xref: /openbmc/linux/mm/page-writeback.c (revision e23feb16)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 unsigned long global_dirty_limit;
126 
127 /*
128  * Scale the writeback cache size proportional to the relative writeout speeds.
129  *
130  * We do this by keeping a floating proportion between BDIs, based on page
131  * writeback completions [end_page_writeback()]. Those devices that write out
132  * pages fastest will get the larger share, while the slower will get a smaller
133  * share.
134  *
135  * We use page writeout completions because we are interested in getting rid of
136  * dirty pages. Having them written out is the primary goal.
137  *
138  * We introduce a concept of time, a period over which we measure these events,
139  * because demand can/will vary over time. The length of this period itself is
140  * measured in page writeback completions.
141  *
142  */
143 static struct fprop_global writeout_completions;
144 
145 static void writeout_period(unsigned long t);
146 /* Timer for aging of writeout_completions */
147 static struct timer_list writeout_period_timer =
148 		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149 static unsigned long writeout_period_time = 0;
150 
151 /*
152  * Length of period for aging writeout fractions of bdis. This is an
153  * arbitrarily chosen number. The longer the period, the slower fractions will
154  * reflect changes in current writeout rate.
155  */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157 
158 /*
159  * Work out the current dirty-memory clamping and background writeout
160  * thresholds.
161  *
162  * The main aim here is to lower them aggressively if there is a lot of mapped
163  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
164  * pages.  It is better to clamp down on writers than to start swapping, and
165  * performing lots of scanning.
166  *
167  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
168  *
169  * We don't permit the clamping level to fall below 5% - that is getting rather
170  * excessive.
171  *
172  * We make sure that the background writeout level is below the adjusted
173  * clamping level.
174  */
175 
176 /*
177  * In a memory zone, there is a certain amount of pages we consider
178  * available for the page cache, which is essentially the number of
179  * free and reclaimable pages, minus some zone reserves to protect
180  * lowmem and the ability to uphold the zone's watermarks without
181  * requiring writeback.
182  *
183  * This number of dirtyable pages is the base value of which the
184  * user-configurable dirty ratio is the effictive number of pages that
185  * are allowed to be actually dirtied.  Per individual zone, or
186  * globally by using the sum of dirtyable pages over all zones.
187  *
188  * Because the user is allowed to specify the dirty limit globally as
189  * absolute number of bytes, calculating the per-zone dirty limit can
190  * require translating the configured limit into a percentage of
191  * global dirtyable memory first.
192  */
193 
194 static unsigned long highmem_dirtyable_memory(unsigned long total)
195 {
196 #ifdef CONFIG_HIGHMEM
197 	int node;
198 	unsigned long x = 0;
199 
200 	for_each_node_state(node, N_HIGH_MEMORY) {
201 		struct zone *z =
202 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
203 
204 		x += zone_page_state(z, NR_FREE_PAGES) +
205 		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
206 	}
207 	/*
208 	 * Unreclaimable memory (kernel memory or anonymous memory
209 	 * without swap) can bring down the dirtyable pages below
210 	 * the zone's dirty balance reserve and the above calculation
211 	 * will underflow.  However we still want to add in nodes
212 	 * which are below threshold (negative values) to get a more
213 	 * accurate calculation but make sure that the total never
214 	 * underflows.
215 	 */
216 	if ((long)x < 0)
217 		x = 0;
218 
219 	/*
220 	 * Make sure that the number of highmem pages is never larger
221 	 * than the number of the total dirtyable memory. This can only
222 	 * occur in very strange VM situations but we want to make sure
223 	 * that this does not occur.
224 	 */
225 	return min(x, total);
226 #else
227 	return 0;
228 #endif
229 }
230 
231 /**
232  * global_dirtyable_memory - number of globally dirtyable pages
233  *
234  * Returns the global number of pages potentially available for dirty
235  * page cache.  This is the base value for the global dirty limits.
236  */
237 static unsigned long global_dirtyable_memory(void)
238 {
239 	unsigned long x;
240 
241 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
242 	x -= min(x, dirty_balance_reserve);
243 
244 	if (!vm_highmem_is_dirtyable)
245 		x -= highmem_dirtyable_memory(x);
246 
247 	return x + 1;	/* Ensure that we never return 0 */
248 }
249 
250 /*
251  * global_dirty_limits - background-writeback and dirty-throttling thresholds
252  *
253  * Calculate the dirty thresholds based on sysctl parameters
254  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
255  * - vm.dirty_ratio             or  vm.dirty_bytes
256  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
257  * real-time tasks.
258  */
259 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
260 {
261 	unsigned long background;
262 	unsigned long dirty;
263 	unsigned long uninitialized_var(available_memory);
264 	struct task_struct *tsk;
265 
266 	if (!vm_dirty_bytes || !dirty_background_bytes)
267 		available_memory = global_dirtyable_memory();
268 
269 	if (vm_dirty_bytes)
270 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271 	else
272 		dirty = (vm_dirty_ratio * available_memory) / 100;
273 
274 	if (dirty_background_bytes)
275 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276 	else
277 		background = (dirty_background_ratio * available_memory) / 100;
278 
279 	if (background >= dirty)
280 		background = dirty / 2;
281 	tsk = current;
282 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283 		background += background / 4;
284 		dirty += dirty / 4;
285 	}
286 	*pbackground = background;
287 	*pdirty = dirty;
288 	trace_global_dirty_state(background, dirty);
289 }
290 
291 /**
292  * zone_dirtyable_memory - number of dirtyable pages in a zone
293  * @zone: the zone
294  *
295  * Returns the zone's number of pages potentially available for dirty
296  * page cache.  This is the base value for the per-zone dirty limits.
297  */
298 static unsigned long zone_dirtyable_memory(struct zone *zone)
299 {
300 	/*
301 	 * The effective global number of dirtyable pages may exclude
302 	 * highmem as a big-picture measure to keep the ratio between
303 	 * dirty memory and lowmem reasonable.
304 	 *
305 	 * But this function is purely about the individual zone and a
306 	 * highmem zone can hold its share of dirty pages, so we don't
307 	 * care about vm_highmem_is_dirtyable here.
308 	 */
309 	unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
310 		zone_reclaimable_pages(zone);
311 
312 	/* don't allow this to underflow */
313 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
314 	return nr_pages;
315 }
316 
317 /**
318  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
319  * @zone: the zone
320  *
321  * Returns the maximum number of dirty pages allowed in a zone, based
322  * on the zone's dirtyable memory.
323  */
324 static unsigned long zone_dirty_limit(struct zone *zone)
325 {
326 	unsigned long zone_memory = zone_dirtyable_memory(zone);
327 	struct task_struct *tsk = current;
328 	unsigned long dirty;
329 
330 	if (vm_dirty_bytes)
331 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
332 			zone_memory / global_dirtyable_memory();
333 	else
334 		dirty = vm_dirty_ratio * zone_memory / 100;
335 
336 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
337 		dirty += dirty / 4;
338 
339 	return dirty;
340 }
341 
342 /**
343  * zone_dirty_ok - tells whether a zone is within its dirty limits
344  * @zone: the zone to check
345  *
346  * Returns %true when the dirty pages in @zone are within the zone's
347  * dirty limit, %false if the limit is exceeded.
348  */
349 bool zone_dirty_ok(struct zone *zone)
350 {
351 	unsigned long limit = zone_dirty_limit(zone);
352 
353 	return zone_page_state(zone, NR_FILE_DIRTY) +
354 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
355 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
356 }
357 
358 int dirty_background_ratio_handler(struct ctl_table *table, int write,
359 		void __user *buffer, size_t *lenp,
360 		loff_t *ppos)
361 {
362 	int ret;
363 
364 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
365 	if (ret == 0 && write)
366 		dirty_background_bytes = 0;
367 	return ret;
368 }
369 
370 int dirty_background_bytes_handler(struct ctl_table *table, int write,
371 		void __user *buffer, size_t *lenp,
372 		loff_t *ppos)
373 {
374 	int ret;
375 
376 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
377 	if (ret == 0 && write)
378 		dirty_background_ratio = 0;
379 	return ret;
380 }
381 
382 int dirty_ratio_handler(struct ctl_table *table, int write,
383 		void __user *buffer, size_t *lenp,
384 		loff_t *ppos)
385 {
386 	int old_ratio = vm_dirty_ratio;
387 	int ret;
388 
389 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
390 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
391 		writeback_set_ratelimit();
392 		vm_dirty_bytes = 0;
393 	}
394 	return ret;
395 }
396 
397 int dirty_bytes_handler(struct ctl_table *table, int write,
398 		void __user *buffer, size_t *lenp,
399 		loff_t *ppos)
400 {
401 	unsigned long old_bytes = vm_dirty_bytes;
402 	int ret;
403 
404 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
405 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
406 		writeback_set_ratelimit();
407 		vm_dirty_ratio = 0;
408 	}
409 	return ret;
410 }
411 
412 static unsigned long wp_next_time(unsigned long cur_time)
413 {
414 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
415 	/* 0 has a special meaning... */
416 	if (!cur_time)
417 		return 1;
418 	return cur_time;
419 }
420 
421 /*
422  * Increment the BDI's writeout completion count and the global writeout
423  * completion count. Called from test_clear_page_writeback().
424  */
425 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
426 {
427 	__inc_bdi_stat(bdi, BDI_WRITTEN);
428 	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
429 			       bdi->max_prop_frac);
430 	/* First event after period switching was turned off? */
431 	if (!unlikely(writeout_period_time)) {
432 		/*
433 		 * We can race with other __bdi_writeout_inc calls here but
434 		 * it does not cause any harm since the resulting time when
435 		 * timer will fire and what is in writeout_period_time will be
436 		 * roughly the same.
