1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <trace/events/writeback.h> 40 41 /* 42 * Sleep at most 200ms at a time in balance_dirty_pages(). 43 */ 44 #define MAX_PAUSE max(HZ/5, 1) 45 46 /* 47 * Try to keep balance_dirty_pages() call intervals higher than this many pages 48 * by raising pause time to max_pause when falls below it. 49 */ 50 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 51 52 /* 53 * Estimate write bandwidth at 200ms intervals. 54 */ 55 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 56 57 #define RATELIMIT_CALC_SHIFT 10 58 59 /* 60 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 61 * will look to see if it needs to force writeback or throttling. 62 */ 63 static long ratelimit_pages = 32; 64 65 /* The following parameters are exported via /proc/sys/vm */ 66 67 /* 68 * Start background writeback (via writeback threads) at this percentage 69 */ 70 int dirty_background_ratio = 10; 71 72 /* 73 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 74 * dirty_background_ratio * the amount of dirtyable memory 75 */ 76 unsigned long dirty_background_bytes; 77 78 /* 79 * free highmem will not be subtracted from the total free memory 80 * for calculating free ratios if vm_highmem_is_dirtyable is true 81 */ 82 int vm_highmem_is_dirtyable; 83 84 /* 85 * The generator of dirty data starts writeback at this percentage 86 */ 87 int vm_dirty_ratio = 20; 88 89 /* 90 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 91 * vm_dirty_ratio * the amount of dirtyable memory 92 */ 93 unsigned long vm_dirty_bytes; 94 95 /* 96 * The interval between `kupdate'-style writebacks 97 */ 98 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 99 100 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 101 102 /* 103 * The longest time for which data is allowed to remain dirty 104 */ 105 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 106 107 /* 108 * Flag that makes the machine dump writes/reads and block dirtyings. 109 */ 110 int block_dump; 111 112 /* 113 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 114 * a full sync is triggered after this time elapses without any disk activity. 115 */ 116 int laptop_mode; 117 118 EXPORT_SYMBOL(laptop_mode); 119 120 /* End of sysctl-exported parameters */ 121 122 unsigned long global_dirty_limit; 123 124 /* 125 * Scale the writeback cache size proportional to the relative writeout speeds. 126 * 127 * We do this by keeping a floating proportion between BDIs, based on page 128 * writeback completions [end_page_writeback()]. Those devices that write out 129 * pages fastest will get the larger share, while the slower will get a smaller 130 * share. 131 * 132 * We use page writeout completions because we are interested in getting rid of 133 * dirty pages. Having them written out is the primary goal. 134 * 135 * We introduce a concept of time, a period over which we measure these events, 136 * because demand can/will vary over time. The length of this period itself is 137 * measured in page writeback completions. 138 * 139 */ 140 static struct fprop_global writeout_completions; 141 142 static void writeout_period(unsigned long t); 143 /* Timer for aging of writeout_completions */ 144 static struct timer_list writeout_period_timer = 145 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); 146 static unsigned long writeout_period_time = 0; 147 148 /* 149 * Length of period for aging writeout fractions of bdis. This is an 150 * arbitrarily chosen number. The longer the period, the slower fractions will 151 * reflect changes in current writeout rate. 152 */ 153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 154 155 /* 156 * Work out the current dirty-memory clamping and background writeout 157 * thresholds. 158 * 159 * The main aim here is to lower them aggressively if there is a lot of mapped 160 * memory around. To avoid stressing page reclaim with lots of unreclaimable 161 * pages. It is better to clamp down on writers than to start swapping, and 162 * performing lots of scanning. 163 * 164 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 165 * 166 * We don't permit the clamping level to fall below 5% - that is getting rather 167 * excessive. 168 * 169 * We make sure that the background writeout level is below the adjusted 170 * clamping level. 171 */ 172 173 /* 174 * In a memory zone, there is a certain amount of pages we consider 175 * available for the page cache, which is essentially the number of 176 * free and reclaimable pages, minus some zone reserves to protect 177 * lowmem and the ability to uphold the zone's watermarks without 178 * requiring writeback. 179 * 180 * This number of dirtyable pages is the base value of which the 181 * user-configurable dirty ratio is the effictive number of pages that 182 * are allowed to be actually dirtied. Per individual zone, or 183 * globally by using the sum of dirtyable pages over all zones. 184 * 185 * Because the user is allowed to specify the dirty limit globally as 186 * absolute number of bytes, calculating the per-zone dirty limit can 187 * require translating the configured limit into a percentage of 188 * global dirtyable memory first. 189 */ 190 191 static unsigned long highmem_dirtyable_memory(unsigned long total) 192 { 193 #ifdef CONFIG_HIGHMEM 194 int node; 195 unsigned long x = 0; 196 197 for_each_node_state(node, N_HIGH_MEMORY) { 198 struct zone *z = 199 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 200 201 x += zone_page_state(z, NR_FREE_PAGES) + 202 zone_reclaimable_pages(z) - z->dirty_balance_reserve; 203 } 204 /* 205 * Unreclaimable memory (kernel memory or anonymous memory 206 * without swap) can bring down the dirtyable pages below 207 * the zone's dirty balance reserve and the above calculation 208 * will underflow. However we still want to add in nodes 209 * which are below threshold (negative values) to get a more 210 * accurate calculation but make sure that the total never 211 * underflows. 212 */ 213 if ((long)x < 0) 214 x = 0; 215 216 /* 217 * Make sure that the number of highmem pages is never larger 218 * than the number of the total dirtyable memory. This can only 219 * occur in very strange VM situations but we want to make sure 220 * that this does not occur. 221 */ 222 return min(x, total); 223 #else 224 return 0; 225 #endif 226 } 227 228 /** 229 * global_dirtyable_memory - number of globally dirtyable pages 230 * 231 * Returns the global number of pages potentially available for dirty 232 * page cache. This is the base value for the global dirty limits. 233 */ 234 static unsigned long global_dirtyable_memory(void) 235 { 236 unsigned long x; 237 238 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages(); 239 x -= min(x, dirty_balance_reserve); 240 241 if (!vm_highmem_is_dirtyable) 242 x -= highmem_dirtyable_memory(x); 243 244 /* Subtract min_free_kbytes */ 245 x -= min_t(unsigned long, x, min_free_kbytes >> (PAGE_SHIFT - 10)); 246 247 return x + 1; /* Ensure that we never return 0 */ 248 } 249 250 /* 251 * global_dirty_limits - background-writeback and dirty-throttling thresholds 252 * 253 * Calculate the dirty thresholds based on sysctl parameters 254 * - vm.dirty_background_ratio or vm.dirty_background_bytes 255 * - vm.dirty_ratio or vm.dirty_bytes 256 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 257 * real-time tasks. 258 */ 259 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 260 { 261 unsigned long background; 262 unsigned long dirty; 263 unsigned long uninitialized_var(available_memory); 264 struct task_struct *tsk; 265 266 if (!vm_dirty_bytes || !dirty_background_bytes) 267 available_memory = global_dirtyable_memory(); 268 269 if (vm_dirty_bytes) 270 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 271 else 272 dirty = (vm_dirty_ratio * available_memory) / 100; 273 274 if (dirty_background_bytes) 275 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 276 else 277 background = (dirty_background_ratio * available_memory) / 100; 278 279 if (background >= dirty) 280 background = dirty / 2; 281 tsk = current; 282 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 283 background += background / 4; 284 dirty += dirty / 4; 285 } 286 *pbackground = background; 287 *pdirty = dirty; 288 trace_global_dirty_state(background, dirty); 289 } 290 291 /** 292 * zone_dirtyable_memory - number of dirtyable pages in a zone 293 * @zone: the zone 294 * 295 * Returns the zone's number of pages potentially available for dirty 296 * page cache. This is the base value for the per-zone dirty limits. 297 */ 298 static unsigned long zone_dirtyable_memory(struct zone *zone) 299 { 300 /* 301 * The effective global number of dirtyable pages may exclude 302 * highmem as a big-picture measure to keep the ratio between 303 * dirty memory and lowmem reasonable. 304 * 305 * But this function is purely about the individual zone and a 306 * highmem zone can hold its share of dirty pages, so we don't 307 * care about vm_highmem_is_dirtyable here. 308 */ 309 unsigned long nr_pages = zone_page_state(zone, NR_FREE_PAGES) + 310 zone_reclaimable_pages(zone); 311 312 /* don't allow this to underflow */ 313 nr_pages -= min(nr_pages, zone->dirty_balance_reserve); 314 return nr_pages; 315 } 316 317 /** 318 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 319 * @zone: the zone 320 * 321 * Returns the maximum number of dirty pages allowed in a zone, based 322 * on the zone's dirtyable memory. 