2217 min_order = pageblock_order; 2218 2219 /* 2220 * Find the largest available free page in the other list. This roughly 2221 * approximates finding the pageblock with the most free pages, which 2222 * would be too costly to do exactly. 2223 */ 2224 for (current_order = MAX_ORDER; current_order >= min_order; 2225 --current_order) { 2226 area = &(zone->free_area[current_order]); 2227 fallback_mt = find_suitable_fallback(area, current_order, 2228 start_migratetype, false, &can_steal); 2229 if (fallback_mt == -1) 2230 continue; 2231 2232 /* 2233 * We cannot steal all free pages from the pageblock and the 2234 * requested migratetype is movable. In that case it's better to 2235 * steal and split the smallest available page instead of the 2236 * largest available page, because even if the next movable 2237 * allocation falls back into a different pageblock than this 2238 * one, it won't cause permanent fragmentation. 2239 */ 2240 if (!can_steal && start_migratetype == MIGRATE_MOVABLE 2241 && current_order > order) 2242 goto find_smallest; 2243 2244 goto do_steal; 2245 } 2246 2247 return false; 2248 2249 find_smallest: 2250 for (current_order = order; current_order <= MAX_ORDER; 2251 current_order++) { 2252 area = &(zone->free_area[current_order]); 2253 fallback_mt = find_suitable_fallback(area, current_order, 2254 start_migratetype, false, &can_steal); 2255 if (fallback_mt != -1) 2256 break; 2257 } 2258 2259 /* 2260 * This should not happen - we already found a suitable fallback 2261 * when looking for the largest page. 2262 */ 2263 VM_BUG_ON(current_order > MAX_ORDER); 2264 2265 do_steal: 2266 page = get_page_from_free_area(area, fallback_mt); 2267 2268 steal_suitable_fallback(zone, page, alloc_flags, start_migratetype, 2269 can_steal); 2270 2271 trace_mm_page_alloc_extfrag(page, order, current_order, 2272 start_migratetype, fallback_mt); 2273 2274 return true; 2275 2276 } 2277 2278 /* 2279 * Do the hard work of removing an element from the buddy allocator. 2280 * Call me with the zone->lock already held. 2281 */ 2282 static __always_inline struct page * 2283 __rmqueue(struct zone *zone, unsigned int order, int migratetype, 2284 unsigned int alloc_flags) 2285 { 2286 struct page *page; 2287 2288 if (IS_ENABLED(CONFIG_CMA)) { 2289 /* 2290 * Balance movable allocations between regular and CMA areas by 2291 * allocating from CMA when over half of the zone's free memory 2292 * is in the CMA area. 2293 */ 2294 if (alloc_flags & ALLOC_CMA && 2295 zone_page_state(zone, NR_FREE_CMA_PAGES) > 2296 zone_page_state(zone, NR_FREE_PAGES) / 2) { 2297 page = __rmqueue_cma_fallback(zone, order); 2298 if (page) 2299 return page; 2300 } 2301 } 2302 retry: 2303 page = __rmqueue_smallest(zone, order, migratetype); 2304 if (unlikely(!page)) { 2305 if (alloc_flags & ALLOC_CMA) 2306 page = __rmqueue_cma_fallback(zone, order); 2307 2308 if (!page && __rmqueue_fallback(zone, order, migratetype, 2309 alloc_flags)) 2310 goto retry; 2311 } 2312 return page; 2313 } 2314 2315 /* 2316 * Obtain a specified number of elements from the buddy allocator, all under 2317 * a single hold of the lock, for efficiency. Add them to the supplied list. 2318 * Returns the number of new pages which were placed at *list. 2319 */ 2320 static int rmqueue_bulk(struct zone *zone, unsigned int order, 2321 unsigned long count, struct list_head *list, 2322 int migratetype, unsigned int alloc_flags) 2323 { 2324 unsigned long flags; 2325 int i; 2326 2327 spin_lock_irqsave(&zone->lock, flags); 2328 for (i = 0; i < count; ++i) { 2329 struct page *page = __rmqueue(zone, order, migratetype, 2330 alloc_flags); 2331 if (unlikely(page == NULL)) 2332 break; 2333 2334 /* 2335 * Split buddy pages returned by expand() are received here in 2336 * physical page order. The page is added to the tail of 2337 * caller's list. From the callers perspective, the linked list 2338 * is ordered by page number under some conditions. This is 2339 * useful for IO devices that can forward direction from the 2340 * head, thus also in the physical page order. This is useful 2341 * for IO devices that can merge IO requests if the physical 2342 * pages are ordered properly. 2343 */ 2344 list_add_tail(&page->pcp_list, list); 2345 if (is_migrate_cma(get_pcppage_migratetype(page))) 2346 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES, 2347 -(1 << order)); 2348 } 2349 2350 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order)); 2351 spin_unlock_irqrestore(&zone->lock, flags); 2352 2353 return i; 2354 } 2355 2356 #ifdef CONFIG_NUMA 2357 /* 2358 * Called from the vmstat counter updater to drain pagesets of this 2359 * currently executing processor on remote nodes after they have 2360 * expired. 2361 */ 2362 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp) 2363 { 2364 int to_drain, batch; 2365 2366 batch = READ_ONCE(pcp->batch); 2367 to_drain = min(pcp->count, batch); 2368 if (to_drain > 0) { 2369 spin_lock(&pcp->lock); 2370 free_pcppages_bulk(zone, to_drain, pcp, 0); 2371 spin_unlock(&pcp->lock); 2372 } 2373 } 2374 #endif 2375 2376 /* 2377 * Drain pcplists of the indicated processor and zone. 2378 */ 2379 static void drain_pages_zone(unsigned int cpu, struct zone *zone) 2380 { 2381 struct per_cpu_pages *pcp; 2382 2383 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2384 if (pcp->count) { 2385 spin_lock(&pcp->lock); 2386 free_pcppages_bulk(zone, pcp->count, pcp, 0); 2387 spin_unlock(&pcp->lock); 2388 } 2389 } 2390 2391 /* 2392 * Drain pcplists of all zones on the indicated processor. 2393 */ 2394 static void drain_pages(unsigned int cpu) 2395 { 2396 struct zone *zone; 2397 2398 for_each_populated_zone(zone) { 2399 drain_pages_zone(cpu, zone); 2400 } 2401 } 2402 2403 /* 2404 * Spill all of this CPU's per-cpu pages back into the buddy allocator. 2405 */ 2406 void drain_local_pages(struct zone *zone) 2407 { 2408 int cpu = smp_processor_id(); 2409 2410 if (zone) 2411 drain_pages_zone(cpu, zone); 2412 else 2413 drain_pages(cpu); 2414 } 2415 2416 /* 2417 * The implementation of drain_all_pages(), exposing an extra parameter to 2418 * drain on all cpus. 2419 * 2420 * drain_all_pages() is optimized to only execute on cpus where pcplists are 2421 * not empty. The check for non-emptiness can however race with a free to 2422 * pcplist that has not yet increased the pcp->count from 0 to 1. Callers 2423 * that need the guarantee that every CPU has drained can disable the 2424 * optimizing racy check. 2425 */ 2426 static void __drain_all_pages(struct zone *zone, bool force_all_cpus) 2427 { 2428 int cpu; 2429 2430 /* 2431 * Allocate in the BSS so we won't require allocation in 2432 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y 2433 */ 2434 static cpumask_t cpus_with_pcps; 2435 2436 /* 2437 * Do not drain if one is already in progress unless it's specific to 2438 * a zone. Such callers are primarily CMA and memory hotplug and need 2439 * the drain to be complete when the call returns. 2440 */ 2441 if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) { 2442 if (!zone) 2443 return; 2444 mutex_lock(&pcpu_drain_mutex); 2445 } 2446 2447 /* 2448 * We don't care about racing with CPU hotplug event 2449 * as offline notification will cause the notified 2450 * cpu to drain that CPU pcps and on_each_cpu_mask 2451 * disables preemption as part of its processing 2452 */ 2453 for_each_online_cpu(cpu) { 2454 struct per_cpu_pages *pcp; 2455 struct zone *z; 2456 bool has_pcps = false; 2457 2458 if (force_all_cpus) { 2459 /* 2460 * The pcp.count check is racy, some callers need a 2461 * guarantee that no cpu is missed. 2462 */ 2463 has_pcps = true; 2464 } else if (zone) { 2465 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 2466 if (pcp->count) 2467 has_pcps = true; 2468 } else { 2469 for_each_populated_zone(z) { 2470 pcp = per_cpu_ptr(z->per_cpu_pageset, cpu); 2471 if (pcp->count) { 2472 has_pcps = true; 2473 break; 2474 } 2475 } 2476 } 2477 2478 if (has_pcps) 2479 cpumask_set_cpu(cpu, &cpus_with_pcps); 2480 else 2481 cpumask_clear_cpu(cpu, &cpus_with_pcps); 2482 } 2483 2484 for_each_cpu(cpu, &cpus_with_pcps) { 2485 if (zone) 2486 drain_pages_zone(cpu, zone); 2487 else 2488 drain_pages(cpu); 2489 } 2490 2491 mutex_unlock(&pcpu_drain_mutex); 2492 } 2493 2494 /* 2495 * Spill all the per-cpu pages from all CPUs back into the buddy allocator. 2496 * 2497 * When zone parameter is non-NULL, spill just the single zone's pages. 2498 */ 2499 void drain_all_pages(struct zone *zone) 2500 { 2501 __drain_all_pages(zone, false); 2502 } 2503 2504 #ifdef CONFIG_HIBERNATION 2505 2506 /* 2507 * Touch the watchdog for every WD_PAGE_COUNT pages. 2508 */ 2509 #define WD_PAGE_COUNT (128*1024) 2510 2511 void mark_free_pages(struct zone *zone) 2512 { 2513 unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT; 2514 unsigned long flags; 2515 unsigned int order, t; 2516 struct page *page; 2517 2518 if (zone_is_empty(zone)) 2519 return; 2520 2521 spin_lock_irqsave(&zone->lock, flags); 2522 2523 max_zone_pfn = zone_end_pfn(zone); 2524 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) 2525 if (pfn_valid(pfn)) { 2526 page = pfn_to_page(pfn); 2527 2528 if (!--page_count) { 2529 touch_nmi_watchdog(); 2530 page_count = WD_PAGE_COUNT; 2531 } 2532 2533 if (page_zone(page) != zone) 2534 continue; 2535 2536 if (!swsusp_page_is_forbidden(page)) 2537 swsusp_unset_page_free(page); 2538 } 2539 2540 for_each_migratetype_order(order, t) { 2541 list_for_each_entry(page, 2542 &zone->free_area[order].free_list[t], buddy_list) { 2543 unsigned long i; 2544 2545 pfn = page_to_pfn(page); 2546 for (i = 0; i < (1UL << order); i++) { 2547 if (!--page_count) { 2548 touch_nmi_watchdog(); 2549 page_count = WD_PAGE_COUNT; 2550 } 2551 swsusp_set_page_free(pfn_to_page(pfn + i)); 2552 } 2553 } 2554 } 2555 spin_unlock_irqrestore(&zone->lock, flags); 2556 } 2557 #endif /* CONFIG_PM */ 2558 2559 static bool free_unref_page_prepare(struct page *page, unsigned long pfn, 2560 unsigned int order) 2561 { 2562 int migratetype; 2563 2564 if (!free_pages_prepare(page, order, FPI_NONE)) 2565 return false; 2566 2567 migratetype = get_pfnblock_migratetype(page, pfn); 2568 set_pcppage_migratetype(page, migratetype); 2569 return true; 2570 } 2571 2572 static int nr_pcp_free(struct per_cpu_pages *pcp, int high, int batch, 2573 bool free_high) 2574 { 2575 int min_nr_free, max_nr_free; 2576 2577 /* Free everything if batch freeing high-order pages. */ 2578 if (unlikely(free_high)) 2579 return pcp->count; 2580 2581 /* Check for PCP disabled or boot pageset */ 2582 if (unlikely(high < batch)) 2583 return 1; 2584 2585 /* Leave at least pcp->batch pages on the list */ 2586 min_nr_free = batch; 2587 max_nr_free = high - batch; 2588 2589 /* 2590 * Double the number of pages freed each time there is subsequent 2591 * freeing of pages without any allocation. 2592 */ 2593 batch <<= pcp->free_factor; 2594 if (batch < max_nr_free) 2595 pcp->free_factor++; 2596 batch = clamp(batch, min_nr_free, max_nr_free); 2597 2598 return batch; 2599 } 2600 2601 static int nr_pcp_high(struct per_cpu_pages *pcp, struct zone *zone, 2602 bool free_high) 2603 { 2604 int high = READ_ONCE(pcp->high); 2605 2606 if (unlikely(!high || free_high)) 2607 return 0; 2608 2609 if (!test_bit(ZONE_RECLAIM_ACTIVE, &zone->flags)) 2610 return high; 2611 2612 /* 2613 * If reclaim is active, limit the number of pages that can be 2614 * stored on pcp lists 2615 */ 2616 return min(READ_ONCE(pcp->batch) << 2, high); 2617 } 2618 2619 static void free_unref_page_commit(struct zone *zone, struct per_cpu_pages *pcp, 2620 struct page *page, int migratetype, 2621 unsigned int order) 2622 { 2623 int high; 2624 int pindex; 2625 bool free_high; 2626 2627 __count_vm_events(PGFREE, 1 << order); 2628 pindex = order_to_pindex(migratetype, order); 2629 list_add(&page->pcp_list, &pcp->lists[pindex]); 2630 pcp->count += 1 << order; 2631 2632 /* 2633 * As high-order pages other than THP's stored on PCP can contribute 2634 * to fragmentation, limit the number stored when PCP is heavily 2635 * freeing without allocation. The remainder after bulk freeing 2636 * stops will be drained from vmstat refresh context. 2637 */ 2638 free_high = (pcp->free_factor && order && order <= PAGE_ALLOC_COSTLY_ORDER); 2639 2640 high = nr_pcp_high(pcp, zone, free_high); 2641 if (pcp->count >= high) { 2642 int batch = READ_ONCE(pcp->batch); 2643 2644 free_pcppages_bulk(zone, nr_pcp_free(pcp, high, batch, free_high), pcp, pindex); 2645 } 2646 } 2647 2648 /* 2649 * Free a pcp page 2650 */ 2651 void free_unref_page(struct page *page, unsigned int order) 2652 { 2653 unsigned long __maybe_unused UP_flags; 2654 struct per_cpu_pages *pcp; 2655 struct zone *zone; 2656 unsigned long pfn = page_to_pfn(page); 2657 int migratetype; 2658 2659 if (!free_unref_page_prepare(page, pfn, order)) 2660 return; 2661 2662 /* 2663 * We only track unmovable, reclaimable and movable on pcp lists. 2664 * Place ISOLATE pages on the isolated list because they are being 2665 * offlined but treat HIGHATOMIC as movable pages so we can get those 2666 * areas back if necessary. Otherwise, we may have to free 2667 * excessively into the page allocator 2668 */ 2669 migratetype = get_pcppage_migratetype(page); 2670 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) { 2671 if (unlikely(is_migrate_isolate(migratetype))) { 2672 free_one_page(page_zone(page), page, pfn, order, migratetype, FPI_NONE); 2673 return; 2674 } 2675 migratetype = MIGRATE_MOVABLE; 2676 } 2677 2678 zone = page_zone(page); 2679 pcp_trylock_prepare(UP_flags); 2680 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2681 if (pcp) { 2682 free_unref_page_commit(zone, pcp, page, migratetype, order); 2683 pcp_spin_unlock(pcp); 2684 } else { 2685 free_one_page(zone, page, pfn, order, migratetype, FPI_NONE); 2686 } 2687 pcp_trylock_finish(UP_flags); 2688 } 2689 2690 /* 2691 * Free a list of 0-order pages 2692 */ 2693 void free_unref_page_list(struct list_head *list) 2694 { 2695 unsigned long __maybe_unused UP_flags; 2696 struct page *page, *next; 2697 struct per_cpu_pages *pcp = NULL; 2698 struct zone *locked_zone = NULL; 2699 int batch_count = 0; 2700 int migratetype; 2701 2702 /* Prepare pages for freeing */ 2703 list_for_each_entry_safe(page, next, list, lru) { 2704 unsigned long pfn = page_to_pfn(page); 2705 if (!free_unref_page_prepare(page, pfn, 0)) { 2706 list_del(&page->lru); 2707 continue; 2708 } 2709 2710 /* 2711 * Free isolated pages directly to the allocator, see 2712 * comment in free_unref_page. 2713 */ 2714 migratetype = get_pcppage_migratetype(page); 2715 if (unlikely(is_migrate_isolate(migratetype))) { 2716 list_del(&page->lru); 2717 free_one_page(page_zone(page), page, pfn, 0, migratetype, FPI_NONE); 2718 continue; 2719 } 2720 } 2721 2722 list_for_each_entry_safe(page, next, list, lru) { 2723 struct zone *zone = page_zone(page); 2724 2725 list_del(&page->lru); 2726 migratetype = get_pcppage_migratetype(page); 2727 2728 /* 2729 * Either different zone requiring a different pcp lock or 2730 * excessive lock hold times when freeing a large list of 2731 * pages. 2732 */ 2733 if (zone != locked_zone || batch_count == SWAP_CLUSTER_MAX) { 2734 if (pcp) { 2735 pcp_spin_unlock(pcp); 2736 pcp_trylock_finish(UP_flags); 2737 } 2738 2739 batch_count = 0; 2740 2741 /* 2742 * trylock is necessary as pages may be getting freed 2743 * from IRQ or SoftIRQ context after an IO completion. 2744 */ 2745 pcp_trylock_prepare(UP_flags); 2746 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2747 if (unlikely(!pcp)) { 2748 pcp_trylock_finish(UP_flags); 2749 free_one_page(zone, page, page_to_pfn(page), 2750 0, migratetype, FPI_NONE); 2751 locked_zone = NULL; 2752 continue; 2753 } 2754 locked_zone = zone; 2755 } 2756 2757 /* 2758 * Non-isolated types over MIGRATE_PCPTYPES get added 2759 * to the MIGRATE_MOVABLE pcp list. 2760 */ 2761 if (unlikely(migratetype >= MIGRATE_PCPTYPES)) 2762 migratetype = MIGRATE_MOVABLE; 2763 2764 trace_mm_page_free_batched(page); 2765 free_unref_page_commit(zone, pcp, page, migratetype, 0); 2766 batch_count++; 2767 } 2768 2769 if (pcp) { 2770 pcp_spin_unlock(pcp); 2771 pcp_trylock_finish(UP_flags); 2772 } 2773 } 2774 2775 /* 2776 * split_page takes a non-compound higher-order page, and splits it into 2777 * n (1<<order) sub-pages: page[0..n] 2778 * Each sub-page must be freed individually. 2779 * 2780 * Note: this is probably too low level an operation for use in drivers. 2781 * Please consult with lkml before using this in your driver. 2782 */ 2783 void split_page(struct page *page, unsigned int order) 2784 { 2785 int i; 2786 2787 VM_BUG_ON_PAGE(PageCompound(page), page); 2788 VM_BUG_ON_PAGE(!page_count(page), page); 2789 2790 for (i = 1; i < (1 << order); i++) 2791 set_page_refcounted(page + i); 2792 split_page_owner(page, 1 << order); 2793 split_page_memcg(page, 1 << order); 2794 } 2795 EXPORT_SYMBOL_GPL(split_page); 2796 2797 int __isolate_free_page(struct page *page, unsigned int order) 2798 { 2799 struct zone *zone = page_zone(page); 2800 int mt = get_pageblock_migratetype(page); 2801 2802 if (!is_migrate_isolate(mt)) { 2803 unsigned long watermark; 2804 /* 2805 * Obey watermarks as if the page was being allocated. We can 2806 * emulate a high-order watermark check with a raised order-0 2807 * watermark, because we already know our high-order page 2808 * exists. 2809 */ 2810 watermark = zone->_watermark[WMARK_MIN] + (1UL << order); 2811 if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA)) 2812 return 0; 2813 2814 __mod_zone_freepage_state(zone, -(1UL << order), mt); 2815 } 2816 2817 del_page_from_free_list(page, zone, order); 2818 2819 /* 2820 * Set the pageblock if the isolated page is at least half of a 2821 * pageblock 2822 */ 2823 if (order >= pageblock_order - 1) { 2824 struct page *endpage = page + (1 << order) - 1; 2825 for (; page < endpage; page += pageblock_nr_pages) { 2826 int mt = get_pageblock_migratetype(page); 2827 /* 2828 * Only change normal pageblocks (i.e., they can merge 2829 * with others) 2830 */ 2831 if (migratetype_is_mergeable(mt)) 2832 set_pageblock_migratetype(page, 2833 MIGRATE_MOVABLE); 2834 } 2835 } 2836 2837 return 1UL << order; 2838 } 2839 2840 /** 2841 * __putback_isolated_page - Return a now-isolated page back where we got it 2842 * @page: Page that was isolated 2843 * @order: Order of the isolated page 2844 * @mt: The page's pageblock's migratetype 2845 * 2846 * This function is meant to return a page pulled from the free lists via 2847 * __isolate_free_page back to the free lists they were pulled from. 2848 */ 2849 void __putback_isolated_page(struct page *page, unsigned int order, int mt) 2850 { 2851 struct zone *zone = page_zone(page); 2852 2853 /* zone lock should be held when this function is called */ 2854 lockdep_assert_held(&zone->lock); 2855 2856 /* Return isolated page to tail of freelist. */ 2857 __free_one_page(page, page_to_pfn(page), zone, order, mt, 2858 FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL); 2859 } 2860 2861 /* 2862 * Update NUMA hit/miss statistics 2863 */ 2864 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z, 2865 long nr_account) 2866 { 2867 #ifdef CONFIG_NUMA 2868 enum numa_stat_item local_stat = NUMA_LOCAL; 2869 2870 /* skip numa counters update if numa stats is disabled */ 2871 if (!static_branch_likely(&vm_numa_stat_key)) 2872 return; 2873 2874 if (zone_to_nid(z) != numa_node_id()) 2875 local_stat = NUMA_OTHER; 2876 2877 if (zone_to_nid(z) == zone_to_nid(preferred_zone)) 2878 __count_numa_events(z, NUMA_HIT, nr_account); 2879 else { 2880 __count_numa_events(z, NUMA_MISS, nr_account); 2881 __count_numa_events(preferred_zone, NUMA_FOREIGN, nr_account); 2882 } 2883 __count_numa_events(z, local_stat, nr_account); 2884 #endif 2885 } 2886 2887 static __always_inline 2888 struct page *rmqueue_buddy(struct zone *preferred_zone, struct zone *zone, 2889 unsigned int order, unsigned int alloc_flags, 2890 int migratetype) 2891 { 2892 struct page *page; 2893 unsigned long flags; 2894 2895 do { 2896 page = NULL; 2897 spin_lock_irqsave(&zone->lock, flags); 2898 /* 2899 * order-0 request can reach here when the pcplist is skipped 2900 * due to non-CMA allocation context. HIGHATOMIC area is 2901 * reserved for high-order atomic allocation, so order-0 2902 * request should skip it. 2903 */ 2904 if (alloc_flags & ALLOC_HIGHATOMIC) 2905 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2906 if (!page) { 2907 page = __rmqueue(zone, order, migratetype, alloc_flags); 2908 2909 /* 2910 * If the allocation fails, allow OOM handling access 2911 * to HIGHATOMIC reserves as failing now is worse than 2912 * failing a high-order atomic allocation in the 2913 * future. 