xref: /openbmc/linux/mm/page-writeback.c (revision fa840ba4)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 static int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 static unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 static int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 static int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 static unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116 
117 EXPORT_SYMBOL(laptop_mode);
118 
119 /* End of sysctl-exported parameters */
120 
121 struct wb_domain global_wb_domain;
122 
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 	struct wb_domain	*dom;
127 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
128 #endif
129 	struct bdi_writeback	*wb;
130 	struct fprop_local_percpu *wb_completions;
131 
132 	unsigned long		avail;		/* dirtyable */
133 	unsigned long		dirty;		/* file_dirty + write + nfs */
134 	unsigned long		thresh;		/* dirty threshold */
135 	unsigned long		bg_thresh;	/* dirty background threshold */
136 
137 	unsigned long		wb_dirty;	/* per-wb counterparts */
138 	unsigned long		wb_thresh;
139 	unsigned long		wb_bg_thresh;
140 
141 	unsigned long		pos_ratio;
142 };
143 
144 /*
145  * Length of period for aging writeout fractions of bdis. This is an
146  * arbitrarily chosen number. The longer the period, the slower fractions will
147  * reflect changes in current writeout rate.
148  */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150 
151 #ifdef CONFIG_CGROUP_WRITEBACK
152 
153 #define GDTC_INIT(__wb)		.wb = (__wb),				\
154 				.dom = &global_wb_domain,		\
155 				.wb_completions = &(__wb)->completions
156 
157 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
158 
159 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
160 				.dom = mem_cgroup_wb_domain(__wb),	\
161 				.wb_completions = &(__wb)->memcg_completions, \
162 				.gdtc = __gdtc
163 
164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166 	return dtc->dom;
167 }
168 
169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171 	return dtc->dom;
172 }
173 
174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176 	return mdtc->gdtc;
177 }
178 
179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181 	return &wb->memcg_completions;
182 }
183 
184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185 			     unsigned long *minp, unsigned long *maxp)
186 {
187 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 	unsigned long long min = wb->bdi->min_ratio;
190 	unsigned long long max = wb->bdi->max_ratio;
191 
192 	/*
193 	 * @wb may already be clean by the time control reaches here and
194 	 * the total may not include its bw.
195 	 */
196 	if (this_bw < tot_bw) {
197 		if (min) {
198 			min *= this_bw;
199 			min = div64_ul(min, tot_bw);
200 		}
201 		if (max < 100 * BDI_RATIO_SCALE) {
202 			max *= this_bw;
203 			max = div64_ul(max, tot_bw);
204 		}
205 	}
206 
207 	*minp = min;
208 	*maxp = max;
209 }
210 
211 #else	/* CONFIG_CGROUP_WRITEBACK */
212 
213 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
214 				.wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217 
218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220 	return false;
221 }
222 
223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225 	return &global_wb_domain;
226 }
227 
228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230 	return NULL;
231 }
232 
233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235 	return NULL;
236 }
237 
238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239 			     unsigned long *minp, unsigned long *maxp)
240 {
241 	*minp = wb->bdi->min_ratio;
242 	*maxp = wb->bdi->max_ratio;
243 }
244 
245 #endif	/* CONFIG_CGROUP_WRITEBACK */
246 
247 /*
248  * In a memory zone, there is a certain amount of pages we consider
249  * available for the page cache, which is essentially the number of
250  * free and reclaimable pages, minus some zone reserves to protect
251  * lowmem and the ability to uphold the zone's watermarks without
252  * requiring writeback.
253  *
254  * This number of dirtyable pages is the base value of which the
255  * user-configurable dirty ratio is the effective number of pages that
256  * are allowed to be actually dirtied.  Per individual zone, or
257  * globally by using the sum of dirtyable pages over all zones.
258  *
259  * Because the user is allowed to specify the dirty limit globally as
260  * absolute number of bytes, calculating the per-zone dirty limit can
261  * require translating the configured limit into a percentage of
262  * global dirtyable memory first.
263  */
264 
265 /**
266  * node_dirtyable_memory - number of dirtyable pages in a node
267  * @pgdat: the node
268  *
269  * Return: the node's number of pages potentially available for dirty
270  * page cache.  This is the base value for the per-node dirty limits.
271  */
272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274 	unsigned long nr_pages = 0;
275 	int z;
276 
277 	for (z = 0; z < MAX_NR_ZONES; z++) {
278 		struct zone *zone = pgdat->node_zones + z;
279 
280 		if (!populated_zone(zone))
281 			continue;
282 
283 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 	}
285 
286 	/*
287 	 * Pages reserved for the kernel should not be considered
288 	 * dirtyable, to prevent a situation where reclaim has to
289 	 * clean pages in order to balance the zones.
290 	 */
291 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292 
293 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295 
296 	return nr_pages;
297 }
298 
299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302 	int node;
303 	unsigned long x = 0;
304 	int i;
305 
306 	for_each_node_state(node, N_HIGH_MEMORY) {
307 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 			struct zone *z;
309 			unsigned long nr_pages;
310 
311 			if (!is_highmem_idx(i))
312 				continue;
313 
314 			z = &NODE_DATA(node)->node_zones[i];
315 			if (!populated_zone(z))
316 				continue;
317 
318 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
319 			/* watch for underflows */
320 			nr_pages -= min(nr_pages, high_wmark_pages(z));
321 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 			x += nr_pages;
324 		}
325 	}
326 
327 	/*
328 	 * Make sure that the number of highmem pages is never larger
329 	 * than the number of the total dirtyable memory. This can only
330 	 * occur in very strange VM situations but we want to make sure
331 	 * that this does not occur.
332 	 */
333 	return min(x, total);
334 #else
335 	return 0;
336 #endif
337 }
338 
339 /**
340  * global_dirtyable_memory - number of globally dirtyable pages
341  *
342  * Return: the global number of pages potentially available for dirty
343  * page cache.  This is the base value for the global dirty limits.
344  */
345 static unsigned long global_dirtyable_memory(void)
346 {
347 	unsigned long x;
348 
349 	x = global_zone_page_state(NR_FREE_PAGES);
350 	/*
351 	 * Pages reserved for the kernel should not be considered
352 	 * dirtyable, to prevent a situation where reclaim has to
353 	 * clean pages in order to balance the zones.
354 	 */
355 	x -= min(x, totalreserve_pages);
356 
357 	x += global_node_page_state(NR_INACTIVE_FILE);
358 	x += global_node_page_state(NR_ACTIVE_FILE);
359 
360 	if (!vm_highmem_is_dirtyable)
361 		x -= highmem_dirtyable_memory(x);
362 
363 	return x + 1;	/* Ensure that we never return 0 */
364 }
365 
366 /**
367  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368  * @dtc: dirty_throttle_control of interest
369  *
370  * Calculate @dtc->thresh and ->bg_thresh considering
371  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
372  * must ensure that @dtc->avail is set before calling this function.  The
373  * dirty limits will be lifted by 1/4 for real-time tasks.
374  */
375 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
376 {
377 	const unsigned long available_memory = dtc->avail;
378 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 	unsigned long bytes = vm_dirty_bytes;
380 	unsigned long bg_bytes = dirty_background_bytes;
381 	/* convert ratios to per-PAGE_SIZE for higher precision */
382 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384 	unsigned long thresh;
385 	unsigned long bg_thresh;
386 	struct task_struct *tsk;
387 
388 	/* gdtc is !NULL iff @dtc is for memcg domain */
389 	if (gdtc) {
390 		unsigned long global_avail = gdtc->avail;
391 
392 		/*
393 		 * The byte settings can't be applied directly to memcg
394 		 * domains.  Convert them to ratios by scaling against
395 		 * globally available memory.  As the ratios are in
396 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
397 		 * number of pages.
398 		 */
399 		if (bytes)
400 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
401 				    PAGE_SIZE);
402 		if (bg_bytes)
403 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404 				       PAGE_SIZE);
405 		bytes = bg_bytes = 0;
406 	}
407 
408 	if (bytes)
409 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
410 	else
411 		thresh = (ratio * available_memory) / PAGE_SIZE;
412 
413 	if (bg_bytes)
414 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
415 	else
416 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
417 
418 	tsk = current;
419 	if (rt_task(tsk)) {
420 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
421 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
422 	}
423 	/*
424 	 * Dirty throttling logic assumes the limits in page units fit into
425 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
426 	 */
427 	if (thresh > UINT_MAX)
428 		thresh = UINT_MAX;
429 	/* This makes sure bg_thresh is within 32-bits as well */
430 	if (bg_thresh >= thresh)
431 		bg_thresh = thresh / 2;
432 	dtc->thresh = thresh;
433 	dtc->bg_thresh = bg_thresh;
434 
435 	/* we should eventually report the domain in the TP */
436 	if (!gdtc)
437 		trace_global_dirty_state(bg_thresh, thresh);
438 }
439 
440 /**
441  * global_dirty_limits - background-writeback and dirty-throttling thresholds
442  * @pbackground: out parameter for bg_thresh
443  * @pdirty: out parameter for thresh
444  *
445  * Calculate bg_thresh and thresh for global_wb_domain.  See
446  * domain_dirty_limits() for details.
447  */
448 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
449 {
450 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
451 
452 	gdtc.avail = global_dirtyable_memory();
453 	domain_dirty_limits(&gdtc);
454 
455 	*pbackground = gdtc.bg_thresh;
456 	*pdirty = gdtc.thresh;
457 }
458 
459 /**
460  * node_dirty_limit - maximum number of dirty pages allowed in a node
461  * @pgdat: the node
462  *
463  * Return: the maximum number of dirty pages allowed in a node, based
464  * on the node's dirtyable memory.
465  */
466 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
467 {
468 	unsigned long node_memory = node_dirtyable_memory(pgdat);
469 	struct task_struct *tsk = current;
470 	unsigned long dirty;
471 
472 	if (vm_dirty_bytes)
473 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
474 			node_memory / global_dirtyable_memory();
475 	else
476 		dirty = vm_dirty_ratio * node_memory / 100;
477 
478 	if (rt_task(tsk))
479 		dirty += dirty / 4;
480 
481 	/*
482 	 * Dirty throttling logic assumes the limits in page units fit into
483 	 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
484 	 */
485 	return min_t(unsigned long, dirty, UINT_MAX);
486 }
487 
488 /**
489  * node_dirty_ok - tells whether a node is within its dirty limits
490  * @pgdat: the node to check
491  *
492  * Return: %true when the dirty pages in @pgdat are within the node's
493  * dirty limit, %false if the limit is exceeded.
494  */
495 bool node_dirty_ok(struct pglist_data *pgdat)
496 {
497 	unsigned long limit = node_dirty_limit(pgdat);
498 	unsigned long nr_pages = 0;
499 
500 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
501 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
502 
503 	return nr_pages <= limit;
504 }
505 
506 #ifdef CONFIG_SYSCTL
507 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
508 		void *buffer, size_t *lenp, loff_t *ppos)
509 {
510 	int ret;
511 
512 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
513 	if (ret == 0 && write)
514 		dirty_background_bytes = 0;
515 	return ret;
516 }
517 
518 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
519 		void *buffer, size_t *lenp, loff_t *ppos)
520 {
521 	int ret;
522 	unsigned long old_bytes = dirty_background_bytes;
523 
524 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
525 	if (ret == 0 && write) {
526 		if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
527 								UINT_MAX) {
528 			dirty_background_bytes = old_bytes;
529 			return -ERANGE;
530 		}
531 		dirty_background_ratio = 0;
532 	}
533 	return ret;
534 }
535 
536 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
537 		size_t *lenp, loff_t *ppos)
538 {
539 	int old_ratio = vm_dirty_ratio;
540 	int ret;
541 
542 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
543 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
544 		writeback_set_ratelimit();
545 		vm_dirty_bytes = 0;
546 	}
547 	return ret;
548 }
549 
550 static int dirty_bytes_handler(struct ctl_table *table, int write,
551 		void *buffer, size_t *lenp, loff_t *ppos)
552 {
553 	unsigned long old_bytes = vm_dirty_bytes;
554 	int ret;
555 
556 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
557 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
558 		if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
559 			vm_dirty_bytes = old_bytes;
560 			return -ERANGE;
561 		}
562 		writeback_set_ratelimit();
563 		vm_dirty_ratio = 0;
564 	}
565 	return ret;
566 }
567 #endif
568 
569 static unsigned long wp_next_time(unsigned long cur_time)
570 {
571 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
572 	/* 0 has a special meaning... */
573 	if (!cur_time)
574 		return 1;
575 	return cur_time;
576 }
577 
578 static void wb_domain_writeout_add(struct wb_domain *dom,
579 				   struct fprop_local_percpu *completions,
580 				   unsigned int max_prop_frac, long nr)
581 {
582 	__fprop_add_percpu_max(&dom->completions, completions,
583 			       max_prop_frac, nr);
584 	/* First event after period switching was turned off? */
585 	if (unlikely(!dom->period_time)) {
586 		/*
587 		 * We can race with other __bdi_writeout_inc calls here but
588 		 * it does not cause any harm since the resulting time when
589 		 * timer will fire and what is in writeout_period_time will be
590 		 * roughly the same.
