xref: /openbmc/linux/mm/page_alloc.c (revision 020c5260)
1 /*
2  *  linux/mm/page_alloc.c
3  *
4  *  Manages the free list, the system allocates free pages here.
5  *  Note that kmalloc() lives in slab.c
6  *
7  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
8  *  Swap reorganised 29.12.95, Stephen Tweedie
9  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15  */
16 
17 #include <linux/stddef.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/notifier.h>
37 #include <linux/topology.h>
38 #include <linux/sysctl.h>
39 #include <linux/cpu.h>
40 #include <linux/cpuset.h>
41 #include <linux/memory_hotplug.h>
42 #include <linux/nodemask.h>
43 #include <linux/vmalloc.h>
44 #include <linux/vmstat.h>
45 #include <linux/mempolicy.h>
46 #include <linux/memremap.h>
47 #include <linux/stop_machine.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/page_ext.h>
54 #include <linux/debugobjects.h>
55 #include <linux/kmemleak.h>
56 #include <linux/compaction.h>
57 #include <trace/events/kmem.h>
58 #include <trace/events/oom.h>
59 #include <linux/prefetch.h>
60 #include <linux/mm_inline.h>
61 #include <linux/migrate.h>
62 #include <linux/hugetlb.h>
63 #include <linux/sched/rt.h>
64 #include <linux/sched/mm.h>
65 #include <linux/page_owner.h>
66 #include <linux/kthread.h>
67 #include <linux/memcontrol.h>
68 #include <linux/ftrace.h>
69 
70 #include <asm/sections.h>
71 #include <asm/tlbflush.h>
72 #include <asm/div64.h>
73 #include "internal.h"
74 
75 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
76 static DEFINE_MUTEX(pcp_batch_high_lock);
77 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
78 
79 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
80 DEFINE_PER_CPU(int, numa_node);
81 EXPORT_PER_CPU_SYMBOL(numa_node);
82 #endif
83 
84 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
85 /*
86  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
87  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
88  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
89  * defined in <linux/topology.h>.
90  */
91 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
92 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
93 int _node_numa_mem_[MAX_NUMNODES];
94 #endif
95 
96 /* work_structs for global per-cpu drains */
97 DEFINE_MUTEX(pcpu_drain_mutex);
98 DEFINE_PER_CPU(struct work_struct, pcpu_drain);
99 
100 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
101 volatile unsigned long latent_entropy __latent_entropy;
102 EXPORT_SYMBOL(latent_entropy);
103 #endif
104 
105 /*
106  * Array of node states.
107  */
108 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
109 	[N_POSSIBLE] = NODE_MASK_ALL,
110 	[N_ONLINE] = { { [0] = 1UL } },
111 #ifndef CONFIG_NUMA
112 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
113 #ifdef CONFIG_HIGHMEM
114 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
115 #endif
116 #ifdef CONFIG_MOVABLE_NODE
117 	[N_MEMORY] = { { [0] = 1UL } },
118 #endif
119 	[N_CPU] = { { [0] = 1UL } },
120 #endif	/* NUMA */
121 };
122 EXPORT_SYMBOL(node_states);
123 
124 /* Protect totalram_pages and zone->managed_pages */
125 static DEFINE_SPINLOCK(managed_page_count_lock);
126 
127 unsigned long totalram_pages __read_mostly;
128 unsigned long totalreserve_pages __read_mostly;
129 unsigned long totalcma_pages __read_mostly;
130 
131 int percpu_pagelist_fraction;
132 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
133 
134 /*
135  * A cached value of the page's pageblock's migratetype, used when the page is
136  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
137  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
138  * Also the migratetype set in the page does not necessarily match the pcplist
139  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
140  * other index - this ensures that it will be put on the correct CMA freelist.
141  */
142 static inline int get_pcppage_migratetype(struct page *page)
143 {
144 	return page->index;
145 }
146 
147 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
148 {
149 	page->index = migratetype;
150 }
151 
152 #ifdef CONFIG_PM_SLEEP
153 /*
154  * The following functions are used by the suspend/hibernate code to temporarily
155  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
156  * while devices are suspended.  To avoid races with the suspend/hibernate code,
157  * they should always be called with pm_mutex held (gfp_allowed_mask also should
158  * only be modified with pm_mutex held, unless the suspend/hibernate code is
159  * guaranteed not to run in parallel with that modification).
160  */
161 
162 static gfp_t saved_gfp_mask;
163 
164 void pm_restore_gfp_mask(void)
165 {
166 	WARN_ON(!mutex_is_locked(&pm_mutex));
167 	if (saved_gfp_mask) {
168 		gfp_allowed_mask = saved_gfp_mask;
169 		saved_gfp_mask = 0;
170 	}
171 }
172 
173 void pm_restrict_gfp_mask(void)
174 {
175 	WARN_ON(!mutex_is_locked(&pm_mutex));
176 	WARN_ON(saved_gfp_mask);
177 	saved_gfp_mask = gfp_allowed_mask;
178 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
179 }
180 
181 bool pm_suspended_storage(void)
182 {
183 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
184 		return false;
185 	return true;
186 }
187 #endif /* CONFIG_PM_SLEEP */
188 
189 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
190 unsigned int pageblock_order __read_mostly;
191 #endif
192 
193 static void __free_pages_ok(struct page *page, unsigned int order);
194 
195 /*
196  * results with 256, 32 in the lowmem_reserve sysctl:
197  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
198  *	1G machine -> (16M dma, 784M normal, 224M high)
199  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
200  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
201  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
202  *
203  * TBD: should special case ZONE_DMA32 machines here - in those we normally
204  * don't need any ZONE_NORMAL reservation
205  */
206 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
207 #ifdef CONFIG_ZONE_DMA
208 	 256,
209 #endif
210 #ifdef CONFIG_ZONE_DMA32
211 	 256,
212 #endif
213 #ifdef CONFIG_HIGHMEM
214 	 32,
215 #endif
216 	 32,
217 };
218 
219 EXPORT_SYMBOL(totalram_pages);
220 
221 static char * const zone_names[MAX_NR_ZONES] = {
222 #ifdef CONFIG_ZONE_DMA
223 	 "DMA",
224 #endif
225 #ifdef CONFIG_ZONE_DMA32
226 	 "DMA32",
227 #endif
228 	 "Normal",
229 #ifdef CONFIG_HIGHMEM
230 	 "HighMem",
231 #endif
232 	 "Movable",
233 #ifdef CONFIG_ZONE_DEVICE
234 	 "Device",
235 #endif
236 };
237 
238 char * const migratetype_names[MIGRATE_TYPES] = {
239 	"Unmovable",
240 	"Movable",
241 	"Reclaimable",
242 	"HighAtomic",
243 #ifdef CONFIG_CMA
244 	"CMA",
245 #endif
246 #ifdef CONFIG_MEMORY_ISOLATION
247 	"Isolate",
248 #endif
249 };
250 
251 compound_page_dtor * const compound_page_dtors[] = {
252 	NULL,
253 	free_compound_page,
254 #ifdef CONFIG_HUGETLB_PAGE
255 	free_huge_page,
256 #endif
257 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
258 	free_transhuge_page,
259 #endif
260 };
261 
262 int min_free_kbytes = 1024;
263 int user_min_free_kbytes = -1;
264 int watermark_scale_factor = 10;
265 
266 static unsigned long __meminitdata nr_kernel_pages;
267 static unsigned long __meminitdata nr_all_pages;
268 static unsigned long __meminitdata dma_reserve;
269 
270 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
271 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
272 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
273 static unsigned long __initdata required_kernelcore;
274 static unsigned long __initdata required_movablecore;
275 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
276 static bool mirrored_kernelcore;
277 
278 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
279 int movable_zone;
280 EXPORT_SYMBOL(movable_zone);
281 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
282 
283 #if MAX_NUMNODES > 1
284 int nr_node_ids __read_mostly = MAX_NUMNODES;
285 int nr_online_nodes __read_mostly = 1;
286 EXPORT_SYMBOL(nr_node_ids);
287 EXPORT_SYMBOL(nr_online_nodes);
288 #endif
289 
290 int page_group_by_mobility_disabled __read_mostly;
291 
292 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
293 static inline void reset_deferred_meminit(pg_data_t *pgdat)
294 {
295 	pgdat->first_deferred_pfn = ULONG_MAX;
296 }
297 
298 /* Returns true if the struct page for the pfn is uninitialised */
299 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
300 {
301 	int nid = early_pfn_to_nid(pfn);
302 
303 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
304 		return true;
305 
306 	return false;
307 }
308 
309 /*
310  * Returns false when the remaining initialisation should be deferred until
311  * later in the boot cycle when it can be parallelised.
312  */
313 static inline bool update_defer_init(pg_data_t *pgdat,
314 				unsigned long pfn, unsigned long zone_end,
315 				unsigned long *nr_initialised)
316 {
317 	unsigned long max_initialise;
318 
319 	/* Always populate low zones for address-contrained allocations */
320 	if (zone_end < pgdat_end_pfn(pgdat))
321 		return true;
322 	/*
323 	 * Initialise at least 2G of a node but also take into account that
324 	 * two large system hashes that can take up 1GB for 0.25TB/node.
325 	 */
326 	max_initialise = max(2UL << (30 - PAGE_SHIFT),
327 		(pgdat->node_spanned_pages >> 8));
328 
329 	(*nr_initialised)++;
330 	if ((*nr_initialised > max_initialise) &&
331 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
332 		pgdat->first_deferred_pfn = pfn;
333 		return false;
334 	}
335 
336 	return true;
337 }
338 #else
339 static inline void reset_deferred_meminit(pg_data_t *pgdat)
340 {
341 }
342 
343 static inline bool early_page_uninitialised(unsigned long pfn)
344 {
345 	return false;
346 }
347 
348 static inline bool update_defer_init(pg_data_t *pgdat,
349 				unsigned long pfn, unsigned long zone_end,
350 				unsigned long *nr_initialised)
351 {
352 	return true;
353 }
354 #endif
355 
356 /* Return a pointer to the bitmap storing bits affecting a block of pages */
357 static inline unsigned long *get_pageblock_bitmap(struct page *page,
358 							unsigned long pfn)
359 {
360 #ifdef CONFIG_SPARSEMEM
361 	return __pfn_to_section(pfn)->pageblock_flags;
362 #else
363 	return page_zone(page)->pageblock_flags;
364 #endif /* CONFIG_SPARSEMEM */
365 }
366 
367 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
368 {
369 #ifdef CONFIG_SPARSEMEM
370 	pfn &= (PAGES_PER_SECTION-1);
371 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
372 #else
373 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
374 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
375 #endif /* CONFIG_SPARSEMEM */
376 }
377 
378 /**
379  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
380  * @page: The page within the block of interest
381  * @pfn: The target page frame number
382  * @end_bitidx: The last bit of interest to retrieve
383  * @mask: mask of bits that the caller is interested in
384  *
385  * Return: pageblock_bits flags
386  */
387 static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
388 					unsigned long pfn,
389 					unsigned long end_bitidx,
390 					unsigned long mask)
391 {
392 	unsigned long *bitmap;
393 	unsigned long bitidx, word_bitidx;
394 	unsigned long word;
395 
396 	bitmap = get_pageblock_bitmap(page, pfn);
397 	bitidx = pfn_to_bitidx(page, pfn);
398 	word_bitidx = bitidx / BITS_PER_LONG;
399 	bitidx &= (BITS_PER_LONG-1);
400 
401 	word = bitmap[word_bitidx];
402 	bitidx += end_bitidx;
403 	return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
404 }
405 
406 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
407 					unsigned long end_bitidx,
408 					unsigned long mask)
409 {
410 	return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
411 }
412 
413 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
414 {
415 	return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
416 }
417 
418 /**
419  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
420  * @page: The page within the block of interest
421  * @flags: The flags to set
422  * @pfn: The target page frame number
423  * @end_bitidx: The last bit of interest
424  * @mask: mask of bits that the caller is interested in
425  */
426 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
427 					unsigned long pfn,
428 					unsigned long end_bitidx,
429 					unsigned long mask)
430 {
431 	unsigned long *bitmap;
432 	unsigned long bitidx, word_bitidx;
433 	unsigned long old_word, word;
434 
435 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
436 
437 	bitmap = get_pageblock_bitmap(page, pfn);
438 	bitidx = pfn_to_bitidx(page, pfn);
439 	word_bitidx = bitidx / BITS_PER_LONG;
440 	bitidx &= (BITS_PER_LONG-1);
441 
442 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
443 
444 	bitidx += end_bitidx;
445 	mask <<= (BITS_PER_LONG - bitidx - 1);
446 	flags <<= (BITS_PER_LONG - bitidx - 1);
447 
448 	word = READ_ONCE(bitmap[word_bitidx]);
449 	for (;;) {
450 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
451 		if (word == old_word)
452 			break;
453 		word = old_word;
454 	}
455 }
456 
457 void set_pageblock_migratetype(struct page *page, int migratetype)
458 {
459 	if (unlikely(page_group_by_mobility_disabled &&
460 		     migratetype < MIGRATE_PCPTYPES))
461 		migratetype = MIGRATE_UNMOVABLE;
462 
463 	set_pageblock_flags_group(page, (unsigned long)migratetype,
464 					PB_migrate, PB_migrate_end);
465 }
466 
467 #ifdef CONFIG_DEBUG_VM
468 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
469 {
470 	int ret = 0;
471 	unsigned seq;
472 	unsigned long pfn = page_to_pfn(page);
473 	unsigned long sp, start_pfn;
474 
475 	do {
476 		seq = zone_span_seqbegin(zone);
477 		start_pfn = zone->zone_start_pfn;
478 		sp = zone->spanned_pages;
479 		if (!zone_spans_pfn(zone, pfn))
480 			ret = 1;
481 	} while (zone_span_seqretry(zone, seq));
482 
483 	if (ret)
484 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
485 			pfn, zone_to_nid(zone), zone->name,
486 			start_pfn, start_pfn + sp);
487 
488 	return ret;
489 }
490 
491 static int page_is_consistent(struct zone *zone, struct page *page)
492 {
493 	if (!pfn_valid_within(page_to_pfn(page)))
494 		return 0;
495 	if (zone != page_zone(page))
496 		return 0;
497 
498 	return 1;
499 }
500 /*
501  * Temporary debugging check for pages not lying within a given zone.
502  */
503 static int bad_range(struct zone *zone, struct page *page)
504 {
505 	if (page_outside_zone_boundaries(zone, page))
506 		return 1;
507 	if (!page_is_consistent(zone, page))
508 		return 1;
509 
510 	return 0;
511 }
512 #else
513 static inline int bad_range(struct zone *zone, struct page *page)
514 {
515 	return 0;
516 }
517 #endif
518 
519 static void bad_page(struct page *page, const char *reason,
520 		unsigned long bad_flags)
521 {
522 	static unsigned long resume;
523 	static unsigned long nr_shown;
524 	static unsigned long nr_unshown;
525 
526 	/*
527 	 * Allow a burst of 60 reports, then keep quiet for that minute;
528 	 * or allow a steady drip of one report per second.
529 	 */
530 	if (nr_shown == 60) {
531 		if (time_before(jiffies, resume)) {
532 			nr_unshown++;
533 			goto out;
534 		}
535 		if (nr_unshown) {
536 			pr_alert(
537 			      "BUG: Bad page state: %lu messages suppressed\n",
538 				nr_unshown);
539 			nr_unshown = 0;
540 		}
541 		nr_shown = 0;
542 	}
543 	if (nr_shown++ == 0)
544 		resume = jiffies + 60 * HZ;
545 
546 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
547 		current->comm, page_to_pfn(page));
548 	__dump_page(page, reason);
549 	bad_flags &= page->flags;
550 	if (bad_flags)
551 		pr_alert("bad because of flags: %#lx(%pGp)\n",
552 						bad_flags, &bad_flags);
553 	dump_page_owner(page);
554 
555 	print_modules();
556 	dump_stack();
557 out:
558 	/* Leave bad fields for debug, except PageBuddy could make trouble */
559 	page_mapcount_reset(page); /* remove PageBuddy */
560 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
561 }
562 
563 /*
564  * Higher-order pages are called "compound pages".  They are structured thusly:
565  *
566  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
567  *
568  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
569  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
570  *
571  * The first tail page's ->compound_dtor holds the offset in array of compound
572  * page destructors. See compound_page_dtors.
573  *
574  * The first tail page's ->compound_order holds the order of allocation.
575  * This usage means that zero-order pages may not be compound.
576  */
577 
578 void free_compound_page(struct page *page)
579 {
580 	__free_pages_ok(page, compound_order(page));
581 }
582 
583 void prep_compound_page(struct page *page, unsigned int order)
584 {
585 	int i;
586 	int nr_pages = 1 << order;
587 
588 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
589 	set_compound_order(page, order);
590 	__SetPageHead(page);
591 	for (i = 1; i < nr_pages; i++) {
592 		struct page *p = page + i;
593 		set_page_count(p, 0);
594 		p->mapping = TAIL_MAPPING;
595 		set_compound_head(p, page);
596 	}
597 	atomic_set(compound_mapcount_ptr(page), -1);
598 }
599 
600 #ifdef CONFIG_DEBUG_PAGEALLOC
601 unsigned int _debug_guardpage_minorder;
602 bool _debug_pagealloc_enabled __read_mostly
603 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
604 EXPORT_SYMBOL(_debug_pagealloc_enabled);
605 bool _debug_guardpage_enabled __read_mostly;
606 
607 static int __init early_debug_pagealloc(char *buf)
608 {
609 	if (!buf)
610 		return -EINVAL;
611 	return kstrtobool(buf, &_debug_pagealloc_enabled);
612 }
613 early_param("debug_pagealloc", early_debug_pagealloc);
614 
615 static bool need_debug_guardpage(void)
616 {
617 	/* If we don't use debug_pagealloc, we don't need guard page */
618 	if (!debug_pagealloc_enabled())
619 		return false;
620 
621 	if (!debug_guardpage_minorder())
622 		return false;
623 
624 	return true;
625 }
626 
627 static void init_debug_guardpage(void)
628 {
629 	if (!debug_pagealloc_enabled())
630 		return;
631 
632 	if (!debug_guardpage_minorder())
633 		return;
634 
635 	_debug_guardpage_enabled = true;
636 }
637 
638 struct page_ext_operations debug_guardpage_ops = {
639 	.need = need_debug_guardpage,
640 	.init = init_debug_guardpage,
641 };
642 
643 static int __init debug_guardpage_minorder_setup(char *buf)
644 {
645 	unsigned long res;
646 
647 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
648 		pr_err("Bad debug_guardpage_minorder value\n");
649 		return 0;
650 	}
651 	_debug_guardpage_minorder = res;
652 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
653 	return 0;
654 }
655 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
656 
657 static inline bool set_page_guard(struct zone *zone, struct page *page,
658 				unsigned int order, int migratetype)
659 {
660 	struct page_ext *page_ext;
661 
662 	if (!debug_guardpage_enabled())
663 		return false;
664 
665 	if (order >= debug_guardpage_minorder())
666 		return false;
667 
668 	page_ext = lookup_page_ext(page);
669 	if (unlikely(!page_ext))
670 		return false;
671 
672 	__set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673 
674 	INIT_LIST_HEAD(&page->lru);
675 	set_page_private(page, order);
676 	/* Guard pages are not available for any usage */
677 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
678 
679 	return true;
680 }
681 
682 static inline void clear_page_guard(struct zone *zone, struct page *page,
683 				unsigned int order, int migratetype)
684 {
685 	struct page_ext *page_ext;
686 
687 	if (!debug_guardpage_enabled())
688 		return;
689 
690 	page_ext = lookup_page_ext(page);
691 	if (unlikely(!page_ext))
692 		return;
693 
694 	__clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
695 
696 	set_page_private(page, 0);
697 	if (!is_migrate_isolate(migratetype))
698 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
699 }
700 #else
701 struct page_ext_operations debug_guardpage_ops;
702 static inline bool set_page_guard(struct zone *zone, struct page *page,
703 			unsigned int order, int migratetype) { return false; }
704 static inline void clear_page_guard(struct zone *zone, struct page *page,
705 				unsigned int order, int migratetype) {}
706 #endif
707 
708 static inline void set_page_order(struct page *page, unsigned int order)
709 {
710 	set_page_private(page, order);
711 	__SetPageBuddy(page);
712 }
713 
714 static inline void rmv_page_order(struct page *page)
715 {
716 	__ClearPageBuddy(page);
717 	set_page_private(page, 0);
718 }
719 
720 /*
721  * This function checks whether a page is free && is the buddy
722  * we can do coalesce a page and its buddy if
723  * (a) the buddy is not in a hole (check before calling!) &&
724  * (b) the buddy is in the buddy system &&
725  * (c) a page and its buddy have the same order &&
726  * (d) a page and its buddy are in the same zone.
727  *
728  * For recording whether a page is in the buddy system, we set ->_mapcount
729  * PAGE_BUDDY_MAPCOUNT_VALUE.
730  * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
731  * serialized by zone->lock.
732  *
733  * For recording page's order, we use page_private(page).
734  */
735 static inline int page_is_buddy(struct page *page, struct page *buddy,
736 							unsigned int order)
737 {
738 	if (page_is_guard(buddy) && page_order(buddy) == order) {
739 		if (page_zone_id(page) != page_zone_id(buddy))
740 			return 0;
741 
742 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
743 
744 		return 1;
745 	}
746 
747 	if (PageBuddy(buddy) && page_order(buddy) == order) {
748 		/*
749 		 * zone check is done late to avoid uselessly
750 		 * calculating zone/node ids for pages that could
751 		 * never merge.
752 		 */
753 		if (page_zone_id(page) != page_zone_id(buddy))
754 			return 0;
755 
756 		VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
757 
758 		return 1;
759 	}
760 	return 0;
761 }
762 
763 /*
764  * Freeing function for a buddy system allocator.
765  *
766  * The concept of a buddy system is to maintain direct-mapped table
767  * (containing bit values) for memory blocks of various "orders".
768  * The bottom level table contains the map for the smallest allocatable
769  * units of memory (here, pages), and each level above it describes
770  * pairs of units from the levels below, hence, "buddies".
771  * At a high level, all that happens here is marking the table entry
772  * at the bottom level available, and propagating the changes upward
773  * as necessary, plus some accounting needed to play nicely with other
774  * parts of the VM system.
775  * At each level, we keep a list of pages, which are heads of continuous
776  * free pages of length of (1 << order) and marked with _mapcount
777  * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
778  * field.
779  * So when we are allocating or freeing one, we can derive the state of the
780  * other.  That is, if we allocate a small block, and both were
781  * free, the remainder of the region must be split into blocks.
782  * If a block is freed, and its buddy is also free, then this
783  * triggers coalescing into a block of larger size.
784  *
785  * -- nyc
786  */
787 
788 static inline void __free_one_page(struct page *page,
789 		unsigned long pfn,
790 		struct zone *zone, unsigned int order,
791 		int migratetype)
792 {
793 	unsigned long combined_pfn;
794 	unsigned long uninitialized_var(buddy_pfn);
795 	struct page *buddy;
796 	unsigned int max_order;
797 
798 	max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
799 
800 	VM_BUG_ON(!zone_is_initialized(zone));
801 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
802 
803 	VM_BUG_ON(migratetype == -1);
804 	if (likely(!is_migrate_isolate(migratetype)))
805 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
806 
807 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
808 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
809 
810 continue_merging:
811 	while (order < max_order - 1) {
812 		buddy_pfn = __find_buddy_pfn(pfn, order);
813 		buddy = page + (buddy_pfn - pfn);
814 
815 		if (!pfn_valid_within(buddy_pfn))
816 			goto done_merging;
817 		if (!page_is_buddy(page, buddy, order))
818 			goto done_merging;
819 		/*
820 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
821 		 * merge with it and move up one order.
822 		 */
823 		if (page_is_guard(buddy)) {
824 			clear_page_guard(zone, buddy, order, migratetype);
825 		} else {
826 			list_del(&buddy->lru);
827 			zone->free_area[order].nr_free--;
828 			rmv_page_order(buddy);
829 		}
830 		combined_pfn = buddy_pfn & pfn;
831 		page = page + (combined_pfn - pfn);
832 		pfn = combined_pfn;
833 		order++;
834 	}
835 	if (max_order < MAX_ORDER) {
836 		/* If we are here, it means order is >= pageblock_order.
837 		 * We want to prevent merge between freepages on isolate
838 		 * pageblock and normal pageblock. Without this, pageblock
839 		 * isolation could cause incorrect freepage or CMA accounting.
840 		 *
841 		 * We don't want to hit this code for the more frequent
842 		 * low-order merging.
843 		 */
844 		if (unlikely(has_isolate_pageblock(zone))) {
845 			int buddy_mt;
846 
847 			buddy_pfn = __find_buddy_pfn(pfn, order);
848 			buddy = page + (buddy_pfn - pfn);
849 			buddy_mt = get_pageblock_migratetype(buddy);
850 
851 			if (migratetype != buddy_mt
852 					&& (is_migrate_isolate(migratetype) ||
853 						is_migrate_isolate(buddy_mt)))
854 				goto done_merging;
855 		}
856 		max_order++;
857 		goto continue_merging;
858 	}
859 
860 done_merging:
861 	set_page_order(page, order);
862 
863 	/*
864 	 * If this is not the largest possible page, check if the buddy
865 	 * of the next-highest order is free. If it is, it's possible
866 	 * that pages are being freed that will coalesce soon. In case,
867 	 * that is happening, add the free page to the tail of the list
868 	 * so it's less likely to be used soon and more likely to be merged
869 	 * as a higher order page
870 	 */
871 	if ((order < MAX_ORDER-2) && pfn_valid_within(buddy_pfn)) {
872 		struct page *higher_page, *higher_buddy;
873 		combined_pfn = buddy_pfn & pfn;
874 		higher_page = page + (combined_pfn - pfn);
875 		buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
876 		higher_buddy = higher_page + (buddy_pfn - combined_pfn);
877 		if (pfn_valid_within(buddy_pfn) &&
878 		    page_is_buddy(higher_page, higher_buddy, order + 1)) {
879 			list_add_tail(&page->lru,
880 				&zone->free_area[order].free_list[migratetype]);
881 			goto out;
882 		}
883 	}
884 
885 	list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
886 out:
887 	zone->free_area[order].nr_free++;
888 }
889 
890 /*
891  * A bad page could be due to a number of fields. Instead of multiple branches,
892  * try and check multiple fields with one check. The caller must do a detailed
893  * check if necessary.
894  */
895 static inline bool page_expected_state(struct page *page,
896 					unsigned long check_flags)
897 {
898 	if (unlikely(atomic_read(&page->_mapcount) != -1))
899 		return false;
900 
901 	if (unlikely((unsigned long)page->mapping |
902 			page_ref_count(page) |
903 #ifdef CONFIG_MEMCG
904 			(unsigned long)page->mem_cgroup |
905 #endif
906 			(page->flags & check_flags)))
907 		return false;
908 
909 	return true;
910 }
911 
912 static void free_pages_check_bad(struct page *page)
913 {
914 	const char *bad_reason;
915 	unsigned long bad_flags;
916 
917 	bad_reason = NULL;
918 	bad_flags = 0;
919 
920 	if (unlikely(atomic_read(&page->_mapcount) != -1))
921 		bad_reason = "nonzero mapcount";
922 	if (unlikely(page->mapping != NULL))
923 		bad_reason = "non-NULL mapping";
924 	if (unlikely(page_ref_count(page) != 0))
925 		bad_reason = "nonzero _refcount";
926 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
927 		bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
928 		bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
929 	}
930 #ifdef CONFIG_MEMCG
931 	if (unlikely(page->mem_cgroup))
932 		bad_reason = "page still charged to cgroup";
933 #endif
934 	bad_page(page, bad_reason, bad_flags);
935 }
936 
937 static inline int free_pages_check(struct page *page)
938 {
939 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
940 		return 0;
941 
942 	/* Something has gone sideways, find it */
943 	free_pages_check_bad(page);
944 	return 1;
945 }
946 
947 static int free_tail_pages_check(struct page *head_page, struct page *page)
948 {
949 	int ret = 1;
950 
951 	/*
952 	 * We rely page->lru.next never has bit 0 set, unless the page
953 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
954 	 */
955 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
956 
957 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
958 		ret = 0;
959 		goto out;
960 	}
961 	switch (page - head_page) {
962 	case 1:
963 		/* the first tail page: ->mapping is compound_mapcount() */
964 		if (unlikely(compound_mapcount(page))) {
965 			bad_page(page, "nonzero compound_mapcount", 0);
966 			goto out;
967 		}
968 		break;
969 	case 2:
970 		/*
971 		 * the second tail page: ->mapping is
972 		 * page_deferred_list().next -- ignore value.
973 		 */
974 		break;
975 	default:
976 		if (page->mapping != TAIL_MAPPING) {
977 			bad_page(page, "corrupted mapping in tail page", 0);
978 			goto out;
979 		}
980 		break;
981 	}
982 	if (unlikely(!PageTail(page))) {
983 		bad_page(page, "PageTail not set", 0);
984 		goto out;
985 	}
986 	if (unlikely(compound_head(page) != head_page)) {
987 		bad_page(page, "compound_head not consistent", 0);
988 		goto out;
989 	}
990 	ret = 0;
991 out:
992 	page->mapping = NULL;
993 	clear_compound_head(page);
994 	return ret;
995 }
996 
997 static __always_inline bool free_pages_prepare(struct page *page,
998 					unsigned int order, bool check_free)
999 {
1000 	int bad = 0;
1001 
1002 	VM_BUG_ON_PAGE(PageTail(page), page);
1003 
1004 	trace_mm_page_free(page, order);
1005 	kmemcheck_free_shadow(page, order);
1006 
1007 	/*
1008 	 * Check tail pages before head page information is cleared to
1009 	 * avoid checking PageCompound for order-0 pages.
1010 	 */
1011 	if (unlikely(order)) {
1012 		bool compound = PageCompound(page);
1013 		int i;
1014 
1015 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1016 
1017 		if (compound)
1018 			ClearPageDoubleMap(page);
1019 		for (i = 1; i < (1 << order); i++) {
1020 			if (compound)
1021 				bad += free_tail_pages_check(page, page + i);
1022 			if (unlikely(free_pages_check(page + i))) {
1023 				bad++;
1024 				continue;
1025 			}
1026 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1027 		}
1028 	}
1029 	if (PageMappingFlags(page))
1030 		page->mapping = NULL;
1031 	if (memcg_kmem_enabled() && PageKmemcg(page))
1032 		memcg_kmem_uncharge(page, order);
1033 	if (check_free)
1034 		bad += free_pages_check(page);
1035 	if (bad)
1036 		return false;
1037 
1038 	page_cpupid_reset_last(page);
1039 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1040 	reset_page_owner(page, order);
1041 
1042 	if (!PageHighMem(page)) {
1043 		debug_check_no_locks_freed(page_address(page),
1044 					   PAGE_SIZE << order);
1045 		debug_check_no_obj_freed(page_address(page),
1046 					   PAGE_SIZE << order);
1047 	}
1048 	arch_free_page(page, order);
1049 	kernel_poison_pages(page, 1 << order, 0);
1050 	kernel_map_pages(page, 1 << order, 0);
1051 	kasan_free_pages(page, order);
1052 
1053 	return true;
1054 }
1055 
1056 #ifdef CONFIG_DEBUG_VM
1057 static inline bool free_pcp_prepare(struct page *page)
1058 {
1059 	return free_pages_prepare(page, 0, true);
1060 }
1061 
1062 static inline bool bulkfree_pcp_prepare(struct page *page)
1063 {
1064 	return false;
1065 }
1066 #else
1067 static bool free_pcp_prepare(struct page *page)
1068 {
1069 	return free_pages_prepare(page, 0, false);
1070 }
1071 
1072 static bool bulkfree_pcp_prepare(struct page *page)
1073 {
1074 	return free_pages_check(page);
1075 }
1076 #endif /* CONFIG_DEBUG_VM */
1077 
1078 /*
1079  * Frees a number of pages from the PCP lists
1080  * Assumes all pages on list are in same zone, and of same order.
