1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 38 /* 39 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 40 * will look to see if it needs to force writeback or throttling. 41 */ 42 static long ratelimit_pages = 32; 43 44 /* 45 * When balance_dirty_pages decides that the caller needs to perform some 46 * non-background writeback, this is how many pages it will attempt to write. 47 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 48 * large amounts of I/O are submitted. 49 */ 50 static inline long sync_writeback_pages(void) 51 { 52 return ratelimit_pages + ratelimit_pages / 2; 53 } 54 55 /* The following parameters are exported via /proc/sys/vm */ 56 57 /* 58 * Start background writeback (via pdflush) at this percentage 59 */ 60 int dirty_background_ratio = 10; 61 62 /* 63 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 64 * dirty_background_ratio * the amount of dirtyable memory 65 */ 66 unsigned long dirty_background_bytes; 67 68 /* 69 * free highmem will not be subtracted from the total free memory 70 * for calculating free ratios if vm_highmem_is_dirtyable is true 71 */ 72 int vm_highmem_is_dirtyable; 73 74 /* 75 * The generator of dirty data starts writeback at this percentage 76 */ 77 int vm_dirty_ratio = 20; 78 79 /* 80 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 81 * vm_dirty_ratio * the amount of dirtyable memory 82 */ 83 unsigned long vm_dirty_bytes; 84 85 /* 86 * The interval between `kupdate'-style writebacks 87 */ 88 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 89 90 /* 91 * The longest time for which data is allowed to remain dirty 92 */ 93 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 94 95 /* 96 * Flag that makes the machine dump writes/reads and block dirtyings. 97 */ 98 int block_dump; 99 100 /* 101 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 102 * a full sync is triggered after this time elapses without any disk activity. 103 */ 104 int laptop_mode; 105 106 EXPORT_SYMBOL(laptop_mode); 107 108 /* End of sysctl-exported parameters */ 109 110 111 /* 112 * Scale the writeback cache size proportional to the relative writeout speeds. 113 * 114 * We do this by keeping a floating proportion between BDIs, based on page 115 * writeback completions [end_page_writeback()]. Those devices that write out 116 * pages fastest will get the larger share, while the slower will get a smaller 117 * share. 118 * 119 * We use page writeout completions because we are interested in getting rid of 120 * dirty pages. Having them written out is the primary goal. 121 * 122 * We introduce a concept of time, a period over which we measure these events, 123 * because demand can/will vary over time. The length of this period itself is 124 * measured in page writeback completions. 125 * 126 */ 127 static struct prop_descriptor vm_completions; 128 static struct prop_descriptor vm_dirties; 129 130 /* 131 * couple the period to the dirty_ratio: 132 * 133 * period/2 ~ roundup_pow_of_two(dirty limit) 134 */ 135 static int calc_period_shift(void) 136 { 137 unsigned long dirty_total; 138 139 if (vm_dirty_bytes) 140 dirty_total = vm_dirty_bytes / PAGE_SIZE; 141 else 142 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 143 100; 144 return 2 + ilog2(dirty_total - 1); 145 } 146 147 /* 148 * update the period when the dirty threshold changes. 149 */ 150 static void update_completion_period(void) 151 { 152 int shift = calc_period_shift(); 153 prop_change_shift(&vm_completions, shift); 154 prop_change_shift(&vm_dirties, shift); 155 } 156 157 int dirty_background_ratio_handler(struct ctl_table *table, int write, 158 struct file *filp, void __user *buffer, size_t *lenp, 159 loff_t *ppos) 160 { 161 int ret; 162 163 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 164 if (ret == 0 && write) 165 dirty_background_bytes = 0; 166 return ret; 167 } 168 169 int dirty_background_bytes_handler(struct ctl_table *table, int write, 170 struct file *filp, void __user *buffer, size_t *lenp, 171 loff_t *ppos) 172 { 173 int ret; 174 175 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); 176 if (ret == 0 && write) 177 dirty_background_ratio = 0; 178 return ret; 179 } 180 181 int dirty_ratio_handler(struct ctl_table *table, int write, 182 struct file *filp, void __user *buffer, size_t *lenp, 183 loff_t *ppos) 184 { 185 int old_ratio = vm_dirty_ratio; 186 int ret; 187 188 ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 189 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 190 update_completion_period(); 191 vm_dirty_bytes = 0; 192 } 193 return ret; 194 } 195 196 197 int dirty_bytes_handler(struct ctl_table *table, int write, 198 struct file *filp, void __user *buffer, size_t *lenp, 199 loff_t *ppos) 200 { 201 unsigned long old_bytes = vm_dirty_bytes; 202 int ret; 203 204 ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos); 205 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 206 update_completion_period(); 207 vm_dirty_ratio = 0; 208 } 209 return ret; 210 } 211 212 /* 213 * Increment the BDI's writeout completion count and the global writeout 214 * completion count. Called from test_clear_page_writeback(). 