2914 */ 2915 if (!page && (alloc_flags & ALLOC_OOM)) 2916 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC); 2917 2918 if (!page) { 2919 spin_unlock_irqrestore(&zone->lock, flags); 2920 return NULL; 2921 } 2922 } 2923 __mod_zone_freepage_state(zone, -(1 << order), 2924 get_pcppage_migratetype(page)); 2925 spin_unlock_irqrestore(&zone->lock, flags); 2926 } while (check_new_pages(page, order)); 2927 2928 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 2929 zone_statistics(preferred_zone, zone, 1); 2930 2931 return page; 2932 } 2933 2934 /* Remove page from the per-cpu list, caller must protect the list */ 2935 static inline 2936 struct page *__rmqueue_pcplist(struct zone *zone, unsigned int order, 2937 int migratetype, 2938 unsigned int alloc_flags, 2939 struct per_cpu_pages *pcp, 2940 struct list_head *list) 2941 { 2942 struct page *page; 2943 2944 do { 2945 if (list_empty(list)) { 2946 int batch = READ_ONCE(pcp->batch); 2947 int alloced; 2948 2949 /* 2950 * Scale batch relative to order if batch implies 2951 * free pages can be stored on the PCP. Batch can 2952 * be 1 for small zones or for boot pagesets which 2953 * should never store free pages as the pages may 2954 * belong to arbitrary zones. 2955 */ 2956 if (batch > 1) 2957 batch = max(batch >> order, 2); 2958 alloced = rmqueue_bulk(zone, order, 2959 batch, list, 2960 migratetype, alloc_flags); 2961 2962 pcp->count += alloced << order; 2963 if (unlikely(list_empty(list))) 2964 return NULL; 2965 } 2966 2967 page = list_first_entry(list, struct page, pcp_list); 2968 list_del(&page->pcp_list); 2969 pcp->count -= 1 << order; 2970 } while (check_new_pages(page, order)); 2971 2972 return page; 2973 } 2974 2975 /* Lock and remove page from the per-cpu list */ 2976 static struct page *rmqueue_pcplist(struct zone *preferred_zone, 2977 struct zone *zone, unsigned int order, 2978 int migratetype, unsigned int alloc_flags) 2979 { 2980 struct per_cpu_pages *pcp; 2981 struct list_head *list; 2982 struct page *page; 2983 unsigned long __maybe_unused UP_flags; 2984 2985 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 2986 pcp_trylock_prepare(UP_flags); 2987 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 2988 if (!pcp) { 2989 pcp_trylock_finish(UP_flags); 2990 return NULL; 2991 } 2992 2993 /* 2994 * On allocation, reduce the number of pages that are batch freed. 2995 * See nr_pcp_free() where free_factor is increased for subsequent 2996 * frees. 2997 */ 2998 pcp->free_factor >>= 1; 2999 list = &pcp->lists[order_to_pindex(migratetype, order)]; 3000 page = __rmqueue_pcplist(zone, order, migratetype, alloc_flags, pcp, list); 3001 pcp_spin_unlock(pcp); 3002 pcp_trylock_finish(UP_flags); 3003 if (page) { 3004 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order); 3005 zone_statistics(preferred_zone, zone, 1); 3006 } 3007 return page; 3008 } 3009 3010 /* 3011 * Allocate a page from the given zone. 3012 * Use pcplists for THP or "cheap" high-order allocations. 3013 */ 3014 3015 /* 3016 * Do not instrument rmqueue() with KMSAN. This function may call 3017 * __msan_poison_alloca() through a call to set_pfnblock_flags_mask(). 3018 * If __msan_poison_alloca() attempts to allocate pages for the stack depot, it 3019 * may call rmqueue() again, which will result in a deadlock. 3020 */ 3021 __no_sanitize_memory 3022 static inline 3023 struct page *rmqueue(struct zone *preferred_zone, 3024 struct zone *zone, unsigned int order, 3025 gfp_t gfp_flags, unsigned int alloc_flags, 3026 int migratetype) 3027 { 3028 struct page *page; 3029 3030 /* 3031 * We most definitely don't want callers attempting to 3032 * allocate greater than order-1 page units with __GFP_NOFAIL. 3033 */ 3034 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1)); 3035 3036 if (likely(pcp_allowed_order(order))) { 3037 /* 3038 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and 3039 * we need to skip it when CMA area isn't allowed. 3040 */ 3041 if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA || 3042 migratetype != MIGRATE_MOVABLE) { 3043 page = rmqueue_pcplist(preferred_zone, zone, order, 3044 migratetype, alloc_flags); 3045 if (likely(page)) 3046 goto out; 3047 } 3048 } 3049 3050 page = rmqueue_buddy(preferred_zone, zone, order, alloc_flags, 3051 migratetype); 3052 3053 out: 3054 /* Separate test+clear to avoid unnecessary atomics */ 3055 if (unlikely(test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags))) { 3056 clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags); 3057 wakeup_kswapd(zone, 0, 0, zone_idx(zone)); 3058 } 3059 3060 VM_BUG_ON_PAGE(page && bad_range(zone, page), page); 3061 return page; 3062 } 3063 3064 #ifdef CONFIG_FAIL_PAGE_ALLOC 3065 3066 static struct { 3067 struct fault_attr attr; 3068 3069 bool ignore_gfp_highmem; 3070 bool ignore_gfp_reclaim; 3071 u32 min_order; 3072 } fail_page_alloc = { 3073 .attr = FAULT_ATTR_INITIALIZER, 3074 .ignore_gfp_reclaim = true, 3075 .ignore_gfp_highmem = true, 3076 .min_order = 1, 3077 }; 3078 3079 static int __init setup_fail_page_alloc(char *str) 3080 { 3081 return setup_fault_attr(&fail_page_alloc.attr, str); 3082 } 3083 __setup("fail_page_alloc=", setup_fail_page_alloc); 3084 3085 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3086 { 3087 int flags = 0; 3088 3089 if (order < fail_page_alloc.min_order) 3090 return false; 3091 if (gfp_mask & __GFP_NOFAIL) 3092 return false; 3093 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM)) 3094 return false; 3095 if (fail_page_alloc.ignore_gfp_reclaim && 3096 (gfp_mask & __GFP_DIRECT_RECLAIM)) 3097 return false; 3098 3099 /* See comment in __should_failslab() */ 3100 if (gfp_mask & __GFP_NOWARN) 3101 flags |= FAULT_NOWARN; 3102 3103 return should_fail_ex(&fail_page_alloc.attr, 1 << order, flags); 3104 } 3105 3106 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS 3107 3108 static int __init fail_page_alloc_debugfs(void) 3109 { 3110 umode_t mode = S_IFREG | 0600; 3111 struct dentry *dir; 3112 3113 dir = fault_create_debugfs_attr("fail_page_alloc", NULL, 3114 &fail_page_alloc.attr); 3115 3116 debugfs_create_bool("ignore-gfp-wait", mode, dir, 3117 &fail_page_alloc.ignore_gfp_reclaim); 3118 debugfs_create_bool("ignore-gfp-highmem", mode, dir, 3119 &fail_page_alloc.ignore_gfp_highmem); 3120 debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order); 3121 3122 return 0; 3123 } 3124 3125 late_initcall(fail_page_alloc_debugfs); 3126 3127 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */ 3128 3129 #else /* CONFIG_FAIL_PAGE_ALLOC */ 3130 3131 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3132 { 3133 return false; 3134 } 3135 3136 #endif /* CONFIG_FAIL_PAGE_ALLOC */ 3137 3138 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order) 3139 { 3140 return __should_fail_alloc_page(gfp_mask, order); 3141 } 3142 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE); 3143 3144 static inline long __zone_watermark_unusable_free(struct zone *z, 3145 unsigned int order, unsigned int alloc_flags) 3146 { 3147 long unusable_free = (1 << order) - 1; 3148 3149 /* 3150 * If the caller does not have rights to reserves below the min 3151 * watermark then subtract the high-atomic reserves. This will 3152 * over-estimate the size of the atomic reserve but it avoids a search. 3153 */ 3154 if (likely(!(alloc_flags & ALLOC_RESERVES))) 3155 unusable_free += z->nr_reserved_highatomic; 3156 3157 #ifdef CONFIG_CMA 3158 /* If allocation can't use CMA areas don't use free CMA pages */ 3159 if (!(alloc_flags & ALLOC_CMA)) 3160 unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES); 3161 #endif 3162 3163 return unusable_free; 3164 } 3165 3166 /* 3167 * Return true if free base pages are above 'mark'. For high-order checks it 3168 * will return true of the order-0 watermark is reached and there is at least 3169 * one free page of a suitable size. Checking now avoids taking the zone lock 3170 * to check in the allocation paths if no pages are free. 3171 */ 3172 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3173 int highest_zoneidx, unsigned int alloc_flags, 3174 long free_pages) 3175 { 3176 long min = mark; 3177 int o; 3178 3179 /* free_pages may go negative - that's OK */ 3180 free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags); 3181 3182 if (unlikely(alloc_flags & ALLOC_RESERVES)) { 3183 /* 3184 * __GFP_HIGH allows access to 50% of the min reserve as well 3185 * as OOM. 3186 */ 3187 if (alloc_flags & ALLOC_MIN_RESERVE) { 3188 min -= min / 2; 3189 3190 /* 3191 * Non-blocking allocations (e.g. GFP_ATOMIC) can 3192 * access more reserves than just __GFP_HIGH. Other 3193 * non-blocking allocations requests such as GFP_NOWAIT 3194 * or (GFP_KERNEL & ~__GFP_DIRECT_RECLAIM) do not get 3195 * access to the min reserve. 3196 */ 3197 if (alloc_flags & ALLOC_NON_BLOCK) 3198 min -= min / 4; 3199 } 3200 3201 /* 3202 * OOM victims can try even harder than the normal reserve 3203 * users on the grounds that it's definitely going to be in 3204 * the exit path shortly and free memory. Any allocation it 3205 * makes during the free path will be small and short-lived. 3206 */ 3207 if (alloc_flags & ALLOC_OOM) 3208 min -= min / 2; 3209 } 3210 3211 /* 3212 * Check watermarks for an order-0 allocation request. If these 3213 * are not met, then a high-order request also cannot go ahead 3214 * even if a suitable page happened to be free. 3215 */ 3216 if (free_pages <= min + z->lowmem_reserve[highest_zoneidx]) 3217 return false; 3218 3219 /* If this is an order-0 request then the watermark is fine */ 3220 if (!order) 3221 return true; 3222 3223 /* For a high-order request, check at least one suitable page is free */ 3224 for (o = order; o <= MAX_ORDER; o++) { 3225 struct free_area *area = &z->free_area[o]; 3226 int mt; 3227 3228 if (!area->nr_free) 3229 continue; 3230 3231 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) { 3232 if (!free_area_empty(area, mt)) 3233 return true; 3234 } 3235 3236 #ifdef CONFIG_CMA 3237 if ((alloc_flags & ALLOC_CMA) && 3238 !free_area_empty(area, MIGRATE_CMA)) { 3239 return true; 3240 } 3241 #endif 3242 if ((alloc_flags & (ALLOC_HIGHATOMIC|ALLOC_OOM)) && 3243 !free_area_empty(area, MIGRATE_HIGHATOMIC)) { 3244 return true; 3245 } 3246 } 3247 return false; 3248 } 3249 3250 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark, 3251 int highest_zoneidx, unsigned int alloc_flags) 3252 { 3253 return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3254 zone_page_state(z, NR_FREE_PAGES)); 3255 } 3256 3257 static inline bool zone_watermark_fast(struct zone *z, unsigned int order, 3258 unsigned long mark, int highest_zoneidx, 3259 unsigned int alloc_flags, gfp_t gfp_mask) 3260 { 3261 long free_pages; 3262 3263 free_pages = zone_page_state(z, NR_FREE_PAGES); 3264 3265 /* 3266 * Fast check for order-0 only. If this fails then the reserves 3267 * need to be calculated. 3268 */ 3269 if (!order) { 3270 long usable_free; 3271 long reserved; 3272 3273 usable_free = free_pages; 3274 reserved = __zone_watermark_unusable_free(z, 0, alloc_flags); 3275 3276 /* reserved may over estimate high-atomic reserves. */ 3277 usable_free -= min(usable_free, reserved); 3278 if (usable_free > mark + z->lowmem_reserve[highest_zoneidx]) 3279 return true; 3280 } 3281 3282 if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags, 3283 free_pages)) 3284 return true; 3285 3286 /* 3287 * Ignore watermark boosting for __GFP_HIGH order-0 allocations 3288 * when checking the min watermark. The min watermark is the 3289 * point where boosting is ignored so that kswapd is woken up 3290 * when below the low watermark. 3291 */ 3292 if (unlikely(!order && (alloc_flags & ALLOC_MIN_RESERVE) && z->watermark_boost 3293 && ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) { 3294 mark = z->_watermark[WMARK_MIN]; 3295 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 3296 alloc_flags, free_pages); 3297 } 3298 3299 return false; 3300 } 3301 3302 bool zone_watermark_ok_safe(struct zone *z, unsigned int order, 3303 unsigned long mark, int highest_zoneidx) 3304 { 3305 long free_pages = zone_page_state(z, NR_FREE_PAGES); 3306 3307 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark) 3308 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES); 3309 3310 return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0, 3311 free_pages); 3312 } 3313 3314 #ifdef CONFIG_NUMA 3315 int __read_mostly node_reclaim_distance = RECLAIM_DISTANCE; 3316 3317 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3318 { 3319 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <= 3320 node_reclaim_distance; 3321 } 3322 #else /* CONFIG_NUMA */ 3323 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone) 3324 { 3325 return true; 3326 } 3327 #endif /* CONFIG_NUMA */ 3328 3329 /* 3330 * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid 3331 * fragmentation is subtle. If the preferred zone was HIGHMEM then 3332 * premature use of a lower zone may cause lowmem pressure problems that 3333 * are worse than fragmentation. If the next zone is ZONE_DMA then it is 3334 * probably too small. It only makes sense to spread allocations to avoid 3335 * fragmentation between the Normal and DMA32 zones. 3336 */ 3337 static inline unsigned int 3338 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask) 3339 { 3340 unsigned int alloc_flags; 3341 3342 /* 3343 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 3344 * to save a branch. 3345 */ 3346 alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM); 3347 3348 #ifdef CONFIG_ZONE_DMA32 3349 if (!zone) 3350 return alloc_flags; 3351 3352 if (zone_idx(zone) != ZONE_NORMAL) 3353 return alloc_flags; 3354 3355 /* 3356 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and 3357 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume 3358 * on UMA that if Normal is populated then so is DMA32. 3359 */ 3360 BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1); 3361 if (nr_online_nodes > 1 && !populated_zone(--zone)) 3362 return alloc_flags; 3363 3364 alloc_flags |= ALLOC_NOFRAGMENT; 3365 #endif /* CONFIG_ZONE_DMA32 */ 3366 return alloc_flags; 3367 } 3368 3369 /* Must be called after current_gfp_context() which can change gfp_mask */ 3370 static inline unsigned int gfp_to_alloc_flags_cma(gfp_t gfp_mask, 3371 unsigned int alloc_flags) 3372 { 3373 #ifdef CONFIG_CMA 3374 if (gfp_migratetype(gfp_mask) == MIGRATE_MOVABLE) 3375 alloc_flags |= ALLOC_CMA; 3376 #endif 3377 return alloc_flags; 3378 } 3379 3380 /* 3381 * get_page_from_freelist goes through the zonelist trying to allocate 3382 * a page. 3383 */ 3384 static struct page * 3385 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags, 3386 const struct alloc_context *ac) 3387 { 3388 struct zoneref *z; 3389 struct zone *zone; 3390 struct pglist_data *last_pgdat = NULL; 3391 bool last_pgdat_dirty_ok = false; 3392 bool no_fallback; 3393 3394 retry: 3395 /* 3396 * Scan zonelist, looking for a zone with enough free. 3397 * See also cpuset_node_allowed() comment in kernel/cgroup/cpuset.c. 3398 */ 3399 no_fallback = alloc_flags & ALLOC_NOFRAGMENT; 3400 z = ac->preferred_zoneref; 3401 for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx, 3402 ac->nodemask) { 3403 struct page *page; 3404 unsigned long mark; 3405 3406 if (cpusets_enabled() && 3407 (alloc_flags & ALLOC_CPUSET) && 3408 !__cpuset_zone_allowed(zone, gfp_mask)) 3409 continue; 3410 /* 3411 * When allocating a page cache page for writing, we 3412 * want to get it from a node that is within its dirty 3413 * limit, such that no single node holds more than its 3414 * proportional share of globally allowed dirty pages. 3415 * The dirty limits take into account the node's 3416 * lowmem reserves and high watermark so that kswapd 3417 * should be able to balance it without having to 3418 * write pages from its LRU list. 3419 * 3420 * XXX: For now, allow allocations to potentially 3421 * exceed the per-node dirty limit in the slowpath 3422 * (spread_dirty_pages unset) before going into reclaim, 3423 * which is important when on a NUMA setup the allowed 3424 * nodes are together not big enough to reach the 3425 * global limit. The proper fix for these situations 3426 * will require awareness of nodes in the 3427 * dirty-throttling and the flusher threads. 3428 */ 3429 if (ac->spread_dirty_pages) { 3430 if (last_pgdat != zone->zone_pgdat) { 3431 last_pgdat = zone->zone_pgdat; 3432 last_pgdat_dirty_ok = node_dirty_ok(zone->zone_pgdat); 3433 } 3434 3435 if (!last_pgdat_dirty_ok) 3436 continue; 3437 } 3438 3439 if (no_fallback && nr_online_nodes > 1 && 3440 zone != ac->preferred_zoneref->zone) { 3441 int local_nid; 3442 3443 /* 3444 * If moving to a remote node, retry but allow 3445 * fragmenting fallbacks. Locality is more important 3446 * than fragmentation avoidance. 3447 */ 3448 local_nid = zone_to_nid(ac->preferred_zoneref->zone); 3449 if (zone_to_nid(zone) != local_nid) { 3450 alloc_flags &= ~ALLOC_NOFRAGMENT; 3451 goto retry; 3452 } 3453 } 3454 3455 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK); 3456 if (!zone_watermark_fast(zone, order, mark, 3457 ac->highest_zoneidx, alloc_flags, 3458 gfp_mask)) { 3459 int ret; 3460 3461 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3462 /* 3463 * Watermark failed for this zone, but see if we can 3464 * grow this zone if it contains deferred pages. 3465 */ 3466 if (deferred_pages_enabled()) { 3467 if (_deferred_grow_zone(zone, order)) 3468 goto try_this_zone; 3469 } 3470 #endif 3471 /* Checked here to keep the fast path fast */ 3472 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK); 3473 if (alloc_flags & ALLOC_NO_WATERMARKS) 3474 goto try_this_zone; 3475 3476 if (!node_reclaim_enabled() || 3477 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone)) 3478 continue; 3479 3480 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order); 3481 switch (ret) { 3482 case NODE_RECLAIM_NOSCAN: 3483 /* did not scan */ 3484 continue; 3485 case NODE_RECLAIM_FULL: 3486 /* scanned but unreclaimable */ 3487 continue; 3488 default: 3489 /* did we reclaim enough */ 3490 if (zone_watermark_ok(zone, order, mark, 3491 ac->highest_zoneidx, alloc_flags)) 3492 goto try_this_zone; 3493 3494 continue; 3495 } 3496 } 3497 3498 try_this_zone: 3499 page = rmqueue(ac->preferred_zoneref->zone, zone, order, 3500 gfp_mask, alloc_flags, ac->migratetype); 3501 if (page) { 3502 prep_new_page(page, order, gfp_mask, alloc_flags); 3503 3504 /* 3505 * If this is a high-order atomic allocation then check 3506 * if the pageblock should be reserved for the future 3507 */ 3508 if (unlikely(alloc_flags & ALLOC_HIGHATOMIC)) 3509 reserve_highatomic_pageblock(page, zone, order); 3510 3511 return page; 3512 } else { 3513 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT 3514 /* Try again if zone has deferred pages */ 3515 if (deferred_pages_enabled()) { 3516 if (_deferred_grow_zone(zone, order)) 3517 goto try_this_zone; 3518 } 3519 #endif 3520 } 3521 } 3522 3523 /* 3524 * It's possible on a UMA machine to get through all zones that are 3525 * fragmented. If avoiding fragmentation, reset and try again. 