1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that makes the machine dump writes/reads and block dirtyings. 113 */ 114 int block_dump; 115 116 /* 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 118 * a full sync is triggered after this time elapses without any disk activity. 119 */ 120 int laptop_mode; 121 122 EXPORT_SYMBOL(laptop_mode); 123 124 /* End of sysctl-exported parameters */ 125 126 struct wb_domain global_wb_domain; 127 128 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 129 struct dirty_throttle_control { 130 #ifdef CONFIG_CGROUP_WRITEBACK 131 struct wb_domain *dom; 132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 133 #endif 134 struct bdi_writeback *wb; 135 struct fprop_local_percpu *wb_completions; 136 137 unsigned long avail; /* dirtyable */ 138 unsigned long dirty; /* file_dirty + write + nfs */ 139 unsigned long thresh; /* dirty threshold */ 140 unsigned long bg_thresh; /* dirty background threshold */ 141 142 unsigned long wb_dirty; /* per-wb counterparts */ 143 unsigned long wb_thresh; 144 unsigned long wb_bg_thresh; 145 146 unsigned long pos_ratio; 147 }; 148 149 /* 150 * Length of period for aging writeout fractions of bdis. This is an 151 * arbitrarily chosen number. The longer the period, the slower fractions will 152 * reflect changes in current writeout rate. 153 */ 154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 155 156 #ifdef CONFIG_CGROUP_WRITEBACK 157 158 #define GDTC_INIT(__wb) .wb = (__wb), \ 159 .dom = &global_wb_domain, \ 160 .wb_completions = &(__wb)->completions 161 162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 163 164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 165 .dom = mem_cgroup_wb_domain(__wb), \ 166 .wb_completions = &(__wb)->memcg_completions, \ 167 .gdtc = __gdtc 168 169 static bool mdtc_valid(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 175 { 176 return dtc->dom; 177 } 178 179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 180 { 181 return mdtc->gdtc; 182 } 183 184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 185 { 186 return &wb->memcg_completions; 187 } 188 189 static void wb_min_max_ratio(struct bdi_writeback *wb, 190 unsigned long *minp, unsigned long *maxp) 191 { 192 unsigned long this_bw = wb->avg_write_bandwidth; 193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 194 unsigned long long min = wb->bdi->min_ratio; 195 unsigned long long max = wb->bdi->max_ratio; 196 197 /* 198 * @wb may already be clean by the time control reaches here and 199 * the total may not include its bw. 200 */ 201 if (this_bw < tot_bw) { 202 if (min) { 203 min *= this_bw; 204 min = div64_ul(min, tot_bw); 205 } 206 if (max < 100) { 207 max *= this_bw; 208 max = div64_ul(max, tot_bw); 209 } 210 } 211 212 *minp = min; 213 *maxp = max; 214 } 215 216 #else /* CONFIG_CGROUP_WRITEBACK */ 217 218 #define GDTC_INIT(__wb) .wb = (__wb), \ 219 .wb_completions = &(__wb)->completions 220 #define GDTC_INIT_NO_WB 221 #define MDTC_INIT(__wb, __gdtc) 222 223 static bool mdtc_valid(struct dirty_throttle_control *dtc) 224 { 225 return false; 226 } 227 228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 229 { 230 return &global_wb_domain; 231 } 232 233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 234 { 235 return NULL; 236 } 237 238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 239 { 240 return NULL; 241 } 242 243 static void wb_min_max_ratio(struct bdi_writeback *wb, 244 unsigned long *minp, unsigned long *maxp) 245 { 246 *minp = wb->bdi->min_ratio; 247 *maxp = wb->bdi->max_ratio; 248 } 249 250 #endif /* CONFIG_CGROUP_WRITEBACK */ 251 252 /* 253 * In a memory zone, there is a certain amount of pages we consider 254 * available for the page cache, which is essentially the number of 255 * free and reclaimable pages, minus some zone reserves to protect 256 * lowmem and the ability to uphold the zone's watermarks without 257 * requiring writeback. 258 * 259 * This number of dirtyable pages is the base value of which the 260 * user-configurable dirty ratio is the effective number of pages that 261 * are allowed to be actually dirtied. Per individual zone, or 262 * globally by using the sum of dirtyable pages over all zones. 263 * 264 * Because the user is allowed to specify the dirty limit globally as 265 * absolute number of bytes, calculating the per-zone dirty limit can 266 * require translating the configured limit into a percentage of 267 * global dirtyable memory first. 268 */ 269 270 /** 271 * node_dirtyable_memory - number of dirtyable pages in a node 272 * @pgdat: the node 273 * 274 * Return: the node's number of pages potentially available for dirty 275 * page cache. This is the base value for the per-node dirty limits. 276 */ 277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 278 { 279 unsigned long nr_pages = 0; 280 int z; 281 282 for (z = 0; z < MAX_NR_ZONES; z++) { 283 struct zone *zone = pgdat->node_zones + z; 284 285 if (!populated_zone(zone)) 286 continue; 287 288 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 289 } 290 291 /* 292 * Pages reserved for the kernel should not be considered 293 * dirtyable, to prevent a situation where reclaim has to 294 * clean pages in order to balance the zones. 295 */ 296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 297 298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 300 301 return nr_pages; 302 } 303 304 static unsigned long highmem_dirtyable_memory(unsigned long total) 305 { 306 #ifdef CONFIG_HIGHMEM 307 int node; 308 unsigned long x = 0; 309 int i; 310 311 for_each_node_state(node, N_HIGH_MEMORY) { 312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 313 struct zone *z; 314 unsigned long nr_pages; 315 316 if (!is_highmem_idx(i)) 317 continue; 318 319 z = &NODE_DATA(node)->node_zones[i]; 320 if (!populated_zone(z)) 321 continue; 322 323 nr_pages = zone_page_state(z, NR_FREE_PAGES); 324 /* watch for underflows */ 325 nr_pages -= min(nr_pages, high_wmark_pages(z)); 326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 328 x += nr_pages; 329 } 330 } 331 332 /* 333 * Unreclaimable memory (kernel memory or anonymous memory 334 * without swap) can bring down the dirtyable pages below 335 * the zone's dirty balance reserve and the above calculation 336 * will underflow. However we still want to add in nodes 337 * which are below threshold (negative values) to get a more 338 * accurate calculation but make sure that the total never 339 * underflows. 340 */ 341 if ((long)x < 0) 342 x = 0; 343 344 /* 345 * Make sure that the number of highmem pages is never larger 346 * than the number of the total dirtyable memory. This can only 347 * occur in very strange VM situations but we want to make sure 348 * that this does not occur. 349 */ 350 return min(x, total); 351 #else 352 return 0; 353 #endif 354 } 355 356 /** 357 * global_dirtyable_memory - number of globally dirtyable pages 358 * 359 * Return: the global number of pages potentially available for dirty 360 * page cache. This is the base value for the global dirty limits. 361 */ 362 static unsigned long global_dirtyable_memory(void) 363 { 364 unsigned long x; 365 366 x = global_zone_page_state(NR_FREE_PAGES); 367 /* 368 * Pages reserved for the kernel should not be considered 369 * dirtyable, to prevent a situation where reclaim has to 370 * clean pages in order to balance the zones. 371 */ 372 x -= min(x, totalreserve_pages); 373 374 x += global_node_page_state(NR_INACTIVE_FILE); 375 x += global_node_page_state(NR_ACTIVE_FILE); 376 377 if (!vm_highmem_is_dirtyable) 378 x -= highmem_dirtyable_memory(x); 379 380 return x + 1; /* Ensure that we never return 0 */ 381 } 382 383 /** 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 385 * @dtc: dirty_throttle_control of interest 386 * 387 * Calculate @dtc->thresh and ->bg_thresh considering 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 389 * must ensure that @dtc->avail is set before calling this function. The 390 * dirty limits will be lifted by 1/4 for real-time tasks. 