1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/pagevec.h> 36 #include <linux/timer.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/signal.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 112 * a full sync is triggered after this time elapses without any disk activity. 113 */ 114 int laptop_mode; 115 116 EXPORT_SYMBOL(laptop_mode); 117 118 /* End of sysctl-exported parameters */ 119 120 struct wb_domain global_wb_domain; 121 122 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 123 struct dirty_throttle_control { 124 #ifdef CONFIG_CGROUP_WRITEBACK 125 struct wb_domain *dom; 126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 127 #endif 128 struct bdi_writeback *wb; 129 struct fprop_local_percpu *wb_completions; 130 131 unsigned long avail; /* dirtyable */ 132 unsigned long dirty; /* file_dirty + write + nfs */ 133 unsigned long thresh; /* dirty threshold */ 134 unsigned long bg_thresh; /* dirty background threshold */ 135 136 unsigned long wb_dirty; /* per-wb counterparts */ 137 unsigned long wb_thresh; 138 unsigned long wb_bg_thresh; 139 140 unsigned long pos_ratio; 141 }; 142 143 /* 144 * Length of period for aging writeout fractions of bdis. This is an 145 * arbitrarily chosen number. The longer the period, the slower fractions will 146 * reflect changes in current writeout rate. 147 */ 148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 149 150 #ifdef CONFIG_CGROUP_WRITEBACK 151 152 #define GDTC_INIT(__wb) .wb = (__wb), \ 153 .dom = &global_wb_domain, \ 154 .wb_completions = &(__wb)->completions 155 156 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 157 158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 159 .dom = mem_cgroup_wb_domain(__wb), \ 160 .wb_completions = &(__wb)->memcg_completions, \ 161 .gdtc = __gdtc 162 163 static bool mdtc_valid(struct dirty_throttle_control *dtc) 164 { 165 return dtc->dom; 166 } 167 168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 174 { 175 return mdtc->gdtc; 176 } 177 178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 179 { 180 return &wb->memcg_completions; 181 } 182 183 static void wb_min_max_ratio(struct bdi_writeback *wb, 184 unsigned long *minp, unsigned long *maxp) 185 { 186 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 188 unsigned long long min = wb->bdi->min_ratio; 189 unsigned long long max = wb->bdi->max_ratio; 190 191 /* 192 * @wb may already be clean by the time control reaches here and 193 * the total may not include its bw. 194 */ 195 if (this_bw < tot_bw) { 196 if (min) { 197 min *= this_bw; 198 min = div64_ul(min, tot_bw); 199 } 200 if (max < 100) { 201 max *= this_bw; 202 max = div64_ul(max, tot_bw); 203 } 204 } 205 206 *minp = min; 207 *maxp = max; 208 } 209 210 #else /* CONFIG_CGROUP_WRITEBACK */ 211 212 #define GDTC_INIT(__wb) .wb = (__wb), \ 213 .wb_completions = &(__wb)->completions 214 #define GDTC_INIT_NO_WB 215 #define MDTC_INIT(__wb, __gdtc) 216 217 static bool mdtc_valid(struct dirty_throttle_control *dtc) 218 { 219 return false; 220 } 221 222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 223 { 224 return &global_wb_domain; 225 } 226 227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 228 { 229 return NULL; 230 } 231 232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 233 { 234 return NULL; 235 } 236 237 static void wb_min_max_ratio(struct bdi_writeback *wb, 238 unsigned long *minp, unsigned long *maxp) 239 { 240 *minp = wb->bdi->min_ratio; 241 *maxp = wb->bdi->max_ratio; 242 } 243 244 #endif /* CONFIG_CGROUP_WRITEBACK */ 245 246 /* 247 * In a memory zone, there is a certain amount of pages we consider 248 * available for the page cache, which is essentially the number of 249 * free and reclaimable pages, minus some zone reserves to protect 250 * lowmem and the ability to uphold the zone's watermarks without 251 * requiring writeback. 252 * 253 * This number of dirtyable pages is the base value of which the 254 * user-configurable dirty ratio is the effective number of pages that 255 * are allowed to be actually dirtied. Per individual zone, or 256 * globally by using the sum of dirtyable pages over all zones. 257 * 258 * Because the user is allowed to specify the dirty limit globally as 259 * absolute number of bytes, calculating the per-zone dirty limit can 260 * require translating the configured limit into a percentage of 261 * global dirtyable memory first. 262 */ 263 264 /** 265 * node_dirtyable_memory - number of dirtyable pages in a node 266 * @pgdat: the node 267 * 268 * Return: the node's number of pages potentially available for dirty 269 * page cache. This is the base value for the per-node dirty limits. 270 */ 271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 272 { 273 unsigned long nr_pages = 0; 274 int z; 275 276 for (z = 0; z < MAX_NR_ZONES; z++) { 277 struct zone *zone = pgdat->node_zones + z; 278 279 if (!populated_zone(zone)) 280 continue; 281 282 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 283 } 284 285 /* 286 * Pages reserved for the kernel should not be considered 287 * dirtyable, to prevent a situation where reclaim has to 288 * clean pages in order to balance the zones. 289 */ 290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 291 292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 294 295 return nr_pages; 296 } 297 298 static unsigned long highmem_dirtyable_memory(unsigned long total) 299 { 300 #ifdef CONFIG_HIGHMEM 301 int node; 302 unsigned long x = 0; 303 int i; 304 305 for_each_node_state(node, N_HIGH_MEMORY) { 306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 307 struct zone *z; 308 unsigned long nr_pages; 309 310 if (!is_highmem_idx(i)) 311 continue; 312 313 z = &NODE_DATA(node)->node_zones[i]; 314 if (!populated_zone(z)) 315 continue; 316 317 nr_pages = zone_page_state(z, NR_FREE_PAGES); 318 /* watch for underflows */ 319 nr_pages -= min(nr_pages, high_wmark_pages(z)); 320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 322 x += nr_pages; 323 } 324 } 325 326 /* 327 * Make sure that the number of highmem pages is never larger 328 * than the number of the total dirtyable memory. This can only 329 * occur in very strange VM situations but we want to make sure 330 * that this does not occur. 331 */ 332 return min(x, total); 333 #else 334 return 0; 335 #endif 336 } 337 338 /** 339 * global_dirtyable_memory - number of globally dirtyable pages 340 * 341 * Return: the global number of pages potentially available for dirty 342 * page cache. This is the base value for the global dirty limits. 343 */ 344 static unsigned long global_dirtyable_memory(void) 345 { 346 unsigned long x; 347 348 x = global_zone_page_state(NR_FREE_PAGES); 349 /* 350 * Pages reserved for the kernel should not be considered 351 * dirtyable, to prevent a situation where reclaim has to 352 * clean pages in order to balance the zones. 353 */ 354 x -= min(x, totalreserve_pages); 355 356 x += global_node_page_state(NR_INACTIVE_FILE); 357 x += global_node_page_state(NR_ACTIVE_FILE); 358 359 if (!vm_highmem_is_dirtyable) 360 x -= highmem_dirtyable_memory(x); 361 362 return x + 1; /* Ensure that we never return 0 */ 363 } 364 365 /** 366 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 367 * @dtc: dirty_throttle_control of interest 368 * 369 * Calculate @dtc->thresh and ->bg_thresh considering 370 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 371 * must ensure that @dtc->avail is set before calling this function. The 372 * dirty limits will be lifted by 1/4 for real-time tasks. 373 */ 374 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 375 { 376 const unsigned long available_memory = dtc->avail; 377 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 378 unsigned long bytes = vm_dirty_bytes; 379 unsigned long bg_bytes = dirty_background_bytes; 380 /* convert ratios to per-PAGE_SIZE for higher precision */ 381 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 382 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 383 unsigned long thresh; 384 unsigned long bg_thresh; 385 struct task_struct *tsk; 386 387 /* gdtc is !NULL iff @dtc is for memcg domain */ 388 if (gdtc) { 389 unsigned long global_avail = gdtc->avail; 390 391 /* 392 * The byte settings can't be applied directly to memcg 393 * domains. Convert them to ratios by scaling against 394 * globally available memory. As the ratios are in 395 * per-PAGE_SIZE, they can be obtained by dividing bytes by 396 * number of pages. 397 */ 398 if (bytes) 399 ratio = min(DIV_ROUND_UP(bytes, global_avail), 400 PAGE_SIZE); 401 if (bg_bytes) 402 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 403 PAGE_SIZE); 404 bytes = bg_bytes = 0; 405 } 406 407 if (bytes) 408 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 409 else 410 thresh = (ratio * available_memory) / PAGE_SIZE; 411 412 if (bg_bytes) 413 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 414 else 415 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 416 417 if (bg_thresh >= thresh) 418 bg_thresh = thresh / 2; 419 tsk = current; 420 if (rt_task(tsk)) { 421 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 422 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 423 } 424 dtc->thresh = thresh; 425 dtc->bg_thresh = bg_thresh; 426 427 /* we should eventually report the domain in the TP */ 428 if (!gdtc) 429 trace_global_dirty_state(bg_thresh, thresh); 430 } 431 432 /** 433 * global_dirty_limits - background-writeback and dirty-throttling thresholds 434 * @pbackground: out parameter for bg_thresh 435 * @pdirty: out parameter for thresh 436 * 437 * Calculate bg_thresh and thresh for global_wb_domain. See 438 * domain_dirty_limits() for details. 439 */ 440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 441 { 442 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 443 444 gdtc.avail = global_dirtyable_memory(); 445 domain_dirty_limits(&gdtc); 446 447 *pbackground = gdtc.bg_thresh; 448 *pdirty = gdtc.thresh; 449 } 450 451 /** 452 * node_dirty_limit - maximum number of dirty pages allowed in a node 453 * @pgdat: the node 454 * 455 * Return: the maximum number of dirty pages allowed in a node, based 456 * on the node's dirtyable memory. 457 */ 458 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 459 { 460 unsigned long node_memory = node_dirtyable_memory(pgdat); 461 struct task_struct *tsk = current; 462 unsigned long dirty; 463 464 if (vm_dirty_bytes) 465 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 466 node_memory / global_dirtyable_memory(); 467 else 468 dirty = vm_dirty_ratio * node_memory / 100; 469 470 if (rt_task(tsk)) 471 dirty += dirty / 4; 472 473 return dirty; 474 } 475 476 /** 477 * node_dirty_ok - tells whether a node is within its dirty limits 478 * @pgdat: the node to check 479 * 480 * Return: %true when the dirty pages in @pgdat are within the node's 481 * dirty limit, %false if the limit is exceeded. 