3526 */ 3527 if (no_fallback) { 3528 alloc_flags &= ~ALLOC_NOFRAGMENT; 3529 goto retry; 3530 } 3531 3532 return NULL; 3533 } 3534 3535 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask) 3536 { 3537 unsigned int filter = SHOW_MEM_FILTER_NODES; 3538 3539 /* 3540 * This documents exceptions given to allocations in certain 3541 * contexts that are allowed to allocate outside current's set 3542 * of allowed nodes. 3543 */ 3544 if (!(gfp_mask & __GFP_NOMEMALLOC)) 3545 if (tsk_is_oom_victim(current) || 3546 (current->flags & (PF_MEMALLOC | PF_EXITING))) 3547 filter &= ~SHOW_MEM_FILTER_NODES; 3548 if (!in_task() || !(gfp_mask & __GFP_DIRECT_RECLAIM)) 3549 filter &= ~SHOW_MEM_FILTER_NODES; 3550 3551 __show_mem(filter, nodemask, gfp_zone(gfp_mask)); 3552 } 3553 3554 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...) 3555 { 3556 struct va_format vaf; 3557 va_list args; 3558 static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1); 3559 3560 if ((gfp_mask & __GFP_NOWARN) || 3561 !__ratelimit(&nopage_rs) || 3562 ((gfp_mask & __GFP_DMA) && !has_managed_dma())) 3563 return; 3564 3565 va_start(args, fmt); 3566 vaf.fmt = fmt; 3567 vaf.va = &args; 3568 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl", 3569 current->comm, &vaf, gfp_mask, &gfp_mask, 3570 nodemask_pr_args(nodemask)); 3571 va_end(args); 3572 3573 cpuset_print_current_mems_allowed(); 3574 pr_cont("\n"); 3575 dump_stack(); 3576 warn_alloc_show_mem(gfp_mask, nodemask); 3577 } 3578 3579 static inline struct page * 3580 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order, 3581 unsigned int alloc_flags, 3582 const struct alloc_context *ac) 3583 { 3584 struct page *page; 3585 3586 page = get_page_from_freelist(gfp_mask, order, 3587 alloc_flags|ALLOC_CPUSET, ac); 3588 /* 3589 * fallback to ignore cpuset restriction if our nodes 3590 * are depleted 3591 */ 3592 if (!page) 3593 page = get_page_from_freelist(gfp_mask, order, 3594 alloc_flags, ac); 3595 3596 return page; 3597 } 3598 3599 static inline struct page * 3600 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order, 3601 const struct alloc_context *ac, unsigned long *did_some_progress) 3602 { 3603 struct oom_control oc = { 3604 .zonelist = ac->zonelist, 3605 .nodemask = ac->nodemask, 3606 .memcg = NULL, 3607 .gfp_mask = gfp_mask, 3608 .order = order, 3609 }; 3610 struct page *page; 3611 3612 *did_some_progress = 0; 3613 3614 /* 3615 * Acquire the oom lock. If that fails, somebody else is 3616 * making progress for us. 3617 */ 3618 if (!mutex_trylock(&oom_lock)) { 3619 *did_some_progress = 1; 3620 schedule_timeout_uninterruptible(1); 3621 return NULL; 3622 } 3623 3624 /* 3625 * Go through the zonelist yet one more time, keep very high watermark 3626 * here, this is only to catch a parallel oom killing, we must fail if 3627 * we're still under heavy pressure. But make sure that this reclaim 3628 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY 3629 * allocation which will never fail due to oom_lock already held. 3630 */ 3631 page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) & 3632 ~__GFP_DIRECT_RECLAIM, order, 3633 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac); 3634 if (page) 3635 goto out; 3636 3637 /* Coredumps can quickly deplete all memory reserves */ 3638 if (current->flags & PF_DUMPCORE) 3639 goto out; 3640 /* The OOM killer will not help higher order allocs */ 3641 if (order > PAGE_ALLOC_COSTLY_ORDER) 3642 goto out; 3643 /* 3644 * We have already exhausted all our reclaim opportunities without any 3645 * success so it is time to admit defeat. We will skip the OOM killer 3646 * because it is very likely that the caller has a more reasonable 3647 * fallback than shooting a random task. 3648 * 3649 * The OOM killer may not free memory on a specific node. 3650 */ 3651 if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE)) 3652 goto out; 3653 /* The OOM killer does not needlessly kill tasks for lowmem */ 3654 if (ac->highest_zoneidx < ZONE_NORMAL) 3655 goto out; 3656 if (pm_suspended_storage()) 3657 goto out; 3658 /* 3659 * XXX: GFP_NOFS allocations should rather fail than rely on 3660 * other request to make a forward progress. 3661 * We are in an unfortunate situation where out_of_memory cannot 3662 * do much for this context but let's try it to at least get 3663 * access to memory reserved if the current task is killed (see 3664 * out_of_memory). Once filesystems are ready to handle allocation 3665 * failures more gracefully we should just bail out here. 3666 */ 3667 3668 /* Exhausted what can be done so it's blame time */ 3669 if (out_of_memory(&oc) || 3670 WARN_ON_ONCE_GFP(gfp_mask & __GFP_NOFAIL, gfp_mask)) { 3671 *did_some_progress = 1; 3672 3673 /* 3674 * Help non-failing allocations by giving them access to memory 3675 * reserves 3676 */ 3677 if (gfp_mask & __GFP_NOFAIL) 3678 page = __alloc_pages_cpuset_fallback(gfp_mask, order, 3679 ALLOC_NO_WATERMARKS, ac); 3680 } 3681 out: 3682 mutex_unlock(&oom_lock); 3683 return page; 3684 } 3685 3686 /* 3687 * Maximum number of compaction retries with a progress before OOM 3688 * killer is consider as the only way to move forward. 3689 */ 3690 #define MAX_COMPACT_RETRIES 16 3691 3692 #ifdef CONFIG_COMPACTION 3693 /* Try memory compaction for high-order allocations before reclaim */ 3694 static struct page * 3695 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3696 unsigned int alloc_flags, const struct alloc_context *ac, 3697 enum compact_priority prio, enum compact_result *compact_result) 3698 { 3699 struct page *page = NULL; 3700 unsigned long pflags; 3701 unsigned int noreclaim_flag; 3702 3703 if (!order) 3704 return NULL; 3705 3706 psi_memstall_enter(&pflags); 3707 delayacct_compact_start(); 3708 noreclaim_flag = memalloc_noreclaim_save(); 3709 3710 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac, 3711 prio, &page); 3712 3713 memalloc_noreclaim_restore(noreclaim_flag); 3714 psi_memstall_leave(&pflags); 3715 delayacct_compact_end(); 3716 3717 if (*compact_result == COMPACT_SKIPPED) 3718 return NULL; 3719 /* 3720 * At least in one zone compaction wasn't deferred or skipped, so let's 3721 * count a compaction stall 3722 */ 3723 count_vm_event(COMPACTSTALL); 3724 3725 /* Prep a captured page if available */ 3726 if (page) 3727 prep_new_page(page, order, gfp_mask, alloc_flags); 3728 3729 /* Try get a page from the freelist if available */ 3730 if (!page) 3731 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3732 3733 if (page) { 3734 struct zone *zone = page_zone(page); 3735 3736 zone->compact_blockskip_flush = false; 3737 compaction_defer_reset(zone, order, true); 3738 count_vm_event(COMPACTSUCCESS); 3739 return page; 3740 } 3741 3742 /* 3743 * It's bad if compaction run occurs and fails. The most likely reason 3744 * is that pages exist, but not enough to satisfy watermarks. 3745 */ 3746 count_vm_event(COMPACTFAIL); 3747 3748 cond_resched(); 3749 3750 return NULL; 3751 } 3752 3753 static inline bool 3754 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags, 3755 enum compact_result compact_result, 3756 enum compact_priority *compact_priority, 3757 int *compaction_retries) 3758 { 3759 int max_retries = MAX_COMPACT_RETRIES; 3760 int min_priority; 3761 bool ret = false; 3762 int retries = *compaction_retries; 3763 enum compact_priority priority = *compact_priority; 3764 3765 if (!order) 3766 return false; 3767 3768 if (fatal_signal_pending(current)) 3769 return false; 3770 3771 if (compaction_made_progress(compact_result)) 3772 (*compaction_retries)++; 3773 3774 /* 3775 * compaction considers all the zone as desperately out of memory 3776 * so it doesn't really make much sense to retry except when the 3777 * failure could be caused by insufficient priority 3778 */ 3779 if (compaction_failed(compact_result)) 3780 goto check_priority; 3781 3782 /* 3783 * compaction was skipped because there are not enough order-0 pages 3784 * to work with, so we retry only if it looks like reclaim can help. 3785 */ 3786 if (compaction_needs_reclaim(compact_result)) { 3787 ret = compaction_zonelist_suitable(ac, order, alloc_flags); 3788 goto out; 3789 } 3790 3791 /* 3792 * make sure the compaction wasn't deferred or didn't bail out early 3793 * due to locks contention before we declare that we should give up. 3794 * But the next retry should use a higher priority if allowed, so 3795 * we don't just keep bailing out endlessly. 3796 */ 3797 if (compaction_withdrawn(compact_result)) { 3798 goto check_priority; 3799 } 3800 3801 /* 3802 * !costly requests are much more important than __GFP_RETRY_MAYFAIL 3803 * costly ones because they are de facto nofail and invoke OOM 3804 * killer to move on while costly can fail and users are ready 3805 * to cope with that. 1/4 retries is rather arbitrary but we 3806 * would need much more detailed feedback from compaction to 3807 * make a better decision. 3808 */ 3809 if (order > PAGE_ALLOC_COSTLY_ORDER) 3810 max_retries /= 4; 3811 if (*compaction_retries <= max_retries) { 3812 ret = true; 3813 goto out; 3814 } 3815 3816 /* 3817 * Make sure there are attempts at the highest priority if we exhausted 3818 * all retries or failed at the lower priorities. 3819 */ 3820 check_priority: 3821 min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ? 3822 MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY; 3823 3824 if (*compact_priority > min_priority) { 3825 (*compact_priority)--; 3826 *compaction_retries = 0; 3827 ret = true; 3828 } 3829 out: 3830 trace_compact_retry(order, priority, compact_result, retries, max_retries, ret); 3831 return ret; 3832 } 3833 #else 3834 static inline struct page * 3835 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order, 3836 unsigned int alloc_flags, const struct alloc_context *ac, 3837 enum compact_priority prio, enum compact_result *compact_result) 3838 { 3839 *compact_result = COMPACT_SKIPPED; 3840 return NULL; 3841 } 3842 3843 static inline bool 3844 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags, 3845 enum compact_result compact_result, 3846 enum compact_priority *compact_priority, 3847 int *compaction_retries) 3848 { 3849 struct zone *zone; 3850 struct zoneref *z; 3851 3852 if (!order || order > PAGE_ALLOC_COSTLY_ORDER) 3853 return false; 3854 3855 /* 3856 * There are setups with compaction disabled which would prefer to loop 3857 * inside the allocator rather than hit the oom killer prematurely. 3858 * Let's give them a good hope and keep retrying while the order-0 3859 * watermarks are OK. 3860 */ 3861 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 3862 ac->highest_zoneidx, ac->nodemask) { 3863 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone), 3864 ac->highest_zoneidx, alloc_flags)) 3865 return true; 3866 } 3867 return false; 3868 } 3869 #endif /* CONFIG_COMPACTION */ 3870 3871 #ifdef CONFIG_LOCKDEP 3872 static struct lockdep_map __fs_reclaim_map = 3873 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map); 3874 3875 static bool __need_reclaim(gfp_t gfp_mask) 3876 { 3877 /* no reclaim without waiting on it */ 3878 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) 3879 return false; 3880 3881 /* this guy won't enter reclaim */ 3882 if (current->flags & PF_MEMALLOC) 3883 return false; 3884 3885 if (gfp_mask & __GFP_NOLOCKDEP) 3886 return false; 3887 3888 return true; 3889 } 3890 3891 void __fs_reclaim_acquire(unsigned long ip) 3892 { 3893 lock_acquire_exclusive(&__fs_reclaim_map, 0, 0, NULL, ip); 3894 } 3895 3896 void __fs_reclaim_release(unsigned long ip) 3897 { 3898 lock_release(&__fs_reclaim_map, ip); 3899 } 3900 3901 void fs_reclaim_acquire(gfp_t gfp_mask) 3902 { 3903 gfp_mask = current_gfp_context(gfp_mask); 3904 3905 if (__need_reclaim(gfp_mask)) { 3906 if (gfp_mask & __GFP_FS) 3907 __fs_reclaim_acquire(_RET_IP_); 3908 3909 #ifdef CONFIG_MMU_NOTIFIER 3910 lock_map_acquire(&__mmu_notifier_invalidate_range_start_map); 3911 lock_map_release(&__mmu_notifier_invalidate_range_start_map); 3912 #endif 3913 3914 } 3915 } 3916 EXPORT_SYMBOL_GPL(fs_reclaim_acquire); 3917 3918 void fs_reclaim_release(gfp_t gfp_mask) 3919 { 3920 gfp_mask = current_gfp_context(gfp_mask); 3921 3922 if (__need_reclaim(gfp_mask)) { 3923 if (gfp_mask & __GFP_FS) 3924 __fs_reclaim_release(_RET_IP_); 3925 } 3926 } 3927 EXPORT_SYMBOL_GPL(fs_reclaim_release); 3928 #endif 3929 3930 /* 3931 * Zonelists may change due to hotplug during allocation. Detect when zonelists 3932 * have been rebuilt so allocation retries. Reader side does not lock and 3933 * retries the allocation if zonelist changes. Writer side is protected by the 3934 * embedded spin_lock. 3935 */ 3936 static DEFINE_SEQLOCK(zonelist_update_seq); 3937 3938 static unsigned int zonelist_iter_begin(void) 3939 { 3940 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3941 return read_seqbegin(&zonelist_update_seq); 3942 3943 return 0; 3944 } 3945 3946 static unsigned int check_retry_zonelist(unsigned int seq) 3947 { 3948 if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE)) 3949 return read_seqretry(&zonelist_update_seq, seq); 3950 3951 return seq; 3952 } 3953 3954 /* Perform direct synchronous page reclaim */ 3955 static unsigned long 3956 __perform_reclaim(gfp_t gfp_mask, unsigned int order, 3957 const struct alloc_context *ac) 3958 { 3959 unsigned int noreclaim_flag; 3960 unsigned long progress; 3961 3962 cond_resched(); 3963 3964 /* We now go into synchronous reclaim */ 3965 cpuset_memory_pressure_bump(); 3966 fs_reclaim_acquire(gfp_mask); 3967 noreclaim_flag = memalloc_noreclaim_save(); 3968 3969 progress = try_to_free_pages(ac->zonelist, order, gfp_mask, 3970 ac->nodemask); 3971 3972 memalloc_noreclaim_restore(noreclaim_flag); 3973 fs_reclaim_release(gfp_mask); 3974 3975 cond_resched(); 3976 3977 return progress; 3978 } 3979 3980 /* The really slow allocator path where we enter direct reclaim */ 3981 static inline struct page * 3982 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order, 3983 unsigned int alloc_flags, const struct alloc_context *ac, 3984 unsigned long *did_some_progress) 3985 { 3986 struct page *page = NULL; 3987 unsigned long pflags; 3988 bool drained = false; 3989 3990 psi_memstall_enter(&pflags); 3991 *did_some_progress = __perform_reclaim(gfp_mask, order, ac); 3992 if (unlikely(!(*did_some_progress))) 3993 goto out; 3994 3995 retry: 3996 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 3997 3998 /* 3999 * If an allocation failed after direct reclaim, it could be because 4000 * pages are pinned on the per-cpu lists or in high alloc reserves. 4001 * Shrink them and try again 4002 */ 4003 if (!page && !drained) { 4004 unreserve_highatomic_pageblock(ac, false); 4005 drain_all_pages(NULL); 4006 drained = true; 4007 goto retry; 4008 } 4009 out: 4010 psi_memstall_leave(&pflags); 4011 4012 return page; 4013 } 4014 4015 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask, 4016 const struct alloc_context *ac) 4017 { 4018 struct zoneref *z; 4019 struct zone *zone; 4020 pg_data_t *last_pgdat = NULL; 4021 enum zone_type highest_zoneidx = ac->highest_zoneidx; 4022 4023 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx, 4024 ac->nodemask) { 4025 if (!managed_zone(zone)) 4026 continue; 4027 if (last_pgdat != zone->zone_pgdat) { 4028 wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx); 4029 last_pgdat = zone->zone_pgdat; 4030 } 4031 } 4032 } 4033 4034 static inline unsigned int 4035 gfp_to_alloc_flags(gfp_t gfp_mask, unsigned int order) 4036 { 4037 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET; 4038 4039 /* 4040 * __GFP_HIGH is assumed to be the same as ALLOC_MIN_RESERVE 4041 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD 4042 * to save two branches. 4043 */ 4044 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_MIN_RESERVE); 4045 BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD); 4046 4047 /* 4048 * The caller may dip into page reserves a bit more if the caller 4049 * cannot run direct reclaim, or if the caller has realtime scheduling 4050 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will 4051 * set both ALLOC_NON_BLOCK and ALLOC_MIN_RESERVE(__GFP_HIGH). 4052 */ 4053 alloc_flags |= (__force int) 4054 (gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM)); 4055 4056 if (!(gfp_mask & __GFP_DIRECT_RECLAIM)) { 4057 /* 4058 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even 4059 * if it can't schedule. 4060 */ 4061 if (!(gfp_mask & __GFP_NOMEMALLOC)) { 4062 alloc_flags |= ALLOC_NON_BLOCK; 4063 4064 if (order > 0) 4065 alloc_flags |= ALLOC_HIGHATOMIC; 4066 } 4067 4068 /* 4069 * Ignore cpuset mems for non-blocking __GFP_HIGH (probably 4070 * GFP_ATOMIC) rather than fail, see the comment for 4071 * cpuset_node_allowed(). 4072 */ 4073 if (alloc_flags & ALLOC_MIN_RESERVE) 4074 alloc_flags &= ~ALLOC_CPUSET; 4075 } else if (unlikely(rt_task(current)) && in_task()) 4076 alloc_flags |= ALLOC_MIN_RESERVE; 4077 4078 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, alloc_flags); 4079 4080 return alloc_flags; 4081 } 4082 4083 static bool oom_reserves_allowed(struct task_struct *tsk) 4084 { 4085 if (!tsk_is_oom_victim(tsk)) 4086 return false; 4087 4088 /* 4089 * !MMU doesn't have oom reaper so give access to memory reserves 4090 * only to the thread with TIF_MEMDIE set 4091 */ 4092 if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE)) 4093 return false; 4094 4095 return true; 4096 } 4097 4098 /* 4099 * Distinguish requests which really need access to full memory 4100 * reserves from oom victims which can live with a portion of it 4101 */ 4102 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask) 4103 { 4104 if (unlikely(gfp_mask & __GFP_NOMEMALLOC)) 4105 return 0; 4106 if (gfp_mask & __GFP_MEMALLOC) 4107 return ALLOC_NO_WATERMARKS; 4108 if (in_serving_softirq() && (current->flags & PF_MEMALLOC)) 4109 return ALLOC_NO_WATERMARKS; 4110 if (!in_interrupt()) { 4111 if (current->flags & PF_MEMALLOC) 4112 return ALLOC_NO_WATERMARKS; 4113 else if (oom_reserves_allowed(current)) 4114 return ALLOC_OOM; 4115 } 4116 4117 return 0; 4118 } 4119 4120 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask) 4121 { 4122 return !!__gfp_pfmemalloc_flags(gfp_mask); 4123 } 4124 4125 /* 4126 * Checks whether it makes sense to retry the reclaim to make a forward progress 4127 * for the given allocation request. 4128 * 4129 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row 4130 * without success, or when we couldn't even meet the watermark if we 4131 * reclaimed all remaining pages on the LRU lists. 