323 */ 324 static unsigned long zone_dirty_limit(struct zone *zone) 325 { 326 unsigned long zone_memory = zone_dirtyable_memory(zone); 327 struct task_struct *tsk = current; 328 unsigned long dirty; 329 330 if (vm_dirty_bytes) 331 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 332 zone_memory / global_dirtyable_memory(); 333 else 334 dirty = vm_dirty_ratio * zone_memory / 100; 335 336 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 337 dirty += dirty / 4; 338 339 return dirty; 340 } 341 342 /** 343 * zone_dirty_ok - tells whether a zone is within its dirty limits 344 * @zone: the zone to check 345 * 346 * Returns %true when the dirty pages in @zone are within the zone's 347 * dirty limit, %false if the limit is exceeded. 348 */ 349 bool zone_dirty_ok(struct zone *zone) 350 { 351 unsigned long limit = zone_dirty_limit(zone); 352 353 return zone_page_state(zone, NR_FILE_DIRTY) + 354 zone_page_state(zone, NR_UNSTABLE_NFS) + 355 zone_page_state(zone, NR_WRITEBACK) <= limit; 356 } 357 358 int dirty_background_ratio_handler(struct ctl_table *table, int write, 359 void __user *buffer, size_t *lenp, 360 loff_t *ppos) 361 { 362 int ret; 363 364 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 365 if (ret == 0 && write) 366 dirty_background_bytes = 0; 367 return ret; 368 } 369 370 int dirty_background_bytes_handler(struct ctl_table *table, int write, 371 void __user *buffer, size_t *lenp, 372 loff_t *ppos) 373 { 374 int ret; 375 376 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 377 if (ret == 0 && write) 378 dirty_background_ratio = 0; 379 return ret; 380 } 381 382 int dirty_ratio_handler(struct ctl_table *table, int write, 383 void __user *buffer, size_t *lenp, 384 loff_t *ppos) 385 { 386 int old_ratio = vm_dirty_ratio; 387 int ret; 388 389 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 390 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 391 writeback_set_ratelimit(); 392 vm_dirty_bytes = 0; 393 } 394 return ret; 395 } 396 397 int dirty_bytes_handler(struct ctl_table *table, int write, 398 void __user *buffer, size_t *lenp, 399 loff_t *ppos) 400 { 401 unsigned long old_bytes = vm_dirty_bytes; 402 int ret; 403 404 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 405 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 406 writeback_set_ratelimit(); 407 vm_dirty_ratio = 0; 408 } 409 return ret; 410 } 411 412 static unsigned long wp_next_time(unsigned long cur_time) 413 { 414 cur_time += VM_COMPLETIONS_PERIOD_LEN; 415 /* 0 has a special meaning... */ 416 if (!cur_time) 417 return 1; 418 return cur_time; 419 } 420 421 /* 422 * Increment the BDI's writeout completion count and the global writeout 423 * completion count. Called from test_clear_page_writeback(). 424 */ 425 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 426 { 427 __inc_bdi_stat(bdi, BDI_WRITTEN); 428 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions, 429 bdi->max_prop_frac); 430 /* First event after period switching was turned off? */ 431 if (!unlikely(writeout_period_time)) { 432 /* 433 * We can race with other __bdi_writeout_inc calls here but 434 * it does not cause any harm since the resulting time when 435 * timer will fire and what is in writeout_period_time will be 436 * roughly the same. 437 */ 438 writeout_period_time = wp_next_time(jiffies); 439 mod_timer(&writeout_period_timer, writeout_period_time); 440 } 441 } 442 443 void bdi_writeout_inc(struct backing_dev_info *bdi) 444 { 445 unsigned long flags; 446 447 local_irq_save(flags); 448 __bdi_writeout_inc(bdi); 449 local_irq_restore(flags); 450 } 451 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 452 453 /* 454 * Obtain an accurate fraction of the BDI's portion. 455 */ 456 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 457 long *numerator, long *denominator) 458 { 459 fprop_fraction_percpu(&writeout_completions, &bdi->completions, 460 numerator, denominator); 461 } 462 463 /* 464 * On idle system, we can be called long after we scheduled because we use 465 * deferred timers so count with missed periods. 466 */ 467 static void writeout_period(unsigned long t) 468 { 469 int miss_periods = (jiffies - writeout_period_time) / 470 VM_COMPLETIONS_PERIOD_LEN; 471 472 if (fprop_new_period(&writeout_completions, miss_periods + 1)) { 473 writeout_period_time = wp_next_time(writeout_period_time + 474 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 475 mod_timer(&writeout_period_timer, writeout_period_time); 476 } else { 477 /* 478 * Aging has zeroed all fractions. Stop wasting CPU on period 479 * updates. 480 */ 481 writeout_period_time = 0; 482 } 483 } 484 485 /* 486 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 487 * registered backing devices, which, for obvious reasons, can not 488 * exceed 100%. 489 */ 490 static unsigned int bdi_min_ratio; 491 492 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 493 { 494 int ret = 0; 495 496 spin_lock_bh(&bdi_lock); 497 if (min_ratio > bdi->max_ratio) { 498 ret = -EINVAL; 499 } else { 500 min_ratio -= bdi->min_ratio; 501 if (bdi_min_ratio + min_ratio < 100) { 502 bdi_min_ratio += min_ratio; 503 bdi->min_ratio += min_ratio; 504 } else { 505 ret = -EINVAL; 506 } 507 } 508 spin_unlock_bh(&bdi_lock); 509 510 return ret; 511 } 512 513 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 514 { 515 int ret = 0; 516 517 if (max_ratio > 100) 518 return -EINVAL; 519 520 spin_lock_bh(&bdi_lock); 521 if (bdi->min_ratio > max_ratio) { 522 ret = -EINVAL; 523 } else { 524 bdi->max_ratio = max_ratio; 525 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 526 } 527 spin_unlock_bh(&bdi_lock); 528 529 return ret; 530 } 531 EXPORT_SYMBOL(bdi_set_max_ratio); 532 533 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 534 unsigned long bg_thresh) 535 { 536 return (thresh + bg_thresh) / 2; 537 } 538 539 static unsigned long hard_dirty_limit(unsigned long thresh) 540 { 541 return max(thresh, global_dirty_limit); 542 } 543 544 /** 545 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 546 * @bdi: the backing_dev_info to query 547 * @dirty: global dirty limit in pages 548 * 549 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 550 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 551 * 552 * Note that balance_dirty_pages() will only seriously take it as a hard limit 553 * when sleeping max_pause per page is not enough to keep the dirty pages under 554 * control. For example, when the device is completely stalled due to some error 555 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 556 * In the other normal situations, it acts more gently by throttling the tasks 557 * more (rather than completely block them) when the bdi dirty pages go high. 558 * 559 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 560 * - starving fast devices 561 * - piling up dirty pages (that will take long time to sync) on slow devices 562 * 563 * The bdi's share of dirty limit will be adapting to its throughput and 564 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 565 */ 566 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 567 { 568 u64 bdi_dirty; 569 long numerator, denominator; 570 571 /* 572 * Calculate this BDI's share of the dirty ratio. 573 */ 574 bdi_writeout_fraction(bdi, &numerator, &denominator); 575 576 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 577 bdi_dirty *= numerator; 578 do_div(bdi_dirty, denominator); 579 580 bdi_dirty += (dirty * bdi->min_ratio) / 100; 581 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 582 bdi_dirty = dirty * bdi->max_ratio / 100; 583 584 return bdi_dirty; 585 } 586 587 /* 588 * Dirty position control. 589 * 590 * (o) global/bdi setpoints 591 * 592 * We want the dirty pages be balanced around the global/bdi setpoints. 593 * When the number of dirty pages is higher/lower than the setpoint, the 594 * dirty position control ratio (and hence task dirty ratelimit) will be 595 * decreased/increased to bring the dirty pages back to the setpoint. 596 * 597 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 598 * 599 * if (dirty < setpoint) scale up pos_ratio 600 * if (dirty > setpoint) scale down pos_ratio 601 * 602 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio 603 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio 604 * 605 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 606 * 607 * (o) global control line 608 * 609 * ^ pos_ratio 610 * | 611 * | |<===== global dirty control scope ======>| 612 * 2.0 .............* 613 * | .* 614 * | . * 615 * | . * 616 * | . * 617 * | . * 618 * | . * 619 * 1.0 ................................* 620 * | . . * 621 * | . . * 622 * | . . * 623 * | . . * 624 * | . . * 625 * 0 +------------.------------------.----------------------*-------------> 626 * freerun^ setpoint^ limit^ dirty pages 627 * 628 * (o) bdi control line 629 * 630 * ^ pos_ratio 631 * | 632 * | * 633 * | * 634 * | * 635 * | * 636 * | * |<=========== span ============>| 637 * 1.0 .......................* 638 * | . * 639 * | . * 640 * | . * 641 * | . * 642 * | . * 643 * | . * 644 * | . * 645 * | . * 646 * | . * 647 * | . * 648 * | . * 649 * 1/4 ...............................................