215 */ 216 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 217 { 218 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 219 bdi->max_prop_frac); 220 } 221 222 void bdi_writeout_inc(struct backing_dev_info *bdi) 223 { 224 unsigned long flags; 225 226 local_irq_save(flags); 227 __bdi_writeout_inc(bdi); 228 local_irq_restore(flags); 229 } 230 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 231 232 void task_dirty_inc(struct task_struct *tsk) 233 { 234 prop_inc_single(&vm_dirties, &tsk->dirties); 235 } 236 237 /* 238 * Obtain an accurate fraction of the BDI's portion. 239 */ 240 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 241 long *numerator, long *denominator) 242 { 243 if (bdi_cap_writeback_dirty(bdi)) { 244 prop_fraction_percpu(&vm_completions, &bdi->completions, 245 numerator, denominator); 246 } else { 247 *numerator = 0; 248 *denominator = 1; 249 } 250 } 251 252 /* 253 * Clip the earned share of dirty pages to that which is actually available. 254 * This avoids exceeding the total dirty_limit when the floating averages 255 * fluctuate too quickly. 256 */ 257 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi, 258 unsigned long dirty, unsigned long *pbdi_dirty) 259 { 260 unsigned long avail_dirty; 261 262 avail_dirty = global_page_state(NR_FILE_DIRTY) + 263 global_page_state(NR_WRITEBACK) + 264 global_page_state(NR_UNSTABLE_NFS) + 265 global_page_state(NR_WRITEBACK_TEMP); 266 267 if (avail_dirty < dirty) 268 avail_dirty = dirty - avail_dirty; 269 else 270 avail_dirty = 0; 271 272 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + 273 bdi_stat(bdi, BDI_WRITEBACK); 274 275 *pbdi_dirty = min(*pbdi_dirty, avail_dirty); 276 } 277 278 static inline void task_dirties_fraction(struct task_struct *tsk, 279 long *numerator, long *denominator) 280 { 281 prop_fraction_single(&vm_dirties, &tsk->dirties, 282 numerator, denominator); 283 } 284 285 /* 286 * scale the dirty limit 287 * 288 * task specific dirty limit: 289 * 290 * dirty -= (dirty/8) * p_{t} 291 */ 292 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty) 293 { 294 long numerator, denominator; 295 unsigned long dirty = *pdirty; 296 u64 inv = dirty >> 3; 297 298 task_dirties_fraction(tsk, &numerator, &denominator); 299 inv *= numerator; 300 do_div(inv, denominator); 301 302 dirty -= inv; 303 if (dirty < *pdirty/2) 304 dirty = *pdirty/2; 305 306 *pdirty = dirty; 307 } 308 309 /* 310 * 311 */ 312 static unsigned int bdi_min_ratio; 313 314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 315 { 316 int ret = 0; 317 318 spin_lock_bh(&bdi_lock); 319 if (min_ratio > bdi->max_ratio) { 320 ret = -EINVAL; 321 } else { 322 min_ratio -= bdi->min_ratio; 323 if (bdi_min_ratio + min_ratio < 100) { 324 bdi_min_ratio += min_ratio; 325 bdi->min_ratio += min_ratio; 326 } else { 327 ret = -EINVAL; 328 } 329 } 330 spin_unlock_bh(&bdi_lock); 331 332 return ret; 333 } 334 335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 336 { 337 int ret = 0; 338 339 if (max_ratio > 100) 340 return -EINVAL; 341 342 spin_lock_bh(&bdi_lock); 343 if (bdi->min_ratio > max_ratio) { 344 ret = -EINVAL; 345 } else { 346 bdi->max_ratio = max_ratio; 347 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 348 } 349 spin_unlock_bh(&bdi_lock); 350 351 return ret; 352 } 353 EXPORT_SYMBOL(bdi_set_max_ratio); 354 355 /* 356 * Work out the current dirty-memory clamping and background writeout 357 * thresholds. 358 * 359 * The main aim here is to lower them aggressively if there is a lot of mapped 360 * memory around. To avoid stressing page reclaim with lots of unreclaimable 361 * pages. It is better to clamp down on writers than to start swapping, and 362 * performing lots of scanning. 363 * 364 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 365 * 366 * We don't permit the clamping level to fall below 5% - that is getting rather 367 * excessive. 368 * 369 * We make sure that the background writeout level is below the adjusted 370 * clamping level. 371 */ 372 373 static unsigned long highmem_dirtyable_memory(unsigned long total) 374 { 375 #ifdef CONFIG_HIGHMEM 376 int node; 377 unsigned long x = 0; 378 379 for_each_node_state(node, N_HIGH_MEMORY) { 380 struct zone *z = 381 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 382 383 x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z); 384 } 385 /* 386 * Make sure that the number of highmem pages is never larger 387 * than the number of the total dirtyable memory. This can only 388 * occur in very strange VM situations but we want to make sure 389 * that this does not occur. 