xref: /openbmc/linux/mm/page-writeback.c (revision 9ac8d3fb)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 
38 /*
39  * The maximum number of pages to writeout in a single bdflush/kupdate
40  * operation.  We do this so we don't hold I_SYNC against an inode for
41  * enormous amounts of time, which would block a userspace task which has
42  * been forced to throttle against that inode.  Also, the code reevaluates
43  * the dirty each time it has written this many pages.
44  */
45 #define MAX_WRITEBACK_PAGES	1024
46 
47 /*
48  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
49  * will look to see if it needs to force writeback or throttling.
50  */
51 static long ratelimit_pages = 32;
52 
53 /*
54  * When balance_dirty_pages decides that the caller needs to perform some
55  * non-background writeback, this is how many pages it will attempt to write.
56  * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably
57  * large amounts of I/O are submitted.
58  */
59 static inline long sync_writeback_pages(void)
60 {
61 	return ratelimit_pages + ratelimit_pages / 2;
62 }
63 
64 /* The following parameters are exported via /proc/sys/vm */
65 
66 /*
67  * Start background writeback (via pdflush) at this percentage
68  */
69 int dirty_background_ratio = 5;
70 
71 /*
72  * free highmem will not be subtracted from the total free memory
73  * for calculating free ratios if vm_highmem_is_dirtyable is true
74  */
75 int vm_highmem_is_dirtyable;
76 
77 /*
78  * The generator of dirty data starts writeback at this percentage
79  */
80 int vm_dirty_ratio = 10;
81 
82 /*
83  * The interval between `kupdate'-style writebacks, in jiffies
84  */
85 int dirty_writeback_interval = 5 * HZ;
86 
87 /*
88  * The longest number of jiffies for which data is allowed to remain dirty
89  */
90 int dirty_expire_interval = 30 * HZ;
91 
92 /*
93  * Flag that makes the machine dump writes/reads and block dirtyings.
94  */
95 int block_dump;
96 
97 /*
98  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
99  * a full sync is triggered after this time elapses without any disk activity.
100  */
101 int laptop_mode;
102 
103 EXPORT_SYMBOL(laptop_mode);
104 
105 /* End of sysctl-exported parameters */
106 
107 
108 static void background_writeout(unsigned long _min_pages);
109 
110 /*
111  * Scale the writeback cache size proportional to the relative writeout speeds.
112  *
113  * We do this by keeping a floating proportion between BDIs, based on page
114  * writeback completions [end_page_writeback()]. Those devices that write out
115  * pages fastest will get the larger share, while the slower will get a smaller
116  * share.
117  *
118  * We use page writeout completions because we are interested in getting rid of
119  * dirty pages. Having them written out is the primary goal.
120  *
121  * We introduce a concept of time, a period over which we measure these events,
122  * because demand can/will vary over time. The length of this period itself is
123  * measured in page writeback completions.
124  *
125  */
126 static struct prop_descriptor vm_completions;
127 static struct prop_descriptor vm_dirties;
128 
129 /*
130  * couple the period to the dirty_ratio:
131  *
132  *   period/2 ~ roundup_pow_of_two(dirty limit)
133  */
134 static int calc_period_shift(void)
135 {
136 	unsigned long dirty_total;
137 
138 	dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100;
139 	return 2 + ilog2(dirty_total - 1);
140 }
141 
142 /*
143  * update the period when the dirty ratio changes.
144  */
145 int dirty_ratio_handler(struct ctl_table *table, int write,
146 		struct file *filp, void __user *buffer, size_t *lenp,
147 		loff_t *ppos)
148 {
149 	int old_ratio = vm_dirty_ratio;
150 	int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos);
151 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
152 		int shift = calc_period_shift();
153 		prop_change_shift(&vm_completions, shift);
154 		prop_change_shift(&vm_dirties, shift);
155 	}
156 	return ret;
157 }
158 
159 /*
160  * Increment the BDI's writeout completion count and the global writeout
161  * completion count. Called from test_clear_page_writeback().
162  */
163 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
164 {
165 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
166 			      bdi->max_prop_frac);
167 }
168 
169 void bdi_writeout_inc(struct backing_dev_info *bdi)
170 {
171 	unsigned long flags;
172 
173 	local_irq_save(flags);
174 	__bdi_writeout_inc(bdi);
175 	local_irq_restore(flags);
176 }
177 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
178 
179 static inline void task_dirty_inc(struct task_struct *tsk)
180 {
181 	prop_inc_single(&vm_dirties, &tsk->dirties);
182 }
183 
184 /*
185  * Obtain an accurate fraction of the BDI's portion.
186  */
187 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
188 		long *numerator, long *denominator)
189 {
190 	if (bdi_cap_writeback_dirty(bdi)) {
191 		prop_fraction_percpu(&vm_completions, &bdi->completions,
192 				numerator, denominator);
193 	} else {
194 		*numerator = 0;
195 		*denominator = 1;
196 	}
197 }
198 
199 /*
200  * Clip the earned share of dirty pages to that which is actually available.
201  * This avoids exceeding the total dirty_limit when the floating averages
202  * fluctuate too quickly.
