xref: /openbmc/linux/mm/page-writeback.c (revision f39650de)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 struct wb_domain global_wb_domain;
126 
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 	struct wb_domain	*dom;
131 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132 #endif
133 	struct bdi_writeback	*wb;
134 	struct fprop_local_percpu *wb_completions;
135 
136 	unsigned long		avail;		/* dirtyable */
137 	unsigned long		dirty;		/* file_dirty + write + nfs */
138 	unsigned long		thresh;		/* dirty threshold */
139 	unsigned long		bg_thresh;	/* dirty background threshold */
140 
141 	unsigned long		wb_dirty;	/* per-wb counterparts */
142 	unsigned long		wb_thresh;
143 	unsigned long		wb_bg_thresh;
144 
145 	unsigned long		pos_ratio;
146 };
147 
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154 
155 #ifdef CONFIG_CGROUP_WRITEBACK
156 
157 #define GDTC_INIT(__wb)		.wb = (__wb),				\
158 				.dom = &global_wb_domain,		\
159 				.wb_completions = &(__wb)->completions
160 
161 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 
163 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
164 				.dom = mem_cgroup_wb_domain(__wb),	\
165 				.wb_completions = &(__wb)->memcg_completions, \
166 				.gdtc = __gdtc
167 
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170 	return dtc->dom;
171 }
172 
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175 	return dtc->dom;
176 }
177 
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180 	return mdtc->gdtc;
181 }
182 
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185 	return &wb->memcg_completions;
186 }
187 
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 			     unsigned long *minp, unsigned long *maxp)
190 {
191 	unsigned long this_bw = wb->avg_write_bandwidth;
192 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 	unsigned long long min = wb->bdi->min_ratio;
194 	unsigned long long max = wb->bdi->max_ratio;
195 
196 	/*
197 	 * @wb may already be clean by the time control reaches here and
198 	 * the total may not include its bw.
199 	 */
200 	if (this_bw < tot_bw) {
201 		if (min) {
202 			min *= this_bw;
203 			min = div64_ul(min, tot_bw);
204 		}
205 		if (max < 100) {
206 			max *= this_bw;
207 			max = div64_ul(max, tot_bw);
208 		}
209 	}
210 
211 	*minp = min;
212 	*maxp = max;
213 }
214 
215 #else	/* CONFIG_CGROUP_WRITEBACK */
216 
217 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
218 				.wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221 
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224 	return false;
225 }
226 
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229 	return &global_wb_domain;
230 }
231 
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234 	return NULL;
235 }
236 
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239 	return NULL;
240 }
241 
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 			     unsigned long *minp, unsigned long *maxp)
244 {
245 	*minp = wb->bdi->min_ratio;
246 	*maxp = wb->bdi->max_ratio;
247 }
248 
249 #endif	/* CONFIG_CGROUP_WRITEBACK */
250 
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effective number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268 
269 /**
270  * node_dirtyable_memory - number of dirtyable pages in a node
271  * @pgdat: the node
272  *
273  * Return: the node's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-node dirty limits.
275  */
276 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
277 {
278 	unsigned long nr_pages = 0;
279 	int z;
280 
281 	for (z = 0; z < MAX_NR_ZONES; z++) {
282 		struct zone *zone = pgdat->node_zones + z;
283 
284 		if (!populated_zone(zone))
285 			continue;
286 
287 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
288 	}
289 
290 	/*
291 	 * Pages reserved for the kernel should not be considered
292 	 * dirtyable, to prevent a situation where reclaim has to
293 	 * clean pages in order to balance the zones.
294 	 */
295 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
296 
297 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
298 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
299 
300 	return nr_pages;
301 }
302 
303 static unsigned long highmem_dirtyable_memory(unsigned long total)
304 {
305 #ifdef CONFIG_HIGHMEM
306 	int node;
307 	unsigned long x = 0;
308 	int i;
309 
310 	for_each_node_state(node, N_HIGH_MEMORY) {
311 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
312 			struct zone *z;
313 			unsigned long nr_pages;
314 
315 			if (!is_highmem_idx(i))
316 				continue;
317 
318 			z = &NODE_DATA(node)->node_zones[i];
319 			if (!populated_zone(z))
320 				continue;
321 
322 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
323 			/* watch for underflows */
324 			nr_pages -= min(nr_pages, high_wmark_pages(z));
325 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
326 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
327 			x += nr_pages;
328 		}
329 	}
330 
331 	/*
332 	 * Unreclaimable memory (kernel memory or anonymous memory
333 	 * without swap) can bring down the dirtyable pages below
334 	 * the zone's dirty balance reserve and the above calculation
335 	 * will underflow.  However we still want to add in nodes
336 	 * which are below threshold (negative values) to get a more
337 	 * accurate calculation but make sure that the total never
338 	 * underflows.
339 	 */
340 	if ((long)x < 0)
341 		x = 0;
342 
343 	/*
344 	 * Make sure that the number of highmem pages is never larger
345 	 * than the number of the total dirtyable memory. This can only
346 	 * occur in very strange VM situations but we want to make sure
347 	 * that this does not occur.
348 	 */
349 	return min(x, total);
350 #else
351 	return 0;
352 #endif
353 }
354 
355 /**
356  * global_dirtyable_memory - number of globally dirtyable pages
357  *
358  * Return: the global number of pages potentially available for dirty
359  * page cache.  This is the base value for the global dirty limits.
360  */
361 static unsigned long global_dirtyable_memory(void)
362 {
363 	unsigned long x;
364 
365 	x = global_zone_page_state(NR_FREE_PAGES);
366 	/*
367 	 * Pages reserved for the kernel should not be considered
368 	 * dirtyable, to prevent a situation where reclaim has to
369 	 * clean pages in order to balance the zones.
370 	 */
371 	x -= min(x, totalreserve_pages);
372 
373 	x += global_node_page_state(NR_INACTIVE_FILE);
374 	x += global_node_page_state(NR_ACTIVE_FILE);
375 
376 	if (!vm_highmem_is_dirtyable)
377 		x -= highmem_dirtyable_memory(x);
378 
379 	return x + 1;	/* Ensure that we never return 0 */
380 }
381 
382 /**
383  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
384  * @dtc: dirty_throttle_control of interest
385  *
386  * Calculate @dtc->thresh and ->bg_thresh considering
387  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
388  * must ensure that @dtc->avail is set before calling this function.  The
389  * dirty limits will be lifted by 1/4 for real-time tasks.
390  */
391 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
392 {
393 	const unsigned long available_memory = dtc->avail;
394 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
395 	unsigned long bytes = vm_dirty_bytes;
396 	unsigned long bg_bytes = dirty_background_bytes;
397 	/* convert ratios to per-PAGE_SIZE for higher precision */
398 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
399 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
400 	unsigned long thresh;
401 	unsigned long bg_thresh;
402 	struct task_struct *tsk;
403 
404 	/* gdtc is !NULL iff @dtc is for memcg domain */
405 	if (gdtc) {
406 		unsigned long global_avail = gdtc->avail;
407 
408 		/*
409 		 * The byte settings can't be applied directly to memcg
410 		 * domains.  Convert them to ratios by scaling against
411 		 * globally available memory.  As the ratios are in
412 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
413 		 * number of pages.
414 		 */
415 		if (bytes)
416 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
417 				    PAGE_SIZE);
418 		if (bg_bytes)
419 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
420 				       PAGE_SIZE);
421 		bytes = bg_bytes = 0;
422 	}
423 
424 	if (bytes)
425 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
426 	else
427 		thresh = (ratio * available_memory) / PAGE_SIZE;
428 
429 	if (bg_bytes)
430 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
431 	else
432 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
433 
434 	if (bg_thresh >= thresh)
435 		bg_thresh = thresh / 2;
436 	tsk = current;
437 	if (rt_task(tsk)) {
438 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
439 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
440 	}
441 	dtc->thresh = thresh;
442 	dtc->bg_thresh = bg_thresh;
443 
444 	/* we should eventually report the domain in the TP */
445 	if (!gdtc)
446 		trace_global_dirty_state(bg_thresh, thresh);
447 }
448 
449 /**
450  * global_dirty_limits - background-writeback and dirty-throttling thresholds
451  * @pbackground: out parameter for bg_thresh
452  * @pdirty: out parameter for thresh
453  *
454  * Calculate bg_thresh and thresh for global_wb_domain.  See
455  * domain_dirty_limits() for details.
456  */
457 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
458 {
459 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
460 
461 	gdtc.avail = global_dirtyable_memory();
462 	domain_dirty_limits(&gdtc);
463 
464 	*pbackground = gdtc.bg_thresh;
465 	*pdirty = gdtc.thresh;
466 }
467 
468 /**
469  * node_dirty_limit - maximum number of dirty pages allowed in a node
470  * @pgdat: the node
471  *
472  * Return: the maximum number of dirty pages allowed in a node, based
473  * on the node's dirtyable memory.
474  */
475 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
476 {
477 	unsigned long node_memory = node_dirtyable_memory(pgdat);
478 	struct task_struct *tsk = current;
479 	unsigned long dirty;
480 
481 	if (vm_dirty_bytes)
482 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
483 			node_memory / global_dirtyable_memory();
484 	else
485 		dirty = vm_dirty_ratio * node_memory / 100;
486 
487 	if (rt_task(tsk))
488 		dirty += dirty / 4;
489 
490 	return dirty;
491 }
492 
493 /**
494  * node_dirty_ok - tells whether a node is within its dirty limits
495  * @pgdat: the node to check
496  *
497  * Return: %true when the dirty pages in @pgdat are within the node's
498  * dirty limit, %false if the limit is exceeded.
499  */
500 bool node_dirty_ok(struct pglist_data *pgdat)
501 {
502 	unsigned long limit = node_dirty_limit(pgdat);
503 	unsigned long nr_pages = 0;
504 
505 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
506 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
507 
508 	return nr_pages <= limit;
509 }
510 
511 int dirty_background_ratio_handler(struct ctl_table *table, int write,
512 		void *buffer, size_t *lenp, loff_t *ppos)
513 {
514 	int ret;
515 
516 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
517 	if (ret == 0 && write)
518 		dirty_background_bytes = 0;
519 	return ret;
520 }
521 
522 int dirty_background_bytes_handler(struct ctl_table *table, int write,
523 		void *buffer, size_t *lenp, loff_t *ppos)
524 {
525 	int ret;
526 
527 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
528 	if (ret == 0 && write)
529 		dirty_background_ratio = 0;
530 	return ret;
531 }
532 
533 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
534 		size_t *lenp, loff_t *ppos)
535 {
536 	int old_ratio = vm_dirty_ratio;
537 	int ret;
538 
539 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
540 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
541 		writeback_set_ratelimit();
542 		vm_dirty_bytes = 0;
543 	}
544 	return ret;
545 }
546 
547 int dirty_bytes_handler(struct ctl_table *table, int write,
548 		void *buffer, size_t *lenp, loff_t *ppos)
549 {
550 	unsigned long old_bytes = vm_dirty_bytes;
551 	int ret;
552 
553 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
554 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
555 		writeback_set_ratelimit();
556 		vm_dirty_ratio = 0;
557 	}
558 	return ret;
559 }
560 
561 static unsigned long wp_next_time(unsigned long cur_time)
562 {
563 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
564 	/* 0 has a special meaning... */
565 	if (!cur_time)
566 		return 1;
567 	return cur_time;
568 }
569 
570 static void wb_domain_writeout_inc(struct wb_domain *dom,
571 				   struct fprop_local_percpu *completions,
572 				   unsigned int max_prop_frac)
573 {
574 	__fprop_inc_percpu_max(&dom->completions, completions,
575 			       max_prop_frac);
576 	/* First event after period switching was turned off? */
577 	if (unlikely(!dom->period_time)) {
578 		/*
579 		 * We can race with other __bdi_writeout_inc calls here but
580 		 * it does not cause any harm since the resulting time when
581 		 * timer will fire and what is in writeout_period_time will be
582 		 * roughly the same.
