xref: /openbmc/linux/mm/page-writeback.c (revision d2168146)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 unsigned long global_dirty_limit;
126 
127 /*
128  * Scale the writeback cache size proportional to the relative writeout speeds.
129  *
130  * We do this by keeping a floating proportion between BDIs, based on page
131  * writeback completions [end_page_writeback()]. Those devices that write out
132  * pages fastest will get the larger share, while the slower will get a smaller
133  * share.
134  *
135  * We use page writeout completions because we are interested in getting rid of
136  * dirty pages. Having them written out is the primary goal.
137  *
138  * We introduce a concept of time, a period over which we measure these events,
139  * because demand can/will vary over time. The length of this period itself is
140  * measured in page writeback completions.
141  *
142  */
143 static struct fprop_global writeout_completions;
144 
145 static void writeout_period(unsigned long t);
146 /* Timer for aging of writeout_completions */
147 static struct timer_list writeout_period_timer =
148 		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149 static unsigned long writeout_period_time = 0;
150 
151 /*
152  * Length of period for aging writeout fractions of bdis. This is an
153  * arbitrarily chosen number. The longer the period, the slower fractions will
154  * reflect changes in current writeout rate.
155  */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157 
158 /*
159  * In a memory zone, there is a certain amount of pages we consider
160  * available for the page cache, which is essentially the number of
161  * free and reclaimable pages, minus some zone reserves to protect
162  * lowmem and the ability to uphold the zone's watermarks without
163  * requiring writeback.
164  *
165  * This number of dirtyable pages is the base value of which the
166  * user-configurable dirty ratio is the effictive number of pages that
167  * are allowed to be actually dirtied.  Per individual zone, or
168  * globally by using the sum of dirtyable pages over all zones.
169  *
170  * Because the user is allowed to specify the dirty limit globally as
171  * absolute number of bytes, calculating the per-zone dirty limit can
172  * require translating the configured limit into a percentage of
173  * global dirtyable memory first.
174  */
175 
176 /**
177  * zone_dirtyable_memory - number of dirtyable pages in a zone
178  * @zone: the zone
179  *
180  * Returns the zone's number of pages potentially available for dirty
181  * page cache.  This is the base value for the per-zone dirty limits.
182  */
183 static unsigned long zone_dirtyable_memory(struct zone *zone)
184 {
185 	unsigned long nr_pages;
186 
187 	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
188 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
189 
190 	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
191 	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
192 
193 	return nr_pages;
194 }
195 
196 static unsigned long highmem_dirtyable_memory(unsigned long total)
197 {
198 #ifdef CONFIG_HIGHMEM
199 	int node;
200 	unsigned long x = 0;
201 
202 	for_each_node_state(node, N_HIGH_MEMORY) {
203 		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
204 
205 		x += zone_dirtyable_memory(z);
206 	}
207 	/*
208 	 * Unreclaimable memory (kernel memory or anonymous memory
209 	 * without swap) can bring down the dirtyable pages below
210 	 * the zone's dirty balance reserve and the above calculation
211 	 * will underflow.  However we still want to add in nodes
212 	 * which are below threshold (negative values) to get a more
213 	 * accurate calculation but make sure that the total never
214 	 * underflows.
215 	 */
216 	if ((long)x < 0)
217 		x = 0;
218 
219 	/*
220 	 * Make sure that the number of highmem pages is never larger
221 	 * than the number of the total dirtyable memory. This can only
222 	 * occur in very strange VM situations but we want to make sure
223 	 * that this does not occur.
224 	 */
225 	return min(x, total);
226 #else
227 	return 0;
228 #endif
229 }
230 
231 /**
232  * global_dirtyable_memory - number of globally dirtyable pages
233  *
234  * Returns the global number of pages potentially available for dirty
235  * page cache.  This is the base value for the global dirty limits.
236  */
237 static unsigned long global_dirtyable_memory(void)
238 {
239 	unsigned long x;
240 
241 	x = global_page_state(NR_FREE_PAGES);
242 	x -= min(x, dirty_balance_reserve);
243 
244 	x += global_page_state(NR_INACTIVE_FILE);
245 	x += global_page_state(NR_ACTIVE_FILE);
246 
247 	if (!vm_highmem_is_dirtyable)
248 		x -= highmem_dirtyable_memory(x);
249 
250 	return x + 1;	/* Ensure that we never return 0 */
251 }
252 
253 /*
254  * global_dirty_limits - background-writeback and dirty-throttling thresholds
255  *
256  * Calculate the dirty thresholds based on sysctl parameters
257  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
258  * - vm.dirty_ratio             or  vm.dirty_bytes
259  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
260  * real-time tasks.
261  */
262 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
263 {
264 	unsigned long background;
265 	unsigned long dirty;
266 	unsigned long uninitialized_var(available_memory);
267 	struct task_struct *tsk;
268 
269 	if (!vm_dirty_bytes || !dirty_background_bytes)
270 		available_memory = global_dirtyable_memory();
271 
272 	if (vm_dirty_bytes)
273 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
274 	else
275 		dirty = (vm_dirty_ratio * available_memory) / 100;
276 
277 	if (dirty_background_bytes)
278 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
279 	else
280 		background = (dirty_background_ratio * available_memory) / 100;
281 
282 	if (background >= dirty)
283 		background = dirty / 2;
284 	tsk = current;
285 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
286 		background += background / 4;
287 		dirty += dirty / 4;
288 	}
289 	*pbackground = background;
290 	*pdirty = dirty;
291 	trace_global_dirty_state(background, dirty);
292 }
293 
294 /**
295  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
296  * @zone: the zone
297  *
298  * Returns the maximum number of dirty pages allowed in a zone, based
299  * on the zone's dirtyable memory.
300  */
301 static unsigned long zone_dirty_limit(struct zone *zone)
302 {
303 	unsigned long zone_memory = zone_dirtyable_memory(zone);
304 	struct task_struct *tsk = current;
305 	unsigned long dirty;
306 
307 	if (vm_dirty_bytes)
308 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
309 			zone_memory / global_dirtyable_memory();
310 	else
311 		dirty = vm_dirty_ratio * zone_memory / 100;
312 
313 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
314 		dirty += dirty / 4;
315 
316 	return dirty;
317 }
318 
319 /**
320  * zone_dirty_ok - tells whether a zone is within its dirty limits
321  * @zone: the zone to check
322  *
323  * Returns %true when the dirty pages in @zone are within the zone's
324  * dirty limit, %false if the limit is exceeded.
325  */
326 bool zone_dirty_ok(struct zone *zone)
327 {
328 	unsigned long limit = zone_dirty_limit(zone);
329 
330 	return zone_page_state(zone, NR_FILE_DIRTY) +
331 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
332 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
333 }
334 
335 int dirty_background_ratio_handler(struct ctl_table *table, int write,
336 		void __user *buffer, size_t *lenp,
337 		loff_t *ppos)
338 {
339 	int ret;
340 
341 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
342 	if (ret == 0 && write)
343 		dirty_background_bytes = 0;
344 	return ret;
345 }
346 
347 int dirty_background_bytes_handler(struct ctl_table *table, int write,
348 		void __user *buffer, size_t *lenp,
349 		loff_t *ppos)
350 {
351 	int ret;
352 
353 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
354 	if (ret == 0 && write)
355 		dirty_background_ratio = 0;
356 	return ret;
357 }
358 
359 int dirty_ratio_handler(struct ctl_table *table, int write,
360 		void __user *buffer, size_t *lenp,
361 		loff_t *ppos)
362 {
363 	int old_ratio = vm_dirty_ratio;
364 	int ret;
365 
366 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
367 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
368 		writeback_set_ratelimit();
369 		vm_dirty_bytes = 0;
370 	}
371 	return ret;
372 }
373 
374 int dirty_bytes_handler(struct ctl_table *table, int write,
375 		void __user *buffer, size_t *lenp,
376 		loff_t *ppos)
377 {
378 	unsigned long old_bytes = vm_dirty_bytes;
379 	int ret;
380 
381 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
382 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
383 		writeback_set_ratelimit();
384 		vm_dirty_ratio = 0;
385 	}
386 	return ret;
387 }
388 
389 static unsigned long wp_next_time(unsigned long cur_time)
390 {
391 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
392 	/* 0 has a special meaning... */
393 	if (!cur_time)
394 		return 1;
395 	return cur_time;
396 }
397 
398 /*
399  * Increment the BDI's writeout completion count and the global writeout
400  * completion count. Called from test_clear_page_writeback().
401  */
402 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
403 {
404 	__inc_bdi_stat(bdi, BDI_WRITTEN);
405 	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
406 			       bdi->max_prop_frac);
407 	/* First event after period switching was turned off? */
408 	if (!unlikely(writeout_period_time)) {
409 		/*
410 		 * We can race with other __bdi_writeout_inc calls here but
411 		 * it does not cause any harm since the resulting time when
412 		 * timer will fire and what is in writeout_period_time will be
413 		 * roughly the same.
414 		 */
415 		writeout_period_time = wp_next_time(jiffies);
416 		mod_timer(&writeout_period_timer, writeout_period_time);
417 	}
418 }
419 
420 void bdi_writeout_inc(struct backing_dev_info *bdi)
421 {
422 	unsigned long flags;
423 
424 	local_irq_save(flags);
425 	__bdi_writeout_inc(bdi);
426 	local_irq_restore(flags);
427 }
428 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
429 
430 /*
431  * Obtain an accurate fraction of the BDI's portion.