1081  * count is the number of pages to free.
1082  *
1083  * If the zone was previously in an "all pages pinned" state then look to
1084  * see if this freeing clears that state.
1085  *
1086  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1087  * pinned" detection logic.
1088  */
1089 static void free_pcppages_bulk(struct zone *zone, int count,
1090 					struct per_cpu_pages *pcp)
1091 {
1092 	int migratetype = 0;
1093 	int batch_free = 0;
1094 	bool isolated_pageblocks;
1095 
1096 	spin_lock(&zone->lock);
1097 	isolated_pageblocks = has_isolate_pageblock(zone);
1098 
1099 	while (count) {
1100 		struct page *page;
1101 		struct list_head *list;
1102 
1103 		/*
1104 		 * Remove pages from lists in a round-robin fashion. A
1105 		 * batch_free count is maintained that is incremented when an
1106 		 * empty list is encountered.  This is so more pages are freed
1107 		 * off fuller lists instead of spinning excessively around empty
1108 		 * lists
1109 		 */
1110 		do {
1111 			batch_free++;
1112 			if (++migratetype == MIGRATE_PCPTYPES)
1113 				migratetype = 0;
1114 			list = &pcp->lists[migratetype];
1115 		} while (list_empty(list));
1116 
1117 		/* This is the only non-empty list. Free them all. */
1118 		if (batch_free == MIGRATE_PCPTYPES)
1119 			batch_free = count;
1120 
1121 		do {
1122 			int mt;	/* migratetype of the to-be-freed page */
1123 
1124 			page = list_last_entry(list, struct page, lru);
1125 			/* must delete as __free_one_page list manipulates */
1126 			list_del(&page->lru);
1127 
1128 			mt = get_pcppage_migratetype(page);
1129 			/* MIGRATE_ISOLATE page should not go to pcplists */
1130 			VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1131 			/* Pageblock could have been isolated meanwhile */
1132 			if (unlikely(isolated_pageblocks))
1133 				mt = get_pageblock_migratetype(page);
1134 
1135 			if (bulkfree_pcp_prepare(page))
1136 				continue;
1137 
1138 			__free_one_page(page, page_to_pfn(page), zone, 0, mt);
1139 			trace_mm_page_pcpu_drain(page, 0, mt);
1140 		} while (--count && --batch_free && !list_empty(list));
1141 	}
1142 	spin_unlock(&zone->lock);
1143 }
1144 
1145 static void free_one_page(struct zone *zone,
1146 				struct page *page, unsigned long pfn,
1147 				unsigned int order,
1148 				int migratetype)
1149 {
1150 	spin_lock(&zone->lock);
1151 	if (unlikely(has_isolate_pageblock(zone) ||
1152 		is_migrate_isolate(migratetype))) {
1153 		migratetype = get_pfnblock_migratetype(page, pfn);
1154 	}
1155 	__free_one_page(page, pfn, zone, order, migratetype);
1156 	spin_unlock(&zone->lock);
1157 }
1158 
1159 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1160 				unsigned long zone, int nid)
1161 {
1162 	set_page_links(page, zone, nid, pfn);
1163 	init_page_count(page);
1164 	page_mapcount_reset(page);
1165 	page_cpupid_reset_last(page);
1166 
1167 	INIT_LIST_HEAD(&page->lru);
1168 #ifdef WANT_PAGE_VIRTUAL
1169 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1170 	if (!is_highmem_idx(zone))
1171 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1172 #endif
1173 }
1174 
1175 static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1176 					int nid)
1177 {
1178 	return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1179 }
1180 
1181 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1182 static void init_reserved_page(unsigned long pfn)
1183 {
1184 	pg_data_t *pgdat;
1185 	int nid, zid;
1186 
1187 	if (!early_page_uninitialised(pfn))
1188 		return;
1189 
1190 	nid = early_pfn_to_nid(pfn);
1191 	pgdat = NODE_DATA(nid);
1192 
1193 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1194 		struct zone *zone = &pgdat->node_zones[zid];
1195 
1196 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1197 			break;
1198 	}
1199 	__init_single_pfn(pfn, zid, nid);
1200 }
1201 #else
1202 static inline void init_reserved_page(unsigned long pfn)
1203 {
1204 }
1205 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1206 
1207 /*
1208  * Initialised pages do not have PageReserved set. This function is
1209  * called for each range allocated by the bootmem allocator and
1210  * marks the pages PageReserved. The remaining valid pages are later
1211  * sent to the buddy page allocator.
1212  */
1213 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1214 {
1215 	unsigned long start_pfn = PFN_DOWN(start);
1216 	unsigned long end_pfn = PFN_UP(end);
1217 
1218 	for (; start_pfn < end_pfn; start_pfn++) {
1219 		if (pfn_valid(start_pfn)) {
1220 			struct page *page = pfn_to_page(start_pfn);
1221 
1222 			init_reserved_page(start_pfn);
1223 
1224 			/* Avoid false-positive PageTail() */
1225 			INIT_LIST_HEAD(&page->lru);
1226 
1227 			SetPageReserved(page);
1228 		}
1229 	}
1230 }
1231 
1232 static void __free_pages_ok(struct page *page, unsigned int order)
1233 {
1234 	unsigned long flags;
1235 	int migratetype;
1236 	unsigned long pfn = page_to_pfn(page);
1237 
1238 	if (!free_pages_prepare(page, order, true))
1239 		return;
1240 
1241 	migratetype = get_pfnblock_migratetype(page, pfn);
1242 	local_irq_save(flags);
1243 	__count_vm_events(PGFREE, 1 << order);
1244 	free_one_page(page_zone(page), page, pfn, order, migratetype);
1245 	local_irq_restore(flags);
1246 }
1247 
1248 static void __init __free_pages_boot_core(struct page *page, unsigned int order)
1249 {
1250 	unsigned int nr_pages = 1 << order;
1251 	struct page *p = page;
1252 	unsigned int loop;
1253 
1254 	prefetchw(p);
1255 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1256 		prefetchw(p + 1);
1257 		__ClearPageReserved(p);
1258 		set_page_count(p, 0);
1259 	}
1260 	__ClearPageReserved(p);
1261 	set_page_count(p, 0);
1262 
1263 	page_zone(page)->managed_pages += nr_pages;
1264 	set_page_refcounted(page);
1265 	__free_pages(page, order);
1266 }
1267 
1268 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1269 	defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1270 
1271 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1272 
1273 int __meminit early_pfn_to_nid(unsigned long pfn)
1274 {
1275 	static DEFINE_SPINLOCK(early_pfn_lock);
1276 	int nid;
1277 
1278 	spin_lock(&early_pfn_lock);
1279 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1280 	if (nid < 0)
1281 		nid = first_online_node;
1282 	spin_unlock(&early_pfn_lock);
1283 
1284 	return nid;
1285 }
1286 #endif
1287 
1288 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1289 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1290 					struct mminit_pfnnid_cache *state)
1291 {
1292 	int nid;
1293 
1294 	nid = __early_pfn_to_nid(pfn, state);
1295 	if (nid >= 0 && nid != node)
1296 		return false;
1297 	return true;
1298 }
1299 
1300 /* Only safe to use early in boot when initialisation is single-threaded */
1301 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1302 {
1303 	return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1304 }
1305 
1306 #else
1307 
1308 static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1309 {
1310 	return true;
1311 }
1312 static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1313 					struct mminit_pfnnid_cache *state)
1314 {
1315 	return true;
1316 }
1317 #endif
1318 
1319 
1320 void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
1321 							unsigned int order)
1322 {
1323 	if (early_page_uninitialised(pfn))
1324 		return;
1325 	return __free_pages_boot_core(page, order);
1326 }
1327 
1328 /*
1329  * Check that the whole (or subset of) a pageblock given by the interval of
1330  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1331  * with the migration of free compaction scanner. The scanners then need to
1332  * use only pfn_valid_within() check for arches that allow holes within
1333  * pageblocks.
1334  *
1335  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1336  *
1337  * It's possible on some configurations to have a setup like node0 node1 node0
1338  * i.e. it's possible that all pages within a zones range of pages do not
1339  * belong to a single zone. We assume that a border between node0 and node1
1340  * can occur within a single pageblock, but not a node0 node1 node0
1341  * interleaving within a single pageblock. It is therefore sufficient to check
1342  * the first and last page of a pageblock and avoid checking each individual
1343  * page in a pageblock.
1344  */
1345 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1346 				     unsigned long end_pfn, struct zone *zone)
1347 {
1348 	struct page *start_page;
1349 	struct page *end_page;
1350 
1351 	/* end_pfn is one past the range we are checking */
1352 	end_pfn--;
1353 
1354 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1355 		return NULL;
1356 
1357 	start_page = pfn_to_page(start_pfn);
1358 
1359 	if (page_zone(start_page) != zone)
1360 		return NULL;
1361 
1362 	end_page = pfn_to_page(end_pfn);
1363 
1364 	/* This gives a shorter code than deriving page_zone(end_page) */
1365 	if (page_zone_id(start_page) != page_zone_id(end_page))
1366 		return NULL;
1367 
1368 	return start_page;
1369 }
1370 
1371 void set_zone_contiguous(struct zone *zone)
1372 {
1373 	unsigned long block_start_pfn = zone->zone_start_pfn;
1374 	unsigned long block_end_pfn;
1375 
1376 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1377 	for (; block_start_pfn < zone_end_pfn(zone);
1378 			block_start_pfn = block_end_pfn,
1379 			 block_end_pfn += pageblock_nr_pages) {
1380 
1381 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1382 
1383 		if (!__pageblock_pfn_to_page(block_start_pfn,
1384 					     block_end_pfn, zone))
1385 			return;
1386 	}
1387 
1388 	/* We confirm that there is no hole */
1389 	zone->contiguous = true;
1390 }
1391 
1392 void clear_zone_contiguous(struct zone *zone)
1393 {
1394 	zone->contiguous = false;
1395 }
1396 
1397 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1398 static void __init deferred_free_range(struct page *page,
1399 					unsigned long pfn, int nr_pages)
1400 {
1401 	int i;
1402 
1403 	if (!page)
1404 		return;
1405 
1406 	/* Free a large naturally-aligned chunk if possible */
1407 	if (nr_pages == pageblock_nr_pages &&
1408 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1409 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1410 		__free_pages_boot_core(page, pageblock_order);
1411 		return;
1412 	}
1413 
1414 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1415 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1416 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1417 		__free_pages_boot_core(page, 0);
1418 	}
1419 }
1420 
1421 /* Completion tracking for deferred_init_memmap() threads */
1422 static atomic_t pgdat_init_n_undone __initdata;
1423 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1424 
1425 static inline void __init pgdat_init_report_one_done(void)
1426 {
1427 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1428 		complete(&pgdat_init_all_done_comp);
1429 }
1430 
1431 /* Initialise remaining memory on a node */
1432 static int __init deferred_init_memmap(void *data)
1433 {
1434 	pg_data_t *pgdat = data;
1435 	int nid = pgdat->node_id;
1436 	struct mminit_pfnnid_cache nid_init_state = { };
1437 	unsigned long start = jiffies;
1438 	unsigned long nr_pages = 0;
1439 	unsigned long walk_start, walk_end;
1440 	int i, zid;
1441 	struct zone *zone;
1442 	unsigned long first_init_pfn = pgdat->first_deferred_pfn;
1443 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1444 
1445 	if (first_init_pfn == ULONG_MAX) {
1446 		pgdat_init_report_one_done();
1447 		return 0;
1448 	}
1449 
1450 	/* Bind memory initialisation thread to a local node if possible */
1451 	if (!cpumask_empty(cpumask))
1452 		set_cpus_allowed_ptr(current, cpumask);
1453 
1454 	/* Sanity check boundaries */
1455 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1456 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1457 	pgdat->first_deferred_pfn = ULONG_MAX;
1458 
1459 	/* Only the highest zone is deferred so find it */
1460 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1461 		zone = pgdat->node_zones + zid;
1462 		if (first_init_pfn < zone_end_pfn(zone))
1463 			break;
1464 	}
1465 
1466 	for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1467 		unsigned long pfn, end_pfn;
1468 		struct page *page = NULL;
1469 		struct page *free_base_page = NULL;
1470 		unsigned long free_base_pfn = 0;
1471 		int nr_to_free = 0;
1472 
1473 		end_pfn = min(walk_end, zone_end_pfn(zone));
1474 		pfn = first_init_pfn;
1475 		if (pfn < walk_start)
1476 			pfn = walk_start;
1477 		if (pfn < zone->zone_start_pfn)
1478 			pfn = zone->zone_start_pfn;
1479 
1480 		for (; pfn < end_pfn; pfn++) {
1481 			if (!pfn_valid_within(pfn))
1482 				goto free_range;
1483 
1484 			/*
1485 			 * Ensure pfn_valid is checked every
1486 			 * pageblock_nr_pages for memory holes
1487 			 */
1488 			if ((pfn & (pageblock_nr_pages - 1)) == 0) {
1489 				if (!pfn_valid(pfn)) {
1490 					page = NULL;
1491 					goto free_range;
1492 				}
1493 			}
1494 
1495 			if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1496 				page = NULL;
1497 				goto free_range;
1498 			}
1499 
1500 			/* Minimise pfn page lookups and scheduler checks */
1501 			if (page && (pfn & (pageblock_nr_pages - 1)) != 0) {
1502 				page++;
1503 			} else {
1504 				nr_pages += nr_to_free;
1505 				deferred_free_range(free_base_page,
1506 						free_base_pfn, nr_to_free);
1507 				free_base_page = NULL;
1508 				free_base_pfn = nr_to_free = 0;
1509 
1510 				page = pfn_to_page(pfn);
1511 				cond_resched();
1512 			}
1513 
1514 			if (page->flags) {
1515 				VM_BUG_ON(page_zone(page) != zone);
1516 				goto free_range;
1517 			}
1518 
1519 			__init_single_page(page, pfn, zid, nid);
1520 			if (!free_base_page) {
1521 				free_base_page = page;
1522 				free_base_pfn = pfn;
1523 				nr_to_free = 0;
1524 			}
1525 			nr_to_free++;
1526 
1527 			/* Where possible, batch up pages for a single free */
1528 			continue;
1529 free_range:
1530 			/* Free the current block of pages to allocator */
1531 			nr_pages += nr_to_free;
1532 			deferred_free_range(free_base_page, free_base_pfn,
1533 								nr_to_free);
1534 			free_base_page = NULL;
1535 			free_base_pfn = nr_to_free = 0;
1536 		}
1537 		/* Free the last block of pages to allocator */
1538 		nr_pages += nr_to_free;
1539 		deferred_free_range(free_base_page, free_base_pfn, nr_to_free);
1540 
1541 		first_init_pfn = max(end_pfn, first_init_pfn);
1542 	}
1543 
1544 	/* Sanity check that the next zone really is unpopulated */
1545 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1546 
1547 	pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
1548 					jiffies_to_msecs(jiffies - start));
1549 
1550 	pgdat_init_report_one_done();
1551 	return 0;
1552 }
1553 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1554 
1555 void __init page_alloc_init_late(void)
1556 {
1557 	struct zone *zone;
1558 
1559 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1560 	int nid;
1561 
1562 	/* There will be num_node_state(N_MEMORY) threads */
1563 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
1564 	for_each_node_state(nid, N_MEMORY) {
1565 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1566 	}
1567 
1568 	/* Block until all are initialised */
1569 	wait_for_completion(&pgdat_init_all_done_comp);
1570 
1571 	/* Reinit limits that are based on free pages after the kernel is up */
1572 	files_maxfiles_init();
1573 #endif
1574 
1575 	for_each_populated_zone(zone)
1576 		set_zone_contiguous(zone);
1577 }
1578 
1579 #ifdef CONFIG_CMA
1580 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1581 void __init init_cma_reserved_pageblock(struct page *page)
1582 {
1583 	unsigned i = pageblock_nr_pages;
1584 	struct page *p = page;
1585 
1586 	do {
1587 		__ClearPageReserved(p);
1588 		set_page_count(p, 0);
1589 	} while (++p, --i);
1590 
1591 	set_pageblock_migratetype(page, MIGRATE_CMA);
1592 
1593 	if (pageblock_order >= MAX_ORDER) {
1594 		i = pageblock_nr_pages;
1595 		p = page;
1596 		do {
1597 			set_page_refcounted(p);
1598 			__free_pages(p, MAX_ORDER - 1);
1599 			p += MAX_ORDER_NR_PAGES;
1600 		} while (i -= MAX_ORDER_NR_PAGES);
1601 	} else {
1602 		set_page_refcounted(page);
1603 		__free_pages(page, pageblock_order);
1604 	}
1605 
1606 	adjust_managed_page_count(page, pageblock_nr_pages);
1607 }
1608 #endif
1609 
1610 /*
1611  * The order of subdivision here is critical for the IO subsystem.
1612  * Please do not alter this order without good reasons and regression
1613  * testing. Specifically, as large blocks of memory are subdivided,
1614  * the order in which smaller blocks are delivered depends on the order
1615  * they're subdivided in this function. This is the primary factor
1616  * influencing the order in which pages are delivered to the IO
1617  * subsystem according to empirical testing, and this is also justified
1618  * by considering the behavior of a buddy system containing a single
1619  * large block of memory acted on by a series of small allocations.
1620  * This behavior is a critical factor in sglist merging's success.
1621  *
1622  * -- nyc
1623  */
1624 static inline void expand(struct zone *zone, struct page *page,
1625 	int low, int high, struct free_area *area,
1626 	int migratetype)
1627 {
1628 	unsigned long size = 1 << high;
1629 
1630 	while (high > low) {
1631 		area--;
1632 		high--;
1633 		size >>= 1;
1634 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
1635 
1636 		/*
1637 		 * Mark as guard pages (or page), that will allow to
1638 		 * merge back to allocator when buddy will be freed.
1639 		 * Corresponding page table entries will not be touched,
1640 		 * pages will stay not present in virtual address space
1641 		 */
1642 		if (set_page_guard(zone, &page[size], high, migratetype))
1643 			continue;
1644 
1645 		list_add(&page[size].lru, &area->free_list[migratetype]);
1646 		area->nr_free++;
1647 		set_page_order(&page[size], high);
1648 	}
1649 }
1650 
1651 static void check_new_page_bad(struct page *page)
1652 {
1653 	const char *bad_reason = NULL;
1654 	unsigned long bad_flags = 0;
1655 
1656 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1657 		bad_reason = "nonzero mapcount";
1658 	if (unlikely(page->mapping != NULL))
1659 		bad_reason = "non-NULL mapping";
1660 	if (unlikely(page_ref_count(page) != 0))
1661 		bad_reason = "nonzero _count";
1662 	if (unlikely(page->flags & __PG_HWPOISON)) {
1663 		bad_reason = "HWPoisoned (hardware-corrupted)";
1664 		bad_flags = __PG_HWPOISON;
1665 		/* Don't complain about hwpoisoned pages */
1666 		page_mapcount_reset(page); /* remove PageBuddy */
1667 		return;
1668 	}
1669 	if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1670 		bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1671 		bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1672 	}
1673 #ifdef CONFIG_MEMCG
1674 	if (unlikely(page->mem_cgroup))
1675 		bad_reason = "page still charged to cgroup";
1676 #endif
1677 	bad_page(page, bad_reason, bad_flags);
1678 }
1679 
1680 /*
1681  * This page is about to be returned from the page allocator
1682  */
1683 static inline int check_new_page(struct page *page)
1684 {
1685 	if (likely(page_expected_state(page,
1686 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1687 		return 0;
1688 
1689 	check_new_page_bad(page);
1690 	return 1;
1691 }
1692 
1693 static inline bool free_pages_prezeroed(void)
1694 {
1695 	return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1696 		page_poisoning_enabled();
1697 }
1698 
1699 #ifdef CONFIG_DEBUG_VM
1700 static bool check_pcp_refill(struct page *page)
1701 {
1702 	return false;
1703 }
1704 
1705 static bool check_new_pcp(struct page *page)
1706 {
1707 	return check_new_page(page);
1708 }
1709 #else
1710 static bool check_pcp_refill(struct page *page)
1711 {
1712 	return check_new_page(page);
1713 }
1714 static bool check_new_pcp(struct page *page)
1715 {
1716 	return false;
1717 }
1718 #endif /* CONFIG_DEBUG_VM */
1719 
1720 static bool check_new_pages(struct page *page, unsigned int order)
1721 {
1722 	int i;
1723 	for (i = 0; i < (1 << order); i++) {
1724 		struct page *p = page + i;
1725 
1726 		if (unlikely(check_new_page(p)))
1727 			return true;
1728 	}
1729 
1730 	return false;
1731 }
1732 
1733 inline void post_alloc_hook(struct page *page, unsigned int order,
1734 				gfp_t gfp_flags)
1735 {
1736 	set_page_private(page, 0);
1737 	set_page_refcounted(page);
1738 
1739 	arch_alloc_page(page, order);
1740 	kernel_map_pages(page, 1 << order, 1);
1741 	kernel_poison_pages(page, 1 << order, 1);
1742 	kasan_alloc_pages(page, order);
1743 	set_page_owner(page, order, gfp_flags);
1744 }
1745 
1746 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
1747 							unsigned int alloc_flags)
1748 {
1749 	int i;
1750 
1751 	post_alloc_hook(page, order, gfp_flags);
1752 
1753 	if (!free_pages_prezeroed() && (gfp_flags & __GFP_ZERO))
1754 		for (i = 0; i < (1 << order); i++)
1755 			clear_highpage(page + i);
1756 
1757 	if (order && (gfp_flags & __GFP_COMP))
1758 		prep_compound_page(page, order);
1759 
1760 	/*
1761 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1762 	 * allocate the page. The expectation is that the caller is taking
1763 	 * steps that will free more memory. The caller should avoid the page
1764 	 * being used for !PFMEMALLOC purposes.
1765 	 */
1766 	if (alloc_flags & ALLOC_NO_WATERMARKS)
1767 		set_page_pfmemalloc(page);
1768 	else
1769 		clear_page_pfmemalloc(page);
1770 }
1771 
1772 /*
1773  * Go through the free lists for the given migratetype and remove
1774  * the smallest available page from the freelists
1775  */
1776 static inline
1777 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
1778 						int migratetype)
1779 {
1780 	unsigned int current_order;
1781 	struct free_area *area;
1782 	struct page *page;
1783 
1784 	/* Find a page of the appropriate size in the preferred list */
1785 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1786 		area = &(zone->free_area[current_order]);
1787 		page = list_first_entry_or_null(&area->free_list[migratetype],
1788 							struct page, lru);
1789 		if (!page)
1790 			continue;
1791 		list_del(&page->lru);
1792 		rmv_page_order(page);
1793 		area->nr_free--;
1794 		expand(zone, page, order, current_order, area, migratetype);
1795 		set_pcppage_migratetype(page, migratetype);
1796 		return page;
1797 	}
1798 
1799 	return NULL;
1800 }
1801 
1802 
1803 /*
1804  * This array describes the order lists are fallen back to when
1805  * the free lists for the desirable migrate type are depleted
1806  */
1807 static int fallbacks[MIGRATE_TYPES][4] = {
1808 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
1809 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
1810 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
1811 #ifdef CONFIG_CMA
1812 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
1813 #endif
1814 #ifdef CONFIG_MEMORY_ISOLATION
1815 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
1816 #endif
1817 };
1818 
1819 #ifdef CONFIG_CMA
1820 static struct page *__rmqueue_cma_fallback(struct zone *zone,
1821 					unsigned int order)
1822 {
1823 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1824 }
1825 #else
1826 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1827 					unsigned int order) { return NULL; }
1828 #endif
1829 
1830 /*
1831  * Move the free pages in a range to the free lists of the requested type.
1832  * Note that start_page and end_pages are not aligned on a pageblock
1833  * boundary. If alignment is required, use move_freepages_block()
1834  */
1835 static int move_freepages(struct zone *zone,
1836 			  struct page *start_page, struct page *end_page,
1837 			  int migratetype, int *num_movable)
1838 {
1839 	struct page *page;
1840 	unsigned int order;
1841 	int pages_moved = 0;
1842 
1843 #ifndef CONFIG_HOLES_IN_ZONE
1844 	/*
1845 	 * page_zone is not safe to call in this context when
1846 	 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1847 	 * anyway as we check zone boundaries in move_freepages_block().
1848 	 * Remove at a later date when no bug reports exist related to
1849 	 * grouping pages by mobility
1850 	 */
1851 	VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
1852 #endif
1853 
1854 	if (num_movable)
1855 		*num_movable = 0;
1856 
1857 	for (page = start_page; page <= end_page;) {
1858 		if (!pfn_valid_within(page_to_pfn(page))) {
1859 			page++;
1860 			continue;
1861 		}
1862 
1863 		/* Make sure we are not inadvertently changing nodes */
1864 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
1865 
1866 		if (!PageBuddy(page)) {
1867 			/*
1868 			 * We assume that pages that could be isolated for
1869 			 * migration are movable. But we don't actually try
1870 			 * isolating, as that would be expensive.
1871 			 */
1872 			if (num_movable &&
1873 					(PageLRU(page) || __PageMovable(page)))
1874 				(*num_movable)++;
1875 
1876 			page++;
1877 			continue;
1878 		}
1879 
1880 		order = page_order(page);
1881 		list_move(&page->lru,
1882 			  &zone->free_area[order].free_list[migratetype]);
1883 		page += 1 << order;
1884 		pages_moved += 1 << order;
1885 	}
1886 
1887 	return pages_moved;
1888 }
1889 
1890 int move_freepages_block(struct zone *zone, struct page *page,
1891 				int migratetype, int *num_movable)
1892 {
1893 	unsigned long start_pfn, end_pfn;
1894 	struct page *start_page, *end_page;
1895 
1896 	start_pfn = page_to_pfn(page);
1897 	start_pfn = start_pfn & ~(pageblock_nr_pages-1);
1898 	start_page = pfn_to_page(start_pfn);
1899 	end_page = start_page + pageblock_nr_pages - 1;
1900 	end_pfn = start_pfn + pageblock_nr_pages - 1;
1901 
1902 	/* Do not cross zone boundaries */
1903 	if (!zone_spans_pfn(zone, start_pfn))
1904 		start_page = page;
1905 	if (!zone_spans_pfn(zone, end_pfn))
1906 		return 0;
1907 
1908 	return move_freepages(zone, start_page, end_page, migratetype,
1909 								num_movable);
1910 }
1911 
1912 static void change_pageblock_range(struct page *pageblock_page,
1913 					int start_order, int migratetype)
1914 {
1915 	int nr_pageblocks = 1 << (start_order - pageblock_order);
1916 
1917 	while (nr_pageblocks--) {
1918 		set_pageblock_migratetype(pageblock_page, migratetype);
1919 		pageblock_page += pageblock_nr_pages;
1920 	}
1921 }
1922 
1923 /*
1924  * When we are falling back to another migratetype during allocation, try to
1925  * steal extra free pages from the same pageblocks to satisfy further
1926  * allocations, instead of polluting multiple pageblocks.
1927  *
1928  * If we are stealing a relatively large buddy page, it is likely there will
1929  * be more free pages in the pageblock, so try to steal them all. For
1930  * reclaimable and unmovable allocations, we steal regardless of page size,
1931  * as fragmentation caused by those allocations polluting movable pageblocks
1932  * is worse than movable allocations stealing from unmovable and reclaimable
1933  * pageblocks.
1934  */
1935 static bool can_steal_fallback(unsigned int order, int start_mt)
1936 {
1937 	/*
1938 	 * Leaving this order check is intended, although there is
1939 	 * relaxed order check in next check. The reason is that
1940 	 * we can actually steal whole pageblock if this condition met,
1941 	 * but, below check doesn't guarantee it and that is just heuristic
1942 	 * so could be changed anytime.
1943 	 */
1944 	if (order >= pageblock_order)
1945 		return true;
1946 
1947 	if (order >= pageblock_order / 2 ||
1948 		start_mt == MIGRATE_RECLAIMABLE ||
1949 		start_mt == MIGRATE_UNMOVABLE ||
1950 		page_group_by_mobility_disabled)
1951 		return true;
1952 
1953 	return false;
1954 }
1955 
1956 /*
1957  * This function implements actual steal behaviour. If order is large enough,
1958  * we can steal whole pageblock. If not, we first move freepages in this
1959  * pageblock to our migratetype and determine how many already-allocated pages
1960  * are there in the pageblock with a compatible migratetype. If at least half
1961  * of pages are free or compatible, we can change migratetype of the pageblock
1962  * itself, so pages freed in the future will be put on the correct free list.
1963  */
1964 static void steal_suitable_fallback(struct zone *zone, struct page *page,
1965 					int start_type, bool whole_block)
1966 {
1967 	unsigned int current_order = page_order(page);
1968 	struct free_area *area;
1969 	int free_pages, movable_pages, alike_pages;
1970 	int old_block_type;
1971 
1972 	old_block_type = get_pageblock_migratetype(page);
1973 
1974 	/*
1975 	 * This can happen due to races and we want to prevent broken
1976 	 * highatomic accounting.
1977 	 */
1978 	if (is_migrate_highatomic(old_block_type))
1979 		goto single_page;
1980 
1981 	/* Take ownership for orders >= pageblock_order */
1982 	if (current_order >= pageblock_order) {
1983 		change_pageblock_range(page, current_order, start_type);
1984 		goto single_page;
1985 	}
1986 
1987 	/* We are not allowed to try stealing from the whole block */
1988 	if (!whole_block)
1989 		goto single_page;
1990 
1991 	free_pages = move_freepages_block(zone, page, start_type,
1992 						&movable_pages);
1993 	/*
1994 	 * Determine how many pages are compatible with our allocation.
1995 	 * For movable allocation, it's the number of movable pages which
1996 	 * we just obtained. For other types it's a bit more tricky.
1997 	 */
1998 	if (start_type == MIGRATE_MOVABLE) {
1999 		alike_pages = movable_pages;
2000 	} else {
2001 		/*
2002 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2003 		 * to MOVABLE pageblock, consider all non-movable pages as
2004 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2005 		 * vice versa, be conservative since we can't distinguish the
2006 		 * exact migratetype of non-movable pages.
2007 		 */
2008 		if (old_block_type == MIGRATE_MOVABLE)
2009 			alike_pages = pageblock_nr_pages
2010 						- (free_pages + movable_pages);
2011 		else
2012 			alike_pages = 0;
2013 	}
2014 
2015 	/* moving whole block can fail due to zone boundary conditions */
2016 	if (!free_pages)
2017 		goto single_page;
2018 
2019 	/*
2020 	 * If a sufficient number of pages in the block are either free or of
2021 	 * comparable migratability as our allocation, claim the whole block.