437 		 */
438 		writeout_period_time = wp_next_time(jiffies);
439 		mod_timer(&writeout_period_timer, writeout_period_time);
440 	}
441 }
442 
443 void bdi_writeout_inc(struct backing_dev_info *bdi)
444 {
445 	unsigned long flags;
446 
447 	local_irq_save(flags);
448 	__bdi_writeout_inc(bdi);
449 	local_irq_restore(flags);
450 }
451 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
452 
453 /*
454  * Obtain an accurate fraction of the BDI's portion.
455  */
456 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
457 		long *numerator, long *denominator)
458 {
459 	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
460 				numerator, denominator);
461 }
462 
463 /*
464  * On idle system, we can be called long after we scheduled because we use
465  * deferred timers so count with missed periods.
466  */
467 static void writeout_period(unsigned long t)
468 {
469 	int miss_periods = (jiffies - writeout_period_time) /
470 						 VM_COMPLETIONS_PERIOD_LEN;
471 
472 	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
473 		writeout_period_time = wp_next_time(writeout_period_time +
474 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
475 		mod_timer(&writeout_period_timer, writeout_period_time);
476 	} else {
477 		/*
478 		 * Aging has zeroed all fractions. Stop wasting CPU on period
479 		 * updates.
480 		 */
481 		writeout_period_time = 0;
482 	}
483 }
484 
485 /*
486  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
487  * registered backing devices, which, for obvious reasons, can not
488  * exceed 100%.
489  */
490 static unsigned int bdi_min_ratio;
491 
492 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
493 {
494 	int ret = 0;
495 
496 	spin_lock_bh(&bdi_lock);
497 	if (min_ratio > bdi->max_ratio) {
498 		ret = -EINVAL;
499 	} else {
500 		min_ratio -= bdi->min_ratio;
501 		if (bdi_min_ratio + min_ratio < 100) {
502 			bdi_min_ratio += min_ratio;
503 			bdi->min_ratio += min_ratio;
504 		} else {
505 			ret = -EINVAL;
506 		}
507 	}
508 	spin_unlock_bh(&bdi_lock);
509 
510 	return ret;
511 }
512 
513 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
514 {
515 	int ret = 0;
516 
517 	if (max_ratio > 100)
518 		return -EINVAL;
519 
520 	spin_lock_bh(&bdi_lock);
521 	if (bdi->min_ratio > max_ratio) {
522 		ret = -EINVAL;
523 	} else {
524 		bdi->max_ratio = max_ratio;
525 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
526 	}
527 	spin_unlock_bh(&bdi_lock);
528 
529 	return ret;
530 }
531 EXPORT_SYMBOL(bdi_set_max_ratio);
532 
533 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
534 					   unsigned long bg_thresh)
535 {
536 	return (thresh + bg_thresh) / 2;
537 }
538 
539 static unsigned long hard_dirty_limit(unsigned long thresh)
540 {
541 	return max(thresh, global_dirty_limit);
542 }
543 
544 /**
545  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
546  * @bdi: the backing_dev_info to query
547  * @dirty: global dirty limit in pages
548  *
549  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
550  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
551  *
552  * Note that balance_dirty_pages() will only seriously take it as a hard limit
553  * when sleeping max_pause per page is not enough to keep the dirty pages under
554  * control. For example, when the device is completely stalled due to some error
555  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
556  * In the other normal situations, it acts more gently by throttling the tasks
557  * more (rather than completely block them) when the bdi dirty pages go high.
558  *
559  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
560  * - starving fast devices
561  * - piling up dirty pages (that will take long time to sync) on slow devices
562  *
563  * The bdi's share of dirty limit will be adapting to its throughput and
564  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
565  */
566 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
567 {
568 	u64 bdi_dirty;
569 	long numerator, denominator;
570 
571 	/*
572 	 * Calculate this BDI's share of the dirty ratio.
573 	 */
574 	bdi_writeout_fraction(bdi, &numerator, &denominator);
575 
576 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
577 	bdi_dirty *= numerator;
578 	do_div(bdi_dirty, denominator);
579 
580 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
581 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
582 		bdi_dirty = dirty * bdi->max_ratio / 100;
583 
584 	return bdi_dirty;
585 }
586 
587 /*
588  *                           setpoint - dirty 3
589  *        f(dirty) := 1.0 + (----------------)
590  *                           limit - setpoint
591  *
592  * it's a 3rd order polynomial that subjects to
593  *
594  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
595  * (2) f(setpoint) = 1.0 => the balance point
596  * (3) f(limit)    = 0   => the hard limit
597  * (4) df/dx      <= 0	 => negative feedback control
598  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
599  *     => fast response on large errors; small oscillation near setpoint
600  */
601 static inline long long pos_ratio_polynom(unsigned long setpoint,
602 					  unsigned long dirty,
603 					  unsigned long limit)
604 {
605 	long long pos_ratio;
606 	long x;
607 
608 	x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
609 		    limit - setpoint + 1);
610 	pos_ratio = x;
611 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
612 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
613 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
614 
615 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
616 }
617 
618 /*
619  * Dirty position control.
620  *
621  * (o) global/bdi setpoints
622  *
623  * We want the dirty pages be balanced around the global/bdi setpoints.
624  * When the number of dirty pages is higher/lower than the setpoint, the
625  * dirty position control ratio (and hence task dirty ratelimit) will be
626  * decreased/increased to bring the dirty pages back to the setpoint.
627  *
628  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
629  *
630  *     if (dirty < setpoint) scale up   pos_ratio
631  *     if (dirty > setpoint) scale down pos_ratio
632  *
633  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
634  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
635  *
636  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
637  *
638  * (o) global control line
639  *
640  *     ^ pos_ratio
641  *     |
642  *     |            |<===== global dirty control scope ======>|
643  * 2.0 .............*
644  *     |            .*
645  *     |            . *
646  *     |            .   *
647  *     |            .     *
648  *     |            .        *
649  *     |            .            *
650  * 1.0 ................................*
651  *     |            .                  .     *
652  *     |            .                  .          *
653  *     |            .                  .              *
654  *     |            .                  .                 *
655  *     |            .                  .                    *
656  *   0 +------------.------------------.----------------------*------------->
657  *           freerun^          setpoint^                 limit^   dirty pages
658  *
659  * (o) bdi control line
660  *
661  *     ^ pos_ratio
662  *     |
663  *     |            *
664  *     |              *
665  *     |                *
666  *     |                  *
667  *     |                    * |<=========== span ============>|
668  * 1.0 .......................*
669  *     |                      . *
670  *     |                      .   *
671  *     |                      .     *
672  *     |                      .       *
673  *     |                      .         *
674  *     |                      .           *
675  *     |                      .             *
676  *     |                      .               *
677  *     |                      .                 *
678  *     |                      .                   *
679  *     |                      .                     *
680  * 1/4 ...............................................* * * * * * * * * * * *
681  *     |                      .                         .
682  *     |                      .                           .
683  *     |                      .                             .
684  *   0 +----------------------.-------------------------------.------------->
685  *                bdi_setpoint^                    x_intercept^
686  *
687  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
688  * be smoothly throttled down to normal if it starts high in situations like
689  * - start writing to a slow SD card and a fast disk at the same time. The SD
690  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
691  * - the bdi dirty thresh drops quickly due to change of JBOD workload
692  */
693 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
694 					unsigned long thresh,
695 					unsigned long bg_thresh,
696 					unsigned long dirty,
697 					unsigned long bdi_thresh,
698 					unsigned long bdi_dirty)
699 {
700 	unsigned long write_bw = bdi->avg_write_bandwidth;
701 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
702 	unsigned long limit = hard_dirty_limit(thresh);
703 	unsigned long x_intercept;
704 	unsigned long setpoint;		/* dirty pages' target balance point */
705 	unsigned long bdi_setpoint;
706 	unsigned long span;
707 	long long pos_ratio;		/* for scaling up/down the rate limit */
708 	long x;
709 
710 	if (unlikely(dirty >= limit))
711 		return 0;
712 
713 	/*
714 	 * global setpoint
715 	 *
716 	 * See comment for pos_ratio_polynom().
717 	 */
718 	setpoint = (freerun + limit) / 2;
719 	pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
720 
721 	/*
722 	 * The strictlimit feature is a tool preventing mistrusted filesystems
723 	 * from growing a large number of dirty pages before throttling. For
724 	 * such filesystems balance_dirty_pages always checks bdi counters
725 	 * against bdi limits. Even if global "nr_dirty" is under "freerun".
726 	 * This is especially important for fuse which sets bdi->max_ratio to
727 	 * 1% by default. Without strictlimit feature, fuse writeback may
728 	 * consume arbitrary amount of RAM because it is accounted in
729 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
730 	 *
731 	 * Here, in bdi_position_ratio(), we calculate pos_ratio based on
732 	 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
733 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
734 	 * limits are set by default to 10% and 20% (background and throttle).
735 	 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
736 	 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
737 	 * about ~6K pages (as the average of background and throttle bdi
738 	 * limits). The 3rd order polynomial will provide positive feedback if
739 	 * bdi_dirty is under bdi_setpoint and vice versa.
740 	 *
741 	 * Note, that we cannot use global counters in these calculations
742 	 * because we want to throttle process writing to a strictlimit BDI
743 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
744 	 * in the example above).