432  */
433 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
434 		long *numerator, long *denominator)
435 {
436 	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
437 				numerator, denominator);
438 }
439 
440 /*
441  * On idle system, we can be called long after we scheduled because we use
442  * deferred timers so count with missed periods.
443  */
444 static void writeout_period(unsigned long t)
445 {
446 	int miss_periods = (jiffies - writeout_period_time) /
447 						 VM_COMPLETIONS_PERIOD_LEN;
448 
449 	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
450 		writeout_period_time = wp_next_time(writeout_period_time +
451 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
452 		mod_timer(&writeout_period_timer, writeout_period_time);
453 	} else {
454 		/*
455 		 * Aging has zeroed all fractions. Stop wasting CPU on period
456 		 * updates.
457 		 */
458 		writeout_period_time = 0;
459 	}
460 }
461 
462 /*
463  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
464  * registered backing devices, which, for obvious reasons, can not
465  * exceed 100%.
466  */
467 static unsigned int bdi_min_ratio;
468 
469 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
470 {
471 	int ret = 0;
472 
473 	spin_lock_bh(&bdi_lock);
474 	if (min_ratio > bdi->max_ratio) {
475 		ret = -EINVAL;
476 	} else {
477 		min_ratio -= bdi->min_ratio;
478 		if (bdi_min_ratio + min_ratio < 100) {
479 			bdi_min_ratio += min_ratio;
480 			bdi->min_ratio += min_ratio;
481 		} else {
482 			ret = -EINVAL;
483 		}
484 	}
485 	spin_unlock_bh(&bdi_lock);
486 
487 	return ret;
488 }
489 
490 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
491 {
492 	int ret = 0;
493 
494 	if (max_ratio > 100)
495 		return -EINVAL;
496 
497 	spin_lock_bh(&bdi_lock);
498 	if (bdi->min_ratio > max_ratio) {
499 		ret = -EINVAL;
500 	} else {
501 		bdi->max_ratio = max_ratio;
502 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
503 	}
504 	spin_unlock_bh(&bdi_lock);
505 
506 	return ret;
507 }
508 EXPORT_SYMBOL(bdi_set_max_ratio);
509 
510 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
511 					   unsigned long bg_thresh)
512 {
513 	return (thresh + bg_thresh) / 2;
514 }
515 
516 static unsigned long hard_dirty_limit(unsigned long thresh)
517 {
518 	return max(thresh, global_dirty_limit);
519 }
520 
521 /**
522  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
523  * @bdi: the backing_dev_info to query
524  * @dirty: global dirty limit in pages
525  *
526  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
527  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
528  *
529  * Note that balance_dirty_pages() will only seriously take it as a hard limit
530  * when sleeping max_pause per page is not enough to keep the dirty pages under
531  * control. For example, when the device is completely stalled due to some error
532  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
533  * In the other normal situations, it acts more gently by throttling the tasks
534  * more (rather than completely block them) when the bdi dirty pages go high.
535  *
536  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
537  * - starving fast devices
538  * - piling up dirty pages (that will take long time to sync) on slow devices
539  *
540  * The bdi's share of dirty limit will be adapting to its throughput and
541  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
542  */
543 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
544 {
545 	u64 bdi_dirty;
546 	long numerator, denominator;
547 
548 	/*
549 	 * Calculate this BDI's share of the dirty ratio.
550 	 */
551 	bdi_writeout_fraction(bdi, &numerator, &denominator);
552 
553 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
554 	bdi_dirty *= numerator;
555 	do_div(bdi_dirty, denominator);
556 
557 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
558 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
559 		bdi_dirty = dirty * bdi->max_ratio / 100;
560 
561 	return bdi_dirty;
562 }
563 
564 /*
565  *                           setpoint - dirty 3
566  *        f(dirty) := 1.0 + (----------------)
567  *                           limit - setpoint
568  *
569  * it's a 3rd order polynomial that subjects to
570  *
571  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
572  * (2) f(setpoint) = 1.0 => the balance point
573  * (3) f(limit)    = 0   => the hard limit
574  * (4) df/dx      <= 0	 => negative feedback control
575  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
576  *     => fast response on large errors; small oscillation near setpoint
577  */
578 static long long pos_ratio_polynom(unsigned long setpoint,
579 					  unsigned long dirty,
580 					  unsigned long limit)
581 {
582 	long long pos_ratio;
583 	long x;
584 
585 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
586 		    limit - setpoint + 1);
587 	pos_ratio = x;
588 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
589 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
590 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
591 
592 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
593 }
594 
595 /*
596  * Dirty position control.
597  *
598  * (o) global/bdi setpoints
599  *
600  * We want the dirty pages be balanced around the global/bdi setpoints.
601  * When the number of dirty pages is higher/lower than the setpoint, the
602  * dirty position control ratio (and hence task dirty ratelimit) will be
603  * decreased/increased to bring the dirty pages back to the setpoint.
604  *
605  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
606  *
607  *     if (dirty < setpoint) scale up   pos_ratio
608  *     if (dirty > setpoint) scale down pos_ratio
609  *
610  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
611  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
612  *
613  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
614  *
615  * (o) global control line
616  *
617  *     ^ pos_ratio
618  *     |
619  *     |            |<===== global dirty control scope ======>|
620  * 2.0 .............*
621  *     |            .*
622  *     |            . *
623  *     |            .   *
624  *     |            .     *
625  *     |            .        *
626  *     |            .            *
627  * 1.0 ................................*
628  *     |            .                  .     *
629  *     |            .                  .          *
630  *     |            .                  .              *
631  *     |            .                  .                 *
632  *     |            .                  .                    *
633  *   0 +------------.------------------.----------------------*------------->
634  *           freerun^          setpoint^                 limit^   dirty pages
635  *
636  * (o) bdi control line
637  *
638  *     ^ pos_ratio
639  *     |
640  *     |            *
641  *     |              *
642  *     |                *
643  *     |                  *
644  *     |                    * |<=========== span ============>|
645  * 1.0 .......................*
646  *     |                      . *
647  *     |                      .   *
648  *     |                      .     *
649  *     |                      .       *
650  *     |                      .         *
651  *     |                      .           *
652  *     |                      .             *
653  *     |                      .               *
654  *     |                      .                 *
655  *     |                      .                   *
656  *     |                      .                     *
657  * 1/4 ...............................................* * * * * * * * * * * *
658  *     |                      .                         .
659  *     |                      .                           .
660  *     |                      .                             .
661  *   0 +----------------------.-------------------------------.------------->
662  *                bdi_setpoint^                    x_intercept^
663  *
664  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
665  * be smoothly throttled down to normal if it starts high in situations like
666  * - start writing to a slow SD card and a fast disk at the same time. The SD
667  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
668  * - the bdi dirty thresh drops quickly due to change of JBOD workload
669  */
670 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
671 					unsigned long thresh,
672 					unsigned long bg_thresh,
673 					unsigned long dirty,
674 					unsigned long bdi_thresh,
675 					unsigned long bdi_dirty)
676 {
677 	unsigned long write_bw = bdi->avg_write_bandwidth;
678 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
679 	unsigned long limit = hard_dirty_limit(thresh);
680 	unsigned long x_intercept;
681 	unsigned long setpoint;		/* dirty pages' target balance point */
682 	unsigned long bdi_setpoint;
683 	unsigned long span;
684 	long long pos_ratio;		/* for scaling up/down the rate limit */
685 	long x;
686 
687 	if (unlikely(dirty >= limit))
688 		return 0;
689 
690 	/*
691 	 * global setpoint
692 	 *
693 	 * See comment for pos_ratio_polynom().
694 	 */
695 	setpoint = (freerun + limit) / 2;
696 	pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
697 
698 	/*
699 	 * The strictlimit feature is a tool preventing mistrusted filesystems
700 	 * from growing a large number of dirty pages before throttling. For
701 	 * such filesystems balance_dirty_pages always checks bdi counters
702 	 * against bdi limits. Even if global "nr_dirty" is under "freerun".
703 	 * This is especially important for fuse which sets bdi->max_ratio to
704 	 * 1% by default. Without strictlimit feature, fuse writeback may
705 	 * consume arbitrary amount of RAM because it is accounted in
706 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
707 	 *
708 	 * Here, in bdi_position_ratio(), we calculate pos_ratio based on
709 	 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
710 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
711 	 * limits are set by default to 10% and 20% (background and throttle).
712 	 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
713 	 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
714 	 * about ~6K pages (as the average of background and throttle bdi
715 	 * limits). The 3rd order polynomial will provide positive feedback if
716 	 * bdi_dirty is under bdi_setpoint and vice versa.
717 	 *
718 	 * Note, that we cannot use global counters in these calculations
719 	 * because we want to throttle process writing to a strictlimit BDI
720 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
721 	 * in the example above).
722 	 */
723 	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
724 		long long bdi_pos_ratio;
725 		unsigned long bdi_bg_thresh;
726 
727 		if (bdi_dirty < 8)
728 			return min_t(long long, pos_ratio * 2,
729 				     2 << RATELIMIT_CALC_SHIFT);
730 
731 		if (bdi_dirty >= bdi_thresh)
732 			return 0;
733 
734 		bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
735 		bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
736 						     bdi_bg_thresh);
737 
738 		if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
739 			return 0;
740 
741 		bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
742 						  bdi_thresh);
743 
744 		/*
745 		 * Typically, for strictlimit case, bdi_setpoint << setpoint
746 		 * and pos_ratio >> bdi_pos_ratio. In the other words global
747 		 * state ("dirty") is not limiting factor and we have to
748 		 * make decision based on bdi counters. But there is an
749 		 * important case when global pos_ratio should get precedence:
750 		 * global limits are exceeded (e.g. due to activities on other
751 		 * BDIs) while given strictlimit BDI is below limit.