390 */ 391 return min(x, total); 392 #else 393 return 0; 394 #endif 395 } 396 397 /** 398 * determine_dirtyable_memory - amount of memory that may be used 399 * 400 * Returns the numebr of pages that can currently be freed and used 401 * by the kernel for direct mappings. 402 */ 403 unsigned long determine_dirtyable_memory(void) 404 { 405 unsigned long x; 406 407 x = global_page_state(NR_FREE_PAGES) + global_lru_pages(); 408 409 if (!vm_highmem_is_dirtyable) 410 x -= highmem_dirtyable_memory(x); 411 412 return x + 1; /* Ensure that we never return 0 */ 413 } 414 415 void 416 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty, 417 unsigned long *pbdi_dirty, struct backing_dev_info *bdi) 418 { 419 unsigned long background; 420 unsigned long dirty; 421 unsigned long available_memory = determine_dirtyable_memory(); 422 struct task_struct *tsk; 423 424 if (vm_dirty_bytes) 425 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 426 else { 427 int dirty_ratio; 428 429 dirty_ratio = vm_dirty_ratio; 430 if (dirty_ratio < 5) 431 dirty_ratio = 5; 432 dirty = (dirty_ratio * available_memory) / 100; 433 } 434 435 if (dirty_background_bytes) 436 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 437 else 438 background = (dirty_background_ratio * available_memory) / 100; 439 440 if (background >= dirty) 441 background = dirty / 2; 442 tsk = current; 443 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 444 background += background / 4; 445 dirty += dirty / 4; 446 } 447 *pbackground = background; 448 *pdirty = dirty; 449 450 if (bdi) { 451 u64 bdi_dirty; 452 long numerator, denominator; 453 454 /* 455 * Calculate this BDI's share of the dirty ratio. 456 */ 457 bdi_writeout_fraction(bdi, &numerator, &denominator); 458 459 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 460 bdi_dirty *= numerator; 461 do_div(bdi_dirty, denominator); 462 bdi_dirty += (dirty * bdi->min_ratio) / 100; 463 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 464 bdi_dirty = dirty * bdi->max_ratio / 100; 465 466 *pbdi_dirty = bdi_dirty; 467 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); 468 task_dirty_limit(current, pbdi_dirty); 469 } 470 } 471 472 /* 473 * balance_dirty_pages() must be called by processes which are generating dirty 474 * data. It looks at the number of dirty pages in the machine and will force 475 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 476 * If we're over `background_thresh' then pdflush is woken to perform some 477 * writeout. 478 */ 479 static void balance_dirty_pages(struct address_space *mapping) 480 { 481 long nr_reclaimable, bdi_nr_reclaimable; 482 long nr_writeback, bdi_nr_writeback; 483 unsigned long background_thresh; 484 unsigned long dirty_thresh; 485 unsigned long bdi_thresh; 486 unsigned long pages_written = 0; 487 unsigned long write_chunk = sync_writeback_pages(); 488 489 struct backing_dev_info *bdi = mapping->backing_dev_info; 490 491 for (;;) { 492 struct writeback_control wbc = { 493 .bdi = bdi, 494 .sync_mode = WB_SYNC_NONE, 495 .older_than_this = NULL, 496 .nr_to_write = write_chunk, 497 .range_cyclic = 1, 498 }; 499 500 get_dirty_limits(&background_thresh, &dirty_thresh, 501 &bdi_thresh, bdi); 502 503 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 504 global_page_state(NR_UNSTABLE_NFS); 505 nr_writeback = global_page_state(NR_WRITEBACK); 506 507 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 508 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 509 510 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 511 break; 512 513 /* 514 * Throttle it only when the background writeback cannot 515 * catch-up. This avoids (excessively) small writeouts 516 * when the bdi limits are ramping up. 517 */ 518 if (nr_reclaimable + nr_writeback < 519 (background_thresh + dirty_thresh) / 2) 520 break; 521 522 if (!bdi->dirty_exceeded) 523 bdi->dirty_exceeded = 1; 524 525 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 526 * Unstable writes are a feature of certain networked 527 * filesystems (i.e. NFS) in which data may have been 528 * written to the server's write cache, but has not yet 529 * been flushed to permanent storage. 530 * Only move pages to writeback if this bdi is over its 531 * threshold otherwise wait until the disk writes catch 532 * up. 533 */ 534 if (bdi_nr_reclaimable > bdi_thresh) { 535 writeback_inodes_wbc(&wbc); 536 pages_written += write_chunk - wbc.nr_to_write; 537 get_dirty_limits(&background_thresh, &dirty_thresh, 538 &bdi_thresh, bdi); 539 } 540 541 /* 542 * In order to avoid the stacked BDI deadlock we need 543 * to ensure we accurately count the 'dirty' pages when 544 * the threshold is low. 545 * 546 * Otherwise it would be possible to get thresh+n pages 547 * reported dirty, even though there are thresh-m pages 548 * actually dirty; with m+n sitting in the percpu 549 * deltas. 