591 		 */
592 		dom->period_time = wp_next_time(jiffies);
593 		mod_timer(&dom->period_timer, dom->period_time);
594 	}
595 }
596 
597 /*
598  * Increment @wb's writeout completion count and the global writeout
599  * completion count. Called from __folio_end_writeback().
600  */
601 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
602 {
603 	struct wb_domain *cgdom;
604 
605 	wb_stat_mod(wb, WB_WRITTEN, nr);
606 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
607 			       wb->bdi->max_prop_frac, nr);
608 
609 	cgdom = mem_cgroup_wb_domain(wb);
610 	if (cgdom)
611 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
612 				       wb->bdi->max_prop_frac, nr);
613 }
614 
615 void wb_writeout_inc(struct bdi_writeback *wb)
616 {
617 	unsigned long flags;
618 
619 	local_irq_save(flags);
620 	__wb_writeout_add(wb, 1);
621 	local_irq_restore(flags);
622 }
623 EXPORT_SYMBOL_GPL(wb_writeout_inc);
624 
625 /*
626  * On idle system, we can be called long after we scheduled because we use
627  * deferred timers so count with missed periods.
628  */
629 static void writeout_period(struct timer_list *t)
630 {
631 	struct wb_domain *dom = from_timer(dom, t, period_timer);
632 	int miss_periods = (jiffies - dom->period_time) /
633 						 VM_COMPLETIONS_PERIOD_LEN;
634 
635 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
636 		dom->period_time = wp_next_time(dom->period_time +
637 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
638 		mod_timer(&dom->period_timer, dom->period_time);
639 	} else {
640 		/*
641 		 * Aging has zeroed all fractions. Stop wasting CPU on period
642 		 * updates.
643 		 */
644 		dom->period_time = 0;
645 	}
646 }
647 
648 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
649 {
650 	memset(dom, 0, sizeof(*dom));
651 
652 	spin_lock_init(&dom->lock);
653 
654 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
655 
656 	dom->dirty_limit_tstamp = jiffies;
657 
658 	return fprop_global_init(&dom->completions, gfp);
659 }
660 
661 #ifdef CONFIG_CGROUP_WRITEBACK
662 void wb_domain_exit(struct wb_domain *dom)
663 {
664 	del_timer_sync(&dom->period_timer);
665 	fprop_global_destroy(&dom->completions);
666 }
667 #endif
668 
669 /*
670  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
671  * registered backing devices, which, for obvious reasons, can not
672  * exceed 100%.
673  */
674 static unsigned int bdi_min_ratio;
675 
676 static int bdi_check_pages_limit(unsigned long pages)
677 {
678 	unsigned long max_dirty_pages = global_dirtyable_memory();
679 
680 	if (pages > max_dirty_pages)
681 		return -EINVAL;
682 
683 	return 0;
684 }
685 
686 static unsigned long bdi_ratio_from_pages(unsigned long pages)
687 {
688 	unsigned long background_thresh;
689 	unsigned long dirty_thresh;
690 	unsigned long ratio;
691 
692 	global_dirty_limits(&background_thresh, &dirty_thresh);
693 	ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
694 
695 	return ratio;
696 }
697 
698 static u64 bdi_get_bytes(unsigned int ratio)
699 {
700 	unsigned long background_thresh;
701 	unsigned long dirty_thresh;
702 	u64 bytes;
703 
704 	global_dirty_limits(&background_thresh, &dirty_thresh);
705 	bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
706 
707 	return bytes;
708 }
709 
710 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
711 {
712 	unsigned int delta;
713 	int ret = 0;
714 
715 	if (min_ratio > 100 * BDI_RATIO_SCALE)
716 		return -EINVAL;
717 	min_ratio *= BDI_RATIO_SCALE;
718 
719 	spin_lock_bh(&bdi_lock);
720 	if (min_ratio > bdi->max_ratio) {
721 		ret = -EINVAL;
722 	} else {
723 		if (min_ratio < bdi->min_ratio) {
724 			delta = bdi->min_ratio - min_ratio;
725 			bdi_min_ratio -= delta;
726 			bdi->min_ratio = min_ratio;
727 		} else {
728 			delta = min_ratio - bdi->min_ratio;
729 			if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
730 				bdi_min_ratio += delta;
731 				bdi->min_ratio = min_ratio;
732 			} else {
733 				ret = -EINVAL;
734 			}
735 		}
736 	}
737 	spin_unlock_bh(&bdi_lock);
738 
739 	return ret;
740 }
741 
742 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
743 {
744 	int ret = 0;
745 
746 	if (max_ratio > 100 * BDI_RATIO_SCALE)
747 		return -EINVAL;
748 
749 	spin_lock_bh(&bdi_lock);
750 	if (bdi->min_ratio > max_ratio) {
751 		ret = -EINVAL;
752 	} else {
753 		bdi->max_ratio = max_ratio;
754 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
755 	}
756 	spin_unlock_bh(&bdi_lock);
757 
758 	return ret;
759 }
760 
761 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
762 {
763 	return __bdi_set_min_ratio(bdi, min_ratio);
764 }
765 
766 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
767 {
768 	return __bdi_set_max_ratio(bdi, max_ratio);
769 }
770 
771 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
772 {
773 	return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
774 }
775 
776 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
777 {
778 	return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
779 }
780 EXPORT_SYMBOL(bdi_set_max_ratio);
781 
782 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
783 {
784 	return bdi_get_bytes(bdi->min_ratio);
785 }
786 
787 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
788 {
789 	int ret;
790 	unsigned long pages = min_bytes >> PAGE_SHIFT;
791 	unsigned long min_ratio;
792 
793 	ret = bdi_check_pages_limit(pages);
794 	if (ret)
795 		return ret;
796 
797 	min_ratio = bdi_ratio_from_pages(pages);
798 	return __bdi_set_min_ratio(bdi, min_ratio);
799 }
800 
801 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
802 {
803 	return bdi_get_bytes(bdi->max_ratio);
804 }
805 
806 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
807 {
808 	int ret;
809 	unsigned long pages = max_bytes >> PAGE_SHIFT;
810 	unsigned long max_ratio;
811 
812 	ret = bdi_check_pages_limit(pages);
813 	if (ret)
814 		return ret;
815 
816 	max_ratio = bdi_ratio_from_pages(pages);
817 	return __bdi_set_max_ratio(bdi, max_ratio);
818 }
819 
820 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
821 {
822 	if (strict_limit > 1)
823 		return -EINVAL;
824 
825 	spin_lock_bh(&bdi_lock);
826 	if (strict_limit)
827 		bdi->capabilities |= BDI_CAP_STRICTLIMIT;
828 	else
829 		bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
830 	spin_unlock_bh(&bdi_lock);
831 
832 	return 0;
833 }
834 
835 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
836 					   unsigned long bg_thresh)
837 {
838 	return (thresh + bg_thresh) / 2;
839 }
840 
841 static unsigned long hard_dirty_limit(struct wb_domain *dom,
842 				      unsigned long thresh)
843 {
844 	return max(thresh, dom->dirty_limit);
845 }
846 
847 /*
848  * Memory which can be further allocated to a memcg domain is capped by
849  * system-wide clean memory excluding the amount being used in the domain.
850  */
851 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
852 			    unsigned long filepages, unsigned long headroom)
853 {
854 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
855 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
856 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
857 	unsigned long other_clean = global_clean - min(global_clean, clean);
858 
859 	mdtc->avail = filepages + min(headroom, other_clean);
860 }
861 
862 /**
863  * __wb_calc_thresh - @wb's share of dirty throttling threshold
864  * @dtc: dirty_throttle_context of interest
865  *
866  * Note that balance_dirty_pages() will only seriously take it as a hard limit
867  * when sleeping max_pause per page is not enough to keep the dirty pages under
868  * control. For example, when the device is completely stalled due to some error
869  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
870  * In the other normal situations, it acts more gently by throttling the tasks
871  * more (rather than completely block them) when the wb dirty pages go high.
872  *
873  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
874  * - starving fast devices
875  * - piling up dirty pages (that will take long time to sync) on slow devices
876  *
877  * The wb's share of dirty limit will be adapting to its throughput and
878  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
879  *
880  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
881  * dirty balancing includes all PG_dirty and PG_writeback pages.
882  */
883 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
884 {
885 	struct wb_domain *dom = dtc_dom(dtc);
886 	unsigned long thresh = dtc->thresh;
887 	u64 wb_thresh;
888 	unsigned long numerator, denominator;
889 	unsigned long wb_min_ratio, wb_max_ratio;
890 
891 	/*
892 	 * Calculate this BDI's share of the thresh ratio.
893 	 */
894 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
895 			      &numerator, &denominator);
896 
897 	wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
898 	wb_thresh *= numerator;
899 	wb_thresh = div64_ul(wb_thresh, denominator);
900 
901 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
902 
903 	wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
904 	if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
905 		wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
906 
907 	return wb_thresh;
908 }
909 
910 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
911 {
912 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
913 					       .thresh = thresh };
914 	return __wb_calc_thresh(&gdtc);
915 }
916 
917 /*
918  *                           setpoint - dirty 3
919  *        f(dirty) := 1.0 + (----------------)
920  *                           limit - setpoint
921  *
922  * it's a 3rd order polynomial that subjects to
923  *
924  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
925  * (2) f(setpoint) = 1.0 => the balance point
926  * (3) f(limit)    = 0   => the hard limit
927  * (4) df/dx      <= 0	 => negative feedback control
928  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
929  *     => fast response on large errors; small oscillation near setpoint
930  */
931 static long long pos_ratio_polynom(unsigned long setpoint,
932 					  unsigned long dirty,
933 					  unsigned long limit)
934 {
935 	long long pos_ratio;
936 	long x;
937 
938 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
939 		      (limit - setpoint) | 1);
940 	pos_ratio = x;
941 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
942 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
943 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
944 
945 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
946 }
947 
948 /*
949  * Dirty position control.
950  *
951  * (o) global/bdi setpoints
952  *
953  * We want the dirty pages be balanced around the global/wb setpoints.
954  * When the number of dirty pages is higher/lower than the setpoint, the
955  * dirty position control ratio (and hence task dirty ratelimit) will be
956  * decreased/increased to bring the dirty pages back to the setpoint.
957  *
958  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
959  *
960  *     if (dirty < setpoint) scale up   pos_ratio
961  *     if (dirty > setpoint) scale down pos_ratio
962  *
963  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
964  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
965  *
966  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
967  *
968  * (o) global control line
969  *
970  *     ^ pos_ratio
971  *     |
972  *     |            |<===== global dirty control scope ======>|
973  * 2.0  * * * * * * *
974  *     |            .*
975  *     |            . *
976  *     |            .   *
977  *     |            .     *
978  *     |            .        *
979  *     |            .            *
980  * 1.0 ................................*
981  *     |            .                  .     *
982  *     |            .                  .          *
983  *     |            .                  .              *
984  *     |            .                  .                 *
985  *     |            .                  .                    *
986  *   0 +------------.------------------.----------------------*------------->
987  *           freerun^          setpoint^                 limit^   dirty pages
988  *
989  * (o) wb control line
990  *
991  *     ^ pos_ratio
992  *     |
993  *     |            *
994  *     |              *
995  *     |                *
996  *     |                  *
997  *     |                    * |<=========== span ============>|
998  * 1.0 .......................*
999  *     |                      . *
1000  *     |                      .   *
1001  *     |                      .     *
1002  *     |                      .       *
1003  *     |                      .         *
1004  *     |                      .           *
1005  *     |                      .             *
1006  *     |                      .               *
1007  *     |                      .                 *
1008  *     |                      .                   *
1009  *     |                      .                     *
1010  * 1/4 ...............................................* * * * * * * * * * * *
1011  *     |                      .                         .
