xref: /openbmc/linux/mm/page-writeback.c (revision b04b4f78)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_SYNC against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES	1024
46 
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52 
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61 	return ratelimit_pages + ratelimit_pages / 2;
62 }
63 
64 /* The following parameters are exported via /proc/sys/vm */
65 
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 10;
70 
71 /*
72  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73  * dirty_background_ratio * the amount of dirtyable memory
74  */
75 unsigned long dirty_background_bytes;
76 
77 /*
78  * free highmem will not be subtracted from the total free memory
79  * for calculating free ratios if vm_highmem_is_dirtyable is true
80  */
81 int vm_highmem_is_dirtyable;
82 
83 /*
84  * The generator of dirty data starts writeback at this percentage
85  */
86 int vm_dirty_ratio = 20;
87 
88 /*
89  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90  * vm_dirty_ratio * the amount of dirtyable memory
91  */
92 unsigned long vm_dirty_bytes;
93 
94 /*
95  * The interval between `kupdate'-style writebacks
96  */
97 unsigned int dirty_writeback_interval = 5 * 100; /* sentiseconds */
98 
99 /*
100  * The longest time for which data is allowed to remain dirty
101  */
102 unsigned int dirty_expire_interval = 30 * 100; /* sentiseconds */
103 
104 /*
105  * Flag that makes the machine dump writes/reads and block dirtyings.
106  */
107 int block_dump;
108 
109 /*
110  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
111  * a full sync is triggered after this time elapses without any disk activity.
112  */
113 int laptop_mode;
114 
115 EXPORT_SYMBOL(laptop_mode);
116 
117 /* End of sysctl-exported parameters */
118 
119 
120 static void background_writeout(unsigned long _min_pages);
121 
122 /*
123  * Scale the writeback cache size proportional to the relative writeout speeds.
124  *
125  * We do this by keeping a floating proportion between BDIs, based on page
126  * writeback completions [end_page_writeback()]. Those devices that write out
127  * pages fastest will get the larger share, while the slower will get a smaller
128  * share.
129  *
130  * We use page writeout completions because we are interested in getting rid of
131  * dirty pages. Having them written out is the primary goal.
132  *
133  * We introduce a concept of time, a period over which we measure these events,
134  * because demand can/will vary over time. The length of this period itself is
135  * measured in page writeback completions.
136  *
137  */
138 static struct prop_descriptor vm_completions;
139 static struct prop_descriptor vm_dirties;
140 
141 /*
142  * couple the period to the dirty_ratio:
143  *
144  *   period/2 ~ roundup_pow_of_two(dirty limit)
145  */
146 static int calc_period_shift(void)
147 {
148 	unsigned long dirty_total;
149 
150 	if (vm_dirty_bytes)
151 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
152 	else
153 		dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) /
154 				100;
155 	return 2 + ilog2(dirty_total - 1);
156 }
157 
158 /*
159  * update the period when the dirty threshold changes.
160  */
161 static void update_completion_period(void)
162 {
163 	int shift = calc_period_shift();
164 	prop_change_shift(&vm_completions, shift);
165 	prop_change_shift(&vm_dirties, shift);
166 }
167 
168 int dirty_background_ratio_handler(struct ctl_table *table, int write,
169 		struct file *filp, void __user *buffer, size_t *lenp,
170 		loff_t *ppos)
171 {
172 	int ret;
173 
174 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
175 	if (ret == 0 && write)
176 		dirty_background_bytes = 0;
177 	return ret;
178 }
179 
180 int dirty_background_bytes_handler(struct ctl_table *table, int write,
181 		struct file *filp, void __user *buffer, size_t *lenp,
182 		loff_t *ppos)
183 {
184 	int ret;
185 
186 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
187 	if (ret == 0 && write)
188 		dirty_background_ratio = 0;
189 	return ret;
190 }
191 
192 int dirty_ratio_handler(struct ctl_table *table, int write,
193 		struct file *filp, void __user *buffer, size_t *lenp,
194 		loff_t *ppos)
195 {
196 	int old_ratio = vm_dirty_ratio;
197 	int ret;
198 
199 	ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
200 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
201 		update_completion_period();
202 		vm_dirty_bytes = 0;
203 	}
204 	return ret;
205 }
206 
207 
208 int dirty_bytes_handler(struct ctl_table *table, int write,
209 		struct file *filp, void __user *buffer, size_t *lenp,
210 		loff_t *ppos)
211 {
212 	unsigned long old_bytes = vm_dirty_bytes;
213 	int ret;
214 
215 	ret = proc_doulongvec_minmax(table, write, filp, buffer, lenp, ppos);
216 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
217 		update_completion_period();
218 		vm_dirty_ratio = 0;
219 	}
220 	return ret;
221 }
222 
223 /*
224  * Increment the BDI's writeout completion count and the global writeout
225  * completion count. Called from test_clear_page_writeback().
226  */
227 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
228 {
229 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
230 			      bdi->max_prop_frac);
231 }
232 
233 void bdi_writeout_inc(struct backing_dev_info *bdi)
234 {
235 	unsigned long flags;
236 
237 	local_irq_save(flags);
238 	__bdi_writeout_inc(bdi);
239 	local_irq_restore(flags);
240 }
241 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
242 
243 void task_dirty_inc(struct task_struct *tsk)
244 {
245 	prop_inc_single(&vm_dirties, &tsk->dirties);
246 }
247 
248 /*
249  * Obtain an accurate fraction of the BDI's portion.