391 */ 392 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 393 { 394 const unsigned long available_memory = dtc->avail; 395 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 396 unsigned long bytes = vm_dirty_bytes; 397 unsigned long bg_bytes = dirty_background_bytes; 398 /* convert ratios to per-PAGE_SIZE for higher precision */ 399 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 400 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 401 unsigned long thresh; 402 unsigned long bg_thresh; 403 struct task_struct *tsk; 404 405 /* gdtc is !NULL iff @dtc is for memcg domain */ 406 if (gdtc) { 407 unsigned long global_avail = gdtc->avail; 408 409 /* 410 * The byte settings can't be applied directly to memcg 411 * domains. Convert them to ratios by scaling against 412 * globally available memory. As the ratios are in 413 * per-PAGE_SIZE, they can be obtained by dividing bytes by 414 * number of pages. 415 */ 416 if (bytes) 417 ratio = min(DIV_ROUND_UP(bytes, global_avail), 418 PAGE_SIZE); 419 if (bg_bytes) 420 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 421 PAGE_SIZE); 422 bytes = bg_bytes = 0; 423 } 424 425 if (bytes) 426 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 427 else 428 thresh = (ratio * available_memory) / PAGE_SIZE; 429 430 if (bg_bytes) 431 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 432 else 433 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 434 435 if (bg_thresh >= thresh) 436 bg_thresh = thresh / 2; 437 tsk = current; 438 if (rt_task(tsk)) { 439 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 440 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 441 } 442 dtc->thresh = thresh; 443 dtc->bg_thresh = bg_thresh; 444 445 /* we should eventually report the domain in the TP */ 446 if (!gdtc) 447 trace_global_dirty_state(bg_thresh, thresh); 448 } 449 450 /** 451 * global_dirty_limits - background-writeback and dirty-throttling thresholds 452 * @pbackground: out parameter for bg_thresh 453 * @pdirty: out parameter for thresh 454 * 455 * Calculate bg_thresh and thresh for global_wb_domain. See 456 * domain_dirty_limits() for details. 457 */ 458 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 459 { 460 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 461 462 gdtc.avail = global_dirtyable_memory(); 463 domain_dirty_limits(&gdtc); 464 465 *pbackground = gdtc.bg_thresh; 466 *pdirty = gdtc.thresh; 467 } 468 469 /** 470 * node_dirty_limit - maximum number of dirty pages allowed in a node 471 * @pgdat: the node 472 * 473 * Return: the maximum number of dirty pages allowed in a node, based 474 * on the node's dirtyable memory. 475 */ 476 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 477 { 478 unsigned long node_memory = node_dirtyable_memory(pgdat); 479 struct task_struct *tsk = current; 480 unsigned long dirty; 481 482 if (vm_dirty_bytes) 483 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 484 node_memory / global_dirtyable_memory(); 485 else 486 dirty = vm_dirty_ratio * node_memory / 100; 487 488 if (rt_task(tsk)) 489 dirty += dirty / 4; 490 491 return dirty; 492 } 493 494 /** 495 * node_dirty_ok - tells whether a node is within its dirty limits 496 * @pgdat: the node to check 497 * 498 * Return: %true when the dirty pages in @pgdat are within the node's 499 * dirty limit, %false if the limit is exceeded. 500 */ 501 bool node_dirty_ok(struct pglist_data *pgdat) 502 { 503 unsigned long limit = node_dirty_limit(pgdat); 504 unsigned long nr_pages = 0; 505 506 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 507 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 508 509 return nr_pages <= limit; 510 } 511 512 int dirty_background_ratio_handler(struct ctl_table *table, int write, 513 void *buffer, size_t *lenp, loff_t *ppos) 514 { 515 int ret; 516 517 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 518 if (ret == 0 && write) 519 dirty_background_bytes = 0; 520 return ret; 521 } 522 523 int dirty_background_bytes_handler(struct ctl_table *table, int write, 524 void *buffer, size_t *lenp, loff_t *ppos) 525 { 526 int ret; 527 528 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 529 if (ret == 0 && write) 530 dirty_background_ratio = 0; 531 return ret; 532 } 533 534 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 535 size_t *lenp, loff_t *ppos) 536 { 537 int old_ratio = vm_dirty_ratio; 538 int ret; 539 540 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 541 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 542 writeback_set_ratelimit(); 543 vm_dirty_bytes = 0; 544 } 545 return ret; 546 } 547 548 int dirty_bytes_handler(struct ctl_table *table, int write, 549 void *buffer, size_t *lenp, loff_t *ppos) 550 { 551 unsigned long old_bytes = vm_dirty_bytes; 552 int ret; 553 554 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 555 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 556 writeback_set_ratelimit(); 557 vm_dirty_ratio = 0; 558 } 559 return ret; 560 } 561 562 static unsigned long wp_next_time(unsigned long cur_time) 563 { 564 cur_time += VM_COMPLETIONS_PERIOD_LEN; 565 /* 0 has a special meaning... */ 566 if (!cur_time) 567 return 1; 568 return cur_time; 569 } 570 571 static void wb_domain_writeout_inc(struct wb_domain *dom, 572 struct fprop_local_percpu *completions, 573 unsigned int max_prop_frac) 574 { 575 __fprop_inc_percpu_max(&dom->completions, completions, 576 max_prop_frac); 577 /* First event after period switching was turned off? */ 578 if (unlikely(!dom->period_time)) { 579 /* 580 * We can race with other __bdi_writeout_inc calls here but 581 * it does not cause any harm since the resulting time when 582 * timer will fire and what is in writeout_period_time will be 583 * roughly the same. 584 */ 585 dom->period_time = wp_next_time(jiffies); 586 mod_timer(&dom->period_timer, dom->period_time); 587 } 588 } 589 590 /* 591 * Increment @wb's writeout completion count and the global writeout 592 * completion count. Called from test_clear_page_writeback(). 593 */ 594 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 595 { 596 struct wb_domain *cgdom; 597 598 inc_wb_stat(wb, WB_WRITTEN); 599 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 600 wb->bdi->max_prop_frac); 601 602 cgdom = mem_cgroup_wb_domain(wb); 603 if (cgdom) 604 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 605 wb->bdi->max_prop_frac); 606 } 607 608 void wb_writeout_inc(struct bdi_writeback *wb) 609 { 610 unsigned long flags; 611 612 local_irq_save(flags); 613 __wb_writeout_inc(wb); 614 local_irq_restore(flags); 615 } 616 EXPORT_SYMBOL_GPL(wb_writeout_inc); 617 618 /* 619 * On idle system, we can be called long after we scheduled because we use 620 * deferred timers so count with missed periods. 621 */ 622 static void writeout_period(struct timer_list *t) 623 { 624 struct wb_domain *dom = from_timer(dom, t, period_timer); 625 int miss_periods = (jiffies - dom->period_time) / 626 VM_COMPLETIONS_PERIOD_LEN; 627 628 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 629 dom->period_time = wp_next_time(dom->period_time + 630 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 631 mod_timer(&dom->period_timer, dom->period_time); 632 } else { 633 /* 634 * Aging has zeroed all fractions. Stop wasting CPU on period 635 * updates. 636 */ 637 dom->period_time = 0; 638 } 639 } 640 641 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 642 { 643 memset(dom, 0, sizeof(*dom)); 644 645 spin_lock_init(&dom->lock); 646 647 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 648 649 dom->dirty_limit_tstamp = jiffies; 650 651 return fprop_global_init(&dom->completions, gfp); 652 } 653 654 #ifdef CONFIG_CGROUP_WRITEBACK 655 void wb_domain_exit(struct wb_domain *dom) 656 { 657 del_timer_sync(&dom->period_timer); 658 fprop_global_destroy(&dom->completions); 659 } 660 #endif 661 662 /* 663 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 664 * registered backing devices, which, for obvious reasons, can not 665 * exceed 100%. 666 */ 667 static unsigned int bdi_min_ratio; 668 669 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 670 { 671 int ret = 0; 672 673 spin_lock_bh(&bdi_lock); 674 if (min_ratio > bdi->max_ratio) { 675 ret = -EINVAL; 676 } else { 677 min_ratio -= bdi->min_ratio; 678 if (bdi_min_ratio + min_ratio < 100) { 679 bdi_min_ratio += min_ratio; 680 bdi->min_ratio += min_ratio; 681 } else { 682 ret = -EINVAL; 683 } 684 } 685 spin_unlock_bh(&bdi_lock); 686 687 return ret; 688 } 689 690 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 691 { 692 int ret = 0; 693 694 if (max_ratio > 100) 695 return -EINVAL; 696 697 spin_lock_bh(&bdi_lock); 698 if (bdi->min_ratio > max_ratio) { 699 ret = -EINVAL; 700 } else { 701 bdi->max_ratio = max_ratio; 702 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 703 } 704 spin_unlock_bh(&bdi_lock); 705 706 return ret; 707 } 708 EXPORT_SYMBOL(bdi_set_max_ratio); 709 710 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 711 unsigned long bg_thresh) 712 { 713 return (thresh + bg_thresh) / 2; 714 } 715 716 static unsigned long hard_dirty_limit(struct wb_domain *dom, 717 unsigned long thresh) 718 { 719 return max(thresh, dom->dirty_limit); 720 } 721 722 /* 723 * Memory which can be further allocated to a memcg domain is capped by 724 * system-wide clean memory excluding the amount being used in the domain. 