1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/pagevec.h> 36 #include <linux/timer.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/signal.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 static int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 static unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 static int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 static int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 static unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 112 * a full sync is triggered after this time elapses without any disk activity. 113 */ 114 int laptop_mode; 115 116 EXPORT_SYMBOL(laptop_mode); 117 118 /* End of sysctl-exported parameters */ 119 120 struct wb_domain global_wb_domain; 121 122 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 123 struct dirty_throttle_control { 124 #ifdef CONFIG_CGROUP_WRITEBACK 125 struct wb_domain *dom; 126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 127 #endif 128 struct bdi_writeback *wb; 129 struct fprop_local_percpu *wb_completions; 130 131 unsigned long avail; /* dirtyable */ 132 unsigned long dirty; /* file_dirty + write + nfs */ 133 unsigned long thresh; /* dirty threshold */ 134 unsigned long bg_thresh; /* dirty background threshold */ 135 136 unsigned long wb_dirty; /* per-wb counterparts */ 137 unsigned long wb_thresh; 138 unsigned long wb_bg_thresh; 139 140 unsigned long pos_ratio; 141 }; 142 143 /* 144 * Length of period for aging writeout fractions of bdis. This is an 145 * arbitrarily chosen number. The longer the period, the slower fractions will 146 * reflect changes in current writeout rate. 147 */ 148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 149 150 #ifdef CONFIG_CGROUP_WRITEBACK 151 152 #define GDTC_INIT(__wb) .wb = (__wb), \ 153 .dom = &global_wb_domain, \ 154 .wb_completions = &(__wb)->completions 155 156 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 157 158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 159 .dom = mem_cgroup_wb_domain(__wb), \ 160 .wb_completions = &(__wb)->memcg_completions, \ 161 .gdtc = __gdtc 162 163 static bool mdtc_valid(struct dirty_throttle_control *dtc) 164 { 165 return dtc->dom; 166 } 167 168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 174 { 175 return mdtc->gdtc; 176 } 177 178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 179 { 180 return &wb->memcg_completions; 181 } 182 183 static void wb_min_max_ratio(struct bdi_writeback *wb, 184 unsigned long *minp, unsigned long *maxp) 185 { 186 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 188 unsigned long long min = wb->bdi->min_ratio; 189 unsigned long long max = wb->bdi->max_ratio; 190 191 /* 192 * @wb may already be clean by the time control reaches here and 193 * the total may not include its bw. 194 */ 195 if (this_bw < tot_bw) { 196 if (min) { 197 min *= this_bw; 198 min = div64_ul(min, tot_bw); 199 } 200 if (max < 100) { 201 max *= this_bw; 202 max = div64_ul(max, tot_bw); 203 } 204 } 205 206 *minp = min; 207 *maxp = max; 208 } 209 210 #else /* CONFIG_CGROUP_WRITEBACK */ 211 212 #define GDTC_INIT(__wb) .wb = (__wb), \ 213 .wb_completions = &(__wb)->completions 214 #define GDTC_INIT_NO_WB 215 #define MDTC_INIT(__wb, __gdtc) 216 217 static bool mdtc_valid(struct dirty_throttle_control *dtc) 218 { 219 return false; 220 } 221 222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 223 { 224 return &global_wb_domain; 225 } 226 227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 228 { 229 return NULL; 230 } 231 232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 233 { 234 return NULL; 235 } 236 237 static void wb_min_max_ratio(struct bdi_writeback *wb, 238 unsigned long *minp, unsigned long *maxp) 239 { 240 *minp = wb->bdi->min_ratio; 241 *maxp = wb->bdi->max_ratio; 242 } 243 244 #endif /* CONFIG_CGROUP_WRITEBACK */ 245 246 /* 247 * In a memory zone, there is a certain amount of pages we consider 248 * available for the page cache, which is essentially the number of 249 * free and reclaimable pages, minus some zone reserves to protect 250 * lowmem and the ability to uphold the zone's watermarks without 251 * requiring writeback. 252 * 253 * This number of dirtyable pages is the base value of which the 254 * user-configurable dirty ratio is the effective number of pages that 255 * are allowed to be actually dirtied. Per individual zone, or 256 * globally by using the sum of dirtyable pages over all zones. 257 * 258 * Because the user is allowed to specify the dirty limit globally as 259 * absolute number of bytes, calculating the per-zone dirty limit can 260 * require translating the configured limit into a percentage of 261 * global dirtyable memory first. 262 */ 263 264 /** 265 * node_dirtyable_memory - number of dirtyable pages in a node 266 * @pgdat: the node 267 * 268 * Return: the node's number of pages potentially available for dirty 269 * page cache. This is the base value for the per-node dirty limits. 270 */ 271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 272 { 273 unsigned long nr_pages = 0; 274 int z; 275 276 for (z = 0; z < MAX_NR_ZONES; z++) { 277 struct zone *zone = pgdat->node_zones + z; 278 279 if (!populated_zone(zone)) 280 continue; 281 282 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 283 } 284 285 /* 286 * Pages reserved for the kernel should not be considered 287 * dirtyable, to prevent a situation where reclaim has to 288 * clean pages in order to balance the zones. 289 */ 290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 291 292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 294 295 return nr_pages; 296 } 297 298 static unsigned long highmem_dirtyable_memory(unsigned long total) 299 { 300 #ifdef CONFIG_HIGHMEM 301 int node; 302 unsigned long x = 0; 303 int i; 304 305 for_each_node_state(node, N_HIGH_MEMORY) { 306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 307 struct zone *z; 308 unsigned long nr_pages; 309 310 if (!is_highmem_idx(i)) 311 continue; 312 313 z = &NODE_DATA(node)->node_zones[i]; 314 if (!populated_zone(z)) 315 continue; 316 317 nr_pages = zone_page_state(z, NR_FREE_PAGES); 318 /* watch for underflows */ 319 nr_pages -= min(nr_pages, high_wmark_pages(z)); 320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 322 x += nr_pages; 323 } 324 } 325 326 /* 327 * Make sure that the number of highmem pages is never larger 328 * than the number of the total dirtyable memory. This can only 329 * occur in very strange VM situations but we want to make sure 330 * that this does not occur. 331 */ 332 return min(x, total); 333 #else 334 return 0; 335 #endif 336 } 337 338 /** 339 * global_dirtyable_memory - number of globally dirtyable pages 340 * 341 * Return: the global number of pages potentially available for dirty 342 * page cache. This is the base value for the global dirty limits. 343 */ 344 static unsigned long global_dirtyable_memory(void) 345 { 346 unsigned long x; 347 348 x = global_zone_page_state(NR_FREE_PAGES); 349 /* 350 * Pages reserved for the kernel should not be considered 351 * dirtyable, to prevent a situation where reclaim has to 352 * clean pages in order to balance the zones. 353 */ 354 x -= min(x, totalreserve_pages); 355 356 x += global_node_page_state(NR_INACTIVE_FILE); 357 x += global_node_page_state(NR_ACTIVE_FILE); 358 359 if (!vm_highmem_is_dirtyable) 360 x -= highmem_dirtyable_memory(x); 361 362 return x + 1; /* Ensure that we never return 0 */ 363 } 364 365 /** 366 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 367 * @dtc: dirty_throttle_control of interest 368 * 369 * Calculate @dtc->thresh and ->bg_thresh considering 370 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 371 * must ensure that @dtc->avail is set before calling this function. The 372 * dirty limits will be lifted by 1/4 for real-time tasks. 373 */ 374 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 375 { 376 const unsigned long available_memory = dtc->avail; 377 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 378 unsigned long bytes = vm_dirty_bytes; 379 unsigned long bg_bytes = dirty_background_bytes; 380 /* convert ratios to per-PAGE_SIZE for higher precision */ 381 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 382 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 383 unsigned long thresh; 384 unsigned long bg_thresh; 385 struct task_struct *tsk; 386 387 /* gdtc is !NULL iff @dtc is for memcg domain */ 388 if (gdtc) { 389 unsigned long global_avail = gdtc->avail; 390 391 /* 392 * The byte settings can't be applied directly to memcg 393 * domains. Convert them to ratios by scaling against 394 * globally available memory. As the ratios are in 395 * per-PAGE_SIZE, they can be obtained by dividing bytes by 396 * number of pages. 397 */ 398 if (bytes) 399 ratio = min(DIV_ROUND_UP(bytes, global_avail), 400 PAGE_SIZE); 401 if (bg_bytes) 402 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 403 PAGE_SIZE); 404 bytes = bg_bytes = 0; 405 } 406 407 if (bytes) 408 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 409 else 410 thresh = (ratio * available_memory) / PAGE_SIZE; 411 412 if (bg_bytes) 413 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 414 else 415 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 416 417 if (bg_thresh >= thresh) 418 bg_thresh = thresh / 2; 419 tsk = current; 420 if (rt_task(tsk)) { 421 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 422 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 423 } 424 dtc->thresh = thresh; 425 dtc->bg_thresh = bg_thresh; 426 427 /* we should eventually report the domain in the TP */ 428 if (!gdtc) 429 trace_global_dirty_state(bg_thresh, thresh); 430 } 431 432 /** 433 * global_dirty_limits - background-writeback and dirty-throttling thresholds 434 * @pbackground: out parameter for bg_thresh 435 * @pdirty: out parameter for thresh 436 * 437 * Calculate bg_thresh and thresh for global_wb_domain. See 438 * domain_dirty_limits() for details. 439 */ 440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 441 { 442 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 443 444 gdtc.avail = global_dirtyable_memory(); 445 domain_dirty_limits(&gdtc); 446 447 *pbackground = gdtc.bg_thresh; 448 *pdirty = gdtc.thresh; 449 } 450 451 /** 452 * node_dirty_limit - maximum number of dirty pages allowed in a node 453 * @pgdat: the node 454 * 455 * Return: the maximum number of dirty pages allowed in a node, based 456 * on the node's dirtyable memory. 457 */ 458 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 459 { 460 unsigned long node_memory = node_dirtyable_memory(pgdat); 461 struct task_struct *tsk = current; 462 unsigned long dirty; 463 464 if (vm_dirty_bytes) 465 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 466 node_memory / global_dirtyable_memory(); 467 else 468 dirty = vm_dirty_ratio * node_memory / 100; 469 470 if (rt_task(tsk)) 471 dirty += dirty / 4; 472 473 return dirty; 474 } 475 476 /** 477 * node_dirty_ok - tells whether a node is within its dirty limits 478 * @pgdat: the node to check 479 * 480 * Return: %true when the dirty pages in @pgdat are within the node's 481 * dirty limit, %false if the limit is exceeded. 