250  */
251 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
252 		long *numerator, long *denominator)
253 {
254 	if (bdi_cap_writeback_dirty(bdi)) {
255 		prop_fraction_percpu(&vm_completions, &bdi->completions,
256 				numerator, denominator);
257 	} else {
258 		*numerator = 0;
259 		*denominator = 1;
260 	}
261 }
262 
263 /*
264  * Clip the earned share of dirty pages to that which is actually available.
265  * This avoids exceeding the total dirty_limit when the floating averages
266  * fluctuate too quickly.
267  */
268 static void
269 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
270 {
271 	long avail_dirty;
272 
273 	avail_dirty = dirty -
274 		(global_page_state(NR_FILE_DIRTY) +
275 		 global_page_state(NR_WRITEBACK) +
276 		 global_page_state(NR_UNSTABLE_NFS) +
277 		 global_page_state(NR_WRITEBACK_TEMP));
278 
279 	if (avail_dirty < 0)
280 		avail_dirty = 0;
281 
282 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
283 		bdi_stat(bdi, BDI_WRITEBACK);
284 
285 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
286 }
287 
288 static inline void task_dirties_fraction(struct task_struct *tsk,
289 		long *numerator, long *denominator)
290 {
291 	prop_fraction_single(&vm_dirties, &tsk->dirties,
292 				numerator, denominator);
293 }
294 
295 /*
296  * scale the dirty limit
297  *
298  * task specific dirty limit:
299  *
300  *   dirty -= (dirty/8) * p_{t}
301  */
302 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
303 {
304 	long numerator, denominator;
305 	long dirty = *pdirty;
306 	u64 inv = dirty >> 3;
307 
308 	task_dirties_fraction(tsk, &numerator, &denominator);
309 	inv *= numerator;
310 	do_div(inv, denominator);
311 
312 	dirty -= inv;
313 	if (dirty < *pdirty/2)
314 		dirty = *pdirty/2;
315 
316 	*pdirty = dirty;
317 }
318 
319 /*
320  *
321  */
322 static DEFINE_SPINLOCK(bdi_lock);
323 static unsigned int bdi_min_ratio;
324 
325 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
326 {
327 	int ret = 0;
328 	unsigned long flags;
329 
330 	spin_lock_irqsave(&bdi_lock, flags);
331 	if (min_ratio > bdi->max_ratio) {
332 		ret = -EINVAL;
333 	} else {
334 		min_ratio -= bdi->min_ratio;
335 		if (bdi_min_ratio + min_ratio < 100) {
336 			bdi_min_ratio += min_ratio;
337 			bdi->min_ratio += min_ratio;
338 		} else {
339 			ret = -EINVAL;
340 		}
341 	}
342 	spin_unlock_irqrestore(&bdi_lock, flags);
343 
344 	return ret;
345 }
346 
347 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
348 {
349 	unsigned long flags;
350 	int ret = 0;
351 
352 	if (max_ratio > 100)
353 		return -EINVAL;
354 
355 	spin_lock_irqsave(&bdi_lock, flags);
356 	if (bdi->min_ratio > max_ratio) {
357 		ret = -EINVAL;
358 	} else {
359 		bdi->max_ratio = max_ratio;
360 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
361 	}
362 	spin_unlock_irqrestore(&bdi_lock, flags);
363 
364 	return ret;
365 }
366 EXPORT_SYMBOL(bdi_set_max_ratio);
367 
368 /*
369  * Work out the current dirty-memory clamping and background writeout
370  * thresholds.
371  *
372  * The main aim here is to lower them aggressively if there is a lot of mapped
373  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
374  * pages.  It is better to clamp down on writers than to start swapping, and
375  * performing lots of scanning.
376  *
377  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
378  *
379  * We don't permit the clamping level to fall below 5% - that is getting rather
380  * excessive.
381  *
382  * We make sure that the background writeout level is below the adjusted
383  * clamping level.
384  */
385 
386 static unsigned long highmem_dirtyable_memory(unsigned long total)
387 {
388 #ifdef CONFIG_HIGHMEM
389 	int node;
390 	unsigned long x = 0;
391 
392 	for_each_node_state(node, N_HIGH_MEMORY) {
393 		struct zone *z =
394 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
395 
396 		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
397 	}
398 	/*
399 	 * Make sure that the number of highmem pages is never larger
400 	 * than the number of the total dirtyable memory. This can only
401 	 * occur in very strange VM situations but we want to make sure
402 	 * that this does not occur.
403 	 */
404 	return min(x, total);
405 #else
406 	return 0;
407 #endif
408 }
409 
410 /**
411  * determine_dirtyable_memory - amount of memory that may be used
412  *
413  * Returns the numebr of pages that can currently be freed and used
414  * by the kernel for direct mappings.
415  */
416 unsigned long determine_dirtyable_memory(void)
417 {
418 	unsigned long x;
419 
420 	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
421 
422 	if (!vm_highmem_is_dirtyable)
423 		x -= highmem_dirtyable_memory(x);
424 
425 	return x + 1;	/* Ensure that we never return 0 */
426 }
427 
428 void
429 get_dirty_limits(unsigned long *pbackground, unsigned long *pdirty,
430 		 unsigned long *pbdi_dirty, struct backing_dev_info *bdi)
431 {
432 	unsigned long background;
433 	unsigned long dirty;
434 	unsigned long available_memory = determine_dirtyable_memory();
435 	struct task_struct *tsk;
436 
437 	if (vm_dirty_bytes)
438 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
439 	else {
440 		int dirty_ratio;
441 
442 		dirty_ratio = vm_dirty_ratio;
443 		if (dirty_ratio < 5)
444 			dirty_ratio = 5;
445 		dirty = (dirty_ratio * available_memory) / 100;
446 	}
447 
448 	if (dirty_background_bytes)
449 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
450 	else
451 		background = (dirty_background_ratio * available_memory) / 100;
452 
453 	if (background >= dirty)
454 		background = dirty / 2;
455 	tsk = current;
456 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
457 		background += background / 4;
458 		dirty += dirty / 4;
459 	}
460 	*pbackground = background;
461 	*pdirty = dirty;
462 
463 	if (bdi) {
464 		u64 bdi_dirty;
465 		long numerator, denominator;
466 
467 		/*
468 		 * Calculate this BDI's share of the dirty ratio.
