xref: /openbmc/linux/mm/page-writeback.c (revision c4f7ac64)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42 
43 #include "internal.h"
44 
45 /*
46  * Sleep at most 200ms at a time in balance_dirty_pages().
47  */
48 #define MAX_PAUSE		max(HZ/5, 1)
49 
50 /*
51  * Try to keep balance_dirty_pages() call intervals higher than this many pages
52  * by raising pause time to max_pause when falls below it.
53  */
54 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
55 
56 /*
57  * Estimate write bandwidth at 200ms intervals.
58  */
59 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
60 
61 #define RATELIMIT_CALC_SHIFT	10
62 
63 /*
64  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65  * will look to see if it needs to force writeback or throttling.
66  */
67 static long ratelimit_pages = 32;
68 
69 /* The following parameters are exported via /proc/sys/vm */
70 
71 /*
72  * Start background writeback (via writeback threads) at this percentage
73  */
74 int dirty_background_ratio = 10;
75 
76 /*
77  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78  * dirty_background_ratio * the amount of dirtyable memory
79  */
80 unsigned long dirty_background_bytes;
81 
82 /*
83  * free highmem will not be subtracted from the total free memory
84  * for calculating free ratios if vm_highmem_is_dirtyable is true
85  */
86 int vm_highmem_is_dirtyable;
87 
88 /*
89  * The generator of dirty data starts writeback at this percentage
90  */
91 int vm_dirty_ratio = 20;
92 
93 /*
94  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95  * vm_dirty_ratio * the amount of dirtyable memory
96  */
97 unsigned long vm_dirty_bytes;
98 
99 /*
100  * The interval between `kupdate'-style writebacks
101  */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103 
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105 
106 /*
107  * The longest time for which data is allowed to remain dirty
108  */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110 
111 /*
112  * Flag that makes the machine dump writes/reads and block dirtyings.
113  */
114 int block_dump;
115 
116 /*
117  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118  * a full sync is triggered after this time elapses without any disk activity.
119  */
120 int laptop_mode;
121 
122 EXPORT_SYMBOL(laptop_mode);
123 
124 /* End of sysctl-exported parameters */
125 
126 struct wb_domain global_wb_domain;
127 
128 /* consolidated parameters for balance_dirty_pages() and its subroutines */
129 struct dirty_throttle_control {
130 #ifdef CONFIG_CGROUP_WRITEBACK
131 	struct wb_domain	*dom;
132 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
133 #endif
134 	struct bdi_writeback	*wb;
135 	struct fprop_local_percpu *wb_completions;
136 
137 	unsigned long		avail;		/* dirtyable */
138 	unsigned long		dirty;		/* file_dirty + write + nfs */
139 	unsigned long		thresh;		/* dirty threshold */
140 	unsigned long		bg_thresh;	/* dirty background threshold */
141 
142 	unsigned long		wb_dirty;	/* per-wb counterparts */
143 	unsigned long		wb_thresh;
144 	unsigned long		wb_bg_thresh;
145 
146 	unsigned long		pos_ratio;
147 };
148 
149 /*
150  * Length of period for aging writeout fractions of bdis. This is an
151  * arbitrarily chosen number. The longer the period, the slower fractions will
152  * reflect changes in current writeout rate.
153  */
154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
155 
156 #ifdef CONFIG_CGROUP_WRITEBACK
157 
158 #define GDTC_INIT(__wb)		.wb = (__wb),				\
159 				.dom = &global_wb_domain,		\
160 				.wb_completions = &(__wb)->completions
161 
162 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
163 
164 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
165 				.dom = mem_cgroup_wb_domain(__wb),	\
166 				.wb_completions = &(__wb)->memcg_completions, \
167 				.gdtc = __gdtc
168 
169 static bool mdtc_valid(struct dirty_throttle_control *dtc)
170 {
171 	return dtc->dom;
172 }
173 
174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175 {
176 	return dtc->dom;
177 }
178 
179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180 {
181 	return mdtc->gdtc;
182 }
183 
184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185 {
186 	return &wb->memcg_completions;
187 }
188 
189 static void wb_min_max_ratio(struct bdi_writeback *wb,
190 			     unsigned long *minp, unsigned long *maxp)
191 {
192 	unsigned long this_bw = wb->avg_write_bandwidth;
193 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 	unsigned long long min = wb->bdi->min_ratio;
195 	unsigned long long max = wb->bdi->max_ratio;
196 
197 	/*
198 	 * @wb may already be clean by the time control reaches here and
199 	 * the total may not include its bw.
200 	 */
201 	if (this_bw < tot_bw) {
202 		if (min) {
203 			min *= this_bw;
204 			min = div64_ul(min, tot_bw);
205 		}
206 		if (max < 100) {
207 			max *= this_bw;
208 			max = div64_ul(max, tot_bw);
209 		}
210 	}
211 
212 	*minp = min;
213 	*maxp = max;
214 }
215 
216 #else	/* CONFIG_CGROUP_WRITEBACK */
217 
218 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
219 				.wb_completions = &(__wb)->completions
220 #define GDTC_INIT_NO_WB
221 #define MDTC_INIT(__wb, __gdtc)
222 
223 static bool mdtc_valid(struct dirty_throttle_control *dtc)
224 {
225 	return false;
226 }
227 
228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229 {
230 	return &global_wb_domain;
231 }
232 
233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234 {
235 	return NULL;
236 }
237 
238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239 {
240 	return NULL;
241 }
242 
243 static void wb_min_max_ratio(struct bdi_writeback *wb,
244 			     unsigned long *minp, unsigned long *maxp)
245 {
246 	*minp = wb->bdi->min_ratio;
247 	*maxp = wb->bdi->max_ratio;
248 }
249 
250 #endif	/* CONFIG_CGROUP_WRITEBACK */
251 
252 /*
253  * In a memory zone, there is a certain amount of pages we consider
254  * available for the page cache, which is essentially the number of
255  * free and reclaimable pages, minus some zone reserves to protect
256  * lowmem and the ability to uphold the zone's watermarks without
257  * requiring writeback.
258  *
259  * This number of dirtyable pages is the base value of which the
260  * user-configurable dirty ratio is the effective number of pages that
261  * are allowed to be actually dirtied.  Per individual zone, or
262  * globally by using the sum of dirtyable pages over all zones.
263  *
264  * Because the user is allowed to specify the dirty limit globally as
265  * absolute number of bytes, calculating the per-zone dirty limit can
266  * require translating the configured limit into a percentage of
267  * global dirtyable memory first.
268  */
269 
270 /**
271  * node_dirtyable_memory - number of dirtyable pages in a node
272  * @pgdat: the node
273  *
274  * Return: the node's number of pages potentially available for dirty
275  * page cache.  This is the base value for the per-node dirty limits.
276  */
277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
278 {
279 	unsigned long nr_pages = 0;
280 	int z;
281 
282 	for (z = 0; z < MAX_NR_ZONES; z++) {
283 		struct zone *zone = pgdat->node_zones + z;
284 
285 		if (!populated_zone(zone))
286 			continue;
287 
288 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 	}
290 
291 	/*
292 	 * Pages reserved for the kernel should not be considered
293 	 * dirtyable, to prevent a situation where reclaim has to
294 	 * clean pages in order to balance the zones.
295 	 */
296 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
297 
298 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
300 
301 	return nr_pages;
302 }
303 
304 static unsigned long highmem_dirtyable_memory(unsigned long total)
305 {
306 #ifdef CONFIG_HIGHMEM
307 	int node;
308 	unsigned long x = 0;
309 	int i;
310 
311 	for_each_node_state(node, N_HIGH_MEMORY) {
312 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 			struct zone *z;
314 			unsigned long nr_pages;
315 
316 			if (!is_highmem_idx(i))
317 				continue;
318 
319 			z = &NODE_DATA(node)->node_zones[i];
320 			if (!populated_zone(z))
321 				continue;
322 
323 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
324 			/* watch for underflows */
325 			nr_pages -= min(nr_pages, high_wmark_pages(z));
326 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 			x += nr_pages;
329 		}
330 	}
331 
332 	/*
333 	 * Unreclaimable memory (kernel memory or anonymous memory
334 	 * without swap) can bring down the dirtyable pages below
335 	 * the zone's dirty balance reserve and the above calculation
336 	 * will underflow.  However we still want to add in nodes
337 	 * which are below threshold (negative values) to get a more
338 	 * accurate calculation but make sure that the total never
339 	 * underflows.
340 	 */
341 	if ((long)x < 0)
342 		x = 0;
343 
344 	/*
345 	 * Make sure that the number of highmem pages is never larger
346 	 * than the number of the total dirtyable memory. This can only
347 	 * occur in very strange VM situations but we want to make sure
348 	 * that this does not occur.
349 	 */
350 	return min(x, total);
351 #else
352 	return 0;
353 #endif
354 }
355 
356 /**
357  * global_dirtyable_memory - number of globally dirtyable pages
358  *
359  * Return: the global number of pages potentially available for dirty
360  * page cache.  This is the base value for the global dirty limits.
361  */
362 static unsigned long global_dirtyable_memory(void)
363 {
364 	unsigned long x;
365 
366 	x = global_zone_page_state(NR_FREE_PAGES);
367 	/*
368 	 * Pages reserved for the kernel should not be considered
369 	 * dirtyable, to prevent a situation where reclaim has to
370 	 * clean pages in order to balance the zones.
371 	 */
372 	x -= min(x, totalreserve_pages);
373 
374 	x += global_node_page_state(NR_INACTIVE_FILE);
375 	x += global_node_page_state(NR_ACTIVE_FILE);
376 
377 	if (!vm_highmem_is_dirtyable)
378 		x -= highmem_dirtyable_memory(x);
379 
380 	return x + 1;	/* Ensure that we never return 0 */
381 }
382 
383 /**
384  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385  * @dtc: dirty_throttle_control of interest
386  *
387  * Calculate @dtc->thresh and ->bg_thresh considering
388  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
389  * must ensure that @dtc->avail is set before calling this function.  The
390  * dirty limits will be lifted by 1/4 for real-time tasks.
391  */
392 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
393 {
394 	const unsigned long available_memory = dtc->avail;
395 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
396 	unsigned long bytes = vm_dirty_bytes;
397 	unsigned long bg_bytes = dirty_background_bytes;
398 	/* convert ratios to per-PAGE_SIZE for higher precision */
399 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
400 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
401 	unsigned long thresh;
402 	unsigned long bg_thresh;
403 	struct task_struct *tsk;
404 
405 	/* gdtc is !NULL iff @dtc is for memcg domain */
406 	if (gdtc) {
407 		unsigned long global_avail = gdtc->avail;
408 
409 		/*
410 		 * The byte settings can't be applied directly to memcg
411 		 * domains.  Convert them to ratios by scaling against
412 		 * globally available memory.  As the ratios are in
413 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
414 		 * number of pages.