* * * * * * * * * * * * 650 * | . . 651 * | . . 652 * | . . 653 * 0 +----------------------.-------------------------------.-------------> 654 * bdi_setpoint^ x_intercept^ 655 * 656 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can 657 * be smoothly throttled down to normal if it starts high in situations like 658 * - start writing to a slow SD card and a fast disk at the same time. The SD 659 * card's bdi_dirty may rush to many times higher than bdi_setpoint. 660 * - the bdi dirty thresh drops quickly due to change of JBOD workload 661 */ 662 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, 663 unsigned long thresh, 664 unsigned long bg_thresh, 665 unsigned long dirty, 666 unsigned long bdi_thresh, 667 unsigned long bdi_dirty) 668 { 669 unsigned long write_bw = bdi->avg_write_bandwidth; 670 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 671 unsigned long limit = hard_dirty_limit(thresh); 672 unsigned long x_intercept; 673 unsigned long setpoint; /* dirty pages' target balance point */ 674 unsigned long bdi_setpoint; 675 unsigned long span; 676 long long pos_ratio; /* for scaling up/down the rate limit */ 677 long x; 678 679 if (unlikely(dirty >= limit)) 680 return 0; 681 682 /* 683 * global setpoint 684 * 685 * setpoint - dirty 3 686 * f(dirty) := 1.0 + (----------------) 687 * limit - setpoint 688 * 689 * it's a 3rd order polynomial that subjects to 690 * 691 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 692 * (2) f(setpoint) = 1.0 => the balance point 693 * (3) f(limit) = 0 => the hard limit 694 * (4) df/dx <= 0 => negative feedback control 695 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 696 * => fast response on large errors; small oscillation near setpoint 697 */ 698 setpoint = (freerun + limit) / 2; 699 x = div_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 700 limit - setpoint + 1); 701 pos_ratio = x; 702 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 703 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 704 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 705 706 /* 707 * We have computed basic pos_ratio above based on global situation. If 708 * the bdi is over/under its share of dirty pages, we want to scale 709 * pos_ratio further down/up. That is done by the following mechanism. 710 */ 711 712 /* 713 * bdi setpoint 714 * 715 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) 716 * 717 * x_intercept - bdi_dirty 718 * := -------------------------- 719 * x_intercept - bdi_setpoint 720 * 721 * The main bdi control line is a linear function that subjects to 722 * 723 * (1) f(bdi_setpoint) = 1.0 724 * (2) k = - 1 / (8 * write_bw) (in single bdi case) 725 * or equally: x_intercept = bdi_setpoint + 8 * write_bw 726 * 727 * For single bdi case, the dirty pages are observed to fluctuate 728 * regularly within range 729 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] 730 * for various filesystems, where (2) can yield in a reasonable 12.5% 731 * fluctuation range for pos_ratio. 732 * 733 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its 734 * own size, so move the slope over accordingly and choose a slope that 735 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. 736 */ 737 if (unlikely(bdi_thresh > thresh)) 738 bdi_thresh = thresh; 739 /* 740 * It's very possible that bdi_thresh is close to 0 not because the 741 * device is slow, but that it has remained inactive for long time. 742 * Honour such devices a reasonable good (hopefully IO efficient) 743 * threshold, so that the occasional writes won't be blocked and active 744 * writes can rampup the threshold quickly. 745 */ 746 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); 747 /* 748 * scale global setpoint to bdi's: 749 * bdi_setpoint = setpoint * bdi_thresh / thresh 750 */ 751 x = div_u64((u64)bdi_thresh << 16, thresh + 1); 752 bdi_setpoint = setpoint * (u64)x >> 16; 753 /* 754 * Use span=(8*write_bw) in single bdi case as indicated by 755 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. 756 * 757 * bdi_thresh thresh - bdi_thresh 758 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh 759 * thresh thresh 760 */ 761 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; 762 x_intercept = bdi_setpoint + span; 763 764 if (bdi_dirty < x_intercept - span / 4) { 765 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), 766 x_intercept - bdi_setpoint + 1); 767 } else 768 pos_ratio /= 4; 769 770 /* 771 * bdi reserve area, safeguard against dirty pool underrun and disk idle 772 * It may push the desired control point of global dirty pages higher 773 * than setpoint. 774 */ 775 x_intercept = bdi_thresh / 2; 776 if (bdi_dirty < x_intercept) { 777 if (bdi_dirty > x_intercept / 8) 778 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); 779 else 780 pos_ratio *= 8; 781 } 782 783 return pos_ratio; 784 } 785 786 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 787 unsigned long elapsed, 788 unsigned long written) 789 { 790 const unsigned long period = roundup_pow_of_two(3 * HZ); 791 unsigned long avg = bdi->avg_write_bandwidth; 792 unsigned long old = bdi->write_bandwidth; 793 u64 bw; 794 795 /* 796 * bw = written * HZ / elapsed 797 * 798 * bw * elapsed + write_bandwidth * (period - elapsed) 799 * write_bandwidth = --------------------------------------------------- 800 * period 801 */ 802 bw = written - bdi->written_stamp; 803 bw *= HZ; 804 if (unlikely(elapsed > period)) { 805 do_div(bw, elapsed); 806 avg = bw; 807 goto out; 808 } 809 bw += (u64)bdi->write_bandwidth * (period - elapsed); 810 bw >>= ilog2(period); 811 812 /* 813 * one more level of smoothing, for filtering out sudden spikes 814 */ 815 if (avg > old && old >= (unsigned long)bw) 816 avg -= (avg - old) >> 3; 817 818 if (avg < old && old <= (unsigned long)bw) 819 avg += (old - avg) >> 3; 820 821 out: 822 bdi->write_bandwidth = bw; 823 bdi->avg_write_bandwidth = avg; 824 } 825 826 /* 827 * The global dirtyable memory and dirty threshold could be suddenly knocked 828 * down by a large amount (eg. on the startup of KVM in a swapless system). 829 * This may throw the system into deep dirty exceeded state and throttle 830 * heavy/light dirtiers alike. To retain good responsiveness, maintain 831 * global_dirty_limit for tracking slowly down to the knocked down dirty 832 * threshold. 833 */ 834 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 835 { 836 unsigned long limit = global_dirty_limit; 837 838 /* 839 * Follow up in one step. 840 */ 841 if (limit < thresh) { 842 limit = thresh; 843 goto update; 844 } 845 846 /* 847 * Follow down slowly. Use the higher one as the target, because thresh 848 * may drop below dirty. This is exactly the reason to introduce 849 * global_dirty_limit which is guaranteed to lie above the dirty pages. 850 */ 851 thresh = max(thresh, dirty); 852 if (limit > thresh) { 853 limit -= (limit - thresh) >> 5; 854 goto update; 855 } 856 return; 857 update: 858 global_dirty_limit = limit; 859 } 860 861 static void global_update_bandwidth(unsigned long thresh, 862 unsigned long dirty, 863 unsigned long now) 864 { 865 static DEFINE_SPINLOCK(dirty_lock); 866 static unsigned long update_time; 867 868 /* 869 * check locklessly first to optimize away locking for the most time 870 */ 871 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 872 return; 873 874 spin_lock(&dirty_lock); 875 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 876 update_dirty_limit(thresh, dirty); 877 update_time = now; 878 } 879 spin_unlock(&dirty_lock); 880 } 881 882 /* 883 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. 884 * 885 * Normal bdi tasks will be curbed at or below it in long term. 886 * Obviously it should be around (write_bw / N) when there are N dd tasks. 887 */ 888 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, 889 unsigned long thresh, 890 unsigned long bg_thresh, 891 unsigned long dirty, 892 unsigned long bdi_thresh, 893 unsigned long bdi_dirty, 894 unsigned long dirtied, 895 unsigned long elapsed) 896 { 897 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 898 unsigned long limit = hard_dirty_limit(thresh); 899 unsigned long setpoint = (freerun + limit) / 2; 900 unsigned long write_bw = bdi->avg_write_bandwidth; 901 unsigned long dirty_ratelimit = bdi->dirty_ratelimit; 902 unsigned long dirty_rate; 903 unsigned long task_ratelimit; 904 unsigned long balanced_dirty_ratelimit; 905 unsigned long pos_ratio; 906 unsigned long step; 907 unsigned long x; 908 909 /* 910 * The dirty rate will match the writeout rate in long term, except 911 * when dirty pages are truncated by userspace or re-dirtied by FS. 912 */ 913 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; 914 915 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, 916 bdi_thresh, bdi_dirty); 917 /* 918 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 919 */ 920 task_ratelimit = (u64)dirty_ratelimit * 921 pos_ratio >> RATELIMIT_CALC_SHIFT; 922 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 923 924 /* 925 * A linear estimation of the "balanced" throttle rate. The theory is, 926 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's 927 * dirty_rate will be measured to be (N * task_ratelimit). So the below 928 * formula will yield the balanced rate limit (write_bw / N). 