482 */ 483 bool node_dirty_ok(struct pglist_data *pgdat) 484 { 485 unsigned long limit = node_dirty_limit(pgdat); 486 unsigned long nr_pages = 0; 487 488 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 489 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 490 491 return nr_pages <= limit; 492 } 493 494 int dirty_background_ratio_handler(struct ctl_table *table, int write, 495 void *buffer, size_t *lenp, loff_t *ppos) 496 { 497 int ret; 498 499 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 500 if (ret == 0 && write) 501 dirty_background_bytes = 0; 502 return ret; 503 } 504 505 int dirty_background_bytes_handler(struct ctl_table *table, int write, 506 void *buffer, size_t *lenp, loff_t *ppos) 507 { 508 int ret; 509 510 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 511 if (ret == 0 && write) 512 dirty_background_ratio = 0; 513 return ret; 514 } 515 516 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 517 size_t *lenp, loff_t *ppos) 518 { 519 int old_ratio = vm_dirty_ratio; 520 int ret; 521 522 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 523 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 524 writeback_set_ratelimit(); 525 vm_dirty_bytes = 0; 526 } 527 return ret; 528 } 529 530 int dirty_bytes_handler(struct ctl_table *table, int write, 531 void *buffer, size_t *lenp, loff_t *ppos) 532 { 533 unsigned long old_bytes = vm_dirty_bytes; 534 int ret; 535 536 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 537 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 538 writeback_set_ratelimit(); 539 vm_dirty_ratio = 0; 540 } 541 return ret; 542 } 543 544 static unsigned long wp_next_time(unsigned long cur_time) 545 { 546 cur_time += VM_COMPLETIONS_PERIOD_LEN; 547 /* 0 has a special meaning... */ 548 if (!cur_time) 549 return 1; 550 return cur_time; 551 } 552 553 static void wb_domain_writeout_add(struct wb_domain *dom, 554 struct fprop_local_percpu *completions, 555 unsigned int max_prop_frac, long nr) 556 { 557 __fprop_add_percpu_max(&dom->completions, completions, 558 max_prop_frac, nr); 559 /* First event after period switching was turned off? */ 560 if (unlikely(!dom->period_time)) { 561 /* 562 * We can race with other __bdi_writeout_inc calls here but 563 * it does not cause any harm since the resulting time when 564 * timer will fire and what is in writeout_period_time will be 565 * roughly the same. 566 */ 567 dom->period_time = wp_next_time(jiffies); 568 mod_timer(&dom->period_timer, dom->period_time); 569 } 570 } 571 572 /* 573 * Increment @wb's writeout completion count and the global writeout 574 * completion count. Called from __folio_end_writeback(). 575 */ 576 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 577 { 578 struct wb_domain *cgdom; 579 580 wb_stat_mod(wb, WB_WRITTEN, nr); 581 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 582 wb->bdi->max_prop_frac, nr); 583 584 cgdom = mem_cgroup_wb_domain(wb); 585 if (cgdom) 586 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 587 wb->bdi->max_prop_frac, nr); 588 } 589 590 void wb_writeout_inc(struct bdi_writeback *wb) 591 { 592 unsigned long flags; 593 594 local_irq_save(flags); 595 __wb_writeout_add(wb, 1); 596 local_irq_restore(flags); 597 } 598 EXPORT_SYMBOL_GPL(wb_writeout_inc); 599 600 /* 601 * On idle system, we can be called long after we scheduled because we use 602 * deferred timers so count with missed periods. 603 */ 604 static void writeout_period(struct timer_list *t) 605 { 606 struct wb_domain *dom = from_timer(dom, t, period_timer); 607 int miss_periods = (jiffies - dom->period_time) / 608 VM_COMPLETIONS_PERIOD_LEN; 609 610 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 611 dom->period_time = wp_next_time(dom->period_time + 612 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 613 mod_timer(&dom->period_timer, dom->period_time); 614 } else { 615 /* 616 * Aging has zeroed all fractions. Stop wasting CPU on period 617 * updates. 618 */ 619 dom->period_time = 0; 620 } 621 } 622 623 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 624 { 625 memset(dom, 0, sizeof(*dom)); 626 627 spin_lock_init(&dom->lock); 628 629 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 630 631 dom->dirty_limit_tstamp = jiffies; 632 633 return fprop_global_init(&dom->completions, gfp); 634 } 635 636 #ifdef CONFIG_CGROUP_WRITEBACK 637 void wb_domain_exit(struct wb_domain *dom) 638 { 639 del_timer_sync(&dom->period_timer); 640 fprop_global_destroy(&dom->completions); 641 } 642 #endif 643 644 /* 645 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 646 * registered backing devices, which, for obvious reasons, can not 647 * exceed 100%. 648 */ 649 static unsigned int bdi_min_ratio; 650 651 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 652 { 653 int ret = 0; 654 655 spin_lock_bh(&bdi_lock); 656 if (min_ratio > bdi->max_ratio) { 657 ret = -EINVAL; 658 } else { 659 min_ratio -= bdi->min_ratio; 660 if (bdi_min_ratio + min_ratio < 100) { 661 bdi_min_ratio += min_ratio; 662 bdi->min_ratio += min_ratio; 663 } else { 664 ret = -EINVAL; 665 } 666 } 667 spin_unlock_bh(&bdi_lock); 668 669 return ret; 670 } 671 672 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 673 { 674 int ret = 0; 675 676 if (max_ratio > 100) 677 return -EINVAL; 678 679 spin_lock_bh(&bdi_lock); 680 if (bdi->min_ratio > max_ratio) { 681 ret = -EINVAL; 682 } else { 683 bdi->max_ratio = max_ratio; 684 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 685 } 686 spin_unlock_bh(&bdi_lock); 687 688 return ret; 689 } 690 EXPORT_SYMBOL(bdi_set_max_ratio); 691 692 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 693 unsigned long bg_thresh) 694 { 695 return (thresh + bg_thresh) / 2; 696 } 697 698 static unsigned long hard_dirty_limit(struct wb_domain *dom, 699 unsigned long thresh) 700 { 701 return max(thresh, dom->dirty_limit); 702 } 703 704 /* 705 * Memory which can be further allocated to a memcg domain is capped by 706 * system-wide clean memory excluding the amount being used in the domain. 707 */ 708 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 709 unsigned long filepages, unsigned long headroom) 710 { 711 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 712 unsigned long clean = filepages - min(filepages, mdtc->dirty); 713 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 714 unsigned long other_clean = global_clean - min(global_clean, clean); 715 716 mdtc->avail = filepages + min(headroom, other_clean); 717 } 718 719 /** 720 * __wb_calc_thresh - @wb's share of dirty throttling threshold 721 * @dtc: dirty_throttle_context of interest 722 * 723 * Note that balance_dirty_pages() will only seriously take it as a hard limit 724 * when sleeping max_pause per page is not enough to keep the dirty pages under 725 * control. For example, when the device is completely stalled due to some error 726 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 727 * In the other normal situations, it acts more gently by throttling the tasks 728 * more (rather than completely block them) when the wb dirty pages go high. 729 * 730 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 731 * - starving fast devices 732 * - piling up dirty pages (that will take long time to sync) on slow devices 733 * 734 * The wb's share of dirty limit will be adapting to its throughput and 735 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 736 * 737 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 738 * dirty balancing includes all PG_dirty and PG_writeback pages. 739 */ 740 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 741 { 742 struct wb_domain *dom = dtc_dom(dtc); 743 unsigned long thresh = dtc->thresh; 744 u64 wb_thresh; 745 unsigned long numerator, denominator; 746 unsigned long wb_min_ratio, wb_max_ratio; 747 748 /* 749 * Calculate this BDI's share of the thresh ratio. 750 */ 751 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 752 &numerator, &denominator); 753 754 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 755 wb_thresh *= numerator; 756 wb_thresh = div64_ul(wb_thresh, denominator); 757 758 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 759 760 wb_thresh += (thresh * wb_min_ratio) / 100; 761 if (wb_thresh > (thresh * wb_max_ratio) / 100) 762 wb_thresh = thresh * wb_max_ratio / 100; 763 764 return wb_thresh; 765 } 766 767 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 768 { 769 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 770 .thresh = thresh }; 771 return __wb_calc_thresh(&gdtc); 772 } 773 774 /* 775 * setpoint - dirty 3 776 * f(dirty) := 1.0 + (----------------) 777 * limit - setpoint 778 * 779 * it's a 3rd order polynomial that subjects to 780 * 781 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 782 * (2) f(setpoint) = 1.0 => the balance point 783 * (3) f(limit) = 0 => the hard limit 784 * (4) df/dx <= 0 => negative feedback control 785 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 786 * => fast response on large errors; small oscillation near setpoint 787 */ 788 static long long pos_ratio_polynom(unsigned long setpoint, 789 unsigned long dirty, 790 unsigned long limit) 791 { 792 long long pos_ratio; 793 long x; 794 795 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 796 (limit - setpoint) | 1); 797 pos_ratio = x; 798 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 799 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 800 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 801 802 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 803 } 804 805 /* 806 * Dirty position control. 807 * 808 * (o) global/bdi setpoints 809 * 810 * We want the dirty pages be balanced around the global/wb setpoints. 811 * When the number of dirty pages is higher/lower than the setpoint, the 812 * dirty position control ratio (and hence task dirty ratelimit) will be 813 * decreased/increased to bring the dirty pages back to the setpoint. 814 * 815 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 816 * 817 * if (dirty < setpoint) scale up pos_ratio 818 * if (dirty > setpoint) scale down pos_ratio 819 * 820 * if (wb_dirty < wb_setpoint) scale up pos_ratio 821 * if (wb_dirty > wb_setpoint) scale down pos_ratio 822 * 823 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 824 * 825 * (o) global control line 826 * 827 * ^ pos_ratio 828 * | 829 * | |<===== global dirty control scope ======>| 830 * 2.0 * * * * * * * 831 * | .* 832 * | . * 833 * | . * 834 * | . * 835 * | . * 836 * | . * 837 * 1.0 ................................* 838 * | . . * 839 * | . . * 840 * | . . * 841 * | . . * 842 * | . . * 843 * 0 +------------.------------------.----------------------*-------------> 844 * freerun^ setpoint^ limit^ dirty pages 845 * 846 * (o) wb control line 847 * 848 * ^ pos_ratio 849 * | 850 * | * 851 * | * 852 * | * 853 * | * 854 * | * |<=========== span ============>| 855 * 1.0 .......................* 856 * | . * 857 * | . * 858 * | . * 859 * | . * 860 * | . * 861 * | . * 862 * | . * 863 * | . * 864 * | . * 865 * | . * 866 * | . * 867 * 1/4 ...............................................* * * * * * * * * * * * 868 * | . . 869 * | . . 870 * | . . 871 * 0 +----------------------.-------------------------------.-------------> 872 * wb_setpoint^ x_intercept^ 873 * 874 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 875 * be smoothly throttled down to normal if it starts high in situations like 876 * - start writing to a slow SD card and a fast disk at the same time. The SD 877 * card's wb_dirty may rush to many times higher than wb_setpoint. 878 * - the wb dirty thresh drops quickly due to change of JBOD workload 879 */ 880 static void wb_position_ratio(struct dirty_throttle_control *dtc) 881 { 882 struct bdi_writeback *wb = dtc->wb; 883 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 884 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 885 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 886 unsigned long wb_thresh = dtc->wb_thresh; 887 unsigned long x_intercept; 888 unsigned long setpoint; /* dirty pages' target balance point */ 889 unsigned long wb_setpoint; 890 unsigned long span; 891 long long pos_ratio; /* for scaling up/down the rate limit */ 892 long x; 893 894 dtc->pos_ratio = 0; 895 896 if (unlikely(dtc->dirty >= limit)) 897 return; 898 899 /* 900 * global setpoint 901 * 902 * See comment for pos_ratio_polynom(). 