xref: /openbmc/linux/mm/page-writeback.c (revision fd589a8f)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
40  * will look to see if it needs to force writeback or throttling.
41  */
42 static long ratelimit_pages = 32;
43 
44 /*
45  * When balance_dirty_pages decides that the caller needs to perform some
46  * non-background writeback, this is how many pages it will attempt to write.
47  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
48  * large amounts of I/O are submitted.
49  */
50 static inline long sync_writeback_pages(void)
51 {
52 	return ratelimit_pages + ratelimit_pages / 2;
53 }
54 
55 /* The following parameters are exported via /proc/sys/vm */
56 
57 /*
58  * Start background writeback (via pdflush) at this percentage
59  */
60 int dirty_background_ratio = 10;
61 
62 /*
63  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
64  * dirty_background_ratio * the amount of dirtyable memory
65  */
66 unsigned long dirty_background_bytes;
67 
68 /*
69  * free highmem will not be subtracted from the total free memory
70  * for calculating free ratios if vm_highmem_is_dirtyable is true
71  */
72 int vm_highmem_is_dirtyable;
73 
74 /*
75  * The generator of dirty data starts writeback at this percentage
76  */
77 int vm_dirty_ratio = 20;
78 
79 /*
80  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
81  * vm_dirty_ratio * the amount of dirtyable memory
82  */
83 unsigned long vm_dirty_bytes;
84 
85 /*
86  * The interval between `kupdate'-style writebacks
87  */
88 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
89 
90 /*
91  * The longest time for which data is allowed to remain dirty
92  */
93 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
94 
95 /*
96  * Flag that makes the machine dump writes/reads and block dirtyings.
97  */
98 int block_dump;
99 
100 /*
101  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
102  * a full sync is triggered after this time elapses without any disk activity.
103  */
104 int laptop_mode;
105 
106 EXPORT_SYMBOL(laptop_mode);
107 
108 /* End of sysctl-exported parameters */
109 
110 
111 /*
112  * Scale the writeback cache size proportional to the relative writeout speeds.
113  *
114  * We do this by keeping a floating proportion between BDIs, based on page
115  * writeback completions [end_page_writeback()]. Those devices that write out
116  * pages fastest will get the larger share, while the slower will get a smaller
117  * share.
118  *
119  * We use page writeout completions because we are interested in getting rid of
120  * dirty pages. Having them written out is the primary goal.
121  *
122  * We introduce a concept of time, a period over which we measure these events,
123  * because demand can/will vary over time. The length of this period itself is
124  * measured in page writeback completions.
125  *
126  */
127 static struct prop_descriptor vm_completions;
128 static struct prop_descriptor vm_dirties;
129 
130 /*
131  * couple the period to the dirty_ratio:
132  *
133  *   period/2 ~ roundup_pow_of_two(dirty limit)
134  */
135 static int calc_period_shift(void)
136 {
137 	unsigned long dirty_total;
138 
139 	if (vm_dirty_bytes)
140 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
141 	else
142 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
143 				100;
144 	return 2 + ilog2(dirty_total - 1);
145 }
146 
147 /*
148  * update the period when the dirty threshold changes.
149  */
150 static void update_completion_period(void)
151 {
152 	int shift = calc_period_shift();
153 	prop_change_shift(&vm_completions, shift);
154 	prop_change_shift(&vm_dirties, shift);
155 }
156 
157 int dirty_background_ratio_handler(struct ctl_table *table, int write,
158 		struct file *filp, void __user *buffer, size_t *lenp,
159 		loff_t *ppos)
160 {
161 	int ret;
162 
163 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
164 	if (ret == 0 && write)
165 		dirty_background_bytes = 0;
166 	return ret;
167 }
168 
169 int dirty_background_bytes_handler(struct ctl_table *table, int write,
170 		struct file *filp, void __user *buffer, size_t *lenp,
171 		loff_t *ppos)
172 {
173 	int ret;
174 
175 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
176 	if (ret == 0 && write)
177 		dirty_background_ratio = 0;
178 	return ret;
179 }
180 
181 int dirty_ratio_handler(struct ctl_table *table, int write,
182 		struct file *filp, void __user *buffer, size_t *lenp,
183 		loff_t *ppos)
184 {
185 	int old_ratio = vm_dirty_ratio;
186 	int ret;
187 
188 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
189 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
190 		update_completion_period();
191 		vm_dirty_bytes = 0;
192 	}
193 	return ret;
194 }
195 
196 
197 int dirty_bytes_handler(struct ctl_table *table, int write,
198 		struct file *filp, void __user *buffer, size_t *lenp,
199 		loff_t *ppos)
200 {
201 	unsigned long old_bytes = vm_dirty_bytes;
202 	int ret;
203 
204 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
205 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
206 		update_completion_period();
207 		vm_dirty_ratio = 0;
208 	}
209 	return ret;
210 }
211 
212 /*
213  * Increment the BDI's writeout completion count and the global writeout
214  * completion count. Called from test_clear_page_writeback().