583 		 */
584 		dom->period_time = wp_next_time(jiffies);
585 		mod_timer(&dom->period_timer, dom->period_time);
586 	}
587 }
588 
589 /*
590  * Increment @wb's writeout completion count and the global writeout
591  * completion count. Called from test_clear_page_writeback().
592  */
593 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
594 {
595 	struct wb_domain *cgdom;
596 
597 	inc_wb_stat(wb, WB_WRITTEN);
598 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
599 			       wb->bdi->max_prop_frac);
600 
601 	cgdom = mem_cgroup_wb_domain(wb);
602 	if (cgdom)
603 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
604 				       wb->bdi->max_prop_frac);
605 }
606 
607 void wb_writeout_inc(struct bdi_writeback *wb)
608 {
609 	unsigned long flags;
610 
611 	local_irq_save(flags);
612 	__wb_writeout_inc(wb);
613 	local_irq_restore(flags);
614 }
615 EXPORT_SYMBOL_GPL(wb_writeout_inc);
616 
617 /*
618  * On idle system, we can be called long after we scheduled because we use
619  * deferred timers so count with missed periods.
620  */
621 static void writeout_period(struct timer_list *t)
622 {
623 	struct wb_domain *dom = from_timer(dom, t, period_timer);
624 	int miss_periods = (jiffies - dom->period_time) /
625 						 VM_COMPLETIONS_PERIOD_LEN;
626 
627 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
628 		dom->period_time = wp_next_time(dom->period_time +
629 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
630 		mod_timer(&dom->period_timer, dom->period_time);
631 	} else {
632 		/*
633 		 * Aging has zeroed all fractions. Stop wasting CPU on period
634 		 * updates.
635 		 */
636 		dom->period_time = 0;
637 	}
638 }
639 
640 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
641 {
642 	memset(dom, 0, sizeof(*dom));
643 
644 	spin_lock_init(&dom->lock);
645 
646 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
647 
648 	dom->dirty_limit_tstamp = jiffies;
649 
650 	return fprop_global_init(&dom->completions, gfp);
651 }
652 
653 #ifdef CONFIG_CGROUP_WRITEBACK
654 void wb_domain_exit(struct wb_domain *dom)
655 {
656 	del_timer_sync(&dom->period_timer);
657 	fprop_global_destroy(&dom->completions);
658 }
659 #endif
660 
661 /*
662  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
663  * registered backing devices, which, for obvious reasons, can not
664  * exceed 100%.
665  */
666 static unsigned int bdi_min_ratio;
667 
668 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
669 {
670 	int ret = 0;
671 
672 	spin_lock_bh(&bdi_lock);
673 	if (min_ratio > bdi->max_ratio) {
674 		ret = -EINVAL;
675 	} else {
676 		min_ratio -= bdi->min_ratio;
677 		if (bdi_min_ratio + min_ratio < 100) {
678 			bdi_min_ratio += min_ratio;
679 			bdi->min_ratio += min_ratio;
680 		} else {
681 			ret = -EINVAL;
682 		}
683 	}
684 	spin_unlock_bh(&bdi_lock);
685 
686 	return ret;
687 }
688 
689 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
690 {
691 	int ret = 0;
692 
693 	if (max_ratio > 100)
694 		return -EINVAL;
695 
696 	spin_lock_bh(&bdi_lock);
697 	if (bdi->min_ratio > max_ratio) {
698 		ret = -EINVAL;
699 	} else {
700 		bdi->max_ratio = max_ratio;
701 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
702 	}
703 	spin_unlock_bh(&bdi_lock);
704 
705 	return ret;
706 }
707 EXPORT_SYMBOL(bdi_set_max_ratio);
708 
709 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
710 					   unsigned long bg_thresh)
711 {
712 	return (thresh + bg_thresh) / 2;
713 }
714 
715 static unsigned long hard_dirty_limit(struct wb_domain *dom,
716 				      unsigned long thresh)
717 {
718 	return max(thresh, dom->dirty_limit);
719 }
720 
721 /*
722  * Memory which can be further allocated to a memcg domain is capped by
723  * system-wide clean memory excluding the amount being used in the domain.
724  */
725 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
726 			    unsigned long filepages, unsigned long headroom)
727 {
728 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
729 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
730 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
731 	unsigned long other_clean = global_clean - min(global_clean, clean);
732 
733 	mdtc->avail = filepages + min(headroom, other_clean);
734 }
735 
736 /**
737  * __wb_calc_thresh - @wb's share of dirty throttling threshold
738  * @dtc: dirty_throttle_context of interest
739  *
740  * Note that balance_dirty_pages() will only seriously take it as a hard limit
741  * when sleeping max_pause per page is not enough to keep the dirty pages under
742  * control. For example, when the device is completely stalled due to some error
743  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
744  * In the other normal situations, it acts more gently by throttling the tasks
745  * more (rather than completely block them) when the wb dirty pages go high.
746  *
747  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
748  * - starving fast devices
749  * - piling up dirty pages (that will take long time to sync) on slow devices
750  *
751  * The wb's share of dirty limit will be adapting to its throughput and
752  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
753  *
754  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
755  * dirty balancing includes all PG_dirty and PG_writeback pages.
756  */
757 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
758 {
759 	struct wb_domain *dom = dtc_dom(dtc);
760 	unsigned long thresh = dtc->thresh;
761 	u64 wb_thresh;
762 	unsigned long numerator, denominator;
763 	unsigned long wb_min_ratio, wb_max_ratio;
764 
765 	/*
766 	 * Calculate this BDI's share of the thresh ratio.
767 	 */
768 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
769 			      &numerator, &denominator);
770 
771 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
772 	wb_thresh *= numerator;
773 	wb_thresh = div64_ul(wb_thresh, denominator);
774 
775 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
776 
777 	wb_thresh += (thresh * wb_min_ratio) / 100;
778 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
779 		wb_thresh = thresh * wb_max_ratio / 100;
780 
781 	return wb_thresh;
782 }
783 
784 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
785 {
786 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
787 					       .thresh = thresh };
788 	return __wb_calc_thresh(&gdtc);
789 }
790 
791 /*
792  *                           setpoint - dirty 3
793  *        f(dirty) := 1.0 + (----------------)
794  *                           limit - setpoint
795  *
796  * it's a 3rd order polynomial that subjects to
797  *
798  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
799  * (2) f(setpoint) = 1.0 => the balance point
800  * (3) f(limit)    = 0   => the hard limit
801  * (4) df/dx      <= 0	 => negative feedback control
802  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
803  *     => fast response on large errors; small oscillation near setpoint
804  */
805 static long long pos_ratio_polynom(unsigned long setpoint,
806 					  unsigned long dirty,
807 					  unsigned long limit)
808 {
809 	long long pos_ratio;
810 	long x;
811 
812 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
813 		      (limit - setpoint) | 1);
814 	pos_ratio = x;
815 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
816 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
817 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
818 
819 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
820 }
821 
822 /*
823  * Dirty position control.
824  *
825  * (o) global/bdi setpoints
826  *
827  * We want the dirty pages be balanced around the global/wb setpoints.
828  * When the number of dirty pages is higher/lower than the setpoint, the
829  * dirty position control ratio (and hence task dirty ratelimit) will be
830  * decreased/increased to bring the dirty pages back to the setpoint.
831  *
832  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
833  *
834  *     if (dirty < setpoint) scale up   pos_ratio
835  *     if (dirty > setpoint) scale down pos_ratio
836  *
837  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
838  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
839  *
840  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
841  *
842  * (o) global control line
843  *
844  *     ^ pos_ratio
845  *     |
846  *     |            |<===== global dirty control scope ======>|
847  * 2.0  * * * * * * *
848  *     |            .*
849  *     |            . *
850  *     |            .   *
851  *     |            .     *
852  *     |            .        *
853  *     |            .            *
854  * 1.0 ................................*
855  *     |            .                  .     *
856  *     |            .                  .          *
857  *     |            .                  .              *
858  *     |            .                  .                 *
859  *     |            .                  .                    *
860  *   0 +------------.------------------.----------------------*------------->
861  *           freerun^          setpoint^                 limit^   dirty pages
862  *
863  * (o) wb control line
864  *
865  *     ^ pos_ratio
866  *     |
867  *     |            *
868  *     |              *
869  *     |                *
870  *     |                  *
871  *     |                    * |<=========== span ============>|
872  * 1.0 .......................*
873  *     |                      . *
874  *     |                      .   *
875  *     |                      .     *
876  *     |                      .       *
877  *     |                      .         *
878  *     |                      .           *
879  *     |                      .             *
880  *     |                      .               *
881  *     |                      .                 *
882  *     |                      .                   *
883  *     |                      .                     *
884  * 1/4 ...............................................* * * * * * * * * * * *
885  *     |                      .                         .
886  *     |                      .                           .
887  *     |                      .                             .
888  *   0 +----------------------.-------------------------------.------------->
889  *                wb_setpoint^                    x_intercept^
890  *
891  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
892  * be smoothly throttled down to normal if it starts high in situations like
893  * - start writing to a slow SD card and a fast disk at the same time. The SD
894  *   card's wb_dirty may rush to many times higher than wb_setpoint.
895  * - the wb dirty thresh drops quickly due to change of JBOD workload
896  */
897 static void wb_position_ratio(struct dirty_throttle_control *dtc)
898 {
899 	struct bdi_writeback *wb = dtc->wb;
900 	unsigned long write_bw = wb->avg_write_bandwidth;
901 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
902 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
903 	unsigned long wb_thresh = dtc->wb_thresh;
904 	unsigned long x_intercept;
905 	unsigned long setpoint;		/* dirty pages' target balance point */
906 	unsigned long wb_setpoint;
907 	unsigned long span;
908 	long long pos_ratio;		/* for scaling up/down the rate limit */
909 	long x;
910 
911 	dtc->pos_ratio = 0;
912 
913 	if (unlikely(dtc->dirty >= limit))
914 		return;
915 
916 	/*
917 	 * global setpoint
918 	 *
919 	 * See comment for pos_ratio_polynom().
