xref: /openbmc/linux/mm/page-writeback.c (revision a2fb4d78)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 unsigned long global_dirty_limit;
126 
127 /*
128  * Scale the writeback cache size proportional to the relative writeout speeds.
129  *
130  * We do this by keeping a floating proportion between BDIs, based on page
131  * writeback completions [end_page_writeback()]. Those devices that write out
132  * pages fastest will get the larger share, while the slower will get a smaller
133  * share.
134  *
135  * We use page writeout completions because we are interested in getting rid of
136  * dirty pages. Having them written out is the primary goal.
137  *
138  * We introduce a concept of time, a period over which we measure these events,
139  * because demand can/will vary over time. The length of this period itself is
140  * measured in page writeback completions.
141  *
142  */
143 static struct fprop_global writeout_completions;
144 
145 static void writeout_period(unsigned long t);
146 /* Timer for aging of writeout_completions */
147 static struct timer_list writeout_period_timer =
148 		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149 static unsigned long writeout_period_time = 0;
150 
151 /*
152  * Length of period for aging writeout fractions of bdis. This is an
153  * arbitrarily chosen number. The longer the period, the slower fractions will
154  * reflect changes in current writeout rate.
155  */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157 
158 /*
159  * Work out the current dirty-memory clamping and background writeout
160  * thresholds.
161  *
162  * The main aim here is to lower them aggressively if there is a lot of mapped
163  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
164  * pages.  It is better to clamp down on writers than to start swapping, and
165  * performing lots of scanning.
166  *
167  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
168  *
169  * We don't permit the clamping level to fall below 5% - that is getting rather
170  * excessive.
171  *
172  * We make sure that the background writeout level is below the adjusted
173  * clamping level.
174  */
175 
176 /*
177  * In a memory zone, there is a certain amount of pages we consider
178  * available for the page cache, which is essentially the number of
179  * free and reclaimable pages, minus some zone reserves to protect
180  * lowmem and the ability to uphold the zone's watermarks without
181  * requiring writeback.
182  *
183  * This number of dirtyable pages is the base value of which the
184  * user-configurable dirty ratio is the effictive number of pages that
185  * are allowed to be actually dirtied.  Per individual zone, or
186  * globally by using the sum of dirtyable pages over all zones.
187  *
188  * Because the user is allowed to specify the dirty limit globally as
189  * absolute number of bytes, calculating the per-zone dirty limit can
190  * require translating the configured limit into a percentage of
191  * global dirtyable memory first.
192  */
193 
194 /**
195  * zone_dirtyable_memory - number of dirtyable pages in a zone
196  * @zone: the zone
197  *
198  * Returns the zone's number of pages potentially available for dirty
199  * page cache.  This is the base value for the per-zone dirty limits.
200  */
201 static unsigned long zone_dirtyable_memory(struct zone *zone)
202 {
203 	unsigned long nr_pages;
204 
205 	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
206 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
207 
208 	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
209 	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
210 
211 	return nr_pages;
212 }
213 
214 static unsigned long highmem_dirtyable_memory(unsigned long total)
215 {
216 #ifdef CONFIG_HIGHMEM
217 	int node;
218 	unsigned long x = 0;
219 
220 	for_each_node_state(node, N_HIGH_MEMORY) {
221 		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
222 
223 		x += zone_dirtyable_memory(z);
224 	}
225 	/*
226 	 * Unreclaimable memory (kernel memory or anonymous memory
227 	 * without swap) can bring down the dirtyable pages below
228 	 * the zone's dirty balance reserve and the above calculation
229 	 * will underflow.  However we still want to add in nodes
230 	 * which are below threshold (negative values) to get a more
231 	 * accurate calculation but make sure that the total never
232 	 * underflows.
233 	 */
234 	if ((long)x < 0)
235 		x = 0;
236 
237 	/*
238 	 * Make sure that the number of highmem pages is never larger
239 	 * than the number of the total dirtyable memory. This can only
240 	 * occur in very strange VM situations but we want to make sure
241 	 * that this does not occur.
242 	 */
243 	return min(x, total);
244 #else
245 	return 0;
246 #endif
247 }
248 
249 /**
250  * global_dirtyable_memory - number of globally dirtyable pages
251  *
252  * Returns the global number of pages potentially available for dirty
253  * page cache.  This is the base value for the global dirty limits.
254  */
255 static unsigned long global_dirtyable_memory(void)
256 {
257 	unsigned long x;
258 
259 	x = global_page_state(NR_FREE_PAGES);
260 	x -= min(x, dirty_balance_reserve);
261 
262 	x += global_page_state(NR_INACTIVE_FILE);
263 	x += global_page_state(NR_ACTIVE_FILE);
264 
265 	if (!vm_highmem_is_dirtyable)
266 		x -= highmem_dirtyable_memory(x);
267 
268 	return x + 1;	/* Ensure that we never return 0 */
269 }
270 
271 /*
272  * global_dirty_limits - background-writeback and dirty-throttling thresholds
273  *
274  * Calculate the dirty thresholds based on sysctl parameters
275  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
276  * - vm.dirty_ratio             or  vm.dirty_bytes
277  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
278  * real-time tasks.
279  */
280 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
281 {
282 	unsigned long background;
283 	unsigned long dirty;
284 	unsigned long uninitialized_var(available_memory);
285 	struct task_struct *tsk;
286 
287 	if (!vm_dirty_bytes || !dirty_background_bytes)
288 		available_memory = global_dirtyable_memory();
289 
290 	if (vm_dirty_bytes)
291 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
292 	else
293 		dirty = (vm_dirty_ratio * available_memory) / 100;
294 
295 	if (dirty_background_bytes)
296 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
297 	else
298 		background = (dirty_background_ratio * available_memory) / 100;
299 
300 	if (background >= dirty)
301 		background = dirty / 2;
302 	tsk = current;
303 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
304 		background += background / 4;
305 		dirty += dirty / 4;
306 	}
307 	*pbackground = background;
308 	*pdirty = dirty;
309 	trace_global_dirty_state(background, dirty);
310 }
311 
312 /**
313  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
314  * @zone: the zone
315  *
316  * Returns the maximum number of dirty pages allowed in a zone, based
317  * on the zone's dirtyable memory.
318  */
319 static unsigned long zone_dirty_limit(struct zone *zone)
320 {
321 	unsigned long zone_memory = zone_dirtyable_memory(zone);
322 	struct task_struct *tsk = current;
323 	unsigned long dirty;
324 
325 	if (vm_dirty_bytes)
326 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
327 			zone_memory / global_dirtyable_memory();
328 	else
329 		dirty = vm_dirty_ratio * zone_memory / 100;
330 
331 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
332 		dirty += dirty / 4;
333 
334 	return dirty;
335 }
336 
337 /**
338  * zone_dirty_ok - tells whether a zone is within its dirty limits
339  * @zone: the zone to check
340  *
341  * Returns %true when the dirty pages in @zone are within the zone's
342  * dirty limit, %false if the limit is exceeded.
343  */
344 bool zone_dirty_ok(struct zone *zone)
345 {
346 	unsigned long limit = zone_dirty_limit(zone);
347 
348 	return zone_page_state(zone, NR_FILE_DIRTY) +
349 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
350 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
351 }
352 
353 int dirty_background_ratio_handler(struct ctl_table *table, int write,
354 		void __user *buffer, size_t *lenp,
355 		loff_t *ppos)
356 {
357 	int ret;
358 
359 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
360 	if (ret == 0 && write)
361 		dirty_background_bytes = 0;
362 	return ret;
363 }
364 
365 int dirty_background_bytes_handler(struct ctl_table *table, int write,
366 		void __user *buffer, size_t *lenp,
367 		loff_t *ppos)
368 {
369 	int ret;
370 
371 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
372 	if (ret == 0 && write)
373 		dirty_background_ratio = 0;
374 	return ret;
375 }
376 
377 int dirty_ratio_handler(struct ctl_table *table, int write,
378 		void __user *buffer, size_t *lenp,
379 		loff_t *ppos)
380 {
381 	int old_ratio = vm_dirty_ratio;
382 	int ret;
383 
384 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
385 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
386 		writeback_set_ratelimit();
387 		vm_dirty_bytes = 0;
388 	}
389 	return ret;
390 }
391 
392 int dirty_bytes_handler(struct ctl_table *table, int write,
393 		void __user *buffer, size_t *lenp,
394 		loff_t *ppos)
395 {
396 	unsigned long old_bytes = vm_dirty_bytes;
397 	int ret;
398 
399 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
400 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
401 		writeback_set_ratelimit();
402 		vm_dirty_ratio = 0;
403 	}
404 	return ret;
405 }
406 
407 static unsigned long wp_next_time(unsigned long cur_time)
408 {
409 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
410 	/* 0 has a special meaning... */
411 	if (!cur_time)
412 		return 1;
413 	return cur_time;
414 }
415 
416 /*
417  * Increment the BDI's writeout completion count and the global writeout
418  * completion count. Called from test_clear_page_writeback().
419  */
420 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
421 {
422 	__inc_bdi_stat(bdi, BDI_WRITTEN);
423 	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
424 			       bdi->max_prop_frac);
425 	/* First event after period switching was turned off? */
426 	if (!unlikely(writeout_period_time)) {
427 		/*
428 		 * We can race with other __bdi_writeout_inc calls here but
429 		 * it does not cause any harm since the resulting time when
430 		 * timer will fire and what is in writeout_period_time will be
431 		 * roughly the same.