929 * 930 * Note that the expanded form is not a pure rate feedback: 931 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 932 * but also takes pos_ratio into account: 933 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 934 * 935 * (1) is not realistic because pos_ratio also takes part in balancing 936 * the dirty rate. Consider the state 937 * pos_ratio = 0.5 (3) 938 * rate = 2 * (write_bw / N) (4) 939 * If (1) is used, it will stuck in that state! Because each dd will 940 * be throttled at 941 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 942 * yielding 943 * dirty_rate = N * task_ratelimit = write_bw (6) 944 * put (6) into (1) we get 945 * rate_(i+1) = rate_(i) (7) 946 * 947 * So we end up using (2) to always keep 948 * rate_(i+1) ~= (write_bw / N) (8) 949 * regardless of the value of pos_ratio. As long as (8) is satisfied, 950 * pos_ratio is able to drive itself to 1.0, which is not only where 951 * the dirty count meet the setpoint, but also where the slope of 952 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 953 */ 954 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 955 dirty_rate | 1); 956 /* 957 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 958 */ 959 if (unlikely(balanced_dirty_ratelimit > write_bw)) 960 balanced_dirty_ratelimit = write_bw; 961 962 /* 963 * We could safely do this and return immediately: 964 * 965 * bdi->dirty_ratelimit = balanced_dirty_ratelimit; 966 * 967 * However to get a more stable dirty_ratelimit, the below elaborated 968 * code makes use of task_ratelimit to filter out singular points and 969 * limit the step size. 970 * 971 * The below code essentially only uses the relative value of 972 * 973 * task_ratelimit - dirty_ratelimit 974 * = (pos_ratio - 1) * dirty_ratelimit 975 * 976 * which reflects the direction and size of dirty position error. 977 */ 978 979 /* 980 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 981 * task_ratelimit is on the same side of dirty_ratelimit, too. 982 * For example, when 983 * - dirty_ratelimit > balanced_dirty_ratelimit 984 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 985 * lowering dirty_ratelimit will help meet both the position and rate 986 * control targets. Otherwise, don't update dirty_ratelimit if it will 987 * only help meet the rate target. After all, what the users ultimately 988 * feel and care are stable dirty rate and small position error. 989 * 990 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 991 * and filter out the singular points of balanced_dirty_ratelimit. Which 992 * keeps jumping around randomly and can even leap far away at times 993 * due to the small 200ms estimation period of dirty_rate (we want to 994 * keep that period small to reduce time lags). 995 */ 996 step = 0; 997 if (dirty < setpoint) { 998 x = min(bdi->balanced_dirty_ratelimit, 999 min(balanced_dirty_ratelimit, task_ratelimit)); 1000 if (dirty_ratelimit < x) 1001 step = x - dirty_ratelimit; 1002 } else { 1003 x = max(bdi->balanced_dirty_ratelimit, 1004 max(balanced_dirty_ratelimit, task_ratelimit)); 1005 if (dirty_ratelimit > x) 1006 step = dirty_ratelimit - x; 1007 } 1008 1009 /* 1010 * Don't pursue 100% rate matching. It's impossible since the balanced 1011 * rate itself is constantly fluctuating. So decrease the track speed 1012 * when it gets close to the target. Helps eliminate pointless tremors. 1013 */ 1014 step >>= dirty_ratelimit / (2 * step + 1); 1015 /* 1016 * Limit the tracking speed to avoid overshooting. 1017 */ 1018 step = (step + 7) / 8; 1019 1020 if (dirty_ratelimit < balanced_dirty_ratelimit) 1021 dirty_ratelimit += step; 1022 else 1023 dirty_ratelimit -= step; 1024 1025 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1026 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1027 1028 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); 1029 } 1030 1031 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 1032 unsigned long thresh, 1033 unsigned long bg_thresh, 1034 unsigned long dirty, 1035 unsigned long bdi_thresh, 1036 unsigned long bdi_dirty, 1037 unsigned long start_time) 1038 { 1039 unsigned long now = jiffies; 1040 unsigned long elapsed = now - bdi->bw_time_stamp; 1041 unsigned long dirtied; 1042 unsigned long written; 1043 1044 /* 1045 * rate-limit, only update once every 200ms. 1046 */ 1047 if (elapsed < BANDWIDTH_INTERVAL) 1048 return; 1049 1050 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); 1051 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 1052 1053 /* 1054 * Skip quiet periods when disk bandwidth is under-utilized. 1055 * (at least 1s idle time between two flusher runs) 1056 */ 1057 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 1058 goto snapshot; 1059 1060 if (thresh) { 1061 global_update_bandwidth(thresh, dirty, now); 1062 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, 1063 bdi_thresh, bdi_dirty, 1064 dirtied, elapsed); 1065 } 1066 bdi_update_write_bandwidth(bdi, elapsed, written); 1067 1068 snapshot: 1069 bdi->dirtied_stamp = dirtied; 1070 bdi->written_stamp = written; 1071 bdi->bw_time_stamp = now; 1072 } 1073 1074 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 1075 unsigned long thresh, 1076 unsigned long bg_thresh, 1077 unsigned long dirty, 1078 unsigned long bdi_thresh, 1079 unsigned long bdi_dirty, 1080 unsigned long start_time) 1081 { 1082 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 1083 return; 1084 spin_lock(&bdi->wb.list_lock); 1085 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, 1086 bdi_thresh, bdi_dirty, start_time); 1087 spin_unlock(&bdi->wb.list_lock); 1088 } 1089 1090 /* 1091 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1092 * will look to see if it needs to start dirty throttling. 1093 * 1094 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1095 * global_page_state() too often. So scale it near-sqrt to the safety margin 1096 * (the number of pages we may dirty without exceeding the dirty limits). 1097 */ 1098 static unsigned long dirty_poll_interval(unsigned long dirty, 1099 unsigned long thresh) 1100 { 1101 if (thresh > dirty) 1102 return 1UL << (ilog2(thresh - dirty) >> 1); 1103 1104 return 1; 1105 } 1106 1107 static long bdi_max_pause(struct backing_dev_info *bdi, 1108 unsigned long bdi_dirty) 1109 { 1110 long bw = bdi->avg_write_bandwidth; 1111 long t; 1112 1113 /* 1114 * Limit pause time for small memory systems. If sleeping for too long 1115 * time, a small pool of dirty/writeback pages may go empty and disk go 1116 * idle. 1117 * 1118 * 8 serves as the safety ratio. 1119 */ 1120 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1121 t++; 1122 1123 return min_t(long, t, MAX_PAUSE); 1124 } 1125 1126 static long bdi_min_pause(struct backing_dev_info *bdi, 1127 long max_pause, 1128 unsigned long task_ratelimit, 1129 unsigned long dirty_ratelimit, 1130 int *nr_dirtied_pause) 1131 { 1132 long hi = ilog2(bdi->avg_write_bandwidth); 1133 long lo = ilog2(bdi->dirty_ratelimit); 1134 long t; /* target pause */ 1135 long pause; /* estimated next pause */ 1136 int pages; /* target nr_dirtied_pause */ 1137 1138 /* target for 10ms pause on 1-dd case */ 1139 t = max(1, HZ / 100); 1140 1141 /* 1142 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1143 * overheads. 1144 * 1145 * (N * 10ms) on 2^N concurrent tasks. 1146 */ 1147 if (hi > lo) 1148 t += (hi - lo) * (10 * HZ) / 1024; 1149 1150 /* 1151 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1152 * on the much more stable dirty_ratelimit. However the next pause time 1153 * will be computed based on task_ratelimit and the two rate limits may 1154 * depart considerably at some time. Especially if task_ratelimit goes 1155 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1156 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1157 * result task_ratelimit won't be executed faithfully, which could 1158 * eventually bring down dirty_ratelimit. 1159 * 1160 * We apply two rules to fix it up: 1161 * 1) try to estimate the next pause time and if necessary, use a lower 1162 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1163 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1164 * 2) limit the target pause time to max_pause/2, so that the normal 1165 * small fluctuations of task_ratelimit won't trigger rule (1) and 1166 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1167 */ 1168 t = min(t, 1 + max_pause / 2); 1169 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1170 1171 /* 1172 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1173 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1174 * When the 16 consecutive reads are often interrupted by some dirty 1175 * throttling pause during the async writes, cfq will go into idles 1176 * (deadline is fine). So push nr_dirtied_pause as high as possible 1177 * until reaches DIRTY_POLL_THRESH=32 pages. 