903 */ 904 setpoint = (freerun + limit) / 2; 905 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 906 907 /* 908 * The strictlimit feature is a tool preventing mistrusted filesystems 909 * from growing a large number of dirty pages before throttling. For 910 * such filesystems balance_dirty_pages always checks wb counters 911 * against wb limits. Even if global "nr_dirty" is under "freerun". 912 * This is especially important for fuse which sets bdi->max_ratio to 913 * 1% by default. Without strictlimit feature, fuse writeback may 914 * consume arbitrary amount of RAM because it is accounted in 915 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 916 * 917 * Here, in wb_position_ratio(), we calculate pos_ratio based on 918 * two values: wb_dirty and wb_thresh. Let's consider an example: 919 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 920 * limits are set by default to 10% and 20% (background and throttle). 921 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 922 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 923 * about ~6K pages (as the average of background and throttle wb 924 * limits). The 3rd order polynomial will provide positive feedback if 925 * wb_dirty is under wb_setpoint and vice versa. 926 * 927 * Note, that we cannot use global counters in these calculations 928 * because we want to throttle process writing to a strictlimit wb 929 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 930 * in the example above). 931 */ 932 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 933 long long wb_pos_ratio; 934 935 if (dtc->wb_dirty < 8) { 936 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 937 2 << RATELIMIT_CALC_SHIFT); 938 return; 939 } 940 941 if (dtc->wb_dirty >= wb_thresh) 942 return; 943 944 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 945 dtc->wb_bg_thresh); 946 947 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 948 return; 949 950 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 951 wb_thresh); 952 953 /* 954 * Typically, for strictlimit case, wb_setpoint << setpoint 955 * and pos_ratio >> wb_pos_ratio. In the other words global 956 * state ("dirty") is not limiting factor and we have to 957 * make decision based on wb counters. But there is an 958 * important case when global pos_ratio should get precedence: 959 * global limits are exceeded (e.g. due to activities on other 960 * wb's) while given strictlimit wb is below limit. 961 * 962 * "pos_ratio * wb_pos_ratio" would work for the case above, 963 * but it would look too non-natural for the case of all 964 * activity in the system coming from a single strictlimit wb 965 * with bdi->max_ratio == 100%. 966 * 967 * Note that min() below somewhat changes the dynamics of the 968 * control system. Normally, pos_ratio value can be well over 3 969 * (when globally we are at freerun and wb is well below wb 970 * setpoint). Now the maximum pos_ratio in the same situation 971 * is 2. We might want to tweak this if we observe the control 972 * system is too slow to adapt. 973 */ 974 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 975 return; 976 } 977 978 /* 979 * We have computed basic pos_ratio above based on global situation. If 980 * the wb is over/under its share of dirty pages, we want to scale 981 * pos_ratio further down/up. That is done by the following mechanism. 982 */ 983 984 /* 985 * wb setpoint 986 * 987 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 988 * 989 * x_intercept - wb_dirty 990 * := -------------------------- 991 * x_intercept - wb_setpoint 992 * 993 * The main wb control line is a linear function that subjects to 994 * 995 * (1) f(wb_setpoint) = 1.0 996 * (2) k = - 1 / (8 * write_bw) (in single wb case) 997 * or equally: x_intercept = wb_setpoint + 8 * write_bw 998 * 999 * For single wb case, the dirty pages are observed to fluctuate 1000 * regularly within range 1001 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1002 * for various filesystems, where (2) can yield in a reasonable 12.5% 1003 * fluctuation range for pos_ratio. 1004 * 1005 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1006 * own size, so move the slope over accordingly and choose a slope that 1007 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1008 */ 1009 if (unlikely(wb_thresh > dtc->thresh)) 1010 wb_thresh = dtc->thresh; 1011 /* 1012 * It's very possible that wb_thresh is close to 0 not because the 1013 * device is slow, but that it has remained inactive for long time. 1014 * Honour such devices a reasonable good (hopefully IO efficient) 1015 * threshold, so that the occasional writes won't be blocked and active 1016 * writes can rampup the threshold quickly. 1017 */ 1018 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1019 /* 1020 * scale global setpoint to wb's: 1021 * wb_setpoint = setpoint * wb_thresh / thresh 1022 */ 1023 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1024 wb_setpoint = setpoint * (u64)x >> 16; 1025 /* 1026 * Use span=(8*write_bw) in single wb case as indicated by 1027 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1028 * 1029 * wb_thresh thresh - wb_thresh 1030 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1031 * thresh thresh 1032 */ 1033 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1034 x_intercept = wb_setpoint + span; 1035 1036 if (dtc->wb_dirty < x_intercept - span / 4) { 1037 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1038 (x_intercept - wb_setpoint) | 1); 1039 } else 1040 pos_ratio /= 4; 1041 1042 /* 1043 * wb reserve area, safeguard against dirty pool underrun and disk idle 1044 * It may push the desired control point of global dirty pages higher 1045 * than setpoint. 1046 */ 1047 x_intercept = wb_thresh / 2; 1048 if (dtc->wb_dirty < x_intercept) { 1049 if (dtc->wb_dirty > x_intercept / 8) 1050 pos_ratio = div_u64(pos_ratio * x_intercept, 1051 dtc->wb_dirty); 1052 else 1053 pos_ratio *= 8; 1054 } 1055 1056 dtc->pos_ratio = pos_ratio; 1057 } 1058 1059 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1060 unsigned long elapsed, 1061 unsigned long written) 1062 { 1063 const unsigned long period = roundup_pow_of_two(3 * HZ); 1064 unsigned long avg = wb->avg_write_bandwidth; 1065 unsigned long old = wb->write_bandwidth; 1066 u64 bw; 1067 1068 /* 1069 * bw = written * HZ / elapsed 1070 * 1071 * bw * elapsed + write_bandwidth * (period - elapsed) 1072 * write_bandwidth = --------------------------------------------------- 1073 * period 1074 * 1075 * @written may have decreased due to folio_account_redirty(). 1076 * Avoid underflowing @bw calculation. 1077 */ 1078 bw = written - min(written, wb->written_stamp); 1079 bw *= HZ; 1080 if (unlikely(elapsed > period)) { 1081 bw = div64_ul(bw, elapsed); 1082 avg = bw; 1083 goto out; 1084 } 1085 bw += (u64)wb->write_bandwidth * (period - elapsed); 1086 bw >>= ilog2(period); 1087 1088 /* 1089 * one more level of smoothing, for filtering out sudden spikes 1090 */ 1091 if (avg > old && old >= (unsigned long)bw) 1092 avg -= (avg - old) >> 3; 1093 1094 if (avg < old && old <= (unsigned long)bw) 1095 avg += (old - avg) >> 3; 1096 1097 out: 1098 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1099 avg = max(avg, 1LU); 1100 if (wb_has_dirty_io(wb)) { 1101 long delta = avg - wb->avg_write_bandwidth; 1102 WARN_ON_ONCE(atomic_long_add_return(delta, 1103 &wb->bdi->tot_write_bandwidth) <= 0); 1104 } 1105 wb->write_bandwidth = bw; 1106 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1107 } 1108 1109 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1110 { 1111 struct wb_domain *dom = dtc_dom(dtc); 1112 unsigned long thresh = dtc->thresh; 1113 unsigned long limit = dom->dirty_limit; 1114 1115 /* 1116 * Follow up in one step. 1117 */ 1118 if (limit < thresh) { 1119 limit = thresh; 1120 goto update; 1121 } 1122 1123 /* 1124 * Follow down slowly. Use the higher one as the target, because thresh 1125 * may drop below dirty. This is exactly the reason to introduce 1126 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1127 */ 1128 thresh = max(thresh, dtc->dirty); 1129 if (limit > thresh) { 1130 limit -= (limit - thresh) >> 5; 1131 goto update; 1132 } 1133 return; 1134 update: 1135 dom->dirty_limit = limit; 1136 } 1137 1138 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1139 unsigned long now) 1140 { 1141 struct wb_domain *dom = dtc_dom(dtc); 1142 1143 /* 1144 * check locklessly first to optimize away locking for the most time 1145 */ 1146 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1147 return; 1148 1149 spin_lock(&dom->lock); 1150 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1151 update_dirty_limit(dtc); 1152 dom->dirty_limit_tstamp = now; 1153 } 1154 spin_unlock(&dom->lock); 1155 } 1156 1157 /* 1158 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1159 * 1160 * Normal wb tasks will be curbed at or below it in long term. 1161 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1162 */ 1163 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1164 unsigned long dirtied, 1165 unsigned long elapsed) 1166 { 1167 struct bdi_writeback *wb = dtc->wb; 1168 unsigned long dirty = dtc->dirty; 1169 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1170 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1171 unsigned long setpoint = (freerun + limit) / 2; 1172 unsigned long write_bw = wb->avg_write_bandwidth; 1173 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1174 unsigned long dirty_rate; 1175 unsigned long task_ratelimit; 1176 unsigned long balanced_dirty_ratelimit; 1177 unsigned long step; 1178 unsigned long x; 1179 unsigned long shift; 1180 1181 /* 1182 * The dirty rate will match the writeout rate in long term, except 1183 * when dirty pages are truncated by userspace or re-dirtied by FS. 1184 */ 1185 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1186 1187 /* 1188 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1189 */ 1190 task_ratelimit = (u64)dirty_ratelimit * 1191 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1192 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1193 1194 /* 1195 * A linear estimation of the "balanced" throttle rate. The theory is, 1196 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1197 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1198 * formula will yield the balanced rate limit (write_bw / N). 1199 * 1200 * Note that the expanded form is not a pure rate feedback: 1201 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1202 * but also takes pos_ratio into account: 1203 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1204 * 1205 * (1) is not realistic because pos_ratio also takes part in balancing 1206 * the dirty rate. Consider the state 1207 * pos_ratio = 0.5 (3) 1208 * rate = 2 * (write_bw / N) (4) 1209 * If (1) is used, it will stuck in that state! Because each dd will 1210 * be throttled at 1211 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1212 * yielding 1213 * dirty_rate = N * task_ratelimit = write_bw (6) 1214 * put (6) into (1) we get 1215 * rate_(i+1) = rate_(i) (7) 1216 * 1217 * So we end up using (2) to always keep 1218 * rate_(i+1) ~= (write_bw / N) (8) 1219 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1220 * pos_ratio is able to drive itself to 1.0, which is not only where 1221 * the dirty count meet the setpoint, but also where the slope of 1222 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1223 */ 1224 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1225 dirty_rate | 1); 1226 /* 1227 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1228 */ 1229 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1230 balanced_dirty_ratelimit = write_bw; 1231 1232 /* 1233 * We could safely do this and return immediately: 1234 * 1235 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1236 * 1237 * However to get a more stable dirty_ratelimit, the below elaborated 1238 * code makes use of task_ratelimit to filter out singular points and 1239 * limit the step size. 1240 * 1241 * The below code essentially only uses the relative value of 1242 * 1243 * task_ratelimit - dirty_ratelimit 1244 * = (pos_ratio - 1) * dirty_ratelimit 1245 * 1246 * which reflects the direction and size of dirty position error. 