1012  *     |                      .                           .
1013  *     |                      .                             .
1014  *   0 +----------------------.-------------------------------.------------->
1015  *                wb_setpoint^                    x_intercept^
1016  *
1017  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1018  * be smoothly throttled down to normal if it starts high in situations like
1019  * - start writing to a slow SD card and a fast disk at the same time. The SD
1020  *   card's wb_dirty may rush to many times higher than wb_setpoint.
1021  * - the wb dirty thresh drops quickly due to change of JBOD workload
1022  */
1023 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1024 {
1025 	struct bdi_writeback *wb = dtc->wb;
1026 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1027 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1028 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1029 	unsigned long wb_thresh = dtc->wb_thresh;
1030 	unsigned long x_intercept;
1031 	unsigned long setpoint;		/* dirty pages' target balance point */
1032 	unsigned long wb_setpoint;
1033 	unsigned long span;
1034 	long long pos_ratio;		/* for scaling up/down the rate limit */
1035 	long x;
1036 
1037 	dtc->pos_ratio = 0;
1038 
1039 	if (unlikely(dtc->dirty >= limit))
1040 		return;
1041 
1042 	/*
1043 	 * global setpoint
1044 	 *
1045 	 * See comment for pos_ratio_polynom().
1046 	 */
1047 	setpoint = (freerun + limit) / 2;
1048 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1049 
1050 	/*
1051 	 * The strictlimit feature is a tool preventing mistrusted filesystems
1052 	 * from growing a large number of dirty pages before throttling. For
1053 	 * such filesystems balance_dirty_pages always checks wb counters
1054 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
1055 	 * This is especially important for fuse which sets bdi->max_ratio to
1056 	 * 1% by default. Without strictlimit feature, fuse writeback may
1057 	 * consume arbitrary amount of RAM because it is accounted in
1058 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1059 	 *
1060 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1061 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
1062 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1063 	 * limits are set by default to 10% and 20% (background and throttle).
1064 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1065 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1066 	 * about ~6K pages (as the average of background and throttle wb
1067 	 * limits). The 3rd order polynomial will provide positive feedback if
1068 	 * wb_dirty is under wb_setpoint and vice versa.
1069 	 *
1070 	 * Note, that we cannot use global counters in these calculations
1071 	 * because we want to throttle process writing to a strictlimit wb
1072 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1073 	 * in the example above).
1074 	 */
1075 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1076 		long long wb_pos_ratio;
1077 
1078 		if (dtc->wb_dirty < 8) {
1079 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1080 					   2 << RATELIMIT_CALC_SHIFT);
1081 			return;
1082 		}
1083 
1084 		if (dtc->wb_dirty >= wb_thresh)
1085 			return;
1086 
1087 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1088 						    dtc->wb_bg_thresh);
1089 
1090 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1091 			return;
1092 
1093 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1094 						 wb_thresh);
1095 
1096 		/*
1097 		 * Typically, for strictlimit case, wb_setpoint << setpoint
1098 		 * and pos_ratio >> wb_pos_ratio. In the other words global
1099 		 * state ("dirty") is not limiting factor and we have to
1100 		 * make decision based on wb counters. But there is an
1101 		 * important case when global pos_ratio should get precedence:
1102 		 * global limits are exceeded (e.g. due to activities on other
1103 		 * wb's) while given strictlimit wb is below limit.
1104 		 *
1105 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
1106 		 * but it would look too non-natural for the case of all
1107 		 * activity in the system coming from a single strictlimit wb
1108 		 * with bdi->max_ratio == 100%.
1109 		 *
1110 		 * Note that min() below somewhat changes the dynamics of the
1111 		 * control system. Normally, pos_ratio value can be well over 3
1112 		 * (when globally we are at freerun and wb is well below wb
1113 		 * setpoint). Now the maximum pos_ratio in the same situation
1114 		 * is 2. We might want to tweak this if we observe the control
1115 		 * system is too slow to adapt.
1116 		 */
1117 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1118 		return;
1119 	}
1120 
1121 	/*
1122 	 * We have computed basic pos_ratio above based on global situation. If
1123 	 * the wb is over/under its share of dirty pages, we want to scale
1124 	 * pos_ratio further down/up. That is done by the following mechanism.
1125 	 */
1126 
1127 	/*
1128 	 * wb setpoint
1129 	 *
1130 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1131 	 *
1132 	 *                        x_intercept - wb_dirty
1133 	 *                     := --------------------------
1134 	 *                        x_intercept - wb_setpoint
1135 	 *
1136 	 * The main wb control line is a linear function that subjects to
1137 	 *
1138 	 * (1) f(wb_setpoint) = 1.0
1139 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1140 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1141 	 *
1142 	 * For single wb case, the dirty pages are observed to fluctuate
1143 	 * regularly within range
1144 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1145 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1146 	 * fluctuation range for pos_ratio.
1147 	 *
1148 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1149 	 * own size, so move the slope over accordingly and choose a slope that
1150 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1151 	 */
1152 	if (unlikely(wb_thresh > dtc->thresh))
1153 		wb_thresh = dtc->thresh;
1154 	/*
1155 	 * It's very possible that wb_thresh is close to 0 not because the
1156 	 * device is slow, but that it has remained inactive for long time.
1157 	 * Honour such devices a reasonable good (hopefully IO efficient)
1158 	 * threshold, so that the occasional writes won't be blocked and active
1159 	 * writes can rampup the threshold quickly.
1160 	 */
1161 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1162 	/*
1163 	 * scale global setpoint to wb's:
1164 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1165 	 */
1166 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1167 	wb_setpoint = setpoint * (u64)x >> 16;
1168 	/*
1169 	 * Use span=(8*write_bw) in single wb case as indicated by
1170 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1171 	 *
1172 	 *        wb_thresh                    thresh - wb_thresh
1173 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1174 	 *         thresh                           thresh
1175 	 */
1176 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1177 	x_intercept = wb_setpoint + span;
1178 
1179 	if (dtc->wb_dirty < x_intercept - span / 4) {
1180 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1181 				      (x_intercept - wb_setpoint) | 1);
1182 	} else
1183 		pos_ratio /= 4;
1184 
1185 	/*
1186 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1187 	 * It may push the desired control point of global dirty pages higher
1188 	 * than setpoint.
1189 	 */
1190 	x_intercept = wb_thresh / 2;
1191 	if (dtc->wb_dirty < x_intercept) {
1192 		if (dtc->wb_dirty > x_intercept / 8)
1193 			pos_ratio = div_u64(pos_ratio * x_intercept,
1194 					    dtc->wb_dirty);
1195 		else
1196 			pos_ratio *= 8;
1197 	}
1198 
1199 	dtc->pos_ratio = pos_ratio;
1200 }
1201 
1202 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1203 				      unsigned long elapsed,
1204 				      unsigned long written)
1205 {
1206 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1207 	unsigned long avg = wb->avg_write_bandwidth;
1208 	unsigned long old = wb->write_bandwidth;
1209 	u64 bw;
1210 
1211 	/*
1212 	 * bw = written * HZ / elapsed
1213 	 *
1214 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1215 	 * write_bandwidth = ---------------------------------------------------
1216 	 *                                          period
1217 	 *
1218 	 * @written may have decreased due to folio_redirty_for_writepage().
1219 	 * Avoid underflowing @bw calculation.
1220 	 */
1221 	bw = written - min(written, wb->written_stamp);
1222 	bw *= HZ;
1223 	if (unlikely(elapsed > period)) {
1224 		bw = div64_ul(bw, elapsed);
1225 		avg = bw;
1226 		goto out;
1227 	}
1228 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1229 	bw >>= ilog2(period);
1230 
1231 	/*
1232 	 * one more level of smoothing, for filtering out sudden spikes
1233 	 */
1234 	if (avg > old && old >= (unsigned long)bw)
1235 		avg -= (avg - old) >> 3;
1236 
1237 	if (avg < old && old <= (unsigned long)bw)
1238 		avg += (old - avg) >> 3;
1239 
1240 out:
1241 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1242 	avg = max(avg, 1LU);
1243 	if (wb_has_dirty_io(wb)) {
1244 		long delta = avg - wb->avg_write_bandwidth;
1245 		WARN_ON_ONCE(atomic_long_add_return(delta,
1246 					&wb->bdi->tot_write_bandwidth) <= 0);
1247 	}
1248 	wb->write_bandwidth = bw;
1249 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1250 }
1251 
1252 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1253 {
1254 	struct wb_domain *dom = dtc_dom(dtc);
1255 	unsigned long thresh = dtc->thresh;
1256 	unsigned long limit = dom->dirty_limit;
1257 
1258 	/*
1259 	 * Follow up in one step.
1260 	 */
1261 	if (limit < thresh) {
1262 		limit = thresh;
1263 		goto update;
1264 	}
1265 
1266 	/*
1267 	 * Follow down slowly. Use the higher one as the target, because thresh
1268 	 * may drop below dirty. This is exactly the reason to introduce
1269 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1270 	 */
1271 	thresh = max(thresh, dtc->dirty);
1272 	if (limit > thresh) {
1273 		limit -= (limit - thresh) >> 5;
1274 		goto update;
1275 	}
1276 	return;
1277 update:
1278 	dom->dirty_limit = limit;
1279 }
1280 
1281 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1282 				      unsigned long now)
1283 {
1284 	struct wb_domain *dom = dtc_dom(dtc);
1285 
1286 	/*
1287 	 * check locklessly first to optimize away locking for the most time
1288 	 */
1289 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1290 		return;
1291 
1292 	spin_lock(&dom->lock);
1293 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1294 		update_dirty_limit(dtc);
1295 		dom->dirty_limit_tstamp = now;
1296 	}
1297 	spin_unlock(&dom->lock);
1298 }
1299 
1300 /*
1301  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1302  *
1303  * Normal wb tasks will be curbed at or below it in long term.
1304  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1305  */
1306 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1307 				      unsigned long dirtied,
1308 				      unsigned long elapsed)
1309 {
1310 	struct bdi_writeback *wb = dtc->wb;
1311 	unsigned long dirty = dtc->dirty;
1312 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1313 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1314 	unsigned long setpoint = (freerun + limit) / 2;
1315 	unsigned long write_bw = wb->avg_write_bandwidth;
1316 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1317 	unsigned long dirty_rate;
1318 	unsigned long task_ratelimit;
1319 	unsigned long balanced_dirty_ratelimit;
1320 	unsigned long step;
1321 	unsigned long x;
1322 	unsigned long shift;
1323 
1324 	/*
1325 	 * The dirty rate will match the writeout rate in long term, except
1326 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1327 	 */
1328 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1329 
1330 	/*
1331 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1332 	 */
1333 	task_ratelimit = (u64)dirty_ratelimit *
1334 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1335 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1336 
1337 	/*
1338 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1339 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1340 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1341 	 * formula will yield the balanced rate limit (write_bw / N).
1342 	 *
1343 	 * Note that the expanded form is not a pure rate feedback:
1344 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1345 	 * but also takes pos_ratio into account:
1346 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1347 	 *
1348 	 * (1) is not realistic because pos_ratio also takes part in balancing
1349 	 * the dirty rate.  Consider the state
1350 	 *	pos_ratio = 0.5						     (3)
1351 	 *	rate = 2 * (write_bw / N)				     (4)
1352 	 * If (1) is used, it will stuck in that state! Because each dd will
1353 	 * be throttled at
1354 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1355 	 * yielding
1356 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1357 	 * put (6) into (1) we get
1358 	 *	rate_(i+1) = rate_(i)					     (7)
1359 	 *
1360 	 * So we end up using (2) to always keep
1361 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1362 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1363 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1364 	 * the dirty count meet the setpoint, but also where the slope of
1365 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1366 	 */
1367 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1368 					   dirty_rate | 1);
1369 	/*
1370 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1371 	 */
1372 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1373 		balanced_dirty_ratelimit = write_bw;
1374 
1375 	/*
1376 	 * We could safely do this and return immediately:
1377 	 *
1378 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1379 	 *
1380 	 * However to get a more stable dirty_ratelimit, the below elaborated
1381 	 * code makes use of task_ratelimit to filter out singular points and
1382 	 * limit the step size.