203  */
204 static void
205 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty)
206 {
207 	long avail_dirty;
208 
209 	avail_dirty = dirty -
210 		(global_page_state(NR_FILE_DIRTY) +
211 		 global_page_state(NR_WRITEBACK) +
212 		 global_page_state(NR_UNSTABLE_NFS) +
213 		 global_page_state(NR_WRITEBACK_TEMP));
214 
215 	if (avail_dirty < 0)
216 		avail_dirty = 0;
217 
218 	avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) +
219 		bdi_stat(bdi, BDI_WRITEBACK);
220 
221 	*pbdi_dirty = min(*pbdi_dirty, avail_dirty);
222 }
223 
224 static inline void task_dirties_fraction(struct task_struct *tsk,
225 		long *numerator, long *denominator)
226 {
227 	prop_fraction_single(&vm_dirties, &tsk->dirties,
228 				numerator, denominator);
229 }
230 
231 /*
232  * scale the dirty limit
233  *
234  * task specific dirty limit:
235  *
236  *   dirty -= (dirty/8) * p_{t}
237  */
238 static void task_dirty_limit(struct task_struct *tsk, long *pdirty)
239 {
240 	long numerator, denominator;
241 	long dirty = *pdirty;
242 	u64 inv = dirty >> 3;
243 
244 	task_dirties_fraction(tsk, &numerator, &denominator);
245 	inv *= numerator;
246 	do_div(inv, denominator);
247 
248 	dirty -= inv;
249 	if (dirty < *pdirty/2)
250 		dirty = *pdirty/2;
251 
252 	*pdirty = dirty;
253 }
254 
255 /*
256  *
257  */
258 static DEFINE_SPINLOCK(bdi_lock);
259 static unsigned int bdi_min_ratio;
260 
261 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
262 {
263 	int ret = 0;
264 	unsigned long flags;
265 
266 	spin_lock_irqsave(&bdi_lock, flags);
267 	if (min_ratio > bdi->max_ratio) {
268 		ret = -EINVAL;
269 	} else {
270 		min_ratio -= bdi->min_ratio;
271 		if (bdi_min_ratio + min_ratio < 100) {
272 			bdi_min_ratio += min_ratio;
273 			bdi->min_ratio += min_ratio;
274 		} else {
275 			ret = -EINVAL;
276 		}
277 	}
278 	spin_unlock_irqrestore(&bdi_lock, flags);
279 
280 	return ret;
281 }
282 
283 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
284 {
285 	unsigned long flags;
286 	int ret = 0;
287 
288 	if (max_ratio > 100)
289 		return -EINVAL;
290 
291 	spin_lock_irqsave(&bdi_lock, flags);
292 	if (bdi->min_ratio > max_ratio) {
293 		ret = -EINVAL;
294 	} else {
295 		bdi->max_ratio = max_ratio;
296 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
297 	}
298 	spin_unlock_irqrestore(&bdi_lock, flags);
299 
300 	return ret;
301 }
302 EXPORT_SYMBOL(bdi_set_max_ratio);
303 
304 /*
305  * Work out the current dirty-memory clamping and background writeout
306  * thresholds.
307  *
308  * The main aim here is to lower them aggressively if there is a lot of mapped
309  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
310  * pages.  It is better to clamp down on writers than to start swapping, and
311  * performing lots of scanning.
312  *
313  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
314  *
315  * We don't permit the clamping level to fall below 5% - that is getting rather
316  * excessive.
317  *
318  * We make sure that the background writeout level is below the adjusted
319  * clamping level.
320  */
321 
322 static unsigned long highmem_dirtyable_memory(unsigned long total)
323 {
324 #ifdef CONFIG_HIGHMEM
325 	int node;
326 	unsigned long x = 0;
327 
328 	for_each_node_state(node, N_HIGH_MEMORY) {
329 		struct zone *z =
330 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
331 
332 		x += zone_page_state(z, NR_FREE_PAGES) + zone_lru_pages(z);
333 	}
334 	/*
335 	 * Make sure that the number of highmem pages is never larger
336 	 * than the number of the total dirtyable memory. This can only
337 	 * occur in very strange VM situations but we want to make sure
338 	 * that this does not occur.
339 	 */
340 	return min(x, total);
341 #else
342 	return 0;
343 #endif
344 }
345 
346 /**
347  * determine_dirtyable_memory - amount of memory that may be used
348  *
349  * Returns the numebr of pages that can currently be freed and used
350  * by the kernel for direct mappings.
351  */
352 unsigned long determine_dirtyable_memory(void)
353 {
354 	unsigned long x;
355 
356 	x = global_page_state(NR_FREE_PAGES) + global_lru_pages();
357 
358 	if (!vm_highmem_is_dirtyable)
359 		x -= highmem_dirtyable_memory(x);
360 
361 	return x + 1;	/* Ensure that we never return 0 */
362 }
363 
364 void
365 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty,
366 		 struct backing_dev_info *bdi)
367 {
368 	int background_ratio;		/* Percentages */
369 	int dirty_ratio;
370 	long background;
371 	long dirty;
372 	unsigned long available_memory = determine_dirtyable_memory();
373 	struct task_struct *tsk;
374 
375 	dirty_ratio = vm_dirty_ratio;
376 	if (dirty_ratio < 5)
377 		dirty_ratio = 5;
378 
379 	background_ratio = dirty_background_ratio;
380 	if (background_ratio >= dirty_ratio)
381 		background_ratio = dirty_ratio / 2;
382 
383 	background = (background_ratio * available_memory) / 100;
384 	dirty = (dirty_ratio * available_memory) / 100;
385 	tsk = current;
386 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
387 		background += background / 4;
388 		dirty += dirty / 4;
389 	}
390 	*pbackground = background;
391 	*pdirty = dirty;
392 
393 	if (bdi) {
394 		u64 bdi_dirty;
395 		long numerator, denominator;
396 
397 		/*
398 		 * Calculate this BDI's share of the dirty ratio.