482 */ 483 bool node_dirty_ok(struct pglist_data *pgdat) 484 { 485 unsigned long limit = node_dirty_limit(pgdat); 486 unsigned long nr_pages = 0; 487 488 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 489 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 490 491 return nr_pages <= limit; 492 } 493 494 #ifdef CONFIG_SYSCTL 495 static int dirty_background_ratio_handler(struct ctl_table *table, int write, 496 void *buffer, size_t *lenp, loff_t *ppos) 497 { 498 int ret; 499 500 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 501 if (ret == 0 && write) 502 dirty_background_bytes = 0; 503 return ret; 504 } 505 506 static int dirty_background_bytes_handler(struct ctl_table *table, int write, 507 void *buffer, size_t *lenp, loff_t *ppos) 508 { 509 int ret; 510 511 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 512 if (ret == 0 && write) 513 dirty_background_ratio = 0; 514 return ret; 515 } 516 517 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 518 size_t *lenp, loff_t *ppos) 519 { 520 int old_ratio = vm_dirty_ratio; 521 int ret; 522 523 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 524 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 525 writeback_set_ratelimit(); 526 vm_dirty_bytes = 0; 527 } 528 return ret; 529 } 530 531 static int dirty_bytes_handler(struct ctl_table *table, int write, 532 void *buffer, size_t *lenp, loff_t *ppos) 533 { 534 unsigned long old_bytes = vm_dirty_bytes; 535 int ret; 536 537 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 538 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 539 writeback_set_ratelimit(); 540 vm_dirty_ratio = 0; 541 } 542 return ret; 543 } 544 #endif 545 546 static unsigned long wp_next_time(unsigned long cur_time) 547 { 548 cur_time += VM_COMPLETIONS_PERIOD_LEN; 549 /* 0 has a special meaning... */ 550 if (!cur_time) 551 return 1; 552 return cur_time; 553 } 554 555 static void wb_domain_writeout_add(struct wb_domain *dom, 556 struct fprop_local_percpu *completions, 557 unsigned int max_prop_frac, long nr) 558 { 559 __fprop_add_percpu_max(&dom->completions, completions, 560 max_prop_frac, nr); 561 /* First event after period switching was turned off? */ 562 if (unlikely(!dom->period_time)) { 563 /* 564 * We can race with other __bdi_writeout_inc calls here but 565 * it does not cause any harm since the resulting time when 566 * timer will fire and what is in writeout_period_time will be 567 * roughly the same. 568 */ 569 dom->period_time = wp_next_time(jiffies); 570 mod_timer(&dom->period_timer, dom->period_time); 571 } 572 } 573 574 /* 575 * Increment @wb's writeout completion count and the global writeout 576 * completion count. Called from __folio_end_writeback(). 577 */ 578 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 579 { 580 struct wb_domain *cgdom; 581 582 wb_stat_mod(wb, WB_WRITTEN, nr); 583 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 584 wb->bdi->max_prop_frac, nr); 585 586 cgdom = mem_cgroup_wb_domain(wb); 587 if (cgdom) 588 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 589 wb->bdi->max_prop_frac, nr); 590 } 591 592 void wb_writeout_inc(struct bdi_writeback *wb) 593 { 594 unsigned long flags; 595 596 local_irq_save(flags); 597 __wb_writeout_add(wb, 1); 598 local_irq_restore(flags); 599 } 600 EXPORT_SYMBOL_GPL(wb_writeout_inc); 601 602 /* 603 * On idle system, we can be called long after we scheduled because we use 604 * deferred timers so count with missed periods. 605 */ 606 static void writeout_period(struct timer_list *t) 607 { 608 struct wb_domain *dom = from_timer(dom, t, period_timer); 609 int miss_periods = (jiffies - dom->period_time) / 610 VM_COMPLETIONS_PERIOD_LEN; 611 612 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 613 dom->period_time = wp_next_time(dom->period_time + 614 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 615 mod_timer(&dom->period_timer, dom->period_time); 616 } else { 617 /* 618 * Aging has zeroed all fractions. Stop wasting CPU on period 619 * updates. 620 */ 621 dom->period_time = 0; 622 } 623 } 624 625 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 626 { 627 memset(dom, 0, sizeof(*dom)); 628 629 spin_lock_init(&dom->lock); 630 631 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 632 633 dom->dirty_limit_tstamp = jiffies; 634 635 return fprop_global_init(&dom->completions, gfp); 636 } 637 638 #ifdef CONFIG_CGROUP_WRITEBACK 639 void wb_domain_exit(struct wb_domain *dom) 640 { 641 del_timer_sync(&dom->period_timer); 642 fprop_global_destroy(&dom->completions); 643 } 644 #endif 645 646 /* 647 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 648 * registered backing devices, which, for obvious reasons, can not 649 * exceed 100%. 650 */ 651 static unsigned int bdi_min_ratio; 652 653 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 654 { 655 unsigned int delta; 656 int ret = 0; 657 658 spin_lock_bh(&bdi_lock); 659 if (min_ratio > bdi->max_ratio) { 660 ret = -EINVAL; 661 } else { 662 if (min_ratio < bdi->min_ratio) { 663 delta = bdi->min_ratio - min_ratio; 664 bdi_min_ratio -= delta; 665 bdi->min_ratio = min_ratio; 666 } else { 667 delta = min_ratio - bdi->min_ratio; 668 if (bdi_min_ratio + delta < 100) { 669 bdi_min_ratio += delta; 670 bdi->min_ratio = min_ratio; 671 } else { 672 ret = -EINVAL; 673 } 674 } 675 } 676 spin_unlock_bh(&bdi_lock); 677 678 return ret; 679 } 680 681 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 682 { 683 int ret = 0; 684 685 if (max_ratio > 100) 686 return -EINVAL; 687 688 spin_lock_bh(&bdi_lock); 689 if (bdi->min_ratio > max_ratio) { 690 ret = -EINVAL; 691 } else { 692 bdi->max_ratio = max_ratio; 693 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 694 } 695 spin_unlock_bh(&bdi_lock); 696 697 return ret; 698 } 699 EXPORT_SYMBOL(bdi_set_max_ratio); 700 701 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 702 unsigned long bg_thresh) 703 { 704 return (thresh + bg_thresh) / 2; 705 } 706 707 static unsigned long hard_dirty_limit(struct wb_domain *dom, 708 unsigned long thresh) 709 { 710 return max(thresh, dom->dirty_limit); 711 } 712 713 /* 714 * Memory which can be further allocated to a memcg domain is capped by 715 * system-wide clean memory excluding the amount being used in the domain. 716 */ 717 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 718 unsigned long filepages, unsigned long headroom) 719 { 720 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 721 unsigned long clean = filepages - min(filepages, mdtc->dirty); 722 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 723 unsigned long other_clean = global_clean - min(global_clean, clean); 724 725 mdtc->avail = filepages + min(headroom, other_clean); 726 } 727 728 /** 729 * __wb_calc_thresh - @wb's share of dirty throttling threshold 730 * @dtc: dirty_throttle_context of interest 731 * 732 * Note that balance_dirty_pages() will only seriously take it as a hard limit 733 * when sleeping max_pause per page is not enough to keep the dirty pages under 734 * control. For example, when the device is completely stalled due to some error 735 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 736 * In the other normal situations, it acts more gently by throttling the tasks 737 * more (rather than completely block them) when the wb dirty pages go high. 738 * 739 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 740 * - starving fast devices 741 * - piling up dirty pages (that will take long time to sync) on slow devices 742 * 743 * The wb's share of dirty limit will be adapting to its throughput and 744 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 745 * 746 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 747 * dirty balancing includes all PG_dirty and PG_writeback pages. 748 */ 749 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 750 { 751 struct wb_domain *dom = dtc_dom(dtc); 752 unsigned long thresh = dtc->thresh; 753 u64 wb_thresh; 754 unsigned long numerator, denominator; 755 unsigned long wb_min_ratio, wb_max_ratio; 756 757 /* 758 * Calculate this BDI's share of the thresh ratio. 759 */ 760 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 761 &numerator, &denominator); 762 763 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 764 wb_thresh *= numerator; 765 wb_thresh = div64_ul(wb_thresh, denominator); 766 767 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 768 769 wb_thresh += (thresh * wb_min_ratio) / 100; 770 if (wb_thresh > (thresh * wb_max_ratio) / 100) 771 wb_thresh = thresh * wb_max_ratio / 100; 772 773 return wb_thresh; 774 } 775 776 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 777 { 778 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 779 .thresh = thresh }; 780 return __wb_calc_thresh(&gdtc); 781 } 782 783 /* 784 * setpoint - dirty 3 785 * f(dirty) := 1.0 + (----------------) 786 * limit - setpoint 787 * 788 * it's a 3rd order polynomial that subjects to 789 * 790 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 791 * (2) f(setpoint) = 1.0 => the balance point 792 * (3) f(limit) = 0 => the hard limit 793 * (4) df/dx <= 0 => negative feedback control 794 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 795 * => fast response on large errors; small oscillation near setpoint 796 */ 797 static long long pos_ratio_polynom(unsigned long setpoint, 798 unsigned long dirty, 799 unsigned long limit) 800 { 801 long long pos_ratio; 802 long x; 803 804 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 805 (limit - setpoint) | 1); 806 pos_ratio = x; 807 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 808 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 809 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 810 811 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 812 } 813 814 /* 815 * Dirty position control. 816 * 817 * (o) global/bdi setpoints 818 * 819 * We want the dirty pages be balanced around the global/wb setpoints. 820 * When the number of dirty pages is higher/lower than the setpoint, the 821 * dirty position control ratio (and hence task dirty ratelimit) will be 822 * decreased/increased to bring the dirty pages back to the setpoint. 823 * 824 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 825 * 826 * if (dirty < setpoint) scale up pos_ratio 827 * if (dirty > setpoint) scale down pos_ratio 828 * 829 * if (wb_dirty < wb_setpoint) scale up pos_ratio 830 * if (wb_dirty > wb_setpoint) scale down pos_ratio 831 * 832 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 833 * 834 * (o) global control line 835 * 836 * ^ pos_ratio 837 * | 838 * | |<===== global dirty control scope ======>| 839 * 2.0 * * * * * * * 840 * | .* 841 * | . * 842 * | . * 843 * | . * 844 * | . * 845 * | . * 846 * 1.0 ................................* 847 * | . . * 848 * | . . * 849 * | . . * 850 * | . . * 851 * | . . * 852 * 0 +------------.------------------.----------------------*-------------> 853 * freerun^ setpoint^ limit^ dirty pages 854 * 855 * (o) wb control line 856 * 857 * ^ pos_ratio 858 * | 859 * | * 860 * | * 861 * | * 862 * | * 863 * | * |<=========== span ============>| 864 * 1.0 .......................* 865 * | . * 866 * | . * 867 * | . * 868 * | . * 869 * | . * 870 * | . * 871 * | . * 872 * | . * 873 * | . * 874 * | . * 875 * | . * 876 * 1/4 ...............................................* * * * * * * * * * * * 877 * | . . 878 * | . . 879 * | . . 880 * 0 +----------------------.-------------------------------.-------------> 881 * wb_setpoint^ x_intercept^ 882 * 883 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 884 * be smoothly throttled down to normal if it starts high in situations like 885 * - start writing to a slow SD card and a fast disk at the same time. The SD 886 * card's wb_dirty may rush to many times higher than wb_setpoint. 887 * - the wb dirty thresh drops quickly due to change of JBOD workload 888 */ 889 static void wb_position_ratio(struct dirty_throttle_control *dtc) 890 { 891 struct bdi_writeback *wb = dtc->wb; 892 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 893 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 894 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 895 unsigned long wb_thresh = dtc->wb_thresh; 896 unsigned long x_intercept; 897 unsigned long setpoint; /* dirty pages' target balance point */ 898 unsigned long wb_setpoint; 899 unsigned long span; 900 long long pos_ratio; /* for scaling up/down the rate limit */ 901 long x; 902 903 dtc->pos_ratio = 0; 904 905 if (unlikely(dtc->dirty >= limit)) 906 return; 907 908 /* 909 * global setpoint 910 * 911 * See comment for pos_ratio_polynom(). 912 */ 913 setpoint = (freerun + limit) / 2; 914 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 915 916 /* 917 * The strictlimit feature is a tool preventing mistrusted filesystems 918 * from growing a large number of dirty pages before throttling. For 919 * such filesystems balance_dirty_pages always checks wb counters 920 * against wb limits. Even if global "nr_dirty" is under "freerun". 