1247 */ 1248 1249 /* 1250 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1251 * task_ratelimit is on the same side of dirty_ratelimit, too. 1252 * For example, when 1253 * - dirty_ratelimit > balanced_dirty_ratelimit 1254 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1255 * lowering dirty_ratelimit will help meet both the position and rate 1256 * control targets. Otherwise, don't update dirty_ratelimit if it will 1257 * only help meet the rate target. After all, what the users ultimately 1258 * feel and care are stable dirty rate and small position error. 1259 * 1260 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1261 * and filter out the singular points of balanced_dirty_ratelimit. Which 1262 * keeps jumping around randomly and can even leap far away at times 1263 * due to the small 200ms estimation period of dirty_rate (we want to 1264 * keep that period small to reduce time lags). 1265 */ 1266 step = 0; 1267 1268 /* 1269 * For strictlimit case, calculations above were based on wb counters 1270 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1271 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1272 * Hence, to calculate "step" properly, we have to use wb_dirty as 1273 * "dirty" and wb_setpoint as "setpoint". 1274 * 1275 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1276 * it's possible that wb_thresh is close to zero due to inactivity 1277 * of backing device. 1278 */ 1279 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1280 dirty = dtc->wb_dirty; 1281 if (dtc->wb_dirty < 8) 1282 setpoint = dtc->wb_dirty + 1; 1283 else 1284 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1285 } 1286 1287 if (dirty < setpoint) { 1288 x = min3(wb->balanced_dirty_ratelimit, 1289 balanced_dirty_ratelimit, task_ratelimit); 1290 if (dirty_ratelimit < x) 1291 step = x - dirty_ratelimit; 1292 } else { 1293 x = max3(wb->balanced_dirty_ratelimit, 1294 balanced_dirty_ratelimit, task_ratelimit); 1295 if (dirty_ratelimit > x) 1296 step = dirty_ratelimit - x; 1297 } 1298 1299 /* 1300 * Don't pursue 100% rate matching. It's impossible since the balanced 1301 * rate itself is constantly fluctuating. So decrease the track speed 1302 * when it gets close to the target. Helps eliminate pointless tremors. 1303 */ 1304 shift = dirty_ratelimit / (2 * step + 1); 1305 if (shift < BITS_PER_LONG) 1306 step = DIV_ROUND_UP(step >> shift, 8); 1307 else 1308 step = 0; 1309 1310 if (dirty_ratelimit < balanced_dirty_ratelimit) 1311 dirty_ratelimit += step; 1312 else 1313 dirty_ratelimit -= step; 1314 1315 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1316 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1317 1318 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1319 } 1320 1321 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1322 struct dirty_throttle_control *mdtc, 1323 bool update_ratelimit) 1324 { 1325 struct bdi_writeback *wb = gdtc->wb; 1326 unsigned long now = jiffies; 1327 unsigned long elapsed; 1328 unsigned long dirtied; 1329 unsigned long written; 1330 1331 spin_lock(&wb->list_lock); 1332 1333 /* 1334 * Lockless checks for elapsed time are racy and delayed update after 1335 * IO completion doesn't do it at all (to make sure written pages are 1336 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1337 * division errors. 1338 */ 1339 elapsed = max(now - wb->bw_time_stamp, 1UL); 1340 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1341 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1342 1343 if (update_ratelimit) { 1344 domain_update_dirty_limit(gdtc, now); 1345 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1346 1347 /* 1348 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1349 * compiler has no way to figure that out. Help it. 1350 */ 1351 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1352 domain_update_dirty_limit(mdtc, now); 1353 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1354 } 1355 } 1356 wb_update_write_bandwidth(wb, elapsed, written); 1357 1358 wb->dirtied_stamp = dirtied; 1359 wb->written_stamp = written; 1360 WRITE_ONCE(wb->bw_time_stamp, now); 1361 spin_unlock(&wb->list_lock); 1362 } 1363 1364 void wb_update_bandwidth(struct bdi_writeback *wb) 1365 { 1366 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1367 1368 __wb_update_bandwidth(&gdtc, NULL, false); 1369 } 1370 1371 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1372 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1373 1374 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1375 { 1376 unsigned long now = jiffies; 1377 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1378 1379 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1380 !atomic_read(&wb->writeback_inodes)) { 1381 spin_lock(&wb->list_lock); 1382 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1383 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1384 WRITE_ONCE(wb->bw_time_stamp, now); 1385 spin_unlock(&wb->list_lock); 1386 } 1387 } 1388 1389 /* 1390 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1391 * will look to see if it needs to start dirty throttling. 1392 * 1393 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1394 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1395 * (the number of pages we may dirty without exceeding the dirty limits). 1396 */ 1397 static unsigned long dirty_poll_interval(unsigned long dirty, 1398 unsigned long thresh) 1399 { 1400 if (thresh > dirty) 1401 return 1UL << (ilog2(thresh - dirty) >> 1); 1402 1403 return 1; 1404 } 1405 1406 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1407 unsigned long wb_dirty) 1408 { 1409 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1410 unsigned long t; 1411 1412 /* 1413 * Limit pause time for small memory systems. If sleeping for too long 1414 * time, a small pool of dirty/writeback pages may go empty and disk go 1415 * idle. 1416 * 1417 * 8 serves as the safety ratio. 1418 */ 1419 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1420 t++; 1421 1422 return min_t(unsigned long, t, MAX_PAUSE); 1423 } 1424 1425 static long wb_min_pause(struct bdi_writeback *wb, 1426 long max_pause, 1427 unsigned long task_ratelimit, 1428 unsigned long dirty_ratelimit, 1429 int *nr_dirtied_pause) 1430 { 1431 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1432 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1433 long t; /* target pause */ 1434 long pause; /* estimated next pause */ 1435 int pages; /* target nr_dirtied_pause */ 1436 1437 /* target for 10ms pause on 1-dd case */ 1438 t = max(1, HZ / 100); 1439 1440 /* 1441 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1442 * overheads. 1443 * 1444 * (N * 10ms) on 2^N concurrent tasks. 1445 */ 1446 if (hi > lo) 1447 t += (hi - lo) * (10 * HZ) / 1024; 1448 1449 /* 1450 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1451 * on the much more stable dirty_ratelimit. However the next pause time 1452 * will be computed based on task_ratelimit and the two rate limits may 1453 * depart considerably at some time. Especially if task_ratelimit goes 1454 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1455 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1456 * result task_ratelimit won't be executed faithfully, which could 1457 * eventually bring down dirty_ratelimit. 1458 * 1459 * We apply two rules to fix it up: 1460 * 1) try to estimate the next pause time and if necessary, use a lower 1461 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1462 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1463 * 2) limit the target pause time to max_pause/2, so that the normal 1464 * small fluctuations of task_ratelimit won't trigger rule (1) and 1465 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1466 */ 1467 t = min(t, 1 + max_pause / 2); 1468 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1469 1470 /* 1471 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1472 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1473 * When the 16 consecutive reads are often interrupted by some dirty 1474 * throttling pause during the async writes, cfq will go into idles 1475 * (deadline is fine). So push nr_dirtied_pause as high as possible 1476 * until reaches DIRTY_POLL_THRESH=32 pages. 1477 */ 1478 if (pages < DIRTY_POLL_THRESH) { 1479 t = max_pause; 1480 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1481 if (pages > DIRTY_POLL_THRESH) { 1482 pages = DIRTY_POLL_THRESH; 1483 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1484 } 1485 } 1486 1487 pause = HZ * pages / (task_ratelimit + 1); 1488 if (pause > max_pause) { 1489 t = max_pause; 1490 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1491 } 1492 1493 *nr_dirtied_pause = pages; 1494 /* 1495 * The minimal pause time will normally be half the target pause time. 1496 */ 1497 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1498 } 1499 1500 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1501 { 1502 struct bdi_writeback *wb = dtc->wb; 1503 unsigned long wb_reclaimable; 1504 1505 /* 1506 * wb_thresh is not treated as some limiting factor as 1507 * dirty_thresh, due to reasons 1508 * - in JBOD setup, wb_thresh can fluctuate a lot 1509 * - in a system with HDD and USB key, the USB key may somehow 1510 * go into state (wb_dirty >> wb_thresh) either because 1511 * wb_dirty starts high, or because wb_thresh drops low. 1512 * In this case we don't want to hard throttle the USB key 1513 * dirtiers for 100 seconds until wb_dirty drops under 1514 * wb_thresh. Instead the auxiliary wb control line in 1515 * wb_position_ratio() will let the dirtier task progress 1516 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1517 */ 1518 dtc->wb_thresh = __wb_calc_thresh(dtc); 1519 dtc->wb_bg_thresh = dtc->thresh ? 1520 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1521 1522 /* 1523 * In order to avoid the stacked BDI deadlock we need 1524 * to ensure we accurately count the 'dirty' pages when 1525 * the threshold is low. 1526 * 1527 * Otherwise it would be possible to get thresh+n pages 1528 * reported dirty, even though there are thresh-m pages 1529 * actually dirty; with m+n sitting in the percpu 1530 * deltas. 1531 */ 1532 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1533 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1534 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1535 } else { 1536 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1537 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1538 } 1539 } 1540 1541 /* 1542 * balance_dirty_pages() must be called by processes which are generating dirty 1543 * data. It looks at the number of dirty pages in the machine and will force 1544 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1545 * If we're over `background_thresh' then the writeback threads are woken to 1546 * perform some writeout. 