469 		 */
470 		bdi_writeout_fraction(bdi, &numerator, &denominator);
471 
472 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
473 		bdi_dirty *= numerator;
474 		do_div(bdi_dirty, denominator);
475 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
476 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
477 			bdi_dirty = dirty * bdi->max_ratio / 100;
478 
479 		*pbdi_dirty = bdi_dirty;
480 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
481 		task_dirty_limit(current, pbdi_dirty);
482 	}
483 }
484 
485 /*
486  * balance_dirty_pages() must be called by processes which are generating dirty
487  * data.  It looks at the number of dirty pages in the machine and will force
488  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
489  * If we're over `background_thresh' then pdflush is woken to perform some
490  * writeout.
491  */
492 static void balance_dirty_pages(struct address_space *mapping)
493 {
494 	long nr_reclaimable, bdi_nr_reclaimable;
495 	long nr_writeback, bdi_nr_writeback;
496 	unsigned long background_thresh;
497 	unsigned long dirty_thresh;
498 	unsigned long bdi_thresh;
499 	unsigned long pages_written = 0;
500 	unsigned long write_chunk = sync_writeback_pages();
501 
502 	struct backing_dev_info *bdi = mapping->backing_dev_info;
503 
504 	for (;;) {
505 		struct writeback_control wbc = {
506 			.bdi		= bdi,
507 			.sync_mode	= WB_SYNC_NONE,
508 			.older_than_this = NULL,
509 			.nr_to_write	= write_chunk,
510 			.range_cyclic	= 1,
511 		};
512 
513 		get_dirty_limits(&background_thresh, &dirty_thresh,
514 				&bdi_thresh, bdi);
515 
516 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
517 					global_page_state(NR_UNSTABLE_NFS);
518 		nr_writeback = global_page_state(NR_WRITEBACK);
519 
520 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
521 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
522 
523 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
524 			break;
525 
526 		/*
527 		 * Throttle it only when the background writeback cannot
528 		 * catch-up. This avoids (excessively) small writeouts
529 		 * when the bdi limits are ramping up.
530 		 */
531 		if (nr_reclaimable + nr_writeback <
532 				(background_thresh + dirty_thresh) / 2)
533 			break;
534 
535 		if (!bdi->dirty_exceeded)
536 			bdi->dirty_exceeded = 1;
537 
538 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
539 		 * Unstable writes are a feature of certain networked
540 		 * filesystems (i.e. NFS) in which data may have been
541 		 * written to the server's write cache, but has not yet
542 		 * been flushed to permanent storage.
543 		 */
544 		if (bdi_nr_reclaimable) {
545 			writeback_inodes(&wbc);
546 			pages_written += write_chunk - wbc.nr_to_write;
547 			get_dirty_limits(&background_thresh, &dirty_thresh,
548 				       &bdi_thresh, bdi);
549 		}
550 
551 		/*
552 		 * In order to avoid the stacked BDI deadlock we need
553 		 * to ensure we accurately count the 'dirty' pages when
554 		 * the threshold is low.
555 		 *
556 		 * Otherwise it would be possible to get thresh+n pages
557 		 * reported dirty, even though there are thresh-m pages
558 		 * actually dirty; with m+n sitting in the percpu
559 		 * deltas.
560 		 */
561 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
562 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
563 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
564 		} else if (bdi_nr_reclaimable) {
565 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
566 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
567 		}
568 
569 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
570 			break;
571 		if (pages_written >= write_chunk)
572 			break;		/* We've done our duty */
573 
574 		congestion_wait(WRITE, HZ/10);
575 	}
576 
577 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
578 			bdi->dirty_exceeded)
579 		bdi->dirty_exceeded = 0;
580 
581 	if (writeback_in_progress(bdi))
582 		return;		/* pdflush is already working this queue */
583 
584 	/*
585 	 * In laptop mode, we wait until hitting the higher threshold before
586 	 * starting background writeout, and then write out all the way down
587 	 * to the lower threshold.  So slow writers cause minimal disk activity.
588 	 *
589 	 * In normal mode, we start background writeout at the lower
590 	 * background_thresh, to keep the amount of dirty memory low.
591 	 */
592 	if ((laptop_mode && pages_written) ||
593 			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
594 					  + global_page_state(NR_UNSTABLE_NFS)
595 					  > background_thresh)))
596 		pdflush_operation(background_writeout, 0);
597 }
598 
599 void set_page_dirty_balance(struct page *page, int page_mkwrite)
600 {
601 	if (set_page_dirty(page) || page_mkwrite) {
602 		struct address_space *mapping = page_mapping(page);
603 
604 		if (mapping)
605 			balance_dirty_pages_ratelimited(mapping);
606 	}
607 }
608 
609 /**
610  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
611  * @mapping: address_space which was dirtied
612  * @nr_pages_dirtied: number of pages which the caller has just dirtied
613  *
614  * Processes which are dirtying memory should call in here once for each page
615  * which was newly dirtied.  The function will periodically check the system's
616  * dirty state and will initiate writeback if needed.