432 		 */
433 		writeout_period_time = wp_next_time(jiffies);
434 		mod_timer(&writeout_period_timer, writeout_period_time);
435 	}
436 }
437 
438 void bdi_writeout_inc(struct backing_dev_info *bdi)
439 {
440 	unsigned long flags;
441 
442 	local_irq_save(flags);
443 	__bdi_writeout_inc(bdi);
444 	local_irq_restore(flags);
445 }
446 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
447 
448 /*
449  * Obtain an accurate fraction of the BDI's portion.
450  */
451 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
452 		long *numerator, long *denominator)
453 {
454 	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
455 				numerator, denominator);
456 }
457 
458 /*
459  * On idle system, we can be called long after we scheduled because we use
460  * deferred timers so count with missed periods.
461  */
462 static void writeout_period(unsigned long t)
463 {
464 	int miss_periods = (jiffies - writeout_period_time) /
465 						 VM_COMPLETIONS_PERIOD_LEN;
466 
467 	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
468 		writeout_period_time = wp_next_time(writeout_period_time +
469 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
470 		mod_timer(&writeout_period_timer, writeout_period_time);
471 	} else {
472 		/*
473 		 * Aging has zeroed all fractions. Stop wasting CPU on period
474 		 * updates.
475 		 */
476 		writeout_period_time = 0;
477 	}
478 }
479 
480 /*
481  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
482  * registered backing devices, which, for obvious reasons, can not
483  * exceed 100%.
484  */
485 static unsigned int bdi_min_ratio;
486 
487 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
488 {
489 	int ret = 0;
490 
491 	spin_lock_bh(&bdi_lock);
492 	if (min_ratio > bdi->max_ratio) {
493 		ret = -EINVAL;
494 	} else {
495 		min_ratio -= bdi->min_ratio;
496 		if (bdi_min_ratio + min_ratio < 100) {
497 			bdi_min_ratio += min_ratio;
498 			bdi->min_ratio += min_ratio;
499 		} else {
500 			ret = -EINVAL;
501 		}
502 	}
503 	spin_unlock_bh(&bdi_lock);
504 
505 	return ret;
506 }
507 
508 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
509 {
510 	int ret = 0;
511 
512 	if (max_ratio > 100)
513 		return -EINVAL;
514 
515 	spin_lock_bh(&bdi_lock);
516 	if (bdi->min_ratio > max_ratio) {
517 		ret = -EINVAL;
518 	} else {
519 		bdi->max_ratio = max_ratio;
520 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
521 	}
522 	spin_unlock_bh(&bdi_lock);
523 
524 	return ret;
525 }
526 EXPORT_SYMBOL(bdi_set_max_ratio);
527 
528 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
529 					   unsigned long bg_thresh)
530 {
531 	return (thresh + bg_thresh) / 2;
532 }
533 
534 static unsigned long hard_dirty_limit(unsigned long thresh)
535 {
536 	return max(thresh, global_dirty_limit);
537 }
538 
539 /**
540  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
541  * @bdi: the backing_dev_info to query
542  * @dirty: global dirty limit in pages
543  *
544  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
545  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
546  *
547  * Note that balance_dirty_pages() will only seriously take it as a hard limit
548  * when sleeping max_pause per page is not enough to keep the dirty pages under
549  * control. For example, when the device is completely stalled due to some error
550  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
551  * In the other normal situations, it acts more gently by throttling the tasks
552  * more (rather than completely block them) when the bdi dirty pages go high.
553  *
554  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
555  * - starving fast devices
556  * - piling up dirty pages (that will take long time to sync) on slow devices
557  *
558  * The bdi's share of dirty limit will be adapting to its throughput and
559  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
560  */
561 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
562 {
563 	u64 bdi_dirty;
564 	long numerator, denominator;
565 
566 	/*
567 	 * Calculate this BDI's share of the dirty ratio.
568 	 */
569 	bdi_writeout_fraction(bdi, &numerator, &denominator);
570 
571 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
572 	bdi_dirty *= numerator;
573 	do_div(bdi_dirty, denominator);
574 
575 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
576 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
577 		bdi_dirty = dirty * bdi->max_ratio / 100;
578 
579 	return bdi_dirty;
580 }
581 
582 /*
583  *                           setpoint - dirty 3
584  *        f(dirty) := 1.0 + (----------------)
585  *                           limit - setpoint
586  *
587  * it's a 3rd order polynomial that subjects to
588  *
589  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
590  * (2) f(setpoint) = 1.0 => the balance point
591  * (3) f(limit)    = 0   => the hard limit
592  * (4) df/dx      <= 0	 => negative feedback control
593  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
594  *     => fast response on large errors; small oscillation near setpoint
595  */
596 static inline long long pos_ratio_polynom(unsigned long setpoint,
597 					  unsigned long dirty,
598 					  unsigned long limit)
599 {
600 	long long pos_ratio;
601 	long x;
602 
603 	x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
604 		    limit - setpoint + 1);
605 	pos_ratio = x;
606 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
607 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
608 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
609 
610 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
611 }
612 
613 /*
614  * Dirty position control.
615  *
616  * (o) global/bdi setpoints
617  *
618  * We want the dirty pages be balanced around the global/bdi setpoints.
619  * When the number of dirty pages is higher/lower than the setpoint, the
620  * dirty position control ratio (and hence task dirty ratelimit) will be
621  * decreased/increased to bring the dirty pages back to the setpoint.
622  *
623  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
624  *
625  *     if (dirty < setpoint) scale up   pos_ratio
626  *     if (dirty > setpoint) scale down pos_ratio
627  *
628  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
629  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
630  *
631  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
632  *
633  * (o) global control line
634  *
635  *     ^ pos_ratio
636  *     |
637  *     |            |<===== global dirty control scope ======>|
638  * 2.0 .............*
639  *     |            .*
640  *     |            . *
641  *     |            .   *
642  *     |            .     *
643  *     |            .        *
644  *     |            .            *
645  * 1.0 ................................*
646  *     |            .                  .     *
647  *     |            .                  .          *
648  *     |            .                  .              *
649  *     |            .                  .                 *
650  *     |            .                  .                    *
651  *   0 +------------.------------------.----------------------*------------->
652  *           freerun^          setpoint^                 limit^   dirty pages
653  *
654  * (o) bdi control line
655  *
656  *     ^ pos_ratio
657  *     |
658  *     |            *
659  *     |              *
660  *     |                *
661  *     |                  *
662  *     |                    * |<=========== span ============>|
663  * 1.0 .......................*
664  *     |                      . *
665  *     |                      .   *
666  *     |                      .     *
667  *     |                      .       *
668  *     |                      .         *
669  *     |                      .           *
670  *     |                      .             *
671  *     |                      .               *
672  *     |                      .                 *
673  *     |                      .                   *
674  *     |                      .                     *
675  * 1/4 ...............................................* * * * * * * * * * * *
676  *     |                      .                         .
677  *     |                      .                           .
678  *     |                      .                             .
679  *   0 +----------------------.-------------------------------.------------->
680  *                bdi_setpoint^                    x_intercept^
681  *
682  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
683  * be smoothly throttled down to normal if it starts high in situations like
684  * - start writing to a slow SD card and a fast disk at the same time. The SD
685  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
686  * - the bdi dirty thresh drops quickly due to change of JBOD workload
687  */
688 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
689 					unsigned long thresh,
690 					unsigned long bg_thresh,
691 					unsigned long dirty,
692 					unsigned long bdi_thresh,
693 					unsigned long bdi_dirty)
694 {
695 	unsigned long write_bw = bdi->avg_write_bandwidth;
696 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
697 	unsigned long limit = hard_dirty_limit(thresh);
698 	unsigned long x_intercept;
699 	unsigned long setpoint;		/* dirty pages' target balance point */
700 	unsigned long bdi_setpoint;
701 	unsigned long span;
702 	long long pos_ratio;		/* for scaling up/down the rate limit */
703 	long x;
704 
705 	if (unlikely(dirty >= limit))
706 		return 0;
707 
708 	/*
709 	 * global setpoint
710 	 *
711 	 * See comment for pos_ratio_polynom().
712 	 */
713 	setpoint = (freerun + limit) / 2;
714 	pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
715 
716 	/*
717 	 * The strictlimit feature is a tool preventing mistrusted filesystems
718 	 * from growing a large number of dirty pages before throttling. For
719 	 * such filesystems balance_dirty_pages always checks bdi counters
720 	 * against bdi limits. Even if global "nr_dirty" is under "freerun".
721 	 * This is especially important for fuse which sets bdi->max_ratio to
722 	 * 1% by default. Without strictlimit feature, fuse writeback may
723 	 * consume arbitrary amount of RAM because it is accounted in
724 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
725 	 *
726 	 * Here, in bdi_position_ratio(), we calculate pos_ratio based on
727 	 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
728 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
729 	 * limits are set by default to 10% and 20% (background and throttle).
730 	 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
731 	 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
732 	 * about ~6K pages (as the average of background and throttle bdi
733 	 * limits). The 3rd order polynomial will provide positive feedback if
734 	 * bdi_dirty is under bdi_setpoint and vice versa.
735 	 *
736 	 * Note, that we cannot use global counters in these calculations
737 	 * because we want to throttle process writing to a strictlimit BDI
738 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
739 	 * in the example above).
