xref: /openbmc/linux/mm/page-writeback.c (revision 97da55fc)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <trace/events/writeback.h>
40 
41 /*
42  * Sleep at most 200ms at a time in balance_dirty_pages().
43  */
44 #define MAX_PAUSE		max(HZ/5, 1)
45 
46 /*
47  * Try to keep balance_dirty_pages() call intervals higher than this many pages
48  * by raising pause time to max_pause when falls below it.
49  */
50 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
51 
52 /*
53  * Estimate write bandwidth at 200ms intervals.
54  */
55 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
56 
57 #define RATELIMIT_CALC_SHIFT	10
58 
59 /*
60  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
61  * will look to see if it needs to force writeback or throttling.
62  */
63 static long ratelimit_pages = 32;
64 
65 /* The following parameters are exported via /proc/sys/vm */
66 
67 /*
68  * Start background writeback (via writeback threads) at this percentage
69  */
70 int dirty_background_ratio = 10;
71 
72 /*
73  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
74  * dirty_background_ratio * the amount of dirtyable memory
75  */
76 unsigned long dirty_background_bytes;
77 
78 /*
79  * free highmem will not be subtracted from the total free memory
80  * for calculating free ratios if vm_highmem_is_dirtyable is true
81  */
82 int vm_highmem_is_dirtyable;
83 
84 /*
85  * The generator of dirty data starts writeback at this percentage
86  */
87 int vm_dirty_ratio = 20;
88 
89 /*
90  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
91  * vm_dirty_ratio * the amount of dirtyable memory
92  */
93 unsigned long vm_dirty_bytes;
94 
95 /*
96  * The interval between `kupdate'-style writebacks
97  */
98 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
99 
100 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
101 
102 /*
103  * The longest time for which data is allowed to remain dirty
104  */
105 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
106 
107 /*
108  * Flag that makes the machine dump writes/reads and block dirtyings.
109  */
110 int block_dump;
111 
112 /*
113  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
114  * a full sync is triggered after this time elapses without any disk activity.
115  */
116 int laptop_mode;
117 
118 EXPORT_SYMBOL(laptop_mode);
119 
120 /* End of sysctl-exported parameters */
121 
122 unsigned long global_dirty_limit;
123 
124 /*
125  * Scale the writeback cache size proportional to the relative writeout speeds.
126  *
127  * We do this by keeping a floating proportion between BDIs, based on page
128  * writeback completions [end_page_writeback()]. Those devices that write out
129  * pages fastest will get the larger share, while the slower will get a smaller
130  * share.
131  *
132  * We use page writeout completions because we are interested in getting rid of
133  * dirty pages. Having them written out is the primary goal.
134  *
135  * We introduce a concept of time, a period over which we measure these events,
136  * because demand can/will vary over time. The length of this period itself is
137  * measured in page writeback completions.
138  *
139  */
140 static struct fprop_global writeout_completions;
141 
142 static void writeout_period(unsigned long t);
143 /* Timer for aging of writeout_completions */
144 static struct timer_list writeout_period_timer =
145 		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
146 static unsigned long writeout_period_time = 0;
147 
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154 
155 /*
156  * Work out the current dirty-memory clamping and background writeout
157  * thresholds.
158  *
159  * The main aim here is to lower them aggressively if there is a lot of mapped
160  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
161  * pages.  It is better to clamp down on writers than to start swapping, and
162  * performing lots of scanning.
163  *
164  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
165  *
166  * We don't permit the clamping level to fall below 5% - that is getting rather
167  * excessive.
168  *
169  * We make sure that the background writeout level is below the adjusted
170  * clamping level.
171  */
172 
173 /*
174  * In a memory zone, there is a certain amount of pages we consider
175  * available for the page cache, which is essentially the number of
176  * free and reclaimable pages, minus some zone reserves to protect
177  * lowmem and the ability to uphold the zone's watermarks without
178  * requiring writeback.
179  *
180  * This number of dirtyable pages is the base value of which the
181  * user-configurable dirty ratio is the effictive number of pages that
182  * are allowed to be actually dirtied.  Per individual zone, or
183  * globally by using the sum of dirtyable pages over all zones.
184  *
185  * Because the user is allowed to specify the dirty limit globally as
186  * absolute number of bytes, calculating the per-zone dirty limit can
187  * require translating the configured limit into a percentage of
188  * global dirtyable memory first.
189  */
190 
191 static unsigned long highmem_dirtyable_memory(unsigned long total)
192 {
193 #ifdef CONFIG_HIGHMEM
194 	int node;
195 	unsigned long x = 0;
196 
197 	for_each_node_state(node, N_HIGH_MEMORY) {
198 		struct zone *z =
199 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
200 
201 		x += zone_page_state(z, NR_FREE_PAGES) +
202 		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
203 	}
204 	/*
205 	 * Unreclaimable memory (kernel memory or anonymous memory
206 	 * without swap) can bring down the dirtyable pages below
207 	 * the zone's dirty balance reserve and the above calculation
208 	 * will underflow.  However we still want to add in nodes
209 	 * which are below threshold (negative values) to get a more
210 	 * accurate calculation but make sure that the total never
211 	 * underflows.
212 	 */
213 	if ((long)x < 0)
214 		x = 0;
215 
216 	/*
217 	 * Make sure that the number of highmem pages is never larger
218 	 * than the number of the total dirtyable memory. This can only
219 	 * occur in very strange VM situations but we want to make sure
220 	 * that this does not occur.
221 	 */
222 	return min(x, total);
223 #else
224 	return 0;
225 #endif
226 }
227 
228 /**
229  * global_dirtyable_memory - number of globally dirtyable pages
230  *
231  * Returns the global number of pages potentially available for dirty
232  * page cache.  This is the base value for the global dirty limits.
233  */
234 static unsigned long global_dirtyable_memory(void)
235 {
236 	unsigned long x;
237 
238 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages();
239 	x -= min(x, dirty_balance_reserve);
240 
241 	if (!vm_highmem_is_dirtyable)
242 		x -= highmem_dirtyable_memory(x);
243 
244 	/* Subtract min_free_kbytes */
245 	x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10));
246 
247 	return x + 1;	/* Ensure that we never return 0 */
248 }
249 
250 /*
251  * global_dirty_limits - background-writeback and dirty-throttling thresholds
252  *
253  * Calculate the dirty thresholds based on sysctl parameters
254  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
255  * - vm.dirty_ratio             or  vm.dirty_bytes
256  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
257  * real-time tasks.
258  */
259 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
260 {
261 	unsigned long background;
262 	unsigned long dirty;
263 	unsigned long uninitialized_var(available_memory);
264 	struct task_struct *tsk;
265 
266 	if (!vm_dirty_bytes || !dirty_background_bytes)
267 		available_memory = global_dirtyable_memory();
268 
269 	if (vm_dirty_bytes)
270 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271 	else
272 		dirty = (vm_dirty_ratio * available_memory) / 100;
273 
274 	if (dirty_background_bytes)
275 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276 	else
277 		background = (dirty_background_ratio * available_memory) / 100;
278 
279 	if (background >= dirty)
280 		background = dirty / 2;
281 	tsk = current;
282 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283 		background += background / 4;
284 		dirty += dirty / 4;
285 	}
286 	*pbackground = background;
287 	*pdirty = dirty;
288 	trace_global_dirty_state(background, dirty);
289 }
290 
291 /**
292  * zone_dirtyable_memory - number of dirtyable pages in a zone
293  * @zone: the zone
294  *
295  * Returns the zone's number of pages potentially available for dirty
296  * page cache.  This is the base value for the per-zone dirty limits.
297  */
298 static unsigned long zone_dirtyable_memory(struct zone *zone)
299 {
300 	/*
301 	 * The effective global number of dirtyable pages may exclude
302 	 * highmem as a big-picture measure to keep the ratio between
303 	 * dirty memory and lowmem reasonable.
304 	 *
305 	 * But this function is purely about the individual zone and a
306 	 * highmem zone can hold its share of dirty pages, so we don't
307 	 * care about vm_highmem_is_dirtyable here.
308 	 */
309 	unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) +
310 		zone_reclaimable_pages(zone);
311 
312 	/* don't allow this to underflow */
313 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
314 	return nr_pages;
315 }
316 
317 /**
318  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
319  * @zone: the zone
320  *
321  * Returns the maximum number of dirty pages allowed in a zone, based
322  * on the zone's dirtyable memory.
323  */
324 static unsigned long zone_dirty_limit(struct zone *zone)
325 {
326 	unsigned long zone_memory = zone_dirtyable_memory(zone);
327 	struct task_struct *tsk = current;
328 	unsigned long dirty;
329 
330 	if (vm_dirty_bytes)
331 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
332 			zone_memory / global_dirtyable_memory();
333 	else
334 		dirty = vm_dirty_ratio * zone_memory / 100;
335 
336 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
337 		dirty += dirty / 4;
338 
339 	return dirty;
340 }
341 
342 /**
343  * zone_dirty_ok - tells whether a zone is within its dirty limits
344  * @zone: the zone to check
345  *
346  * Returns %true when the dirty pages in @zone are within the zone's
347  * dirty limit, %false if the limit is exceeded.