725 */ 726 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 727 unsigned long filepages, unsigned long headroom) 728 { 729 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 730 unsigned long clean = filepages - min(filepages, mdtc->dirty); 731 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 732 unsigned long other_clean = global_clean - min(global_clean, clean); 733 734 mdtc->avail = filepages + min(headroom, other_clean); 735 } 736 737 /** 738 * __wb_calc_thresh - @wb's share of dirty throttling threshold 739 * @dtc: dirty_throttle_context of interest 740 * 741 * Note that balance_dirty_pages() will only seriously take it as a hard limit 742 * when sleeping max_pause per page is not enough to keep the dirty pages under 743 * control. For example, when the device is completely stalled due to some error 744 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 745 * In the other normal situations, it acts more gently by throttling the tasks 746 * more (rather than completely block them) when the wb dirty pages go high. 747 * 748 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 749 * - starving fast devices 750 * - piling up dirty pages (that will take long time to sync) on slow devices 751 * 752 * The wb's share of dirty limit will be adapting to its throughput and 753 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 754 * 755 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 756 * dirty balancing includes all PG_dirty and PG_writeback pages. 757 */ 758 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 759 { 760 struct wb_domain *dom = dtc_dom(dtc); 761 unsigned long thresh = dtc->thresh; 762 u64 wb_thresh; 763 unsigned long numerator, denominator; 764 unsigned long wb_min_ratio, wb_max_ratio; 765 766 /* 767 * Calculate this BDI's share of the thresh ratio. 768 */ 769 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 770 &numerator, &denominator); 771 772 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 773 wb_thresh *= numerator; 774 wb_thresh = div64_ul(wb_thresh, denominator); 775 776 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 777 778 wb_thresh += (thresh * wb_min_ratio) / 100; 779 if (wb_thresh > (thresh * wb_max_ratio) / 100) 780 wb_thresh = thresh * wb_max_ratio / 100; 781 782 return wb_thresh; 783 } 784 785 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 786 { 787 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 788 .thresh = thresh }; 789 return __wb_calc_thresh(&gdtc); 790 } 791 792 /* 793 * setpoint - dirty 3 794 * f(dirty) := 1.0 + (----------------) 795 * limit - setpoint 796 * 797 * it's a 3rd order polynomial that subjects to 798 * 799 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 800 * (2) f(setpoint) = 1.0 => the balance point 801 * (3) f(limit) = 0 => the hard limit 802 * (4) df/dx <= 0 => negative feedback control 803 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 804 * => fast response on large errors; small oscillation near setpoint 805 */ 806 static long long pos_ratio_polynom(unsigned long setpoint, 807 unsigned long dirty, 808 unsigned long limit) 809 { 810 long long pos_ratio; 811 long x; 812 813 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 814 (limit - setpoint) | 1); 815 pos_ratio = x; 816 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 817 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 818 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 819 820 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 821 } 822 823 /* 824 * Dirty position control. 825 * 826 * (o) global/bdi setpoints 827 * 828 * We want the dirty pages be balanced around the global/wb setpoints. 829 * When the number of dirty pages is higher/lower than the setpoint, the 830 * dirty position control ratio (and hence task dirty ratelimit) will be 831 * decreased/increased to bring the dirty pages back to the setpoint. 832 * 833 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 834 * 835 * if (dirty < setpoint) scale up pos_ratio 836 * if (dirty > setpoint) scale down pos_ratio 837 * 838 * if (wb_dirty < wb_setpoint) scale up pos_ratio 839 * if (wb_dirty > wb_setpoint) scale down pos_ratio 840 * 841 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 842 * 843 * (o) global control line 844 * 845 * ^ pos_ratio 846 * | 847 * | |<===== global dirty control scope ======>| 848 * 2.0 .............* 849 * | .* 850 * | . * 851 * | . * 852 * | . * 853 * | . * 854 * | . * 855 * 1.0 ................................* 856 * | . . * 857 * | . . * 858 * | . . * 859 * | . . * 860 * | . . * 861 * 0 +------------.------------------.----------------------*-------------> 862 * freerun^ setpoint^ limit^ dirty pages 863 * 864 * (o) wb control line 865 * 866 * ^ pos_ratio 867 * | 868 * | * 869 * | * 870 * | * 871 * | * 872 * | * |<=========== span ============>| 873 * 1.0 .......................* 874 * | . * 875 * | . * 876 * | . * 877 * | . * 878 * | . * 879 * | . * 880 * | . * 881 * | . * 882 * | . * 883 * | . * 884 * | . * 885 * 1/4 ...............................................* * * * * * * * * * * * 886 * | . . 887 * | . . 888 * | . . 889 * 0 +----------------------.-------------------------------.-------------> 890 * wb_setpoint^ x_intercept^ 891 * 892 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 893 * be smoothly throttled down to normal if it starts high in situations like 894 * - start writing to a slow SD card and a fast disk at the same time. The SD 895 * card's wb_dirty may rush to many times higher than wb_setpoint. 896 * - the wb dirty thresh drops quickly due to change of JBOD workload 897 */ 898 static void wb_position_ratio(struct dirty_throttle_control *dtc) 899 { 900 struct bdi_writeback *wb = dtc->wb; 901 unsigned long write_bw = wb->avg_write_bandwidth; 902 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 903 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 904 unsigned long wb_thresh = dtc->wb_thresh; 905 unsigned long x_intercept; 906 unsigned long setpoint; /* dirty pages' target balance point */ 907 unsigned long wb_setpoint; 908 unsigned long span; 909 long long pos_ratio; /* for scaling up/down the rate limit */ 910 long x; 911 912 dtc->pos_ratio = 0; 913 914 if (unlikely(dtc->dirty >= limit)) 915 return; 916 917 /* 918 * global setpoint 919 * 920 * See comment for pos_ratio_polynom(). 921 */ 922 setpoint = (freerun + limit) / 2; 923 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 924 925 /* 926 * The strictlimit feature is a tool preventing mistrusted filesystems 927 * from growing a large number of dirty pages before throttling. For 928 * such filesystems balance_dirty_pages always checks wb counters 929 * against wb limits. Even if global "nr_dirty" is under "freerun". 930 * This is especially important for fuse which sets bdi->max_ratio to 931 * 1% by default. Without strictlimit feature, fuse writeback may 932 * consume arbitrary amount of RAM because it is accounted in 933 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 934 * 935 * Here, in wb_position_ratio(), we calculate pos_ratio based on 936 * two values: wb_dirty and wb_thresh. Let's consider an example: 937 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 938 * limits are set by default to 10% and 20% (background and throttle). 939 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 940 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 941 * about ~6K pages (as the average of background and throttle wb 942 * limits). The 3rd order polynomial will provide positive feedback if 943 * wb_dirty is under wb_setpoint and vice versa. 944 * 945 * Note, that we cannot use global counters in these calculations 946 * because we want to throttle process writing to a strictlimit wb 947 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 948 * in the example above). 