1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 #include <trace/events/writeback.h> 38 39 /* 40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 41 * will look to see if it needs to force writeback or throttling. 42 */ 43 static long ratelimit_pages = 32; 44 45 /* 46 * When balance_dirty_pages decides that the caller needs to perform some 47 * non-background writeback, this is how many pages it will attempt to write. 48 * It should be somewhat larger than dirtied pages to ensure that reasonably 49 * large amounts of I/O are submitted. 50 */ 51 static inline long sync_writeback_pages(unsigned long dirtied) 52 { 53 if (dirtied < ratelimit_pages) 54 dirtied = ratelimit_pages; 55 56 return dirtied + dirtied / 2; 57 } 58 59 /* The following parameters are exported via /proc/sys/vm */ 60 61 /* 62 * Start background writeback (via writeback threads) at this percentage 63 */ 64 int dirty_background_ratio = 10; 65 66 /* 67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 68 * dirty_background_ratio * the amount of dirtyable memory 69 */ 70 unsigned long dirty_background_bytes; 71 72 /* 73 * free highmem will not be subtracted from the total free memory 74 * for calculating free ratios if vm_highmem_is_dirtyable is true 75 */ 76 int vm_highmem_is_dirtyable; 77 78 /* 79 * The generator of dirty data starts writeback at this percentage 80 */ 81 int vm_dirty_ratio = 20; 82 83 /* 84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 85 * vm_dirty_ratio * the amount of dirtyable memory 86 */ 87 unsigned long vm_dirty_bytes; 88 89 /* 90 * The interval between `kupdate'-style writebacks 91 */ 92 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 93 94 /* 95 * The longest time for which data is allowed to remain dirty 96 */ 97 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 98 99 /* 100 * Flag that makes the machine dump writes/reads and block dirtyings. 101 */ 102 int block_dump; 103 104 /* 105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 106 * a full sync is triggered after this time elapses without any disk activity. 107 */ 108 int laptop_mode; 109 110 EXPORT_SYMBOL(laptop_mode); 111 112 /* End of sysctl-exported parameters */ 113 114 115 /* 116 * Scale the writeback cache size proportional to the relative writeout speeds. 117 * 118 * We do this by keeping a floating proportion between BDIs, based on page 119 * writeback completions [end_page_writeback()]. Those devices that write out 120 * pages fastest will get the larger share, while the slower will get a smaller 121 * share. 122 * 123 * We use page writeout completions because we are interested in getting rid of 124 * dirty pages. Having them written out is the primary goal. 125 * 126 * We introduce a concept of time, a period over which we measure these events, 127 * because demand can/will vary over time. The length of this period itself is 128 * measured in page writeback completions. 129 * 130 */ 131 static struct prop_descriptor vm_completions; 132 static struct prop_descriptor vm_dirties; 133 134 /* 135 * couple the period to the dirty_ratio: 136 * 137 * period/2 ~ roundup_pow_of_two(dirty limit) 138 */ 139 static int calc_period_shift(void) 140 { 141 unsigned long dirty_total; 142 143 if (vm_dirty_bytes) 144 dirty_total = vm_dirty_bytes / PAGE_SIZE; 145 else 146 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 147 100; 148 return 2 + ilog2(dirty_total - 1); 149 } 150 151 /* 152 * update the period when the dirty threshold changes. 153 */ 154 static void update_completion_period(void) 155 { 156 int shift = calc_period_shift(); 157 prop_change_shift(&vm_completions, shift); 158 prop_change_shift(&vm_dirties, shift); 159 } 160 161 int dirty_background_ratio_handler(struct ctl_table *table, int write, 162 void __user *buffer, size_t *lenp, 163 loff_t *ppos) 164 { 165 int ret; 166 167 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 168 if (ret == 0 && write) 169 dirty_background_bytes = 0; 170 return ret; 171 } 172 173 int dirty_background_bytes_handler(struct ctl_table *table, int write, 174 void __user *buffer, size_t *lenp, 175 loff_t *ppos) 176 { 177 int ret; 178 179 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 180 if (ret == 0 && write) 181 dirty_background_ratio = 0; 182 return ret; 183 } 184 185 int dirty_ratio_handler(struct ctl_table *table, int write, 186 void __user *buffer, size_t *lenp, 187 loff_t *ppos) 188 { 189 int old_ratio = vm_dirty_ratio; 190 int ret; 191 192 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 193 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 194 update_completion_period(); 195 vm_dirty_bytes = 0; 196 } 197 return ret; 198 } 199 200 201 int dirty_bytes_handler(struct ctl_table *table, int write, 202 void __user *buffer, size_t *lenp, 203 loff_t *ppos) 204 { 205 unsigned long old_bytes = vm_dirty_bytes; 206 int ret; 207 208 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 209 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 210 update_completion_period(); 211 vm_dirty_ratio = 0; 212 } 213 return ret; 214 } 215 216 /* 217 * Increment the BDI's writeout completion count and the global writeout 218 * completion count. Called from test_clear_page_writeback(). 