1547 */ 1548 static void balance_dirty_pages(struct bdi_writeback *wb, 1549 unsigned long pages_dirtied) 1550 { 1551 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1552 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1553 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1554 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1555 &mdtc_stor : NULL; 1556 struct dirty_throttle_control *sdtc; 1557 unsigned long nr_reclaimable; /* = file_dirty */ 1558 long period; 1559 long pause; 1560 long max_pause; 1561 long min_pause; 1562 int nr_dirtied_pause; 1563 bool dirty_exceeded = false; 1564 unsigned long task_ratelimit; 1565 unsigned long dirty_ratelimit; 1566 struct backing_dev_info *bdi = wb->bdi; 1567 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1568 unsigned long start_time = jiffies; 1569 1570 for (;;) { 1571 unsigned long now = jiffies; 1572 unsigned long dirty, thresh, bg_thresh; 1573 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1574 unsigned long m_thresh = 0; 1575 unsigned long m_bg_thresh = 0; 1576 1577 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1578 gdtc->avail = global_dirtyable_memory(); 1579 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1580 1581 domain_dirty_limits(gdtc); 1582 1583 if (unlikely(strictlimit)) { 1584 wb_dirty_limits(gdtc); 1585 1586 dirty = gdtc->wb_dirty; 1587 thresh = gdtc->wb_thresh; 1588 bg_thresh = gdtc->wb_bg_thresh; 1589 } else { 1590 dirty = gdtc->dirty; 1591 thresh = gdtc->thresh; 1592 bg_thresh = gdtc->bg_thresh; 1593 } 1594 1595 if (mdtc) { 1596 unsigned long filepages, headroom, writeback; 1597 1598 /* 1599 * If @wb belongs to !root memcg, repeat the same 1600 * basic calculations for the memcg domain. 1601 */ 1602 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1603 &mdtc->dirty, &writeback); 1604 mdtc->dirty += writeback; 1605 mdtc_calc_avail(mdtc, filepages, headroom); 1606 1607 domain_dirty_limits(mdtc); 1608 1609 if (unlikely(strictlimit)) { 1610 wb_dirty_limits(mdtc); 1611 m_dirty = mdtc->wb_dirty; 1612 m_thresh = mdtc->wb_thresh; 1613 m_bg_thresh = mdtc->wb_bg_thresh; 1614 } else { 1615 m_dirty = mdtc->dirty; 1616 m_thresh = mdtc->thresh; 1617 m_bg_thresh = mdtc->bg_thresh; 1618 } 1619 } 1620 1621 /* 1622 * Throttle it only when the background writeback cannot 1623 * catch-up. This avoids (excessively) small writeouts 1624 * when the wb limits are ramping up in case of !strictlimit. 1625 * 1626 * In strictlimit case make decision based on the wb counters 1627 * and limits. Small writeouts when the wb limits are ramping 1628 * up are the price we consciously pay for strictlimit-ing. 1629 * 1630 * If memcg domain is in effect, @dirty should be under 1631 * both global and memcg freerun ceilings. 1632 */ 1633 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1634 (!mdtc || 1635 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1636 unsigned long intv; 1637 unsigned long m_intv; 1638 1639 free_running: 1640 intv = dirty_poll_interval(dirty, thresh); 1641 m_intv = ULONG_MAX; 1642 1643 current->dirty_paused_when = now; 1644 current->nr_dirtied = 0; 1645 if (mdtc) 1646 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1647 current->nr_dirtied_pause = min(intv, m_intv); 1648 break; 1649 } 1650 1651 if (unlikely(!writeback_in_progress(wb))) 1652 wb_start_background_writeback(wb); 1653 1654 mem_cgroup_flush_foreign(wb); 1655 1656 /* 1657 * Calculate global domain's pos_ratio and select the 1658 * global dtc by default. 1659 */ 1660 if (!strictlimit) { 1661 wb_dirty_limits(gdtc); 1662 1663 if ((current->flags & PF_LOCAL_THROTTLE) && 1664 gdtc->wb_dirty < 1665 dirty_freerun_ceiling(gdtc->wb_thresh, 1666 gdtc->wb_bg_thresh)) 1667 /* 1668 * LOCAL_THROTTLE tasks must not be throttled 1669 * when below the per-wb freerun ceiling. 1670 */ 1671 goto free_running; 1672 } 1673 1674 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1675 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1676 1677 wb_position_ratio(gdtc); 1678 sdtc = gdtc; 1679 1680 if (mdtc) { 1681 /* 1682 * If memcg domain is in effect, calculate its 1683 * pos_ratio. @wb should satisfy constraints from 1684 * both global and memcg domains. Choose the one 1685 * w/ lower pos_ratio. 1686 */ 1687 if (!strictlimit) { 1688 wb_dirty_limits(mdtc); 1689 1690 if ((current->flags & PF_LOCAL_THROTTLE) && 1691 mdtc->wb_dirty < 1692 dirty_freerun_ceiling(mdtc->wb_thresh, 1693 mdtc->wb_bg_thresh)) 1694 /* 1695 * LOCAL_THROTTLE tasks must not be 1696 * throttled when below the per-wb 1697 * freerun ceiling. 1698 */ 1699 goto free_running; 1700 } 1701 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1702 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1703 1704 wb_position_ratio(mdtc); 1705 if (mdtc->pos_ratio < gdtc->pos_ratio) 1706 sdtc = mdtc; 1707 } 1708 1709 if (dirty_exceeded && !wb->dirty_exceeded) 1710 wb->dirty_exceeded = 1; 1711 1712 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1713 BANDWIDTH_INTERVAL)) 1714 __wb_update_bandwidth(gdtc, mdtc, true); 1715 1716 /* throttle according to the chosen dtc */ 1717 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1718 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1719 RATELIMIT_CALC_SHIFT; 1720 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1721 min_pause = wb_min_pause(wb, max_pause, 1722 task_ratelimit, dirty_ratelimit, 1723 &nr_dirtied_pause); 1724 1725 if (unlikely(task_ratelimit == 0)) { 1726 period = max_pause; 1727 pause = max_pause; 1728 goto pause; 1729 } 1730 period = HZ * pages_dirtied / task_ratelimit; 1731 pause = period; 1732 if (current->dirty_paused_when) 1733 pause -= now - current->dirty_paused_when; 1734 /* 1735 * For less than 1s think time (ext3/4 may block the dirtier 1736 * for up to 800ms from time to time on 1-HDD; so does xfs, 1737 * however at much less frequency), try to compensate it in 1738 * future periods by updating the virtual time; otherwise just 1739 * do a reset, as it may be a light dirtier. 1740 */ 1741 if (pause < min_pause) { 1742 trace_balance_dirty_pages(wb, 1743 sdtc->thresh, 1744 sdtc->bg_thresh, 1745 sdtc->dirty, 1746 sdtc->wb_thresh, 1747 sdtc->wb_dirty, 1748 dirty_ratelimit, 1749 task_ratelimit, 1750 pages_dirtied, 1751 period, 1752 min(pause, 0L), 1753 start_time); 1754 if (pause < -HZ) { 1755 current->dirty_paused_when = now; 1756 current->nr_dirtied = 0; 1757 } else if (period) { 1758 current->dirty_paused_when += period; 1759 current->nr_dirtied = 0; 1760 } else if (current->nr_dirtied_pause <= pages_dirtied) 1761 current->nr_dirtied_pause += pages_dirtied; 1762 break; 1763 } 1764 if (unlikely(pause > max_pause)) { 1765 /* for occasional dropped task_ratelimit */ 1766 now += min(pause - max_pause, max_pause); 1767 pause = max_pause; 1768 } 1769 1770 pause: 1771 trace_balance_dirty_pages(wb, 1772 sdtc->thresh, 1773 sdtc->bg_thresh, 1774 sdtc->dirty, 1775 sdtc->wb_thresh, 1776 sdtc->wb_dirty, 1777 dirty_ratelimit, 1778 task_ratelimit, 1779 pages_dirtied, 1780 period, 1781 pause, 1782 start_time); 1783 __set_current_state(TASK_KILLABLE); 1784 wb->dirty_sleep = now; 1785 io_schedule_timeout(pause); 1786 1787 current->dirty_paused_when = now + pause; 1788 current->nr_dirtied = 0; 1789 current->nr_dirtied_pause = nr_dirtied_pause; 1790 1791 /* 1792 * This is typically equal to (dirty < thresh) and can also 1793 * keep "1000+ dd on a slow USB stick" under control. 1794 */ 1795 if (task_ratelimit) 1796 break; 1797 1798 /* 1799 * In the case of an unresponsive NFS server and the NFS dirty 1800 * pages exceeds dirty_thresh, give the other good wb's a pipe 1801 * to go through, so that tasks on them still remain responsive. 1802 * 1803 * In theory 1 page is enough to keep the consumer-producer 1804 * pipe going: the flusher cleans 1 page => the task dirties 1 1805 * more page. However wb_dirty has accounting errors. So use 1806 * the larger and more IO friendly wb_stat_error. 1807 */ 1808 if (sdtc->wb_dirty <= wb_stat_error()) 1809 break; 1810 1811 if (fatal_signal_pending(current)) 1812 break; 1813 } 1814 1815 if (!dirty_exceeded && wb->dirty_exceeded) 1816 wb->dirty_exceeded = 0; 1817 1818 if (writeback_in_progress(wb)) 1819 return; 1820 1821 /* 1822 * In laptop mode, we wait until hitting the higher threshold before 1823 * starting background writeout, and then write out all the way down 1824 * to the lower threshold. So slow writers cause minimal disk activity. 1825 * 1826 * In normal mode, we start background writeout at the lower 1827 * background_thresh, to keep the amount of dirty memory low. 1828 */ 1829 if (laptop_mode) 1830 return; 1831 1832 if (nr_reclaimable > gdtc->bg_thresh) 1833 wb_start_background_writeback(wb); 1834 } 1835 1836 static DEFINE_PER_CPU(int, bdp_ratelimits); 1837 1838 /* 1839 * Normal tasks are throttled by 1840 * loop { 1841 * dirty tsk->nr_dirtied_pause pages; 1842 * take a snap in balance_dirty_pages(); 1843 * } 1844 * However there is a worst case. If every task exit immediately when dirtied 1845 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1846 * called to throttle the page dirties. The solution is to save the not yet 1847 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1848 * randomly into the running tasks. This works well for the above worst case, 1849 * as the new task will pick up and accumulate the old task's leaked dirty 1850 * count and eventually get throttled. 1851 */ 1852 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1853 1854 /** 1855 * balance_dirty_pages_ratelimited - balance dirty memory state 1856 * @mapping: address_space which was dirtied 1857 * 1858 * Processes which are dirtying memory should call in here once for each page 1859 * which was newly dirtied. The function will periodically check the system's 1860 * dirty state and will initiate writeback if needed. 1861 * 1862 * Once we're over the dirty memory limit we decrease the ratelimiting 1863 * by a lot, to prevent individual processes from overshooting the limit 1864 * by (ratelimit_pages) each. 1865 */ 1866 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1867 { 1868 struct inode *inode = mapping->host; 1869 struct backing_dev_info *bdi = inode_to_bdi(inode); 1870 struct bdi_writeback *wb = NULL; 1871 int ratelimit; 1872 int *p; 1873 1874 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 1875 return; 1876 1877 if (inode_cgwb_enabled(inode)) 1878 wb = wb_get_create_current(bdi, GFP_KERNEL); 1879 if (!wb) 1880 wb = &bdi->wb; 1881 1882 ratelimit = current->nr_dirtied_pause; 1883 if (wb->dirty_exceeded) 1884 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1885 1886 preempt_disable(); 1887 /* 1888 * This prevents one CPU to accumulate too many dirtied pages without 1889 * calling into balance_dirty_pages(), which can happen when there are 1890 * 1000+ tasks, all of them start dirtying pages at exactly the same 1891 * time, hence all honoured too large initial task->nr_dirtied_pause. 1892 */ 1893 p = this_cpu_ptr(&bdp_ratelimits); 1894 if (unlikely(current->nr_dirtied >= ratelimit)) 1895 *p = 0; 1896 else if (unlikely(*p >= ratelimit_pages)) { 1897 *p = 0; 1898 ratelimit = 0; 1899 } 1900 /* 1901 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1902 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1903 * the dirty throttling and livelock other long-run dirtiers. 1904 */ 1905 p = this_cpu_ptr(&dirty_throttle_leaks); 1906 if (*p > 0 && current->nr_dirtied < ratelimit) { 1907 unsigned long nr_pages_dirtied; 1908 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1909 *p -= nr_pages_dirtied; 1910 current->nr_dirtied += nr_pages_dirtied; 1911 } 1912 preempt_enable(); 1913 1914 if (unlikely(current->nr_dirtied >= ratelimit)) 1915 balance_dirty_pages(wb, current->nr_dirtied); 1916 1917 wb_put(wb); 1918 } 1919 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1920 1921 /** 1922 * wb_over_bg_thresh - does @wb need to be written back? 1923 * @wb: bdi_writeback of interest 1924 * 1925 * Determines whether background writeback should keep writing @wb or it's 1926 * clean enough. 