215  */
216 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
217 {
218 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
219 			      bdi->max_prop_frac);
220 }
221 
222 void bdi_writeout_inc(struct backing_dev_info *bdi)
223 {
224 	unsigned long flags;
225 
226 	local_irq_save(flags);
227 	__bdi_writeout_inc(bdi);
228 	local_irq_restore(flags);
229 }
230 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
231 
232 void task_dirty_inc(struct task_struct *tsk)
233 {
234 	prop_inc_single(&vm_dirties, &tsk->dirties);
235 }
236 
237 /*
238  * Obtain an accurate fraction of the BDI's portion.
239  */
240 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
241 		long *numerator, long *denominator)
242 {
243 	if (bdi_cap_writeback_dirty(bdi)) {
244 		prop_fraction_percpu(&vm_completions, &bdi->completions,
245 				numerator, denominator);
246 	} else {
247 		*numerator = 0;
248 		*denominator = 1;
249 	}
250 }
251 
252 /*
253  * Clip the earned share of dirty pages to that which is actually available.
254  * This avoids exceeding the total dirty_limit when the floating averages
255  * fluctuate too quickly.
256  */
257 static void clip_bdi_dirty_limit(struct backing_dev_info *bdi,
258 		unsigned long dirty, unsigned long *pbdi_dirty)
259 {
260 	unsigned long avail_dirty;
261 
262 	avail_dirty = global_page_state(NR_FILE_DIRTY) +
263 		 global_page_state(NR_WRITEBACK) +
264 		 global_page_state(NR_UNSTABLE_NFS) +
265 		 global_page_state(NR_WRITEBACK_TEMP);
266 
267 	if (avail_dirty < dirty)
268 		avail_dirty = dirty - avail_dirty;
269 	else
270 		avail_dirty = 0;
271 
272 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
273 		bdi_stat(bdi, BDI_WRITEBACK);
274 
275 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
276 }
277 
278 static inline void task_dirties_fraction(struct task_struct *tsk,
279 		long *numerator, long *denominator)
280 {
281 	prop_fraction_single(&vm_dirties, &tsk->dirties,
282 				numerator, denominator);
283 }
284 
285 /*
286  * scale the dirty limit
287  *
288  * task specific dirty limit:
289  *
290  *   dirty -= (dirty/8) * p_{t}
291  */
292 static void task_dirty_limit(struct task_struct *tsk, unsigned long *pdirty)
293 {
294 	long numerator, denominator;
295 	unsigned long dirty = *pdirty;
296 	u64 inv = dirty >> 3;
297 
298 	task_dirties_fraction(tsk, &numerator, &denominator);
299 	inv *= numerator;
300 	do_div(inv, denominator);
301 
302 	dirty -= inv;
303 	if (dirty < *pdirty/2)
304 		dirty = *pdirty/2;
305 
306 	*pdirty = dirty;
307 }
308 
309 /*
310  *
311  */
312 static unsigned int bdi_min_ratio;
313 
314 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
315 {
316 	int ret = 0;
317 
318 	spin_lock_bh(&bdi_lock);
319 	if (min_ratio > bdi->max_ratio) {
320 		ret = -EINVAL;
321 	} else {
322 		min_ratio -= bdi->min_ratio;
323 		if (bdi_min_ratio + min_ratio < 100) {
324 			bdi_min_ratio += min_ratio;
325 			bdi->min_ratio += min_ratio;
326 		} else {
327 			ret = -EINVAL;
328 		}
329 	}
330 	spin_unlock_bh(&bdi_lock);
331 
332 	return ret;
333 }
334 
335 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
336 {
337 	int ret = 0;
338 
339 	if (max_ratio > 100)
340 		return -EINVAL;
341 
342 	spin_lock_bh(&bdi_lock);
343 	if (bdi->min_ratio > max_ratio) {
344 		ret = -EINVAL;
345 	} else {
346 		bdi->max_ratio = max_ratio;
347 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
348 	}
349 	spin_unlock_bh(&bdi_lock);
350 
351 	return ret;
352 }
353 EXPORT_SYMBOL(bdi_set_max_ratio);
354 
355 /*
356  * Work out the current dirty-memory clamping and background writeout
357  * thresholds.
358  *
359  * The main aim here is to lower them aggressively if there is a lot of mapped
360  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
361  * pages.  It is better to clamp down on writers than to start swapping, and
362  * performing lots of scanning.
363  *
364  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
365  *
366  * We don't permit the clamping level to fall below 5% - that is getting rather
367  * excessive.
368  *
369  * We make sure that the background writeout level is below the adjusted
370  * clamping level.
371  */
372 
373 static unsigned long highmem_dirtyable_memory(unsigned long total)
374 {
375 #ifdef CONFIG_HIGHMEM
376 	int node;
377 	unsigned long x = 0;
378 
379 	for_each_node_state(node, N_HIGH_MEMORY) {
380 		struct zone *z =
381 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
382 
383 		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
384 	}
385 	/*
386 	 * Make sure that the number of highmem pages is never larger
387 	 * than the number of the total dirtyable memory. This can only
388 	 * occur in very strange VM situations but we want to make sure
389 	 * that this does not occur.