2022 	 */
2023 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2024 			page_group_by_mobility_disabled)
2025 		set_pageblock_migratetype(page, start_type);
2026 
2027 	return;
2028 
2029 single_page:
2030 	area = &zone->free_area[current_order];
2031 	list_move(&page->lru, &area->free_list[start_type]);
2032 }
2033 
2034 /*
2035  * Check whether there is a suitable fallback freepage with requested order.
2036  * If only_stealable is true, this function returns fallback_mt only if
2037  * we can steal other freepages all together. This would help to reduce
2038  * fragmentation due to mixed migratetype pages in one pageblock.
2039  */
2040 int find_suitable_fallback(struct free_area *area, unsigned int order,
2041 			int migratetype, bool only_stealable, bool *can_steal)
2042 {
2043 	int i;
2044 	int fallback_mt;
2045 
2046 	if (area->nr_free == 0)
2047 		return -1;
2048 
2049 	*can_steal = false;
2050 	for (i = 0;; i++) {
2051 		fallback_mt = fallbacks[migratetype][i];
2052 		if (fallback_mt == MIGRATE_TYPES)
2053 			break;
2054 
2055 		if (list_empty(&area->free_list[fallback_mt]))
2056 			continue;
2057 
2058 		if (can_steal_fallback(order, migratetype))
2059 			*can_steal = true;
2060 
2061 		if (!only_stealable)
2062 			return fallback_mt;
2063 
2064 		if (*can_steal)
2065 			return fallback_mt;
2066 	}
2067 
2068 	return -1;
2069 }
2070 
2071 /*
2072  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2073  * there are no empty page blocks that contain a page with a suitable order
2074  */
2075 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2076 				unsigned int alloc_order)
2077 {
2078 	int mt;
2079 	unsigned long max_managed, flags;
2080 
2081 	/*
2082 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2083 	 * Check is race-prone but harmless.
2084 	 */
2085 	max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2086 	if (zone->nr_reserved_highatomic >= max_managed)
2087 		return;
2088 
2089 	spin_lock_irqsave(&zone->lock, flags);
2090 
2091 	/* Recheck the nr_reserved_highatomic limit under the lock */
2092 	if (zone->nr_reserved_highatomic >= max_managed)
2093 		goto out_unlock;
2094 
2095 	/* Yoink! */
2096 	mt = get_pageblock_migratetype(page);
2097 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2098 	    && !is_migrate_cma(mt)) {
2099 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2100 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2101 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2102 	}
2103 
2104 out_unlock:
2105 	spin_unlock_irqrestore(&zone->lock, flags);
2106 }
2107 
2108 /*
2109  * Used when an allocation is about to fail under memory pressure. This
2110  * potentially hurts the reliability of high-order allocations when under
2111  * intense memory pressure but failed atomic allocations should be easier
2112  * to recover from than an OOM.
2113  *
2114  * If @force is true, try to unreserve a pageblock even though highatomic
2115  * pageblock is exhausted.
2116  */
2117 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2118 						bool force)
2119 {
2120 	struct zonelist *zonelist = ac->zonelist;
2121 	unsigned long flags;
2122 	struct zoneref *z;
2123 	struct zone *zone;
2124 	struct page *page;
2125 	int order;
2126 	bool ret;
2127 
2128 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2129 								ac->nodemask) {
2130 		/*
2131 		 * Preserve at least one pageblock unless memory pressure
2132 		 * is really high.
2133 		 */
2134 		if (!force && zone->nr_reserved_highatomic <=
2135 					pageblock_nr_pages)
2136 			continue;
2137 
2138 		spin_lock_irqsave(&zone->lock, flags);
2139 		for (order = 0; order < MAX_ORDER; order++) {
2140 			struct free_area *area = &(zone->free_area[order]);
2141 
2142 			page = list_first_entry_or_null(
2143 					&area->free_list[MIGRATE_HIGHATOMIC],
2144 					struct page, lru);
2145 			if (!page)
2146 				continue;
2147 
2148 			/*
2149 			 * In page freeing path, migratetype change is racy so
2150 			 * we can counter several free pages in a pageblock
2151 			 * in this loop althoug we changed the pageblock type
2152 			 * from highatomic to ac->migratetype. So we should
2153 			 * adjust the count once.
2154 			 */
2155 			if (is_migrate_highatomic_page(page)) {
2156 				/*
2157 				 * It should never happen but changes to
2158 				 * locking could inadvertently allow a per-cpu
2159 				 * drain to add pages to MIGRATE_HIGHATOMIC
2160 				 * while unreserving so be safe and watch for
2161 				 * underflows.
2162 				 */
2163 				zone->nr_reserved_highatomic -= min(
2164 						pageblock_nr_pages,
2165 						zone->nr_reserved_highatomic);
2166 			}
2167 
2168 			/*
2169 			 * Convert to ac->migratetype and avoid the normal
2170 			 * pageblock stealing heuristics. Minimally, the caller
2171 			 * is doing the work and needs the pages. More
2172 			 * importantly, if the block was always converted to
2173 			 * MIGRATE_UNMOVABLE or another type then the number
2174 			 * of pageblocks that cannot be completely freed
2175 			 * may increase.
2176 			 */
2177 			set_pageblock_migratetype(page, ac->migratetype);
2178 			ret = move_freepages_block(zone, page, ac->migratetype,
2179 									NULL);
2180 			if (ret) {
2181 				spin_unlock_irqrestore(&zone->lock, flags);
2182 				return ret;
2183 			}
2184 		}
2185 		spin_unlock_irqrestore(&zone->lock, flags);
2186 	}
2187 
2188 	return false;
2189 }
2190 
2191 /*
2192  * Try finding a free buddy page on the fallback list and put it on the free
2193  * list of requested migratetype, possibly along with other pages from the same
2194  * block, depending on fragmentation avoidance heuristics. Returns true if
2195  * fallback was found so that __rmqueue_smallest() can grab it.
2196  */
2197 static inline bool
2198 __rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
2199 {
2200 	struct free_area *area;
2201 	unsigned int current_order;
2202 	struct page *page;
2203 	int fallback_mt;
2204 	bool can_steal;
2205 
2206 	/* Find the largest possible block of pages in the other list */
2207 	for (current_order = MAX_ORDER-1;
2208 				current_order >= order && current_order <= MAX_ORDER-1;
2209 				--current_order) {
2210 		area = &(zone->free_area[current_order]);
2211 		fallback_mt = find_suitable_fallback(area, current_order,
2212 				start_migratetype, false, &can_steal);
2213 		if (fallback_mt == -1)
2214 			continue;
2215 
2216 		page = list_first_entry(&area->free_list[fallback_mt],
2217 						struct page, lru);
2218 
2219 		steal_suitable_fallback(zone, page, start_migratetype,
2220 								can_steal);
2221 
2222 		trace_mm_page_alloc_extfrag(page, order, current_order,
2223 			start_migratetype, fallback_mt);
2224 
2225 		return true;
2226 	}
2227 
2228 	return false;
2229 }
2230 
2231 /*
2232  * Do the hard work of removing an element from the buddy allocator.
2233  * Call me with the zone->lock already held.
2234  */
2235 static struct page *__rmqueue(struct zone *zone, unsigned int order,
2236 				int migratetype)
2237 {
2238 	struct page *page;
2239 
2240 retry:
2241 	page = __rmqueue_smallest(zone, order, migratetype);
2242 	if (unlikely(!page)) {
2243 		if (migratetype == MIGRATE_MOVABLE)
2244 			page = __rmqueue_cma_fallback(zone, order);
2245 
2246 		if (!page && __rmqueue_fallback(zone, order, migratetype))
2247 			goto retry;
2248 	}
2249 
2250 	trace_mm_page_alloc_zone_locked(page, order, migratetype);
2251 	return page;
2252 }
2253 
2254 /*
2255  * Obtain a specified number of elements from the buddy allocator, all under
2256  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2257  * Returns the number of new pages which were placed at *list.
2258  */
2259 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2260 			unsigned long count, struct list_head *list,
2261 			int migratetype, bool cold)
2262 {
2263 	int i, alloced = 0;
2264 
2265 	spin_lock(&zone->lock);
2266 	for (i = 0; i < count; ++i) {
2267 		struct page *page = __rmqueue(zone, order, migratetype);
2268 		if (unlikely(page == NULL))
2269 			break;
2270 
2271 		if (unlikely(check_pcp_refill(page)))
2272 			continue;
2273 
2274 		/*
2275 		 * Split buddy pages returned by expand() are received here
2276 		 * in physical page order. The page is added to the callers and
2277 		 * list and the list head then moves forward. From the callers
2278 		 * perspective, the linked list is ordered by page number in
2279 		 * some conditions. This is useful for IO devices that can
2280 		 * merge IO requests if the physical pages are ordered
2281 		 * properly.
2282 		 */
2283 		if (likely(!cold))
2284 			list_add(&page->lru, list);
2285 		else
2286 			list_add_tail(&page->lru, list);
2287 		list = &page->lru;
2288 		alloced++;
2289 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2290 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2291 					      -(1 << order));
2292 	}
2293 
2294 	/*
2295 	 * i pages were removed from the buddy list even if some leak due
2296 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2297 	 * on i. Do not confuse with 'alloced' which is the number of
2298 	 * pages added to the pcp list.
2299 	 */
2300 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2301 	spin_unlock(&zone->lock);
2302 	return alloced;
2303 }
2304 
2305 #ifdef CONFIG_NUMA
2306 /*
2307  * Called from the vmstat counter updater to drain pagesets of this
2308  * currently executing processor on remote nodes after they have
2309  * expired.
2310  *
2311  * Note that this function must be called with the thread pinned to
2312  * a single processor.
2313  */
2314 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2315 {
2316 	unsigned long flags;
2317 	int to_drain, batch;
2318 
2319 	local_irq_save(flags);
2320 	batch = READ_ONCE(pcp->batch);
2321 	to_drain = min(pcp->count, batch);
2322 	if (to_drain > 0) {
2323 		free_pcppages_bulk(zone, to_drain, pcp);
2324 		pcp->count -= to_drain;
2325 	}
2326 	local_irq_restore(flags);
2327 }
2328 #endif
2329 
2330 /*
2331  * Drain pcplists of the indicated processor and zone.
2332  *
2333  * The processor must either be the current processor and the
2334  * thread pinned to the current processor or a processor that
2335  * is not online.
2336  */
2337 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2338 {
2339 	unsigned long flags;
2340 	struct per_cpu_pageset *pset;
2341 	struct per_cpu_pages *pcp;
2342 
2343 	local_irq_save(flags);
2344 	pset = per_cpu_ptr(zone->pageset, cpu);
2345 
2346 	pcp = &pset->pcp;
2347 	if (pcp->count) {
2348 		free_pcppages_bulk(zone, pcp->count, pcp);
2349 		pcp->count = 0;
2350 	}
2351 	local_irq_restore(flags);
2352 }
2353 
2354 /*
2355  * Drain pcplists of all zones on the indicated processor.
2356  *
2357  * The processor must either be the current processor and the
2358  * thread pinned to the current processor or a processor that
2359  * is not online.
2360  */
2361 static void drain_pages(unsigned int cpu)
2362 {
2363 	struct zone *zone;
2364 
2365 	for_each_populated_zone(zone) {
2366 		drain_pages_zone(cpu, zone);
2367 	}
2368 }
2369 
2370 /*
2371  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2372  *
2373  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2374  * the single zone's pages.
2375  */
2376 void drain_local_pages(struct zone *zone)
2377 {
2378 	int cpu = smp_processor_id();
2379 
2380 	if (zone)
2381 		drain_pages_zone(cpu, zone);
2382 	else
2383 		drain_pages(cpu);
2384 }
2385 
2386 static void drain_local_pages_wq(struct work_struct *work)
2387 {
2388 	/*
2389 	 * drain_all_pages doesn't use proper cpu hotplug protection so
2390 	 * we can race with cpu offline when the WQ can move this from
2391 	 * a cpu pinned worker to an unbound one. We can operate on a different
2392 	 * cpu which is allright but we also have to make sure to not move to
2393 	 * a different one.
2394 	 */
2395 	preempt_disable();
2396 	drain_local_pages(NULL);
2397 	preempt_enable();
2398 }
2399 
2400 /*
2401  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2402  *
2403  * When zone parameter is non-NULL, spill just the single zone's pages.
2404  *
2405  * Note that this can be extremely slow as the draining happens in a workqueue.
2406  */
2407 void drain_all_pages(struct zone *zone)
2408 {
2409 	int cpu;
2410 
2411 	/*
2412 	 * Allocate in the BSS so we wont require allocation in
2413 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2414 	 */
2415 	static cpumask_t cpus_with_pcps;
2416 
2417 	/*
2418 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
2419 	 * initialized.
2420 	 */
2421 	if (WARN_ON_ONCE(!mm_percpu_wq))
2422 		return;
2423 
2424 	/* Workqueues cannot recurse */
2425 	if (current->flags & PF_WQ_WORKER)
2426 		return;
2427 
2428 	/*
2429 	 * Do not drain if one is already in progress unless it's specific to
2430 	 * a zone. Such callers are primarily CMA and memory hotplug and need
2431 	 * the drain to be complete when the call returns.
2432 	 */
2433 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
2434 		if (!zone)
2435 			return;
2436 		mutex_lock(&pcpu_drain_mutex);
2437 	}
2438 
2439 	/*
2440 	 * We don't care about racing with CPU hotplug event
2441 	 * as offline notification will cause the notified
2442 	 * cpu to drain that CPU pcps and on_each_cpu_mask
2443 	 * disables preemption as part of its processing
2444 	 */
2445 	for_each_online_cpu(cpu) {
2446 		struct per_cpu_pageset *pcp;
2447 		struct zone *z;
2448 		bool has_pcps = false;
2449 
2450 		if (zone) {
2451 			pcp = per_cpu_ptr(zone->pageset, cpu);
2452 			if (pcp->pcp.count)
2453 				has_pcps = true;
2454 		} else {
2455 			for_each_populated_zone(z) {
2456 				pcp = per_cpu_ptr(z->pageset, cpu);
2457 				if (pcp->pcp.count) {
2458 					has_pcps = true;
2459 					break;
2460 				}
2461 			}
2462 		}
2463 
2464 		if (has_pcps)
2465 			cpumask_set_cpu(cpu, &cpus_with_pcps);
2466 		else
2467 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
2468 	}
2469 
2470 	for_each_cpu(cpu, &cpus_with_pcps) {
2471 		struct work_struct *work = per_cpu_ptr(&pcpu_drain, cpu);
2472 		INIT_WORK(work, drain_local_pages_wq);
2473 		queue_work_on(cpu, mm_percpu_wq, work);
2474 	}
2475 	for_each_cpu(cpu, &cpus_with_pcps)
2476 		flush_work(per_cpu_ptr(&pcpu_drain, cpu));
2477 
2478 	mutex_unlock(&pcpu_drain_mutex);
2479 }
2480 
2481 #ifdef CONFIG_HIBERNATION
2482 
2483 void mark_free_pages(struct zone *zone)
2484 {
2485 	unsigned long pfn, max_zone_pfn;
2486 	unsigned long flags;
2487 	unsigned int order, t;
2488 	struct page *page;
2489 
2490 	if (zone_is_empty(zone))
2491 		return;
2492 
2493 	spin_lock_irqsave(&zone->lock, flags);
2494 
2495 	max_zone_pfn = zone_end_pfn(zone);
2496 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2497 		if (pfn_valid(pfn)) {
2498 			page = pfn_to_page(pfn);
2499 
2500 			if (page_zone(page) != zone)
2501 				continue;
2502 
2503 			if (!swsusp_page_is_forbidden(page))
2504 				swsusp_unset_page_free(page);
2505 		}
2506 
2507 	for_each_migratetype_order(order, t) {
2508 		list_for_each_entry(page,
2509 				&zone->free_area[order].free_list[t], lru) {
2510 			unsigned long i;
2511 
2512 			pfn = page_to_pfn(page);
2513 			for (i = 0; i < (1UL << order); i++)
2514 				swsusp_set_page_free(pfn_to_page(pfn + i));
2515 		}
2516 	}
2517 	spin_unlock_irqrestore(&zone->lock, flags);
2518 }
2519 #endif /* CONFIG_PM */
2520 
2521 /*
2522  * Free a 0-order page
2523  * cold == true ? free a cold page : free a hot page
2524  */
2525 void free_hot_cold_page(struct page *page, bool cold)
2526 {
2527 	struct zone *zone = page_zone(page);
2528 	struct per_cpu_pages *pcp;
2529 	unsigned long flags;
2530 	unsigned long pfn = page_to_pfn(page);
2531 	int migratetype;
2532 
2533 	if (!free_pcp_prepare(page))
2534 		return;
2535 
2536 	migratetype = get_pfnblock_migratetype(page, pfn);
2537 	set_pcppage_migratetype(page, migratetype);
2538 	local_irq_save(flags);
2539 	__count_vm_event(PGFREE);
2540 
2541 	/*
2542 	 * We only track unmovable, reclaimable and movable on pcp lists.
2543 	 * Free ISOLATE pages back to the allocator because they are being
2544 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
2545 	 * areas back if necessary. Otherwise, we may have to free
2546 	 * excessively into the page allocator
2547 	 */
2548 	if (migratetype >= MIGRATE_PCPTYPES) {
2549 		if (unlikely(is_migrate_isolate(migratetype))) {
2550 			free_one_page(zone, page, pfn, 0, migratetype);
2551 			goto out;
2552 		}
2553 		migratetype = MIGRATE_MOVABLE;
2554 	}
2555 
2556 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2557 	if (!cold)
2558 		list_add(&page->lru, &pcp->lists[migratetype]);
2559 	else
2560 		list_add_tail(&page->lru, &pcp->lists[migratetype]);
2561 	pcp->count++;
2562 	if (pcp->count >= pcp->high) {
2563 		unsigned long batch = READ_ONCE(pcp->batch);
2564 		free_pcppages_bulk(zone, batch, pcp);
2565 		pcp->count -= batch;
2566 	}
2567 
2568 out:
2569 	local_irq_restore(flags);
2570 }
2571 
2572 /*
2573  * Free a list of 0-order pages
2574  */
2575 void free_hot_cold_page_list(struct list_head *list, bool cold)
2576 {
2577 	struct page *page, *next;
2578 
2579 	list_for_each_entry_safe(page, next, list, lru) {
2580 		trace_mm_page_free_batched(page, cold);
2581 		free_hot_cold_page(page, cold);
2582 	}
2583 }
2584 
2585 /*
2586  * split_page takes a non-compound higher-order page, and splits it into
2587  * n (1<<order) sub-pages: page[0..n]
2588  * Each sub-page must be freed individually.
2589  *
2590  * Note: this is probably too low level an operation for use in drivers.
2591  * Please consult with lkml before using this in your driver.
2592  */
2593 void split_page(struct page *page, unsigned int order)
2594 {
2595 	int i;
2596 
2597 	VM_BUG_ON_PAGE(PageCompound(page), page);
2598 	VM_BUG_ON_PAGE(!page_count(page), page);
2599 
2600 #ifdef CONFIG_KMEMCHECK
2601 	/*
2602 	 * Split shadow pages too, because free(page[0]) would
2603 	 * otherwise free the whole shadow.
2604 	 */
2605 	if (kmemcheck_page_is_tracked(page))
2606 		split_page(virt_to_page(page[0].shadow), order);
2607 #endif
2608 
2609 	for (i = 1; i < (1 << order); i++)
2610 		set_page_refcounted(page + i);
2611 	split_page_owner(page, order);
2612 }
2613 EXPORT_SYMBOL_GPL(split_page);
2614 
2615 int __isolate_free_page(struct page *page, unsigned int order)
2616 {
2617 	unsigned long watermark;
2618 	struct zone *zone;
2619 	int mt;
2620 
2621 	BUG_ON(!PageBuddy(page));
2622 
2623 	zone = page_zone(page);
2624 	mt = get_pageblock_migratetype(page);
2625 
2626 	if (!is_migrate_isolate(mt)) {
2627 		/*
2628 		 * Obey watermarks as if the page was being allocated. We can
2629 		 * emulate a high-order watermark check with a raised order-0
2630 		 * watermark, because we already know our high-order page
2631 		 * exists.
2632 		 */
2633 		watermark = min_wmark_pages(zone) + (1UL << order);
2634 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
2635 			return 0;
2636 
2637 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
2638 	}
2639 
2640 	/* Remove page from free list */
2641 	list_del(&page->lru);
2642 	zone->free_area[order].nr_free--;
2643 	rmv_page_order(page);
2644 
2645 	/*
2646 	 * Set the pageblock if the isolated page is at least half of a
2647 	 * pageblock
2648 	 */
2649 	if (order >= pageblock_order - 1) {
2650 		struct page *endpage = page + (1 << order) - 1;
2651 		for (; page < endpage; page += pageblock_nr_pages) {
2652 			int mt = get_pageblock_migratetype(page);
2653 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
2654 			    && !is_migrate_highatomic(mt))
2655 				set_pageblock_migratetype(page,
2656 							  MIGRATE_MOVABLE);
2657 		}
2658 	}
2659 
2660 
2661 	return 1UL << order;
2662 }
2663 
2664 /*
2665  * Update NUMA hit/miss statistics
2666  *
2667  * Must be called with interrupts disabled.
2668  */
2669 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
2670 {
2671 #ifdef CONFIG_NUMA
2672 	enum zone_stat_item local_stat = NUMA_LOCAL;
2673 
2674 	if (z->node != numa_node_id())
2675 		local_stat = NUMA_OTHER;
2676 
2677 	if (z->node == preferred_zone->node)
2678 		__inc_zone_state(z, NUMA_HIT);
2679 	else {
2680 		__inc_zone_state(z, NUMA_MISS);
2681 		__inc_zone_state(preferred_zone, NUMA_FOREIGN);
2682 	}
2683 	__inc_zone_state(z, local_stat);
2684 #endif
2685 }
2686 
2687 /* Remove page from the per-cpu list, caller must protect the list */
2688 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
2689 			bool cold, struct per_cpu_pages *pcp,
2690 			struct list_head *list)
2691 {
2692 	struct page *page;
2693 
2694 	do {
2695 		if (list_empty(list)) {
2696 			pcp->count += rmqueue_bulk(zone, 0,
2697 					pcp->batch, list,
2698 					migratetype, cold);
2699 			if (unlikely(list_empty(list)))
2700 				return NULL;
2701 		}
2702 
2703 		if (cold)
2704 			page = list_last_entry(list, struct page, lru);
2705 		else
2706 			page = list_first_entry(list, struct page, lru);
2707 
2708 		list_del(&page->lru);
2709 		pcp->count--;
2710 	} while (check_new_pcp(page));
2711 
2712 	return page;
2713 }
2714 
2715 /* Lock and remove page from the per-cpu list */
2716 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
2717 			struct zone *zone, unsigned int order,
2718 			gfp_t gfp_flags, int migratetype)
2719 {
2720 	struct per_cpu_pages *pcp;
2721 	struct list_head *list;
2722 	bool cold = ((gfp_flags & __GFP_COLD) != 0);
2723 	struct page *page;
2724 	unsigned long flags;
2725 
2726 	local_irq_save(flags);
2727 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
2728 	list = &pcp->lists[migratetype];
2729 	page = __rmqueue_pcplist(zone,  migratetype, cold, pcp, list);
2730 	if (page) {
2731 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2732 		zone_statistics(preferred_zone, zone);
2733 	}
2734 	local_irq_restore(flags);
2735 	return page;
2736 }
2737 
2738 /*
2739  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2740  */
2741 static inline
2742 struct page *rmqueue(struct zone *preferred_zone,
2743 			struct zone *zone, unsigned int order,
2744 			gfp_t gfp_flags, unsigned int alloc_flags,
2745 			int migratetype)
2746 {
2747 	unsigned long flags;
2748 	struct page *page;
2749 
2750 	if (likely(order == 0)) {
2751 		page = rmqueue_pcplist(preferred_zone, zone, order,
2752 				gfp_flags, migratetype);
2753 		goto out;
2754 	}
2755 
2756 	/*
2757 	 * We most definitely don't want callers attempting to
2758 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
2759 	 */
2760 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
2761 	spin_lock_irqsave(&zone->lock, flags);
2762 
2763 	do {
2764 		page = NULL;
2765 		if (alloc_flags & ALLOC_HARDER) {
2766 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2767 			if (page)
2768 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
2769 		}
2770 		if (!page)
2771 			page = __rmqueue(zone, order, migratetype);
2772 	} while (page && check_new_pages(page, order));
2773 	spin_unlock(&zone->lock);
2774 	if (!page)
2775 		goto failed;
2776 	__mod_zone_freepage_state(zone, -(1 << order),
2777 				  get_pcppage_migratetype(page));
2778 
2779 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
2780 	zone_statistics(preferred_zone, zone);
2781 	local_irq_restore(flags);
2782 
2783 out:
2784 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
2785 	return page;
2786 
2787 failed:
2788 	local_irq_restore(flags);
2789 	return NULL;
2790 }
2791 
2792 #ifdef CONFIG_FAIL_PAGE_ALLOC
2793 
2794 static struct {
2795 	struct fault_attr attr;
2796 
2797 	bool ignore_gfp_highmem;
2798 	bool ignore_gfp_reclaim;
2799 	u32 min_order;
2800 } fail_page_alloc = {
2801 	.attr = FAULT_ATTR_INITIALIZER,
2802 	.ignore_gfp_reclaim = true,
2803 	.ignore_gfp_highmem = true,
2804 	.min_order = 1,
2805 };
2806 
2807 static int __init setup_fail_page_alloc(char *str)
2808 {
2809 	return setup_fault_attr(&fail_page_alloc.attr, str);
2810 }
2811 __setup("fail_page_alloc=", setup_fail_page_alloc);
2812 
2813 static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2814 {
2815 	if (order < fail_page_alloc.min_order)
2816 		return false;
2817 	if (gfp_mask & __GFP_NOFAIL)
2818 		return false;
2819 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
2820 		return false;
2821 	if (fail_page_alloc.ignore_gfp_reclaim &&
2822 			(gfp_mask & __GFP_DIRECT_RECLAIM))
2823 		return false;
2824 
2825 	return should_fail(&fail_page_alloc.attr, 1 << order);
2826 }
2827 
2828 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2829 
2830 static int __init fail_page_alloc_debugfs(void)
2831 {
2832 	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
2833 	struct dentry *dir;
2834 
2835 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2836 					&fail_page_alloc.attr);
2837 	if (IS_ERR(dir))
2838 		return PTR_ERR(dir);
2839 
2840 	if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
2841 				&fail_page_alloc.ignore_gfp_reclaim))
2842 		goto fail;
2843 	if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2844 				&fail_page_alloc.ignore_gfp_highmem))
2845 		goto fail;
2846 	if (!debugfs_create_u32("min-order", mode, dir,
2847 				&fail_page_alloc.min_order))
2848 		goto fail;
2849 
2850 	return 0;
2851 fail:
2852 	debugfs_remove_recursive(dir);
2853 
2854 	return -ENOMEM;
2855 }
2856 
2857 late_initcall(fail_page_alloc_debugfs);
2858 
2859 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2860 
2861 #else /* CONFIG_FAIL_PAGE_ALLOC */
2862 
2863 static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
2864 {
2865 	return false;
2866 }
2867 
2868 #endif /* CONFIG_FAIL_PAGE_ALLOC */
2869 
2870 /*
2871  * Return true if free base pages are above 'mark'. For high-order checks it
2872  * will return true of the order-0 watermark is reached and there is at least
2873  * one free page of a suitable size. Checking now avoids taking the zone lock
2874  * to check in the allocation paths if no pages are free.
2875  */
2876 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2877 			 int classzone_idx, unsigned int alloc_flags,
2878 			 long free_pages)
2879 {
2880 	long min = mark;
2881 	int o;
2882 	const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
2883 
2884 	/* free_pages may go negative - that's OK */
2885 	free_pages -= (1 << order) - 1;
2886 
2887 	if (alloc_flags & ALLOC_HIGH)
2888 		min -= min / 2;
2889 
2890 	/*
2891 	 * If the caller does not have rights to ALLOC_HARDER then subtract
2892 	 * the high-atomic reserves. This will over-estimate the size of the
2893 	 * atomic reserve but it avoids a search.
2894 	 */
2895 	if (likely(!alloc_harder))
2896 		free_pages -= z->nr_reserved_highatomic;
2897 	else
2898 		min -= min / 4;
2899 
2900 #ifdef CONFIG_CMA
2901 	/* If allocation can't use CMA areas don't use free CMA pages */
2902 	if (!(alloc_flags & ALLOC_CMA))
2903 		free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
2904 #endif
2905 
2906 	/*
2907 	 * Check watermarks for an order-0 allocation request. If these
2908 	 * are not met, then a high-order request also cannot go ahead
2909 	 * even if a suitable page happened to be free.
2910 	 */
2911 	if (free_pages <= min + z->lowmem_reserve[classzone_idx])
2912 		return false;
2913 
2914 	/* If this is an order-0 request then the watermark is fine */
2915 	if (!order)
2916 		return true;
2917 
2918 	/* For a high-order request, check at least one suitable page is free */
2919 	for (o = order; o < MAX_ORDER; o++) {
2920 		struct free_area *area = &z->free_area[o];
2921 		int mt;
2922 
2923 		if (!area->nr_free)
2924 			continue;
2925 
2926 		if (alloc_harder)
2927 			return true;
2928 
2929 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2930 			if (!list_empty(&area->free_list[mt]))
2931 				return true;
2932 		}
2933 
2934 #ifdef CONFIG_CMA
2935 		if ((alloc_flags & ALLOC_CMA) &&
2936 		    !list_empty(&area->free_list[MIGRATE_CMA])) {
2937 			return true;
2938 		}
2939 #endif
2940 	}
2941 	return false;
2942 }
2943 
2944 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2945 		      int classzone_idx, unsigned int alloc_flags)
2946 {
2947 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2948 					zone_page_state(z, NR_FREE_PAGES));
2949 }
2950 
2951 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2952 		unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2953 {
2954 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2955 	long cma_pages = 0;
2956 
2957 #ifdef CONFIG_CMA
2958 	/* If allocation can't use CMA areas don't use free CMA pages */
2959 	if (!(alloc_flags & ALLOC_CMA))
2960 		cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2961 #endif
2962 
2963 	/*
2964 	 * Fast check for order-0 only. If this fails then the reserves
2965 	 * need to be calculated. There is a corner case where the check
2966 	 * passes but only the high-order atomic reserve are free. If
2967 	 * the caller is !atomic then it'll uselessly search the free
2968 	 * list. That corner case is then slower but it is harmless.
2969 	 */
2970 	if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2971 		return true;
2972 
2973 	return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2974 					free_pages);
2975 }
2976 
2977 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
2978 			unsigned long mark, int classzone_idx)
2979 {
2980 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
2981 
2982 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2983 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2984 
2985 	return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
2986 								free_pages);
2987 }
2988 
2989 #ifdef CONFIG_NUMA
2990 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2991 {
2992 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
2993 				RECLAIM_DISTANCE;
2994 }
2995 #else	/* CONFIG_NUMA */
2996 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2997 {
2998 	return true;
2999 }
3000 #endif	/* CONFIG_NUMA */
3001 
3002 /*
3003  * get_page_from_freelist goes through the zonelist trying to allocate
3004  * a page.