219 */ 220 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 221 { 222 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 223 bdi->max_prop_frac); 224 } 225 226 void bdi_writeout_inc(struct backing_dev_info *bdi) 227 { 228 unsigned long flags; 229 230 local_irq_save(flags); 231 __bdi_writeout_inc(bdi); 232 local_irq_restore(flags); 233 } 234 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 235 236 void task_dirty_inc(struct task_struct *tsk) 237 { 238 prop_inc_single(&vm_dirties, &tsk->dirties); 239 } 240 241 /* 242 * Obtain an accurate fraction of the BDI's portion. 243 */ 244 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 245 long *numerator, long *denominator) 246 { 247 if (bdi_cap_writeback_dirty(bdi)) { 248 prop_fraction_percpu(&vm_completions, &bdi->completions, 249 numerator, denominator); 250 } else { 251 *numerator = 0; 252 *denominator = 1; 253 } 254 } 255 256 static inline void task_dirties_fraction(struct task_struct *tsk, 257 long *numerator, long *denominator) 258 { 259 prop_fraction_single(&vm_dirties, &tsk->dirties, 260 numerator, denominator); 261 } 262 263 /* 264 * task_dirty_limit - scale down dirty throttling threshold for one task 265 * 266 * task specific dirty limit: 267 * 268 * dirty -= (dirty/8) * p_{t} 269 * 270 * To protect light/slow dirtying tasks from heavier/fast ones, we start 271 * throttling individual tasks before reaching the bdi dirty limit. 272 * Relatively low thresholds will be allocated to heavy dirtiers. So when 273 * dirty pages grow large, heavy dirtiers will be throttled first, which will 274 * effectively curb the growth of dirty pages. Light dirtiers with high enough 275 * dirty threshold may never get throttled. 276 */ 277 static unsigned long task_dirty_limit(struct task_struct *tsk, 278 unsigned long bdi_dirty) 279 { 280 long numerator, denominator; 281 unsigned long dirty = bdi_dirty; 282 u64 inv = dirty >> 3; 283 284 task_dirties_fraction(tsk, &numerator, &denominator); 285 inv *= numerator; 286 do_div(inv, denominator); 287 288 dirty -= inv; 289 290 return max(dirty, bdi_dirty/2); 291 } 292 293 /* 294 * 295 */ 296 static unsigned int bdi_min_ratio; 297 298 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 299 { 300 int ret = 0; 301 302 spin_lock_bh(&bdi_lock); 303 if (min_ratio > bdi->max_ratio) { 304 ret = -EINVAL; 305 } else { 306 min_ratio -= bdi->min_ratio; 307 if (bdi_min_ratio + min_ratio < 100) { 308 bdi_min_ratio += min_ratio; 309 bdi->min_ratio += min_ratio; 310 } else { 311 ret = -EINVAL; 312 } 313 } 314 spin_unlock_bh(&bdi_lock); 315 316 return ret; 317 } 318 319 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 320 { 321 int ret = 0; 322 323 if (max_ratio > 100) 324 return -EINVAL; 325 326 spin_lock_bh(&bdi_lock); 327 if (bdi->min_ratio > max_ratio) { 328 ret = -EINVAL; 329 } else { 330 bdi->max_ratio = max_ratio; 331 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 332 } 333 spin_unlock_bh(&bdi_lock); 334 335 return ret; 336 } 337 EXPORT_SYMBOL(bdi_set_max_ratio); 338 339 /* 340 * Work out the current dirty-memory clamping and background writeout 341 * thresholds. 342 * 343 * The main aim here is to lower them aggressively if there is a lot of mapped 344 * memory around. To avoid stressing page reclaim with lots of unreclaimable 345 * pages. It is better to clamp down on writers than to start swapping, and 346 * performing lots of scanning. 347 * 348 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 349 * 350 * We don't permit the clamping level to fall below 5% - that is getting rather 351 * excessive. 352 * 353 * We make sure that the background writeout level is below the adjusted 354 * clamping level. 355 */ 356 357 static unsigned long highmem_dirtyable_memory(unsigned long total) 358 { 359 #ifdef CONFIG_HIGHMEM 360 int node; 361 unsigned long x = 0; 362 363 for_each_node_state(node, N_HIGH_MEMORY) { 364 struct zone *z = 365 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 366 367 x += zone_page_state(z, NR_FREE_PAGES) + 368 zone_reclaimable_pages(z); 369 } 370 /* 371 * Make sure that the number of highmem pages is never larger 372 * than the number of the total dirtyable memory. This can only 373 * occur in very strange VM situations but we want to make sure 374 * that this does not occur. 375 */ 376 return min(x, total); 377 #else 378 return 0; 379 #endif 380 } 381 382 /** 383 * determine_dirtyable_memory - amount of memory that may be used 384 * 385 * Returns the numebr of pages that can currently be freed and used 386 * by the kernel for direct mappings. 387 */ 388 unsigned long determine_dirtyable_memory(void) 389 { 390 unsigned long x; 391 392 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 393 394 if (!vm_highmem_is_dirtyable) 395 x -= highmem_dirtyable_memory(x); 396 397 return x + 1; /* Ensure that we never return 0 */ 398 } 399 400 /* 401 * global_dirty_limits - background-writeback and dirty-throttling thresholds 402 * 403 * Calculate the dirty thresholds based on sysctl parameters 404 * - vm.dirty_background_ratio or vm.dirty_background_bytes 405 * - vm.dirty_ratio or vm.dirty_bytes 406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 407 * real-time tasks. 