740 	 */
741 	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
742 		long long bdi_pos_ratio;
743 		unsigned long bdi_bg_thresh;
744 
745 		if (bdi_dirty < 8)
746 			return min_t(long long, pos_ratio * 2,
747 				     2 << RATELIMIT_CALC_SHIFT);
748 
749 		if (bdi_dirty >= bdi_thresh)
750 			return 0;
751 
752 		bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
753 		bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
754 						     bdi_bg_thresh);
755 
756 		if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
757 			return 0;
758 
759 		bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
760 						  bdi_thresh);
761 
762 		/*
763 		 * Typically, for strictlimit case, bdi_setpoint << setpoint
764 		 * and pos_ratio >> bdi_pos_ratio. In the other words global
765 		 * state ("dirty") is not limiting factor and we have to
766 		 * make decision based on bdi counters. But there is an
767 		 * important case when global pos_ratio should get precedence:
768 		 * global limits are exceeded (e.g. due to activities on other
769 		 * BDIs) while given strictlimit BDI is below limit.
770 		 *
771 		 * "pos_ratio * bdi_pos_ratio" would work for the case above,
772 		 * but it would look too non-natural for the case of all
773 		 * activity in the system coming from a single strictlimit BDI
774 		 * with bdi->max_ratio == 100%.
775 		 *
776 		 * Note that min() below somewhat changes the dynamics of the
777 		 * control system. Normally, pos_ratio value can be well over 3
778 		 * (when globally we are at freerun and bdi is well below bdi
779 		 * setpoint). Now the maximum pos_ratio in the same situation
780 		 * is 2. We might want to tweak this if we observe the control
781 		 * system is too slow to adapt.
782 		 */
783 		return min(pos_ratio, bdi_pos_ratio);
784 	}
785 
786 	/*
787 	 * We have computed basic pos_ratio above based on global situation. If
788 	 * the bdi is over/under its share of dirty pages, we want to scale
789 	 * pos_ratio further down/up. That is done by the following mechanism.
790 	 */
791 
792 	/*
793 	 * bdi setpoint
794 	 *
795 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
796 	 *
797 	 *                        x_intercept - bdi_dirty
798 	 *                     := --------------------------
799 	 *                        x_intercept - bdi_setpoint
800 	 *
801 	 * The main bdi control line is a linear function that subjects to
802 	 *
803 	 * (1) f(bdi_setpoint) = 1.0
804 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
805 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
806 	 *
807 	 * For single bdi case, the dirty pages are observed to fluctuate
808 	 * regularly within range
809 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
810 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
811 	 * fluctuation range for pos_ratio.
812 	 *
813 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
814 	 * own size, so move the slope over accordingly and choose a slope that
815 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
816 	 */
817 	if (unlikely(bdi_thresh > thresh))
818 		bdi_thresh = thresh;
819 	/*
820 	 * It's very possible that bdi_thresh is close to 0 not because the
821 	 * device is slow, but that it has remained inactive for long time.
822 	 * Honour such devices a reasonable good (hopefully IO efficient)
823 	 * threshold, so that the occasional writes won't be blocked and active
824 	 * writes can rampup the threshold quickly.
825 	 */
826 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
827 	/*
828 	 * scale global setpoint to bdi's:
829 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
830 	 */
831 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
832 	bdi_setpoint = setpoint * (u64)x >> 16;
833 	/*
834 	 * Use span=(8*write_bw) in single bdi case as indicated by
835 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
836 	 *
837 	 *        bdi_thresh                    thresh - bdi_thresh
838 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
839 	 *          thresh                            thresh
840 	 */
841 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
842 	x_intercept = bdi_setpoint + span;
843 
844 	if (bdi_dirty < x_intercept - span / 4) {
845 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
846 				    x_intercept - bdi_setpoint + 1);
847 	} else
848 		pos_ratio /= 4;
849 
850 	/*
851 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
852 	 * It may push the desired control point of global dirty pages higher
853 	 * than setpoint.
854 	 */
855 	x_intercept = bdi_thresh / 2;
856 	if (bdi_dirty < x_intercept) {
857 		if (bdi_dirty > x_intercept / 8)
858 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
859 		else
860 			pos_ratio *= 8;
861 	}
862 
863 	return pos_ratio;
864 }
865 
866 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
867 				       unsigned long elapsed,
868 				       unsigned long written)
869 {
870 	const unsigned long period = roundup_pow_of_two(3 * HZ);
871 	unsigned long avg = bdi->avg_write_bandwidth;
872 	unsigned long old = bdi->write_bandwidth;
873 	u64 bw;
874 
875 	/*
876 	 * bw = written * HZ / elapsed
877 	 *
878 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
879 	 * write_bandwidth = ---------------------------------------------------
880 	 *                                          period
881 	 */
882 	bw = written - bdi->written_stamp;
883 	bw *= HZ;
884 	if (unlikely(elapsed > period)) {
885 		do_div(bw, elapsed);
886 		avg = bw;
887 		goto out;
888 	}
889 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
890 	bw >>= ilog2(period);
891 
892 	/*
893 	 * one more level of smoothing, for filtering out sudden spikes
894 	 */
895 	if (avg > old && old >= (unsigned long)bw)
896 		avg -= (avg - old) >> 3;
897 
898 	if (avg < old && old <= (unsigned long)bw)
899 		avg += (old - avg) >> 3;
900 
901 out:
902 	bdi->write_bandwidth = bw;
903 	bdi->avg_write_bandwidth = avg;
904 }
905 
906 /*
907  * The global dirtyable memory and dirty threshold could be suddenly knocked
908  * down by a large amount (eg. on the startup of KVM in a swapless system).
909  * This may throw the system into deep dirty exceeded state and throttle
910  * heavy/light dirtiers alike. To retain good responsiveness, maintain
911  * global_dirty_limit for tracking slowly down to the knocked down dirty
912  * threshold.
913  */
914 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
915 {
916 	unsigned long limit = global_dirty_limit;
917 
918 	/*
919 	 * Follow up in one step.
920 	 */
921 	if (limit < thresh) {
922 		limit = thresh;
923 		goto update;
924 	}
925 
926 	/*
927 	 * Follow down slowly. Use the higher one as the target, because thresh
928 	 * may drop below dirty. This is exactly the reason to introduce
929 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
930 	 */
931 	thresh = max(thresh, dirty);
932 	if (limit > thresh) {
933 		limit -= (limit - thresh) >> 5;
934 		goto update;
935 	}
936 	return;
937 update:
938 	global_dirty_limit = limit;
939 }
940 
941 static void global_update_bandwidth(unsigned long thresh,
942 				    unsigned long dirty,
943 				    unsigned long now)
944 {
945 	static DEFINE_SPINLOCK(dirty_lock);
946 	static unsigned long update_time;
947 
948 	/*
949 	 * check locklessly first to optimize away locking for the most time
950 	 */
951 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
952 		return;
953 
954 	spin_lock(&dirty_lock);
955 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
956 		update_dirty_limit(thresh, dirty);
957 		update_time = now;
958 	}
959 	spin_unlock(&dirty_lock);
960 }
961 
962 /*
963  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
964  *
965  * Normal bdi tasks will be curbed at or below it in long term.
966  * Obviously it should be around (write_bw / N) when there are N dd tasks.
967  */
968 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
969 				       unsigned long thresh,
970 				       unsigned long bg_thresh,
971 				       unsigned long dirty,
972 				       unsigned long bdi_thresh,
973 				       unsigned long bdi_dirty,
974 				       unsigned long dirtied,
975 				       unsigned long elapsed)
976 {
977 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
978 	unsigned long limit = hard_dirty_limit(thresh);
979 	unsigned long setpoint = (freerun + limit) / 2;
980 	unsigned long write_bw = bdi->avg_write_bandwidth;
981 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
982 	unsigned long dirty_rate;
983 	unsigned long task_ratelimit;
984 	unsigned long balanced_dirty_ratelimit;
985 	unsigned long pos_ratio;
986 	unsigned long step;
987 	unsigned long x;
988 
989 	/*
990 	 * The dirty rate will match the writeout rate in long term, except
991 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
992 	 */
993 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
994 
995 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
996 				       bdi_thresh, bdi_dirty);
997 	/*
998 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
999 	 */
1000 	task_ratelimit = (u64)dirty_ratelimit *
1001 					pos_ratio >> RATELIMIT_CALC_SHIFT;
1002 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1003 
1004 	/*
1005 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1006 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
1007 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1008 	 * formula will yield the balanced rate limit (write_bw / N).
1009 	 *
1010 	 * Note that the expanded form is not a pure rate feedback:
1011 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1012 	 * but also takes pos_ratio into account:
1013 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1014 	 *
1015 	 * (1) is not realistic because pos_ratio also takes part in balancing
1016 	 * the dirty rate.  Consider the state
1017 	 *	pos_ratio = 0.5						     (3)
1018 	 *	rate = 2 * (write_bw / N)				     (4)
1019 	 * If (1) is used, it will stuck in that state! Because each dd will
1020 	 * be throttled at
1021 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1022 	 * yielding
1023 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1024 	 * put (6) into (1) we get
1025 	 *	rate_(i+1) = rate_(i)					     (7)
1026 	 *
1027 	 * So we end up using (2) to always keep
1028 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1029 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1030 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1031 	 * the dirty count meet the setpoint, but also where the slope of
1032 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1033 	 */
1034 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1035 					   dirty_rate | 1);
1036 	/*
1037 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1038 	 */
1039 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1040 		balanced_dirty_ratelimit = write_bw;
1041 
1042 	/*
1043 	 * We could safely do this and return immediately:
1044 	 *
1045 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1046 	 *
1047 	 * However to get a more stable dirty_ratelimit, the below elaborated
1048 	 * code makes use of task_ratelimit to filter out singular points and
1049 	 * limit the step size.
1050 	 *
1051 	 * The below code essentially only uses the relative value of
1052 	 *
1053 	 *	task_ratelimit - dirty_ratelimit
1054 	 *	= (pos_ratio - 1) * dirty_ratelimit
1055 	 *
1056 	 * which reflects the direction and size of dirty position error.