3005  */
3006 static struct page *
3007 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3008 						const struct alloc_context *ac)
3009 {
3010 	struct zoneref *z = ac->preferred_zoneref;
3011 	struct zone *zone;
3012 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3013 
3014 	/*
3015 	 * Scan zonelist, looking for a zone with enough free.
3016 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3017 	 */
3018 	for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3019 								ac->nodemask) {
3020 		struct page *page;
3021 		unsigned long mark;
3022 
3023 		if (cpusets_enabled() &&
3024 			(alloc_flags & ALLOC_CPUSET) &&
3025 			!__cpuset_zone_allowed(zone, gfp_mask))
3026 				continue;
3027 		/*
3028 		 * When allocating a page cache page for writing, we
3029 		 * want to get it from a node that is within its dirty
3030 		 * limit, such that no single node holds more than its
3031 		 * proportional share of globally allowed dirty pages.
3032 		 * The dirty limits take into account the node's
3033 		 * lowmem reserves and high watermark so that kswapd
3034 		 * should be able to balance it without having to
3035 		 * write pages from its LRU list.
3036 		 *
3037 		 * XXX: For now, allow allocations to potentially
3038 		 * exceed the per-node dirty limit in the slowpath
3039 		 * (spread_dirty_pages unset) before going into reclaim,
3040 		 * which is important when on a NUMA setup the allowed
3041 		 * nodes are together not big enough to reach the
3042 		 * global limit.  The proper fix for these situations
3043 		 * will require awareness of nodes in the
3044 		 * dirty-throttling and the flusher threads.
3045 		 */
3046 		if (ac->spread_dirty_pages) {
3047 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3048 				continue;
3049 
3050 			if (!node_dirty_ok(zone->zone_pgdat)) {
3051 				last_pgdat_dirty_limit = zone->zone_pgdat;
3052 				continue;
3053 			}
3054 		}
3055 
3056 		mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
3057 		if (!zone_watermark_fast(zone, order, mark,
3058 				       ac_classzone_idx(ac), alloc_flags)) {
3059 			int ret;
3060 
3061 			/* Checked here to keep the fast path fast */
3062 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3063 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3064 				goto try_this_zone;
3065 
3066 			if (node_reclaim_mode == 0 ||
3067 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3068 				continue;
3069 
3070 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3071 			switch (ret) {
3072 			case NODE_RECLAIM_NOSCAN:
3073 				/* did not scan */
3074 				continue;
3075 			case NODE_RECLAIM_FULL:
3076 				/* scanned but unreclaimable */
3077 				continue;
3078 			default:
3079 				/* did we reclaim enough */
3080 				if (zone_watermark_ok(zone, order, mark,
3081 						ac_classzone_idx(ac), alloc_flags))
3082 					goto try_this_zone;
3083 
3084 				continue;
3085 			}
3086 		}
3087 
3088 try_this_zone:
3089 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3090 				gfp_mask, alloc_flags, ac->migratetype);
3091 		if (page) {
3092 			prep_new_page(page, order, gfp_mask, alloc_flags);
3093 
3094 			/*
3095 			 * If this is a high-order atomic allocation then check
3096 			 * if the pageblock should be reserved for the future
3097 			 */
3098 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3099 				reserve_highatomic_pageblock(page, zone, order);
3100 
3101 			return page;
3102 		}
3103 	}
3104 
3105 	return NULL;
3106 }
3107 
3108 /*
3109  * Large machines with many possible nodes should not always dump per-node
3110  * meminfo in irq context.
3111  */
3112 static inline bool should_suppress_show_mem(void)
3113 {
3114 	bool ret = false;
3115 
3116 #if NODES_SHIFT > 8
3117 	ret = in_interrupt();
3118 #endif
3119 	return ret;
3120 }
3121 
3122 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3123 {
3124 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3125 	static DEFINE_RATELIMIT_STATE(show_mem_rs, HZ, 1);
3126 
3127 	if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs))
3128 		return;
3129 
3130 	/*
3131 	 * This documents exceptions given to allocations in certain
3132 	 * contexts that are allowed to allocate outside current's set
3133 	 * of allowed nodes.
3134 	 */
3135 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3136 		if (test_thread_flag(TIF_MEMDIE) ||
3137 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3138 			filter &= ~SHOW_MEM_FILTER_NODES;
3139 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3140 		filter &= ~SHOW_MEM_FILTER_NODES;
3141 
3142 	show_mem(filter, nodemask);
3143 }
3144 
3145 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3146 {
3147 	struct va_format vaf;
3148 	va_list args;
3149 	static DEFINE_RATELIMIT_STATE(nopage_rs, DEFAULT_RATELIMIT_INTERVAL,
3150 				      DEFAULT_RATELIMIT_BURST);
3151 
3152 	if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs))
3153 		return;
3154 
3155 	pr_warn("%s: ", current->comm);
3156 
3157 	va_start(args, fmt);
3158 	vaf.fmt = fmt;
3159 	vaf.va = &args;
3160 	pr_cont("%pV", &vaf);
3161 	va_end(args);
3162 
3163 	pr_cont(", mode:%#x(%pGg), nodemask=", gfp_mask, &gfp_mask);
3164 	if (nodemask)
3165 		pr_cont("%*pbl\n", nodemask_pr_args(nodemask));
3166 	else
3167 		pr_cont("(null)\n");
3168 
3169 	cpuset_print_current_mems_allowed();
3170 
3171 	dump_stack();
3172 	warn_alloc_show_mem(gfp_mask, nodemask);
3173 }
3174 
3175 static inline struct page *
3176 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
3177 			      unsigned int alloc_flags,
3178 			      const struct alloc_context *ac)
3179 {
3180 	struct page *page;
3181 
3182 	page = get_page_from_freelist(gfp_mask, order,
3183 			alloc_flags|ALLOC_CPUSET, ac);
3184 	/*
3185 	 * fallback to ignore cpuset restriction if our nodes
3186 	 * are depleted
3187 	 */
3188 	if (!page)
3189 		page = get_page_from_freelist(gfp_mask, order,
3190 				alloc_flags, ac);
3191 
3192 	return page;
3193 }
3194 
3195 static inline struct page *
3196 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
3197 	const struct alloc_context *ac, unsigned long *did_some_progress)
3198 {
3199 	struct oom_control oc = {
3200 		.zonelist = ac->zonelist,
3201 		.nodemask = ac->nodemask,
3202 		.memcg = NULL,
3203 		.gfp_mask = gfp_mask,
3204 		.order = order,
3205 	};
3206 	struct page *page;
3207 
3208 	*did_some_progress = 0;
3209 
3210 	/*
3211 	 * Acquire the oom lock.  If that fails, somebody else is
3212 	 * making progress for us.
3213 	 */
3214 	if (!mutex_trylock(&oom_lock)) {
3215 		*did_some_progress = 1;
3216 		schedule_timeout_uninterruptible(1);
3217 		return NULL;
3218 	}
3219 
3220 	/*
3221 	 * Go through the zonelist yet one more time, keep very high watermark
3222 	 * here, this is only to catch a parallel oom killing, we must fail if
3223 	 * we're still under heavy pressure.
3224 	 */
3225 	page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3226 					ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
3227 	if (page)
3228 		goto out;
3229 
3230 	/* Coredumps can quickly deplete all memory reserves */
3231 	if (current->flags & PF_DUMPCORE)
3232 		goto out;
3233 	/* The OOM killer will not help higher order allocs */
3234 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3235 		goto out;
3236 	/* The OOM killer does not needlessly kill tasks for lowmem */
3237 	if (ac->high_zoneidx < ZONE_NORMAL)
3238 		goto out;
3239 	if (pm_suspended_storage())
3240 		goto out;
3241 	/*
3242 	 * XXX: GFP_NOFS allocations should rather fail than rely on
3243 	 * other request to make a forward progress.
3244 	 * We are in an unfortunate situation where out_of_memory cannot
3245 	 * do much for this context but let's try it to at least get
3246 	 * access to memory reserved if the current task is killed (see
3247 	 * out_of_memory). Once filesystems are ready to handle allocation
3248 	 * failures more gracefully we should just bail out here.
3249 	 */
3250 
3251 	/* The OOM killer may not free memory on a specific node */
3252 	if (gfp_mask & __GFP_THISNODE)
3253 		goto out;
3254 
3255 	/* Exhausted what can be done so it's blamo time */
3256 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3257 		*did_some_progress = 1;
3258 
3259 		/*
3260 		 * Help non-failing allocations by giving them access to memory
3261 		 * reserves
3262 		 */
3263 		if (gfp_mask & __GFP_NOFAIL)
3264 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
3265 					ALLOC_NO_WATERMARKS, ac);
3266 	}
3267 out:
3268 	mutex_unlock(&oom_lock);
3269 	return page;
3270 }
3271 
3272 /*
3273  * Maximum number of compaction retries wit a progress before OOM
3274  * killer is consider as the only way to move forward.
3275  */
3276 #define MAX_COMPACT_RETRIES 16
3277 
3278 #ifdef CONFIG_COMPACTION
3279 /* Try memory compaction for high-order allocations before reclaim */
3280 static struct page *
3281 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3282 		unsigned int alloc_flags, const struct alloc_context *ac,
3283 		enum compact_priority prio, enum compact_result *compact_result)
3284 {
3285 	struct page *page;
3286 	unsigned int noreclaim_flag;
3287 
3288 	if (!order)
3289 		return NULL;
3290 
3291 	noreclaim_flag = memalloc_noreclaim_save();
3292 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
3293 									prio);
3294 	memalloc_noreclaim_restore(noreclaim_flag);
3295 
3296 	if (*compact_result <= COMPACT_INACTIVE)
3297 		return NULL;
3298 
3299 	/*
3300 	 * At least in one zone compaction wasn't deferred or skipped, so let's
3301 	 * count a compaction stall
3302 	 */
3303 	count_vm_event(COMPACTSTALL);
3304 
3305 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3306 
3307 	if (page) {
3308 		struct zone *zone = page_zone(page);
3309 
3310 		zone->compact_blockskip_flush = false;
3311 		compaction_defer_reset(zone, order, true);
3312 		count_vm_event(COMPACTSUCCESS);
3313 		return page;
3314 	}
3315 
3316 	/*
3317 	 * It's bad if compaction run occurs and fails. The most likely reason
3318 	 * is that pages exist, but not enough to satisfy watermarks.
3319 	 */
3320 	count_vm_event(COMPACTFAIL);
3321 
3322 	cond_resched();
3323 
3324 	return NULL;
3325 }
3326 
3327 static inline bool
3328 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
3329 		     enum compact_result compact_result,
3330 		     enum compact_priority *compact_priority,
3331 		     int *compaction_retries)
3332 {
3333 	int max_retries = MAX_COMPACT_RETRIES;
3334 	int min_priority;
3335 	bool ret = false;
3336 	int retries = *compaction_retries;
3337 	enum compact_priority priority = *compact_priority;
3338 
3339 	if (!order)
3340 		return false;
3341 
3342 	if (compaction_made_progress(compact_result))
3343 		(*compaction_retries)++;
3344 
3345 	/*
3346 	 * compaction considers all the zone as desperately out of memory
3347 	 * so it doesn't really make much sense to retry except when the
3348 	 * failure could be caused by insufficient priority
3349 	 */
3350 	if (compaction_failed(compact_result))
3351 		goto check_priority;
3352 
3353 	/*
3354 	 * make sure the compaction wasn't deferred or didn't bail out early
3355 	 * due to locks contention before we declare that we should give up.
3356 	 * But do not retry if the given zonelist is not suitable for
3357 	 * compaction.
3358 	 */
3359 	if (compaction_withdrawn(compact_result)) {
3360 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
3361 		goto out;
3362 	}
3363 
3364 	/*
3365 	 * !costly requests are much more important than __GFP_REPEAT
3366 	 * costly ones because they are de facto nofail and invoke OOM
3367 	 * killer to move on while costly can fail and users are ready
3368 	 * to cope with that. 1/4 retries is rather arbitrary but we
3369 	 * would need much more detailed feedback from compaction to
3370 	 * make a better decision.
3371 	 */
3372 	if (order > PAGE_ALLOC_COSTLY_ORDER)
3373 		max_retries /= 4;
3374 	if (*compaction_retries <= max_retries) {
3375 		ret = true;
3376 		goto out;
3377 	}
3378 
3379 	/*
3380 	 * Make sure there are attempts at the highest priority if we exhausted
3381 	 * all retries or failed at the lower priorities.
3382 	 */
3383 check_priority:
3384 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
3385 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
3386 
3387 	if (*compact_priority > min_priority) {
3388 		(*compact_priority)--;
3389 		*compaction_retries = 0;
3390 		ret = true;
3391 	}
3392 out:
3393 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
3394 	return ret;
3395 }
3396 #else
3397 static inline struct page *
3398 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
3399 		unsigned int alloc_flags, const struct alloc_context *ac,
3400 		enum compact_priority prio, enum compact_result *compact_result)
3401 {
3402 	*compact_result = COMPACT_SKIPPED;
3403 	return NULL;
3404 }
3405 
3406 static inline bool
3407 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3408 		     enum compact_result compact_result,
3409 		     enum compact_priority *compact_priority,
3410 		     int *compaction_retries)
3411 {
3412 	struct zone *zone;
3413 	struct zoneref *z;
3414 
3415 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3416 		return false;
3417 
3418 	/*
3419 	 * There are setups with compaction disabled which would prefer to loop
3420 	 * inside the allocator rather than hit the oom killer prematurely.
3421 	 * Let's give them a good hope and keep retrying while the order-0
3422 	 * watermarks are OK.
3423 	 */
3424 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3425 					ac->nodemask) {
3426 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3427 					ac_classzone_idx(ac), alloc_flags))
3428 			return true;
3429 	}
3430 	return false;
3431 }
3432 #endif /* CONFIG_COMPACTION */
3433 
3434 /* Perform direct synchronous page reclaim */
3435 static int
3436 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
3437 					const struct alloc_context *ac)
3438 {
3439 	struct reclaim_state reclaim_state;
3440 	int progress;
3441 	unsigned int noreclaim_flag;
3442 
3443 	cond_resched();
3444 
3445 	/* We now go into synchronous reclaim */
3446 	cpuset_memory_pressure_bump();
3447 	noreclaim_flag = memalloc_noreclaim_save();
3448 	lockdep_set_current_reclaim_state(gfp_mask);
3449 	reclaim_state.reclaimed_slab = 0;
3450 	current->reclaim_state = &reclaim_state;
3451 
3452 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3453 								ac->nodemask);
3454 
3455 	current->reclaim_state = NULL;
3456 	lockdep_clear_current_reclaim_state();
3457 	memalloc_noreclaim_restore(noreclaim_flag);
3458 
3459 	cond_resched();
3460 
3461 	return progress;
3462 }
3463 
3464 /* The really slow allocator path where we enter direct reclaim */
3465 static inline struct page *
3466 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
3467 		unsigned int alloc_flags, const struct alloc_context *ac,
3468 		unsigned long *did_some_progress)
3469 {
3470 	struct page *page = NULL;
3471 	bool drained = false;
3472 
3473 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
3474 	if (unlikely(!(*did_some_progress)))
3475 		return NULL;
3476 
3477 retry:
3478 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3479 
3480 	/*
3481 	 * If an allocation failed after direct reclaim, it could be because
3482 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
3483 	 * Shrink them them and try again
3484 	 */
3485 	if (!page && !drained) {
3486 		unreserve_highatomic_pageblock(ac, false);
3487 		drain_all_pages(NULL);
3488 		drained = true;
3489 		goto retry;
3490 	}
3491 
3492 	return page;
3493 }
3494 
3495 static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3496 {
3497 	struct zoneref *z;
3498 	struct zone *zone;
3499 	pg_data_t *last_pgdat = NULL;
3500 
3501 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
3502 					ac->high_zoneidx, ac->nodemask) {
3503 		if (last_pgdat != zone->zone_pgdat)
3504 			wakeup_kswapd(zone, order, ac->high_zoneidx);
3505 		last_pgdat = zone->zone_pgdat;
3506 	}
3507 }
3508 
3509 static inline unsigned int
3510 gfp_to_alloc_flags(gfp_t gfp_mask)
3511 {
3512 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
3513 
3514 	/* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3515 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
3516 
3517 	/*
3518 	 * The caller may dip into page reserves a bit more if the caller
3519 	 * cannot run direct reclaim, or if the caller has realtime scheduling
3520 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
3521 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3522 	 */
3523 	alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
3524 
3525 	if (gfp_mask & __GFP_ATOMIC) {
3526 		/*
3527 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3528 		 * if it can't schedule.
3529 		 */
3530 		if (!(gfp_mask & __GFP_NOMEMALLOC))
3531 			alloc_flags |= ALLOC_HARDER;
3532 		/*
3533 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3534 		 * comment for __cpuset_node_allowed().
3535 		 */
3536 		alloc_flags &= ~ALLOC_CPUSET;
3537 	} else if (unlikely(rt_task(current)) && !in_interrupt())
3538 		alloc_flags |= ALLOC_HARDER;
3539 
3540 #ifdef CONFIG_CMA
3541 	if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
3542 		alloc_flags |= ALLOC_CMA;
3543 #endif
3544 	return alloc_flags;
3545 }
3546 
3547 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3548 {
3549 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3550 		return false;
3551 
3552 	if (gfp_mask & __GFP_MEMALLOC)
3553 		return true;
3554 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3555 		return true;
3556 	if (!in_interrupt() &&
3557 			((current->flags & PF_MEMALLOC) ||
3558 			 unlikely(test_thread_flag(TIF_MEMDIE))))
3559 		return true;
3560 
3561 	return false;
3562 }
3563 
3564 /*
3565  * Checks whether it makes sense to retry the reclaim to make a forward progress
3566  * for the given allocation request.
3567  *
3568  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3569  * without success, or when we couldn't even meet the watermark if we
3570  * reclaimed all remaining pages on the LRU lists.
3571  *
3572  * Returns true if a retry is viable or false to enter the oom path.
3573  */
3574 static inline bool
3575 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3576 		     struct alloc_context *ac, int alloc_flags,
3577 		     bool did_some_progress, int *no_progress_loops)
3578 {
3579 	struct zone *zone;
3580 	struct zoneref *z;
3581 
3582 	/*
3583 	 * Costly allocations might have made a progress but this doesn't mean
3584 	 * their order will become available due to high fragmentation so
3585 	 * always increment the no progress counter for them
3586 	 */
3587 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
3588 		*no_progress_loops = 0;
3589 	else
3590 		(*no_progress_loops)++;
3591 
3592 	/*
3593 	 * Make sure we converge to OOM if we cannot make any progress
3594 	 * several times in the row.
3595 	 */
3596 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
3597 		/* Before OOM, exhaust highatomic_reserve */
3598 		return unreserve_highatomic_pageblock(ac, true);
3599 	}
3600 
3601 	/*
3602 	 * Keep reclaiming pages while there is a chance this will lead
3603 	 * somewhere.  If none of the target zones can satisfy our allocation
3604 	 * request even if all reclaimable pages are considered then we are
3605 	 * screwed and have to go OOM.
3606 	 */
3607 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3608 					ac->nodemask) {
3609 		unsigned long available;
3610 		unsigned long reclaimable;
3611 		unsigned long min_wmark = min_wmark_pages(zone);
3612 		bool wmark;
3613 
3614 		available = reclaimable = zone_reclaimable_pages(zone);
3615 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
3616 
3617 		/*
3618 		 * Would the allocation succeed if we reclaimed all
3619 		 * reclaimable pages?
3620 		 */
3621 		wmark = __zone_watermark_ok(zone, order, min_wmark,
3622 				ac_classzone_idx(ac), alloc_flags, available);
3623 		trace_reclaim_retry_zone(z, order, reclaimable,
3624 				available, min_wmark, *no_progress_loops, wmark);
3625 		if (wmark) {
3626 			/*
3627 			 * If we didn't make any progress and have a lot of
3628 			 * dirty + writeback pages then we should wait for
3629 			 * an IO to complete to slow down the reclaim and
3630 			 * prevent from pre mature OOM
3631 			 */
3632 			if (!did_some_progress) {
3633 				unsigned long write_pending;
3634 
3635 				write_pending = zone_page_state_snapshot(zone,
3636 							NR_ZONE_WRITE_PENDING);
3637 
3638 				if (2 * write_pending > reclaimable) {
3639 					congestion_wait(BLK_RW_ASYNC, HZ/10);
3640 					return true;
3641 				}
3642 			}
3643 
3644 			/*
3645 			 * Memory allocation/reclaim might be called from a WQ
3646 			 * context and the current implementation of the WQ
3647 			 * concurrency control doesn't recognize that
3648 			 * a particular WQ is congested if the worker thread is
3649 			 * looping without ever sleeping. Therefore we have to
3650 			 * do a short sleep here rather than calling
3651 			 * cond_resched().
3652 			 */
3653 			if (current->flags & PF_WQ_WORKER)
3654 				schedule_timeout_uninterruptible(1);
3655 			else
3656 				cond_resched();
3657 
3658 			return true;
3659 		}
3660 	}
3661 
3662 	return false;
3663 }
3664 
3665 static inline struct page *
3666 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
3667 						struct alloc_context *ac)
3668 {
3669 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
3670 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
3671 	struct page *page = NULL;
3672 	unsigned int alloc_flags;
3673 	unsigned long did_some_progress;
3674 	enum compact_priority compact_priority;
3675 	enum compact_result compact_result;
3676 	int compaction_retries;
3677 	int no_progress_loops;
3678 	unsigned long alloc_start = jiffies;
3679 	unsigned int stall_timeout = 10 * HZ;
3680 	unsigned int cpuset_mems_cookie;
3681 
3682 	/*
3683 	 * In the slowpath, we sanity check order to avoid ever trying to
3684 	 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3685 	 * be using allocators in order of preference for an area that is
3686 	 * too large.
3687 	 */
3688 	if (order >= MAX_ORDER) {
3689 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
3690 		return NULL;
3691 	}
3692 
3693 	/*
3694 	 * We also sanity check to catch abuse of atomic reserves being used by
3695 	 * callers that are not in atomic context.
3696 	 */
3697 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3698 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3699 		gfp_mask &= ~__GFP_ATOMIC;
3700 
3701 retry_cpuset:
3702 	compaction_retries = 0;
3703 	no_progress_loops = 0;
3704 	compact_priority = DEF_COMPACT_PRIORITY;
3705 	cpuset_mems_cookie = read_mems_allowed_begin();
3706 
3707 	/*
3708 	 * The fast path uses conservative alloc_flags to succeed only until
3709 	 * kswapd needs to be woken up, and to avoid the cost of setting up
3710 	 * alloc_flags precisely. So we do that now.
3711 	 */
3712 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
3713 
3714 	/*
3715 	 * We need to recalculate the starting point for the zonelist iterator
3716 	 * because we might have used different nodemask in the fast path, or
3717 	 * there was a cpuset modification and we are retrying - otherwise we
3718 	 * could end up iterating over non-eligible zones endlessly.
3719 	 */
3720 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3721 					ac->high_zoneidx, ac->nodemask);
3722 	if (!ac->preferred_zoneref->zone)
3723 		goto nopage;
3724 
3725 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3726 		wake_all_kswapds(order, ac);
3727 
3728 	/*
3729 	 * The adjusted alloc_flags might result in immediate success, so try
3730 	 * that first
3731 	 */
3732 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3733 	if (page)
3734 		goto got_pg;
3735 
3736 	/*
3737 	 * For costly allocations, try direct compaction first, as it's likely
3738 	 * that we have enough base pages and don't need to reclaim. For non-
3739 	 * movable high-order allocations, do that as well, as compaction will
3740 	 * try prevent permanent fragmentation by migrating from blocks of the
3741 	 * same migratetype.
3742 	 * Don't try this for allocations that are allowed to ignore
3743 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3744 	 */
3745 	if (can_direct_reclaim &&
3746 			(costly_order ||
3747 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
3748 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
3749 		page = __alloc_pages_direct_compact(gfp_mask, order,
3750 						alloc_flags, ac,
3751 						INIT_COMPACT_PRIORITY,
3752 						&compact_result);
3753 		if (page)
3754 			goto got_pg;
3755 
3756 		/*
3757 		 * Checks for costly allocations with __GFP_NORETRY, which
3758 		 * includes THP page fault allocations
3759 		 */
3760 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
3761 			/*
3762 			 * If compaction is deferred for high-order allocations,
3763 			 * it is because sync compaction recently failed. If
3764 			 * this is the case and the caller requested a THP
3765 			 * allocation, we do not want to heavily disrupt the
3766 			 * system, so we fail the allocation instead of entering
3767 			 * direct reclaim.
3768 			 */
3769 			if (compact_result == COMPACT_DEFERRED)
3770 				goto nopage;
3771 
3772 			/*
3773 			 * Looks like reclaim/compaction is worth trying, but
3774 			 * sync compaction could be very expensive, so keep
3775 			 * using async compaction.
3776 			 */
3777 			compact_priority = INIT_COMPACT_PRIORITY;
3778 		}
3779 	}
3780 
3781 retry:
3782 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
3783 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3784 		wake_all_kswapds(order, ac);
3785 
3786 	if (gfp_pfmemalloc_allowed(gfp_mask))
3787 		alloc_flags = ALLOC_NO_WATERMARKS;
3788 
3789 	/*
3790 	 * Reset the zonelist iterators if memory policies can be ignored.
3791 	 * These allocations are high priority and system rather than user
3792 	 * orientated.
3793 	 */
3794 	if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
3795 		ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3796 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3797 					ac->high_zoneidx, ac->nodemask);
3798 	}
3799 
3800 	/* Attempt with potentially adjusted zonelist and alloc_flags */
3801 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3802 	if (page)
3803 		goto got_pg;
3804 
3805 	/* Caller is not willing to reclaim, we can't balance anything */
3806 	if (!can_direct_reclaim)
3807 		goto nopage;
3808 
3809 	/* Make sure we know about allocations which stall for too long */
3810 	if (time_after(jiffies, alloc_start + stall_timeout)) {
3811 		warn_alloc(gfp_mask & ~__GFP_NOWARN, ac->nodemask,
3812 			"page allocation stalls for %ums, order:%u",
3813 			jiffies_to_msecs(jiffies-alloc_start), order);
3814 		stall_timeout += 10 * HZ;
3815 	}
3816 
3817 	/* Avoid recursion of direct reclaim */
3818 	if (current->flags & PF_MEMALLOC)
3819 		goto nopage;
3820 
3821 	/* Try direct reclaim and then allocating */
3822 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3823 							&did_some_progress);
3824 	if (page)
3825 		goto got_pg;
3826 
3827 	/* Try direct compaction and then allocating */
3828 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
3829 					compact_priority, &compact_result);
3830 	if (page)
3831 		goto got_pg;
3832 
3833 	/* Do not loop if specifically requested */
3834 	if (gfp_mask & __GFP_NORETRY)
3835 		goto nopage;
3836 
3837 	/*
3838 	 * Do not retry costly high order allocations unless they are
3839 	 * __GFP_REPEAT
3840 	 */
3841 	if (costly_order && !(gfp_mask & __GFP_REPEAT))
3842 		goto nopage;
3843 
3844 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
3845 				 did_some_progress > 0, &no_progress_loops))
3846 		goto retry;
3847 
3848 	/*
3849 	 * It doesn't make any sense to retry for the compaction if the order-0
3850 	 * reclaim is not able to make any progress because the current
3851 	 * implementation of the compaction depends on the sufficient amount
3852 	 * of free memory (see __compaction_suitable)
3853 	 */
3854 	if (did_some_progress > 0 &&
3855 			should_compact_retry(ac, order, alloc_flags,
3856 				compact_result, &compact_priority,
3857 				&compaction_retries))
3858 		goto retry;
3859 
3860 	/*
3861 	 * It's possible we raced with cpuset update so the OOM would be
3862 	 * premature (see below the nopage: label for full explanation).
3863 	 */
3864 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3865 		goto retry_cpuset;
3866 
3867 	/* Reclaim has failed us, start killing things */
3868 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3869 	if (page)
3870 		goto got_pg;
3871 
3872 	/* Avoid allocations with no watermarks from looping endlessly */
3873 	if (test_thread_flag(TIF_MEMDIE))
3874 		goto nopage;
3875 
3876 	/* Retry as long as the OOM killer is making progress */
3877 	if (did_some_progress) {
3878 		no_progress_loops = 0;
3879 		goto retry;
3880 	}
3881 
3882 nopage:
3883 	/*
3884 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
3885 	 * possible to race with parallel threads in such a way that our
3886 	 * allocation can fail while the mask is being updated. If we are about
3887 	 * to fail, check if the cpuset changed during allocation and if so,
3888 	 * retry.
3889 	 */
3890 	if (read_mems_allowed_retry(cpuset_mems_cookie))
3891 		goto retry_cpuset;
3892 
3893 	/*
3894 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
3895 	 * we always retry
3896 	 */
3897 	if (gfp_mask & __GFP_NOFAIL) {
3898 		/*
3899 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
3900 		 * of any new users that actually require GFP_NOWAIT
3901 		 */
3902 		if (WARN_ON_ONCE(!can_direct_reclaim))
3903 			goto fail;
3904 
3905 		/*
3906 		 * PF_MEMALLOC request from this context is rather bizarre
3907 		 * because we cannot reclaim anything and only can loop waiting
3908 		 * for somebody to do a work for us
3909 		 */
3910 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
3911 
3912 		/*
3913 		 * non failing costly orders are a hard requirement which we
3914 		 * are not prepared for much so let's warn about these users
3915 		 * so that we can identify them and convert them to something
3916 		 * else.
3917 		 */
3918 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
3919 
3920 		/*
3921 		 * Help non-failing allocations by giving them access to memory
3922 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
3923 		 * could deplete whole memory reserves which would just make
3924 		 * the situation worse
3925 		 */
3926 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
3927 		if (page)
3928 			goto got_pg;
3929 
3930 		cond_resched();
3931 		goto retry;
3932 	}
3933 fail:
3934 	warn_alloc(gfp_mask, ac->nodemask,
3935 			"page allocation failure: order:%u", order);
3936 got_pg:
3937 	return page;
3938 }
3939 
3940 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
3941 		struct zonelist *zonelist, nodemask_t *nodemask,
3942 		struct alloc_context *ac, gfp_t *alloc_mask,
3943 		unsigned int *alloc_flags)
3944 {
3945 	ac->high_zoneidx = gfp_zone(gfp_mask);
3946 	ac->zonelist = zonelist;
3947 	ac->nodemask = nodemask;
3948 	ac->migratetype = gfpflags_to_migratetype(gfp_mask);
3949 
3950 	if (cpusets_enabled()) {
3951 		*alloc_mask |= __GFP_HARDWALL;
3952 		if (!ac->nodemask)
3953 			ac->nodemask = &cpuset_current_mems_allowed;
3954 		else
3955 			*alloc_flags |= ALLOC_CPUSET;
3956 	}
3957 
3958 	lockdep_trace_alloc(gfp_mask);
3959 
3960 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
3961 
3962 	if (should_fail_alloc_page(gfp_mask, order))
3963 		return false;
3964 
3965 	if (IS_ENABLED(CONFIG_CMA) && ac->migratetype == MIGRATE_MOVABLE)
3966 		*alloc_flags |= ALLOC_CMA;
3967 
3968 	return true;
3969 }
3970 
3971 /* Determine whether to spread dirty pages and what the first usable zone */
3972 static inline void finalise_ac(gfp_t gfp_mask,
3973 		unsigned int order, struct alloc_context *ac)
3974 {
3975 	/* Dirty zone balancing only done in the fast path */
3976 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3977 
3978 	/*
3979 	 * The preferred zone is used for statistics but crucially it is
3980 	 * also used as the starting point for the zonelist iterator. It
3981 	 * may get reset for allocations that ignore memory policies.