550 */ 551 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 552 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 553 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 554 } else if (bdi_nr_reclaimable) { 555 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 556 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 557 } 558 559 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 560 break; 561 if (pages_written >= write_chunk) 562 break; /* We've done our duty */ 563 564 schedule_timeout(1); 565 } 566 567 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && 568 bdi->dirty_exceeded) 569 bdi->dirty_exceeded = 0; 570 571 if (writeback_in_progress(bdi)) 572 return; /* pdflush is already working this queue */ 573 574 /* 575 * In laptop mode, we wait until hitting the higher threshold before 576 * starting background writeout, and then write out all the way down 577 * to the lower threshold. So slow writers cause minimal disk activity. 578 * 579 * In normal mode, we start background writeout at the lower 580 * background_thresh, to keep the amount of dirty memory low. 581 */ 582 if ((laptop_mode && pages_written) || 583 (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY) 584 + global_page_state(NR_UNSTABLE_NFS)) 585 > background_thresh))) 586 bdi_start_writeback(bdi, nr_writeback); 587 } 588 589 void set_page_dirty_balance(struct page *page, int page_mkwrite) 590 { 591 if (set_page_dirty(page) || page_mkwrite) { 592 struct address_space *mapping = page_mapping(page); 593 594 if (mapping) 595 balance_dirty_pages_ratelimited(mapping); 596 } 597 } 598 599 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 600 601 /** 602 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 603 * @mapping: address_space which was dirtied 604 * @nr_pages_dirtied: number of pages which the caller has just dirtied 605 * 606 * Processes which are dirtying memory should call in here once for each page 607 * which was newly dirtied. The function will periodically check the system's 608 * dirty state and will initiate writeback if needed. 609 * 610 * On really big machines, get_writeback_state is expensive, so try to avoid 611 * calling it too often (ratelimiting). But once we're over the dirty memory 612 * limit we decrease the ratelimiting by a lot, to prevent individual processes 613 * from overshooting the limit by (ratelimit_pages) each. 614 */ 615 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 616 unsigned long nr_pages_dirtied) 617 { 618 unsigned long ratelimit; 619 unsigned long *p; 620 621 ratelimit = ratelimit_pages; 622 if (mapping->backing_dev_info->dirty_exceeded) 623 ratelimit = 8; 624 625 /* 626 * Check the rate limiting. Also, we do not want to throttle real-time 627 * tasks in balance_dirty_pages(). Period. 628 */ 629 preempt_disable(); 630 p = &__get_cpu_var(bdp_ratelimits); 631 *p += nr_pages_dirtied; 632 if (unlikely(*p >= ratelimit)) { 633 *p = 0; 634 preempt_enable(); 635 balance_dirty_pages(mapping); 636 return; 637 } 638 preempt_enable(); 639 } 640 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 641 642 void throttle_vm_writeout(gfp_t gfp_mask) 643 { 644 unsigned long background_thresh; 645 unsigned long dirty_thresh; 646 647 for ( ; ; ) { 648 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 649 650 /* 651 * Boost the allowable dirty threshold a bit for page 652 * allocators so they don't get DoS'ed by heavy writers 653 */ 654 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 655 656 if (global_page_state(NR_UNSTABLE_NFS) + 657 global_page_state(NR_WRITEBACK) <= dirty_thresh) 658 break; 659 congestion_wait(BLK_RW_ASYNC, HZ/10); 660 661 /* 662 * The caller might hold locks which can prevent IO completion 663 * or progress in the filesystem. So we cannot just sit here 664 * waiting for IO to complete. 665 */ 666 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 667 break; 668 } 669 } 670 671 static void laptop_timer_fn(unsigned long unused); 672 673 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 674 675 /* 676 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 677 */ 678 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 679 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 680 { 681 proc_dointvec(table, write, file, buffer, length, ppos); 682 return 0; 683 } 684 685 static void do_laptop_sync(struct work_struct *work) 686 { 687 wakeup_flusher_threads(0); 688 kfree(work); 689 } 690 691 static void laptop_timer_fn(unsigned long unused) 692 { 693 struct work_struct *work; 694 695 work = kmalloc(sizeof(*work), GFP_ATOMIC); 696 if (work) { 697 INIT_WORK(work, do_laptop_sync); 698 schedule_work(work); 699 } 700 } 701 702 /* 703 * We've spun up the disk and we're in laptop mode: schedule writeback 704 * of all dirty data a few seconds from now. If the flush is already scheduled 705 * then push it back - the user is still using the disk. 706 */ 707 void laptop_io_completion(void) 708 { 709 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 710 } 711 712 /* 713 * We're in laptop mode and we've just synced. The sync's writes will have 714 * caused another writeback to be scheduled by laptop_io_completion. 