920 	 */
921 	setpoint = (freerun + limit) / 2;
922 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
923 
924 	/*
925 	 * The strictlimit feature is a tool preventing mistrusted filesystems
926 	 * from growing a large number of dirty pages before throttling. For
927 	 * such filesystems balance_dirty_pages always checks wb counters
928 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
929 	 * This is especially important for fuse which sets bdi->max_ratio to
930 	 * 1% by default. Without strictlimit feature, fuse writeback may
931 	 * consume arbitrary amount of RAM because it is accounted in
932 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
933 	 *
934 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
935 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
936 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
937 	 * limits are set by default to 10% and 20% (background and throttle).
938 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
939 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
940 	 * about ~6K pages (as the average of background and throttle wb
941 	 * limits). The 3rd order polynomial will provide positive feedback if
942 	 * wb_dirty is under wb_setpoint and vice versa.
943 	 *
944 	 * Note, that we cannot use global counters in these calculations
945 	 * because we want to throttle process writing to a strictlimit wb
946 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
947 	 * in the example above).
948 	 */
949 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
950 		long long wb_pos_ratio;
951 
952 		if (dtc->wb_dirty < 8) {
953 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
954 					   2 << RATELIMIT_CALC_SHIFT);
955 			return;
956 		}
957 
958 		if (dtc->wb_dirty >= wb_thresh)
959 			return;
960 
961 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
962 						    dtc->wb_bg_thresh);
963 
964 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
965 			return;
966 
967 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
968 						 wb_thresh);
969 
970 		/*
971 		 * Typically, for strictlimit case, wb_setpoint << setpoint
972 		 * and pos_ratio >> wb_pos_ratio. In the other words global
973 		 * state ("dirty") is not limiting factor and we have to
974 		 * make decision based on wb counters. But there is an
975 		 * important case when global pos_ratio should get precedence:
976 		 * global limits are exceeded (e.g. due to activities on other
977 		 * wb's) while given strictlimit wb is below limit.
978 		 *
979 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
980 		 * but it would look too non-natural for the case of all
981 		 * activity in the system coming from a single strictlimit wb
982 		 * with bdi->max_ratio == 100%.
983 		 *
984 		 * Note that min() below somewhat changes the dynamics of the
985 		 * control system. Normally, pos_ratio value can be well over 3
986 		 * (when globally we are at freerun and wb is well below wb
987 		 * setpoint). Now the maximum pos_ratio in the same situation
988 		 * is 2. We might want to tweak this if we observe the control
989 		 * system is too slow to adapt.
990 		 */
991 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
992 		return;
993 	}
994 
995 	/*
996 	 * We have computed basic pos_ratio above based on global situation. If
997 	 * the wb is over/under its share of dirty pages, we want to scale
998 	 * pos_ratio further down/up. That is done by the following mechanism.
999 	 */
1000 
1001 	/*
1002 	 * wb setpoint
1003 	 *
1004 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1005 	 *
1006 	 *                        x_intercept - wb_dirty
1007 	 *                     := --------------------------
1008 	 *                        x_intercept - wb_setpoint
1009 	 *
1010 	 * The main wb control line is a linear function that subjects to
1011 	 *
1012 	 * (1) f(wb_setpoint) = 1.0
1013 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1014 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1015 	 *
1016 	 * For single wb case, the dirty pages are observed to fluctuate
1017 	 * regularly within range
1018 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1019 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1020 	 * fluctuation range for pos_ratio.
1021 	 *
1022 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1023 	 * own size, so move the slope over accordingly and choose a slope that
1024 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1025 	 */
1026 	if (unlikely(wb_thresh > dtc->thresh))
1027 		wb_thresh = dtc->thresh;
1028 	/*
1029 	 * It's very possible that wb_thresh is close to 0 not because the
1030 	 * device is slow, but that it has remained inactive for long time.
1031 	 * Honour such devices a reasonable good (hopefully IO efficient)
1032 	 * threshold, so that the occasional writes won't be blocked and active
1033 	 * writes can rampup the threshold quickly.
1034 	 */
1035 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1036 	/*
1037 	 * scale global setpoint to wb's:
1038 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1039 	 */
1040 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1041 	wb_setpoint = setpoint * (u64)x >> 16;
1042 	/*
1043 	 * Use span=(8*write_bw) in single wb case as indicated by
1044 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1045 	 *
1046 	 *        wb_thresh                    thresh - wb_thresh
1047 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1048 	 *         thresh                           thresh
1049 	 */
1050 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1051 	x_intercept = wb_setpoint + span;
1052 
1053 	if (dtc->wb_dirty < x_intercept - span / 4) {
1054 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1055 				      (x_intercept - wb_setpoint) | 1);
1056 	} else
1057 		pos_ratio /= 4;
1058 
1059 	/*
1060 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1061 	 * It may push the desired control point of global dirty pages higher
1062 	 * than setpoint.
1063 	 */
1064 	x_intercept = wb_thresh / 2;
1065 	if (dtc->wb_dirty < x_intercept) {
1066 		if (dtc->wb_dirty > x_intercept / 8)
1067 			pos_ratio = div_u64(pos_ratio * x_intercept,
1068 					    dtc->wb_dirty);
1069 		else
1070 			pos_ratio *= 8;
1071 	}
1072 
1073 	dtc->pos_ratio = pos_ratio;
1074 }
1075 
1076 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1077 				      unsigned long elapsed,
1078 				      unsigned long written)
1079 {
1080 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1081 	unsigned long avg = wb->avg_write_bandwidth;
1082 	unsigned long old = wb->write_bandwidth;
1083 	u64 bw;
1084 
1085 	/*
1086 	 * bw = written * HZ / elapsed
1087 	 *
1088 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1089 	 * write_bandwidth = ---------------------------------------------------
1090 	 *                                          period
1091 	 *
1092 	 * @written may have decreased due to account_page_redirty().
1093 	 * Avoid underflowing @bw calculation.
1094 	 */
1095 	bw = written - min(written, wb->written_stamp);
1096 	bw *= HZ;
1097 	if (unlikely(elapsed > period)) {
1098 		bw = div64_ul(bw, elapsed);
1099 		avg = bw;
1100 		goto out;
1101 	}
1102 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1103 	bw >>= ilog2(period);
1104 
1105 	/*
1106 	 * one more level of smoothing, for filtering out sudden spikes
1107 	 */
1108 	if (avg > old && old >= (unsigned long)bw)
1109 		avg -= (avg - old) >> 3;
1110 
1111 	if (avg < old && old <= (unsigned long)bw)
1112 		avg += (old - avg) >> 3;
1113 
1114 out:
1115 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1116 	avg = max(avg, 1LU);
1117 	if (wb_has_dirty_io(wb)) {
1118 		long delta = avg - wb->avg_write_bandwidth;
1119 		WARN_ON_ONCE(atomic_long_add_return(delta,
1120 					&wb->bdi->tot_write_bandwidth) <= 0);
1121 	}
1122 	wb->write_bandwidth = bw;
1123 	wb->avg_write_bandwidth = avg;
1124 }
1125 
1126 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1127 {
1128 	struct wb_domain *dom = dtc_dom(dtc);
1129 	unsigned long thresh = dtc->thresh;
1130 	unsigned long limit = dom->dirty_limit;
1131 
1132 	/*
1133 	 * Follow up in one step.
1134 	 */
1135 	if (limit < thresh) {
1136 		limit = thresh;
1137 		goto update;
1138 	}
1139 
1140 	/*
1141 	 * Follow down slowly. Use the higher one as the target, because thresh
1142 	 * may drop below dirty. This is exactly the reason to introduce
1143 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1144 	 */
1145 	thresh = max(thresh, dtc->dirty);
1146 	if (limit > thresh) {
1147 		limit -= (limit - thresh) >> 5;
1148 		goto update;
1149 	}
1150 	return;
1151 update:
1152 	dom->dirty_limit = limit;
1153 }
1154 
1155 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1156 				    unsigned long now)
1157 {
1158 	struct wb_domain *dom = dtc_dom(dtc);
1159 
1160 	/*
1161 	 * check locklessly first to optimize away locking for the most time
1162 	 */
1163 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1164 		return;
1165 
1166 	spin_lock(&dom->lock);
1167 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1168 		update_dirty_limit(dtc);
1169 		dom->dirty_limit_tstamp = now;
1170 	}
1171 	spin_unlock(&dom->lock);
1172 }
1173 
1174 /*
1175  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1176  *
1177  * Normal wb tasks will be curbed at or below it in long term.
1178  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1179  */
1180 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1181 				      unsigned long dirtied,
1182 				      unsigned long elapsed)
1183 {
1184 	struct bdi_writeback *wb = dtc->wb;
1185 	unsigned long dirty = dtc->dirty;
1186 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1187 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1188 	unsigned long setpoint = (freerun + limit) / 2;
1189 	unsigned long write_bw = wb->avg_write_bandwidth;
1190 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1191 	unsigned long dirty_rate;
1192 	unsigned long task_ratelimit;
1193 	unsigned long balanced_dirty_ratelimit;
1194 	unsigned long step;
1195 	unsigned long x;
1196 	unsigned long shift;
1197 
1198 	/*
1199 	 * The dirty rate will match the writeout rate in long term, except
1200 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1201 	 */
1202 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1203 
1204 	/*
1205 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1206 	 */
1207 	task_ratelimit = (u64)dirty_ratelimit *
1208 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1209 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1210 
1211 	/*
1212 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1213 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1214 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1215 	 * formula will yield the balanced rate limit (write_bw / N).
1216 	 *
1217 	 * Note that the expanded form is not a pure rate feedback:
1218 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1219 	 * but also takes pos_ratio into account:
1220 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1221 	 *
1222 	 * (1) is not realistic because pos_ratio also takes part in balancing
1223 	 * the dirty rate.  Consider the state
1224 	 *	pos_ratio = 0.5						     (3)
1225 	 *	rate = 2 * (write_bw / N)				     (4)
1226 	 * If (1) is used, it will stuck in that state! Because each dd will
1227 	 * be throttled at
1228 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1229 	 * yielding
1230 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1231 	 * put (6) into (1) we get
1232 	 *	rate_(i+1) = rate_(i)					     (7)
1233 	 *
1234 	 * So we end up using (2) to always keep
1235 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1236 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1237 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1238 	 * the dirty count meet the setpoint, but also where the slope of
1239 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1240 	 */
1241 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1242 					   dirty_rate | 1);
1243 	/*
1244 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1245 	 */
1246 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1247 		balanced_dirty_ratelimit = write_bw;
1248 
1249 	/*
1250 	 * We could safely do this and return immediately:
1251 	 *
1252 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1253 	 *
1254 	 * However to get a more stable dirty_ratelimit, the below elaborated
1255 	 * code makes use of task_ratelimit to filter out singular points and
1256 	 * limit the step size.