415 		 */
416 		if (bytes)
417 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
418 				    PAGE_SIZE);
419 		if (bg_bytes)
420 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
421 				       PAGE_SIZE);
422 		bytes = bg_bytes = 0;
423 	}
424 
425 	if (bytes)
426 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
427 	else
428 		thresh = (ratio * available_memory) / PAGE_SIZE;
429 
430 	if (bg_bytes)
431 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
432 	else
433 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
434 
435 	if (bg_thresh >= thresh)
436 		bg_thresh = thresh / 2;
437 	tsk = current;
438 	if (rt_task(tsk)) {
439 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
440 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
441 	}
442 	dtc->thresh = thresh;
443 	dtc->bg_thresh = bg_thresh;
444 
445 	/* we should eventually report the domain in the TP */
446 	if (!gdtc)
447 		trace_global_dirty_state(bg_thresh, thresh);
448 }
449 
450 /**
451  * global_dirty_limits - background-writeback and dirty-throttling thresholds
452  * @pbackground: out parameter for bg_thresh
453  * @pdirty: out parameter for thresh
454  *
455  * Calculate bg_thresh and thresh for global_wb_domain.  See
456  * domain_dirty_limits() for details.
457  */
458 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
459 {
460 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
461 
462 	gdtc.avail = global_dirtyable_memory();
463 	domain_dirty_limits(&gdtc);
464 
465 	*pbackground = gdtc.bg_thresh;
466 	*pdirty = gdtc.thresh;
467 }
468 
469 /**
470  * node_dirty_limit - maximum number of dirty pages allowed in a node
471  * @pgdat: the node
472  *
473  * Return: the maximum number of dirty pages allowed in a node, based
474  * on the node's dirtyable memory.
475  */
476 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
477 {
478 	unsigned long node_memory = node_dirtyable_memory(pgdat);
479 	struct task_struct *tsk = current;
480 	unsigned long dirty;
481 
482 	if (vm_dirty_bytes)
483 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
484 			node_memory / global_dirtyable_memory();
485 	else
486 		dirty = vm_dirty_ratio * node_memory / 100;
487 
488 	if (rt_task(tsk))
489 		dirty += dirty / 4;
490 
491 	return dirty;
492 }
493 
494 /**
495  * node_dirty_ok - tells whether a node is within its dirty limits
496  * @pgdat: the node to check
497  *
498  * Return: %true when the dirty pages in @pgdat are within the node's
499  * dirty limit, %false if the limit is exceeded.
500  */
501 bool node_dirty_ok(struct pglist_data *pgdat)
502 {
503 	unsigned long limit = node_dirty_limit(pgdat);
504 	unsigned long nr_pages = 0;
505 
506 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
507 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
508 
509 	return nr_pages <= limit;
510 }
511 
512 int dirty_background_ratio_handler(struct ctl_table *table, int write,
513 		void *buffer, size_t *lenp, loff_t *ppos)
514 {
515 	int ret;
516 
517 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
518 	if (ret == 0 && write)
519 		dirty_background_bytes = 0;
520 	return ret;
521 }
522 
523 int dirty_background_bytes_handler(struct ctl_table *table, int write,
524 		void *buffer, size_t *lenp, loff_t *ppos)
525 {
526 	int ret;
527 
528 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
529 	if (ret == 0 && write)
530 		dirty_background_ratio = 0;
531 	return ret;
532 }
533 
534 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
535 		size_t *lenp, loff_t *ppos)
536 {
537 	int old_ratio = vm_dirty_ratio;
538 	int ret;
539 
540 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
541 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
542 		writeback_set_ratelimit();
543 		vm_dirty_bytes = 0;
544 	}
545 	return ret;
546 }
547 
548 int dirty_bytes_handler(struct ctl_table *table, int write,
549 		void *buffer, size_t *lenp, loff_t *ppos)
550 {
551 	unsigned long old_bytes = vm_dirty_bytes;
552 	int ret;
553 
554 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
555 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
556 		writeback_set_ratelimit();
557 		vm_dirty_ratio = 0;
558 	}
559 	return ret;
560 }
561 
562 static unsigned long wp_next_time(unsigned long cur_time)
563 {
564 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
565 	/* 0 has a special meaning... */
566 	if (!cur_time)
567 		return 1;
568 	return cur_time;
569 }
570 
571 static void wb_domain_writeout_inc(struct wb_domain *dom,
572 				   struct fprop_local_percpu *completions,
573 				   unsigned int max_prop_frac)
574 {
575 	__fprop_inc_percpu_max(&dom->completions, completions,
576 			       max_prop_frac);
577 	/* First event after period switching was turned off? */
578 	if (unlikely(!dom->period_time)) {
579 		/*
580 		 * We can race with other __bdi_writeout_inc calls here but
581 		 * it does not cause any harm since the resulting time when
582 		 * timer will fire and what is in writeout_period_time will be
583 		 * roughly the same.
584 		 */
585 		dom->period_time = wp_next_time(jiffies);
586 		mod_timer(&dom->period_timer, dom->period_time);
587 	}
588 }
589 
590 /*
591  * Increment @wb's writeout completion count and the global writeout
592  * completion count. Called from test_clear_page_writeback().
593  */
594 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
595 {
596 	struct wb_domain *cgdom;
597 
598 	inc_wb_stat(wb, WB_WRITTEN);
599 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
600 			       wb->bdi->max_prop_frac);
601 
602 	cgdom = mem_cgroup_wb_domain(wb);
603 	if (cgdom)
604 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
605 				       wb->bdi->max_prop_frac);
606 }
607 
608 void wb_writeout_inc(struct bdi_writeback *wb)
609 {
610 	unsigned long flags;
611 
612 	local_irq_save(flags);
613 	__wb_writeout_inc(wb);
614 	local_irq_restore(flags);
615 }
616 EXPORT_SYMBOL_GPL(wb_writeout_inc);
617 
618 /*
619  * On idle system, we can be called long after we scheduled because we use
620  * deferred timers so count with missed periods.
621  */
622 static void writeout_period(struct timer_list *t)
623 {
624 	struct wb_domain *dom = from_timer(dom, t, period_timer);
625 	int miss_periods = (jiffies - dom->period_time) /
626 						 VM_COMPLETIONS_PERIOD_LEN;
627 
628 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
629 		dom->period_time = wp_next_time(dom->period_time +
630 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
631 		mod_timer(&dom->period_timer, dom->period_time);
632 	} else {
633 		/*
634 		 * Aging has zeroed all fractions. Stop wasting CPU on period
635 		 * updates.
636 		 */
637 		dom->period_time = 0;
638 	}
639 }
640 
641 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
642 {
643 	memset(dom, 0, sizeof(*dom));
644 
645 	spin_lock_init(&dom->lock);
646 
647 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
648 
649 	dom->dirty_limit_tstamp = jiffies;
650 
651 	return fprop_global_init(&dom->completions, gfp);
652 }
653 
654 #ifdef CONFIG_CGROUP_WRITEBACK
655 void wb_domain_exit(struct wb_domain *dom)
656 {
657 	del_timer_sync(&dom->period_timer);
658 	fprop_global_destroy(&dom->completions);
659 }
660 #endif
661 
662 /*
663  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
664  * registered backing devices, which, for obvious reasons, can not
665  * exceed 100%.
666  */
667 static unsigned int bdi_min_ratio;
668 
669 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
670 {
671 	int ret = 0;
672 
673 	spin_lock_bh(&bdi_lock);
674 	if (min_ratio > bdi->max_ratio) {
675 		ret = -EINVAL;
676 	} else {
677 		min_ratio -= bdi->min_ratio;
678 		if (bdi_min_ratio + min_ratio < 100) {
679 			bdi_min_ratio += min_ratio;
680 			bdi->min_ratio += min_ratio;
681 		} else {
682 			ret = -EINVAL;
683 		}
684 	}
685 	spin_unlock_bh(&bdi_lock);
686 
687 	return ret;
688 }
689 
690 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
691 {
692 	int ret = 0;
693 
694 	if (max_ratio > 100)
695 		return -EINVAL;
696 
697 	spin_lock_bh(&bdi_lock);
698 	if (bdi->min_ratio > max_ratio) {
699 		ret = -EINVAL;
700 	} else {
701 		bdi->max_ratio = max_ratio;
702 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
703 	}
704 	spin_unlock_bh(&bdi_lock);
705 
706 	return ret;
707 }
708 EXPORT_SYMBOL(bdi_set_max_ratio);
709 
710 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
711 					   unsigned long bg_thresh)
712 {
713 	return (thresh + bg_thresh) / 2;
714 }
715 
716 static unsigned long hard_dirty_limit(struct wb_domain *dom,
717 				      unsigned long thresh)
718 {
719 	return max(thresh, dom->dirty_limit);
720 }
721 
722 /*
723  * Memory which can be further allocated to a memcg domain is capped by
724  * system-wide clean memory excluding the amount being used in the domain.
725  */
726 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
727 			    unsigned long filepages, unsigned long headroom)
728 {
729 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
730 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
731 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
732 	unsigned long other_clean = global_clean - min(global_clean, clean);
733 
734 	mdtc->avail = filepages + min(headroom, other_clean);
735 }
736 
737 /**
738  * __wb_calc_thresh - @wb's share of dirty throttling threshold
739  * @dtc: dirty_throttle_context of interest
740  *
741  * Note that balance_dirty_pages() will only seriously take it as a hard limit
742  * when sleeping max_pause per page is not enough to keep the dirty pages under
743  * control. For example, when the device is completely stalled due to some error
744  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
745  * In the other normal situations, it acts more gently by throttling the tasks
746  * more (rather than completely block them) when the wb dirty pages go high.
747  *
748  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
749  * - starving fast devices
750  * - piling up dirty pages (that will take long time to sync) on slow devices
751  *
752  * The wb's share of dirty limit will be adapting to its throughput and
753  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
754  *
755  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
756  * dirty balancing includes all PG_dirty and PG_writeback pages.
757  */
758 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
759 {
760 	struct wb_domain *dom = dtc_dom(dtc);
761 	unsigned long thresh = dtc->thresh;
762 	u64 wb_thresh;
763 	unsigned long numerator, denominator;
764 	unsigned long wb_min_ratio, wb_max_ratio;
765 
766 	/*
767 	 * Calculate this BDI's share of the thresh ratio.
768 	 */
769 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
770 			      &numerator, &denominator);
771 
772 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
773 	wb_thresh *= numerator;
774 	wb_thresh = div64_ul(wb_thresh, denominator);
775 
776 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
777 
778 	wb_thresh += (thresh * wb_min_ratio) / 100;
779 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
780 		wb_thresh = thresh * wb_max_ratio / 100;
781 
782 	return wb_thresh;
783 }
784 
785 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
786 {
787 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
788 					       .thresh = thresh };
789 	return __wb_calc_thresh(&gdtc);
790 }
791 
792 /*
793  *                           setpoint - dirty 3
794  *        f(dirty) := 1.0 + (----------------)
795  *                           limit - setpoint
796  *
797  * it's a 3rd order polynomial that subjects to
798  *
799  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
800  * (2) f(setpoint) = 1.0 => the balance point
801  * (3) f(limit)    = 0   => the hard limit
802  * (4) df/dx      <= 0	 => negative feedback control
803  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
804  *     => fast response on large errors; small oscillation near setpoint
805  */
806 static long long pos_ratio_polynom(unsigned long setpoint,
807 					  unsigned long dirty,
808 					  unsigned long limit)
809 {
810 	long long pos_ratio;
811 	long x;
812 
813 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
814 		      (limit - setpoint) | 1);
815 	pos_ratio = x;
816 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
817 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
818 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
819 
820 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
821 }
822 
823 /*
824  * Dirty position control.
