xref: /openbmc/linux/mm/page-writeback.c (revision e9e8bcb8)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41  * will look to see if it needs to force writeback or throttling.
42  */
43 static long ratelimit_pages = 32;
44 
45 /*
46  * When balance_dirty_pages decides that the caller needs to perform some
47  * non-background writeback, this is how many pages it will attempt to write.
48  * It should be somewhat larger than dirtied pages to ensure that reasonably
49  * large amounts of I/O are submitted.
50  */
51 static inline long sync_writeback_pages(unsigned long dirtied)
52 {
53 	if (dirtied < ratelimit_pages)
54 		dirtied = ratelimit_pages;
55 
56 	return dirtied + dirtied / 2;
57 }
58 
59 /* The following parameters are exported via /proc/sys/vm */
60 
61 /*
62  * Start background writeback (via writeback threads) at this percentage
63  */
64 int dirty_background_ratio = 10;
65 
66 /*
67  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68  * dirty_background_ratio * the amount of dirtyable memory
69  */
70 unsigned long dirty_background_bytes;
71 
72 /*
73  * free highmem will not be subtracted from the total free memory
74  * for calculating free ratios if vm_highmem_is_dirtyable is true
75  */
76 int vm_highmem_is_dirtyable;
77 
78 /*
79  * The generator of dirty data starts writeback at this percentage
80  */
81 int vm_dirty_ratio = 20;
82 
83 /*
84  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85  * vm_dirty_ratio * the amount of dirtyable memory
86  */
87 unsigned long vm_dirty_bytes;
88 
89 /*
90  * The interval between `kupdate'-style writebacks
91  */
92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
93 
94 /*
95  * The longest time for which data is allowed to remain dirty
96  */
97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
98 
99 /*
100  * Flag that makes the machine dump writes/reads and block dirtyings.
101  */
102 int block_dump;
103 
104 /*
105  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106  * a full sync is triggered after this time elapses without any disk activity.
107  */
108 int laptop_mode;
109 
110 EXPORT_SYMBOL(laptop_mode);
111 
112 /* End of sysctl-exported parameters */
113 
114 
115 /*
116  * Scale the writeback cache size proportional to the relative writeout speeds.
117  *
118  * We do this by keeping a floating proportion between BDIs, based on page
119  * writeback completions [end_page_writeback()]. Those devices that write out
120  * pages fastest will get the larger share, while the slower will get a smaller
121  * share.
122  *
123  * We use page writeout completions because we are interested in getting rid of
124  * dirty pages. Having them written out is the primary goal.
125  *
126  * We introduce a concept of time, a period over which we measure these events,
127  * because demand can/will vary over time. The length of this period itself is
128  * measured in page writeback completions.
129  *
130  */
131 static struct prop_descriptor vm_completions;
132 static struct prop_descriptor vm_dirties;
133 
134 /*
135  * couple the period to the dirty_ratio:
136  *
137  *   period/2 ~ roundup_pow_of_two(dirty limit)
138  */
139 static int calc_period_shift(void)
140 {
141 	unsigned long dirty_total;
142 
143 	if (vm_dirty_bytes)
144 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
145 	else
146 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
147 				100;
148 	return 2 + ilog2(dirty_total - 1);
149 }
150 
151 /*
152  * update the period when the dirty threshold changes.
153  */
154 static void update_completion_period(void)
155 {
156 	int shift = calc_period_shift();
157 	prop_change_shift(&vm_completions, shift);
158 	prop_change_shift(&vm_dirties, shift);
159 }
160 
161 int dirty_background_ratio_handler(struct ctl_table *table, int write,
162 		void __user *buffer, size_t *lenp,
163 		loff_t *ppos)
164 {
165 	int ret;
166 
167 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
168 	if (ret == 0 && write)
169 		dirty_background_bytes = 0;
170 	return ret;
171 }
172 
173 int dirty_background_bytes_handler(struct ctl_table *table, int write,
174 		void __user *buffer, size_t *lenp,
175 		loff_t *ppos)
176 {
177 	int ret;
178 
179 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
180 	if (ret == 0 && write)
181 		dirty_background_ratio = 0;
182 	return ret;
183 }
184 
185 int dirty_ratio_handler(struct ctl_table *table, int write,
186 		void __user *buffer, size_t *lenp,
187 		loff_t *ppos)
188 {
189 	int old_ratio = vm_dirty_ratio;
190 	int ret;
191 
192 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
193 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
194 		update_completion_period();
195 		vm_dirty_bytes = 0;
196 	}
197 	return ret;
198 }
199 
200 
201 int dirty_bytes_handler(struct ctl_table *table, int write,
202 		void __user *buffer, size_t *lenp,
203 		loff_t *ppos)
204 {
205 	unsigned long old_bytes = vm_dirty_bytes;
206 	int ret;
207 
208 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
209 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
210 		update_completion_period();
211 		vm_dirty_ratio = 0;
212 	}
213 	return ret;
214 }
215 
216 /*
217  * Increment the BDI's writeout completion count and the global writeout
218  * completion count. Called from test_clear_page_writeback().
219  */
220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
221 {
222 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
223 			      bdi->max_prop_frac);
224 }
225 
226 void bdi_writeout_inc(struct backing_dev_info *bdi)
227 {
228 	unsigned long flags;
229 
230 	local_irq_save(flags);
231 	__bdi_writeout_inc(bdi);
232 	local_irq_restore(flags);
233 }
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
235 
236 void task_dirty_inc(struct task_struct *tsk)
237 {
238 	prop_inc_single(&vm_dirties, &tsk->dirties);
239 }
240 
241 /*
242  * Obtain an accurate fraction of the BDI's portion.