408 */ 409 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 410 { 411 unsigned long background; 412 unsigned long dirty; 413 unsigned long uninitialized_var(available_memory); 414 struct task_struct *tsk; 415 416 if (!vm_dirty_bytes || !dirty_background_bytes) 417 available_memory = determine_dirtyable_memory(); 418 419 if (vm_dirty_bytes) 420 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 421 else 422 dirty = (vm_dirty_ratio * available_memory) / 100; 423 424 if (dirty_background_bytes) 425 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 426 else 427 background = (dirty_background_ratio * available_memory) / 100; 428 429 if (background >= dirty) 430 background = dirty / 2; 431 tsk = current; 432 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 433 background += background / 4; 434 dirty += dirty / 4; 435 } 436 *pbackground = background; 437 *pdirty = dirty; 438 } 439 440 /* 441 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 442 * 443 * Allocate high/low dirty limits to fast/slow devices, in order to prevent 444 * - starving fast devices 445 * - piling up dirty pages (that will take long time to sync) on slow devices 446 * 447 * The bdi's share of dirty limit will be adapting to its throughput and 448 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 449 */ 450 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 451 { 452 u64 bdi_dirty; 453 long numerator, denominator; 454 455 /* 456 * Calculate this BDI's share of the dirty ratio. 457 */ 458 bdi_writeout_fraction(bdi, &numerator, &denominator); 459 460 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 461 bdi_dirty *= numerator; 462 do_div(bdi_dirty, denominator); 463 464 bdi_dirty += (dirty * bdi->min_ratio) / 100; 465 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 466 bdi_dirty = dirty * bdi->max_ratio / 100; 467 468 return bdi_dirty; 469 } 470 471 /* 472 * balance_dirty_pages() must be called by processes which are generating dirty 473 * data. It looks at the number of dirty pages in the machine and will force 474 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 475 * If we're over `background_thresh' then the writeback threads are woken to 476 * perform some writeout. 477 */ 478 static void balance_dirty_pages(struct address_space *mapping, 479 unsigned long write_chunk) 480 { 481 long nr_reclaimable, bdi_nr_reclaimable; 482 long nr_writeback, bdi_nr_writeback; 483 unsigned long background_thresh; 484 unsigned long dirty_thresh; 485 unsigned long bdi_thresh; 486 unsigned long pages_written = 0; 487 unsigned long pause = 1; 488 bool dirty_exceeded = false; 489 struct backing_dev_info *bdi = mapping->backing_dev_info; 490 491 for (;;) { 492 struct writeback_control wbc = { 493 .sync_mode = WB_SYNC_NONE, 494 .older_than_this = NULL, 495 .nr_to_write = write_chunk, 496 .range_cyclic = 1, 497 }; 498 499 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 500 global_page_state(NR_UNSTABLE_NFS); 501 nr_writeback = global_page_state(NR_WRITEBACK); 502 503 global_dirty_limits(&background_thresh, &dirty_thresh); 504 505 /* 506 * Throttle it only when the background writeback cannot 507 * catch-up. This avoids (excessively) small writeouts 508 * when the bdi limits are ramping up. 509 */ 510 if (nr_reclaimable + nr_writeback <= 511 (background_thresh + dirty_thresh) / 2) 512 break; 513 514 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 515 bdi_thresh = task_dirty_limit(current, bdi_thresh); 516 517 /* 518 * In order to avoid the stacked BDI deadlock we need 519 * to ensure we accurately count the 'dirty' pages when 520 * the threshold is low. 521 * 522 * Otherwise it would be possible to get thresh+n pages 523 * reported dirty, even though there are thresh-m pages 524 * actually dirty; with m+n sitting in the percpu 525 * deltas. 526 */ 527 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 528 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 529 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 530 } else { 531 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 532 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 533 } 534 535 /* 536 * The bdi thresh is somehow "soft" limit derived from the 537 * global "hard" limit. The former helps to prevent heavy IO 538 * bdi or process from holding back light ones; The latter is 539 * the last resort safeguard. 540 */ 541 dirty_exceeded = 542 (bdi_nr_reclaimable + bdi_nr_writeback > bdi_thresh) 543 || (nr_reclaimable + nr_writeback > dirty_thresh); 544 545 if (!dirty_exceeded) 546 break; 547 548 if (!bdi->dirty_exceeded) 549 bdi->dirty_exceeded = 1; 550 551 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 552 * Unstable writes are a feature of certain networked 553 * filesystems (i.e. NFS) in which data may have been 554 * written to the server's write cache, but has not yet 555 * been flushed to permanent storage. 556 * Only move pages to writeback if this bdi is over its 557 * threshold otherwise wait until the disk writes catch 558 * up. 559 */ 560 trace_wbc_balance_dirty_start(&wbc, bdi); 561 if (bdi_nr_reclaimable > bdi_thresh) { 562 writeback_inodes_wb(&bdi->wb, &wbc); 563 pages_written += write_chunk - wbc.nr_to_write; 564 trace_wbc_balance_dirty_written(&wbc, bdi); 565 if (pages_written >= write_chunk) 566 break; /* We've done our duty */ 567 } 568 trace_wbc_balance_dirty_wait(&wbc, bdi); 569 __set_current_state(TASK_UNINTERRUPTIBLE); 570 io_schedule_timeout(pause); 571 572 /* 573 * Increase the delay for each loop, up to our previous 574 * default of taking a 100ms nap. 575 */ 576 pause <<= 1; 577 if (pause > HZ / 10) 578 pause = HZ / 10; 579 } 580 581 if (!dirty_exceeded && bdi->dirty_exceeded) 582 bdi->dirty_exceeded = 0; 583 584 if (writeback_in_progress(bdi)) 585 return; 586 587 /* 588 * In laptop mode, we wait until hitting the higher threshold before 589 * starting background writeout, and then write out all the way down 590 * to the lower threshold. So slow writers cause minimal disk activity. 