4132 * 4133 * Returns true if a retry is viable or false to enter the oom path. 4134 */ 4135 static inline bool 4136 should_reclaim_retry(gfp_t gfp_mask, unsigned order, 4137 struct alloc_context *ac, int alloc_flags, 4138 bool did_some_progress, int *no_progress_loops) 4139 { 4140 struct zone *zone; 4141 struct zoneref *z; 4142 bool ret = false; 4143 4144 /* 4145 * Costly allocations might have made a progress but this doesn't mean 4146 * their order will become available due to high fragmentation so 4147 * always increment the no progress counter for them 4148 */ 4149 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER) 4150 *no_progress_loops = 0; 4151 else 4152 (*no_progress_loops)++; 4153 4154 /* 4155 * Make sure we converge to OOM if we cannot make any progress 4156 * several times in the row. 4157 */ 4158 if (*no_progress_loops > MAX_RECLAIM_RETRIES) { 4159 /* Before OOM, exhaust highatomic_reserve */ 4160 return unreserve_highatomic_pageblock(ac, true); 4161 } 4162 4163 /* 4164 * Keep reclaiming pages while there is a chance this will lead 4165 * somewhere. If none of the target zones can satisfy our allocation 4166 * request even if all reclaimable pages are considered then we are 4167 * screwed and have to go OOM. 4168 */ 4169 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, 4170 ac->highest_zoneidx, ac->nodemask) { 4171 unsigned long available; 4172 unsigned long reclaimable; 4173 unsigned long min_wmark = min_wmark_pages(zone); 4174 bool wmark; 4175 4176 available = reclaimable = zone_reclaimable_pages(zone); 4177 available += zone_page_state_snapshot(zone, NR_FREE_PAGES); 4178 4179 /* 4180 * Would the allocation succeed if we reclaimed all 4181 * reclaimable pages? 4182 */ 4183 wmark = __zone_watermark_ok(zone, order, min_wmark, 4184 ac->highest_zoneidx, alloc_flags, available); 4185 trace_reclaim_retry_zone(z, order, reclaimable, 4186 available, min_wmark, *no_progress_loops, wmark); 4187 if (wmark) { 4188 ret = true; 4189 break; 4190 } 4191 } 4192 4193 /* 4194 * Memory allocation/reclaim might be called from a WQ context and the 4195 * current implementation of the WQ concurrency control doesn't 4196 * recognize that a particular WQ is congested if the worker thread is 4197 * looping without ever sleeping. Therefore we have to do a short sleep 4198 * here rather than calling cond_resched(). 4199 */ 4200 if (current->flags & PF_WQ_WORKER) 4201 schedule_timeout_uninterruptible(1); 4202 else 4203 cond_resched(); 4204 return ret; 4205 } 4206 4207 static inline bool 4208 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac) 4209 { 4210 /* 4211 * It's possible that cpuset's mems_allowed and the nodemask from 4212 * mempolicy don't intersect. This should be normally dealt with by 4213 * policy_nodemask(), but it's possible to race with cpuset update in 4214 * such a way the check therein was true, and then it became false 4215 * before we got our cpuset_mems_cookie here. 4216 * This assumes that for all allocations, ac->nodemask can come only 4217 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored 4218 * when it does not intersect with the cpuset restrictions) or the 4219 * caller can deal with a violated nodemask. 4220 */ 4221 if (cpusets_enabled() && ac->nodemask && 4222 !cpuset_nodemask_valid_mems_allowed(ac->nodemask)) { 4223 ac->nodemask = NULL; 4224 return true; 4225 } 4226 4227 /* 4228 * When updating a task's mems_allowed or mempolicy nodemask, it is 4229 * possible to race with parallel threads in such a way that our 4230 * allocation can fail while the mask is being updated. If we are about 4231 * to fail, check if the cpuset changed during allocation and if so, 4232 * retry. 4233 */ 4234 if (read_mems_allowed_retry(cpuset_mems_cookie)) 4235 return true; 4236 4237 return false; 4238 } 4239 4240 static inline struct page * 4241 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order, 4242 struct alloc_context *ac) 4243 { 4244 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM; 4245 const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER; 4246 struct page *page = NULL; 4247 unsigned int alloc_flags; 4248 unsigned long did_some_progress; 4249 enum compact_priority compact_priority; 4250 enum compact_result compact_result; 4251 int compaction_retries; 4252 int no_progress_loops; 4253 unsigned int cpuset_mems_cookie; 4254 unsigned int zonelist_iter_cookie; 4255 int reserve_flags; 4256 4257 restart: 4258 compaction_retries = 0; 4259 no_progress_loops = 0; 4260 compact_priority = DEF_COMPACT_PRIORITY; 4261 cpuset_mems_cookie = read_mems_allowed_begin(); 4262 zonelist_iter_cookie = zonelist_iter_begin(); 4263 4264 /* 4265 * The fast path uses conservative alloc_flags to succeed only until 4266 * kswapd needs to be woken up, and to avoid the cost of setting up 4267 * alloc_flags precisely. So we do that now. 4268 */ 4269 alloc_flags = gfp_to_alloc_flags(gfp_mask, order); 4270 4271 /* 4272 * We need to recalculate the starting point for the zonelist iterator 4273 * because we might have used different nodemask in the fast path, or 4274 * there was a cpuset modification and we are retrying - otherwise we 4275 * could end up iterating over non-eligible zones endlessly. 4276 */ 4277 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4278 ac->highest_zoneidx, ac->nodemask); 4279 if (!ac->preferred_zoneref->zone) 4280 goto nopage; 4281 4282 /* 4283 * Check for insane configurations where the cpuset doesn't contain 4284 * any suitable zone to satisfy the request - e.g. non-movable 4285 * GFP_HIGHUSER allocations from MOVABLE nodes only. 4286 */ 4287 if (cpusets_insane_config() && (gfp_mask & __GFP_HARDWALL)) { 4288 struct zoneref *z = first_zones_zonelist(ac->zonelist, 4289 ac->highest_zoneidx, 4290 &cpuset_current_mems_allowed); 4291 if (!z->zone) 4292 goto nopage; 4293 } 4294 4295 if (alloc_flags & ALLOC_KSWAPD) 4296 wake_all_kswapds(order, gfp_mask, ac); 4297 4298 /* 4299 * The adjusted alloc_flags might result in immediate success, so try 4300 * that first 4301 */ 4302 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4303 if (page) 4304 goto got_pg; 4305 4306 /* 4307 * For costly allocations, try direct compaction first, as it's likely 4308 * that we have enough base pages and don't need to reclaim. For non- 4309 * movable high-order allocations, do that as well, as compaction will 4310 * try prevent permanent fragmentation by migrating from blocks of the 4311 * same migratetype. 4312 * Don't try this for allocations that are allowed to ignore 4313 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen. 4314 */ 4315 if (can_direct_reclaim && 4316 (costly_order || 4317 (order > 0 && ac->migratetype != MIGRATE_MOVABLE)) 4318 && !gfp_pfmemalloc_allowed(gfp_mask)) { 4319 page = __alloc_pages_direct_compact(gfp_mask, order, 4320 alloc_flags, ac, 4321 INIT_COMPACT_PRIORITY, 4322 &compact_result); 4323 if (page) 4324 goto got_pg; 4325 4326 /* 4327 * Checks for costly allocations with __GFP_NORETRY, which 4328 * includes some THP page fault allocations 4329 */ 4330 if (costly_order && (gfp_mask & __GFP_NORETRY)) { 4331 /* 4332 * If allocating entire pageblock(s) and compaction 4333 * failed because all zones are below low watermarks 4334 * or is prohibited because it recently failed at this 4335 * order, fail immediately unless the allocator has 4336 * requested compaction and reclaim retry. 4337 * 4338 * Reclaim is 4339 * - potentially very expensive because zones are far 4340 * below their low watermarks or this is part of very 4341 * bursty high order allocations, 4342 * - not guaranteed to help because isolate_freepages() 4343 * may not iterate over freed pages as part of its 4344 * linear scan, and 4345 * - unlikely to make entire pageblocks free on its 4346 * own. 4347 */ 4348 if (compact_result == COMPACT_SKIPPED || 4349 compact_result == COMPACT_DEFERRED) 4350 goto nopage; 4351 4352 /* 4353 * Looks like reclaim/compaction is worth trying, but 4354 * sync compaction could be very expensive, so keep 4355 * using async compaction. 4356 */ 4357 compact_priority = INIT_COMPACT_PRIORITY; 4358 } 4359 } 4360 4361 retry: 4362 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */ 4363 if (alloc_flags & ALLOC_KSWAPD) 4364 wake_all_kswapds(order, gfp_mask, ac); 4365 4366 reserve_flags = __gfp_pfmemalloc_flags(gfp_mask); 4367 if (reserve_flags) 4368 alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, reserve_flags) | 4369 (alloc_flags & ALLOC_KSWAPD); 4370 4371 /* 4372 * Reset the nodemask and zonelist iterators if memory policies can be 4373 * ignored. These allocations are high priority and system rather than 4374 * user oriented. 4375 */ 4376 if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) { 4377 ac->nodemask = NULL; 4378 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4379 ac->highest_zoneidx, ac->nodemask); 4380 } 4381 4382 /* Attempt with potentially adjusted zonelist and alloc_flags */ 4383 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac); 4384 if (page) 4385 goto got_pg; 4386 4387 /* Caller is not willing to reclaim, we can't balance anything */ 4388 if (!can_direct_reclaim) 4389 goto nopage; 4390 4391 /* Avoid recursion of direct reclaim */ 4392 if (current->flags & PF_MEMALLOC) 4393 goto nopage; 4394 4395 /* Try direct reclaim and then allocating */ 4396 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac, 4397 &did_some_progress); 4398 if (page) 4399 goto got_pg; 4400 4401 /* Try direct compaction and then allocating */ 4402 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac, 4403 compact_priority, &compact_result); 4404 if (page) 4405 goto got_pg; 4406 4407 /* Do not loop if specifically requested */ 4408 if (gfp_mask & __GFP_NORETRY) 4409 goto nopage; 4410 4411 /* 4412 * Do not retry costly high order allocations unless they are 4413 * __GFP_RETRY_MAYFAIL 4414 */ 4415 if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL)) 4416 goto nopage; 4417 4418 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags, 4419 did_some_progress > 0, &no_progress_loops)) 4420 goto retry; 4421 4422 /* 4423 * It doesn't make any sense to retry for the compaction if the order-0 4424 * reclaim is not able to make any progress because the current 4425 * implementation of the compaction depends on the sufficient amount 4426 * of free memory (see __compaction_suitable) 4427 */ 4428 if (did_some_progress > 0 && 4429 should_compact_retry(ac, order, alloc_flags, 4430 compact_result, &compact_priority, 4431 &compaction_retries)) 4432 goto retry; 4433 4434 4435 /* 4436 * Deal with possible cpuset update races or zonelist updates to avoid 4437 * a unnecessary OOM kill. 4438 */ 4439 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4440 check_retry_zonelist(zonelist_iter_cookie)) 4441 goto restart; 4442 4443 /* Reclaim has failed us, start killing things */ 4444 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress); 4445 if (page) 4446 goto got_pg; 4447 4448 /* Avoid allocations with no watermarks from looping endlessly */ 4449 if (tsk_is_oom_victim(current) && 4450 (alloc_flags & ALLOC_OOM || 4451 (gfp_mask & __GFP_NOMEMALLOC))) 4452 goto nopage; 4453 4454 /* Retry as long as the OOM killer is making progress */ 4455 if (did_some_progress) { 4456 no_progress_loops = 0; 4457 goto retry; 4458 } 4459 4460 nopage: 4461 /* 4462 * Deal with possible cpuset update races or zonelist updates to avoid 4463 * a unnecessary OOM kill. 4464 */ 4465 if (check_retry_cpuset(cpuset_mems_cookie, ac) || 4466 check_retry_zonelist(zonelist_iter_cookie)) 4467 goto restart; 4468 4469 /* 4470 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure 4471 * we always retry 4472 */ 4473 if (gfp_mask & __GFP_NOFAIL) { 4474 /* 4475 * All existing users of the __GFP_NOFAIL are blockable, so warn 4476 * of any new users that actually require GFP_NOWAIT 4477 */ 4478 if (WARN_ON_ONCE_GFP(!can_direct_reclaim, gfp_mask)) 4479 goto fail; 4480 4481 /* 4482 * PF_MEMALLOC request from this context is rather bizarre 4483 * because we cannot reclaim anything and only can loop waiting 4484 * for somebody to do a work for us 4485 */ 4486 WARN_ON_ONCE_GFP(current->flags & PF_MEMALLOC, gfp_mask); 4487 4488 /* 4489 * non failing costly orders are a hard requirement which we 4490 * are not prepared for much so let's warn about these users 4491 * so that we can identify them and convert them to something 4492 * else. 4493 */ 4494 WARN_ON_ONCE_GFP(costly_order, gfp_mask); 4495 4496 /* 4497 * Help non-failing allocations by giving some access to memory 4498 * reserves normally used for high priority non-blocking 4499 * allocations but do not use ALLOC_NO_WATERMARKS because this 4500 * could deplete whole memory reserves which would just make 4501 * the situation worse. 4502 */ 4503 page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_MIN_RESERVE, ac); 4504 if (page) 4505 goto got_pg; 4506 4507 cond_resched(); 4508 goto retry; 4509 } 4510 fail: 4511 warn_alloc(gfp_mask, ac->nodemask, 4512 "page allocation failure: order:%u", order); 4513 got_pg: 4514 return page; 4515 } 4516 4517 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order, 4518 int preferred_nid, nodemask_t *nodemask, 4519 struct alloc_context *ac, gfp_t *alloc_gfp, 4520 unsigned int *alloc_flags) 4521 { 4522 ac->highest_zoneidx = gfp_zone(gfp_mask); 4523 ac->zonelist = node_zonelist(preferred_nid, gfp_mask); 4524 ac->nodemask = nodemask; 4525 ac->migratetype = gfp_migratetype(gfp_mask); 4526 4527 if (cpusets_enabled()) { 4528 *alloc_gfp |= __GFP_HARDWALL; 4529 /* 4530 * When we are in the interrupt context, it is irrelevant 4531 * to the current task context. It means that any node ok. 4532 */ 4533 if (in_task() && !ac->nodemask) 4534 ac->nodemask = &cpuset_current_mems_allowed; 4535 else 4536 *alloc_flags |= ALLOC_CPUSET; 4537 } 4538 4539 might_alloc(gfp_mask); 4540 4541 if (should_fail_alloc_page(gfp_mask, order)) 4542 return false; 4543 4544 *alloc_flags = gfp_to_alloc_flags_cma(gfp_mask, *alloc_flags); 4545 4546 /* Dirty zone balancing only done in the fast path */ 4547 ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE); 4548 4549 /* 4550 * The preferred zone is used for statistics but crucially it is 4551 * also used as the starting point for the zonelist iterator. It 4552 * may get reset for allocations that ignore memory policies. 4553 */ 4554 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist, 4555 ac->highest_zoneidx, ac->nodemask); 4556 4557 return true; 4558 } 4559 4560 /* 4561 * __alloc_pages_bulk - Allocate a number of order-0 pages to a list or array 4562 * @gfp: GFP flags for the allocation 4563 * @preferred_nid: The preferred NUMA node ID to allocate from 4564 * @nodemask: Set of nodes to allocate from, may be NULL 4565 * @nr_pages: The number of pages desired on the list or array 4566 * @page_list: Optional list to store the allocated pages 4567 * @page_array: Optional array to store the pages 4568 * 4569 * This is a batched version of the page allocator that attempts to 4570 * allocate nr_pages quickly. Pages are added to page_list if page_list 4571 * is not NULL, otherwise it is assumed that the page_array is valid. 4572 * 4573 * For lists, nr_pages is the number of pages that should be allocated. 4574 * 4575 * For arrays, only NULL elements are populated with pages and nr_pages 4576 * is the maximum number of pages that will be stored in the array. 4577 * 4578 * Returns the number of pages on the list or array. 4579 */ 4580 unsigned long __alloc_pages_bulk(gfp_t gfp, int preferred_nid, 4581 nodemask_t *nodemask, int nr_pages, 4582 struct list_head *page_list, 4583 struct page **page_array) 4584 { 4585 struct page *page; 4586 unsigned long __maybe_unused UP_flags; 4587 struct zone *zone; 4588 struct zoneref *z; 4589 struct per_cpu_pages *pcp; 4590 struct list_head *pcp_list; 4591 struct alloc_context ac; 4592 gfp_t alloc_gfp; 4593 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4594 int nr_populated = 0, nr_account = 0; 4595 4596 /* 4597 * Skip populated array elements to determine if any pages need 4598 * to be allocated before disabling IRQs. 4599 */ 4600 while (page_array && nr_populated < nr_pages && page_array[nr_populated]) 4601 nr_populated++; 4602 4603 /* No pages requested? */ 4604 if (unlikely(nr_pages <= 0)) 4605 goto out; 4606 4607 /* Already populated array? */ 4608 if (unlikely(page_array && nr_pages - nr_populated == 0)) 4609 goto out; 4610 4611 /* Bulk allocator does not support memcg accounting. */ 4612 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT)) 4613 goto failed; 4614 4615 /* Use the single page allocator for one page. */ 4616 if (nr_pages - nr_populated == 1) 4617 goto failed; 4618 4619 #ifdef CONFIG_PAGE_OWNER 4620 /* 4621 * PAGE_OWNER may recurse into the allocator to allocate space to 4622 * save the stack with pagesets.lock held. Releasing/reacquiring 4623 * removes much of the performance benefit of bulk allocation so 4624 * force the caller to allocate one page at a time as it'll have 4625 * similar performance to added complexity to the bulk allocator. 4626 */ 4627 if (static_branch_unlikely(&page_owner_inited)) 4628 goto failed; 4629 #endif 4630 4631 /* May set ALLOC_NOFRAGMENT, fragmentation will return 1 page. */ 4632 gfp &= gfp_allowed_mask; 4633 alloc_gfp = gfp; 4634 if (!prepare_alloc_pages(gfp, 0, preferred_nid, nodemask, &ac, &alloc_gfp, &alloc_flags)) 4635 goto out; 4636 gfp = alloc_gfp; 4637 4638 /* Find an allowed local zone that meets the low watermark. */ 4639 for_each_zone_zonelist_nodemask(zone, z, ac.zonelist, ac.highest_zoneidx, ac.nodemask) { 4640 unsigned long mark; 4641 4642 if (cpusets_enabled() && (alloc_flags & ALLOC_CPUSET) && 4643 !__cpuset_zone_allowed(zone, gfp)) { 4644 continue; 4645 } 4646 4647 if (nr_online_nodes > 1 && zone != ac.preferred_zoneref->zone && 4648 zone_to_nid(zone) != zone_to_nid(ac.preferred_zoneref->zone)) { 4649 goto failed; 4650 } 4651 4652 mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK) + nr_pages; 4653 if (zone_watermark_fast(zone, 0, mark, 4654 zonelist_zone_idx(ac.preferred_zoneref), 4655 alloc_flags, gfp)) { 4656 break; 4657 } 4658 } 4659 4660 /* 4661 * If there are no allowed local zones that meets the watermarks then 4662 * try to allocate a single page and reclaim if necessary. 4663 */ 4664 if (unlikely(!zone)) 4665 goto failed; 4666 4667 /* spin_trylock may fail due to a parallel drain or IRQ reentrancy. */ 4668 pcp_trylock_prepare(UP_flags); 4669 pcp = pcp_spin_trylock(zone->per_cpu_pageset); 4670 if (!pcp) 4671 goto failed_irq; 4672 4673 /* Attempt the batch allocation */ 4674 pcp_list = &pcp->lists[order_to_pindex(ac.migratetype, 0)]; 4675 while (nr_populated < nr_pages) { 4676 4677 /* Skip existing pages */ 4678 if (page_array && page_array[nr_populated]) { 4679 nr_populated++; 4680 continue; 4681 } 4682 4683 page = __rmqueue_pcplist(zone, 0, ac.migratetype, alloc_flags, 4684 pcp, pcp_list); 4685 if (unlikely(!page)) { 4686 /* Try and allocate at least one page */ 4687 if (!nr_account) { 4688 pcp_spin_unlock(pcp); 4689 goto failed_irq; 4690 } 4691 break; 4692 } 4693 nr_account++; 4694 4695 prep_new_page(page, 0, gfp, 0); 4696 if (page_list) 4697 list_add(&page->lru, page_list); 4698 else 4699 page_array[nr_populated] = page; 4700 nr_populated++; 4701 } 4702 4703 pcp_spin_unlock(pcp); 4704 pcp_trylock_finish(UP_flags); 4705 4706 __count_zid_vm_events(PGALLOC, zone_idx(zone), nr_account); 4707 zone_statistics(ac.preferred_zoneref->zone, zone, nr_account); 4708 4709 out: 4710 return nr_populated; 4711 4712 failed_irq: 4713 pcp_trylock_finish(UP_flags); 4714 4715 failed: 4716 page = __alloc_pages(gfp, 0, preferred_nid, nodemask); 4717 if (page) { 4718 if (page_list) 4719 list_add(&page->lru, page_list); 4720 else 4721 page_array[nr_populated] = page; 4722 nr_populated++; 4723 } 4724 4725 goto out; 4726 } 4727 EXPORT_SYMBOL_GPL(__alloc_pages_bulk); 4728 4729 /* 4730 * This is the 'heart' of the zoned buddy allocator. 