825  *
826  * (o) global/bdi setpoints
827  *
828  * We want the dirty pages be balanced around the global/wb setpoints.
829  * When the number of dirty pages is higher/lower than the setpoint, the
830  * dirty position control ratio (and hence task dirty ratelimit) will be
831  * decreased/increased to bring the dirty pages back to the setpoint.
832  *
833  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
834  *
835  *     if (dirty < setpoint) scale up   pos_ratio
836  *     if (dirty > setpoint) scale down pos_ratio
837  *
838  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
839  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
840  *
841  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
842  *
843  * (o) global control line
844  *
845  *     ^ pos_ratio
846  *     |
847  *     |            |<===== global dirty control scope ======>|
848  * 2.0 .............*
849  *     |            .*
850  *     |            . *
851  *     |            .   *
852  *     |            .     *
853  *     |            .        *
854  *     |            .            *
855  * 1.0 ................................*
856  *     |            .                  .     *
857  *     |            .                  .          *
858  *     |            .                  .              *
859  *     |            .                  .                 *
860  *     |            .                  .                    *
861  *   0 +------------.------------------.----------------------*------------->
862  *           freerun^          setpoint^                 limit^   dirty pages
863  *
864  * (o) wb control line
865  *
866  *     ^ pos_ratio
867  *     |
868  *     |            *
869  *     |              *
870  *     |                *
871  *     |                  *
872  *     |                    * |<=========== span ============>|
873  * 1.0 .......................*
874  *     |                      . *
875  *     |                      .   *
876  *     |                      .     *
877  *     |                      .       *
878  *     |                      .         *
879  *     |                      .           *
880  *     |                      .             *
881  *     |                      .               *
882  *     |                      .                 *
883  *     |                      .                   *
884  *     |                      .                     *
885  * 1/4 ...............................................* * * * * * * * * * * *
886  *     |                      .                         .
887  *     |                      .                           .
888  *     |                      .                             .
889  *   0 +----------------------.-------------------------------.------------->
890  *                wb_setpoint^                    x_intercept^
891  *
892  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
893  * be smoothly throttled down to normal if it starts high in situations like
894  * - start writing to a slow SD card and a fast disk at the same time. The SD
895  *   card's wb_dirty may rush to many times higher than wb_setpoint.
896  * - the wb dirty thresh drops quickly due to change of JBOD workload
897  */
898 static void wb_position_ratio(struct dirty_throttle_control *dtc)
899 {
900 	struct bdi_writeback *wb = dtc->wb;
901 	unsigned long write_bw = wb->avg_write_bandwidth;
902 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
903 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
904 	unsigned long wb_thresh = dtc->wb_thresh;
905 	unsigned long x_intercept;
906 	unsigned long setpoint;		/* dirty pages' target balance point */
907 	unsigned long wb_setpoint;
908 	unsigned long span;
909 	long long pos_ratio;		/* for scaling up/down the rate limit */
910 	long x;
911 
912 	dtc->pos_ratio = 0;
913 
914 	if (unlikely(dtc->dirty >= limit))
915 		return;
916 
917 	/*
918 	 * global setpoint
919 	 *
920 	 * See comment for pos_ratio_polynom().
921 	 */
922 	setpoint = (freerun + limit) / 2;
923 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
924 
925 	/*
926 	 * The strictlimit feature is a tool preventing mistrusted filesystems
927 	 * from growing a large number of dirty pages before throttling. For
928 	 * such filesystems balance_dirty_pages always checks wb counters
929 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
930 	 * This is especially important for fuse which sets bdi->max_ratio to
931 	 * 1% by default. Without strictlimit feature, fuse writeback may
932 	 * consume arbitrary amount of RAM because it is accounted in
933 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
934 	 *
935 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
936 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
937 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
938 	 * limits are set by default to 10% and 20% (background and throttle).
939 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
940 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
941 	 * about ~6K pages (as the average of background and throttle wb
942 	 * limits). The 3rd order polynomial will provide positive feedback if
943 	 * wb_dirty is under wb_setpoint and vice versa.
944 	 *
945 	 * Note, that we cannot use global counters in these calculations
946 	 * because we want to throttle process writing to a strictlimit wb
947 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
948 	 * in the example above).
949 	 */
950 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
951 		long long wb_pos_ratio;
952 
953 		if (dtc->wb_dirty < 8) {
954 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
955 					   2 << RATELIMIT_CALC_SHIFT);
956 			return;
957 		}
958 
959 		if (dtc->wb_dirty >= wb_thresh)
960 			return;
961 
962 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
963 						    dtc->wb_bg_thresh);
964 
965 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
966 			return;
967 
968 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
969 						 wb_thresh);
970 
971 		/*
972 		 * Typically, for strictlimit case, wb_setpoint << setpoint
973 		 * and pos_ratio >> wb_pos_ratio. In the other words global
974 		 * state ("dirty") is not limiting factor and we have to
975 		 * make decision based on wb counters. But there is an
976 		 * important case when global pos_ratio should get precedence:
977 		 * global limits are exceeded (e.g. due to activities on other
978 		 * wb's) while given strictlimit wb is below limit.
979 		 *
980 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
981 		 * but it would look too non-natural for the case of all
982 		 * activity in the system coming from a single strictlimit wb
983 		 * with bdi->max_ratio == 100%.
984 		 *
985 		 * Note that min() below somewhat changes the dynamics of the
986 		 * control system. Normally, pos_ratio value can be well over 3
987 		 * (when globally we are at freerun and wb is well below wb
988 		 * setpoint). Now the maximum pos_ratio in the same situation
989 		 * is 2. We might want to tweak this if we observe the control
990 		 * system is too slow to adapt.
991 		 */
992 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
993 		return;
994 	}
995 
996 	/*
997 	 * We have computed basic pos_ratio above based on global situation. If
998 	 * the wb is over/under its share of dirty pages, we want to scale
999 	 * pos_ratio further down/up. That is done by the following mechanism.
1000 	 */
1001 
1002 	/*
1003 	 * wb setpoint
1004 	 *
1005 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1006 	 *
1007 	 *                        x_intercept - wb_dirty
1008 	 *                     := --------------------------
1009 	 *                        x_intercept - wb_setpoint
1010 	 *
1011 	 * The main wb control line is a linear function that subjects to
1012 	 *
1013 	 * (1) f(wb_setpoint) = 1.0
1014 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1015 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1016 	 *
1017 	 * For single wb case, the dirty pages are observed to fluctuate
1018 	 * regularly within range
1019 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1020 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1021 	 * fluctuation range for pos_ratio.
1022 	 *
1023 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1024 	 * own size, so move the slope over accordingly and choose a slope that
1025 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1026 	 */
1027 	if (unlikely(wb_thresh > dtc->thresh))
1028 		wb_thresh = dtc->thresh;
1029 	/*
1030 	 * It's very possible that wb_thresh is close to 0 not because the
1031 	 * device is slow, but that it has remained inactive for long time.
1032 	 * Honour such devices a reasonable good (hopefully IO efficient)
1033 	 * threshold, so that the occasional writes won't be blocked and active
1034 	 * writes can rampup the threshold quickly.
1035 	 */
1036 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1037 	/*
1038 	 * scale global setpoint to wb's:
1039 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1040 	 */
1041 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1042 	wb_setpoint = setpoint * (u64)x >> 16;
1043 	/*
1044 	 * Use span=(8*write_bw) in single wb case as indicated by
1045 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1046 	 *
1047 	 *        wb_thresh                    thresh - wb_thresh
1048 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1049 	 *         thresh                           thresh
1050 	 */
1051 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1052 	x_intercept = wb_setpoint + span;
1053 
1054 	if (dtc->wb_dirty < x_intercept - span / 4) {
1055 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1056 				      (x_intercept - wb_setpoint) | 1);
1057 	} else
1058 		pos_ratio /= 4;
1059 
1060 	/*
1061 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1062 	 * It may push the desired control point of global dirty pages higher
1063 	 * than setpoint.
1064 	 */
1065 	x_intercept = wb_thresh / 2;
1066 	if (dtc->wb_dirty < x_intercept) {
1067 		if (dtc->wb_dirty > x_intercept / 8)
1068 			pos_ratio = div_u64(pos_ratio * x_intercept,
1069 					    dtc->wb_dirty);
1070 		else
1071 			pos_ratio *= 8;
1072 	}
1073 
1074 	dtc->pos_ratio = pos_ratio;
1075 }
1076 
1077 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1078 				      unsigned long elapsed,
1079 				      unsigned long written)
1080 {
1081 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1082 	unsigned long avg = wb->avg_write_bandwidth;
1083 	unsigned long old = wb->write_bandwidth;
1084 	u64 bw;
1085 
1086 	/*
1087 	 * bw = written * HZ / elapsed
1088 	 *
1089 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1090 	 * write_bandwidth = ---------------------------------------------------
1091 	 *                                          period
1092 	 *
1093 	 * @written may have decreased due to account_page_redirty().
1094 	 * Avoid underflowing @bw calculation.
1095 	 */
1096 	bw = written - min(written, wb->written_stamp);
1097 	bw *= HZ;
1098 	if (unlikely(elapsed > period)) {
1099 		bw = div64_ul(bw, elapsed);
1100 		avg = bw;
1101 		goto out;
1102 	}
1103 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1104 	bw >>= ilog2(period);
1105 
1106 	/*
1107 	 * one more level of smoothing, for filtering out sudden spikes
1108 	 */
1109 	if (avg > old && old >= (unsigned long)bw)
1110 		avg -= (avg - old) >> 3;
1111 
1112 	if (avg < old && old <= (unsigned long)bw)
1113 		avg += (old - avg) >> 3;
1114 
1115 out:
1116 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1117 	avg = max(avg, 1LU);
1118 	if (wb_has_dirty_io(wb)) {
1119 		long delta = avg - wb->avg_write_bandwidth;
1120 		WARN_ON_ONCE(atomic_long_add_return(delta,
1121 					&wb->bdi->tot_write_bandwidth) <= 0);
1122 	}
1123 	wb->write_bandwidth = bw;
1124 	wb->avg_write_bandwidth = avg;
1125 }
1126 
1127 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1128 {
1129 	struct wb_domain *dom = dtc_dom(dtc);
1130 	unsigned long thresh = dtc->thresh;
1131 	unsigned long limit = dom->dirty_limit;
1132 
1133 	/*
1134 	 * Follow up in one step.
1135 	 */
1136 	if (limit < thresh) {
1137 		limit = thresh;
1138 		goto update;
1139 	}
1140 
1141 	/*
1142 	 * Follow down slowly. Use the higher one as the target, because thresh
1143 	 * may drop below dirty. This is exactly the reason to introduce
1144 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1145 	 */
1146 	thresh = max(thresh, dtc->dirty);
1147 	if (limit > thresh) {
1148 		limit -= (limit - thresh) >> 5;
1149 		goto update;
1150 	}
1151 	return;
1152 update:
1153 	dom->dirty_limit = limit;
1154 }
1155 
1156 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1157 				    unsigned long now)
1158 {
1159 	struct wb_domain *dom = dtc_dom(dtc);
1160 
1161 	/*
1162 	 * check locklessly first to optimize away locking for the most time
1163 	 */
1164 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1165 		return;
1166 
1167 	spin_lock(&dom->lock);
1168 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1169 		update_dirty_limit(dtc);
1170 		dom->dirty_limit_tstamp = now;
1171 	}
1172 	spin_unlock(&dom->lock);
1173 }
1174 
1175 /*
1176  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1177  *
1178  * Normal wb tasks will be curbed at or below it in long term.