243  */
244 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
245 		long *numerator, long *denominator)
246 {
247 	if (bdi_cap_writeback_dirty(bdi)) {
248 		prop_fraction_percpu(&vm_completions, &bdi->completions,
249 				numerator, denominator);
250 	} else {
251 		*numerator = 0;
252 		*denominator = 1;
253 	}
254 }
255 
256 static inline void task_dirties_fraction(struct task_struct *tsk,
257 		long *numerator, long *denominator)
258 {
259 	prop_fraction_single(&vm_dirties, &tsk->dirties,
260 				numerator, denominator);
261 }
262 
263 /*
264  * task_dirty_limit - scale down dirty throttling threshold for one task
265  *
266  * task specific dirty limit:
267  *
268  *   dirty -= (dirty/8) * p_{t}
269  *
270  * To protect light/slow dirtying tasks from heavier/fast ones, we start
271  * throttling individual tasks before reaching the bdi dirty limit.
272  * Relatively low thresholds will be allocated to heavy dirtiers. So when
273  * dirty pages grow large, heavy dirtiers will be throttled first, which will
274  * effectively curb the growth of dirty pages. Light dirtiers with high enough
275  * dirty threshold may never get throttled.
276  */
277 static unsigned long task_dirty_limit(struct task_struct *tsk,
278 				       unsigned long bdi_dirty)
279 {
280 	long numerator, denominator;
281 	unsigned long dirty = bdi_dirty;
282 	u64 inv = dirty >> 3;
283 
284 	task_dirties_fraction(tsk, &numerator, &denominator);
285 	inv *= numerator;
286 	do_div(inv, denominator);
287 
288 	dirty -= inv;
289 
290 	return max(dirty, bdi_dirty/2);
291 }
292 
293 /*
294  *
295  */
296 static unsigned int bdi_min_ratio;
297 
298 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
299 {
300 	int ret = 0;
301 
302 	spin_lock_bh(&bdi_lock);
303 	if (min_ratio > bdi->max_ratio) {
304 		ret = -EINVAL;
305 	} else {
306 		min_ratio -= bdi->min_ratio;
307 		if (bdi_min_ratio + min_ratio < 100) {
308 			bdi_min_ratio += min_ratio;
309 			bdi->min_ratio += min_ratio;
310 		} else {
311 			ret = -EINVAL;
312 		}
313 	}
314 	spin_unlock_bh(&bdi_lock);
315 
316 	return ret;
317 }
318 
319 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
320 {
321 	int ret = 0;
322 
323 	if (max_ratio > 100)
324 		return -EINVAL;
325 
326 	spin_lock_bh(&bdi_lock);
327 	if (bdi->min_ratio > max_ratio) {
328 		ret = -EINVAL;
329 	} else {
330 		bdi->max_ratio = max_ratio;
331 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
332 	}
333 	spin_unlock_bh(&bdi_lock);
334 
335 	return ret;
336 }
337 EXPORT_SYMBOL(bdi_set_max_ratio);
338 
339 /*
340  * Work out the current dirty-memory clamping and background writeout
341  * thresholds.
342  *
343  * The main aim here is to lower them aggressively if there is a lot of mapped
344  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
345  * pages.  It is better to clamp down on writers than to start swapping, and
346  * performing lots of scanning.
347  *
348  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
349  *
350  * We don't permit the clamping level to fall below 5% - that is getting rather
351  * excessive.
352  *
353  * We make sure that the background writeout level is below the adjusted
354  * clamping level.
355  */
356 
357 static unsigned long highmem_dirtyable_memory(unsigned long total)
358 {
359 #ifdef CONFIG_HIGHMEM
360 	int node;
361 	unsigned long x = 0;
362 
363 	for_each_node_state(node, N_HIGH_MEMORY) {
364 		struct zone *z =
365 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
366 
367 		x += zone_page_state(z, NR_FREE_PAGES) +
368 		     zone_reclaimable_pages(z);
369 	}
370 	/*
371 	 * Make sure that the number of highmem pages is never larger
372 	 * than the number of the total dirtyable memory. This can only
373 	 * occur in very strange VM situations but we want to make sure
374 	 * that this does not occur.
375 	 */
376 	return min(x, total);
377 #else
378 	return 0;
379 #endif
380 }
381 
382 /**
383  * determine_dirtyable_memory - amount of memory that may be used
384  *
385  * Returns the numebr of pages that can currently be freed and used
386  * by the kernel for direct mappings.
387  */
388 unsigned long determine_dirtyable_memory(void)
389 {
390 	unsigned long x;
391 
392 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
393 
394 	if (!vm_highmem_is_dirtyable)
395 		x -= highmem_dirtyable_memory(x);
396 
397 	return x + 1;	/* Ensure that we never return 0 */
398 }
399 
400 /*
401  * global_dirty_limits - background-writeback and dirty-throttling thresholds
402  *
403  * Calculate the dirty thresholds based on sysctl parameters
404  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
405  * - vm.dirty_ratio             or  vm.dirty_bytes
406  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
407  * real-time tasks.