348  */
349 bool zone_dirty_ok(struct zone *zone)
350 {
351 	unsigned long limit = zone_dirty_limit(zone);
352 
353 	return zone_page_state(zone, NR_FILE_DIRTY) +
354 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
355 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
356 }
357 
358 int dirty_background_ratio_handler(struct ctl_table *table, int write,
359 		void __user *buffer, size_t *lenp,
360 		loff_t *ppos)
361 {
362 	int ret;
363 
364 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
365 	if (ret == 0 && write)
366 		dirty_background_bytes = 0;
367 	return ret;
368 }
369 
370 int dirty_background_bytes_handler(struct ctl_table *table, int write,
371 		void __user *buffer, size_t *lenp,
372 		loff_t *ppos)
373 {
374 	int ret;
375 
376 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
377 	if (ret == 0 && write)
378 		dirty_background_ratio = 0;
379 	return ret;
380 }
381 
382 int dirty_ratio_handler(struct ctl_table *table, int write,
383 		void __user *buffer, size_t *lenp,
384 		loff_t *ppos)
385 {
386 	int old_ratio = vm_dirty_ratio;
387 	int ret;
388 
389 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
390 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
391 		writeback_set_ratelimit();
392 		vm_dirty_bytes = 0;
393 	}
394 	return ret;
395 }
396 
397 int dirty_bytes_handler(struct ctl_table *table, int write,
398 		void __user *buffer, size_t *lenp,
399 		loff_t *ppos)
400 {
401 	unsigned long old_bytes = vm_dirty_bytes;
402 	int ret;
403 
404 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
405 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
406 		writeback_set_ratelimit();
407 		vm_dirty_ratio = 0;
408 	}
409 	return ret;
410 }
411 
412 static unsigned long wp_next_time(unsigned long cur_time)
413 {
414 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
415 	/* 0 has a special meaning... */
416 	if (!cur_time)
417 		return 1;
418 	return cur_time;
419 }
420 
421 /*
422  * Increment the BDI's writeout completion count and the global writeout
423  * completion count. Called from test_clear_page_writeback().
424  */
425 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
426 {
427 	__inc_bdi_stat(bdi, BDI_WRITTEN);
428 	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
429 			       bdi->max_prop_frac);
430 	/* First event after period switching was turned off? */
431 	if (!unlikely(writeout_period_time)) {
432 		/*
433 		 * We can race with other __bdi_writeout_inc calls here but
434 		 * it does not cause any harm since the resulting time when
435 		 * timer will fire and what is in writeout_period_time will be
436 		 * roughly the same.
437 		 */
438 		writeout_period_time = wp_next_time(jiffies);
439 		mod_timer(&writeout_period_timer, writeout_period_time);
440 	}
441 }
442 
443 void bdi_writeout_inc(struct backing_dev_info *bdi)
444 {
445 	unsigned long flags;
446 
447 	local_irq_save(flags);
448 	__bdi_writeout_inc(bdi);
449 	local_irq_restore(flags);
450 }
451 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
452 
453 /*
454  * Obtain an accurate fraction of the BDI's portion.
455  */
456 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
457 		long *numerator, long *denominator)
458 {
459 	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
460 				numerator, denominator);
461 }
462 
463 /*
464  * On idle system, we can be called long after we scheduled because we use
465  * deferred timers so count with missed periods.
466  */
467 static void writeout_period(unsigned long t)
468 {
469 	int miss_periods = (jiffies - writeout_period_time) /
470 						 VM_COMPLETIONS_PERIOD_LEN;
471 
472 	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
473 		writeout_period_time = wp_next_time(writeout_period_time +
474 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
475 		mod_timer(&writeout_period_timer, writeout_period_time);
476 	} else {
477 		/*
478 		 * Aging has zeroed all fractions. Stop wasting CPU on period
479 		 * updates.
480 		 */
481 		writeout_period_time = 0;
482 	}
483 }
484 
485 /*
486  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
487  * registered backing devices, which, for obvious reasons, can not
488  * exceed 100%.
489  */
490 static unsigned int bdi_min_ratio;
491 
492 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
493 {
494 	int ret = 0;
495 
496 	spin_lock_bh(&bdi_lock);
497 	if (min_ratio > bdi->max_ratio) {
498 		ret = -EINVAL;
499 	} else {
500 		min_ratio -= bdi->min_ratio;
501 		if (bdi_min_ratio + min_ratio < 100) {
502 			bdi_min_ratio += min_ratio;
503 			bdi->min_ratio += min_ratio;
504 		} else {
505 			ret = -EINVAL;
506 		}
507 	}
508 	spin_unlock_bh(&bdi_lock);
509 
510 	return ret;
511 }
512 
513 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
514 {
515 	int ret = 0;
516 
517 	if (max_ratio > 100)
518 		return -EINVAL;
519 
520 	spin_lock_bh(&bdi_lock);
521 	if (bdi->min_ratio > max_ratio) {
522 		ret = -EINVAL;
523 	} else {
524 		bdi->max_ratio = max_ratio;
525 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
526 	}
527 	spin_unlock_bh(&bdi_lock);
528 
529 	return ret;
530 }
531 EXPORT_SYMBOL(bdi_set_max_ratio);
532 
533 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
534 					   unsigned long bg_thresh)
535 {
536 	return (thresh + bg_thresh) / 2;
537 }
538 
539 static unsigned long hard_dirty_limit(unsigned long thresh)
540 {
541 	return max(thresh, global_dirty_limit);
542 }
543 
544 /**
545  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
546  * @bdi: the backing_dev_info to query
547  * @dirty: global dirty limit in pages
548  *
549  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
550  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
551  *
552  * Note that balance_dirty_pages() will only seriously take it as a hard limit
553  * when sleeping max_pause per page is not enough to keep the dirty pages under
554  * control. For example, when the device is completely stalled due to some error
555  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
556  * In the other normal situations, it acts more gently by throttling the tasks
557  * more (rather than completely block them) when the bdi dirty pages go high.
558  *
559  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
560  * - starving fast devices
561  * - piling up dirty pages (that will take long time to sync) on slow devices
562  *
563  * The bdi's share of dirty limit will be adapting to its throughput and
564  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
565  */
566 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
567 {
568 	u64 bdi_dirty;
569 	long numerator, denominator;
570 
571 	/*
572 	 * Calculate this BDI's share of the dirty ratio.
573 	 */
574 	bdi_writeout_fraction(bdi, &numerator, &denominator);
575 
576 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
577 	bdi_dirty *= numerator;
578 	do_div(bdi_dirty, denominator);
579 
580 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
581 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
582 		bdi_dirty = dirty * bdi->max_ratio / 100;
583 
584 	return bdi_dirty;
585 }
586 
587 /*
588  * Dirty position control.
589  *
590  * (o) global/bdi setpoints
591  *
592  * We want the dirty pages be balanced around the global/bdi setpoints.
593  * When the number of dirty pages is higher/lower than the setpoint, the
594  * dirty position control ratio (and hence task dirty ratelimit) will be
595  * decreased/increased to bring the dirty pages back to the setpoint.
596  *
597  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
598  *
599  *     if (dirty < setpoint) scale up   pos_ratio
600  *     if (dirty > setpoint) scale down pos_ratio
601  *
602  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
603  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
604  *
605  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
606  *
607  * (o) global control line
608  *
609  *     ^ pos_ratio
610  *     |
611  *     |            |<===== global dirty control scope ======>|
612  * 2.0 .............*
613  *     |            .*
614  *     |            . *
615  *     |            .   *
616  *     |            .     *
617  *     |            .        *
618  *     |            .            *
619  * 1.0 ................................*
620  *     |            .                  .     *
621  *     |            .                  .          *
622  *     |            .                  .              *
623  *     |            .                  .                 *
624  *     |            .                  .                    *
625  *   0 +------------.------------------.----------------------*------------->
626  *           freerun^          setpoint^                 limit^   dirty pages
627  *
628  * (o) bdi control line
629  *
630  *     ^ pos_ratio
631  *     |
632  *     |            *
633  *     |              *
634  *     |                *
635  *     |                  *
636  *     |                    * |<=========== span ============>|
637  * 1.0 .......................*
638  *     |                      . *
639  *     |                      .   *
640  *     |                      .     *
641  *     |                      .       *
642  *     |                      .         *
643  *     |                      .           *
644  *     |                      .             *
645  *     |                      .               *
646  *     |                      .                 *
647  *     |                      .                   *
648  *     |                      .                     *
649  * 1/4 ...............................................* * * * * * * * * * * *
650  *     |                      .                         .
651  *     |                      .                           .
652  *     |                      .                             .