591 * 592 * In normal mode, we start background writeout at the lower 593 * background_thresh, to keep the amount of dirty memory low. 594 */ 595 if ((laptop_mode && pages_written) || 596 (!laptop_mode && (nr_reclaimable > background_thresh))) 597 bdi_start_background_writeback(bdi); 598 } 599 600 void set_page_dirty_balance(struct page *page, int page_mkwrite) 601 { 602 if (set_page_dirty(page) || page_mkwrite) { 603 struct address_space *mapping = page_mapping(page); 604 605 if (mapping) 606 balance_dirty_pages_ratelimited(mapping); 607 } 608 } 609 610 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits) = 0; 611 612 /** 613 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 614 * @mapping: address_space which was dirtied 615 * @nr_pages_dirtied: number of pages which the caller has just dirtied 616 * 617 * Processes which are dirtying memory should call in here once for each page 618 * which was newly dirtied. The function will periodically check the system's 619 * dirty state and will initiate writeback if needed. 620 * 621 * On really big machines, get_writeback_state is expensive, so try to avoid 622 * calling it too often (ratelimiting). But once we're over the dirty memory 623 * limit we decrease the ratelimiting by a lot, to prevent individual processes 624 * from overshooting the limit by (ratelimit_pages) each. 625 */ 626 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 627 unsigned long nr_pages_dirtied) 628 { 629 unsigned long ratelimit; 630 unsigned long *p; 631 632 ratelimit = ratelimit_pages; 633 if (mapping->backing_dev_info->dirty_exceeded) 634 ratelimit = 8; 635 636 /* 637 * Check the rate limiting. Also, we do not want to throttle real-time 638 * tasks in balance_dirty_pages(). Period. 639 */ 640 preempt_disable(); 641 p = &__get_cpu_var(bdp_ratelimits); 642 *p += nr_pages_dirtied; 643 if (unlikely(*p >= ratelimit)) { 644 ratelimit = sync_writeback_pages(*p); 645 *p = 0; 646 preempt_enable(); 647 balance_dirty_pages(mapping, ratelimit); 648 return; 649 } 650 preempt_enable(); 651 } 652 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 653 654 void throttle_vm_writeout(gfp_t gfp_mask) 655 { 656 unsigned long background_thresh; 657 unsigned long dirty_thresh; 658 659 for ( ; ; ) { 660 global_dirty_limits(&background_thresh, &dirty_thresh); 661 662 /* 663 * Boost the allowable dirty threshold a bit for page 664 * allocators so they don't get DoS'ed by heavy writers 665 */ 666 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 667 668 if (global_page_state(NR_UNSTABLE_NFS) + 669 global_page_state(NR_WRITEBACK) <= dirty_thresh) 670 break; 671 congestion_wait(BLK_RW_ASYNC, HZ/10); 672 673 /* 674 * The caller might hold locks which can prevent IO completion 675 * or progress in the filesystem. So we cannot just sit here 676 * waiting for IO to complete. 677 */ 678 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 679 break; 680 } 681 } 682 683 /* 684 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 685 */ 686 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 687 void __user *buffer, size_t *length, loff_t *ppos) 688 { 689 proc_dointvec(table, write, buffer, length, ppos); 690 bdi_arm_supers_timer(); 691 return 0; 692 } 693 694 #ifdef CONFIG_BLOCK 695 void laptop_mode_timer_fn(unsigned long data) 696 { 697 struct request_queue *q = (struct request_queue *)data; 698 int nr_pages = global_page_state(NR_FILE_DIRTY) + 699 global_page_state(NR_UNSTABLE_NFS); 700 701 /* 702 * We want to write everything out, not just down to the dirty 703 * threshold 704 */ 705 if (bdi_has_dirty_io(&q->backing_dev_info)) 706 bdi_start_writeback(&q->backing_dev_info, nr_pages); 707 } 708 709 /* 710 * We've spun up the disk and we're in laptop mode: schedule writeback 711 * of all dirty data a few seconds from now. If the flush is already scheduled 712 * then push it back - the user is still using the disk. 713 */ 714 void laptop_io_completion(struct backing_dev_info *info) 715 { 716 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 717 } 718 719 /* 720 * We're in laptop mode and we've just synced. The sync's writes will have 721 * caused another writeback to be scheduled by laptop_io_completion. 722 * Nothing needs to be written back anymore, so we unschedule the writeback. 723 */ 724 void laptop_sync_completion(void) 725 { 726 struct backing_dev_info *bdi; 727 728 rcu_read_lock(); 729 730 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 731 del_timer(&bdi->laptop_mode_wb_timer); 732 733 rcu_read_unlock(); 734 } 735 #endif 736 737 /* 738 * If ratelimit_pages is too high then we can get into dirty-data overload 739 * if a large number of processes all perform writes at the same time. 740 * If it is too low then SMP machines will call the (expensive) 741 * get_writeback_state too often. 