715 * Nothing needs to be written back anymore, so we unschedule the writeback. 716 */ 717 void laptop_sync_completion(void) 718 { 719 del_timer(&laptop_mode_wb_timer); 720 } 721 722 /* 723 * If ratelimit_pages is too high then we can get into dirty-data overload 724 * if a large number of processes all perform writes at the same time. 725 * If it is too low then SMP machines will call the (expensive) 726 * get_writeback_state too often. 727 * 728 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 729 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 730 * thresholds before writeback cuts in. 731 * 732 * But the limit should not be set too high. Because it also controls the 733 * amount of memory which the balance_dirty_pages() caller has to write back. 734 * If this is too large then the caller will block on the IO queue all the 735 * time. So limit it to four megabytes - the balance_dirty_pages() caller 736 * will write six megabyte chunks, max. 737 */ 738 739 void writeback_set_ratelimit(void) 740 { 741 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 742 if (ratelimit_pages < 16) 743 ratelimit_pages = 16; 744 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 745 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 746 } 747 748 static int __cpuinit 749 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 750 { 751 writeback_set_ratelimit(); 752 return NOTIFY_DONE; 753 } 754 755 static struct notifier_block __cpuinitdata ratelimit_nb = { 756 .notifier_call = ratelimit_handler, 757 .next = NULL, 758 }; 759 760 /* 761 * Called early on to tune the page writeback dirty limits. 762 * 763 * We used to scale dirty pages according to how total memory 764 * related to pages that could be allocated for buffers (by 765 * comparing nr_free_buffer_pages() to vm_total_pages. 766 * 767 * However, that was when we used "dirty_ratio" to scale with 768 * all memory, and we don't do that any more. "dirty_ratio" 769 * is now applied to total non-HIGHPAGE memory (by subtracting 770 * totalhigh_pages from vm_total_pages), and as such we can't 771 * get into the old insane situation any more where we had 772 * large amounts of dirty pages compared to a small amount of 773 * non-HIGHMEM memory. 774 * 775 * But we might still want to scale the dirty_ratio by how 776 * much memory the box has.. 777 */ 778 void __init page_writeback_init(void) 779 { 780 int shift; 781 782 writeback_set_ratelimit(); 783 register_cpu_notifier(&ratelimit_nb); 784 785 shift = calc_period_shift(); 786 prop_descriptor_init(&vm_completions, shift); 787 prop_descriptor_init(&vm_dirties, shift); 788 } 789 790 /** 791 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 792 * @mapping: address space structure to write 793 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 794 * @writepage: function called for each page 795 * @data: data passed to writepage function 796 * 797 * If a page is already under I/O, write_cache_pages() skips it, even 798 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 799 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 800 * and msync() need to guarantee that all the data which was dirty at the time 801 * the call was made get new I/O started against them. If wbc->sync_mode is 802 * WB_SYNC_ALL then we were called for data integrity and we must wait for 803 * existing IO to complete. 804 */ 805 int write_cache_pages(struct address_space *mapping, 806 struct writeback_control *wbc, writepage_t writepage, 807 void *data) 808 { 809 struct backing_dev_info *bdi = mapping->backing_dev_info; 810 int ret = 0; 811 int done = 0; 812 struct pagevec pvec; 813 int nr_pages; 814 pgoff_t uninitialized_var(writeback_index); 815 pgoff_t index; 816 pgoff_t end; /* Inclusive */ 817 pgoff_t done_index; 818 int cycled; 819 int range_whole = 0; 820 long nr_to_write = wbc->nr_to_write; 821 822 if (wbc->nonblocking && bdi_write_congested(bdi)) { 823 wbc->encountered_congestion = 1; 824 return 0; 825 } 826 827 pagevec_init(&pvec, 0); 828 if (wbc->range_cyclic) { 829 writeback_index = mapping->writeback_index; /* prev offset */ 830 index = writeback_index; 831 if (index == 0) 832 cycled = 1; 833 else 834 cycled = 0; 835 end = -1; 836 } else { 837 index = wbc->range_start >> PAGE_CACHE_SHIFT; 838 end = wbc->range_end >> PAGE_CACHE_SHIFT; 839 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 