752 		 *
753 		 * "pos_ratio * bdi_pos_ratio" would work for the case above,
754 		 * but it would look too non-natural for the case of all
755 		 * activity in the system coming from a single strictlimit BDI
756 		 * with bdi->max_ratio == 100%.
757 		 *
758 		 * Note that min() below somewhat changes the dynamics of the
759 		 * control system. Normally, pos_ratio value can be well over 3
760 		 * (when globally we are at freerun and bdi is well below bdi
761 		 * setpoint). Now the maximum pos_ratio in the same situation
762 		 * is 2. We might want to tweak this if we observe the control
763 		 * system is too slow to adapt.
764 		 */
765 		return min(pos_ratio, bdi_pos_ratio);
766 	}
767 
768 	/*
769 	 * We have computed basic pos_ratio above based on global situation. If
770 	 * the bdi is over/under its share of dirty pages, we want to scale
771 	 * pos_ratio further down/up. That is done by the following mechanism.
772 	 */
773 
774 	/*
775 	 * bdi setpoint
776 	 *
777 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
778 	 *
779 	 *                        x_intercept - bdi_dirty
780 	 *                     := --------------------------
781 	 *                        x_intercept - bdi_setpoint
782 	 *
783 	 * The main bdi control line is a linear function that subjects to
784 	 *
785 	 * (1) f(bdi_setpoint) = 1.0
786 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
787 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
788 	 *
789 	 * For single bdi case, the dirty pages are observed to fluctuate
790 	 * regularly within range
791 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
792 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
793 	 * fluctuation range for pos_ratio.
794 	 *
795 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
796 	 * own size, so move the slope over accordingly and choose a slope that
797 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
798 	 */
799 	if (unlikely(bdi_thresh > thresh))
800 		bdi_thresh = thresh;
801 	/*
802 	 * It's very possible that bdi_thresh is close to 0 not because the
803 	 * device is slow, but that it has remained inactive for long time.
804 	 * Honour such devices a reasonable good (hopefully IO efficient)
805 	 * threshold, so that the occasional writes won't be blocked and active
806 	 * writes can rampup the threshold quickly.
807 	 */
808 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
809 	/*
810 	 * scale global setpoint to bdi's:
811 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
812 	 */
813 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
814 	bdi_setpoint = setpoint * (u64)x >> 16;
815 	/*
816 	 * Use span=(8*write_bw) in single bdi case as indicated by
817 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
818 	 *
819 	 *        bdi_thresh                    thresh - bdi_thresh
820 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
821 	 *          thresh                            thresh
822 	 */
823 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
824 	x_intercept = bdi_setpoint + span;
825 
826 	if (bdi_dirty < x_intercept - span / 4) {
827 		pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty),
828 				    x_intercept - bdi_setpoint + 1);
829 	} else
830 		pos_ratio /= 4;
831 
832 	/*
833 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
834 	 * It may push the desired control point of global dirty pages higher
835 	 * than setpoint.
836 	 */
837 	x_intercept = bdi_thresh / 2;
838 	if (bdi_dirty < x_intercept) {
839 		if (bdi_dirty > x_intercept / 8)
840 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
841 		else
842 			pos_ratio *= 8;
843 	}
844 
845 	return pos_ratio;
846 }
847 
848 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
849 				       unsigned long elapsed,
850 				       unsigned long written)
851 {
852 	const unsigned long period = roundup_pow_of_two(3 * HZ);
853 	unsigned long avg = bdi->avg_write_bandwidth;
854 	unsigned long old = bdi->write_bandwidth;
855 	u64 bw;
856 
857 	/*
858 	 * bw = written * HZ / elapsed
859 	 *
860 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
861 	 * write_bandwidth = ---------------------------------------------------
862 	 *                                          period
863 	 */
864 	bw = written - bdi->written_stamp;
865 	bw *= HZ;
866 	if (unlikely(elapsed > period)) {
867 		do_div(bw, elapsed);
868 		avg = bw;
869 		goto out;
870 	}
871 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
872 	bw >>= ilog2(period);
873 
874 	/*
875 	 * one more level of smoothing, for filtering out sudden spikes
876 	 */
877 	if (avg > old && old >= (unsigned long)bw)
878 		avg -= (avg - old) >> 3;
879 
880 	if (avg < old && old <= (unsigned long)bw)
881 		avg += (old - avg) >> 3;
882 
883 out:
884 	bdi->write_bandwidth = bw;
885 	bdi->avg_write_bandwidth = avg;
886 }
887 
888 /*
889  * The global dirtyable memory and dirty threshold could be suddenly knocked
890  * down by a large amount (eg. on the startup of KVM in a swapless system).
891  * This may throw the system into deep dirty exceeded state and throttle
892  * heavy/light dirtiers alike. To retain good responsiveness, maintain
893  * global_dirty_limit for tracking slowly down to the knocked down dirty
894  * threshold.
895  */
896 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
897 {
898 	unsigned long limit = global_dirty_limit;
899 
900 	/*
901 	 * Follow up in one step.
902 	 */
903 	if (limit < thresh) {
904 		limit = thresh;
905 		goto update;
906 	}
907 
908 	/*
909 	 * Follow down slowly. Use the higher one as the target, because thresh
910 	 * may drop below dirty. This is exactly the reason to introduce
911 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
912 	 */
913 	thresh = max(thresh, dirty);
914 	if (limit > thresh) {
915 		limit -= (limit - thresh) >> 5;
916 		goto update;
917 	}
918 	return;
919 update:
920 	global_dirty_limit = limit;
921 }
922 
923 static void global_update_bandwidth(unsigned long thresh,
924 				    unsigned long dirty,
925 				    unsigned long now)
926 {
927 	static DEFINE_SPINLOCK(dirty_lock);
928 	static unsigned long update_time;
929 
930 	/*
931 	 * check locklessly first to optimize away locking for the most time
932 	 */
933 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
934 		return;
935 
936 	spin_lock(&dirty_lock);
937 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
938 		update_dirty_limit(thresh, dirty);
939 		update_time = now;
940 	}
941 	spin_unlock(&dirty_lock);
942 }
943 
944 /*
945  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
946  *
947  * Normal bdi tasks will be curbed at or below it in long term.
948  * Obviously it should be around (write_bw / N) when there are N dd tasks.
949  */
950 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
951 				       unsigned long thresh,
952 				       unsigned long bg_thresh,
953 				       unsigned long dirty,
954 				       unsigned long bdi_thresh,
955 				       unsigned long bdi_dirty,
956 				       unsigned long dirtied,
957 				       unsigned long elapsed)
958 {
959 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
960 	unsigned long limit = hard_dirty_limit(thresh);
961 	unsigned long setpoint = (freerun + limit) / 2;
962 	unsigned long write_bw = bdi->avg_write_bandwidth;
963 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
964 	unsigned long dirty_rate;
965 	unsigned long task_ratelimit;
966 	unsigned long balanced_dirty_ratelimit;
967 	unsigned long pos_ratio;
968 	unsigned long step;
969 	unsigned long x;
970 
971 	/*
972 	 * The dirty rate will match the writeout rate in long term, except
973 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
974 	 */
975 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
976 
977 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
978 				       bdi_thresh, bdi_dirty);
979 	/*
980 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
981 	 */
982 	task_ratelimit = (u64)dirty_ratelimit *
983 					pos_ratio >> RATELIMIT_CALC_SHIFT;
984 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
985 
986 	/*
987 	 * A linear estimation of the "balanced" throttle rate. The theory is,
988 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
989 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
990 	 * formula will yield the balanced rate limit (write_bw / N).
991 	 *
992 	 * Note that the expanded form is not a pure rate feedback:
993 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
994 	 * but also takes pos_ratio into account:
995 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
996 	 *
997 	 * (1) is not realistic because pos_ratio also takes part in balancing
998 	 * the dirty rate.  Consider the state
999 	 *	pos_ratio = 0.5						     (3)
1000 	 *	rate = 2 * (write_bw / N)				     (4)
1001 	 * If (1) is used, it will stuck in that state! Because each dd will
1002 	 * be throttled at
1003 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1004 	 * yielding
1005 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1006 	 * put (6) into (1) we get
1007 	 *	rate_(i+1) = rate_(i)					     (7)
1008 	 *
1009 	 * So we end up using (2) to always keep
1010 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1011 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1012 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1013 	 * the dirty count meet the setpoint, but also where the slope of
1014 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1015 	 */
1016 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1017 					   dirty_rate | 1);
1018 	/*
1019 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1020 	 */
1021 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1022 		balanced_dirty_ratelimit = write_bw;
1023 
1024 	/*
1025 	 * We could safely do this and return immediately:
1026 	 *
1027 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1028 	 *
1029 	 * However to get a more stable dirty_ratelimit, the below elaborated
1030 	 * code makes use of task_ratelimit to filter out singular points and
1031 	 * limit the step size.
1032 	 *
1033 	 * The below code essentially only uses the relative value of
1034 	 *
1035 	 *	task_ratelimit - dirty_ratelimit
1036 	 *	= (pos_ratio - 1) * dirty_ratelimit
1037 	 *
1038 	 * which reflects the direction and size of dirty position error.
1039 	 */
1040 
1041 	/*
1042 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1043 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1044 	 * For example, when
1045 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1046 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1047 	 * lowering dirty_ratelimit will help meet both the position and rate
1048 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1049 	 * only help meet the rate target. After all, what the users ultimately
1050 	 * feel and care are stable dirty rate and small position error.