745 	 */
746 	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
747 		long long bdi_pos_ratio;
748 		unsigned long bdi_bg_thresh;
749 
750 		if (bdi_dirty < 8)
751 			return min_t(long long, pos_ratio * 2,
752 				     2 << RATELIMIT_CALC_SHIFT);
753 
754 		if (bdi_dirty >= bdi_thresh)
755 			return 0;
756 
757 		bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
758 		bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
759 						     bdi_bg_thresh);
760 
761 		if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
762 			return 0;
763 
764 		bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
765 						  bdi_thresh);
766 
767 		/*
768 		 * Typically, for strictlimit case, bdi_setpoint << setpoint
769 		 * and pos_ratio >> bdi_pos_ratio. In the other words global
770 		 * state ("dirty") is not limiting factor and we have to
771 		 * make decision based on bdi counters. But there is an
772 		 * important case when global pos_ratio should get precedence:
773 		 * global limits are exceeded (e.g. due to activities on other
774 		 * BDIs) while given strictlimit BDI is below limit.
775 		 *
776 		 * "pos_ratio * bdi_pos_ratio" would work for the case above,
777 		 * but it would look too non-natural for the case of all
778 		 * activity in the system coming from a single strictlimit BDI
779 		 * with bdi->max_ratio == 100%.
780 		 *
781 		 * Note that min() below somewhat changes the dynamics of the
782 		 * control system. Normally, pos_ratio value can be well over 3
783 		 * (when globally we are at freerun and bdi is well below bdi
784 		 * setpoint). Now the maximum pos_ratio in the same situation
785 		 * is 2. We might want to tweak this if we observe the control
786 		 * system is too slow to adapt.
787 		 */
788 		return min(pos_ratio, bdi_pos_ratio);
789 	}
790 
791 	/*
792 	 * We have computed basic pos_ratio above based on global situation. If
793 	 * the bdi is over/under its share of dirty pages, we want to scale
794 	 * pos_ratio further down/up. That is done by the following mechanism.
795 	 */
796 
797 	/*
798 	 * bdi setpoint
799 	 *
800 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
801 	 *
802 	 *                        x_intercept - bdi_dirty
803 	 *                     := --------------------------
804 	 *                        x_intercept - bdi_setpoint
805 	 *
806 	 * The main bdi control line is a linear function that subjects to
807 	 *
808 	 * (1) f(bdi_setpoint) = 1.0
809 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
810 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
811 	 *
812 	 * For single bdi case, the dirty pages are observed to fluctuate
813 	 * regularly within range
814 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
815 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
816 	 * fluctuation range for pos_ratio.
817 	 *
818 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
819 	 * own size, so move the slope over accordingly and choose a slope that
820 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
821 	 */
822 	if (unlikely(bdi_thresh > thresh))
823 		bdi_thresh = thresh;
824 	/*
825 	 * It's very possible that bdi_thresh is close to 0 not because the
826 	 * device is slow, but that it has remained inactive for long time.
827 	 * Honour such devices a reasonable good (hopefully IO efficient)
828 	 * threshold, so that the occasional writes won't be blocked and active
829 	 * writes can rampup the threshold quickly.
830 	 */
831 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
832 	/*
833 	 * scale global setpoint to bdi's:
834 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
835 	 */
836 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
837 	bdi_setpoint = setpoint * (u64)x >> 16;
838 	/*
839 	 * Use span=(8*write_bw) in single bdi case as indicated by
840 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
841 	 *
842 	 *        bdi_thresh                    thresh - bdi_thresh
843 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
844 	 *          thresh                            thresh
845 	 */
846 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
847 	x_intercept = bdi_setpoint + span;
848 
849 	if (bdi_dirty < x_intercept - span / 4) {
850 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
851 				    x_intercept - bdi_setpoint + 1);
852 	} else
853 		pos_ratio /= 4;
854 
855 	/*
856 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
857 	 * It may push the desired control point of global dirty pages higher
858 	 * than setpoint.
859 	 */
860 	x_intercept = bdi_thresh / 2;
861 	if (bdi_dirty < x_intercept) {
862 		if (bdi_dirty > x_intercept / 8)
863 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
864 		else
865 			pos_ratio *= 8;
866 	}
867 
868 	return pos_ratio;
869 }
870 
871 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
872 				       unsigned long elapsed,
873 				       unsigned long written)
874 {
875 	const unsigned long period = roundup_pow_of_two(3 * HZ);
876 	unsigned long avg = bdi->avg_write_bandwidth;
877 	unsigned long old = bdi->write_bandwidth;
878 	u64 bw;
879 
880 	/*
881 	 * bw = written * HZ / elapsed
882 	 *
883 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
884 	 * write_bandwidth = ---------------------------------------------------
885 	 *                                          period
886 	 */
887 	bw = written - bdi->written_stamp;
888 	bw *= HZ;
889 	if (unlikely(elapsed > period)) {
890 		do_div(bw, elapsed);
891 		avg = bw;
892 		goto out;
893 	}
894 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
895 	bw >>= ilog2(period);
896 
897 	/*
898 	 * one more level of smoothing, for filtering out sudden spikes
899 	 */
900 	if (avg > old && old >= (unsigned long)bw)
901 		avg -= (avg - old) >> 3;
902 
903 	if (avg < old && old <= (unsigned long)bw)
904 		avg += (old - avg) >> 3;
905 
906 out:
907 	bdi->write_bandwidth = bw;
908 	bdi->avg_write_bandwidth = avg;
909 }
910 
911 /*
912  * The global dirtyable memory and dirty threshold could be suddenly knocked
913  * down by a large amount (eg. on the startup of KVM in a swapless system).
914  * This may throw the system into deep dirty exceeded state and throttle
915  * heavy/light dirtiers alike. To retain good responsiveness, maintain
916  * global_dirty_limit for tracking slowly down to the knocked down dirty
917  * threshold.
918  */
919 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
920 {
921 	unsigned long limit = global_dirty_limit;
922 
923 	/*
924 	 * Follow up in one step.
925 	 */
926 	if (limit < thresh) {
927 		limit = thresh;
928 		goto update;
929 	}
930 
931 	/*
932 	 * Follow down slowly. Use the higher one as the target, because thresh
933 	 * may drop below dirty. This is exactly the reason to introduce
934 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
935 	 */
936 	thresh = max(thresh, dirty);
937 	if (limit > thresh) {
938 		limit -= (limit - thresh) >> 5;
939 		goto update;
940 	}
941 	return;
942 update:
943 	global_dirty_limit = limit;
944 }
945 
946 static void global_update_bandwidth(unsigned long thresh,
947 				    unsigned long dirty,
948 				    unsigned long now)
949 {
950 	static DEFINE_SPINLOCK(dirty_lock);
951 	static unsigned long update_time;
952 
953 	/*
954 	 * check locklessly first to optimize away locking for the most time
955 	 */
956 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
957 		return;
958 
959 	spin_lock(&dirty_lock);
960 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
961 		update_dirty_limit(thresh, dirty);
962 		update_time = now;
963 	}
964 	spin_unlock(&dirty_lock);
965 }
966 
967 /*
968  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
969  *
970  * Normal bdi tasks will be curbed at or below it in long term.
971  * Obviously it should be around (write_bw / N) when there are N dd tasks.
972  */
973 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
974 				       unsigned long thresh,
975 				       unsigned long bg_thresh,
976 				       unsigned long dirty,
977 				       unsigned long bdi_thresh,
978 				       unsigned long bdi_dirty,
979 				       unsigned long dirtied,
980 				       unsigned long elapsed)
981 {
982 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
983 	unsigned long limit = hard_dirty_limit(thresh);
984 	unsigned long setpoint = (freerun + limit) / 2;
985 	unsigned long write_bw = bdi->avg_write_bandwidth;
986 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
987 	unsigned long dirty_rate;
988 	unsigned long task_ratelimit;
989 	unsigned long balanced_dirty_ratelimit;
990 	unsigned long pos_ratio;
991 	unsigned long step;
992 	unsigned long x;
993 
994 	/*
995 	 * The dirty rate will match the writeout rate in long term, except
996 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
997 	 */
998 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
999 
1000 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
1001 				       bdi_thresh, bdi_dirty);
1002 	/*
1003 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1004 	 */
1005 	task_ratelimit = (u64)dirty_ratelimit *
1006 					pos_ratio >> RATELIMIT_CALC_SHIFT;
1007 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1008 
1009 	/*
1010 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1011 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
1012 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1013 	 * formula will yield the balanced rate limit (write_bw / N).
1014 	 *
1015 	 * Note that the expanded form is not a pure rate feedback:
1016 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1017 	 * but also takes pos_ratio into account:
1018 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1019 	 *
1020 	 * (1) is not realistic because pos_ratio also takes part in balancing
1021 	 * the dirty rate.  Consider the state
1022 	 *	pos_ratio = 0.5						     (3)
1023 	 *	rate = 2 * (write_bw / N)				     (4)
1024 	 * If (1) is used, it will stuck in that state! Because each dd will
1025 	 * be throttled at
1026 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1027 	 * yielding
1028 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1029 	 * put (6) into (1) we get
1030 	 *	rate_(i+1) = rate_(i)					     (7)
1031 	 *
1032 	 * So we end up using (2) to always keep
1033 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1034 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1035 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1036 	 * the dirty count meet the setpoint, but also where the slope of
1037 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1038 	 */
1039 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1040 					   dirty_rate | 1);
1041 	/*
1042 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1043 	 */
1044 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1045 		balanced_dirty_ratelimit = write_bw;
1046 
1047 	/*
1048 	 * We could safely do this and return immediately:
1049 	 *
1050 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1051 	 *
1052 	 * However to get a more stable dirty_ratelimit, the below elaborated
1053 	 * code makes use of task_ratelimit to filter out singular points and
1054 	 * limit the step size.