1179  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1180  */
1181 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1182 				      unsigned long dirtied,
1183 				      unsigned long elapsed)
1184 {
1185 	struct bdi_writeback *wb = dtc->wb;
1186 	unsigned long dirty = dtc->dirty;
1187 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1188 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1189 	unsigned long setpoint = (freerun + limit) / 2;
1190 	unsigned long write_bw = wb->avg_write_bandwidth;
1191 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1192 	unsigned long dirty_rate;
1193 	unsigned long task_ratelimit;
1194 	unsigned long balanced_dirty_ratelimit;
1195 	unsigned long step;
1196 	unsigned long x;
1197 	unsigned long shift;
1198 
1199 	/*
1200 	 * The dirty rate will match the writeout rate in long term, except
1201 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1202 	 */
1203 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1204 
1205 	/*
1206 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1207 	 */
1208 	task_ratelimit = (u64)dirty_ratelimit *
1209 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1210 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1211 
1212 	/*
1213 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1214 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1215 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1216 	 * formula will yield the balanced rate limit (write_bw / N).
1217 	 *
1218 	 * Note that the expanded form is not a pure rate feedback:
1219 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1220 	 * but also takes pos_ratio into account:
1221 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1222 	 *
1223 	 * (1) is not realistic because pos_ratio also takes part in balancing
1224 	 * the dirty rate.  Consider the state
1225 	 *	pos_ratio = 0.5						     (3)
1226 	 *	rate = 2 * (write_bw / N)				     (4)
1227 	 * If (1) is used, it will stuck in that state! Because each dd will
1228 	 * be throttled at
1229 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1230 	 * yielding
1231 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1232 	 * put (6) into (1) we get
1233 	 *	rate_(i+1) = rate_(i)					     (7)
1234 	 *
1235 	 * So we end up using (2) to always keep
1236 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1237 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1238 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1239 	 * the dirty count meet the setpoint, but also where the slope of
1240 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1241 	 */
1242 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1243 					   dirty_rate | 1);
1244 	/*
1245 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1246 	 */
1247 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1248 		balanced_dirty_ratelimit = write_bw;
1249 
1250 	/*
1251 	 * We could safely do this and return immediately:
1252 	 *
1253 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1254 	 *
1255 	 * However to get a more stable dirty_ratelimit, the below elaborated
1256 	 * code makes use of task_ratelimit to filter out singular points and
1257 	 * limit the step size.
1258 	 *
1259 	 * The below code essentially only uses the relative value of
1260 	 *
1261 	 *	task_ratelimit - dirty_ratelimit
1262 	 *	= (pos_ratio - 1) * dirty_ratelimit
1263 	 *
1264 	 * which reflects the direction and size of dirty position error.
1265 	 */
1266 
1267 	/*
1268 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1269 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1270 	 * For example, when
1271 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1272 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1273 	 * lowering dirty_ratelimit will help meet both the position and rate
1274 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1275 	 * only help meet the rate target. After all, what the users ultimately
1276 	 * feel and care are stable dirty rate and small position error.
1277 	 *
1278 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1279 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1280 	 * keeps jumping around randomly and can even leap far away at times
1281 	 * due to the small 200ms estimation period of dirty_rate (we want to
1282 	 * keep that period small to reduce time lags).
1283 	 */
1284 	step = 0;
1285 
1286 	/*
1287 	 * For strictlimit case, calculations above were based on wb counters
1288 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1289 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1290 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1291 	 * "dirty" and wb_setpoint as "setpoint".
1292 	 *
1293 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1294 	 * it's possible that wb_thresh is close to zero due to inactivity
1295 	 * of backing device.
1296 	 */
1297 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1298 		dirty = dtc->wb_dirty;
1299 		if (dtc->wb_dirty < 8)
1300 			setpoint = dtc->wb_dirty + 1;
1301 		else
1302 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1303 	}
1304 
1305 	if (dirty < setpoint) {
1306 		x = min3(wb->balanced_dirty_ratelimit,
1307 			 balanced_dirty_ratelimit, task_ratelimit);
1308 		if (dirty_ratelimit < x)
1309 			step = x - dirty_ratelimit;
1310 	} else {
1311 		x = max3(wb->balanced_dirty_ratelimit,
1312 			 balanced_dirty_ratelimit, task_ratelimit);
1313 		if (dirty_ratelimit > x)
1314 			step = dirty_ratelimit - x;
1315 	}
1316 
1317 	/*
1318 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1319 	 * rate itself is constantly fluctuating. So decrease the track speed
1320 	 * when it gets close to the target. Helps eliminate pointless tremors.
1321 	 */
1322 	shift = dirty_ratelimit / (2 * step + 1);
1323 	if (shift < BITS_PER_LONG)
1324 		step = DIV_ROUND_UP(step >> shift, 8);
1325 	else
1326 		step = 0;
1327 
1328 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1329 		dirty_ratelimit += step;
1330 	else
1331 		dirty_ratelimit -= step;
1332 
1333 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1334 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1335 
1336 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1337 }
1338 
1339 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1340 				  struct dirty_throttle_control *mdtc,
1341 				  unsigned long start_time,
1342 				  bool update_ratelimit)
1343 {
1344 	struct bdi_writeback *wb = gdtc->wb;
1345 	unsigned long now = jiffies;
1346 	unsigned long elapsed = now - wb->bw_time_stamp;
1347 	unsigned long dirtied;
1348 	unsigned long written;
1349 
1350 	lockdep_assert_held(&wb->list_lock);
1351 
1352 	/*
1353 	 * rate-limit, only update once every 200ms.
1354 	 */
1355 	if (elapsed < BANDWIDTH_INTERVAL)
1356 		return;
1357 
1358 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1359 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1360 
1361 	/*
1362 	 * Skip quiet periods when disk bandwidth is under-utilized.
1363 	 * (at least 1s idle time between two flusher runs)
1364 	 */
1365 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1366 		goto snapshot;
1367 
1368 	if (update_ratelimit) {
1369 		domain_update_bandwidth(gdtc, now);
1370 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1371 
1372 		/*
1373 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1374 		 * compiler has no way to figure that out.  Help it.
1375 		 */
1376 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1377 			domain_update_bandwidth(mdtc, now);
1378 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1379 		}
1380 	}
1381 	wb_update_write_bandwidth(wb, elapsed, written);
1382 
1383 snapshot:
1384 	wb->dirtied_stamp = dirtied;
1385 	wb->written_stamp = written;
1386 	wb->bw_time_stamp = now;
1387 }
1388 
1389 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1390 {
1391 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1392 
1393 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1394 }
1395 
1396 /*
1397  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1398  * will look to see if it needs to start dirty throttling.
1399  *
1400  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1401  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1402  * (the number of pages we may dirty without exceeding the dirty limits).
1403  */
1404 static unsigned long dirty_poll_interval(unsigned long dirty,
1405 					 unsigned long thresh)
1406 {
1407 	if (thresh > dirty)
1408 		return 1UL << (ilog2(thresh - dirty) >> 1);
1409 
1410 	return 1;
1411 }
1412 
1413 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1414 				  unsigned long wb_dirty)
1415 {
1416 	unsigned long bw = wb->avg_write_bandwidth;
1417 	unsigned long t;
1418 
1419 	/*
1420 	 * Limit pause time for small memory systems. If sleeping for too long
1421 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1422 	 * idle.
1423 	 *
1424 	 * 8 serves as the safety ratio.
1425 	 */
1426 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1427 	t++;
1428 
1429 	return min_t(unsigned long, t, MAX_PAUSE);
1430 }
1431 
1432 static long wb_min_pause(struct bdi_writeback *wb,
1433 			 long max_pause,
1434 			 unsigned long task_ratelimit,
1435 			 unsigned long dirty_ratelimit,
1436 			 int *nr_dirtied_pause)
1437 {
1438 	long hi = ilog2(wb->avg_write_bandwidth);
1439 	long lo = ilog2(wb->dirty_ratelimit);
1440 	long t;		/* target pause */
1441 	long pause;	/* estimated next pause */
1442 	int pages;	/* target nr_dirtied_pause */
1443 
1444 	/* target for 10ms pause on 1-dd case */
1445 	t = max(1, HZ / 100);
1446 
1447 	/*
1448 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1449 	 * overheads.
1450 	 *
1451 	 * (N * 10ms) on 2^N concurrent tasks.
1452 	 */
1453 	if (hi > lo)
1454 		t += (hi - lo) * (10 * HZ) / 1024;
1455 
1456 	/*
1457 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1458 	 * on the much more stable dirty_ratelimit. However the next pause time
1459 	 * will be computed based on task_ratelimit and the two rate limits may
1460 	 * depart considerably at some time. Especially if task_ratelimit goes
1461 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1462 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1463 	 * result task_ratelimit won't be executed faithfully, which could
1464 	 * eventually bring down dirty_ratelimit.
1465 	 *
1466 	 * We apply two rules to fix it up:
1467 	 * 1) try to estimate the next pause time and if necessary, use a lower
1468 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1469 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1470 	 * 2) limit the target pause time to max_pause/2, so that the normal
1471 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1472 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1473 	 */
1474 	t = min(t, 1 + max_pause / 2);
1475 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1476 
1477 	/*
1478 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1479 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1480 	 * When the 16 consecutive reads are often interrupted by some dirty
1481 	 * throttling pause during the async writes, cfq will go into idles
1482 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1483 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1484 	 */
1485 	if (pages < DIRTY_POLL_THRESH) {
1486 		t = max_pause;
1487 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1488 		if (pages > DIRTY_POLL_THRESH) {
1489 			pages = DIRTY_POLL_THRESH;
1490 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1491 		}
1492 	}
1493 
1494 	pause = HZ * pages / (task_ratelimit + 1);
1495 	if (pause > max_pause) {
1496 		t = max_pause;
1497 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1498 	}
1499 
1500 	*nr_dirtied_pause = pages;
1501 	/*
1502 	 * The minimal pause time will normally be half the target pause time.
1503 	 */
1504 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1505 }
1506 
1507 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1508 {
1509 	struct bdi_writeback *wb = dtc->wb;
1510 	unsigned long wb_reclaimable;
1511 
1512 	/*
1513 	 * wb_thresh is not treated as some limiting factor as
1514 	 * dirty_thresh, due to reasons
1515 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1516 	 * - in a system with HDD and USB key, the USB key may somehow
1517 	 *   go into state (wb_dirty >> wb_thresh) either because
1518 	 *   wb_dirty starts high, or because wb_thresh drops low.
1519 	 *   In this case we don't want to hard throttle the USB key
1520 	 *   dirtiers for 100 seconds until wb_dirty drops under
1521 	 *   wb_thresh. Instead the auxiliary wb control line in
1522 	 *   wb_position_ratio() will let the dirtier task progress
1523 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1524 	 */
1525 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1526 	dtc->wb_bg_thresh = dtc->thresh ?
1527 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1528 
1529 	/*
1530 	 * In order to avoid the stacked BDI deadlock we need
1531 	 * to ensure we accurately count the 'dirty' pages when
1532 	 * the threshold is low.