1257 	 *
1258 	 * The below code essentially only uses the relative value of
1259 	 *
1260 	 *	task_ratelimit - dirty_ratelimit
1261 	 *	= (pos_ratio - 1) * dirty_ratelimit
1262 	 *
1263 	 * which reflects the direction and size of dirty position error.
1264 	 */
1265 
1266 	/*
1267 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1268 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1269 	 * For example, when
1270 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1271 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1272 	 * lowering dirty_ratelimit will help meet both the position and rate
1273 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1274 	 * only help meet the rate target. After all, what the users ultimately
1275 	 * feel and care are stable dirty rate and small position error.
1276 	 *
1277 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1278 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1279 	 * keeps jumping around randomly and can even leap far away at times
1280 	 * due to the small 200ms estimation period of dirty_rate (we want to
1281 	 * keep that period small to reduce time lags).
1282 	 */
1283 	step = 0;
1284 
1285 	/*
1286 	 * For strictlimit case, calculations above were based on wb counters
1287 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1288 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1289 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1290 	 * "dirty" and wb_setpoint as "setpoint".
1291 	 *
1292 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1293 	 * it's possible that wb_thresh is close to zero due to inactivity
1294 	 * of backing device.
1295 	 */
1296 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1297 		dirty = dtc->wb_dirty;
1298 		if (dtc->wb_dirty < 8)
1299 			setpoint = dtc->wb_dirty + 1;
1300 		else
1301 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1302 	}
1303 
1304 	if (dirty < setpoint) {
1305 		x = min3(wb->balanced_dirty_ratelimit,
1306 			 balanced_dirty_ratelimit, task_ratelimit);
1307 		if (dirty_ratelimit < x)
1308 			step = x - dirty_ratelimit;
1309 	} else {
1310 		x = max3(wb->balanced_dirty_ratelimit,
1311 			 balanced_dirty_ratelimit, task_ratelimit);
1312 		if (dirty_ratelimit > x)
1313 			step = dirty_ratelimit - x;
1314 	}
1315 
1316 	/*
1317 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1318 	 * rate itself is constantly fluctuating. So decrease the track speed
1319 	 * when it gets close to the target. Helps eliminate pointless tremors.
1320 	 */
1321 	shift = dirty_ratelimit / (2 * step + 1);
1322 	if (shift < BITS_PER_LONG)
1323 		step = DIV_ROUND_UP(step >> shift, 8);
1324 	else
1325 		step = 0;
1326 
1327 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1328 		dirty_ratelimit += step;
1329 	else
1330 		dirty_ratelimit -= step;
1331 
1332 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1333 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1334 
1335 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1336 }
1337 
1338 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1339 				  struct dirty_throttle_control *mdtc,
1340 				  unsigned long start_time,
1341 				  bool update_ratelimit)
1342 {
1343 	struct bdi_writeback *wb = gdtc->wb;
1344 	unsigned long now = jiffies;
1345 	unsigned long elapsed = now - wb->bw_time_stamp;
1346 	unsigned long dirtied;
1347 	unsigned long written;
1348 
1349 	lockdep_assert_held(&wb->list_lock);
1350 
1351 	/*
1352 	 * rate-limit, only update once every 200ms.
1353 	 */
1354 	if (elapsed < BANDWIDTH_INTERVAL)
1355 		return;
1356 
1357 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1358 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1359 
1360 	/*
1361 	 * Skip quiet periods when disk bandwidth is under-utilized.
1362 	 * (at least 1s idle time between two flusher runs)
1363 	 */
1364 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1365 		goto snapshot;
1366 
1367 	if (update_ratelimit) {
1368 		domain_update_bandwidth(gdtc, now);
1369 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1370 
1371 		/*
1372 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1373 		 * compiler has no way to figure that out.  Help it.
1374 		 */
1375 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1376 			domain_update_bandwidth(mdtc, now);
1377 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1378 		}
1379 	}
1380 	wb_update_write_bandwidth(wb, elapsed, written);
1381 
1382 snapshot:
1383 	wb->dirtied_stamp = dirtied;
1384 	wb->written_stamp = written;
1385 	wb->bw_time_stamp = now;
1386 }
1387 
1388 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1389 {
1390 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1391 
1392 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1393 }
1394 
1395 /*
1396  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1397  * will look to see if it needs to start dirty throttling.
1398  *
1399  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1400  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1401  * (the number of pages we may dirty without exceeding the dirty limits).
1402  */
1403 static unsigned long dirty_poll_interval(unsigned long dirty,
1404 					 unsigned long thresh)
1405 {
1406 	if (thresh > dirty)
1407 		return 1UL << (ilog2(thresh - dirty) >> 1);
1408 
1409 	return 1;
1410 }
1411 
1412 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1413 				  unsigned long wb_dirty)
1414 {
1415 	unsigned long bw = wb->avg_write_bandwidth;
1416 	unsigned long t;
1417 
1418 	/*
1419 	 * Limit pause time for small memory systems. If sleeping for too long
1420 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1421 	 * idle.
1422 	 *
1423 	 * 8 serves as the safety ratio.
1424 	 */
1425 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1426 	t++;
1427 
1428 	return min_t(unsigned long, t, MAX_PAUSE);
1429 }
1430 
1431 static long wb_min_pause(struct bdi_writeback *wb,
1432 			 long max_pause,
1433 			 unsigned long task_ratelimit,
1434 			 unsigned long dirty_ratelimit,
1435 			 int *nr_dirtied_pause)
1436 {
1437 	long hi = ilog2(wb->avg_write_bandwidth);
1438 	long lo = ilog2(wb->dirty_ratelimit);
1439 	long t;		/* target pause */
1440 	long pause;	/* estimated next pause */
1441 	int pages;	/* target nr_dirtied_pause */
1442 
1443 	/* target for 10ms pause on 1-dd case */
1444 	t = max(1, HZ / 100);
1445 
1446 	/*
1447 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1448 	 * overheads.
1449 	 *
1450 	 * (N * 10ms) on 2^N concurrent tasks.
1451 	 */
1452 	if (hi > lo)
1453 		t += (hi - lo) * (10 * HZ) / 1024;
1454 
1455 	/*
1456 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1457 	 * on the much more stable dirty_ratelimit. However the next pause time
1458 	 * will be computed based on task_ratelimit and the two rate limits may
1459 	 * depart considerably at some time. Especially if task_ratelimit goes
1460 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1461 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1462 	 * result task_ratelimit won't be executed faithfully, which could
1463 	 * eventually bring down dirty_ratelimit.
1464 	 *
1465 	 * We apply two rules to fix it up:
1466 	 * 1) try to estimate the next pause time and if necessary, use a lower
1467 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1468 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1469 	 * 2) limit the target pause time to max_pause/2, so that the normal
1470 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1471 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1472 	 */
1473 	t = min(t, 1 + max_pause / 2);
1474 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1475 
1476 	/*
1477 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1478 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1479 	 * When the 16 consecutive reads are often interrupted by some dirty
1480 	 * throttling pause during the async writes, cfq will go into idles
1481 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1482 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1483 	 */
1484 	if (pages < DIRTY_POLL_THRESH) {
1485 		t = max_pause;
1486 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1487 		if (pages > DIRTY_POLL_THRESH) {
1488 			pages = DIRTY_POLL_THRESH;
1489 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1490 		}
1491 	}
1492 
1493 	pause = HZ * pages / (task_ratelimit + 1);
1494 	if (pause > max_pause) {
1495 		t = max_pause;
1496 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1497 	}
1498 
1499 	*nr_dirtied_pause = pages;
1500 	/*
1501 	 * The minimal pause time will normally be half the target pause time.
1502 	 */
1503 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1504 }
1505 
1506 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1507 {
1508 	struct bdi_writeback *wb = dtc->wb;
1509 	unsigned long wb_reclaimable;
1510 
1511 	/*
1512 	 * wb_thresh is not treated as some limiting factor as
1513 	 * dirty_thresh, due to reasons
1514 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1515 	 * - in a system with HDD and USB key, the USB key may somehow
1516 	 *   go into state (wb_dirty >> wb_thresh) either because
1517 	 *   wb_dirty starts high, or because wb_thresh drops low.
1518 	 *   In this case we don't want to hard throttle the USB key
1519 	 *   dirtiers for 100 seconds until wb_dirty drops under
1520 	 *   wb_thresh. Instead the auxiliary wb control line in
1521 	 *   wb_position_ratio() will let the dirtier task progress
1522 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1523 	 */
1524 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1525 	dtc->wb_bg_thresh = dtc->thresh ?
1526 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1527 
1528 	/*
1529 	 * In order to avoid the stacked BDI deadlock we need
1530 	 * to ensure we accurately count the 'dirty' pages when
1531 	 * the threshold is low.
1532 	 *
1533 	 * Otherwise it would be possible to get thresh+n pages
1534 	 * reported dirty, even though there are thresh-m pages
1535 	 * actually dirty; with m+n sitting in the percpu
1536 	 * deltas.
1537 	 */
1538 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1539 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1540 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1541 	} else {
1542 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1543 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1544 	}
1545 }
1546 
1547 /*
1548  * balance_dirty_pages() must be called by processes which are generating dirty
1549  * data.  It looks at the number of dirty pages in the machine and will force
1550  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1551  * If we're over `background_thresh' then the writeback threads are woken to
1552  * perform some writeout.
1553  */
1554 static void balance_dirty_pages(struct bdi_writeback *wb,
1555 				unsigned long pages_dirtied)
1556 {
1557 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1558 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1559 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1560 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1561 						     &mdtc_stor : NULL;
1562 	struct dirty_throttle_control *sdtc;
1563 	unsigned long nr_reclaimable;	/* = file_dirty */
1564 	long period;
1565 	long pause;
1566 	long max_pause;
1567 	long min_pause;
1568 	int nr_dirtied_pause;
1569 	bool dirty_exceeded = false;
1570 	unsigned long task_ratelimit;
1571 	unsigned long dirty_ratelimit;
1572 	struct backing_dev_info *bdi = wb->bdi;
1573 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1574 	unsigned long start_time = jiffies;
1575 
1576 	for (;;) {
1577 		unsigned long now = jiffies;
1578 		unsigned long dirty, thresh, bg_thresh;
1579 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1580 		unsigned long m_thresh = 0;
1581 		unsigned long m_bg_thresh = 0;
1582 
1583 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1584 		gdtc->avail = global_dirtyable_memory();
1585 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1586 
1587 		domain_dirty_limits(gdtc);
1588 
1589 		if (unlikely(strictlimit)) {
1590 			wb_dirty_limits(gdtc);
1591 
1592 			dirty = gdtc->wb_dirty;
1593 			thresh = gdtc->wb_thresh;
1594 			bg_thresh = gdtc->wb_bg_thresh;
1595 		} else {
1596 			dirty = gdtc->dirty;
1597 			thresh = gdtc->thresh;
1598 			bg_thresh = gdtc->bg_thresh;
1599 		}
1600 
1601 		if (mdtc) {
1602 			unsigned long filepages, headroom, writeback;
1603 
1604 			/*
1605 			 * If @wb belongs to !root memcg, repeat the same
1606 			 * basic calculations for the memcg domain.