1178 */ 1179 if (pages < DIRTY_POLL_THRESH) { 1180 t = max_pause; 1181 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1182 if (pages > DIRTY_POLL_THRESH) { 1183 pages = DIRTY_POLL_THRESH; 1184 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1185 } 1186 } 1187 1188 pause = HZ * pages / (task_ratelimit + 1); 1189 if (pause > max_pause) { 1190 t = max_pause; 1191 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1192 } 1193 1194 *nr_dirtied_pause = pages; 1195 /* 1196 * The minimal pause time will normally be half the target pause time. 1197 */ 1198 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1199 } 1200 1201 /* 1202 * balance_dirty_pages() must be called by processes which are generating dirty 1203 * data. It looks at the number of dirty pages in the machine and will force 1204 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1205 * If we're over `background_thresh' then the writeback threads are woken to 1206 * perform some writeout. 1207 */ 1208 static void balance_dirty_pages(struct address_space *mapping, 1209 unsigned long pages_dirtied) 1210 { 1211 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1212 unsigned long bdi_reclaimable; 1213 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 1214 unsigned long bdi_dirty; 1215 unsigned long freerun; 1216 unsigned long background_thresh; 1217 unsigned long dirty_thresh; 1218 unsigned long bdi_thresh; 1219 long period; 1220 long pause; 1221 long max_pause; 1222 long min_pause; 1223 int nr_dirtied_pause; 1224 bool dirty_exceeded = false; 1225 unsigned long task_ratelimit; 1226 unsigned long dirty_ratelimit; 1227 unsigned long pos_ratio; 1228 struct backing_dev_info *bdi = mapping->backing_dev_info; 1229 unsigned long start_time = jiffies; 1230 1231 for (;;) { 1232 unsigned long now = jiffies; 1233 1234 /* 1235 * Unstable writes are a feature of certain networked 1236 * filesystems (i.e. NFS) in which data may have been 1237 * written to the server's write cache, but has not yet 1238 * been flushed to permanent storage. 1239 */ 1240 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1241 global_page_state(NR_UNSTABLE_NFS); 1242 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1243 1244 global_dirty_limits(&background_thresh, &dirty_thresh); 1245 1246 /* 1247 * Throttle it only when the background writeback cannot 1248 * catch-up. This avoids (excessively) small writeouts 1249 * when the bdi limits are ramping up. 1250 */ 1251 freerun = dirty_freerun_ceiling(dirty_thresh, 1252 background_thresh); 1253 if (nr_dirty <= freerun) { 1254 current->dirty_paused_when = now; 1255 current->nr_dirtied = 0; 1256 current->nr_dirtied_pause = 1257 dirty_poll_interval(nr_dirty, dirty_thresh); 1258 break; 1259 } 1260 1261 if (unlikely(!writeback_in_progress(bdi))) 1262 bdi_start_background_writeback(bdi); 1263 1264 /* 1265 * bdi_thresh is not treated as some limiting factor as 1266 * dirty_thresh, due to reasons 1267 * - in JBOD setup, bdi_thresh can fluctuate a lot 1268 * - in a system with HDD and USB key, the USB key may somehow 1269 * go into state (bdi_dirty >> bdi_thresh) either because 1270 * bdi_dirty starts high, or because bdi_thresh drops low. 1271 * In this case we don't want to hard throttle the USB key 1272 * dirtiers for 100 seconds until bdi_dirty drops under 1273 * bdi_thresh. Instead the auxiliary bdi control line in 1274 * bdi_position_ratio() will let the dirtier task progress 1275 * at some rate <= (write_bw / 2) for bringing down bdi_dirty. 1276 */ 1277 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 1278 1279 /* 1280 * In order to avoid the stacked BDI deadlock we need 1281 * to ensure we accurately count the 'dirty' pages when 1282 * the threshold is low. 1283 * 1284 * Otherwise it would be possible to get thresh+n pages 1285 * reported dirty, even though there are thresh-m pages 1286 * actually dirty; with m+n sitting in the percpu 1287 * deltas. 1288 */ 1289 if (bdi_thresh < 2 * bdi_stat_error(bdi)) { 1290 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 1291 bdi_dirty = bdi_reclaimable + 1292 bdi_stat_sum(bdi, BDI_WRITEBACK); 1293 } else { 1294 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 1295 bdi_dirty = bdi_reclaimable + 1296 bdi_stat(bdi, BDI_WRITEBACK); 1297 } 1298 1299 dirty_exceeded = (bdi_dirty > bdi_thresh) && 1300 (nr_dirty > dirty_thresh); 1301 if (dirty_exceeded && !bdi->dirty_exceeded) 1302 bdi->dirty_exceeded = 1; 1303 1304 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, 1305 nr_dirty, bdi_thresh, bdi_dirty, 1306 start_time); 1307 1308 dirty_ratelimit = bdi->dirty_ratelimit; 1309 pos_ratio = bdi_position_ratio(bdi, dirty_thresh, 1310 background_thresh, nr_dirty, 1311 bdi_thresh, bdi_dirty); 1312 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> 1313 RATELIMIT_CALC_SHIFT; 1314 max_pause = bdi_max_pause(bdi, bdi_dirty); 1315 min_pause = bdi_min_pause(bdi, max_pause, 1316 task_ratelimit, dirty_ratelimit, 1317 &nr_dirtied_pause); 1318 1319 if (unlikely(task_ratelimit == 0)) { 1320 period = max_pause; 1321 pause = max_pause; 1322 goto pause; 1323 } 1324 period = HZ * pages_dirtied / task_ratelimit; 1325 pause = period; 1326 if (current->dirty_paused_when) 1327 pause -= now - current->dirty_paused_when; 1328 /* 1329 * For less than 1s think time (ext3/4 may block the dirtier 1330 * for up to 800ms from time to time on 1-HDD; so does xfs, 1331 * however at much less frequency), try to compensate it in 1332 * future periods by updating the virtual time; otherwise just 1333 * do a reset, as it may be a light dirtier. 1334 */ 1335 if (pause < min_pause) { 1336 trace_balance_dirty_pages(bdi, 1337 dirty_thresh, 1338 background_thresh, 1339 nr_dirty, 1340 bdi_thresh, 1341 bdi_dirty, 1342 dirty_ratelimit, 1343 task_ratelimit, 1344 pages_dirtied, 1345 period, 1346 min(pause, 0L), 1347 start_time); 1348 if (pause < -HZ) { 1349 current->dirty_paused_when = now; 1350 current->nr_dirtied = 0; 1351 } else if (period) { 1352 current->dirty_paused_when += period; 1353 current->nr_dirtied = 0; 1354 } else if (current->nr_dirtied_pause <= pages_dirtied) 1355 current->nr_dirtied_pause += pages_dirtied; 1356 break; 1357 } 1358 if (unlikely(pause > max_pause)) { 1359 /* for occasional dropped task_ratelimit */ 1360 now += min(pause - max_pause, max_pause); 1361 pause = max_pause; 1362 } 1363 1364 pause: 1365 trace_balance_dirty_pages(bdi, 1366 dirty_thresh, 1367 background_thresh, 1368 nr_dirty, 1369 bdi_thresh, 1370 bdi_dirty, 1371 dirty_ratelimit, 1372 task_ratelimit, 1373 pages_dirtied, 1374 period, 1375 pause, 1376 start_time); 1377 __set_current_state(TASK_KILLABLE); 1378 io_schedule_timeout(pause); 1379 1380 current->dirty_paused_when = now + pause; 1381 current->nr_dirtied = 0; 1382 current->nr_dirtied_pause = nr_dirtied_pause; 1383 1384 /* 1385 * This is typically equal to (nr_dirty < dirty_thresh) and can 1386 * also keep "1000+ dd on a slow USB stick" under control. 1387 */ 1388 if (task_ratelimit) 1389 break; 1390 1391 /* 1392 * In the case of an unresponding NFS server and the NFS dirty 1393 * pages exceeds dirty_thresh, give the other good bdi's a pipe 1394 * to go through, so that tasks on them still remain responsive. 1395 * 1396 * In theory 1 page is enough to keep the comsumer-producer 1397 * pipe going: the flusher cleans 1 page => the task dirties 1 1398 * more page. However bdi_dirty has accounting errors. So use 1399 * the larger and more IO friendly bdi_stat_error. 1400 */ 1401 if (bdi_dirty <= bdi_stat_error(bdi)) 1402 break; 1403 1404 if (fatal_signal_pending(current)) 1405 break; 1406 } 1407 1408 if (!dirty_exceeded && bdi->dirty_exceeded) 1409 bdi->dirty_exceeded = 0; 1410 1411 if (writeback_in_progress(bdi)) 1412 return; 1413 1414 /* 1415 * In laptop mode, we wait until hitting the higher threshold before 1416 * starting background writeout, and then write out all the way down 1417 * to the lower threshold. So slow writers cause minimal disk activity. 1418 * 1419 * In normal mode, we start background writeout at the lower 1420 * background_thresh, to keep the amount of dirty memory low. 1421 */ 1422 if (laptop_mode) 1423 return; 1424 1425 if (nr_reclaimable > background_thresh) 1426 bdi_start_background_writeback(bdi); 1427 } 1428 1429 void set_page_dirty_balance(struct page *page, int page_mkwrite) 1430 { 1431 if (set_page_dirty(page) || page_mkwrite) { 1432 struct address_space *mapping = page_mapping(page); 1433 1434 if (mapping) 1435 balance_dirty_pages_ratelimited(mapping); 1436 } 1437 } 1438 1439 static DEFINE_PER_CPU(int, bdp_ratelimits); 1440 1441 /* 1442 * Normal tasks are throttled by 1443 * loop { 1444 * dirty tsk->nr_dirtied_pause pages; 1445 * take a snap in balance_dirty_pages(); 1446 * } 1447 * However there is a worst case. If every task exit immediately when dirtied 1448 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1449 * called to throttle the page dirties. The solution is to save the not yet 1450 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1451 * randomly into the running tasks. This works well for the above worst case, 1452 * as the new task will pick up and accumulate the old task's leaked dirty 1453 * count and eventually get throttled. 1454 */ 1455 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1456 1457 /** 1458 * balance_dirty_pages_ratelimited - balance dirty memory state 1459 * @mapping: address_space which was dirtied 1460 * 1461 * Processes which are dirtying memory should call in here once for each page 1462 * which was newly dirtied. The function will periodically check the system's 1463 * dirty state and will initiate writeback if needed. 