399 		 */
400 		bdi_writeout_fraction(bdi, &numerator, &denominator);
401 
402 		bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
403 		bdi_dirty *= numerator;
404 		do_div(bdi_dirty, denominator);
405 		bdi_dirty += (dirty * bdi->min_ratio) / 100;
406 		if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
407 			bdi_dirty = dirty * bdi->max_ratio / 100;
408 
409 		*pbdi_dirty = bdi_dirty;
410 		clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty);
411 		task_dirty_limit(current, pbdi_dirty);
412 	}
413 }
414 
415 /*
416  * balance_dirty_pages() must be called by processes which are generating dirty
417  * data.  It looks at the number of dirty pages in the machine and will force
418  * the caller to perform writeback if the system is over `vm_dirty_ratio'.
419  * If we're over `background_thresh' then pdflush is woken to perform some
420  * writeout.
421  */
422 static void balance_dirty_pages(struct address_space *mapping)
423 {
424 	long nr_reclaimable, bdi_nr_reclaimable;
425 	long nr_writeback, bdi_nr_writeback;
426 	long background_thresh;
427 	long dirty_thresh;
428 	long bdi_thresh;
429 	unsigned long pages_written = 0;
430 	unsigned long write_chunk = sync_writeback_pages();
431 
432 	struct backing_dev_info *bdi = mapping->backing_dev_info;
433 
434 	for (;;) {
435 		struct writeback_control wbc = {
436 			.bdi		= bdi,
437 			.sync_mode	= WB_SYNC_NONE,
438 			.older_than_this = NULL,
439 			.nr_to_write	= write_chunk,
440 			.range_cyclic	= 1,
441 		};
442 
443 		get_dirty_limits(&background_thresh, &dirty_thresh,
444 				&bdi_thresh, bdi);
445 
446 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
447 					global_page_state(NR_UNSTABLE_NFS);
448 		nr_writeback = global_page_state(NR_WRITEBACK);
449 
450 		bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
451 		bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
452 
453 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
454 			break;
455 
456 		/*
457 		 * Throttle it only when the background writeback cannot
458 		 * catch-up. This avoids (excessively) small writeouts
459 		 * when the bdi limits are ramping up.
460 		 */
461 		if (nr_reclaimable + nr_writeback <
462 				(background_thresh + dirty_thresh) / 2)
463 			break;
464 
465 		if (!bdi->dirty_exceeded)
466 			bdi->dirty_exceeded = 1;
467 
468 		/* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
469 		 * Unstable writes are a feature of certain networked
470 		 * filesystems (i.e. NFS) in which data may have been
471 		 * written to the server's write cache, but has not yet
472 		 * been flushed to permanent storage.
473 		 */
474 		if (bdi_nr_reclaimable) {
475 			writeback_inodes(&wbc);
476 			pages_written += write_chunk - wbc.nr_to_write;
477 			get_dirty_limits(&background_thresh, &dirty_thresh,
478 				       &bdi_thresh, bdi);
479 		}
480 
481 		/*
482 		 * In order to avoid the stacked BDI deadlock we need
483 		 * to ensure we accurately count the 'dirty' pages when
484 		 * the threshold is low.
485 		 *
486 		 * Otherwise it would be possible to get thresh+n pages
487 		 * reported dirty, even though there are thresh-m pages
488 		 * actually dirty; with m+n sitting in the percpu
489 		 * deltas.
490 		 */
491 		if (bdi_thresh < 2*bdi_stat_error(bdi)) {
492 			bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
493 			bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK);
494 		} else if (bdi_nr_reclaimable) {
495 			bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
496 			bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK);
497 		}
498 
499 		if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh)
500 			break;
501 		if (pages_written >= write_chunk)
502 			break;		/* We've done our duty */
503 
504 		congestion_wait(WRITE, HZ/10);
505 	}
506 
507 	if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh &&
508 			bdi->dirty_exceeded)
509 		bdi->dirty_exceeded = 0;
510 
511 	if (writeback_in_progress(bdi))
512 		return;		/* pdflush is already working this queue */
513 
514 	/*
515 	 * In laptop mode, we wait until hitting the higher threshold before
516 	 * starting background writeout, and then write out all the way down
517 	 * to the lower threshold.  So slow writers cause minimal disk activity.
518 	 *
519 	 * In normal mode, we start background writeout at the lower
520 	 * background_thresh, to keep the amount of dirty memory low.
521 	 */
522 	if ((laptop_mode && pages_written) ||
523 			(!laptop_mode && (global_page_state(NR_FILE_DIRTY)
524 					  + global_page_state(NR_UNSTABLE_NFS)
525 					  > background_thresh)))
526 		pdflush_operation(background_writeout, 0);
527 }
528 
529 void set_page_dirty_balance(struct page *page, int page_mkwrite)
530 {
531 	if (set_page_dirty(page) || page_mkwrite) {
532 		struct address_space *mapping = page_mapping(page);
533 
534 		if (mapping)
535 			balance_dirty_pages_ratelimited(mapping);
536 	}
537 }
538 
539 /**
540  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
541  * @mapping: address_space which was dirtied
542  * @nr_pages_dirtied: number of pages which the caller has just dirtied
543  *
544  * Processes which are dirtying memory should call in here once for each page
545  * which was newly dirtied.  The function will periodically check the system's
546  * dirty state and will initiate writeback if needed.