1051 	 *
1052 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1053 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1054 	 * keeps jumping around randomly and can even leap far away at times
1055 	 * due to the small 200ms estimation period of dirty_rate (we want to
1056 	 * keep that period small to reduce time lags).
1057 	 */
1058 	step = 0;
1059 
1060 	/*
1061 	 * For strictlimit case, calculations above were based on bdi counters
1062 	 * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1063 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1064 	 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1065 	 * "dirty" and bdi_setpoint as "setpoint".
1066 	 *
1067 	 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1068 	 * it's possible that bdi_thresh is close to zero due to inactivity
1069 	 * of backing device (see the implementation of bdi_dirty_limit()).
1070 	 */
1071 	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1072 		dirty = bdi_dirty;
1073 		if (bdi_dirty < 8)
1074 			setpoint = bdi_dirty + 1;
1075 		else
1076 			setpoint = (bdi_thresh +
1077 				    bdi_dirty_limit(bdi, bg_thresh)) / 2;
1078 	}
1079 
1080 	if (dirty < setpoint) {
1081 		x = min(bdi->balanced_dirty_ratelimit,
1082 			 min(balanced_dirty_ratelimit, task_ratelimit));
1083 		if (dirty_ratelimit < x)
1084 			step = x - dirty_ratelimit;
1085 	} else {
1086 		x = max(bdi->balanced_dirty_ratelimit,
1087 			 max(balanced_dirty_ratelimit, task_ratelimit));
1088 		if (dirty_ratelimit > x)
1089 			step = dirty_ratelimit - x;
1090 	}
1091 
1092 	/*
1093 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1094 	 * rate itself is constantly fluctuating. So decrease the track speed
1095 	 * when it gets close to the target. Helps eliminate pointless tremors.
1096 	 */
1097 	step >>= dirty_ratelimit / (2 * step + 1);
1098 	/*
1099 	 * Limit the tracking speed to avoid overshooting.
1100 	 */
1101 	step = (step + 7) / 8;
1102 
1103 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1104 		dirty_ratelimit += step;
1105 	else
1106 		dirty_ratelimit -= step;
1107 
1108 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1109 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1110 
1111 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1112 }
1113 
1114 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1115 			    unsigned long thresh,
1116 			    unsigned long bg_thresh,
1117 			    unsigned long dirty,
1118 			    unsigned long bdi_thresh,
1119 			    unsigned long bdi_dirty,
1120 			    unsigned long start_time)
1121 {
1122 	unsigned long now = jiffies;
1123 	unsigned long elapsed = now - bdi->bw_time_stamp;
1124 	unsigned long dirtied;
1125 	unsigned long written;
1126 
1127 	/*
1128 	 * rate-limit, only update once every 200ms.
1129 	 */
1130 	if (elapsed < BANDWIDTH_INTERVAL)
1131 		return;
1132 
1133 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1134 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1135 
1136 	/*
1137 	 * Skip quiet periods when disk bandwidth is under-utilized.
1138 	 * (at least 1s idle time between two flusher runs)
1139 	 */
1140 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1141 		goto snapshot;
1142 
1143 	if (thresh) {
1144 		global_update_bandwidth(thresh, dirty, now);
1145 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1146 					   bdi_thresh, bdi_dirty,
1147 					   dirtied, elapsed);
1148 	}
1149 	bdi_update_write_bandwidth(bdi, elapsed, written);
1150 
1151 snapshot:
1152 	bdi->dirtied_stamp = dirtied;
1153 	bdi->written_stamp = written;
1154 	bdi->bw_time_stamp = now;
1155 }
1156 
1157 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1158 				 unsigned long thresh,
1159 				 unsigned long bg_thresh,
1160 				 unsigned long dirty,
1161 				 unsigned long bdi_thresh,
1162 				 unsigned long bdi_dirty,
1163 				 unsigned long start_time)
1164 {
1165 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1166 		return;
1167 	spin_lock(&bdi->wb.list_lock);
1168 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1169 			       bdi_thresh, bdi_dirty, start_time);
1170 	spin_unlock(&bdi->wb.list_lock);
1171 }
1172 
1173 /*
1174  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1175  * will look to see if it needs to start dirty throttling.
1176  *
1177  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1178  * global_page_state() too often. So scale it near-sqrt to the safety margin
1179  * (the number of pages we may dirty without exceeding the dirty limits).
1180  */
1181 static unsigned long dirty_poll_interval(unsigned long dirty,
1182 					 unsigned long thresh)
1183 {
1184 	if (thresh > dirty)
1185 		return 1UL << (ilog2(thresh - dirty) >> 1);
1186 
1187 	return 1;
1188 }
1189 
1190 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1191 				   unsigned long bdi_dirty)
1192 {
1193 	unsigned long bw = bdi->avg_write_bandwidth;
1194 	unsigned long t;
1195 
1196 	/*
1197 	 * Limit pause time for small memory systems. If sleeping for too long
1198 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1199 	 * idle.
1200 	 *
1201 	 * 8 serves as the safety ratio.
1202 	 */
1203 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1204 	t++;
1205 
1206 	return min_t(unsigned long, t, MAX_PAUSE);
1207 }
1208 
1209 static long bdi_min_pause(struct backing_dev_info *bdi,
1210 			  long max_pause,
1211 			  unsigned long task_ratelimit,
1212 			  unsigned long dirty_ratelimit,
1213 			  int *nr_dirtied_pause)
1214 {
1215 	long hi = ilog2(bdi->avg_write_bandwidth);
1216 	long lo = ilog2(bdi->dirty_ratelimit);
1217 	long t;		/* target pause */
1218 	long pause;	/* estimated next pause */
1219 	int pages;	/* target nr_dirtied_pause */
1220 
1221 	/* target for 10ms pause on 1-dd case */
1222 	t = max(1, HZ / 100);
1223 
1224 	/*
1225 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1226 	 * overheads.
1227 	 *
1228 	 * (N * 10ms) on 2^N concurrent tasks.
1229 	 */
1230 	if (hi > lo)
1231 		t += (hi - lo) * (10 * HZ) / 1024;
1232 
1233 	/*
1234 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1235 	 * on the much more stable dirty_ratelimit. However the next pause time
1236 	 * will be computed based on task_ratelimit and the two rate limits may
1237 	 * depart considerably at some time. Especially if task_ratelimit goes
1238 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1239 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1240 	 * result task_ratelimit won't be executed faithfully, which could
1241 	 * eventually bring down dirty_ratelimit.
1242 	 *
1243 	 * We apply two rules to fix it up:
1244 	 * 1) try to estimate the next pause time and if necessary, use a lower
1245 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1246 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1247 	 * 2) limit the target pause time to max_pause/2, so that the normal
1248 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1249 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1250 	 */
1251 	t = min(t, 1 + max_pause / 2);
1252 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1253 
1254 	/*
1255 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1256 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1257 	 * When the 16 consecutive reads are often interrupted by some dirty
1258 	 * throttling pause during the async writes, cfq will go into idles
1259 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1260 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1261 	 */
1262 	if (pages < DIRTY_POLL_THRESH) {
1263 		t = max_pause;
1264 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1265 		if (pages > DIRTY_POLL_THRESH) {
1266 			pages = DIRTY_POLL_THRESH;
1267 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1268 		}
1269 	}
1270 
1271 	pause = HZ * pages / (task_ratelimit + 1);
1272 	if (pause > max_pause) {
1273 		t = max_pause;
1274 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1275 	}
1276 
1277 	*nr_dirtied_pause = pages;
1278 	/*
1279 	 * The minimal pause time will normally be half the target pause time.
1280 	 */
1281 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1282 }
1283 
1284 static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1285 				    unsigned long dirty_thresh,
1286 				    unsigned long background_thresh,
1287 				    unsigned long *bdi_dirty,
1288 				    unsigned long *bdi_thresh,
1289 				    unsigned long *bdi_bg_thresh)
1290 {
1291 	unsigned long bdi_reclaimable;
1292 
1293 	/*
1294 	 * bdi_thresh is not treated as some limiting factor as
1295 	 * dirty_thresh, due to reasons
1296 	 * - in JBOD setup, bdi_thresh can fluctuate a lot
1297 	 * - in a system with HDD and USB key, the USB key may somehow
1298 	 *   go into state (bdi_dirty >> bdi_thresh) either because
1299 	 *   bdi_dirty starts high, or because bdi_thresh drops low.
1300 	 *   In this case we don't want to hard throttle the USB key
1301 	 *   dirtiers for 100 seconds until bdi_dirty drops under
1302 	 *   bdi_thresh. Instead the auxiliary bdi control line in
1303 	 *   bdi_position_ratio() will let the dirtier task progress
1304 	 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1305 	 */
1306 	*bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1307 
1308 	if (bdi_bg_thresh)
1309 		*bdi_bg_thresh = div_u64((u64)*bdi_thresh *
1310 					 background_thresh,
1311 					 dirty_thresh);
1312 
1313 	/*
1314 	 * In order to avoid the stacked BDI deadlock we need
1315 	 * to ensure we accurately count the 'dirty' pages when
1316 	 * the threshold is low.
1317 	 *
1318 	 * Otherwise it would be possible to get thresh+n pages
1319 	 * reported dirty, even though there are thresh-m pages
1320 	 * actually dirty; with m+n sitting in the percpu
1321 	 * deltas.