617  *
618  * On really big machines, get_writeback_state is expensive, so try to avoid
619  * calling it too often (ratelimiting).  But once we're over the dirty memory
620  * limit we decrease the ratelimiting by a lot, to prevent individual processes
621  * from overshooting the limit by (ratelimit_pages) each.
622  */
623 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
624 					unsigned long nr_pages_dirtied)
625 {
626 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
627 	unsigned long ratelimit;
628 	unsigned long *p;
629 
630 	ratelimit = ratelimit_pages;
631 	if (mapping->backing_dev_info->dirty_exceeded)
632 		ratelimit = 8;
633 
634 	/*
635 	 * Check the rate limiting. Also, we do not want to throttle real-time
636 	 * tasks in balance_dirty_pages(). Period.
637 	 */
638 	preempt_disable();
639 	p =  &__get_cpu_var(ratelimits);
640 	*p += nr_pages_dirtied;
641 	if (unlikely(*p >= ratelimit)) {
642 		*p = 0;
643 		preempt_enable();
644 		balance_dirty_pages(mapping);
645 		return;
646 	}
647 	preempt_enable();
648 }
649 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
650 
651 void throttle_vm_writeout(gfp_t gfp_mask)
652 {
653 	unsigned long background_thresh;
654 	unsigned long dirty_thresh;
655 
656         for ( ; ; ) {
657 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
658 
659                 /*
660                  * Boost the allowable dirty threshold a bit for page
661                  * allocators so they don't get DoS'ed by heavy writers
662                  */
663                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
664 
665                 if (global_page_state(NR_UNSTABLE_NFS) +
666 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
667                         	break;
668                 congestion_wait(WRITE, HZ/10);
669 
670 		/*
671 		 * The caller might hold locks which can prevent IO completion
672 		 * or progress in the filesystem.  So we cannot just sit here
673 		 * waiting for IO to complete.
674 		 */
675 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
676 			break;
677         }
678 }
679 
680 /*
681  * writeback at least _min_pages, and keep writing until the amount of dirty
682  * memory is less than the background threshold, or until we're all clean.
683  */
684 static void background_writeout(unsigned long _min_pages)
685 {
686 	long min_pages = _min_pages;
687 	struct writeback_control wbc = {
688 		.bdi		= NULL,
689 		.sync_mode	= WB_SYNC_NONE,
690 		.older_than_this = NULL,
691 		.nr_to_write	= 0,
692 		.nonblocking	= 1,
693 		.range_cyclic	= 1,
694 	};
695 
696 	for ( ; ; ) {
697 		unsigned long background_thresh;
698 		unsigned long dirty_thresh;
699 
700 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
701 		if (global_page_state(NR_FILE_DIRTY) +
702 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
703 				&& min_pages <= 0)
704 			break;
705 		wbc.more_io = 0;
706 		wbc.encountered_congestion = 0;
707 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
708 		wbc.pages_skipped = 0;
709 		writeback_inodes(&wbc);
710 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
711 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
712 			/* Wrote less than expected */
713 			if (wbc.encountered_congestion || wbc.more_io)
714 				congestion_wait(WRITE, HZ/10);
715 			else
716 				break;
717 		}
718 	}
719 }
720 
721 /*
722  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
723  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
724  * -1 if all pdflush threads were busy.
725  */
726 int wakeup_pdflush(long nr_pages)
727 {
728 	if (nr_pages == 0)
729 		nr_pages = global_page_state(NR_FILE_DIRTY) +
730 				global_page_state(NR_UNSTABLE_NFS);
731 	return pdflush_operation(background_writeout, nr_pages);
732 }
733 
734 static void wb_timer_fn(unsigned long unused);
735 static void laptop_timer_fn(unsigned long unused);
736 
737 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
738 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
739 
740 /*
741  * Periodic writeback of "old" data.
742  *
743  * Define "old": the first time one of an inode's pages is dirtied, we mark the
744  * dirtying-time in the inode's address_space.  So this periodic writeback code
745  * just walks the superblock inode list, writing back any inodes which are
746  * older than a specific point in time.
747  *
748  * Try to run once per dirty_writeback_interval.  But if a writeback event
749  * takes longer than a dirty_writeback_interval interval, then leave a
750  * one-second gap.
751  *
752  * older_than_this takes precedence over nr_to_write.  So we'll only write back
753  * all dirty pages if they are all attached to "old" mappings.