547  *
548  * On really big machines, get_writeback_state is expensive, so try to avoid
549  * calling it too often (ratelimiting).  But once we're over the dirty memory
550  * limit we decrease the ratelimiting by a lot, to prevent individual processes
551  * from overshooting the limit by (ratelimit_pages) each.
552  */
553 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
554 					unsigned long nr_pages_dirtied)
555 {
556 	static DEFINE_PER_CPU(unsigned long, ratelimits) = 0;
557 	unsigned long ratelimit;
558 	unsigned long *p;
559 
560 	ratelimit = ratelimit_pages;
561 	if (mapping->backing_dev_info->dirty_exceeded)
562 		ratelimit = 8;
563 
564 	/*
565 	 * Check the rate limiting. Also, we do not want to throttle real-time
566 	 * tasks in balance_dirty_pages(). Period.
567 	 */
568 	preempt_disable();
569 	p =  &__get_cpu_var(ratelimits);
570 	*p += nr_pages_dirtied;
571 	if (unlikely(*p >= ratelimit)) {
572 		*p = 0;
573 		preempt_enable();
574 		balance_dirty_pages(mapping);
575 		return;
576 	}
577 	preempt_enable();
578 }
579 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
580 
581 void throttle_vm_writeout(gfp_t gfp_mask)
582 {
583 	long background_thresh;
584 	long dirty_thresh;
585 
586         for ( ; ; ) {
587 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
588 
589                 /*
590                  * Boost the allowable dirty threshold a bit for page
591                  * allocators so they don't get DoS'ed by heavy writers
592                  */
593                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
594 
595                 if (global_page_state(NR_UNSTABLE_NFS) +
596 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
597                         	break;
598                 congestion_wait(WRITE, HZ/10);
599 
600 		/*
601 		 * The caller might hold locks which can prevent IO completion
602 		 * or progress in the filesystem.  So we cannot just sit here
603 		 * waiting for IO to complete.
604 		 */
605 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
606 			break;
607         }
608 }
609 
610 /*
611  * writeback at least _min_pages, and keep writing until the amount of dirty
612  * memory is less than the background threshold, or until we're all clean.
613  */
614 static void background_writeout(unsigned long _min_pages)
615 {
616 	long min_pages = _min_pages;
617 	struct writeback_control wbc = {
618 		.bdi		= NULL,
619 		.sync_mode	= WB_SYNC_NONE,
620 		.older_than_this = NULL,
621 		.nr_to_write	= 0,
622 		.nonblocking	= 1,
623 		.range_cyclic	= 1,
624 	};
625 
626 	for ( ; ; ) {
627 		long background_thresh;
628 		long dirty_thresh;
629 
630 		get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL);
631 		if (global_page_state(NR_FILE_DIRTY) +
632 			global_page_state(NR_UNSTABLE_NFS) < background_thresh
633 				&& min_pages <= 0)
634 			break;
635 		wbc.more_io = 0;
636 		wbc.encountered_congestion = 0;
637 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
638 		wbc.pages_skipped = 0;
639 		writeback_inodes(&wbc);
640 		min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
641 		if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) {
642 			/* Wrote less than expected */
643 			if (wbc.encountered_congestion || wbc.more_io)
644 				congestion_wait(WRITE, HZ/10);
645 			else
646 				break;
647 		}
648 	}
649 }
650 
651 /*
652  * Start writeback of `nr_pages' pages.  If `nr_pages' is zero, write back
653  * the whole world.  Returns 0 if a pdflush thread was dispatched.  Returns
654  * -1 if all pdflush threads were busy.
655  */
656 int wakeup_pdflush(long nr_pages)
657 {
658 	if (nr_pages == 0)
659 		nr_pages = global_page_state(NR_FILE_DIRTY) +
660 				global_page_state(NR_UNSTABLE_NFS);
661 	return pdflush_operation(background_writeout, nr_pages);
662 }
663 
664 static void wb_timer_fn(unsigned long unused);
665 static void laptop_timer_fn(unsigned long unused);
666 
667 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0);
668 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0);
669 
670 /*
671  * Periodic writeback of "old" data.
672  *
673  * Define "old": the first time one of an inode's pages is dirtied, we mark the
674  * dirtying-time in the inode's address_space.  So this periodic writeback code
675  * just walks the superblock inode list, writing back any inodes which are
676  * older than a specific point in time.
677  *
678  * Try to run once per dirty_writeback_interval.  But if a writeback event
679  * takes longer than a dirty_writeback_interval interval, then leave a
680  * one-second gap.
681  *
682  * older_than_this takes precedence over nr_to_write.  So we'll only write back
683  * all dirty pages if they are all attached to "old" mappings.