1057 	 */
1058 
1059 	/*
1060 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1061 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1062 	 * For example, when
1063 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1064 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1065 	 * lowering dirty_ratelimit will help meet both the position and rate
1066 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1067 	 * only help meet the rate target. After all, what the users ultimately
1068 	 * feel and care are stable dirty rate and small position error.
1069 	 *
1070 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1071 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1072 	 * keeps jumping around randomly and can even leap far away at times
1073 	 * due to the small 200ms estimation period of dirty_rate (we want to
1074 	 * keep that period small to reduce time lags).
1075 	 */
1076 	step = 0;
1077 
1078 	/*
1079 	 * For strictlimit case, calculations above were based on bdi counters
1080 	 * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1081 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1082 	 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1083 	 * "dirty" and bdi_setpoint as "setpoint".
1084 	 *
1085 	 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1086 	 * it's possible that bdi_thresh is close to zero due to inactivity
1087 	 * of backing device (see the implementation of bdi_dirty_limit()).
1088 	 */
1089 	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1090 		dirty = bdi_dirty;
1091 		if (bdi_dirty < 8)
1092 			setpoint = bdi_dirty + 1;
1093 		else
1094 			setpoint = (bdi_thresh +
1095 				    bdi_dirty_limit(bdi, bg_thresh)) / 2;
1096 	}
1097 
1098 	if (dirty < setpoint) {
1099 		x = min(bdi->balanced_dirty_ratelimit,
1100 			 min(balanced_dirty_ratelimit, task_ratelimit));
1101 		if (dirty_ratelimit < x)
1102 			step = x - dirty_ratelimit;
1103 	} else {
1104 		x = max(bdi->balanced_dirty_ratelimit,
1105 			 max(balanced_dirty_ratelimit, task_ratelimit));
1106 		if (dirty_ratelimit > x)
1107 			step = dirty_ratelimit - x;
1108 	}
1109 
1110 	/*
1111 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1112 	 * rate itself is constantly fluctuating. So decrease the track speed
1113 	 * when it gets close to the target. Helps eliminate pointless tremors.
1114 	 */
1115 	step >>= dirty_ratelimit / (2 * step + 1);
1116 	/*
1117 	 * Limit the tracking speed to avoid overshooting.
1118 	 */
1119 	step = (step + 7) / 8;
1120 
1121 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1122 		dirty_ratelimit += step;
1123 	else
1124 		dirty_ratelimit -= step;
1125 
1126 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1127 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1128 
1129 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1130 }
1131 
1132 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1133 			    unsigned long thresh,
1134 			    unsigned long bg_thresh,
1135 			    unsigned long dirty,
1136 			    unsigned long bdi_thresh,
1137 			    unsigned long bdi_dirty,
1138 			    unsigned long start_time)
1139 {
1140 	unsigned long now = jiffies;
1141 	unsigned long elapsed = now - bdi->bw_time_stamp;
1142 	unsigned long dirtied;
1143 	unsigned long written;
1144 
1145 	/*
1146 	 * rate-limit, only update once every 200ms.
1147 	 */
1148 	if (elapsed < BANDWIDTH_INTERVAL)
1149 		return;
1150 
1151 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1152 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1153 
1154 	/*
1155 	 * Skip quiet periods when disk bandwidth is under-utilized.
1156 	 * (at least 1s idle time between two flusher runs)
1157 	 */
1158 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1159 		goto snapshot;
1160 
1161 	if (thresh) {
1162 		global_update_bandwidth(thresh, dirty, now);
1163 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1164 					   bdi_thresh, bdi_dirty,
1165 					   dirtied, elapsed);
1166 	}
1167 	bdi_update_write_bandwidth(bdi, elapsed, written);
1168 
1169 snapshot:
1170 	bdi->dirtied_stamp = dirtied;
1171 	bdi->written_stamp = written;
1172 	bdi->bw_time_stamp = now;
1173 }
1174 
1175 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1176 				 unsigned long thresh,
1177 				 unsigned long bg_thresh,
1178 				 unsigned long dirty,
1179 				 unsigned long bdi_thresh,
1180 				 unsigned long bdi_dirty,
1181 				 unsigned long start_time)
1182 {
1183 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1184 		return;
1185 	spin_lock(&bdi->wb.list_lock);
1186 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1187 			       bdi_thresh, bdi_dirty, start_time);
1188 	spin_unlock(&bdi->wb.list_lock);
1189 }
1190 
1191 /*
1192  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1193  * will look to see if it needs to start dirty throttling.
1194  *
1195  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1196  * global_page_state() too often. So scale it near-sqrt to the safety margin
1197  * (the number of pages we may dirty without exceeding the dirty limits).
1198  */
1199 static unsigned long dirty_poll_interval(unsigned long dirty,
1200 					 unsigned long thresh)
1201 {
1202 	if (thresh > dirty)
1203 		return 1UL << (ilog2(thresh - dirty) >> 1);
1204 
1205 	return 1;
1206 }
1207 
1208 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1209 				   unsigned long bdi_dirty)
1210 {
1211 	unsigned long bw = bdi->avg_write_bandwidth;
1212 	unsigned long t;
1213 
1214 	/*
1215 	 * Limit pause time for small memory systems. If sleeping for too long
1216 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1217 	 * idle.
1218 	 *
1219 	 * 8 serves as the safety ratio.
1220 	 */
1221 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1222 	t++;
1223 
1224 	return min_t(unsigned long, t, MAX_PAUSE);
1225 }
1226 
1227 static long bdi_min_pause(struct backing_dev_info *bdi,
1228 			  long max_pause,
1229 			  unsigned long task_ratelimit,
1230 			  unsigned long dirty_ratelimit,
1231 			  int *nr_dirtied_pause)
1232 {
1233 	long hi = ilog2(bdi->avg_write_bandwidth);
1234 	long lo = ilog2(bdi->dirty_ratelimit);
1235 	long t;		/* target pause */
1236 	long pause;	/* estimated next pause */
1237 	int pages;	/* target nr_dirtied_pause */
1238 
1239 	/* target for 10ms pause on 1-dd case */
1240 	t = max(1, HZ / 100);
1241 
1242 	/*
1243 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1244 	 * overheads.
1245 	 *
1246 	 * (N * 10ms) on 2^N concurrent tasks.
1247 	 */
1248 	if (hi > lo)
1249 		t += (hi - lo) * (10 * HZ) / 1024;
1250 
1251 	/*
1252 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1253 	 * on the much more stable dirty_ratelimit. However the next pause time
1254 	 * will be computed based on task_ratelimit and the two rate limits may
1255 	 * depart considerably at some time. Especially if task_ratelimit goes
1256 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1257 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1258 	 * result task_ratelimit won't be executed faithfully, which could
1259 	 * eventually bring down dirty_ratelimit.
1260 	 *
1261 	 * We apply two rules to fix it up:
1262 	 * 1) try to estimate the next pause time and if necessary, use a lower
1263 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1264 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1265 	 * 2) limit the target pause time to max_pause/2, so that the normal
1266 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1267 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1268 	 */
1269 	t = min(t, 1 + max_pause / 2);
1270 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1271 
1272 	/*
1273 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1274 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1275 	 * When the 16 consecutive reads are often interrupted by some dirty
1276 	 * throttling pause during the async writes, cfq will go into idles
1277 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1278 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1279 	 */
1280 	if (pages < DIRTY_POLL_THRESH) {
1281 		t = max_pause;
1282 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1283 		if (pages > DIRTY_POLL_THRESH) {
1284 			pages = DIRTY_POLL_THRESH;
1285 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1286 		}
1287 	}
1288 
1289 	pause = HZ * pages / (task_ratelimit + 1);
1290 	if (pause > max_pause) {
1291 		t = max_pause;
1292 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1293 	}
1294 
1295 	*nr_dirtied_pause = pages;
1296 	/*
1297 	 * The minimal pause time will normally be half the target pause time.
1298 	 */
1299 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1300 }
1301 
1302 static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1303 				    unsigned long dirty_thresh,
1304 				    unsigned long background_thresh,
1305 				    unsigned long *bdi_dirty,
1306 				    unsigned long *bdi_thresh,
1307 				    unsigned long *bdi_bg_thresh)
1308 {
1309 	unsigned long bdi_reclaimable;
1310 
1311 	/*
1312 	 * bdi_thresh is not treated as some limiting factor as
1313 	 * dirty_thresh, due to reasons
1314 	 * - in JBOD setup, bdi_thresh can fluctuate a lot
1315 	 * - in a system with HDD and USB key, the USB key may somehow
1316 	 *   go into state (bdi_dirty >> bdi_thresh) either because
1317 	 *   bdi_dirty starts high, or because bdi_thresh drops low.
1318 	 *   In this case we don't want to hard throttle the USB key
1319 	 *   dirtiers for 100 seconds until bdi_dirty drops under
1320 	 *   bdi_thresh. Instead the auxiliary bdi control line in
1321 	 *   bdi_position_ratio() will let the dirtier task progress
1322 	 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1323 	 */
1324 	*bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1325 
1326 	if (bdi_bg_thresh)
1327 		*bdi_bg_thresh = div_u64((u64)*bdi_thresh *
1328 					 background_thresh,
1329 					 dirty_thresh);
1330 
1331 	/*
1332 	 * In order to avoid the stacked BDI deadlock we need
1333 	 * to ensure we accurately count the 'dirty' pages when
1334 	 * the threshold is low.