1383 	 *
1384 	 * The below code essentially only uses the relative value of
1385 	 *
1386 	 *	task_ratelimit - dirty_ratelimit
1387 	 *	= (pos_ratio - 1) * dirty_ratelimit
1388 	 *
1389 	 * which reflects the direction and size of dirty position error.
1390 	 */
1391 
1392 	/*
1393 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1394 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1395 	 * For example, when
1396 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1397 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1398 	 * lowering dirty_ratelimit will help meet both the position and rate
1399 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1400 	 * only help meet the rate target. After all, what the users ultimately
1401 	 * feel and care are stable dirty rate and small position error.
1402 	 *
1403 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1404 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1405 	 * keeps jumping around randomly and can even leap far away at times
1406 	 * due to the small 200ms estimation period of dirty_rate (we want to
1407 	 * keep that period small to reduce time lags).
1408 	 */
1409 	step = 0;
1410 
1411 	/*
1412 	 * For strictlimit case, calculations above were based on wb counters
1413 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1414 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1415 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1416 	 * "dirty" and wb_setpoint as "setpoint".
1417 	 *
1418 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1419 	 * it's possible that wb_thresh is close to zero due to inactivity
1420 	 * of backing device.
1421 	 */
1422 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1423 		dirty = dtc->wb_dirty;
1424 		if (dtc->wb_dirty < 8)
1425 			setpoint = dtc->wb_dirty + 1;
1426 		else
1427 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1428 	}
1429 
1430 	if (dirty < setpoint) {
1431 		x = min3(wb->balanced_dirty_ratelimit,
1432 			 balanced_dirty_ratelimit, task_ratelimit);
1433 		if (dirty_ratelimit < x)
1434 			step = x - dirty_ratelimit;
1435 	} else {
1436 		x = max3(wb->balanced_dirty_ratelimit,
1437 			 balanced_dirty_ratelimit, task_ratelimit);
1438 		if (dirty_ratelimit > x)
1439 			step = dirty_ratelimit - x;
1440 	}
1441 
1442 	/*
1443 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1444 	 * rate itself is constantly fluctuating. So decrease the track speed
1445 	 * when it gets close to the target. Helps eliminate pointless tremors.
1446 	 */
1447 	shift = dirty_ratelimit / (2 * step + 1);
1448 	if (shift < BITS_PER_LONG)
1449 		step = DIV_ROUND_UP(step >> shift, 8);
1450 	else
1451 		step = 0;
1452 
1453 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1454 		dirty_ratelimit += step;
1455 	else
1456 		dirty_ratelimit -= step;
1457 
1458 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1459 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1460 
1461 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1462 }
1463 
1464 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1465 				  struct dirty_throttle_control *mdtc,
1466 				  bool update_ratelimit)
1467 {
1468 	struct bdi_writeback *wb = gdtc->wb;
1469 	unsigned long now = jiffies;
1470 	unsigned long elapsed;
1471 	unsigned long dirtied;
1472 	unsigned long written;
1473 
1474 	spin_lock(&wb->list_lock);
1475 
1476 	/*
1477 	 * Lockless checks for elapsed time are racy and delayed update after
1478 	 * IO completion doesn't do it at all (to make sure written pages are
1479 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1480 	 * division errors.
1481 	 */
1482 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1483 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1484 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1485 
1486 	if (update_ratelimit) {
1487 		domain_update_dirty_limit(gdtc, now);
1488 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1489 
1490 		/*
1491 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1492 		 * compiler has no way to figure that out.  Help it.
1493 		 */
1494 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1495 			domain_update_dirty_limit(mdtc, now);
1496 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1497 		}
1498 	}
1499 	wb_update_write_bandwidth(wb, elapsed, written);
1500 
1501 	wb->dirtied_stamp = dirtied;
1502 	wb->written_stamp = written;
1503 	WRITE_ONCE(wb->bw_time_stamp, now);
1504 	spin_unlock(&wb->list_lock);
1505 }
1506 
1507 void wb_update_bandwidth(struct bdi_writeback *wb)
1508 {
1509 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1510 
1511 	__wb_update_bandwidth(&gdtc, NULL, false);
1512 }
1513 
1514 /* Interval after which we consider wb idle and don't estimate bandwidth */
1515 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1516 
1517 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1518 {
1519 	unsigned long now = jiffies;
1520 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1521 
1522 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1523 	    !atomic_read(&wb->writeback_inodes)) {
1524 		spin_lock(&wb->list_lock);
1525 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1526 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1527 		WRITE_ONCE(wb->bw_time_stamp, now);
1528 		spin_unlock(&wb->list_lock);
1529 	}
1530 }
1531 
1532 /*
1533  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1534  * will look to see if it needs to start dirty throttling.
1535  *
1536  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1537  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1538  * (the number of pages we may dirty without exceeding the dirty limits).
1539  */
1540 static unsigned long dirty_poll_interval(unsigned long dirty,
1541 					 unsigned long thresh)
1542 {
1543 	if (thresh > dirty)
1544 		return 1UL << (ilog2(thresh - dirty) >> 1);
1545 
1546 	return 1;
1547 }
1548 
1549 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1550 				  unsigned long wb_dirty)
1551 {
1552 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1553 	unsigned long t;
1554 
1555 	/*
1556 	 * Limit pause time for small memory systems. If sleeping for too long
1557 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1558 	 * idle.
1559 	 *
1560 	 * 8 serves as the safety ratio.
1561 	 */
1562 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1563 	t++;
1564 
1565 	return min_t(unsigned long, t, MAX_PAUSE);
1566 }
1567 
1568 static long wb_min_pause(struct bdi_writeback *wb,
1569 			 long max_pause,
1570 			 unsigned long task_ratelimit,
1571 			 unsigned long dirty_ratelimit,
1572 			 int *nr_dirtied_pause)
1573 {
1574 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1575 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1576 	long t;		/* target pause */
1577 	long pause;	/* estimated next pause */
1578 	int pages;	/* target nr_dirtied_pause */
1579 
1580 	/* target for 10ms pause on 1-dd case */
1581 	t = max(1, HZ / 100);
1582 
1583 	/*
1584 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1585 	 * overheads.
1586 	 *
1587 	 * (N * 10ms) on 2^N concurrent tasks.
1588 	 */
1589 	if (hi > lo)
1590 		t += (hi - lo) * (10 * HZ) / 1024;
1591 
1592 	/*
1593 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1594 	 * on the much more stable dirty_ratelimit. However the next pause time
1595 	 * will be computed based on task_ratelimit and the two rate limits may
1596 	 * depart considerably at some time. Especially if task_ratelimit goes
1597 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1598 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1599 	 * result task_ratelimit won't be executed faithfully, which could
1600 	 * eventually bring down dirty_ratelimit.
1601 	 *
1602 	 * We apply two rules to fix it up:
1603 	 * 1) try to estimate the next pause time and if necessary, use a lower
1604 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1605 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1606 	 * 2) limit the target pause time to max_pause/2, so that the normal
1607 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1608 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1609 	 */
1610 	t = min(t, 1 + max_pause / 2);
1611 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1612 
1613 	/*
1614 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1615 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1616 	 * When the 16 consecutive reads are often interrupted by some dirty
1617 	 * throttling pause during the async writes, cfq will go into idles
1618 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1619 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1620 	 */
1621 	if (pages < DIRTY_POLL_THRESH) {
1622 		t = max_pause;
1623 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1624 		if (pages > DIRTY_POLL_THRESH) {
1625 			pages = DIRTY_POLL_THRESH;
1626 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1627 		}
1628 	}
1629 
1630 	pause = HZ * pages / (task_ratelimit + 1);
1631 	if (pause > max_pause) {
1632 		t = max_pause;
1633 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1634 	}
1635 
1636 	*nr_dirtied_pause = pages;
1637 	/*
1638 	 * The minimal pause time will normally be half the target pause time.
1639 	 */
1640 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1641 }
1642 
1643 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1644 {
1645 	struct bdi_writeback *wb = dtc->wb;
1646 	unsigned long wb_reclaimable;
1647 
1648 	/*
1649 	 * wb_thresh is not treated as some limiting factor as
1650 	 * dirty_thresh, due to reasons
1651 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1652 	 * - in a system with HDD and USB key, the USB key may somehow
1653 	 *   go into state (wb_dirty >> wb_thresh) either because
1654 	 *   wb_dirty starts high, or because wb_thresh drops low.
1655 	 *   In this case we don't want to hard throttle the USB key
1656 	 *   dirtiers for 100 seconds until wb_dirty drops under
1657 	 *   wb_thresh. Instead the auxiliary wb control line in
1658 	 *   wb_position_ratio() will let the dirtier task progress
1659 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1660 	 */
1661 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1662 	dtc->wb_bg_thresh = dtc->thresh ?
1663 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1664 
1665 	/*
1666 	 * In order to avoid the stacked BDI deadlock we need
1667 	 * to ensure we accurately count the 'dirty' pages when
1668 	 * the threshold is low.
1669 	 *
1670 	 * Otherwise it would be possible to get thresh+n pages
1671 	 * reported dirty, even though there are thresh-m pages
1672 	 * actually dirty; with m+n sitting in the percpu
1673 	 * deltas.
1674 	 */
1675 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1676 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1677 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1678 	} else {
1679 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1680 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1681 	}
1682 }
1683 
1684 /*
1685  * balance_dirty_pages() must be called by processes which are generating dirty
1686  * data.  It looks at the number of dirty pages in the machine and will force
1687  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1688  * If we're over `background_thresh' then the writeback threads are woken to
1689  * perform some writeout.
1690  */
1691 static int balance_dirty_pages(struct bdi_writeback *wb,
1692 			       unsigned long pages_dirtied, unsigned int flags)
1693 {
1694 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1695 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1696 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1697 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1698 						     &mdtc_stor : NULL;
1699 	struct dirty_throttle_control *sdtc;
1700 	unsigned long nr_reclaimable;	/* = file_dirty */
1701 	long period;
1702 	long pause;
1703 	long max_pause;
1704 	long min_pause;
1705 	int nr_dirtied_pause;
1706 	bool dirty_exceeded = false;
1707 	unsigned long task_ratelimit;
1708 	unsigned long dirty_ratelimit;
1709 	struct backing_dev_info *bdi = wb->bdi;
1710 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1711 	unsigned long start_time = jiffies;
1712 	int ret = 0;
1713 
1714 	for (;;) {
1715 		unsigned long now = jiffies;
1716 		unsigned long dirty, thresh, bg_thresh;
1717 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1718 		unsigned long m_thresh = 0;
1719 		unsigned long m_bg_thresh = 0;
1720 
1721 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1722 		gdtc->avail = global_dirtyable_memory();
1723 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1724 
1725 		domain_dirty_limits(gdtc);
1726 
1727 		if (unlikely(strictlimit)) {
1728 			wb_dirty_limits(gdtc);
1729 
1730 			dirty = gdtc->wb_dirty;
1731 			thresh = gdtc->wb_thresh;
1732 			bg_thresh = gdtc->wb_bg_thresh;
1733 		} else {
1734 			dirty = gdtc->dirty;
1735 			thresh = gdtc->thresh;
1736 			bg_thresh = gdtc->bg_thresh;
1737 		}
1738 
1739 		if (mdtc) {
1740 			unsigned long filepages, headroom, writeback;
1741 
1742 			/*
1743 			 * If @wb belongs to !root memcg, repeat the same
1744 			 * basic calculations for the memcg domain.