754  */
755 static void wb_kupdate(unsigned long arg)
756 {
757 	unsigned long oldest_jif;
758 	unsigned long start_jif;
759 	unsigned long next_jif;
760 	long nr_to_write;
761 	struct writeback_control wbc = {
762 		.bdi		= NULL,
763 		.sync_mode	= WB_SYNC_NONE,
764 		.older_than_this = &oldest_jif,
765 		.nr_to_write	= 0,
766 		.nonblocking	= 1,
767 		.for_kupdate	= 1,
768 		.range_cyclic	= 1,
769 	};
770 
771 	sync_supers();
772 
773 	oldest_jif = jiffies - msecs_to_jiffies(dirty_expire_interval);
774 	start_jif = jiffies;
775 	next_jif = start_jif + msecs_to_jiffies(dirty_writeback_interval * 10);
776 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
777 			global_page_state(NR_UNSTABLE_NFS) +
778 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
779 	while (nr_to_write > 0) {
780 		wbc.more_io = 0;
781 		wbc.encountered_congestion = 0;
782 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
783 		writeback_inodes(&wbc);
784 		if (wbc.nr_to_write > 0) {
785 			if (wbc.encountered_congestion || wbc.more_io)
786 				congestion_wait(WRITE, HZ/10);
787 			else
788 				break;	/* All the old data is written */
789 		}
790 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
791 	}
792 	if (time_before(next_jif, jiffies + HZ))
793 		next_jif = jiffies + HZ;
794 	if (dirty_writeback_interval)
795 		mod_timer(&wb_timer, next_jif);
796 }
797 
798 /*
799  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
800  */
801 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
802 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
803 {
804 	proc_dointvec(table, write, file, buffer, length, ppos);
805 	if (dirty_writeback_interval)
806 		mod_timer(&wb_timer, jiffies +
807 			msecs_to_jiffies(dirty_writeback_interval * 10));
808 	else
809 		del_timer(&wb_timer);
810 	return 0;
811 }
812 
813 static void wb_timer_fn(unsigned long unused)
814 {
815 	if (pdflush_operation(wb_kupdate, 0) < 0)
816 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
817 }
818 
819 static void laptop_flush(unsigned long unused)
820 {
821 	sys_sync();
822 }
823 
824 static void laptop_timer_fn(unsigned long unused)
825 {
826 	pdflush_operation(laptop_flush, 0);
827 }
828 
829 /*
830  * We've spun up the disk and we're in laptop mode: schedule writeback
831  * of all dirty data a few seconds from now.  If the flush is already scheduled
832  * then push it back - the user is still using the disk.
833  */
834 void laptop_io_completion(void)
835 {
836 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
837 }
838 
839 /*
840  * We're in laptop mode and we've just synced. The sync's writes will have
841  * caused another writeback to be scheduled by laptop_io_completion.
842  * Nothing needs to be written back anymore, so we unschedule the writeback.
843  */
844 void laptop_sync_completion(void)
845 {
846 	del_timer(&laptop_mode_wb_timer);
847 }
848 
849 /*
850  * If ratelimit_pages is too high then we can get into dirty-data overload
851  * if a large number of processes all perform writes at the same time.
852  * If it is too low then SMP machines will call the (expensive)
853  * get_writeback_state too often.
854  *
855  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
856  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
857  * thresholds before writeback cuts in.
858  *
859  * But the limit should not be set too high.  Because it also controls the
860  * amount of memory which the balance_dirty_pages() caller has to write back.
861  * If this is too large then the caller will block on the IO queue all the
862  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
863  * will write six megabyte chunks, max.
864  */
865 
866 void writeback_set_ratelimit(void)
867 {
868 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
869 	if (ratelimit_pages < 16)
870 		ratelimit_pages = 16;
871 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
872 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
873 }
874 
875 static int __cpuinit
876 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
877 {
878 	writeback_set_ratelimit();
879 	return NOTIFY_DONE;
880 }
881 
882 static struct notifier_block __cpuinitdata ratelimit_nb = {
883 	.notifier_call	= ratelimit_handler,
884 	.next		= NULL,
885 };
886 
887 /*
888  * Called early on to tune the page writeback dirty limits.
889  *
890  * We used to scale dirty pages according to how total memory
891  * related to pages that could be allocated for buffers (by
892  * comparing nr_free_buffer_pages() to vm_total_pages.
893  *
894  * However, that was when we used "dirty_ratio" to scale with
895  * all memory, and we don't do that any more. "dirty_ratio"
896  * is now applied to total non-HIGHPAGE memory (by subtracting
897  * totalhigh_pages from vm_total_pages), and as such we can't
898  * get into the old insane situation any more where we had
899  * large amounts of dirty pages compared to a small amount of
900  * non-HIGHMEM memory.
901  *
902  * But we might still want to scale the dirty_ratio by how
903  * much memory the box has..
904  */
905 void __init page_writeback_init(void)
906 {
907 	int shift;
908 
909 	mod_timer(&wb_timer,
910 		  jiffies + msecs_to_jiffies(dirty_writeback_interval * 10));
911 	writeback_set_ratelimit();
912 	register_cpu_notifier(&ratelimit_nb);
913 
914 	shift = calc_period_shift();
915 	prop_descriptor_init(&vm_completions, shift);
916 	prop_descriptor_init(&vm_dirties, shift);
917 }
918 
919 /**
920  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
921  * @mapping: address space structure to write
922  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
923  * @writepage: function called for each page
924  * @data: data passed to writepage function
925  *
926  * If a page is already under I/O, write_cache_pages() skips it, even
927  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
928  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
929  * and msync() need to guarantee that all the data which was dirty at the time
930  * the call was made get new I/O started against them.  If wbc->sync_mode is
931  * WB_SYNC_ALL then we were called for data integrity and we must wait for
932  * existing IO to complete.