1464 * 1465 * On really big machines, get_writeback_state is expensive, so try to avoid 1466 * calling it too often (ratelimiting). But once we're over the dirty memory 1467 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1468 * from overshooting the limit by (ratelimit_pages) each. 1469 */ 1470 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1471 { 1472 struct backing_dev_info *bdi = mapping->backing_dev_info; 1473 int ratelimit; 1474 int *p; 1475 1476 if (!bdi_cap_account_dirty(bdi)) 1477 return; 1478 1479 ratelimit = current->nr_dirtied_pause; 1480 if (bdi->dirty_exceeded) 1481 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1482 1483 preempt_disable(); 1484 /* 1485 * This prevents one CPU to accumulate too many dirtied pages without 1486 * calling into balance_dirty_pages(), which can happen when there are 1487 * 1000+ tasks, all of them start dirtying pages at exactly the same 1488 * time, hence all honoured too large initial task->nr_dirtied_pause. 1489 */ 1490 p = &__get_cpu_var(bdp_ratelimits); 1491 if (unlikely(current->nr_dirtied >= ratelimit)) 1492 *p = 0; 1493 else if (unlikely(*p >= ratelimit_pages)) { 1494 *p = 0; 1495 ratelimit = 0; 1496 } 1497 /* 1498 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1499 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1500 * the dirty throttling and livelock other long-run dirtiers. 1501 */ 1502 p = &__get_cpu_var(dirty_throttle_leaks); 1503 if (*p > 0 && current->nr_dirtied < ratelimit) { 1504 unsigned long nr_pages_dirtied; 1505 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1506 *p -= nr_pages_dirtied; 1507 current->nr_dirtied += nr_pages_dirtied; 1508 } 1509 preempt_enable(); 1510 1511 if (unlikely(current->nr_dirtied >= ratelimit)) 1512 balance_dirty_pages(mapping, current->nr_dirtied); 1513 } 1514 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1515 1516 void throttle_vm_writeout(gfp_t gfp_mask) 1517 { 1518 unsigned long background_thresh; 1519 unsigned long dirty_thresh; 1520 1521 for ( ; ; ) { 1522 global_dirty_limits(&background_thresh, &dirty_thresh); 1523 dirty_thresh = hard_dirty_limit(dirty_thresh); 1524 1525 /* 1526 * Boost the allowable dirty threshold a bit for page 1527 * allocators so they don't get DoS'ed by heavy writers 1528 */ 1529 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1530 1531 if (global_page_state(NR_UNSTABLE_NFS) + 1532 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1533 break; 1534 congestion_wait(BLK_RW_ASYNC, HZ/10); 1535 1536 /* 1537 * The caller might hold locks which can prevent IO completion 1538 * or progress in the filesystem. So we cannot just sit here 1539 * waiting for IO to complete. 1540 */ 1541 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1542 break; 1543 } 1544 } 1545 1546 /* 1547 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1548 */ 1549 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 1550 void __user *buffer, size_t *length, loff_t *ppos) 1551 { 1552 proc_dointvec(table, write, buffer, length, ppos); 1553 return 0; 1554 } 1555 1556 #ifdef CONFIG_BLOCK 1557 void laptop_mode_timer_fn(unsigned long data) 1558 { 1559 struct request_queue *q = (struct request_queue *)data; 1560 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1561 global_page_state(NR_UNSTABLE_NFS); 1562 1563 /* 1564 * We want to write everything out, not just down to the dirty 1565 * threshold 1566 */ 1567 if (bdi_has_dirty_io(&q->backing_dev_info)) 1568 bdi_start_writeback(&q->backing_dev_info, nr_pages, 1569 WB_REASON_LAPTOP_TIMER); 1570 } 1571 1572 /* 1573 * We've spun up the disk and we're in laptop mode: schedule writeback 1574 * of all dirty data a few seconds from now. If the flush is already scheduled 1575 * then push it back - the user is still using the disk. 1576 */ 1577 void laptop_io_completion(struct backing_dev_info *info) 1578 { 1579 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1580 } 1581 1582 /* 1583 * We're in laptop mode and we've just synced. The sync's writes will have 1584 * caused another writeback to be scheduled by laptop_io_completion. 1585 * Nothing needs to be written back anymore, so we unschedule the writeback. 1586 */ 1587 void laptop_sync_completion(void) 1588 { 1589 struct backing_dev_info *bdi; 1590 1591 rcu_read_lock(); 1592 1593 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1594 del_timer(&bdi->laptop_mode_wb_timer); 1595 1596 rcu_read_unlock(); 1597 } 1598 #endif 1599 1600 /* 1601 * If ratelimit_pages is too high then we can get into dirty-data overload 1602 * if a large number of processes all perform writes at the same time. 1603 * If it is too low then SMP machines will call the (expensive) 1604 * get_writeback_state too often. 1605 * 1606 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 1607 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 1608 * thresholds. 1609 */ 1610 1611 void writeback_set_ratelimit(void) 1612 { 1613 unsigned long background_thresh; 1614 unsigned long dirty_thresh; 1615 global_dirty_limits(&background_thresh, &dirty_thresh); 1616 global_dirty_limit = dirty_thresh; 1617 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 1618 if (ratelimit_pages < 16) 1619 ratelimit_pages = 16; 1620 } 1621 1622 static int __cpuinit 1623 ratelimit_handler(struct notifier_block *self, unsigned long action, 1624 void *hcpu) 1625 { 1626 1627 switch (action & ~CPU_TASKS_FROZEN) { 1628 case CPU_ONLINE: 1629 case CPU_DEAD: 1630 writeback_set_ratelimit(); 1631 return NOTIFY_OK; 1632 default: 1633 return NOTIFY_DONE; 1634 } 1635 } 1636 1637 static struct notifier_block __cpuinitdata ratelimit_nb = { 1638 .notifier_call = ratelimit_handler, 1639 .next = NULL, 1640 }; 1641 1642 /* 1643 * Called early on to tune the page writeback dirty limits. 1644 * 1645 * We used to scale dirty pages according to how total memory 1646 * related to pages that could be allocated for buffers (by 1647 * comparing nr_free_buffer_pages() to vm_total_pages. 1648 * 1649 * However, that was when we used "dirty_ratio" to scale with 1650 * all memory, and we don't do that any more. "dirty_ratio" 1651 * is now applied to total non-HIGHPAGE memory (by subtracting 1652 * totalhigh_pages from vm_total_pages), and as such we can't 1653 * get into the old insane situation any more where we had 1654 * large amounts of dirty pages compared to a small amount of 1655 * non-HIGHMEM memory. 1656 * 1657 * But we might still want to scale the dirty_ratio by how 1658 * much memory the box has.. 1659 */ 1660 void __init page_writeback_init(void) 1661 { 1662 writeback_set_ratelimit(); 1663 register_cpu_notifier(&ratelimit_nb); 1664 1665 fprop_global_init(&writeout_completions); 1666 } 1667 1668 /** 1669 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1670 * @mapping: address space structure to write 1671 * @start: starting page index 1672 * @end: ending page index (inclusive) 1673 * 1674 * This function scans the page range from @start to @end (inclusive) and tags 1675 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1676 * that write_cache_pages (or whoever calls this function) will then use 1677 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1678 * used to avoid livelocking of writeback by a process steadily creating new 1679 * dirty pages in the file (thus it is important for this function to be quick 1680 * so that it can tag pages faster than a dirtying process can create them). 1681 */ 1682 /* 1683 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1684 */ 1685 void tag_pages_for_writeback(struct address_space *mapping, 1686 pgoff_t start, pgoff_t end) 1687 { 1688 #define WRITEBACK_TAG_BATCH 4096 1689 unsigned long tagged; 1690 1691 do { 1692 spin_lock_irq(&mapping->tree_lock); 1693 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1694 &start, end, WRITEBACK_TAG_BATCH, 1695 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1696 spin_unlock_irq(&mapping->tree_lock); 1697 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1698 cond_resched(); 1699 /* We check 'start' to handle wrapping when end == ~0UL */ 1700 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1701 } 1702 EXPORT_SYMBOL(tag_pages_for_writeback); 1703 1704 /** 1705 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1706 * @mapping: address space structure to write 1707 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1708 * @writepage: function called for each page 1709 * @data: data passed to writepage function 1710 * 1711 * If a page is already under I/O, write_cache_pages() skips it, even 1712 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1713 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1714 * and msync() need to guarantee that all the data which was dirty at the time 1715 * the call was made get new I/O started against them. If wbc->sync_mode is 1716 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1717 * existing IO to complete. 1718 * 1719 * To avoid livelocks (when other process dirties new pages), we first tag 1720 * pages which should be written back with TOWRITE tag and only then start 1721 * writing them. For data-integrity sync we have to be careful so that we do 1722 * not miss some pages (e.g., because some other process has cleared TOWRITE 1723 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1724 * by the process clearing the DIRTY tag (and submitting the page for IO). 