684  */
685 static void wb_kupdate(unsigned long arg)
686 {
687 	unsigned long oldest_jif;
688 	unsigned long start_jif;
689 	unsigned long next_jif;
690 	long nr_to_write;
691 	struct writeback_control wbc = {
692 		.bdi		= NULL,
693 		.sync_mode	= WB_SYNC_NONE,
694 		.older_than_this = &oldest_jif,
695 		.nr_to_write	= 0,
696 		.nonblocking	= 1,
697 		.for_kupdate	= 1,
698 		.range_cyclic	= 1,
699 	};
700 
701 	sync_supers();
702 
703 	oldest_jif = jiffies - dirty_expire_interval;
704 	start_jif = jiffies;
705 	next_jif = start_jif + dirty_writeback_interval;
706 	nr_to_write = global_page_state(NR_FILE_DIRTY) +
707 			global_page_state(NR_UNSTABLE_NFS) +
708 			(inodes_stat.nr_inodes - inodes_stat.nr_unused);
709 	while (nr_to_write > 0) {
710 		wbc.more_io = 0;
711 		wbc.encountered_congestion = 0;
712 		wbc.nr_to_write = MAX_WRITEBACK_PAGES;
713 		writeback_inodes(&wbc);
714 		if (wbc.nr_to_write > 0) {
715 			if (wbc.encountered_congestion || wbc.more_io)
716 				congestion_wait(WRITE, HZ/10);
717 			else
718 				break;	/* All the old data is written */
719 		}
720 		nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write;
721 	}
722 	if (time_before(next_jif, jiffies + HZ))
723 		next_jif = jiffies + HZ;
724 	if (dirty_writeback_interval)
725 		mod_timer(&wb_timer, next_jif);
726 }
727 
728 /*
729  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
730  */
731 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
732 	struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
733 {
734 	proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos);
735 	if (dirty_writeback_interval)
736 		mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
737 	else
738 		del_timer(&wb_timer);
739 	return 0;
740 }
741 
742 static void wb_timer_fn(unsigned long unused)
743 {
744 	if (pdflush_operation(wb_kupdate, 0) < 0)
745 		mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
746 }
747 
748 static void laptop_flush(unsigned long unused)
749 {
750 	sys_sync();
751 }
752 
753 static void laptop_timer_fn(unsigned long unused)
754 {
755 	pdflush_operation(laptop_flush, 0);
756 }
757 
758 /*
759  * We've spun up the disk and we're in laptop mode: schedule writeback
760  * of all dirty data a few seconds from now.  If the flush is already scheduled
761  * then push it back - the user is still using the disk.
762  */
763 void laptop_io_completion(void)
764 {
765 	mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode);
766 }
767 
768 /*
769  * We're in laptop mode and we've just synced. The sync's writes will have
770  * caused another writeback to be scheduled by laptop_io_completion.
771  * Nothing needs to be written back anymore, so we unschedule the writeback.
772  */
773 void laptop_sync_completion(void)
774 {
775 	del_timer(&laptop_mode_wb_timer);
776 }
777 
778 /*
779  * If ratelimit_pages is too high then we can get into dirty-data overload
780  * if a large number of processes all perform writes at the same time.
781  * If it is too low then SMP machines will call the (expensive)
782  * get_writeback_state too often.
783  *
784  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
785  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
786  * thresholds before writeback cuts in.
787  *
788  * But the limit should not be set too high.  Because it also controls the
789  * amount of memory which the balance_dirty_pages() caller has to write back.
790  * If this is too large then the caller will block on the IO queue all the
791  * time.  So limit it to four megabytes - the balance_dirty_pages() caller
792  * will write six megabyte chunks, max.
793  */
794 
795 void writeback_set_ratelimit(void)
796 {
797 	ratelimit_pages = vm_total_pages / (num_online_cpus() * 32);
798 	if (ratelimit_pages < 16)
799 		ratelimit_pages = 16;
800 	if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
801 		ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
802 }
803 
804 static int __cpuinit
805 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
806 {
807 	writeback_set_ratelimit();
808 	return NOTIFY_DONE;
809 }
810 
811 static struct notifier_block __cpuinitdata ratelimit_nb = {
812 	.notifier_call	= ratelimit_handler,
813 	.next		= NULL,
814 };
815 
816 /*
817  * Called early on to tune the page writeback dirty limits.
818  *
819  * We used to scale dirty pages according to how total memory
820  * related to pages that could be allocated for buffers (by
821  * comparing nr_free_buffer_pages() to vm_total_pages.
822  *
823  * However, that was when we used "dirty_ratio" to scale with
824  * all memory, and we don't do that any more. "dirty_ratio"
825  * is now applied to total non-HIGHPAGE memory (by subtracting
826  * totalhigh_pages from vm_total_pages), and as such we can't
827  * get into the old insane situation any more where we had
828  * large amounts of dirty pages compared to a small amount of
829  * non-HIGHMEM memory.
830  *
831  * But we might still want to scale the dirty_ratio by how
832  * much memory the box has..
833  */
834 void __init page_writeback_init(void)
835 {
836 	int shift;
837 
838 	mod_timer(&wb_timer, jiffies + dirty_writeback_interval);
839 	writeback_set_ratelimit();
840 	register_cpu_notifier(&ratelimit_nb);
841 
842 	shift = calc_period_shift();
843 	prop_descriptor_init(&vm_completions, shift);
844 	prop_descriptor_init(&vm_dirties, shift);
845 }
846 
847 /**
848  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
849  * @mapping: address space structure to write
850  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
851  * @writepage: function called for each page
852  * @data: data passed to writepage function
853  *
854  * If a page is already under I/O, write_cache_pages() skips it, even
855  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
856  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
857  * and msync() need to guarantee that all the data which was dirty at the time
858  * the call was made get new I/O started against them.  If wbc->sync_mode is
859  * WB_SYNC_ALL then we were called for data integrity and we must wait for
860  * existing IO to complete.