1533 	 *
1534 	 * Otherwise it would be possible to get thresh+n pages
1535 	 * reported dirty, even though there are thresh-m pages
1536 	 * actually dirty; with m+n sitting in the percpu
1537 	 * deltas.
1538 	 */
1539 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1540 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1541 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1542 	} else {
1543 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1544 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1545 	}
1546 }
1547 
1548 /*
1549  * balance_dirty_pages() must be called by processes which are generating dirty
1550  * data.  It looks at the number of dirty pages in the machine and will force
1551  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1552  * If we're over `background_thresh' then the writeback threads are woken to
1553  * perform some writeout.
1554  */
1555 static void balance_dirty_pages(struct bdi_writeback *wb,
1556 				unsigned long pages_dirtied)
1557 {
1558 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1559 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1560 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1561 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1562 						     &mdtc_stor : NULL;
1563 	struct dirty_throttle_control *sdtc;
1564 	unsigned long nr_reclaimable;	/* = file_dirty */
1565 	long period;
1566 	long pause;
1567 	long max_pause;
1568 	long min_pause;
1569 	int nr_dirtied_pause;
1570 	bool dirty_exceeded = false;
1571 	unsigned long task_ratelimit;
1572 	unsigned long dirty_ratelimit;
1573 	struct backing_dev_info *bdi = wb->bdi;
1574 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1575 	unsigned long start_time = jiffies;
1576 
1577 	for (;;) {
1578 		unsigned long now = jiffies;
1579 		unsigned long dirty, thresh, bg_thresh;
1580 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1581 		unsigned long m_thresh = 0;
1582 		unsigned long m_bg_thresh = 0;
1583 
1584 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1585 		gdtc->avail = global_dirtyable_memory();
1586 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1587 
1588 		domain_dirty_limits(gdtc);
1589 
1590 		if (unlikely(strictlimit)) {
1591 			wb_dirty_limits(gdtc);
1592 
1593 			dirty = gdtc->wb_dirty;
1594 			thresh = gdtc->wb_thresh;
1595 			bg_thresh = gdtc->wb_bg_thresh;
1596 		} else {
1597 			dirty = gdtc->dirty;
1598 			thresh = gdtc->thresh;
1599 			bg_thresh = gdtc->bg_thresh;
1600 		}
1601 
1602 		if (mdtc) {
1603 			unsigned long filepages, headroom, writeback;
1604 
1605 			/*
1606 			 * If @wb belongs to !root memcg, repeat the same
1607 			 * basic calculations for the memcg domain.
1608 			 */
1609 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1610 					    &mdtc->dirty, &writeback);
1611 			mdtc->dirty += writeback;
1612 			mdtc_calc_avail(mdtc, filepages, headroom);
1613 
1614 			domain_dirty_limits(mdtc);
1615 
1616 			if (unlikely(strictlimit)) {
1617 				wb_dirty_limits(mdtc);
1618 				m_dirty = mdtc->wb_dirty;
1619 				m_thresh = mdtc->wb_thresh;
1620 				m_bg_thresh = mdtc->wb_bg_thresh;
1621 			} else {
1622 				m_dirty = mdtc->dirty;
1623 				m_thresh = mdtc->thresh;
1624 				m_bg_thresh = mdtc->bg_thresh;
1625 			}
1626 		}
1627 
1628 		/*
1629 		 * Throttle it only when the background writeback cannot
1630 		 * catch-up. This avoids (excessively) small writeouts
1631 		 * when the wb limits are ramping up in case of !strictlimit.
1632 		 *
1633 		 * In strictlimit case make decision based on the wb counters
1634 		 * and limits. Small writeouts when the wb limits are ramping
1635 		 * up are the price we consciously pay for strictlimit-ing.
1636 		 *
1637 		 * If memcg domain is in effect, @dirty should be under
1638 		 * both global and memcg freerun ceilings.
1639 		 */
1640 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1641 		    (!mdtc ||
1642 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1643 			unsigned long intv;
1644 			unsigned long m_intv;
1645 
1646 free_running:
1647 			intv = dirty_poll_interval(dirty, thresh);
1648 			m_intv = ULONG_MAX;
1649 
1650 			current->dirty_paused_when = now;
1651 			current->nr_dirtied = 0;
1652 			if (mdtc)
1653 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1654 			current->nr_dirtied_pause = min(intv, m_intv);
1655 			break;
1656 		}
1657 
1658 		if (unlikely(!writeback_in_progress(wb)))
1659 			wb_start_background_writeback(wb);
1660 
1661 		mem_cgroup_flush_foreign(wb);
1662 
1663 		/*
1664 		 * Calculate global domain's pos_ratio and select the
1665 		 * global dtc by default.
1666 		 */
1667 		if (!strictlimit) {
1668 			wb_dirty_limits(gdtc);
1669 
1670 			if ((current->flags & PF_LOCAL_THROTTLE) &&
1671 			    gdtc->wb_dirty <
1672 			    dirty_freerun_ceiling(gdtc->wb_thresh,
1673 						  gdtc->wb_bg_thresh))
1674 				/*
1675 				 * LOCAL_THROTTLE tasks must not be throttled
1676 				 * when below the per-wb freerun ceiling.
1677 				 */
1678 				goto free_running;
1679 		}
1680 
1681 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1682 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1683 
1684 		wb_position_ratio(gdtc);
1685 		sdtc = gdtc;
1686 
1687 		if (mdtc) {
1688 			/*
1689 			 * If memcg domain is in effect, calculate its
1690 			 * pos_ratio.  @wb should satisfy constraints from
1691 			 * both global and memcg domains.  Choose the one
1692 			 * w/ lower pos_ratio.
1693 			 */
1694 			if (!strictlimit) {
1695 				wb_dirty_limits(mdtc);
1696 
1697 				if ((current->flags & PF_LOCAL_THROTTLE) &&
1698 				    mdtc->wb_dirty <
1699 				    dirty_freerun_ceiling(mdtc->wb_thresh,
1700 							  mdtc->wb_bg_thresh))
1701 					/*
1702 					 * LOCAL_THROTTLE tasks must not be
1703 					 * throttled when below the per-wb
1704 					 * freerun ceiling.
1705 					 */
1706 					goto free_running;
1707 			}
1708 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1709 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1710 
1711 			wb_position_ratio(mdtc);
1712 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1713 				sdtc = mdtc;
1714 		}
1715 
1716 		if (dirty_exceeded && !wb->dirty_exceeded)
1717 			wb->dirty_exceeded = 1;
1718 
1719 		if (time_is_before_jiffies(wb->bw_time_stamp +
1720 					   BANDWIDTH_INTERVAL)) {
1721 			spin_lock(&wb->list_lock);
1722 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1723 			spin_unlock(&wb->list_lock);
1724 		}
1725 
1726 		/* throttle according to the chosen dtc */
1727 		dirty_ratelimit = wb->dirty_ratelimit;
1728 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1729 							RATELIMIT_CALC_SHIFT;
1730 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1731 		min_pause = wb_min_pause(wb, max_pause,
1732 					 task_ratelimit, dirty_ratelimit,
1733 					 &nr_dirtied_pause);
1734 
1735 		if (unlikely(task_ratelimit == 0)) {
1736 			period = max_pause;
1737 			pause = max_pause;
1738 			goto pause;
1739 		}
1740 		period = HZ * pages_dirtied / task_ratelimit;
1741 		pause = period;
1742 		if (current->dirty_paused_when)
1743 			pause -= now - current->dirty_paused_when;
1744 		/*
1745 		 * For less than 1s think time (ext3/4 may block the dirtier
1746 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1747 		 * however at much less frequency), try to compensate it in
1748 		 * future periods by updating the virtual time; otherwise just
1749 		 * do a reset, as it may be a light dirtier.
1750 		 */
1751 		if (pause < min_pause) {
1752 			trace_balance_dirty_pages(wb,
1753 						  sdtc->thresh,
1754 						  sdtc->bg_thresh,
1755 						  sdtc->dirty,
1756 						  sdtc->wb_thresh,
1757 						  sdtc->wb_dirty,
1758 						  dirty_ratelimit,
1759 						  task_ratelimit,
1760 						  pages_dirtied,
1761 						  period,
1762 						  min(pause, 0L),
1763 						  start_time);
1764 			if (pause < -HZ) {
1765 				current->dirty_paused_when = now;
1766 				current->nr_dirtied = 0;
1767 			} else if (period) {
1768 				current->dirty_paused_when += period;
1769 				current->nr_dirtied = 0;
1770 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1771 				current->nr_dirtied_pause += pages_dirtied;
1772 			break;
1773 		}
1774 		if (unlikely(pause > max_pause)) {
1775 			/* for occasional dropped task_ratelimit */
1776 			now += min(pause - max_pause, max_pause);
1777 			pause = max_pause;
1778 		}
1779 
1780 pause:
1781 		trace_balance_dirty_pages(wb,
1782 					  sdtc->thresh,
1783 					  sdtc->bg_thresh,
1784 					  sdtc->dirty,
1785 					  sdtc->wb_thresh,
1786 					  sdtc->wb_dirty,
1787 					  dirty_ratelimit,
1788 					  task_ratelimit,
1789 					  pages_dirtied,
1790 					  period,
1791 					  pause,
1792 					  start_time);
1793 		__set_current_state(TASK_KILLABLE);
1794 		wb->dirty_sleep = now;
1795 		io_schedule_timeout(pause);
1796 
1797 		current->dirty_paused_when = now + pause;
1798 		current->nr_dirtied = 0;
1799 		current->nr_dirtied_pause = nr_dirtied_pause;
1800 
1801 		/*
1802 		 * This is typically equal to (dirty < thresh) and can also
1803 		 * keep "1000+ dd on a slow USB stick" under control.
1804 		 */
1805 		if (task_ratelimit)
1806 			break;
1807 
1808 		/*
1809 		 * In the case of an unresponsive NFS server and the NFS dirty
1810 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1811 		 * to go through, so that tasks on them still remain responsive.
1812 		 *
1813 		 * In theory 1 page is enough to keep the consumer-producer
1814 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1815 		 * more page. However wb_dirty has accounting errors.  So use
1816 		 * the larger and more IO friendly wb_stat_error.
1817 		 */
1818 		if (sdtc->wb_dirty <= wb_stat_error())
1819 			break;
1820 
1821 		if (fatal_signal_pending(current))
1822 			break;
1823 	}
1824 
1825 	if (!dirty_exceeded && wb->dirty_exceeded)
1826 		wb->dirty_exceeded = 0;
1827 
1828 	if (writeback_in_progress(wb))
1829 		return;
1830 
1831 	/*
1832 	 * In laptop mode, we wait until hitting the higher threshold before
1833 	 * starting background writeout, and then write out all the way down
1834 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1835 	 *
1836 	 * In normal mode, we start background writeout at the lower
1837 	 * background_thresh, to keep the amount of dirty memory low.
1838 	 */
1839 	if (laptop_mode)
1840 		return;
1841 
1842 	if (nr_reclaimable > gdtc->bg_thresh)
1843 		wb_start_background_writeback(wb);
1844 }
1845 
1846 static DEFINE_PER_CPU(int, bdp_ratelimits);
1847 
1848 /*
1849  * Normal tasks are throttled by
1850  *	loop {
1851  *		dirty tsk->nr_dirtied_pause pages;
1852  *		take a snap in balance_dirty_pages();
1853  *	}
1854  * However there is a worst case. If every task exit immediately when dirtied
1855  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1856  * called to throttle the page dirties. The solution is to save the not yet
1857  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1858  * randomly into the running tasks. This works well for the above worst case,
1859  * as the new task will pick up and accumulate the old task's leaked dirty
1860  * count and eventually get throttled.