921 * This is especially important for fuse which sets bdi->max_ratio to 922 * 1% by default. Without strictlimit feature, fuse writeback may 923 * consume arbitrary amount of RAM because it is accounted in 924 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 925 * 926 * Here, in wb_position_ratio(), we calculate pos_ratio based on 927 * two values: wb_dirty and wb_thresh. Let's consider an example: 928 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 929 * limits are set by default to 10% and 20% (background and throttle). 930 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 931 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 932 * about ~6K pages (as the average of background and throttle wb 933 * limits). The 3rd order polynomial will provide positive feedback if 934 * wb_dirty is under wb_setpoint and vice versa. 935 * 936 * Note, that we cannot use global counters in these calculations 937 * because we want to throttle process writing to a strictlimit wb 938 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 939 * in the example above). 940 */ 941 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 942 long long wb_pos_ratio; 943 944 if (dtc->wb_dirty < 8) { 945 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 946 2 << RATELIMIT_CALC_SHIFT); 947 return; 948 } 949 950 if (dtc->wb_dirty >= wb_thresh) 951 return; 952 953 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 954 dtc->wb_bg_thresh); 955 956 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 957 return; 958 959 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 960 wb_thresh); 961 962 /* 963 * Typically, for strictlimit case, wb_setpoint << setpoint 964 * and pos_ratio >> wb_pos_ratio. In the other words global 965 * state ("dirty") is not limiting factor and we have to 966 * make decision based on wb counters. But there is an 967 * important case when global pos_ratio should get precedence: 968 * global limits are exceeded (e.g. due to activities on other 969 * wb's) while given strictlimit wb is below limit. 970 * 971 * "pos_ratio * wb_pos_ratio" would work for the case above, 972 * but it would look too non-natural for the case of all 973 * activity in the system coming from a single strictlimit wb 974 * with bdi->max_ratio == 100%. 975 * 976 * Note that min() below somewhat changes the dynamics of the 977 * control system. Normally, pos_ratio value can be well over 3 978 * (when globally we are at freerun and wb is well below wb 979 * setpoint). Now the maximum pos_ratio in the same situation 980 * is 2. We might want to tweak this if we observe the control 981 * system is too slow to adapt. 982 */ 983 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 984 return; 985 } 986 987 /* 988 * We have computed basic pos_ratio above based on global situation. If 989 * the wb is over/under its share of dirty pages, we want to scale 990 * pos_ratio further down/up. That is done by the following mechanism. 991 */ 992 993 /* 994 * wb setpoint 995 * 996 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 997 * 998 * x_intercept - wb_dirty 999 * := -------------------------- 1000 * x_intercept - wb_setpoint 1001 * 1002 * The main wb control line is a linear function that subjects to 1003 * 1004 * (1) f(wb_setpoint) = 1.0 1005 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1006 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1007 * 1008 * For single wb case, the dirty pages are observed to fluctuate 1009 * regularly within range 1010 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1011 * for various filesystems, where (2) can yield in a reasonable 12.5% 1012 * fluctuation range for pos_ratio. 1013 * 1014 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1015 * own size, so move the slope over accordingly and choose a slope that 1016 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1017 */ 1018 if (unlikely(wb_thresh > dtc->thresh)) 1019 wb_thresh = dtc->thresh; 1020 /* 1021 * It's very possible that wb_thresh is close to 0 not because the 1022 * device is slow, but that it has remained inactive for long time. 1023 * Honour such devices a reasonable good (hopefully IO efficient) 1024 * threshold, so that the occasional writes won't be blocked and active 1025 * writes can rampup the threshold quickly. 1026 */ 1027 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1028 /* 1029 * scale global setpoint to wb's: 1030 * wb_setpoint = setpoint * wb_thresh / thresh 1031 */ 1032 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1033 wb_setpoint = setpoint * (u64)x >> 16; 1034 /* 1035 * Use span=(8*write_bw) in single wb case as indicated by 1036 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1037 * 1038 * wb_thresh thresh - wb_thresh 1039 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1040 * thresh thresh 1041 */ 1042 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1043 x_intercept = wb_setpoint + span; 1044 1045 if (dtc->wb_dirty < x_intercept - span / 4) { 1046 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1047 (x_intercept - wb_setpoint) | 1); 1048 } else 1049 pos_ratio /= 4; 1050 1051 /* 1052 * wb reserve area, safeguard against dirty pool underrun and disk idle 1053 * It may push the desired control point of global dirty pages higher 1054 * than setpoint. 1055 */ 1056 x_intercept = wb_thresh / 2; 1057 if (dtc->wb_dirty < x_intercept) { 1058 if (dtc->wb_dirty > x_intercept / 8) 1059 pos_ratio = div_u64(pos_ratio * x_intercept, 1060 dtc->wb_dirty); 1061 else 1062 pos_ratio *= 8; 1063 } 1064 1065 dtc->pos_ratio = pos_ratio; 1066 } 1067 1068 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1069 unsigned long elapsed, 1070 unsigned long written) 1071 { 1072 const unsigned long period = roundup_pow_of_two(3 * HZ); 1073 unsigned long avg = wb->avg_write_bandwidth; 1074 unsigned long old = wb->write_bandwidth; 1075 u64 bw; 1076 1077 /* 1078 * bw = written * HZ / elapsed 1079 * 1080 * bw * elapsed + write_bandwidth * (period - elapsed) 1081 * write_bandwidth = --------------------------------------------------- 1082 * period 1083 * 1084 * @written may have decreased due to folio_account_redirty(). 1085 * Avoid underflowing @bw calculation. 1086 */ 1087 bw = written - min(written, wb->written_stamp); 1088 bw *= HZ; 1089 if (unlikely(elapsed > period)) { 1090 bw = div64_ul(bw, elapsed); 1091 avg = bw; 1092 goto out; 1093 } 1094 bw += (u64)wb->write_bandwidth * (period - elapsed); 1095 bw >>= ilog2(period); 1096 1097 /* 1098 * one more level of smoothing, for filtering out sudden spikes 1099 */ 1100 if (avg > old && old >= (unsigned long)bw) 1101 avg -= (avg - old) >> 3; 1102 1103 if (avg < old && old <= (unsigned long)bw) 1104 avg += (old - avg) >> 3; 1105 1106 out: 1107 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1108 avg = max(avg, 1LU); 1109 if (wb_has_dirty_io(wb)) { 1110 long delta = avg - wb->avg_write_bandwidth; 1111 WARN_ON_ONCE(atomic_long_add_return(delta, 1112 &wb->bdi->tot_write_bandwidth) <= 0); 1113 } 1114 wb->write_bandwidth = bw; 1115 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1116 } 1117 1118 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1119 { 1120 struct wb_domain *dom = dtc_dom(dtc); 1121 unsigned long thresh = dtc->thresh; 1122 unsigned long limit = dom->dirty_limit; 1123 1124 /* 1125 * Follow up in one step. 1126 */ 1127 if (limit < thresh) { 1128 limit = thresh; 1129 goto update; 1130 } 1131 1132 /* 1133 * Follow down slowly. Use the higher one as the target, because thresh 1134 * may drop below dirty. This is exactly the reason to introduce 1135 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1136 */ 1137 thresh = max(thresh, dtc->dirty); 1138 if (limit > thresh) { 1139 limit -= (limit - thresh) >> 5; 1140 goto update; 1141 } 1142 return; 1143 update: 1144 dom->dirty_limit = limit; 1145 } 1146 1147 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1148 unsigned long now) 1149 { 1150 struct wb_domain *dom = dtc_dom(dtc); 1151 1152 /* 1153 * check locklessly first to optimize away locking for the most time 1154 */ 1155 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1156 return; 1157 1158 spin_lock(&dom->lock); 1159 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1160 update_dirty_limit(dtc); 1161 dom->dirty_limit_tstamp = now; 1162 } 1163 spin_unlock(&dom->lock); 1164 } 1165 1166 /* 1167 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1168 * 1169 * Normal wb tasks will be curbed at or below it in long term. 1170 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1171 */ 1172 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1173 unsigned long dirtied, 1174 unsigned long elapsed) 1175 { 1176 struct bdi_writeback *wb = dtc->wb; 1177 unsigned long dirty = dtc->dirty; 1178 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1179 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1180 unsigned long setpoint = (freerun + limit) / 2; 1181 unsigned long write_bw = wb->avg_write_bandwidth; 1182 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1183 unsigned long dirty_rate; 1184 unsigned long task_ratelimit; 1185 unsigned long balanced_dirty_ratelimit; 1186 unsigned long step; 1187 unsigned long x; 1188 unsigned long shift; 1189 1190 /* 1191 * The dirty rate will match the writeout rate in long term, except 1192 * when dirty pages are truncated by userspace or re-dirtied by FS. 1193 */ 1194 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1195 1196 /* 1197 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1198 */ 1199 task_ratelimit = (u64)dirty_ratelimit * 1200 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1201 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1202 1203 /* 1204 * A linear estimation of the "balanced" throttle rate. The theory is, 1205 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1206 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1207 * formula will yield the balanced rate limit (write_bw / N). 1208 * 1209 * Note that the expanded form is not a pure rate feedback: 1210 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1211 * but also takes pos_ratio into account: 1212 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1213 * 1214 * (1) is not realistic because pos_ratio also takes part in balancing 1215 * the dirty rate. Consider the state 1216 * pos_ratio = 0.5 (3) 1217 * rate = 2 * (write_bw / N) (4) 1218 * If (1) is used, it will stuck in that state! Because each dd will 1219 * be throttled at 1220 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1221 * yielding 1222 * dirty_rate = N * task_ratelimit = write_bw (6) 1223 * put (6) into (1) we get 1224 * rate_(i+1) = rate_(i) (7) 1225 * 1226 * So we end up using (2) to always keep 1227 * rate_(i+1) ~= (write_bw / N) (8) 1228 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1229 * pos_ratio is able to drive itself to 1.0, which is not only where 1230 * the dirty count meet the setpoint, but also where the slope of 1231 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1232 */ 1233 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1234 dirty_rate | 1); 1235 /* 1236 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1237 */ 1238 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1239 balanced_dirty_ratelimit = write_bw; 1240 1241 /* 1242 * We could safely do this and return immediately: 1243 * 1244 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1245 * 1246 * However to get a more stable dirty_ratelimit, the below elaborated 1247 * code makes use of task_ratelimit to filter out singular points and 1248 * limit the step size. 1249 * 1250 * The below code essentially only uses the relative value of 1251 * 1252 * task_ratelimit - dirty_ratelimit 1253 * = (pos_ratio - 1) * dirty_ratelimit 1254 * 1255 * which reflects the direction and size of dirty position error. 