1725 */ 1726 int write_cache_pages(struct address_space *mapping, 1727 struct writeback_control *wbc, writepage_t writepage, 1728 void *data) 1729 { 1730 int ret = 0; 1731 int done = 0; 1732 struct pagevec pvec; 1733 int nr_pages; 1734 pgoff_t uninitialized_var(writeback_index); 1735 pgoff_t index; 1736 pgoff_t end; /* Inclusive */ 1737 pgoff_t done_index; 1738 int cycled; 1739 int range_whole = 0; 1740 int tag; 1741 1742 pagevec_init(&pvec, 0); 1743 if (wbc->range_cyclic) { 1744 writeback_index = mapping->writeback_index; /* prev offset */ 1745 index = writeback_index; 1746 if (index == 0) 1747 cycled = 1; 1748 else 1749 cycled = 0; 1750 end = -1; 1751 } else { 1752 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1753 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1754 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1755 range_whole = 1; 1756 cycled = 1; /* ignore range_cyclic tests */ 1757 } 1758 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1759 tag = PAGECACHE_TAG_TOWRITE; 1760 else 1761 tag = PAGECACHE_TAG_DIRTY; 1762 retry: 1763 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1764 tag_pages_for_writeback(mapping, index, end); 1765 done_index = index; 1766 while (!done && (index <= end)) { 1767 int i; 1768 1769 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1770 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1771 if (nr_pages == 0) 1772 break; 1773 1774 for (i = 0; i < nr_pages; i++) { 1775 struct page *page = pvec.pages[i]; 1776 1777 /* 1778 * At this point, the page may be truncated or 1779 * invalidated (changing page->mapping to NULL), or 1780 * even swizzled back from swapper_space to tmpfs file 1781 * mapping. However, page->index will not change 1782 * because we have a reference on the page. 1783 */ 1784 if (page->index > end) { 1785 /* 1786 * can't be range_cyclic (1st pass) because 1787 * end == -1 in that case. 1788 */ 1789 done = 1; 1790 break; 1791 } 1792 1793 done_index = page->index; 1794 1795 lock_page(page); 1796 1797 /* 1798 * Page truncated or invalidated. We can freely skip it 1799 * then, even for data integrity operations: the page 1800 * has disappeared concurrently, so there could be no 1801 * real expectation of this data interity operation 1802 * even if there is now a new, dirty page at the same 1803 * pagecache address. 1804 */ 1805 if (unlikely(page->mapping != mapping)) { 1806 continue_unlock: 1807 unlock_page(page); 1808 continue; 1809 } 1810 1811 if (!PageDirty(page)) { 1812 /* someone wrote it for us */ 1813 goto continue_unlock; 1814 } 1815 1816 if (PageWriteback(page)) { 1817 if (wbc->sync_mode != WB_SYNC_NONE) 1818 wait_on_page_writeback(page); 1819 else 1820 goto continue_unlock; 1821 } 1822 1823 BUG_ON(PageWriteback(page)); 1824 if (!clear_page_dirty_for_io(page)) 1825 goto continue_unlock; 1826 1827 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1828 ret = (*writepage)(page, wbc, data); 1829 if (unlikely(ret)) { 1830 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1831 unlock_page(page); 1832 ret = 0; 1833 } else { 1834 /* 1835 * done_index is set past this page, 1836 * so media errors will not choke 1837 * background writeout for the entire 1838 * file. This has consequences for 1839 * range_cyclic semantics (ie. it may 1840 * not be suitable for data integrity 1841 * writeout). 1842 */ 1843 done_index = page->index + 1; 1844 done = 1; 1845 break; 1846 } 1847 } 1848 1849 /* 1850 * We stop writing back only if we are not doing 1851 * integrity sync. In case of integrity sync we have to 1852 * keep going until we have written all the pages 1853 * we tagged for writeback prior to entering this loop. 1854 */ 1855 if (--wbc->nr_to_write <= 0 && 1856 wbc->sync_mode == WB_SYNC_NONE) { 1857 done = 1; 1858 break; 1859 } 1860 } 1861 pagevec_release(&pvec); 1862 cond_resched(); 1863 } 1864 if (!cycled && !done) { 1865 /* 1866 * range_cyclic: 1867 * We hit the last page and there is more work to be done: wrap 1868 * back to the start of the file 1869 */ 1870 cycled = 1; 1871 index = 0; 1872 end = writeback_index - 1; 1873 goto retry; 1874 } 1875 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1876 mapping->writeback_index = done_index; 1877 1878 return ret; 1879 } 1880 EXPORT_SYMBOL(write_cache_pages); 1881 1882 /* 1883 * Function used by generic_writepages to call the real writepage 1884 * function and set the mapping flags on error 1885 */ 1886 static int __writepage(struct page *page, struct writeback_control *wbc, 1887 void *data) 1888 { 1889 struct address_space *mapping = data; 1890 int ret = mapping->a_ops->writepage(page, wbc); 1891 mapping_set_error(mapping, ret); 1892 return ret; 1893 } 1894 1895 /** 1896 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1897 * @mapping: address space structure to write 1898 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1899 * 1900 * This is a library function, which implements the writepages() 1901 * address_space_operation. 1902 */ 1903 int generic_writepages(struct address_space *mapping, 1904 struct writeback_control *wbc) 1905 { 1906 struct blk_plug plug; 1907 int ret; 1908 1909 /* deal with chardevs and other special file */ 1910 if (!mapping->a_ops->writepage) 1911 return 0; 1912 1913 blk_start_plug(&plug); 1914 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1915 blk_finish_plug(&plug); 1916 return ret; 1917 } 1918 1919 EXPORT_SYMBOL(generic_writepages); 1920 1921 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1922 { 1923 int ret; 1924 1925 if (wbc->nr_to_write <= 0) 1926 return 0; 1927 if (mapping->a_ops->writepages) 1928 ret = mapping->a_ops->writepages(mapping, wbc); 1929 else 1930 ret = generic_writepages(mapping, wbc); 1931 return ret; 1932 } 1933 1934 /** 1935 * write_one_page - write out a single page and optionally wait on I/O 1936 * @page: the page to write 1937 * @wait: if true, wait on writeout 1938 * 1939 * The page must be locked by the caller and will be unlocked upon return. 1940 * 1941 * write_one_page() returns a negative error code if I/O failed. 1942 */ 1943 int write_one_page(struct page *page, int wait) 1944 { 1945 struct address_space *mapping = page->mapping; 1946 int ret = 0; 1947 struct writeback_control wbc = { 1948 .sync_mode = WB_SYNC_ALL, 1949 .nr_to_write = 1, 1950 }; 1951 1952 BUG_ON(!PageLocked(page)); 1953 1954 if (wait) 1955 wait_on_page_writeback(page); 1956 1957 if (clear_page_dirty_for_io(page)) { 1958 page_cache_get(page); 1959 ret = mapping->a_ops->writepage(page, &wbc); 1960 if (ret == 0 && wait) { 1961 wait_on_page_writeback(page); 1962 if (PageError(page)) 1963 ret = -EIO; 1964 } 1965 page_cache_release(page); 1966 } else { 1967 unlock_page(page); 1968 } 1969 return ret; 1970 } 1971 EXPORT_SYMBOL(write_one_page); 1972 1973 /* 1974 * For address_spaces which do not use buffers nor write back. 1975 */ 1976 int __set_page_dirty_no_writeback(struct page *page) 1977 { 1978 if (!PageDirty(page)) 1979 return !TestSetPageDirty(page); 1980 return 0; 1981 } 1982 1983 /* 1984 * Helper function for set_page_dirty family. 1985 * NOTE: This relies on being atomic wrt interrupts. 1986 */ 1987 void account_page_dirtied(struct page *page, struct address_space *mapping) 1988 { 1989 trace_writeback_dirty_page(page, mapping); 1990 1991 if (mapping_cap_account_dirty(mapping)) { 1992 __inc_zone_page_state(page, NR_FILE_DIRTY); 1993 __inc_zone_page_state(page, NR_DIRTIED); 1994 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1995 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 1996 task_io_account_write(PAGE_CACHE_SIZE); 1997 current->nr_dirtied++; 1998 this_cpu_inc(bdp_ratelimits); 1999 } 2000 } 2001 EXPORT_SYMBOL(account_page_dirtied); 2002 2003 /* 2004 * Helper function for set_page_writeback family. 2005 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 2006 * wrt interrupts. 2007 */ 2008 void account_page_writeback(struct page *page) 2009 { 2010 inc_zone_page_state(page, NR_WRITEBACK); 2011 } 2012 EXPORT_SYMBOL(account_page_writeback); 2013 2014 /* 2015 * For address_spaces which do not use buffers. Just tag the page as dirty in 2016 * its radix tree. 2017 * 2018 * This is also used when a single buffer is being dirtied: we want to set the 2019 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2020 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2021 * 2022 * Most callers have locked the page, which pins the address_space in memory. 2023 * But zap_pte_range() does not lock the page, however in that case the 2024 * mapping is pinned by the vma's ->vm_file reference. 