1861  */
1862 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1863 
1864 /**
1865  * balance_dirty_pages_ratelimited - balance dirty memory state
1866  * @mapping: address_space which was dirtied
1867  *
1868  * Processes which are dirtying memory should call in here once for each page
1869  * which was newly dirtied.  The function will periodically check the system's
1870  * dirty state and will initiate writeback if needed.
1871  *
1872  * On really big machines, get_writeback_state is expensive, so try to avoid
1873  * calling it too often (ratelimiting).  But once we're over the dirty memory
1874  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1875  * from overshooting the limit by (ratelimit_pages) each.
1876  */
1877 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1878 {
1879 	struct inode *inode = mapping->host;
1880 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1881 	struct bdi_writeback *wb = NULL;
1882 	int ratelimit;
1883 	int *p;
1884 
1885 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1886 		return;
1887 
1888 	if (inode_cgwb_enabled(inode))
1889 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1890 	if (!wb)
1891 		wb = &bdi->wb;
1892 
1893 	ratelimit = current->nr_dirtied_pause;
1894 	if (wb->dirty_exceeded)
1895 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1896 
1897 	preempt_disable();
1898 	/*
1899 	 * This prevents one CPU to accumulate too many dirtied pages without
1900 	 * calling into balance_dirty_pages(), which can happen when there are
1901 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1902 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1903 	 */
1904 	p =  this_cpu_ptr(&bdp_ratelimits);
1905 	if (unlikely(current->nr_dirtied >= ratelimit))
1906 		*p = 0;
1907 	else if (unlikely(*p >= ratelimit_pages)) {
1908 		*p = 0;
1909 		ratelimit = 0;
1910 	}
1911 	/*
1912 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1913 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1914 	 * the dirty throttling and livelock other long-run dirtiers.
1915 	 */
1916 	p = this_cpu_ptr(&dirty_throttle_leaks);
1917 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1918 		unsigned long nr_pages_dirtied;
1919 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1920 		*p -= nr_pages_dirtied;
1921 		current->nr_dirtied += nr_pages_dirtied;
1922 	}
1923 	preempt_enable();
1924 
1925 	if (unlikely(current->nr_dirtied >= ratelimit))
1926 		balance_dirty_pages(wb, current->nr_dirtied);
1927 
1928 	wb_put(wb);
1929 }
1930 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1931 
1932 /**
1933  * wb_over_bg_thresh - does @wb need to be written back?
1934  * @wb: bdi_writeback of interest
1935  *
1936  * Determines whether background writeback should keep writing @wb or it's
1937  * clean enough.
1938  *
1939  * Return: %true if writeback should continue.
1940  */
1941 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1942 {
1943 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1944 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1945 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1946 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1947 						     &mdtc_stor : NULL;
1948 
1949 	/*
1950 	 * Similar to balance_dirty_pages() but ignores pages being written
1951 	 * as we're trying to decide whether to put more under writeback.
1952 	 */
1953 	gdtc->avail = global_dirtyable_memory();
1954 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1955 	domain_dirty_limits(gdtc);
1956 
1957 	if (gdtc->dirty > gdtc->bg_thresh)
1958 		return true;
1959 
1960 	if (wb_stat(wb, WB_RECLAIMABLE) >
1961 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1962 		return true;
1963 
1964 	if (mdtc) {
1965 		unsigned long filepages, headroom, writeback;
1966 
1967 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1968 				    &writeback);
1969 		mdtc_calc_avail(mdtc, filepages, headroom);
1970 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1971 
1972 		if (mdtc->dirty > mdtc->bg_thresh)
1973 			return true;
1974 
1975 		if (wb_stat(wb, WB_RECLAIMABLE) >
1976 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1977 			return true;
1978 	}
1979 
1980 	return false;
1981 }
1982 
1983 /*
1984  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1985  */
1986 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1987 		void *buffer, size_t *length, loff_t *ppos)
1988 {
1989 	unsigned int old_interval = dirty_writeback_interval;
1990 	int ret;
1991 
1992 	ret = proc_dointvec(table, write, buffer, length, ppos);
1993 
1994 	/*
1995 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1996 	 * and a different non-zero value will wakeup the writeback threads.
1997 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1998 	 * iterate over all bdis and wbs.
1999 	 * The reason we do this is to make the change take effect immediately.
2000 	 */
2001 	if (!ret && write && dirty_writeback_interval &&
2002 		dirty_writeback_interval != old_interval)
2003 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2004 
2005 	return ret;
2006 }
2007 
2008 #ifdef CONFIG_BLOCK
2009 void laptop_mode_timer_fn(struct timer_list *t)
2010 {
2011 	struct backing_dev_info *backing_dev_info =
2012 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2013 
2014 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2015 }
2016 
2017 /*
2018  * We've spun up the disk and we're in laptop mode: schedule writeback
2019  * of all dirty data a few seconds from now.  If the flush is already scheduled
2020  * then push it back - the user is still using the disk.
2021  */
2022 void laptop_io_completion(struct backing_dev_info *info)
2023 {
2024 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2025 }
2026 
2027 /*
2028  * We're in laptop mode and we've just synced. The sync's writes will have
2029  * caused another writeback to be scheduled by laptop_io_completion.
2030  * Nothing needs to be written back anymore, so we unschedule the writeback.
2031  */
2032 void laptop_sync_completion(void)
2033 {
2034 	struct backing_dev_info *bdi;
2035 
2036 	rcu_read_lock();
2037 
2038 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2039 		del_timer(&bdi->laptop_mode_wb_timer);
2040 
2041 	rcu_read_unlock();
2042 }
2043 #endif
2044 
2045 /*
2046  * If ratelimit_pages is too high then we can get into dirty-data overload
2047  * if a large number of processes all perform writes at the same time.
2048  * If it is too low then SMP machines will call the (expensive)
2049  * get_writeback_state too often.
2050  *
2051  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2052  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2053  * thresholds.
2054  */
2055 
2056 void writeback_set_ratelimit(void)
2057 {
2058 	struct wb_domain *dom = &global_wb_domain;
2059 	unsigned long background_thresh;
2060 	unsigned long dirty_thresh;
2061 
2062 	global_dirty_limits(&background_thresh, &dirty_thresh);
2063 	dom->dirty_limit = dirty_thresh;
2064 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2065 	if (ratelimit_pages < 16)
2066 		ratelimit_pages = 16;
2067 }
2068 
2069 static int page_writeback_cpu_online(unsigned int cpu)
2070 {
2071 	writeback_set_ratelimit();
2072 	return 0;
2073 }
2074 
2075 /*
2076  * Called early on to tune the page writeback dirty limits.
2077  *
2078  * We used to scale dirty pages according to how total memory
2079  * related to pages that could be allocated for buffers.
2080  *
2081  * However, that was when we used "dirty_ratio" to scale with
2082  * all memory, and we don't do that any more. "dirty_ratio"
2083  * is now applied to total non-HIGHPAGE memory, and as such we can't
2084  * get into the old insane situation any more where we had
2085  * large amounts of dirty pages compared to a small amount of
2086  * non-HIGHMEM memory.
2087  *
2088  * But we might still want to scale the dirty_ratio by how
2089  * much memory the box has..
2090  */
2091 void __init page_writeback_init(void)
2092 {
2093 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2094 
2095 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2096 			  page_writeback_cpu_online, NULL);
2097 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2098 			  page_writeback_cpu_online);
2099 }
2100 
2101 /**
2102  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2103  * @mapping: address space structure to write
2104  * @start: starting page index
2105  * @end: ending page index (inclusive)
2106  *
2107  * This function scans the page range from @start to @end (inclusive) and tags
2108  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2109  * that write_cache_pages (or whoever calls this function) will then use
2110  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2111  * used to avoid livelocking of writeback by a process steadily creating new
2112  * dirty pages in the file (thus it is important for this function to be quick
2113  * so that it can tag pages faster than a dirtying process can create them).
2114  */
2115 void tag_pages_for_writeback(struct address_space *mapping,
2116 			     pgoff_t start, pgoff_t end)
2117 {
2118 	XA_STATE(xas, &mapping->i_pages, start);
2119 	unsigned int tagged = 0;
2120 	void *page;
2121 
2122 	xas_lock_irq(&xas);
2123 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2124 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2125 		if (++tagged % XA_CHECK_SCHED)
2126 			continue;
2127 
2128 		xas_pause(&xas);
2129 		xas_unlock_irq(&xas);
2130 		cond_resched();
2131 		xas_lock_irq(&xas);
2132 	}
2133 	xas_unlock_irq(&xas);
2134 }
2135 EXPORT_SYMBOL(tag_pages_for_writeback);
2136 
2137 /**
2138  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139  * @mapping: address space structure to write
2140  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141  * @writepage: function called for each page
2142  * @data: data passed to writepage function
2143  *
2144  * If a page is already under I/O, write_cache_pages() skips it, even
2145  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2146  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2147  * and msync() need to guarantee that all the data which was dirty at the time
2148  * the call was made get new I/O started against them.  If wbc->sync_mode is
2149  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2150  * existing IO to complete.
2151  *
2152  * To avoid livelocks (when other process dirties new pages), we first tag
2153  * pages which should be written back with TOWRITE tag and only then start
2154  * writing them. For data-integrity sync we have to be careful so that we do
2155  * not miss some pages (e.g., because some other process has cleared TOWRITE
2156  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2157  * by the process clearing the DIRTY tag (and submitting the page for IO).
2158  *
2159  * To avoid deadlocks between range_cyclic writeback and callers that hold
2160  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2161  * we do not loop back to the start of the file. Doing so causes a page
2162  * lock/page writeback access order inversion - we should only ever lock
2163  * multiple pages in ascending page->index order, and looping back to the start
2164  * of the file violates that rule and causes deadlocks.
2165  *
2166  * Return: %0 on success, negative error code otherwise
2167  */
2168 int write_cache_pages(struct address_space *mapping,
2169 		      struct writeback_control *wbc, writepage_t writepage,
2170 		      void *data)
2171 {
2172 	int ret = 0;
2173 	int done = 0;
2174 	int error;
2175 	struct pagevec pvec;
2176 	int nr_pages;
2177 	pgoff_t index;
2178 	pgoff_t end;		/* Inclusive */
2179 	pgoff_t done_index;
2180 	int range_whole = 0;
2181 	xa_mark_t tag;
2182 
2183 	pagevec_init(&pvec);
2184 	if (wbc->range_cyclic) {
2185 		index = mapping->writeback_index; /* prev offset */
2186 		end = -1;
2187 	} else {
2188 		index = wbc->range_start >> PAGE_SHIFT;
2189 		end = wbc->range_end >> PAGE_SHIFT;
2190 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2191 			range_whole = 1;
2192 	}
2193 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2194 		tag_pages_for_writeback(mapping, index, end);
2195 		tag = PAGECACHE_TAG_TOWRITE;
2196 	} else {
2197 		tag = PAGECACHE_TAG_DIRTY;
2198 	}
2199 	done_index = index;
2200 	while (!done && (index <= end)) {
2201 		int i;
2202 
2203 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2204 				tag);
2205 		if (nr_pages == 0)
2206 			break;
2207 
2208 		for (i = 0; i < nr_pages; i++) {
2209 			struct page *page = pvec.pages[i];
2210 
2211 			done_index = page->index;
2212 
2213 			lock_page(page);
2214 
2215 			/*
2216 			 * Page truncated or invalidated. We can freely skip it
2217 			 * then, even for data integrity operations: the page
2218 			 * has disappeared concurrently, so there could be no
2219 			 * real expectation of this data integrity operation
2220 			 * even if there is now a new, dirty page at the same
2221 			 * pagecache address.