861  */
862 int write_cache_pages(struct address_space *mapping,
863 		      struct writeback_control *wbc, writepage_t writepage,
864 		      void *data)
865 {
866 	struct backing_dev_info *bdi = mapping->backing_dev_info;
867 	int ret = 0;
868 	int done = 0;
869 	struct pagevec pvec;
870 	int nr_pages;
871 	pgoff_t index;
872 	pgoff_t end;		/* Inclusive */
873 	int scanned = 0;
874 	int range_whole = 0;
875 	long nr_to_write = wbc->nr_to_write;
876 
877 	if (wbc->nonblocking && bdi_write_congested(bdi)) {
878 		wbc->encountered_congestion = 1;
879 		return 0;
880 	}
881 
882 	pagevec_init(&pvec, 0);
883 	if (wbc->range_cyclic) {
884 		index = mapping->writeback_index; /* Start from prev offset */
885 		end = -1;
886 	} else {
887 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
888 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
889 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
890 			range_whole = 1;
891 		scanned = 1;
892 	}
893 retry:
894 	while (!done && (index <= end) &&
895 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
896 					      PAGECACHE_TAG_DIRTY,
897 					      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
898 		unsigned i;
899 
900 		scanned = 1;
901 		for (i = 0; i < nr_pages; i++) {
902 			struct page *page = pvec.pages[i];
903 
904 			/*
905 			 * At this point we hold neither mapping->tree_lock nor
906 			 * lock on the page itself: the page may be truncated or
907 			 * invalidated (changing page->mapping to NULL), or even
908 			 * swizzled back from swapper_space to tmpfs file
909 			 * mapping
910 			 */
911 			lock_page(page);
912 
913 			if (unlikely(page->mapping != mapping)) {
914 				unlock_page(page);
915 				continue;
916 			}
917 
918 			if (!wbc->range_cyclic && page->index > end) {
919 				done = 1;
920 				unlock_page(page);
921 				continue;
922 			}
923 
924 			if (wbc->sync_mode != WB_SYNC_NONE)
925 				wait_on_page_writeback(page);
926 
927 			if (PageWriteback(page) ||
928 			    !clear_page_dirty_for_io(page)) {
929 				unlock_page(page);
930 				continue;
931 			}
932 
933 			ret = (*writepage)(page, wbc, data);
934 
935 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
936 				unlock_page(page);
937 				ret = 0;
938 			}
939 			if (ret || (--nr_to_write <= 0))
940 				done = 1;
941 			if (wbc->nonblocking && bdi_write_congested(bdi)) {
942 				wbc->encountered_congestion = 1;
943 				done = 1;
944 			}
945 		}
946 		pagevec_release(&pvec);
947 		cond_resched();
948 	}
949 	if (!scanned && !done) {
950 		/*
951 		 * We hit the last page and there is more work to be done: wrap
952 		 * back to the start of the file
953 		 */
954 		scanned = 1;
955 		index = 0;
956 		goto retry;
957 	}
958 	if (!wbc->no_nrwrite_index_update) {
959 		if (wbc->range_cyclic || (range_whole && nr_to_write > 0))
960 			mapping->writeback_index = index;
961 		wbc->nr_to_write = nr_to_write;
962 	}
963 
964 	return ret;
965 }
966 EXPORT_SYMBOL(write_cache_pages);
967 
968 /*
969  * Function used by generic_writepages to call the real writepage
970  * function and set the mapping flags on error
971  */
972 static int __writepage(struct page *page, struct writeback_control *wbc,
973 		       void *data)
974 {
975 	struct address_space *mapping = data;
976 	int ret = mapping->a_ops->writepage(page, wbc);
977 	mapping_set_error(mapping, ret);
978 	return ret;
979 }
980 
981 /**
982  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
983  * @mapping: address space structure to write
984  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
985  *
986  * This is a library function, which implements the writepages()
987  * address_space_operation.
988  */
989 int generic_writepages(struct address_space *mapping,
990 		       struct writeback_control *wbc)
991 {
992 	/* deal with chardevs and other special file */
993 	if (!mapping->a_ops->writepage)
994 		return 0;
995 
996 	return write_cache_pages(mapping, wbc, __writepage, mapping);
997 }
998 
999 EXPORT_SYMBOL(generic_writepages);
1000 
1001 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1002 {
1003 	int ret;
1004 
1005 	if (wbc->nr_to_write <= 0)
1006 		return 0;
1007 	wbc->for_writepages = 1;
1008 	if (mapping->a_ops->writepages)
1009 		ret = mapping->a_ops->writepages(mapping, wbc);
1010 	else
1011 		ret = generic_writepages(mapping, wbc);
1012 	wbc->for_writepages = 0;
1013 	return ret;
1014 }
1015 
1016 /**
1017  * write_one_page - write out a single page and optionally wait on I/O
1018  * @page: the page to write
1019  * @wait: if true, wait on writeout
1020  *
1021  * The page must be locked by the caller and will be unlocked upon return.
1022  *
1023  * write_one_page() returns a negative error code if I/O failed.