1607 			 */
1608 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1609 					    &mdtc->dirty, &writeback);
1610 			mdtc->dirty += writeback;
1611 			mdtc_calc_avail(mdtc, filepages, headroom);
1612 
1613 			domain_dirty_limits(mdtc);
1614 
1615 			if (unlikely(strictlimit)) {
1616 				wb_dirty_limits(mdtc);
1617 				m_dirty = mdtc->wb_dirty;
1618 				m_thresh = mdtc->wb_thresh;
1619 				m_bg_thresh = mdtc->wb_bg_thresh;
1620 			} else {
1621 				m_dirty = mdtc->dirty;
1622 				m_thresh = mdtc->thresh;
1623 				m_bg_thresh = mdtc->bg_thresh;
1624 			}
1625 		}
1626 
1627 		/*
1628 		 * Throttle it only when the background writeback cannot
1629 		 * catch-up. This avoids (excessively) small writeouts
1630 		 * when the wb limits are ramping up in case of !strictlimit.
1631 		 *
1632 		 * In strictlimit case make decision based on the wb counters
1633 		 * and limits. Small writeouts when the wb limits are ramping
1634 		 * up are the price we consciously pay for strictlimit-ing.
1635 		 *
1636 		 * If memcg domain is in effect, @dirty should be under
1637 		 * both global and memcg freerun ceilings.
1638 		 */
1639 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1640 		    (!mdtc ||
1641 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1642 			unsigned long intv;
1643 			unsigned long m_intv;
1644 
1645 free_running:
1646 			intv = dirty_poll_interval(dirty, thresh);
1647 			m_intv = ULONG_MAX;
1648 
1649 			current->dirty_paused_when = now;
1650 			current->nr_dirtied = 0;
1651 			if (mdtc)
1652 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1653 			current->nr_dirtied_pause = min(intv, m_intv);
1654 			break;
1655 		}
1656 
1657 		if (unlikely(!writeback_in_progress(wb)))
1658 			wb_start_background_writeback(wb);
1659 
1660 		mem_cgroup_flush_foreign(wb);
1661 
1662 		/*
1663 		 * Calculate global domain's pos_ratio and select the
1664 		 * global dtc by default.
1665 		 */
1666 		if (!strictlimit) {
1667 			wb_dirty_limits(gdtc);
1668 
1669 			if ((current->flags & PF_LOCAL_THROTTLE) &&
1670 			    gdtc->wb_dirty <
1671 			    dirty_freerun_ceiling(gdtc->wb_thresh,
1672 						  gdtc->wb_bg_thresh))
1673 				/*
1674 				 * LOCAL_THROTTLE tasks must not be throttled
1675 				 * when below the per-wb freerun ceiling.
1676 				 */
1677 				goto free_running;
1678 		}
1679 
1680 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1681 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1682 
1683 		wb_position_ratio(gdtc);
1684 		sdtc = gdtc;
1685 
1686 		if (mdtc) {
1687 			/*
1688 			 * If memcg domain is in effect, calculate its
1689 			 * pos_ratio.  @wb should satisfy constraints from
1690 			 * both global and memcg domains.  Choose the one
1691 			 * w/ lower pos_ratio.
1692 			 */
1693 			if (!strictlimit) {
1694 				wb_dirty_limits(mdtc);
1695 
1696 				if ((current->flags & PF_LOCAL_THROTTLE) &&
1697 				    mdtc->wb_dirty <
1698 				    dirty_freerun_ceiling(mdtc->wb_thresh,
1699 							  mdtc->wb_bg_thresh))
1700 					/*
1701 					 * LOCAL_THROTTLE tasks must not be
1702 					 * throttled when below the per-wb
1703 					 * freerun ceiling.
1704 					 */
1705 					goto free_running;
1706 			}
1707 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1708 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1709 
1710 			wb_position_ratio(mdtc);
1711 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1712 				sdtc = mdtc;
1713 		}
1714 
1715 		if (dirty_exceeded && !wb->dirty_exceeded)
1716 			wb->dirty_exceeded = 1;
1717 
1718 		if (time_is_before_jiffies(wb->bw_time_stamp +
1719 					   BANDWIDTH_INTERVAL)) {
1720 			spin_lock(&wb->list_lock);
1721 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1722 			spin_unlock(&wb->list_lock);
1723 		}
1724 
1725 		/* throttle according to the chosen dtc */
1726 		dirty_ratelimit = wb->dirty_ratelimit;
1727 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1728 							RATELIMIT_CALC_SHIFT;
1729 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1730 		min_pause = wb_min_pause(wb, max_pause,
1731 					 task_ratelimit, dirty_ratelimit,
1732 					 &nr_dirtied_pause);
1733 
1734 		if (unlikely(task_ratelimit == 0)) {
1735 			period = max_pause;
1736 			pause = max_pause;
1737 			goto pause;
1738 		}
1739 		period = HZ * pages_dirtied / task_ratelimit;
1740 		pause = period;
1741 		if (current->dirty_paused_when)
1742 			pause -= now - current->dirty_paused_when;
1743 		/*
1744 		 * For less than 1s think time (ext3/4 may block the dirtier
1745 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1746 		 * however at much less frequency), try to compensate it in
1747 		 * future periods by updating the virtual time; otherwise just
1748 		 * do a reset, as it may be a light dirtier.
1749 		 */
1750 		if (pause < min_pause) {
1751 			trace_balance_dirty_pages(wb,
1752 						  sdtc->thresh,
1753 						  sdtc->bg_thresh,
1754 						  sdtc->dirty,
1755 						  sdtc->wb_thresh,
1756 						  sdtc->wb_dirty,
1757 						  dirty_ratelimit,
1758 						  task_ratelimit,
1759 						  pages_dirtied,
1760 						  period,
1761 						  min(pause, 0L),
1762 						  start_time);
1763 			if (pause < -HZ) {
1764 				current->dirty_paused_when = now;
1765 				current->nr_dirtied = 0;
1766 			} else if (period) {
1767 				current->dirty_paused_when += period;
1768 				current->nr_dirtied = 0;
1769 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1770 				current->nr_dirtied_pause += pages_dirtied;
1771 			break;
1772 		}
1773 		if (unlikely(pause > max_pause)) {
1774 			/* for occasional dropped task_ratelimit */
1775 			now += min(pause - max_pause, max_pause);
1776 			pause = max_pause;
1777 		}
1778 
1779 pause:
1780 		trace_balance_dirty_pages(wb,
1781 					  sdtc->thresh,
1782 					  sdtc->bg_thresh,
1783 					  sdtc->dirty,
1784 					  sdtc->wb_thresh,
1785 					  sdtc->wb_dirty,
1786 					  dirty_ratelimit,
1787 					  task_ratelimit,
1788 					  pages_dirtied,
1789 					  period,
1790 					  pause,
1791 					  start_time);
1792 		__set_current_state(TASK_KILLABLE);
1793 		wb->dirty_sleep = now;
1794 		io_schedule_timeout(pause);
1795 
1796 		current->dirty_paused_when = now + pause;
1797 		current->nr_dirtied = 0;
1798 		current->nr_dirtied_pause = nr_dirtied_pause;
1799 
1800 		/*
1801 		 * This is typically equal to (dirty < thresh) and can also
1802 		 * keep "1000+ dd on a slow USB stick" under control.
1803 		 */
1804 		if (task_ratelimit)
1805 			break;
1806 
1807 		/*
1808 		 * In the case of an unresponsive NFS server and the NFS dirty
1809 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1810 		 * to go through, so that tasks on them still remain responsive.
1811 		 *
1812 		 * In theory 1 page is enough to keep the consumer-producer
1813 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1814 		 * more page. However wb_dirty has accounting errors.  So use
1815 		 * the larger and more IO friendly wb_stat_error.
1816 		 */
1817 		if (sdtc->wb_dirty <= wb_stat_error())
1818 			break;
1819 
1820 		if (fatal_signal_pending(current))
1821 			break;
1822 	}
1823 
1824 	if (!dirty_exceeded && wb->dirty_exceeded)
1825 		wb->dirty_exceeded = 0;
1826 
1827 	if (writeback_in_progress(wb))
1828 		return;
1829 
1830 	/*
1831 	 * In laptop mode, we wait until hitting the higher threshold before
1832 	 * starting background writeout, and then write out all the way down
1833 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1834 	 *
1835 	 * In normal mode, we start background writeout at the lower
1836 	 * background_thresh, to keep the amount of dirty memory low.
1837 	 */
1838 	if (laptop_mode)
1839 		return;
1840 
1841 	if (nr_reclaimable > gdtc->bg_thresh)
1842 		wb_start_background_writeback(wb);
1843 }
1844 
1845 static DEFINE_PER_CPU(int, bdp_ratelimits);
1846 
1847 /*
1848  * Normal tasks are throttled by
1849  *	loop {
1850  *		dirty tsk->nr_dirtied_pause pages;
1851  *		take a snap in balance_dirty_pages();
1852  *	}
1853  * However there is a worst case. If every task exit immediately when dirtied
1854  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1855  * called to throttle the page dirties. The solution is to save the not yet
1856  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1857  * randomly into the running tasks. This works well for the above worst case,
1858  * as the new task will pick up and accumulate the old task's leaked dirty
1859  * count and eventually get throttled.
1860  */
1861 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1862 
1863 /**
1864  * balance_dirty_pages_ratelimited - balance dirty memory state
1865  * @mapping: address_space which was dirtied
1866  *
1867  * Processes which are dirtying memory should call in here once for each page
1868  * which was newly dirtied.  The function will periodically check the system's
1869  * dirty state and will initiate writeback if needed.
1870  *
1871  * Once we're over the dirty memory limit we decrease the ratelimiting
1872  * by a lot, to prevent individual processes from overshooting the limit
1873  * by (ratelimit_pages) each.