1335 	 *
1336 	 * Otherwise it would be possible to get thresh+n pages
1337 	 * reported dirty, even though there are thresh-m pages
1338 	 * actually dirty; with m+n sitting in the percpu
1339 	 * deltas.
1340 	 */
1341 	if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1342 		bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1343 		*bdi_dirty = bdi_reclaimable +
1344 			bdi_stat_sum(bdi, BDI_WRITEBACK);
1345 	} else {
1346 		bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1347 		*bdi_dirty = bdi_reclaimable +
1348 			bdi_stat(bdi, BDI_WRITEBACK);
1349 	}
1350 }
1351 
1352 /*
1353  * balance_dirty_pages() must be called by processes which are generating dirty
1354  * data.  It looks at the number of dirty pages in the machine and will force
1355  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1356  * If we're over `background_thresh' then the writeback threads are woken to
1357  * perform some writeout.
1358  */
1359 static void balance_dirty_pages(struct address_space *mapping,
1360 				unsigned long pages_dirtied)
1361 {
1362 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1363 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1364 	unsigned long background_thresh;
1365 	unsigned long dirty_thresh;
1366 	long period;
1367 	long pause;
1368 	long max_pause;
1369 	long min_pause;
1370 	int nr_dirtied_pause;
1371 	bool dirty_exceeded = false;
1372 	unsigned long task_ratelimit;
1373 	unsigned long dirty_ratelimit;
1374 	unsigned long pos_ratio;
1375 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1376 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1377 	unsigned long start_time = jiffies;
1378 
1379 	for (;;) {
1380 		unsigned long now = jiffies;
1381 		unsigned long uninitialized_var(bdi_thresh);
1382 		unsigned long thresh;
1383 		unsigned long uninitialized_var(bdi_dirty);
1384 		unsigned long dirty;
1385 		unsigned long bg_thresh;
1386 
1387 		/*
1388 		 * Unstable writes are a feature of certain networked
1389 		 * filesystems (i.e. NFS) in which data may have been
1390 		 * written to the server's write cache, but has not yet
1391 		 * been flushed to permanent storage.
1392 		 */
1393 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1394 					global_page_state(NR_UNSTABLE_NFS);
1395 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1396 
1397 		global_dirty_limits(&background_thresh, &dirty_thresh);
1398 
1399 		if (unlikely(strictlimit)) {
1400 			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1401 					 &bdi_dirty, &bdi_thresh, &bg_thresh);
1402 
1403 			dirty = bdi_dirty;
1404 			thresh = bdi_thresh;
1405 		} else {
1406 			dirty = nr_dirty;
1407 			thresh = dirty_thresh;
1408 			bg_thresh = background_thresh;
1409 		}
1410 
1411 		/*
1412 		 * Throttle it only when the background writeback cannot
1413 		 * catch-up. This avoids (excessively) small writeouts
1414 		 * when the bdi limits are ramping up in case of !strictlimit.
1415 		 *
1416 		 * In strictlimit case make decision based on the bdi counters
1417 		 * and limits. Small writeouts when the bdi limits are ramping
1418 		 * up are the price we consciously pay for strictlimit-ing.
1419 		 */
1420 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1421 			current->dirty_paused_when = now;
1422 			current->nr_dirtied = 0;
1423 			current->nr_dirtied_pause =
1424 				dirty_poll_interval(dirty, thresh);
1425 			break;
1426 		}
1427 
1428 		if (unlikely(!writeback_in_progress(bdi)))
1429 			bdi_start_background_writeback(bdi);
1430 
1431 		if (!strictlimit)
1432 			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1433 					 &bdi_dirty, &bdi_thresh, NULL);
1434 
1435 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1436 				 ((nr_dirty > dirty_thresh) || strictlimit);
1437 		if (dirty_exceeded && !bdi->dirty_exceeded)
1438 			bdi->dirty_exceeded = 1;
1439 
1440 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1441 				     nr_dirty, bdi_thresh, bdi_dirty,
1442 				     start_time);
1443 
1444 		dirty_ratelimit = bdi->dirty_ratelimit;
1445 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1446 					       background_thresh, nr_dirty,
1447 					       bdi_thresh, bdi_dirty);
1448 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1449 							RATELIMIT_CALC_SHIFT;
1450 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1451 		min_pause = bdi_min_pause(bdi, max_pause,
1452 					  task_ratelimit, dirty_ratelimit,
1453 					  &nr_dirtied_pause);
1454 
1455 		if (unlikely(task_ratelimit == 0)) {
1456 			period = max_pause;
1457 			pause = max_pause;
1458 			goto pause;
1459 		}
1460 		period = HZ * pages_dirtied / task_ratelimit;
1461 		pause = period;
1462 		if (current->dirty_paused_when)
1463 			pause -= now - current->dirty_paused_when;
1464 		/*
1465 		 * For less than 1s think time (ext3/4 may block the dirtier
1466 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1467 		 * however at much less frequency), try to compensate it in
1468 		 * future periods by updating the virtual time; otherwise just
1469 		 * do a reset, as it may be a light dirtier.
1470 		 */
1471 		if (pause < min_pause) {
1472 			trace_balance_dirty_pages(bdi,
1473 						  dirty_thresh,
1474 						  background_thresh,
1475 						  nr_dirty,
1476 						  bdi_thresh,
1477 						  bdi_dirty,
1478 						  dirty_ratelimit,
1479 						  task_ratelimit,
1480 						  pages_dirtied,
1481 						  period,
1482 						  min(pause, 0L),
1483 						  start_time);
1484 			if (pause < -HZ) {
1485 				current->dirty_paused_when = now;
1486 				current->nr_dirtied = 0;
1487 			} else if (period) {
1488 				current->dirty_paused_when += period;
1489 				current->nr_dirtied = 0;
1490 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1491 				current->nr_dirtied_pause += pages_dirtied;
1492 			break;
1493 		}
1494 		if (unlikely(pause > max_pause)) {
1495 			/* for occasional dropped task_ratelimit */
1496 			now += min(pause - max_pause, max_pause);
1497 			pause = max_pause;
1498 		}
1499 
1500 pause:
1501 		trace_balance_dirty_pages(bdi,
1502 					  dirty_thresh,
1503 					  background_thresh,
1504 					  nr_dirty,
1505 					  bdi_thresh,
1506 					  bdi_dirty,
1507 					  dirty_ratelimit,
1508 					  task_ratelimit,
1509 					  pages_dirtied,
1510 					  period,
1511 					  pause,
1512 					  start_time);
1513 		__set_current_state(TASK_KILLABLE);
1514 		io_schedule_timeout(pause);
1515 
1516 		current->dirty_paused_when = now + pause;
1517 		current->nr_dirtied = 0;
1518 		current->nr_dirtied_pause = nr_dirtied_pause;
1519 
1520 		/*
1521 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1522 		 * also keep "1000+ dd on a slow USB stick" under control.
1523 		 */
1524 		if (task_ratelimit)
1525 			break;
1526 
1527 		/*
1528 		 * In the case of an unresponding NFS server and the NFS dirty
1529 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1530 		 * to go through, so that tasks on them still remain responsive.
1531 		 *
1532 		 * In theory 1 page is enough to keep the comsumer-producer
1533 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1534 		 * more page. However bdi_dirty has accounting errors.  So use
1535 		 * the larger and more IO friendly bdi_stat_error.
1536 		 */
1537 		if (bdi_dirty <= bdi_stat_error(bdi))
1538 			break;
1539 
1540 		if (fatal_signal_pending(current))
1541 			break;
1542 	}
1543 
1544 	if (!dirty_exceeded && bdi->dirty_exceeded)
1545 		bdi->dirty_exceeded = 0;
1546 
1547 	if (writeback_in_progress(bdi))
1548 		return;
1549 
1550 	/*
1551 	 * In laptop mode, we wait until hitting the higher threshold before
1552 	 * starting background writeout, and then write out all the way down
1553 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1554 	 *
1555 	 * In normal mode, we start background writeout at the lower
1556 	 * background_thresh, to keep the amount of dirty memory low.
1557 	 */
1558 	if (laptop_mode)
1559 		return;
1560 
1561 	if (nr_reclaimable > background_thresh)
1562 		bdi_start_background_writeback(bdi);
1563 }
1564 
1565 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1566 {
1567 	if (set_page_dirty(page) || page_mkwrite) {
1568 		struct address_space *mapping = page_mapping(page);
1569 
1570 		if (mapping)
1571 			balance_dirty_pages_ratelimited(mapping);
1572 	}
1573 }
1574 
1575 static DEFINE_PER_CPU(int, bdp_ratelimits);
1576 
1577 /*
1578  * Normal tasks are throttled by
1579  *	loop {
1580  *		dirty tsk->nr_dirtied_pause pages;
1581  *		take a snap in balance_dirty_pages();
1582  *	}
1583  * However there is a worst case. If every task exit immediately when dirtied
1584  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1585  * called to throttle the page dirties. The solution is to save the not yet
1586  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1587  * randomly into the running tasks. This works well for the above worst case,
1588  * as the new task will pick up and accumulate the old task's leaked dirty
1589  * count and eventually get throttled.
1590  */
1591 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1592 
1593 /**
1594  * balance_dirty_pages_ratelimited - balance dirty memory state
1595  * @mapping: address_space which was dirtied
1596  *
1597  * Processes which are dirtying memory should call in here once for each page
1598  * which was newly dirtied.  The function will periodically check the system's
1599  * dirty state and will initiate writeback if needed.
1600  *
1601  * On really big machines, get_writeback_state is expensive, so try to avoid
1602  * calling it too often (ratelimiting).  But once we're over the dirty memory
1603  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1604  * from overshooting the limit by (ratelimit_pages) each.