1256 */ 1257 1258 /* 1259 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1260 * task_ratelimit is on the same side of dirty_ratelimit, too. 1261 * For example, when 1262 * - dirty_ratelimit > balanced_dirty_ratelimit 1263 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1264 * lowering dirty_ratelimit will help meet both the position and rate 1265 * control targets. Otherwise, don't update dirty_ratelimit if it will 1266 * only help meet the rate target. After all, what the users ultimately 1267 * feel and care are stable dirty rate and small position error. 1268 * 1269 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1270 * and filter out the singular points of balanced_dirty_ratelimit. Which 1271 * keeps jumping around randomly and can even leap far away at times 1272 * due to the small 200ms estimation period of dirty_rate (we want to 1273 * keep that period small to reduce time lags). 1274 */ 1275 step = 0; 1276 1277 /* 1278 * For strictlimit case, calculations above were based on wb counters 1279 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1280 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1281 * Hence, to calculate "step" properly, we have to use wb_dirty as 1282 * "dirty" and wb_setpoint as "setpoint". 1283 * 1284 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1285 * it's possible that wb_thresh is close to zero due to inactivity 1286 * of backing device. 1287 */ 1288 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1289 dirty = dtc->wb_dirty; 1290 if (dtc->wb_dirty < 8) 1291 setpoint = dtc->wb_dirty + 1; 1292 else 1293 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1294 } 1295 1296 if (dirty < setpoint) { 1297 x = min3(wb->balanced_dirty_ratelimit, 1298 balanced_dirty_ratelimit, task_ratelimit); 1299 if (dirty_ratelimit < x) 1300 step = x - dirty_ratelimit; 1301 } else { 1302 x = max3(wb->balanced_dirty_ratelimit, 1303 balanced_dirty_ratelimit, task_ratelimit); 1304 if (dirty_ratelimit > x) 1305 step = dirty_ratelimit - x; 1306 } 1307 1308 /* 1309 * Don't pursue 100% rate matching. It's impossible since the balanced 1310 * rate itself is constantly fluctuating. So decrease the track speed 1311 * when it gets close to the target. Helps eliminate pointless tremors. 1312 */ 1313 shift = dirty_ratelimit / (2 * step + 1); 1314 if (shift < BITS_PER_LONG) 1315 step = DIV_ROUND_UP(step >> shift, 8); 1316 else 1317 step = 0; 1318 1319 if (dirty_ratelimit < balanced_dirty_ratelimit) 1320 dirty_ratelimit += step; 1321 else 1322 dirty_ratelimit -= step; 1323 1324 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1325 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1326 1327 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1328 } 1329 1330 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1331 struct dirty_throttle_control *mdtc, 1332 bool update_ratelimit) 1333 { 1334 struct bdi_writeback *wb = gdtc->wb; 1335 unsigned long now = jiffies; 1336 unsigned long elapsed; 1337 unsigned long dirtied; 1338 unsigned long written; 1339 1340 spin_lock(&wb->list_lock); 1341 1342 /* 1343 * Lockless checks for elapsed time are racy and delayed update after 1344 * IO completion doesn't do it at all (to make sure written pages are 1345 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1346 * division errors. 1347 */ 1348 elapsed = max(now - wb->bw_time_stamp, 1UL); 1349 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1350 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1351 1352 if (update_ratelimit) { 1353 domain_update_dirty_limit(gdtc, now); 1354 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1355 1356 /* 1357 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1358 * compiler has no way to figure that out. Help it. 1359 */ 1360 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1361 domain_update_dirty_limit(mdtc, now); 1362 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1363 } 1364 } 1365 wb_update_write_bandwidth(wb, elapsed, written); 1366 1367 wb->dirtied_stamp = dirtied; 1368 wb->written_stamp = written; 1369 WRITE_ONCE(wb->bw_time_stamp, now); 1370 spin_unlock(&wb->list_lock); 1371 } 1372 1373 void wb_update_bandwidth(struct bdi_writeback *wb) 1374 { 1375 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1376 1377 __wb_update_bandwidth(&gdtc, NULL, false); 1378 } 1379 1380 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1381 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1382 1383 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1384 { 1385 unsigned long now = jiffies; 1386 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1387 1388 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1389 !atomic_read(&wb->writeback_inodes)) { 1390 spin_lock(&wb->list_lock); 1391 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1392 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1393 WRITE_ONCE(wb->bw_time_stamp, now); 1394 spin_unlock(&wb->list_lock); 1395 } 1396 } 1397 1398 /* 1399 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1400 * will look to see if it needs to start dirty throttling. 1401 * 1402 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1403 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1404 * (the number of pages we may dirty without exceeding the dirty limits). 1405 */ 1406 static unsigned long dirty_poll_interval(unsigned long dirty, 1407 unsigned long thresh) 1408 { 1409 if (thresh > dirty) 1410 return 1UL << (ilog2(thresh - dirty) >> 1); 1411 1412 return 1; 1413 } 1414 1415 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1416 unsigned long wb_dirty) 1417 { 1418 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1419 unsigned long t; 1420 1421 /* 1422 * Limit pause time for small memory systems. If sleeping for too long 1423 * time, a small pool of dirty/writeback pages may go empty and disk go 1424 * idle. 1425 * 1426 * 8 serves as the safety ratio. 1427 */ 1428 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1429 t++; 1430 1431 return min_t(unsigned long, t, MAX_PAUSE); 1432 } 1433 1434 static long wb_min_pause(struct bdi_writeback *wb, 1435 long max_pause, 1436 unsigned long task_ratelimit, 1437 unsigned long dirty_ratelimit, 1438 int *nr_dirtied_pause) 1439 { 1440 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1441 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1442 long t; /* target pause */ 1443 long pause; /* estimated next pause */ 1444 int pages; /* target nr_dirtied_pause */ 1445 1446 /* target for 10ms pause on 1-dd case */ 1447 t = max(1, HZ / 100); 1448 1449 /* 1450 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1451 * overheads. 1452 * 1453 * (N * 10ms) on 2^N concurrent tasks. 1454 */ 1455 if (hi > lo) 1456 t += (hi - lo) * (10 * HZ) / 1024; 1457 1458 /* 1459 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1460 * on the much more stable dirty_ratelimit. However the next pause time 1461 * will be computed based on task_ratelimit and the two rate limits may 1462 * depart considerably at some time. Especially if task_ratelimit goes 1463 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1464 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1465 * result task_ratelimit won't be executed faithfully, which could 1466 * eventually bring down dirty_ratelimit. 1467 * 1468 * We apply two rules to fix it up: 1469 * 1) try to estimate the next pause time and if necessary, use a lower 1470 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1471 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1472 * 2) limit the target pause time to max_pause/2, so that the normal 1473 * small fluctuations of task_ratelimit won't trigger rule (1) and 1474 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1475 */ 1476 t = min(t, 1 + max_pause / 2); 1477 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1478 1479 /* 1480 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1481 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1482 * When the 16 consecutive reads are often interrupted by some dirty 1483 * throttling pause during the async writes, cfq will go into idles 1484 * (deadline is fine). So push nr_dirtied_pause as high as possible 1485 * until reaches DIRTY_POLL_THRESH=32 pages. 1486 */ 1487 if (pages < DIRTY_POLL_THRESH) { 1488 t = max_pause; 1489 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1490 if (pages > DIRTY_POLL_THRESH) { 1491 pages = DIRTY_POLL_THRESH; 1492 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1493 } 1494 } 1495 1496 pause = HZ * pages / (task_ratelimit + 1); 1497 if (pause > max_pause) { 1498 t = max_pause; 1499 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1500 } 1501 1502 *nr_dirtied_pause = pages; 1503 /* 1504 * The minimal pause time will normally be half the target pause time. 1505 */ 1506 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1507 } 1508 1509 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1510 { 1511 struct bdi_writeback *wb = dtc->wb; 1512 unsigned long wb_reclaimable; 1513 1514 /* 1515 * wb_thresh is not treated as some limiting factor as 1516 * dirty_thresh, due to reasons 1517 * - in JBOD setup, wb_thresh can fluctuate a lot 1518 * - in a system with HDD and USB key, the USB key may somehow 1519 * go into state (wb_dirty >> wb_thresh) either because 1520 * wb_dirty starts high, or because wb_thresh drops low. 1521 * In this case we don't want to hard throttle the USB key 1522 * dirtiers for 100 seconds until wb_dirty drops under 1523 * wb_thresh. Instead the auxiliary wb control line in 1524 * wb_position_ratio() will let the dirtier task progress 1525 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1526 */ 1527 dtc->wb_thresh = __wb_calc_thresh(dtc); 1528 dtc->wb_bg_thresh = dtc->thresh ? 1529 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1530 1531 /* 1532 * In order to avoid the stacked BDI deadlock we need 1533 * to ensure we accurately count the 'dirty' pages when 1534 * the threshold is low. 1535 * 1536 * Otherwise it would be possible to get thresh+n pages 1537 * reported dirty, even though there are thresh-m pages 1538 * actually dirty; with m+n sitting in the percpu 1539 * deltas. 1540 */ 1541 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1542 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1543 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1544 } else { 1545 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1546 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1547 } 1548 } 1549 1550 /* 1551 * balance_dirty_pages() must be called by processes which are generating dirty 1552 * data. It looks at the number of dirty pages in the machine and will force 1553 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1554 * If we're over `background_thresh' then the writeback threads are woken to 1555 * perform some writeout. 1556 */ 1557 static void balance_dirty_pages(struct bdi_writeback *wb, 1558 unsigned long pages_dirtied) 1559 { 1560 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1561 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1562 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1563 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1564 &mdtc_stor : NULL; 1565 struct dirty_throttle_control *sdtc; 1566 unsigned long nr_reclaimable; /* = file_dirty */ 1567 long period; 1568 long pause; 1569 long max_pause; 1570 long min_pause; 1571 int nr_dirtied_pause; 1572 bool dirty_exceeded = false; 1573 unsigned long task_ratelimit; 1574 unsigned long dirty_ratelimit; 1575 struct backing_dev_info *bdi = wb->bdi; 1576 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1577 unsigned long start_time = jiffies; 1578 1579 for (;;) { 1580 unsigned long now = jiffies; 1581 unsigned long dirty, thresh, bg_thresh; 1582 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1583 unsigned long m_thresh = 0; 1584 unsigned long m_bg_thresh = 0; 1585 1586 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1587 gdtc->avail = global_dirtyable_memory(); 1588 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1589 1590 domain_dirty_limits(gdtc); 1591 1592 if (unlikely(strictlimit)) { 1593 wb_dirty_limits(gdtc); 1594 1595 dirty = gdtc->wb_dirty; 1596 thresh = gdtc->wb_thresh; 1597 bg_thresh = gdtc->wb_bg_thresh; 1598 } else { 1599 dirty = gdtc->dirty; 1600 thresh = gdtc->thresh; 1601 bg_thresh = gdtc->bg_thresh; 1602 } 1603 1604 if (mdtc) { 1605 unsigned long filepages, headroom, writeback; 1606 1607 /* 1608 * If @wb belongs to !root memcg, repeat the same 1609 * basic calculations for the memcg domain. 