1745 			 */
1746 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1747 					    &mdtc->dirty, &writeback);
1748 			mdtc->dirty += writeback;
1749 			mdtc_calc_avail(mdtc, filepages, headroom);
1750 
1751 			domain_dirty_limits(mdtc);
1752 
1753 			if (unlikely(strictlimit)) {
1754 				wb_dirty_limits(mdtc);
1755 				m_dirty = mdtc->wb_dirty;
1756 				m_thresh = mdtc->wb_thresh;
1757 				m_bg_thresh = mdtc->wb_bg_thresh;
1758 			} else {
1759 				m_dirty = mdtc->dirty;
1760 				m_thresh = mdtc->thresh;
1761 				m_bg_thresh = mdtc->bg_thresh;
1762 			}
1763 		}
1764 
1765 		/*
1766 		 * In laptop mode, we wait until hitting the higher threshold
1767 		 * before starting background writeout, and then write out all
1768 		 * the way down to the lower threshold.  So slow writers cause
1769 		 * minimal disk activity.
1770 		 *
1771 		 * In normal mode, we start background writeout at the lower
1772 		 * background_thresh, to keep the amount of dirty memory low.
1773 		 */
1774 		if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1775 		    !writeback_in_progress(wb))
1776 			wb_start_background_writeback(wb);
1777 
1778 		/*
1779 		 * Throttle it only when the background writeback cannot
1780 		 * catch-up. This avoids (excessively) small writeouts
1781 		 * when the wb limits are ramping up in case of !strictlimit.
1782 		 *
1783 		 * In strictlimit case make decision based on the wb counters
1784 		 * and limits. Small writeouts when the wb limits are ramping
1785 		 * up are the price we consciously pay for strictlimit-ing.
1786 		 *
1787 		 * If memcg domain is in effect, @dirty should be under
1788 		 * both global and memcg freerun ceilings.
1789 		 */
1790 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1791 		    (!mdtc ||
1792 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1793 			unsigned long intv;
1794 			unsigned long m_intv;
1795 
1796 free_running:
1797 			intv = dirty_poll_interval(dirty, thresh);
1798 			m_intv = ULONG_MAX;
1799 
1800 			current->dirty_paused_when = now;
1801 			current->nr_dirtied = 0;
1802 			if (mdtc)
1803 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1804 			current->nr_dirtied_pause = min(intv, m_intv);
1805 			break;
1806 		}
1807 
1808 		/* Start writeback even when in laptop mode */
1809 		if (unlikely(!writeback_in_progress(wb)))
1810 			wb_start_background_writeback(wb);
1811 
1812 		mem_cgroup_flush_foreign(wb);
1813 
1814 		/*
1815 		 * Calculate global domain's pos_ratio and select the
1816 		 * global dtc by default.
1817 		 */
1818 		if (!strictlimit) {
1819 			wb_dirty_limits(gdtc);
1820 
1821 			if ((current->flags & PF_LOCAL_THROTTLE) &&
1822 			    gdtc->wb_dirty <
1823 			    dirty_freerun_ceiling(gdtc->wb_thresh,
1824 						  gdtc->wb_bg_thresh))
1825 				/*
1826 				 * LOCAL_THROTTLE tasks must not be throttled
1827 				 * when below the per-wb freerun ceiling.
1828 				 */
1829 				goto free_running;
1830 		}
1831 
1832 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1833 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1834 
1835 		wb_position_ratio(gdtc);
1836 		sdtc = gdtc;
1837 
1838 		if (mdtc) {
1839 			/*
1840 			 * If memcg domain is in effect, calculate its
1841 			 * pos_ratio.  @wb should satisfy constraints from
1842 			 * both global and memcg domains.  Choose the one
1843 			 * w/ lower pos_ratio.
1844 			 */
1845 			if (!strictlimit) {
1846 				wb_dirty_limits(mdtc);
1847 
1848 				if ((current->flags & PF_LOCAL_THROTTLE) &&
1849 				    mdtc->wb_dirty <
1850 				    dirty_freerun_ceiling(mdtc->wb_thresh,
1851 							  mdtc->wb_bg_thresh))
1852 					/*
1853 					 * LOCAL_THROTTLE tasks must not be
1854 					 * throttled when below the per-wb
1855 					 * freerun ceiling.
1856 					 */
1857 					goto free_running;
1858 			}
1859 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1860 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1861 
1862 			wb_position_ratio(mdtc);
1863 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1864 				sdtc = mdtc;
1865 		}
1866 
1867 		if (dirty_exceeded != wb->dirty_exceeded)
1868 			wb->dirty_exceeded = dirty_exceeded;
1869 
1870 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1871 					   BANDWIDTH_INTERVAL))
1872 			__wb_update_bandwidth(gdtc, mdtc, true);
1873 
1874 		/* throttle according to the chosen dtc */
1875 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1876 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1877 							RATELIMIT_CALC_SHIFT;
1878 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1879 		min_pause = wb_min_pause(wb, max_pause,
1880 					 task_ratelimit, dirty_ratelimit,
1881 					 &nr_dirtied_pause);
1882 
1883 		if (unlikely(task_ratelimit == 0)) {
1884 			period = max_pause;
1885 			pause = max_pause;
1886 			goto pause;
1887 		}
1888 		period = HZ * pages_dirtied / task_ratelimit;
1889 		pause = period;
1890 		if (current->dirty_paused_when)
1891 			pause -= now - current->dirty_paused_when;
1892 		/*
1893 		 * For less than 1s think time (ext3/4 may block the dirtier
1894 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1895 		 * however at much less frequency), try to compensate it in
1896 		 * future periods by updating the virtual time; otherwise just
1897 		 * do a reset, as it may be a light dirtier.
1898 		 */
1899 		if (pause < min_pause) {
1900 			trace_balance_dirty_pages(wb,
1901 						  sdtc->thresh,
1902 						  sdtc->bg_thresh,
1903 						  sdtc->dirty,
1904 						  sdtc->wb_thresh,
1905 						  sdtc->wb_dirty,
1906 						  dirty_ratelimit,
1907 						  task_ratelimit,
1908 						  pages_dirtied,
1909 						  period,
1910 						  min(pause, 0L),
1911 						  start_time);
1912 			if (pause < -HZ) {
1913 				current->dirty_paused_when = now;
1914 				current->nr_dirtied = 0;
1915 			} else if (period) {
1916 				current->dirty_paused_when += period;
1917 				current->nr_dirtied = 0;
1918 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1919 				current->nr_dirtied_pause += pages_dirtied;
1920 			break;
1921 		}
1922 		if (unlikely(pause > max_pause)) {
1923 			/* for occasional dropped task_ratelimit */
1924 			now += min(pause - max_pause, max_pause);
1925 			pause = max_pause;
1926 		}
1927 
1928 pause:
1929 		trace_balance_dirty_pages(wb,
1930 					  sdtc->thresh,
1931 					  sdtc->bg_thresh,
1932 					  sdtc->dirty,
1933 					  sdtc->wb_thresh,
1934 					  sdtc->wb_dirty,
1935 					  dirty_ratelimit,
1936 					  task_ratelimit,
1937 					  pages_dirtied,
1938 					  period,
1939 					  pause,
1940 					  start_time);
1941 		if (flags & BDP_ASYNC) {
1942 			ret = -EAGAIN;
1943 			break;
1944 		}
1945 		__set_current_state(TASK_KILLABLE);
1946 		bdi->last_bdp_sleep = jiffies;
1947 		io_schedule_timeout(pause);
1948 
1949 		current->dirty_paused_when = now + pause;
1950 		current->nr_dirtied = 0;
1951 		current->nr_dirtied_pause = nr_dirtied_pause;
1952 
1953 		/*
1954 		 * This is typically equal to (dirty < thresh) and can also
1955 		 * keep "1000+ dd on a slow USB stick" under control.
1956 		 */
1957 		if (task_ratelimit)
1958 			break;
1959 
1960 		/*
1961 		 * In the case of an unresponsive NFS server and the NFS dirty
1962 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1963 		 * to go through, so that tasks on them still remain responsive.
1964 		 *
1965 		 * In theory 1 page is enough to keep the consumer-producer
1966 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1967 		 * more page. However wb_dirty has accounting errors.  So use
1968 		 * the larger and more IO friendly wb_stat_error.
1969 		 */
1970 		if (sdtc->wb_dirty <= wb_stat_error())
1971 			break;
1972 
1973 		if (fatal_signal_pending(current))
1974 			break;
1975 	}
1976 	return ret;
1977 }
1978 
1979 static DEFINE_PER_CPU(int, bdp_ratelimits);
1980 
1981 /*
1982  * Normal tasks are throttled by
1983  *	loop {
1984  *		dirty tsk->nr_dirtied_pause pages;
1985  *		take a snap in balance_dirty_pages();
1986  *	}
1987  * However there is a worst case. If every task exit immediately when dirtied
1988  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1989  * called to throttle the page dirties. The solution is to save the not yet
1990  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1991  * randomly into the running tasks. This works well for the above worst case,
1992  * as the new task will pick up and accumulate the old task's leaked dirty
1993  * count and eventually get throttled.
1994  */
1995 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1996 
1997 /**
1998  * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1999  * @mapping: address_space which was dirtied.
2000  * @flags: BDP flags.
2001  *
2002  * Processes which are dirtying memory should call in here once for each page
2003  * which was newly dirtied.  The function will periodically check the system's
2004  * dirty state and will initiate writeback if needed.
2005  *
2006  * See balance_dirty_pages_ratelimited() for details.
2007  *
2008  * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2009  * indicate that memory is out of balance and the caller must wait
2010  * for I/O to complete.  Otherwise, it will return 0 to indicate
2011  * that either memory was already in balance, or it was able to sleep
2012  * until the amount of dirty memory returned to balance.
2013  */
2014 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2015 					unsigned int flags)
2016 {
2017 	struct inode *inode = mapping->host;
2018 	struct backing_dev_info *bdi = inode_to_bdi(inode);
2019 	struct bdi_writeback *wb = NULL;
2020 	int ratelimit;
2021 	int ret = 0;
2022 	int *p;
2023 
2024 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2025 		return ret;
2026 
2027 	if (inode_cgwb_enabled(inode))
2028 		wb = wb_get_create_current(bdi, GFP_KERNEL);
2029 	if (!wb)
2030 		wb = &bdi->wb;
2031 
2032 	ratelimit = current->nr_dirtied_pause;
2033 	if (wb->dirty_exceeded)
2034 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2035 
2036 	preempt_disable();
2037 	/*
2038 	 * This prevents one CPU to accumulate too many dirtied pages without
2039 	 * calling into balance_dirty_pages(), which can happen when there are
2040 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
2041 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
2042 	 */
2043 	p =  this_cpu_ptr(&bdp_ratelimits);
2044 	if (unlikely(current->nr_dirtied >= ratelimit))
2045 		*p = 0;
2046 	else if (unlikely(*p >= ratelimit_pages)) {
2047 		*p = 0;
2048 		ratelimit = 0;
2049 	}
2050 	/*
2051 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2052 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2053 	 * the dirty throttling and livelock other long-run dirtiers.
2054 	 */
2055 	p = this_cpu_ptr(&dirty_throttle_leaks);
2056 	if (*p > 0 && current->nr_dirtied < ratelimit) {
2057 		unsigned long nr_pages_dirtied;
2058 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2059 		*p -= nr_pages_dirtied;
2060 		current->nr_dirtied += nr_pages_dirtied;
2061 	}
2062 	preempt_enable();
2063 
2064 	if (unlikely(current->nr_dirtied >= ratelimit))
2065 		ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2066 
2067 	wb_put(wb);
2068 	return ret;
2069 }
2070 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2071 
2072 /**
2073  * balance_dirty_pages_ratelimited - balance dirty memory state.
2074  * @mapping: address_space which was dirtied.
2075  *
2076  * Processes which are dirtying memory should call in here once for each page
2077  * which was newly dirtied.  The function will periodically check the system's
2078  * dirty state and will initiate writeback if needed.
2079  *
2080  * Once we're over the dirty memory limit we decrease the ratelimiting
2081  * by a lot, to prevent individual processes from overshooting the limit
2082  * by (ratelimit_pages) each.