4731 */ 4732 struct page *__alloc_pages(gfp_t gfp, unsigned int order, int preferred_nid, 4733 nodemask_t *nodemask) 4734 { 4735 struct page *page; 4736 unsigned int alloc_flags = ALLOC_WMARK_LOW; 4737 gfp_t alloc_gfp; /* The gfp_t that was actually used for allocation */ 4738 struct alloc_context ac = { }; 4739 4740 /* 4741 * There are several places where we assume that the order value is sane 4742 * so bail out early if the request is out of bound. 4743 */ 4744 if (WARN_ON_ONCE_GFP(order > MAX_ORDER, gfp)) 4745 return NULL; 4746 4747 gfp &= gfp_allowed_mask; 4748 /* 4749 * Apply scoped allocation constraints. This is mainly about GFP_NOFS 4750 * resp. GFP_NOIO which has to be inherited for all allocation requests 4751 * from a particular context which has been marked by 4752 * memalloc_no{fs,io}_{save,restore}. And PF_MEMALLOC_PIN which ensures 4753 * movable zones are not used during allocation. 4754 */ 4755 gfp = current_gfp_context(gfp); 4756 alloc_gfp = gfp; 4757 if (!prepare_alloc_pages(gfp, order, preferred_nid, nodemask, &ac, 4758 &alloc_gfp, &alloc_flags)) 4759 return NULL; 4760 4761 /* 4762 * Forbid the first pass from falling back to types that fragment 4763 * memory until all local zones are considered. 4764 */ 4765 alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp); 4766 4767 /* First allocation attempt */ 4768 page = get_page_from_freelist(alloc_gfp, order, alloc_flags, &ac); 4769 if (likely(page)) 4770 goto out; 4771 4772 alloc_gfp = gfp; 4773 ac.spread_dirty_pages = false; 4774 4775 /* 4776 * Restore the original nodemask if it was potentially replaced with 4777 * &cpuset_current_mems_allowed to optimize the fast-path attempt. 4778 */ 4779 ac.nodemask = nodemask; 4780 4781 page = __alloc_pages_slowpath(alloc_gfp, order, &ac); 4782 4783 out: 4784 if (memcg_kmem_online() && (gfp & __GFP_ACCOUNT) && page && 4785 unlikely(__memcg_kmem_charge_page(page, gfp, order) != 0)) { 4786 __free_pages(page, order); 4787 page = NULL; 4788 } 4789 4790 trace_mm_page_alloc(page, order, alloc_gfp, ac.migratetype); 4791 kmsan_alloc_page(page, order, alloc_gfp); 4792 4793 return page; 4794 } 4795 EXPORT_SYMBOL(__alloc_pages); 4796 4797 struct folio *__folio_alloc(gfp_t gfp, unsigned int order, int preferred_nid, 4798 nodemask_t *nodemask) 4799 { 4800 struct page *page = __alloc_pages(gfp | __GFP_COMP, order, 4801 preferred_nid, nodemask); 4802 4803 if (page && order > 1) 4804 prep_transhuge_page(page); 4805 return (struct folio *)page; 4806 } 4807 EXPORT_SYMBOL(__folio_alloc); 4808 4809 /* 4810 * Common helper functions. Never use with __GFP_HIGHMEM because the returned 4811 * address cannot represent highmem pages. Use alloc_pages and then kmap if 4812 * you need to access high mem. 4813 */ 4814 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order) 4815 { 4816 struct page *page; 4817 4818 page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order); 4819 if (!page) 4820 return 0; 4821 return (unsigned long) page_address(page); 4822 } 4823 EXPORT_SYMBOL(__get_free_pages); 4824 4825 unsigned long get_zeroed_page(gfp_t gfp_mask) 4826 { 4827 return __get_free_page(gfp_mask | __GFP_ZERO); 4828 } 4829 EXPORT_SYMBOL(get_zeroed_page); 4830 4831 /** 4832 * __free_pages - Free pages allocated with alloc_pages(). 4833 * @page: The page pointer returned from alloc_pages(). 4834 * @order: The order of the allocation. 4835 * 4836 * This function can free multi-page allocations that are not compound 4837 * pages. It does not check that the @order passed in matches that of 4838 * the allocation, so it is easy to leak memory. Freeing more memory 4839 * than was allocated will probably emit a warning. 4840 * 4841 * If the last reference to this page is speculative, it will be released 4842 * by put_page() which only frees the first page of a non-compound 4843 * allocation. To prevent the remaining pages from being leaked, we free 4844 * the subsequent pages here. If you want to use the page's reference 4845 * count to decide when to free the allocation, you should allocate a 4846 * compound page, and use put_page() instead of __free_pages(). 4847 * 4848 * Context: May be called in interrupt context or while holding a normal 4849 * spinlock, but not in NMI context or while holding a raw spinlock. 4850 */ 4851 void __free_pages(struct page *page, unsigned int order) 4852 { 4853 /* get PageHead before we drop reference */ 4854 int head = PageHead(page); 4855 4856 if (put_page_testzero(page)) 4857 free_the_page(page, order); 4858 else if (!head) 4859 while (order-- > 0) 4860 free_the_page(page + (1 << order), order); 4861 } 4862 EXPORT_SYMBOL(__free_pages); 4863 4864 void free_pages(unsigned long addr, unsigned int order) 4865 { 4866 if (addr != 0) { 4867 VM_BUG_ON(!virt_addr_valid((void *)addr)); 4868 __free_pages(virt_to_page((void *)addr), order); 4869 } 4870 } 4871 4872 EXPORT_SYMBOL(free_pages); 4873 4874 /* 4875 * Page Fragment: 4876 * An arbitrary-length arbitrary-offset area of memory which resides 4877 * within a 0 or higher order page. Multiple fragments within that page 4878 * are individually refcounted, in the page's reference counter. 4879 * 4880 * The page_frag functions below provide a simple allocation framework for 4881 * page fragments. This is used by the network stack and network device 4882 * drivers to provide a backing region of memory for use as either an 4883 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info. 4884 */ 4885 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc, 4886 gfp_t gfp_mask) 4887 { 4888 struct page *page = NULL; 4889 gfp_t gfp = gfp_mask; 4890 4891 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4892 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY | 4893 __GFP_NOMEMALLOC; 4894 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask, 4895 PAGE_FRAG_CACHE_MAX_ORDER); 4896 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE; 4897 #endif 4898 if (unlikely(!page)) 4899 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0); 4900 4901 nc->va = page ? page_address(page) : NULL; 4902 4903 return page; 4904 } 4905 4906 void __page_frag_cache_drain(struct page *page, unsigned int count) 4907 { 4908 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page); 4909 4910 if (page_ref_sub_and_test(page, count)) 4911 free_the_page(page, compound_order(page)); 4912 } 4913 EXPORT_SYMBOL(__page_frag_cache_drain); 4914 4915 void *page_frag_alloc_align(struct page_frag_cache *nc, 4916 unsigned int fragsz, gfp_t gfp_mask, 4917 unsigned int align_mask) 4918 { 4919 unsigned int size = PAGE_SIZE; 4920 struct page *page; 4921 int offset; 4922 4923 if (unlikely(!nc->va)) { 4924 refill: 4925 page = __page_frag_cache_refill(nc, gfp_mask); 4926 if (!page) 4927 return NULL; 4928 4929 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4930 /* if size can vary use size else just use PAGE_SIZE */ 4931 size = nc->size; 4932 #endif 4933 /* Even if we own the page, we do not use atomic_set(). 4934 * This would break get_page_unless_zero() users. 4935 */ 4936 page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE); 4937 4938 /* reset page count bias and offset to start of new frag */ 4939 nc->pfmemalloc = page_is_pfmemalloc(page); 4940 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4941 nc->offset = size; 4942 } 4943 4944 offset = nc->offset - fragsz; 4945 if (unlikely(offset < 0)) { 4946 page = virt_to_page(nc->va); 4947 4948 if (!page_ref_sub_and_test(page, nc->pagecnt_bias)) 4949 goto refill; 4950 4951 if (unlikely(nc->pfmemalloc)) { 4952 free_the_page(page, compound_order(page)); 4953 goto refill; 4954 } 4955 4956 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE) 4957 /* if size can vary use size else just use PAGE_SIZE */ 4958 size = nc->size; 4959 #endif 4960 /* OK, page count is 0, we can safely set it */ 4961 set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1); 4962 4963 /* reset page count bias and offset to start of new frag */ 4964 nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1; 4965 offset = size - fragsz; 4966 if (unlikely(offset < 0)) { 4967 /* 4968 * The caller is trying to allocate a fragment 4969 * with fragsz > PAGE_SIZE but the cache isn't big 4970 * enough to satisfy the request, this may 4971 * happen in low memory conditions. 4972 * We don't release the cache page because 4973 * it could make memory pressure worse 4974 * so we simply return NULL here. 4975 */ 4976 return NULL; 4977 } 4978 } 4979 4980 nc->pagecnt_bias--; 4981 offset &= align_mask; 4982 nc->offset = offset; 4983 4984 return nc->va + offset; 4985 } 4986 EXPORT_SYMBOL(page_frag_alloc_align); 4987 4988 /* 4989 * Frees a page fragment allocated out of either a compound or order 0 page. 4990 */ 4991 void page_frag_free(void *addr) 4992 { 4993 struct page *page = virt_to_head_page(addr); 4994 4995 if (unlikely(put_page_testzero(page))) 4996 free_the_page(page, compound_order(page)); 4997 } 4998 EXPORT_SYMBOL(page_frag_free); 4999 5000 static void *make_alloc_exact(unsigned long addr, unsigned int order, 5001 size_t size) 5002 { 5003 if (addr) { 5004 unsigned long nr = DIV_ROUND_UP(size, PAGE_SIZE); 5005 struct page *page = virt_to_page((void *)addr); 5006 struct page *last = page + nr; 5007 5008 split_page_owner(page, 1 << order); 5009 split_page_memcg(page, 1 << order); 5010 while (page < --last) 5011 set_page_refcounted(last); 5012 5013 last = page + (1UL << order); 5014 for (page += nr; page < last; page++) 5015 __free_pages_ok(page, 0, FPI_TO_TAIL); 5016 } 5017 return (void *)addr; 5018 } 5019 5020 /** 5021 * alloc_pages_exact - allocate an exact number physically-contiguous pages. 5022 * @size: the number of bytes to allocate 5023 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5024 * 5025 * This function is similar to alloc_pages(), except that it allocates the 5026 * minimum number of pages to satisfy the request. alloc_pages() can only 5027 * allocate memory in power-of-two pages. 5028 * 5029 * This function is also limited by MAX_ORDER. 5030 * 5031 * Memory allocated by this function must be released by free_pages_exact(). 5032 * 5033 * Return: pointer to the allocated area or %NULL in case of error. 5034 */ 5035 void *alloc_pages_exact(size_t size, gfp_t gfp_mask) 5036 { 5037 unsigned int order = get_order(size); 5038 unsigned long addr; 5039 5040 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5041 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5042 5043 addr = __get_free_pages(gfp_mask, order); 5044 return make_alloc_exact(addr, order, size); 5045 } 5046 EXPORT_SYMBOL(alloc_pages_exact); 5047 5048 /** 5049 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous 5050 * pages on a node. 5051 * @nid: the preferred node ID where memory should be allocated 5052 * @size: the number of bytes to allocate 5053 * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP 5054 * 5055 * Like alloc_pages_exact(), but try to allocate on node nid first before falling 5056 * back. 5057 * 5058 * Return: pointer to the allocated area or %NULL in case of error. 5059 */ 5060 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask) 5061 { 5062 unsigned int order = get_order(size); 5063 struct page *p; 5064 5065 if (WARN_ON_ONCE(gfp_mask & (__GFP_COMP | __GFP_HIGHMEM))) 5066 gfp_mask &= ~(__GFP_COMP | __GFP_HIGHMEM); 5067 5068 p = alloc_pages_node(nid, gfp_mask, order); 5069 if (!p) 5070 return NULL; 5071 return make_alloc_exact((unsigned long)page_address(p), order, size); 5072 } 5073 5074 /** 5075 * free_pages_exact - release memory allocated via alloc_pages_exact() 5076 * @virt: the value returned by alloc_pages_exact. 5077 * @size: size of allocation, same value as passed to alloc_pages_exact(). 5078 * 5079 * Release the memory allocated by a previous call to alloc_pages_exact. 5080 */ 5081 void free_pages_exact(void *virt, size_t size) 5082 { 5083 unsigned long addr = (unsigned long)virt; 5084 unsigned long end = addr + PAGE_ALIGN(size); 5085 5086 while (addr < end) { 5087 free_page(addr); 5088 addr += PAGE_SIZE; 5089 } 5090 } 5091 EXPORT_SYMBOL(free_pages_exact); 5092 5093 /** 5094 * nr_free_zone_pages - count number of pages beyond high watermark 5095 * @offset: The zone index of the highest zone 5096 * 5097 * nr_free_zone_pages() counts the number of pages which are beyond the 5098 * high watermark within all zones at or below a given zone index. For each 5099 * zone, the number of pages is calculated as: 5100 * 5101 * nr_free_zone_pages = managed_pages - high_pages 5102 * 5103 * Return: number of pages beyond high watermark. 5104 */ 5105 static unsigned long nr_free_zone_pages(int offset) 5106 { 5107 struct zoneref *z; 5108 struct zone *zone; 5109 5110 /* Just pick one node, since fallback list is circular */ 5111 unsigned long sum = 0; 5112 5113 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL); 5114 5115 for_each_zone_zonelist(zone, z, zonelist, offset) { 5116 unsigned long size = zone_managed_pages(zone); 5117 unsigned long high = high_wmark_pages(zone); 5118 if (size > high) 5119 sum += size - high; 5120 } 5121 5122 return sum; 5123 } 5124 5125 /** 5126 * nr_free_buffer_pages - count number of pages beyond high watermark 5127 * 5128 * nr_free_buffer_pages() counts the number of pages which are beyond the high 5129 * watermark within ZONE_DMA and ZONE_NORMAL. 5130 * 5131 * Return: number of pages beyond high watermark within ZONE_DMA and 5132 * ZONE_NORMAL. 5133 */ 5134 unsigned long nr_free_buffer_pages(void) 5135 { 5136 return nr_free_zone_pages(gfp_zone(GFP_USER)); 5137 } 5138 EXPORT_SYMBOL_GPL(nr_free_buffer_pages); 5139 5140 static inline void show_node(struct zone *zone) 5141 { 5142 if (IS_ENABLED(CONFIG_NUMA)) 5143 printk("Node %d ", zone_to_nid(zone)); 5144 } 5145 5146 long si_mem_available(void) 5147 { 5148 long available; 5149 unsigned long pagecache; 5150 unsigned long wmark_low = 0; 5151 unsigned long pages[NR_LRU_LISTS]; 5152 unsigned long reclaimable; 5153 struct zone *zone; 5154 int lru; 5155 5156 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++) 5157 pages[lru] = global_node_page_state(NR_LRU_BASE + lru); 5158 5159 for_each_zone(zone) 5160 wmark_low += low_wmark_pages(zone); 5161 5162 /* 5163 * Estimate the amount of memory available for userspace allocations, 5164 * without causing swapping or OOM. 5165 */ 5166 available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages; 5167 5168 /* 5169 * Not all the page cache can be freed, otherwise the system will 5170 * start swapping or thrashing. Assume at least half of the page 5171 * cache, or the low watermark worth of cache, needs to stay. 5172 */ 5173 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE]; 5174 pagecache -= min(pagecache / 2, wmark_low); 5175 available += pagecache; 5176 5177 /* 5178 * Part of the reclaimable slab and other kernel memory consists of 5179 * items that are in use, and cannot be freed. Cap this estimate at the 5180 * low watermark. 5181 */ 5182 reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) + 5183 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE); 5184 available += reclaimable - min(reclaimable / 2, wmark_low); 5185 5186 if (available < 0) 5187 available = 0; 5188 return available; 5189 } 5190 EXPORT_SYMBOL_GPL(si_mem_available); 5191 5192 void si_meminfo(struct sysinfo *val) 5193 { 5194 val->totalram = totalram_pages(); 5195 val->sharedram = global_node_page_state(NR_SHMEM); 5196 val->freeram = global_zone_page_state(NR_FREE_PAGES); 5197 val->bufferram = nr_blockdev_pages(); 5198 val->totalhigh = totalhigh_pages(); 5199 val->freehigh = nr_free_highpages(); 5200 val->mem_unit = PAGE_SIZE; 5201 } 5202 5203 EXPORT_SYMBOL(si_meminfo); 5204 5205 #ifdef CONFIG_NUMA 5206 void si_meminfo_node(struct sysinfo *val, int nid) 5207 { 5208 int zone_type; /* needs to be signed */ 5209 unsigned long managed_pages = 0; 5210 unsigned long managed_highpages = 0; 5211 unsigned long free_highpages = 0; 5212 pg_data_t *pgdat = NODE_DATA(nid); 5213 5214 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) 5215 managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]); 5216 val->totalram = managed_pages; 5217 val->sharedram = node_page_state(pgdat, NR_SHMEM); 5218 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES); 5219 #ifdef CONFIG_HIGHMEM 5220 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) { 5221 struct zone *zone = &pgdat->node_zones[zone_type]; 5222 5223 if (is_highmem(zone)) { 5224 managed_highpages += zone_managed_pages(zone); 5225 free_highpages += zone_page_state(zone, NR_FREE_PAGES); 5226 } 5227 } 5228 val->totalhigh = managed_highpages; 5229 val->freehigh = free_highpages; 5230 #else 5231 val->totalhigh = managed_highpages; 5232 val->freehigh = free_highpages; 5233 #endif 5234 val->mem_unit = PAGE_SIZE; 5235 } 5236 #endif 5237 5238 /* 5239 * Determine whether the node should be displayed or not, depending on whether 5240 * SHOW_MEM_FILTER_NODES was passed to show_free_areas(). 5241 */ 5242 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask) 5243 { 5244 if (!(flags & SHOW_MEM_FILTER_NODES)) 5245 return false; 5246 5247 /* 5248 * no node mask - aka implicit memory numa policy. Do not bother with 5249 * the synchronization - read_mems_allowed_begin - because we do not 5250 * have to be precise here. 5251 */ 5252 if (!nodemask) 5253 nodemask = &cpuset_current_mems_allowed; 5254 5255 return !node_isset(nid, *nodemask); 5256 } 5257 5258 static void show_migration_types(unsigned char type) 5259 { 5260 static const char types[MIGRATE_TYPES] = { 5261 [MIGRATE_UNMOVABLE] = 'U', 5262 [MIGRATE_MOVABLE] = 'M', 5263 [MIGRATE_RECLAIMABLE] = 'E', 5264 [MIGRATE_HIGHATOMIC] = 'H', 5265 #ifdef CONFIG_CMA 5266 [MIGRATE_CMA] = 'C', 5267 #endif 5268 #ifdef CONFIG_MEMORY_ISOLATION 5269 [MIGRATE_ISOLATE] = 'I', 5270 #endif 5271 }; 5272 char tmp[MIGRATE_TYPES + 1]; 5273 char *p = tmp; 5274 int i; 5275 5276 for (i = 0; i < MIGRATE_TYPES; i++) { 5277 if (type & (1 << i)) 5278 *p++ = types[i]; 5279 } 5280 5281 *p = '\0'; 5282 printk(KERN_CONT "(%s) ", tmp); 5283 } 5284 5285 static bool node_has_managed_zones(pg_data_t *pgdat, int max_zone_idx) 5286 { 5287 int zone_idx; 5288 for (zone_idx = 0; zone_idx <= max_zone_idx; zone_idx++) 5289 if (zone_managed_pages(pgdat->node_zones + zone_idx)) 5290 return true; 5291 return false; 5292 } 5293 5294 /* 5295 * Show free area list (used inside shift_scroll-lock stuff) 5296 * We also calculate the percentage fragmentation. We do this by counting the 5297 * memory on each free list with the exception of the first item on the list. 5298 * 5299 * Bits in @filter: 5300 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's 5301 * cpuset. 