1610 */ 1611 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1612 &mdtc->dirty, &writeback); 1613 mdtc->dirty += writeback; 1614 mdtc_calc_avail(mdtc, filepages, headroom); 1615 1616 domain_dirty_limits(mdtc); 1617 1618 if (unlikely(strictlimit)) { 1619 wb_dirty_limits(mdtc); 1620 m_dirty = mdtc->wb_dirty; 1621 m_thresh = mdtc->wb_thresh; 1622 m_bg_thresh = mdtc->wb_bg_thresh; 1623 } else { 1624 m_dirty = mdtc->dirty; 1625 m_thresh = mdtc->thresh; 1626 m_bg_thresh = mdtc->bg_thresh; 1627 } 1628 } 1629 1630 /* 1631 * Throttle it only when the background writeback cannot 1632 * catch-up. This avoids (excessively) small writeouts 1633 * when the wb limits are ramping up in case of !strictlimit. 1634 * 1635 * In strictlimit case make decision based on the wb counters 1636 * and limits. Small writeouts when the wb limits are ramping 1637 * up are the price we consciously pay for strictlimit-ing. 1638 * 1639 * If memcg domain is in effect, @dirty should be under 1640 * both global and memcg freerun ceilings. 1641 */ 1642 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1643 (!mdtc || 1644 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1645 unsigned long intv; 1646 unsigned long m_intv; 1647 1648 free_running: 1649 intv = dirty_poll_interval(dirty, thresh); 1650 m_intv = ULONG_MAX; 1651 1652 current->dirty_paused_when = now; 1653 current->nr_dirtied = 0; 1654 if (mdtc) 1655 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1656 current->nr_dirtied_pause = min(intv, m_intv); 1657 break; 1658 } 1659 1660 if (unlikely(!writeback_in_progress(wb))) 1661 wb_start_background_writeback(wb); 1662 1663 mem_cgroup_flush_foreign(wb); 1664 1665 /* 1666 * Calculate global domain's pos_ratio and select the 1667 * global dtc by default. 1668 */ 1669 if (!strictlimit) { 1670 wb_dirty_limits(gdtc); 1671 1672 if ((current->flags & PF_LOCAL_THROTTLE) && 1673 gdtc->wb_dirty < 1674 dirty_freerun_ceiling(gdtc->wb_thresh, 1675 gdtc->wb_bg_thresh)) 1676 /* 1677 * LOCAL_THROTTLE tasks must not be throttled 1678 * when below the per-wb freerun ceiling. 1679 */ 1680 goto free_running; 1681 } 1682 1683 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1684 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1685 1686 wb_position_ratio(gdtc); 1687 sdtc = gdtc; 1688 1689 if (mdtc) { 1690 /* 1691 * If memcg domain is in effect, calculate its 1692 * pos_ratio. @wb should satisfy constraints from 1693 * both global and memcg domains. Choose the one 1694 * w/ lower pos_ratio. 1695 */ 1696 if (!strictlimit) { 1697 wb_dirty_limits(mdtc); 1698 1699 if ((current->flags & PF_LOCAL_THROTTLE) && 1700 mdtc->wb_dirty < 1701 dirty_freerun_ceiling(mdtc->wb_thresh, 1702 mdtc->wb_bg_thresh)) 1703 /* 1704 * LOCAL_THROTTLE tasks must not be 1705 * throttled when below the per-wb 1706 * freerun ceiling. 1707 */ 1708 goto free_running; 1709 } 1710 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1711 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1712 1713 wb_position_ratio(mdtc); 1714 if (mdtc->pos_ratio < gdtc->pos_ratio) 1715 sdtc = mdtc; 1716 } 1717 1718 if (dirty_exceeded && !wb->dirty_exceeded) 1719 wb->dirty_exceeded = 1; 1720 1721 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1722 BANDWIDTH_INTERVAL)) 1723 __wb_update_bandwidth(gdtc, mdtc, true); 1724 1725 /* throttle according to the chosen dtc */ 1726 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1727 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1728 RATELIMIT_CALC_SHIFT; 1729 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1730 min_pause = wb_min_pause(wb, max_pause, 1731 task_ratelimit, dirty_ratelimit, 1732 &nr_dirtied_pause); 1733 1734 if (unlikely(task_ratelimit == 0)) { 1735 period = max_pause; 1736 pause = max_pause; 1737 goto pause; 1738 } 1739 period = HZ * pages_dirtied / task_ratelimit; 1740 pause = period; 1741 if (current->dirty_paused_when) 1742 pause -= now - current->dirty_paused_when; 1743 /* 1744 * For less than 1s think time (ext3/4 may block the dirtier 1745 * for up to 800ms from time to time on 1-HDD; so does xfs, 1746 * however at much less frequency), try to compensate it in 1747 * future periods by updating the virtual time; otherwise just 1748 * do a reset, as it may be a light dirtier. 1749 */ 1750 if (pause < min_pause) { 1751 trace_balance_dirty_pages(wb, 1752 sdtc->thresh, 1753 sdtc->bg_thresh, 1754 sdtc->dirty, 1755 sdtc->wb_thresh, 1756 sdtc->wb_dirty, 1757 dirty_ratelimit, 1758 task_ratelimit, 1759 pages_dirtied, 1760 period, 1761 min(pause, 0L), 1762 start_time); 1763 if (pause < -HZ) { 1764 current->dirty_paused_when = now; 1765 current->nr_dirtied = 0; 1766 } else if (period) { 1767 current->dirty_paused_when += period; 1768 current->nr_dirtied = 0; 1769 } else if (current->nr_dirtied_pause <= pages_dirtied) 1770 current->nr_dirtied_pause += pages_dirtied; 1771 break; 1772 } 1773 if (unlikely(pause > max_pause)) { 1774 /* for occasional dropped task_ratelimit */ 1775 now += min(pause - max_pause, max_pause); 1776 pause = max_pause; 1777 } 1778 1779 pause: 1780 trace_balance_dirty_pages(wb, 1781 sdtc->thresh, 1782 sdtc->bg_thresh, 1783 sdtc->dirty, 1784 sdtc->wb_thresh, 1785 sdtc->wb_dirty, 1786 dirty_ratelimit, 1787 task_ratelimit, 1788 pages_dirtied, 1789 period, 1790 pause, 1791 start_time); 1792 __set_current_state(TASK_KILLABLE); 1793 wb->dirty_sleep = now; 1794 io_schedule_timeout(pause); 1795 1796 current->dirty_paused_when = now + pause; 1797 current->nr_dirtied = 0; 1798 current->nr_dirtied_pause = nr_dirtied_pause; 1799 1800 /* 1801 * This is typically equal to (dirty < thresh) and can also 1802 * keep "1000+ dd on a slow USB stick" under control. 1803 */ 1804 if (task_ratelimit) 1805 break; 1806 1807 /* 1808 * In the case of an unresponsive NFS server and the NFS dirty 1809 * pages exceeds dirty_thresh, give the other good wb's a pipe 1810 * to go through, so that tasks on them still remain responsive. 1811 * 1812 * In theory 1 page is enough to keep the consumer-producer 1813 * pipe going: the flusher cleans 1 page => the task dirties 1 1814 * more page. However wb_dirty has accounting errors. So use 1815 * the larger and more IO friendly wb_stat_error. 1816 */ 1817 if (sdtc->wb_dirty <= wb_stat_error()) 1818 break; 1819 1820 if (fatal_signal_pending(current)) 1821 break; 1822 } 1823 1824 if (!dirty_exceeded && wb->dirty_exceeded) 1825 wb->dirty_exceeded = 0; 1826 1827 if (writeback_in_progress(wb)) 1828 return; 1829 1830 /* 1831 * In laptop mode, we wait until hitting the higher threshold before 1832 * starting background writeout, and then write out all the way down 1833 * to the lower threshold. So slow writers cause minimal disk activity. 1834 * 1835 * In normal mode, we start background writeout at the lower 1836 * background_thresh, to keep the amount of dirty memory low. 1837 */ 1838 if (laptop_mode) 1839 return; 1840 1841 if (nr_reclaimable > gdtc->bg_thresh) 1842 wb_start_background_writeback(wb); 1843 } 1844 1845 static DEFINE_PER_CPU(int, bdp_ratelimits); 1846 1847 /* 1848 * Normal tasks are throttled by 1849 * loop { 1850 * dirty tsk->nr_dirtied_pause pages; 1851 * take a snap in balance_dirty_pages(); 1852 * } 1853 * However there is a worst case. If every task exit immediately when dirtied 1854 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1855 * called to throttle the page dirties. The solution is to save the not yet 1856 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1857 * randomly into the running tasks. This works well for the above worst case, 1858 * as the new task will pick up and accumulate the old task's leaked dirty 1859 * count and eventually get throttled. 1860 */ 1861 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1862 1863 /** 1864 * balance_dirty_pages_ratelimited - balance dirty memory state 1865 * @mapping: address_space which was dirtied 1866 * 1867 * Processes which are dirtying memory should call in here once for each page 1868 * which was newly dirtied. The function will periodically check the system's 1869 * dirty state and will initiate writeback if needed. 1870 * 1871 * Once we're over the dirty memory limit we decrease the ratelimiting 1872 * by a lot, to prevent individual processes from overshooting the limit 1873 * by (ratelimit_pages) each. 1874 */ 1875 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1876 { 1877 struct inode *inode = mapping->host; 1878 struct backing_dev_info *bdi = inode_to_bdi(inode); 1879 struct bdi_writeback *wb = NULL; 1880 int ratelimit; 1881 int *p; 1882 1883 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 1884 return; 1885 1886 if (inode_cgwb_enabled(inode)) 1887 wb = wb_get_create_current(bdi, GFP_KERNEL); 1888 if (!wb) 1889 wb = &bdi->wb; 1890 1891 ratelimit = current->nr_dirtied_pause; 1892 if (wb->dirty_exceeded) 1893 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1894 1895 preempt_disable(); 1896 /* 1897 * This prevents one CPU to accumulate too many dirtied pages without 1898 * calling into balance_dirty_pages(), which can happen when there are 1899 * 1000+ tasks, all of them start dirtying pages at exactly the same 1900 * time, hence all honoured too large initial task->nr_dirtied_pause. 1901 */ 1902 p = this_cpu_ptr(&bdp_ratelimits); 1903 if (unlikely(current->nr_dirtied >= ratelimit)) 1904 *p = 0; 1905 else if (unlikely(*p >= ratelimit_pages)) { 1906 *p = 0; 1907 ratelimit = 0; 1908 } 1909 /* 1910 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1911 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1912 * the dirty throttling and livelock other long-run dirtiers. 1913 */ 1914 p = this_cpu_ptr(&dirty_throttle_leaks); 1915 if (*p > 0 && current->nr_dirtied < ratelimit) { 1916 unsigned long nr_pages_dirtied; 1917 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1918 *p -= nr_pages_dirtied; 1919 current->nr_dirtied += nr_pages_dirtied; 1920 } 1921 preempt_enable(); 1922 1923 if (unlikely(current->nr_dirtied >= ratelimit)) 1924 balance_dirty_pages(wb, current->nr_dirtied); 1925 1926 wb_put(wb); 1927 } 1928 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1929 1930 /** 1931 * wb_over_bg_thresh - does @wb need to be written back? 1932 * @wb: bdi_writeback of interest 1933 * 1934 * Determines whether background writeback should keep writing @wb or it's 1935 * clean enough. 1936 * 1937 * Return: %true if writeback should continue. 1938 */ 1939 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1940 { 1941 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1942 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1943 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1944 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1945 &mdtc_stor : NULL; 1946 unsigned long reclaimable; 1947 unsigned long thresh; 1948 1949 /* 1950 * Similar to balance_dirty_pages() but ignores pages being written 1951 * as we're trying to decide whether to put more under writeback. 