1927 * 1928 * Return: %true if writeback should continue. 1929 */ 1930 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1931 { 1932 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1933 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1934 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1935 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1936 &mdtc_stor : NULL; 1937 unsigned long reclaimable; 1938 unsigned long thresh; 1939 1940 /* 1941 * Similar to balance_dirty_pages() but ignores pages being written 1942 * as we're trying to decide whether to put more under writeback. 1943 */ 1944 gdtc->avail = global_dirtyable_memory(); 1945 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 1946 domain_dirty_limits(gdtc); 1947 1948 if (gdtc->dirty > gdtc->bg_thresh) 1949 return true; 1950 1951 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 1952 if (thresh < 2 * wb_stat_error()) 1953 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1954 else 1955 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1956 1957 if (reclaimable > thresh) 1958 return true; 1959 1960 if (mdtc) { 1961 unsigned long filepages, headroom, writeback; 1962 1963 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1964 &writeback); 1965 mdtc_calc_avail(mdtc, filepages, headroom); 1966 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1967 1968 if (mdtc->dirty > mdtc->bg_thresh) 1969 return true; 1970 1971 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 1972 if (thresh < 2 * wb_stat_error()) 1973 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1974 else 1975 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1976 1977 if (reclaimable > thresh) 1978 return true; 1979 } 1980 1981 return false; 1982 } 1983 1984 /* 1985 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1986 */ 1987 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1988 void *buffer, size_t *length, loff_t *ppos) 1989 { 1990 unsigned int old_interval = dirty_writeback_interval; 1991 int ret; 1992 1993 ret = proc_dointvec(table, write, buffer, length, ppos); 1994 1995 /* 1996 * Writing 0 to dirty_writeback_interval will disable periodic writeback 1997 * and a different non-zero value will wakeup the writeback threads. 1998 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 1999 * iterate over all bdis and wbs. 2000 * The reason we do this is to make the change take effect immediately. 2001 */ 2002 if (!ret && write && dirty_writeback_interval && 2003 dirty_writeback_interval != old_interval) 2004 wakeup_flusher_threads(WB_REASON_PERIODIC); 2005 2006 return ret; 2007 } 2008 2009 void laptop_mode_timer_fn(struct timer_list *t) 2010 { 2011 struct backing_dev_info *backing_dev_info = 2012 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2013 2014 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2015 } 2016 2017 /* 2018 * We've spun up the disk and we're in laptop mode: schedule writeback 2019 * of all dirty data a few seconds from now. If the flush is already scheduled 2020 * then push it back - the user is still using the disk. 2021 */ 2022 void laptop_io_completion(struct backing_dev_info *info) 2023 { 2024 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2025 } 2026 2027 /* 2028 * We're in laptop mode and we've just synced. The sync's writes will have 2029 * caused another writeback to be scheduled by laptop_io_completion. 2030 * Nothing needs to be written back anymore, so we unschedule the writeback. 2031 */ 2032 void laptop_sync_completion(void) 2033 { 2034 struct backing_dev_info *bdi; 2035 2036 rcu_read_lock(); 2037 2038 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2039 del_timer(&bdi->laptop_mode_wb_timer); 2040 2041 rcu_read_unlock(); 2042 } 2043 2044 /* 2045 * If ratelimit_pages is too high then we can get into dirty-data overload 2046 * if a large number of processes all perform writes at the same time. 2047 * 2048 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2049 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2050 * thresholds. 2051 */ 2052 2053 void writeback_set_ratelimit(void) 2054 { 2055 struct wb_domain *dom = &global_wb_domain; 2056 unsigned long background_thresh; 2057 unsigned long dirty_thresh; 2058 2059 global_dirty_limits(&background_thresh, &dirty_thresh); 2060 dom->dirty_limit = dirty_thresh; 2061 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2062 if (ratelimit_pages < 16) 2063 ratelimit_pages = 16; 2064 } 2065 2066 static int page_writeback_cpu_online(unsigned int cpu) 2067 { 2068 writeback_set_ratelimit(); 2069 return 0; 2070 } 2071 2072 /* 2073 * Called early on to tune the page writeback dirty limits. 2074 * 2075 * We used to scale dirty pages according to how total memory 2076 * related to pages that could be allocated for buffers. 2077 * 2078 * However, that was when we used "dirty_ratio" to scale with 2079 * all memory, and we don't do that any more. "dirty_ratio" 2080 * is now applied to total non-HIGHPAGE memory, and as such we can't 2081 * get into the old insane situation any more where we had 2082 * large amounts of dirty pages compared to a small amount of 2083 * non-HIGHMEM memory. 2084 * 2085 * But we might still want to scale the dirty_ratio by how 2086 * much memory the box has.. 2087 */ 2088 void __init page_writeback_init(void) 2089 { 2090 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2091 2092 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2093 page_writeback_cpu_online, NULL); 2094 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2095 page_writeback_cpu_online); 2096 } 2097 2098 /** 2099 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2100 * @mapping: address space structure to write 2101 * @start: starting page index 2102 * @end: ending page index (inclusive) 2103 * 2104 * This function scans the page range from @start to @end (inclusive) and tags 2105 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2106 * that write_cache_pages (or whoever calls this function) will then use 2107 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2108 * used to avoid livelocking of writeback by a process steadily creating new 2109 * dirty pages in the file (thus it is important for this function to be quick 2110 * so that it can tag pages faster than a dirtying process can create them). 2111 */ 2112 void tag_pages_for_writeback(struct address_space *mapping, 2113 pgoff_t start, pgoff_t end) 2114 { 2115 XA_STATE(xas, &mapping->i_pages, start); 2116 unsigned int tagged = 0; 2117 void *page; 2118 2119 xas_lock_irq(&xas); 2120 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2121 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2122 if (++tagged % XA_CHECK_SCHED) 2123 continue; 2124 2125 xas_pause(&xas); 2126 xas_unlock_irq(&xas); 2127 cond_resched(); 2128 xas_lock_irq(&xas); 2129 } 2130 xas_unlock_irq(&xas); 2131 } 2132 EXPORT_SYMBOL(tag_pages_for_writeback); 2133 2134 /** 2135 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2136 * @mapping: address space structure to write 2137 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2138 * @writepage: function called for each page 2139 * @data: data passed to writepage function 2140 * 2141 * If a page is already under I/O, write_cache_pages() skips it, even 2142 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2143 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2144 * and msync() need to guarantee that all the data which was dirty at the time 2145 * the call was made get new I/O started against them. If wbc->sync_mode is 2146 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2147 * existing IO to complete. 2148 * 2149 * To avoid livelocks (when other process dirties new pages), we first tag 2150 * pages which should be written back with TOWRITE tag and only then start 2151 * writing them. For data-integrity sync we have to be careful so that we do 2152 * not miss some pages (e.g., because some other process has cleared TOWRITE 2153 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2154 * by the process clearing the DIRTY tag (and submitting the page for IO). 2155 * 2156 * To avoid deadlocks between range_cyclic writeback and callers that hold 2157 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2158 * we do not loop back to the start of the file. Doing so causes a page 2159 * lock/page writeback access order inversion - we should only ever lock 2160 * multiple pages in ascending page->index order, and looping back to the start 2161 * of the file violates that rule and causes deadlocks. 2162 * 2163 * Return: %0 on success, negative error code otherwise 2164 */ 2165 int write_cache_pages(struct address_space *mapping, 2166 struct writeback_control *wbc, writepage_t writepage, 2167 void *data) 2168 { 2169 int ret = 0; 2170 int done = 0; 2171 int error; 2172 struct pagevec pvec; 2173 int nr_pages; 2174 pgoff_t index; 2175 pgoff_t end; /* Inclusive */ 2176 pgoff_t done_index; 2177 int range_whole = 0; 2178 xa_mark_t tag; 2179 2180 pagevec_init(&pvec); 2181 if (wbc->range_cyclic) { 2182 index = mapping->writeback_index; /* prev offset */ 2183 end = -1; 2184 } else { 2185 index = wbc->range_start >> PAGE_SHIFT; 2186 end = wbc->range_end >> PAGE_SHIFT; 2187 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2188 range_whole = 1; 2189 } 2190 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2191 tag_pages_for_writeback(mapping, index, end); 2192 tag = PAGECACHE_TAG_TOWRITE; 2193 } else { 2194 tag = PAGECACHE_TAG_DIRTY; 2195 } 2196 done_index = index; 2197 while (!done && (index <= end)) { 2198 int i; 2199 2200 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2201 tag); 2202 if (nr_pages == 0) 2203 break; 2204 2205 for (i = 0; i < nr_pages; i++) { 2206 struct page *page = pvec.pages[i]; 2207 2208 done_index = page->index; 2209 2210 lock_page(page); 2211 2212 /* 2213 * Page truncated or invalidated. We can freely skip it 2214 * then, even for data integrity operations: the page 2215 * has disappeared concurrently, so there could be no 2216 * real expectation of this data integrity operation 2217 * even if there is now a new, dirty page at the same 2218 * pagecache address. 2219 */ 2220 if (unlikely(page->mapping != mapping)) { 2221 continue_unlock: 2222 unlock_page(page); 2223 continue; 2224 } 2225 2226 if (!PageDirty(page)) { 2227 /* someone wrote it for us */ 2228 goto continue_unlock; 2229 } 2230 2231 if (PageWriteback(page)) { 2232 if (wbc->sync_mode != WB_SYNC_NONE) 2233 wait_on_page_writeback(page); 2234 else 2235 goto continue_unlock; 2236 } 2237 2238 BUG_ON(PageWriteback(page)); 2239 if (!clear_page_dirty_for_io(page)) 2240 goto continue_unlock; 2241 2242 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2243 error = (*writepage)(page, wbc, data); 2244 if (unlikely(error)) { 2245 /* 2246 * Handle errors according to the type of 2247 * writeback. There's no need to continue for 2248 * background writeback. Just push done_index 2249 * past this page so media errors won't choke 2250 * writeout for the entire file. For integrity 2251 * writeback, we must process the entire dirty 2252 * set regardless of errors because the fs may 2253 * still have state to clear for each page. In 2254 * that case we continue processing and return 2255 * the first error. 