408  */
409 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
410 {
411 	unsigned long background;
412 	unsigned long dirty;
413 	unsigned long uninitialized_var(available_memory);
414 	struct task_struct *tsk;
415 
416 	if (!vm_dirty_bytes || !dirty_background_bytes)
417 		available_memory = determine_dirtyable_memory();
418 
419 	if (vm_dirty_bytes)
420 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
421 	else
422 		dirty = (vm_dirty_ratio * available_memory) / 100;
423 
424 	if (dirty_background_bytes)
425 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
426 	else
427 		background = (dirty_background_ratio * available_memory) / 100;
428 
429 	if (background >= dirty)
430 		background = dirty / 2;
431 	tsk = current;
432 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
433 		background += background / 4;
434 		dirty += dirty / 4;
435 	}
436 	*pbackground = background;
437 	*pdirty = dirty;
438 }
439 
440 /*
441  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
442  *
443  * Allocate high/low dirty limits to fast/slow devices, in order to prevent
444  * - starving fast devices
445  * - piling up dirty pages (that will take long time to sync) on slow devices
446  *
447  * The bdi's share of dirty limit will be adapting to its throughput and
448  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
449  */
450 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
451 {
452 	u64 bdi_dirty;
453 	long numerator, denominator;
454 
455 	/*
456 	 * Calculate this BDI's share of the dirty ratio.
457 	 */
458 	bdi_writeout_fraction(bdi, &numerator, &denominator);
459 
460 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
461 	bdi_dirty *= numerator;
462 	do_div(bdi_dirty, denominator);
463 
464 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
465 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
466 		bdi_dirty = dirty * bdi->max_ratio / 100;
467 
468 	return bdi_dirty;
469 }
470 
471 /*
472  * balance_dirty_pages() must be called by processes which are generating dirty
473  * data.  It looks at the number of dirty pages in the machine and will force
474  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
475  * If we're over `background_thresh' then the writeback threads are woken to
476  * perform some writeout.
477  */
478 static void balance_dirty_pages(struct address_space *mapping,
479 				unsigned long write_chunk)
480 {
481 	long nr_reclaimable, bdi_nr_reclaimable;
482 	long nr_writeback, bdi_nr_writeback;
483 	unsigned long background_thresh;
484 	unsigned long dirty_thresh;
485 	unsigned long bdi_thresh;
486 	unsigned long pages_written = 0;
487 	unsigned long pause = 1;
488 	bool dirty_exceeded = false;
489 	struct backing_dev_info *bdi = mapping->backing_dev_info;
490 
491 	for (;;) {
492 		struct writeback_control wbc = {
493 			.sync_mode	= WB_SYNC_NONE,
494 			.older_than_this = NULL,
495 			.nr_to_write	= write_chunk,
496 			.range_cyclic	= 1,
497 		};
498 
499 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
500 					global_page_state(NR_UNSTABLE_NFS);
501 		nr_writeback = global_page_state(NR_WRITEBACK);
502 
503 		global_dirty_limits(&background_thresh, &dirty_thresh);
504 
505 		/*
506 		 * Throttle it only when the background writeback cannot
507 		 * catch-up. This avoids (excessively) small writeouts
508 		 * when the bdi limits are ramping up.
509 		 */
510 		if (nr_reclaimable + nr_writeback <=
511 				(background_thresh + dirty_thresh) / 2)
512 			break;
513 
514 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
515 		bdi_thresh = task_dirty_limit(current, bdi_thresh);
516 
517 		/*
518 		 * In order to avoid the stacked BDI deadlock we need
519 		 * to ensure we accurately count the 'dirty' pages when
520 		 * the threshold is low.
521 		 *
522 		 * Otherwise it would be possible to get thresh+n pages
523 		 * reported dirty, even though there are thresh-m pages
524 		 * actually dirty; with m+n sitting in the percpu
525 		 * deltas.
526 		 */
527 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
528 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
529 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
530 		} else {
531 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
532 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
533 		}
534 
535 		/*
536 		 * The bdi thresh is somehow "soft" limit derived from the
537 		 * global "hard" limit. The former helps to prevent heavy IO
538 		 * bdi or process from holding back light ones; The latter is
539 		 * the last resort safeguard.
540 		 */
541 		dirty_exceeded =
542 			(bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh)
543 			|| (nr_reclaimable + nr_writeback > dirty_thresh);
544 
545 		if (!dirty_exceeded)
546 			break;
547 
548 		if (!bdi->dirty_exceeded)
549 			bdi->dirty_exceeded = 1;
550 
551 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
552 		 * Unstable writes are a feature of certain networked
553 		 * filesystems (i.e. NFS) in which data may have been
554 		 * written to the server's write cache, but has not yet
555 		 * been flushed to permanent storage.
556 		 * Only move pages to writeback if this bdi is over its
557 		 * threshold otherwise wait until the disk writes catch
558 		 * up.
559 		 */
560 		trace_wbc_balance_dirty_start(&wbc, bdi);
561 		if (bdi_nr_reclaimable > bdi_thresh) {
562 			writeback_inodes_wb(&bdi->wb, &wbc);
563 			pages_written += write_chunk - wbc.nr_to_write;
564 			trace_wbc_balance_dirty_written(&wbc, bdi);
565 			if (pages_written >= write_chunk)
566 				break;		/* We've done our duty */
567 		}
568 		trace_wbc_balance_dirty_wait(&wbc, bdi);
569 		__set_current_state(TASK_UNINTERRUPTIBLE);
570 		io_schedule_timeout(pause);
571 
572 		/*
573 		 * Increase the delay for each loop, up to our previous
574 		 * default of taking a 100ms nap.
575 		 */
576 		pause <<= 1;
577 		if (pause > HZ / 10)
578 			pause = HZ / 10;
579 	}
580 
581 	if (!dirty_exceeded && bdi->dirty_exceeded)
582 		bdi->dirty_exceeded = 0;
583 
584 	if (writeback_in_progress(bdi))
585 		return;
586 
587 	/*
588 	 * In laptop mode, we wait until hitting the higher threshold before
589 	 * starting background writeout, and then write out all the way down
590 	 * to the lower threshold.  So slow writers cause minimal disk activity.