5302 */ 5303 void __show_free_areas(unsigned int filter, nodemask_t *nodemask, int max_zone_idx) 5304 { 5305 unsigned long free_pcp = 0; 5306 int cpu, nid; 5307 struct zone *zone; 5308 pg_data_t *pgdat; 5309 5310 for_each_populated_zone(zone) { 5311 if (zone_idx(zone) > max_zone_idx) 5312 continue; 5313 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5314 continue; 5315 5316 for_each_online_cpu(cpu) 5317 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5318 } 5319 5320 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n" 5321 " active_file:%lu inactive_file:%lu isolated_file:%lu\n" 5322 " unevictable:%lu dirty:%lu writeback:%lu\n" 5323 " slab_reclaimable:%lu slab_unreclaimable:%lu\n" 5324 " mapped:%lu shmem:%lu pagetables:%lu\n" 5325 " sec_pagetables:%lu bounce:%lu\n" 5326 " kernel_misc_reclaimable:%lu\n" 5327 " free:%lu free_pcp:%lu free_cma:%lu\n", 5328 global_node_page_state(NR_ACTIVE_ANON), 5329 global_node_page_state(NR_INACTIVE_ANON), 5330 global_node_page_state(NR_ISOLATED_ANON), 5331 global_node_page_state(NR_ACTIVE_FILE), 5332 global_node_page_state(NR_INACTIVE_FILE), 5333 global_node_page_state(NR_ISOLATED_FILE), 5334 global_node_page_state(NR_UNEVICTABLE), 5335 global_node_page_state(NR_FILE_DIRTY), 5336 global_node_page_state(NR_WRITEBACK), 5337 global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B), 5338 global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B), 5339 global_node_page_state(NR_FILE_MAPPED), 5340 global_node_page_state(NR_SHMEM), 5341 global_node_page_state(NR_PAGETABLE), 5342 global_node_page_state(NR_SECONDARY_PAGETABLE), 5343 global_zone_page_state(NR_BOUNCE), 5344 global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE), 5345 global_zone_page_state(NR_FREE_PAGES), 5346 free_pcp, 5347 global_zone_page_state(NR_FREE_CMA_PAGES)); 5348 5349 for_each_online_pgdat(pgdat) { 5350 if (show_mem_node_skip(filter, pgdat->node_id, nodemask)) 5351 continue; 5352 if (!node_has_managed_zones(pgdat, max_zone_idx)) 5353 continue; 5354 5355 printk("Node %d" 5356 " active_anon:%lukB" 5357 " inactive_anon:%lukB" 5358 " active_file:%lukB" 5359 " inactive_file:%lukB" 5360 " unevictable:%lukB" 5361 " isolated(anon):%lukB" 5362 " isolated(file):%lukB" 5363 " mapped:%lukB" 5364 " dirty:%lukB" 5365 " writeback:%lukB" 5366 " shmem:%lukB" 5367 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5368 " shmem_thp: %lukB" 5369 " shmem_pmdmapped: %lukB" 5370 " anon_thp: %lukB" 5371 #endif 5372 " writeback_tmp:%lukB" 5373 " kernel_stack:%lukB" 5374 #ifdef CONFIG_SHADOW_CALL_STACK 5375 " shadow_call_stack:%lukB" 5376 #endif 5377 " pagetables:%lukB" 5378 " sec_pagetables:%lukB" 5379 " all_unreclaimable? %s" 5380 "\n", 5381 pgdat->node_id, 5382 K(node_page_state(pgdat, NR_ACTIVE_ANON)), 5383 K(node_page_state(pgdat, NR_INACTIVE_ANON)), 5384 K(node_page_state(pgdat, NR_ACTIVE_FILE)), 5385 K(node_page_state(pgdat, NR_INACTIVE_FILE)), 5386 K(node_page_state(pgdat, NR_UNEVICTABLE)), 5387 K(node_page_state(pgdat, NR_ISOLATED_ANON)), 5388 K(node_page_state(pgdat, NR_ISOLATED_FILE)), 5389 K(node_page_state(pgdat, NR_FILE_MAPPED)), 5390 K(node_page_state(pgdat, NR_FILE_DIRTY)), 5391 K(node_page_state(pgdat, NR_WRITEBACK)), 5392 K(node_page_state(pgdat, NR_SHMEM)), 5393 #ifdef CONFIG_TRANSPARENT_HUGEPAGE 5394 K(node_page_state(pgdat, NR_SHMEM_THPS)), 5395 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)), 5396 K(node_page_state(pgdat, NR_ANON_THPS)), 5397 #endif 5398 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)), 5399 node_page_state(pgdat, NR_KERNEL_STACK_KB), 5400 #ifdef CONFIG_SHADOW_CALL_STACK 5401 node_page_state(pgdat, NR_KERNEL_SCS_KB), 5402 #endif 5403 K(node_page_state(pgdat, NR_PAGETABLE)), 5404 K(node_page_state(pgdat, NR_SECONDARY_PAGETABLE)), 5405 pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ? 5406 "yes" : "no"); 5407 } 5408 5409 for_each_populated_zone(zone) { 5410 int i; 5411 5412 if (zone_idx(zone) > max_zone_idx) 5413 continue; 5414 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5415 continue; 5416 5417 free_pcp = 0; 5418 for_each_online_cpu(cpu) 5419 free_pcp += per_cpu_ptr(zone->per_cpu_pageset, cpu)->count; 5420 5421 show_node(zone); 5422 printk(KERN_CONT 5423 "%s" 5424 " free:%lukB" 5425 " boost:%lukB" 5426 " min:%lukB" 5427 " low:%lukB" 5428 " high:%lukB" 5429 " reserved_highatomic:%luKB" 5430 " active_anon:%lukB" 5431 " inactive_anon:%lukB" 5432 " active_file:%lukB" 5433 " inactive_file:%lukB" 5434 " unevictable:%lukB" 5435 " writepending:%lukB" 5436 " present:%lukB" 5437 " managed:%lukB" 5438 " mlocked:%lukB" 5439 " bounce:%lukB" 5440 " free_pcp:%lukB" 5441 " local_pcp:%ukB" 5442 " free_cma:%lukB" 5443 "\n", 5444 zone->name, 5445 K(zone_page_state(zone, NR_FREE_PAGES)), 5446 K(zone->watermark_boost), 5447 K(min_wmark_pages(zone)), 5448 K(low_wmark_pages(zone)), 5449 K(high_wmark_pages(zone)), 5450 K(zone->nr_reserved_highatomic), 5451 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)), 5452 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)), 5453 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)), 5454 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)), 5455 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)), 5456 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)), 5457 K(zone->present_pages), 5458 K(zone_managed_pages(zone)), 5459 K(zone_page_state(zone, NR_MLOCK)), 5460 K(zone_page_state(zone, NR_BOUNCE)), 5461 K(free_pcp), 5462 K(this_cpu_read(zone->per_cpu_pageset->count)), 5463 K(zone_page_state(zone, NR_FREE_CMA_PAGES))); 5464 printk("lowmem_reserve[]:"); 5465 for (i = 0; i < MAX_NR_ZONES; i++) 5466 printk(KERN_CONT " %ld", zone->lowmem_reserve[i]); 5467 printk(KERN_CONT "\n"); 5468 } 5469 5470 for_each_populated_zone(zone) { 5471 unsigned int order; 5472 unsigned long nr[MAX_ORDER + 1], flags, total = 0; 5473 unsigned char types[MAX_ORDER + 1]; 5474 5475 if (zone_idx(zone) > max_zone_idx) 5476 continue; 5477 if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask)) 5478 continue; 5479 show_node(zone); 5480 printk(KERN_CONT "%s: ", zone->name); 5481 5482 spin_lock_irqsave(&zone->lock, flags); 5483 for (order = 0; order <= MAX_ORDER; order++) { 5484 struct free_area *area = &zone->free_area[order]; 5485 int type; 5486 5487 nr[order] = area->nr_free; 5488 total += nr[order] << order; 5489 5490 types[order] = 0; 5491 for (type = 0; type < MIGRATE_TYPES; type++) { 5492 if (!free_area_empty(area, type)) 5493 types[order] |= 1 << type; 5494 } 5495 } 5496 spin_unlock_irqrestore(&zone->lock, flags); 5497 for (order = 0; order <= MAX_ORDER; order++) { 5498 printk(KERN_CONT "%lu*%lukB ", 5499 nr[order], K(1UL) << order); 5500 if (nr[order]) 5501 show_migration_types(types[order]); 5502 } 5503 printk(KERN_CONT "= %lukB\n", K(total)); 5504 } 5505 5506 for_each_online_node(nid) { 5507 if (show_mem_node_skip(filter, nid, nodemask)) 5508 continue; 5509 hugetlb_show_meminfo_node(nid); 5510 } 5511 5512 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES)); 5513 5514 show_swap_cache_info(); 5515 } 5516 5517 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref) 5518 { 5519 zoneref->zone = zone; 5520 zoneref->zone_idx = zone_idx(zone); 5521 } 5522 5523 /* 5524 * Builds allocation fallback zone lists. 5525 * 5526 * Add all populated zones of a node to the zonelist. 5527 */ 5528 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs) 5529 { 5530 struct zone *zone; 5531 enum zone_type zone_type = MAX_NR_ZONES; 5532 int nr_zones = 0; 5533 5534 do { 5535 zone_type--; 5536 zone = pgdat->node_zones + zone_type; 5537 if (populated_zone(zone)) { 5538 zoneref_set_zone(zone, &zonerefs[nr_zones++]); 5539 check_highest_zone(zone_type); 5540 } 5541 } while (zone_type); 5542 5543 return nr_zones; 5544 } 5545 5546 #ifdef CONFIG_NUMA 5547 5548 static int __parse_numa_zonelist_order(char *s) 5549 { 5550 /* 5551 * We used to support different zonelists modes but they turned 5552 * out to be just not useful. Let's keep the warning in place 5553 * if somebody still use the cmd line parameter so that we do 5554 * not fail it silently 5555 */ 5556 if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) { 5557 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s); 5558 return -EINVAL; 5559 } 5560 return 0; 5561 } 5562 5563 char numa_zonelist_order[] = "Node"; 5564 5565 /* 5566 * sysctl handler for numa_zonelist_order 5567 */ 5568 int numa_zonelist_order_handler(struct ctl_table *table, int write, 5569 void *buffer, size_t *length, loff_t *ppos) 5570 { 5571 if (write) 5572 return __parse_numa_zonelist_order(buffer); 5573 return proc_dostring(table, write, buffer, length, ppos); 5574 } 5575 5576 5577 static int node_load[MAX_NUMNODES]; 5578 5579 /** 5580 * find_next_best_node - find the next node that should appear in a given node's fallback list 5581 * @node: node whose fallback list we're appending 5582 * @used_node_mask: nodemask_t of already used nodes 5583 * 5584 * We use a number of factors to determine which is the next node that should 5585 * appear on a given node's fallback list. The node should not have appeared 5586 * already in @node's fallback list, and it should be the next closest node 5587 * according to the distance array (which contains arbitrary distance values 5588 * from each node to each node in the system), and should also prefer nodes 5589 * with no CPUs, since presumably they'll have very little allocation pressure 5590 * on them otherwise. 5591 * 5592 * Return: node id of the found node or %NUMA_NO_NODE if no node is found. 5593 */ 5594 int find_next_best_node(int node, nodemask_t *used_node_mask) 5595 { 5596 int n, val; 5597 int min_val = INT_MAX; 5598 int best_node = NUMA_NO_NODE; 5599 5600 /* Use the local node if we haven't already */ 5601 if (!node_isset(node, *used_node_mask)) { 5602 node_set(node, *used_node_mask); 5603 return node; 5604 } 5605 5606 for_each_node_state(n, N_MEMORY) { 5607 5608 /* Don't want a node to appear more than once */ 5609 if (node_isset(n, *used_node_mask)) 5610 continue; 5611 5612 /* Use the distance array to find the distance */ 5613 val = node_distance(node, n); 5614 5615 /* Penalize nodes under us ("prefer the next node") */ 5616 val += (n < node); 5617 5618 /* Give preference to headless and unused nodes */ 5619 if (!cpumask_empty(cpumask_of_node(n))) 5620 val += PENALTY_FOR_NODE_WITH_CPUS; 5621 5622 /* Slight preference for less loaded node */ 5623 val *= MAX_NUMNODES; 5624 val += node_load[n]; 5625 5626 if (val < min_val) { 5627 min_val = val; 5628 best_node = n; 5629 } 5630 } 5631 5632 if (best_node >= 0) 5633 node_set(best_node, *used_node_mask); 5634 5635 return best_node; 5636 } 5637 5638 5639 /* 5640 * Build zonelists ordered by node and zones within node. 5641 * This results in maximum locality--normal zone overflows into local 5642 * DMA zone, if any--but risks exhausting DMA zone. 5643 */ 5644 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order, 5645 unsigned nr_nodes) 5646 { 5647 struct zoneref *zonerefs; 5648 int i; 5649 5650 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5651 5652 for (i = 0; i < nr_nodes; i++) { 5653 int nr_zones; 5654 5655 pg_data_t *node = NODE_DATA(node_order[i]); 5656 5657 nr_zones = build_zonerefs_node(node, zonerefs); 5658 zonerefs += nr_zones; 5659 } 5660 zonerefs->zone = NULL; 5661 zonerefs->zone_idx = 0; 5662 } 5663 5664 /* 5665 * Build gfp_thisnode zonelists 5666 */ 5667 static void build_thisnode_zonelists(pg_data_t *pgdat) 5668 { 5669 struct zoneref *zonerefs; 5670 int nr_zones; 5671 5672 zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs; 5673 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5674 zonerefs += nr_zones; 5675 zonerefs->zone = NULL; 5676 zonerefs->zone_idx = 0; 5677 } 5678 5679 /* 5680 * Build zonelists ordered by zone and nodes within zones. 5681 * This results in conserving DMA zone[s] until all Normal memory is 5682 * exhausted, but results in overflowing to remote node while memory 5683 * may still exist in local DMA zone. 5684 */ 5685 5686 static void build_zonelists(pg_data_t *pgdat) 5687 { 5688 static int node_order[MAX_NUMNODES]; 5689 int node, nr_nodes = 0; 5690 nodemask_t used_mask = NODE_MASK_NONE; 5691 int local_node, prev_node; 5692 5693 /* NUMA-aware ordering of nodes */ 5694 local_node = pgdat->node_id; 5695 prev_node = local_node; 5696 5697 memset(node_order, 0, sizeof(node_order)); 5698 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) { 5699 /* 5700 * We don't want to pressure a particular node. 5701 * So adding penalty to the first node in same 5702 * distance group to make it round-robin. 5703 */ 5704 if (node_distance(local_node, node) != 5705 node_distance(local_node, prev_node)) 5706 node_load[node] += 1; 5707 5708 node_order[nr_nodes++] = node; 5709 prev_node = node; 5710 } 5711 5712 build_zonelists_in_node_order(pgdat, node_order, nr_nodes); 5713 build_thisnode_zonelists(pgdat); 5714 pr_info("Fallback order for Node %d: ", local_node); 5715 for (node = 0; node < nr_nodes; node++) 5716 pr_cont("%d ", node_order[node]); 5717 pr_cont("\n"); 5718 } 5719 5720 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5721 /* 5722 * Return node id of node used for "local" allocations. 5723 * I.e., first node id of first zone in arg node's generic zonelist. 5724 * Used for initializing percpu 'numa_mem', which is used primarily 5725 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist. 5726 */ 5727 int local_memory_node(int node) 5728 { 5729 struct zoneref *z; 5730 5731 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL), 5732 gfp_zone(GFP_KERNEL), 5733 NULL); 5734 return zone_to_nid(z->zone); 5735 } 5736 #endif 5737 5738 static void setup_min_unmapped_ratio(void); 5739 static void setup_min_slab_ratio(void); 5740 #else /* CONFIG_NUMA */ 5741 5742 static void build_zonelists(pg_data_t *pgdat) 5743 { 5744 int node, local_node; 5745 struct zoneref *zonerefs; 5746 int nr_zones; 5747 5748 local_node = pgdat->node_id; 5749 5750 zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs; 5751 nr_zones = build_zonerefs_node(pgdat, zonerefs); 5752 zonerefs += nr_zones; 5753 5754 /* 5755 * Now we build the zonelist so that it contains the zones 5756 * of all the other nodes. 5757 * We don't want to pressure a particular node, so when 5758 * building the zones for node N, we make sure that the 5759 * zones coming right after the local ones are those from 5760 * node N+1 (modulo N) 5761 */ 5762 for (node = local_node + 1; node < MAX_NUMNODES; node++) { 5763 if (!node_online(node)) 5764 continue; 5765 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5766 zonerefs += nr_zones; 5767 } 5768 for (node = 0; node < local_node; node++) { 5769 if (!node_online(node)) 5770 continue; 5771 nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs); 5772 zonerefs += nr_zones; 5773 } 5774 5775 zonerefs->zone = NULL; 5776 zonerefs->zone_idx = 0; 5777 } 5778 5779 #endif /* CONFIG_NUMA */ 5780 5781 /* 5782 * Boot pageset table. One per cpu which is going to be used for all 5783 * zones and all nodes. The parameters will be set in such a way 5784 * that an item put on a list will immediately be handed over to 5785 * the buddy list. This is safe since pageset manipulation is done 5786 * with interrupts disabled. 5787 * 5788 * The boot_pagesets must be kept even after bootup is complete for 5789 * unused processors and/or zones. They do play a role for bootstrapping 5790 * hotplugged processors. 5791 * 5792 * zoneinfo_show() and maybe other functions do 5793 * not check if the processor is online before following the pageset pointer. 5794 * Other parts of the kernel may not check if the zone is available. 5795 */ 5796 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats); 5797 /* These effectively disable the pcplists in the boot pageset completely */ 5798 #define BOOT_PAGESET_HIGH 0 5799 #define BOOT_PAGESET_BATCH 1 5800 static DEFINE_PER_CPU(struct per_cpu_pages, boot_pageset); 5801 static DEFINE_PER_CPU(struct per_cpu_zonestat, boot_zonestats); 5802 5803 static void __build_all_zonelists(void *data) 5804 { 5805 int nid; 5806 int __maybe_unused cpu; 5807 pg_data_t *self = data; 5808 unsigned long flags; 5809 5810 /* 5811 * Explicitly disable this CPU's interrupts before taking seqlock 5812 * to prevent any IRQ handler from calling into the page allocator 5813 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock. 5814 */ 5815 local_irq_save(flags); 5816 /* 5817 * Explicitly disable this CPU's synchronous printk() before taking 5818 * seqlock to prevent any printk() from trying to hold port->lock, for 5819 * tty_insert_flip_string_and_push_buffer() on other CPU might be 5820 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held. 5821 */ 5822 printk_deferred_enter(); 5823 write_seqlock(&zonelist_update_seq); 5824 5825 #ifdef CONFIG_NUMA 5826 memset(node_load, 0, sizeof(node_load)); 5827 #endif 5828 5829 /* 5830 * This node is hotadded and no memory is yet present. So just 5831 * building zonelists is fine - no need to touch other nodes. 5832 */ 5833 if (self && !node_online(self->node_id)) { 5834 build_zonelists(self); 5835 } else { 5836 /* 5837 * All possible nodes have pgdat preallocated 5838 * in free_area_init 5839 */ 5840 for_each_node(nid) { 5841 pg_data_t *pgdat = NODE_DATA(nid); 5842 5843 build_zonelists(pgdat); 5844 } 5845 5846 #ifdef CONFIG_HAVE_MEMORYLESS_NODES 5847 /* 5848 * We now know the "local memory node" for each node-- 5849 * i.e., the node of the first zone in the generic zonelist. 5850 * Set up numa_mem percpu variable for on-line cpus. During 5851 * boot, only the boot cpu should be on-line; we'll init the 5852 * secondary cpus' numa_mem as they come on-line. During 5853 * node/memory hotplug, we'll fixup all on-line cpus. 5854 */ 5855 for_each_online_cpu(cpu) 5856 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu))); 5857 #endif 5858 } 5859 5860 write_sequnlock(&zonelist_update_seq); 5861 printk_deferred_exit(); 5862 local_irq_restore(flags); 5863 } 5864 5865 static noinline void __init 5866 build_all_zonelists_init(void) 5867 { 5868 int cpu; 5869 5870 __build_all_zonelists(NULL); 5871 5872 /* 5873 * Initialize the boot_pagesets that are going to be used 5874 * for bootstrapping processors. The real pagesets for 5875 * each zone will be allocated later when the per cpu 5876 * allocator is available. 5877 * 5878 * boot_pagesets are used also for bootstrapping offline 5879 * cpus if the system is already booted because the pagesets 5880 * are needed to initialize allocators on a specific cpu too. 5881 * F.e. the percpu allocator needs the page allocator which 5882 * needs the percpu allocator in order to allocate its pagesets 5883 * (a chicken-egg dilemma). 5884 */ 5885 for_each_possible_cpu(cpu) 5886 per_cpu_pages_init(&per_cpu(boot_pageset, cpu), &per_cpu(boot_zonestats, cpu)); 5887 5888 mminit_verify_zonelist(); 5889 cpuset_init_current_mems_allowed(); 5890 } 5891 5892 /* 5893 * unless system_state == SYSTEM_BOOTING. 5894 * 5895 * __ref due to call of __init annotated helper build_all_zonelists_init 5896 * [protected by SYSTEM_BOOTING]. 5897 */ 5898 void __ref build_all_zonelists(pg_data_t *pgdat) 5899 { 5900 unsigned long vm_total_pages; 5901 5902 if (system_state == SYSTEM_BOOTING) { 5903 build_all_zonelists_init(); 5904 } else { 5905 __build_all_zonelists(pgdat); 5906 /* cpuset refresh routine should be here */ 5907 } 5908 /* Get the number of free pages beyond high watermark in all zones. */ 5909 vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE)); 5910 /* 5911 * Disable grouping by mobility if the number of pages in the 5912 * system is too low to allow the mechanism to work. It would be 5913 * more accurate, but expensive to check per-zone. This check is 5914 * made on memory-hotadd so a system can start with mobility 5915 * disabled and enable it later 5916 */ 5917 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES)) 5918 page_group_by_mobility_disabled = 1; 5919 else 5920 page_group_by_mobility_disabled = 0; 5921 5922 pr_info("Built %u zonelists, mobility grouping %s. Total pages: %ld\n", 5923 nr_online_nodes, 5924 page_group_by_mobility_disabled ? "off" : "on", 5925 vm_total_pages); 5926 #ifdef CONFIG_NUMA 5927 pr_info("Policy zone: %s\n", zone_names[policy_zone]); 5928 #endif 5929 } 5930 5931 static int zone_batchsize(struct zone *zone) 5932 { 5933 #ifdef CONFIG_MMU 5934 int batch; 5935 5936 /* 5937 * The number of pages to batch allocate is either ~0.1% 5938 * of the zone or 1MB, whichever is smaller. The batch 5939 * size is striking a balance between allocation latency 5940 * and zone lock contention. 