1322 	 */
1323 	if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1324 		bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1325 		*bdi_dirty = bdi_reclaimable +
1326 			bdi_stat_sum(bdi, BDI_WRITEBACK);
1327 	} else {
1328 		bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1329 		*bdi_dirty = bdi_reclaimable +
1330 			bdi_stat(bdi, BDI_WRITEBACK);
1331 	}
1332 }
1333 
1334 /*
1335  * balance_dirty_pages() must be called by processes which are generating dirty
1336  * data.  It looks at the number of dirty pages in the machine and will force
1337  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1338  * If we're over `background_thresh' then the writeback threads are woken to
1339  * perform some writeout.
1340  */
1341 static void balance_dirty_pages(struct address_space *mapping,
1342 				unsigned long pages_dirtied)
1343 {
1344 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1345 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1346 	unsigned long background_thresh;
1347 	unsigned long dirty_thresh;
1348 	long period;
1349 	long pause;
1350 	long max_pause;
1351 	long min_pause;
1352 	int nr_dirtied_pause;
1353 	bool dirty_exceeded = false;
1354 	unsigned long task_ratelimit;
1355 	unsigned long dirty_ratelimit;
1356 	unsigned long pos_ratio;
1357 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1358 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1359 	unsigned long start_time = jiffies;
1360 
1361 	for (;;) {
1362 		unsigned long now = jiffies;
1363 		unsigned long uninitialized_var(bdi_thresh);
1364 		unsigned long thresh;
1365 		unsigned long uninitialized_var(bdi_dirty);
1366 		unsigned long dirty;
1367 		unsigned long bg_thresh;
1368 
1369 		/*
1370 		 * Unstable writes are a feature of certain networked
1371 		 * filesystems (i.e. NFS) in which data may have been
1372 		 * written to the server's write cache, but has not yet
1373 		 * been flushed to permanent storage.
1374 		 */
1375 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1376 					global_page_state(NR_UNSTABLE_NFS);
1377 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1378 
1379 		global_dirty_limits(&background_thresh, &dirty_thresh);
1380 
1381 		if (unlikely(strictlimit)) {
1382 			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1383 					 &bdi_dirty, &bdi_thresh, &bg_thresh);
1384 
1385 			dirty = bdi_dirty;
1386 			thresh = bdi_thresh;
1387 		} else {
1388 			dirty = nr_dirty;
1389 			thresh = dirty_thresh;
1390 			bg_thresh = background_thresh;
1391 		}
1392 
1393 		/*
1394 		 * Throttle it only when the background writeback cannot
1395 		 * catch-up. This avoids (excessively) small writeouts
1396 		 * when the bdi limits are ramping up in case of !strictlimit.
1397 		 *
1398 		 * In strictlimit case make decision based on the bdi counters
1399 		 * and limits. Small writeouts when the bdi limits are ramping
1400 		 * up are the price we consciously pay for strictlimit-ing.
1401 		 */
1402 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1403 			current->dirty_paused_when = now;
1404 			current->nr_dirtied = 0;
1405 			current->nr_dirtied_pause =
1406 				dirty_poll_interval(dirty, thresh);
1407 			break;
1408 		}
1409 
1410 		if (unlikely(!writeback_in_progress(bdi)))
1411 			bdi_start_background_writeback(bdi);
1412 
1413 		if (!strictlimit)
1414 			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1415 					 &bdi_dirty, &bdi_thresh, NULL);
1416 
1417 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1418 				 ((nr_dirty > dirty_thresh) || strictlimit);
1419 		if (dirty_exceeded && !bdi->dirty_exceeded)
1420 			bdi->dirty_exceeded = 1;
1421 
1422 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1423 				     nr_dirty, bdi_thresh, bdi_dirty,
1424 				     start_time);
1425 
1426 		dirty_ratelimit = bdi->dirty_ratelimit;
1427 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1428 					       background_thresh, nr_dirty,
1429 					       bdi_thresh, bdi_dirty);
1430 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1431 							RATELIMIT_CALC_SHIFT;
1432 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1433 		min_pause = bdi_min_pause(bdi, max_pause,
1434 					  task_ratelimit, dirty_ratelimit,
1435 					  &nr_dirtied_pause);
1436 
1437 		if (unlikely(task_ratelimit == 0)) {
1438 			period = max_pause;
1439 			pause = max_pause;
1440 			goto pause;
1441 		}
1442 		period = HZ * pages_dirtied / task_ratelimit;
1443 		pause = period;
1444 		if (current->dirty_paused_when)
1445 			pause -= now - current->dirty_paused_when;
1446 		/*
1447 		 * For less than 1s think time (ext3/4 may block the dirtier
1448 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1449 		 * however at much less frequency), try to compensate it in
1450 		 * future periods by updating the virtual time; otherwise just
1451 		 * do a reset, as it may be a light dirtier.
1452 		 */
1453 		if (pause < min_pause) {
1454 			trace_balance_dirty_pages(bdi,
1455 						  dirty_thresh,
1456 						  background_thresh,
1457 						  nr_dirty,
1458 						  bdi_thresh,
1459 						  bdi_dirty,
1460 						  dirty_ratelimit,
1461 						  task_ratelimit,
1462 						  pages_dirtied,
1463 						  period,
1464 						  min(pause, 0L),
1465 						  start_time);
1466 			if (pause < -HZ) {
1467 				current->dirty_paused_when = now;
1468 				current->nr_dirtied = 0;
1469 			} else if (period) {
1470 				current->dirty_paused_when += period;
1471 				current->nr_dirtied = 0;
1472 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1473 				current->nr_dirtied_pause += pages_dirtied;
1474 			break;
1475 		}
1476 		if (unlikely(pause > max_pause)) {
1477 			/* for occasional dropped task_ratelimit */
1478 			now += min(pause - max_pause, max_pause);
1479 			pause = max_pause;
1480 		}
1481 
1482 pause:
1483 		trace_balance_dirty_pages(bdi,
1484 					  dirty_thresh,
1485 					  background_thresh,
1486 					  nr_dirty,
1487 					  bdi_thresh,
1488 					  bdi_dirty,
1489 					  dirty_ratelimit,
1490 					  task_ratelimit,
1491 					  pages_dirtied,
1492 					  period,
1493 					  pause,
1494 					  start_time);
1495 		__set_current_state(TASK_KILLABLE);
1496 		io_schedule_timeout(pause);
1497 
1498 		current->dirty_paused_when = now + pause;
1499 		current->nr_dirtied = 0;
1500 		current->nr_dirtied_pause = nr_dirtied_pause;
1501 
1502 		/*
1503 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1504 		 * also keep "1000+ dd on a slow USB stick" under control.
1505 		 */
1506 		if (task_ratelimit)
1507 			break;
1508 
1509 		/*
1510 		 * In the case of an unresponding NFS server and the NFS dirty
1511 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1512 		 * to go through, so that tasks on them still remain responsive.
1513 		 *
1514 		 * In theory 1 page is enough to keep the comsumer-producer
1515 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1516 		 * more page. However bdi_dirty has accounting errors.  So use
1517 		 * the larger and more IO friendly bdi_stat_error.
1518 		 */
1519 		if (bdi_dirty <= bdi_stat_error(bdi))
1520 			break;
1521 
1522 		if (fatal_signal_pending(current))
1523 			break;
1524 	}
1525 
1526 	if (!dirty_exceeded && bdi->dirty_exceeded)
1527 		bdi->dirty_exceeded = 0;
1528 
1529 	if (writeback_in_progress(bdi))
1530 		return;
1531 
1532 	/*
1533 	 * In laptop mode, we wait until hitting the higher threshold before
1534 	 * starting background writeout, and then write out all the way down
1535 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1536 	 *
1537 	 * In normal mode, we start background writeout at the lower
1538 	 * background_thresh, to keep the amount of dirty memory low.
1539 	 */
1540 	if (laptop_mode)
1541 		return;
1542 
1543 	if (nr_reclaimable > background_thresh)
1544 		bdi_start_background_writeback(bdi);
1545 }
1546 
1547 void set_page_dirty_balance(struct page *page)
1548 {
1549 	if (set_page_dirty(page)) {
1550 		struct address_space *mapping = page_mapping(page);
1551 
1552 		if (mapping)
1553 			balance_dirty_pages_ratelimited(mapping);
1554 	}
1555 }
1556 
1557 static DEFINE_PER_CPU(int, bdp_ratelimits);
1558 
1559 /*
1560  * Normal tasks are throttled by
1561  *	loop {
1562  *		dirty tsk->nr_dirtied_pause pages;
1563  *		take a snap in balance_dirty_pages();
1564  *	}
1565  * However there is a worst case. If every task exit immediately when dirtied
1566  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1567  * called to throttle the page dirties. The solution is to save the not yet
1568  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1569  * randomly into the running tasks. This works well for the above worst case,
1570  * as the new task will pick up and accumulate the old task's leaked dirty
1571  * count and eventually get throttled.
1572  */
1573 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1574 
1575 /**
1576  * balance_dirty_pages_ratelimited - balance dirty memory state
1577  * @mapping: address_space which was dirtied
1578  *
1579  * Processes which are dirtying memory should call in here once for each page
1580  * which was newly dirtied.  The function will periodically check the system's
1581  * dirty state and will initiate writeback if needed.
1582  *
1583  * On really big machines, get_writeback_state is expensive, so try to avoid
1584  * calling it too often (ratelimiting).  But once we're over the dirty memory
1585  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1586  * from overshooting the limit by (ratelimit_pages) each.