591 	 *
592 	 * In normal mode, we start background writeout at the lower
593 	 * background_thresh, to keep the amount of dirty memory low.
594 	 */
595 	if ((laptop_mode && pages_written) ||
596 	    (!laptop_mode && (nr_reclaimable > background_thresh)))
597 		bdi_start_background_writeback(bdi);
598 }
599 
600 void set_page_dirty_balance(struct page *page, int page_mkwrite)
601 {
602 	if (set_page_dirty(page) || page_mkwrite) {
603 		struct address_space *mapping = page_mapping(page);
604 
605 		if (mapping)
606 			balance_dirty_pages_ratelimited(mapping);
607 	}
608 }
609 
610 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0;
611 
612 /**
613  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
614  * @mapping: address_space which was dirtied
615  * @nr_pages_dirtied: number of pages which the caller has just dirtied
616  *
617  * Processes which are dirtying memory should call in here once for each page
618  * which was newly dirtied.  The function will periodically check the system's
619  * dirty state and will initiate writeback if needed.
620  *
621  * On really big machines, get_writeback_state is expensive, so try to avoid
622  * calling it too often (ratelimiting).  But once we're over the dirty memory
623  * limit we decrease the ratelimiting by a lot, to prevent individual processes
624  * from overshooting the limit by (ratelimit_pages) each.
625  */
626 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
627 					unsigned long nr_pages_dirtied)
628 {
629 	unsigned long ratelimit;
630 	unsigned long *p;
631 
632 	ratelimit = ratelimit_pages;
633 	if (mapping->backing_dev_info->dirty_exceeded)
634 		ratelimit = 8;
635 
636 	/*
637 	 * Check the rate limiting. Also, we do not want to throttle real-time
638 	 * tasks in balance_dirty_pages(). Period.
639 	 */
640 	preempt_disable();
641 	p =  &__get_cpu_var(bdp_ratelimits);
642 	*p += nr_pages_dirtied;
643 	if (unlikely(*p >= ratelimit)) {
644 		ratelimit = sync_writeback_pages(*p);
645 		*p = 0;
646 		preempt_enable();
647 		balance_dirty_pages(mapping, ratelimit);
648 		return;
649 	}
650 	preempt_enable();
651 }
652 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
653 
654 void throttle_vm_writeout(gfp_t gfp_mask)
655 {
656 	unsigned long background_thresh;
657 	unsigned long dirty_thresh;
658 
659         for ( ; ; ) {
660 		global_dirty_limits(&background_thresh, &dirty_thresh);
661 
662                 /*
663                  * Boost the allowable dirty threshold a bit for page
664                  * allocators so they don't get DoS'ed by heavy writers
665                  */
666                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
667 
668                 if (global_page_state(NR_UNSTABLE_NFS) +
669 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
670                         	break;
671                 congestion_wait(BLK_RW_ASYNC, HZ/10);
672 
673 		/*
674 		 * The caller might hold locks which can prevent IO completion
675 		 * or progress in the filesystem.  So we cannot just sit here
676 		 * waiting for IO to complete.
677 		 */
678 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
679 			break;
680         }
681 }
682 
683 /*
684  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
685  */
686 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
687 	void __user *buffer, size_t *length, loff_t *ppos)
688 {
689 	proc_dointvec(table, write, buffer, length, ppos);
690 	bdi_arm_supers_timer();
691 	return 0;
692 }
693 
694 #ifdef CONFIG_BLOCK
695 void laptop_mode_timer_fn(unsigned long data)
696 {
697 	struct request_queue *q = (struct request_queue *)data;
698 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
699 		global_page_state(NR_UNSTABLE_NFS);
700 
701 	/*
702 	 * We want to write everything out, not just down to the dirty
703 	 * threshold
704 	 */
705 	if (bdi_has_dirty_io(&q->backing_dev_info))
706 		bdi_start_writeback(&q->backing_dev_info, nr_pages);
707 }
708 
709 /*
710  * We've spun up the disk and we're in laptop mode: schedule writeback
711  * of all dirty data a few seconds from now.  If the flush is already scheduled
712  * then push it back - the user is still using the disk.
713  */
714 void laptop_io_completion(struct backing_dev_info *info)
715 {
716 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
717 }
718 
719 /*
720  * We're in laptop mode and we've just synced. The sync's writes will have
721  * caused another writeback to be scheduled by laptop_io_completion.
722  * Nothing needs to be written back anymore, so we unschedule the writeback.
723  */
724 void laptop_sync_completion(void)
725 {
726 	struct backing_dev_info *bdi;
727 
728 	rcu_read_lock();
729 
730 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
731 		del_timer(&bdi->laptop_mode_wb_timer);
732 
733 	rcu_read_unlock();
734 }
735 #endif
736 
737 /*
738  * If ratelimit_pages is too high then we can get into dirty-data overload
739  * if a large number of processes all perform writes at the same time.
740  * If it is too low then SMP machines will call the (expensive)
741  * get_writeback_state too often.
742  *
743  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
744  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
745  * thresholds before writeback cuts in.
746  *
747  * But the limit should not be set too high.  Because it also controls the
748  * amount of memory which the balance_dirty_pages() caller has to write back.
749  * If this is too large then the caller will block on the IO queue all the
750  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
751  * will write six megabyte chunks, max.