2025 * 2026 * We take care to handle the case where the page was truncated from the 2027 * mapping by re-checking page_mapping() inside tree_lock. 2028 */ 2029 int __set_page_dirty_nobuffers(struct page *page) 2030 { 2031 if (!TestSetPageDirty(page)) { 2032 struct address_space *mapping = page_mapping(page); 2033 struct address_space *mapping2; 2034 2035 if (!mapping) 2036 return 1; 2037 2038 spin_lock_irq(&mapping->tree_lock); 2039 mapping2 = page_mapping(page); 2040 if (mapping2) { /* Race with truncate? */ 2041 BUG_ON(mapping2 != mapping); 2042 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2043 account_page_dirtied(page, mapping); 2044 radix_tree_tag_set(&mapping->page_tree, 2045 page_index(page), PAGECACHE_TAG_DIRTY); 2046 } 2047 spin_unlock_irq(&mapping->tree_lock); 2048 if (mapping->host) { 2049 /* !PageAnon && !swapper_space */ 2050 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2051 } 2052 return 1; 2053 } 2054 return 0; 2055 } 2056 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2057 2058 /* 2059 * Call this whenever redirtying a page, to de-account the dirty counters 2060 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2061 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2062 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2063 * control. 2064 */ 2065 void account_page_redirty(struct page *page) 2066 { 2067 struct address_space *mapping = page->mapping; 2068 if (mapping && mapping_cap_account_dirty(mapping)) { 2069 current->nr_dirtied--; 2070 dec_zone_page_state(page, NR_DIRTIED); 2071 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2072 } 2073 } 2074 EXPORT_SYMBOL(account_page_redirty); 2075 2076 /* 2077 * When a writepage implementation decides that it doesn't want to write this 2078 * page for some reason, it should redirty the locked page via 2079 * redirty_page_for_writepage() and it should then unlock the page and return 0 2080 */ 2081 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2082 { 2083 wbc->pages_skipped++; 2084 account_page_redirty(page); 2085 return __set_page_dirty_nobuffers(page); 2086 } 2087 EXPORT_SYMBOL(redirty_page_for_writepage); 2088 2089 /* 2090 * Dirty a page. 2091 * 2092 * For pages with a mapping this should be done under the page lock 2093 * for the benefit of asynchronous memory errors who prefer a consistent 2094 * dirty state. This rule can be broken in some special cases, 2095 * but should be better not to. 2096 * 2097 * If the mapping doesn't provide a set_page_dirty a_op, then 2098 * just fall through and assume that it wants buffer_heads. 2099 */ 2100 int set_page_dirty(struct page *page) 2101 { 2102 struct address_space *mapping = page_mapping(page); 2103 2104 if (likely(mapping)) { 2105 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2106 /* 2107 * readahead/lru_deactivate_page could remain 2108 * PG_readahead/PG_reclaim due to race with end_page_writeback 2109 * About readahead, if the page is written, the flags would be 2110 * reset. So no problem. 2111 * About lru_deactivate_page, if the page is redirty, the flag 2112 * will be reset. So no problem. but if the page is used by readahead 2113 * it will confuse readahead and make it restart the size rampup 2114 * process. But it's a trivial problem. 2115 */ 2116 ClearPageReclaim(page); 2117 #ifdef CONFIG_BLOCK 2118 if (!spd) 2119 spd = __set_page_dirty_buffers; 2120 #endif 2121 return (*spd)(page); 2122 } 2123 if (!PageDirty(page)) { 2124 if (!TestSetPageDirty(page)) 2125 return 1; 2126 } 2127 return 0; 2128 } 2129 EXPORT_SYMBOL(set_page_dirty); 2130 2131 /* 2132 * set_page_dirty() is racy if the caller has no reference against 2133 * page->mapping->host, and if the page is unlocked. This is because another 2134 * CPU could truncate the page off the mapping and then free the mapping. 2135 * 2136 * Usually, the page _is_ locked, or the caller is a user-space process which 2137 * holds a reference on the inode by having an open file. 2138 * 2139 * In other cases, the page should be locked before running set_page_dirty(). 2140 */ 2141 int set_page_dirty_lock(struct page *page) 2142 { 2143 int ret; 2144 2145 lock_page(page); 2146 ret = set_page_dirty(page); 2147 unlock_page(page); 2148 return ret; 2149 } 2150 EXPORT_SYMBOL(set_page_dirty_lock); 2151 2152 /* 2153 * Clear a page's dirty flag, while caring for dirty memory accounting. 2154 * Returns true if the page was previously dirty. 2155 * 2156 * This is for preparing to put the page under writeout. We leave the page 2157 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2158 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2159 * implementation will run either set_page_writeback() or set_page_dirty(), 2160 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2161 * back into sync. 2162 * 2163 * This incoherency between the page's dirty flag and radix-tree tag is 2164 * unfortunate, but it only exists while the page is locked. 2165 */ 2166 int clear_page_dirty_for_io(struct page *page) 2167 { 2168 struct address_space *mapping = page_mapping(page); 2169 2170 BUG_ON(!PageLocked(page)); 2171 2172 if (mapping && mapping_cap_account_dirty(mapping)) { 2173 /* 2174 * Yes, Virginia, this is indeed insane. 2175 * 2176 * We use this sequence to make sure that 2177 * (a) we account for dirty stats properly 2178 * (b) we tell the low-level filesystem to 2179 * mark the whole page dirty if it was 2180 * dirty in a pagetable. Only to then 2181 * (c) clean the page again and return 1 to 2182 * cause the writeback. 2183 * 2184 * This way we avoid all nasty races with the 2185 * dirty bit in multiple places and clearing 2186 * them concurrently from different threads. 2187 * 2188 * Note! Normally the "set_page_dirty(page)" 2189 * has no effect on the actual dirty bit - since 2190 * that will already usually be set. But we 2191 * need the side effects, and it can help us 2192 * avoid races. 2193 * 2194 * We basically use the page "master dirty bit" 2195 * as a serialization point for all the different 2196 * threads doing their things. 2197 */ 2198 if (page_mkclean(page)) 2199 set_page_dirty(page); 2200 /* 2201 * We carefully synchronise fault handlers against 2202 * installing a dirty pte and marking the page dirty 2203 * at this point. We do this by having them hold the 2204 * page lock at some point after installing their 2205 * pte, but before marking the page dirty. 2206 * Pages are always locked coming in here, so we get 2207 * the desired exclusion. See mm/memory.c:do_wp_page() 2208 * for more comments. 2209 */ 2210 if (TestClearPageDirty(page)) { 2211 dec_zone_page_state(page, NR_FILE_DIRTY); 2212 dec_bdi_stat(mapping->backing_dev_info, 2213 BDI_RECLAIMABLE); 2214 return 1; 2215 } 2216 return 0; 2217 } 2218 return TestClearPageDirty(page); 2219 } 2220 EXPORT_SYMBOL(clear_page_dirty_for_io); 2221 2222 int test_clear_page_writeback(struct page *page) 2223 { 2224 struct address_space *mapping = page_mapping(page); 2225 int ret; 2226 2227 if (mapping) { 2228 struct backing_dev_info *bdi = mapping->backing_dev_info; 2229 unsigned long flags; 2230 2231 spin_lock_irqsave(&mapping->tree_lock, flags); 2232 ret = TestClearPageWriteback(page); 2233 if (ret) { 2234 radix_tree_tag_clear(&mapping->page_tree, 2235 page_index(page), 2236 PAGECACHE_TAG_WRITEBACK); 2237 if (bdi_cap_account_writeback(bdi)) { 2238 __dec_bdi_stat(bdi, BDI_WRITEBACK); 2239 __bdi_writeout_inc(bdi); 2240 } 2241 } 2242 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2243 } else { 2244 ret = TestClearPageWriteback(page); 2245 } 2246 if (ret) { 2247 dec_zone_page_state(page, NR_WRITEBACK); 2248 inc_zone_page_state(page, NR_WRITTEN); 2249 } 2250 return ret; 2251 } 2252 2253 int test_set_page_writeback(struct page *page) 2254 { 2255 struct address_space *mapping = page_mapping(page); 2256 int ret; 2257 2258 if (mapping) { 2259 struct backing_dev_info *bdi = mapping->backing_dev_info; 2260 unsigned long flags; 2261 2262 spin_lock_irqsave(&mapping->tree_lock, flags); 2263 ret = TestSetPageWriteback(page); 2264 if (!ret) { 2265 radix_tree_tag_set(&mapping->page_tree, 2266 page_index(page), 2267 PAGECACHE_TAG_WRITEBACK); 2268 if (bdi_cap_account_writeback(bdi)) 2269 __inc_bdi_stat(bdi, BDI_WRITEBACK); 2270 } 2271 if (!PageDirty(page)) 2272 radix_tree_tag_clear(&mapping->page_tree, 2273 page_index(page), 2274 PAGECACHE_TAG_DIRTY); 2275 radix_tree_tag_clear(&mapping->page_tree, 2276 page_index(page), 2277 PAGECACHE_TAG_TOWRITE); 2278 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2279 } else { 2280 ret = TestSetPageWriteback(page); 2281 } 2282 if (!ret) 2283 account_page_writeback(page); 2284 return ret; 2285 2286 } 2287 EXPORT_SYMBOL(test_set_page_writeback); 2288 2289 /* 2290 * Return true if any of the pages in the mapping are marked with the 2291 * passed tag. 2292 */ 2293 int mapping_tagged(struct address_space *mapping, int tag) 2294 { 2295 return radix_tree_tagged(&mapping->page_tree, tag); 2296 } 2297 EXPORT_SYMBOL(mapping_tagged); 2298 2299 /** 2300 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2301 * @page: The page to wait on. 2302 * 2303 * This function determines if the given page is related to a backing device 2304 * that requires page contents to be held stable during writeback. If so, then 2305 * it will wait for any pending writeback to complete. 2306 */ 2307 void wait_for_stable_page(struct page *page) 2308 { 2309 struct address_space *mapping = page_mapping(page); 2310 struct backing_dev_info *bdi = mapping->backing_dev_info; 2311 2312 if (!bdi_cap_stable_pages_required(bdi)) 2313 return; 2314 #ifdef CONFIG_NEED_BOUNCE_POOL 2315 if (mapping->host->i_sb->s_flags & MS_SNAP_STABLE) 2316 return; 2317 #endif /* CONFIG_NEED_BOUNCE_POOL */ 2318 2319 wait_on_page_writeback(page); 2320 } 2321 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2322