1587  */
1588 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1589 {
1590 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1591 	int ratelimit;
1592 	int *p;
1593 
1594 	if (!bdi_cap_account_dirty(bdi))
1595 		return;
1596 
1597 	ratelimit = current->nr_dirtied_pause;
1598 	if (bdi->dirty_exceeded)
1599 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1600 
1601 	preempt_disable();
1602 	/*
1603 	 * This prevents one CPU to accumulate too many dirtied pages without
1604 	 * calling into balance_dirty_pages(), which can happen when there are
1605 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1606 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1607 	 */
1608 	p =  this_cpu_ptr(&bdp_ratelimits);
1609 	if (unlikely(current->nr_dirtied >= ratelimit))
1610 		*p = 0;
1611 	else if (unlikely(*p >= ratelimit_pages)) {
1612 		*p = 0;
1613 		ratelimit = 0;
1614 	}
1615 	/*
1616 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1617 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1618 	 * the dirty throttling and livelock other long-run dirtiers.
1619 	 */
1620 	p = this_cpu_ptr(&dirty_throttle_leaks);
1621 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1622 		unsigned long nr_pages_dirtied;
1623 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1624 		*p -= nr_pages_dirtied;
1625 		current->nr_dirtied += nr_pages_dirtied;
1626 	}
1627 	preempt_enable();
1628 
1629 	if (unlikely(current->nr_dirtied >= ratelimit))
1630 		balance_dirty_pages(mapping, current->nr_dirtied);
1631 }
1632 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1633 
1634 void throttle_vm_writeout(gfp_t gfp_mask)
1635 {
1636 	unsigned long background_thresh;
1637 	unsigned long dirty_thresh;
1638 
1639         for ( ; ; ) {
1640 		global_dirty_limits(&background_thresh, &dirty_thresh);
1641 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1642 
1643                 /*
1644                  * Boost the allowable dirty threshold a bit for page
1645                  * allocators so they don't get DoS'ed by heavy writers
1646                  */
1647                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1648 
1649                 if (global_page_state(NR_UNSTABLE_NFS) +
1650 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1651                         	break;
1652                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1653 
1654 		/*
1655 		 * The caller might hold locks which can prevent IO completion
1656 		 * or progress in the filesystem.  So we cannot just sit here
1657 		 * waiting for IO to complete.
1658 		 */
1659 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1660 			break;
1661         }
1662 }
1663 
1664 /*
1665  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1666  */
1667 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1668 	void __user *buffer, size_t *length, loff_t *ppos)
1669 {
1670 	proc_dointvec(table, write, buffer, length, ppos);
1671 	return 0;
1672 }
1673 
1674 #ifdef CONFIG_BLOCK
1675 void laptop_mode_timer_fn(unsigned long data)
1676 {
1677 	struct request_queue *q = (struct request_queue *)data;
1678 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1679 		global_page_state(NR_UNSTABLE_NFS);
1680 
1681 	/*
1682 	 * We want to write everything out, not just down to the dirty
1683 	 * threshold
1684 	 */
1685 	if (bdi_has_dirty_io(&q->backing_dev_info))
1686 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1687 					WB_REASON_LAPTOP_TIMER);
1688 }
1689 
1690 /*
1691  * We've spun up the disk and we're in laptop mode: schedule writeback
1692  * of all dirty data a few seconds from now.  If the flush is already scheduled
1693  * then push it back - the user is still using the disk.
1694  */
1695 void laptop_io_completion(struct backing_dev_info *info)
1696 {
1697 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1698 }
1699 
1700 /*
1701  * We're in laptop mode and we've just synced. The sync's writes will have
1702  * caused another writeback to be scheduled by laptop_io_completion.
1703  * Nothing needs to be written back anymore, so we unschedule the writeback.
1704  */
1705 void laptop_sync_completion(void)
1706 {
1707 	struct backing_dev_info *bdi;
1708 
1709 	rcu_read_lock();
1710 
1711 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1712 		del_timer(&bdi->laptop_mode_wb_timer);
1713 
1714 	rcu_read_unlock();
1715 }
1716 #endif
1717 
1718 /*
1719  * If ratelimit_pages is too high then we can get into dirty-data overload
1720  * if a large number of processes all perform writes at the same time.
1721  * If it is too low then SMP machines will call the (expensive)
1722  * get_writeback_state too often.
1723  *
1724  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1725  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1726  * thresholds.
1727  */
1728 
1729 void writeback_set_ratelimit(void)
1730 {
1731 	unsigned long background_thresh;
1732 	unsigned long dirty_thresh;
1733 	global_dirty_limits(&background_thresh, &dirty_thresh);
1734 	global_dirty_limit = dirty_thresh;
1735 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1736 	if (ratelimit_pages < 16)
1737 		ratelimit_pages = 16;
1738 }
1739 
1740 static int
1741 ratelimit_handler(struct notifier_block *self, unsigned long action,
1742 		  void *hcpu)
1743 {
1744 
1745 	switch (action & ~CPU_TASKS_FROZEN) {
1746 	case CPU_ONLINE:
1747 	case CPU_DEAD:
1748 		writeback_set_ratelimit();
1749 		return NOTIFY_OK;
1750 	default:
1751 		return NOTIFY_DONE;
1752 	}
1753 }
1754 
1755 static struct notifier_block ratelimit_nb = {
1756 	.notifier_call	= ratelimit_handler,
1757 	.next		= NULL,
1758 };
1759 
1760 /*
1761  * Called early on to tune the page writeback dirty limits.
1762  *
1763  * We used to scale dirty pages according to how total memory
1764  * related to pages that could be allocated for buffers (by
1765  * comparing nr_free_buffer_pages() to vm_total_pages.
1766  *
1767  * However, that was when we used "dirty_ratio" to scale with
1768  * all memory, and we don't do that any more. "dirty_ratio"
1769  * is now applied to total non-HIGHPAGE memory (by subtracting
1770  * totalhigh_pages from vm_total_pages), and as such we can't
1771  * get into the old insane situation any more where we had
1772  * large amounts of dirty pages compared to a small amount of
1773  * non-HIGHMEM memory.
1774  *
1775  * But we might still want to scale the dirty_ratio by how
1776  * much memory the box has..
1777  */
1778 void __init page_writeback_init(void)
1779 {
1780 	writeback_set_ratelimit();
1781 	register_cpu_notifier(&ratelimit_nb);
1782 
1783 	fprop_global_init(&writeout_completions);
1784 }
1785 
1786 /**
1787  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1788  * @mapping: address space structure to write
1789  * @start: starting page index
1790  * @end: ending page index (inclusive)
1791  *
1792  * This function scans the page range from @start to @end (inclusive) and tags
1793  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1794  * that write_cache_pages (or whoever calls this function) will then use
1795  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1796  * used to avoid livelocking of writeback by a process steadily creating new
1797  * dirty pages in the file (thus it is important for this function to be quick
1798  * so that it can tag pages faster than a dirtying process can create them).
1799  */
1800 /*
1801  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1802  */
1803 void tag_pages_for_writeback(struct address_space *mapping,
1804 			     pgoff_t start, pgoff_t end)
1805 {
1806 #define WRITEBACK_TAG_BATCH 4096
1807 	unsigned long tagged;
1808 
1809 	do {
1810 		spin_lock_irq(&mapping->tree_lock);
1811 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1812 				&start, end, WRITEBACK_TAG_BATCH,
1813 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1814 		spin_unlock_irq(&mapping->tree_lock);
1815 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1816 		cond_resched();
1817 		/* We check 'start' to handle wrapping when end == ~0UL */
1818 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1819 }
1820 EXPORT_SYMBOL(tag_pages_for_writeback);
1821 
1822 /**
1823  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1824  * @mapping: address space structure to write
1825  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1826  * @writepage: function called for each page
1827  * @data: data passed to writepage function
1828  *
1829  * If a page is already under I/O, write_cache_pages() skips it, even
1830  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1831  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1832  * and msync() need to guarantee that all the data which was dirty at the time
1833  * the call was made get new I/O started against them.  If wbc->sync_mode is
1834  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1835  * existing IO to complete.
1836  *
1837  * To avoid livelocks (when other process dirties new pages), we first tag
1838  * pages which should be written back with TOWRITE tag and only then start
1839  * writing them. For data-integrity sync we have to be careful so that we do
1840  * not miss some pages (e.g., because some other process has cleared TOWRITE
1841  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1842  * by the process clearing the DIRTY tag (and submitting the page for IO).
1843  */
1844 int write_cache_pages(struct address_space *mapping,
1845 		      struct writeback_control *wbc, writepage_t writepage,
1846 		      void *data)
1847 {
1848 	int ret = 0;
1849 	int done = 0;
1850 	struct pagevec pvec;
1851 	int nr_pages;
1852 	pgoff_t uninitialized_var(writeback_index);
1853 	pgoff_t index;
1854 	pgoff_t end;		/* Inclusive */
1855 	pgoff_t done_index;
1856 	int cycled;
1857 	int range_whole = 0;
1858 	int tag;
1859 
1860 	pagevec_init(&pvec, 0);
1861 	if (wbc->range_cyclic) {
1862 		writeback_index = mapping->writeback_index; /* prev offset */
1863 		index = writeback_index;
1864 		if (index == 0)
1865 			cycled = 1;
1866 		else
1867 			cycled = 0;
1868 		end = -1;
1869 	} else {
1870 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1871 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1872 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1873 			range_whole = 1;
1874 		cycled = 1; /* ignore range_cyclic tests */
1875 	}
1876 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1877 		tag = PAGECACHE_TAG_TOWRITE;
1878 	else
1879 		tag = PAGECACHE_TAG_DIRTY;
1880 retry:
1881 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1882 		tag_pages_for_writeback(mapping, index, end);
1883 	done_index = index;
1884 	while (!done && (index <= end)) {
1885 		int i;
1886 
1887 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1888 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1889 		if (nr_pages == 0)
1890 			break;
1891 
1892 		for (i = 0; i < nr_pages; i++) {
1893 			struct page *page = pvec.pages[i];
1894 
1895 			/*
1896 			 * At this point, the page may be truncated or
1897 			 * invalidated (changing page->mapping to NULL), or
1898 			 * even swizzled back from swapper_space to tmpfs file
1899 			 * mapping. However, page->index will not change
1900 			 * because we have a reference on the page.