752  */
753 
754 void writeback_set_ratelimit(void)
755 {
756 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
757 	if (ratelimit_pages < 16)
758 		ratelimit_pages = 16;
759 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
760 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
761 }
762 
763 static int __cpuinit
764 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
765 {
766 	writeback_set_ratelimit();
767 	return NOTIFY_DONE;
768 }
769 
770 static struct notifier_block __cpuinitdata ratelimit_nb = {
771 	.notifier_call	= ratelimit_handler,
772 	.next		= NULL,
773 };
774 
775 /*
776  * Called early on to tune the page writeback dirty limits.
777  *
778  * We used to scale dirty pages according to how total memory
779  * related to pages that could be allocated for buffers (by
780  * comparing nr_free_buffer_pages() to vm_total_pages.
781  *
782  * However, that was when we used "dirty_ratio" to scale with
783  * all memory, and we don't do that any more. "dirty_ratio"
784  * is now applied to total non-HIGHPAGE memory (by subtracting
785  * totalhigh_pages from vm_total_pages), and as such we can't
786  * get into the old insane situation any more where we had
787  * large amounts of dirty pages compared to a small amount of
788  * non-HIGHMEM memory.
789  *
790  * But we might still want to scale the dirty_ratio by how
791  * much memory the box has..
792  */
793 void __init page_writeback_init(void)
794 {
795 	int shift;
796 
797 	writeback_set_ratelimit();
798 	register_cpu_notifier(&ratelimit_nb);
799 
800 	shift = calc_period_shift();
801 	prop_descriptor_init(&vm_completions, shift);
802 	prop_descriptor_init(&vm_dirties, shift);
803 }
804 
805 /**
806  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
807  * @mapping: address space structure to write
808  * @start: starting page index
809  * @end: ending page index (inclusive)
810  *
811  * This function scans the page range from @start to @end (inclusive) and tags
812  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
813  * that write_cache_pages (or whoever calls this function) will then use
814  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
815  * used to avoid livelocking of writeback by a process steadily creating new
816  * dirty pages in the file (thus it is important for this function to be quick
817  * so that it can tag pages faster than a dirtying process can create them).
818  */
819 /*
820  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
821  */
822 void tag_pages_for_writeback(struct address_space *mapping,
823 			     pgoff_t start, pgoff_t end)
824 {
825 #define WRITEBACK_TAG_BATCH 4096
826 	unsigned long tagged;
827 
828 	do {
829 		spin_lock_irq(&mapping->tree_lock);
830 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
831 				&start, end, WRITEBACK_TAG_BATCH,
832 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
833 		spin_unlock_irq(&mapping->tree_lock);
834 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
835 		cond_resched();
836 		/* We check 'start' to handle wrapping when end == ~0UL */
837 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
838 }
839 EXPORT_SYMBOL(tag_pages_for_writeback);
840 
841 /**
842  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
843  * @mapping: address space structure to write
844  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
845  * @writepage: function called for each page
846  * @data: data passed to writepage function
847  *
848  * If a page is already under I/O, write_cache_pages() skips it, even
849  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
850  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
851  * and msync() need to guarantee that all the data which was dirty at the time
852  * the call was made get new I/O started against them.  If wbc->sync_mode is
853  * WB_SYNC_ALL then we were called for data integrity and we must wait for
854  * existing IO to complete.
855  *
856  * To avoid livelocks (when other process dirties new pages), we first tag
857  * pages which should be written back with TOWRITE tag and only then start
858  * writing them. For data-integrity sync we have to be careful so that we do
859  * not miss some pages (e.g., because some other process has cleared TOWRITE
860  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
861  * by the process clearing the DIRTY tag (and submitting the page for IO).
862  */
863 int write_cache_pages(struct address_space *mapping,
864 		      struct writeback_control *wbc, writepage_t writepage,
865 		      void *data)
866 {
867 	int ret = 0;
868 	int done = 0;
869 	struct pagevec pvec;
870 	int nr_pages;
871 	pgoff_t uninitialized_var(writeback_index);
872 	pgoff_t index;
873 	pgoff_t end;		/* Inclusive */
874 	pgoff_t done_index;
875 	int cycled;
876 	int range_whole = 0;
877 	int tag;
878 
879 	pagevec_init(&pvec, 0);
880 	if (wbc->range_cyclic) {
881 		writeback_index = mapping->writeback_index; /* prev offset */
882 		index = writeback_index;
883 		if (index == 0)
884 			cycled = 1;
885 		else
886 			cycled = 0;
887 		end = -1;
888 	} else {
889 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
890 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
891 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
892 			range_whole = 1;
893 		cycled = 1; /* ignore range_cyclic tests */
894 	}
895 	if (wbc->sync_mode == WB_SYNC_ALL)
896 		tag = PAGECACHE_TAG_TOWRITE;
897 	else
898 		tag = PAGECACHE_TAG_DIRTY;
899 retry:
900 	if (wbc->sync_mode == WB_SYNC_ALL)
901 		tag_pages_for_writeback(mapping, index, end);
902 	done_index = index;
903 	while (!done && (index <= end)) {
904 		int i;
905 
906 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
907 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
908 		if (nr_pages == 0)
909 			break;
910 
911 		for (i = 0; i < nr_pages; i++) {
912 			struct page *page = pvec.pages[i];
913 
914 			/*
915 			 * At this point, the page may be truncated or
916 			 * invalidated (changing page->mapping to NULL), or
917 			 * even swizzled back from swapper_space to tmpfs file
918 			 * mapping. However, page->index will not change
919 			 * because we have a reference on the page.