1055 	 *
1056 	 * The below code essentially only uses the relative value of
1057 	 *
1058 	 *	task_ratelimit - dirty_ratelimit
1059 	 *	= (pos_ratio - 1) * dirty_ratelimit
1060 	 *
1061 	 * which reflects the direction and size of dirty position error.
1062 	 */
1063 
1064 	/*
1065 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1066 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1067 	 * For example, when
1068 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1069 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1070 	 * lowering dirty_ratelimit will help meet both the position and rate
1071 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1072 	 * only help meet the rate target. After all, what the users ultimately
1073 	 * feel and care are stable dirty rate and small position error.
1074 	 *
1075 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1076 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1077 	 * keeps jumping around randomly and can even leap far away at times
1078 	 * due to the small 200ms estimation period of dirty_rate (we want to
1079 	 * keep that period small to reduce time lags).
1080 	 */
1081 	step = 0;
1082 
1083 	/*
1084 	 * For strictlimit case, calculations above were based on bdi counters
1085 	 * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1086 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1087 	 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1088 	 * "dirty" and bdi_setpoint as "setpoint".
1089 	 *
1090 	 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1091 	 * it's possible that bdi_thresh is close to zero due to inactivity
1092 	 * of backing device (see the implementation of bdi_dirty_limit()).
1093 	 */
1094 	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1095 		dirty = bdi_dirty;
1096 		if (bdi_dirty < 8)
1097 			setpoint = bdi_dirty + 1;
1098 		else
1099 			setpoint = (bdi_thresh +
1100 				    bdi_dirty_limit(bdi, bg_thresh)) / 2;
1101 	}
1102 
1103 	if (dirty < setpoint) {
1104 		x = min(bdi->balanced_dirty_ratelimit,
1105 			 min(balanced_dirty_ratelimit, task_ratelimit));
1106 		if (dirty_ratelimit < x)
1107 			step = x - dirty_ratelimit;
1108 	} else {
1109 		x = max(bdi->balanced_dirty_ratelimit,
1110 			 max(balanced_dirty_ratelimit, task_ratelimit));
1111 		if (dirty_ratelimit > x)
1112 			step = dirty_ratelimit - x;
1113 	}
1114 
1115 	/*
1116 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1117 	 * rate itself is constantly fluctuating. So decrease the track speed
1118 	 * when it gets close to the target. Helps eliminate pointless tremors.
1119 	 */
1120 	step >>= dirty_ratelimit / (2 * step + 1);
1121 	/*
1122 	 * Limit the tracking speed to avoid overshooting.
1123 	 */
1124 	step = (step + 7) / 8;
1125 
1126 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1127 		dirty_ratelimit += step;
1128 	else
1129 		dirty_ratelimit -= step;
1130 
1131 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1132 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1133 
1134 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1135 }
1136 
1137 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1138 			    unsigned long thresh,
1139 			    unsigned long bg_thresh,
1140 			    unsigned long dirty,
1141 			    unsigned long bdi_thresh,
1142 			    unsigned long bdi_dirty,
1143 			    unsigned long start_time)
1144 {
1145 	unsigned long now = jiffies;
1146 	unsigned long elapsed = now - bdi->bw_time_stamp;
1147 	unsigned long dirtied;
1148 	unsigned long written;
1149 
1150 	/*
1151 	 * rate-limit, only update once every 200ms.
1152 	 */
1153 	if (elapsed < BANDWIDTH_INTERVAL)
1154 		return;
1155 
1156 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1157 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1158 
1159 	/*
1160 	 * Skip quiet periods when disk bandwidth is under-utilized.
1161 	 * (at least 1s idle time between two flusher runs)
1162 	 */
1163 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1164 		goto snapshot;
1165 
1166 	if (thresh) {
1167 		global_update_bandwidth(thresh, dirty, now);
1168 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1169 					   bdi_thresh, bdi_dirty,
1170 					   dirtied, elapsed);
1171 	}
1172 	bdi_update_write_bandwidth(bdi, elapsed, written);
1173 
1174 snapshot:
1175 	bdi->dirtied_stamp = dirtied;
1176 	bdi->written_stamp = written;
1177 	bdi->bw_time_stamp = now;
1178 }
1179 
1180 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1181 				 unsigned long thresh,
1182 				 unsigned long bg_thresh,
1183 				 unsigned long dirty,
1184 				 unsigned long bdi_thresh,
1185 				 unsigned long bdi_dirty,
1186 				 unsigned long start_time)
1187 {
1188 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1189 		return;
1190 	spin_lock(&bdi->wb.list_lock);
1191 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1192 			       bdi_thresh, bdi_dirty, start_time);
1193 	spin_unlock(&bdi->wb.list_lock);
1194 }
1195 
1196 /*
1197  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1198  * will look to see if it needs to start dirty throttling.
1199  *
1200  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1201  * global_page_state() too often. So scale it near-sqrt to the safety margin
1202  * (the number of pages we may dirty without exceeding the dirty limits).
1203  */
1204 static unsigned long dirty_poll_interval(unsigned long dirty,
1205 					 unsigned long thresh)
1206 {
1207 	if (thresh > dirty)
1208 		return 1UL << (ilog2(thresh - dirty) >> 1);
1209 
1210 	return 1;
1211 }
1212 
1213 static long bdi_max_pause(struct backing_dev_info *bdi,
1214 			  unsigned long bdi_dirty)
1215 {
1216 	long bw = bdi->avg_write_bandwidth;
1217 	long t;
1218 
1219 	/*
1220 	 * Limit pause time for small memory systems. If sleeping for too long
1221 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1222 	 * idle.
1223 	 *
1224 	 * 8 serves as the safety ratio.
1225 	 */
1226 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1227 	t++;
1228 
1229 	return min_t(long, t, MAX_PAUSE);
1230 }
1231 
1232 static long bdi_min_pause(struct backing_dev_info *bdi,
1233 			  long max_pause,
1234 			  unsigned long task_ratelimit,
1235 			  unsigned long dirty_ratelimit,
1236 			  int *nr_dirtied_pause)
1237 {
1238 	long hi = ilog2(bdi->avg_write_bandwidth);
1239 	long lo = ilog2(bdi->dirty_ratelimit);
1240 	long t;		/* target pause */
1241 	long pause;	/* estimated next pause */
1242 	int pages;	/* target nr_dirtied_pause */
1243 
1244 	/* target for 10ms pause on 1-dd case */
1245 	t = max(1, HZ / 100);
1246 
1247 	/*
1248 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1249 	 * overheads.
1250 	 *
1251 	 * (N * 10ms) on 2^N concurrent tasks.
1252 	 */
1253 	if (hi > lo)
1254 		t += (hi - lo) * (10 * HZ) / 1024;
1255 
1256 	/*
1257 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1258 	 * on the much more stable dirty_ratelimit. However the next pause time
1259 	 * will be computed based on task_ratelimit and the two rate limits may
1260 	 * depart considerably at some time. Especially if task_ratelimit goes
1261 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1262 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1263 	 * result task_ratelimit won't be executed faithfully, which could
1264 	 * eventually bring down dirty_ratelimit.
1265 	 *
1266 	 * We apply two rules to fix it up:
1267 	 * 1) try to estimate the next pause time and if necessary, use a lower
1268 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1269 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1270 	 * 2) limit the target pause time to max_pause/2, so that the normal
1271 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1272 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1273 	 */
1274 	t = min(t, 1 + max_pause / 2);
1275 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1276 
1277 	/*
1278 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1279 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1280 	 * When the 16 consecutive reads are often interrupted by some dirty
1281 	 * throttling pause during the async writes, cfq will go into idles
1282 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1283 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1284 	 */
1285 	if (pages < DIRTY_POLL_THRESH) {
1286 		t = max_pause;
1287 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1288 		if (pages > DIRTY_POLL_THRESH) {
1289 			pages = DIRTY_POLL_THRESH;
1290 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1291 		}
1292 	}
1293 
1294 	pause = HZ * pages / (task_ratelimit + 1);
1295 	if (pause > max_pause) {
1296 		t = max_pause;
1297 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1298 	}
1299 
1300 	*nr_dirtied_pause = pages;
1301 	/*
1302 	 * The minimal pause time will normally be half the target pause time.
1303 	 */
1304 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1305 }
1306 
1307 static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1308 				    unsigned long dirty_thresh,
1309 				    unsigned long background_thresh,
1310 				    unsigned long *bdi_dirty,
1311 				    unsigned long *bdi_thresh,
1312 				    unsigned long *bdi_bg_thresh)
1313 {
1314 	unsigned long bdi_reclaimable;
1315 
1316 	/*
1317 	 * bdi_thresh is not treated as some limiting factor as
1318 	 * dirty_thresh, due to reasons
1319 	 * - in JBOD setup, bdi_thresh can fluctuate a lot
1320 	 * - in a system with HDD and USB key, the USB key may somehow
1321 	 *   go into state (bdi_dirty >> bdi_thresh) either because
1322 	 *   bdi_dirty starts high, or because bdi_thresh drops low.
1323 	 *   In this case we don't want to hard throttle the USB key
1324 	 *   dirtiers for 100 seconds until bdi_dirty drops under
1325 	 *   bdi_thresh. Instead the auxiliary bdi control line in
1326 	 *   bdi_position_ratio() will let the dirtier task progress
1327 	 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1328 	 */
1329 	*bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1330 
1331 	if (bdi_bg_thresh)
1332 		*bdi_bg_thresh = div_u64((u64)*bdi_thresh *
1333 					 background_thresh,
1334 					 dirty_thresh);
1335 
1336 	/*
1337 	 * In order to avoid the stacked BDI deadlock we need
1338 	 * to ensure we accurately count the 'dirty' pages when
1339 	 * the threshold is low.