2222 			 */
2223 			if (unlikely(page->mapping != mapping)) {
2224 continue_unlock:
2225 				unlock_page(page);
2226 				continue;
2227 			}
2228 
2229 			if (!PageDirty(page)) {
2230 				/* someone wrote it for us */
2231 				goto continue_unlock;
2232 			}
2233 
2234 			if (PageWriteback(page)) {
2235 				if (wbc->sync_mode != WB_SYNC_NONE)
2236 					wait_on_page_writeback(page);
2237 				else
2238 					goto continue_unlock;
2239 			}
2240 
2241 			BUG_ON(PageWriteback(page));
2242 			if (!clear_page_dirty_for_io(page))
2243 				goto continue_unlock;
2244 
2245 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2246 			error = (*writepage)(page, wbc, data);
2247 			if (unlikely(error)) {
2248 				/*
2249 				 * Handle errors according to the type of
2250 				 * writeback. There's no need to continue for
2251 				 * background writeback. Just push done_index
2252 				 * past this page so media errors won't choke
2253 				 * writeout for the entire file. For integrity
2254 				 * writeback, we must process the entire dirty
2255 				 * set regardless of errors because the fs may
2256 				 * still have state to clear for each page. In
2257 				 * that case we continue processing and return
2258 				 * the first error.
2259 				 */
2260 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2261 					unlock_page(page);
2262 					error = 0;
2263 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2264 					ret = error;
2265 					done_index = page->index + 1;
2266 					done = 1;
2267 					break;
2268 				}
2269 				if (!ret)
2270 					ret = error;
2271 			}
2272 
2273 			/*
2274 			 * We stop writing back only if we are not doing
2275 			 * integrity sync. In case of integrity sync we have to
2276 			 * keep going until we have written all the pages
2277 			 * we tagged for writeback prior to entering this loop.
2278 			 */
2279 			if (--wbc->nr_to_write <= 0 &&
2280 			    wbc->sync_mode == WB_SYNC_NONE) {
2281 				done = 1;
2282 				break;
2283 			}
2284 		}
2285 		pagevec_release(&pvec);
2286 		cond_resched();
2287 	}
2288 
2289 	/*
2290 	 * If we hit the last page and there is more work to be done: wrap
2291 	 * back the index back to the start of the file for the next
2292 	 * time we are called.
2293 	 */
2294 	if (wbc->range_cyclic && !done)
2295 		done_index = 0;
2296 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2297 		mapping->writeback_index = done_index;
2298 
2299 	return ret;
2300 }
2301 EXPORT_SYMBOL(write_cache_pages);
2302 
2303 /*
2304  * Function used by generic_writepages to call the real writepage
2305  * function and set the mapping flags on error
2306  */
2307 static int __writepage(struct page *page, struct writeback_control *wbc,
2308 		       void *data)
2309 {
2310 	struct address_space *mapping = data;
2311 	int ret = mapping->a_ops->writepage(page, wbc);
2312 	mapping_set_error(mapping, ret);
2313 	return ret;
2314 }
2315 
2316 /**
2317  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2318  * @mapping: address space structure to write
2319  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2320  *
2321  * This is a library function, which implements the writepages()
2322  * address_space_operation.
2323  *
2324  * Return: %0 on success, negative error code otherwise
2325  */
2326 int generic_writepages(struct address_space *mapping,
2327 		       struct writeback_control *wbc)
2328 {
2329 	struct blk_plug plug;
2330 	int ret;
2331 
2332 	/* deal with chardevs and other special file */
2333 	if (!mapping->a_ops->writepage)
2334 		return 0;
2335 
2336 	blk_start_plug(&plug);
2337 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2338 	blk_finish_plug(&plug);
2339 	return ret;
2340 }
2341 
2342 EXPORT_SYMBOL(generic_writepages);
2343 
2344 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2345 {
2346 	int ret;
2347 
2348 	if (wbc->nr_to_write <= 0)
2349 		return 0;
2350 	while (1) {
2351 		if (mapping->a_ops->writepages)
2352 			ret = mapping->a_ops->writepages(mapping, wbc);
2353 		else
2354 			ret = generic_writepages(mapping, wbc);
2355 		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2356 			break;
2357 		cond_resched();
2358 		congestion_wait(BLK_RW_ASYNC, HZ/50);
2359 	}
2360 	return ret;
2361 }
2362 
2363 /**
2364  * write_one_page - write out a single page and wait on I/O
2365  * @page: the page to write
2366  *
2367  * The page must be locked by the caller and will be unlocked upon return.
2368  *
2369  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2370  * function returns.
2371  *
2372  * Return: %0 on success, negative error code otherwise
2373  */
2374 int write_one_page(struct page *page)
2375 {
2376 	struct address_space *mapping = page->mapping;
2377 	int ret = 0;
2378 	struct writeback_control wbc = {
2379 		.sync_mode = WB_SYNC_ALL,
2380 		.nr_to_write = 1,
2381 	};
2382 
2383 	BUG_ON(!PageLocked(page));
2384 
2385 	wait_on_page_writeback(page);
2386 
2387 	if (clear_page_dirty_for_io(page)) {
2388 		get_page(page);
2389 		ret = mapping->a_ops->writepage(page, &wbc);
2390 		if (ret == 0)
2391 			wait_on_page_writeback(page);
2392 		put_page(page);
2393 	} else {
2394 		unlock_page(page);
2395 	}
2396 
2397 	if (!ret)
2398 		ret = filemap_check_errors(mapping);
2399 	return ret;
2400 }
2401 EXPORT_SYMBOL(write_one_page);
2402 
2403 /*
2404  * For address_spaces which do not use buffers nor write back.
2405  */
2406 int __set_page_dirty_no_writeback(struct page *page)
2407 {
2408 	if (!PageDirty(page))
2409 		return !TestSetPageDirty(page);
2410 	return 0;
2411 }
2412 
2413 /*
2414  * Helper function for set_page_dirty family.
2415  *
2416  * Caller must hold lock_page_memcg().
2417  *
2418  * NOTE: This relies on being atomic wrt interrupts.
2419  */
2420 void account_page_dirtied(struct page *page, struct address_space *mapping)
2421 {
2422 	struct inode *inode = mapping->host;
2423 
2424 	trace_writeback_dirty_page(page, mapping);
2425 
2426 	if (mapping_can_writeback(mapping)) {
2427 		struct bdi_writeback *wb;
2428 
2429 		inode_attach_wb(inode, page);
2430 		wb = inode_to_wb(inode);
2431 
2432 		__inc_lruvec_page_state(page, NR_FILE_DIRTY);
2433 		__inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2434 		__inc_node_page_state(page, NR_DIRTIED);
2435 		inc_wb_stat(wb, WB_RECLAIMABLE);
2436 		inc_wb_stat(wb, WB_DIRTIED);
2437 		task_io_account_write(PAGE_SIZE);
2438 		current->nr_dirtied++;
2439 		this_cpu_inc(bdp_ratelimits);
2440 
2441 		mem_cgroup_track_foreign_dirty(page, wb);
2442 	}
2443 }
2444 
2445 /*
2446  * Helper function for deaccounting dirty page without writeback.
2447  *
2448  * Caller must hold lock_page_memcg().
2449  */
2450 void account_page_cleaned(struct page *page, struct address_space *mapping,
2451 			  struct bdi_writeback *wb)
2452 {
2453 	if (mapping_can_writeback(mapping)) {
2454 		dec_lruvec_page_state(page, NR_FILE_DIRTY);
2455 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2456 		dec_wb_stat(wb, WB_RECLAIMABLE);
2457 		task_io_account_cancelled_write(PAGE_SIZE);
2458 	}
2459 }
2460 
2461 /*
2462  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2463  * the xarray.
2464  *
2465  * This is also used when a single buffer is being dirtied: we want to set the
2466  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2467  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2468  *
2469  * The caller must ensure this doesn't race with truncation.  Most will simply
2470  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2471  * the pte lock held, which also locks out truncation.
2472  */
2473 int __set_page_dirty_nobuffers(struct page *page)
2474 {
2475 	lock_page_memcg(page);
2476 	if (!TestSetPageDirty(page)) {
2477 		struct address_space *mapping = page_mapping(page);
2478 		unsigned long flags;
2479 
2480 		if (!mapping) {
2481 			unlock_page_memcg(page);
2482 			return 1;
2483 		}
2484 
2485 		xa_lock_irqsave(&mapping->i_pages, flags);
2486 		BUG_ON(page_mapping(page) != mapping);
2487 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2488 		account_page_dirtied(page, mapping);
2489 		__xa_set_mark(&mapping->i_pages, page_index(page),
2490 				   PAGECACHE_TAG_DIRTY);
2491 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2492 		unlock_page_memcg(page);
2493 
2494 		if (mapping->host) {
2495 			/* !PageAnon && !swapper_space */
2496 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2497 		}
2498 		return 1;
2499 	}
2500 	unlock_page_memcg(page);
2501 	return 0;
2502 }
2503 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2504 
2505 /*
2506  * Call this whenever redirtying a page, to de-account the dirty counters
2507  * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written
2508  * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to
2509  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2510  * control.
2511  */
2512 void account_page_redirty(struct page *page)
2513 {
2514 	struct address_space *mapping = page->mapping;
2515 
2516 	if (mapping && mapping_can_writeback(mapping)) {
2517 		struct inode *inode = mapping->host;
2518 		struct bdi_writeback *wb;
2519 		struct wb_lock_cookie cookie = {};
2520 
2521 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2522 		current->nr_dirtied--;
2523 		dec_node_page_state(page, NR_DIRTIED);
2524 		dec_wb_stat(wb, WB_DIRTIED);
2525 		unlocked_inode_to_wb_end(inode, &cookie);
2526 	}
2527 }
2528 EXPORT_SYMBOL(account_page_redirty);
2529 
2530 /*
2531  * When a writepage implementation decides that it doesn't want to write this
2532  * page for some reason, it should redirty the locked page via
2533  * redirty_page_for_writepage() and it should then unlock the page and return 0
2534  */
2535 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2536 {
2537 	int ret;
2538 
2539 	wbc->pages_skipped++;
2540 	ret = __set_page_dirty_nobuffers(page);
2541 	account_page_redirty(page);
2542 	return ret;
2543 }
2544 EXPORT_SYMBOL(redirty_page_for_writepage);
2545 
2546 /*
2547  * Dirty a page.
2548  *
2549  * For pages with a mapping this should be done under the page lock
2550  * for the benefit of asynchronous memory errors who prefer a consistent
2551  * dirty state. This rule can be broken in some special cases,
2552  * but should be better not to.