920 			 */
921 			if (page->index > end) {
922 				/*
923 				 * can't be range_cyclic (1st pass) because
924 				 * end == -1 in that case.
925 				 */
926 				done = 1;
927 				break;
928 			}
929 
930 			done_index = page->index;
931 
932 			lock_page(page);
933 
934 			/*
935 			 * Page truncated or invalidated. We can freely skip it
936 			 * then, even for data integrity operations: the page
937 			 * has disappeared concurrently, so there could be no
938 			 * real expectation of this data interity operation
939 			 * even if there is now a new, dirty page at the same
940 			 * pagecache address.
941 			 */
942 			if (unlikely(page->mapping != mapping)) {
943 continue_unlock:
944 				unlock_page(page);
945 				continue;
946 			}
947 
948 			if (!PageDirty(page)) {
949 				/* someone wrote it for us */
950 				goto continue_unlock;
951 			}
952 
953 			if (PageWriteback(page)) {
954 				if (wbc->sync_mode != WB_SYNC_NONE)
955 					wait_on_page_writeback(page);
956 				else
957 					goto continue_unlock;
958 			}
959 
960 			BUG_ON(PageWriteback(page));
961 			if (!clear_page_dirty_for_io(page))
962 				goto continue_unlock;
963 
964 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
965 			ret = (*writepage)(page, wbc, data);
966 			if (unlikely(ret)) {
967 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
968 					unlock_page(page);
969 					ret = 0;
970 				} else {
971 					/*
972 					 * done_index is set past this page,
973 					 * so media errors will not choke
974 					 * background writeout for the entire
975 					 * file. This has consequences for
976 					 * range_cyclic semantics (ie. it may
977 					 * not be suitable for data integrity
978 					 * writeout).
979 					 */
980 					done_index = page->index + 1;
981 					done = 1;
982 					break;
983 				}
984 			}
985 
986 			/*
987 			 * We stop writing back only if we are not doing
988 			 * integrity sync. In case of integrity sync we have to
989 			 * keep going until we have written all the pages
990 			 * we tagged for writeback prior to entering this loop.
991 			 */
992 			if (--wbc->nr_to_write <= 0 &&
993 			    wbc->sync_mode == WB_SYNC_NONE) {
994 				done = 1;
995 				break;
996 			}
997 		}
998 		pagevec_release(&pvec);
999 		cond_resched();
1000 	}
1001 	if (!cycled && !done) {
1002 		/*
1003 		 * range_cyclic:
1004 		 * We hit the last page and there is more work to be done: wrap
1005 		 * back to the start of the file
1006 		 */
1007 		cycled = 1;
1008 		index = 0;
1009 		end = writeback_index - 1;
1010 		goto retry;
1011 	}
1012 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1013 		mapping->writeback_index = done_index;
1014 
1015 	return ret;
1016 }
1017 EXPORT_SYMBOL(write_cache_pages);
1018 
1019 /*
1020  * Function used by generic_writepages to call the real writepage
1021  * function and set the mapping flags on error
1022  */
1023 static int __writepage(struct page *page, struct writeback_control *wbc,
1024 		       void *data)
1025 {
1026 	struct address_space *mapping = data;
1027 	int ret = mapping->a_ops->writepage(page, wbc);
1028 	mapping_set_error(mapping, ret);
1029 	return ret;
1030 }
1031 
1032 /**
1033  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1034  * @mapping: address space structure to write
1035  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1036  *
1037  * This is a library function, which implements the writepages()
1038  * address_space_operation.
1039  */
1040 int generic_writepages(struct address_space *mapping,
1041 		       struct writeback_control *wbc)
1042 {
1043 	struct blk_plug plug;
1044 	int ret;
1045 
1046 	/* deal with chardevs and other special file */
1047 	if (!mapping->a_ops->writepage)
1048 		return 0;
1049 
1050 	blk_start_plug(&plug);
1051 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1052 	blk_finish_plug(&plug);
1053 	return ret;
1054 }
1055 
1056 EXPORT_SYMBOL(generic_writepages);
1057 
1058 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1059 {
1060 	int ret;
1061 
1062 	if (wbc->nr_to_write <= 0)
1063 		return 0;
1064 	if (mapping->a_ops->writepages)
1065 		ret = mapping->a_ops->writepages(mapping, wbc);
1066 	else
1067 		ret = generic_writepages(mapping, wbc);
1068 	return ret;
1069 }
1070 
1071 /**
1072  * write_one_page - write out a single page and optionally wait on I/O
1073  * @page: the page to write
1074  * @wait: if true, wait on writeout
1075  *
1076  * The page must be locked by the caller and will be unlocked upon return.
1077  *
1078  * write_one_page() returns a negative error code if I/O failed.
1079  */
1080 int write_one_page(struct page *page, int wait)
1081 {
1082 	struct address_space *mapping = page->mapping;
1083 	int ret = 0;
1084 	struct writeback_control wbc = {
1085 		.sync_mode = WB_SYNC_ALL,
1086 		.nr_to_write = 1,
1087 	};
1088 
1089 	BUG_ON(!PageLocked(page));
1090 
1091 	if (wait)
1092 		wait_on_page_writeback(page);
1093 
1094 	if (clear_page_dirty_for_io(page)) {
1095 		page_cache_get(page);
1096 		ret = mapping->a_ops->writepage(page, &wbc);
1097 		if (ret == 0 && wait) {
1098 			wait_on_page_writeback(page);
1099 			if (PageError(page))
1100 				ret = -EIO;
1101 		}
1102 		page_cache_release(page);
1103 	} else {
1104 		unlock_page(page);
1105 	}
1106 	return ret;
1107 }
1108 EXPORT_SYMBOL(write_one_page);
1109 
1110 /*
1111  * For address_spaces which do not use buffers nor write back.