2083  */
2084 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2085 {
2086 	balance_dirty_pages_ratelimited_flags(mapping, 0);
2087 }
2088 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2089 
2090 /**
2091  * wb_over_bg_thresh - does @wb need to be written back?
2092  * @wb: bdi_writeback of interest
2093  *
2094  * Determines whether background writeback should keep writing @wb or it's
2095  * clean enough.
2096  *
2097  * Return: %true if writeback should continue.
2098  */
2099 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2100 {
2101 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2102 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2103 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
2104 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2105 						     &mdtc_stor : NULL;
2106 	unsigned long reclaimable;
2107 	unsigned long thresh;
2108 
2109 	/*
2110 	 * Similar to balance_dirty_pages() but ignores pages being written
2111 	 * as we're trying to decide whether to put more under writeback.
2112 	 */
2113 	gdtc->avail = global_dirtyable_memory();
2114 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2115 	domain_dirty_limits(gdtc);
2116 
2117 	if (gdtc->dirty > gdtc->bg_thresh)
2118 		return true;
2119 
2120 	thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2121 	if (thresh < 2 * wb_stat_error())
2122 		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2123 	else
2124 		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2125 
2126 	if (reclaimable > thresh)
2127 		return true;
2128 
2129 	if (mdtc) {
2130 		unsigned long filepages, headroom, writeback;
2131 
2132 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2133 				    &writeback);
2134 		mdtc_calc_avail(mdtc, filepages, headroom);
2135 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
2136 
2137 		if (mdtc->dirty > mdtc->bg_thresh)
2138 			return true;
2139 
2140 		thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2141 		if (thresh < 2 * wb_stat_error())
2142 			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2143 		else
2144 			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2145 
2146 		if (reclaimable > thresh)
2147 			return true;
2148 	}
2149 
2150 	return false;
2151 }
2152 
2153 #ifdef CONFIG_SYSCTL
2154 /*
2155  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2156  */
2157 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2158 		void *buffer, size_t *length, loff_t *ppos)
2159 {
2160 	unsigned int old_interval = dirty_writeback_interval;
2161 	int ret;
2162 
2163 	ret = proc_dointvec(table, write, buffer, length, ppos);
2164 
2165 	/*
2166 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2167 	 * and a different non-zero value will wakeup the writeback threads.
2168 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2169 	 * iterate over all bdis and wbs.
2170 	 * The reason we do this is to make the change take effect immediately.
2171 	 */
2172 	if (!ret && write && dirty_writeback_interval &&
2173 		dirty_writeback_interval != old_interval)
2174 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2175 
2176 	return ret;
2177 }
2178 #endif
2179 
2180 void laptop_mode_timer_fn(struct timer_list *t)
2181 {
2182 	struct backing_dev_info *backing_dev_info =
2183 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2184 
2185 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2186 }
2187 
2188 /*
2189  * We've spun up the disk and we're in laptop mode: schedule writeback
2190  * of all dirty data a few seconds from now.  If the flush is already scheduled
2191  * then push it back - the user is still using the disk.
2192  */
2193 void laptop_io_completion(struct backing_dev_info *info)
2194 {
2195 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2196 }
2197 
2198 /*
2199  * We're in laptop mode and we've just synced. The sync's writes will have
2200  * caused another writeback to be scheduled by laptop_io_completion.
2201  * Nothing needs to be written back anymore, so we unschedule the writeback.
2202  */
2203 void laptop_sync_completion(void)
2204 {
2205 	struct backing_dev_info *bdi;
2206 
2207 	rcu_read_lock();
2208 
2209 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2210 		del_timer(&bdi->laptop_mode_wb_timer);
2211 
2212 	rcu_read_unlock();
2213 }
2214 
2215 /*
2216  * If ratelimit_pages is too high then we can get into dirty-data overload
2217  * if a large number of processes all perform writes at the same time.
2218  *
2219  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2220  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2221  * thresholds.
2222  */
2223 
2224 void writeback_set_ratelimit(void)
2225 {
2226 	struct wb_domain *dom = &global_wb_domain;
2227 	unsigned long background_thresh;
2228 	unsigned long dirty_thresh;
2229 
2230 	global_dirty_limits(&background_thresh, &dirty_thresh);
2231 	dom->dirty_limit = dirty_thresh;
2232 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2233 	if (ratelimit_pages < 16)
2234 		ratelimit_pages = 16;
2235 }
2236 
2237 static int page_writeback_cpu_online(unsigned int cpu)
2238 {
2239 	writeback_set_ratelimit();
2240 	return 0;
2241 }
2242 
2243 #ifdef CONFIG_SYSCTL
2244 
2245 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2246 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2247 
2248 static struct ctl_table vm_page_writeback_sysctls[] = {
2249 	{
2250 		.procname   = "dirty_background_ratio",
2251 		.data       = &dirty_background_ratio,
2252 		.maxlen     = sizeof(dirty_background_ratio),
2253 		.mode       = 0644,
2254 		.proc_handler   = dirty_background_ratio_handler,
2255 		.extra1     = SYSCTL_ZERO,
2256 		.extra2     = SYSCTL_ONE_HUNDRED,
2257 	},
2258 	{
2259 		.procname   = "dirty_background_bytes",
2260 		.data       = &dirty_background_bytes,
2261 		.maxlen     = sizeof(dirty_background_bytes),
2262 		.mode       = 0644,
2263 		.proc_handler   = dirty_background_bytes_handler,
2264 		.extra1     = SYSCTL_LONG_ONE,
2265 	},
2266 	{
2267 		.procname   = "dirty_ratio",
2268 		.data       = &vm_dirty_ratio,
2269 		.maxlen     = sizeof(vm_dirty_ratio),
2270 		.mode       = 0644,
2271 		.proc_handler   = dirty_ratio_handler,
2272 		.extra1     = SYSCTL_ZERO,
2273 		.extra2     = SYSCTL_ONE_HUNDRED,
2274 	},
2275 	{
2276 		.procname   = "dirty_bytes",
2277 		.data       = &vm_dirty_bytes,
2278 		.maxlen     = sizeof(vm_dirty_bytes),
2279 		.mode       = 0644,
2280 		.proc_handler   = dirty_bytes_handler,
2281 		.extra1     = (void *)&dirty_bytes_min,
2282 	},
2283 	{
2284 		.procname   = "dirty_writeback_centisecs",
2285 		.data       = &dirty_writeback_interval,
2286 		.maxlen     = sizeof(dirty_writeback_interval),
2287 		.mode       = 0644,
2288 		.proc_handler   = dirty_writeback_centisecs_handler,
2289 	},
2290 	{
2291 		.procname   = "dirty_expire_centisecs",
2292 		.data       = &dirty_expire_interval,
2293 		.maxlen     = sizeof(dirty_expire_interval),
2294 		.mode       = 0644,
2295 		.proc_handler   = proc_dointvec_minmax,
2296 		.extra1     = SYSCTL_ZERO,
2297 	},
2298 #ifdef CONFIG_HIGHMEM
2299 	{
2300 		.procname	= "highmem_is_dirtyable",
2301 		.data		= &vm_highmem_is_dirtyable,
2302 		.maxlen		= sizeof(vm_highmem_is_dirtyable),
2303 		.mode		= 0644,
2304 		.proc_handler	= proc_dointvec_minmax,
2305 		.extra1		= SYSCTL_ZERO,
2306 		.extra2		= SYSCTL_ONE,
2307 	},
2308 #endif
2309 	{
2310 		.procname	= "laptop_mode",
2311 		.data		= &laptop_mode,
2312 		.maxlen		= sizeof(laptop_mode),
2313 		.mode		= 0644,
2314 		.proc_handler	= proc_dointvec_jiffies,
2315 	},
2316 	{}
2317 };
2318 #endif
2319 
2320 /*
2321  * Called early on to tune the page writeback dirty limits.
2322  *
2323  * We used to scale dirty pages according to how total memory
2324  * related to pages that could be allocated for buffers.
2325  *
2326  * However, that was when we used "dirty_ratio" to scale with
2327  * all memory, and we don't do that any more. "dirty_ratio"
2328  * is now applied to total non-HIGHPAGE memory, and as such we can't
2329  * get into the old insane situation any more where we had
2330  * large amounts of dirty pages compared to a small amount of
2331  * non-HIGHMEM memory.
2332  *
2333  * But we might still want to scale the dirty_ratio by how
2334  * much memory the box has..
2335  */
2336 void __init page_writeback_init(void)
2337 {
2338 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2339 
2340 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2341 			  page_writeback_cpu_online, NULL);
2342 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2343 			  page_writeback_cpu_online);
2344 #ifdef CONFIG_SYSCTL
2345 	register_sysctl_init("vm", vm_page_writeback_sysctls);
2346 #endif
2347 }
2348 
2349 /**
2350  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2351  * @mapping: address space structure to write
2352  * @start: starting page index
2353  * @end: ending page index (inclusive)
2354  *
2355  * This function scans the page range from @start to @end (inclusive) and tags
2356  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2357  * that write_cache_pages (or whoever calls this function) will then use
2358  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2359  * used to avoid livelocking of writeback by a process steadily creating new
2360  * dirty pages in the file (thus it is important for this function to be quick
2361  * so that it can tag pages faster than a dirtying process can create them).
2362  */
2363 void tag_pages_for_writeback(struct address_space *mapping,
2364 			     pgoff_t start, pgoff_t end)
2365 {
2366 	XA_STATE(xas, &mapping->i_pages, start);
2367 	unsigned int tagged = 0;
2368 	void *page;
2369 
2370 	xas_lock_irq(&xas);
2371 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2372 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2373 		if (++tagged % XA_CHECK_SCHED)
2374 			continue;
2375 
2376 		xas_pause(&xas);
2377 		xas_unlock_irq(&xas);
2378 		cond_resched();
2379 		xas_lock_irq(&xas);
2380 	}
2381 	xas_unlock_irq(&xas);
2382 }
2383 EXPORT_SYMBOL(tag_pages_for_writeback);
2384 
2385 /**
2386  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2387  * @mapping: address space structure to write
2388  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2389  * @writepage: function called for each page
2390  * @data: data passed to writepage function
2391  *
2392  * If a page is already under I/O, write_cache_pages() skips it, even
2393  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2394  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2395  * and msync() need to guarantee that all the data which was dirty at the time
2396  * the call was made get new I/O started against them.  If wbc->sync_mode is
2397  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2398  * existing IO to complete.
2399  *
2400  * To avoid livelocks (when other process dirties new pages), we first tag
2401  * pages which should be written back with TOWRITE tag and only then start
2402  * writing them. For data-integrity sync we have to be careful so that we do
2403  * not miss some pages (e.g., because some other process has cleared TOWRITE
2404  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2405  * by the process clearing the DIRTY tag (and submitting the page for IO).
2406  *
2407  * To avoid deadlocks between range_cyclic writeback and callers that hold
2408  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2409  * we do not loop back to the start of the file. Doing so causes a page
2410  * lock/page writeback access order inversion - we should only ever lock
2411  * multiple pages in ascending page->index order, and looping back to the start
2412  * of the file violates that rule and causes deadlocks.
2413  *
2414  * Return: %0 on success, negative error code otherwise
2415  */
2416 int write_cache_pages(struct address_space *mapping,
2417 		      struct writeback_control *wbc, writepage_t writepage,
2418 		      void *data)
2419 {
2420 	int ret = 0;
2421 	int done = 0;
2422 	int error;
2423 	struct folio_batch fbatch;
2424 	int nr_folios;
2425 	pgoff_t index;
2426 	pgoff_t end;		/* Inclusive */
2427 	pgoff_t done_index;
2428 	int range_whole = 0;
2429 	xa_mark_t tag;
2430 
2431 	folio_batch_init(&fbatch);
2432 	if (wbc->range_cyclic) {
2433 		index = mapping->writeback_index; /* prev offset */
2434 		end = -1;
2435 	} else {
2436 		index = wbc->range_start >> PAGE_SHIFT;
2437 		end = wbc->range_end >> PAGE_SHIFT;
2438 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2439 			range_whole = 1;
2440 	}
2441 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2442 		tag_pages_for_writeback(mapping, index, end);
2443 		tag = PAGECACHE_TAG_TOWRITE;
2444 	} else {
2445 		tag = PAGECACHE_TAG_DIRTY;
2446 	}
2447 	done_index = index;
2448 	while (!done && (index <= end)) {
2449 		int i;
2450 
2451 		nr_folios = filemap_get_folios_tag(mapping, &index, end,
2452 				tag, &fbatch);
2453 
2454 		if (nr_folios == 0)
2455 			break;
2456 
2457 		for (i = 0; i < nr_folios; i++) {
2458 			struct folio *folio = fbatch.folios[i];
2459 			unsigned long nr;
2460 
2461 			done_index = folio->index;
2462 
2463 			folio_lock(folio);
2464 
2465 			/*
2466 			 * Page truncated or invalidated. We can freely skip it
2467 			 * then, even for data integrity operations: the page
2468 			 * has disappeared concurrently, so there could be no
2469 			 * real expectation of this data integrity operation
2470 			 * even if there is now a new, dirty page at the same
2471 			 * pagecache address.