1024  */
1025 int write_one_page(struct page *page, int wait)
1026 {
1027 	struct address_space *mapping = page->mapping;
1028 	int ret = 0;
1029 	struct writeback_control wbc = {
1030 		.sync_mode = WB_SYNC_ALL,
1031 		.nr_to_write = 1,
1032 	};
1033 
1034 	BUG_ON(!PageLocked(page));
1035 
1036 	if (wait)
1037 		wait_on_page_writeback(page);
1038 
1039 	if (clear_page_dirty_for_io(page)) {
1040 		page_cache_get(page);
1041 		ret = mapping->a_ops->writepage(page, &wbc);
1042 		if (ret == 0 && wait) {
1043 			wait_on_page_writeback(page);
1044 			if (PageError(page))
1045 				ret = -EIO;
1046 		}
1047 		page_cache_release(page);
1048 	} else {
1049 		unlock_page(page);
1050 	}
1051 	return ret;
1052 }
1053 EXPORT_SYMBOL(write_one_page);
1054 
1055 /*
1056  * For address_spaces which do not use buffers nor write back.
1057  */
1058 int __set_page_dirty_no_writeback(struct page *page)
1059 {
1060 	if (!PageDirty(page))
1061 		SetPageDirty(page);
1062 	return 0;
1063 }
1064 
1065 /*
1066  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1067  * its radix tree.
1068  *
1069  * This is also used when a single buffer is being dirtied: we want to set the
1070  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1071  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1072  *
1073  * Most callers have locked the page, which pins the address_space in memory.
1074  * But zap_pte_range() does not lock the page, however in that case the
1075  * mapping is pinned by the vma's ->vm_file reference.
1076  *
1077  * We take care to handle the case where the page was truncated from the
1078  * mapping by re-checking page_mapping() inside tree_lock.
1079  */
1080 int __set_page_dirty_nobuffers(struct page *page)
1081 {
1082 	if (!TestSetPageDirty(page)) {
1083 		struct address_space *mapping = page_mapping(page);
1084 		struct address_space *mapping2;
1085 
1086 		if (!mapping)
1087 			return 1;
1088 
1089 		spin_lock_irq(&mapping->tree_lock);
1090 		mapping2 = page_mapping(page);
1091 		if (mapping2) { /* Race with truncate? */
1092 			BUG_ON(mapping2 != mapping);
1093 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1094 			if (mapping_cap_account_dirty(mapping)) {
1095 				__inc_zone_page_state(page, NR_FILE_DIRTY);
1096 				__inc_bdi_stat(mapping->backing_dev_info,
1097 						BDI_RECLAIMABLE);
1098 				task_io_account_write(PAGE_CACHE_SIZE);
1099 			}
1100 			radix_tree_tag_set(&mapping->page_tree,
1101 				page_index(page), PAGECACHE_TAG_DIRTY);
1102 		}
1103 		spin_unlock_irq(&mapping->tree_lock);
1104 		if (mapping->host) {
1105 			/* !PageAnon && !swapper_space */
1106 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1107 		}
1108 		return 1;
1109 	}
1110 	return 0;
1111 }
1112 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
1113 
1114 /*
1115  * When a writepage implementation decides that it doesn't want to write this
1116  * page for some reason, it should redirty the locked page via
1117  * redirty_page_for_writepage() and it should then unlock the page and return 0
1118  */
1119 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
1120 {
1121 	wbc->pages_skipped++;
1122 	return __set_page_dirty_nobuffers(page);
1123 }
1124 EXPORT_SYMBOL(redirty_page_for_writepage);
1125 
1126 /*
1127  * If the mapping doesn't provide a set_page_dirty a_op, then
1128  * just fall through and assume that it wants buffer_heads.
1129  */
1130 static int __set_page_dirty(struct page *page)
1131 {
1132 	struct address_space *mapping = page_mapping(page);
1133 
1134 	if (likely(mapping)) {
1135 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
1136 #ifdef CONFIG_BLOCK
1137 		if (!spd)
1138 			spd = __set_page_dirty_buffers;
1139 #endif
1140 		return (*spd)(page);
1141 	}
1142 	if (!PageDirty(page)) {
1143 		if (!TestSetPageDirty(page))
1144 			return 1;
1145 	}
1146 	return 0;
1147 }
1148 
1149 int set_page_dirty(struct page *page)
1150 {
1151 	int ret = __set_page_dirty(page);
1152 	if (ret)
1153 		task_dirty_inc(current);
1154 	return ret;
1155 }
1156 EXPORT_SYMBOL(set_page_dirty);
1157 
1158 /*
1159  * set_page_dirty() is racy if the caller has no reference against
1160  * page->mapping->host, and if the page is unlocked.  This is because another
1161  * CPU could truncate the page off the mapping and then free the mapping.
1162  *
1163  * Usually, the page _is_ locked, or the caller is a user-space process which
1164  * holds a reference on the inode by having an open file.
1165  *
1166  * In other cases, the page should be locked before running set_page_dirty().
1167  */
1168 int set_page_dirty_lock(struct page *page)
1169 {
1170 	int ret;
1171 
1172 	lock_page_nosync(page);
1173 	ret = set_page_dirty(page);
1174 	unlock_page(page);
1175 	return ret;
1176 }
1177 EXPORT_SYMBOL(set_page_dirty_lock);
1178 
1179 /*
1180  * Clear a page's dirty flag, while caring for dirty memory accounting.
1181  * Returns true if the page was previously dirty.