1605  */
1606 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1607 {
1608 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1609 	int ratelimit;
1610 	int *p;
1611 
1612 	if (!bdi_cap_account_dirty(bdi))
1613 		return;
1614 
1615 	ratelimit = current->nr_dirtied_pause;
1616 	if (bdi->dirty_exceeded)
1617 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1618 
1619 	preempt_disable();
1620 	/*
1621 	 * This prevents one CPU to accumulate too many dirtied pages without
1622 	 * calling into balance_dirty_pages(), which can happen when there are
1623 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1624 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1625 	 */
1626 	p =  &__get_cpu_var(bdp_ratelimits);
1627 	if (unlikely(current->nr_dirtied >= ratelimit))
1628 		*p = 0;
1629 	else if (unlikely(*p >= ratelimit_pages)) {
1630 		*p = 0;
1631 		ratelimit = 0;
1632 	}
1633 	/*
1634 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1635 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1636 	 * the dirty throttling and livelock other long-run dirtiers.
1637 	 */
1638 	p = &__get_cpu_var(dirty_throttle_leaks);
1639 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1640 		unsigned long nr_pages_dirtied;
1641 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1642 		*p -= nr_pages_dirtied;
1643 		current->nr_dirtied += nr_pages_dirtied;
1644 	}
1645 	preempt_enable();
1646 
1647 	if (unlikely(current->nr_dirtied >= ratelimit))
1648 		balance_dirty_pages(mapping, current->nr_dirtied);
1649 }
1650 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1651 
1652 void throttle_vm_writeout(gfp_t gfp_mask)
1653 {
1654 	unsigned long background_thresh;
1655 	unsigned long dirty_thresh;
1656 
1657         for ( ; ; ) {
1658 		global_dirty_limits(&background_thresh, &dirty_thresh);
1659 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1660 
1661                 /*
1662                  * Boost the allowable dirty threshold a bit for page
1663                  * allocators so they don't get DoS'ed by heavy writers
1664                  */
1665                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1666 
1667                 if (global_page_state(NR_UNSTABLE_NFS) +
1668 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1669                         	break;
1670                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1671 
1672 		/*
1673 		 * The caller might hold locks which can prevent IO completion
1674 		 * or progress in the filesystem.  So we cannot just sit here
1675 		 * waiting for IO to complete.
1676 		 */
1677 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1678 			break;
1679         }
1680 }
1681 
1682 /*
1683  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1684  */
1685 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1686 	void __user *buffer, size_t *length, loff_t *ppos)
1687 {
1688 	proc_dointvec(table, write, buffer, length, ppos);
1689 	return 0;
1690 }
1691 
1692 #ifdef CONFIG_BLOCK
1693 void laptop_mode_timer_fn(unsigned long data)
1694 {
1695 	struct request_queue *q = (struct request_queue *)data;
1696 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1697 		global_page_state(NR_UNSTABLE_NFS);
1698 
1699 	/*
1700 	 * We want to write everything out, not just down to the dirty
1701 	 * threshold
1702 	 */
1703 	if (bdi_has_dirty_io(&q->backing_dev_info))
1704 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1705 					WB_REASON_LAPTOP_TIMER);
1706 }
1707 
1708 /*
1709  * We've spun up the disk and we're in laptop mode: schedule writeback
1710  * of all dirty data a few seconds from now.  If the flush is already scheduled
1711  * then push it back - the user is still using the disk.
1712  */
1713 void laptop_io_completion(struct backing_dev_info *info)
1714 {
1715 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1716 }
1717 
1718 /*
1719  * We're in laptop mode and we've just synced. The sync's writes will have
1720  * caused another writeback to be scheduled by laptop_io_completion.
1721  * Nothing needs to be written back anymore, so we unschedule the writeback.
1722  */
1723 void laptop_sync_completion(void)
1724 {
1725 	struct backing_dev_info *bdi;
1726 
1727 	rcu_read_lock();
1728 
1729 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1730 		del_timer(&bdi->laptop_mode_wb_timer);
1731 
1732 	rcu_read_unlock();
1733 }
1734 #endif
1735 
1736 /*
1737  * If ratelimit_pages is too high then we can get into dirty-data overload
1738  * if a large number of processes all perform writes at the same time.
1739  * If it is too low then SMP machines will call the (expensive)
1740  * get_writeback_state too often.
1741  *
1742  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1743  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1744  * thresholds.
1745  */
1746 
1747 void writeback_set_ratelimit(void)
1748 {
1749 	unsigned long background_thresh;
1750 	unsigned long dirty_thresh;
1751 	global_dirty_limits(&background_thresh, &dirty_thresh);
1752 	global_dirty_limit = dirty_thresh;
1753 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1754 	if (ratelimit_pages < 16)
1755 		ratelimit_pages = 16;
1756 }
1757 
1758 static int
1759 ratelimit_handler(struct notifier_block *self, unsigned long action,
1760 		  void *hcpu)
1761 {
1762 
1763 	switch (action & ~CPU_TASKS_FROZEN) {
1764 	case CPU_ONLINE:
1765 	case CPU_DEAD:
1766 		writeback_set_ratelimit();
1767 		return NOTIFY_OK;
1768 	default:
1769 		return NOTIFY_DONE;
1770 	}
1771 }
1772 
1773 static struct notifier_block ratelimit_nb = {
1774 	.notifier_call	= ratelimit_handler,
1775 	.next		= NULL,
1776 };
1777 
1778 /*
1779  * Called early on to tune the page writeback dirty limits.
1780  *
1781  * We used to scale dirty pages according to how total memory
1782  * related to pages that could be allocated for buffers (by
1783  * comparing nr_free_buffer_pages() to vm_total_pages.
1784  *
1785  * However, that was when we used "dirty_ratio" to scale with
1786  * all memory, and we don't do that any more. "dirty_ratio"
1787  * is now applied to total non-HIGHPAGE memory (by subtracting
1788  * totalhigh_pages from vm_total_pages), and as such we can't
1789  * get into the old insane situation any more where we had
1790  * large amounts of dirty pages compared to a small amount of
1791  * non-HIGHMEM memory.
1792  *
1793  * But we might still want to scale the dirty_ratio by how
1794  * much memory the box has..
1795  */
1796 void __init page_writeback_init(void)
1797 {
1798 	writeback_set_ratelimit();
1799 	register_cpu_notifier(&ratelimit_nb);
1800 
1801 	fprop_global_init(&writeout_completions);
1802 }
1803 
1804 /**
1805  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1806  * @mapping: address space structure to write
1807  * @start: starting page index
1808  * @end: ending page index (inclusive)
1809  *
1810  * This function scans the page range from @start to @end (inclusive) and tags
1811  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1812  * that write_cache_pages (or whoever calls this function) will then use
1813  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1814  * used to avoid livelocking of writeback by a process steadily creating new
1815  * dirty pages in the file (thus it is important for this function to be quick
1816  * so that it can tag pages faster than a dirtying process can create them).
1817  */
1818 /*
1819  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1820  */
1821 void tag_pages_for_writeback(struct address_space *mapping,
1822 			     pgoff_t start, pgoff_t end)
1823 {
1824 #define WRITEBACK_TAG_BATCH 4096
1825 	unsigned long tagged;
1826 
1827 	do {
1828 		spin_lock_irq(&mapping->tree_lock);
1829 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1830 				&start, end, WRITEBACK_TAG_BATCH,
1831 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1832 		spin_unlock_irq(&mapping->tree_lock);
1833 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1834 		cond_resched();
1835 		/* We check 'start' to handle wrapping when end == ~0UL */
1836 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1837 }
1838 EXPORT_SYMBOL(tag_pages_for_writeback);
1839 
1840 /**
1841  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1842  * @mapping: address space structure to write
1843  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1844  * @writepage: function called for each page
1845  * @data: data passed to writepage function
1846  *
1847  * If a page is already under I/O, write_cache_pages() skips it, even
1848  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1849  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1850  * and msync() need to guarantee that all the data which was dirty at the time
1851  * the call was made get new I/O started against them.  If wbc->sync_mode is
1852  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1853  * existing IO to complete.
1854  *
1855  * To avoid livelocks (when other process dirties new pages), we first tag
1856  * pages which should be written back with TOWRITE tag and only then start
1857  * writing them. For data-integrity sync we have to be careful so that we do
1858  * not miss some pages (e.g., because some other process has cleared TOWRITE
1859  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1860  * by the process clearing the DIRTY tag (and submitting the page for IO).
1861  */
1862 int write_cache_pages(struct address_space *mapping,
1863 		      struct writeback_control *wbc, writepage_t writepage,
1864 		      void *data)
1865 {
1866 	int ret = 0;
1867 	int done = 0;
1868 	struct pagevec pvec;
1869 	int nr_pages;
1870 	pgoff_t uninitialized_var(writeback_index);
1871 	pgoff_t index;
1872 	pgoff_t end;		/* Inclusive */
1873 	pgoff_t done_index;
1874 	int cycled;
1875 	int range_whole = 0;
1876 	int tag;
1877 
1878 	pagevec_init(&pvec, 0);
1879 	if (wbc->range_cyclic) {
1880 		writeback_index = mapping->writeback_index; /* prev offset */
1881 		index = writeback_index;
1882 		if (index == 0)
1883 			cycled = 1;
1884 		else
1885 			cycled = 0;
1886 		end = -1;
1887 	} else {
1888 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1889 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1890 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1891 			range_whole = 1;
1892 		cycled = 1; /* ignore range_cyclic tests */
1893 	}
1894 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1895 		tag = PAGECACHE_TAG_TOWRITE;
1896 	else
1897 		tag = PAGECACHE_TAG_DIRTY;
1898 retry:
1899 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1900 		tag_pages_for_writeback(mapping, index, end);
1901 	done_index = index;
1902 	while (!done && (index <= end)) {
1903 		int i;
1904 
1905 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1906 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1907 		if (nr_pages == 0)
1908 			break;
1909 
1910 		for (i = 0; i < nr_pages; i++) {
1911 			struct page *page = pvec.pages[i];
1912 
1913 			/*
1914 			 * At this point, the page may be truncated or
1915 			 * invalidated (changing page->mapping to NULL), or
1916 			 * even swizzled back from swapper_space to tmpfs file
1917 			 * mapping. However, page->index will not change
1918 			 * because we have a reference on the page.