933  */
934 int write_cache_pages(struct address_space *mapping,
935 		      struct writeback_control *wbc, writepage_t writepage,
936 		      void *data)
937 {
938 	struct backing_dev_info *bdi = mapping->backing_dev_info;
939 	int ret = 0;
940 	int done = 0;
941 	struct pagevec pvec;
942 	int nr_pages;
943 	pgoff_t uninitialized_var(writeback_index);
944 	pgoff_t index;
945 	pgoff_t end;		/* Inclusive */
946 	pgoff_t done_index;
947 	int cycled;
948 	int range_whole = 0;
949 	long nr_to_write = wbc->nr_to_write;
950 
951 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
952 		wbc->encountered_congestion = 1;
953 		return 0;
954 	}
955 
956 	pagevec_init(&pvec, 0);
957 	if (wbc->range_cyclic) {
958 		writeback_index = mapping->writeback_index; /* prev offset */
959 		index = writeback_index;
960 		if (index == 0)
961 			cycled = 1;
962 		else
963 			cycled = 0;
964 		end = -1;
965 	} else {
966 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
967 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
968 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
969 			range_whole = 1;
970 		cycled = 1; /* ignore range_cyclic tests */
971 	}
972 retry:
973 	done_index = index;
974 	while (!done && (index <= end)) {
975 		int i;
976 
977 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
978 			      PAGECACHE_TAG_DIRTY,
979 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
980 		if (nr_pages == 0)
981 			break;
982 
983 		for (i = 0; i < nr_pages; i++) {
984 			struct page *page = pvec.pages[i];
985 
986 			/*
987 			 * At this point, the page may be truncated or
988 			 * invalidated (changing page->mapping to NULL), or
989 			 * even swizzled back from swapper_space to tmpfs file
990 			 * mapping. However, page->index will not change
991 			 * because we have a reference on the page.
992 			 */
993 			if (page->index > end) {
994 				/*
995 				 * can't be range_cyclic (1st pass) because
996 				 * end == -1 in that case.
997 				 */
998 				done = 1;
999 				break;
1000 			}
1001 
1002 			done_index = page->index + 1;
1003 
1004 			lock_page(page);
1005 
1006 			/*
1007 			 * Page truncated or invalidated. We can freely skip it
1008 			 * then, even for data integrity operations: the page
1009 			 * has disappeared concurrently, so there could be no
1010 			 * real expectation of this data interity operation
1011 			 * even if there is now a new, dirty page at the same
1012 			 * pagecache address.
1013 			 */
1014 			if (unlikely(page->mapping != mapping)) {
1015 continue_unlock:
1016 				unlock_page(page);
1017 				continue;
1018 			}
1019 
1020 			if (!PageDirty(page)) {
1021 				/* someone wrote it for us */
1022 				goto continue_unlock;
1023 			}
1024 
1025 			if (PageWriteback(page)) {
1026 				if (wbc->sync_mode != WB_SYNC_NONE)
1027 					wait_on_page_writeback(page);
1028 				else
1029 					goto continue_unlock;
1030 			}
1031 
1032 			BUG_ON(PageWriteback(page));
1033 			if (!clear_page_dirty_for_io(page))
1034 				goto continue_unlock;
1035 
1036 			ret = (*writepage)(page, wbc, data);
1037 			if (unlikely(ret)) {
1038 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1039 					unlock_page(page);
1040 					ret = 0;
1041 				} else {
1042 					/*
1043 					 * done_index is set past this page,
1044 					 * so media errors will not choke
1045 					 * background writeout for the entire
1046 					 * file. This has consequences for
1047 					 * range_cyclic semantics (ie. it may
1048 					 * not be suitable for data integrity
1049 					 * writeout).
1050 					 */
1051 					done = 1;
1052 					break;
1053 				}
1054  			}
1055 
1056 			if (nr_to_write > 0) {
1057 				nr_to_write--;
1058 				if (nr_to_write == 0 &&
1059 				    wbc->sync_mode == WB_SYNC_NONE) {
1060 					/*
1061 					 * We stop writing back only if we are
1062 					 * not doing integrity sync. In case of
1063 					 * integrity sync we have to keep going
1064 					 * because someone may be concurrently
1065 					 * dirtying pages, and we might have
1066 					 * synced a lot of newly appeared dirty
1067 					 * pages, but have not synced all of the
1068 					 * old dirty pages.
1069 					 */
1070 					done = 1;
1071 					break;
1072 				}
1073 			}
1074 
1075 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
1076 				wbc->encountered_congestion = 1;
1077 				done = 1;
1078 				break;
1079 			}
1080 		}
1081 		pagevec_release(&pvec);
1082 		cond_resched();
1083 	}
1084 	if (!cycled && !done) {
1085 		/*
1086 		 * range_cyclic:
1087 		 * We hit the last page and there is more work to be done: wrap
1088 		 * back to the start of the file
1089 		 */
1090 		cycled = 1;
1091 		index = 0;
1092 		end = writeback_index - 1;
1093 		goto retry;
1094 	}
1095 	if (!wbc->no_nrwrite_index_update) {
1096 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
1097 			mapping->writeback_index = done_index;
1098 		wbc->nr_to_write = nr_to_write;
1099 	}
1100 
1101 	return ret;
1102 }
1103 EXPORT_SYMBOL(write_cache_pages);
1104 
1105 /*
1106  * Function used by generic_writepages to call the real writepage
1107  * function and set the mapping flags on error
1108  */
1109 static int __writepage(struct page *page, struct writeback_control *wbc,
1110 		       void *data)
1111 {
1112 	struct address_space *mapping = data;
1113 	int ret = mapping->a_ops->writepage(page, wbc);
1114 	mapping_set_error(mapping, ret);
1115 	return ret;
1116 }
1117 
1118 /**
1119  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1120  * @mapping: address space structure to write
1121  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1122  *
1123  * This is a library function, which implements the writepages()
1124  * address_space_operation.