1112  */
1113 int __set_page_dirty_no_writeback(struct page *page)
1114 {
1115 	if (!PageDirty(page))
1116 		return !TestSetPageDirty(page);
1117 	return 0;
1118 }
1119 
1120 /*
1121  * Helper function for set_page_dirty family.
1122  * NOTE: This relies on being atomic wrt interrupts.
1123  */
1124 void account_page_dirtied(struct page *page, struct address_space *mapping)
1125 {
1126 	if (mapping_cap_account_dirty(mapping)) {
1127 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1128 		__inc_zone_page_state(page, NR_DIRTIED);
1129 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1130 		task_dirty_inc(current);
1131 		task_io_account_write(PAGE_CACHE_SIZE);
1132 	}
1133 }
1134 EXPORT_SYMBOL(account_page_dirtied);
1135 
1136 /*
1137  * Helper function for set_page_writeback family.
1138  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1139  * wrt interrupts.
1140  */
1141 void account_page_writeback(struct page *page)
1142 {
1143 	inc_zone_page_state(page, NR_WRITEBACK);
1144 	inc_zone_page_state(page, NR_WRITTEN);
1145 }
1146 EXPORT_SYMBOL(account_page_writeback);
1147 
1148 /*
1149  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1150  * its radix tree.
1151  *
1152  * This is also used when a single buffer is being dirtied: we want to set the
1153  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1154  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1155  *
1156  * Most callers have locked the page, which pins the address_space in memory.
1157  * But zap_pte_range() does not lock the page, however in that case the
1158  * mapping is pinned by the vma's ->vm_file reference.
1159  *
1160  * We take care to handle the case where the page was truncated from the
1161  * mapping by re-checking page_mapping() inside tree_lock.
1162  */
1163 int __set_page_dirty_nobuffers(struct page *page)
1164 {
1165 	if (!TestSetPageDirty(page)) {
1166 		struct address_space *mapping = page_mapping(page);
1167 		struct address_space *mapping2;
1168 
1169 		if (!mapping)
1170 			return 1;
1171 
1172 		spin_lock_irq(&mapping->tree_lock);
1173 		mapping2 = page_mapping(page);
1174 		if (mapping2) { /* Race with truncate? */
1175 			BUG_ON(mapping2 != mapping);
1176 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1177 			account_page_dirtied(page, mapping);
1178 			radix_tree_tag_set(&mapping->page_tree,
1179 				page_index(page), PAGECACHE_TAG_DIRTY);
1180 		}
1181 		spin_unlock_irq(&mapping->tree_lock);
1182 		if (mapping->host) {
1183 			/* !PageAnon && !swapper_space */
1184 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1185 		}
1186 		return 1;
1187 	}
1188 	return 0;
1189 }
1190 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1191 
1192 /*
1193  * When a writepage implementation decides that it doesn't want to write this
1194  * page for some reason, it should redirty the locked page via
1195  * redirty_page_for_writepage() and it should then unlock the page and return 0
1196  */
1197 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1198 {
1199 	wbc->pages_skipped++;
1200 	return __set_page_dirty_nobuffers(page);
1201 }
1202 EXPORT_SYMBOL(redirty_page_for_writepage);
1203 
1204 /*
1205  * Dirty a page.
1206  *
1207  * For pages with a mapping this should be done under the page lock
1208  * for the benefit of asynchronous memory errors who prefer a consistent
1209  * dirty state. This rule can be broken in some special cases,
1210  * but should be better not to.
1211  *
1212  * If the mapping doesn't provide a set_page_dirty a_op, then
1213  * just fall through and assume that it wants buffer_heads.
1214  */
1215 int set_page_dirty(struct page *page)
1216 {
1217 	struct address_space *mapping = page_mapping(page);
1218 
1219 	if (likely(mapping)) {
1220 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1221 		/*
1222 		 * readahead/lru_deactivate_page could remain
1223 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
1224 		 * About readahead, if the page is written, the flags would be
1225 		 * reset. So no problem.
1226 		 * About lru_deactivate_page, if the page is redirty, the flag
1227 		 * will be reset. So no problem. but if the page is used by readahead
1228 		 * it will confuse readahead and make it restart the size rampup
1229 		 * process. But it's a trivial problem.
1230 		 */
1231 		ClearPageReclaim(page);
1232 #ifdef CONFIG_BLOCK
1233 		if (!spd)
1234 			spd = __set_page_dirty_buffers;
1235 #endif
1236 		return (*spd)(page);
1237 	}
1238 	if (!PageDirty(page)) {
1239 		if (!TestSetPageDirty(page))
1240 			return 1;
1241 	}
1242 	return 0;
1243 }
1244 EXPORT_SYMBOL(set_page_dirty);
1245 
1246 /*
1247  * set_page_dirty() is racy if the caller has no reference against
1248  * page->mapping->host, and if the page is unlocked.  This is because another
1249  * CPU could truncate the page off the mapping and then free the mapping.
1250  *
1251  * Usually, the page _is_ locked, or the caller is a user-space process which
1252  * holds a reference on the inode by having an open file.
1253  *
1254  * In other cases, the page should be locked before running set_page_dirty().