949 */ 950 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 951 long long wb_pos_ratio; 952 953 if (dtc->wb_dirty < 8) { 954 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 955 2 << RATELIMIT_CALC_SHIFT); 956 return; 957 } 958 959 if (dtc->wb_dirty >= wb_thresh) 960 return; 961 962 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 963 dtc->wb_bg_thresh); 964 965 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 966 return; 967 968 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 969 wb_thresh); 970 971 /* 972 * Typically, for strictlimit case, wb_setpoint << setpoint 973 * and pos_ratio >> wb_pos_ratio. In the other words global 974 * state ("dirty") is not limiting factor and we have to 975 * make decision based on wb counters. But there is an 976 * important case when global pos_ratio should get precedence: 977 * global limits are exceeded (e.g. due to activities on other 978 * wb's) while given strictlimit wb is below limit. 979 * 980 * "pos_ratio * wb_pos_ratio" would work for the case above, 981 * but it would look too non-natural for the case of all 982 * activity in the system coming from a single strictlimit wb 983 * with bdi->max_ratio == 100%. 984 * 985 * Note that min() below somewhat changes the dynamics of the 986 * control system. Normally, pos_ratio value can be well over 3 987 * (when globally we are at freerun and wb is well below wb 988 * setpoint). Now the maximum pos_ratio in the same situation 989 * is 2. We might want to tweak this if we observe the control 990 * system is too slow to adapt. 991 */ 992 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 993 return; 994 } 995 996 /* 997 * We have computed basic pos_ratio above based on global situation. If 998 * the wb is over/under its share of dirty pages, we want to scale 999 * pos_ratio further down/up. That is done by the following mechanism. 1000 */ 1001 1002 /* 1003 * wb setpoint 1004 * 1005 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1006 * 1007 * x_intercept - wb_dirty 1008 * := -------------------------- 1009 * x_intercept - wb_setpoint 1010 * 1011 * The main wb control line is a linear function that subjects to 1012 * 1013 * (1) f(wb_setpoint) = 1.0 1014 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1015 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1016 * 1017 * For single wb case, the dirty pages are observed to fluctuate 1018 * regularly within range 1019 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1020 * for various filesystems, where (2) can yield in a reasonable 12.5% 1021 * fluctuation range for pos_ratio. 1022 * 1023 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1024 * own size, so move the slope over accordingly and choose a slope that 1025 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1026 */ 1027 if (unlikely(wb_thresh > dtc->thresh)) 1028 wb_thresh = dtc->thresh; 1029 /* 1030 * It's very possible that wb_thresh is close to 0 not because the 1031 * device is slow, but that it has remained inactive for long time. 1032 * Honour such devices a reasonable good (hopefully IO efficient) 1033 * threshold, so that the occasional writes won't be blocked and active 1034 * writes can rampup the threshold quickly. 1035 */ 1036 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1037 /* 1038 * scale global setpoint to wb's: 1039 * wb_setpoint = setpoint * wb_thresh / thresh 1040 */ 1041 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1042 wb_setpoint = setpoint * (u64)x >> 16; 1043 /* 1044 * Use span=(8*write_bw) in single wb case as indicated by 1045 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1046 * 1047 * wb_thresh thresh - wb_thresh 1048 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1049 * thresh thresh 1050 */ 1051 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1052 x_intercept = wb_setpoint + span; 1053 1054 if (dtc->wb_dirty < x_intercept - span / 4) { 1055 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1056 (x_intercept - wb_setpoint) | 1); 1057 } else 1058 pos_ratio /= 4; 1059 1060 /* 1061 * wb reserve area, safeguard against dirty pool underrun and disk idle 1062 * It may push the desired control point of global dirty pages higher 1063 * than setpoint. 1064 */ 1065 x_intercept = wb_thresh / 2; 1066 if (dtc->wb_dirty < x_intercept) { 1067 if (dtc->wb_dirty > x_intercept / 8) 1068 pos_ratio = div_u64(pos_ratio * x_intercept, 1069 dtc->wb_dirty); 1070 else 1071 pos_ratio *= 8; 1072 } 1073 1074 dtc->pos_ratio = pos_ratio; 1075 } 1076 1077 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1078 unsigned long elapsed, 1079 unsigned long written) 1080 { 1081 const unsigned long period = roundup_pow_of_two(3 * HZ); 1082 unsigned long avg = wb->avg_write_bandwidth; 1083 unsigned long old = wb->write_bandwidth; 1084 u64 bw; 1085 1086 /* 1087 * bw = written * HZ / elapsed 1088 * 1089 * bw * elapsed + write_bandwidth * (period - elapsed) 1090 * write_bandwidth = --------------------------------------------------- 1091 * period 1092 * 1093 * @written may have decreased due to account_page_redirty(). 1094 * Avoid underflowing @bw calculation. 1095 */ 1096 bw = written - min(written, wb->written_stamp); 1097 bw *= HZ; 1098 if (unlikely(elapsed > period)) { 1099 bw = div64_ul(bw, elapsed); 1100 avg = bw; 1101 goto out; 1102 } 1103 bw += (u64)wb->write_bandwidth * (period - elapsed); 1104 bw >>= ilog2(period); 1105 1106 /* 1107 * one more level of smoothing, for filtering out sudden spikes 1108 */ 1109 if (avg > old && old >= (unsigned long)bw) 1110 avg -= (avg - old) >> 3; 1111 1112 if (avg < old && old <= (unsigned long)bw) 1113 avg += (old - avg) >> 3; 1114 1115 out: 1116 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1117 avg = max(avg, 1LU); 1118 if (wb_has_dirty_io(wb)) { 1119 long delta = avg - wb->avg_write_bandwidth; 1120 WARN_ON_ONCE(atomic_long_add_return(delta, 1121 &wb->bdi->tot_write_bandwidth) <= 0); 1122 } 1123 wb->write_bandwidth = bw; 1124 wb->avg_write_bandwidth = avg; 1125 } 1126 1127 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1128 { 1129 struct wb_domain *dom = dtc_dom(dtc); 1130 unsigned long thresh = dtc->thresh; 1131 unsigned long limit = dom->dirty_limit; 1132 1133 /* 1134 * Follow up in one step. 1135 */ 1136 if (limit < thresh) { 1137 limit = thresh; 1138 goto update; 1139 } 1140 1141 /* 1142 * Follow down slowly. Use the higher one as the target, because thresh 1143 * may drop below dirty. This is exactly the reason to introduce 1144 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1145 */ 1146 thresh = max(thresh, dtc->dirty); 1147 if (limit > thresh) { 1148 limit -= (limit - thresh) >> 5; 1149 goto update; 1150 } 1151 return; 1152 update: 1153 dom->dirty_limit = limit; 1154 } 1155 1156 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1157 unsigned long now) 1158 { 1159 struct wb_domain *dom = dtc_dom(dtc); 1160 1161 /* 1162 * check locklessly first to optimize away locking for the most time 1163 */ 1164 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1165 return; 1166 1167 spin_lock(&dom->lock); 1168 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1169 update_dirty_limit(dtc); 1170 dom->dirty_limit_tstamp = now; 1171 } 1172 spin_unlock(&dom->lock); 1173 } 1174 1175 /* 1176 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1177 * 1178 * Normal wb tasks will be curbed at or below it in long term. 1179 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1180 */ 1181 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1182 unsigned long dirtied, 1183 unsigned long elapsed) 1184 { 1185 struct bdi_writeback *wb = dtc->wb; 1186 unsigned long dirty = dtc->dirty; 1187 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1188 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1189 unsigned long setpoint = (freerun + limit) / 2; 1190 unsigned long write_bw = wb->avg_write_bandwidth; 1191 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1192 unsigned long dirty_rate; 1193 unsigned long task_ratelimit; 1194 unsigned long balanced_dirty_ratelimit; 1195 unsigned long step; 1196 unsigned long x; 1197 unsigned long shift; 1198 1199 /* 1200 * The dirty rate will match the writeout rate in long term, except 1201 * when dirty pages are truncated by userspace or re-dirtied by FS. 1202 */ 1203 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1204 1205 /* 1206 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1207 */ 1208 task_ratelimit = (u64)dirty_ratelimit * 1209 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1210 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1211 1212 /* 1213 * A linear estimation of the "balanced" throttle rate. The theory is, 1214 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1215 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1216 * formula will yield the balanced rate limit (write_bw / N). 