1340 	 *
1341 	 * Otherwise it would be possible to get thresh+n pages
1342 	 * reported dirty, even though there are thresh-m pages
1343 	 * actually dirty; with m+n sitting in the percpu
1344 	 * deltas.
1345 	 */
1346 	if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1347 		bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1348 		*bdi_dirty = bdi_reclaimable +
1349 			bdi_stat_sum(bdi, BDI_WRITEBACK);
1350 	} else {
1351 		bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1352 		*bdi_dirty = bdi_reclaimable +
1353 			bdi_stat(bdi, BDI_WRITEBACK);
1354 	}
1355 }
1356 
1357 /*
1358  * balance_dirty_pages() must be called by processes which are generating dirty
1359  * data.  It looks at the number of dirty pages in the machine and will force
1360  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1361  * If we're over `background_thresh' then the writeback threads are woken to
1362  * perform some writeout.
1363  */
1364 static void balance_dirty_pages(struct address_space *mapping,
1365 				unsigned long pages_dirtied)
1366 {
1367 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1368 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1369 	unsigned long background_thresh;
1370 	unsigned long dirty_thresh;
1371 	long period;
1372 	long pause;
1373 	long max_pause;
1374 	long min_pause;
1375 	int nr_dirtied_pause;
1376 	bool dirty_exceeded = false;
1377 	unsigned long task_ratelimit;
1378 	unsigned long dirty_ratelimit;
1379 	unsigned long pos_ratio;
1380 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1381 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1382 	unsigned long start_time = jiffies;
1383 
1384 	for (;;) {
1385 		unsigned long now = jiffies;
1386 		unsigned long uninitialized_var(bdi_thresh);
1387 		unsigned long thresh;
1388 		unsigned long uninitialized_var(bdi_dirty);
1389 		unsigned long dirty;
1390 		unsigned long bg_thresh;
1391 
1392 		/*
1393 		 * Unstable writes are a feature of certain networked
1394 		 * filesystems (i.e. NFS) in which data may have been
1395 		 * written to the server's write cache, but has not yet
1396 		 * been flushed to permanent storage.
1397 		 */
1398 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1399 					global_page_state(NR_UNSTABLE_NFS);
1400 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1401 
1402 		global_dirty_limits(&background_thresh, &dirty_thresh);
1403 
1404 		if (unlikely(strictlimit)) {
1405 			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1406 					 &bdi_dirty, &bdi_thresh, &bg_thresh);
1407 
1408 			dirty = bdi_dirty;
1409 			thresh = bdi_thresh;
1410 		} else {
1411 			dirty = nr_dirty;
1412 			thresh = dirty_thresh;
1413 			bg_thresh = background_thresh;
1414 		}
1415 
1416 		/*
1417 		 * Throttle it only when the background writeback cannot
1418 		 * catch-up. This avoids (excessively) small writeouts
1419 		 * when the bdi limits are ramping up in case of !strictlimit.
1420 		 *
1421 		 * In strictlimit case make decision based on the bdi counters
1422 		 * and limits. Small writeouts when the bdi limits are ramping
1423 		 * up are the price we consciously pay for strictlimit-ing.
1424 		 */
1425 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1426 			current->dirty_paused_when = now;
1427 			current->nr_dirtied = 0;
1428 			current->nr_dirtied_pause =
1429 				dirty_poll_interval(dirty, thresh);
1430 			break;
1431 		}
1432 
1433 		if (unlikely(!writeback_in_progress(bdi)))
1434 			bdi_start_background_writeback(bdi);
1435 
1436 		if (!strictlimit)
1437 			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1438 					 &bdi_dirty, &bdi_thresh, NULL);
1439 
1440 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1441 				 ((nr_dirty > dirty_thresh) || strictlimit);
1442 		if (dirty_exceeded && !bdi->dirty_exceeded)
1443 			bdi->dirty_exceeded = 1;
1444 
1445 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1446 				     nr_dirty, bdi_thresh, bdi_dirty,
1447 				     start_time);
1448 
1449 		dirty_ratelimit = bdi->dirty_ratelimit;
1450 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1451 					       background_thresh, nr_dirty,
1452 					       bdi_thresh, bdi_dirty);
1453 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1454 							RATELIMIT_CALC_SHIFT;
1455 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1456 		min_pause = bdi_min_pause(bdi, max_pause,
1457 					  task_ratelimit, dirty_ratelimit,
1458 					  &nr_dirtied_pause);
1459 
1460 		if (unlikely(task_ratelimit == 0)) {
1461 			period = max_pause;
1462 			pause = max_pause;
1463 			goto pause;
1464 		}
1465 		period = HZ * pages_dirtied / task_ratelimit;
1466 		pause = period;
1467 		if (current->dirty_paused_when)
1468 			pause -= now - current->dirty_paused_when;
1469 		/*
1470 		 * For less than 1s think time (ext3/4 may block the dirtier
1471 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1472 		 * however at much less frequency), try to compensate it in
1473 		 * future periods by updating the virtual time; otherwise just
1474 		 * do a reset, as it may be a light dirtier.
1475 		 */
1476 		if (pause < min_pause) {
1477 			trace_balance_dirty_pages(bdi,
1478 						  dirty_thresh,
1479 						  background_thresh,
1480 						  nr_dirty,
1481 						  bdi_thresh,
1482 						  bdi_dirty,
1483 						  dirty_ratelimit,
1484 						  task_ratelimit,
1485 						  pages_dirtied,
1486 						  period,
1487 						  min(pause, 0L),
1488 						  start_time);
1489 			if (pause < -HZ) {
1490 				current->dirty_paused_when = now;
1491 				current->nr_dirtied = 0;
1492 			} else if (period) {
1493 				current->dirty_paused_when += period;
1494 				current->nr_dirtied = 0;
1495 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1496 				current->nr_dirtied_pause += pages_dirtied;
1497 			break;
1498 		}
1499 		if (unlikely(pause > max_pause)) {
1500 			/* for occasional dropped task_ratelimit */
1501 			now += min(pause - max_pause, max_pause);
1502 			pause = max_pause;
1503 		}
1504 
1505 pause:
1506 		trace_balance_dirty_pages(bdi,
1507 					  dirty_thresh,
1508 					  background_thresh,
1509 					  nr_dirty,
1510 					  bdi_thresh,
1511 					  bdi_dirty,
1512 					  dirty_ratelimit,
1513 					  task_ratelimit,
1514 					  pages_dirtied,
1515 					  period,
1516 					  pause,
1517 					  start_time);
1518 		__set_current_state(TASK_KILLABLE);
1519 		io_schedule_timeout(pause);
1520 
1521 		current->dirty_paused_when = now + pause;
1522 		current->nr_dirtied = 0;
1523 		current->nr_dirtied_pause = nr_dirtied_pause;
1524 
1525 		/*
1526 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1527 		 * also keep "1000+ dd on a slow USB stick" under control.
1528 		 */
1529 		if (task_ratelimit)
1530 			break;
1531 
1532 		/*
1533 		 * In the case of an unresponding NFS server and the NFS dirty
1534 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1535 		 * to go through, so that tasks on them still remain responsive.
1536 		 *
1537 		 * In theory 1 page is enough to keep the comsumer-producer
1538 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1539 		 * more page. However bdi_dirty has accounting errors.  So use
1540 		 * the larger and more IO friendly bdi_stat_error.
1541 		 */
1542 		if (bdi_dirty <= bdi_stat_error(bdi))
1543 			break;
1544 
1545 		if (fatal_signal_pending(current))
1546 			break;
1547 	}
1548 
1549 	if (!dirty_exceeded && bdi->dirty_exceeded)
1550 		bdi->dirty_exceeded = 0;
1551 
1552 	if (writeback_in_progress(bdi))
1553 		return;
1554 
1555 	/*
1556 	 * In laptop mode, we wait until hitting the higher threshold before
1557 	 * starting background writeout, and then write out all the way down
1558 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1559 	 *
1560 	 * In normal mode, we start background writeout at the lower
1561 	 * background_thresh, to keep the amount of dirty memory low.
1562 	 */
1563 	if (laptop_mode)
1564 		return;
1565 
1566 	if (nr_reclaimable > background_thresh)
1567 		bdi_start_background_writeback(bdi);
1568 }
1569 
1570 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1571 {
1572 	if (set_page_dirty(page) || page_mkwrite) {
1573 		struct address_space *mapping = page_mapping(page);
1574 
1575 		if (mapping)
1576 			balance_dirty_pages_ratelimited(mapping);
1577 	}
1578 }
1579 
1580 static DEFINE_PER_CPU(int, bdp_ratelimits);
1581 
1582 /*
1583  * Normal tasks are throttled by
1584  *	loop {
1585  *		dirty tsk->nr_dirtied_pause pages;
1586  *		take a snap in balance_dirty_pages();
1587  *	}
1588  * However there is a worst case. If every task exit immediately when dirtied
1589  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1590  * called to throttle the page dirties. The solution is to save the not yet
1591  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1592  * randomly into the running tasks. This works well for the above worst case,
1593  * as the new task will pick up and accumulate the old task's leaked dirty
1594  * count and eventually get throttled.
1595  */
1596 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1597 
1598 /**
1599  * balance_dirty_pages_ratelimited - balance dirty memory state
1600  * @mapping: address_space which was dirtied
1601  *
1602  * Processes which are dirtying memory should call in here once for each page
1603  * which was newly dirtied.  The function will periodically check the system's
1604  * dirty state and will initiate writeback if needed.