5941 */ 5942 batch = min(zone_managed_pages(zone) >> 10, SZ_1M / PAGE_SIZE); 5943 batch /= 4; /* We effectively *= 4 below */ 5944 if (batch < 1) 5945 batch = 1; 5946 5947 /* 5948 * Clamp the batch to a 2^n - 1 value. Having a power 5949 * of 2 value was found to be more likely to have 5950 * suboptimal cache aliasing properties in some cases. 5951 * 5952 * For example if 2 tasks are alternately allocating 5953 * batches of pages, one task can end up with a lot 5954 * of pages of one half of the possible page colors 5955 * and the other with pages of the other colors. 5956 */ 5957 batch = rounddown_pow_of_two(batch + batch/2) - 1; 5958 5959 return batch; 5960 5961 #else 5962 /* The deferral and batching of frees should be suppressed under NOMMU 5963 * conditions. 5964 * 5965 * The problem is that NOMMU needs to be able to allocate large chunks 5966 * of contiguous memory as there's no hardware page translation to 5967 * assemble apparent contiguous memory from discontiguous pages. 5968 * 5969 * Queueing large contiguous runs of pages for batching, however, 5970 * causes the pages to actually be freed in smaller chunks. As there 5971 * can be a significant delay between the individual batches being 5972 * recycled, this leads to the once large chunks of space being 5973 * fragmented and becoming unavailable for high-order allocations. 5974 */ 5975 return 0; 5976 #endif 5977 } 5978 5979 static int zone_highsize(struct zone *zone, int batch, int cpu_online) 5980 { 5981 #ifdef CONFIG_MMU 5982 int high; 5983 int nr_split_cpus; 5984 unsigned long total_pages; 5985 5986 if (!percpu_pagelist_high_fraction) { 5987 /* 5988 * By default, the high value of the pcp is based on the zone 5989 * low watermark so that if they are full then background 5990 * reclaim will not be started prematurely. 5991 */ 5992 total_pages = low_wmark_pages(zone); 5993 } else { 5994 /* 5995 * If percpu_pagelist_high_fraction is configured, the high 5996 * value is based on a fraction of the managed pages in the 5997 * zone. 5998 */ 5999 total_pages = zone_managed_pages(zone) / percpu_pagelist_high_fraction; 6000 } 6001 6002 /* 6003 * Split the high value across all online CPUs local to the zone. Note 6004 * that early in boot that CPUs may not be online yet and that during 6005 * CPU hotplug that the cpumask is not yet updated when a CPU is being 6006 * onlined. For memory nodes that have no CPUs, split pcp->high across 6007 * all online CPUs to mitigate the risk that reclaim is triggered 6008 * prematurely due to pages stored on pcp lists. 6009 */ 6010 nr_split_cpus = cpumask_weight(cpumask_of_node(zone_to_nid(zone))) + cpu_online; 6011 if (!nr_split_cpus) 6012 nr_split_cpus = num_online_cpus(); 6013 high = total_pages / nr_split_cpus; 6014 6015 /* 6016 * Ensure high is at least batch*4. The multiple is based on the 6017 * historical relationship between high and batch. 6018 */ 6019 high = max(high, batch << 2); 6020 6021 return high; 6022 #else 6023 return 0; 6024 #endif 6025 } 6026 6027 /* 6028 * pcp->high and pcp->batch values are related and generally batch is lower 6029 * than high. They are also related to pcp->count such that count is lower 6030 * than high, and as soon as it reaches high, the pcplist is flushed. 6031 * 6032 * However, guaranteeing these relations at all times would require e.g. write 6033 * barriers here but also careful usage of read barriers at the read side, and 6034 * thus be prone to error and bad for performance. Thus the update only prevents 6035 * store tearing. Any new users of pcp->batch and pcp->high should ensure they 6036 * can cope with those fields changing asynchronously, and fully trust only the 6037 * pcp->count field on the local CPU with interrupts disabled. 6038 * 6039 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function 6040 * outside of boot time (or some other assurance that no concurrent updaters 6041 * exist). 6042 */ 6043 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high, 6044 unsigned long batch) 6045 { 6046 WRITE_ONCE(pcp->batch, batch); 6047 WRITE_ONCE(pcp->high, high); 6048 } 6049 6050 static void per_cpu_pages_init(struct per_cpu_pages *pcp, struct per_cpu_zonestat *pzstats) 6051 { 6052 int pindex; 6053 6054 memset(pcp, 0, sizeof(*pcp)); 6055 memset(pzstats, 0, sizeof(*pzstats)); 6056 6057 spin_lock_init(&pcp->lock); 6058 for (pindex = 0; pindex < NR_PCP_LISTS; pindex++) 6059 INIT_LIST_HEAD(&pcp->lists[pindex]); 6060 6061 /* 6062 * Set batch and high values safe for a boot pageset. A true percpu 6063 * pageset's initialization will update them subsequently. Here we don't 6064 * need to be as careful as pageset_update() as nobody can access the 6065 * pageset yet. 6066 */ 6067 pcp->high = BOOT_PAGESET_HIGH; 6068 pcp->batch = BOOT_PAGESET_BATCH; 6069 pcp->free_factor = 0; 6070 } 6071 6072 static void __zone_set_pageset_high_and_batch(struct zone *zone, unsigned long high, 6073 unsigned long batch) 6074 { 6075 struct per_cpu_pages *pcp; 6076 int cpu; 6077 6078 for_each_possible_cpu(cpu) { 6079 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6080 pageset_update(pcp, high, batch); 6081 } 6082 } 6083 6084 /* 6085 * Calculate and set new high and batch values for all per-cpu pagesets of a 6086 * zone based on the zone's size. 6087 */ 6088 static void zone_set_pageset_high_and_batch(struct zone *zone, int cpu_online) 6089 { 6090 int new_high, new_batch; 6091 6092 new_batch = max(1, zone_batchsize(zone)); 6093 new_high = zone_highsize(zone, new_batch, cpu_online); 6094 6095 if (zone->pageset_high == new_high && 6096 zone->pageset_batch == new_batch) 6097 return; 6098 6099 zone->pageset_high = new_high; 6100 zone->pageset_batch = new_batch; 6101 6102 __zone_set_pageset_high_and_batch(zone, new_high, new_batch); 6103 } 6104 6105 void __meminit setup_zone_pageset(struct zone *zone) 6106 { 6107 int cpu; 6108 6109 /* Size may be 0 on !SMP && !NUMA */ 6110 if (sizeof(struct per_cpu_zonestat) > 0) 6111 zone->per_cpu_zonestats = alloc_percpu(struct per_cpu_zonestat); 6112 6113 zone->per_cpu_pageset = alloc_percpu(struct per_cpu_pages); 6114 for_each_possible_cpu(cpu) { 6115 struct per_cpu_pages *pcp; 6116 struct per_cpu_zonestat *pzstats; 6117 6118 pcp = per_cpu_ptr(zone->per_cpu_pageset, cpu); 6119 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 6120 per_cpu_pages_init(pcp, pzstats); 6121 } 6122 6123 zone_set_pageset_high_and_batch(zone, 0); 6124 } 6125 6126 /* 6127 * The zone indicated has a new number of managed_pages; batch sizes and percpu 6128 * page high values need to be recalculated. 6129 */ 6130 static void zone_pcp_update(struct zone *zone, int cpu_online) 6131 { 6132 mutex_lock(&pcp_batch_high_lock); 6133 zone_set_pageset_high_and_batch(zone, cpu_online); 6134 mutex_unlock(&pcp_batch_high_lock); 6135 } 6136 6137 /* 6138 * Allocate per cpu pagesets and initialize them. 6139 * Before this call only boot pagesets were available. 6140 */ 6141 void __init setup_per_cpu_pageset(void) 6142 { 6143 struct pglist_data *pgdat; 6144 struct zone *zone; 6145 int __maybe_unused cpu; 6146 6147 for_each_populated_zone(zone) 6148 setup_zone_pageset(zone); 6149 6150 #ifdef CONFIG_NUMA 6151 /* 6152 * Unpopulated zones continue using the boot pagesets. 6153 * The numa stats for these pagesets need to be reset. 6154 * Otherwise, they will end up skewing the stats of 6155 * the nodes these zones are associated with. 6156 */ 6157 for_each_possible_cpu(cpu) { 6158 struct per_cpu_zonestat *pzstats = &per_cpu(boot_zonestats, cpu); 6159 memset(pzstats->vm_numa_event, 0, 6160 sizeof(pzstats->vm_numa_event)); 6161 } 6162 #endif 6163 6164 for_each_online_pgdat(pgdat) 6165 pgdat->per_cpu_nodestats = 6166 alloc_percpu(struct per_cpu_nodestat); 6167 } 6168 6169 __meminit void zone_pcp_init(struct zone *zone) 6170 { 6171 /* 6172 * per cpu subsystem is not up at this point. The following code 6173 * relies on the ability of the linker to provide the 6174 * offset of a (static) per cpu variable into the per cpu area. 6175 */ 6176 zone->per_cpu_pageset = &boot_pageset; 6177 zone->per_cpu_zonestats = &boot_zonestats; 6178 zone->pageset_high = BOOT_PAGESET_HIGH; 6179 zone->pageset_batch = BOOT_PAGESET_BATCH; 6180 6181 if (populated_zone(zone)) 6182 pr_debug(" %s zone: %lu pages, LIFO batch:%u\n", zone->name, 6183 zone->present_pages, zone_batchsize(zone)); 6184 } 6185 6186 void adjust_managed_page_count(struct page *page, long count) 6187 { 6188 atomic_long_add(count, &page_zone(page)->managed_pages); 6189 totalram_pages_add(count); 6190 #ifdef CONFIG_HIGHMEM 6191 if (PageHighMem(page)) 6192 totalhigh_pages_add(count); 6193 #endif 6194 } 6195 EXPORT_SYMBOL(adjust_managed_page_count); 6196 6197 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s) 6198 { 6199 void *pos; 6200 unsigned long pages = 0; 6201 6202 start = (void *)PAGE_ALIGN((unsigned long)start); 6203 end = (void *)((unsigned long)end & PAGE_MASK); 6204 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) { 6205 struct page *page = virt_to_page(pos); 6206 void *direct_map_addr; 6207 6208 /* 6209 * 'direct_map_addr' might be different from 'pos' 6210 * because some architectures' virt_to_page() 6211 * work with aliases. Getting the direct map 6212 * address ensures that we get a _writeable_ 6213 * alias for the memset(). 6214 */ 6215 direct_map_addr = page_address(page); 6216 /* 6217 * Perform a kasan-unchecked memset() since this memory 6218 * has not been initialized. 6219 */ 6220 direct_map_addr = kasan_reset_tag(direct_map_addr); 6221 if ((unsigned int)poison <= 0xFF) 6222 memset(direct_map_addr, poison, PAGE_SIZE); 6223 6224 free_reserved_page(page); 6225 } 6226 6227 if (pages && s) 6228 pr_info("Freeing %s memory: %ldK\n", s, K(pages)); 6229 6230 return pages; 6231 } 6232 6233 static int page_alloc_cpu_dead(unsigned int cpu) 6234 { 6235 struct zone *zone; 6236 6237 lru_add_drain_cpu(cpu); 6238 mlock_drain_remote(cpu); 6239 drain_pages(cpu); 6240 6241 /* 6242 * Spill the event counters of the dead processor 6243 * into the current processors event counters. 6244 * This artificially elevates the count of the current 6245 * processor. 6246 */ 6247 vm_events_fold_cpu(cpu); 6248 6249 /* 6250 * Zero the differential counters of the dead processor 6251 * so that the vm statistics are consistent. 6252 * 6253 * This is only okay since the processor is dead and cannot 6254 * race with what we are doing. 6255 */ 6256 cpu_vm_stats_fold(cpu); 6257 6258 for_each_populated_zone(zone) 6259 zone_pcp_update(zone, 0); 6260 6261 return 0; 6262 } 6263 6264 static int page_alloc_cpu_online(unsigned int cpu) 6265 { 6266 struct zone *zone; 6267 6268 for_each_populated_zone(zone) 6269 zone_pcp_update(zone, 1); 6270 return 0; 6271 } 6272 6273 void __init page_alloc_init_cpuhp(void) 6274 { 6275 int ret; 6276 6277 ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC, 6278 "mm/page_alloc:pcp", 6279 page_alloc_cpu_online, 6280 page_alloc_cpu_dead); 6281 WARN_ON(ret < 0); 6282 } 6283 6284 /* 6285 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio 6286 * or min_free_kbytes changes. 6287 */ 6288 static void calculate_totalreserve_pages(void) 6289 { 6290 struct pglist_data *pgdat; 6291 unsigned long reserve_pages = 0; 6292 enum zone_type i, j; 6293 6294 for_each_online_pgdat(pgdat) { 6295 6296 pgdat->totalreserve_pages = 0; 6297 6298 for (i = 0; i < MAX_NR_ZONES; i++) { 6299 struct zone *zone = pgdat->node_zones + i; 6300 long max = 0; 6301 unsigned long managed_pages = zone_managed_pages(zone); 6302 6303 /* Find valid and maximum lowmem_reserve in the zone */ 6304 for (j = i; j < MAX_NR_ZONES; j++) { 6305 if (zone->lowmem_reserve[j] > max) 6306 max = zone->lowmem_reserve[j]; 6307 } 6308 6309 /* we treat the high watermark as reserved pages. */ 6310 max += high_wmark_pages(zone); 6311 6312 if (max > managed_pages) 6313 max = managed_pages; 6314 6315 pgdat->totalreserve_pages += max; 6316 6317 reserve_pages += max; 6318 } 6319 } 6320 totalreserve_pages = reserve_pages; 6321 } 6322 6323 /* 6324 * setup_per_zone_lowmem_reserve - called whenever 6325 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone 6326 * has a correct pages reserved value, so an adequate number of 6327 * pages are left in the zone after a successful __alloc_pages(). 6328 */ 6329 static void setup_per_zone_lowmem_reserve(void) 6330 { 6331 struct pglist_data *pgdat; 6332 enum zone_type i, j; 6333 6334 for_each_online_pgdat(pgdat) { 6335 for (i = 0; i < MAX_NR_ZONES - 1; i++) { 6336 struct zone *zone = &pgdat->node_zones[i]; 6337 int ratio = sysctl_lowmem_reserve_ratio[i]; 6338 bool clear = !ratio || !zone_managed_pages(zone); 6339 unsigned long managed_pages = 0; 6340 6341 for (j = i + 1; j < MAX_NR_ZONES; j++) { 6342 struct zone *upper_zone = &pgdat->node_zones[j]; 6343 6344 managed_pages += zone_managed_pages(upper_zone); 6345 6346 if (clear) 6347 zone->lowmem_reserve[j] = 0; 6348 else 6349 zone->lowmem_reserve[j] = managed_pages / ratio; 6350 } 6351 } 6352 } 6353 6354 /* update totalreserve_pages */ 6355 calculate_totalreserve_pages(); 6356 } 6357 6358 static void __setup_per_zone_wmarks(void) 6359 { 6360 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10); 6361 unsigned long lowmem_pages = 0; 6362 struct zone *zone; 6363 unsigned long flags; 6364 6365 /* Calculate total number of !ZONE_HIGHMEM pages */ 6366 for_each_zone(zone) { 6367 if (!is_highmem(zone)) 6368 lowmem_pages += zone_managed_pages(zone); 6369 } 6370 6371 for_each_zone(zone) { 6372 u64 tmp; 6373 6374 spin_lock_irqsave(&zone->lock, flags); 6375 tmp = (u64)pages_min * zone_managed_pages(zone); 6376 do_div(tmp, lowmem_pages); 6377 if (is_highmem(zone)) { 6378 /* 6379 * __GFP_HIGH and PF_MEMALLOC allocations usually don't 6380 * need highmem pages, so cap pages_min to a small 6381 * value here. 6382 * 6383 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN) 6384 * deltas control async page reclaim, and so should 6385 * not be capped for highmem. 6386 */ 6387 unsigned long min_pages; 6388 6389 min_pages = zone_managed_pages(zone) / 1024; 6390 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL); 6391 zone->_watermark[WMARK_MIN] = min_pages; 6392 } else { 6393 /* 6394 * If it's a lowmem zone, reserve a number of pages 6395 * proportionate to the zone's size. 6396 */ 6397 zone->_watermark[WMARK_MIN] = tmp; 6398 } 6399 6400 /* 6401 * Set the kswapd watermarks distance according to the 6402 * scale factor in proportion to available memory, but 6403 * ensure a minimum size on small systems. 6404 */ 6405 tmp = max_t(u64, tmp >> 2, 6406 mult_frac(zone_managed_pages(zone), 6407 watermark_scale_factor, 10000)); 6408 6409 zone->watermark_boost = 0; 6410 zone->_watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp; 6411 zone->_watermark[WMARK_HIGH] = low_wmark_pages(zone) + tmp; 6412 zone->_watermark[WMARK_PROMO] = high_wmark_pages(zone) + tmp; 6413 6414 spin_unlock_irqrestore(&zone->lock, flags); 6415 } 6416 6417 /* update totalreserve_pages */ 6418 calculate_totalreserve_pages(); 6419 } 6420 6421 /** 6422 * setup_per_zone_wmarks - called when min_free_kbytes changes 6423 * or when memory is hot-{added|removed} 6424 * 6425 * Ensures that the watermark[min,low,high] values for each zone are set 6426 * correctly with respect to min_free_kbytes. 6427 */ 6428 void setup_per_zone_wmarks(void) 6429 { 6430 struct zone *zone; 6431 static DEFINE_SPINLOCK(lock); 6432 6433 spin_lock(&lock); 6434 __setup_per_zone_wmarks(); 6435 spin_unlock(&lock); 6436 6437 /* 6438 * The watermark size have changed so update the pcpu batch 6439 * and high limits or the limits may be inappropriate. 6440 */ 6441 for_each_zone(zone) 6442 zone_pcp_update(zone, 0); 6443 } 6444 6445 /* 6446 * Initialise min_free_kbytes. 6447 * 6448 * For small machines we want it small (128k min). For large machines 6449 * we want it large (256MB max). But it is not linear, because network 6450 * bandwidth does not increase linearly with machine size. We use 6451 * 6452 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy: 6453 * min_free_kbytes = sqrt(lowmem_kbytes * 16) 6454 * 6455 * which yields 6456 * 6457 * 16MB: 512k 6458 * 32MB: 724k 6459 * 64MB: 1024k 6460 * 128MB: 1448k 6461 * 256MB: 2048k 6462 * 512MB: 2896k 6463 * 1024MB: 4096k 6464 * 2048MB: 5792k 6465 * 4096MB: 8192k 6466 * 8192MB: 11584k 6467 * 16384MB: 16384k 6468 */ 6469 void calculate_min_free_kbytes(void) 6470 { 6471 unsigned long lowmem_kbytes; 6472 int new_min_free_kbytes; 6473 6474 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10); 6475 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16); 6476 6477 if (new_min_free_kbytes > user_min_free_kbytes) 6478 min_free_kbytes = clamp(new_min_free_kbytes, 128, 262144); 6479 else 6480 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n", 6481 new_min_free_kbytes, user_min_free_kbytes); 6482 6483 } 6484 6485 int __meminit init_per_zone_wmark_min(void) 6486 { 6487 calculate_min_free_kbytes(); 6488 setup_per_zone_wmarks(); 6489 refresh_zone_stat_thresholds(); 6490 setup_per_zone_lowmem_reserve(); 6491 6492 #ifdef CONFIG_NUMA 6493 setup_min_unmapped_ratio(); 6494 setup_min_slab_ratio(); 6495 #endif 6496 6497 khugepaged_min_free_kbytes_update(); 6498 6499 return 0; 6500 } 6501 postcore_initcall(init_per_zone_wmark_min) 6502 6503 /* 6504 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so 6505 * that we can call two helper functions whenever min_free_kbytes 6506 * changes. 6507 */ 6508 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write, 6509 void *buffer, size_t *length, loff_t *ppos) 6510 { 6511 int rc; 6512 6513 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6514 if (rc) 6515 return rc; 6516 6517 if (write) { 6518 user_min_free_kbytes = min_free_kbytes; 6519 setup_per_zone_wmarks(); 6520 } 6521 return 0; 6522 } 6523 6524 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write, 6525 void *buffer, size_t *length, loff_t *ppos) 6526 { 6527 int rc; 6528 6529 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6530 if (rc) 6531 return rc; 6532 6533 if (write) 6534 setup_per_zone_wmarks(); 6535 6536 return 0; 6537 } 6538 6539 #ifdef CONFIG_NUMA 6540 static void setup_min_unmapped_ratio(void) 6541 { 6542 pg_data_t *pgdat; 6543 struct zone *zone; 6544 6545 for_each_online_pgdat(pgdat) 6546 pgdat->min_unmapped_pages = 0; 6547 6548 for_each_zone(zone) 6549 zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) * 6550 sysctl_min_unmapped_ratio) / 100; 6551 } 6552 6553 6554 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write, 6555 void *buffer, size_t *length, loff_t *ppos) 6556 { 6557 int rc; 6558 6559 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6560 if (rc) 6561 return rc; 6562 6563 setup_min_unmapped_ratio(); 6564 6565 return 0; 6566 } 6567 6568 static void setup_min_slab_ratio(void) 6569 { 6570 pg_data_t *pgdat; 6571 struct zone *zone; 6572 6573 for_each_online_pgdat(pgdat) 6574 pgdat->min_slab_pages = 0; 6575 6576 for_each_zone(zone) 6577 zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) * 6578 sysctl_min_slab_ratio) / 100; 6579 } 6580 6581 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write, 6582 void *buffer, size_t *length, loff_t *ppos) 6583 { 6584 int rc; 6585 6586 rc = proc_dointvec_minmax(table, write, buffer, length, ppos); 6587 if (rc) 6588 return rc; 6589 6590 setup_min_slab_ratio(); 6591 6592 return 0; 6593 } 6594 #endif 6595 6596 /* 6597 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around 6598 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve() 6599 * whenever sysctl_lowmem_reserve_ratio changes. 