653  *   0 +----------------------.-------------------------------.------------->
654  *                bdi_setpoint^                    x_intercept^
655  *
656  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
657  * be smoothly throttled down to normal if it starts high in situations like
658  * - start writing to a slow SD card and a fast disk at the same time. The SD
659  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
660  * - the bdi dirty thresh drops quickly due to change of JBOD workload
661  */
662 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
663 					unsigned long thresh,
664 					unsigned long bg_thresh,
665 					unsigned long dirty,
666 					unsigned long bdi_thresh,
667 					unsigned long bdi_dirty)
668 {
669 	unsigned long write_bw = bdi->avg_write_bandwidth;
670 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
671 	unsigned long limit = hard_dirty_limit(thresh);
672 	unsigned long x_intercept;
673 	unsigned long setpoint;		/* dirty pages' target balance point */
674 	unsigned long bdi_setpoint;
675 	unsigned long span;
676 	long long pos_ratio;		/* for scaling up/down the rate limit */
677 	long x;
678 
679 	if (unlikely(dirty >= limit))
680 		return 0;
681 
682 	/*
683 	 * global setpoint
684 	 *
685 	 *                           setpoint - dirty 3
686 	 *        f(dirty) := 1.0 + (----------------)
687 	 *                           limit - setpoint
688 	 *
689 	 * it's a 3rd order polynomial that subjects to
690 	 *
691 	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
692 	 * (2) f(setpoint) = 1.0 => the balance point
693 	 * (3) f(limit)    = 0   => the hard limit
694 	 * (4) df/dx      <= 0	 => negative feedback control
695 	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
696 	 *     => fast response on large errors; small oscillation near setpoint
697 	 */
698 	setpoint = (freerun + limit) / 2;
699 	x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
700 		    limit - setpoint + 1);
701 	pos_ratio = x;
702 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
703 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
704 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
705 
706 	/*
707 	 * We have computed basic pos_ratio above based on global situation. If
708 	 * the bdi is over/under its share of dirty pages, we want to scale
709 	 * pos_ratio further down/up. That is done by the following mechanism.
710 	 */
711 
712 	/*
713 	 * bdi setpoint
714 	 *
715 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
716 	 *
717 	 *                        x_intercept - bdi_dirty
718 	 *                     := --------------------------
719 	 *                        x_intercept - bdi_setpoint
720 	 *
721 	 * The main bdi control line is a linear function that subjects to
722 	 *
723 	 * (1) f(bdi_setpoint) = 1.0
724 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
725 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
726 	 *
727 	 * For single bdi case, the dirty pages are observed to fluctuate
728 	 * regularly within range
729 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
730 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
731 	 * fluctuation range for pos_ratio.
732 	 *
733 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
734 	 * own size, so move the slope over accordingly and choose a slope that
735 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
736 	 */
737 	if (unlikely(bdi_thresh > thresh))
738 		bdi_thresh = thresh;
739 	/*
740 	 * It's very possible that bdi_thresh is close to 0 not because the
741 	 * device is slow, but that it has remained inactive for long time.
742 	 * Honour such devices a reasonable good (hopefully IO efficient)
743 	 * threshold, so that the occasional writes won't be blocked and active
744 	 * writes can rampup the threshold quickly.
745 	 */
746 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
747 	/*
748 	 * scale global setpoint to bdi's:
749 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
750 	 */
751 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
752 	bdi_setpoint = setpoint * (u64)x >> 16;
753 	/*
754 	 * Use span=(8*write_bw) in single bdi case as indicated by
755 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
756 	 *
757 	 *        bdi_thresh                    thresh - bdi_thresh
758 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
759 	 *          thresh                            thresh
760 	 */
761 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
762 	x_intercept = bdi_setpoint + span;
763 
764 	if (bdi_dirty < x_intercept - span / 4) {
765 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
766 				    x_intercept - bdi_setpoint + 1);
767 	} else
768 		pos_ratio /= 4;
769 
770 	/*
771 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
772 	 * It may push the desired control point of global dirty pages higher
773 	 * than setpoint.
774 	 */
775 	x_intercept = bdi_thresh / 2;
776 	if (bdi_dirty < x_intercept) {
777 		if (bdi_dirty > x_intercept / 8)
778 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
779 		else
780 			pos_ratio *= 8;
781 	}
782 
783 	return pos_ratio;
784 }
785 
786 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
787 				       unsigned long elapsed,
788 				       unsigned long written)
789 {
790 	const unsigned long period = roundup_pow_of_two(3 * HZ);
791 	unsigned long avg = bdi->avg_write_bandwidth;
792 	unsigned long old = bdi->write_bandwidth;
793 	u64 bw;
794 
795 	/*
796 	 * bw = written * HZ / elapsed
797 	 *
798 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
799 	 * write_bandwidth = ---------------------------------------------------
800 	 *                                          period
801 	 */
802 	bw = written - bdi->written_stamp;
803 	bw *= HZ;
804 	if (unlikely(elapsed > period)) {
805 		do_div(bw, elapsed);
806 		avg = bw;
807 		goto out;
808 	}
809 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
810 	bw >>= ilog2(period);
811 
812 	/*
813 	 * one more level of smoothing, for filtering out sudden spikes
814 	 */
815 	if (avg > old && old >= (unsigned long)bw)
816 		avg -= (avg - old) >> 3;
817 
818 	if (avg < old && old <= (unsigned long)bw)
819 		avg += (old - avg) >> 3;
820 
821 out:
822 	bdi->write_bandwidth = bw;
823 	bdi->avg_write_bandwidth = avg;
824 }
825 
826 /*
827  * The global dirtyable memory and dirty threshold could be suddenly knocked
828  * down by a large amount (eg. on the startup of KVM in a swapless system).
829  * This may throw the system into deep dirty exceeded state and throttle
830  * heavy/light dirtiers alike. To retain good responsiveness, maintain
831  * global_dirty_limit for tracking slowly down to the knocked down dirty
832  * threshold.
833  */
834 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
835 {
836 	unsigned long limit = global_dirty_limit;
837 
838 	/*
839 	 * Follow up in one step.
840 	 */
841 	if (limit < thresh) {
842 		limit = thresh;
843 		goto update;
844 	}
845 
846 	/*
847 	 * Follow down slowly. Use the higher one as the target, because thresh
848 	 * may drop below dirty. This is exactly the reason to introduce
849 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
850 	 */
851 	thresh = max(thresh, dirty);
852 	if (limit > thresh) {
853 		limit -= (limit - thresh) >> 5;
854 		goto update;
855 	}
856 	return;
857 update:
858 	global_dirty_limit = limit;
859 }
860 
861 static void global_update_bandwidth(unsigned long thresh,
862 				    unsigned long dirty,
863 				    unsigned long now)
864 {
865 	static DEFINE_SPINLOCK(dirty_lock);
866 	static unsigned long update_time;
867 
868 	/*
869 	 * check locklessly first to optimize away locking for the most time
870 	 */
871 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
872 		return;
873 
874 	spin_lock(&dirty_lock);
875 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
876 		update_dirty_limit(thresh, dirty);
877 		update_time = now;
878 	}
879 	spin_unlock(&dirty_lock);
880 }
881 
882 /*
883  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
884  *
885  * Normal bdi tasks will be curbed at or below it in long term.
886  * Obviously it should be around (write_bw / N) when there are N dd tasks.
887  */
888 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
889 				       unsigned long thresh,
890 				       unsigned long bg_thresh,
891 				       unsigned long dirty,
892 				       unsigned long bdi_thresh,
893 				       unsigned long bdi_dirty,
894 				       unsigned long dirtied,
895 				       unsigned long elapsed)
896 {
897 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
898 	unsigned long limit = hard_dirty_limit(thresh);
899 	unsigned long setpoint = (freerun + limit) / 2;
900 	unsigned long write_bw = bdi->avg_write_bandwidth;
901 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
902 	unsigned long dirty_rate;
903 	unsigned long task_ratelimit;
904 	unsigned long balanced_dirty_ratelimit;
905 	unsigned long pos_ratio;
906 	unsigned long step;
907 	unsigned long x;
908 
909 	/*
910 	 * The dirty rate will match the writeout rate in long term, except
911 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
912 	 */
913 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
914 
915 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
916 				       bdi_thresh, bdi_dirty);
917 	/*
918 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
919 	 */
920 	task_ratelimit = (u64)dirty_ratelimit *
921 					pos_ratio >> RATELIMIT_CALC_SHIFT;
922 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
923 
924 	/*
925 	 * A linear estimation of the "balanced" throttle rate. The theory is,
926 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
927 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
928 	 * formula will yield the balanced rate limit (write_bw / N).
929 	 *
930 	 * Note that the expanded form is not a pure rate feedback:
931 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
932 	 * but also takes pos_ratio into account:
933 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
934 	 *
935 	 * (1) is not realistic because pos_ratio also takes part in balancing
936 	 * the dirty rate.  Consider the state
937 	 *	pos_ratio = 0.5						     (3)
938 	 *	rate = 2 * (write_bw / N)				     (4)
939 	 * If (1) is used, it will stuck in that state! Because each dd will
940 	 * be throttled at
941 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
942 	 * yielding
943 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
944 	 * put (6) into (1) we get
945 	 *	rate_(i+1) = rate_(i)					     (7)
946 	 *
947 	 * So we end up using (2) to always keep
948 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
949 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
950 	 * pos_ratio is able to drive itself to 1.0, which is not only where
951 	 * the dirty count meet the setpoint, but also where the slope of
952 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
953 	 */
954 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
955 					   dirty_rate | 1);
956 	/*
957 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
958 	 */
959 	if (unlikely(balanced_dirty_ratelimit > write_bw))
960 		balanced_dirty_ratelimit = write_bw;
961 
962 	/*
963 	 * We could safely do this and return immediately:
964 	 *
965 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
966 	 *
967 	 * However to get a more stable dirty_ratelimit, the below elaborated
968 	 * code makes use of task_ratelimit to filter out singular points and
969 	 * limit the step size.