1125  */
1126 int generic_writepages(struct address_space *mapping,
1127 		       struct writeback_control *wbc)
1128 {
1129 	/* deal with chardevs and other special file */
1130 	if (!mapping->a_ops->writepage)
1131 		return 0;
1132 
1133 	return write_cache_pages(mapping, wbc, __writepage, mapping);
1134 }
1135 
1136 EXPORT_SYMBOL(generic_writepages);
1137 
1138 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1139 {
1140 	int ret;
1141 
1142 	if (wbc->nr_to_write <= 0)
1143 		return 0;
1144 	wbc->for_writepages = 1;
1145 	if (mapping->a_ops->writepages)
1146 		ret = mapping->a_ops->writepages(mapping, wbc);
1147 	else
1148 		ret = generic_writepages(mapping, wbc);
1149 	wbc->for_writepages = 0;
1150 	return ret;
1151 }
1152 
1153 /**
1154  * write_one_page - write out a single page and optionally wait on I/O
1155  * @page: the page to write
1156  * @wait: if true, wait on writeout
1157  *
1158  * The page must be locked by the caller and will be unlocked upon return.
1159  *
1160  * write_one_page() returns a negative error code if I/O failed.
1161  */
1162 int write_one_page(struct page *page, int wait)
1163 {
1164 	struct address_space *mapping = page->mapping;
1165 	int ret = 0;
1166 	struct writeback_control wbc = {
1167 		.sync_mode = WB_SYNC_ALL,
1168 		.nr_to_write = 1,
1169 	};
1170 
1171 	BUG_ON(!PageLocked(page));
1172 
1173 	if (wait)
1174 		wait_on_page_writeback(page);
1175 
1176 	if (clear_page_dirty_for_io(page)) {
1177 		page_cache_get(page);
1178 		ret = mapping->a_ops->writepage(page, &wbc);
1179 		if (ret == 0 && wait) {
1180 			wait_on_page_writeback(page);
1181 			if (PageError(page))
1182 				ret = -EIO;
1183 		}
1184 		page_cache_release(page);
1185 	} else {
1186 		unlock_page(page);
1187 	}
1188 	return ret;
1189 }
1190 EXPORT_SYMBOL(write_one_page);
1191 
1192 /*
1193  * For address_spaces which do not use buffers nor write back.
1194  */
1195 int __set_page_dirty_no_writeback(struct page *page)
1196 {
1197 	if (!PageDirty(page))
1198 		SetPageDirty(page);
1199 	return 0;
1200 }
1201 
1202 /*
1203  * Helper function for set_page_dirty family.
1204  * NOTE: This relies on being atomic wrt interrupts.
1205  */
1206 void account_page_dirtied(struct page *page, struct address_space *mapping)
1207 {
1208 	if (mapping_cap_account_dirty(mapping)) {
1209 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1210 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1211 		task_dirty_inc(current);
1212 		task_io_account_write(PAGE_CACHE_SIZE);
1213 	}
1214 }
1215 
1216 /*
1217  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1218  * its radix tree.
1219  *
1220  * This is also used when a single buffer is being dirtied: we want to set the
1221  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1222  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1223  *
1224  * Most callers have locked the page, which pins the address_space in memory.
1225  * But zap_pte_range() does not lock the page, however in that case the
1226  * mapping is pinned by the vma's ->vm_file reference.
1227  *
1228  * We take care to handle the case where the page was truncated from the
1229  * mapping by re-checking page_mapping() inside tree_lock.
1230  */
1231 int __set_page_dirty_nobuffers(struct page *page)
1232 {
1233 	if (!TestSetPageDirty(page)) {
1234 		struct address_space *mapping = page_mapping(page);
1235 		struct address_space *mapping2;
1236 
1237 		if (!mapping)
1238 			return 1;
1239 
1240 		spin_lock_irq(&mapping->tree_lock);
1241 		mapping2 = page_mapping(page);
1242 		if (mapping2) { /* Race with truncate? */
1243 			BUG_ON(mapping2 != mapping);
1244 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1245 			account_page_dirtied(page, mapping);
1246 			radix_tree_tag_set(&mapping->page_tree,
1247 				page_index(page), PAGECACHE_TAG_DIRTY);
1248 		}
1249 		spin_unlock_irq(&mapping->tree_lock);
1250 		if (mapping->host) {
1251 			/* !PageAnon && !swapper_space */
1252 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1253 		}
1254 		return 1;
1255 	}
1256 	return 0;
1257 }
1258 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1259 
1260 /*
1261  * When a writepage implementation decides that it doesn't want to write this
1262  * page for some reason, it should redirty the locked page via
1263  * redirty_page_for_writepage() and it should then unlock the page and return 0
1264  */
1265 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1266 {
1267 	wbc->pages_skipped++;
1268 	return __set_page_dirty_nobuffers(page);
1269 }
1270 EXPORT_SYMBOL(redirty_page_for_writepage);
1271 
1272 /*
1273  * If the mapping doesn't provide a set_page_dirty a_op, then
1274  * just fall through and assume that it wants buffer_heads.
1275  */
1276 int set_page_dirty(struct page *page)
1277 {
1278 	struct address_space *mapping = page_mapping(page);
1279 
1280 	if (likely(mapping)) {
1281 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1282 #ifdef CONFIG_BLOCK
1283 		if (!spd)
1284 			spd = __set_page_dirty_buffers;
1285 #endif
1286 		return (*spd)(page);
1287 	}
1288 	if (!PageDirty(page)) {
1289 		if (!TestSetPageDirty(page))
1290 			return 1;
1291 	}
1292 	return 0;
1293 }
1294 EXPORT_SYMBOL(set_page_dirty);
1295 
1296 /*
1297  * set_page_dirty() is racy if the caller has no reference against
1298  * page->mapping->host, and if the page is unlocked.  This is because another
1299  * CPU could truncate the page off the mapping and then free the mapping.
1300  *
1301  * Usually, the page _is_ locked, or the caller is a user-space process which
1302  * holds a reference on the inode by having an open file.
1303  *
1304  * In other cases, the page should be locked before running set_page_dirty().