1874  */
1875 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1876 {
1877 	struct inode *inode = mapping->host;
1878 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1879 	struct bdi_writeback *wb = NULL;
1880 	int ratelimit;
1881 	int *p;
1882 
1883 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1884 		return;
1885 
1886 	if (inode_cgwb_enabled(inode))
1887 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1888 	if (!wb)
1889 		wb = &bdi->wb;
1890 
1891 	ratelimit = current->nr_dirtied_pause;
1892 	if (wb->dirty_exceeded)
1893 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1894 
1895 	preempt_disable();
1896 	/*
1897 	 * This prevents one CPU to accumulate too many dirtied pages without
1898 	 * calling into balance_dirty_pages(), which can happen when there are
1899 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1900 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1901 	 */
1902 	p =  this_cpu_ptr(&bdp_ratelimits);
1903 	if (unlikely(current->nr_dirtied >= ratelimit))
1904 		*p = 0;
1905 	else if (unlikely(*p >= ratelimit_pages)) {
1906 		*p = 0;
1907 		ratelimit = 0;
1908 	}
1909 	/*
1910 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1911 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1912 	 * the dirty throttling and livelock other long-run dirtiers.
1913 	 */
1914 	p = this_cpu_ptr(&dirty_throttle_leaks);
1915 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1916 		unsigned long nr_pages_dirtied;
1917 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1918 		*p -= nr_pages_dirtied;
1919 		current->nr_dirtied += nr_pages_dirtied;
1920 	}
1921 	preempt_enable();
1922 
1923 	if (unlikely(current->nr_dirtied >= ratelimit))
1924 		balance_dirty_pages(wb, current->nr_dirtied);
1925 
1926 	wb_put(wb);
1927 }
1928 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1929 
1930 /**
1931  * wb_over_bg_thresh - does @wb need to be written back?
1932  * @wb: bdi_writeback of interest
1933  *
1934  * Determines whether background writeback should keep writing @wb or it's
1935  * clean enough.
1936  *
1937  * Return: %true if writeback should continue.
1938  */
1939 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1940 {
1941 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1942 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1943 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1944 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1945 						     &mdtc_stor : NULL;
1946 	unsigned long reclaimable;
1947 	unsigned long thresh;
1948 
1949 	/*
1950 	 * Similar to balance_dirty_pages() but ignores pages being written
1951 	 * as we're trying to decide whether to put more under writeback.
1952 	 */
1953 	gdtc->avail = global_dirtyable_memory();
1954 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1955 	domain_dirty_limits(gdtc);
1956 
1957 	if (gdtc->dirty > gdtc->bg_thresh)
1958 		return true;
1959 
1960 	thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1961 	if (thresh < 2 * wb_stat_error())
1962 		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1963 	else
1964 		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1965 
1966 	if (reclaimable > thresh)
1967 		return true;
1968 
1969 	if (mdtc) {
1970 		unsigned long filepages, headroom, writeback;
1971 
1972 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1973 				    &writeback);
1974 		mdtc_calc_avail(mdtc, filepages, headroom);
1975 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1976 
1977 		if (mdtc->dirty > mdtc->bg_thresh)
1978 			return true;
1979 
1980 		thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1981 		if (thresh < 2 * wb_stat_error())
1982 			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1983 		else
1984 			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1985 
1986 		if (reclaimable > thresh)
1987 			return true;
1988 	}
1989 
1990 	return false;
1991 }
1992 
1993 /*
1994  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1995  */
1996 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1997 		void *buffer, size_t *length, loff_t *ppos)
1998 {
1999 	unsigned int old_interval = dirty_writeback_interval;
2000 	int ret;
2001 
2002 	ret = proc_dointvec(table, write, buffer, length, ppos);
2003 
2004 	/*
2005 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2006 	 * and a different non-zero value will wakeup the writeback threads.
2007 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2008 	 * iterate over all bdis and wbs.
2009 	 * The reason we do this is to make the change take effect immediately.
2010 	 */
2011 	if (!ret && write && dirty_writeback_interval &&
2012 		dirty_writeback_interval != old_interval)
2013 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2014 
2015 	return ret;
2016 }
2017 
2018 #ifdef CONFIG_BLOCK
2019 void laptop_mode_timer_fn(struct timer_list *t)
2020 {
2021 	struct backing_dev_info *backing_dev_info =
2022 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2023 
2024 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2025 }
2026 
2027 /*
2028  * We've spun up the disk and we're in laptop mode: schedule writeback
2029  * of all dirty data a few seconds from now.  If the flush is already scheduled
2030  * then push it back - the user is still using the disk.
2031  */
2032 void laptop_io_completion(struct backing_dev_info *info)
2033 {
2034 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2035 }
2036 
2037 /*
2038  * We're in laptop mode and we've just synced. The sync's writes will have
2039  * caused another writeback to be scheduled by laptop_io_completion.
2040  * Nothing needs to be written back anymore, so we unschedule the writeback.
2041  */
2042 void laptop_sync_completion(void)
2043 {
2044 	struct backing_dev_info *bdi;
2045 
2046 	rcu_read_lock();
2047 
2048 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2049 		del_timer(&bdi->laptop_mode_wb_timer);
2050 
2051 	rcu_read_unlock();
2052 }
2053 #endif
2054 
2055 /*
2056  * If ratelimit_pages is too high then we can get into dirty-data overload
2057  * if a large number of processes all perform writes at the same time.
2058  *
2059  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2060  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2061  * thresholds.
2062  */
2063 
2064 void writeback_set_ratelimit(void)
2065 {
2066 	struct wb_domain *dom = &global_wb_domain;
2067 	unsigned long background_thresh;
2068 	unsigned long dirty_thresh;
2069 
2070 	global_dirty_limits(&background_thresh, &dirty_thresh);
2071 	dom->dirty_limit = dirty_thresh;
2072 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2073 	if (ratelimit_pages < 16)
2074 		ratelimit_pages = 16;
2075 }
2076 
2077 static int page_writeback_cpu_online(unsigned int cpu)
2078 {
2079 	writeback_set_ratelimit();
2080 	return 0;
2081 }
2082 
2083 /*
2084  * Called early on to tune the page writeback dirty limits.
2085  *
2086  * We used to scale dirty pages according to how total memory
2087  * related to pages that could be allocated for buffers.
2088  *
2089  * However, that was when we used "dirty_ratio" to scale with
2090  * all memory, and we don't do that any more. "dirty_ratio"
2091  * is now applied to total non-HIGHPAGE memory, and as such we can't
2092  * get into the old insane situation any more where we had
2093  * large amounts of dirty pages compared to a small amount of
2094  * non-HIGHMEM memory.
2095  *
2096  * But we might still want to scale the dirty_ratio by how
2097  * much memory the box has..
2098  */
2099 void __init page_writeback_init(void)
2100 {
2101 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2102 
2103 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2104 			  page_writeback_cpu_online, NULL);
2105 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2106 			  page_writeback_cpu_online);
2107 }
2108 
2109 /**
2110  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2111  * @mapping: address space structure to write
2112  * @start: starting page index
2113  * @end: ending page index (inclusive)
2114  *
2115  * This function scans the page range from @start to @end (inclusive) and tags
2116  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2117  * that write_cache_pages (or whoever calls this function) will then use
2118  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2119  * used to avoid livelocking of writeback by a process steadily creating new
2120  * dirty pages in the file (thus it is important for this function to be quick
2121  * so that it can tag pages faster than a dirtying process can create them).
2122  */
2123 void tag_pages_for_writeback(struct address_space *mapping,
2124 			     pgoff_t start, pgoff_t end)
2125 {
2126 	XA_STATE(xas, &mapping->i_pages, start);
2127 	unsigned int tagged = 0;
2128 	void *page;
2129 
2130 	xas_lock_irq(&xas);
2131 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2132 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2133 		if (++tagged % XA_CHECK_SCHED)
2134 			continue;
2135 
2136 		xas_pause(&xas);
2137 		xas_unlock_irq(&xas);
2138 		cond_resched();
2139 		xas_lock_irq(&xas);
2140 	}
2141 	xas_unlock_irq(&xas);
2142 }
2143 EXPORT_SYMBOL(tag_pages_for_writeback);
2144 
2145 /**
2146  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2147  * @mapping: address space structure to write
2148  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2149  * @writepage: function called for each page
2150  * @data: data passed to writepage function
2151  *
2152  * If a page is already under I/O, write_cache_pages() skips it, even
2153  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2154  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2155  * and msync() need to guarantee that all the data which was dirty at the time
2156  * the call was made get new I/O started against them.  If wbc->sync_mode is
2157  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2158  * existing IO to complete.
2159  *
2160  * To avoid livelocks (when other process dirties new pages), we first tag
2161  * pages which should be written back with TOWRITE tag and only then start
2162  * writing them. For data-integrity sync we have to be careful so that we do
2163  * not miss some pages (e.g., because some other process has cleared TOWRITE
2164  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2165  * by the process clearing the DIRTY tag (and submitting the page for IO).
2166  *
2167  * To avoid deadlocks between range_cyclic writeback and callers that hold
2168  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2169  * we do not loop back to the start of the file. Doing so causes a page
2170  * lock/page writeback access order inversion - we should only ever lock
2171  * multiple pages in ascending page->index order, and looping back to the start
2172  * of the file violates that rule and causes deadlocks.
2173  *
2174  * Return: %0 on success, negative error code otherwise
2175  */
2176 int write_cache_pages(struct address_space *mapping,
2177 		      struct writeback_control *wbc, writepage_t writepage,
2178 		      void *data)
2179 {
2180 	int ret = 0;
2181 	int done = 0;
2182 	int error;
2183 	struct pagevec pvec;
2184 	int nr_pages;
2185 	pgoff_t index;
2186 	pgoff_t end;		/* Inclusive */
2187 	pgoff_t done_index;
2188 	int range_whole = 0;
2189 	xa_mark_t tag;
2190 
2191 	pagevec_init(&pvec);
2192 	if (wbc->range_cyclic) {
2193 		index = mapping->writeback_index; /* prev offset */
2194 		end = -1;
2195 	} else {
2196 		index = wbc->range_start >> PAGE_SHIFT;
2197 		end = wbc->range_end >> PAGE_SHIFT;
2198 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2199 			range_whole = 1;
2200 	}
2201 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2202 		tag_pages_for_writeback(mapping, index, end);
2203 		tag = PAGECACHE_TAG_TOWRITE;
2204 	} else {
2205 		tag = PAGECACHE_TAG_DIRTY;
2206 	}
2207 	done_index = index;
2208 	while (!done && (index <= end)) {
2209 		int i;
2210 
2211 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2212 				tag);
2213 		if (nr_pages == 0)
2214 			break;
2215 
2216 		for (i = 0; i < nr_pages; i++) {
2217 			struct page *page = pvec.pages[i];
2218 
2219 			done_index = page->index;
2220 
2221 			lock_page(page);
2222 
2223 			/*
2224 			 * Page truncated or invalidated. We can freely skip it
2225 			 * then, even for data integrity operations: the page
2226 			 * has disappeared concurrently, so there could be no
2227 			 * real expectation of this data integrity operation
2228 			 * even if there is now a new, dirty page at the same
2229 			 * pagecache address.