1952 */ 1953 gdtc->avail = global_dirtyable_memory(); 1954 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 1955 domain_dirty_limits(gdtc); 1956 1957 if (gdtc->dirty > gdtc->bg_thresh) 1958 return true; 1959 1960 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 1961 if (thresh < 2 * wb_stat_error()) 1962 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1963 else 1964 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1965 1966 if (reclaimable > thresh) 1967 return true; 1968 1969 if (mdtc) { 1970 unsigned long filepages, headroom, writeback; 1971 1972 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1973 &writeback); 1974 mdtc_calc_avail(mdtc, filepages, headroom); 1975 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1976 1977 if (mdtc->dirty > mdtc->bg_thresh) 1978 return true; 1979 1980 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 1981 if (thresh < 2 * wb_stat_error()) 1982 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1983 else 1984 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1985 1986 if (reclaimable > thresh) 1987 return true; 1988 } 1989 1990 return false; 1991 } 1992 1993 #ifdef CONFIG_SYSCTL 1994 /* 1995 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1996 */ 1997 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1998 void *buffer, size_t *length, loff_t *ppos) 1999 { 2000 unsigned int old_interval = dirty_writeback_interval; 2001 int ret; 2002 2003 ret = proc_dointvec(table, write, buffer, length, ppos); 2004 2005 /* 2006 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2007 * and a different non-zero value will wakeup the writeback threads. 2008 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2009 * iterate over all bdis and wbs. 2010 * The reason we do this is to make the change take effect immediately. 2011 */ 2012 if (!ret && write && dirty_writeback_interval && 2013 dirty_writeback_interval != old_interval) 2014 wakeup_flusher_threads(WB_REASON_PERIODIC); 2015 2016 return ret; 2017 } 2018 #endif 2019 2020 void laptop_mode_timer_fn(struct timer_list *t) 2021 { 2022 struct backing_dev_info *backing_dev_info = 2023 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2024 2025 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2026 } 2027 2028 /* 2029 * We've spun up the disk and we're in laptop mode: schedule writeback 2030 * of all dirty data a few seconds from now. If the flush is already scheduled 2031 * then push it back - the user is still using the disk. 2032 */ 2033 void laptop_io_completion(struct backing_dev_info *info) 2034 { 2035 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2036 } 2037 2038 /* 2039 * We're in laptop mode and we've just synced. The sync's writes will have 2040 * caused another writeback to be scheduled by laptop_io_completion. 2041 * Nothing needs to be written back anymore, so we unschedule the writeback. 2042 */ 2043 void laptop_sync_completion(void) 2044 { 2045 struct backing_dev_info *bdi; 2046 2047 rcu_read_lock(); 2048 2049 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2050 del_timer(&bdi->laptop_mode_wb_timer); 2051 2052 rcu_read_unlock(); 2053 } 2054 2055 /* 2056 * If ratelimit_pages is too high then we can get into dirty-data overload 2057 * if a large number of processes all perform writes at the same time. 2058 * 2059 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2060 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2061 * thresholds. 2062 */ 2063 2064 void writeback_set_ratelimit(void) 2065 { 2066 struct wb_domain *dom = &global_wb_domain; 2067 unsigned long background_thresh; 2068 unsigned long dirty_thresh; 2069 2070 global_dirty_limits(&background_thresh, &dirty_thresh); 2071 dom->dirty_limit = dirty_thresh; 2072 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2073 if (ratelimit_pages < 16) 2074 ratelimit_pages = 16; 2075 } 2076 2077 static int page_writeback_cpu_online(unsigned int cpu) 2078 { 2079 writeback_set_ratelimit(); 2080 return 0; 2081 } 2082 2083 #ifdef CONFIG_SYSCTL 2084 2085 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2086 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2087 2088 static struct ctl_table vm_page_writeback_sysctls[] = { 2089 { 2090 .procname = "dirty_background_ratio", 2091 .data = &dirty_background_ratio, 2092 .maxlen = sizeof(dirty_background_ratio), 2093 .mode = 0644, 2094 .proc_handler = dirty_background_ratio_handler, 2095 .extra1 = SYSCTL_ZERO, 2096 .extra2 = SYSCTL_ONE_HUNDRED, 2097 }, 2098 { 2099 .procname = "dirty_background_bytes", 2100 .data = &dirty_background_bytes, 2101 .maxlen = sizeof(dirty_background_bytes), 2102 .mode = 0644, 2103 .proc_handler = dirty_background_bytes_handler, 2104 .extra1 = SYSCTL_LONG_ONE, 2105 }, 2106 { 2107 .procname = "dirty_ratio", 2108 .data = &vm_dirty_ratio, 2109 .maxlen = sizeof(vm_dirty_ratio), 2110 .mode = 0644, 2111 .proc_handler = dirty_ratio_handler, 2112 .extra1 = SYSCTL_ZERO, 2113 .extra2 = SYSCTL_ONE_HUNDRED, 2114 }, 2115 { 2116 .procname = "dirty_bytes", 2117 .data = &vm_dirty_bytes, 2118 .maxlen = sizeof(vm_dirty_bytes), 2119 .mode = 0644, 2120 .proc_handler = dirty_bytes_handler, 2121 .extra1 = (void *)&dirty_bytes_min, 2122 }, 2123 { 2124 .procname = "dirty_writeback_centisecs", 2125 .data = &dirty_writeback_interval, 2126 .maxlen = sizeof(dirty_writeback_interval), 2127 .mode = 0644, 2128 .proc_handler = dirty_writeback_centisecs_handler, 2129 }, 2130 { 2131 .procname = "dirty_expire_centisecs", 2132 .data = &dirty_expire_interval, 2133 .maxlen = sizeof(dirty_expire_interval), 2134 .mode = 0644, 2135 .proc_handler = proc_dointvec_minmax, 2136 .extra1 = SYSCTL_ZERO, 2137 }, 2138 #ifdef CONFIG_HIGHMEM 2139 { 2140 .procname = "highmem_is_dirtyable", 2141 .data = &vm_highmem_is_dirtyable, 2142 .maxlen = sizeof(vm_highmem_is_dirtyable), 2143 .mode = 0644, 2144 .proc_handler = proc_dointvec_minmax, 2145 .extra1 = SYSCTL_ZERO, 2146 .extra2 = SYSCTL_ONE, 2147 }, 2148 #endif 2149 { 2150 .procname = "laptop_mode", 2151 .data = &laptop_mode, 2152 .maxlen = sizeof(laptop_mode), 2153 .mode = 0644, 2154 .proc_handler = proc_dointvec_jiffies, 2155 }, 2156 {} 2157 }; 2158 #endif 2159 2160 /* 2161 * Called early on to tune the page writeback dirty limits. 2162 * 2163 * We used to scale dirty pages according to how total memory 2164 * related to pages that could be allocated for buffers. 2165 * 2166 * However, that was when we used "dirty_ratio" to scale with 2167 * all memory, and we don't do that any more. "dirty_ratio" 2168 * is now applied to total non-HIGHPAGE memory, and as such we can't 2169 * get into the old insane situation any more where we had 2170 * large amounts of dirty pages compared to a small amount of 2171 * non-HIGHMEM memory. 2172 * 2173 * But we might still want to scale the dirty_ratio by how 2174 * much memory the box has.. 2175 */ 2176 void __init page_writeback_init(void) 2177 { 2178 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2179 2180 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2181 page_writeback_cpu_online, NULL); 2182 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2183 page_writeback_cpu_online); 2184 #ifdef CONFIG_SYSCTL 2185 register_sysctl_init("vm", vm_page_writeback_sysctls); 2186 #endif 2187 } 2188 2189 /** 2190 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2191 * @mapping: address space structure to write 2192 * @start: starting page index 2193 * @end: ending page index (inclusive) 2194 * 2195 * This function scans the page range from @start to @end (inclusive) and tags 2196 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2197 * that write_cache_pages (or whoever calls this function) will then use 2198 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2199 * used to avoid livelocking of writeback by a process steadily creating new 2200 * dirty pages in the file (thus it is important for this function to be quick 2201 * so that it can tag pages faster than a dirtying process can create them). 2202 */ 2203 void tag_pages_for_writeback(struct address_space *mapping, 2204 pgoff_t start, pgoff_t end) 2205 { 2206 XA_STATE(xas, &mapping->i_pages, start); 2207 unsigned int tagged = 0; 2208 void *page; 2209 2210 xas_lock_irq(&xas); 2211 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2212 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2213 if (++tagged % XA_CHECK_SCHED) 2214 continue; 2215 2216 xas_pause(&xas); 2217 xas_unlock_irq(&xas); 2218 cond_resched(); 2219 xas_lock_irq(&xas); 2220 } 2221 xas_unlock_irq(&xas); 2222 } 2223 EXPORT_SYMBOL(tag_pages_for_writeback); 2224 2225 /** 2226 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2227 * @mapping: address space structure to write 2228 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2229 * @writepage: function called for each page 2230 * @data: data passed to writepage function 2231 * 2232 * If a page is already under I/O, write_cache_pages() skips it, even 2233 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2234 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2235 * and msync() need to guarantee that all the data which was dirty at the time 2236 * the call was made get new I/O started against them. If wbc->sync_mode is 2237 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2238 * existing IO to complete. 2239 * 2240 * To avoid livelocks (when other process dirties new pages), we first tag 2241 * pages which should be written back with TOWRITE tag and only then start 2242 * writing them. For data-integrity sync we have to be careful so that we do 2243 * not miss some pages (e.g., because some other process has cleared TOWRITE 2244 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2245 * by the process clearing the DIRTY tag (and submitting the page for IO). 2246 * 2247 * To avoid deadlocks between range_cyclic writeback and callers that hold 2248 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2249 * we do not loop back to the start of the file. Doing so causes a page 2250 * lock/page writeback access order inversion - we should only ever lock 2251 * multiple pages in ascending page->index order, and looping back to the start 2252 * of the file violates that rule and causes deadlocks. 2253 * 2254 * Return: %0 on success, negative error code otherwise 2255 */ 2256 int write_cache_pages(struct address_space *mapping, 2257 struct writeback_control *wbc, writepage_t writepage, 2258 void *data) 2259 { 2260 int ret = 0; 2261 int done = 0; 2262 int error; 2263 struct pagevec pvec; 2264 int nr_pages; 2265 pgoff_t index; 2266 pgoff_t end; /* Inclusive */ 2267 pgoff_t done_index; 2268 int range_whole = 0; 2269 xa_mark_t tag; 2270 2271 pagevec_init(&pvec); 2272 if (wbc->range_cyclic) { 2273 index = mapping->writeback_index; /* prev offset */ 2274 end = -1; 2275 } else { 2276 index = wbc->range_start >> PAGE_SHIFT; 2277 end = wbc->range_end >> PAGE_SHIFT; 2278 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2279 range_whole = 1; 2280 } 2281 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2282 tag_pages_for_writeback(mapping, index, end); 2283 tag = PAGECACHE_TAG_TOWRITE; 2284 } else { 2285 tag = PAGECACHE_TAG_DIRTY; 2286 } 2287 done_index = index; 2288 while (!done && (index <= end)) { 2289 int i; 2290 2291 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2292 tag); 2293 if (nr_pages == 0) 2294 break; 2295 2296 for (i = 0; i < nr_pages; i++) { 2297 struct page *page = pvec.pages[i]; 2298 2299 done_index = page->index; 2300 2301 lock_page(page); 2302 2303 /* 2304 * Page truncated or invalidated. We can freely skip it 2305 * then, even for data integrity operations: the page 2306 * has disappeared concurrently, so there could be no 2307 * real expectation of this data integrity operation 2308 * even if there is now a new, dirty page at the same 2309 * pagecache address. 2310 */ 2311 if (unlikely(page->mapping != mapping)) { 2312 continue_unlock: 2313 unlock_page(page); 2314 continue; 2315 } 2316 2317 if (!PageDirty(page)) { 2318 /* someone wrote it for us */ 2319 goto continue_unlock; 2320 } 2321 2322 if (PageWriteback(page)) { 2323 if (wbc->sync_mode != WB_SYNC_NONE) 2324 wait_on_page_writeback(page); 2325 else 2326 goto continue_unlock; 2327 } 2328 2329 BUG_ON(PageWriteback(page)); 2330 if (!clear_page_dirty_for_io(page)) 2331 goto continue_unlock; 2332 2333 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2334 error = (*writepage)(page, wbc, data); 2335 if (unlikely(error)) { 2336 /* 2337 * Handle errors according to the type of 2338 * writeback. There's no need to continue for 2339 * background writeback. Just push done_index 2340 * past this page so media errors won't choke 2341 * writeout for the entire file. For integrity 2342 * writeback, we must process the entire dirty 2343 * set regardless of errors because the fs may 2344 * still have state to clear for each page. In 2345 * that case we continue processing and return 2346 * the first error. 