390 	 */
391 	return min(x, total);
392 #else
393 	return 0;
394 #endif
395 }
396 
397 /**
398  * determine_dirtyable_memory - amount of memory that may be used
399  *
400  * Returns the numebr of pages that can currently be freed and used
401  * by the kernel for direct mappings.
402  */
403 unsigned long determine_dirtyable_memory(void)
404 {
405 	unsigned long x;
406 
407 	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
408 
409 	if (!vm_highmem_is_dirtyable)
410 		x -= highmem_dirtyable_memory(x);
411 
412 	return x + 1;	/* Ensure that we never return 0 */
413 }
414 
415 void
416 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
417 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
418 {
419 	unsigned long background;
420 	unsigned long dirty;
421 	unsigned long available_memory = determine_dirtyable_memory();
422 	struct task_struct *tsk;
423 
424 	if (vm_dirty_bytes)
425 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
426 	else {
427 		int dirty_ratio;
428 
429 		dirty_ratio = vm_dirty_ratio;
430 		if (dirty_ratio < 5)
431 			dirty_ratio = 5;
432 		dirty = (dirty_ratio * available_memory) / 100;
433 	}
434 
435 	if (dirty_background_bytes)
436 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
437 	else
438 		background = (dirty_background_ratio * available_memory) / 100;
439 
440 	if (background >= dirty)
441 		background = dirty / 2;
442 	tsk = current;
443 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
444 		background += background / 4;
445 		dirty += dirty / 4;
446 	}
447 	*pbackground = background;
448 	*pdirty = dirty;
449 
450 	if (bdi) {
451 		u64 bdi_dirty;
452 		long numerator, denominator;
453 
454 		/*
455 		 * Calculate this BDI's share of the dirty ratio.
456 		 */
457 		bdi_writeout_fraction(bdi, &numerator, &denominator);
458 
459 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
460 		bdi_dirty *= numerator;
461 		do_div(bdi_dirty, denominator);
462 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
463 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
464 			bdi_dirty = dirty * bdi->max_ratio / 100;
465 
466 		*pbdi_dirty = bdi_dirty;
467 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
468 		task_dirty_limit(current, pbdi_dirty);
469 	}
470 }
471 
472 /*
473  * balance_dirty_pages() must be called by processes which are generating dirty
474  * data.  It looks at the number of dirty pages in the machine and will force
475  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
476  * If we're over `background_thresh' then pdflush is woken to perform some
477  * writeout.
478  */
479 static void balance_dirty_pages(struct address_space *mapping)
480 {
481 	long nr_reclaimable, bdi_nr_reclaimable;
482 	long nr_writeback, bdi_nr_writeback;
483 	unsigned long background_thresh;
484 	unsigned long dirty_thresh;
485 	unsigned long bdi_thresh;
486 	unsigned long pages_written = 0;
487 	unsigned long write_chunk = sync_writeback_pages();
488 
489 	struct backing_dev_info *bdi = mapping->backing_dev_info;
490 
491 	for (;;) {
492 		struct writeback_control wbc = {
493 			.bdi		= bdi,
494 			.sync_mode	= WB_SYNC_NONE,
495 			.older_than_this = NULL,
496 			.nr_to_write	= write_chunk,
497 			.range_cyclic	= 1,
498 		};
499 
500 		get_dirty_limits(&background_thresh, &dirty_thresh,
501 				&bdi_thresh, bdi);
502 
503 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
504 					global_page_state(NR_UNSTABLE_NFS);
505 		nr_writeback = global_page_state(NR_WRITEBACK);
506 
507 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
508 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
509 
510 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
511 			break;
512 
513 		/*
514 		 * Throttle it only when the background writeback cannot
515 		 * catch-up. This avoids (excessively) small writeouts
516 		 * when the bdi limits are ramping up.
517 		 */
518 		if (nr_reclaimable + nr_writeback <
519 				(background_thresh + dirty_thresh) / 2)
520 			break;
521 
522 		if (!bdi->dirty_exceeded)
523 			bdi->dirty_exceeded = 1;
524 
525 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
526 		 * Unstable writes are a feature of certain networked
527 		 * filesystems (i.e. NFS) in which data may have been
528 		 * written to the server's write cache, but has not yet
529 		 * been flushed to permanent storage.
530 		 * Only move pages to writeback if this bdi is over its
531 		 * threshold otherwise wait until the disk writes catch
532 		 * up.
533 		 */
534 		if (bdi_nr_reclaimable > bdi_thresh) {
535 			writeback_inodes_wbc(&wbc);
536 			pages_written += write_chunk - wbc.nr_to_write;
537 			get_dirty_limits(&background_thresh, &dirty_thresh,
538 				       &bdi_thresh, bdi);
539 		}
540 
541 		/*
542 		 * In order to avoid the stacked BDI deadlock we need
543 		 * to ensure we accurately count the 'dirty' pages when
544 		 * the threshold is low.