970 	 *
971 	 * The below code essentially only uses the relative value of
972 	 *
973 	 *	task_ratelimit - dirty_ratelimit
974 	 *	= (pos_ratio - 1) * dirty_ratelimit
975 	 *
976 	 * which reflects the direction and size of dirty position error.
977 	 */
978 
979 	/*
980 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
981 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
982 	 * For example, when
983 	 * - dirty_ratelimit > balanced_dirty_ratelimit
984 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
985 	 * lowering dirty_ratelimit will help meet both the position and rate
986 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
987 	 * only help meet the rate target. After all, what the users ultimately
988 	 * feel and care are stable dirty rate and small position error.
989 	 *
990 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
991 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
992 	 * keeps jumping around randomly and can even leap far away at times
993 	 * due to the small 200ms estimation period of dirty_rate (we want to
994 	 * keep that period small to reduce time lags).
995 	 */
996 	step = 0;
997 	if (dirty < setpoint) {
998 		x = min(bdi->balanced_dirty_ratelimit,
999 			 min(balanced_dirty_ratelimit, task_ratelimit));
1000 		if (dirty_ratelimit < x)
1001 			step = x - dirty_ratelimit;
1002 	} else {
1003 		x = max(bdi->balanced_dirty_ratelimit,
1004 			 max(balanced_dirty_ratelimit, task_ratelimit));
1005 		if (dirty_ratelimit > x)
1006 			step = dirty_ratelimit - x;
1007 	}
1008 
1009 	/*
1010 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1011 	 * rate itself is constantly fluctuating. So decrease the track speed
1012 	 * when it gets close to the target. Helps eliminate pointless tremors.
1013 	 */
1014 	step >>= dirty_ratelimit / (2 * step + 1);
1015 	/*
1016 	 * Limit the tracking speed to avoid overshooting.
1017 	 */
1018 	step = (step + 7) / 8;
1019 
1020 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1021 		dirty_ratelimit += step;
1022 	else
1023 		dirty_ratelimit -= step;
1024 
1025 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1026 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1027 
1028 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1029 }
1030 
1031 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1032 			    unsigned long thresh,
1033 			    unsigned long bg_thresh,
1034 			    unsigned long dirty,
1035 			    unsigned long bdi_thresh,
1036 			    unsigned long bdi_dirty,
1037 			    unsigned long start_time)
1038 {
1039 	unsigned long now = jiffies;
1040 	unsigned long elapsed = now - bdi->bw_time_stamp;
1041 	unsigned long dirtied;
1042 	unsigned long written;
1043 
1044 	/*
1045 	 * rate-limit, only update once every 200ms.
1046 	 */
1047 	if (elapsed < BANDWIDTH_INTERVAL)
1048 		return;
1049 
1050 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1051 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1052 
1053 	/*
1054 	 * Skip quiet periods when disk bandwidth is under-utilized.
1055 	 * (at least 1s idle time between two flusher runs)
1056 	 */
1057 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1058 		goto snapshot;
1059 
1060 	if (thresh) {
1061 		global_update_bandwidth(thresh, dirty, now);
1062 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1063 					   bdi_thresh, bdi_dirty,
1064 					   dirtied, elapsed);
1065 	}
1066 	bdi_update_write_bandwidth(bdi, elapsed, written);
1067 
1068 snapshot:
1069 	bdi->dirtied_stamp = dirtied;
1070 	bdi->written_stamp = written;
1071 	bdi->bw_time_stamp = now;
1072 }
1073 
1074 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1075 				 unsigned long thresh,
1076 				 unsigned long bg_thresh,
1077 				 unsigned long dirty,
1078 				 unsigned long bdi_thresh,
1079 				 unsigned long bdi_dirty,
1080 				 unsigned long start_time)
1081 {
1082 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1083 		return;
1084 	spin_lock(&bdi->wb.list_lock);
1085 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1086 			       bdi_thresh, bdi_dirty, start_time);
1087 	spin_unlock(&bdi->wb.list_lock);
1088 }
1089 
1090 /*
1091  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1092  * will look to see if it needs to start dirty throttling.
1093  *
1094  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1095  * global_page_state() too often. So scale it near-sqrt to the safety margin
1096  * (the number of pages we may dirty without exceeding the dirty limits).
1097  */
1098 static unsigned long dirty_poll_interval(unsigned long dirty,
1099 					 unsigned long thresh)
1100 {
1101 	if (thresh > dirty)
1102 		return 1UL << (ilog2(thresh - dirty) >> 1);
1103 
1104 	return 1;
1105 }
1106 
1107 static long bdi_max_pause(struct backing_dev_info *bdi,
1108 			  unsigned long bdi_dirty)
1109 {
1110 	long bw = bdi->avg_write_bandwidth;
1111 	long t;
1112 
1113 	/*
1114 	 * Limit pause time for small memory systems. If sleeping for too long
1115 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1116 	 * idle.
1117 	 *
1118 	 * 8 serves as the safety ratio.
1119 	 */
1120 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1121 	t++;
1122 
1123 	return min_t(long, t, MAX_PAUSE);
1124 }
1125 
1126 static long bdi_min_pause(struct backing_dev_info *bdi,
1127 			  long max_pause,
1128 			  unsigned long task_ratelimit,
1129 			  unsigned long dirty_ratelimit,
1130 			  int *nr_dirtied_pause)
1131 {
1132 	long hi = ilog2(bdi->avg_write_bandwidth);
1133 	long lo = ilog2(bdi->dirty_ratelimit);
1134 	long t;		/* target pause */
1135 	long pause;	/* estimated next pause */
1136 	int pages;	/* target nr_dirtied_pause */
1137 
1138 	/* target for 10ms pause on 1-dd case */
1139 	t = max(1, HZ / 100);
1140 
1141 	/*
1142 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1143 	 * overheads.
1144 	 *
1145 	 * (N * 10ms) on 2^N concurrent tasks.
1146 	 */
1147 	if (hi > lo)
1148 		t += (hi - lo) * (10 * HZ) / 1024;
1149 
1150 	/*
1151 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1152 	 * on the much more stable dirty_ratelimit. However the next pause time
1153 	 * will be computed based on task_ratelimit and the two rate limits may
1154 	 * depart considerably at some time. Especially if task_ratelimit goes
1155 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1156 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1157 	 * result task_ratelimit won't be executed faithfully, which could
1158 	 * eventually bring down dirty_ratelimit.
1159 	 *
1160 	 * We apply two rules to fix it up:
1161 	 * 1) try to estimate the next pause time and if necessary, use a lower
1162 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1163 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1164 	 * 2) limit the target pause time to max_pause/2, so that the normal
1165 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1166 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1167 	 */
1168 	t = min(t, 1 + max_pause / 2);
1169 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1170 
1171 	/*
1172 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1173 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1174 	 * When the 16 consecutive reads are often interrupted by some dirty
1175 	 * throttling pause during the async writes, cfq will go into idles
1176 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1177 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1178 	 */
1179 	if (pages < DIRTY_POLL_THRESH) {
1180 		t = max_pause;
1181 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1182 		if (pages > DIRTY_POLL_THRESH) {
1183 			pages = DIRTY_POLL_THRESH;
1184 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1185 		}
1186 	}
1187 
1188 	pause = HZ * pages / (task_ratelimit + 1);
1189 	if (pause > max_pause) {
1190 		t = max_pause;
1191 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1192 	}
1193 
1194 	*nr_dirtied_pause = pages;
1195 	/*
1196 	 * The minimal pause time will normally be half the target pause time.
1197 	 */
1198 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1199 }
1200 
1201 /*
1202  * balance_dirty_pages() must be called by processes which are generating dirty
1203  * data.  It looks at the number of dirty pages in the machine and will force
1204  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1205  * If we're over `background_thresh' then the writeback threads are woken to
1206  * perform some writeout.
1207  */
1208 static void balance_dirty_pages(struct address_space *mapping,
1209 				unsigned long pages_dirtied)
1210 {
1211 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1212 	unsigned long bdi_reclaimable;
1213 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1214 	unsigned long bdi_dirty;
1215 	unsigned long freerun;
1216 	unsigned long background_thresh;
1217 	unsigned long dirty_thresh;
1218 	unsigned long bdi_thresh;
1219 	long period;
1220 	long pause;
1221 	long max_pause;
1222 	long min_pause;
1223 	int nr_dirtied_pause;
1224 	bool dirty_exceeded = false;
1225 	unsigned long task_ratelimit;
1226 	unsigned long dirty_ratelimit;
1227 	unsigned long pos_ratio;
1228 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1229 	unsigned long start_time = jiffies;
1230 
1231 	for (;;) {
1232 		unsigned long now = jiffies;
1233 
1234 		/*
1235 		 * Unstable writes are a feature of certain networked
1236 		 * filesystems (i.e. NFS) in which data may have been
1237 		 * written to the server's write cache, but has not yet
1238 		 * been flushed to permanent storage.