2347 */ 2348 if (error == AOP_WRITEPAGE_ACTIVATE) { 2349 unlock_page(page); 2350 error = 0; 2351 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2352 ret = error; 2353 done_index = page->index + 1; 2354 done = 1; 2355 break; 2356 } 2357 if (!ret) 2358 ret = error; 2359 } 2360 2361 /* 2362 * We stop writing back only if we are not doing 2363 * integrity sync. In case of integrity sync we have to 2364 * keep going until we have written all the pages 2365 * we tagged for writeback prior to entering this loop. 2366 */ 2367 if (--wbc->nr_to_write <= 0 && 2368 wbc->sync_mode == WB_SYNC_NONE) { 2369 done = 1; 2370 break; 2371 } 2372 } 2373 pagevec_release(&pvec); 2374 cond_resched(); 2375 } 2376 2377 /* 2378 * If we hit the last page and there is more work to be done: wrap 2379 * back the index back to the start of the file for the next 2380 * time we are called. 2381 */ 2382 if (wbc->range_cyclic && !done) 2383 done_index = 0; 2384 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2385 mapping->writeback_index = done_index; 2386 2387 return ret; 2388 } 2389 EXPORT_SYMBOL(write_cache_pages); 2390 2391 /* 2392 * Function used by generic_writepages to call the real writepage 2393 * function and set the mapping flags on error 2394 */ 2395 static int __writepage(struct page *page, struct writeback_control *wbc, 2396 void *data) 2397 { 2398 struct address_space *mapping = data; 2399 int ret = mapping->a_ops->writepage(page, wbc); 2400 mapping_set_error(mapping, ret); 2401 return ret; 2402 } 2403 2404 /** 2405 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2406 * @mapping: address space structure to write 2407 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2408 * 2409 * This is a library function, which implements the writepages() 2410 * address_space_operation. 2411 * 2412 * Return: %0 on success, negative error code otherwise 2413 */ 2414 int generic_writepages(struct address_space *mapping, 2415 struct writeback_control *wbc) 2416 { 2417 struct blk_plug plug; 2418 int ret; 2419 2420 /* deal with chardevs and other special file */ 2421 if (!mapping->a_ops->writepage) 2422 return 0; 2423 2424 blk_start_plug(&plug); 2425 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2426 blk_finish_plug(&plug); 2427 return ret; 2428 } 2429 2430 EXPORT_SYMBOL(generic_writepages); 2431 2432 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2433 { 2434 int ret; 2435 struct bdi_writeback *wb; 2436 2437 if (wbc->nr_to_write <= 0) 2438 return 0; 2439 wb = inode_to_wb_wbc(mapping->host, wbc); 2440 wb_bandwidth_estimate_start(wb); 2441 while (1) { 2442 if (mapping->a_ops->writepages) 2443 ret = mapping->a_ops->writepages(mapping, wbc); 2444 else 2445 ret = generic_writepages(mapping, wbc); 2446 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2447 break; 2448 2449 /* 2450 * Lacking an allocation context or the locality or writeback 2451 * state of any of the inode's pages, throttle based on 2452 * writeback activity on the local node. It's as good a 2453 * guess as any. 2454 */ 2455 reclaim_throttle(NODE_DATA(numa_node_id()), 2456 VMSCAN_THROTTLE_WRITEBACK); 2457 } 2458 /* 2459 * Usually few pages are written by now from those we've just submitted 2460 * but if there's constant writeback being submitted, this makes sure 2461 * writeback bandwidth is updated once in a while. 2462 */ 2463 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2464 BANDWIDTH_INTERVAL)) 2465 wb_update_bandwidth(wb); 2466 return ret; 2467 } 2468 2469 /** 2470 * folio_write_one - write out a single folio and wait on I/O. 2471 * @folio: The folio to write. 2472 * 2473 * The folio must be locked by the caller and will be unlocked upon return. 2474 * 2475 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2476 * function returns. 2477 * 2478 * Return: %0 on success, negative error code otherwise 2479 */ 2480 int folio_write_one(struct folio *folio) 2481 { 2482 struct address_space *mapping = folio->mapping; 2483 int ret = 0; 2484 struct writeback_control wbc = { 2485 .sync_mode = WB_SYNC_ALL, 2486 .nr_to_write = folio_nr_pages(folio), 2487 }; 2488 2489 BUG_ON(!folio_test_locked(folio)); 2490 2491 folio_wait_writeback(folio); 2492 2493 if (folio_clear_dirty_for_io(folio)) { 2494 folio_get(folio); 2495 ret = mapping->a_ops->writepage(&folio->page, &wbc); 2496 if (ret == 0) 2497 folio_wait_writeback(folio); 2498 folio_put(folio); 2499 } else { 2500 folio_unlock(folio); 2501 } 2502 2503 if (!ret) 2504 ret = filemap_check_errors(mapping); 2505 return ret; 2506 } 2507 EXPORT_SYMBOL(folio_write_one); 2508 2509 /* 2510 * For address_spaces which do not use buffers nor write back. 2511 */ 2512 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2513 { 2514 if (!folio_test_dirty(folio)) 2515 return !folio_test_set_dirty(folio); 2516 return false; 2517 } 2518 EXPORT_SYMBOL(noop_dirty_folio); 2519 2520 /* 2521 * Helper function for set_page_dirty family. 2522 * 2523 * Caller must hold lock_page_memcg(). 2524 * 2525 * NOTE: This relies on being atomic wrt interrupts. 2526 */ 2527 static void folio_account_dirtied(struct folio *folio, 2528 struct address_space *mapping) 2529 { 2530 struct inode *inode = mapping->host; 2531 2532 trace_writeback_dirty_folio(folio, mapping); 2533 2534 if (mapping_can_writeback(mapping)) { 2535 struct bdi_writeback *wb; 2536 long nr = folio_nr_pages(folio); 2537 2538 inode_attach_wb(inode, &folio->page); 2539 wb = inode_to_wb(inode); 2540 2541 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2542 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2543 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2544 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2545 wb_stat_mod(wb, WB_DIRTIED, nr); 2546 task_io_account_write(nr * PAGE_SIZE); 2547 current->nr_dirtied += nr; 2548 __this_cpu_add(bdp_ratelimits, nr); 2549 2550 mem_cgroup_track_foreign_dirty(folio, wb); 2551 } 2552 } 2553 2554 /* 2555 * Helper function for deaccounting dirty page without writeback. 2556 * 2557 * Caller must hold lock_page_memcg(). 2558 */ 2559 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2560 { 2561 long nr = folio_nr_pages(folio); 2562 2563 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2564 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2565 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2566 task_io_account_cancelled_write(nr * PAGE_SIZE); 2567 } 2568 2569 /* 2570 * Mark the folio dirty, and set it dirty in the page cache, and mark 2571 * the inode dirty. 2572 * 2573 * If warn is true, then emit a warning if the folio is not uptodate and has 2574 * not been truncated. 2575 * 2576 * The caller must hold lock_page_memcg(). Most callers have the folio 2577 * locked. A few have the folio blocked from truncation through other 2578 * means (eg zap_page_range() has it mapped and is holding the page table 2579 * lock). This can also be called from mark_buffer_dirty(), which I 2580 * cannot prove is always protected against truncate. 2581 */ 2582 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2583 int warn) 2584 { 2585 unsigned long flags; 2586 2587 xa_lock_irqsave(&mapping->i_pages, flags); 2588 if (folio->mapping) { /* Race with truncate? */ 2589 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2590 folio_account_dirtied(folio, mapping); 2591 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2592 PAGECACHE_TAG_DIRTY); 2593 } 2594 xa_unlock_irqrestore(&mapping->i_pages, flags); 2595 } 2596 2597 /** 2598 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2599 * @mapping: Address space this folio belongs to. 2600 * @folio: Folio to be marked as dirty. 2601 * 2602 * Filesystems which do not use buffer heads should call this function 2603 * from their set_page_dirty address space operation. It ignores the 2604 * contents of folio_get_private(), so if the filesystem marks individual 2605 * blocks as dirty, the filesystem should handle that itself. 2606 * 2607 * This is also sometimes used by filesystems which use buffer_heads when 2608 * a single buffer is being dirtied: we want to set the folio dirty in 2609 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2610 * whereas block_dirty_folio() is a "top-down" dirtying. 2611 * 2612 * The caller must ensure this doesn't race with truncation. Most will 2613 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2614 * folio mapped and the pte lock held, which also locks out truncation. 2615 */ 2616 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2617 { 2618 folio_memcg_lock(folio); 2619 if (folio_test_set_dirty(folio)) { 2620 folio_memcg_unlock(folio); 2621 return false; 2622 } 2623 2624 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2625 folio_memcg_unlock(folio); 2626 2627 if (mapping->host) { 2628 /* !PageAnon && !swapper_space */ 2629 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2630 } 2631 return true; 2632 } 2633 EXPORT_SYMBOL(filemap_dirty_folio); 2634 2635 /** 2636 * folio_account_redirty - Manually account for redirtying a page. 2637 * @folio: The folio which is being redirtied. 2638 * 2639 * Most filesystems should call folio_redirty_for_writepage() instead 2640 * of this fuction. If your filesystem is doing writeback outside the 2641 * context of a writeback_control(), it can call this when redirtying 2642 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED, 2643 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN, 2644 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors 2645 * in balanced_dirty_ratelimit and the dirty pages position control. 2646 */ 2647 void folio_account_redirty(struct folio *folio) 2648 { 2649 struct address_space *mapping = folio->mapping; 2650 2651 if (mapping && mapping_can_writeback(mapping)) { 2652 struct inode *inode = mapping->host; 2653 struct bdi_writeback *wb; 2654 struct wb_lock_cookie cookie = {}; 2655 long nr = folio_nr_pages(folio); 2656 2657 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2658 current->nr_dirtied -= nr; 2659 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2660 wb_stat_mod(wb, WB_DIRTIED, -nr); 2661 unlocked_inode_to_wb_end(inode, &cookie); 2662 } 2663 } 2664 EXPORT_SYMBOL(folio_account_redirty); 2665 2666 /** 2667 * folio_redirty_for_writepage - Decline to write a dirty folio. 2668 * @wbc: The writeback control. 2669 * @folio: The folio. 2670 * 2671 * When a writepage implementation decides that it doesn't want to write 2672 * @folio for some reason, it should call this function, unlock @folio and 2673 * return 0. 2674 * 2675 * Return: True if we redirtied the folio. False if someone else dirtied 2676 * it first. 2677 */ 2678 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2679 struct folio *folio) 2680 { 2681 bool ret; 2682 long nr = folio_nr_pages(folio); 2683 2684 wbc->pages_skipped += nr; 2685 ret = filemap_dirty_folio(folio->mapping, folio); 2686 folio_account_redirty(folio); 2687 2688 return ret; 2689 } 2690 EXPORT_SYMBOL(folio_redirty_for_writepage); 2691 2692 /** 2693 * folio_mark_dirty - Mark a folio as being modified. 2694 * @folio: The folio. 2695 * 2696 * The folio may not be truncated while this function is running. 2697 * Holding the folio lock is sufficient to prevent truncation, but some 2698 * callers cannot acquire a sleeping lock. These callers instead hold 2699 * the page table lock for a page table which contains at least one page 2700 * in this folio. Truncation will block on the page table lock as it 2701 * unmaps pages before removing the folio from its mapping. 2702 * 2703 * Return: True if the folio was newly dirtied, false if it was already dirty. 2704 */ 2705 bool folio_mark_dirty(struct folio *folio) 2706 { 2707 struct address_space *mapping = folio_mapping(folio); 2708 2709 if (likely(mapping)) { 2710 /* 2711 * readahead/lru_deactivate_page could remain 2712 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2713 * About readahead, if the folio is written, the flags would be 2714 * reset. So no problem. 