840 range_whole = 1; 841 cycled = 1; /* ignore range_cyclic tests */ 842 } 843 retry: 844 done_index = index; 845 while (!done && (index <= end)) { 846 int i; 847 848 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 849 PAGECACHE_TAG_DIRTY, 850 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 851 if (nr_pages == 0) 852 break; 853 854 for (i = 0; i < nr_pages; i++) { 855 struct page *page = pvec.pages[i]; 856 857 /* 858 * At this point, the page may be truncated or 859 * invalidated (changing page->mapping to NULL), or 860 * even swizzled back from swapper_space to tmpfs file 861 * mapping. However, page->index will not change 862 * because we have a reference on the page. 863 */ 864 if (page->index > end) { 865 /* 866 * can't be range_cyclic (1st pass) because 867 * end == -1 in that case. 868 */ 869 done = 1; 870 break; 871 } 872 873 done_index = page->index + 1; 874 875 lock_page(page); 876 877 /* 878 * Page truncated or invalidated. We can freely skip it 879 * then, even for data integrity operations: the page 880 * has disappeared concurrently, so there could be no 881 * real expectation of this data interity operation 882 * even if there is now a new, dirty page at the same 883 * pagecache address. 884 */ 885 if (unlikely(page->mapping != mapping)) { 886 continue_unlock: 887 unlock_page(page); 888 continue; 889 } 890 891 if (!PageDirty(page)) { 892 /* someone wrote it for us */ 893 goto continue_unlock; 894 } 895 896 if (PageWriteback(page)) { 897 if (wbc->sync_mode != WB_SYNC_NONE) 898 wait_on_page_writeback(page); 899 else 900 goto continue_unlock; 901 } 902 903 BUG_ON(PageWriteback(page)); 904 if (!clear_page_dirty_for_io(page)) 905 goto continue_unlock; 906 907 ret = (*writepage)(page, wbc, data); 908 if (unlikely(ret)) { 909 if (ret == AOP_WRITEPAGE_ACTIVATE) { 910 unlock_page(page); 911 ret = 0; 912 } else { 913 /* 914 * done_index is set past this page, 915 * so media errors will not choke 916 * background writeout for the entire 917 * file. This has consequences for 918 * range_cyclic semantics (ie. it may 919 * not be suitable for data integrity 920 * writeout). 921 */ 922 done = 1; 923 break; 924 } 925 } 926 927 if (nr_to_write > 0) { 928 nr_to_write--; 929 if (nr_to_write == 0 && 930 wbc->sync_mode == WB_SYNC_NONE) { 931 /* 932 * We stop writing back only if we are 933 * not doing integrity sync. In case of 934 * integrity sync we have to keep going 935 * because someone may be concurrently 936 * dirtying pages, and we might have 937 * synced a lot of newly appeared dirty 938 * pages, but have not synced all of the 939 * old dirty pages. 940 */ 941 done = 1; 942 break; 943 } 944 } 945 946 if (wbc->nonblocking && bdi_write_congested(bdi)) { 947 wbc->encountered_congestion = 1; 948 done = 1; 949 break; 950 } 951 } 952 pagevec_release(&pvec); 953 cond_resched(); 954 } 955 if (!cycled && !done) { 956 /* 957 * range_cyclic: 958 * We hit the last page and there is more work to be done: wrap 959 * back to the start of the file 960 */ 961 cycled = 1; 962 index = 0; 963 end = writeback_index - 1; 964 goto retry; 965 } 966 if (!wbc->no_nrwrite_index_update) { 967 if (wbc->range_cyclic || (range_whole && nr_to_write > 0)) 968 mapping->writeback_index = done_index; 969 wbc->nr_to_write = nr_to_write; 970 } 971 972 return ret; 973 } 974 EXPORT_SYMBOL(write_cache_pages); 975 976 /* 977 * Function used by generic_writepages to call the real writepage 978 * function and set the mapping flags on error 979 */ 980 static int __writepage(struct page *page, struct writeback_control *wbc, 981 void *data) 982 { 983 struct address_space *mapping = data; 984 int ret = mapping->a_ops->writepage(page, wbc); 985 mapping_set_error(mapping, ret); 986 return ret; 987 } 988 989 /** 990 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 991 * @mapping: address space structure to write 992 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 993 * 994 * This is a library function, which implements the writepages() 995 * address_space_operation. 996 */ 997 int generic_writepages(struct address_space *mapping, 998 struct writeback_control *wbc) 999 { 1000 /* deal with chardevs and other special file */ 1001 if (!mapping->a_ops->writepage) 1002 return 0; 1003 1004 return write_cache_pages(mapping, wbc, __writepage, mapping); 1005 } 1006 1007 EXPORT_SYMBOL(generic_writepages); 1008 1009 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1010 { 1011 int ret; 1012 1013 if (wbc->nr_to_write <= 0) 1014 return 0; 1015 if (mapping->a_ops->writepages) 1016 ret = mapping->a_ops->writepages(mapping, wbc); 1017 else 1018 ret = generic_writepages(mapping, wbc); 1019 return ret; 1020 } 1021 1022 /** 1023 * write_one_page - write out a single page and optionally wait on I/O 1024 * @page: the page to write 1025 * @wait: if true, wait on writeout 1026 * 1027 * The page must be locked by the caller and will be unlocked upon return. 