1255  */
1256 int set_page_dirty_lock(struct page *page)
1257 {
1258 	int ret;
1259 
1260 	lock_page(page);
1261 	ret = set_page_dirty(page);
1262 	unlock_page(page);
1263 	return ret;
1264 }
1265 EXPORT_SYMBOL(set_page_dirty_lock);
1266 
1267 /*
1268  * Clear a page's dirty flag, while caring for dirty memory accounting.
1269  * Returns true if the page was previously dirty.
1270  *
1271  * This is for preparing to put the page under writeout.  We leave the page
1272  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1273  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1274  * implementation will run either set_page_writeback() or set_page_dirty(),
1275  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1276  * back into sync.
1277  *
1278  * This incoherency between the page's dirty flag and radix-tree tag is
1279  * unfortunate, but it only exists while the page is locked.
1280  */
1281 int clear_page_dirty_for_io(struct page *page)
1282 {
1283 	struct address_space *mapping = page_mapping(page);
1284 
1285 	BUG_ON(!PageLocked(page));
1286 
1287 	if (mapping && mapping_cap_account_dirty(mapping)) {
1288 		/*
1289 		 * Yes, Virginia, this is indeed insane.
1290 		 *
1291 		 * We use this sequence to make sure that
1292 		 *  (a) we account for dirty stats properly
1293 		 *  (b) we tell the low-level filesystem to
1294 		 *      mark the whole page dirty if it was
1295 		 *      dirty in a pagetable. Only to then
1296 		 *  (c) clean the page again and return 1 to
1297 		 *      cause the writeback.
1298 		 *
1299 		 * This way we avoid all nasty races with the
1300 		 * dirty bit in multiple places and clearing
1301 		 * them concurrently from different threads.
1302 		 *
1303 		 * Note! Normally the "set_page_dirty(page)"
1304 		 * has no effect on the actual dirty bit - since
1305 		 * that will already usually be set. But we
1306 		 * need the side effects, and it can help us
1307 		 * avoid races.
1308 		 *
1309 		 * We basically use the page "master dirty bit"
1310 		 * as a serialization point for all the different
1311 		 * threads doing their things.
1312 		 */
1313 		if (page_mkclean(page))
1314 			set_page_dirty(page);
1315 		/*
1316 		 * We carefully synchronise fault handlers against
1317 		 * installing a dirty pte and marking the page dirty
1318 		 * at this point. We do this by having them hold the
1319 		 * page lock at some point after installing their
1320 		 * pte, but before marking the page dirty.
1321 		 * Pages are always locked coming in here, so we get
1322 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1323 		 * for more comments.
1324 		 */
1325 		if (TestClearPageDirty(page)) {
1326 			dec_zone_page_state(page, NR_FILE_DIRTY);
1327 			dec_bdi_stat(mapping->backing_dev_info,
1328 					BDI_RECLAIMABLE);
1329 			return 1;
1330 		}
1331 		return 0;
1332 	}
1333 	return TestClearPageDirty(page);
1334 }
1335 EXPORT_SYMBOL(clear_page_dirty_for_io);
1336 
1337 int test_clear_page_writeback(struct page *page)
1338 {
1339 	struct address_space *mapping = page_mapping(page);
1340 	int ret;
1341 
1342 	if (mapping) {
1343 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1344 		unsigned long flags;
1345 
1346 		spin_lock_irqsave(&mapping->tree_lock, flags);
1347 		ret = TestClearPageWriteback(page);
1348 		if (ret) {
1349 			radix_tree_tag_clear(&mapping->page_tree,
1350 						page_index(page),
1351 						PAGECACHE_TAG_WRITEBACK);
1352 			if (bdi_cap_account_writeback(bdi)) {
1353 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1354 				__bdi_writeout_inc(bdi);
1355 			}
1356 		}
1357 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1358 	} else {
1359 		ret = TestClearPageWriteback(page);
1360 	}
1361 	if (ret)
1362 		dec_zone_page_state(page, NR_WRITEBACK);
1363 	return ret;
1364 }
1365 
1366 int test_set_page_writeback(struct page *page)
1367 {
1368 	struct address_space *mapping = page_mapping(page);
1369 	int ret;
1370 
1371 	if (mapping) {
1372 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1373 		unsigned long flags;
1374 
1375 		spin_lock_irqsave(&mapping->tree_lock, flags);
1376 		ret = TestSetPageWriteback(page);
1377 		if (!ret) {
1378 			radix_tree_tag_set(&mapping->page_tree,
1379 						page_index(page),
1380 						PAGECACHE_TAG_WRITEBACK);
1381 			if (bdi_cap_account_writeback(bdi))
1382 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1383 		}
1384 		if (!PageDirty(page))
1385 			radix_tree_tag_clear(&mapping->page_tree,
1386 						page_index(page),
1387 						PAGECACHE_TAG_DIRTY);
1388 		radix_tree_tag_clear(&mapping->page_tree,
1389 				     page_index(page),
1390 				     PAGECACHE_TAG_TOWRITE);
1391 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1392 	} else {
1393 		ret = TestSetPageWriteback(page);
1394 	}
1395 	if (!ret)
1396 		account_page_writeback(page);
1397 	return ret;
1398 
1399 }
1400 EXPORT_SYMBOL(test_set_page_writeback);
1401 
1402 /*
1403  * Return true if any of the pages in the mapping are marked with the
1404  * passed tag.
1405  */
1406 int mapping_tagged(struct address_space *mapping, int tag)
1407 {
1408 	int ret;
1409 	rcu_read_lock();
1410 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1411 	rcu_read_unlock();
1412 	return ret;
1413 }
1414 EXPORT_SYMBOL(mapping_tagged);
1415