742 * 743 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 744 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 745 * thresholds before writeback cuts in. 746 * 747 * But the limit should not be set too high. Because it also controls the 748 * amount of memory which the balance_dirty_pages() caller has to write back. 749 * If this is too large then the caller will block on the IO queue all the 750 * time. So limit it to four megabytes - the balance_dirty_pages() caller 751 * will write six megabyte chunks, max. 752 */ 753 754 void writeback_set_ratelimit(void) 755 { 756 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 757 if (ratelimit_pages < 16) 758 ratelimit_pages = 16; 759 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 760 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 761 } 762 763 static int __cpuinit 764 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 765 { 766 writeback_set_ratelimit(); 767 return NOTIFY_DONE; 768 } 769 770 static struct notifier_block __cpuinitdata ratelimit_nb = { 771 .notifier_call = ratelimit_handler, 772 .next = NULL, 773 }; 774 775 /* 776 * Called early on to tune the page writeback dirty limits. 777 * 778 * We used to scale dirty pages according to how total memory 779 * related to pages that could be allocated for buffers (by 780 * comparing nr_free_buffer_pages() to vm_total_pages. 781 * 782 * However, that was when we used "dirty_ratio" to scale with 783 * all memory, and we don't do that any more. "dirty_ratio" 784 * is now applied to total non-HIGHPAGE memory (by subtracting 785 * totalhigh_pages from vm_total_pages), and as such we can't 786 * get into the old insane situation any more where we had 787 * large amounts of dirty pages compared to a small amount of 788 * non-HIGHMEM memory. 789 * 790 * But we might still want to scale the dirty_ratio by how 791 * much memory the box has.. 792 */ 793 void __init page_writeback_init(void) 794 { 795 int shift; 796 797 writeback_set_ratelimit(); 798 register_cpu_notifier(&ratelimit_nb); 799 800 shift = calc_period_shift(); 801 prop_descriptor_init(&vm_completions, shift); 802 prop_descriptor_init(&vm_dirties, shift); 803 } 804 805 /** 806 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 807 * @mapping: address space structure to write 808 * @start: starting page index 809 * @end: ending page index (inclusive) 810 * 811 * This function scans the page range from @start to @end (inclusive) and tags 812 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 813 * that write_cache_pages (or whoever calls this function) will then use 814 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 815 * used to avoid livelocking of writeback by a process steadily creating new 816 * dirty pages in the file (thus it is important for this function to be quick 817 * so that it can tag pages faster than a dirtying process can create them). 818 */ 819 /* 820 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 821 */ 822 void tag_pages_for_writeback(struct address_space *mapping, 823 pgoff_t start, pgoff_t end) 824 { 825 #define WRITEBACK_TAG_BATCH 4096 826 unsigned long tagged; 827 828 do { 829 spin_lock_irq(&mapping->tree_lock); 830 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 831 &start, end, WRITEBACK_TAG_BATCH, 832 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 833 spin_unlock_irq(&mapping->tree_lock); 834 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 835 cond_resched(); 836 /* We check 'start' to handle wrapping when end == ~0UL */ 837 } while (tagged >= WRITEBACK_TAG_BATCH && start); 838 } 839 EXPORT_SYMBOL(tag_pages_for_writeback); 840 841 /** 842 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 843 * @mapping: address space structure to write 844 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 845 * @writepage: function called for each page 846 * @data: data passed to writepage function 847 * 848 * If a page is already under I/O, write_cache_pages() skips it, even 849 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 850 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 851 * and msync() need to guarantee that all the data which was dirty at the time 852 * the call was made get new I/O started against them. If wbc->sync_mode is 853 * WB_SYNC_ALL then we were called for data integrity and we must wait for 854 * existing IO to complete. 855 * 856 * To avoid livelocks (when other process dirties new pages), we first tag 857 * pages which should be written back with TOWRITE tag and only then start 858 * writing them. For data-integrity sync we have to be careful so that we do 859 * not miss some pages (e.g., because some other process has cleared TOWRITE 860 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 861 * by the process clearing the DIRTY tag (and submitting the page for IO). 