1028 * 1029 * write_one_page() returns a negative error code if I/O failed. 1030 */ 1031 int write_one_page(struct page *page, int wait) 1032 { 1033 struct address_space *mapping = page->mapping; 1034 int ret = 0; 1035 struct writeback_control wbc = { 1036 .sync_mode = WB_SYNC_ALL, 1037 .nr_to_write = 1, 1038 }; 1039 1040 BUG_ON(!PageLocked(page)); 1041 1042 if (wait) 1043 wait_on_page_writeback(page); 1044 1045 if (clear_page_dirty_for_io(page)) { 1046 page_cache_get(page); 1047 ret = mapping->a_ops->writepage(page, &wbc); 1048 if (ret == 0 && wait) { 1049 wait_on_page_writeback(page); 1050 if (PageError(page)) 1051 ret = -EIO; 1052 } 1053 page_cache_release(page); 1054 } else { 1055 unlock_page(page); 1056 } 1057 return ret; 1058 } 1059 EXPORT_SYMBOL(write_one_page); 1060 1061 /* 1062 * For address_spaces which do not use buffers nor write back. 1063 */ 1064 int __set_page_dirty_no_writeback(struct page *page) 1065 { 1066 if (!PageDirty(page)) 1067 SetPageDirty(page); 1068 return 0; 1069 } 1070 1071 /* 1072 * Helper function for set_page_dirty family. 1073 * NOTE: This relies on being atomic wrt interrupts. 1074 */ 1075 void account_page_dirtied(struct page *page, struct address_space *mapping) 1076 { 1077 if (mapping_cap_account_dirty(mapping)) { 1078 __inc_zone_page_state(page, NR_FILE_DIRTY); 1079 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1080 task_dirty_inc(current); 1081 task_io_account_write(PAGE_CACHE_SIZE); 1082 } 1083 } 1084 1085 /* 1086 * For address_spaces which do not use buffers. Just tag the page as dirty in 1087 * its radix tree. 1088 * 1089 * This is also used when a single buffer is being dirtied: we want to set the 1090 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1091 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1092 * 1093 * Most callers have locked the page, which pins the address_space in memory. 1094 * But zap_pte_range() does not lock the page, however in that case the 1095 * mapping is pinned by the vma's ->vm_file reference. 1096 * 1097 * We take care to handle the case where the page was truncated from the 1098 * mapping by re-checking page_mapping() inside tree_lock. 1099 */ 1100 int __set_page_dirty_nobuffers(struct page *page) 1101 { 1102 if (!TestSetPageDirty(page)) { 1103 struct address_space *mapping = page_mapping(page); 1104 struct address_space *mapping2; 1105 1106 if (!mapping) 1107 return 1; 1108 1109 spin_lock_irq(&mapping->tree_lock); 1110 mapping2 = page_mapping(page); 1111 if (mapping2) { /* Race with truncate? */ 1112 BUG_ON(mapping2 != mapping); 1113 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1114 account_page_dirtied(page, mapping); 1115 radix_tree_tag_set(&mapping->page_tree, 1116 page_index(page), PAGECACHE_TAG_DIRTY); 1117 } 1118 spin_unlock_irq(&mapping->tree_lock); 1119 if (mapping->host) { 1120 /* !PageAnon && !swapper_space */ 1121 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1122 } 1123 return 1; 1124 } 1125 return 0; 1126 } 1127 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1128 1129 /* 1130 * When a writepage implementation decides that it doesn't want to write this 1131 * page for some reason, it should redirty the locked page via 1132 * redirty_page_for_writepage() and it should then unlock the page and return 0 1133 */ 1134 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1135 { 1136 wbc->pages_skipped++; 1137 return __set_page_dirty_nobuffers(page); 1138 } 1139 EXPORT_SYMBOL(redirty_page_for_writepage); 1140 1141 /* 1142 * If the mapping doesn't provide a set_page_dirty a_op, then 1143 * just fall through and assume that it wants buffer_heads. 1144 */ 1145 int set_page_dirty(struct page *page) 1146 { 1147 struct address_space *mapping = page_mapping(page); 1148 1149 if (likely(mapping)) { 1150 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1151 #ifdef CONFIG_BLOCK 1152 if (!spd) 1153 spd = __set_page_dirty_buffers; 1154 #endif 1155 return (*spd)(page); 1156 } 1157 if (!PageDirty(page)) { 1158 if (!TestSetPageDirty(page)) 1159 return 1; 1160 } 1161 return 0; 1162 } 1163 EXPORT_SYMBOL(set_page_dirty); 1164 1165 /* 1166 * set_page_dirty() is racy if the caller has no reference against 1167 * page->mapping->host, and if the page is unlocked. This is because another 1168 * CPU could truncate the page off the mapping and then free the mapping. 1169 * 1170 * Usually, the page _is_ locked, or the caller is a user-space process which 1171 * holds a reference on the inode by having an open file. 1172 * 1173 * In other cases, the page should be locked before running set_page_dirty(). 