3982 	 */
3983 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3984 					ac->high_zoneidx, ac->nodemask);
3985 }
3986 
3987 /*
3988  * This is the 'heart' of the zoned buddy allocator.
3989  */
3990 struct page *
3991 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3992 			struct zonelist *zonelist, nodemask_t *nodemask)
3993 {
3994 	struct page *page;
3995 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
3996 	gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
3997 	struct alloc_context ac = { };
3998 
3999 	gfp_mask &= gfp_allowed_mask;
4000 	if (!prepare_alloc_pages(gfp_mask, order, zonelist, nodemask, &ac, &alloc_mask, &alloc_flags))
4001 		return NULL;
4002 
4003 	finalise_ac(gfp_mask, order, &ac);
4004 
4005 	/* First allocation attempt */
4006 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4007 	if (likely(page))
4008 		goto out;
4009 
4010 	/*
4011 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4012 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
4013 	 * from a particular context which has been marked by
4014 	 * memalloc_no{fs,io}_{save,restore}.
4015 	 */
4016 	alloc_mask = current_gfp_context(gfp_mask);
4017 	ac.spread_dirty_pages = false;
4018 
4019 	/*
4020 	 * Restore the original nodemask if it was potentially replaced with
4021 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4022 	 */
4023 	if (unlikely(ac.nodemask != nodemask))
4024 		ac.nodemask = nodemask;
4025 
4026 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
4027 
4028 out:
4029 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
4030 	    unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
4031 		__free_pages(page, order);
4032 		page = NULL;
4033 	}
4034 
4035 	if (kmemcheck_enabled && page)
4036 		kmemcheck_pagealloc_alloc(page, order, gfp_mask);
4037 
4038 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
4039 
4040 	return page;
4041 }
4042 EXPORT_SYMBOL(__alloc_pages_nodemask);
4043 
4044 /*
4045  * Common helper functions.
4046  */
4047 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
4048 {
4049 	struct page *page;
4050 
4051 	/*
4052 	 * __get_free_pages() returns a 32-bit address, which cannot represent
4053 	 * a highmem page
4054 	 */
4055 	VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
4056 
4057 	page = alloc_pages(gfp_mask, order);
4058 	if (!page)
4059 		return 0;
4060 	return (unsigned long) page_address(page);
4061 }
4062 EXPORT_SYMBOL(__get_free_pages);
4063 
4064 unsigned long get_zeroed_page(gfp_t gfp_mask)
4065 {
4066 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
4067 }
4068 EXPORT_SYMBOL(get_zeroed_page);
4069 
4070 void __free_pages(struct page *page, unsigned int order)
4071 {
4072 	if (put_page_testzero(page)) {
4073 		if (order == 0)
4074 			free_hot_cold_page(page, false);
4075 		else
4076 			__free_pages_ok(page, order);
4077 	}
4078 }
4079 
4080 EXPORT_SYMBOL(__free_pages);
4081 
4082 void free_pages(unsigned long addr, unsigned int order)
4083 {
4084 	if (addr != 0) {
4085 		VM_BUG_ON(!virt_addr_valid((void *)addr));
4086 		__free_pages(virt_to_page((void *)addr), order);
4087 	}
4088 }
4089 
4090 EXPORT_SYMBOL(free_pages);
4091 
4092 /*
4093  * Page Fragment:
4094  *  An arbitrary-length arbitrary-offset area of memory which resides
4095  *  within a 0 or higher order page.  Multiple fragments within that page
4096  *  are individually refcounted, in the page's reference counter.
4097  *
4098  * The page_frag functions below provide a simple allocation framework for
4099  * page fragments.  This is used by the network stack and network device
4100  * drivers to provide a backing region of memory for use as either an
4101  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4102  */
4103 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
4104 					     gfp_t gfp_mask)
4105 {
4106 	struct page *page = NULL;
4107 	gfp_t gfp = gfp_mask;
4108 
4109 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4110 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
4111 		    __GFP_NOMEMALLOC;
4112 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
4113 				PAGE_FRAG_CACHE_MAX_ORDER);
4114 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
4115 #endif
4116 	if (unlikely(!page))
4117 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
4118 
4119 	nc->va = page ? page_address(page) : NULL;
4120 
4121 	return page;
4122 }
4123 
4124 void __page_frag_cache_drain(struct page *page, unsigned int count)
4125 {
4126 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
4127 
4128 	if (page_ref_sub_and_test(page, count)) {
4129 		unsigned int order = compound_order(page);
4130 
4131 		if (order == 0)
4132 			free_hot_cold_page(page, false);
4133 		else
4134 			__free_pages_ok(page, order);
4135 	}
4136 }
4137 EXPORT_SYMBOL(__page_frag_cache_drain);
4138 
4139 void *page_frag_alloc(struct page_frag_cache *nc,
4140 		      unsigned int fragsz, gfp_t gfp_mask)
4141 {
4142 	unsigned int size = PAGE_SIZE;
4143 	struct page *page;
4144 	int offset;
4145 
4146 	if (unlikely(!nc->va)) {
4147 refill:
4148 		page = __page_frag_cache_refill(nc, gfp_mask);
4149 		if (!page)
4150 			return NULL;
4151 
4152 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4153 		/* if size can vary use size else just use PAGE_SIZE */
4154 		size = nc->size;
4155 #endif
4156 		/* Even if we own the page, we do not use atomic_set().
4157 		 * This would break get_page_unless_zero() users.
4158 		 */
4159 		page_ref_add(page, size - 1);
4160 
4161 		/* reset page count bias and offset to start of new frag */
4162 		nc->pfmemalloc = page_is_pfmemalloc(page);
4163 		nc->pagecnt_bias = size;
4164 		nc->offset = size;
4165 	}
4166 
4167 	offset = nc->offset - fragsz;
4168 	if (unlikely(offset < 0)) {
4169 		page = virt_to_page(nc->va);
4170 
4171 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
4172 			goto refill;
4173 
4174 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4175 		/* if size can vary use size else just use PAGE_SIZE */
4176 		size = nc->size;
4177 #endif
4178 		/* OK, page count is 0, we can safely set it */
4179 		set_page_count(page, size);
4180 
4181 		/* reset page count bias and offset to start of new frag */
4182 		nc->pagecnt_bias = size;
4183 		offset = size - fragsz;
4184 	}
4185 
4186 	nc->pagecnt_bias--;
4187 	nc->offset = offset;
4188 
4189 	return nc->va + offset;
4190 }
4191 EXPORT_SYMBOL(page_frag_alloc);
4192 
4193 /*
4194  * Frees a page fragment allocated out of either a compound or order 0 page.
4195  */
4196 void page_frag_free(void *addr)
4197 {
4198 	struct page *page = virt_to_head_page(addr);
4199 
4200 	if (unlikely(put_page_testzero(page)))
4201 		__free_pages_ok(page, compound_order(page));
4202 }
4203 EXPORT_SYMBOL(page_frag_free);
4204 
4205 static void *make_alloc_exact(unsigned long addr, unsigned int order,
4206 		size_t size)
4207 {
4208 	if (addr) {
4209 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
4210 		unsigned long used = addr + PAGE_ALIGN(size);
4211 
4212 		split_page(virt_to_page((void *)addr), order);
4213 		while (used < alloc_end) {
4214 			free_page(used);
4215 			used += PAGE_SIZE;
4216 		}
4217 	}
4218 	return (void *)addr;
4219 }
4220 
4221 /**
4222  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4223  * @size: the number of bytes to allocate
4224  * @gfp_mask: GFP flags for the allocation
4225  *
4226  * This function is similar to alloc_pages(), except that it allocates the
4227  * minimum number of pages to satisfy the request.  alloc_pages() can only
4228  * allocate memory in power-of-two pages.
4229  *
4230  * This function is also limited by MAX_ORDER.
4231  *
4232  * Memory allocated by this function must be released by free_pages_exact().
4233  */
4234 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
4235 {
4236 	unsigned int order = get_order(size);
4237 	unsigned long addr;
4238 
4239 	addr = __get_free_pages(gfp_mask, order);
4240 	return make_alloc_exact(addr, order, size);
4241 }
4242 EXPORT_SYMBOL(alloc_pages_exact);
4243 
4244 /**
4245  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4246  *			   pages on a node.
4247  * @nid: the preferred node ID where memory should be allocated
4248  * @size: the number of bytes to allocate
4249  * @gfp_mask: GFP flags for the allocation
4250  *
4251  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4252  * back.
4253  */
4254 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
4255 {
4256 	unsigned int order = get_order(size);
4257 	struct page *p = alloc_pages_node(nid, gfp_mask, order);
4258 	if (!p)
4259 		return NULL;
4260 	return make_alloc_exact((unsigned long)page_address(p), order, size);
4261 }
4262 
4263 /**
4264  * free_pages_exact - release memory allocated via alloc_pages_exact()
4265  * @virt: the value returned by alloc_pages_exact.
4266  * @size: size of allocation, same value as passed to alloc_pages_exact().
4267  *
4268  * Release the memory allocated by a previous call to alloc_pages_exact.
4269  */
4270 void free_pages_exact(void *virt, size_t size)
4271 {
4272 	unsigned long addr = (unsigned long)virt;
4273 	unsigned long end = addr + PAGE_ALIGN(size);
4274 
4275 	while (addr < end) {
4276 		free_page(addr);
4277 		addr += PAGE_SIZE;
4278 	}
4279 }
4280 EXPORT_SYMBOL(free_pages_exact);
4281 
4282 /**
4283  * nr_free_zone_pages - count number of pages beyond high watermark
4284  * @offset: The zone index of the highest zone
4285  *
4286  * nr_free_zone_pages() counts the number of counts pages which are beyond the
4287  * high watermark within all zones at or below a given zone index.  For each
4288  * zone, the number of pages is calculated as:
4289  *
4290  *     nr_free_zone_pages = managed_pages - high_pages
4291  */
4292 static unsigned long nr_free_zone_pages(int offset)
4293 {
4294 	struct zoneref *z;
4295 	struct zone *zone;
4296 
4297 	/* Just pick one node, since fallback list is circular */
4298 	unsigned long sum = 0;
4299 
4300 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
4301 
4302 	for_each_zone_zonelist(zone, z, zonelist, offset) {
4303 		unsigned long size = zone->managed_pages;
4304 		unsigned long high = high_wmark_pages(zone);
4305 		if (size > high)
4306 			sum += size - high;
4307 	}
4308 
4309 	return sum;
4310 }
4311 
4312 /**
4313  * nr_free_buffer_pages - count number of pages beyond high watermark
4314  *
4315  * nr_free_buffer_pages() counts the number of pages which are beyond the high
4316  * watermark within ZONE_DMA and ZONE_NORMAL.
4317  */
4318 unsigned long nr_free_buffer_pages(void)
4319 {
4320 	return nr_free_zone_pages(gfp_zone(GFP_USER));
4321 }
4322 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
4323 
4324 /**
4325  * nr_free_pagecache_pages - count number of pages beyond high watermark
4326  *
4327  * nr_free_pagecache_pages() counts the number of pages which are beyond the
4328  * high watermark within all zones.
4329  */
4330 unsigned long nr_free_pagecache_pages(void)
4331 {
4332 	return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
4333 }
4334 
4335 static inline void show_node(struct zone *zone)
4336 {
4337 	if (IS_ENABLED(CONFIG_NUMA))
4338 		printk("Node %d ", zone_to_nid(zone));
4339 }
4340 
4341 long si_mem_available(void)
4342 {
4343 	long available;
4344 	unsigned long pagecache;
4345 	unsigned long wmark_low = 0;
4346 	unsigned long pages[NR_LRU_LISTS];
4347 	struct zone *zone;
4348 	int lru;
4349 
4350 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
4351 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
4352 
4353 	for_each_zone(zone)
4354 		wmark_low += zone->watermark[WMARK_LOW];
4355 
4356 	/*
4357 	 * Estimate the amount of memory available for userspace allocations,
4358 	 * without causing swapping.
4359 	 */
4360 	available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4361 
4362 	/*
4363 	 * Not all the page cache can be freed, otherwise the system will
4364 	 * start swapping. Assume at least half of the page cache, or the
4365 	 * low watermark worth of cache, needs to stay.
4366 	 */
4367 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4368 	pagecache -= min(pagecache / 2, wmark_low);
4369 	available += pagecache;
4370 
4371 	/*
4372 	 * Part of the reclaimable slab consists of items that are in use,
4373 	 * and cannot be freed. Cap this estimate at the low watermark.
4374 	 */
4375 	available += global_page_state(NR_SLAB_RECLAIMABLE) -
4376 		     min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4377 
4378 	if (available < 0)
4379 		available = 0;
4380 	return available;
4381 }
4382 EXPORT_SYMBOL_GPL(si_mem_available);
4383 
4384 void si_meminfo(struct sysinfo *val)
4385 {
4386 	val->totalram = totalram_pages;
4387 	val->sharedram = global_node_page_state(NR_SHMEM);
4388 	val->freeram = global_page_state(NR_FREE_PAGES);
4389 	val->bufferram = nr_blockdev_pages();
4390 	val->totalhigh = totalhigh_pages;
4391 	val->freehigh = nr_free_highpages();
4392 	val->mem_unit = PAGE_SIZE;
4393 }
4394 
4395 EXPORT_SYMBOL(si_meminfo);
4396 
4397 #ifdef CONFIG_NUMA
4398 void si_meminfo_node(struct sysinfo *val, int nid)
4399 {
4400 	int zone_type;		/* needs to be signed */
4401 	unsigned long managed_pages = 0;
4402 	unsigned long managed_highpages = 0;
4403 	unsigned long free_highpages = 0;
4404 	pg_data_t *pgdat = NODE_DATA(nid);
4405 
4406 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4407 		managed_pages += pgdat->node_zones[zone_type].managed_pages;
4408 	val->totalram = managed_pages;
4409 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
4410 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
4411 #ifdef CONFIG_HIGHMEM
4412 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4413 		struct zone *zone = &pgdat->node_zones[zone_type];
4414 
4415 		if (is_highmem(zone)) {
4416 			managed_highpages += zone->managed_pages;
4417 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4418 		}
4419 	}
4420 	val->totalhigh = managed_highpages;
4421 	val->freehigh = free_highpages;
4422 #else
4423 	val->totalhigh = managed_highpages;
4424 	val->freehigh = free_highpages;
4425 #endif
4426 	val->mem_unit = PAGE_SIZE;
4427 }
4428 #endif
4429 
4430 /*
4431  * Determine whether the node should be displayed or not, depending on whether
4432  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4433  */
4434 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
4435 {
4436 	if (!(flags & SHOW_MEM_FILTER_NODES))
4437 		return false;
4438 
4439 	/*
4440 	 * no node mask - aka implicit memory numa policy. Do not bother with
4441 	 * the synchronization - read_mems_allowed_begin - because we do not
4442 	 * have to be precise here.
4443 	 */
4444 	if (!nodemask)
4445 		nodemask = &cpuset_current_mems_allowed;
4446 
4447 	return !node_isset(nid, *nodemask);
4448 }
4449 
4450 #define K(x) ((x) << (PAGE_SHIFT-10))
4451 
4452 static void show_migration_types(unsigned char type)
4453 {
4454 	static const char types[MIGRATE_TYPES] = {
4455 		[MIGRATE_UNMOVABLE]	= 'U',
4456 		[MIGRATE_MOVABLE]	= 'M',
4457 		[MIGRATE_RECLAIMABLE]	= 'E',
4458 		[MIGRATE_HIGHATOMIC]	= 'H',
4459 #ifdef CONFIG_CMA
4460 		[MIGRATE_CMA]		= 'C',
4461 #endif
4462 #ifdef CONFIG_MEMORY_ISOLATION
4463 		[MIGRATE_ISOLATE]	= 'I',
4464 #endif
4465 	};
4466 	char tmp[MIGRATE_TYPES + 1];
4467 	char *p = tmp;
4468 	int i;
4469 
4470 	for (i = 0; i < MIGRATE_TYPES; i++) {
4471 		if (type & (1 << i))
4472 			*p++ = types[i];
4473 	}
4474 
4475 	*p = '\0';
4476 	printk(KERN_CONT "(%s) ", tmp);
4477 }
4478 
4479 /*
4480  * Show free area list (used inside shift_scroll-lock stuff)
4481  * We also calculate the percentage fragmentation. We do this by counting the
4482  * memory on each free list with the exception of the first item on the list.
4483  *
4484  * Bits in @filter:
4485  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4486  *   cpuset.
4487  */
4488 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
4489 {
4490 	unsigned long free_pcp = 0;
4491 	int cpu;
4492 	struct zone *zone;
4493 	pg_data_t *pgdat;
4494 
4495 	for_each_populated_zone(zone) {
4496 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4497 			continue;
4498 
4499 		for_each_online_cpu(cpu)
4500 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4501 	}
4502 
4503 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4504 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4505 		" unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4506 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4507 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4508 		" free:%lu free_pcp:%lu free_cma:%lu\n",
4509 		global_node_page_state(NR_ACTIVE_ANON),
4510 		global_node_page_state(NR_INACTIVE_ANON),
4511 		global_node_page_state(NR_ISOLATED_ANON),
4512 		global_node_page_state(NR_ACTIVE_FILE),
4513 		global_node_page_state(NR_INACTIVE_FILE),
4514 		global_node_page_state(NR_ISOLATED_FILE),
4515 		global_node_page_state(NR_UNEVICTABLE),
4516 		global_node_page_state(NR_FILE_DIRTY),
4517 		global_node_page_state(NR_WRITEBACK),
4518 		global_node_page_state(NR_UNSTABLE_NFS),
4519 		global_page_state(NR_SLAB_RECLAIMABLE),
4520 		global_page_state(NR_SLAB_UNRECLAIMABLE),
4521 		global_node_page_state(NR_FILE_MAPPED),
4522 		global_node_page_state(NR_SHMEM),
4523 		global_page_state(NR_PAGETABLE),
4524 		global_page_state(NR_BOUNCE),
4525 		global_page_state(NR_FREE_PAGES),
4526 		free_pcp,
4527 		global_page_state(NR_FREE_CMA_PAGES));
4528 
4529 	for_each_online_pgdat(pgdat) {
4530 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
4531 			continue;
4532 
4533 		printk("Node %d"
4534 			" active_anon:%lukB"
4535 			" inactive_anon:%lukB"
4536 			" active_file:%lukB"
4537 			" inactive_file:%lukB"
4538 			" unevictable:%lukB"
4539 			" isolated(anon):%lukB"
4540 			" isolated(file):%lukB"
4541 			" mapped:%lukB"
4542 			" dirty:%lukB"
4543 			" writeback:%lukB"
4544 			" shmem:%lukB"
4545 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4546 			" shmem_thp: %lukB"
4547 			" shmem_pmdmapped: %lukB"
4548 			" anon_thp: %lukB"
4549 #endif
4550 			" writeback_tmp:%lukB"
4551 			" unstable:%lukB"
4552 			" all_unreclaimable? %s"
4553 			"\n",
4554 			pgdat->node_id,
4555 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4556 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4557 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4558 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4559 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
4560 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4561 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
4562 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
4563 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
4564 			K(node_page_state(pgdat, NR_WRITEBACK)),
4565 			K(node_page_state(pgdat, NR_SHMEM)),
4566 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4567 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4568 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4569 					* HPAGE_PMD_NR),
4570 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4571 #endif
4572 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4573 			K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
4574 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
4575 				"yes" : "no");
4576 	}
4577 
4578 	for_each_populated_zone(zone) {
4579 		int i;
4580 
4581 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4582 			continue;
4583 
4584 		free_pcp = 0;
4585 		for_each_online_cpu(cpu)
4586 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4587 
4588 		show_node(zone);
4589 		printk(KERN_CONT
4590 			"%s"
4591 			" free:%lukB"
4592 			" min:%lukB"
4593 			" low:%lukB"
4594 			" high:%lukB"
4595 			" active_anon:%lukB"
4596 			" inactive_anon:%lukB"
4597 			" active_file:%lukB"
4598 			" inactive_file:%lukB"
4599 			" unevictable:%lukB"
4600 			" writepending:%lukB"
4601 			" present:%lukB"
4602 			" managed:%lukB"
4603 			" mlocked:%lukB"
4604 			" slab_reclaimable:%lukB"
4605 			" slab_unreclaimable:%lukB"
4606 			" kernel_stack:%lukB"
4607 			" pagetables:%lukB"
4608 			" bounce:%lukB"
4609 			" free_pcp:%lukB"
4610 			" local_pcp:%ukB"
4611 			" free_cma:%lukB"
4612 			"\n",
4613 			zone->name,
4614 			K(zone_page_state(zone, NR_FREE_PAGES)),
4615 			K(min_wmark_pages(zone)),
4616 			K(low_wmark_pages(zone)),
4617 			K(high_wmark_pages(zone)),
4618 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4619 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4620 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4621 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4622 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
4623 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
4624 			K(zone->present_pages),
4625 			K(zone->managed_pages),
4626 			K(zone_page_state(zone, NR_MLOCK)),
4627 			K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4628 			K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
4629 			zone_page_state(zone, NR_KERNEL_STACK_KB),
4630 			K(zone_page_state(zone, NR_PAGETABLE)),
4631 			K(zone_page_state(zone, NR_BOUNCE)),
4632 			K(free_pcp),
4633 			K(this_cpu_read(zone->pageset->pcp.count)),
4634 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
4635 		printk("lowmem_reserve[]:");
4636 		for (i = 0; i < MAX_NR_ZONES; i++)
4637 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
4638 		printk(KERN_CONT "\n");
4639 	}
4640 
4641 	for_each_populated_zone(zone) {
4642 		unsigned int order;
4643 		unsigned long nr[MAX_ORDER], flags, total = 0;
4644 		unsigned char types[MAX_ORDER];
4645 
4646 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
4647 			continue;
4648 		show_node(zone);
4649 		printk(KERN_CONT "%s: ", zone->name);
4650 
4651 		spin_lock_irqsave(&zone->lock, flags);
4652 		for (order = 0; order < MAX_ORDER; order++) {
4653 			struct free_area *area = &zone->free_area[order];
4654 			int type;
4655 
4656 			nr[order] = area->nr_free;
4657 			total += nr[order] << order;
4658 
4659 			types[order] = 0;
4660 			for (type = 0; type < MIGRATE_TYPES; type++) {
4661 				if (!list_empty(&area->free_list[type]))
4662 					types[order] |= 1 << type;
4663 			}
4664 		}
4665 		spin_unlock_irqrestore(&zone->lock, flags);
4666 		for (order = 0; order < MAX_ORDER; order++) {
4667 			printk(KERN_CONT "%lu*%lukB ",
4668 			       nr[order], K(1UL) << order);
4669 			if (nr[order])
4670 				show_migration_types(types[order]);
4671 		}
4672 		printk(KERN_CONT "= %lukB\n", K(total));
4673 	}
4674 
4675 	hugetlb_show_meminfo();
4676 
4677 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
4678 
4679 	show_swap_cache_info();
4680 }
4681 
4682 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4683 {
4684 	zoneref->zone = zone;
4685 	zoneref->zone_idx = zone_idx(zone);
4686 }
4687 
4688 /*
4689  * Builds allocation fallback zone lists.
4690  *
4691  * Add all populated zones of a node to the zonelist.
4692  */
4693 static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
4694 				int nr_zones)
4695 {
4696 	struct zone *zone;
4697 	enum zone_type zone_type = MAX_NR_ZONES;
4698 
4699 	do {
4700 		zone_type--;
4701 		zone = pgdat->node_zones + zone_type;
4702 		if (managed_zone(zone)) {
4703 			zoneref_set_zone(zone,
4704 				&zonelist->_zonerefs[nr_zones++]);
4705 			check_highest_zone(zone_type);
4706 		}
4707 	} while (zone_type);
4708 
4709 	return nr_zones;
4710 }
4711 
4712 
4713 /*
4714  *  zonelist_order:
4715  *  0 = automatic detection of better ordering.
4716  *  1 = order by ([node] distance, -zonetype)
4717  *  2 = order by (-zonetype, [node] distance)
4718  *
4719  *  If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4720  *  the same zonelist. So only NUMA can configure this param.
4721  */
4722 #define ZONELIST_ORDER_DEFAULT  0
4723 #define ZONELIST_ORDER_NODE     1
4724 #define ZONELIST_ORDER_ZONE     2
4725 
4726 /* zonelist order in the kernel.
4727  * set_zonelist_order() will set this to NODE or ZONE.
4728  */
4729 static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4730 static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4731 
4732 
4733 #ifdef CONFIG_NUMA
4734 /* The value user specified ....changed by config */
4735 static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4736 /* string for sysctl */
4737 #define NUMA_ZONELIST_ORDER_LEN	16
4738 char numa_zonelist_order[16] = "default";
4739 
4740 /*
4741  * interface for configure zonelist ordering.
4742  * command line option "numa_zonelist_order"
4743  *	= "[dD]efault	- default, automatic configuration.
4744  *	= "[nN]ode 	- order by node locality, then by zone within node
4745  *	= "[zZ]one      - order by zone, then by locality within zone
4746  */
4747 
4748 static int __parse_numa_zonelist_order(char *s)
4749 {
4750 	if (*s == 'd' || *s == 'D') {
4751 		user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4752 	} else if (*s == 'n' || *s == 'N') {
4753 		user_zonelist_order = ZONELIST_ORDER_NODE;
4754 	} else if (*s == 'z' || *s == 'Z') {
4755 		user_zonelist_order = ZONELIST_ORDER_ZONE;
4756 	} else {
4757 		pr_warn("Ignoring invalid numa_zonelist_order value:  %s\n", s);
4758 		return -EINVAL;
4759 	}
4760 	return 0;
4761 }
4762 
4763 static __init int setup_numa_zonelist_order(char *s)
4764 {
4765 	int ret;
4766 
4767 	if (!s)
4768 		return 0;
4769 
4770 	ret = __parse_numa_zonelist_order(s);
4771 	if (ret == 0)
4772 		strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4773 
4774 	return ret;
4775 }
4776 early_param("numa_zonelist_order", setup_numa_zonelist_order);
4777 
4778 /*
4779  * sysctl handler for numa_zonelist_order
4780  */
4781 int numa_zonelist_order_handler(struct ctl_table *table, int write,
4782 		void __user *buffer, size_t *length,
4783 		loff_t *ppos)
4784 {
4785 	char saved_string[NUMA_ZONELIST_ORDER_LEN];
4786 	int ret;
4787 	static DEFINE_MUTEX(zl_order_mutex);
4788 
4789 	mutex_lock(&zl_order_mutex);
4790 	if (write) {
4791 		if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4792 			ret = -EINVAL;
4793 			goto out;
4794 		}
4795 		strcpy(saved_string, (char *)table->data);
4796 	}
4797 	ret = proc_dostring(table, write, buffer, length, ppos);
4798 	if (ret)
4799 		goto out;
4800 	if (write) {
4801 		int oldval = user_zonelist_order;
4802 
4803 		ret = __parse_numa_zonelist_order((char *)table->data);
4804 		if (ret) {
4805 			/*
4806 			 * bogus value.  restore saved string
4807 			 */
4808 			strncpy((char *)table->data, saved_string,
4809 				NUMA_ZONELIST_ORDER_LEN);
4810 			user_zonelist_order = oldval;
4811 		} else if (oldval != user_zonelist_order) {
4812 			mutex_lock(&zonelists_mutex);
4813 			build_all_zonelists(NULL, NULL);
4814 			mutex_unlock(&zonelists_mutex);
4815 		}
4816 	}
4817 out:
4818 	mutex_unlock(&zl_order_mutex);
4819 	return ret;
4820 }
4821 
4822 
4823 #define MAX_NODE_LOAD (nr_online_nodes)
4824 static int node_load[MAX_NUMNODES];
4825 
4826 /**
4827  * find_next_best_node - find the next node that should appear in a given node's fallback list
4828  * @node: node whose fallback list we're appending
4829  * @used_node_mask: nodemask_t of already used nodes
4830  *
4831  * We use a number of factors to determine which is the next node that should
4832  * appear on a given node's fallback list.  The node should not have appeared
4833  * already in @node's fallback list, and it should be the next closest node
4834  * according to the distance array (which contains arbitrary distance values
4835  * from each node to each node in the system), and should also prefer nodes
4836  * with no CPUs, since presumably they'll have very little allocation pressure
4837  * on them otherwise.
4838  * It returns -1 if no node is found.
4839  */
4840 static int find_next_best_node(int node, nodemask_t *used_node_mask)
4841 {
4842 	int n, val;
4843 	int min_val = INT_MAX;
4844 	int best_node = NUMA_NO_NODE;
4845 	const struct cpumask *tmp = cpumask_of_node(0);
4846 
4847 	/* Use the local node if we haven't already */
4848 	if (!node_isset(node, *used_node_mask)) {
4849 		node_set(node, *used_node_mask);
4850 		return node;
4851 	}
4852 
4853 	for_each_node_state(n, N_MEMORY) {
4854 
4855 		/* Don't want a node to appear more than once */
4856 		if (node_isset(n, *used_node_mask))
4857 			continue;
4858 
4859 		/* Use the distance array to find the distance */
4860 		val = node_distance(node, n);
4861 
4862 		/* Penalize nodes under us ("prefer the next node") */
4863 		val += (n < node);
4864 
4865 		/* Give preference to headless and unused nodes */
4866 		tmp = cpumask_of_node(n);
4867 		if (!cpumask_empty(tmp))
4868 			val += PENALTY_FOR_NODE_WITH_CPUS;
4869 
4870 		/* Slight preference for less loaded node */
4871 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4872 		val += node_load[n];
4873 
4874 		if (val < min_val) {
4875 			min_val = val;
4876 			best_node = n;
4877 		}
4878 	}
4879 
4880 	if (best_node >= 0)
4881 		node_set(best_node, *used_node_mask);
4882 
4883 	return best_node;
4884 }
4885 
4886 
4887 /*
4888  * Build zonelists ordered by node and zones within node.
4889  * This results in maximum locality--normal zone overflows into local
4890  * DMA zone, if any--but risks exhausting DMA zone.
4891  */
4892 static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
4893 {
4894 	int j;
4895 	struct zonelist *zonelist;
4896 
4897 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4898 	for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
4899 		;
4900 	j = build_zonelists_node(NODE_DATA(node), zonelist, j);
4901 	zonelist->_zonerefs[j].zone = NULL;
4902 	zonelist->_zonerefs[j].zone_idx = 0;
4903 }
4904 
4905 /*
4906  * Build gfp_thisnode zonelists
4907  */
4908 static void build_thisnode_zonelists(pg_data_t *pgdat)
4909 {
4910 	int j;
4911 	struct zonelist *zonelist;
4912 
4913 	zonelist = &pgdat->node_zonelists[ZONELIST_NOFALLBACK];
4914 	j = build_zonelists_node(pgdat, zonelist, 0);
4915 	zonelist->_zonerefs[j].zone = NULL;
4916 	zonelist->_zonerefs[j].zone_idx = 0;
4917 }
4918 
4919 /*
4920  * Build zonelists ordered by zone and nodes within zones.