1901 			 */
1902 			if (page->index > end) {
1903 				/*
1904 				 * can't be range_cyclic (1st pass) because
1905 				 * end == -1 in that case.
1906 				 */
1907 				done = 1;
1908 				break;
1909 			}
1910 
1911 			done_index = page->index;
1912 
1913 			lock_page(page);
1914 
1915 			/*
1916 			 * Page truncated or invalidated. We can freely skip it
1917 			 * then, even for data integrity operations: the page
1918 			 * has disappeared concurrently, so there could be no
1919 			 * real expectation of this data interity operation
1920 			 * even if there is now a new, dirty page at the same
1921 			 * pagecache address.
1922 			 */
1923 			if (unlikely(page->mapping != mapping)) {
1924 continue_unlock:
1925 				unlock_page(page);
1926 				continue;
1927 			}
1928 
1929 			if (!PageDirty(page)) {
1930 				/* someone wrote it for us */
1931 				goto continue_unlock;
1932 			}
1933 
1934 			if (PageWriteback(page)) {
1935 				if (wbc->sync_mode != WB_SYNC_NONE)
1936 					wait_on_page_writeback(page);
1937 				else
1938 					goto continue_unlock;
1939 			}
1940 
1941 			BUG_ON(PageWriteback(page));
1942 			if (!clear_page_dirty_for_io(page))
1943 				goto continue_unlock;
1944 
1945 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1946 			ret = (*writepage)(page, wbc, data);
1947 			if (unlikely(ret)) {
1948 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1949 					unlock_page(page);
1950 					ret = 0;
1951 				} else {
1952 					/*
1953 					 * done_index is set past this page,
1954 					 * so media errors will not choke
1955 					 * background writeout for the entire
1956 					 * file. This has consequences for
1957 					 * range_cyclic semantics (ie. it may
1958 					 * not be suitable for data integrity
1959 					 * writeout).
1960 					 */
1961 					done_index = page->index + 1;
1962 					done = 1;
1963 					break;
1964 				}
1965 			}
1966 
1967 			/*
1968 			 * We stop writing back only if we are not doing
1969 			 * integrity sync. In case of integrity sync we have to
1970 			 * keep going until we have written all the pages
1971 			 * we tagged for writeback prior to entering this loop.
1972 			 */
1973 			if (--wbc->nr_to_write <= 0 &&
1974 			    wbc->sync_mode == WB_SYNC_NONE) {
1975 				done = 1;
1976 				break;
1977 			}
1978 		}
1979 		pagevec_release(&pvec);
1980 		cond_resched();
1981 	}
1982 	if (!cycled && !done) {
1983 		/*
1984 		 * range_cyclic:
1985 		 * We hit the last page and there is more work to be done: wrap
1986 		 * back to the start of the file
1987 		 */
1988 		cycled = 1;
1989 		index = 0;
1990 		end = writeback_index - 1;
1991 		goto retry;
1992 	}
1993 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1994 		mapping->writeback_index = done_index;
1995 
1996 	return ret;
1997 }
1998 EXPORT_SYMBOL(write_cache_pages);
1999 
2000 /*
2001  * Function used by generic_writepages to call the real writepage
2002  * function and set the mapping flags on error
2003  */
2004 static int __writepage(struct page *page, struct writeback_control *wbc,
2005 		       void *data)
2006 {
2007 	struct address_space *mapping = data;
2008 	int ret = mapping->a_ops->writepage(page, wbc);
2009 	mapping_set_error(mapping, ret);
2010 	return ret;
2011 }
2012 
2013 /**
2014  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2015  * @mapping: address space structure to write
2016  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2017  *
2018  * This is a library function, which implements the writepages()
2019  * address_space_operation.
2020  */
2021 int generic_writepages(struct address_space *mapping,
2022 		       struct writeback_control *wbc)
2023 {
2024 	struct blk_plug plug;
2025 	int ret;
2026 
2027 	/* deal with chardevs and other special file */
2028 	if (!mapping->a_ops->writepage)
2029 		return 0;
2030 
2031 	blk_start_plug(&plug);
2032 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2033 	blk_finish_plug(&plug);
2034 	return ret;
2035 }
2036 
2037 EXPORT_SYMBOL(generic_writepages);
2038 
2039 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2040 {
2041 	int ret;
2042 
2043 	if (wbc->nr_to_write <= 0)
2044 		return 0;
2045 	if (mapping->a_ops->writepages)
2046 		ret = mapping->a_ops->writepages(mapping, wbc);
2047 	else
2048 		ret = generic_writepages(mapping, wbc);
2049 	return ret;
2050 }
2051 
2052 /**
2053  * write_one_page - write out a single page and optionally wait on I/O
2054  * @page: the page to write
2055  * @wait: if true, wait on writeout
2056  *
2057  * The page must be locked by the caller and will be unlocked upon return.
2058  *
2059  * write_one_page() returns a negative error code if I/O failed.
2060  */
2061 int write_one_page(struct page *page, int wait)
2062 {
2063 	struct address_space *mapping = page->mapping;
2064 	int ret = 0;
2065 	struct writeback_control wbc = {
2066 		.sync_mode = WB_SYNC_ALL,
2067 		.nr_to_write = 1,
2068 	};
2069 
2070 	BUG_ON(!PageLocked(page));
2071 
2072 	if (wait)
2073 		wait_on_page_writeback(page);
2074 
2075 	if (clear_page_dirty_for_io(page)) {
2076 		page_cache_get(page);
2077 		ret = mapping->a_ops->writepage(page, &wbc);
2078 		if (ret == 0 && wait) {
2079 			wait_on_page_writeback(page);
2080 			if (PageError(page))
2081 				ret = -EIO;
2082 		}
2083 		page_cache_release(page);
2084 	} else {
2085 		unlock_page(page);
2086 	}
2087 	return ret;
2088 }
2089 EXPORT_SYMBOL(write_one_page);
2090 
2091 /*
2092  * For address_spaces which do not use buffers nor write back.
2093  */
2094 int __set_page_dirty_no_writeback(struct page *page)
2095 {
2096 	if (!PageDirty(page))
2097 		return !TestSetPageDirty(page);
2098 	return 0;
2099 }
2100 
2101 /*
2102  * Helper function for set_page_dirty family.
2103  * NOTE: This relies on being atomic wrt interrupts.
2104  */
2105 void account_page_dirtied(struct page *page, struct address_space *mapping)
2106 {
2107 	trace_writeback_dirty_page(page, mapping);
2108 
2109 	if (mapping_cap_account_dirty(mapping)) {
2110 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2111 		__inc_zone_page_state(page, NR_DIRTIED);
2112 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
2113 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2114 		task_io_account_write(PAGE_CACHE_SIZE);
2115 		current->nr_dirtied++;
2116 		this_cpu_inc(bdp_ratelimits);
2117 	}
2118 }
2119 EXPORT_SYMBOL(account_page_dirtied);
2120 
2121 /*
2122  * Helper function for set_page_writeback family.
2123  *
2124  * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
2125  * while calling this function.
2126  * See test_set_page_writeback for example.
2127  *
2128  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2129  * wrt interrupts.
2130  */
2131 void account_page_writeback(struct page *page)
2132 {
2133 	mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2134 	inc_zone_page_state(page, NR_WRITEBACK);
2135 }
2136 EXPORT_SYMBOL(account_page_writeback);
2137 
2138 /*
2139  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2140  * its radix tree.
2141  *
2142  * This is also used when a single buffer is being dirtied: we want to set the
2143  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2144  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2145  *
2146  * Most callers have locked the page, which pins the address_space in memory.
2147  * But zap_pte_range() does not lock the page, however in that case the
2148  * mapping is pinned by the vma's ->vm_file reference.
2149  *
2150  * We take care to handle the case where the page was truncated from the
2151  * mapping by re-checking page_mapping() inside tree_lock.
2152  */
2153 int __set_page_dirty_nobuffers(struct page *page)
2154 {
2155 	if (!TestSetPageDirty(page)) {
2156 		struct address_space *mapping = page_mapping(page);
2157 		struct address_space *mapping2;
2158 		unsigned long flags;
2159 
2160 		if (!mapping)
2161 			return 1;
2162 
2163 		spin_lock_irqsave(&mapping->tree_lock, flags);
2164 		mapping2 = page_mapping(page);
2165 		if (mapping2) { /* Race with truncate? */
2166 			BUG_ON(mapping2 != mapping);
2167 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2168 			account_page_dirtied(page, mapping);
2169 			radix_tree_tag_set(&mapping->page_tree,
2170 				page_index(page), PAGECACHE_TAG_DIRTY);
2171 		}
2172 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2173 		if (mapping->host) {
2174 			/* !PageAnon && !swapper_space */
2175 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2176 		}
2177 		return 1;
2178 	}
2179 	return 0;
2180 }
2181 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2182 
2183 /*
2184  * Call this whenever redirtying a page, to de-account the dirty counters
2185  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2186  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2187  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2188  * control.