545 		 *
546 		 * Otherwise it would be possible to get thresh+n pages
547 		 * reported dirty, even though there are thresh-m pages
548 		 * actually dirty; with m+n sitting in the percpu
549 		 * deltas.
550 		 */
551 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
552 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
553 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
554 		} else if (bdi_nr_reclaimable) {
555 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
556 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
557 		}
558 
559 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
560 			break;
561 		if (pages_written >= write_chunk)
562 			break;		/* We've done our duty */
563 
564 		schedule_timeout(1);
565 	}
566 
567 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
568 			bdi->dirty_exceeded)
569 		bdi->dirty_exceeded = 0;
570 
571 	if (writeback_in_progress(bdi))
572 		return;		/* pdflush is already working this queue */
573 
574 	/*
575 	 * In laptop mode, we wait until hitting the higher threshold before
576 	 * starting background writeout, and then write out all the way down
577 	 * to the lower threshold.  So slow writers cause minimal disk activity.
578 	 *
579 	 * In normal mode, we start background writeout at the lower
580 	 * background_thresh, to keep the amount of dirty memory low.
581 	 */
582 	if ((laptop_mode && pages_written) ||
583 	    (!laptop_mode && ((nr_writeback = global_page_state(NR_FILE_DIRTY)
584 					  + global_page_state(NR_UNSTABLE_NFS))
585 					  > background_thresh)))
586 		bdi_start_writeback(bdi, nr_writeback);
587 }
588 
589 void set_page_dirty_balance(struct page *page, int page_mkwrite)
590 {
591 	if (set_page_dirty(page) || page_mkwrite) {
592 		struct address_space *mapping = page_mapping(page);
593 
594 		if (mapping)
595 			balance_dirty_pages_ratelimited(mapping);
596 	}
597 }
598 
599 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
600 
601 /**
602  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
603  * @mapping: address_space which was dirtied
604  * @nr_pages_dirtied: number of pages which the caller has just dirtied
605  *
606  * Processes which are dirtying memory should call in here once for each page
607  * which was newly dirtied.  The function will periodically check the system's
608  * dirty state and will initiate writeback if needed.
609  *
610  * On really big machines, get_writeback_state is expensive, so try to avoid
611  * calling it too often (ratelimiting).  But once we're over the dirty memory
612  * limit we decrease the ratelimiting by a lot, to prevent individual processes
613  * from overshooting the limit by (ratelimit_pages) each.
614  */
615 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
616 					unsigned long nr_pages_dirtied)
617 {
618 	unsigned long ratelimit;
619 	unsigned long *p;
620 
621 	ratelimit = ratelimit_pages;
622 	if (mapping->backing_dev_info->dirty_exceeded)
623 		ratelimit = 8;
624 
625 	/*
626 	 * Check the rate limiting. Also, we do not want to throttle real-time
627 	 * tasks in balance_dirty_pages(). Period.
628 	 */
629 	preempt_disable();
630 	p =  &__get_cpu_var(bdp_ratelimits);
631 	*p += nr_pages_dirtied;
632 	if (unlikely(*p >= ratelimit)) {
633 		*p = 0;
634 		preempt_enable();
635 		balance_dirty_pages(mapping);
636 		return;
637 	}
638 	preempt_enable();
639 }
640 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
641 
642 void throttle_vm_writeout(gfp_t gfp_mask)
643 {
644 	unsigned long background_thresh;
645 	unsigned long dirty_thresh;
646 
647         for ( ; ; ) {
648 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
649 
650                 /*
651                  * Boost the allowable dirty threshold a bit for page
652                  * allocators so they don't get DoS'ed by heavy writers
653                  */
654                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
655 
656                 if (global_page_state(NR_UNSTABLE_NFS) +
657 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
658                         	break;
659                 congestion_wait(BLK_RW_ASYNC, HZ/10);
660 
661 		/*
662 		 * The caller might hold locks which can prevent IO completion
663 		 * or progress in the filesystem.  So we cannot just sit here
664 		 * waiting for IO to complete.
665 		 */
666 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
667 			break;
668         }
669 }
670 
671 static void laptop_timer_fn(unsigned long unused);
672 
673 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
674 
675 /*
676  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
677  */
678 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
679 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
680 {
681 	proc_dointvec(table, write, file, buffer, length, ppos);
682 	return 0;
683 }
684 
685 static void do_laptop_sync(struct work_struct *work)
686 {
687 	wakeup_flusher_threads(0);
688 	kfree(work);
689 }
690 
691 static void laptop_timer_fn(unsigned long unused)
692 {
693 	struct work_struct *work;
694 
695 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
696 	if (work) {
697 		INIT_WORK(work, do_laptop_sync);
698 		schedule_work(work);
699 	}
700 }
701 
702 /*
703  * We've spun up the disk and we're in laptop mode: schedule writeback
704  * of all dirty data a few seconds from now.  If the flush is already scheduled
705  * then push it back - the user is still using the disk.
706  */
707 void laptop_io_completion(void)
708 {
709 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
710 }
711 
712 /*
713  * We're in laptop mode and we've just synced. The sync's writes will have
714  * caused another writeback to be scheduled by laptop_io_completion.