4921  * This results in conserving DMA zone[s] until all Normal memory is
4922  * exhausted, but results in overflowing to remote node while memory
4923  * may still exist in local DMA zone.
4924  */
4925 static int node_order[MAX_NUMNODES];
4926 
4927 static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4928 {
4929 	int pos, j, node;
4930 	int zone_type;		/* needs to be signed */
4931 	struct zone *z;
4932 	struct zonelist *zonelist;
4933 
4934 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
4935 	pos = 0;
4936 	for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4937 		for (j = 0; j < nr_nodes; j++) {
4938 			node = node_order[j];
4939 			z = &NODE_DATA(node)->node_zones[zone_type];
4940 			if (managed_zone(z)) {
4941 				zoneref_set_zone(z,
4942 					&zonelist->_zonerefs[pos++]);
4943 				check_highest_zone(zone_type);
4944 			}
4945 		}
4946 	}
4947 	zonelist->_zonerefs[pos].zone = NULL;
4948 	zonelist->_zonerefs[pos].zone_idx = 0;
4949 }
4950 
4951 #if defined(CONFIG_64BIT)
4952 /*
4953  * Devices that require DMA32/DMA are relatively rare and do not justify a
4954  * penalty to every machine in case the specialised case applies. Default
4955  * to Node-ordering on 64-bit NUMA machines
4956  */
4957 static int default_zonelist_order(void)
4958 {
4959 	return ZONELIST_ORDER_NODE;
4960 }
4961 #else
4962 /*
4963  * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4964  * by the kernel. If processes running on node 0 deplete the low memory zone
4965  * then reclaim will occur more frequency increasing stalls and potentially
4966  * be easier to OOM if a large percentage of the zone is under writeback or
4967  * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4968  * Hence, default to zone ordering on 32-bit.
4969  */
4970 static int default_zonelist_order(void)
4971 {
4972 	return ZONELIST_ORDER_ZONE;
4973 }
4974 #endif /* CONFIG_64BIT */
4975 
4976 static void set_zonelist_order(void)
4977 {
4978 	if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4979 		current_zonelist_order = default_zonelist_order();
4980 	else
4981 		current_zonelist_order = user_zonelist_order;
4982 }
4983 
4984 static void build_zonelists(pg_data_t *pgdat)
4985 {
4986 	int i, node, load;
4987 	nodemask_t used_mask;
4988 	int local_node, prev_node;
4989 	struct zonelist *zonelist;
4990 	unsigned int order = current_zonelist_order;
4991 
4992 	/* initialize zonelists */
4993 	for (i = 0; i < MAX_ZONELISTS; i++) {
4994 		zonelist = pgdat->node_zonelists + i;
4995 		zonelist->_zonerefs[0].zone = NULL;
4996 		zonelist->_zonerefs[0].zone_idx = 0;
4997 	}
4998 
4999 	/* NUMA-aware ordering of nodes */
5000 	local_node = pgdat->node_id;
5001 	load = nr_online_nodes;
5002 	prev_node = local_node;
5003 	nodes_clear(used_mask);
5004 
5005 	memset(node_order, 0, sizeof(node_order));
5006 	i = 0;
5007 
5008 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5009 		/*
5010 		 * We don't want to pressure a particular node.
5011 		 * So adding penalty to the first node in same
5012 		 * distance group to make it round-robin.
5013 		 */
5014 		if (node_distance(local_node, node) !=
5015 		    node_distance(local_node, prev_node))
5016 			node_load[node] = load;
5017 
5018 		prev_node = node;
5019 		load--;
5020 		if (order == ZONELIST_ORDER_NODE)
5021 			build_zonelists_in_node_order(pgdat, node);
5022 		else
5023 			node_order[i++] = node;	/* remember order */
5024 	}
5025 
5026 	if (order == ZONELIST_ORDER_ZONE) {
5027 		/* calculate node order -- i.e., DMA last! */
5028 		build_zonelists_in_zone_order(pgdat, i);
5029 	}
5030 
5031 	build_thisnode_zonelists(pgdat);
5032 }
5033 
5034 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5035 /*
5036  * Return node id of node used for "local" allocations.
5037  * I.e., first node id of first zone in arg node's generic zonelist.
5038  * Used for initializing percpu 'numa_mem', which is used primarily
5039  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5040  */
5041 int local_memory_node(int node)
5042 {
5043 	struct zoneref *z;
5044 
5045 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5046 				   gfp_zone(GFP_KERNEL),
5047 				   NULL);
5048 	return z->zone->node;
5049 }
5050 #endif
5051 
5052 static void setup_min_unmapped_ratio(void);
5053 static void setup_min_slab_ratio(void);
5054 #else	/* CONFIG_NUMA */
5055 
5056 static void set_zonelist_order(void)
5057 {
5058 	current_zonelist_order = ZONELIST_ORDER_ZONE;
5059 }
5060 
5061 static void build_zonelists(pg_data_t *pgdat)
5062 {
5063 	int node, local_node;
5064 	enum zone_type j;
5065 	struct zonelist *zonelist;
5066 
5067 	local_node = pgdat->node_id;
5068 
5069 	zonelist = &pgdat->node_zonelists[ZONELIST_FALLBACK];
5070 	j = build_zonelists_node(pgdat, zonelist, 0);
5071 
5072 	/*
5073 	 * Now we build the zonelist so that it contains the zones
5074 	 * of all the other nodes.
5075 	 * We don't want to pressure a particular node, so when
5076 	 * building the zones for node N, we make sure that the
5077 	 * zones coming right after the local ones are those from
5078 	 * node N+1 (modulo N)
5079 	 */
5080 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
5081 		if (!node_online(node))
5082 			continue;
5083 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5084 	}
5085 	for (node = 0; node < local_node; node++) {
5086 		if (!node_online(node))
5087 			continue;
5088 		j = build_zonelists_node(NODE_DATA(node), zonelist, j);
5089 	}
5090 
5091 	zonelist->_zonerefs[j].zone = NULL;
5092 	zonelist->_zonerefs[j].zone_idx = 0;
5093 }
5094 
5095 #endif	/* CONFIG_NUMA */
5096 
5097 /*
5098  * Boot pageset table. One per cpu which is going to be used for all
5099  * zones and all nodes. The parameters will be set in such a way
5100  * that an item put on a list will immediately be handed over to
5101  * the buddy list. This is safe since pageset manipulation is done
5102  * with interrupts disabled.
5103  *
5104  * The boot_pagesets must be kept even after bootup is complete for
5105  * unused processors and/or zones. They do play a role for bootstrapping
5106  * hotplugged processors.
5107  *
5108  * zoneinfo_show() and maybe other functions do
5109  * not check if the processor is online before following the pageset pointer.
5110  * Other parts of the kernel may not check if the zone is available.
5111  */
5112 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
5113 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
5114 static void setup_zone_pageset(struct zone *zone);
5115 
5116 /*
5117  * Global mutex to protect against size modification of zonelists
5118  * as well as to serialize pageset setup for the new populated zone.
5119  */
5120 DEFINE_MUTEX(zonelists_mutex);
5121 
5122 /* return values int ....just for stop_machine() */
5123 static int __build_all_zonelists(void *data)
5124 {
5125 	int nid;
5126 	int cpu;
5127 	pg_data_t *self = data;
5128 
5129 #ifdef CONFIG_NUMA
5130 	memset(node_load, 0, sizeof(node_load));
5131 #endif
5132 
5133 	if (self && !node_online(self->node_id)) {
5134 		build_zonelists(self);
5135 	}
5136 
5137 	for_each_online_node(nid) {
5138 		pg_data_t *pgdat = NODE_DATA(nid);
5139 
5140 		build_zonelists(pgdat);
5141 	}
5142 
5143 	/*
5144 	 * Initialize the boot_pagesets that are going to be used
5145 	 * for bootstrapping processors. The real pagesets for
5146 	 * each zone will be allocated later when the per cpu
5147 	 * allocator is available.
5148 	 *
5149 	 * boot_pagesets are used also for bootstrapping offline
5150 	 * cpus if the system is already booted because the pagesets
5151 	 * are needed to initialize allocators on a specific cpu too.
5152 	 * F.e. the percpu allocator needs the page allocator which
5153 	 * needs the percpu allocator in order to allocate its pagesets
5154 	 * (a chicken-egg dilemma).
5155 	 */
5156 	for_each_possible_cpu(cpu) {
5157 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
5158 
5159 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5160 		/*
5161 		 * We now know the "local memory node" for each node--
5162 		 * i.e., the node of the first zone in the generic zonelist.
5163 		 * Set up numa_mem percpu variable for on-line cpus.  During
5164 		 * boot, only the boot cpu should be on-line;  we'll init the
5165 		 * secondary cpus' numa_mem as they come on-line.  During
5166 		 * node/memory hotplug, we'll fixup all on-line cpus.
5167 		 */
5168 		if (cpu_online(cpu))
5169 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
5170 #endif
5171 	}
5172 
5173 	return 0;
5174 }
5175 
5176 static noinline void __init
5177 build_all_zonelists_init(void)
5178 {
5179 	__build_all_zonelists(NULL);
5180 	mminit_verify_zonelist();
5181 	cpuset_init_current_mems_allowed();
5182 }
5183 
5184 /*
5185  * Called with zonelists_mutex held always
5186  * unless system_state == SYSTEM_BOOTING.
5187  *
5188  * __ref due to (1) call of __meminit annotated setup_zone_pageset
5189  * [we're only called with non-NULL zone through __meminit paths] and
5190  * (2) call of __init annotated helper build_all_zonelists_init
5191  * [protected by SYSTEM_BOOTING].
5192  */
5193 void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
5194 {
5195 	set_zonelist_order();
5196 
5197 	if (system_state == SYSTEM_BOOTING) {
5198 		build_all_zonelists_init();
5199 	} else {
5200 #ifdef CONFIG_MEMORY_HOTPLUG
5201 		if (zone)
5202 			setup_zone_pageset(zone);
5203 #endif
5204 		/* we have to stop all cpus to guarantee there is no user
5205 		   of zonelist */
5206 		stop_machine(__build_all_zonelists, pgdat, NULL);
5207 		/* cpuset refresh routine should be here */
5208 	}
5209 	vm_total_pages = nr_free_pagecache_pages();
5210 	/*
5211 	 * Disable grouping by mobility if the number of pages in the
5212 	 * system is too low to allow the mechanism to work. It would be
5213 	 * more accurate, but expensive to check per-zone. This check is
5214 	 * made on memory-hotadd so a system can start with mobility
5215 	 * disabled and enable it later
5216 	 */
5217 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
5218 		page_group_by_mobility_disabled = 1;
5219 	else
5220 		page_group_by_mobility_disabled = 0;
5221 
5222 	pr_info("Built %i zonelists in %s order, mobility grouping %s.  Total pages: %ld\n",
5223 		nr_online_nodes,
5224 		zonelist_order_name[current_zonelist_order],
5225 		page_group_by_mobility_disabled ? "off" : "on",
5226 		vm_total_pages);
5227 #ifdef CONFIG_NUMA
5228 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
5229 #endif
5230 }
5231 
5232 /*
5233  * Initially all pages are reserved - free ones are freed
5234  * up by free_all_bootmem() once the early boot process is
5235  * done. Non-atomic initialization, single-pass.
5236  */
5237 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
5238 		unsigned long start_pfn, enum memmap_context context)
5239 {
5240 	struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
5241 	unsigned long end_pfn = start_pfn + size;
5242 	pg_data_t *pgdat = NODE_DATA(nid);
5243 	unsigned long pfn;
5244 	unsigned long nr_initialised = 0;
5245 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5246 	struct memblock_region *r = NULL, *tmp;
5247 #endif
5248 
5249 	if (highest_memmap_pfn < end_pfn - 1)
5250 		highest_memmap_pfn = end_pfn - 1;
5251 
5252 	/*
5253 	 * Honor reservation requested by the driver for this ZONE_DEVICE
5254 	 * memory
5255 	 */
5256 	if (altmap && start_pfn == altmap->base_pfn)
5257 		start_pfn += altmap->reserve;
5258 
5259 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
5260 		/*
5261 		 * There can be holes in boot-time mem_map[]s handed to this
5262 		 * function.  They do not exist on hotplugged memory.
5263 		 */
5264 		if (context != MEMMAP_EARLY)
5265 			goto not_early;
5266 
5267 		if (!early_pfn_valid(pfn)) {
5268 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5269 			/*
5270 			 * Skip to the pfn preceding the next valid one (or
5271 			 * end_pfn), such that we hit a valid pfn (or end_pfn)
5272 			 * on our next iteration of the loop.
5273 			 */
5274 			pfn = memblock_next_valid_pfn(pfn, end_pfn) - 1;
5275 #endif
5276 			continue;
5277 		}
5278 		if (!early_pfn_in_nid(pfn, nid))
5279 			continue;
5280 		if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
5281 			break;
5282 
5283 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5284 		/*
5285 		 * Check given memblock attribute by firmware which can affect
5286 		 * kernel memory layout.  If zone==ZONE_MOVABLE but memory is
5287 		 * mirrored, it's an overlapped memmap init. skip it.
5288 		 */
5289 		if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5290 			if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5291 				for_each_memblock(memory, tmp)
5292 					if (pfn < memblock_region_memory_end_pfn(tmp))
5293 						break;
5294 				r = tmp;
5295 			}
5296 			if (pfn >= memblock_region_memory_base_pfn(r) &&
5297 			    memblock_is_mirror(r)) {
5298 				/* already initialized as NORMAL */
5299 				pfn = memblock_region_memory_end_pfn(r);
5300 				continue;
5301 			}
5302 		}
5303 #endif
5304 
5305 not_early:
5306 		/*
5307 		 * Mark the block movable so that blocks are reserved for
5308 		 * movable at startup. This will force kernel allocations
5309 		 * to reserve their blocks rather than leaking throughout
5310 		 * the address space during boot when many long-lived
5311 		 * kernel allocations are made.
5312 		 *
5313 		 * bitmap is created for zone's valid pfn range. but memmap
5314 		 * can be created for invalid pages (for alignment)
5315 		 * check here not to call set_pageblock_migratetype() against
5316 		 * pfn out of zone.
5317 		 */
5318 		if (!(pfn & (pageblock_nr_pages - 1))) {
5319 			struct page *page = pfn_to_page(pfn);
5320 
5321 			__init_single_page(page, pfn, zone, nid);
5322 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5323 		} else {
5324 			__init_single_pfn(pfn, zone, nid);
5325 		}
5326 	}
5327 }
5328 
5329 static void __meminit zone_init_free_lists(struct zone *zone)
5330 {
5331 	unsigned int order, t;
5332 	for_each_migratetype_order(order, t) {
5333 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
5334 		zone->free_area[order].nr_free = 0;
5335 	}
5336 }
5337 
5338 #ifndef __HAVE_ARCH_MEMMAP_INIT
5339 #define memmap_init(size, nid, zone, start_pfn) \
5340 	memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
5341 #endif
5342 
5343 static int zone_batchsize(struct zone *zone)
5344 {
5345 #ifdef CONFIG_MMU
5346 	int batch;
5347 
5348 	/*
5349 	 * The per-cpu-pages pools are set to around 1000th of the
5350 	 * size of the zone.  But no more than 1/2 of a meg.
5351 	 *
5352 	 * OK, so we don't know how big the cache is.  So guess.
5353 	 */
5354 	batch = zone->managed_pages / 1024;
5355 	if (batch * PAGE_SIZE > 512 * 1024)
5356 		batch = (512 * 1024) / PAGE_SIZE;
5357 	batch /= 4;		/* We effectively *= 4 below */
5358 	if (batch < 1)
5359 		batch = 1;
5360 
5361 	/*
5362 	 * Clamp the batch to a 2^n - 1 value. Having a power
5363 	 * of 2 value was found to be more likely to have
5364 	 * suboptimal cache aliasing properties in some cases.
5365 	 *
5366 	 * For example if 2 tasks are alternately allocating
5367 	 * batches of pages, one task can end up with a lot
5368 	 * of pages of one half of the possible page colors
5369 	 * and the other with pages of the other colors.
5370 	 */
5371 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
5372 
5373 	return batch;
5374 
5375 #else
5376 	/* The deferral and batching of frees should be suppressed under NOMMU
5377 	 * conditions.
5378 	 *
5379 	 * The problem is that NOMMU needs to be able to allocate large chunks
5380 	 * of contiguous memory as there's no hardware page translation to
5381 	 * assemble apparent contiguous memory from discontiguous pages.
5382 	 *
5383 	 * Queueing large contiguous runs of pages for batching, however,
5384 	 * causes the pages to actually be freed in smaller chunks.  As there
5385 	 * can be a significant delay between the individual batches being
5386 	 * recycled, this leads to the once large chunks of space being
5387 	 * fragmented and becoming unavailable for high-order allocations.
5388 	 */
5389 	return 0;
5390 #endif
5391 }
5392 
5393 /*
5394  * pcp->high and pcp->batch values are related and dependent on one another:
5395  * ->batch must never be higher then ->high.
5396  * The following function updates them in a safe manner without read side
5397  * locking.
5398  *
5399  * Any new users of pcp->batch and pcp->high should ensure they can cope with
5400  * those fields changing asynchronously (acording the the above rule).
5401  *
5402  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5403  * outside of boot time (or some other assurance that no concurrent updaters
5404  * exist).
5405  */
5406 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5407 		unsigned long batch)
5408 {
5409        /* start with a fail safe value for batch */
5410 	pcp->batch = 1;
5411 	smp_wmb();
5412 
5413        /* Update high, then batch, in order */
5414 	pcp->high = high;
5415 	smp_wmb();
5416 
5417 	pcp->batch = batch;
5418 }
5419 
5420 /* a companion to pageset_set_high() */
5421 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5422 {
5423 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
5424 }
5425 
5426 static void pageset_init(struct per_cpu_pageset *p)
5427 {
5428 	struct per_cpu_pages *pcp;
5429 	int migratetype;
5430 
5431 	memset(p, 0, sizeof(*p));
5432 
5433 	pcp = &p->pcp;
5434 	pcp->count = 0;
5435 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5436 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
5437 }
5438 
5439 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5440 {
5441 	pageset_init(p);
5442 	pageset_set_batch(p, batch);
5443 }
5444 
5445 /*
5446  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5447  * to the value high for the pageset p.
5448  */
5449 static void pageset_set_high(struct per_cpu_pageset *p,
5450 				unsigned long high)
5451 {
5452 	unsigned long batch = max(1UL, high / 4);
5453 	if ((high / 4) > (PAGE_SHIFT * 8))
5454 		batch = PAGE_SHIFT * 8;
5455 
5456 	pageset_update(&p->pcp, high, batch);
5457 }
5458 
5459 static void pageset_set_high_and_batch(struct zone *zone,
5460 				       struct per_cpu_pageset *pcp)
5461 {
5462 	if (percpu_pagelist_fraction)
5463 		pageset_set_high(pcp,
5464 			(zone->managed_pages /
5465 				percpu_pagelist_fraction));
5466 	else
5467 		pageset_set_batch(pcp, zone_batchsize(zone));
5468 }
5469 
5470 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5471 {
5472 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5473 
5474 	pageset_init(pcp);
5475 	pageset_set_high_and_batch(zone, pcp);
5476 }
5477 
5478 static void __meminit setup_zone_pageset(struct zone *zone)
5479 {
5480 	int cpu;
5481 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
5482 	for_each_possible_cpu(cpu)
5483 		zone_pageset_init(zone, cpu);
5484 }
5485 
5486 /*
5487  * Allocate per cpu pagesets and initialize them.
5488  * Before this call only boot pagesets were available.
5489  */
5490 void __init setup_per_cpu_pageset(void)
5491 {
5492 	struct pglist_data *pgdat;
5493 	struct zone *zone;
5494 
5495 	for_each_populated_zone(zone)
5496 		setup_zone_pageset(zone);
5497 
5498 	for_each_online_pgdat(pgdat)
5499 		pgdat->per_cpu_nodestats =
5500 			alloc_percpu(struct per_cpu_nodestat);
5501 }
5502 
5503 static __meminit void zone_pcp_init(struct zone *zone)
5504 {
5505 	/*
5506 	 * per cpu subsystem is not up at this point. The following code
5507 	 * relies on the ability of the linker to provide the
5508 	 * offset of a (static) per cpu variable into the per cpu area.
5509 	 */
5510 	zone->pageset = &boot_pageset;
5511 
5512 	if (populated_zone(zone))
5513 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
5514 			zone->name, zone->present_pages,
5515 					 zone_batchsize(zone));
5516 }
5517 
5518 int __meminit init_currently_empty_zone(struct zone *zone,
5519 					unsigned long zone_start_pfn,
5520 					unsigned long size)
5521 {
5522 	struct pglist_data *pgdat = zone->zone_pgdat;
5523 
5524 	pgdat->nr_zones = zone_idx(zone) + 1;
5525 
5526 	zone->zone_start_pfn = zone_start_pfn;
5527 
5528 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
5529 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
5530 			pgdat->node_id,
5531 			(unsigned long)zone_idx(zone),
5532 			zone_start_pfn, (zone_start_pfn + size));
5533 
5534 	zone_init_free_lists(zone);
5535 	zone->initialized = 1;
5536 
5537 	return 0;
5538 }
5539 
5540 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5541 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5542 
5543 /*
5544  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5545  */
5546 int __meminit __early_pfn_to_nid(unsigned long pfn,
5547 					struct mminit_pfnnid_cache *state)
5548 {
5549 	unsigned long start_pfn, end_pfn;
5550 	int nid;
5551 
5552 	if (state->last_start <= pfn && pfn < state->last_end)
5553 		return state->last_nid;
5554 
5555 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5556 	if (nid != -1) {
5557 		state->last_start = start_pfn;
5558 		state->last_end = end_pfn;
5559 		state->last_nid = nid;
5560 	}
5561 
5562 	return nid;
5563 }
5564 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5565 
5566 /**
5567  * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5568  * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5569  * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5570  *
5571  * If an architecture guarantees that all ranges registered contain no holes
5572  * and may be freed, this this function may be used instead of calling
5573  * memblock_free_early_nid() manually.
5574  */
5575 void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
5576 {
5577 	unsigned long start_pfn, end_pfn;
5578 	int i, this_nid;
5579 
5580 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5581 		start_pfn = min(start_pfn, max_low_pfn);
5582 		end_pfn = min(end_pfn, max_low_pfn);
5583 
5584 		if (start_pfn < end_pfn)
5585 			memblock_free_early_nid(PFN_PHYS(start_pfn),
5586 					(end_pfn - start_pfn) << PAGE_SHIFT,
5587 					this_nid);
5588 	}
5589 }
5590 
5591 /**
5592  * sparse_memory_present_with_active_regions - Call memory_present for each active range
5593  * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5594  *
5595  * If an architecture guarantees that all ranges registered contain no holes and may
5596  * be freed, this function may be used instead of calling memory_present() manually.
5597  */
5598 void __init sparse_memory_present_with_active_regions(int nid)
5599 {
5600 	unsigned long start_pfn, end_pfn;
5601 	int i, this_nid;
5602 
5603 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5604 		memory_present(this_nid, start_pfn, end_pfn);
5605 }
5606 
5607 /**
5608  * get_pfn_range_for_nid - Return the start and end page frames for a node
5609  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5610  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5611  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5612  *
5613  * It returns the start and end page frame of a node based on information
5614  * provided by memblock_set_node(). If called for a node
5615  * with no available memory, a warning is printed and the start and end
5616  * PFNs will be 0.
5617  */
5618 void __meminit get_pfn_range_for_nid(unsigned int nid,
5619 			unsigned long *start_pfn, unsigned long *end_pfn)
5620 {
5621 	unsigned long this_start_pfn, this_end_pfn;
5622 	int i;
5623 
5624 	*start_pfn = -1UL;
5625 	*end_pfn = 0;
5626 
5627 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5628 		*start_pfn = min(*start_pfn, this_start_pfn);
5629 		*end_pfn = max(*end_pfn, this_end_pfn);
5630 	}
5631 
5632 	if (*start_pfn == -1UL)
5633 		*start_pfn = 0;
5634 }
5635 
5636 /*
5637  * This finds a zone that can be used for ZONE_MOVABLE pages. The
5638  * assumption is made that zones within a node are ordered in monotonic
5639  * increasing memory addresses so that the "highest" populated zone is used
5640  */
5641 static void __init find_usable_zone_for_movable(void)
5642 {
5643 	int zone_index;
5644 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5645 		if (zone_index == ZONE_MOVABLE)
5646 			continue;
5647 
5648 		if (arch_zone_highest_possible_pfn[zone_index] >
5649 				arch_zone_lowest_possible_pfn[zone_index])
5650 			break;
5651 	}
5652 
5653 	VM_BUG_ON(zone_index == -1);
5654 	movable_zone = zone_index;
5655 }
5656 
5657 /*
5658  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5659  * because it is sized independent of architecture. Unlike the other zones,
5660  * the starting point for ZONE_MOVABLE is not fixed. It may be different
5661  * in each node depending on the size of each node and how evenly kernelcore
5662  * is distributed. This helper function adjusts the zone ranges
5663  * provided by the architecture for a given node by using the end of the
5664  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5665  * zones within a node are in order of monotonic increases memory addresses
5666  */
5667 static void __meminit adjust_zone_range_for_zone_movable(int nid,
5668 					unsigned long zone_type,
5669 					unsigned long node_start_pfn,
5670 					unsigned long node_end_pfn,
5671 					unsigned long *zone_start_pfn,
5672 					unsigned long *zone_end_pfn)
5673 {
5674 	/* Only adjust if ZONE_MOVABLE is on this node */
5675 	if (zone_movable_pfn[nid]) {
5676 		/* Size ZONE_MOVABLE */
5677 		if (zone_type == ZONE_MOVABLE) {
5678 			*zone_start_pfn = zone_movable_pfn[nid];
5679 			*zone_end_pfn = min(node_end_pfn,
5680 				arch_zone_highest_possible_pfn[movable_zone]);
5681 
5682 		/* Adjust for ZONE_MOVABLE starting within this range */
5683 		} else if (!mirrored_kernelcore &&
5684 			*zone_start_pfn < zone_movable_pfn[nid] &&
5685 			*zone_end_pfn > zone_movable_pfn[nid]) {
5686 			*zone_end_pfn = zone_movable_pfn[nid];
5687 
5688 		/* Check if this whole range is within ZONE_MOVABLE */
5689 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
5690 			*zone_start_pfn = *zone_end_pfn;
5691 	}
5692 }
5693 
5694 /*
5695  * Return the number of pages a zone spans in a node, including holes
5696  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5697  */
5698 static unsigned long __meminit zone_spanned_pages_in_node(int nid,
5699 					unsigned long zone_type,
5700 					unsigned long node_start_pfn,
5701 					unsigned long node_end_pfn,
5702 					unsigned long *zone_start_pfn,
5703 					unsigned long *zone_end_pfn,
5704 					unsigned long *ignored)
5705 {
5706 	/* When hotadd a new node from cpu_up(), the node should be empty */
5707 	if (!node_start_pfn && !node_end_pfn)
5708 		return 0;
5709 
5710 	/* Get the start and end of the zone */
5711 	*zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5712 	*zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
5713 	adjust_zone_range_for_zone_movable(nid, zone_type,
5714 				node_start_pfn, node_end_pfn,
5715 				zone_start_pfn, zone_end_pfn);
5716 
5717 	/* Check that this node has pages within the zone's required range */
5718 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
5719 		return 0;
5720 
5721 	/* Move the zone boundaries inside the node if necessary */
5722 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5723 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
5724 
5725 	/* Return the spanned pages */
5726 	return *zone_end_pfn - *zone_start_pfn;
5727 }
5728 
5729 /*
5730  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5731  * then all holes in the requested range will be accounted for.
5732  */
5733 unsigned long __meminit __absent_pages_in_range(int nid,
5734 				unsigned long range_start_pfn,
5735 				unsigned long range_end_pfn)
5736 {
5737 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
5738 	unsigned long start_pfn, end_pfn;
5739 	int i;
5740 
5741 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5742 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5743 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5744 		nr_absent -= end_pfn - start_pfn;
5745 	}
5746 	return nr_absent;
5747 }
5748 
5749 /**
5750  * absent_pages_in_range - Return number of page frames in holes within a range
5751  * @start_pfn: The start PFN to start searching for holes
5752  * @end_pfn: The end PFN to stop searching for holes
5753  *
5754  * It returns the number of pages frames in memory holes within a range.
5755  */
5756 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5757 							unsigned long end_pfn)
5758 {
5759 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5760 }
5761 
5762 /* Return the number of page frames in holes in a zone on a node */
5763 static unsigned long __meminit zone_absent_pages_in_node(int nid,
5764 					unsigned long zone_type,
5765 					unsigned long node_start_pfn,
5766 					unsigned long node_end_pfn,
5767 					unsigned long *ignored)
5768 {
5769 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5770 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
5771 	unsigned long zone_start_pfn, zone_end_pfn;
5772 	unsigned long nr_absent;
5773 
5774 	/* When hotadd a new node from cpu_up(), the node should be empty */
5775 	if (!node_start_pfn && !node_end_pfn)
5776 		return 0;
5777 
5778 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5779 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
5780 
5781 	adjust_zone_range_for_zone_movable(nid, zone_type,
5782 			node_start_pfn, node_end_pfn,
5783 			&zone_start_pfn, &zone_end_pfn);
5784 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5785 
5786 	/*
5787 	 * ZONE_MOVABLE handling.
5788 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5789 	 * and vice versa.
5790 	 */
5791 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
5792 		unsigned long start_pfn, end_pfn;
5793 		struct memblock_region *r;
5794 
5795 		for_each_memblock(memory, r) {
5796 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
5797 					  zone_start_pfn, zone_end_pfn);
5798 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
5799 					zone_start_pfn, zone_end_pfn);
5800 
5801 			if (zone_type == ZONE_MOVABLE &&
5802 			    memblock_is_mirror(r))
5803 				nr_absent += end_pfn - start_pfn;
5804 
5805 			if (zone_type == ZONE_NORMAL &&
5806 			    !memblock_is_mirror(r))
5807 				nr_absent += end_pfn - start_pfn;
5808 		}
5809 	}
5810 
5811 	return nr_absent;
5812 }
5813 
5814 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5815 static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
5816 					unsigned long zone_type,
5817 					unsigned long node_start_pfn,
5818 					unsigned long node_end_pfn,
5819 					unsigned long *zone_start_pfn,
5820 					unsigned long *zone_end_pfn,
5821 					unsigned long *zones_size)
5822 {
5823 	unsigned int zone;
5824 
5825 	*zone_start_pfn = node_start_pfn;
5826 	for (zone = 0; zone < zone_type; zone++)
5827 		*zone_start_pfn += zones_size[zone];
5828 
5829 	*zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5830 
5831 	return zones_size[zone_type];
5832 }
5833 
5834 static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
5835 						unsigned long zone_type,
5836 						unsigned long node_start_pfn,
5837 						unsigned long node_end_pfn,
5838 						unsigned long *zholes_size)
5839 {
5840 	if (!zholes_size)
5841 		return 0;
5842 
5843 	return zholes_size[zone_type];
5844 }
5845 
5846 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5847 
5848 static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
5849 						unsigned long node_start_pfn,
5850 						unsigned long node_end_pfn,
5851 						unsigned long *zones_size,
5852 						unsigned long *zholes_size)
5853 {
5854 	unsigned long realtotalpages = 0, totalpages = 0;
5855 	enum zone_type i;
5856 
5857 	for (i = 0; i < MAX_NR_ZONES; i++) {
5858 		struct zone *zone = pgdat->node_zones + i;
5859 		unsigned long zone_start_pfn, zone_end_pfn;
5860 		unsigned long size, real_size;
5861 
5862 		size = zone_spanned_pages_in_node(pgdat->node_id, i,
5863 						  node_start_pfn,
5864 						  node_end_pfn,
5865 						  &zone_start_pfn,
5866 						  &zone_end_pfn,
5867 						  zones_size);
5868 		real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
5869 						  node_start_pfn, node_end_pfn,
5870 						  zholes_size);
5871 		if (size)
5872 			zone->zone_start_pfn = zone_start_pfn;
5873 		else
5874 			zone->zone_start_pfn = 0;
5875 		zone->spanned_pages = size;
5876 		zone->present_pages = real_size;
5877 
5878 		totalpages += size;
5879 		realtotalpages += real_size;
5880 	}
5881 
5882 	pgdat->node_spanned_pages = totalpages;
5883 	pgdat->node_present_pages = realtotalpages;
5884 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5885 							realtotalpages);
5886 }
5887 
5888 #ifndef CONFIG_SPARSEMEM
5889 /*
5890  * Calculate the size of the zone->blockflags rounded to an unsigned long
5891  * Start by making sure zonesize is a multiple of pageblock_order by rounding
5892  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5893  * round what is now in bits to nearest long in bits, then return it in
5894  * bytes.