1239 		 */
1240 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1241 					global_page_state(NR_UNSTABLE_NFS);
1242 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1243 
1244 		global_dirty_limits(&background_thresh, &dirty_thresh);
1245 
1246 		/*
1247 		 * Throttle it only when the background writeback cannot
1248 		 * catch-up. This avoids (excessively) small writeouts
1249 		 * when the bdi limits are ramping up.
1250 		 */
1251 		freerun = dirty_freerun_ceiling(dirty_thresh,
1252 						background_thresh);
1253 		if (nr_dirty <= freerun) {
1254 			current->dirty_paused_when = now;
1255 			current->nr_dirtied = 0;
1256 			current->nr_dirtied_pause =
1257 				dirty_poll_interval(nr_dirty, dirty_thresh);
1258 			break;
1259 		}
1260 
1261 		if (unlikely(!writeback_in_progress(bdi)))
1262 			bdi_start_background_writeback(bdi);
1263 
1264 		/*
1265 		 * bdi_thresh is not treated as some limiting factor as
1266 		 * dirty_thresh, due to reasons
1267 		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1268 		 * - in a system with HDD and USB key, the USB key may somehow
1269 		 *   go into state (bdi_dirty >> bdi_thresh) either because
1270 		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1271 		 *   In this case we don't want to hard throttle the USB key
1272 		 *   dirtiers for 100 seconds until bdi_dirty drops under
1273 		 *   bdi_thresh. Instead the auxiliary bdi control line in
1274 		 *   bdi_position_ratio() will let the dirtier task progress
1275 		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1276 		 */
1277 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1278 
1279 		/*
1280 		 * In order to avoid the stacked BDI deadlock we need
1281 		 * to ensure we accurately count the 'dirty' pages when
1282 		 * the threshold is low.
1283 		 *
1284 		 * Otherwise it would be possible to get thresh+n pages
1285 		 * reported dirty, even though there are thresh-m pages
1286 		 * actually dirty; with m+n sitting in the percpu
1287 		 * deltas.
1288 		 */
1289 		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1290 			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1291 			bdi_dirty = bdi_reclaimable +
1292 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1293 		} else {
1294 			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1295 			bdi_dirty = bdi_reclaimable +
1296 				    bdi_stat(bdi, BDI_WRITEBACK);
1297 		}
1298 
1299 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1300 				  (nr_dirty > dirty_thresh);
1301 		if (dirty_exceeded && !bdi->dirty_exceeded)
1302 			bdi->dirty_exceeded = 1;
1303 
1304 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1305 				     nr_dirty, bdi_thresh, bdi_dirty,
1306 				     start_time);
1307 
1308 		dirty_ratelimit = bdi->dirty_ratelimit;
1309 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1310 					       background_thresh, nr_dirty,
1311 					       bdi_thresh, bdi_dirty);
1312 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1313 							RATELIMIT_CALC_SHIFT;
1314 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1315 		min_pause = bdi_min_pause(bdi, max_pause,
1316 					  task_ratelimit, dirty_ratelimit,
1317 					  &nr_dirtied_pause);
1318 
1319 		if (unlikely(task_ratelimit == 0)) {
1320 			period = max_pause;
1321 			pause = max_pause;
1322 			goto pause;
1323 		}
1324 		period = HZ * pages_dirtied / task_ratelimit;
1325 		pause = period;
1326 		if (current->dirty_paused_when)
1327 			pause -= now - current->dirty_paused_when;
1328 		/*
1329 		 * For less than 1s think time (ext3/4 may block the dirtier
1330 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1331 		 * however at much less frequency), try to compensate it in
1332 		 * future periods by updating the virtual time; otherwise just
1333 		 * do a reset, as it may be a light dirtier.
1334 		 */
1335 		if (pause < min_pause) {
1336 			trace_balance_dirty_pages(bdi,
1337 						  dirty_thresh,
1338 						  background_thresh,
1339 						  nr_dirty,
1340 						  bdi_thresh,
1341 						  bdi_dirty,
1342 						  dirty_ratelimit,
1343 						  task_ratelimit,
1344 						  pages_dirtied,
1345 						  period,
1346 						  min(pause, 0L),
1347 						  start_time);
1348 			if (pause < -HZ) {
1349 				current->dirty_paused_when = now;
1350 				current->nr_dirtied = 0;
1351 			} else if (period) {
1352 				current->dirty_paused_when += period;
1353 				current->nr_dirtied = 0;
1354 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1355 				current->nr_dirtied_pause += pages_dirtied;
1356 			break;
1357 		}
1358 		if (unlikely(pause > max_pause)) {
1359 			/* for occasional dropped task_ratelimit */
1360 			now += min(pause - max_pause, max_pause);
1361 			pause = max_pause;
1362 		}
1363 
1364 pause:
1365 		trace_balance_dirty_pages(bdi,
1366 					  dirty_thresh,
1367 					  background_thresh,
1368 					  nr_dirty,
1369 					  bdi_thresh,
1370 					  bdi_dirty,
1371 					  dirty_ratelimit,
1372 					  task_ratelimit,
1373 					  pages_dirtied,
1374 					  period,
1375 					  pause,
1376 					  start_time);
1377 		__set_current_state(TASK_KILLABLE);
1378 		io_schedule_timeout(pause);
1379 
1380 		current->dirty_paused_when = now + pause;
1381 		current->nr_dirtied = 0;
1382 		current->nr_dirtied_pause = nr_dirtied_pause;
1383 
1384 		/*
1385 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1386 		 * also keep "1000+ dd on a slow USB stick" under control.
1387 		 */
1388 		if (task_ratelimit)
1389 			break;
1390 
1391 		/*
1392 		 * In the case of an unresponding NFS server and the NFS dirty
1393 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1394 		 * to go through, so that tasks on them still remain responsive.
1395 		 *
1396 		 * In theory 1 page is enough to keep the comsumer-producer
1397 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1398 		 * more page. However bdi_dirty has accounting errors.  So use
1399 		 * the larger and more IO friendly bdi_stat_error.
1400 		 */
1401 		if (bdi_dirty <= bdi_stat_error(bdi))
1402 			break;
1403 
1404 		if (fatal_signal_pending(current))
1405 			break;
1406 	}
1407 
1408 	if (!dirty_exceeded && bdi->dirty_exceeded)
1409 		bdi->dirty_exceeded = 0;
1410 
1411 	if (writeback_in_progress(bdi))
1412 		return;
1413 
1414 	/*
1415 	 * In laptop mode, we wait until hitting the higher threshold before
1416 	 * starting background writeout, and then write out all the way down
1417 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1418 	 *
1419 	 * In normal mode, we start background writeout at the lower
1420 	 * background_thresh, to keep the amount of dirty memory low.
1421 	 */
1422 	if (laptop_mode)
1423 		return;
1424 
1425 	if (nr_reclaimable > background_thresh)
1426 		bdi_start_background_writeback(bdi);
1427 }
1428 
1429 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1430 {
1431 	if (set_page_dirty(page) || page_mkwrite) {
1432 		struct address_space *mapping = page_mapping(page);
1433 
1434 		if (mapping)
1435 			balance_dirty_pages_ratelimited(mapping);
1436 	}
1437 }
1438 
1439 static DEFINE_PER_CPU(int, bdp_ratelimits);
1440 
1441 /*
1442  * Normal tasks are throttled by
1443  *	loop {
1444  *		dirty tsk->nr_dirtied_pause pages;
1445  *		take a snap in balance_dirty_pages();
1446  *	}
1447  * However there is a worst case. If every task exit immediately when dirtied
1448  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1449  * called to throttle the page dirties. The solution is to save the not yet
1450  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1451  * randomly into the running tasks. This works well for the above worst case,
1452  * as the new task will pick up and accumulate the old task's leaked dirty
1453  * count and eventually get throttled.
1454  */
1455 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1456 
1457 /**
1458  * balance_dirty_pages_ratelimited - balance dirty memory state
1459  * @mapping: address_space which was dirtied
1460  *
1461  * Processes which are dirtying memory should call in here once for each page
1462  * which was newly dirtied.  The function will periodically check the system's
1463  * dirty state and will initiate writeback if needed.
1464  *
1465  * On really big machines, get_writeback_state is expensive, so try to avoid
1466  * calling it too often (ratelimiting).  But once we're over the dirty memory
1467  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1468  * from overshooting the limit by (ratelimit_pages) each.
1469  */
1470 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1471 {
1472 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1473 	int ratelimit;
1474 	int *p;
1475 
1476 	if (!bdi_cap_account_dirty(bdi))
1477 		return;
1478 
1479 	ratelimit = current->nr_dirtied_pause;
1480 	if (bdi->dirty_exceeded)
1481 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1482 
1483 	preempt_disable();
1484 	/*
1485 	 * This prevents one CPU to accumulate too many dirtied pages without
1486 	 * calling into balance_dirty_pages(), which can happen when there are
1487 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1488 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1489 	 */
1490 	p =  &__get_cpu_var(bdp_ratelimits);
1491 	if (unlikely(current->nr_dirtied >= ratelimit))
1492 		*p = 0;
1493 	else if (unlikely(*p >= ratelimit_pages)) {
1494 		*p = 0;
1495 		ratelimit = 0;
1496 	}
1497 	/*
1498 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1499 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1500 	 * the dirty throttling and livelock other long-run dirtiers.