1919 			 */
1920 			if (page->index > end) {
1921 				/*
1922 				 * can't be range_cyclic (1st pass) because
1923 				 * end == -1 in that case.
1924 				 */
1925 				done = 1;
1926 				break;
1927 			}
1928 
1929 			done_index = page->index;
1930 
1931 			lock_page(page);
1932 
1933 			/*
1934 			 * Page truncated or invalidated. We can freely skip it
1935 			 * then, even for data integrity operations: the page
1936 			 * has disappeared concurrently, so there could be no
1937 			 * real expectation of this data interity operation
1938 			 * even if there is now a new, dirty page at the same
1939 			 * pagecache address.
1940 			 */
1941 			if (unlikely(page->mapping != mapping)) {
1942 continue_unlock:
1943 				unlock_page(page);
1944 				continue;
1945 			}
1946 
1947 			if (!PageDirty(page)) {
1948 				/* someone wrote it for us */
1949 				goto continue_unlock;
1950 			}
1951 
1952 			if (PageWriteback(page)) {
1953 				if (wbc->sync_mode != WB_SYNC_NONE)
1954 					wait_on_page_writeback(page);
1955 				else
1956 					goto continue_unlock;
1957 			}
1958 
1959 			BUG_ON(PageWriteback(page));
1960 			if (!clear_page_dirty_for_io(page))
1961 				goto continue_unlock;
1962 
1963 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1964 			ret = (*writepage)(page, wbc, data);
1965 			if (unlikely(ret)) {
1966 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1967 					unlock_page(page);
1968 					ret = 0;
1969 				} else {
1970 					/*
1971 					 * done_index is set past this page,
1972 					 * so media errors will not choke
1973 					 * background writeout for the entire
1974 					 * file. This has consequences for
1975 					 * range_cyclic semantics (ie. it may
1976 					 * not be suitable for data integrity
1977 					 * writeout).
1978 					 */
1979 					done_index = page->index + 1;
1980 					done = 1;
1981 					break;
1982 				}
1983 			}
1984 
1985 			/*
1986 			 * We stop writing back only if we are not doing
1987 			 * integrity sync. In case of integrity sync we have to
1988 			 * keep going until we have written all the pages
1989 			 * we tagged for writeback prior to entering this loop.
1990 			 */
1991 			if (--wbc->nr_to_write <= 0 &&
1992 			    wbc->sync_mode == WB_SYNC_NONE) {
1993 				done = 1;
1994 				break;
1995 			}
1996 		}
1997 		pagevec_release(&pvec);
1998 		cond_resched();
1999 	}
2000 	if (!cycled && !done) {
2001 		/*
2002 		 * range_cyclic:
2003 		 * We hit the last page and there is more work to be done: wrap
2004 		 * back to the start of the file
2005 		 */
2006 		cycled = 1;
2007 		index = 0;
2008 		end = writeback_index - 1;
2009 		goto retry;
2010 	}
2011 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2012 		mapping->writeback_index = done_index;
2013 
2014 	return ret;
2015 }
2016 EXPORT_SYMBOL(write_cache_pages);
2017 
2018 /*
2019  * Function used by generic_writepages to call the real writepage
2020  * function and set the mapping flags on error
2021  */
2022 static int __writepage(struct page *page, struct writeback_control *wbc,
2023 		       void *data)
2024 {
2025 	struct address_space *mapping = data;
2026 	int ret = mapping->a_ops->writepage(page, wbc);
2027 	mapping_set_error(mapping, ret);
2028 	return ret;
2029 }
2030 
2031 /**
2032  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2033  * @mapping: address space structure to write
2034  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2035  *
2036  * This is a library function, which implements the writepages()
2037  * address_space_operation.
2038  */
2039 int generic_writepages(struct address_space *mapping,
2040 		       struct writeback_control *wbc)
2041 {
2042 	struct blk_plug plug;
2043 	int ret;
2044 
2045 	/* deal with chardevs and other special file */
2046 	if (!mapping->a_ops->writepage)
2047 		return 0;
2048 
2049 	blk_start_plug(&plug);
2050 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2051 	blk_finish_plug(&plug);
2052 	return ret;
2053 }
2054 
2055 EXPORT_SYMBOL(generic_writepages);
2056 
2057 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2058 {
2059 	int ret;
2060 
2061 	if (wbc->nr_to_write <= 0)
2062 		return 0;
2063 	if (mapping->a_ops->writepages)
2064 		ret = mapping->a_ops->writepages(mapping, wbc);
2065 	else
2066 		ret = generic_writepages(mapping, wbc);
2067 	return ret;
2068 }
2069 
2070 /**
2071  * write_one_page - write out a single page and optionally wait on I/O
2072  * @page: the page to write
2073  * @wait: if true, wait on writeout
2074  *
2075  * The page must be locked by the caller and will be unlocked upon return.
2076  *
2077  * write_one_page() returns a negative error code if I/O failed.
2078  */
2079 int write_one_page(struct page *page, int wait)
2080 {
2081 	struct address_space *mapping = page->mapping;
2082 	int ret = 0;
2083 	struct writeback_control wbc = {
2084 		.sync_mode = WB_SYNC_ALL,
2085 		.nr_to_write = 1,
2086 	};
2087 
2088 	BUG_ON(!PageLocked(page));
2089 
2090 	if (wait)
2091 		wait_on_page_writeback(page);
2092 
2093 	if (clear_page_dirty_for_io(page)) {
2094 		page_cache_get(page);
2095 		ret = mapping->a_ops->writepage(page, &wbc);
2096 		if (ret == 0 && wait) {
2097 			wait_on_page_writeback(page);
2098 			if (PageError(page))
2099 				ret = -EIO;
2100 		}
2101 		page_cache_release(page);
2102 	} else {
2103 		unlock_page(page);
2104 	}
2105 	return ret;
2106 }
2107 EXPORT_SYMBOL(write_one_page);
2108 
2109 /*
2110  * For address_spaces which do not use buffers nor write back.
2111  */
2112 int __set_page_dirty_no_writeback(struct page *page)
2113 {
2114 	if (!PageDirty(page))
2115 		return !TestSetPageDirty(page);
2116 	return 0;
2117 }
2118 
2119 /*
2120  * Helper function for set_page_dirty family.
2121  * NOTE: This relies on being atomic wrt interrupts.
2122  */
2123 void account_page_dirtied(struct page *page, struct address_space *mapping)
2124 {
2125 	trace_writeback_dirty_page(page, mapping);
2126 
2127 	if (mapping_cap_account_dirty(mapping)) {
2128 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2129 		__inc_zone_page_state(page, NR_DIRTIED);
2130 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
2131 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2132 		task_io_account_write(PAGE_CACHE_SIZE);
2133 		current->nr_dirtied++;
2134 		this_cpu_inc(bdp_ratelimits);
2135 	}
2136 }
2137 EXPORT_SYMBOL(account_page_dirtied);
2138 
2139 /*
2140  * Helper function for set_page_writeback family.
2141  *
2142  * The caller must hold mem_cgroup_begin/end_update_page_stat() lock
2143  * while calling this function.
2144  * See test_set_page_writeback for example.
2145  *
2146  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2147  * wrt interrupts.
2148  */
2149 void account_page_writeback(struct page *page)
2150 {
2151 	mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2152 	inc_zone_page_state(page, NR_WRITEBACK);
2153 }
2154 EXPORT_SYMBOL(account_page_writeback);
2155 
2156 /*
2157  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2158  * its radix tree.
2159  *
2160  * This is also used when a single buffer is being dirtied: we want to set the
2161  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2162  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2163  *
2164  * Most callers have locked the page, which pins the address_space in memory.
2165  * But zap_pte_range() does not lock the page, however in that case the
2166  * mapping is pinned by the vma's ->vm_file reference.
2167  *
2168  * We take care to handle the case where the page was truncated from the
2169  * mapping by re-checking page_mapping() inside tree_lock.
2170  */
2171 int __set_page_dirty_nobuffers(struct page *page)
2172 {
2173 	if (!TestSetPageDirty(page)) {
2174 		struct address_space *mapping = page_mapping(page);
2175 		struct address_space *mapping2;
2176 		unsigned long flags;
2177 
2178 		if (!mapping)
2179 			return 1;
2180 
2181 		spin_lock_irqsave(&mapping->tree_lock, flags);
2182 		mapping2 = page_mapping(page);
2183 		if (mapping2) { /* Race with truncate? */
2184 			BUG_ON(mapping2 != mapping);
2185 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2186 			account_page_dirtied(page, mapping);
2187 			radix_tree_tag_set(&mapping->page_tree,
2188 				page_index(page), PAGECACHE_TAG_DIRTY);
2189 		}
2190 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2191 		if (mapping->host) {
2192 			/* !PageAnon && !swapper_space */
2193 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2194 		}
2195 		return 1;
2196 	}
2197 	return 0;
2198 }
2199 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2200 
2201 /*
2202  * Call this whenever redirtying a page, to de-account the dirty counters
2203  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2204  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2205  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2206  * control.