5895  */
5896 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
5897 {
5898 	unsigned long usemapsize;
5899 
5900 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
5901 	usemapsize = roundup(zonesize, pageblock_nr_pages);
5902 	usemapsize = usemapsize >> pageblock_order;
5903 	usemapsize *= NR_PAGEBLOCK_BITS;
5904 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5905 
5906 	return usemapsize / 8;
5907 }
5908 
5909 static void __init setup_usemap(struct pglist_data *pgdat,
5910 				struct zone *zone,
5911 				unsigned long zone_start_pfn,
5912 				unsigned long zonesize)
5913 {
5914 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
5915 	zone->pageblock_flags = NULL;
5916 	if (usemapsize)
5917 		zone->pageblock_flags =
5918 			memblock_virt_alloc_node_nopanic(usemapsize,
5919 							 pgdat->node_id);
5920 }
5921 #else
5922 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5923 				unsigned long zone_start_pfn, unsigned long zonesize) {}
5924 #endif /* CONFIG_SPARSEMEM */
5925 
5926 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
5927 
5928 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
5929 void __paginginit set_pageblock_order(void)
5930 {
5931 	unsigned int order;
5932 
5933 	/* Check that pageblock_nr_pages has not already been setup */
5934 	if (pageblock_order)
5935 		return;
5936 
5937 	if (HPAGE_SHIFT > PAGE_SHIFT)
5938 		order = HUGETLB_PAGE_ORDER;
5939 	else
5940 		order = MAX_ORDER - 1;
5941 
5942 	/*
5943 	 * Assume the largest contiguous order of interest is a huge page.
5944 	 * This value may be variable depending on boot parameters on IA64 and
5945 	 * powerpc.
5946 	 */
5947 	pageblock_order = order;
5948 }
5949 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5950 
5951 /*
5952  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
5953  * is unused as pageblock_order is set at compile-time. See
5954  * include/linux/pageblock-flags.h for the values of pageblock_order based on
5955  * the kernel config
5956  */
5957 void __paginginit set_pageblock_order(void)
5958 {
5959 }
5960 
5961 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5962 
5963 static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5964 						   unsigned long present_pages)
5965 {
5966 	unsigned long pages = spanned_pages;
5967 
5968 	/*
5969 	 * Provide a more accurate estimation if there are holes within
5970 	 * the zone and SPARSEMEM is in use. If there are holes within the
5971 	 * zone, each populated memory region may cost us one or two extra
5972 	 * memmap pages due to alignment because memmap pages for each
5973 	 * populated regions may not be naturally aligned on page boundary.
5974 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5975 	 */
5976 	if (spanned_pages > present_pages + (present_pages >> 4) &&
5977 	    IS_ENABLED(CONFIG_SPARSEMEM))
5978 		pages = present_pages;
5979 
5980 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5981 }
5982 
5983 /*
5984  * Set up the zone data structures:
5985  *   - mark all pages reserved
5986  *   - mark all memory queues empty
5987  *   - clear the memory bitmaps
5988  *
5989  * NOTE: pgdat should get zeroed by caller.
5990  */
5991 static void __paginginit free_area_init_core(struct pglist_data *pgdat)
5992 {
5993 	enum zone_type j;
5994 	int nid = pgdat->node_id;
5995 	int ret;
5996 
5997 	pgdat_resize_init(pgdat);
5998 #ifdef CONFIG_NUMA_BALANCING
5999 	spin_lock_init(&pgdat->numabalancing_migrate_lock);
6000 	pgdat->numabalancing_migrate_nr_pages = 0;
6001 	pgdat->numabalancing_migrate_next_window = jiffies;
6002 #endif
6003 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6004 	spin_lock_init(&pgdat->split_queue_lock);
6005 	INIT_LIST_HEAD(&pgdat->split_queue);
6006 	pgdat->split_queue_len = 0;
6007 #endif
6008 	init_waitqueue_head(&pgdat->kswapd_wait);
6009 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
6010 #ifdef CONFIG_COMPACTION
6011 	init_waitqueue_head(&pgdat->kcompactd_wait);
6012 #endif
6013 	pgdat_page_ext_init(pgdat);
6014 	spin_lock_init(&pgdat->lru_lock);
6015 	lruvec_init(node_lruvec(pgdat));
6016 
6017 	for (j = 0; j < MAX_NR_ZONES; j++) {
6018 		struct zone *zone = pgdat->node_zones + j;
6019 		unsigned long size, realsize, freesize, memmap_pages;
6020 		unsigned long zone_start_pfn = zone->zone_start_pfn;
6021 
6022 		size = zone->spanned_pages;
6023 		realsize = freesize = zone->present_pages;
6024 
6025 		/*
6026 		 * Adjust freesize so that it accounts for how much memory
6027 		 * is used by this zone for memmap. This affects the watermark
6028 		 * and per-cpu initialisations
6029 		 */
6030 		memmap_pages = calc_memmap_size(size, realsize);
6031 		if (!is_highmem_idx(j)) {
6032 			if (freesize >= memmap_pages) {
6033 				freesize -= memmap_pages;
6034 				if (memmap_pages)
6035 					printk(KERN_DEBUG
6036 					       "  %s zone: %lu pages used for memmap\n",
6037 					       zone_names[j], memmap_pages);
6038 			} else
6039 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
6040 					zone_names[j], memmap_pages, freesize);
6041 		}
6042 
6043 		/* Account for reserved pages */
6044 		if (j == 0 && freesize > dma_reserve) {
6045 			freesize -= dma_reserve;
6046 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
6047 					zone_names[0], dma_reserve);
6048 		}
6049 
6050 		if (!is_highmem_idx(j))
6051 			nr_kernel_pages += freesize;
6052 		/* Charge for highmem memmap if there are enough kernel pages */
6053 		else if (nr_kernel_pages > memmap_pages * 2)
6054 			nr_kernel_pages -= memmap_pages;
6055 		nr_all_pages += freesize;
6056 
6057 		/*
6058 		 * Set an approximate value for lowmem here, it will be adjusted
6059 		 * when the bootmem allocator frees pages into the buddy system.
6060 		 * And all highmem pages will be managed by the buddy system.
6061 		 */
6062 		zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
6063 #ifdef CONFIG_NUMA
6064 		zone->node = nid;
6065 #endif
6066 		zone->name = zone_names[j];
6067 		zone->zone_pgdat = pgdat;
6068 		spin_lock_init(&zone->lock);
6069 		zone_seqlock_init(zone);
6070 		zone_pcp_init(zone);
6071 
6072 		if (!size)
6073 			continue;
6074 
6075 		set_pageblock_order();
6076 		setup_usemap(pgdat, zone, zone_start_pfn, size);
6077 		ret = init_currently_empty_zone(zone, zone_start_pfn, size);
6078 		BUG_ON(ret);
6079 		memmap_init(size, nid, j, zone_start_pfn);
6080 	}
6081 }
6082 
6083 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
6084 {
6085 	unsigned long __maybe_unused start = 0;
6086 	unsigned long __maybe_unused offset = 0;
6087 
6088 	/* Skip empty nodes */
6089 	if (!pgdat->node_spanned_pages)
6090 		return;
6091 
6092 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6093 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
6094 	offset = pgdat->node_start_pfn - start;
6095 	/* ia64 gets its own node_mem_map, before this, without bootmem */
6096 	if (!pgdat->node_mem_map) {
6097 		unsigned long size, end;
6098 		struct page *map;
6099 
6100 		/*
6101 		 * The zone's endpoints aren't required to be MAX_ORDER
6102 		 * aligned but the node_mem_map endpoints must be in order
6103 		 * for the buddy allocator to function correctly.
6104 		 */
6105 		end = pgdat_end_pfn(pgdat);
6106 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
6107 		size =  (end - start) * sizeof(struct page);
6108 		map = alloc_remap(pgdat->node_id, size);
6109 		if (!map)
6110 			map = memblock_virt_alloc_node_nopanic(size,
6111 							       pgdat->node_id);
6112 		pgdat->node_mem_map = map + offset;
6113 	}
6114 #ifndef CONFIG_NEED_MULTIPLE_NODES
6115 	/*
6116 	 * With no DISCONTIG, the global mem_map is just set as node 0's
6117 	 */
6118 	if (pgdat == NODE_DATA(0)) {
6119 		mem_map = NODE_DATA(0)->node_mem_map;
6120 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6121 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
6122 			mem_map -= offset;
6123 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6124 	}
6125 #endif
6126 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6127 }
6128 
6129 void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
6130 		unsigned long node_start_pfn, unsigned long *zholes_size)
6131 {
6132 	pg_data_t *pgdat = NODE_DATA(nid);
6133 	unsigned long start_pfn = 0;
6134 	unsigned long end_pfn = 0;
6135 
6136 	/* pg_data_t should be reset to zero when it's allocated */
6137 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
6138 
6139 	reset_deferred_meminit(pgdat);
6140 	pgdat->node_id = nid;
6141 	pgdat->node_start_pfn = node_start_pfn;
6142 	pgdat->per_cpu_nodestats = NULL;
6143 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6144 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
6145 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
6146 		(u64)start_pfn << PAGE_SHIFT,
6147 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
6148 #else
6149 	start_pfn = node_start_pfn;
6150 #endif
6151 	calculate_node_totalpages(pgdat, start_pfn, end_pfn,
6152 				  zones_size, zholes_size);
6153 
6154 	alloc_node_mem_map(pgdat);
6155 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6156 	printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
6157 		nid, (unsigned long)pgdat,
6158 		(unsigned long)pgdat->node_mem_map);
6159 #endif
6160 
6161 	free_area_init_core(pgdat);
6162 }
6163 
6164 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6165 
6166 #if MAX_NUMNODES > 1
6167 /*
6168  * Figure out the number of possible node ids.
6169  */
6170 void __init setup_nr_node_ids(void)
6171 {
6172 	unsigned int highest;
6173 
6174 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
6175 	nr_node_ids = highest + 1;
6176 }
6177 #endif
6178 
6179 /**
6180  * node_map_pfn_alignment - determine the maximum internode alignment
6181  *
6182  * This function should be called after node map is populated and sorted.
6183  * It calculates the maximum power of two alignment which can distinguish
6184  * all the nodes.
6185  *
6186  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6187  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
6188  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
6189  * shifted, 1GiB is enough and this function will indicate so.
6190  *
6191  * This is used to test whether pfn -> nid mapping of the chosen memory
6192  * model has fine enough granularity to avoid incorrect mapping for the
6193  * populated node map.
6194  *
6195  * Returns the determined alignment in pfn's.  0 if there is no alignment
6196  * requirement (single node).
6197  */
6198 unsigned long __init node_map_pfn_alignment(void)
6199 {
6200 	unsigned long accl_mask = 0, last_end = 0;
6201 	unsigned long start, end, mask;
6202 	int last_nid = -1;
6203 	int i, nid;
6204 
6205 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
6206 		if (!start || last_nid < 0 || last_nid == nid) {
6207 			last_nid = nid;
6208 			last_end = end;
6209 			continue;
6210 		}
6211 
6212 		/*
6213 		 * Start with a mask granular enough to pin-point to the
6214 		 * start pfn and tick off bits one-by-one until it becomes
6215 		 * too coarse to separate the current node from the last.
6216 		 */
6217 		mask = ~((1 << __ffs(start)) - 1);
6218 		while (mask && last_end <= (start & (mask << 1)))
6219 			mask <<= 1;
6220 
6221 		/* accumulate all internode masks */
6222 		accl_mask |= mask;
6223 	}
6224 
6225 	/* convert mask to number of pages */
6226 	return ~accl_mask + 1;
6227 }
6228 
6229 /* Find the lowest pfn for a node */
6230 static unsigned long __init find_min_pfn_for_node(int nid)
6231 {
6232 	unsigned long min_pfn = ULONG_MAX;
6233 	unsigned long start_pfn;
6234 	int i;
6235 
6236 	for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6237 		min_pfn = min(min_pfn, start_pfn);
6238 
6239 	if (min_pfn == ULONG_MAX) {
6240 		pr_warn("Could not find start_pfn for node %d\n", nid);
6241 		return 0;
6242 	}
6243 
6244 	return min_pfn;
6245 }
6246 
6247 /**
6248  * find_min_pfn_with_active_regions - Find the minimum PFN registered
6249  *
6250  * It returns the minimum PFN based on information provided via
6251  * memblock_set_node().
6252  */
6253 unsigned long __init find_min_pfn_with_active_regions(void)
6254 {
6255 	return find_min_pfn_for_node(MAX_NUMNODES);
6256 }
6257 
6258 /*
6259  * early_calculate_totalpages()
6260  * Sum pages in active regions for movable zone.
6261  * Populate N_MEMORY for calculating usable_nodes.
6262  */
6263 static unsigned long __init early_calculate_totalpages(void)
6264 {
6265 	unsigned long totalpages = 0;
6266 	unsigned long start_pfn, end_pfn;
6267 	int i, nid;
6268 
6269 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6270 		unsigned long pages = end_pfn - start_pfn;
6271 
6272 		totalpages += pages;
6273 		if (pages)
6274 			node_set_state(nid, N_MEMORY);
6275 	}
6276 	return totalpages;
6277 }
6278 
6279 /*
6280  * Find the PFN the Movable zone begins in each node. Kernel memory
6281  * is spread evenly between nodes as long as the nodes have enough
6282  * memory. When they don't, some nodes will have more kernelcore than
6283  * others
6284  */
6285 static void __init find_zone_movable_pfns_for_nodes(void)
6286 {
6287 	int i, nid;
6288 	unsigned long usable_startpfn;
6289 	unsigned long kernelcore_node, kernelcore_remaining;
6290 	/* save the state before borrow the nodemask */
6291 	nodemask_t saved_node_state = node_states[N_MEMORY];
6292 	unsigned long totalpages = early_calculate_totalpages();
6293 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
6294 	struct memblock_region *r;
6295 
6296 	/* Need to find movable_zone earlier when movable_node is specified. */
6297 	find_usable_zone_for_movable();
6298 
6299 	/*
6300 	 * If movable_node is specified, ignore kernelcore and movablecore
6301 	 * options.
6302 	 */
6303 	if (movable_node_is_enabled()) {
6304 		for_each_memblock(memory, r) {
6305 			if (!memblock_is_hotpluggable(r))
6306 				continue;
6307 
6308 			nid = r->nid;
6309 
6310 			usable_startpfn = PFN_DOWN(r->base);
6311 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6312 				min(usable_startpfn, zone_movable_pfn[nid]) :
6313 				usable_startpfn;
6314 		}
6315 
6316 		goto out2;
6317 	}
6318 
6319 	/*
6320 	 * If kernelcore=mirror is specified, ignore movablecore option
6321 	 */
6322 	if (mirrored_kernelcore) {
6323 		bool mem_below_4gb_not_mirrored = false;
6324 
6325 		for_each_memblock(memory, r) {
6326 			if (memblock_is_mirror(r))
6327 				continue;
6328 
6329 			nid = r->nid;
6330 
6331 			usable_startpfn = memblock_region_memory_base_pfn(r);
6332 
6333 			if (usable_startpfn < 0x100000) {
6334 				mem_below_4gb_not_mirrored = true;
6335 				continue;
6336 			}
6337 
6338 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6339 				min(usable_startpfn, zone_movable_pfn[nid]) :
6340 				usable_startpfn;
6341 		}
6342 
6343 		if (mem_below_4gb_not_mirrored)
6344 			pr_warn("This configuration results in unmirrored kernel memory.");
6345 
6346 		goto out2;
6347 	}
6348 
6349 	/*
6350 	 * If movablecore=nn[KMG] was specified, calculate what size of
6351 	 * kernelcore that corresponds so that memory usable for
6352 	 * any allocation type is evenly spread. If both kernelcore
6353 	 * and movablecore are specified, then the value of kernelcore
6354 	 * will be used for required_kernelcore if it's greater than
6355 	 * what movablecore would have allowed.
6356 	 */
6357 	if (required_movablecore) {
6358 		unsigned long corepages;
6359 
6360 		/*
6361 		 * Round-up so that ZONE_MOVABLE is at least as large as what
6362 		 * was requested by the user
6363 		 */
6364 		required_movablecore =
6365 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
6366 		required_movablecore = min(totalpages, required_movablecore);
6367 		corepages = totalpages - required_movablecore;
6368 
6369 		required_kernelcore = max(required_kernelcore, corepages);
6370 	}
6371 
6372 	/*
6373 	 * If kernelcore was not specified or kernelcore size is larger
6374 	 * than totalpages, there is no ZONE_MOVABLE.
6375 	 */
6376 	if (!required_kernelcore || required_kernelcore >= totalpages)
6377 		goto out;
6378 
6379 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6380 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6381 
6382 restart:
6383 	/* Spread kernelcore memory as evenly as possible throughout nodes */
6384 	kernelcore_node = required_kernelcore / usable_nodes;
6385 	for_each_node_state(nid, N_MEMORY) {
6386 		unsigned long start_pfn, end_pfn;
6387 
6388 		/*
6389 		 * Recalculate kernelcore_node if the division per node
6390 		 * now exceeds what is necessary to satisfy the requested
6391 		 * amount of memory for the kernel
6392 		 */
6393 		if (required_kernelcore < kernelcore_node)
6394 			kernelcore_node = required_kernelcore / usable_nodes;
6395 
6396 		/*
6397 		 * As the map is walked, we track how much memory is usable
6398 		 * by the kernel using kernelcore_remaining. When it is
6399 		 * 0, the rest of the node is usable by ZONE_MOVABLE
6400 		 */
6401 		kernelcore_remaining = kernelcore_node;
6402 
6403 		/* Go through each range of PFNs within this node */
6404 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6405 			unsigned long size_pages;
6406 
6407 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
6408 			if (start_pfn >= end_pfn)
6409 				continue;
6410 
6411 			/* Account for what is only usable for kernelcore */
6412 			if (start_pfn < usable_startpfn) {
6413 				unsigned long kernel_pages;
6414 				kernel_pages = min(end_pfn, usable_startpfn)
6415 								- start_pfn;
6416 
6417 				kernelcore_remaining -= min(kernel_pages,
6418 							kernelcore_remaining);
6419 				required_kernelcore -= min(kernel_pages,
6420 							required_kernelcore);
6421 
6422 				/* Continue if range is now fully accounted */
6423 				if (end_pfn <= usable_startpfn) {
6424 
6425 					/*
6426 					 * Push zone_movable_pfn to the end so
6427 					 * that if we have to rebalance
6428 					 * kernelcore across nodes, we will
6429 					 * not double account here
6430 					 */
6431 					zone_movable_pfn[nid] = end_pfn;
6432 					continue;
6433 				}
6434 				start_pfn = usable_startpfn;
6435 			}
6436 
6437 			/*
6438 			 * The usable PFN range for ZONE_MOVABLE is from
6439 			 * start_pfn->end_pfn. Calculate size_pages as the
6440 			 * number of pages used as kernelcore
6441 			 */
6442 			size_pages = end_pfn - start_pfn;
6443 			if (size_pages > kernelcore_remaining)
6444 				size_pages = kernelcore_remaining;
6445 			zone_movable_pfn[nid] = start_pfn + size_pages;
6446 
6447 			/*
6448 			 * Some kernelcore has been met, update counts and
6449 			 * break if the kernelcore for this node has been
6450 			 * satisfied
6451 			 */
6452 			required_kernelcore -= min(required_kernelcore,
6453 								size_pages);
6454 			kernelcore_remaining -= size_pages;
6455 			if (!kernelcore_remaining)
6456 				break;
6457 		}
6458 	}
6459 
6460 	/*
6461 	 * If there is still required_kernelcore, we do another pass with one
6462 	 * less node in the count. This will push zone_movable_pfn[nid] further
6463 	 * along on the nodes that still have memory until kernelcore is
6464 	 * satisfied
6465 	 */
6466 	usable_nodes--;
6467 	if (usable_nodes && required_kernelcore > usable_nodes)
6468 		goto restart;
6469 
6470 out2:
6471 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6472 	for (nid = 0; nid < MAX_NUMNODES; nid++)
6473 		zone_movable_pfn[nid] =
6474 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
6475 
6476 out:
6477 	/* restore the node_state */
6478 	node_states[N_MEMORY] = saved_node_state;
6479 }
6480 
6481 /* Any regular or high memory on that node ? */
6482 static void check_for_memory(pg_data_t *pgdat, int nid)
6483 {
6484 	enum zone_type zone_type;
6485 
6486 	if (N_MEMORY == N_NORMAL_MEMORY)
6487 		return;
6488 
6489 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
6490 		struct zone *zone = &pgdat->node_zones[zone_type];
6491 		if (populated_zone(zone)) {
6492 			node_set_state(nid, N_HIGH_MEMORY);
6493 			if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6494 			    zone_type <= ZONE_NORMAL)
6495 				node_set_state(nid, N_NORMAL_MEMORY);
6496 			break;
6497 		}
6498 	}
6499 }
6500 
6501 /**
6502  * free_area_init_nodes - Initialise all pg_data_t and zone data
6503  * @max_zone_pfn: an array of max PFNs for each zone
6504  *
6505  * This will call free_area_init_node() for each active node in the system.
6506  * Using the page ranges provided by memblock_set_node(), the size of each
6507  * zone in each node and their holes is calculated. If the maximum PFN
6508  * between two adjacent zones match, it is assumed that the zone is empty.
6509  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6510  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6511  * starts where the previous one ended. For example, ZONE_DMA32 starts
6512  * at arch_max_dma_pfn.
6513  */
6514 void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6515 {
6516 	unsigned long start_pfn, end_pfn;
6517 	int i, nid;
6518 
6519 	/* Record where the zone boundaries are */
6520 	memset(arch_zone_lowest_possible_pfn, 0,
6521 				sizeof(arch_zone_lowest_possible_pfn));
6522 	memset(arch_zone_highest_possible_pfn, 0,
6523 				sizeof(arch_zone_highest_possible_pfn));
6524 
6525 	start_pfn = find_min_pfn_with_active_regions();
6526 
6527 	for (i = 0; i < MAX_NR_ZONES; i++) {
6528 		if (i == ZONE_MOVABLE)
6529 			continue;
6530 
6531 		end_pfn = max(max_zone_pfn[i], start_pfn);
6532 		arch_zone_lowest_possible_pfn[i] = start_pfn;
6533 		arch_zone_highest_possible_pfn[i] = end_pfn;
6534 
6535 		start_pfn = end_pfn;
6536 	}
6537 
6538 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
6539 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
6540 	find_zone_movable_pfns_for_nodes();
6541 
6542 	/* Print out the zone ranges */
6543 	pr_info("Zone ranges:\n");
6544 	for (i = 0; i < MAX_NR_ZONES; i++) {
6545 		if (i == ZONE_MOVABLE)
6546 			continue;
6547 		pr_info("  %-8s ", zone_names[i]);
6548 		if (arch_zone_lowest_possible_pfn[i] ==
6549 				arch_zone_highest_possible_pfn[i])
6550 			pr_cont("empty\n");
6551 		else
6552 			pr_cont("[mem %#018Lx-%#018Lx]\n",
6553 				(u64)arch_zone_lowest_possible_pfn[i]
6554 					<< PAGE_SHIFT,
6555 				((u64)arch_zone_highest_possible_pfn[i]
6556 					<< PAGE_SHIFT) - 1);
6557 	}
6558 
6559 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
6560 	pr_info("Movable zone start for each node\n");
6561 	for (i = 0; i < MAX_NUMNODES; i++) {
6562 		if (zone_movable_pfn[i])
6563 			pr_info("  Node %d: %#018Lx\n", i,
6564 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
6565 	}
6566 
6567 	/* Print out the early node map */
6568 	pr_info("Early memory node ranges\n");
6569 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
6570 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6571 			(u64)start_pfn << PAGE_SHIFT,
6572 			((u64)end_pfn << PAGE_SHIFT) - 1);
6573 
6574 	/* Initialise every node */
6575 	mminit_verify_pageflags_layout();
6576 	setup_nr_node_ids();
6577 	for_each_online_node(nid) {
6578 		pg_data_t *pgdat = NODE_DATA(nid);
6579 		free_area_init_node(nid, NULL,
6580 				find_min_pfn_for_node(nid), NULL);
6581 
6582 		/* Any memory on that node */
6583 		if (pgdat->node_present_pages)
6584 			node_set_state(nid, N_MEMORY);
6585 		check_for_memory(pgdat, nid);
6586 	}
6587 }
6588 
6589 static int __init cmdline_parse_core(char *p, unsigned long *core)
6590 {
6591 	unsigned long long coremem;
6592 	if (!p)
6593 		return -EINVAL;
6594 
6595 	coremem = memparse(p, &p);
6596 	*core = coremem >> PAGE_SHIFT;
6597 
6598 	/* Paranoid check that UL is enough for the coremem value */
6599 	WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6600 
6601 	return 0;
6602 }
6603 
6604 /*
6605  * kernelcore=size sets the amount of memory for use for allocations that
6606  * cannot be reclaimed or migrated.
6607  */
6608 static int __init cmdline_parse_kernelcore(char *p)
6609 {
6610 	/* parse kernelcore=mirror */
6611 	if (parse_option_str(p, "mirror")) {
6612 		mirrored_kernelcore = true;
6613 		return 0;
6614 	}
6615 
6616 	return cmdline_parse_core(p, &required_kernelcore);
6617 }
6618 
6619 /*
6620  * movablecore=size sets the amount of memory for use for allocations that
6621  * can be reclaimed or migrated.
6622  */
6623 static int __init cmdline_parse_movablecore(char *p)
6624 {
6625 	return cmdline_parse_core(p, &required_movablecore);
6626 }
6627 
6628 early_param("kernelcore", cmdline_parse_kernelcore);
6629 early_param("movablecore", cmdline_parse_movablecore);
6630 
6631 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6632 
6633 void adjust_managed_page_count(struct page *page, long count)
6634 {
6635 	spin_lock(&managed_page_count_lock);
6636 	page_zone(page)->managed_pages += count;
6637 	totalram_pages += count;
6638 #ifdef CONFIG_HIGHMEM
6639 	if (PageHighMem(page))
6640 		totalhigh_pages += count;
6641 #endif
6642 	spin_unlock(&managed_page_count_lock);
6643 }
6644 EXPORT_SYMBOL(adjust_managed_page_count);
6645 
6646 unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
6647 {
6648 	void *pos;
6649 	unsigned long pages = 0;
6650 
6651 	start = (void *)PAGE_ALIGN((unsigned long)start);
6652 	end = (void *)((unsigned long)end & PAGE_MASK);
6653 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
6654 		if ((unsigned int)poison <= 0xFF)
6655 			memset(pos, poison, PAGE_SIZE);
6656 		free_reserved_page(virt_to_page(pos));
6657 	}
6658 
6659 	if (pages && s)
6660 		pr_info("Freeing %s memory: %ldK\n",
6661 			s, pages << (PAGE_SHIFT - 10));
6662 
6663 	return pages;
6664 }
6665 EXPORT_SYMBOL(free_reserved_area);
6666 
6667 #ifdef	CONFIG_HIGHMEM
6668 void free_highmem_page(struct page *page)
6669 {
6670 	__free_reserved_page(page);
6671 	totalram_pages++;
6672 	page_zone(page)->managed_pages++;
6673 	totalhigh_pages++;
6674 }
6675 #endif
6676 
6677 
6678 void __init mem_init_print_info(const char *str)
6679 {
6680 	unsigned long physpages, codesize, datasize, rosize, bss_size;
6681 	unsigned long init_code_size, init_data_size;
6682 
6683 	physpages = get_num_physpages();
6684 	codesize = _etext - _stext;
6685 	datasize = _edata - _sdata;
6686 	rosize = __end_rodata - __start_rodata;
6687 	bss_size = __bss_stop - __bss_start;
6688 	init_data_size = __init_end - __init_begin;
6689 	init_code_size = _einittext - _sinittext;
6690 
6691 	/*
6692 	 * Detect special cases and adjust section sizes accordingly:
6693 	 * 1) .init.* may be embedded into .data sections
6694 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
6695 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
6696 	 * 3) .rodata.* may be embedded into .text or .data sections.
6697 	 */
6698 #define adj_init_size(start, end, size, pos, adj) \
6699 	do { \
6700 		if (start <= pos && pos < end && size > adj) \
6701 			size -= adj; \
6702 	} while (0)
6703 
6704 	adj_init_size(__init_begin, __init_end, init_data_size,
6705 		     _sinittext, init_code_size);
6706 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6707 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6708 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6709 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6710 
6711 #undef	adj_init_size
6712 
6713 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6714 #ifdef	CONFIG_HIGHMEM
6715 		", %luK highmem"
6716 #endif
6717 		"%s%s)\n",
6718 		nr_free_pages() << (PAGE_SHIFT - 10),
6719 		physpages << (PAGE_SHIFT - 10),
6720 		codesize >> 10, datasize >> 10, rosize >> 10,
6721 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
6722 		(physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6723 		totalcma_pages << (PAGE_SHIFT - 10),
6724 #ifdef	CONFIG_HIGHMEM
6725 		totalhigh_pages << (PAGE_SHIFT - 10),
6726 #endif
6727 		str ? ", " : "", str ? str : "");
6728 }
6729 
6730 /**
6731  * set_dma_reserve - set the specified number of pages reserved in the first zone
6732  * @new_dma_reserve: The number of pages to mark reserved
6733  *
6734  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6735  * In the DMA zone, a significant percentage may be consumed by kernel image
6736  * and other unfreeable allocations which can skew the watermarks badly. This
6737  * function may optionally be used to account for unfreeable pages in the
6738  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6739  * smaller per-cpu batchsize.
6740  */
6741 void __init set_dma_reserve(unsigned long new_dma_reserve)
6742 {
6743 	dma_reserve = new_dma_reserve;
6744 }
6745 
6746 void __init free_area_init(unsigned long *zones_size)
6747 {
6748 	free_area_init_node(0, zones_size,
6749 			__pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6750 }
6751 
6752 static int page_alloc_cpu_dead(unsigned int cpu)
6753 {
6754 
6755 	lru_add_drain_cpu(cpu);
6756 	drain_pages(cpu);
6757 
6758 	/*
6759 	 * Spill the event counters of the dead processor
6760 	 * into the current processors event counters.