715  * Nothing needs to be written back anymore, so we unschedule the writeback.
716  */
717 void laptop_sync_completion(void)
718 {
719 	del_timer(&laptop_mode_wb_timer);
720 }
721 
722 /*
723  * If ratelimit_pages is too high then we can get into dirty-data overload
724  * if a large number of processes all perform writes at the same time.
725  * If it is too low then SMP machines will call the (expensive)
726  * get_writeback_state too often.
727  *
728  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
729  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
730  * thresholds before writeback cuts in.
731  *
732  * But the limit should not be set too high.  Because it also controls the
733  * amount of memory which the balance_dirty_pages() caller has to write back.
734  * If this is too large then the caller will block on the IO queue all the
735  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
736  * will write six megabyte chunks, max.
737  */
738 
739 void writeback_set_ratelimit(void)
740 {
741 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
742 	if (ratelimit_pages < 16)
743 		ratelimit_pages = 16;
744 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
745 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
746 }
747 
748 static int __cpuinit
749 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
750 {
751 	writeback_set_ratelimit();
752 	return NOTIFY_DONE;
753 }
754 
755 static struct notifier_block __cpuinitdata ratelimit_nb = {
756 	.notifier_call	= ratelimit_handler,
757 	.next		= NULL,
758 };
759 
760 /*
761  * Called early on to tune the page writeback dirty limits.
762  *
763  * We used to scale dirty pages according to how total memory
764  * related to pages that could be allocated for buffers (by
765  * comparing nr_free_buffer_pages() to vm_total_pages.
766  *
767  * However, that was when we used "dirty_ratio" to scale with
768  * all memory, and we don't do that any more. "dirty_ratio"
769  * is now applied to total non-HIGHPAGE memory (by subtracting
770  * totalhigh_pages from vm_total_pages), and as such we can't
771  * get into the old insane situation any more where we had
772  * large amounts of dirty pages compared to a small amount of
773  * non-HIGHMEM memory.
774  *
775  * But we might still want to scale the dirty_ratio by how
776  * much memory the box has..
777  */
778 void __init page_writeback_init(void)
779 {
780 	int shift;
781 
782 	writeback_set_ratelimit();
783 	register_cpu_notifier(&ratelimit_nb);
784 
785 	shift = calc_period_shift();
786 	prop_descriptor_init(&vm_completions, shift);
787 	prop_descriptor_init(&vm_dirties, shift);
788 }
789 
790 /**
791  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
792  * @mapping: address space structure to write
793  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
794  * @writepage: function called for each page
795  * @data: data passed to writepage function
796  *
797  * If a page is already under I/O, write_cache_pages() skips it, even
798  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
799  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
800  * and msync() need to guarantee that all the data which was dirty at the time
801  * the call was made get new I/O started against them.  If wbc->sync_mode is
802  * WB_SYNC_ALL then we were called for data integrity and we must wait for
803  * existing IO to complete.
804  */
805 int write_cache_pages(struct address_space *mapping,
806 		      struct writeback_control *wbc, writepage_t writepage,
807 		      void *data)
808 {
809 	struct backing_dev_info *bdi = mapping->backing_dev_info;
810 	int ret = 0;
811 	int done = 0;
812 	struct pagevec pvec;
813 	int nr_pages;
814 	pgoff_t uninitialized_var(writeback_index);
815 	pgoff_t index;
816 	pgoff_t end;		/* Inclusive */
817 	pgoff_t done_index;
818 	int cycled;
819 	int range_whole = 0;
820 	long nr_to_write = wbc->nr_to_write;
821 
822 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
823 		wbc->encountered_congestion = 1;
824 		return 0;
825 	}
826 
827 	pagevec_init(&pvec, 0);
828 	if (wbc->range_cyclic) {
829 		writeback_index = mapping->writeback_index; /* prev offset */
830 		index = writeback_index;
831 		if (index == 0)
832 			cycled = 1;
833 		else
834 			cycled = 0;
835 		end = -1;
836 	} else {
837 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
838 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
839 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
840 			range_whole = 1;
841 		cycled = 1; /* ignore range_cyclic tests */
842 	}
843 retry:
844 	done_index = index;
845 	while (!done && (index <= end)) {
846 		int i;
847 
848 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
849 			      PAGECACHE_TAG_DIRTY,
850 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
851 		if (nr_pages == 0)
852 			break;
853 
854 		for (i = 0; i < nr_pages; i++) {
855 			struct page *page = pvec.pages[i];
856 
857 			/*
858 			 * At this point, the page may be truncated or
859 			 * invalidated (changing page->mapping to NULL), or
860 			 * even swizzled back from swapper_space to tmpfs file
861 			 * mapping. However, page->index will not change
862 			 * because we have a reference on the page.
863 			 */
864 			if (page->index > end) {
865 				/*
866 				 * can't be range_cyclic (1st pass) because
867 				 * end == -1 in that case.