862 */ 863 int write_cache_pages(struct address_space *mapping, 864 struct writeback_control *wbc, writepage_t writepage, 865 void *data) 866 { 867 int ret = 0; 868 int done = 0; 869 struct pagevec pvec; 870 int nr_pages; 871 pgoff_t uninitialized_var(writeback_index); 872 pgoff_t index; 873 pgoff_t end; /* Inclusive */ 874 pgoff_t done_index; 875 int cycled; 876 int range_whole = 0; 877 int tag; 878 879 pagevec_init(&pvec, 0); 880 if (wbc->range_cyclic) { 881 writeback_index = mapping->writeback_index; /* prev offset */ 882 index = writeback_index; 883 if (index == 0) 884 cycled = 1; 885 else 886 cycled = 0; 887 end = -1; 888 } else { 889 index = wbc->range_start >> PAGE_CACHE_SHIFT; 890 end = wbc->range_end >> PAGE_CACHE_SHIFT; 891 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 892 range_whole = 1; 893 cycled = 1; /* ignore range_cyclic tests */ 894 } 895 if (wbc->sync_mode == WB_SYNC_ALL) 896 tag = PAGECACHE_TAG_TOWRITE; 897 else 898 tag = PAGECACHE_TAG_DIRTY; 899 retry: 900 if (wbc->sync_mode == WB_SYNC_ALL) 901 tag_pages_for_writeback(mapping, index, end); 902 done_index = index; 903 while (!done && (index <= end)) { 904 int i; 905 906 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 907 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 908 if (nr_pages == 0) 909 break; 910 911 for (i = 0; i < nr_pages; i++) { 912 struct page *page = pvec.pages[i]; 913 914 /* 915 * At this point, the page may be truncated or 916 * invalidated (changing page->mapping to NULL), or 917 * even swizzled back from swapper_space to tmpfs file 918 * mapping. However, page->index will not change 919 * because we have a reference on the page. 920 */ 921 if (page->index > end) { 922 /* 923 * can't be range_cyclic (1st pass) because 924 * end == -1 in that case. 925 */ 926 done = 1; 927 break; 928 } 929 930 done_index = page->index; 931 932 lock_page(page); 933 934 /* 935 * Page truncated or invalidated. We can freely skip it 936 * then, even for data integrity operations: the page 937 * has disappeared concurrently, so there could be no 938 * real expectation of this data interity operation 939 * even if there is now a new, dirty page at the same 940 * pagecache address. 941 */ 942 if (unlikely(page->mapping != mapping)) { 943 continue_unlock: 944 unlock_page(page); 945 continue; 946 } 947 948 if (!PageDirty(page)) { 949 /* someone wrote it for us */ 950 goto continue_unlock; 951 } 952 953 if (PageWriteback(page)) { 954 if (wbc->sync_mode != WB_SYNC_NONE) 955 wait_on_page_writeback(page); 956 else 957 goto continue_unlock; 958 } 959 960 BUG_ON(PageWriteback(page)); 961 if (!clear_page_dirty_for_io(page)) 962 goto continue_unlock; 963 964 trace_wbc_writepage(wbc, mapping->backing_dev_info); 965 ret = (*writepage)(page, wbc, data); 966 if (unlikely(ret)) { 967 if (ret == AOP_WRITEPAGE_ACTIVATE) { 968 unlock_page(page); 969 ret = 0; 970 } else { 971 /* 972 * done_index is set past this page, 973 * so media errors will not choke 974 * background writeout for the entire 975 * file. This has consequences for 976 * range_cyclic semantics (ie. it may 977 * not be suitable for data integrity 978 * writeout). 979 */ 980 done_index = page->index + 1; 981 done = 1; 982 break; 983 } 984 } 985 986 /* 987 * We stop writing back only if we are not doing 988 * integrity sync. In case of integrity sync we have to 989 * keep going until we have written all the pages 990 * we tagged for writeback prior to entering this loop. 991 */ 992 if (--wbc->nr_to_write <= 0 && 993 wbc->sync_mode == WB_SYNC_NONE) { 994 done = 1; 995 break; 996 } 997 } 998 pagevec_release(&pvec); 999 cond_resched(); 1000 } 1001 if (!cycled && !done) { 1002 /* 1003 * range_cyclic: 1004 * We hit the last page and there is more work to be done: wrap 1005 * back to the start of the file 1006 */ 1007 cycled = 1; 1008 index = 0; 1009 end = writeback_index - 1; 1010 goto retry; 1011 } 1012 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1013 mapping->writeback_index = done_index; 1014 1015 return ret; 1016 } 1017 EXPORT_SYMBOL(write_cache_pages); 1018 1019 /* 1020 * Function used by generic_writepages to call the real writepage 1021 * function and set the mapping flags on error 1022 */ 1023 static int __writepage(struct page *page, struct writeback_control *wbc, 1024 void *data) 1025 { 1026 struct address_space *mapping = data; 1027 int ret = mapping->a_ops->writepage(page, wbc); 1028 mapping_set_error(mapping, ret); 1029 return ret; 1030 } 1031 1032 /** 1033 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1034 * @mapping: address space structure to write 1035 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1036 * 1037 * This is a library function, which implements the writepages() 1038 * address_space_operation. 1039 */ 1040 int generic_writepages(struct address_space *mapping, 1041 struct writeback_control *wbc) 1042 { 1043 struct blk_plug plug; 1044 int ret; 1045 1046 /* deal with chardevs and other special file */ 1047 if (!mapping->a_ops->writepage) 1048 return 0; 1049 1050 blk_start_plug(&plug); 1051 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1052 blk_finish_plug(&plug); 1053 return ret; 1054 } 1055 1056 EXPORT_SYMBOL(generic_writepages); 1057 1058 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1059 { 1060 int ret; 1061 1062 if (wbc->nr_to_write <= 0) 1063 return 0; 1064 if (mapping->a_ops->writepages) 1065 ret = mapping->a_ops->writepages(mapping, wbc); 1066 else 1067 ret = generic_writepages(mapping, wbc); 1068 return ret; 1069 } 1070 1071 /** 1072 * write_one_page - write out a single page and optionally wait on I/O 1073 * @page: the page to write 1074 * @wait: if true, wait on writeout 1075 * 1076 * The page must be locked by the caller and will be unlocked upon return. 1077 * 1078 * write_one_page() returns a negative error code if I/O failed. 