6761 	 * This artificially elevates the count of the current
6762 	 * processor.
6763 	 */
6764 	vm_events_fold_cpu(cpu);
6765 
6766 	/*
6767 	 * Zero the differential counters of the dead processor
6768 	 * so that the vm statistics are consistent.
6769 	 *
6770 	 * This is only okay since the processor is dead and cannot
6771 	 * race with what we are doing.
6772 	 */
6773 	cpu_vm_stats_fold(cpu);
6774 	return 0;
6775 }
6776 
6777 void __init page_alloc_init(void)
6778 {
6779 	int ret;
6780 
6781 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
6782 					"mm/page_alloc:dead", NULL,
6783 					page_alloc_cpu_dead);
6784 	WARN_ON(ret < 0);
6785 }
6786 
6787 /*
6788  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6789  *	or min_free_kbytes changes.
6790  */
6791 static void calculate_totalreserve_pages(void)
6792 {
6793 	struct pglist_data *pgdat;
6794 	unsigned long reserve_pages = 0;
6795 	enum zone_type i, j;
6796 
6797 	for_each_online_pgdat(pgdat) {
6798 
6799 		pgdat->totalreserve_pages = 0;
6800 
6801 		for (i = 0; i < MAX_NR_ZONES; i++) {
6802 			struct zone *zone = pgdat->node_zones + i;
6803 			long max = 0;
6804 
6805 			/* Find valid and maximum lowmem_reserve in the zone */
6806 			for (j = i; j < MAX_NR_ZONES; j++) {
6807 				if (zone->lowmem_reserve[j] > max)
6808 					max = zone->lowmem_reserve[j];
6809 			}
6810 
6811 			/* we treat the high watermark as reserved pages. */
6812 			max += high_wmark_pages(zone);
6813 
6814 			if (max > zone->managed_pages)
6815 				max = zone->managed_pages;
6816 
6817 			pgdat->totalreserve_pages += max;
6818 
6819 			reserve_pages += max;
6820 		}
6821 	}
6822 	totalreserve_pages = reserve_pages;
6823 }
6824 
6825 /*
6826  * setup_per_zone_lowmem_reserve - called whenever
6827  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
6828  *	has a correct pages reserved value, so an adequate number of
6829  *	pages are left in the zone after a successful __alloc_pages().
6830  */
6831 static void setup_per_zone_lowmem_reserve(void)
6832 {
6833 	struct pglist_data *pgdat;
6834 	enum zone_type j, idx;
6835 
6836 	for_each_online_pgdat(pgdat) {
6837 		for (j = 0; j < MAX_NR_ZONES; j++) {
6838 			struct zone *zone = pgdat->node_zones + j;
6839 			unsigned long managed_pages = zone->managed_pages;
6840 
6841 			zone->lowmem_reserve[j] = 0;
6842 
6843 			idx = j;
6844 			while (idx) {
6845 				struct zone *lower_zone;
6846 
6847 				idx--;
6848 
6849 				if (sysctl_lowmem_reserve_ratio[idx] < 1)
6850 					sysctl_lowmem_reserve_ratio[idx] = 1;
6851 
6852 				lower_zone = pgdat->node_zones + idx;
6853 				lower_zone->lowmem_reserve[j] = managed_pages /
6854 					sysctl_lowmem_reserve_ratio[idx];
6855 				managed_pages += lower_zone->managed_pages;
6856 			}
6857 		}
6858 	}
6859 
6860 	/* update totalreserve_pages */
6861 	calculate_totalreserve_pages();
6862 }
6863 
6864 static void __setup_per_zone_wmarks(void)
6865 {
6866 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6867 	unsigned long lowmem_pages = 0;
6868 	struct zone *zone;
6869 	unsigned long flags;
6870 
6871 	/* Calculate total number of !ZONE_HIGHMEM pages */
6872 	for_each_zone(zone) {
6873 		if (!is_highmem(zone))
6874 			lowmem_pages += zone->managed_pages;
6875 	}
6876 
6877 	for_each_zone(zone) {
6878 		u64 tmp;
6879 
6880 		spin_lock_irqsave(&zone->lock, flags);
6881 		tmp = (u64)pages_min * zone->managed_pages;
6882 		do_div(tmp, lowmem_pages);
6883 		if (is_highmem(zone)) {
6884 			/*
6885 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6886 			 * need highmem pages, so cap pages_min to a small
6887 			 * value here.
6888 			 *
6889 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
6890 			 * deltas control asynch page reclaim, and so should
6891 			 * not be capped for highmem.
6892 			 */
6893 			unsigned long min_pages;
6894 
6895 			min_pages = zone->managed_pages / 1024;
6896 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
6897 			zone->watermark[WMARK_MIN] = min_pages;
6898 		} else {
6899 			/*
6900 			 * If it's a lowmem zone, reserve a number of pages
6901 			 * proportionate to the zone's size.
6902 			 */
6903 			zone->watermark[WMARK_MIN] = tmp;
6904 		}
6905 
6906 		/*
6907 		 * Set the kswapd watermarks distance according to the
6908 		 * scale factor in proportion to available memory, but
6909 		 * ensure a minimum size on small systems.
6910 		 */
6911 		tmp = max_t(u64, tmp >> 2,
6912 			    mult_frac(zone->managed_pages,
6913 				      watermark_scale_factor, 10000));
6914 
6915 		zone->watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
6916 		zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
6917 
6918 		spin_unlock_irqrestore(&zone->lock, flags);
6919 	}
6920 
6921 	/* update totalreserve_pages */
6922 	calculate_totalreserve_pages();
6923 }
6924 
6925 /**
6926  * setup_per_zone_wmarks - called when min_free_kbytes changes
6927  * or when memory is hot-{added|removed}
6928  *
6929  * Ensures that the watermark[min,low,high] values for each zone are set
6930  * correctly with respect to min_free_kbytes.
6931  */
6932 void setup_per_zone_wmarks(void)
6933 {
6934 	mutex_lock(&zonelists_mutex);
6935 	__setup_per_zone_wmarks();
6936 	mutex_unlock(&zonelists_mutex);
6937 }
6938 
6939 /*
6940  * Initialise min_free_kbytes.
6941  *
6942  * For small machines we want it small (128k min).  For large machines
6943  * we want it large (64MB max).  But it is not linear, because network
6944  * bandwidth does not increase linearly with machine size.  We use
6945  *
6946  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
6947  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
6948  *
6949  * which yields
6950  *
6951  * 16MB:	512k
6952  * 32MB:	724k
6953  * 64MB:	1024k
6954  * 128MB:	1448k
6955  * 256MB:	2048k
6956  * 512MB:	2896k
6957  * 1024MB:	4096k
6958  * 2048MB:	5792k
6959  * 4096MB:	8192k
6960  * 8192MB:	11584k
6961  * 16384MB:	16384k
6962  */
6963 int __meminit init_per_zone_wmark_min(void)
6964 {
6965 	unsigned long lowmem_kbytes;
6966 	int new_min_free_kbytes;
6967 
6968 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
6969 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6970 
6971 	if (new_min_free_kbytes > user_min_free_kbytes) {
6972 		min_free_kbytes = new_min_free_kbytes;
6973 		if (min_free_kbytes < 128)
6974 			min_free_kbytes = 128;
6975 		if (min_free_kbytes > 65536)
6976 			min_free_kbytes = 65536;
6977 	} else {
6978 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6979 				new_min_free_kbytes, user_min_free_kbytes);
6980 	}
6981 	setup_per_zone_wmarks();
6982 	refresh_zone_stat_thresholds();
6983 	setup_per_zone_lowmem_reserve();
6984 
6985 #ifdef CONFIG_NUMA
6986 	setup_min_unmapped_ratio();
6987 	setup_min_slab_ratio();
6988 #endif
6989 
6990 	return 0;
6991 }
6992 core_initcall(init_per_zone_wmark_min)
6993 
6994 /*
6995  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
6996  *	that we can call two helper functions whenever min_free_kbytes
6997  *	changes.
6998  */
6999 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
7000 	void __user *buffer, size_t *length, loff_t *ppos)
7001 {
7002 	int rc;
7003 
7004 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7005 	if (rc)
7006 		return rc;
7007 
7008 	if (write) {
7009 		user_min_free_kbytes = min_free_kbytes;
7010 		setup_per_zone_wmarks();
7011 	}
7012 	return 0;
7013 }
7014 
7015 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
7016 	void __user *buffer, size_t *length, loff_t *ppos)
7017 {
7018 	int rc;
7019 
7020 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7021 	if (rc)
7022 		return rc;
7023 
7024 	if (write)
7025 		setup_per_zone_wmarks();
7026 
7027 	return 0;
7028 }
7029 
7030 #ifdef CONFIG_NUMA
7031 static void setup_min_unmapped_ratio(void)
7032 {
7033 	pg_data_t *pgdat;
7034 	struct zone *zone;
7035 
7036 	for_each_online_pgdat(pgdat)
7037 		pgdat->min_unmapped_pages = 0;
7038 
7039 	for_each_zone(zone)
7040 		zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
7041 				sysctl_min_unmapped_ratio) / 100;
7042 }
7043 
7044 
7045 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
7046 	void __user *buffer, size_t *length, loff_t *ppos)
7047 {
7048 	int rc;
7049 
7050 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7051 	if (rc)
7052 		return rc;
7053 
7054 	setup_min_unmapped_ratio();
7055 
7056 	return 0;
7057 }
7058 
7059 static void setup_min_slab_ratio(void)
7060 {
7061 	pg_data_t *pgdat;
7062 	struct zone *zone;
7063 
7064 	for_each_online_pgdat(pgdat)
7065 		pgdat->min_slab_pages = 0;
7066 
7067 	for_each_zone(zone)
7068 		zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
7069 				sysctl_min_slab_ratio) / 100;
7070 }
7071 
7072 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
7073 	void __user *buffer, size_t *length, loff_t *ppos)
7074 {
7075 	int rc;
7076 
7077 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
7078 	if (rc)
7079 		return rc;
7080 
7081 	setup_min_slab_ratio();
7082 
7083 	return 0;
7084 }
7085 #endif
7086 
7087 /*
7088  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7089  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7090  *	whenever sysctl_lowmem_reserve_ratio changes.
7091  *
7092  * The reserve ratio obviously has absolutely no relation with the
7093  * minimum watermarks. The lowmem reserve ratio can only make sense
7094  * if in function of the boot time zone sizes.
7095  */
7096 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
7097 	void __user *buffer, size_t *length, loff_t *ppos)
7098 {
7099 	proc_dointvec_minmax(table, write, buffer, length, ppos);
7100 	setup_per_zone_lowmem_reserve();
7101 	return 0;
7102 }
7103 
7104 /*
7105  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7106  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
7107  * pagelist can have before it gets flushed back to buddy allocator.
7108  */
7109 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
7110 	void __user *buffer, size_t *length, loff_t *ppos)
7111 {
7112 	struct zone *zone;
7113 	int old_percpu_pagelist_fraction;
7114 	int ret;
7115 
7116 	mutex_lock(&pcp_batch_high_lock);
7117 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
7118 
7119 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7120 	if (!write || ret < 0)
7121 		goto out;
7122 
7123 	/* Sanity checking to avoid pcp imbalance */
7124 	if (percpu_pagelist_fraction &&
7125 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
7126 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
7127 		ret = -EINVAL;
7128 		goto out;
7129 	}
7130 
7131 	/* No change? */
7132 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
7133 		goto out;
7134 
7135 	for_each_populated_zone(zone) {
7136 		unsigned int cpu;
7137 
7138 		for_each_possible_cpu(cpu)
7139 			pageset_set_high_and_batch(zone,
7140 					per_cpu_ptr(zone->pageset, cpu));
7141 	}
7142 out:
7143 	mutex_unlock(&pcp_batch_high_lock);
7144 	return ret;
7145 }
7146 
7147 #ifdef CONFIG_NUMA
7148 int hashdist = HASHDIST_DEFAULT;
7149 
7150 static int __init set_hashdist(char *str)
7151 {
7152 	if (!str)
7153 		return 0;
7154 	hashdist = simple_strtoul(str, &str, 0);
7155 	return 1;
7156 }
7157 __setup("hashdist=", set_hashdist);
7158 #endif
7159 
7160 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7161 /*
7162  * Returns the number of pages that arch has reserved but
7163  * is not known to alloc_large_system_hash().
7164  */
7165 static unsigned long __init arch_reserved_kernel_pages(void)
7166 {
7167 	return 0;
7168 }
7169 #endif
7170 
7171 /*
7172  * allocate a large system hash table from bootmem
7173  * - it is assumed that the hash table must contain an exact power-of-2
7174  *   quantity of entries
7175  * - limit is the number of hash buckets, not the total allocation size
7176  */
7177 void *__init alloc_large_system_hash(const char *tablename,
7178 				     unsigned long bucketsize,
7179 				     unsigned long numentries,
7180 				     int scale,
7181 				     int flags,
7182 				     unsigned int *_hash_shift,
7183 				     unsigned int *_hash_mask,
7184 				     unsigned long low_limit,
7185 				     unsigned long high_limit)
7186 {
7187 	unsigned long long max = high_limit;
7188 	unsigned long log2qty, size;
7189 	void *table = NULL;
7190 
7191 	/* allow the kernel cmdline to have a say */
7192 	if (!numentries) {
7193 		/* round applicable memory size up to nearest megabyte */
7194 		numentries = nr_kernel_pages;
7195 		numentries -= arch_reserved_kernel_pages();
7196 
7197 		/* It isn't necessary when PAGE_SIZE >= 1MB */
7198 		if (PAGE_SHIFT < 20)
7199 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
7200 
7201 		/* limit to 1 bucket per 2^scale bytes of low memory */
7202 		if (scale > PAGE_SHIFT)
7203 			numentries >>= (scale - PAGE_SHIFT);
7204 		else
7205 			numentries <<= (PAGE_SHIFT - scale);
7206 
7207 		/* Make sure we've got at least a 0-order allocation.. */
7208 		if (unlikely(flags & HASH_SMALL)) {
7209 			/* Makes no sense without HASH_EARLY */
7210 			WARN_ON(!(flags & HASH_EARLY));
7211 			if (!(numentries >> *_hash_shift)) {
7212 				numentries = 1UL << *_hash_shift;
7213 				BUG_ON(!numentries);
7214 			}
7215 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
7216 			numentries = PAGE_SIZE / bucketsize;
7217 	}
7218 	numentries = roundup_pow_of_two(numentries);
7219 
7220 	/* limit allocation size to 1/16 total memory by default */
7221 	if (max == 0) {
7222 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
7223 		do_div(max, bucketsize);
7224 	}
7225 	max = min(max, 0x80000000ULL);
7226 
7227 	if (numentries < low_limit)
7228 		numentries = low_limit;
7229 	if (numentries > max)
7230 		numentries = max;
7231 
7232 	log2qty = ilog2(numentries);
7233 
7234 	do {
7235 		size = bucketsize << log2qty;
7236 		if (flags & HASH_EARLY)
7237 			table = memblock_virt_alloc_nopanic(size, 0);
7238 		else if (hashdist)
7239 			table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7240 		else {
7241 			/*
7242 			 * If bucketsize is not a power-of-two, we may free
7243 			 * some pages at the end of hash table which
7244 			 * alloc_pages_exact() automatically does
7245 			 */
7246 			if (get_order(size) < MAX_ORDER) {
7247 				table = alloc_pages_exact(size, GFP_ATOMIC);
7248 				kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7249 			}
7250 		}
7251 	} while (!table && size > PAGE_SIZE && --log2qty);
7252 
7253 	if (!table)
7254 		panic("Failed to allocate %s hash table\n", tablename);
7255 
7256 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7257 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
7258 
7259 	if (_hash_shift)
7260 		*_hash_shift = log2qty;
7261 	if (_hash_mask)
7262 		*_hash_mask = (1 << log2qty) - 1;
7263 
7264 	return table;
7265 }
7266 
7267 /*
7268  * This function checks whether pageblock includes unmovable pages or not.
7269  * If @count is not zero, it is okay to include less @count unmovable pages
7270  *
7271  * PageLRU check without isolation or lru_lock could race so that
7272  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7273  * check without lock_page also may miss some movable non-lru pages at
7274  * race condition. So you can't expect this function should be exact.
7275  */
7276 bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7277 			 bool skip_hwpoisoned_pages)
7278 {
7279 	unsigned long pfn, iter, found;
7280 	int mt;
7281 
7282 	/*
7283 	 * For avoiding noise data, lru_add_drain_all() should be called
7284 	 * If ZONE_MOVABLE, the zone never contains unmovable pages
7285 	 */
7286 	if (zone_idx(zone) == ZONE_MOVABLE)
7287 		return false;
7288 	mt = get_pageblock_migratetype(page);
7289 	if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
7290 		return false;
7291 
7292 	pfn = page_to_pfn(page);
7293 	for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7294 		unsigned long check = pfn + iter;
7295 
7296 		if (!pfn_valid_within(check))
7297 			continue;
7298 
7299 		page = pfn_to_page(check);
7300 
7301 		/*
7302 		 * Hugepages are not in LRU lists, but they're movable.
7303 		 * We need not scan over tail pages bacause we don't
7304 		 * handle each tail page individually in migration.
7305 		 */
7306 		if (PageHuge(page)) {
7307 			iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7308 			continue;
7309 		}
7310 
7311 		/*
7312 		 * We can't use page_count without pin a page
7313 		 * because another CPU can free compound page.
7314 		 * This check already skips compound tails of THP
7315 		 * because their page->_refcount is zero at all time.
7316 		 */
7317 		if (!page_ref_count(page)) {
7318 			if (PageBuddy(page))
7319 				iter += (1 << page_order(page)) - 1;
7320 			continue;
7321 		}
7322 
7323 		/*
7324 		 * The HWPoisoned page may be not in buddy system, and
7325 		 * page_count() is not 0.
7326 		 */
7327 		if (skip_hwpoisoned_pages && PageHWPoison(page))
7328 			continue;
7329 
7330 		if (__PageMovable(page))
7331 			continue;
7332 
7333 		if (!PageLRU(page))
7334 			found++;
7335 		/*
7336 		 * If there are RECLAIMABLE pages, we need to check
7337 		 * it.  But now, memory offline itself doesn't call
7338 		 * shrink_node_slabs() and it still to be fixed.
7339 		 */
7340 		/*
7341 		 * If the page is not RAM, page_count()should be 0.
7342 		 * we don't need more check. This is an _used_ not-movable page.
7343 		 *
7344 		 * The problematic thing here is PG_reserved pages. PG_reserved
7345 		 * is set to both of a memory hole page and a _used_ kernel
7346 		 * page at boot.
7347 		 */
7348 		if (found > count)
7349 			return true;
7350 	}
7351 	return false;
7352 }
7353 
7354 bool is_pageblock_removable_nolock(struct page *page)
7355 {
7356 	struct zone *zone;
7357 	unsigned long pfn;
7358 
7359 	/*
7360 	 * We have to be careful here because we are iterating over memory
7361 	 * sections which are not zone aware so we might end up outside of
7362 	 * the zone but still within the section.
7363 	 * We have to take care about the node as well. If the node is offline
7364 	 * its NODE_DATA will be NULL - see page_zone.
7365 	 */
7366 	if (!node_online(page_to_nid(page)))
7367 		return false;
7368 
7369 	zone = page_zone(page);
7370 	pfn = page_to_pfn(page);
7371 	if (!zone_spans_pfn(zone, pfn))
7372 		return false;
7373 
7374 	return !has_unmovable_pages(zone, page, 0, true);
7375 }
7376 
7377 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7378 
7379 static unsigned long pfn_max_align_down(unsigned long pfn)
7380 {
7381 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7382 			     pageblock_nr_pages) - 1);
7383 }
7384 
7385 static unsigned long pfn_max_align_up(unsigned long pfn)
7386 {
7387 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7388 				pageblock_nr_pages));
7389 }
7390 
7391 /* [start, end) must belong to a single zone. */
7392 static int __alloc_contig_migrate_range(struct compact_control *cc,
7393 					unsigned long start, unsigned long end)
7394 {
7395 	/* This function is based on compact_zone() from compaction.c. */
7396 	unsigned long nr_reclaimed;
7397 	unsigned long pfn = start;
7398 	unsigned int tries = 0;
7399 	int ret = 0;
7400 
7401 	migrate_prep();
7402 
7403 	while (pfn < end || !list_empty(&cc->migratepages)) {
7404 		if (fatal_signal_pending(current)) {
7405 			ret = -EINTR;
7406 			break;
7407 		}
7408 
7409 		if (list_empty(&cc->migratepages)) {
7410 			cc->nr_migratepages = 0;
7411 			pfn = isolate_migratepages_range(cc, pfn, end);
7412 			if (!pfn) {
7413 				ret = -EINTR;
7414 				break;
7415 			}
7416 			tries = 0;
7417 		} else if (++tries == 5) {
7418 			ret = ret < 0 ? ret : -EBUSY;
7419 			break;
7420 		}
7421 
7422 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7423 							&cc->migratepages);
7424 		cc->nr_migratepages -= nr_reclaimed;
7425 
7426 		ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
7427 				    NULL, 0, cc->mode, MR_CMA);
7428 	}
7429 	if (ret < 0) {
7430 		putback_movable_pages(&cc->migratepages);
7431 		return ret;
7432 	}
7433 	return 0;
7434 }
7435 
7436 /**
7437  * alloc_contig_range() -- tries to allocate given range of pages
7438  * @start:	start PFN to allocate
7439  * @end:	one-past-the-last PFN to allocate
7440  * @migratetype:	migratetype of the underlaying pageblocks (either
7441  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
7442  *			in range must have the same migratetype and it must
7443  *			be either of the two.
7444  * @gfp_mask:	GFP mask to use during compaction
7445  *
7446  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7447  * aligned, however it's the caller's responsibility to guarantee that
7448  * we are the only thread that changes migrate type of pageblocks the
7449  * pages fall in.
7450  *
7451  * The PFN range must belong to a single zone.
7452  *
7453  * Returns zero on success or negative error code.  On success all
7454  * pages which PFN is in [start, end) are allocated for the caller and
7455  * need to be freed with free_contig_range().
7456  */
7457 int alloc_contig_range(unsigned long start, unsigned long end,
7458 		       unsigned migratetype, gfp_t gfp_mask)
7459 {
7460 	unsigned long outer_start, outer_end;
7461 	unsigned int order;
7462 	int ret = 0;
7463 
7464 	struct compact_control cc = {
7465 		.nr_migratepages = 0,
7466 		.order = -1,
7467 		.zone = page_zone(pfn_to_page(start)),
7468 		.mode = MIGRATE_SYNC,
7469 		.ignore_skip_hint = true,
7470 		.gfp_mask = current_gfp_context(gfp_mask),
7471 	};
7472 	INIT_LIST_HEAD(&cc.migratepages);
7473 
7474 	/*
7475 	 * What we do here is we mark all pageblocks in range as
7476 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
7477 	 * have different sizes, and due to the way page allocator
7478 	 * work, we align the range to biggest of the two pages so
7479 	 * that page allocator won't try to merge buddies from
7480 	 * different pageblocks and change MIGRATE_ISOLATE to some
7481 	 * other migration type.
7482 	 *
7483 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7484 	 * migrate the pages from an unaligned range (ie. pages that
7485 	 * we are interested in).  This will put all the pages in
7486 	 * range back to page allocator as MIGRATE_ISOLATE.
7487 	 *
7488 	 * When this is done, we take the pages in range from page
7489 	 * allocator removing them from the buddy system.  This way
7490 	 * page allocator will never consider using them.
7491 	 *
7492 	 * This lets us mark the pageblocks back as
7493 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7494 	 * aligned range but not in the unaligned, original range are
7495 	 * put back to page allocator so that buddy can use them.
7496 	 */
7497 
7498 	ret = start_isolate_page_range(pfn_max_align_down(start),
7499 				       pfn_max_align_up(end), migratetype,
7500 				       false);
7501 	if (ret)
7502 		return ret;
7503 
7504 	/*
7505 	 * In case of -EBUSY, we'd like to know which page causes problem.
7506 	 * So, just fall through. We will check it in test_pages_isolated().
7507 	 */
7508 	ret = __alloc_contig_migrate_range(&cc, start, end);
7509 	if (ret && ret != -EBUSY)
7510 		goto done;
7511 
7512 	/*
7513 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7514 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
7515 	 * more, all pages in [start, end) are free in page allocator.
7516 	 * What we are going to do is to allocate all pages from
7517 	 * [start, end) (that is remove them from page allocator).
7518 	 *
7519 	 * The only problem is that pages at the beginning and at the
7520 	 * end of interesting range may be not aligned with pages that
7521 	 * page allocator holds, ie. they can be part of higher order
7522 	 * pages.  Because of this, we reserve the bigger range and
7523 	 * once this is done free the pages we are not interested in.
7524 	 *
7525 	 * We don't have to hold zone->lock here because the pages are
7526 	 * isolated thus they won't get removed from buddy.
7527 	 */
7528 
7529 	lru_add_drain_all();
7530 	drain_all_pages(cc.zone);
7531 
7532 	order = 0;
7533 	outer_start = start;
7534 	while (!PageBuddy(pfn_to_page(outer_start))) {
7535 		if (++order >= MAX_ORDER) {
7536 			outer_start = start;
7537 			break;
7538 		}
7539 		outer_start &= ~0UL << order;
7540 	}
7541 
7542 	if (outer_start != start) {
7543 		order = page_order(pfn_to_page(outer_start));
7544 
7545 		/*
7546 		 * outer_start page could be small order buddy page and
7547 		 * it doesn't include start page. Adjust outer_start
7548 		 * in this case to report failed page properly
7549 		 * on tracepoint in test_pages_isolated()
7550 		 */
7551 		if (outer_start + (1UL << order) <= start)
7552 			outer_start = start;
7553 	}
7554 
7555 	/* Make sure the range is really isolated. */
7556 	if (test_pages_isolated(outer_start, end, false)) {
7557 		pr_info("%s: [%lx, %lx) PFNs busy\n",
7558 			__func__, outer_start, end);
7559 		ret = -EBUSY;
7560 		goto done;
7561 	}
7562 
7563 	/* Grab isolated pages from freelists. */
7564 	outer_end = isolate_freepages_range(&cc, outer_start, end);
7565 	if (!outer_end) {
7566 		ret = -EBUSY;
7567 		goto done;
7568 	}
7569 
7570 	/* Free head and tail (if any) */
7571 	if (start != outer_start)
7572 		free_contig_range(outer_start, start - outer_start);
7573 	if (end != outer_end)
7574 		free_contig_range(end, outer_end - end);
7575 
7576 done:
7577 	undo_isolate_page_range(pfn_max_align_down(start),
7578 				pfn_max_align_up(end), migratetype);
7579 	return ret;
7580 }
7581 
7582 void free_contig_range(unsigned long pfn, unsigned nr_pages)
7583 {
7584 	unsigned int count = 0;
7585 
7586 	for (; nr_pages--; pfn++) {
7587 		struct page *page = pfn_to_page(pfn);
7588 
7589 		count += page_count(page) != 1;
7590 		__free_page(page);
7591 	}
7592 	WARN(count != 0, "%d pages are still in use!\n", count);
7593 }
7594 #endif
7595 
7596 #ifdef CONFIG_MEMORY_HOTPLUG
7597 /*
7598  * The zone indicated has a new number of managed_pages; batch sizes and percpu
7599  * page high values need to be recalulated.
7600  */
7601 void __meminit zone_pcp_update(struct zone *zone)
7602 {
7603 	unsigned cpu;
7604 	mutex_lock(&pcp_batch_high_lock);
7605 	for_each_possible_cpu(cpu)
7606 		pageset_set_high_and_batch(zone,
7607 				per_cpu_ptr(zone->pageset, cpu));
7608 	mutex_unlock(&pcp_batch_high_lock);
7609 }
7610 #endif
7611 
7612 void zone_pcp_reset(struct zone *zone)
7613 {
7614 	unsigned long flags;
7615 	int cpu;
7616 	struct per_cpu_pageset *pset;
7617 
7618 	/* avoid races with drain_pages()  */
7619 	local_irq_save(flags);
7620 	if (zone->pageset != &boot_pageset) {
7621 		for_each_online_cpu(cpu) {
7622 			pset = per_cpu_ptr(zone->pageset, cpu);
7623 			drain_zonestat(zone, pset);
7624 		}
7625 		free_percpu(zone->pageset);
7626 		zone->pageset = &boot_pageset;
7627 	}
7628 	local_irq_restore(flags);
7629 }
7630 
7631 #ifdef CONFIG_MEMORY_HOTREMOVE
7632 /*
7633  * All pages in the range must be in a single zone and isolated
7634  * before calling this.
7635  */
7636 void
7637 __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7638 {
7639 	struct page *page;
7640 	struct zone *zone;
7641 	unsigned int order, i;
7642 	unsigned long pfn;
7643 	unsigned long flags;
7644 	/* find the first valid pfn */
7645 	for (pfn = start_pfn; pfn < end_pfn; pfn++)
7646 		if (pfn_valid(pfn))
7647 			break;
7648 	if (pfn == end_pfn)
7649 		return;
7650 	zone = page_zone(pfn_to_page(pfn));
7651 	spin_lock_irqsave(&zone->lock, flags);
7652 	pfn = start_pfn;
7653 	while (pfn < end_pfn) {
7654 		if (!pfn_valid(pfn)) {
7655 			pfn++;
7656 			continue;
7657 		}
7658 		page = pfn_to_page(pfn);
7659 		/*
7660 		 * The HWPoisoned page may be not in buddy system, and
7661 		 * page_count() is not 0.
7662 		 */
7663 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7664 			pfn++;
7665 			SetPageReserved(page);
7666 			continue;
7667 		}
7668 
7669 		BUG_ON(page_count(page));
7670 		BUG_ON(!PageBuddy(page));
7671 		order = page_order(page);
7672 #ifdef CONFIG_DEBUG_VM
7673 		pr_info("remove from free list %lx %d %lx\n",
7674 			pfn, 1 << order, end_pfn);
7675 #endif
7676 		list_del(&page->lru);
7677 		rmv_page_order(page);
7678 		zone->free_area[order].nr_free--;
7679 		for (i = 0; i < (1 << order); i++)
7680 			SetPageReserved((page+i));
7681 		pfn += (1 << order);
7682 	}
7683 	spin_unlock_irqrestore(&zone->lock, flags);
7684 }
7685 #endif
7686 
7687 bool is_free_buddy_page(struct page *page)
7688 {
7689 	struct zone *zone = page_zone(page);
7690 	unsigned long pfn = page_to_pfn(page);
7691 	unsigned long flags;
7692 	unsigned int order;
7693 
7694 	spin_lock_irqsave(&zone->lock, flags);
7695 	for (order = 0; order < MAX_ORDER; order++) {
7696 		struct page *page_head = page - (pfn & ((1 << order) - 1));
7697 
7698 		if (PageBuddy(page_head) && page_order(page_head) >= order)
7699 			break;
7700 	}
7701 	spin_unlock_irqrestore(&zone->lock, flags);
7702 
7703 	return order < MAX_ORDER;
7704 }
7705