1217 * 1218 * Note that the expanded form is not a pure rate feedback: 1219 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1220 * but also takes pos_ratio into account: 1221 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1222 * 1223 * (1) is not realistic because pos_ratio also takes part in balancing 1224 * the dirty rate. Consider the state 1225 * pos_ratio = 0.5 (3) 1226 * rate = 2 * (write_bw / N) (4) 1227 * If (1) is used, it will stuck in that state! Because each dd will 1228 * be throttled at 1229 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1230 * yielding 1231 * dirty_rate = N * task_ratelimit = write_bw (6) 1232 * put (6) into (1) we get 1233 * rate_(i+1) = rate_(i) (7) 1234 * 1235 * So we end up using (2) to always keep 1236 * rate_(i+1) ~= (write_bw / N) (8) 1237 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1238 * pos_ratio is able to drive itself to 1.0, which is not only where 1239 * the dirty count meet the setpoint, but also where the slope of 1240 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1241 */ 1242 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1243 dirty_rate | 1); 1244 /* 1245 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1246 */ 1247 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1248 balanced_dirty_ratelimit = write_bw; 1249 1250 /* 1251 * We could safely do this and return immediately: 1252 * 1253 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1254 * 1255 * However to get a more stable dirty_ratelimit, the below elaborated 1256 * code makes use of task_ratelimit to filter out singular points and 1257 * limit the step size. 1258 * 1259 * The below code essentially only uses the relative value of 1260 * 1261 * task_ratelimit - dirty_ratelimit 1262 * = (pos_ratio - 1) * dirty_ratelimit 1263 * 1264 * which reflects the direction and size of dirty position error. 1265 */ 1266 1267 /* 1268 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1269 * task_ratelimit is on the same side of dirty_ratelimit, too. 1270 * For example, when 1271 * - dirty_ratelimit > balanced_dirty_ratelimit 1272 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1273 * lowering dirty_ratelimit will help meet both the position and rate 1274 * control targets. Otherwise, don't update dirty_ratelimit if it will 1275 * only help meet the rate target. After all, what the users ultimately 1276 * feel and care are stable dirty rate and small position error. 1277 * 1278 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1279 * and filter out the singular points of balanced_dirty_ratelimit. Which 1280 * keeps jumping around randomly and can even leap far away at times 1281 * due to the small 200ms estimation period of dirty_rate (we want to 1282 * keep that period small to reduce time lags). 1283 */ 1284 step = 0; 1285 1286 /* 1287 * For strictlimit case, calculations above were based on wb counters 1288 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1289 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1290 * Hence, to calculate "step" properly, we have to use wb_dirty as 1291 * "dirty" and wb_setpoint as "setpoint". 1292 * 1293 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1294 * it's possible that wb_thresh is close to zero due to inactivity 1295 * of backing device. 1296 */ 1297 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1298 dirty = dtc->wb_dirty; 1299 if (dtc->wb_dirty < 8) 1300 setpoint = dtc->wb_dirty + 1; 1301 else 1302 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1303 } 1304 1305 if (dirty < setpoint) { 1306 x = min3(wb->balanced_dirty_ratelimit, 1307 balanced_dirty_ratelimit, task_ratelimit); 1308 if (dirty_ratelimit < x) 1309 step = x - dirty_ratelimit; 1310 } else { 1311 x = max3(wb->balanced_dirty_ratelimit, 1312 balanced_dirty_ratelimit, task_ratelimit); 1313 if (dirty_ratelimit > x) 1314 step = dirty_ratelimit - x; 1315 } 1316 1317 /* 1318 * Don't pursue 100% rate matching. It's impossible since the balanced 1319 * rate itself is constantly fluctuating. So decrease the track speed 1320 * when it gets close to the target. Helps eliminate pointless tremors. 1321 */ 1322 shift = dirty_ratelimit / (2 * step + 1); 1323 if (shift < BITS_PER_LONG) 1324 step = DIV_ROUND_UP(step >> shift, 8); 1325 else 1326 step = 0; 1327 1328 if (dirty_ratelimit < balanced_dirty_ratelimit) 1329 dirty_ratelimit += step; 1330 else 1331 dirty_ratelimit -= step; 1332 1333 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1334 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1335 1336 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1337 } 1338 1339 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1340 struct dirty_throttle_control *mdtc, 1341 unsigned long start_time, 1342 bool update_ratelimit) 1343 { 1344 struct bdi_writeback *wb = gdtc->wb; 1345 unsigned long now = jiffies; 1346 unsigned long elapsed = now - wb->bw_time_stamp; 1347 unsigned long dirtied; 1348 unsigned long written; 1349 1350 lockdep_assert_held(&wb->list_lock); 1351 1352 /* 1353 * rate-limit, only update once every 200ms. 1354 */ 1355 if (elapsed < BANDWIDTH_INTERVAL) 1356 return; 1357 1358 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1359 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1360 1361 /* 1362 * Skip quiet periods when disk bandwidth is under-utilized. 1363 * (at least 1s idle time between two flusher runs) 1364 */ 1365 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1366 goto snapshot; 1367 1368 if (update_ratelimit) { 1369 domain_update_bandwidth(gdtc, now); 1370 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1371 1372 /* 1373 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1374 * compiler has no way to figure that out. Help it. 1375 */ 1376 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1377 domain_update_bandwidth(mdtc, now); 1378 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1379 } 1380 } 1381 wb_update_write_bandwidth(wb, elapsed, written); 1382 1383 snapshot: 1384 wb->dirtied_stamp = dirtied; 1385 wb->written_stamp = written; 1386 wb->bw_time_stamp = now; 1387 } 1388 1389 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1390 { 1391 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1392 1393 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1394 } 1395 1396 /* 1397 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1398 * will look to see if it needs to start dirty throttling. 1399 * 1400 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1401 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1402 * (the number of pages we may dirty without exceeding the dirty limits). 1403 */ 1404 static unsigned long dirty_poll_interval(unsigned long dirty, 1405 unsigned long thresh) 1406 { 1407 if (thresh > dirty) 1408 return 1UL << (ilog2(thresh - dirty) >> 1); 1409 1410 return 1; 1411 } 1412 1413 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1414 unsigned long wb_dirty) 1415 { 1416 unsigned long bw = wb->avg_write_bandwidth; 1417 unsigned long t; 1418 1419 /* 1420 * Limit pause time for small memory systems. If sleeping for too long 1421 * time, a small pool of dirty/writeback pages may go empty and disk go 1422 * idle. 1423 * 1424 * 8 serves as the safety ratio. 1425 */ 1426 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1427 t++; 1428 1429 return min_t(unsigned long, t, MAX_PAUSE); 1430 } 1431 1432 static long wb_min_pause(struct bdi_writeback *wb, 1433 long max_pause, 1434 unsigned long task_ratelimit, 1435 unsigned long dirty_ratelimit, 1436 int *nr_dirtied_pause) 1437 { 1438 long hi = ilog2(wb->avg_write_bandwidth); 1439 long lo = ilog2(wb->dirty_ratelimit); 1440 long t; /* target pause */ 1441 long pause; /* estimated next pause */ 1442 int pages; /* target nr_dirtied_pause */ 1443 1444 /* target for 10ms pause on 1-dd case */ 1445 t = max(1, HZ / 100); 1446 1447 /* 1448 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1449 * overheads. 1450 * 1451 * (N * 10ms) on 2^N concurrent tasks. 