2256 */ 2257 if (error == AOP_WRITEPAGE_ACTIVATE) { 2258 unlock_page(page); 2259 error = 0; 2260 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2261 ret = error; 2262 done_index = page->index + 1; 2263 done = 1; 2264 break; 2265 } 2266 if (!ret) 2267 ret = error; 2268 } 2269 2270 /* 2271 * We stop writing back only if we are not doing 2272 * integrity sync. In case of integrity sync we have to 2273 * keep going until we have written all the pages 2274 * we tagged for writeback prior to entering this loop. 2275 */ 2276 if (--wbc->nr_to_write <= 0 && 2277 wbc->sync_mode == WB_SYNC_NONE) { 2278 done = 1; 2279 break; 2280 } 2281 } 2282 pagevec_release(&pvec); 2283 cond_resched(); 2284 } 2285 2286 /* 2287 * If we hit the last page and there is more work to be done: wrap 2288 * back the index back to the start of the file for the next 2289 * time we are called. 2290 */ 2291 if (wbc->range_cyclic && !done) 2292 done_index = 0; 2293 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2294 mapping->writeback_index = done_index; 2295 2296 return ret; 2297 } 2298 EXPORT_SYMBOL(write_cache_pages); 2299 2300 /* 2301 * Function used by generic_writepages to call the real writepage 2302 * function and set the mapping flags on error 2303 */ 2304 static int __writepage(struct page *page, struct writeback_control *wbc, 2305 void *data) 2306 { 2307 struct address_space *mapping = data; 2308 int ret = mapping->a_ops->writepage(page, wbc); 2309 mapping_set_error(mapping, ret); 2310 return ret; 2311 } 2312 2313 /** 2314 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2315 * @mapping: address space structure to write 2316 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2317 * 2318 * This is a library function, which implements the writepages() 2319 * address_space_operation. 2320 * 2321 * Return: %0 on success, negative error code otherwise 2322 */ 2323 int generic_writepages(struct address_space *mapping, 2324 struct writeback_control *wbc) 2325 { 2326 struct blk_plug plug; 2327 int ret; 2328 2329 /* deal with chardevs and other special file */ 2330 if (!mapping->a_ops->writepage) 2331 return 0; 2332 2333 blk_start_plug(&plug); 2334 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2335 blk_finish_plug(&plug); 2336 return ret; 2337 } 2338 2339 EXPORT_SYMBOL(generic_writepages); 2340 2341 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2342 { 2343 int ret; 2344 struct bdi_writeback *wb; 2345 2346 if (wbc->nr_to_write <= 0) 2347 return 0; 2348 wb = inode_to_wb_wbc(mapping->host, wbc); 2349 wb_bandwidth_estimate_start(wb); 2350 while (1) { 2351 if (mapping->a_ops->writepages) 2352 ret = mapping->a_ops->writepages(mapping, wbc); 2353 else 2354 ret = generic_writepages(mapping, wbc); 2355 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2356 break; 2357 2358 /* 2359 * Lacking an allocation context or the locality or writeback 2360 * state of any of the inode's pages, throttle based on 2361 * writeback activity on the local node. It's as good a 2362 * guess as any. 2363 */ 2364 reclaim_throttle(NODE_DATA(numa_node_id()), 2365 VMSCAN_THROTTLE_WRITEBACK); 2366 } 2367 /* 2368 * Usually few pages are written by now from those we've just submitted 2369 * but if there's constant writeback being submitted, this makes sure 2370 * writeback bandwidth is updated once in a while. 2371 */ 2372 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2373 BANDWIDTH_INTERVAL)) 2374 wb_update_bandwidth(wb); 2375 return ret; 2376 } 2377 2378 /** 2379 * folio_write_one - write out a single folio and wait on I/O. 2380 * @folio: The folio to write. 2381 * 2382 * The folio must be locked by the caller and will be unlocked upon return. 2383 * 2384 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2385 * function returns. 2386 * 2387 * Return: %0 on success, negative error code otherwise 2388 */ 2389 int folio_write_one(struct folio *folio) 2390 { 2391 struct address_space *mapping = folio->mapping; 2392 int ret = 0; 2393 struct writeback_control wbc = { 2394 .sync_mode = WB_SYNC_ALL, 2395 .nr_to_write = folio_nr_pages(folio), 2396 }; 2397 2398 BUG_ON(!folio_test_locked(folio)); 2399 2400 folio_wait_writeback(folio); 2401 2402 if (folio_clear_dirty_for_io(folio)) { 2403 folio_get(folio); 2404 ret = mapping->a_ops->writepage(&folio->page, &wbc); 2405 if (ret == 0) 2406 folio_wait_writeback(folio); 2407 folio_put(folio); 2408 } else { 2409 folio_unlock(folio); 2410 } 2411 2412 if (!ret) 2413 ret = filemap_check_errors(mapping); 2414 return ret; 2415 } 2416 EXPORT_SYMBOL(folio_write_one); 2417 2418 /* 2419 * For address_spaces which do not use buffers nor write back. 2420 */ 2421 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2422 { 2423 if (!folio_test_dirty(folio)) 2424 return !folio_test_set_dirty(folio); 2425 return false; 2426 } 2427 EXPORT_SYMBOL(noop_dirty_folio); 2428 2429 /* 2430 * Helper function for set_page_dirty family. 2431 * 2432 * Caller must hold lock_page_memcg(). 2433 * 2434 * NOTE: This relies on being atomic wrt interrupts. 2435 */ 2436 static void folio_account_dirtied(struct folio *folio, 2437 struct address_space *mapping) 2438 { 2439 struct inode *inode = mapping->host; 2440 2441 trace_writeback_dirty_folio(folio, mapping); 2442 2443 if (mapping_can_writeback(mapping)) { 2444 struct bdi_writeback *wb; 2445 long nr = folio_nr_pages(folio); 2446 2447 inode_attach_wb(inode, &folio->page); 2448 wb = inode_to_wb(inode); 2449 2450 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2451 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2452 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2453 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2454 wb_stat_mod(wb, WB_DIRTIED, nr); 2455 task_io_account_write(nr * PAGE_SIZE); 2456 current->nr_dirtied += nr; 2457 __this_cpu_add(bdp_ratelimits, nr); 2458 2459 mem_cgroup_track_foreign_dirty(folio, wb); 2460 } 2461 } 2462 2463 /* 2464 * Helper function for deaccounting dirty page without writeback. 2465 * 2466 * Caller must hold lock_page_memcg(). 2467 */ 2468 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2469 { 2470 long nr = folio_nr_pages(folio); 2471 2472 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2473 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2474 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2475 task_io_account_cancelled_write(nr * PAGE_SIZE); 2476 } 2477 2478 /* 2479 * Mark the folio dirty, and set it dirty in the page cache, and mark 2480 * the inode dirty. 2481 * 2482 * If warn is true, then emit a warning if the folio is not uptodate and has 2483 * not been truncated. 2484 * 2485 * The caller must hold lock_page_memcg(). Most callers have the folio 2486 * locked. A few have the folio blocked from truncation through other 2487 * means (eg zap_page_range() has it mapped and is holding the page table 2488 * lock). This can also be called from mark_buffer_dirty(), which I 2489 * cannot prove is always protected against truncate. 2490 */ 2491 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2492 int warn) 2493 { 2494 unsigned long flags; 2495 2496 xa_lock_irqsave(&mapping->i_pages, flags); 2497 if (folio->mapping) { /* Race with truncate? */ 2498 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2499 folio_account_dirtied(folio, mapping); 2500 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2501 PAGECACHE_TAG_DIRTY); 2502 } 2503 xa_unlock_irqrestore(&mapping->i_pages, flags); 2504 } 2505 2506 /** 2507 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2508 * @mapping: Address space this folio belongs to. 2509 * @folio: Folio to be marked as dirty. 2510 * 2511 * Filesystems which do not use buffer heads should call this function 2512 * from their set_page_dirty address space operation. It ignores the 2513 * contents of folio_get_private(), so if the filesystem marks individual 2514 * blocks as dirty, the filesystem should handle that itself. 2515 * 2516 * This is also sometimes used by filesystems which use buffer_heads when 2517 * a single buffer is being dirtied: we want to set the folio dirty in 2518 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2519 * whereas block_dirty_folio() is a "top-down" dirtying. 2520 * 2521 * The caller must ensure this doesn't race with truncation. Most will 2522 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2523 * folio mapped and the pte lock held, which also locks out truncation. 2524 */ 2525 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2526 { 2527 folio_memcg_lock(folio); 2528 if (folio_test_set_dirty(folio)) { 2529 folio_memcg_unlock(folio); 2530 return false; 2531 } 2532 2533 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2534 folio_memcg_unlock(folio); 2535 2536 if (mapping->host) { 2537 /* !PageAnon && !swapper_space */ 2538 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2539 } 2540 return true; 2541 } 2542 EXPORT_SYMBOL(filemap_dirty_folio); 2543 2544 /** 2545 * folio_account_redirty - Manually account for redirtying a page. 2546 * @folio: The folio which is being redirtied. 2547 * 2548 * Most filesystems should call folio_redirty_for_writepage() instead 2549 * of this fuction. If your filesystem is doing writeback outside the 2550 * context of a writeback_control(), it can call this when redirtying 2551 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED, 2552 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN, 2553 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors 2554 * in balanced_dirty_ratelimit and the dirty pages position control. 2555 */ 2556 void folio_account_redirty(struct folio *folio) 2557 { 2558 struct address_space *mapping = folio->mapping; 2559 2560 if (mapping && mapping_can_writeback(mapping)) { 2561 struct inode *inode = mapping->host; 2562 struct bdi_writeback *wb; 2563 struct wb_lock_cookie cookie = {}; 2564 long nr = folio_nr_pages(folio); 2565 2566 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2567 current->nr_dirtied -= nr; 2568 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2569 wb_stat_mod(wb, WB_DIRTIED, -nr); 2570 unlocked_inode_to_wb_end(inode, &cookie); 2571 } 2572 } 2573 EXPORT_SYMBOL(folio_account_redirty); 2574 2575 /** 2576 * folio_redirty_for_writepage - Decline to write a dirty folio. 2577 * @wbc: The writeback control. 2578 * @folio: The folio. 2579 * 2580 * When a writepage implementation decides that it doesn't want to write 2581 * @folio for some reason, it should call this function, unlock @folio and 2582 * return 0. 2583 * 2584 * Return: True if we redirtied the folio. False if someone else dirtied 2585 * it first. 2586 */ 2587 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2588 struct folio *folio) 2589 { 2590 bool ret; 2591 long nr = folio_nr_pages(folio); 2592 2593 wbc->pages_skipped += nr; 2594 ret = filemap_dirty_folio(folio->mapping, folio); 2595 folio_account_redirty(folio); 2596 2597 return ret; 2598 } 2599 EXPORT_SYMBOL(folio_redirty_for_writepage); 2600 2601 /** 2602 * folio_mark_dirty - Mark a folio as being modified. 2603 * @folio: The folio. 2604 * 2605 * For folios with a mapping this should be done with the folio lock held 2606 * for the benefit of asynchronous memory errors who prefer a consistent 2607 * dirty state. This rule can be broken in some special cases, 2608 * but should be better not to. 2609 * 2610 * Return: True if the folio was newly dirtied, false if it was already dirty. 2611 */ 2612 bool folio_mark_dirty(struct folio *folio) 2613 { 2614 struct address_space *mapping = folio_mapping(folio); 2615 2616 if (likely(mapping)) { 2617 /* 2618 * readahead/lru_deactivate_page could remain 2619 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2620 * About readahead, if the folio is written, the flags would be 2621 * reset. So no problem. 2622 * About lru_deactivate_page, if the folio is redirtied, 2623 * the flag will be reset. So no problem. but if the 2624 * folio is used by readahead it will confuse readahead 2625 * and make it restart the size rampup process. But it's 2626 * a trivial problem. 