1182  *
1183  * This is for preparing to put the page under writeout.  We leave the page
1184  * tagged as dirty in the radix tree so that a concurrent write-for-sync
1185  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
1186  * implementation will run either set_page_writeback() or set_page_dirty(),
1187  * at which stage we bring the page's dirty flag and radix-tree dirty tag
1188  * back into sync.
1189  *
1190  * This incoherency between the page's dirty flag and radix-tree tag is
1191  * unfortunate, but it only exists while the page is locked.
1192  */
1193 int clear_page_dirty_for_io(struct page *page)
1194 {
1195 	struct address_space *mapping = page_mapping(page);
1196 
1197 	BUG_ON(!PageLocked(page));
1198 
1199 	ClearPageReclaim(page);
1200 	if (mapping && mapping_cap_account_dirty(mapping)) {
1201 		/*
1202 		 * Yes, Virginia, this is indeed insane.
1203 		 *
1204 		 * We use this sequence to make sure that
1205 		 *  (a) we account for dirty stats properly
1206 		 *  (b) we tell the low-level filesystem to
1207 		 *      mark the whole page dirty if it was
1208 		 *      dirty in a pagetable. Only to then
1209 		 *  (c) clean the page again and return 1 to
1210 		 *      cause the writeback.
1211 		 *
1212 		 * This way we avoid all nasty races with the
1213 		 * dirty bit in multiple places and clearing
1214 		 * them concurrently from different threads.
1215 		 *
1216 		 * Note! Normally the "set_page_dirty(page)"
1217 		 * has no effect on the actual dirty bit - since
1218 		 * that will already usually be set. But we
1219 		 * need the side effects, and it can help us
1220 		 * avoid races.
1221 		 *
1222 		 * We basically use the page "master dirty bit"
1223 		 * as a serialization point for all the different
1224 		 * threads doing their things.
1225 		 */
1226 		if (page_mkclean(page))
1227 			set_page_dirty(page);
1228 		/*
1229 		 * We carefully synchronise fault handlers against
1230 		 * installing a dirty pte and marking the page dirty
1231 		 * at this point. We do this by having them hold the
1232 		 * page lock at some point after installing their
1233 		 * pte, but before marking the page dirty.
1234 		 * Pages are always locked coming in here, so we get
1235 		 * the desired exclusion. See mm/memory.c:do_wp_page()
1236 		 * for more comments.
1237 		 */
1238 		if (TestClearPageDirty(page)) {
1239 			dec_zone_page_state(page, NR_FILE_DIRTY);
1240 			dec_bdi_stat(mapping->backing_dev_info,
1241 					BDI_RECLAIMABLE);
1242 			return 1;
1243 		}
1244 		return 0;
1245 	}
1246 	return TestClearPageDirty(page);
1247 }
1248 EXPORT_SYMBOL(clear_page_dirty_for_io);
1249 
1250 int test_clear_page_writeback(struct page *page)
1251 {
1252 	struct address_space *mapping = page_mapping(page);
1253 	int ret;
1254 
1255 	if (mapping) {
1256 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1257 		unsigned long flags;
1258 
1259 		spin_lock_irqsave(&mapping->tree_lock, flags);
1260 		ret = TestClearPageWriteback(page);
1261 		if (ret) {
1262 			radix_tree_tag_clear(&mapping->page_tree,
1263 						page_index(page),
1264 						PAGECACHE_TAG_WRITEBACK);
1265 			if (bdi_cap_account_writeback(bdi)) {
1266 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
1267 				__bdi_writeout_inc(bdi);
1268 			}
1269 		}
1270 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1271 	} else {
1272 		ret = TestClearPageWriteback(page);
1273 	}
1274 	if (ret)
1275 		dec_zone_page_state(page, NR_WRITEBACK);
1276 	return ret;
1277 }
1278 
1279 int test_set_page_writeback(struct page *page)
1280 {
1281 	struct address_space *mapping = page_mapping(page);
1282 	int ret;
1283 
1284 	if (mapping) {
1285 		struct backing_dev_info *bdi = mapping->backing_dev_info;
1286 		unsigned long flags;
1287 
1288 		spin_lock_irqsave(&mapping->tree_lock, flags);
1289 		ret = TestSetPageWriteback(page);
1290 		if (!ret) {
1291 			radix_tree_tag_set(&mapping->page_tree,
1292 						page_index(page),
1293 						PAGECACHE_TAG_WRITEBACK);
1294 			if (bdi_cap_account_writeback(bdi))
1295 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
1296 		}
1297 		if (!PageDirty(page))
1298 			radix_tree_tag_clear(&mapping->page_tree,
1299 						page_index(page),
1300 						PAGECACHE_TAG_DIRTY);
1301 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
1302 	} else {
1303 		ret = TestSetPageWriteback(page);
1304 	}
1305 	if (!ret)
1306 		inc_zone_page_state(page, NR_WRITEBACK);
1307 	return ret;
1308 
1309 }
1310 EXPORT_SYMBOL(test_set_page_writeback);
1311 
1312 /*
1313  * Return true if any of the pages in the mapping are marked with the
1314  * passed tag.
1315  */
1316 int mapping_tagged(struct address_space *mapping, int tag)
1317 {
1318 	int ret;
1319 	rcu_read_lock();
1320 	ret = radix_tree_tagged(&mapping->page_tree, tag);
1321 	rcu_read_unlock();
1322 	return ret;
1323 }
1324 EXPORT_SYMBOL(mapping_tagged);
1325