2207  */
2208 void account_page_redirty(struct page *page)
2209 {
2210 	struct address_space *mapping = page->mapping;
2211 	if (mapping && mapping_cap_account_dirty(mapping)) {
2212 		current->nr_dirtied--;
2213 		dec_zone_page_state(page, NR_DIRTIED);
2214 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2215 	}
2216 }
2217 EXPORT_SYMBOL(account_page_redirty);
2218 
2219 /*
2220  * When a writepage implementation decides that it doesn't want to write this
2221  * page for some reason, it should redirty the locked page via
2222  * redirty_page_for_writepage() and it should then unlock the page and return 0
2223  */
2224 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2225 {
2226 	wbc->pages_skipped++;
2227 	account_page_redirty(page);
2228 	return __set_page_dirty_nobuffers(page);
2229 }
2230 EXPORT_SYMBOL(redirty_page_for_writepage);
2231 
2232 /*
2233  * Dirty a page.
2234  *
2235  * For pages with a mapping this should be done under the page lock
2236  * for the benefit of asynchronous memory errors who prefer a consistent
2237  * dirty state. This rule can be broken in some special cases,
2238  * but should be better not to.
2239  *
2240  * If the mapping doesn't provide a set_page_dirty a_op, then
2241  * just fall through and assume that it wants buffer_heads.
2242  */
2243 int set_page_dirty(struct page *page)
2244 {
2245 	struct address_space *mapping = page_mapping(page);
2246 
2247 	if (likely(mapping)) {
2248 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2249 		/*
2250 		 * readahead/lru_deactivate_page could remain
2251 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2252 		 * About readahead, if the page is written, the flags would be
2253 		 * reset. So no problem.
2254 		 * About lru_deactivate_page, if the page is redirty, the flag
2255 		 * will be reset. So no problem. but if the page is used by readahead
2256 		 * it will confuse readahead and make it restart the size rampup
2257 		 * process. But it's a trivial problem.
2258 		 */
2259 		ClearPageReclaim(page);
2260 #ifdef CONFIG_BLOCK
2261 		if (!spd)
2262 			spd = __set_page_dirty_buffers;
2263 #endif
2264 		return (*spd)(page);
2265 	}
2266 	if (!PageDirty(page)) {
2267 		if (!TestSetPageDirty(page))
2268 			return 1;
2269 	}
2270 	return 0;
2271 }
2272 EXPORT_SYMBOL(set_page_dirty);
2273 
2274 /*
2275  * set_page_dirty() is racy if the caller has no reference against
2276  * page->mapping->host, and if the page is unlocked.  This is because another
2277  * CPU could truncate the page off the mapping and then free the mapping.
2278  *
2279  * Usually, the page _is_ locked, or the caller is a user-space process which
2280  * holds a reference on the inode by having an open file.
2281  *
2282  * In other cases, the page should be locked before running set_page_dirty().
2283  */
2284 int set_page_dirty_lock(struct page *page)
2285 {
2286 	int ret;
2287 
2288 	lock_page(page);
2289 	ret = set_page_dirty(page);
2290 	unlock_page(page);
2291 	return ret;
2292 }
2293 EXPORT_SYMBOL(set_page_dirty_lock);
2294 
2295 /*
2296  * Clear a page's dirty flag, while caring for dirty memory accounting.
2297  * Returns true if the page was previously dirty.
2298  *
2299  * This is for preparing to put the page under writeout.  We leave the page
2300  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2301  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2302  * implementation will run either set_page_writeback() or set_page_dirty(),
2303  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2304  * back into sync.
2305  *
2306  * This incoherency between the page's dirty flag and radix-tree tag is
2307  * unfortunate, but it only exists while the page is locked.
2308  */
2309 int clear_page_dirty_for_io(struct page *page)
2310 {
2311 	struct address_space *mapping = page_mapping(page);
2312 
2313 	BUG_ON(!PageLocked(page));
2314 
2315 	if (mapping && mapping_cap_account_dirty(mapping)) {
2316 		/*
2317 		 * Yes, Virginia, this is indeed insane.
2318 		 *
2319 		 * We use this sequence to make sure that
2320 		 *  (a) we account for dirty stats properly
2321 		 *  (b) we tell the low-level filesystem to
2322 		 *      mark the whole page dirty if it was
2323 		 *      dirty in a pagetable. Only to then
2324 		 *  (c) clean the page again and return 1 to
2325 		 *      cause the writeback.
2326 		 *
2327 		 * This way we avoid all nasty races with the
2328 		 * dirty bit in multiple places and clearing
2329 		 * them concurrently from different threads.
2330 		 *
2331 		 * Note! Normally the "set_page_dirty(page)"
2332 		 * has no effect on the actual dirty bit - since
2333 		 * that will already usually be set. But we
2334 		 * need the side effects, and it can help us
2335 		 * avoid races.
2336 		 *
2337 		 * We basically use the page "master dirty bit"
2338 		 * as a serialization point for all the different
2339 		 * threads doing their things.
2340 		 */
2341 		if (page_mkclean(page))
2342 			set_page_dirty(page);
2343 		/*
2344 		 * We carefully synchronise fault handlers against
2345 		 * installing a dirty pte and marking the page dirty
2346 		 * at this point. We do this by having them hold the
2347 		 * page lock at some point after installing their
2348 		 * pte, but before marking the page dirty.
2349 		 * Pages are always locked coming in here, so we get
2350 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2351 		 * for more comments.
2352 		 */
2353 		if (TestClearPageDirty(page)) {
2354 			dec_zone_page_state(page, NR_FILE_DIRTY);
2355 			dec_bdi_stat(mapping->backing_dev_info,
2356 					BDI_RECLAIMABLE);
2357 			return 1;
2358 		}
2359 		return 0;
2360 	}
2361 	return TestClearPageDirty(page);
2362 }
2363 EXPORT_SYMBOL(clear_page_dirty_for_io);
2364 
2365 int test_clear_page_writeback(struct page *page)
2366 {
2367 	struct address_space *mapping = page_mapping(page);
2368 	int ret;
2369 	bool locked;
2370 	unsigned long memcg_flags;
2371 
2372 	mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2373 	if (mapping) {
2374 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2375 		unsigned long flags;
2376 
2377 		spin_lock_irqsave(&mapping->tree_lock, flags);
2378 		ret = TestClearPageWriteback(page);
2379 		if (ret) {
2380 			radix_tree_tag_clear(&mapping->page_tree,
2381 						page_index(page),
2382 						PAGECACHE_TAG_WRITEBACK);
2383 			if (bdi_cap_account_writeback(bdi)) {
2384 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2385 				__bdi_writeout_inc(bdi);
2386 			}
2387 		}
2388 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2389 	} else {
2390 		ret = TestClearPageWriteback(page);
2391 	}
2392 	if (ret) {
2393 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2394 		dec_zone_page_state(page, NR_WRITEBACK);
2395 		inc_zone_page_state(page, NR_WRITTEN);
2396 	}
2397 	mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2398 	return ret;
2399 }
2400 
2401 int test_set_page_writeback(struct page *page)
2402 {
2403 	struct address_space *mapping = page_mapping(page);
2404 	int ret;
2405 	bool locked;
2406 	unsigned long memcg_flags;
2407 
2408 	mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags);
2409 	if (mapping) {
2410 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2411 		unsigned long flags;
2412 
2413 		spin_lock_irqsave(&mapping->tree_lock, flags);
2414 		ret = TestSetPageWriteback(page);
2415 		if (!ret) {
2416 			radix_tree_tag_set(&mapping->page_tree,
2417 						page_index(page),
2418 						PAGECACHE_TAG_WRITEBACK);
2419 			if (bdi_cap_account_writeback(bdi))
2420 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2421 		}
2422 		if (!PageDirty(page))
2423 			radix_tree_tag_clear(&mapping->page_tree,
2424 						page_index(page),
2425 						PAGECACHE_TAG_DIRTY);
2426 		radix_tree_tag_clear(&mapping->page_tree,
2427 				     page_index(page),
2428 				     PAGECACHE_TAG_TOWRITE);
2429 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2430 	} else {
2431 		ret = TestSetPageWriteback(page);
2432 	}
2433 	if (!ret)
2434 		account_page_writeback(page);
2435 	mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags);
2436 	return ret;
2437 
2438 }
2439 EXPORT_SYMBOL(test_set_page_writeback);
2440 
2441 /*
2442  * Return true if any of the pages in the mapping are marked with the
2443  * passed tag.
2444  */
2445 int mapping_tagged(struct address_space *mapping, int tag)
2446 {
2447 	return radix_tree_tagged(&mapping->page_tree, tag);
2448 }
2449 EXPORT_SYMBOL(mapping_tagged);
2450 
2451 /**
2452  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2453  * @page:	The page to wait on.
2454  *
2455  * This function determines if the given page is related to a backing device
2456  * that requires page contents to be held stable during writeback.  If so, then
2457  * it will wait for any pending writeback to complete.
2458  */
2459 void wait_for_stable_page(struct page *page)
2460 {
2461 	struct address_space *mapping = page_mapping(page);
2462 	struct backing_dev_info *bdi = mapping->backing_dev_info;
2463 
2464 	if (!bdi_cap_stable_pages_required(bdi))
2465 		return;
2466 
2467 	wait_on_page_writeback(page);
2468 }
2469 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2470