1605  *
1606  * On really big machines, get_writeback_state is expensive, so try to avoid
1607  * calling it too often (ratelimiting).  But once we're over the dirty memory
1608  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1609  * from overshooting the limit by (ratelimit_pages) each.
1610  */
1611 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1612 {
1613 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1614 	int ratelimit;
1615 	int *p;
1616 
1617 	if (!bdi_cap_account_dirty(bdi))
1618 		return;
1619 
1620 	ratelimit = current->nr_dirtied_pause;
1621 	if (bdi->dirty_exceeded)
1622 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1623 
1624 	preempt_disable();
1625 	/*
1626 	 * This prevents one CPU to accumulate too many dirtied pages without
1627 	 * calling into balance_dirty_pages(), which can happen when there are
1628 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1629 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1630 	 */
1631 	p =  &__get_cpu_var(bdp_ratelimits);
1632 	if (unlikely(current->nr_dirtied >= ratelimit))
1633 		*p = 0;
1634 	else if (unlikely(*p >= ratelimit_pages)) {
1635 		*p = 0;
1636 		ratelimit = 0;
1637 	}
1638 	/*
1639 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1640 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1641 	 * the dirty throttling and livelock other long-run dirtiers.
1642 	 */
1643 	p = &__get_cpu_var(dirty_throttle_leaks);
1644 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1645 		unsigned long nr_pages_dirtied;
1646 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1647 		*p -= nr_pages_dirtied;
1648 		current->nr_dirtied += nr_pages_dirtied;
1649 	}
1650 	preempt_enable();
1651 
1652 	if (unlikely(current->nr_dirtied >= ratelimit))
1653 		balance_dirty_pages(mapping, current->nr_dirtied);
1654 }
1655 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1656 
1657 void throttle_vm_writeout(gfp_t gfp_mask)
1658 {
1659 	unsigned long background_thresh;
1660 	unsigned long dirty_thresh;
1661 
1662         for ( ; ; ) {
1663 		global_dirty_limits(&background_thresh, &dirty_thresh);
1664 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1665 
1666                 /*
1667                  * Boost the allowable dirty threshold a bit for page
1668                  * allocators so they don't get DoS'ed by heavy writers
1669                  */
1670                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1671 
1672                 if (global_page_state(NR_UNSTABLE_NFS) +
1673 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1674                         	break;
1675                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1676 
1677 		/*
1678 		 * The caller might hold locks which can prevent IO completion
1679 		 * or progress in the filesystem.  So we cannot just sit here
1680 		 * waiting for IO to complete.
1681 		 */
1682 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1683 			break;
1684         }
1685 }
1686 
1687 /*
1688  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1689  */
1690 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1691 	void __user *buffer, size_t *length, loff_t *ppos)
1692 {
1693 	proc_dointvec(table, write, buffer, length, ppos);
1694 	return 0;
1695 }
1696 
1697 #ifdef CONFIG_BLOCK
1698 void laptop_mode_timer_fn(unsigned long data)
1699 {
1700 	struct request_queue *q = (struct request_queue *)data;
1701 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1702 		global_page_state(NR_UNSTABLE_NFS);
1703 
1704 	/*
1705 	 * We want to write everything out, not just down to the dirty
1706 	 * threshold
1707 	 */
1708 	if (bdi_has_dirty_io(&q->backing_dev_info))
1709 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1710 					WB_REASON_LAPTOP_TIMER);
1711 }
1712 
1713 /*
1714  * We've spun up the disk and we're in laptop mode: schedule writeback
1715  * of all dirty data a few seconds from now.  If the flush is already scheduled
1716  * then push it back - the user is still using the disk.
1717  */
1718 void laptop_io_completion(struct backing_dev_info *info)
1719 {
1720 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1721 }
1722 
1723 /*
1724  * We're in laptop mode and we've just synced. The sync's writes will have
1725  * caused another writeback to be scheduled by laptop_io_completion.
1726  * Nothing needs to be written back anymore, so we unschedule the writeback.
1727  */
1728 void laptop_sync_completion(void)
1729 {
1730 	struct backing_dev_info *bdi;
1731 
1732 	rcu_read_lock();
1733 
1734 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1735 		del_timer(&bdi->laptop_mode_wb_timer);
1736 
1737 	rcu_read_unlock();
1738 }
1739 #endif
1740 
1741 /*
1742  * If ratelimit_pages is too high then we can get into dirty-data overload
1743  * if a large number of processes all perform writes at the same time.
1744  * If it is too low then SMP machines will call the (expensive)
1745  * get_writeback_state too often.
1746  *
1747  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1748  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1749  * thresholds.
1750  */
1751 
1752 void writeback_set_ratelimit(void)
1753 {
1754 	unsigned long background_thresh;
1755 	unsigned long dirty_thresh;
1756 	global_dirty_limits(&background_thresh, &dirty_thresh);
1757 	global_dirty_limit = dirty_thresh;
1758 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1759 	if (ratelimit_pages < 16)
1760 		ratelimit_pages = 16;
1761 }
1762 
1763 static int
1764 ratelimit_handler(struct notifier_block *self, unsigned long action,
1765 		  void *hcpu)
1766 {
1767 
1768 	switch (action & ~CPU_TASKS_FROZEN) {
1769 	case CPU_ONLINE:
1770 	case CPU_DEAD:
1771 		writeback_set_ratelimit();
1772 		return NOTIFY_OK;
1773 	default:
1774 		return NOTIFY_DONE;
1775 	}
1776 }
1777 
1778 static struct notifier_block ratelimit_nb = {
1779 	.notifier_call	= ratelimit_handler,
1780 	.next		= NULL,
1781 };
1782 
1783 /*
1784  * Called early on to tune the page writeback dirty limits.
1785  *
1786  * We used to scale dirty pages according to how total memory
1787  * related to pages that could be allocated for buffers (by
1788  * comparing nr_free_buffer_pages() to vm_total_pages.
1789  *
1790  * However, that was when we used "dirty_ratio" to scale with
1791  * all memory, and we don't do that any more. "dirty_ratio"
1792  * is now applied to total non-HIGHPAGE memory (by subtracting
1793  * totalhigh_pages from vm_total_pages), and as such we can't
1794  * get into the old insane situation any more where we had
1795  * large amounts of dirty pages compared to a small amount of
1796  * non-HIGHMEM memory.
1797  *
1798  * But we might still want to scale the dirty_ratio by how
1799  * much memory the box has..
1800  */
1801 void __init page_writeback_init(void)
1802 {
1803 	writeback_set_ratelimit();
1804 	register_cpu_notifier(&ratelimit_nb);
1805 
1806 	fprop_global_init(&writeout_completions);
1807 }
1808 
1809 /**
1810  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1811  * @mapping: address space structure to write
1812  * @start: starting page index
1813  * @end: ending page index (inclusive)
1814  *
1815  * This function scans the page range from @start to @end (inclusive) and tags
1816  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1817  * that write_cache_pages (or whoever calls this function) will then use
1818  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1819  * used to avoid livelocking of writeback by a process steadily creating new
1820  * dirty pages in the file (thus it is important for this function to be quick
1821  * so that it can tag pages faster than a dirtying process can create them).
1822  */
1823 /*
1824  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1825  */
1826 void tag_pages_for_writeback(struct address_space *mapping,
1827 			     pgoff_t start, pgoff_t end)
1828 {
1829 #define WRITEBACK_TAG_BATCH 4096
1830 	unsigned long tagged;
1831 
1832 	do {
1833 		spin_lock_irq(&mapping->tree_lock);
1834 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1835 				&start, end, WRITEBACK_TAG_BATCH,
1836 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1837 		spin_unlock_irq(&mapping->tree_lock);
1838 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1839 		cond_resched();
1840 		/* We check 'start' to handle wrapping when end == ~0UL */
1841 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1842 }
1843 EXPORT_SYMBOL(tag_pages_for_writeback);
1844 
1845 /**
1846  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1847  * @mapping: address space structure to write
1848  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1849  * @writepage: function called for each page
1850  * @data: data passed to writepage function
1851  *
1852  * If a page is already under I/O, write_cache_pages() skips it, even
1853  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1854  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1855  * and msync() need to guarantee that all the data which was dirty at the time
1856  * the call was made get new I/O started against them.  If wbc->sync_mode is
1857  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1858  * existing IO to complete.
1859  *
1860  * To avoid livelocks (when other process dirties new pages), we first tag
1861  * pages which should be written back with TOWRITE tag and only then start
1862  * writing them. For data-integrity sync we have to be careful so that we do
1863  * not miss some pages (e.g., because some other process has cleared TOWRITE
1864  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1865  * by the process clearing the DIRTY tag (and submitting the page for IO).