2230 			 */
2231 			if (unlikely(page->mapping != mapping)) {
2232 continue_unlock:
2233 				unlock_page(page);
2234 				continue;
2235 			}
2236 
2237 			if (!PageDirty(page)) {
2238 				/* someone wrote it for us */
2239 				goto continue_unlock;
2240 			}
2241 
2242 			if (PageWriteback(page)) {
2243 				if (wbc->sync_mode != WB_SYNC_NONE)
2244 					wait_on_page_writeback(page);
2245 				else
2246 					goto continue_unlock;
2247 			}
2248 
2249 			BUG_ON(PageWriteback(page));
2250 			if (!clear_page_dirty_for_io(page))
2251 				goto continue_unlock;
2252 
2253 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2254 			error = (*writepage)(page, wbc, data);
2255 			if (unlikely(error)) {
2256 				/*
2257 				 * Handle errors according to the type of
2258 				 * writeback. There's no need to continue for
2259 				 * background writeback. Just push done_index
2260 				 * past this page so media errors won't choke
2261 				 * writeout for the entire file. For integrity
2262 				 * writeback, we must process the entire dirty
2263 				 * set regardless of errors because the fs may
2264 				 * still have state to clear for each page. In
2265 				 * that case we continue processing and return
2266 				 * the first error.
2267 				 */
2268 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2269 					unlock_page(page);
2270 					error = 0;
2271 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2272 					ret = error;
2273 					done_index = page->index + 1;
2274 					done = 1;
2275 					break;
2276 				}
2277 				if (!ret)
2278 					ret = error;
2279 			}
2280 
2281 			/*
2282 			 * We stop writing back only if we are not doing
2283 			 * integrity sync. In case of integrity sync we have to
2284 			 * keep going until we have written all the pages
2285 			 * we tagged for writeback prior to entering this loop.
2286 			 */
2287 			if (--wbc->nr_to_write <= 0 &&
2288 			    wbc->sync_mode == WB_SYNC_NONE) {
2289 				done = 1;
2290 				break;
2291 			}
2292 		}
2293 		pagevec_release(&pvec);
2294 		cond_resched();
2295 	}
2296 
2297 	/*
2298 	 * If we hit the last page and there is more work to be done: wrap
2299 	 * back the index back to the start of the file for the next
2300 	 * time we are called.
2301 	 */
2302 	if (wbc->range_cyclic && !done)
2303 		done_index = 0;
2304 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2305 		mapping->writeback_index = done_index;
2306 
2307 	return ret;
2308 }
2309 EXPORT_SYMBOL(write_cache_pages);
2310 
2311 /*
2312  * Function used by generic_writepages to call the real writepage
2313  * function and set the mapping flags on error
2314  */
2315 static int __writepage(struct page *page, struct writeback_control *wbc,
2316 		       void *data)
2317 {
2318 	struct address_space *mapping = data;
2319 	int ret = mapping->a_ops->writepage(page, wbc);
2320 	mapping_set_error(mapping, ret);
2321 	return ret;
2322 }
2323 
2324 /**
2325  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2326  * @mapping: address space structure to write
2327  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2328  *
2329  * This is a library function, which implements the writepages()
2330  * address_space_operation.
2331  *
2332  * Return: %0 on success, negative error code otherwise
2333  */
2334 int generic_writepages(struct address_space *mapping,
2335 		       struct writeback_control *wbc)
2336 {
2337 	struct blk_plug plug;
2338 	int ret;
2339 
2340 	/* deal with chardevs and other special file */
2341 	if (!mapping->a_ops->writepage)
2342 		return 0;
2343 
2344 	blk_start_plug(&plug);
2345 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2346 	blk_finish_plug(&plug);
2347 	return ret;
2348 }
2349 
2350 EXPORT_SYMBOL(generic_writepages);
2351 
2352 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2353 {
2354 	int ret;
2355 
2356 	if (wbc->nr_to_write <= 0)
2357 		return 0;
2358 	while (1) {
2359 		if (mapping->a_ops->writepages)
2360 			ret = mapping->a_ops->writepages(mapping, wbc);
2361 		else
2362 			ret = generic_writepages(mapping, wbc);
2363 		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2364 			break;
2365 		cond_resched();
2366 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2367 	}
2368 	return ret;
2369 }
2370 
2371 /**
2372  * write_one_page - write out a single page and wait on I/O
2373  * @page: the page to write
2374  *
2375  * The page must be locked by the caller and will be unlocked upon return.
2376  *
2377  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2378  * function returns.
2379  *
2380  * Return: %0 on success, negative error code otherwise
2381  */
2382 int write_one_page(struct page *page)
2383 {
2384 	struct address_space *mapping = page->mapping;
2385 	int ret = 0;
2386 	struct writeback_control wbc = {
2387 		.sync_mode = WB_SYNC_ALL,
2388 		.nr_to_write = 1,
2389 	};
2390 
2391 	BUG_ON(!PageLocked(page));
2392 
2393 	wait_on_page_writeback(page);
2394 
2395 	if (clear_page_dirty_for_io(page)) {
2396 		get_page(page);
2397 		ret = mapping->a_ops->writepage(page, &wbc);
2398 		if (ret == 0)
2399 			wait_on_page_writeback(page);
2400 		put_page(page);
2401 	} else {
2402 		unlock_page(page);
2403 	}
2404 
2405 	if (!ret)
2406 		ret = filemap_check_errors(mapping);
2407 	return ret;
2408 }
2409 EXPORT_SYMBOL(write_one_page);
2410 
2411 /*
2412  * For address_spaces which do not use buffers nor write back.
2413  */
2414 int __set_page_dirty_no_writeback(struct page *page)
2415 {
2416 	if (!PageDirty(page))
2417 		return !TestSetPageDirty(page);
2418 	return 0;
2419 }
2420 EXPORT_SYMBOL(__set_page_dirty_no_writeback);
2421 
2422 /*
2423  * Helper function for set_page_dirty family.
2424  *
2425  * Caller must hold lock_page_memcg().
2426  *
2427  * NOTE: This relies on being atomic wrt interrupts.
2428  */
2429 static void account_page_dirtied(struct page *page,
2430 		struct address_space *mapping)
2431 {
2432 	struct inode *inode = mapping->host;
2433 
2434 	trace_writeback_dirty_page(page, mapping);
2435 
2436 	if (mapping_can_writeback(mapping)) {
2437 		struct bdi_writeback *wb;
2438 
2439 		inode_attach_wb(inode, page);
2440 		wb = inode_to_wb(inode);
2441 
2442 		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2443 		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2444 		__inc_node_page_state(page, NR_DIRTIED);
2445 		inc_wb_stat(wb, WB_RECLAIMABLE);
2446 		inc_wb_stat(wb, WB_DIRTIED);
2447 		task_io_account_write(PAGE_SIZE);
2448 		current->nr_dirtied++;
2449 		__this_cpu_inc(bdp_ratelimits);
2450 
2451 		mem_cgroup_track_foreign_dirty(page, wb);
2452 	}
2453 }
2454 
2455 /*
2456  * Helper function for deaccounting dirty page without writeback.
2457  *
2458  * Caller must hold lock_page_memcg().
2459  */
2460 void account_page_cleaned(struct page *page, struct address_space *mapping,
2461 			  struct bdi_writeback *wb)
2462 {
2463 	if (mapping_can_writeback(mapping)) {
2464 		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2465 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2466 		dec_wb_stat(wb, WB_RECLAIMABLE);
2467 		task_io_account_cancelled_write(PAGE_SIZE);
2468 	}
2469 }
2470 
2471 /*
2472  * Mark the page dirty, and set it dirty in the page cache, and mark the inode
2473  * dirty.
2474  *
2475  * If warn is true, then emit a warning if the page is not uptodate and has
2476  * not been truncated.
2477  *
2478  * The caller must hold lock_page_memcg().
2479  */
2480 void __set_page_dirty(struct page *page, struct address_space *mapping,
2481 			     int warn)
2482 {
2483 	unsigned long flags;
2484 
2485 	xa_lock_irqsave(&mapping->i_pages, flags);
2486 	if (page->mapping) {	/* Race with truncate? */
2487 		WARN_ON_ONCE(warn && !PageUptodate(page));
2488 		account_page_dirtied(page, mapping);
2489 		__xa_set_mark(&mapping->i_pages, page_index(page),
2490 				PAGECACHE_TAG_DIRTY);
2491 	}
2492 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2493 }
2494 
2495 /*
2496  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2497  * the xarray.
2498  *
2499  * This is also used when a single buffer is being dirtied: we want to set the
2500  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2501  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2502  *
2503  * The caller must ensure this doesn't race with truncation.  Most will simply
2504  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2505  * the pte lock held, which also locks out truncation.
2506  */
2507 int __set_page_dirty_nobuffers(struct page *page)
2508 {
2509 	lock_page_memcg(page);
2510 	if (!TestSetPageDirty(page)) {
2511 		struct address_space *mapping = page_mapping(page);
2512 
2513 		if (!mapping) {
2514 			unlock_page_memcg(page);
2515 			return 1;
2516 		}
2517 		__set_page_dirty(page, mapping, !PagePrivate(page));
2518 		unlock_page_memcg(page);
2519 
2520 		if (mapping->host) {
2521 			/* !PageAnon && !swapper_space */
2522 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2523 		}
2524 		return 1;
2525 	}
2526 	unlock_page_memcg(page);
2527 	return 0;
2528 }
2529 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2530 
2531 /*
2532  * Call this whenever redirtying a page, to de-account the dirty counters
2533  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2534  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2535  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2536  * control.
2537  */
2538 void account_page_redirty(struct page *page)
2539 {
2540 	struct address_space *mapping = page->mapping;
2541 
2542 	if (mapping && mapping_can_writeback(mapping)) {
2543 		struct inode *inode = mapping->host;
2544 		struct bdi_writeback *wb;
2545 		struct wb_lock_cookie cookie = {};
2546 
2547 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2548 		current->nr_dirtied--;
2549 		dec_node_page_state(page, NR_DIRTIED);
2550 		dec_wb_stat(wb, WB_DIRTIED);
2551 		unlocked_inode_to_wb_end(inode, &cookie);
2552 	}
2553 }
2554 EXPORT_SYMBOL(account_page_redirty);
2555 
2556 /*
2557  * When a writepage implementation decides that it doesn't want to write this
2558  * page for some reason, it should redirty the locked page via
2559  * redirty_page_for_writepage() and it should then unlock the page and return 0
2560  */
2561 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2562 {
2563 	int ret;
2564 
2565 	wbc->pages_skipped++;
2566 	ret = __set_page_dirty_nobuffers(page);
2567 	account_page_redirty(page);
2568 	return ret;
2569 }
2570 EXPORT_SYMBOL(redirty_page_for_writepage);
2571 
2572 /*
2573  * Dirty a page.
2574  *
2575  * For pages with a mapping this should be done under the page lock for the
2576  * benefit of asynchronous memory errors who prefer a consistent dirty state.