1174 */ 1175 int set_page_dirty_lock(struct page *page) 1176 { 1177 int ret; 1178 1179 lock_page_nosync(page); 1180 ret = set_page_dirty(page); 1181 unlock_page(page); 1182 return ret; 1183 } 1184 EXPORT_SYMBOL(set_page_dirty_lock); 1185 1186 /* 1187 * Clear a page's dirty flag, while caring for dirty memory accounting. 1188 * Returns true if the page was previously dirty. 1189 * 1190 * This is for preparing to put the page under writeout. We leave the page 1191 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1192 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1193 * implementation will run either set_page_writeback() or set_page_dirty(), 1194 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1195 * back into sync. 1196 * 1197 * This incoherency between the page's dirty flag and radix-tree tag is 1198 * unfortunate, but it only exists while the page is locked. 1199 */ 1200 int clear_page_dirty_for_io(struct page *page) 1201 { 1202 struct address_space *mapping = page_mapping(page); 1203 1204 BUG_ON(!PageLocked(page)); 1205 1206 ClearPageReclaim(page); 1207 if (mapping && mapping_cap_account_dirty(mapping)) { 1208 /* 1209 * Yes, Virginia, this is indeed insane. 1210 * 1211 * We use this sequence to make sure that 1212 * (a) we account for dirty stats properly 1213 * (b) we tell the low-level filesystem to 1214 * mark the whole page dirty if it was 1215 * dirty in a pagetable. Only to then 1216 * (c) clean the page again and return 1 to 1217 * cause the writeback. 1218 * 1219 * This way we avoid all nasty races with the 1220 * dirty bit in multiple places and clearing 1221 * them concurrently from different threads. 1222 * 1223 * Note! Normally the "set_page_dirty(page)" 1224 * has no effect on the actual dirty bit - since 1225 * that will already usually be set. But we 1226 * need the side effects, and it can help us 1227 * avoid races. 1228 * 1229 * We basically use the page "master dirty bit" 1230 * as a serialization point for all the different 1231 * threads doing their things. 1232 */ 1233 if (page_mkclean(page)) 1234 set_page_dirty(page); 1235 /* 1236 * We carefully synchronise fault handlers against 1237 * installing a dirty pte and marking the page dirty 1238 * at this point. We do this by having them hold the 1239 * page lock at some point after installing their 1240 * pte, but before marking the page dirty. 1241 * Pages are always locked coming in here, so we get 1242 * the desired exclusion. See mm/memory.c:do_wp_page() 1243 * for more comments. 1244 */ 1245 if (TestClearPageDirty(page)) { 1246 dec_zone_page_state(page, NR_FILE_DIRTY); 1247 dec_bdi_stat(mapping->backing_dev_info, 1248 BDI_RECLAIMABLE); 1249 return 1; 1250 } 1251 return 0; 1252 } 1253 return TestClearPageDirty(page); 1254 } 1255 EXPORT_SYMBOL(clear_page_dirty_for_io); 1256 1257 int test_clear_page_writeback(struct page *page) 1258 { 1259 struct address_space *mapping = page_mapping(page); 1260 int ret; 1261 1262 if (mapping) { 1263 struct backing_dev_info *bdi = mapping->backing_dev_info; 1264 unsigned long flags; 1265 1266 spin_lock_irqsave(&mapping->tree_lock, flags); 1267 ret = TestClearPageWriteback(page); 1268 if (ret) { 1269 radix_tree_tag_clear(&mapping->page_tree, 1270 page_index(page), 1271 PAGECACHE_TAG_WRITEBACK); 1272 if (bdi_cap_account_writeback(bdi)) { 1273 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1274 __bdi_writeout_inc(bdi); 1275 } 1276 } 1277 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1278 } else { 1279 ret = TestClearPageWriteback(page); 1280 } 1281 if (ret) 1282 dec_zone_page_state(page, NR_WRITEBACK); 1283 return ret; 1284 } 1285 1286 int test_set_page_writeback(struct page *page) 1287 { 1288 struct address_space *mapping = page_mapping(page); 1289 int ret; 1290 1291 if (mapping) { 1292 struct backing_dev_info *bdi = mapping->backing_dev_info; 1293 unsigned long flags; 1294 1295 spin_lock_irqsave(&mapping->tree_lock, flags); 1296 ret = TestSetPageWriteback(page); 1297 if (!ret) { 1298 radix_tree_tag_set(&mapping->page_tree, 1299 page_index(page), 1300 PAGECACHE_TAG_WRITEBACK); 1301 if (bdi_cap_account_writeback(bdi)) 1302 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1303 } 1304 if (!PageDirty(page)) 1305 radix_tree_tag_clear(&mapping->page_tree, 1306 page_index(page), 1307 PAGECACHE_TAG_DIRTY); 1308 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1309 } else { 1310 ret = TestSetPageWriteback(page); 1311 } 1312 if (!ret) 1313 inc_zone_page_state(page, NR_WRITEBACK); 1314 return ret; 1315 1316 } 1317 EXPORT_SYMBOL(test_set_page_writeback); 1318 1319 /* 1320 * Return true if any of the pages in the mapping are marked with the 1321 * passed tag. 1322 */ 1323 int mapping_tagged(struct address_space *mapping, int tag) 1324 { 1325 int ret; 1326 rcu_read_lock(); 1327 ret = radix_tree_tagged(&mapping->page_tree, tag); 1328 rcu_read_unlock(); 1329 return ret; 1330 } 1331 EXPORT_SYMBOL(mapping_tagged); 1332