1501 	 */
1502 	p = &__get_cpu_var(dirty_throttle_leaks);
1503 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1504 		unsigned long nr_pages_dirtied;
1505 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1506 		*p -= nr_pages_dirtied;
1507 		current->nr_dirtied += nr_pages_dirtied;
1508 	}
1509 	preempt_enable();
1510 
1511 	if (unlikely(current->nr_dirtied >= ratelimit))
1512 		balance_dirty_pages(mapping, current->nr_dirtied);
1513 }
1514 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1515 
1516 void throttle_vm_writeout(gfp_t gfp_mask)
1517 {
1518 	unsigned long background_thresh;
1519 	unsigned long dirty_thresh;
1520 
1521         for ( ; ; ) {
1522 		global_dirty_limits(&background_thresh, &dirty_thresh);
1523 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1524 
1525                 /*
1526                  * Boost the allowable dirty threshold a bit for page
1527                  * allocators so they don't get DoS'ed by heavy writers
1528                  */
1529                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1530 
1531                 if (global_page_state(NR_UNSTABLE_NFS) +
1532 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1533                         	break;
1534                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1535 
1536 		/*
1537 		 * The caller might hold locks which can prevent IO completion
1538 		 * or progress in the filesystem.  So we cannot just sit here
1539 		 * waiting for IO to complete.
1540 		 */
1541 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1542 			break;
1543         }
1544 }
1545 
1546 /*
1547  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1548  */
1549 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1550 	void __user *buffer, size_t *length, loff_t *ppos)
1551 {
1552 	proc_dointvec(table, write, buffer, length, ppos);
1553 	return 0;
1554 }
1555 
1556 #ifdef CONFIG_BLOCK
1557 void laptop_mode_timer_fn(unsigned long data)
1558 {
1559 	struct request_queue *q = (struct request_queue *)data;
1560 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1561 		global_page_state(NR_UNSTABLE_NFS);
1562 
1563 	/*
1564 	 * We want to write everything out, not just down to the dirty
1565 	 * threshold
1566 	 */
1567 	if (bdi_has_dirty_io(&q->backing_dev_info))
1568 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1569 					WB_REASON_LAPTOP_TIMER);
1570 }
1571 
1572 /*
1573  * We've spun up the disk and we're in laptop mode: schedule writeback
1574  * of all dirty data a few seconds from now.  If the flush is already scheduled
1575  * then push it back - the user is still using the disk.
1576  */
1577 void laptop_io_completion(struct backing_dev_info *info)
1578 {
1579 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1580 }
1581 
1582 /*
1583  * We're in laptop mode and we've just synced. The sync's writes will have
1584  * caused another writeback to be scheduled by laptop_io_completion.
1585  * Nothing needs to be written back anymore, so we unschedule the writeback.
1586  */
1587 void laptop_sync_completion(void)
1588 {
1589 	struct backing_dev_info *bdi;
1590 
1591 	rcu_read_lock();
1592 
1593 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1594 		del_timer(&bdi->laptop_mode_wb_timer);
1595 
1596 	rcu_read_unlock();
1597 }
1598 #endif
1599 
1600 /*
1601  * If ratelimit_pages is too high then we can get into dirty-data overload
1602  * if a large number of processes all perform writes at the same time.
1603  * If it is too low then SMP machines will call the (expensive)
1604  * get_writeback_state too often.
1605  *
1606  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1607  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1608  * thresholds.
1609  */
1610 
1611 void writeback_set_ratelimit(void)
1612 {
1613 	unsigned long background_thresh;
1614 	unsigned long dirty_thresh;
1615 	global_dirty_limits(&background_thresh, &dirty_thresh);
1616 	global_dirty_limit = dirty_thresh;
1617 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1618 	if (ratelimit_pages < 16)
1619 		ratelimit_pages = 16;
1620 }
1621 
1622 static int __cpuinit
1623 ratelimit_handler(struct notifier_block *self, unsigned long action,
1624 		  void *hcpu)
1625 {
1626 
1627 	switch (action & ~CPU_TASKS_FROZEN) {
1628 	case CPU_ONLINE:
1629 	case CPU_DEAD:
1630 		writeback_set_ratelimit();
1631 		return NOTIFY_OK;
1632 	default:
1633 		return NOTIFY_DONE;
1634 	}
1635 }
1636 
1637 static struct notifier_block __cpuinitdata ratelimit_nb = {
1638 	.notifier_call	= ratelimit_handler,
1639 	.next		= NULL,
1640 };
1641 
1642 /*
1643  * Called early on to tune the page writeback dirty limits.
1644  *
1645  * We used to scale dirty pages according to how total memory
1646  * related to pages that could be allocated for buffers (by
1647  * comparing nr_free_buffer_pages() to vm_total_pages.
1648  *
1649  * However, that was when we used "dirty_ratio" to scale with
1650  * all memory, and we don't do that any more. "dirty_ratio"
1651  * is now applied to total non-HIGHPAGE memory (by subtracting
1652  * totalhigh_pages from vm_total_pages), and as such we can't
1653  * get into the old insane situation any more where we had
1654  * large amounts of dirty pages compared to a small amount of
1655  * non-HIGHMEM memory.
1656  *
1657  * But we might still want to scale the dirty_ratio by how
1658  * much memory the box has..
1659  */
1660 void __init page_writeback_init(void)
1661 {
1662 	writeback_set_ratelimit();
1663 	register_cpu_notifier(&ratelimit_nb);
1664 
1665 	fprop_global_init(&writeout_completions);
1666 }
1667 
1668 /**
1669  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1670  * @mapping: address space structure to write
1671  * @start: starting page index
1672  * @end: ending page index (inclusive)
1673  *
1674  * This function scans the page range from @start to @end (inclusive) and tags
1675  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1676  * that write_cache_pages (or whoever calls this function) will then use
1677  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1678  * used to avoid livelocking of writeback by a process steadily creating new
1679  * dirty pages in the file (thus it is important for this function to be quick
1680  * so that it can tag pages faster than a dirtying process can create them).
1681  */
1682 /*
1683  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1684  */
1685 void tag_pages_for_writeback(struct address_space *mapping,
1686 			     pgoff_t start, pgoff_t end)
1687 {
1688 #define WRITEBACK_TAG_BATCH 4096
1689 	unsigned long tagged;
1690 
1691 	do {
1692 		spin_lock_irq(&mapping->tree_lock);
1693 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1694 				&start, end, WRITEBACK_TAG_BATCH,
1695 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1696 		spin_unlock_irq(&mapping->tree_lock);
1697 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1698 		cond_resched();
1699 		/* We check 'start' to handle wrapping when end == ~0UL */
1700 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1701 }
1702 EXPORT_SYMBOL(tag_pages_for_writeback);
1703 
1704 /**
1705  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1706  * @mapping: address space structure to write
1707  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1708  * @writepage: function called for each page
1709  * @data: data passed to writepage function
1710  *
1711  * If a page is already under I/O, write_cache_pages() skips it, even
1712  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1713  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1714  * and msync() need to guarantee that all the data which was dirty at the time
1715  * the call was made get new I/O started against them.  If wbc->sync_mode is
1716  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1717  * existing IO to complete.
1718  *
1719  * To avoid livelocks (when other process dirties new pages), we first tag
1720  * pages which should be written back with TOWRITE tag and only then start
1721  * writing them. For data-integrity sync we have to be careful so that we do
1722  * not miss some pages (e.g., because some other process has cleared TOWRITE
1723  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1724  * by the process clearing the DIRTY tag (and submitting the page for IO).
1725  */
1726 int write_cache_pages(struct address_space *mapping,
1727 		      struct writeback_control *wbc, writepage_t writepage,
1728 		      void *data)
1729 {
1730 	int ret = 0;
1731 	int done = 0;
1732 	struct pagevec pvec;
1733 	int nr_pages;
1734 	pgoff_t uninitialized_var(writeback_index);
1735 	pgoff_t index;
1736 	pgoff_t end;		/* Inclusive */
1737 	pgoff_t done_index;
1738 	int cycled;
1739 	int range_whole = 0;
1740 	int tag;
1741 
1742 	pagevec_init(&pvec, 0);
1743 	if (wbc->range_cyclic) {
1744 		writeback_index = mapping->writeback_index; /* prev offset */
1745 		index = writeback_index;
1746 		if (index == 0)
1747 			cycled = 1;
1748 		else
1749 			cycled = 0;
1750 		end = -1;
1751 	} else {
1752 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1753 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1754 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1755 			range_whole = 1;
1756 		cycled = 1; /* ignore range_cyclic tests */
1757 	}
1758 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1759 		tag = PAGECACHE_TAG_TOWRITE;
1760 	else
1761 		tag = PAGECACHE_TAG_DIRTY;
1762 retry:
1763 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1764 		tag_pages_for_writeback(mapping, index, end);
1765 	done_index = index;
1766 	while (!done && (index <= end)) {
1767 		int i;
1768 
1769 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1770 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1771 		if (nr_pages == 0)
1772 			break;
1773 
1774 		for (i = 0; i < nr_pages; i++) {
1775 			struct page *page = pvec.pages[i];
1776 
1777 			/*
1778 			 * At this point, the page may be truncated or
1779 			 * invalidated (changing page->mapping to NULL), or
1780 			 * even swizzled back from swapper_space to tmpfs file
1781 			 * mapping. However, page->index will not change
1782 			 * because we have a reference on the page.