2472 			 */
2473 			if (unlikely(folio->mapping != mapping)) {
2474 continue_unlock:
2475 				folio_unlock(folio);
2476 				continue;
2477 			}
2478 
2479 			if (!folio_test_dirty(folio)) {
2480 				/* someone wrote it for us */
2481 				goto continue_unlock;
2482 			}
2483 
2484 			if (folio_test_writeback(folio)) {
2485 				if (wbc->sync_mode != WB_SYNC_NONE)
2486 					folio_wait_writeback(folio);
2487 				else
2488 					goto continue_unlock;
2489 			}
2490 
2491 			BUG_ON(folio_test_writeback(folio));
2492 			if (!folio_clear_dirty_for_io(folio))
2493 				goto continue_unlock;
2494 
2495 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2496 			error = writepage(folio, wbc, data);
2497 			nr = folio_nr_pages(folio);
2498 			if (unlikely(error)) {
2499 				/*
2500 				 * Handle errors according to the type of
2501 				 * writeback. There's no need to continue for
2502 				 * background writeback. Just push done_index
2503 				 * past this page so media errors won't choke
2504 				 * writeout for the entire file. For integrity
2505 				 * writeback, we must process the entire dirty
2506 				 * set regardless of errors because the fs may
2507 				 * still have state to clear for each page. In
2508 				 * that case we continue processing and return
2509 				 * the first error.
2510 				 */
2511 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2512 					folio_unlock(folio);
2513 					error = 0;
2514 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2515 					ret = error;
2516 					done_index = folio->index + nr;
2517 					done = 1;
2518 					break;
2519 				}
2520 				if (!ret)
2521 					ret = error;
2522 			}
2523 
2524 			/*
2525 			 * We stop writing back only if we are not doing
2526 			 * integrity sync. In case of integrity sync we have to
2527 			 * keep going until we have written all the pages
2528 			 * we tagged for writeback prior to entering this loop.
2529 			 */
2530 			wbc->nr_to_write -= nr;
2531 			if (wbc->nr_to_write <= 0 &&
2532 			    wbc->sync_mode == WB_SYNC_NONE) {
2533 				done = 1;
2534 				break;
2535 			}
2536 		}
2537 		folio_batch_release(&fbatch);
2538 		cond_resched();
2539 	}
2540 
2541 	/*
2542 	 * If we hit the last page and there is more work to be done: wrap
2543 	 * back the index back to the start of the file for the next
2544 	 * time we are called.
2545 	 */
2546 	if (wbc->range_cyclic && !done)
2547 		done_index = 0;
2548 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2549 		mapping->writeback_index = done_index;
2550 
2551 	return ret;
2552 }
2553 EXPORT_SYMBOL(write_cache_pages);
2554 
2555 static int writepage_cb(struct folio *folio, struct writeback_control *wbc,
2556 		void *data)
2557 {
2558 	struct address_space *mapping = data;
2559 	int ret = mapping->a_ops->writepage(&folio->page, wbc);
2560 	mapping_set_error(mapping, ret);
2561 	return ret;
2562 }
2563 
2564 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2565 {
2566 	int ret;
2567 	struct bdi_writeback *wb;
2568 
2569 	if (wbc->nr_to_write <= 0)
2570 		return 0;
2571 	wb = inode_to_wb_wbc(mapping->host, wbc);
2572 	wb_bandwidth_estimate_start(wb);
2573 	while (1) {
2574 		if (mapping->a_ops->writepages) {
2575 			ret = mapping->a_ops->writepages(mapping, wbc);
2576 		} else if (mapping->a_ops->writepage) {
2577 			struct blk_plug plug;
2578 
2579 			blk_start_plug(&plug);
2580 			ret = write_cache_pages(mapping, wbc, writepage_cb,
2581 						mapping);
2582 			blk_finish_plug(&plug);
2583 		} else {
2584 			/* deal with chardevs and other special files */
2585 			ret = 0;
2586 		}
2587 		if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2588 			break;
2589 
2590 		/*
2591 		 * Lacking an allocation context or the locality or writeback
2592 		 * state of any of the inode's pages, throttle based on
2593 		 * writeback activity on the local node. It's as good a
2594 		 * guess as any.
2595 		 */
2596 		reclaim_throttle(NODE_DATA(numa_node_id()),
2597 			VMSCAN_THROTTLE_WRITEBACK);
2598 	}
2599 	/*
2600 	 * Usually few pages are written by now from those we've just submitted
2601 	 * but if there's constant writeback being submitted, this makes sure
2602 	 * writeback bandwidth is updated once in a while.
2603 	 */
2604 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2605 				   BANDWIDTH_INTERVAL))
2606 		wb_update_bandwidth(wb);
2607 	return ret;
2608 }
2609 
2610 /*
2611  * For address_spaces which do not use buffers nor write back.
2612  */
2613 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2614 {
2615 	if (!folio_test_dirty(folio))
2616 		return !folio_test_set_dirty(folio);
2617 	return false;
2618 }
2619 EXPORT_SYMBOL(noop_dirty_folio);
2620 
2621 /*
2622  * Helper function for set_page_dirty family.
2623  *
2624  * Caller must hold folio_memcg_lock().
2625  *
2626  * NOTE: This relies on being atomic wrt interrupts.
2627  */
2628 static void folio_account_dirtied(struct folio *folio,
2629 		struct address_space *mapping)
2630 {
2631 	struct inode *inode = mapping->host;
2632 
2633 	trace_writeback_dirty_folio(folio, mapping);
2634 
2635 	if (mapping_can_writeback(mapping)) {
2636 		struct bdi_writeback *wb;
2637 		long nr = folio_nr_pages(folio);
2638 
2639 		inode_attach_wb(inode, folio);
2640 		wb = inode_to_wb(inode);
2641 
2642 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2643 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2644 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2645 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2646 		wb_stat_mod(wb, WB_DIRTIED, nr);
2647 		task_io_account_write(nr * PAGE_SIZE);
2648 		current->nr_dirtied += nr;
2649 		__this_cpu_add(bdp_ratelimits, nr);
2650 
2651 		mem_cgroup_track_foreign_dirty(folio, wb);
2652 	}
2653 }
2654 
2655 /*
2656  * Helper function for deaccounting dirty page without writeback.
2657  *
2658  * Caller must hold folio_memcg_lock().
2659  */
2660 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2661 {
2662 	long nr = folio_nr_pages(folio);
2663 
2664 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2665 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2666 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2667 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2668 }
2669 
2670 /*
2671  * Mark the folio dirty, and set it dirty in the page cache, and mark
2672  * the inode dirty.
2673  *
2674  * If warn is true, then emit a warning if the folio is not uptodate and has
2675  * not been truncated.
2676  *
2677  * The caller must hold folio_memcg_lock().  Most callers have the folio
2678  * locked.  A few have the folio blocked from truncation through other
2679  * means (eg zap_vma_pages() has it mapped and is holding the page table
2680  * lock).  This can also be called from mark_buffer_dirty(), which I
2681  * cannot prove is always protected against truncate.
2682  */
2683 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2684 			     int warn)
2685 {
2686 	unsigned long flags;
2687 
2688 	xa_lock_irqsave(&mapping->i_pages, flags);
2689 	if (folio->mapping) {	/* Race with truncate? */
2690 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2691 		folio_account_dirtied(folio, mapping);
2692 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2693 				PAGECACHE_TAG_DIRTY);
2694 	}
2695 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2696 }
2697 
2698 /**
2699  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2700  * @mapping: Address space this folio belongs to.
2701  * @folio: Folio to be marked as dirty.
2702  *
2703  * Filesystems which do not use buffer heads should call this function
2704  * from their set_page_dirty address space operation.  It ignores the
2705  * contents of folio_get_private(), so if the filesystem marks individual
2706  * blocks as dirty, the filesystem should handle that itself.
2707  *
2708  * This is also sometimes used by filesystems which use buffer_heads when
2709  * a single buffer is being dirtied: we want to set the folio dirty in
2710  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2711  * whereas block_dirty_folio() is a "top-down" dirtying.
2712  *
2713  * The caller must ensure this doesn't race with truncation.  Most will
2714  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2715  * folio mapped and the pte lock held, which also locks out truncation.
2716  */
2717 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2718 {
2719 	folio_memcg_lock(folio);
2720 	if (folio_test_set_dirty(folio)) {
2721 		folio_memcg_unlock(folio);
2722 		return false;
2723 	}
2724 
2725 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2726 	folio_memcg_unlock(folio);
2727 
2728 	if (mapping->host) {
2729 		/* !PageAnon && !swapper_space */
2730 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2731 	}
2732 	return true;
2733 }
2734 EXPORT_SYMBOL(filemap_dirty_folio);
2735 
2736 /**
2737  * folio_redirty_for_writepage - Decline to write a dirty folio.
2738  * @wbc: The writeback control.
2739  * @folio: The folio.
2740  *
2741  * When a writepage implementation decides that it doesn't want to write
2742  * @folio for some reason, it should call this function, unlock @folio and
2743  * return 0.
2744  *
2745  * Return: True if we redirtied the folio.  False if someone else dirtied
2746  * it first.
2747  */
2748 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2749 		struct folio *folio)
2750 {
2751 	struct address_space *mapping = folio->mapping;
2752 	long nr = folio_nr_pages(folio);
2753 	bool ret;
2754 
2755 	wbc->pages_skipped += nr;
2756 	ret = filemap_dirty_folio(mapping, folio);
2757 	if (mapping && mapping_can_writeback(mapping)) {
2758 		struct inode *inode = mapping->host;
2759 		struct bdi_writeback *wb;
2760 		struct wb_lock_cookie cookie = {};
2761 
2762 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2763 		current->nr_dirtied -= nr;
2764 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2765 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2766 		unlocked_inode_to_wb_end(inode, &cookie);
2767 	}
2768 	return ret;
2769 }
2770 EXPORT_SYMBOL(folio_redirty_for_writepage);
2771 
2772 /**
2773  * folio_mark_dirty - Mark a folio as being modified.
2774  * @folio: The folio.
2775  *
2776  * The folio may not be truncated while this function is running.
2777  * Holding the folio lock is sufficient to prevent truncation, but some
2778  * callers cannot acquire a sleeping lock.  These callers instead hold
2779  * the page table lock for a page table which contains at least one page
2780  * in this folio.  Truncation will block on the page table lock as it
2781  * unmaps pages before removing the folio from its mapping.
2782  *
2783  * Return: True if the folio was newly dirtied, false if it was already dirty.
2784  */
2785 bool folio_mark_dirty(struct folio *folio)
2786 {
2787 	struct address_space *mapping = folio_mapping(folio);
2788 
2789 	if (likely(mapping)) {
2790 		/*
2791 		 * readahead/folio_deactivate could remain
2792 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2793 		 * About readahead, if the folio is written, the flags would be
2794 		 * reset. So no problem.
2795 		 * About folio_deactivate, if the folio is redirtied,
2796 		 * the flag will be reset. So no problem. but if the
2797 		 * folio is used by readahead it will confuse readahead
2798 		 * and make it restart the size rampup process. But it's
2799 		 * a trivial problem.