1866  */
1867 int write_cache_pages(struct address_space *mapping,
1868 		      struct writeback_control *wbc, writepage_t writepage,
1869 		      void *data)
1870 {
1871 	int ret = 0;
1872 	int done = 0;
1873 	struct pagevec pvec;
1874 	int nr_pages;
1875 	pgoff_t uninitialized_var(writeback_index);
1876 	pgoff_t index;
1877 	pgoff_t end;		/* Inclusive */
1878 	pgoff_t done_index;
1879 	int cycled;
1880 	int range_whole = 0;
1881 	int tag;
1882 
1883 	pagevec_init(&pvec, 0);
1884 	if (wbc->range_cyclic) {
1885 		writeback_index = mapping->writeback_index; /* prev offset */
1886 		index = writeback_index;
1887 		if (index == 0)
1888 			cycled = 1;
1889 		else
1890 			cycled = 0;
1891 		end = -1;
1892 	} else {
1893 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1894 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1895 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1896 			range_whole = 1;
1897 		cycled = 1; /* ignore range_cyclic tests */
1898 	}
1899 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1900 		tag = PAGECACHE_TAG_TOWRITE;
1901 	else
1902 		tag = PAGECACHE_TAG_DIRTY;
1903 retry:
1904 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1905 		tag_pages_for_writeback(mapping, index, end);
1906 	done_index = index;
1907 	while (!done && (index <= end)) {
1908 		int i;
1909 
1910 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1911 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1912 		if (nr_pages == 0)
1913 			break;
1914 
1915 		for (i = 0; i < nr_pages; i++) {
1916 			struct page *page = pvec.pages[i];
1917 
1918 			/*
1919 			 * At this point, the page may be truncated or
1920 			 * invalidated (changing page->mapping to NULL), or
1921 			 * even swizzled back from swapper_space to tmpfs file
1922 			 * mapping. However, page->index will not change
1923 			 * because we have a reference on the page.
1924 			 */
1925 			if (page->index > end) {
1926 				/*
1927 				 * can't be range_cyclic (1st pass) because
1928 				 * end == -1 in that case.
1929 				 */
1930 				done = 1;
1931 				break;
1932 			}
1933 
1934 			done_index = page->index;
1935 
1936 			lock_page(page);
1937 
1938 			/*
1939 			 * Page truncated or invalidated. We can freely skip it
1940 			 * then, even for data integrity operations: the page
1941 			 * has disappeared concurrently, so there could be no
1942 			 * real expectation of this data interity operation
1943 			 * even if there is now a new, dirty page at the same
1944 			 * pagecache address.
1945 			 */
1946 			if (unlikely(page->mapping != mapping)) {
1947 continue_unlock:
1948 				unlock_page(page);
1949 				continue;
1950 			}
1951 
1952 			if (!PageDirty(page)) {
1953 				/* someone wrote it for us */
1954 				goto continue_unlock;
1955 			}
1956 
1957 			if (PageWriteback(page)) {
1958 				if (wbc->sync_mode != WB_SYNC_NONE)
1959 					wait_on_page_writeback(page);
1960 				else
1961 					goto continue_unlock;
1962 			}
1963 
1964 			BUG_ON(PageWriteback(page));
1965 			if (!clear_page_dirty_for_io(page))
1966 				goto continue_unlock;
1967 
1968 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1969 			ret = (*writepage)(page, wbc, data);
1970 			if (unlikely(ret)) {
1971 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1972 					unlock_page(page);
1973 					ret = 0;
1974 				} else {
1975 					/*
1976 					 * done_index is set past this page,
1977 					 * so media errors will not choke
1978 					 * background writeout for the entire
1979 					 * file. This has consequences for
1980 					 * range_cyclic semantics (ie. it may
1981 					 * not be suitable for data integrity
1982 					 * writeout).
1983 					 */
1984 					done_index = page->index + 1;
1985 					done = 1;
1986 					break;
1987 				}
1988 			}
1989 
1990 			/*
1991 			 * We stop writing back only if we are not doing
1992 			 * integrity sync. In case of integrity sync we have to
1993 			 * keep going until we have written all the pages
1994 			 * we tagged for writeback prior to entering this loop.
1995 			 */
1996 			if (--wbc->nr_to_write <= 0 &&
1997 			    wbc->sync_mode == WB_SYNC_NONE) {
1998 				done = 1;
1999 				break;
2000 			}
2001 		}
2002 		pagevec_release(&pvec);
2003 		cond_resched();
2004 	}
2005 	if (!cycled && !done) {
2006 		/*
2007 		 * range_cyclic:
2008 		 * We hit the last page and there is more work to be done: wrap
2009 		 * back to the start of the file
2010 		 */
2011 		cycled = 1;
2012 		index = 0;
2013 		end = writeback_index - 1;
2014 		goto retry;
2015 	}
2016 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2017 		mapping->writeback_index = done_index;
2018 
2019 	return ret;
2020 }
2021 EXPORT_SYMBOL(write_cache_pages);
2022 
2023 /*
2024  * Function used by generic_writepages to call the real writepage
2025  * function and set the mapping flags on error
2026  */
2027 static int __writepage(struct page *page, struct writeback_control *wbc,
2028 		       void *data)
2029 {
2030 	struct address_space *mapping = data;
2031 	int ret = mapping->a_ops->writepage(page, wbc);
2032 	mapping_set_error(mapping, ret);
2033 	return ret;
2034 }
2035 
2036 /**
2037  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2038  * @mapping: address space structure to write
2039  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2040  *
2041  * This is a library function, which implements the writepages()
2042  * address_space_operation.
2043  */
2044 int generic_writepages(struct address_space *mapping,
2045 		       struct writeback_control *wbc)
2046 {
2047 	struct blk_plug plug;
2048 	int ret;
2049 
2050 	/* deal with chardevs and other special file */
2051 	if (!mapping->a_ops->writepage)
2052 		return 0;
2053 
2054 	blk_start_plug(&plug);
2055 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2056 	blk_finish_plug(&plug);
2057 	return ret;
2058 }
2059 
2060 EXPORT_SYMBOL(generic_writepages);
2061 
2062 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2063 {
2064 	int ret;
2065 
2066 	if (wbc->nr_to_write <= 0)
2067 		return 0;
2068 	if (mapping->a_ops->writepages)
2069 		ret = mapping->a_ops->writepages(mapping, wbc);
2070 	else
2071 		ret = generic_writepages(mapping, wbc);
2072 	return ret;
2073 }
2074 
2075 /**
2076  * write_one_page - write out a single page and optionally wait on I/O
2077  * @page: the page to write
2078  * @wait: if true, wait on writeout
2079  *
2080  * The page must be locked by the caller and will be unlocked upon return.
2081  *
2082  * write_one_page() returns a negative error code if I/O failed.
2083  */
2084 int write_one_page(struct page *page, int wait)
2085 {
2086 	struct address_space *mapping = page->mapping;
2087 	int ret = 0;
2088 	struct writeback_control wbc = {
2089 		.sync_mode = WB_SYNC_ALL,
2090 		.nr_to_write = 1,
2091 	};
2092 
2093 	BUG_ON(!PageLocked(page));
2094 
2095 	if (wait)
2096 		wait_on_page_writeback(page);
2097 
2098 	if (clear_page_dirty_for_io(page)) {
2099 		page_cache_get(page);
2100 		ret = mapping->a_ops->writepage(page, &wbc);
2101 		if (ret == 0 && wait) {
2102 			wait_on_page_writeback(page);
2103 			if (PageError(page))
2104 				ret = -EIO;
2105 		}
2106 		page_cache_release(page);
2107 	} else {
2108 		unlock_page(page);
2109 	}
2110 	return ret;
2111 }
2112 EXPORT_SYMBOL(write_one_page);
2113 
2114 /*
2115  * For address_spaces which do not use buffers nor write back.
2116  */
2117 int __set_page_dirty_no_writeback(struct page *page)
2118 {
2119 	if (!PageDirty(page))
2120 		return !TestSetPageDirty(page);
2121 	return 0;
2122 }
2123 
2124 /*
2125  * Helper function for set_page_dirty family.
2126  * NOTE: This relies on being atomic wrt interrupts.
2127  */
2128 void account_page_dirtied(struct page *page, struct address_space *mapping)
2129 {
2130 	trace_writeback_dirty_page(page, mapping);
2131 
2132 	if (mapping_cap_account_dirty(mapping)) {
2133 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2134 		__inc_zone_page_state(page, NR_DIRTIED);
2135 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
2136 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2137 		task_io_account_write(PAGE_CACHE_SIZE);
2138 		current->nr_dirtied++;
2139 		this_cpu_inc(bdp_ratelimits);
2140 	}
2141 }
2142 EXPORT_SYMBOL(account_page_dirtied);
2143 
2144 /*
2145  * Helper function for set_page_writeback family.
2146  *
2147  * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
2148  * while calling this function.
2149  * See test_set_page_writeback for example.
2150  *
2151  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2152  * wrt interrupts.
2153  */
2154 void account_page_writeback(struct page *page)
2155 {
2156 	mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2157 	inc_zone_page_state(page, NR_WRITEBACK);
2158 }
2159 EXPORT_SYMBOL(account_page_writeback);
2160 
2161 /*
2162  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2163  * its radix tree.
2164  *
2165  * This is also used when a single buffer is being dirtied: we want to set the
2166  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2167  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2168  *
2169  * Most callers have locked the page, which pins the address_space in memory.
2170  * But zap_pte_range() does not lock the page, however in that case the
2171  * mapping is pinned by the vma's ->vm_file reference.
2172  *
2173  * We take care to handle the case where the page was truncated from the
2174  * mapping by re-checking page_mapping() inside tree_lock.
2175  */
2176 int __set_page_dirty_nobuffers(struct page *page)
2177 {
2178 	if (!TestSetPageDirty(page)) {
2179 		struct address_space *mapping = page_mapping(page);
2180 		struct address_space *mapping2;
2181 
2182 		if (!mapping)
2183 			return 1;
2184 
2185 		spin_lock_irq(&mapping->tree_lock);
2186 		mapping2 = page_mapping(page);
2187 		if (mapping2) { /* Race with truncate? */
2188 			BUG_ON(mapping2 != mapping);
2189 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2190 			account_page_dirtied(page, mapping);
2191 			radix_tree_tag_set(&mapping->page_tree,
2192 				page_index(page), PAGECACHE_TAG_DIRTY);
2193 		}
2194 		spin_unlock_irq(&mapping->tree_lock);
2195 		if (mapping->host) {
2196 			/* !PageAnon && !swapper_space */
2197 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2198 		}
2199 		return 1;
2200 	}
2201 	return 0;
2202 }
2203 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2204 
2205 /*
2206  * Call this whenever redirtying a page, to de-account the dirty counters
2207  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2208  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2209  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2210  * control.