868 				 */
869 				done = 1;
870 				break;
871 			}
872 
873 			done_index = page->index + 1;
874 
875 			lock_page(page);
876 
877 			/*
878 			 * Page truncated or invalidated. We can freely skip it
879 			 * then, even for data integrity operations: the page
880 			 * has disappeared concurrently, so there could be no
881 			 * real expectation of this data interity operation
882 			 * even if there is now a new, dirty page at the same
883 			 * pagecache address.
884 			 */
885 			if (unlikely(page->mapping != mapping)) {
886 continue_unlock:
887 				unlock_page(page);
888 				continue;
889 			}
890 
891 			if (!PageDirty(page)) {
892 				/* someone wrote it for us */
893 				goto continue_unlock;
894 			}
895 
896 			if (PageWriteback(page)) {
897 				if (wbc->sync_mode != WB_SYNC_NONE)
898 					wait_on_page_writeback(page);
899 				else
900 					goto continue_unlock;
901 			}
902 
903 			BUG_ON(PageWriteback(page));
904 			if (!clear_page_dirty_for_io(page))
905 				goto continue_unlock;
906 
907 			ret = (*writepage)(page, wbc, data);
908 			if (unlikely(ret)) {
909 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
910 					unlock_page(page);
911 					ret = 0;
912 				} else {
913 					/*
914 					 * done_index is set past this page,
915 					 * so media errors will not choke
916 					 * background writeout for the entire
917 					 * file. This has consequences for
918 					 * range_cyclic semantics (ie. it may
919 					 * not be suitable for data integrity
920 					 * writeout).
921 					 */
922 					done = 1;
923 					break;
924 				}
925  			}
926 
927 			if (nr_to_write > 0) {
928 				nr_to_write--;
929 				if (nr_to_write == 0 &&
930 				    wbc->sync_mode == WB_SYNC_NONE) {
931 					/*
932 					 * We stop writing back only if we are
933 					 * not doing integrity sync. In case of
934 					 * integrity sync we have to keep going
935 					 * because someone may be concurrently
936 					 * dirtying pages, and we might have
937 					 * synced a lot of newly appeared dirty
938 					 * pages, but have not synced all of the
939 					 * old dirty pages.
940 					 */
941 					done = 1;
942 					break;
943 				}
944 			}
945 
946 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
947 				wbc->encountered_congestion = 1;
948 				done = 1;
949 				break;
950 			}
951 		}
952 		pagevec_release(&pvec);
953 		cond_resched();
954 	}
955 	if (!cycled && !done) {
956 		/*
957 		 * range_cyclic:
958 		 * We hit the last page and there is more work to be done: wrap
959 		 * back to the start of the file
960 		 */
961 		cycled = 1;
962 		index = 0;
963 		end = writeback_index - 1;
964 		goto retry;
965 	}
966 	if (!wbc->no_nrwrite_index_update) {
967 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
968 			mapping->writeback_index = done_index;
969 		wbc->nr_to_write = nr_to_write;
970 	}
971 
972 	return ret;
973 }
974 EXPORT_SYMBOL(write_cache_pages);
975 
976 /*
977  * Function used by generic_writepages to call the real writepage
978  * function and set the mapping flags on error
979  */
980 static int __writepage(struct page *page, struct writeback_control *wbc,
981 		       void *data)
982 {
983 	struct address_space *mapping = data;
984 	int ret = mapping->a_ops->writepage(page, wbc);
985 	mapping_set_error(mapping, ret);
986 	return ret;
987 }
988 
989 /**
990  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
991  * @mapping: address space structure to write
992  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
993  *
994  * This is a library function, which implements the writepages()
995  * address_space_operation.
996  */
997 int generic_writepages(struct address_space *mapping,
998 		       struct writeback_control *wbc)
999 {
1000 	/* deal with chardevs and other special file */
1001 	if (!mapping->a_ops->writepage)
1002 		return 0;
1003 
1004 	return write_cache_pages(mapping, wbc, __writepage, mapping);
1005 }
1006 
1007 EXPORT_SYMBOL(generic_writepages);
1008 
1009 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1010 {
1011 	int ret;
1012 
1013 	if (wbc->nr_to_write <= 0)
1014 		return 0;
1015 	if (mapping->a_ops->writepages)
1016 		ret = mapping->a_ops->writepages(mapping, wbc);
1017 	else
1018 		ret = generic_writepages(mapping, wbc);
1019 	return ret;
1020 }
1021 
1022 /**
1023  * write_one_page - write out a single page and optionally wait on I/O
1024  * @page: the page to write
1025  * @wait: if true, wait on writeout
1026  *
1027  * The page must be locked by the caller and will be unlocked upon return.
1028  *
1029  * write_one_page() returns a negative error code if I/O failed.