2553  *
2554  * If the mapping doesn't provide a set_page_dirty a_op, then
2555  * just fall through and assume that it wants buffer_heads.
2556  */
2557 int set_page_dirty(struct page *page)
2558 {
2559 	struct address_space *mapping = page_mapping(page);
2560 
2561 	page = compound_head(page);
2562 	if (likely(mapping)) {
2563 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2564 		/*
2565 		 * readahead/lru_deactivate_page could remain
2566 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2567 		 * About readahead, if the page is written, the flags would be
2568 		 * reset. So no problem.
2569 		 * About lru_deactivate_page, if the page is redirty, the flag
2570 		 * will be reset. So no problem. but if the page is used by readahead
2571 		 * it will confuse readahead and make it restart the size rampup
2572 		 * process. But it's a trivial problem.
2573 		 */
2574 		if (PageReclaim(page))
2575 			ClearPageReclaim(page);
2576 #ifdef CONFIG_BLOCK
2577 		if (!spd)
2578 			spd = __set_page_dirty_buffers;
2579 #endif
2580 		return (*spd)(page);
2581 	}
2582 	if (!PageDirty(page)) {
2583 		if (!TestSetPageDirty(page))
2584 			return 1;
2585 	}
2586 	return 0;
2587 }
2588 EXPORT_SYMBOL(set_page_dirty);
2589 
2590 /*
2591  * set_page_dirty() is racy if the caller has no reference against
2592  * page->mapping->host, and if the page is unlocked.  This is because another
2593  * CPU could truncate the page off the mapping and then free the mapping.
2594  *
2595  * Usually, the page _is_ locked, or the caller is a user-space process which
2596  * holds a reference on the inode by having an open file.
2597  *
2598  * In other cases, the page should be locked before running set_page_dirty().
2599  */
2600 int set_page_dirty_lock(struct page *page)
2601 {
2602 	int ret;
2603 
2604 	lock_page(page);
2605 	ret = set_page_dirty(page);
2606 	unlock_page(page);
2607 	return ret;
2608 }
2609 EXPORT_SYMBOL(set_page_dirty_lock);
2610 
2611 /*
2612  * This cancels just the dirty bit on the kernel page itself, it does NOT
2613  * actually remove dirty bits on any mmap's that may be around. It also
2614  * leaves the page tagged dirty, so any sync activity will still find it on
2615  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2616  * look at the dirty bits in the VM.
2617  *
2618  * Doing this should *normally* only ever be done when a page is truncated,
2619  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2620  * this when it notices that somebody has cleaned out all the buffers on a
2621  * page without actually doing it through the VM. Can you say "ext3 is
2622  * horribly ugly"? Thought you could.
2623  */
2624 void __cancel_dirty_page(struct page *page)
2625 {
2626 	struct address_space *mapping = page_mapping(page);
2627 
2628 	if (mapping_can_writeback(mapping)) {
2629 		struct inode *inode = mapping->host;
2630 		struct bdi_writeback *wb;
2631 		struct wb_lock_cookie cookie = {};
2632 
2633 		lock_page_memcg(page);
2634 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2635 
2636 		if (TestClearPageDirty(page))
2637 			account_page_cleaned(page, mapping, wb);
2638 
2639 		unlocked_inode_to_wb_end(inode, &cookie);
2640 		unlock_page_memcg(page);
2641 	} else {
2642 		ClearPageDirty(page);
2643 	}
2644 }
2645 EXPORT_SYMBOL(__cancel_dirty_page);
2646 
2647 /*
2648  * Clear a page's dirty flag, while caring for dirty memory accounting.
2649  * Returns true if the page was previously dirty.
2650  *
2651  * This is for preparing to put the page under writeout.  We leave the page
2652  * tagged as dirty in the xarray so that a concurrent write-for-sync
2653  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2654  * implementation will run either set_page_writeback() or set_page_dirty(),
2655  * at which stage we bring the page's dirty flag and xarray dirty tag
2656  * back into sync.
2657  *
2658  * This incoherency between the page's dirty flag and xarray tag is
2659  * unfortunate, but it only exists while the page is locked.
2660  */
2661 int clear_page_dirty_for_io(struct page *page)
2662 {
2663 	struct address_space *mapping = page_mapping(page);
2664 	int ret = 0;
2665 
2666 	VM_BUG_ON_PAGE(!PageLocked(page), page);
2667 
2668 	if (mapping && mapping_can_writeback(mapping)) {
2669 		struct inode *inode = mapping->host;
2670 		struct bdi_writeback *wb;
2671 		struct wb_lock_cookie cookie = {};
2672 
2673 		/*
2674 		 * Yes, Virginia, this is indeed insane.
2675 		 *
2676 		 * We use this sequence to make sure that
2677 		 *  (a) we account for dirty stats properly
2678 		 *  (b) we tell the low-level filesystem to
2679 		 *      mark the whole page dirty if it was
2680 		 *      dirty in a pagetable. Only to then
2681 		 *  (c) clean the page again and return 1 to
2682 		 *      cause the writeback.
2683 		 *
2684 		 * This way we avoid all nasty races with the
2685 		 * dirty bit in multiple places and clearing
2686 		 * them concurrently from different threads.
2687 		 *
2688 		 * Note! Normally the "set_page_dirty(page)"
2689 		 * has no effect on the actual dirty bit - since
2690 		 * that will already usually be set. But we
2691 		 * need the side effects, and it can help us
2692 		 * avoid races.
2693 		 *
2694 		 * We basically use the page "master dirty bit"
2695 		 * as a serialization point for all the different
2696 		 * threads doing their things.
2697 		 */
2698 		if (page_mkclean(page))
2699 			set_page_dirty(page);
2700 		/*
2701 		 * We carefully synchronise fault handlers against
2702 		 * installing a dirty pte and marking the page dirty
2703 		 * at this point.  We do this by having them hold the
2704 		 * page lock while dirtying the page, and pages are
2705 		 * always locked coming in here, so we get the desired
2706 		 * exclusion.
2707 		 */
2708 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2709 		if (TestClearPageDirty(page)) {
2710 			dec_lruvec_page_state(page, NR_FILE_DIRTY);
2711 			dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2712 			dec_wb_stat(wb, WB_RECLAIMABLE);
2713 			ret = 1;
2714 		}
2715 		unlocked_inode_to_wb_end(inode, &cookie);
2716 		return ret;
2717 	}
2718 	return TestClearPageDirty(page);
2719 }
2720 EXPORT_SYMBOL(clear_page_dirty_for_io);
2721 
2722 int test_clear_page_writeback(struct page *page)
2723 {
2724 	struct address_space *mapping = page_mapping(page);
2725 	int ret;
2726 
2727 	lock_page_memcg(page);
2728 	if (mapping && mapping_use_writeback_tags(mapping)) {
2729 		struct inode *inode = mapping->host;
2730 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2731 		unsigned long flags;
2732 
2733 		xa_lock_irqsave(&mapping->i_pages, flags);
2734 		ret = TestClearPageWriteback(page);
2735 		if (ret) {
2736 			__xa_clear_mark(&mapping->i_pages, page_index(page),
2737 						PAGECACHE_TAG_WRITEBACK);
2738 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2739 				struct bdi_writeback *wb = inode_to_wb(inode);
2740 
2741 				dec_wb_stat(wb, WB_WRITEBACK);
2742 				__wb_writeout_inc(wb);
2743 			}
2744 		}
2745 
2746 		if (mapping->host && !mapping_tagged(mapping,
2747 						     PAGECACHE_TAG_WRITEBACK))
2748 			sb_clear_inode_writeback(mapping->host);
2749 
2750 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2751 	} else {
2752 		ret = TestClearPageWriteback(page);
2753 	}
2754 	if (ret) {
2755 		dec_lruvec_page_state(page, NR_WRITEBACK);
2756 		dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2757 		inc_node_page_state(page, NR_WRITTEN);
2758 	}
2759 	unlock_page_memcg(page);
2760 	return ret;
2761 }
2762 
2763 int __test_set_page_writeback(struct page *page, bool keep_write)
2764 {
2765 	struct address_space *mapping = page_mapping(page);
2766 	int ret, access_ret;
2767 
2768 	lock_page_memcg(page);
2769 	if (mapping && mapping_use_writeback_tags(mapping)) {
2770 		XA_STATE(xas, &mapping->i_pages, page_index(page));
2771 		struct inode *inode = mapping->host;
2772 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2773 		unsigned long flags;
2774 
2775 		xas_lock_irqsave(&xas, flags);
2776 		xas_load(&xas);
2777 		ret = TestSetPageWriteback(page);
2778 		if (!ret) {
2779 			bool on_wblist;
2780 
2781 			on_wblist = mapping_tagged(mapping,
2782 						   PAGECACHE_TAG_WRITEBACK);
2783 
2784 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2785 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT)
2786 				inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2787 
2788 			/*
2789 			 * We can come through here when swapping anonymous
2790 			 * pages, so we don't necessarily have an inode to track
2791 			 * for sync.
2792 			 */
2793 			if (mapping->host && !on_wblist)
2794 				sb_mark_inode_writeback(mapping->host);
2795 		}
2796 		if (!PageDirty(page))
2797 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2798 		if (!keep_write)
2799 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2800 		xas_unlock_irqrestore(&xas, flags);
2801 	} else {
2802 		ret = TestSetPageWriteback(page);
2803 	}
2804 	if (!ret) {
2805 		inc_lruvec_page_state(page, NR_WRITEBACK);
2806 		inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
2807 	}
2808 	unlock_page_memcg(page);
2809 	access_ret = arch_make_page_accessible(page);
2810 	/*
2811 	 * If writeback has been triggered on a page that cannot be made
2812 	 * accessible, it is too late to recover here.
2813 	 */
2814 	VM_BUG_ON_PAGE(access_ret != 0, page);
2815 
2816 	return ret;
2817 
2818 }
2819 EXPORT_SYMBOL(__test_set_page_writeback);
2820 
2821 /*
2822  * Wait for a page to complete writeback
2823  */
2824 void wait_on_page_writeback(struct page *page)
2825 {
2826 	while (PageWriteback(page)) {
2827 		trace_wait_on_page_writeback(page, page_mapping(page));
2828 		wait_on_page_bit(page, PG_writeback);
2829 	}
2830 }
2831 EXPORT_SYMBOL_GPL(wait_on_page_writeback);
2832 
2833 /*
2834  * Wait for a page to complete writeback.  Returns -EINTR if we get a
2835  * fatal signal while waiting.
2836  */
2837 int wait_on_page_writeback_killable(struct page *page)
2838 {
2839 	while (PageWriteback(page)) {
2840 		trace_wait_on_page_writeback(page, page_mapping(page));
2841 		if (wait_on_page_bit_killable(page, PG_writeback))
2842 			return -EINTR;
2843 	}
2844 
2845 	return 0;
2846 }
2847 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable);
2848 
2849 /**
2850  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2851  * @page:	The page to wait on.
2852  *
2853  * This function determines if the given page is related to a backing device
2854  * that requires page contents to be held stable during writeback.  If so, then
2855  * it will wait for any pending writeback to complete.
2856  */
2857 void wait_for_stable_page(struct page *page)
2858 {
2859 	page = thp_head(page);
2860 	if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES)
2861 		wait_on_page_writeback(page);
2862 }
2863 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2864