2800 		 */
2801 		if (folio_test_reclaim(folio))
2802 			folio_clear_reclaim(folio);
2803 		return mapping->a_ops->dirty_folio(mapping, folio);
2804 	}
2805 
2806 	return noop_dirty_folio(mapping, folio);
2807 }
2808 EXPORT_SYMBOL(folio_mark_dirty);
2809 
2810 /*
2811  * set_page_dirty() is racy if the caller has no reference against
2812  * page->mapping->host, and if the page is unlocked.  This is because another
2813  * CPU could truncate the page off the mapping and then free the mapping.
2814  *
2815  * Usually, the page _is_ locked, or the caller is a user-space process which
2816  * holds a reference on the inode by having an open file.
2817  *
2818  * In other cases, the page should be locked before running set_page_dirty().
2819  */
2820 int set_page_dirty_lock(struct page *page)
2821 {
2822 	int ret;
2823 
2824 	lock_page(page);
2825 	ret = set_page_dirty(page);
2826 	unlock_page(page);
2827 	return ret;
2828 }
2829 EXPORT_SYMBOL(set_page_dirty_lock);
2830 
2831 /*
2832  * This cancels just the dirty bit on the kernel page itself, it does NOT
2833  * actually remove dirty bits on any mmap's that may be around. It also
2834  * leaves the page tagged dirty, so any sync activity will still find it on
2835  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2836  * look at the dirty bits in the VM.
2837  *
2838  * Doing this should *normally* only ever be done when a page is truncated,
2839  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2840  * this when it notices that somebody has cleaned out all the buffers on a
2841  * page without actually doing it through the VM. Can you say "ext3 is
2842  * horribly ugly"? Thought you could.
2843  */
2844 void __folio_cancel_dirty(struct folio *folio)
2845 {
2846 	struct address_space *mapping = folio_mapping(folio);
2847 
2848 	if (mapping_can_writeback(mapping)) {
2849 		struct inode *inode = mapping->host;
2850 		struct bdi_writeback *wb;
2851 		struct wb_lock_cookie cookie = {};
2852 
2853 		folio_memcg_lock(folio);
2854 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2855 
2856 		if (folio_test_clear_dirty(folio))
2857 			folio_account_cleaned(folio, wb);
2858 
2859 		unlocked_inode_to_wb_end(inode, &cookie);
2860 		folio_memcg_unlock(folio);
2861 	} else {
2862 		folio_clear_dirty(folio);
2863 	}
2864 }
2865 EXPORT_SYMBOL(__folio_cancel_dirty);
2866 
2867 /*
2868  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2869  * Returns true if the folio was previously dirty.
2870  *
2871  * This is for preparing to put the folio under writeout.  We leave
2872  * the folio tagged as dirty in the xarray so that a concurrent
2873  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2874  * The ->writepage implementation will run either folio_start_writeback()
2875  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2876  * and xarray dirty tag back into sync.
2877  *
2878  * This incoherency between the folio's dirty flag and xarray tag is
2879  * unfortunate, but it only exists while the folio is locked.
2880  */
2881 bool folio_clear_dirty_for_io(struct folio *folio)
2882 {
2883 	struct address_space *mapping = folio_mapping(folio);
2884 	bool ret = false;
2885 
2886 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2887 
2888 	if (mapping && mapping_can_writeback(mapping)) {
2889 		struct inode *inode = mapping->host;
2890 		struct bdi_writeback *wb;
2891 		struct wb_lock_cookie cookie = {};
2892 
2893 		/*
2894 		 * Yes, Virginia, this is indeed insane.
2895 		 *
2896 		 * We use this sequence to make sure that
2897 		 *  (a) we account for dirty stats properly
2898 		 *  (b) we tell the low-level filesystem to
2899 		 *      mark the whole folio dirty if it was
2900 		 *      dirty in a pagetable. Only to then
2901 		 *  (c) clean the folio again and return 1 to
2902 		 *      cause the writeback.
2903 		 *
2904 		 * This way we avoid all nasty races with the
2905 		 * dirty bit in multiple places and clearing
2906 		 * them concurrently from different threads.
2907 		 *
2908 		 * Note! Normally the "folio_mark_dirty(folio)"
2909 		 * has no effect on the actual dirty bit - since
2910 		 * that will already usually be set. But we
2911 		 * need the side effects, and it can help us
2912 		 * avoid races.
2913 		 *
2914 		 * We basically use the folio "master dirty bit"
2915 		 * as a serialization point for all the different
2916 		 * threads doing their things.
2917 		 */
2918 		if (folio_mkclean(folio))
2919 			folio_mark_dirty(folio);
2920 		/*
2921 		 * We carefully synchronise fault handlers against
2922 		 * installing a dirty pte and marking the folio dirty
2923 		 * at this point.  We do this by having them hold the
2924 		 * page lock while dirtying the folio, and folios are
2925 		 * always locked coming in here, so we get the desired
2926 		 * exclusion.
2927 		 */
2928 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2929 		if (folio_test_clear_dirty(folio)) {
2930 			long nr = folio_nr_pages(folio);
2931 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2932 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2933 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2934 			ret = true;
2935 		}
2936 		unlocked_inode_to_wb_end(inode, &cookie);
2937 		return ret;
2938 	}
2939 	return folio_test_clear_dirty(folio);
2940 }
2941 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2942 
2943 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2944 {
2945 	atomic_inc(&wb->writeback_inodes);
2946 }
2947 
2948 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2949 {
2950 	unsigned long flags;
2951 	atomic_dec(&wb->writeback_inodes);
2952 	/*
2953 	 * Make sure estimate of writeback throughput gets updated after
2954 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2955 	 * (which is the interval other bandwidth updates use for batching) so
2956 	 * that if multiple inodes end writeback at a similar time, they get
2957 	 * batched into one bandwidth update.
2958 	 */
2959 	spin_lock_irqsave(&wb->work_lock, flags);
2960 	if (test_bit(WB_registered, &wb->state))
2961 		queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2962 	spin_unlock_irqrestore(&wb->work_lock, flags);
2963 }
2964 
2965 bool __folio_end_writeback(struct folio *folio)
2966 {
2967 	long nr = folio_nr_pages(folio);
2968 	struct address_space *mapping = folio_mapping(folio);
2969 	bool ret;
2970 
2971 	folio_memcg_lock(folio);
2972 	if (mapping && mapping_use_writeback_tags(mapping)) {
2973 		struct inode *inode = mapping->host;
2974 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2975 		unsigned long flags;
2976 
2977 		xa_lock_irqsave(&mapping->i_pages, flags);
2978 		ret = folio_test_clear_writeback(folio);
2979 		if (ret) {
2980 			__xa_clear_mark(&mapping->i_pages, folio_index(folio),
2981 						PAGECACHE_TAG_WRITEBACK);
2982 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2983 				struct bdi_writeback *wb = inode_to_wb(inode);
2984 
2985 				wb_stat_mod(wb, WB_WRITEBACK, -nr);
2986 				__wb_writeout_add(wb, nr);
2987 				if (!mapping_tagged(mapping,
2988 						    PAGECACHE_TAG_WRITEBACK))
2989 					wb_inode_writeback_end(wb);
2990 			}
2991 		}
2992 
2993 		if (mapping->host && !mapping_tagged(mapping,
2994 						     PAGECACHE_TAG_WRITEBACK))
2995 			sb_clear_inode_writeback(mapping->host);
2996 
2997 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2998 	} else {
2999 		ret = folio_test_clear_writeback(folio);
3000 	}
3001 	if (ret) {
3002 		lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3003 		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3004 		node_stat_mod_folio(folio, NR_WRITTEN, nr);
3005 	}
3006 	folio_memcg_unlock(folio);
3007 	return ret;
3008 }
3009 
3010 bool __folio_start_writeback(struct folio *folio, bool keep_write)
3011 {
3012 	long nr = folio_nr_pages(folio);
3013 	struct address_space *mapping = folio_mapping(folio);
3014 	bool ret;
3015 	int access_ret;
3016 
3017 	folio_memcg_lock(folio);
3018 	if (mapping && mapping_use_writeback_tags(mapping)) {
3019 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3020 		struct inode *inode = mapping->host;
3021 		struct backing_dev_info *bdi = inode_to_bdi(inode);
3022 		unsigned long flags;
3023 
3024 		xas_lock_irqsave(&xas, flags);
3025 		xas_load(&xas);
3026 		ret = folio_test_set_writeback(folio);
3027 		if (!ret) {
3028 			bool on_wblist;
3029 
3030 			on_wblist = mapping_tagged(mapping,
3031 						   PAGECACHE_TAG_WRITEBACK);
3032 
3033 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3034 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3035 				struct bdi_writeback *wb = inode_to_wb(inode);
3036 
3037 				wb_stat_mod(wb, WB_WRITEBACK, nr);
3038 				if (!on_wblist)
3039 					wb_inode_writeback_start(wb);
3040 			}
3041 
3042 			/*
3043 			 * We can come through here when swapping
3044 			 * anonymous folios, so we don't necessarily
3045 			 * have an inode to track for sync.
3046 			 */
3047 			if (mapping->host && !on_wblist)
3048 				sb_mark_inode_writeback(mapping->host);
3049 		}
3050 		if (!folio_test_dirty(folio))
3051 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3052 		if (!keep_write)
3053 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3054 		xas_unlock_irqrestore(&xas, flags);
3055 	} else {
3056 		ret = folio_test_set_writeback(folio);
3057 	}
3058 	if (!ret) {
3059 		lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3060 		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3061 	}
3062 	folio_memcg_unlock(folio);
3063 	access_ret = arch_make_folio_accessible(folio);
3064 	/*
3065 	 * If writeback has been triggered on a page that cannot be made
3066 	 * accessible, it is too late to recover here.
3067 	 */
3068 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
3069 
3070 	return ret;
3071 }
3072 EXPORT_SYMBOL(__folio_start_writeback);
3073 
3074 /**
3075  * folio_wait_writeback - Wait for a folio to finish writeback.
3076  * @folio: The folio to wait for.
3077  *
3078  * If the folio is currently being written back to storage, wait for the
3079  * I/O to complete.
3080  *
3081  * Context: Sleeps.  Must be called in process context and with
3082  * no spinlocks held.  Caller should hold a reference on the folio.
3083  * If the folio is not locked, writeback may start again after writeback
3084  * has finished.
3085  */
3086 void folio_wait_writeback(struct folio *folio)
3087 {
3088 	while (folio_test_writeback(folio)) {
3089 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3090 		folio_wait_bit(folio, PG_writeback);
3091 	}
3092 }
3093 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3094 
3095 /**
3096  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3097  * @folio: The folio to wait for.
3098  *
3099  * If the folio is currently being written back to storage, wait for the
3100  * I/O to complete or a fatal signal to arrive.
3101  *
3102  * Context: Sleeps.  Must be called in process context and with
3103  * no spinlocks held.  Caller should hold a reference on the folio.
3104  * If the folio is not locked, writeback may start again after writeback
3105  * has finished.
3106  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3107  */
3108 int folio_wait_writeback_killable(struct folio *folio)
3109 {
3110 	while (folio_test_writeback(folio)) {
3111 		trace_folio_wait_writeback(folio, folio_mapping(folio));
3112 		if (folio_wait_bit_killable(folio, PG_writeback))
3113 			return -EINTR;
3114 	}
3115 
3116 	return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3119 
3120 /**
3121  * folio_wait_stable() - wait for writeback to finish, if necessary.
3122  * @folio: The folio to wait on.
3123  *
3124  * This function determines if the given folio is related to a backing
3125  * device that requires folio contents to be held stable during writeback.
3126  * If so, then it will wait for any pending writeback to complete.
3127  *
3128  * Context: Sleeps.  Must be called in process context and with
3129  * no spinlocks held.  Caller should hold a reference on the folio.
3130  * If the folio is not locked, writeback may start again after writeback
3131  * has finished.
3132  */
3133 void folio_wait_stable(struct folio *folio)
3134 {
3135 	if (mapping_stable_writes(folio_mapping(folio)))
3136 		folio_wait_writeback(folio);
3137 }
3138 EXPORT_SYMBOL_GPL(folio_wait_stable);
3139