2577  * This rule can be broken in some special cases, but should be better not to.
2578  */
2579 int set_page_dirty(struct page *page)
2580 {
2581 	struct address_space *mapping = page_mapping(page);
2582 
2583 	page = compound_head(page);
2584 	if (likely(mapping)) {
2585 		/*
2586 		 * readahead/lru_deactivate_page could remain
2587 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2588 		 * About readahead, if the page is written, the flags would be
2589 		 * reset. So no problem.
2590 		 * About lru_deactivate_page, if the page is redirty, the flag
2591 		 * will be reset. So no problem. but if the page is used by readahead
2592 		 * it will confuse readahead and make it restart the size rampup
2593 		 * process. But it's a trivial problem.
2594 		 */
2595 		if (PageReclaim(page))
2596 			ClearPageReclaim(page);
2597 		return mapping->a_ops->set_page_dirty(page);
2598 	}
2599 	if (!PageDirty(page)) {
2600 		if (!TestSetPageDirty(page))
2601 			return 1;
2602 	}
2603 	return 0;
2604 }
2605 EXPORT_SYMBOL(set_page_dirty);
2606 
2607 /*
2608  * set_page_dirty() is racy if the caller has no reference against
2609  * page->mapping->host, and if the page is unlocked.  This is because another
2610  * CPU could truncate the page off the mapping and then free the mapping.
2611  *
2612  * Usually, the page _is_ locked, or the caller is a user-space process which
2613  * holds a reference on the inode by having an open file.
2614  *
2615  * In other cases, the page should be locked before running set_page_dirty().
2616  */
2617 int set_page_dirty_lock(struct page *page)
2618 {
2619 	int ret;
2620 
2621 	lock_page(page);
2622 	ret = set_page_dirty(page);
2623 	unlock_page(page);
2624 	return ret;
2625 }
2626 EXPORT_SYMBOL(set_page_dirty_lock);
2627 
2628 /*
2629  * This cancels just the dirty bit on the kernel page itself, it does NOT
2630  * actually remove dirty bits on any mmap's that may be around. It also
2631  * leaves the page tagged dirty, so any sync activity will still find it on
2632  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2633  * look at the dirty bits in the VM.
2634  *
2635  * Doing this should *normally* only ever be done when a page is truncated,
2636  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2637  * this when it notices that somebody has cleaned out all the buffers on a
2638  * page without actually doing it through the VM. Can you say "ext3 is
2639  * horribly ugly"? Thought you could.
2640  */
2641 void __cancel_dirty_page(struct page *page)
2642 {
2643 	struct address_space *mapping = page_mapping(page);
2644 
2645 	if (mapping_can_writeback(mapping)) {
2646 		struct inode *inode = mapping->host;
2647 		struct bdi_writeback *wb;
2648 		struct wb_lock_cookie cookie = {};
2649 
2650 		lock_page_memcg(page);
2651 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2652 
2653 		if (TestClearPageDirty(page))
2654 			account_page_cleaned(page, mapping, wb);
2655 
2656 		unlocked_inode_to_wb_end(inode, &cookie);
2657 		unlock_page_memcg(page);
2658 	} else {
2659 		ClearPageDirty(page);
2660 	}
2661 }
2662 EXPORT_SYMBOL(__cancel_dirty_page);
2663 
2664 /*
2665  * Clear a page's dirty flag, while caring for dirty memory accounting.
2666  * Returns true if the page was previously dirty.
2667  *
2668  * This is for preparing to put the page under writeout.  We leave the page
2669  * tagged as dirty in the xarray so that a concurrent write-for-sync
2670  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2671  * implementation will run either set_page_writeback() or set_page_dirty(),
2672  * at which stage we bring the page's dirty flag and xarray dirty tag
2673  * back into sync.
2674  *
2675  * This incoherency between the page's dirty flag and xarray tag is
2676  * unfortunate, but it only exists while the page is locked.
2677  */
2678 int clear_page_dirty_for_io(struct page *page)
2679 {
2680 	struct address_space *mapping = page_mapping(page);
2681 	int ret = 0;
2682 
2683 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2684 
2685 	if (mapping && mapping_can_writeback(mapping)) {
2686 		struct inode *inode = mapping->host;
2687 		struct bdi_writeback *wb;
2688 		struct wb_lock_cookie cookie = {};
2689 
2690 		/*
2691 		 * Yes, Virginia, this is indeed insane.
2692 		 *
2693 		 * We use this sequence to make sure that
2694 		 *  (a) we account for dirty stats properly
2695 		 *  (b) we tell the low-level filesystem to
2696 		 *      mark the whole page dirty if it was
2697 		 *      dirty in a pagetable. Only to then
2698 		 *  (c) clean the page again and return 1 to
2699 		 *      cause the writeback.
2700 		 *
2701 		 * This way we avoid all nasty races with the
2702 		 * dirty bit in multiple places and clearing
2703 		 * them concurrently from different threads.
2704 		 *
2705 		 * Note! Normally the "set_page_dirty(page)"
2706 		 * has no effect on the actual dirty bit - since
2707 		 * that will already usually be set. But we
2708 		 * need the side effects, and it can help us
2709 		 * avoid races.
2710 		 *
2711 		 * We basically use the page "master dirty bit"
2712 		 * as a serialization point for all the different
2713 		 * threads doing their things.
2714 		 */
2715 		if (page_mkclean(page))
2716 			set_page_dirty(page);
2717 		/*
2718 		 * We carefully synchronise fault handlers against
2719 		 * installing a dirty pte and marking the page dirty
2720 		 * at this point.  We do this by having them hold the
2721 		 * page lock while dirtying the page, and pages are
2722 		 * always locked coming in here, so we get the desired
2723 		 * exclusion.
2724 		 */
2725 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2726 		if (TestClearPageDirty(page)) {
2727 			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2728 			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2729 			dec_wb_stat(wb, WB_RECLAIMABLE);
2730 			ret = 1;
2731 		}
2732 		unlocked_inode_to_wb_end(inode, &cookie);
2733 		return ret;
2734 	}
2735 	return TestClearPageDirty(page);
2736 }
2737 EXPORT_SYMBOL(clear_page_dirty_for_io);
2738 
2739 int test_clear_page_writeback(struct page *page)
2740 {
2741 	struct address_space *mapping = page_mapping(page);
2742 	int ret;
2743 
2744 	lock_page_memcg(page);
2745 	if (mapping && mapping_use_writeback_tags(mapping)) {
2746 		struct inode *inode = mapping->host;
2747 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2748 		unsigned long flags;
2749 
2750 		xa_lock_irqsave(&mapping->i_pages, flags);
2751 		ret = TestClearPageWriteback(page);
2752 		if (ret) {
2753 			__xa_clear_mark(&mapping->i_pages, page_index(page),
2754 						PAGECACHE_TAG_WRITEBACK);
2755 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2756 				struct bdi_writeback *wb = inode_to_wb(inode);
2757 
2758 				dec_wb_stat(wb, WB_WRITEBACK);
2759 				__wb_writeout_inc(wb);
2760 			}
2761 		}
2762 
2763 		if (mapping->host && !mapping_tagged(mapping,
2764 						     PAGECACHE_TAG_WRITEBACK))
2765 			sb_clear_inode_writeback(mapping->host);
2766 
2767 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2768 	} else {
2769 		ret = TestClearPageWriteback(page);
2770 	}
2771 	if (ret) {
2772 		dec_lruvec_page_state(page, NR_WRITEBACK);
2773 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2774 		inc_node_page_state(page, NR_WRITTEN);
2775 	}
2776 	unlock_page_memcg(page);
2777 	return ret;
2778 }
2779 
2780 int __test_set_page_writeback(struct page *page, bool keep_write)
2781 {
2782 	struct address_space *mapping = page_mapping(page);
2783 	int ret, access_ret;
2784 
2785 	lock_page_memcg(page);
2786 	if (mapping && mapping_use_writeback_tags(mapping)) {
2787 		XA_STATE(xas, &mapping->i_pages, page_index(page));
2788 		struct inode *inode = mapping->host;
2789 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2790 		unsigned long flags;
2791 
2792 		xas_lock_irqsave(&xas, flags);
2793 		xas_load(&xas);
2794 		ret = TestSetPageWriteback(page);
2795 		if (!ret) {
2796 			bool on_wblist;
2797 
2798 			on_wblist = mapping_tagged(mapping,
2799 						   PAGECACHE_TAG_WRITEBACK);
2800 
2801 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2802 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2803 				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2804 
2805 			/*
2806 			 * We can come through here when swapping anonymous
2807 			 * pages, so we don't necessarily have an inode to track
2808 			 * for sync.
2809 			 */
2810 			if (mapping->host && !on_wblist)
2811 				sb_mark_inode_writeback(mapping->host);
2812 		}
2813 		if (!PageDirty(page))
2814 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2815 		if (!keep_write)
2816 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2817 		xas_unlock_irqrestore(&xas, flags);
2818 	} else {
2819 		ret = TestSetPageWriteback(page);
2820 	}
2821 	if (!ret) {
2822 		inc_lruvec_page_state(page, NR_WRITEBACK);
2823 		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2824 	}
2825 	unlock_page_memcg(page);
2826 	access_ret = arch_make_page_accessible(page);
2827 	/*
2828 	 * If writeback has been triggered on a page that cannot be made
2829 	 * accessible, it is too late to recover here.
2830 	 */
2831 	VM_BUG_ON_PAGE(access_ret != 0, page);
2832 
2833 	return ret;
2834 
2835 }
2836 EXPORT_SYMBOL(__test_set_page_writeback);
2837 
2838 /*
2839  * Wait for a page to complete writeback
2840  */
2841 void wait_on_page_writeback(struct page *page)
2842 {
2843 	while (PageWriteback(page)) {
2844 		trace_wait_on_page_writeback(page, page_mapping(page));
2845 		wait_on_page_bit(page, PG_writeback);
2846 	}
2847 }
2848 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2849 
2850 /*
2851  * Wait for a page to complete writeback.  Returns -EINTR if we get a
2852  * fatal signal while waiting.
2853  */
2854 int wait_on_page_writeback_killable(struct page *page)
2855 {
2856 	while (PageWriteback(page)) {
2857 		trace_wait_on_page_writeback(page, page_mapping(page));
2858 		if (wait_on_page_bit_killable(page, PG_writeback))
2859 			return -EINTR;
2860 	}
2861 
2862 	return 0;
2863 }
2864 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2865 
2866 /**
2867  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2868  * @page:	The page to wait on.
2869  *
2870  * This function determines if the given page is related to a backing device
2871  * that requires page contents to be held stable during writeback.  If so, then
2872  * it will wait for any pending writeback to complete.
2873  */
2874 void wait_for_stable_page(struct page *page)
2875 {
2876 	page = thp_head(page);
2877 	if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2878 		wait_on_page_writeback(page);
2879 }
2880 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2881