2715 * About lru_deactivate_page, if the folio is redirtied, 2716 * the flag will be reset. So no problem. but if the 2717 * folio is used by readahead it will confuse readahead 2718 * and make it restart the size rampup process. But it's 2719 * a trivial problem. 2720 */ 2721 if (folio_test_reclaim(folio)) 2722 folio_clear_reclaim(folio); 2723 return mapping->a_ops->dirty_folio(mapping, folio); 2724 } 2725 2726 return noop_dirty_folio(mapping, folio); 2727 } 2728 EXPORT_SYMBOL(folio_mark_dirty); 2729 2730 /* 2731 * set_page_dirty() is racy if the caller has no reference against 2732 * page->mapping->host, and if the page is unlocked. This is because another 2733 * CPU could truncate the page off the mapping and then free the mapping. 2734 * 2735 * Usually, the page _is_ locked, or the caller is a user-space process which 2736 * holds a reference on the inode by having an open file. 2737 * 2738 * In other cases, the page should be locked before running set_page_dirty(). 2739 */ 2740 int set_page_dirty_lock(struct page *page) 2741 { 2742 int ret; 2743 2744 lock_page(page); 2745 ret = set_page_dirty(page); 2746 unlock_page(page); 2747 return ret; 2748 } 2749 EXPORT_SYMBOL(set_page_dirty_lock); 2750 2751 /* 2752 * This cancels just the dirty bit on the kernel page itself, it does NOT 2753 * actually remove dirty bits on any mmap's that may be around. It also 2754 * leaves the page tagged dirty, so any sync activity will still find it on 2755 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2756 * look at the dirty bits in the VM. 2757 * 2758 * Doing this should *normally* only ever be done when a page is truncated, 2759 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2760 * this when it notices that somebody has cleaned out all the buffers on a 2761 * page without actually doing it through the VM. Can you say "ext3 is 2762 * horribly ugly"? Thought you could. 2763 */ 2764 void __folio_cancel_dirty(struct folio *folio) 2765 { 2766 struct address_space *mapping = folio_mapping(folio); 2767 2768 if (mapping_can_writeback(mapping)) { 2769 struct inode *inode = mapping->host; 2770 struct bdi_writeback *wb; 2771 struct wb_lock_cookie cookie = {}; 2772 2773 folio_memcg_lock(folio); 2774 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2775 2776 if (folio_test_clear_dirty(folio)) 2777 folio_account_cleaned(folio, wb); 2778 2779 unlocked_inode_to_wb_end(inode, &cookie); 2780 folio_memcg_unlock(folio); 2781 } else { 2782 folio_clear_dirty(folio); 2783 } 2784 } 2785 EXPORT_SYMBOL(__folio_cancel_dirty); 2786 2787 /* 2788 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2789 * Returns true if the folio was previously dirty. 2790 * 2791 * This is for preparing to put the folio under writeout. We leave 2792 * the folio tagged as dirty in the xarray so that a concurrent 2793 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2794 * The ->writepage implementation will run either folio_start_writeback() 2795 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2796 * and xarray dirty tag back into sync. 2797 * 2798 * This incoherency between the folio's dirty flag and xarray tag is 2799 * unfortunate, but it only exists while the folio is locked. 2800 */ 2801 bool folio_clear_dirty_for_io(struct folio *folio) 2802 { 2803 struct address_space *mapping = folio_mapping(folio); 2804 bool ret = false; 2805 2806 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2807 2808 if (mapping && mapping_can_writeback(mapping)) { 2809 struct inode *inode = mapping->host; 2810 struct bdi_writeback *wb; 2811 struct wb_lock_cookie cookie = {}; 2812 2813 /* 2814 * Yes, Virginia, this is indeed insane. 2815 * 2816 * We use this sequence to make sure that 2817 * (a) we account for dirty stats properly 2818 * (b) we tell the low-level filesystem to 2819 * mark the whole folio dirty if it was 2820 * dirty in a pagetable. Only to then 2821 * (c) clean the folio again and return 1 to 2822 * cause the writeback. 2823 * 2824 * This way we avoid all nasty races with the 2825 * dirty bit in multiple places and clearing 2826 * them concurrently from different threads. 2827 * 2828 * Note! Normally the "folio_mark_dirty(folio)" 2829 * has no effect on the actual dirty bit - since 2830 * that will already usually be set. But we 2831 * need the side effects, and it can help us 2832 * avoid races. 2833 * 2834 * We basically use the folio "master dirty bit" 2835 * as a serialization point for all the different 2836 * threads doing their things. 2837 */ 2838 if (folio_mkclean(folio)) 2839 folio_mark_dirty(folio); 2840 /* 2841 * We carefully synchronise fault handlers against 2842 * installing a dirty pte and marking the folio dirty 2843 * at this point. We do this by having them hold the 2844 * page lock while dirtying the folio, and folios are 2845 * always locked coming in here, so we get the desired 2846 * exclusion. 2847 */ 2848 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2849 if (folio_test_clear_dirty(folio)) { 2850 long nr = folio_nr_pages(folio); 2851 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2852 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2853 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2854 ret = true; 2855 } 2856 unlocked_inode_to_wb_end(inode, &cookie); 2857 return ret; 2858 } 2859 return folio_test_clear_dirty(folio); 2860 } 2861 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2862 2863 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2864 { 2865 atomic_inc(&wb->writeback_inodes); 2866 } 2867 2868 static void wb_inode_writeback_end(struct bdi_writeback *wb) 2869 { 2870 atomic_dec(&wb->writeback_inodes); 2871 /* 2872 * Make sure estimate of writeback throughput gets updated after 2873 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 2874 * (which is the interval other bandwidth updates use for batching) so 2875 * that if multiple inodes end writeback at a similar time, they get 2876 * batched into one bandwidth update. 2877 */ 2878 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 2879 } 2880 2881 bool __folio_end_writeback(struct folio *folio) 2882 { 2883 long nr = folio_nr_pages(folio); 2884 struct address_space *mapping = folio_mapping(folio); 2885 bool ret; 2886 2887 folio_memcg_lock(folio); 2888 if (mapping && mapping_use_writeback_tags(mapping)) { 2889 struct inode *inode = mapping->host; 2890 struct backing_dev_info *bdi = inode_to_bdi(inode); 2891 unsigned long flags; 2892 2893 xa_lock_irqsave(&mapping->i_pages, flags); 2894 ret = folio_test_clear_writeback(folio); 2895 if (ret) { 2896 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 2897 PAGECACHE_TAG_WRITEBACK); 2898 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2899 struct bdi_writeback *wb = inode_to_wb(inode); 2900 2901 wb_stat_mod(wb, WB_WRITEBACK, -nr); 2902 __wb_writeout_add(wb, nr); 2903 if (!mapping_tagged(mapping, 2904 PAGECACHE_TAG_WRITEBACK)) 2905 wb_inode_writeback_end(wb); 2906 } 2907 } 2908 2909 if (mapping->host && !mapping_tagged(mapping, 2910 PAGECACHE_TAG_WRITEBACK)) 2911 sb_clear_inode_writeback(mapping->host); 2912 2913 xa_unlock_irqrestore(&mapping->i_pages, flags); 2914 } else { 2915 ret = folio_test_clear_writeback(folio); 2916 } 2917 if (ret) { 2918 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 2919 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2920 node_stat_mod_folio(folio, NR_WRITTEN, nr); 2921 } 2922 folio_memcg_unlock(folio); 2923 return ret; 2924 } 2925 2926 bool __folio_start_writeback(struct folio *folio, bool keep_write) 2927 { 2928 long nr = folio_nr_pages(folio); 2929 struct address_space *mapping = folio_mapping(folio); 2930 bool ret; 2931 int access_ret; 2932 2933 folio_memcg_lock(folio); 2934 if (mapping && mapping_use_writeback_tags(mapping)) { 2935 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 2936 struct inode *inode = mapping->host; 2937 struct backing_dev_info *bdi = inode_to_bdi(inode); 2938 unsigned long flags; 2939 2940 xas_lock_irqsave(&xas, flags); 2941 xas_load(&xas); 2942 ret = folio_test_set_writeback(folio); 2943 if (!ret) { 2944 bool on_wblist; 2945 2946 on_wblist = mapping_tagged(mapping, 2947 PAGECACHE_TAG_WRITEBACK); 2948 2949 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2950 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2951 struct bdi_writeback *wb = inode_to_wb(inode); 2952 2953 wb_stat_mod(wb, WB_WRITEBACK, nr); 2954 if (!on_wblist) 2955 wb_inode_writeback_start(wb); 2956 } 2957 2958 /* 2959 * We can come through here when swapping 2960 * anonymous folios, so we don't necessarily 2961 * have an inode to track for sync. 2962 */ 2963 if (mapping->host && !on_wblist) 2964 sb_mark_inode_writeback(mapping->host); 2965 } 2966 if (!folio_test_dirty(folio)) 2967 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2968 if (!keep_write) 2969 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2970 xas_unlock_irqrestore(&xas, flags); 2971 } else { 2972 ret = folio_test_set_writeback(folio); 2973 } 2974 if (!ret) { 2975 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 2976 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2977 } 2978 folio_memcg_unlock(folio); 2979 access_ret = arch_make_folio_accessible(folio); 2980 /* 2981 * If writeback has been triggered on a page that cannot be made 2982 * accessible, it is too late to recover here. 2983 */ 2984 VM_BUG_ON_FOLIO(access_ret != 0, folio); 2985 2986 return ret; 2987 } 2988 EXPORT_SYMBOL(__folio_start_writeback); 2989 2990 /** 2991 * folio_wait_writeback - Wait for a folio to finish writeback. 2992 * @folio: The folio to wait for. 2993 * 2994 * If the folio is currently being written back to storage, wait for the 2995 * I/O to complete. 2996 * 2997 * Context: Sleeps. Must be called in process context and with 2998 * no spinlocks held. Caller should hold a reference on the folio. 2999 * If the folio is not locked, writeback may start again after writeback 3000 * has finished. 3001 */ 3002 void folio_wait_writeback(struct folio *folio) 3003 { 3004 while (folio_test_writeback(folio)) { 3005 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3006 folio_wait_bit(folio, PG_writeback); 3007 } 3008 } 3009 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3010 3011 /** 3012 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3013 * @folio: The folio to wait for. 3014 * 3015 * If the folio is currently being written back to storage, wait for the 3016 * I/O to complete or a fatal signal to arrive. 3017 * 3018 * Context: Sleeps. Must be called in process context and with 3019 * no spinlocks held. Caller should hold a reference on the folio. 3020 * If the folio is not locked, writeback may start again after writeback 3021 * has finished. 3022 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3023 */ 3024 int folio_wait_writeback_killable(struct folio *folio) 3025 { 3026 while (folio_test_writeback(folio)) { 3027 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3028 if (folio_wait_bit_killable(folio, PG_writeback)) 3029 return -EINTR; 3030 } 3031 3032 return 0; 3033 } 3034 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3035 3036 /** 3037 * folio_wait_stable() - wait for writeback to finish, if necessary. 3038 * @folio: The folio to wait on. 3039 * 3040 * This function determines if the given folio is related to a backing 3041 * device that requires folio contents to be held stable during writeback. 3042 * If so, then it will wait for any pending writeback to complete. 3043 * 3044 * Context: Sleeps. Must be called in process context and with 3045 * no spinlocks held. Caller should hold a reference on the folio. 3046 * If the folio is not locked, writeback may start again after writeback 3047 * has finished. 3048 */ 3049 void folio_wait_stable(struct folio *folio) 3050 { 3051 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES) 3052 folio_wait_writeback(folio); 3053 } 3054 EXPORT_SYMBOL_GPL(folio_wait_stable); 3055