1452 */ 1453 if (hi > lo) 1454 t += (hi - lo) * (10 * HZ) / 1024; 1455 1456 /* 1457 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1458 * on the much more stable dirty_ratelimit. However the next pause time 1459 * will be computed based on task_ratelimit and the two rate limits may 1460 * depart considerably at some time. Especially if task_ratelimit goes 1461 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1462 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1463 * result task_ratelimit won't be executed faithfully, which could 1464 * eventually bring down dirty_ratelimit. 1465 * 1466 * We apply two rules to fix it up: 1467 * 1) try to estimate the next pause time and if necessary, use a lower 1468 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1469 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1470 * 2) limit the target pause time to max_pause/2, so that the normal 1471 * small fluctuations of task_ratelimit won't trigger rule (1) and 1472 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1473 */ 1474 t = min(t, 1 + max_pause / 2); 1475 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1476 1477 /* 1478 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1479 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1480 * When the 16 consecutive reads are often interrupted by some dirty 1481 * throttling pause during the async writes, cfq will go into idles 1482 * (deadline is fine). So push nr_dirtied_pause as high as possible 1483 * until reaches DIRTY_POLL_THRESH=32 pages. 1484 */ 1485 if (pages < DIRTY_POLL_THRESH) { 1486 t = max_pause; 1487 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1488 if (pages > DIRTY_POLL_THRESH) { 1489 pages = DIRTY_POLL_THRESH; 1490 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1491 } 1492 } 1493 1494 pause = HZ * pages / (task_ratelimit + 1); 1495 if (pause > max_pause) { 1496 t = max_pause; 1497 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1498 } 1499 1500 *nr_dirtied_pause = pages; 1501 /* 1502 * The minimal pause time will normally be half the target pause time. 1503 */ 1504 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1505 } 1506 1507 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1508 { 1509 struct bdi_writeback *wb = dtc->wb; 1510 unsigned long wb_reclaimable; 1511 1512 /* 1513 * wb_thresh is not treated as some limiting factor as 1514 * dirty_thresh, due to reasons 1515 * - in JBOD setup, wb_thresh can fluctuate a lot 1516 * - in a system with HDD and USB key, the USB key may somehow 1517 * go into state (wb_dirty >> wb_thresh) either because 1518 * wb_dirty starts high, or because wb_thresh drops low. 1519 * In this case we don't want to hard throttle the USB key 1520 * dirtiers for 100 seconds until wb_dirty drops under 1521 * wb_thresh. Instead the auxiliary wb control line in 1522 * wb_position_ratio() will let the dirtier task progress 1523 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1524 */ 1525 dtc->wb_thresh = __wb_calc_thresh(dtc); 1526 dtc->wb_bg_thresh = dtc->thresh ? 1527 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1528 1529 /* 1530 * In order to avoid the stacked BDI deadlock we need 1531 * to ensure we accurately count the 'dirty' pages when 1532 * the threshold is low. 1533 * 1534 * Otherwise it would be possible to get thresh+n pages 1535 * reported dirty, even though there are thresh-m pages 1536 * actually dirty; with m+n sitting in the percpu 1537 * deltas. 1538 */ 1539 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1540 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1541 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1542 } else { 1543 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1544 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1545 } 1546 } 1547 1548 /* 1549 * balance_dirty_pages() must be called by processes which are generating dirty 1550 * data. It looks at the number of dirty pages in the machine and will force 1551 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1552 * If we're over `background_thresh' then the writeback threads are woken to 1553 * perform some writeout. 1554 */ 1555 static void balance_dirty_pages(struct bdi_writeback *wb, 1556 unsigned long pages_dirtied) 1557 { 1558 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1559 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1560 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1561 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1562 &mdtc_stor : NULL; 1563 struct dirty_throttle_control *sdtc; 1564 unsigned long nr_reclaimable; /* = file_dirty */ 1565 long period; 1566 long pause; 1567 long max_pause; 1568 long min_pause; 1569 int nr_dirtied_pause; 1570 bool dirty_exceeded = false; 1571 unsigned long task_ratelimit; 1572 unsigned long dirty_ratelimit; 1573 struct backing_dev_info *bdi = wb->bdi; 1574 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1575 unsigned long start_time = jiffies; 1576 1577 for (;;) { 1578 unsigned long now = jiffies; 1579 unsigned long dirty, thresh, bg_thresh; 1580 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1581 unsigned long m_thresh = 0; 1582 unsigned long m_bg_thresh = 0; 1583 1584 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1585 gdtc->avail = global_dirtyable_memory(); 1586 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1587 1588 domain_dirty_limits(gdtc); 1589 1590 if (unlikely(strictlimit)) { 1591 wb_dirty_limits(gdtc); 1592 1593 dirty = gdtc->wb_dirty; 1594 thresh = gdtc->wb_thresh; 1595 bg_thresh = gdtc->wb_bg_thresh; 1596 } else { 1597 dirty = gdtc->dirty; 1598 thresh = gdtc->thresh; 1599 bg_thresh = gdtc->bg_thresh; 1600 } 1601 1602 if (mdtc) { 1603 unsigned long filepages, headroom, writeback; 1604 1605 /* 1606 * If @wb belongs to !root memcg, repeat the same 1607 * basic calculations for the memcg domain. 1608 */ 1609 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1610 &mdtc->dirty, &writeback); 1611 mdtc->dirty += writeback; 1612 mdtc_calc_avail(mdtc, filepages, headroom); 1613 1614 domain_dirty_limits(mdtc); 1615 1616 if (unlikely(strictlimit)) { 1617 wb_dirty_limits(mdtc); 1618 m_dirty = mdtc->wb_dirty; 1619 m_thresh = mdtc->wb_thresh; 1620 m_bg_thresh = mdtc->wb_bg_thresh; 1621 } else { 1622 m_dirty = mdtc->dirty; 1623 m_thresh = mdtc->thresh; 1624 m_bg_thresh = mdtc->bg_thresh; 1625 } 1626 } 1627 1628 /* 1629 * Throttle it only when the background writeback cannot 1630 * catch-up. This avoids (excessively) small writeouts 1631 * when the wb limits are ramping up in case of !strictlimit. 1632 * 1633 * In strictlimit case make decision based on the wb counters 1634 * and limits. Small writeouts when the wb limits are ramping 1635 * up are the price we consciously pay for strictlimit-ing. 1636 * 1637 * If memcg domain is in effect, @dirty should be under 1638 * both global and memcg freerun ceilings. 1639 */ 1640 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1641 (!mdtc || 1642 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1643 unsigned long intv; 1644 unsigned long m_intv; 1645 1646 free_running: 1647 intv = dirty_poll_interval(dirty, thresh); 1648 m_intv = ULONG_MAX; 1649 1650 current->dirty_paused_when = now; 1651 current->nr_dirtied = 0; 1652 if (mdtc) 1653 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1654 current->nr_dirtied_pause = min(intv, m_intv); 1655 break; 1656 } 1657 1658 if (unlikely(!writeback_in_progress(wb))) 1659 wb_start_background_writeback(wb); 1660 1661 mem_cgroup_flush_foreign(wb); 1662 1663 /* 1664 * Calculate global domain's pos_ratio and select the 1665 * global dtc by default. 1666 */ 1667 if (!strictlimit) { 1668 wb_dirty_limits(gdtc); 1669 1670 if ((current->flags & PF_LOCAL_THROTTLE) && 1671 gdtc->wb_dirty < 1672 dirty_freerun_ceiling(gdtc->wb_thresh, 1673 gdtc->wb_bg_thresh)) 1674 /* 1675 * LOCAL_THROTTLE tasks must not be throttled 1676 * when below the per-wb freerun ceiling. 1677 */ 1678 goto free_running; 1679 } 1680 1681 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1682 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1683 1684 wb_position_ratio(gdtc); 1685 sdtc = gdtc; 1686 1687 if (mdtc) { 1688 /* 1689 * If memcg domain is in effect, calculate its 1690 * pos_ratio. @wb should satisfy constraints from 1691 * both global and memcg domains. Choose the one 1692 * w/ lower pos_ratio. 1693 */ 1694 if (!strictlimit) { 1695 wb_dirty_limits(mdtc); 1696 1697 if ((current->flags & PF_LOCAL_THROTTLE) && 1698 mdtc->wb_dirty < 1699 dirty_freerun_ceiling(mdtc->wb_thresh, 1700 mdtc->wb_bg_thresh)) 1701 /* 1702 * LOCAL_THROTTLE tasks must not be 1703 * throttled when below the per-wb 1704 * freerun ceiling. 