1305  */
1306 int set_page_dirty_lock(struct page *page)
1307 {
1308 	int ret;
1309 
1310 	lock_page_nosync(page);
1311 	ret = set_page_dirty(page);
1312 	unlock_page(page);
1313 	return ret;
1314 }
1315 EXPORT_SYMBOL(set_page_dirty_lock);
1316 
1317 /*
1318  * Clear a page's dirty flag, while caring for dirty memory accounting.
1319  * Returns true if the page was previously dirty.
1320  *
1321  * This is for preparing to put the page under writeout.  We leave the page
1322  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1323  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1324  * implementation will run either set_page_writeback() or set_page_dirty(),
1325  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1326  * back into sync.
1327  *
1328  * This incoherency between the page's dirty flag and radix-tree tag is
1329  * unfortunate, but it only exists while the page is locked.
1330  */
1331 int clear_page_dirty_for_io(struct page *page)
1332 {
1333 	struct address_space *mapping = page_mapping(page);
1334 
1335 	BUG_ON(!PageLocked(page));
1336 
1337 	ClearPageReclaim(page);
1338 	if (mapping && mapping_cap_account_dirty(mapping)) {
1339 		/*
1340 		 * Yes, Virginia, this is indeed insane.
1341 		 *
1342 		 * We use this sequence to make sure that
1343 		 *  (a) we account for dirty stats properly
1344 		 *  (b) we tell the low-level filesystem to
1345 		 *      mark the whole page dirty if it was
1346 		 *      dirty in a pagetable. Only to then
1347 		 *  (c) clean the page again and return 1 to
1348 		 *      cause the writeback.
1349 		 *
1350 		 * This way we avoid all nasty races with the
1351 		 * dirty bit in multiple places and clearing
1352 		 * them concurrently from different threads.
1353 		 *
1354 		 * Note! Normally the "set_page_dirty(page)"
1355 		 * has no effect on the actual dirty bit - since
1356 		 * that will already usually be set. But we
1357 		 * need the side effects, and it can help us
1358 		 * avoid races.
1359 		 *
1360 		 * We basically use the page "master dirty bit"
1361 		 * as a serialization point for all the different
1362 		 * threads doing their things.
1363 		 */
1364 		if (page_mkclean(page))
1365 			set_page_dirty(page);
1366 		/*
1367 		 * We carefully synchronise fault handlers against
1368 		 * installing a dirty pte and marking the page dirty
1369 		 * at this point. We do this by having them hold the
1370 		 * page lock at some point after installing their
1371 		 * pte, but before marking the page dirty.
1372 		 * Pages are always locked coming in here, so we get
1373 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1374 		 * for more comments.
1375 		 */
1376 		if (TestClearPageDirty(page)) {
1377 			dec_zone_page_state(page, NR_FILE_DIRTY);
1378 			dec_bdi_stat(mapping->backing_dev_info,
1379 					BDI_RECLAIMABLE);
1380 			return 1;
1381 		}
1382 		return 0;
1383 	}
1384 	return TestClearPageDirty(page);
1385 }
1386 EXPORT_SYMBOL(clear_page_dirty_for_io);
1387 
1388 int test_clear_page_writeback(struct page *page)
1389 {
1390 	struct address_space *mapping = page_mapping(page);
1391 	int ret;
1392 
1393 	if (mapping) {
1394 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1395 		unsigned long flags;
1396 
1397 		spin_lock_irqsave(&mapping->tree_lock, flags);
1398 		ret = TestClearPageWriteback(page);
1399 		if (ret) {
1400 			radix_tree_tag_clear(&mapping->page_tree,
1401 						page_index(page),
1402 						PAGECACHE_TAG_WRITEBACK);
1403 			if (bdi_cap_account_writeback(bdi)) {
1404 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1405 				__bdi_writeout_inc(bdi);
1406 			}
1407 		}
1408 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1409 	} else {
1410 		ret = TestClearPageWriteback(page);
1411 	}
1412 	if (ret)
1413 		dec_zone_page_state(page, NR_WRITEBACK);
1414 	return ret;
1415 }
1416 
1417 int test_set_page_writeback(struct page *page)
1418 {
1419 	struct address_space *mapping = page_mapping(page);
1420 	int ret;
1421 
1422 	if (mapping) {
1423 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1424 		unsigned long flags;
1425 
1426 		spin_lock_irqsave(&mapping->tree_lock, flags);
1427 		ret = TestSetPageWriteback(page);
1428 		if (!ret) {
1429 			radix_tree_tag_set(&mapping->page_tree,
1430 						page_index(page),
1431 						PAGECACHE_TAG_WRITEBACK);
1432 			if (bdi_cap_account_writeback(bdi))
1433 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1434 		}
1435 		if (!PageDirty(page))
1436 			radix_tree_tag_clear(&mapping->page_tree,
1437 						page_index(page),
1438 						PAGECACHE_TAG_DIRTY);
1439 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1440 	} else {
1441 		ret = TestSetPageWriteback(page);
1442 	}
1443 	if (!ret)
1444 		inc_zone_page_state(page, NR_WRITEBACK);
1445 	return ret;
1446 
1447 }
1448 EXPORT_SYMBOL(test_set_page_writeback);
1449 
1450 /*
1451  * Return true if any of the pages in the mapping are marked with the
1452  * passed tag.
1453  */
1454 int mapping_tagged(struct address_space *mapping, int tag)
1455 {
1456 	int ret;
1457 	rcu_read_lock();
1458 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1459 	rcu_read_unlock();
1460 	return ret;
1461 }
1462 EXPORT_SYMBOL(mapping_tagged);
1463