2211  */
2212 void account_page_redirty(struct page *page)
2213 {
2214 	struct address_space *mapping = page->mapping;
2215 	if (mapping && mapping_cap_account_dirty(mapping)) {
2216 		current->nr_dirtied--;
2217 		dec_zone_page_state(page, NR_DIRTIED);
2218 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2219 	}
2220 }
2221 EXPORT_SYMBOL(account_page_redirty);
2222 
2223 /*
2224  * When a writepage implementation decides that it doesn't want to write this
2225  * page for some reason, it should redirty the locked page via
2226  * redirty_page_for_writepage() and it should then unlock the page and return 0
2227  */
2228 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2229 {
2230 	wbc->pages_skipped++;
2231 	account_page_redirty(page);
2232 	return __set_page_dirty_nobuffers(page);
2233 }
2234 EXPORT_SYMBOL(redirty_page_for_writepage);
2235 
2236 /*
2237  * Dirty a page.
2238  *
2239  * For pages with a mapping this should be done under the page lock
2240  * for the benefit of asynchronous memory errors who prefer a consistent
2241  * dirty state. This rule can be broken in some special cases,
2242  * but should be better not to.
2243  *
2244  * If the mapping doesn't provide a set_page_dirty a_op, then
2245  * just fall through and assume that it wants buffer_heads.
2246  */
2247 int set_page_dirty(struct page *page)
2248 {
2249 	struct address_space *mapping = page_mapping(page);
2250 
2251 	if (likely(mapping)) {
2252 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2253 		/*
2254 		 * readahead/lru_deactivate_page could remain
2255 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2256 		 * About readahead, if the page is written, the flags would be
2257 		 * reset. So no problem.
2258 		 * About lru_deactivate_page, if the page is redirty, the flag
2259 		 * will be reset. So no problem. but if the page is used by readahead
2260 		 * it will confuse readahead and make it restart the size rampup
2261 		 * process. But it's a trivial problem.
2262 		 */
2263 		ClearPageReclaim(page);
2264 #ifdef CONFIG_BLOCK
2265 		if (!spd)
2266 			spd = __set_page_dirty_buffers;
2267 #endif
2268 		return (*spd)(page);
2269 	}
2270 	if (!PageDirty(page)) {
2271 		if (!TestSetPageDirty(page))
2272 			return 1;
2273 	}
2274 	return 0;
2275 }
2276 EXPORT_SYMBOL(set_page_dirty);
2277 
2278 /*
2279  * set_page_dirty() is racy if the caller has no reference against
2280  * page->mapping->host, and if the page is unlocked.  This is because another
2281  * CPU could truncate the page off the mapping and then free the mapping.
2282  *
2283  * Usually, the page _is_ locked, or the caller is a user-space process which
2284  * holds a reference on the inode by having an open file.
2285  *
2286  * In other cases, the page should be locked before running set_page_dirty().
2287  */
2288 int set_page_dirty_lock(struct page *page)
2289 {
2290 	int ret;
2291 
2292 	lock_page(page);
2293 	ret = set_page_dirty(page);
2294 	unlock_page(page);
2295 	return ret;
2296 }
2297 EXPORT_SYMBOL(set_page_dirty_lock);
2298 
2299 /*
2300  * Clear a page's dirty flag, while caring for dirty memory accounting.
2301  * Returns true if the page was previously dirty.
2302  *
2303  * This is for preparing to put the page under writeout.  We leave the page
2304  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2305  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2306  * implementation will run either set_page_writeback() or set_page_dirty(),
2307  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2308  * back into sync.
2309  *
2310  * This incoherency between the page's dirty flag and radix-tree tag is
2311  * unfortunate, but it only exists while the page is locked.
2312  */
2313 int clear_page_dirty_for_io(struct page *page)
2314 {
2315 	struct address_space *mapping = page_mapping(page);
2316 
2317 	BUG_ON(!PageLocked(page));
2318 
2319 	if (mapping && mapping_cap_account_dirty(mapping)) {
2320 		/*
2321 		 * Yes, Virginia, this is indeed insane.
2322 		 *
2323 		 * We use this sequence to make sure that
2324 		 *  (a) we account for dirty stats properly
2325 		 *  (b) we tell the low-level filesystem to
2326 		 *      mark the whole page dirty if it was
2327 		 *      dirty in a pagetable. Only to then
2328 		 *  (c) clean the page again and return 1 to
2329 		 *      cause the writeback.
2330 		 *
2331 		 * This way we avoid all nasty races with the
2332 		 * dirty bit in multiple places and clearing
2333 		 * them concurrently from different threads.
2334 		 *
2335 		 * Note! Normally the "set_page_dirty(page)"
2336 		 * has no effect on the actual dirty bit - since
2337 		 * that will already usually be set. But we
2338 		 * need the side effects, and it can help us
2339 		 * avoid races.
2340 		 *
2341 		 * We basically use the page "master dirty bit"
2342 		 * as a serialization point for all the different
2343 		 * threads doing their things.
2344 		 */
2345 		if (page_mkclean(page))
2346 			set_page_dirty(page);
2347 		/*
2348 		 * We carefully synchronise fault handlers against
2349 		 * installing a dirty pte and marking the page dirty
2350 		 * at this point. We do this by having them hold the
2351 		 * page lock at some point after installing their
2352 		 * pte, but before marking the page dirty.
2353 		 * Pages are always locked coming in here, so we get
2354 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2355 		 * for more comments.
2356 		 */
2357 		if (TestClearPageDirty(page)) {
2358 			dec_zone_page_state(page, NR_FILE_DIRTY);
2359 			dec_bdi_stat(mapping->backing_dev_info,
2360 					BDI_RECLAIMABLE);
2361 			return 1;
2362 		}
2363 		return 0;
2364 	}
2365 	return TestClearPageDirty(page);
2366 }
2367 EXPORT_SYMBOL(clear_page_dirty_for_io);
2368 
2369 int test_clear_page_writeback(struct page *page)
2370 {
2371 	struct address_space *mapping = page_mapping(page);
2372 	int ret;
2373 	bool locked;
2374 	unsigned long memcg_flags;
2375 
2376 	mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2377 	if (mapping) {
2378 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2379 		unsigned long flags;
2380 
2381 		spin_lock_irqsave(&mapping->tree_lock, flags);
2382 		ret = TestClearPageWriteback(page);
2383 		if (ret) {
2384 			radix_tree_tag_clear(&mapping->page_tree,
2385 						page_index(page),
2386 						PAGECACHE_TAG_WRITEBACK);
2387 			if (bdi_cap_account_writeback(bdi)) {
2388 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2389 				__bdi_writeout_inc(bdi);
2390 			}
2391 		}
2392 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2393 	} else {
2394 		ret = TestClearPageWriteback(page);
2395 	}
2396 	if (ret) {
2397 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2398 		dec_zone_page_state(page, NR_WRITEBACK);
2399 		inc_zone_page_state(page, NR_WRITTEN);
2400 	}
2401 	mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2402 	return ret;
2403 }
2404 
2405 int test_set_page_writeback(struct page *page)
2406 {
2407 	struct address_space *mapping = page_mapping(page);
2408 	int ret;
2409 	bool locked;
2410 	unsigned long memcg_flags;
2411 
2412 	mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2413 	if (mapping) {
2414 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2415 		unsigned long flags;
2416 
2417 		spin_lock_irqsave(&mapping->tree_lock, flags);
2418 		ret = TestSetPageWriteback(page);
2419 		if (!ret) {
2420 			radix_tree_tag_set(&mapping->page_tree,
2421 						page_index(page),
2422 						PAGECACHE_TAG_WRITEBACK);
2423 			if (bdi_cap_account_writeback(bdi))
2424 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2425 		}
2426 		if (!PageDirty(page))
2427 			radix_tree_tag_clear(&mapping->page_tree,
2428 						page_index(page),
2429 						PAGECACHE_TAG_DIRTY);
2430 		radix_tree_tag_clear(&mapping->page_tree,
2431 				     page_index(page),
2432 				     PAGECACHE_TAG_TOWRITE);
2433 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2434 	} else {
2435 		ret = TestSetPageWriteback(page);
2436 	}
2437 	if (!ret)
2438 		account_page_writeback(page);
2439 	mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2440 	return ret;
2441 
2442 }
2443 EXPORT_SYMBOL(test_set_page_writeback);
2444 
2445 /*
2446  * Return true if any of the pages in the mapping are marked with the
2447  * passed tag.
2448  */
2449 int mapping_tagged(struct address_space *mapping, int tag)
2450 {
2451 	return radix_tree_tagged(&mapping->page_tree, tag);
2452 }
2453 EXPORT_SYMBOL(mapping_tagged);
2454 
2455 /**
2456  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2457  * @page:	The page to wait on.
2458  *
2459  * This function determines if the given page is related to a backing device
2460  * that requires page contents to be held stable during writeback.  If so, then
2461  * it will wait for any pending writeback to complete.
2462  */
2463 void wait_for_stable_page(struct page *page)
2464 {
2465 	struct address_space *mapping = page_mapping(page);
2466 	struct backing_dev_info *bdi = mapping->backing_dev_info;
2467 
2468 	if (!bdi_cap_stable_pages_required(bdi))
2469 		return;
2470 
2471 	wait_on_page_writeback(page);
2472 }
2473 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2474