1079 */ 1080 int write_one_page(struct page *page, int wait) 1081 { 1082 struct address_space *mapping = page->mapping; 1083 int ret = 0; 1084 struct writeback_control wbc = { 1085 .sync_mode = WB_SYNC_ALL, 1086 .nr_to_write = 1, 1087 }; 1088 1089 BUG_ON(!PageLocked(page)); 1090 1091 if (wait) 1092 wait_on_page_writeback(page); 1093 1094 if (clear_page_dirty_for_io(page)) { 1095 page_cache_get(page); 1096 ret = mapping->a_ops->writepage(page, &wbc); 1097 if (ret == 0 && wait) { 1098 wait_on_page_writeback(page); 1099 if (PageError(page)) 1100 ret = -EIO; 1101 } 1102 page_cache_release(page); 1103 } else { 1104 unlock_page(page); 1105 } 1106 return ret; 1107 } 1108 EXPORT_SYMBOL(write_one_page); 1109 1110 /* 1111 * For address_spaces which do not use buffers nor write back. 1112 */ 1113 int __set_page_dirty_no_writeback(struct page *page) 1114 { 1115 if (!PageDirty(page)) 1116 return !TestSetPageDirty(page); 1117 return 0; 1118 } 1119 1120 /* 1121 * Helper function for set_page_dirty family. 1122 * NOTE: This relies on being atomic wrt interrupts. 1123 */ 1124 void account_page_dirtied(struct page *page, struct address_space *mapping) 1125 { 1126 if (mapping_cap_account_dirty(mapping)) { 1127 __inc_zone_page_state(page, NR_FILE_DIRTY); 1128 __inc_zone_page_state(page, NR_DIRTIED); 1129 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1130 task_dirty_inc(current); 1131 task_io_account_write(PAGE_CACHE_SIZE); 1132 } 1133 } 1134 EXPORT_SYMBOL(account_page_dirtied); 1135 1136 /* 1137 * Helper function for set_page_writeback family. 1138 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 1139 * wrt interrupts. 1140 */ 1141 void account_page_writeback(struct page *page) 1142 { 1143 inc_zone_page_state(page, NR_WRITEBACK); 1144 inc_zone_page_state(page, NR_WRITTEN); 1145 } 1146 EXPORT_SYMBOL(account_page_writeback); 1147 1148 /* 1149 * For address_spaces which do not use buffers. Just tag the page as dirty in 1150 * its radix tree. 1151 * 1152 * This is also used when a single buffer is being dirtied: we want to set the 1153 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1154 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1155 * 1156 * Most callers have locked the page, which pins the address_space in memory. 1157 * But zap_pte_range() does not lock the page, however in that case the 1158 * mapping is pinned by the vma's ->vm_file reference. 1159 * 1160 * We take care to handle the case where the page was truncated from the 1161 * mapping by re-checking page_mapping() inside tree_lock. 1162 */ 1163 int __set_page_dirty_nobuffers(struct page *page) 1164 { 1165 if (!TestSetPageDirty(page)) { 1166 struct address_space *mapping = page_mapping(page); 1167 struct address_space *mapping2; 1168 1169 if (!mapping) 1170 return 1; 1171 1172 spin_lock_irq(&mapping->tree_lock); 1173 mapping2 = page_mapping(page); 1174 if (mapping2) { /* Race with truncate? */ 1175 BUG_ON(mapping2 != mapping); 1176 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1177 account_page_dirtied(page, mapping); 1178 radix_tree_tag_set(&mapping->page_tree, 1179 page_index(page), PAGECACHE_TAG_DIRTY); 1180 } 1181 spin_unlock_irq(&mapping->tree_lock); 1182 if (mapping->host) { 1183 /* !PageAnon && !swapper_space */ 1184 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1185 } 1186 return 1; 1187 } 1188 return 0; 1189 } 1190 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1191 1192 /* 1193 * When a writepage implementation decides that it doesn't want to write this 1194 * page for some reason, it should redirty the locked page via 1195 * redirty_page_for_writepage() and it should then unlock the page and return 0 1196 */ 1197 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1198 { 1199 wbc->pages_skipped++; 1200 return __set_page_dirty_nobuffers(page); 1201 } 1202 EXPORT_SYMBOL(redirty_page_for_writepage); 1203 1204 /* 1205 * Dirty a page. 1206 * 1207 * For pages with a mapping this should be done under the page lock 1208 * for the benefit of asynchronous memory errors who prefer a consistent 1209 * dirty state. This rule can be broken in some special cases, 1210 * but should be better not to. 1211 * 1212 * If the mapping doesn't provide a set_page_dirty a_op, then 1213 * just fall through and assume that it wants buffer_heads. 1214 */ 1215 int set_page_dirty(struct page *page) 1216 { 1217 struct address_space *mapping = page_mapping(page); 1218 1219 if (likely(mapping)) { 1220 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1221 /* 1222 * readahead/lru_deactivate_page could remain 1223 * PG_readahead/PG_reclaim due to race with end_page_writeback 1224 * About readahead, if the page is written, the flags would be 1225 * reset. So no problem. 1226 * About lru_deactivate_page, if the page is redirty, the flag 1227 * will be reset. So no problem. but if the page is used by readahead 1228 * it will confuse readahead and make it restart the size rampup 1229 * process. But it's a trivial problem. 1230 */ 1231 ClearPageReclaim(page); 1232 #ifdef CONFIG_BLOCK 1233 if (!spd) 1234 spd = __set_page_dirty_buffers; 1235 #endif 1236 return (*spd)(page); 1237 } 1238 if (!PageDirty(page)) { 1239 if (!TestSetPageDirty(page)) 1240 return 1; 1241 } 1242 return 0; 1243 } 1244 EXPORT_SYMBOL(set_page_dirty); 1245 1246 /* 1247 * set_page_dirty() is racy if the caller has no reference against 1248 * page->mapping->host, and if the page is unlocked. This is because another 1249 * CPU could truncate the page off the mapping and then free the mapping. 