1783 			 */
1784 			if (page->index > end) {
1785 				/*
1786 				 * can't be range_cyclic (1st pass) because
1787 				 * end == -1 in that case.
1788 				 */
1789 				done = 1;
1790 				break;
1791 			}
1792 
1793 			done_index = page->index;
1794 
1795 			lock_page(page);
1796 
1797 			/*
1798 			 * Page truncated or invalidated. We can freely skip it
1799 			 * then, even for data integrity operations: the page
1800 			 * has disappeared concurrently, so there could be no
1801 			 * real expectation of this data interity operation
1802 			 * even if there is now a new, dirty page at the same
1803 			 * pagecache address.
1804 			 */
1805 			if (unlikely(page->mapping != mapping)) {
1806 continue_unlock:
1807 				unlock_page(page);
1808 				continue;
1809 			}
1810 
1811 			if (!PageDirty(page)) {
1812 				/* someone wrote it for us */
1813 				goto continue_unlock;
1814 			}
1815 
1816 			if (PageWriteback(page)) {
1817 				if (wbc->sync_mode != WB_SYNC_NONE)
1818 					wait_on_page_writeback(page);
1819 				else
1820 					goto continue_unlock;
1821 			}
1822 
1823 			BUG_ON(PageWriteback(page));
1824 			if (!clear_page_dirty_for_io(page))
1825 				goto continue_unlock;
1826 
1827 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1828 			ret = (*writepage)(page, wbc, data);
1829 			if (unlikely(ret)) {
1830 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1831 					unlock_page(page);
1832 					ret = 0;
1833 				} else {
1834 					/*
1835 					 * done_index is set past this page,
1836 					 * so media errors will not choke
1837 					 * background writeout for the entire
1838 					 * file. This has consequences for
1839 					 * range_cyclic semantics (ie. it may
1840 					 * not be suitable for data integrity
1841 					 * writeout).
1842 					 */
1843 					done_index = page->index + 1;
1844 					done = 1;
1845 					break;
1846 				}
1847 			}
1848 
1849 			/*
1850 			 * We stop writing back only if we are not doing
1851 			 * integrity sync. In case of integrity sync we have to
1852 			 * keep going until we have written all the pages
1853 			 * we tagged for writeback prior to entering this loop.
1854 			 */
1855 			if (--wbc->nr_to_write <= 0 &&
1856 			    wbc->sync_mode == WB_SYNC_NONE) {
1857 				done = 1;
1858 				break;
1859 			}
1860 		}
1861 		pagevec_release(&pvec);
1862 		cond_resched();
1863 	}
1864 	if (!cycled && !done) {
1865 		/*
1866 		 * range_cyclic:
1867 		 * We hit the last page and there is more work to be done: wrap
1868 		 * back to the start of the file
1869 		 */
1870 		cycled = 1;
1871 		index = 0;
1872 		end = writeback_index - 1;
1873 		goto retry;
1874 	}
1875 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1876 		mapping->writeback_index = done_index;
1877 
1878 	return ret;
1879 }
1880 EXPORT_SYMBOL(write_cache_pages);
1881 
1882 /*
1883  * Function used by generic_writepages to call the real writepage
1884  * function and set the mapping flags on error
1885  */
1886 static int __writepage(struct page *page, struct writeback_control *wbc,
1887 		       void *data)
1888 {
1889 	struct address_space *mapping = data;
1890 	int ret = mapping->a_ops->writepage(page, wbc);
1891 	mapping_set_error(mapping, ret);
1892 	return ret;
1893 }
1894 
1895 /**
1896  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1897  * @mapping: address space structure to write
1898  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1899  *
1900  * This is a library function, which implements the writepages()
1901  * address_space_operation.
1902  */
1903 int generic_writepages(struct address_space *mapping,
1904 		       struct writeback_control *wbc)
1905 {
1906 	struct blk_plug plug;
1907 	int ret;
1908 
1909 	/* deal with chardevs and other special file */
1910 	if (!mapping->a_ops->writepage)
1911 		return 0;
1912 
1913 	blk_start_plug(&plug);
1914 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1915 	blk_finish_plug(&plug);
1916 	return ret;
1917 }
1918 
1919 EXPORT_SYMBOL(generic_writepages);
1920 
1921 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1922 {
1923 	int ret;
1924 
1925 	if (wbc->nr_to_write <= 0)
1926 		return 0;
1927 	if (mapping->a_ops->writepages)
1928 		ret = mapping->a_ops->writepages(mapping, wbc);
1929 	else
1930 		ret = generic_writepages(mapping, wbc);
1931 	return ret;
1932 }
1933 
1934 /**
1935  * write_one_page - write out a single page and optionally wait on I/O
1936  * @page: the page to write
1937  * @wait: if true, wait on writeout
1938  *
1939  * The page must be locked by the caller and will be unlocked upon return.
1940  *
1941  * write_one_page() returns a negative error code if I/O failed.
1942  */
1943 int write_one_page(struct page *page, int wait)
1944 {
1945 	struct address_space *mapping = page->mapping;
1946 	int ret = 0;
1947 	struct writeback_control wbc = {
1948 		.sync_mode = WB_SYNC_ALL,
1949 		.nr_to_write = 1,
1950 	};
1951 
1952 	BUG_ON(!PageLocked(page));
1953 
1954 	if (wait)
1955 		wait_on_page_writeback(page);
1956 
1957 	if (clear_page_dirty_for_io(page)) {
1958 		page_cache_get(page);
1959 		ret = mapping->a_ops->writepage(page, &wbc);
1960 		if (ret == 0 && wait) {
1961 			wait_on_page_writeback(page);
1962 			if (PageError(page))
1963 				ret = -EIO;
1964 		}
1965 		page_cache_release(page);
1966 	} else {
1967 		unlock_page(page);
1968 	}
1969 	return ret;
1970 }
1971 EXPORT_SYMBOL(write_one_page);
1972 
1973 /*
1974  * For address_spaces which do not use buffers nor write back.
1975  */
1976 int __set_page_dirty_no_writeback(struct page *page)
1977 {
1978 	if (!PageDirty(page))
1979 		return !TestSetPageDirty(page);
1980 	return 0;
1981 }
1982 
1983 /*
1984  * Helper function for set_page_dirty family.
1985  * NOTE: This relies on being atomic wrt interrupts.
1986  */
1987 void account_page_dirtied(struct page *page, struct address_space *mapping)
1988 {
1989 	trace_writeback_dirty_page(page, mapping);
1990 
1991 	if (mapping_cap_account_dirty(mapping)) {
1992 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1993 		__inc_zone_page_state(page, NR_DIRTIED);
1994 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1995 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1996 		task_io_account_write(PAGE_CACHE_SIZE);
1997 		current->nr_dirtied++;
1998 		this_cpu_inc(bdp_ratelimits);
1999 	}
2000 }
2001 EXPORT_SYMBOL(account_page_dirtied);
2002 
2003 /*
2004  * Helper function for set_page_writeback family.
2005  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
2006  * wrt interrupts.
2007  */
2008 void account_page_writeback(struct page *page)
2009 {
2010 	inc_zone_page_state(page, NR_WRITEBACK);
2011 }
2012 EXPORT_SYMBOL(account_page_writeback);
2013 
2014 /*
2015  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2016  * its radix tree.
2017  *
2018  * This is also used when a single buffer is being dirtied: we want to set the
2019  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2020  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2021  *
2022  * Most callers have locked the page, which pins the address_space in memory.
2023  * But zap_pte_range() does not lock the page, however in that case the
2024  * mapping is pinned by the vma's ->vm_file reference.
2025  *
2026  * We take care to handle the case where the page was truncated from the
2027  * mapping by re-checking page_mapping() inside tree_lock.
2028  */
2029 int __set_page_dirty_nobuffers(struct page *page)
2030 {
2031 	if (!TestSetPageDirty(page)) {
2032 		struct address_space *mapping = page_mapping(page);
2033 		struct address_space *mapping2;
2034 
2035 		if (!mapping)
2036 			return 1;
2037 
2038 		spin_lock_irq(&mapping->tree_lock);
2039 		mapping2 = page_mapping(page);
2040 		if (mapping2) { /* Race with truncate? */
2041 			BUG_ON(mapping2 != mapping);
2042 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2043 			account_page_dirtied(page, mapping);
2044 			radix_tree_tag_set(&mapping->page_tree,
2045 				page_index(page), PAGECACHE_TAG_DIRTY);
2046 		}
2047 		spin_unlock_irq(&mapping->tree_lock);
2048 		if (mapping->host) {
2049 			/* !PageAnon && !swapper_space */
2050 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2051 		}
2052 		return 1;
2053 	}
2054 	return 0;
2055 }
2056 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2057 
2058 /*
2059  * Call this whenever redirtying a page, to de-account the dirty counters
2060  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2061  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2062  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2063  * control.