2627 */ 2628 if (folio_test_reclaim(folio)) 2629 folio_clear_reclaim(folio); 2630 return mapping->a_ops->dirty_folio(mapping, folio); 2631 } 2632 2633 return noop_dirty_folio(mapping, folio); 2634 } 2635 EXPORT_SYMBOL(folio_mark_dirty); 2636 2637 /* 2638 * set_page_dirty() is racy if the caller has no reference against 2639 * page->mapping->host, and if the page is unlocked. This is because another 2640 * CPU could truncate the page off the mapping and then free the mapping. 2641 * 2642 * Usually, the page _is_ locked, or the caller is a user-space process which 2643 * holds a reference on the inode by having an open file. 2644 * 2645 * In other cases, the page should be locked before running set_page_dirty(). 2646 */ 2647 int set_page_dirty_lock(struct page *page) 2648 { 2649 int ret; 2650 2651 lock_page(page); 2652 ret = set_page_dirty(page); 2653 unlock_page(page); 2654 return ret; 2655 } 2656 EXPORT_SYMBOL(set_page_dirty_lock); 2657 2658 /* 2659 * This cancels just the dirty bit on the kernel page itself, it does NOT 2660 * actually remove dirty bits on any mmap's that may be around. It also 2661 * leaves the page tagged dirty, so any sync activity will still find it on 2662 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2663 * look at the dirty bits in the VM. 2664 * 2665 * Doing this should *normally* only ever be done when a page is truncated, 2666 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2667 * this when it notices that somebody has cleaned out all the buffers on a 2668 * page without actually doing it through the VM. Can you say "ext3 is 2669 * horribly ugly"? Thought you could. 2670 */ 2671 void __folio_cancel_dirty(struct folio *folio) 2672 { 2673 struct address_space *mapping = folio_mapping(folio); 2674 2675 if (mapping_can_writeback(mapping)) { 2676 struct inode *inode = mapping->host; 2677 struct bdi_writeback *wb; 2678 struct wb_lock_cookie cookie = {}; 2679 2680 folio_memcg_lock(folio); 2681 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2682 2683 if (folio_test_clear_dirty(folio)) 2684 folio_account_cleaned(folio, wb); 2685 2686 unlocked_inode_to_wb_end(inode, &cookie); 2687 folio_memcg_unlock(folio); 2688 } else { 2689 folio_clear_dirty(folio); 2690 } 2691 } 2692 EXPORT_SYMBOL(__folio_cancel_dirty); 2693 2694 /* 2695 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2696 * Returns true if the folio was previously dirty. 2697 * 2698 * This is for preparing to put the folio under writeout. We leave 2699 * the folio tagged as dirty in the xarray so that a concurrent 2700 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2701 * The ->writepage implementation will run either folio_start_writeback() 2702 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2703 * and xarray dirty tag back into sync. 2704 * 2705 * This incoherency between the folio's dirty flag and xarray tag is 2706 * unfortunate, but it only exists while the folio is locked. 2707 */ 2708 bool folio_clear_dirty_for_io(struct folio *folio) 2709 { 2710 struct address_space *mapping = folio_mapping(folio); 2711 bool ret = false; 2712 2713 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2714 2715 if (mapping && mapping_can_writeback(mapping)) { 2716 struct inode *inode = mapping->host; 2717 struct bdi_writeback *wb; 2718 struct wb_lock_cookie cookie = {}; 2719 2720 /* 2721 * Yes, Virginia, this is indeed insane. 2722 * 2723 * We use this sequence to make sure that 2724 * (a) we account for dirty stats properly 2725 * (b) we tell the low-level filesystem to 2726 * mark the whole folio dirty if it was 2727 * dirty in a pagetable. Only to then 2728 * (c) clean the folio again and return 1 to 2729 * cause the writeback. 2730 * 2731 * This way we avoid all nasty races with the 2732 * dirty bit in multiple places and clearing 2733 * them concurrently from different threads. 2734 * 2735 * Note! Normally the "folio_mark_dirty(folio)" 2736 * has no effect on the actual dirty bit - since 2737 * that will already usually be set. But we 2738 * need the side effects, and it can help us 2739 * avoid races. 2740 * 2741 * We basically use the folio "master dirty bit" 2742 * as a serialization point for all the different 2743 * threads doing their things. 2744 */ 2745 if (folio_mkclean(folio)) 2746 folio_mark_dirty(folio); 2747 /* 2748 * We carefully synchronise fault handlers against 2749 * installing a dirty pte and marking the folio dirty 2750 * at this point. We do this by having them hold the 2751 * page lock while dirtying the folio, and folios are 2752 * always locked coming in here, so we get the desired 2753 * exclusion. 2754 */ 2755 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2756 if (folio_test_clear_dirty(folio)) { 2757 long nr = folio_nr_pages(folio); 2758 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2759 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2760 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2761 ret = true; 2762 } 2763 unlocked_inode_to_wb_end(inode, &cookie); 2764 return ret; 2765 } 2766 return folio_test_clear_dirty(folio); 2767 } 2768 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2769 2770 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2771 { 2772 atomic_inc(&wb->writeback_inodes); 2773 } 2774 2775 static void wb_inode_writeback_end(struct bdi_writeback *wb) 2776 { 2777 atomic_dec(&wb->writeback_inodes); 2778 /* 2779 * Make sure estimate of writeback throughput gets updated after 2780 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 2781 * (which is the interval other bandwidth updates use for batching) so 2782 * that if multiple inodes end writeback at a similar time, they get 2783 * batched into one bandwidth update. 2784 */ 2785 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 2786 } 2787 2788 bool __folio_end_writeback(struct folio *folio) 2789 { 2790 long nr = folio_nr_pages(folio); 2791 struct address_space *mapping = folio_mapping(folio); 2792 bool ret; 2793 2794 folio_memcg_lock(folio); 2795 if (mapping && mapping_use_writeback_tags(mapping)) { 2796 struct inode *inode = mapping->host; 2797 struct backing_dev_info *bdi = inode_to_bdi(inode); 2798 unsigned long flags; 2799 2800 xa_lock_irqsave(&mapping->i_pages, flags); 2801 ret = folio_test_clear_writeback(folio); 2802 if (ret) { 2803 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 2804 PAGECACHE_TAG_WRITEBACK); 2805 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2806 struct bdi_writeback *wb = inode_to_wb(inode); 2807 2808 wb_stat_mod(wb, WB_WRITEBACK, -nr); 2809 __wb_writeout_add(wb, nr); 2810 if (!mapping_tagged(mapping, 2811 PAGECACHE_TAG_WRITEBACK)) 2812 wb_inode_writeback_end(wb); 2813 } 2814 } 2815 2816 if (mapping->host && !mapping_tagged(mapping, 2817 PAGECACHE_TAG_WRITEBACK)) 2818 sb_clear_inode_writeback(mapping->host); 2819 2820 xa_unlock_irqrestore(&mapping->i_pages, flags); 2821 } else { 2822 ret = folio_test_clear_writeback(folio); 2823 } 2824 if (ret) { 2825 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 2826 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2827 node_stat_mod_folio(folio, NR_WRITTEN, nr); 2828 } 2829 folio_memcg_unlock(folio); 2830 return ret; 2831 } 2832 2833 bool __folio_start_writeback(struct folio *folio, bool keep_write) 2834 { 2835 long nr = folio_nr_pages(folio); 2836 struct address_space *mapping = folio_mapping(folio); 2837 bool ret; 2838 int access_ret; 2839 2840 folio_memcg_lock(folio); 2841 if (mapping && mapping_use_writeback_tags(mapping)) { 2842 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 2843 struct inode *inode = mapping->host; 2844 struct backing_dev_info *bdi = inode_to_bdi(inode); 2845 unsigned long flags; 2846 2847 xas_lock_irqsave(&xas, flags); 2848 xas_load(&xas); 2849 ret = folio_test_set_writeback(folio); 2850 if (!ret) { 2851 bool on_wblist; 2852 2853 on_wblist = mapping_tagged(mapping, 2854 PAGECACHE_TAG_WRITEBACK); 2855 2856 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2857 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2858 struct bdi_writeback *wb = inode_to_wb(inode); 2859 2860 wb_stat_mod(wb, WB_WRITEBACK, nr); 2861 if (!on_wblist) 2862 wb_inode_writeback_start(wb); 2863 } 2864 2865 /* 2866 * We can come through here when swapping 2867 * anonymous folios, so we don't necessarily 2868 * have an inode to track for sync. 2869 */ 2870 if (mapping->host && !on_wblist) 2871 sb_mark_inode_writeback(mapping->host); 2872 } 2873 if (!folio_test_dirty(folio)) 2874 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2875 if (!keep_write) 2876 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2877 xas_unlock_irqrestore(&xas, flags); 2878 } else { 2879 ret = folio_test_set_writeback(folio); 2880 } 2881 if (!ret) { 2882 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 2883 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2884 } 2885 folio_memcg_unlock(folio); 2886 access_ret = arch_make_folio_accessible(folio); 2887 /* 2888 * If writeback has been triggered on a page that cannot be made 2889 * accessible, it is too late to recover here. 2890 */ 2891 VM_BUG_ON_FOLIO(access_ret != 0, folio); 2892 2893 return ret; 2894 } 2895 EXPORT_SYMBOL(__folio_start_writeback); 2896 2897 /** 2898 * folio_wait_writeback - Wait for a folio to finish writeback. 2899 * @folio: The folio to wait for. 2900 * 2901 * If the folio is currently being written back to storage, wait for the 2902 * I/O to complete. 2903 * 2904 * Context: Sleeps. Must be called in process context and with 2905 * no spinlocks held. Caller should hold a reference on the folio. 2906 * If the folio is not locked, writeback may start again after writeback 2907 * has finished. 2908 */ 2909 void folio_wait_writeback(struct folio *folio) 2910 { 2911 while (folio_test_writeback(folio)) { 2912 trace_folio_wait_writeback(folio, folio_mapping(folio)); 2913 folio_wait_bit(folio, PG_writeback); 2914 } 2915 } 2916 EXPORT_SYMBOL_GPL(folio_wait_writeback); 2917 2918 /** 2919 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 2920 * @folio: The folio to wait for. 2921 * 2922 * If the folio is currently being written back to storage, wait for the 2923 * I/O to complete or a fatal signal to arrive. 2924 * 2925 * Context: Sleeps. Must be called in process context and with 2926 * no spinlocks held. Caller should hold a reference on the folio. 2927 * If the folio is not locked, writeback may start again after writeback 2928 * has finished. 2929 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 2930 */ 2931 int folio_wait_writeback_killable(struct folio *folio) 2932 { 2933 while (folio_test_writeback(folio)) { 2934 trace_folio_wait_writeback(folio, folio_mapping(folio)); 2935 if (folio_wait_bit_killable(folio, PG_writeback)) 2936 return -EINTR; 2937 } 2938 2939 return 0; 2940 } 2941 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 2942 2943 /** 2944 * folio_wait_stable() - wait for writeback to finish, if necessary. 2945 * @folio: The folio to wait on. 2946 * 2947 * This function determines if the given folio is related to a backing 2948 * device that requires folio contents to be held stable during writeback. 2949 * If so, then it will wait for any pending writeback to complete. 2950 * 2951 * Context: Sleeps. Must be called in process context and with 2952 * no spinlocks held. Caller should hold a reference on the folio. 2953 * If the folio is not locked, writeback may start again after writeback 2954 * has finished. 2955 */ 2956 void folio_wait_stable(struct folio *folio) 2957 { 2958 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES) 2959 folio_wait_writeback(folio); 2960 } 2961 EXPORT_SYMBOL_GPL(folio_wait_stable); 2962