6600 * 6601 * The reserve ratio obviously has absolutely no relation with the 6602 * minimum watermarks. The lowmem reserve ratio can only make sense 6603 * if in function of the boot time zone sizes. 6604 */ 6605 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write, 6606 void *buffer, size_t *length, loff_t *ppos) 6607 { 6608 int i; 6609 6610 proc_dointvec_minmax(table, write, buffer, length, ppos); 6611 6612 for (i = 0; i < MAX_NR_ZONES; i++) { 6613 if (sysctl_lowmem_reserve_ratio[i] < 1) 6614 sysctl_lowmem_reserve_ratio[i] = 0; 6615 } 6616 6617 setup_per_zone_lowmem_reserve(); 6618 return 0; 6619 } 6620 6621 /* 6622 * percpu_pagelist_high_fraction - changes the pcp->high for each zone on each 6623 * cpu. It is the fraction of total pages in each zone that a hot per cpu 6624 * pagelist can have before it gets flushed back to buddy allocator. 6625 */ 6626 int percpu_pagelist_high_fraction_sysctl_handler(struct ctl_table *table, 6627 int write, void *buffer, size_t *length, loff_t *ppos) 6628 { 6629 struct zone *zone; 6630 int old_percpu_pagelist_high_fraction; 6631 int ret; 6632 6633 mutex_lock(&pcp_batch_high_lock); 6634 old_percpu_pagelist_high_fraction = percpu_pagelist_high_fraction; 6635 6636 ret = proc_dointvec_minmax(table, write, buffer, length, ppos); 6637 if (!write || ret < 0) 6638 goto out; 6639 6640 /* Sanity checking to avoid pcp imbalance */ 6641 if (percpu_pagelist_high_fraction && 6642 percpu_pagelist_high_fraction < MIN_PERCPU_PAGELIST_HIGH_FRACTION) { 6643 percpu_pagelist_high_fraction = old_percpu_pagelist_high_fraction; 6644 ret = -EINVAL; 6645 goto out; 6646 } 6647 6648 /* No change? */ 6649 if (percpu_pagelist_high_fraction == old_percpu_pagelist_high_fraction) 6650 goto out; 6651 6652 for_each_populated_zone(zone) 6653 zone_set_pageset_high_and_batch(zone, 0); 6654 out: 6655 mutex_unlock(&pcp_batch_high_lock); 6656 return ret; 6657 } 6658 6659 #ifdef CONFIG_CONTIG_ALLOC 6660 #if defined(CONFIG_DYNAMIC_DEBUG) || \ 6661 (defined(CONFIG_DYNAMIC_DEBUG_CORE) && defined(DYNAMIC_DEBUG_MODULE)) 6662 /* Usage: See admin-guide/dynamic-debug-howto.rst */ 6663 static void alloc_contig_dump_pages(struct list_head *page_list) 6664 { 6665 DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, "migrate failure"); 6666 6667 if (DYNAMIC_DEBUG_BRANCH(descriptor)) { 6668 struct page *page; 6669 6670 dump_stack(); 6671 list_for_each_entry(page, page_list, lru) 6672 dump_page(page, "migration failure"); 6673 } 6674 } 6675 #else 6676 static inline void alloc_contig_dump_pages(struct list_head *page_list) 6677 { 6678 } 6679 #endif 6680 6681 /* [start, end) must belong to a single zone. */ 6682 int __alloc_contig_migrate_range(struct compact_control *cc, 6683 unsigned long start, unsigned long end) 6684 { 6685 /* This function is based on compact_zone() from compaction.c. */ 6686 unsigned int nr_reclaimed; 6687 unsigned long pfn = start; 6688 unsigned int tries = 0; 6689 int ret = 0; 6690 struct migration_target_control mtc = { 6691 .nid = zone_to_nid(cc->zone), 6692 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL, 6693 }; 6694 6695 lru_cache_disable(); 6696 6697 while (pfn < end || !list_empty(&cc->migratepages)) { 6698 if (fatal_signal_pending(current)) { 6699 ret = -EINTR; 6700 break; 6701 } 6702 6703 if (list_empty(&cc->migratepages)) { 6704 cc->nr_migratepages = 0; 6705 ret = isolate_migratepages_range(cc, pfn, end); 6706 if (ret && ret != -EAGAIN) 6707 break; 6708 pfn = cc->migrate_pfn; 6709 tries = 0; 6710 } else if (++tries == 5) { 6711 ret = -EBUSY; 6712 break; 6713 } 6714 6715 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone, 6716 &cc->migratepages); 6717 cc->nr_migratepages -= nr_reclaimed; 6718 6719 ret = migrate_pages(&cc->migratepages, alloc_migration_target, 6720 NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE, NULL); 6721 6722 /* 6723 * On -ENOMEM, migrate_pages() bails out right away. It is pointless 6724 * to retry again over this error, so do the same here. 6725 */ 6726 if (ret == -ENOMEM) 6727 break; 6728 } 6729 6730 lru_cache_enable(); 6731 if (ret < 0) { 6732 if (!(cc->gfp_mask & __GFP_NOWARN) && ret == -EBUSY) 6733 alloc_contig_dump_pages(&cc->migratepages); 6734 putback_movable_pages(&cc->migratepages); 6735 return ret; 6736 } 6737 return 0; 6738 } 6739 6740 /** 6741 * alloc_contig_range() -- tries to allocate given range of pages 6742 * @start: start PFN to allocate 6743 * @end: one-past-the-last PFN to allocate 6744 * @migratetype: migratetype of the underlying pageblocks (either 6745 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks 6746 * in range must have the same migratetype and it must 6747 * be either of the two. 6748 * @gfp_mask: GFP mask to use during compaction 6749 * 6750 * The PFN range does not have to be pageblock aligned. The PFN range must 6751 * belong to a single zone. 6752 * 6753 * The first thing this routine does is attempt to MIGRATE_ISOLATE all 6754 * pageblocks in the range. Once isolated, the pageblocks should not 6755 * be modified by others. 6756 * 6757 * Return: zero on success or negative error code. On success all 6758 * pages which PFN is in [start, end) are allocated for the caller and 6759 * need to be freed with free_contig_range(). 6760 */ 6761 int alloc_contig_range(unsigned long start, unsigned long end, 6762 unsigned migratetype, gfp_t gfp_mask) 6763 { 6764 unsigned long outer_start, outer_end; 6765 int order; 6766 int ret = 0; 6767 6768 struct compact_control cc = { 6769 .nr_migratepages = 0, 6770 .order = -1, 6771 .zone = page_zone(pfn_to_page(start)), 6772 .mode = MIGRATE_SYNC, 6773 .ignore_skip_hint = true, 6774 .no_set_skip_hint = true, 6775 .gfp_mask = current_gfp_context(gfp_mask), 6776 .alloc_contig = true, 6777 }; 6778 INIT_LIST_HEAD(&cc.migratepages); 6779 6780 /* 6781 * What we do here is we mark all pageblocks in range as 6782 * MIGRATE_ISOLATE. Because pageblock and max order pages may 6783 * have different sizes, and due to the way page allocator 6784 * work, start_isolate_page_range() has special handlings for this. 6785 * 6786 * Once the pageblocks are marked as MIGRATE_ISOLATE, we 6787 * migrate the pages from an unaligned range (ie. pages that 6788 * we are interested in). This will put all the pages in 6789 * range back to page allocator as MIGRATE_ISOLATE. 6790 * 6791 * When this is done, we take the pages in range from page 6792 * allocator removing them from the buddy system. This way 6793 * page allocator will never consider using them. 6794 * 6795 * This lets us mark the pageblocks back as 6796 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the 6797 * aligned range but not in the unaligned, original range are 6798 * put back to page allocator so that buddy can use them. 6799 */ 6800 6801 ret = start_isolate_page_range(start, end, migratetype, 0, gfp_mask); 6802 if (ret) 6803 goto done; 6804 6805 drain_all_pages(cc.zone); 6806 6807 /* 6808 * In case of -EBUSY, we'd like to know which page causes problem. 6809 * So, just fall through. test_pages_isolated() has a tracepoint 6810 * which will report the busy page. 6811 * 6812 * It is possible that busy pages could become available before 6813 * the call to test_pages_isolated, and the range will actually be 6814 * allocated. So, if we fall through be sure to clear ret so that 6815 * -EBUSY is not accidentally used or returned to caller. 6816 */ 6817 ret = __alloc_contig_migrate_range(&cc, start, end); 6818 if (ret && ret != -EBUSY) 6819 goto done; 6820 ret = 0; 6821 6822 /* 6823 * Pages from [start, end) are within a pageblock_nr_pages 6824 * aligned blocks that are marked as MIGRATE_ISOLATE. What's 6825 * more, all pages in [start, end) are free in page allocator. 6826 * What we are going to do is to allocate all pages from 6827 * [start, end) (that is remove them from page allocator). 6828 * 6829 * The only problem is that pages at the beginning and at the 6830 * end of interesting range may be not aligned with pages that 6831 * page allocator holds, ie. they can be part of higher order 6832 * pages. Because of this, we reserve the bigger range and 6833 * once this is done free the pages we are not interested in. 6834 * 6835 * We don't have to hold zone->lock here because the pages are 6836 * isolated thus they won't get removed from buddy. 6837 */ 6838 6839 order = 0; 6840 outer_start = start; 6841 while (!PageBuddy(pfn_to_page(outer_start))) { 6842 if (++order > MAX_ORDER) { 6843 outer_start = start; 6844 break; 6845 } 6846 outer_start &= ~0UL << order; 6847 } 6848 6849 if (outer_start != start) { 6850 order = buddy_order(pfn_to_page(outer_start)); 6851 6852 /* 6853 * outer_start page could be small order buddy page and 6854 * it doesn't include start page. Adjust outer_start 6855 * in this case to report failed page properly 6856 * on tracepoint in test_pages_isolated() 6857 */ 6858 if (outer_start + (1UL << order) <= start) 6859 outer_start = start; 6860 } 6861 6862 /* Make sure the range is really isolated. */ 6863 if (test_pages_isolated(outer_start, end, 0)) { 6864 ret = -EBUSY; 6865 goto done; 6866 } 6867 6868 /* Grab isolated pages from freelists. */ 6869 outer_end = isolate_freepages_range(&cc, outer_start, end); 6870 if (!outer_end) { 6871 ret = -EBUSY; 6872 goto done; 6873 } 6874 6875 /* Free head and tail (if any) */ 6876 if (start != outer_start) 6877 free_contig_range(outer_start, start - outer_start); 6878 if (end != outer_end) 6879 free_contig_range(end, outer_end - end); 6880 6881 done: 6882 undo_isolate_page_range(start, end, migratetype); 6883 return ret; 6884 } 6885 EXPORT_SYMBOL(alloc_contig_range); 6886 6887 static int __alloc_contig_pages(unsigned long start_pfn, 6888 unsigned long nr_pages, gfp_t gfp_mask) 6889 { 6890 unsigned long end_pfn = start_pfn + nr_pages; 6891 6892 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE, 6893 gfp_mask); 6894 } 6895 6896 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn, 6897 unsigned long nr_pages) 6898 { 6899 unsigned long i, end_pfn = start_pfn + nr_pages; 6900 struct page *page; 6901 6902 for (i = start_pfn; i < end_pfn; i++) { 6903 page = pfn_to_online_page(i); 6904 if (!page) 6905 return false; 6906 6907 if (page_zone(page) != z) 6908 return false; 6909 6910 if (PageReserved(page)) 6911 return false; 6912 6913 if (PageHuge(page)) 6914 return false; 6915 } 6916 return true; 6917 } 6918 6919 static bool zone_spans_last_pfn(const struct zone *zone, 6920 unsigned long start_pfn, unsigned long nr_pages) 6921 { 6922 unsigned long last_pfn = start_pfn + nr_pages - 1; 6923 6924 return zone_spans_pfn(zone, last_pfn); 6925 } 6926 6927 /** 6928 * alloc_contig_pages() -- tries to find and allocate contiguous range of pages 6929 * @nr_pages: Number of contiguous pages to allocate 6930 * @gfp_mask: GFP mask to limit search and used during compaction 6931 * @nid: Target node 6932 * @nodemask: Mask for other possible nodes 6933 * 6934 * This routine is a wrapper around alloc_contig_range(). It scans over zones 6935 * on an applicable zonelist to find a contiguous pfn range which can then be 6936 * tried for allocation with alloc_contig_range(). This routine is intended 6937 * for allocation requests which can not be fulfilled with the buddy allocator. 6938 * 6939 * The allocated memory is always aligned to a page boundary. If nr_pages is a 6940 * power of two, then allocated range is also guaranteed to be aligned to same 6941 * nr_pages (e.g. 1GB request would be aligned to 1GB). 6942 * 6943 * Allocated pages can be freed with free_contig_range() or by manually calling 6944 * __free_page() on each allocated page. 6945 * 6946 * Return: pointer to contiguous pages on success, or NULL if not successful. 6947 */ 6948 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask, 6949 int nid, nodemask_t *nodemask) 6950 { 6951 unsigned long ret, pfn, flags; 6952 struct zonelist *zonelist; 6953 struct zone *zone; 6954 struct zoneref *z; 6955 6956 zonelist = node_zonelist(nid, gfp_mask); 6957 for_each_zone_zonelist_nodemask(zone, z, zonelist, 6958 gfp_zone(gfp_mask), nodemask) { 6959 spin_lock_irqsave(&zone->lock, flags); 6960 6961 pfn = ALIGN(zone->zone_start_pfn, nr_pages); 6962 while (zone_spans_last_pfn(zone, pfn, nr_pages)) { 6963 if (pfn_range_valid_contig(zone, pfn, nr_pages)) { 6964 /* 6965 * We release the zone lock here because 6966 * alloc_contig_range() will also lock the zone 6967 * at some point. If there's an allocation 6968 * spinning on this lock, it may win the race 6969 * and cause alloc_contig_range() to fail... 6970 */ 6971 spin_unlock_irqrestore(&zone->lock, flags); 6972 ret = __alloc_contig_pages(pfn, nr_pages, 6973 gfp_mask); 6974 if (!ret) 6975 return pfn_to_page(pfn); 6976 spin_lock_irqsave(&zone->lock, flags); 6977 } 6978 pfn += nr_pages; 6979 } 6980 spin_unlock_irqrestore(&zone->lock, flags); 6981 } 6982 return NULL; 6983 } 6984 #endif /* CONFIG_CONTIG_ALLOC */ 6985 6986 void free_contig_range(unsigned long pfn, unsigned long nr_pages) 6987 { 6988 unsigned long count = 0; 6989 6990 for (; nr_pages--; pfn++) { 6991 struct page *page = pfn_to_page(pfn); 6992 6993 count += page_count(page) != 1; 6994 __free_page(page); 6995 } 6996 WARN(count != 0, "%lu pages are still in use!\n", count); 6997 } 6998 EXPORT_SYMBOL(free_contig_range); 6999 7000 /* 7001 * Effectively disable pcplists for the zone by setting the high limit to 0 7002 * and draining all cpus. A concurrent page freeing on another CPU that's about 7003 * to put the page on pcplist will either finish before the drain and the page 7004 * will be drained, or observe the new high limit and skip the pcplist. 7005 * 7006 * Must be paired with a call to zone_pcp_enable(). 7007 */ 7008 void zone_pcp_disable(struct zone *zone) 7009 { 7010 mutex_lock(&pcp_batch_high_lock); 7011 __zone_set_pageset_high_and_batch(zone, 0, 1); 7012 __drain_all_pages(zone, true); 7013 } 7014 7015 void zone_pcp_enable(struct zone *zone) 7016 { 7017 __zone_set_pageset_high_and_batch(zone, zone->pageset_high, zone->pageset_batch); 7018 mutex_unlock(&pcp_batch_high_lock); 7019 } 7020 7021 void zone_pcp_reset(struct zone *zone) 7022 { 7023 int cpu; 7024 struct per_cpu_zonestat *pzstats; 7025 7026 if (zone->per_cpu_pageset != &boot_pageset) { 7027 for_each_online_cpu(cpu) { 7028 pzstats = per_cpu_ptr(zone->per_cpu_zonestats, cpu); 7029 drain_zonestat(zone, pzstats); 7030 } 7031 free_percpu(zone->per_cpu_pageset); 7032 zone->per_cpu_pageset = &boot_pageset; 7033 if (zone->per_cpu_zonestats != &boot_zonestats) { 7034 free_percpu(zone->per_cpu_zonestats); 7035 zone->per_cpu_zonestats = &boot_zonestats; 7036 } 7037 } 7038 } 7039 7040 #ifdef CONFIG_MEMORY_HOTREMOVE 7041 /* 7042 * All pages in the range must be in a single zone, must not contain holes, 7043 * must span full sections, and must be isolated before calling this function. 7044 */ 7045 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn) 7046 { 7047 unsigned long pfn = start_pfn; 7048 struct page *page; 7049 struct zone *zone; 7050 unsigned int order; 7051 unsigned long flags; 7052 7053 offline_mem_sections(pfn, end_pfn); 7054 zone = page_zone(pfn_to_page(pfn)); 7055 spin_lock_irqsave(&zone->lock, flags); 7056 while (pfn < end_pfn) { 7057 page = pfn_to_page(pfn); 7058 /* 7059 * The HWPoisoned page may be not in buddy system, and 7060 * page_count() is not 0. 7061 */ 7062 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) { 7063 pfn++; 7064 continue; 7065 } 7066 /* 7067 * At this point all remaining PageOffline() pages have a 7068 * reference count of 0 and can simply be skipped. 7069 */ 7070 if (PageOffline(page)) { 7071 BUG_ON(page_count(page)); 7072 BUG_ON(PageBuddy(page)); 7073 pfn++; 7074 continue; 7075 } 7076 7077 BUG_ON(page_count(page)); 7078 BUG_ON(!PageBuddy(page)); 7079 order = buddy_order(page); 7080 del_page_from_free_list(page, zone, order); 7081 pfn += (1 << order); 7082 } 7083 spin_unlock_irqrestore(&zone->lock, flags); 7084 } 7085 #endif 7086 7087 /* 7088 * This function returns a stable result only if called under zone lock. 7089 */ 7090 bool is_free_buddy_page(struct page *page) 7091 { 7092 unsigned long pfn = page_to_pfn(page); 7093 unsigned int order; 7094 7095 for (order = 0; order <= MAX_ORDER; order++) { 7096 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7097 7098 if (PageBuddy(page_head) && 7099 buddy_order_unsafe(page_head) >= order) 7100 break; 7101 } 7102 7103 return order <= MAX_ORDER; 7104 } 7105 EXPORT_SYMBOL(is_free_buddy_page); 7106 7107 #ifdef CONFIG_MEMORY_FAILURE 7108 /* 7109 * Break down a higher-order page in sub-pages, and keep our target out of 7110 * buddy allocator. 7111 */ 7112 static void break_down_buddy_pages(struct zone *zone, struct page *page, 7113 struct page *target, int low, int high, 7114 int migratetype) 7115 { 7116 unsigned long size = 1 << high; 7117 struct page *current_buddy, *next_page; 7118 7119 while (high > low) { 7120 high--; 7121 size >>= 1; 7122 7123 if (target >= &page[size]) { 7124 next_page = page + size; 7125 current_buddy = page; 7126 } else { 7127 next_page = page; 7128 current_buddy = page + size; 7129 } 7130 7131 if (set_page_guard(zone, current_buddy, high, migratetype)) 7132 continue; 7133 7134 if (current_buddy != target) { 7135 add_to_free_list(current_buddy, zone, high, migratetype); 7136 set_buddy_order(current_buddy, high); 7137 page = next_page; 7138 } 7139 } 7140 } 7141 7142 /* 7143 * Take a page that will be marked as poisoned off the buddy allocator. 7144 */ 7145 bool take_page_off_buddy(struct page *page) 7146 { 7147 struct zone *zone = page_zone(page); 7148 unsigned long pfn = page_to_pfn(page); 7149 unsigned long flags; 7150 unsigned int order; 7151 bool ret = false; 7152 7153 spin_lock_irqsave(&zone->lock, flags); 7154 for (order = 0; order <= MAX_ORDER; order++) { 7155 struct page *page_head = page - (pfn & ((1 << order) - 1)); 7156 int page_order = buddy_order(page_head); 7157 7158 if (PageBuddy(page_head) && page_order >= order) { 7159 unsigned long pfn_head = page_to_pfn(page_head); 7160 int migratetype = get_pfnblock_migratetype(page_head, 7161 pfn_head); 7162 7163 del_page_from_free_list(page_head, zone, page_order); 7164 break_down_buddy_pages(zone, page_head, page, 0, 7165 page_order, migratetype); 7166 SetPageHWPoisonTakenOff(page); 7167 if (!is_migrate_isolate(migratetype)) 7168 __mod_zone_freepage_state(zone, -1, migratetype); 7169 ret = true; 7170 break; 7171 } 7172 if (page_count(page_head) > 0) 7173 break; 7174 } 7175 spin_unlock_irqrestore(&zone->lock, flags); 7176 return ret; 7177 } 7178 7179 /* 7180 * Cancel takeoff done by take_page_off_buddy(). 7181 */ 7182 bool put_page_back_buddy(struct page *page) 7183 { 7184 struct zone *zone = page_zone(page); 7185 unsigned long pfn = page_to_pfn(page); 7186 unsigned long flags; 7187 int migratetype = get_pfnblock_migratetype(page, pfn); 7188 bool ret = false; 7189 7190 spin_lock_irqsave(&zone->lock, flags); 7191 if (put_page_testzero(page)) { 7192 ClearPageHWPoisonTakenOff(page); 7193 __free_one_page(page, pfn, zone, 0, migratetype, FPI_NONE); 7194 if (TestClearPageHWPoison(page)) { 7195 ret = true; 7196 } 7197 } 7198 spin_unlock_irqrestore(&zone->lock, flags); 7199 7200 return ret; 7201 } 7202 #endif 7203 7204 #ifdef CONFIG_ZONE_DMA 7205 bool has_managed_dma(void) 7206 { 7207 struct pglist_data *pgdat; 7208 7209 for_each_online_pgdat(pgdat) { 7210 struct zone *zone = &pgdat->node_zones[ZONE_DMA]; 7211 7212 if (managed_zone(zone)) 7213 return true; 7214 } 7215 return false; 7216 } 7217 #endif /* CONFIG_ZONE_DMA */ 7218