1030  */
1031 int write_one_page(struct page *page, int wait)
1032 {
1033 	struct address_space *mapping = page->mapping;
1034 	int ret = 0;
1035 	struct writeback_control wbc = {
1036 		.sync_mode = WB_SYNC_ALL,
1037 		.nr_to_write = 1,
1038 	};
1039 
1040 	BUG_ON(!PageLocked(page));
1041 
1042 	if (wait)
1043 		wait_on_page_writeback(page);
1044 
1045 	if (clear_page_dirty_for_io(page)) {
1046 		page_cache_get(page);
1047 		ret = mapping->a_ops->writepage(page, &wbc);
1048 		if (ret == 0 && wait) {
1049 			wait_on_page_writeback(page);
1050 			if (PageError(page))
1051 				ret = -EIO;
1052 		}
1053 		page_cache_release(page);
1054 	} else {
1055 		unlock_page(page);
1056 	}
1057 	return ret;
1058 }
1059 EXPORT_SYMBOL(write_one_page);
1060 
1061 /*
1062  * For address_spaces which do not use buffers nor write back.
1063  */
1064 int __set_page_dirty_no_writeback(struct page *page)
1065 {
1066 	if (!PageDirty(page))
1067 		SetPageDirty(page);
1068 	return 0;
1069 }
1070 
1071 /*
1072  * Helper function for set_page_dirty family.
1073  * NOTE: This relies on being atomic wrt interrupts.
1074  */
1075 void account_page_dirtied(struct page *page, struct address_space *mapping)
1076 {
1077 	if (mapping_cap_account_dirty(mapping)) {
1078 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1079 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1080 		task_dirty_inc(current);
1081 		task_io_account_write(PAGE_CACHE_SIZE);
1082 	}
1083 }
1084 
1085 /*
1086  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1087  * its radix tree.
1088  *
1089  * This is also used when a single buffer is being dirtied: we want to set the
1090  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1091  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1092  *
1093  * Most callers have locked the page, which pins the address_space in memory.
1094  * But zap_pte_range() does not lock the page, however in that case the
1095  * mapping is pinned by the vma's ->vm_file reference.
1096  *
1097  * We take care to handle the case where the page was truncated from the
1098  * mapping by re-checking page_mapping() inside tree_lock.
1099  */
1100 int __set_page_dirty_nobuffers(struct page *page)
1101 {
1102 	if (!TestSetPageDirty(page)) {
1103 		struct address_space *mapping = page_mapping(page);
1104 		struct address_space *mapping2;
1105 
1106 		if (!mapping)
1107 			return 1;
1108 
1109 		spin_lock_irq(&mapping->tree_lock);
1110 		mapping2 = page_mapping(page);
1111 		if (mapping2) { /* Race with truncate? */
1112 			BUG_ON(mapping2 != mapping);
1113 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1114 			account_page_dirtied(page, mapping);
1115 			radix_tree_tag_set(&mapping->page_tree,
1116 				page_index(page), PAGECACHE_TAG_DIRTY);
1117 		}
1118 		spin_unlock_irq(&mapping->tree_lock);
1119 		if (mapping->host) {
1120 			/* !PageAnon && !swapper_space */
1121 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1122 		}
1123 		return 1;
1124 	}
1125 	return 0;
1126 }
1127 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1128 
1129 /*
1130  * When a writepage implementation decides that it doesn't want to write this
1131  * page for some reason, it should redirty the locked page via
1132  * redirty_page_for_writepage() and it should then unlock the page and return 0
1133  */
1134 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1135 {
1136 	wbc->pages_skipped++;
1137 	return __set_page_dirty_nobuffers(page);
1138 }
1139 EXPORT_SYMBOL(redirty_page_for_writepage);
1140 
1141 /*
1142  * If the mapping doesn't provide a set_page_dirty a_op, then
1143  * just fall through and assume that it wants buffer_heads.
1144  */
1145 int set_page_dirty(struct page *page)
1146 {
1147 	struct address_space *mapping = page_mapping(page);
1148 
1149 	if (likely(mapping)) {
1150 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1151 #ifdef CONFIG_BLOCK
1152 		if (!spd)
1153 			spd = __set_page_dirty_buffers;
1154 #endif
1155 		return (*spd)(page);
1156 	}
1157 	if (!PageDirty(page)) {
1158 		if (!TestSetPageDirty(page))
1159 			return 1;
1160 	}
1161 	return 0;
1162 }
1163 EXPORT_SYMBOL(set_page_dirty);
1164 
1165 /*
1166  * set_page_dirty() is racy if the caller has no reference against
1167  * page->mapping->host, and if the page is unlocked.  This is because another
1168  * CPU could truncate the page off the mapping and then free the mapping.
1169  *
1170  * Usually, the page _is_ locked, or the caller is a user-space process which
1171  * holds a reference on the inode by having an open file.
1172  *
1173  * In other cases, the page should be locked before running set_page_dirty().
1174  */
1175 int set_page_dirty_lock(struct page *page)
1176 {
1177 	int ret;
1178 
1179 	lock_page_nosync(page);
1180 	ret = set_page_dirty(page);
1181 	unlock_page(page);
1182 	return ret;
1183 }
1184 EXPORT_SYMBOL(set_page_dirty_lock);
1185 
1186 /*
1187  * Clear a page's dirty flag, while caring for dirty memory accounting.
1188  * Returns true if the page was previously dirty.