2189  */
2190 void account_page_redirty(struct page *page)
2191 {
2192 	struct address_space *mapping = page->mapping;
2193 	if (mapping && mapping_cap_account_dirty(mapping)) {
2194 		current->nr_dirtied--;
2195 		dec_zone_page_state(page, NR_DIRTIED);
2196 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2197 	}
2198 }
2199 EXPORT_SYMBOL(account_page_redirty);
2200 
2201 /*
2202  * When a writepage implementation decides that it doesn't want to write this
2203  * page for some reason, it should redirty the locked page via
2204  * redirty_page_for_writepage() and it should then unlock the page and return 0
2205  */
2206 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2207 {
2208 	wbc->pages_skipped++;
2209 	account_page_redirty(page);
2210 	return __set_page_dirty_nobuffers(page);
2211 }
2212 EXPORT_SYMBOL(redirty_page_for_writepage);
2213 
2214 /*
2215  * Dirty a page.
2216  *
2217  * For pages with a mapping this should be done under the page lock
2218  * for the benefit of asynchronous memory errors who prefer a consistent
2219  * dirty state. This rule can be broken in some special cases,
2220  * but should be better not to.
2221  *
2222  * If the mapping doesn't provide a set_page_dirty a_op, then
2223  * just fall through and assume that it wants buffer_heads.
2224  */
2225 int set_page_dirty(struct page *page)
2226 {
2227 	struct address_space *mapping = page_mapping(page);
2228 
2229 	if (likely(mapping)) {
2230 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2231 		/*
2232 		 * readahead/lru_deactivate_page could remain
2233 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2234 		 * About readahead, if the page is written, the flags would be
2235 		 * reset. So no problem.
2236 		 * About lru_deactivate_page, if the page is redirty, the flag
2237 		 * will be reset. So no problem. but if the page is used by readahead
2238 		 * it will confuse readahead and make it restart the size rampup
2239 		 * process. But it's a trivial problem.
2240 		 */
2241 		ClearPageReclaim(page);
2242 #ifdef CONFIG_BLOCK
2243 		if (!spd)
2244 			spd = __set_page_dirty_buffers;
2245 #endif
2246 		return (*spd)(page);
2247 	}
2248 	if (!PageDirty(page)) {
2249 		if (!TestSetPageDirty(page))
2250 			return 1;
2251 	}
2252 	return 0;
2253 }
2254 EXPORT_SYMBOL(set_page_dirty);
2255 
2256 /*
2257  * set_page_dirty() is racy if the caller has no reference against
2258  * page->mapping->host, and if the page is unlocked.  This is because another
2259  * CPU could truncate the page off the mapping and then free the mapping.
2260  *
2261  * Usually, the page _is_ locked, or the caller is a user-space process which
2262  * holds a reference on the inode by having an open file.
2263  *
2264  * In other cases, the page should be locked before running set_page_dirty().
2265  */
2266 int set_page_dirty_lock(struct page *page)
2267 {
2268 	int ret;
2269 
2270 	lock_page(page);
2271 	ret = set_page_dirty(page);
2272 	unlock_page(page);
2273 	return ret;
2274 }
2275 EXPORT_SYMBOL(set_page_dirty_lock);
2276 
2277 /*
2278  * Clear a page's dirty flag, while caring for dirty memory accounting.
2279  * Returns true if the page was previously dirty.
2280  *
2281  * This is for preparing to put the page under writeout.  We leave the page
2282  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2283  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2284  * implementation will run either set_page_writeback() or set_page_dirty(),
2285  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2286  * back into sync.
2287  *
2288  * This incoherency between the page's dirty flag and radix-tree tag is
2289  * unfortunate, but it only exists while the page is locked.
2290  */
2291 int clear_page_dirty_for_io(struct page *page)
2292 {
2293 	struct address_space *mapping = page_mapping(page);
2294 
2295 	BUG_ON(!PageLocked(page));
2296 
2297 	if (mapping && mapping_cap_account_dirty(mapping)) {
2298 		/*
2299 		 * Yes, Virginia, this is indeed insane.
2300 		 *
2301 		 * We use this sequence to make sure that
2302 		 *  (a) we account for dirty stats properly
2303 		 *  (b) we tell the low-level filesystem to
2304 		 *      mark the whole page dirty if it was
2305 		 *      dirty in a pagetable. Only to then
2306 		 *  (c) clean the page again and return 1 to
2307 		 *      cause the writeback.
2308 		 *
2309 		 * This way we avoid all nasty races with the
2310 		 * dirty bit in multiple places and clearing
2311 		 * them concurrently from different threads.
2312 		 *
2313 		 * Note! Normally the "set_page_dirty(page)"
2314 		 * has no effect on the actual dirty bit - since
2315 		 * that will already usually be set. But we
2316 		 * need the side effects, and it can help us
2317 		 * avoid races.
2318 		 *
2319 		 * We basically use the page "master dirty bit"
2320 		 * as a serialization point for all the different
2321 		 * threads doing their things.
2322 		 */
2323 		if (page_mkclean(page))
2324 			set_page_dirty(page);
2325 		/*
2326 		 * We carefully synchronise fault handlers against
2327 		 * installing a dirty pte and marking the page dirty
2328 		 * at this point. We do this by having them hold the
2329 		 * page lock at some point after installing their
2330 		 * pte, but before marking the page dirty.
2331 		 * Pages are always locked coming in here, so we get
2332 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2333 		 * for more comments.
2334 		 */
2335 		if (TestClearPageDirty(page)) {
2336 			dec_zone_page_state(page, NR_FILE_DIRTY);
2337 			dec_bdi_stat(mapping->backing_dev_info,
2338 					BDI_RECLAIMABLE);
2339 			return 1;
2340 		}
2341 		return 0;
2342 	}
2343 	return TestClearPageDirty(page);
2344 }
2345 EXPORT_SYMBOL(clear_page_dirty_for_io);
2346 
2347 int test_clear_page_writeback(struct page *page)
2348 {
2349 	struct address_space *mapping = page_mapping(page);
2350 	int ret;
2351 	bool locked;
2352 	unsigned long memcg_flags;
2353 
2354 	mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2355 	if (mapping) {
2356 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2357 		unsigned long flags;
2358 
2359 		spin_lock_irqsave(&mapping->tree_lock, flags);
2360 		ret = TestClearPageWriteback(page);
2361 		if (ret) {
2362 			radix_tree_tag_clear(&mapping->page_tree,
2363 						page_index(page),
2364 						PAGECACHE_TAG_WRITEBACK);
2365 			if (bdi_cap_account_writeback(bdi)) {
2366 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2367 				__bdi_writeout_inc(bdi);
2368 			}
2369 		}
2370 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2371 	} else {
2372 		ret = TestClearPageWriteback(page);
2373 	}
2374 	if (ret) {
2375 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2376 		dec_zone_page_state(page, NR_WRITEBACK);
2377 		inc_zone_page_state(page, NR_WRITTEN);
2378 	}
2379 	mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2380 	return ret;
2381 }
2382 
2383 int __test_set_page_writeback(struct page *page, bool keep_write)
2384 {
2385 	struct address_space *mapping = page_mapping(page);
2386 	int ret;
2387 	bool locked;
2388 	unsigned long memcg_flags;
2389 
2390 	mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2391 	if (mapping) {
2392 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2393 		unsigned long flags;
2394 
2395 		spin_lock_irqsave(&mapping->tree_lock, flags);
2396 		ret = TestSetPageWriteback(page);
2397 		if (!ret) {
2398 			radix_tree_tag_set(&mapping->page_tree,
2399 						page_index(page),
2400 						PAGECACHE_TAG_WRITEBACK);
2401 			if (bdi_cap_account_writeback(bdi))
2402 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2403 		}
2404 		if (!PageDirty(page))
2405 			radix_tree_tag_clear(&mapping->page_tree,
2406 						page_index(page),
2407 						PAGECACHE_TAG_DIRTY);
2408 		if (!keep_write)
2409 			radix_tree_tag_clear(&mapping->page_tree,
2410 						page_index(page),
2411 						PAGECACHE_TAG_TOWRITE);
2412 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2413 	} else {
2414 		ret = TestSetPageWriteback(page);
2415 	}
2416 	if (!ret)
2417 		account_page_writeback(page);
2418 	mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2419 	return ret;
2420 
2421 }
2422 EXPORT_SYMBOL(__test_set_page_writeback);
2423 
2424 /*
2425  * Return true if any of the pages in the mapping are marked with the
2426  * passed tag.
2427  */
2428 int mapping_tagged(struct address_space *mapping, int tag)
2429 {
2430 	return radix_tree_tagged(&mapping->page_tree, tag);
2431 }
2432 EXPORT_SYMBOL(mapping_tagged);
2433 
2434 /**
2435  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2436  * @page:	The page to wait on.
2437  *
2438  * This function determines if the given page is related to a backing device
2439  * that requires page contents to be held stable during writeback.  If so, then
2440  * it will wait for any pending writeback to complete.
2441  */
2442 void wait_for_stable_page(struct page *page)
2443 {
2444 	struct address_space *mapping = page_mapping(page);
2445 	struct backing_dev_info *bdi = mapping->backing_dev_info;
2446 
2447 	if (!bdi_cap_stable_pages_required(bdi))
2448 		return;
2449 
2450 	wait_on_page_writeback(page);
2451 }
2452 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2453