1705 */ 1706 goto free_running; 1707 } 1708 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1709 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1710 1711 wb_position_ratio(mdtc); 1712 if (mdtc->pos_ratio < gdtc->pos_ratio) 1713 sdtc = mdtc; 1714 } 1715 1716 if (dirty_exceeded && !wb->dirty_exceeded) 1717 wb->dirty_exceeded = 1; 1718 1719 if (time_is_before_jiffies(wb->bw_time_stamp + 1720 BANDWIDTH_INTERVAL)) { 1721 spin_lock(&wb->list_lock); 1722 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1723 spin_unlock(&wb->list_lock); 1724 } 1725 1726 /* throttle according to the chosen dtc */ 1727 dirty_ratelimit = wb->dirty_ratelimit; 1728 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1729 RATELIMIT_CALC_SHIFT; 1730 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1731 min_pause = wb_min_pause(wb, max_pause, 1732 task_ratelimit, dirty_ratelimit, 1733 &nr_dirtied_pause); 1734 1735 if (unlikely(task_ratelimit == 0)) { 1736 period = max_pause; 1737 pause = max_pause; 1738 goto pause; 1739 } 1740 period = HZ * pages_dirtied / task_ratelimit; 1741 pause = period; 1742 if (current->dirty_paused_when) 1743 pause -= now - current->dirty_paused_when; 1744 /* 1745 * For less than 1s think time (ext3/4 may block the dirtier 1746 * for up to 800ms from time to time on 1-HDD; so does xfs, 1747 * however at much less frequency), try to compensate it in 1748 * future periods by updating the virtual time; otherwise just 1749 * do a reset, as it may be a light dirtier. 1750 */ 1751 if (pause < min_pause) { 1752 trace_balance_dirty_pages(wb, 1753 sdtc->thresh, 1754 sdtc->bg_thresh, 1755 sdtc->dirty, 1756 sdtc->wb_thresh, 1757 sdtc->wb_dirty, 1758 dirty_ratelimit, 1759 task_ratelimit, 1760 pages_dirtied, 1761 period, 1762 min(pause, 0L), 1763 start_time); 1764 if (pause < -HZ) { 1765 current->dirty_paused_when = now; 1766 current->nr_dirtied = 0; 1767 } else if (period) { 1768 current->dirty_paused_when += period; 1769 current->nr_dirtied = 0; 1770 } else if (current->nr_dirtied_pause <= pages_dirtied) 1771 current->nr_dirtied_pause += pages_dirtied; 1772 break; 1773 } 1774 if (unlikely(pause > max_pause)) { 1775 /* for occasional dropped task_ratelimit */ 1776 now += min(pause - max_pause, max_pause); 1777 pause = max_pause; 1778 } 1779 1780 pause: 1781 trace_balance_dirty_pages(wb, 1782 sdtc->thresh, 1783 sdtc->bg_thresh, 1784 sdtc->dirty, 1785 sdtc->wb_thresh, 1786 sdtc->wb_dirty, 1787 dirty_ratelimit, 1788 task_ratelimit, 1789 pages_dirtied, 1790 period, 1791 pause, 1792 start_time); 1793 __set_current_state(TASK_KILLABLE); 1794 wb->dirty_sleep = now; 1795 io_schedule_timeout(pause); 1796 1797 current->dirty_paused_when = now + pause; 1798 current->nr_dirtied = 0; 1799 current->nr_dirtied_pause = nr_dirtied_pause; 1800 1801 /* 1802 * This is typically equal to (dirty < thresh) and can also 1803 * keep "1000+ dd on a slow USB stick" under control. 1804 */ 1805 if (task_ratelimit) 1806 break; 1807 1808 /* 1809 * In the case of an unresponding NFS server and the NFS dirty 1810 * pages exceeds dirty_thresh, give the other good wb's a pipe 1811 * to go through, so that tasks on them still remain responsive. 1812 * 1813 * In theory 1 page is enough to keep the consumer-producer 1814 * pipe going: the flusher cleans 1 page => the task dirties 1 1815 * more page. However wb_dirty has accounting errors. So use 1816 * the larger and more IO friendly wb_stat_error. 1817 */ 1818 if (sdtc->wb_dirty <= wb_stat_error()) 1819 break; 1820 1821 if (fatal_signal_pending(current)) 1822 break; 1823 } 1824 1825 if (!dirty_exceeded && wb->dirty_exceeded) 1826 wb->dirty_exceeded = 0; 1827 1828 if (writeback_in_progress(wb)) 1829 return; 1830 1831 /* 1832 * In laptop mode, we wait until hitting the higher threshold before 1833 * starting background writeout, and then write out all the way down 1834 * to the lower threshold. So slow writers cause minimal disk activity. 1835 * 1836 * In normal mode, we start background writeout at the lower 1837 * background_thresh, to keep the amount of dirty memory low. 1838 */ 1839 if (laptop_mode) 1840 return; 1841 1842 if (nr_reclaimable > gdtc->bg_thresh) 1843 wb_start_background_writeback(wb); 1844 } 1845 1846 static DEFINE_PER_CPU(int, bdp_ratelimits); 1847 1848 /* 1849 * Normal tasks are throttled by 1850 * loop { 1851 * dirty tsk->nr_dirtied_pause pages; 1852 * take a snap in balance_dirty_pages(); 1853 * } 1854 * However there is a worst case. If every task exit immediately when dirtied 1855 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1856 * called to throttle the page dirties. The solution is to save the not yet 1857 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1858 * randomly into the running tasks. This works well for the above worst case, 1859 * as the new task will pick up and accumulate the old task's leaked dirty 1860 * count and eventually get throttled. 1861 */ 1862 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1863 1864 /** 1865 * balance_dirty_pages_ratelimited - balance dirty memory state 1866 * @mapping: address_space which was dirtied 1867 * 1868 * Processes which are dirtying memory should call in here once for each page 1869 * which was newly dirtied. The function will periodically check the system's 1870 * dirty state and will initiate writeback if needed. 1871 * 1872 * On really big machines, get_writeback_state is expensive, so try to avoid 1873 * calling it too often (ratelimiting). But once we're over the dirty memory 1874 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1875 * from overshooting the limit by (ratelimit_pages) each. 1876 */ 1877 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1878 { 1879 struct inode *inode = mapping->host; 1880 struct backing_dev_info *bdi = inode_to_bdi(inode); 1881 struct bdi_writeback *wb = NULL; 1882 int ratelimit; 1883 int *p; 1884 1885 if (!bdi_cap_account_dirty(bdi)) 1886 return; 1887 1888 if (inode_cgwb_enabled(inode)) 1889 wb = wb_get_create_current(bdi, GFP_KERNEL); 1890 if (!wb) 1891 wb = &bdi->wb; 1892 1893 ratelimit = current->nr_dirtied_pause; 1894 if (wb->dirty_exceeded) 1895 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1896 1897 preempt_disable(); 1898 /* 1899 * This prevents one CPU to accumulate too many dirtied pages without 1900 * calling into balance_dirty_pages(), which can happen when there are 1901 * 1000+ tasks, all of them start dirtying pages at exactly the same 1902 * time, hence all honoured too large initial task->nr_dirtied_pause. 1903 */ 1904 p = this_cpu_ptr(&bdp_ratelimits); 1905 if (unlikely(current->nr_dirtied >= ratelimit)) 1906 *p = 0; 1907 else if (unlikely(*p >= ratelimit_pages)) { 1908 *p = 0; 1909 ratelimit = 0; 1910 } 1911 /* 1912 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1913 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1914 * the dirty throttling and livelock other long-run dirtiers. 1915 */ 1916 p = this_cpu_ptr(&dirty_throttle_leaks); 1917 if (*p > 0 && current->nr_dirtied < ratelimit) { 1918 unsigned long nr_pages_dirtied; 1919 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1920 *p -= nr_pages_dirtied; 1921 current->nr_dirtied += nr_pages_dirtied; 1922 } 1923 preempt_enable(); 1924 1925 if (unlikely(current->nr_dirtied >= ratelimit)) 1926 balance_dirty_pages(wb, current->nr_dirtied); 1927 1928 wb_put(wb); 1929 } 1930 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1931 1932 /** 1933 * wb_over_bg_thresh - does @wb need to be written back? 1934 * @wb: bdi_writeback of interest 1935 * 1936 * Determines whether background writeback should keep writing @wb or it's 1937 * clean enough. 1938 * 1939 * Return: %true if writeback should continue. 1940 */ 1941 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1942 { 1943 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1944 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1945 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1946 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1947 &mdtc_stor : NULL; 1948 1949 /* 1950 * Similar to balance_dirty_pages() but ignores pages being written 1951 * as we're trying to decide whether to put more under writeback. 