1189  *
1190  * This is for preparing to put the page under writeout.  We leave the page
1191  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1192  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1193  * implementation will run either set_page_writeback() or set_page_dirty(),
1194  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1195  * back into sync.
1196  *
1197  * This incoherency between the page's dirty flag and radix-tree tag is
1198  * unfortunate, but it only exists while the page is locked.
1199  */
1200 int clear_page_dirty_for_io(struct page *page)
1201 {
1202 	struct address_space *mapping = page_mapping(page);
1203 
1204 	BUG_ON(!PageLocked(page));
1205 
1206 	ClearPageReclaim(page);
1207 	if (mapping && mapping_cap_account_dirty(mapping)) {
1208 		/*
1209 		 * Yes, Virginia, this is indeed insane.
1210 		 *
1211 		 * We use this sequence to make sure that
1212 		 *  (a) we account for dirty stats properly
1213 		 *  (b) we tell the low-level filesystem to
1214 		 *      mark the whole page dirty if it was
1215 		 *      dirty in a pagetable. Only to then
1216 		 *  (c) clean the page again and return 1 to
1217 		 *      cause the writeback.
1218 		 *
1219 		 * This way we avoid all nasty races with the
1220 		 * dirty bit in multiple places and clearing
1221 		 * them concurrently from different threads.
1222 		 *
1223 		 * Note! Normally the "set_page_dirty(page)"
1224 		 * has no effect on the actual dirty bit - since
1225 		 * that will already usually be set. But we
1226 		 * need the side effects, and it can help us
1227 		 * avoid races.
1228 		 *
1229 		 * We basically use the page "master dirty bit"
1230 		 * as a serialization point for all the different
1231 		 * threads doing their things.
1232 		 */
1233 		if (page_mkclean(page))
1234 			set_page_dirty(page);
1235 		/*
1236 		 * We carefully synchronise fault handlers against
1237 		 * installing a dirty pte and marking the page dirty
1238 		 * at this point. We do this by having them hold the
1239 		 * page lock at some point after installing their
1240 		 * pte, but before marking the page dirty.
1241 		 * Pages are always locked coming in here, so we get
1242 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1243 		 * for more comments.
1244 		 */
1245 		if (TestClearPageDirty(page)) {
1246 			dec_zone_page_state(page, NR_FILE_DIRTY);
1247 			dec_bdi_stat(mapping->backing_dev_info,
1248 					BDI_RECLAIMABLE);
1249 			return 1;
1250 		}
1251 		return 0;
1252 	}
1253 	return TestClearPageDirty(page);
1254 }
1255 EXPORT_SYMBOL(clear_page_dirty_for_io);
1256 
1257 int test_clear_page_writeback(struct page *page)
1258 {
1259 	struct address_space *mapping = page_mapping(page);
1260 	int ret;
1261 
1262 	if (mapping) {
1263 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1264 		unsigned long flags;
1265 
1266 		spin_lock_irqsave(&mapping->tree_lock, flags);
1267 		ret = TestClearPageWriteback(page);
1268 		if (ret) {
1269 			radix_tree_tag_clear(&mapping->page_tree,
1270 						page_index(page),
1271 						PAGECACHE_TAG_WRITEBACK);
1272 			if (bdi_cap_account_writeback(bdi)) {
1273 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1274 				__bdi_writeout_inc(bdi);
1275 			}
1276 		}
1277 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1278 	} else {
1279 		ret = TestClearPageWriteback(page);
1280 	}
1281 	if (ret)
1282 		dec_zone_page_state(page, NR_WRITEBACK);
1283 	return ret;
1284 }
1285 
1286 int test_set_page_writeback(struct page *page)
1287 {
1288 	struct address_space *mapping = page_mapping(page);
1289 	int ret;
1290 
1291 	if (mapping) {
1292 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1293 		unsigned long flags;
1294 
1295 		spin_lock_irqsave(&mapping->tree_lock, flags);
1296 		ret = TestSetPageWriteback(page);
1297 		if (!ret) {
1298 			radix_tree_tag_set(&mapping->page_tree,
1299 						page_index(page),
1300 						PAGECACHE_TAG_WRITEBACK);
1301 			if (bdi_cap_account_writeback(bdi))
1302 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1303 		}
1304 		if (!PageDirty(page))
1305 			radix_tree_tag_clear(&mapping->page_tree,
1306 						page_index(page),
1307 						PAGECACHE_TAG_DIRTY);
1308 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1309 	} else {
1310 		ret = TestSetPageWriteback(page);
1311 	}
1312 	if (!ret)
1313 		inc_zone_page_state(page, NR_WRITEBACK);
1314 	return ret;
1315 
1316 }
1317 EXPORT_SYMBOL(test_set_page_writeback);
1318 
1319 /*
1320  * Return true if any of the pages in the mapping are marked with the
1321  * passed tag.
1322  */
1323 int mapping_tagged(struct address_space *mapping, int tag)
1324 {
1325 	int ret;
1326 	rcu_read_lock();
1327 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1328 	rcu_read_unlock();
1329 	return ret;
1330 }
1331 EXPORT_SYMBOL(mapping_tagged);
1332