2064  */
2065 void account_page_redirty(struct page *page)
2066 {
2067 	struct address_space *mapping = page->mapping;
2068 	if (mapping && mapping_cap_account_dirty(mapping)) {
2069 		current->nr_dirtied--;
2070 		dec_zone_page_state(page, NR_DIRTIED);
2071 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2072 	}
2073 }
2074 EXPORT_SYMBOL(account_page_redirty);
2075 
2076 /*
2077  * When a writepage implementation decides that it doesn't want to write this
2078  * page for some reason, it should redirty the locked page via
2079  * redirty_page_for_writepage() and it should then unlock the page and return 0
2080  */
2081 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2082 {
2083 	wbc->pages_skipped++;
2084 	account_page_redirty(page);
2085 	return __set_page_dirty_nobuffers(page);
2086 }
2087 EXPORT_SYMBOL(redirty_page_for_writepage);
2088 
2089 /*
2090  * Dirty a page.
2091  *
2092  * For pages with a mapping this should be done under the page lock
2093  * for the benefit of asynchronous memory errors who prefer a consistent
2094  * dirty state. This rule can be broken in some special cases,
2095  * but should be better not to.
2096  *
2097  * If the mapping doesn't provide a set_page_dirty a_op, then
2098  * just fall through and assume that it wants buffer_heads.
2099  */
2100 int set_page_dirty(struct page *page)
2101 {
2102 	struct address_space *mapping = page_mapping(page);
2103 
2104 	if (likely(mapping)) {
2105 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2106 		/*
2107 		 * readahead/lru_deactivate_page could remain
2108 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2109 		 * About readahead, if the page is written, the flags would be
2110 		 * reset. So no problem.
2111 		 * About lru_deactivate_page, if the page is redirty, the flag
2112 		 * will be reset. So no problem. but if the page is used by readahead
2113 		 * it will confuse readahead and make it restart the size rampup
2114 		 * process. But it's a trivial problem.
2115 		 */
2116 		ClearPageReclaim(page);
2117 #ifdef CONFIG_BLOCK
2118 		if (!spd)
2119 			spd = __set_page_dirty_buffers;
2120 #endif
2121 		return (*spd)(page);
2122 	}
2123 	if (!PageDirty(page)) {
2124 		if (!TestSetPageDirty(page))
2125 			return 1;
2126 	}
2127 	return 0;
2128 }
2129 EXPORT_SYMBOL(set_page_dirty);
2130 
2131 /*
2132  * set_page_dirty() is racy if the caller has no reference against
2133  * page->mapping->host, and if the page is unlocked.  This is because another
2134  * CPU could truncate the page off the mapping and then free the mapping.
2135  *
2136  * Usually, the page _is_ locked, or the caller is a user-space process which
2137  * holds a reference on the inode by having an open file.
2138  *
2139  * In other cases, the page should be locked before running set_page_dirty().
2140  */
2141 int set_page_dirty_lock(struct page *page)
2142 {
2143 	int ret;
2144 
2145 	lock_page(page);
2146 	ret = set_page_dirty(page);
2147 	unlock_page(page);
2148 	return ret;
2149 }
2150 EXPORT_SYMBOL(set_page_dirty_lock);
2151 
2152 /*
2153  * Clear a page's dirty flag, while caring for dirty memory accounting.
2154  * Returns true if the page was previously dirty.
2155  *
2156  * This is for preparing to put the page under writeout.  We leave the page
2157  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2158  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2159  * implementation will run either set_page_writeback() or set_page_dirty(),
2160  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2161  * back into sync.
2162  *
2163  * This incoherency between the page's dirty flag and radix-tree tag is
2164  * unfortunate, but it only exists while the page is locked.
2165  */
2166 int clear_page_dirty_for_io(struct page *page)
2167 {
2168 	struct address_space *mapping = page_mapping(page);
2169 
2170 	BUG_ON(!PageLocked(page));
2171 
2172 	if (mapping && mapping_cap_account_dirty(mapping)) {
2173 		/*
2174 		 * Yes, Virginia, this is indeed insane.
2175 		 *
2176 		 * We use this sequence to make sure that
2177 		 *  (a) we account for dirty stats properly
2178 		 *  (b) we tell the low-level filesystem to
2179 		 *      mark the whole page dirty if it was
2180 		 *      dirty in a pagetable. Only to then
2181 		 *  (c) clean the page again and return 1 to
2182 		 *      cause the writeback.
2183 		 *
2184 		 * This way we avoid all nasty races with the
2185 		 * dirty bit in multiple places and clearing
2186 		 * them concurrently from different threads.
2187 		 *
2188 		 * Note! Normally the "set_page_dirty(page)"
2189 		 * has no effect on the actual dirty bit - since
2190 		 * that will already usually be set. But we
2191 		 * need the side effects, and it can help us
2192 		 * avoid races.
2193 		 *
2194 		 * We basically use the page "master dirty bit"
2195 		 * as a serialization point for all the different
2196 		 * threads doing their things.
2197 		 */
2198 		if (page_mkclean(page))
2199 			set_page_dirty(page);
2200 		/*
2201 		 * We carefully synchronise fault handlers against
2202 		 * installing a dirty pte and marking the page dirty
2203 		 * at this point. We do this by having them hold the
2204 		 * page lock at some point after installing their
2205 		 * pte, but before marking the page dirty.
2206 		 * Pages are always locked coming in here, so we get
2207 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2208 		 * for more comments.
2209 		 */
2210 		if (TestClearPageDirty(page)) {
2211 			dec_zone_page_state(page, NR_FILE_DIRTY);
2212 			dec_bdi_stat(mapping->backing_dev_info,
2213 					BDI_RECLAIMABLE);
2214 			return 1;
2215 		}
2216 		return 0;
2217 	}
2218 	return TestClearPageDirty(page);
2219 }
2220 EXPORT_SYMBOL(clear_page_dirty_for_io);
2221 
2222 int test_clear_page_writeback(struct page *page)
2223 {
2224 	struct address_space *mapping = page_mapping(page);
2225 	int ret;
2226 
2227 	if (mapping) {
2228 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2229 		unsigned long flags;
2230 
2231 		spin_lock_irqsave(&mapping->tree_lock, flags);
2232 		ret = TestClearPageWriteback(page);
2233 		if (ret) {
2234 			radix_tree_tag_clear(&mapping->page_tree,
2235 						page_index(page),
2236 						PAGECACHE_TAG_WRITEBACK);
2237 			if (bdi_cap_account_writeback(bdi)) {
2238 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2239 				__bdi_writeout_inc(bdi);
2240 			}
2241 		}
2242 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2243 	} else {
2244 		ret = TestClearPageWriteback(page);
2245 	}
2246 	if (ret) {
2247 		dec_zone_page_state(page, NR_WRITEBACK);
2248 		inc_zone_page_state(page, NR_WRITTEN);
2249 	}
2250 	return ret;
2251 }
2252 
2253 int test_set_page_writeback(struct page *page)
2254 {
2255 	struct address_space *mapping = page_mapping(page);
2256 	int ret;
2257 
2258 	if (mapping) {
2259 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2260 		unsigned long flags;
2261 
2262 		spin_lock_irqsave(&mapping->tree_lock, flags);
2263 		ret = TestSetPageWriteback(page);
2264 		if (!ret) {
2265 			radix_tree_tag_set(&mapping->page_tree,
2266 						page_index(page),
2267 						PAGECACHE_TAG_WRITEBACK);
2268 			if (bdi_cap_account_writeback(bdi))
2269 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2270 		}
2271 		if (!PageDirty(page))
2272 			radix_tree_tag_clear(&mapping->page_tree,
2273 						page_index(page),
2274 						PAGECACHE_TAG_DIRTY);
2275 		radix_tree_tag_clear(&mapping->page_tree,
2276 				     page_index(page),
2277 				     PAGECACHE_TAG_TOWRITE);
2278 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2279 	} else {
2280 		ret = TestSetPageWriteback(page);
2281 	}
2282 	if (!ret)
2283 		account_page_writeback(page);
2284 	return ret;
2285 
2286 }
2287 EXPORT_SYMBOL(test_set_page_writeback);
2288 
2289 /*
2290  * Return true if any of the pages in the mapping are marked with the
2291  * passed tag.
2292  */
2293 int mapping_tagged(struct address_space *mapping, int tag)
2294 {
2295 	return radix_tree_tagged(&mapping->page_tree, tag);
2296 }
2297 EXPORT_SYMBOL(mapping_tagged);
2298 
2299 /**
2300  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2301  * @page:	The page to wait on.
2302  *
2303  * This function determines if the given page is related to a backing device
2304  * that requires page contents to be held stable during writeback.  If so, then
2305  * it will wait for any pending writeback to complete.
2306  */
2307 void wait_for_stable_page(struct page *page)
2308 {
2309 	struct address_space *mapping = page_mapping(page);
2310 	struct backing_dev_info *bdi = mapping->backing_dev_info;
2311 
2312 	if (!bdi_cap_stable_pages_required(bdi))
2313 		return;
2314 #ifdef CONFIG_NEED_BOUNCE_POOL
2315 	if (mapping->host->i_sb->s_flags & MS_SNAP_STABLE)
2316 		return;
2317 #endif /* CONFIG_NEED_BOUNCE_POOL */
2318 
2319 	wait_on_page_writeback(page);
2320 }
2321 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2322