1250 * 1251 * Usually, the page _is_ locked, or the caller is a user-space process which 1252 * holds a reference on the inode by having an open file. 1253 * 1254 * In other cases, the page should be locked before running set_page_dirty(). 1255 */ 1256 int set_page_dirty_lock(struct page *page) 1257 { 1258 int ret; 1259 1260 lock_page(page); 1261 ret = set_page_dirty(page); 1262 unlock_page(page); 1263 return ret; 1264 } 1265 EXPORT_SYMBOL(set_page_dirty_lock); 1266 1267 /* 1268 * Clear a page's dirty flag, while caring for dirty memory accounting. 1269 * Returns true if the page was previously dirty. 1270 * 1271 * This is for preparing to put the page under writeout. We leave the page 1272 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1273 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1274 * implementation will run either set_page_writeback() or set_page_dirty(), 1275 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1276 * back into sync. 1277 * 1278 * This incoherency between the page's dirty flag and radix-tree tag is 1279 * unfortunate, but it only exists while the page is locked. 1280 */ 1281 int clear_page_dirty_for_io(struct page *page) 1282 { 1283 struct address_space *mapping = page_mapping(page); 1284 1285 BUG_ON(!PageLocked(page)); 1286 1287 if (mapping && mapping_cap_account_dirty(mapping)) { 1288 /* 1289 * Yes, Virginia, this is indeed insane. 1290 * 1291 * We use this sequence to make sure that 1292 * (a) we account for dirty stats properly 1293 * (b) we tell the low-level filesystem to 1294 * mark the whole page dirty if it was 1295 * dirty in a pagetable. Only to then 1296 * (c) clean the page again and return 1 to 1297 * cause the writeback. 1298 * 1299 * This way we avoid all nasty races with the 1300 * dirty bit in multiple places and clearing 1301 * them concurrently from different threads. 1302 * 1303 * Note! Normally the "set_page_dirty(page)" 1304 * has no effect on the actual dirty bit - since 1305 * that will already usually be set. But we 1306 * need the side effects, and it can help us 1307 * avoid races. 1308 * 1309 * We basically use the page "master dirty bit" 1310 * as a serialization point for all the different 1311 * threads doing their things. 1312 */ 1313 if (page_mkclean(page)) 1314 set_page_dirty(page); 1315 /* 1316 * We carefully synchronise fault handlers against 1317 * installing a dirty pte and marking the page dirty 1318 * at this point. We do this by having them hold the 1319 * page lock at some point after installing their 1320 * pte, but before marking the page dirty. 1321 * Pages are always locked coming in here, so we get 1322 * the desired exclusion. See mm/memory.c:do_wp_page() 1323 * for more comments. 1324 */ 1325 if (TestClearPageDirty(page)) { 1326 dec_zone_page_state(page, NR_FILE_DIRTY); 1327 dec_bdi_stat(mapping->backing_dev_info, 1328 BDI_RECLAIMABLE); 1329 return 1; 1330 } 1331 return 0; 1332 } 1333 return TestClearPageDirty(page); 1334 } 1335 EXPORT_SYMBOL(clear_page_dirty_for_io); 1336 1337 int test_clear_page_writeback(struct page *page) 1338 { 1339 struct address_space *mapping = page_mapping(page); 1340 int ret; 1341 1342 if (mapping) { 1343 struct backing_dev_info *bdi = mapping->backing_dev_info; 1344 unsigned long flags; 1345 1346 spin_lock_irqsave(&mapping->tree_lock, flags); 1347 ret = TestClearPageWriteback(page); 1348 if (ret) { 1349 radix_tree_tag_clear(&mapping->page_tree, 1350 page_index(page), 1351 PAGECACHE_TAG_WRITEBACK); 1352 if (bdi_cap_account_writeback(bdi)) { 1353 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1354 __bdi_writeout_inc(bdi); 1355 } 1356 } 1357 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1358 } else { 1359 ret = TestClearPageWriteback(page); 1360 } 1361 if (ret) 1362 dec_zone_page_state(page, NR_WRITEBACK); 1363 return ret; 1364 } 1365 1366 int test_set_page_writeback(struct page *page) 1367 { 1368 struct address_space *mapping = page_mapping(page); 1369 int ret; 1370 1371 if (mapping) { 1372 struct backing_dev_info *bdi = mapping->backing_dev_info; 1373 unsigned long flags; 1374 1375 spin_lock_irqsave(&mapping->tree_lock, flags); 1376 ret = TestSetPageWriteback(page); 1377 if (!ret) { 1378 radix_tree_tag_set(&mapping->page_tree, 1379 page_index(page), 1380 PAGECACHE_TAG_WRITEBACK); 1381 if (bdi_cap_account_writeback(bdi)) 1382 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1383 } 1384 if (!PageDirty(page)) 1385 radix_tree_tag_clear(&mapping->page_tree, 1386 page_index(page), 1387 PAGECACHE_TAG_DIRTY); 1388 radix_tree_tag_clear(&mapping->page_tree, 1389 page_index(page), 1390 PAGECACHE_TAG_TOWRITE); 1391 spin_unlock_irqrestore(&mapping->tree_lock, flags); 1392 } else { 1393 ret = TestSetPageWriteback(page); 1394 } 1395 if (!ret) 1396 account_page_writeback(page); 1397 return ret; 1398 1399 } 1400 EXPORT_SYMBOL(test_set_page_writeback); 1401 1402 /* 1403 * Return true if any of the pages in the mapping are marked with the 1404 * passed tag. 1405 */ 1406 int mapping_tagged(struct address_space *mapping, int tag) 1407 { 1408 int ret; 1409 rcu_read_lock(); 1410 ret = radix_tree_tagged(&mapping->page_tree, tag); 1411 rcu_read_unlock(); 1412 return ret; 1413 } 1414 EXPORT_SYMBOL(mapping_tagged); 1415