1952 */ 1953 gdtc->avail = global_dirtyable_memory(); 1954 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 1955 domain_dirty_limits(gdtc); 1956 1957 if (gdtc->dirty > gdtc->bg_thresh) 1958 return true; 1959 1960 if (wb_stat(wb, WB_RECLAIMABLE) > 1961 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) 1962 return true; 1963 1964 if (mdtc) { 1965 unsigned long filepages, headroom, writeback; 1966 1967 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1968 &writeback); 1969 mdtc_calc_avail(mdtc, filepages, headroom); 1970 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1971 1972 if (mdtc->dirty > mdtc->bg_thresh) 1973 return true; 1974 1975 if (wb_stat(wb, WB_RECLAIMABLE) > 1976 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) 1977 return true; 1978 } 1979 1980 return false; 1981 } 1982 1983 /* 1984 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1985 */ 1986 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1987 void *buffer, size_t *length, loff_t *ppos) 1988 { 1989 unsigned int old_interval = dirty_writeback_interval; 1990 int ret; 1991 1992 ret = proc_dointvec(table, write, buffer, length, ppos); 1993 1994 /* 1995 * Writing 0 to dirty_writeback_interval will disable periodic writeback 1996 * and a different non-zero value will wakeup the writeback threads. 1997 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 1998 * iterate over all bdis and wbs. 1999 * The reason we do this is to make the change take effect immediately. 2000 */ 2001 if (!ret && write && dirty_writeback_interval && 2002 dirty_writeback_interval != old_interval) 2003 wakeup_flusher_threads(WB_REASON_PERIODIC); 2004 2005 return ret; 2006 } 2007 2008 #ifdef CONFIG_BLOCK 2009 void laptop_mode_timer_fn(struct timer_list *t) 2010 { 2011 struct backing_dev_info *backing_dev_info = 2012 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2013 2014 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2015 } 2016 2017 /* 2018 * We've spun up the disk and we're in laptop mode: schedule writeback 2019 * of all dirty data a few seconds from now. If the flush is already scheduled 2020 * then push it back - the user is still using the disk. 2021 */ 2022 void laptop_io_completion(struct backing_dev_info *info) 2023 { 2024 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2025 } 2026 2027 /* 2028 * We're in laptop mode and we've just synced. The sync's writes will have 2029 * caused another writeback to be scheduled by laptop_io_completion. 2030 * Nothing needs to be written back anymore, so we unschedule the writeback. 2031 */ 2032 void laptop_sync_completion(void) 2033 { 2034 struct backing_dev_info *bdi; 2035 2036 rcu_read_lock(); 2037 2038 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2039 del_timer(&bdi->laptop_mode_wb_timer); 2040 2041 rcu_read_unlock(); 2042 } 2043 #endif 2044 2045 /* 2046 * If ratelimit_pages is too high then we can get into dirty-data overload 2047 * if a large number of processes all perform writes at the same time. 2048 * If it is too low then SMP machines will call the (expensive) 2049 * get_writeback_state too often. 2050 * 2051 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2052 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2053 * thresholds. 2054 */ 2055 2056 void writeback_set_ratelimit(void) 2057 { 2058 struct wb_domain *dom = &global_wb_domain; 2059 unsigned long background_thresh; 2060 unsigned long dirty_thresh; 2061 2062 global_dirty_limits(&background_thresh, &dirty_thresh); 2063 dom->dirty_limit = dirty_thresh; 2064 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2065 if (ratelimit_pages < 16) 2066 ratelimit_pages = 16; 2067 } 2068 2069 static int page_writeback_cpu_online(unsigned int cpu) 2070 { 2071 writeback_set_ratelimit(); 2072 return 0; 2073 } 2074 2075 /* 2076 * Called early on to tune the page writeback dirty limits. 2077 * 2078 * We used to scale dirty pages according to how total memory 2079 * related to pages that could be allocated for buffers (by 2080 * comparing nr_free_buffer_pages() to vm_total_pages. 2081 * 2082 * However, that was when we used "dirty_ratio" to scale with 2083 * all memory, and we don't do that any more. "dirty_ratio" 2084 * is now applied to total non-HIGHPAGE memory (by subtracting 2085 * totalhigh_pages from vm_total_pages), and as such we can't 2086 * get into the old insane situation any more where we had 2087 * large amounts of dirty pages compared to a small amount of 2088 * non-HIGHMEM memory. 2089 * 2090 * But we might still want to scale the dirty_ratio by how 2091 * much memory the box has.. 2092 */ 2093 void __init page_writeback_init(void) 2094 { 2095 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2096 2097 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2098 page_writeback_cpu_online, NULL); 2099 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2100 page_writeback_cpu_online); 2101 } 2102 2103 /** 2104 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2105 * @mapping: address space structure to write 2106 * @start: starting page index 2107 * @end: ending page index (inclusive) 2108 * 2109 * This function scans the page range from @start to @end (inclusive) and tags 2110 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2111 * that write_cache_pages (or whoever calls this function) will then use 2112 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2113 * used to avoid livelocking of writeback by a process steadily creating new 2114 * dirty pages in the file (thus it is important for this function to be quick 2115 * so that it can tag pages faster than a dirtying process can create them). 2116 */ 2117 void tag_pages_for_writeback(struct address_space *mapping, 2118 pgoff_t start, pgoff_t end) 2119 { 2120 XA_STATE(xas, &mapping->i_pages, start); 2121 unsigned int tagged = 0; 2122 void *page; 2123 2124 xas_lock_irq(&xas); 2125 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2126 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2127 if (++tagged % XA_CHECK_SCHED) 2128 continue; 2129 2130 xas_pause(&xas); 2131 xas_unlock_irq(&xas); 2132 cond_resched(); 2133 xas_lock_irq(&xas); 2134 } 2135 xas_unlock_irq(&xas); 2136 } 2137 EXPORT_SYMBOL(tag_pages_for_writeback); 2138 2139 /** 2140 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2141 * @mapping: address space structure to write 2142 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2143 * @writepage: function called for each page 2144 * @data: data passed to writepage function 2145 * 2146 * If a page is already under I/O, write_cache_pages() skips it, even 2147 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2148 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2149 * and msync() need to guarantee that all the data which was dirty at the time 2150 * the call was made get new I/O started against them. If wbc->sync_mode is 2151 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2152 * existing IO to complete. 2153 * 2154 * To avoid livelocks (when other process dirties new pages), we first tag 2155 * pages which should be written back with TOWRITE tag and only then start 2156 * writing them. For data-integrity sync we have to be careful so that we do 2157 * not miss some pages (e.g., because some other process has cleared TOWRITE 2158 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2159 * by the process clearing the DIRTY tag (and submitting the page for IO). 2160 * 2161 * To avoid deadlocks between range_cyclic writeback and callers that hold 2162 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2163 * we do not loop back to the start of the file. Doing so causes a page 2164 * lock/page writeback access order inversion - we should only ever lock 2165 * multiple pages in ascending page->index order, and looping back to the start 2166 * of the file violates that rule and causes deadlocks. 2167 * 2168 * Return: %0 on success, negative error code otherwise 2169 */ 2170 int write_cache_pages(struct address_space *mapping, 2171 struct writeback_control *wbc, writepage_t writepage, 2172 void *data) 2173 { 2174 int ret = 0; 2175 int done = 0; 2176 int error; 2177 struct pagevec pvec; 2178 int nr_pages; 2179 pgoff_t index; 2180 pgoff_t end; /* Inclusive */ 2181 pgoff_t done_index; 2182 int range_whole = 0; 2183 xa_mark_t tag; 2184 2185 pagevec_init(&pvec); 2186 if (wbc->range_cyclic) { 2187 index = mapping->writeback_index; /* prev offset */ 2188 end = -1; 2189 } else { 2190 index = wbc->range_start >> PAGE_SHIFT; 2191 end = wbc->range_end >> PAGE_SHIFT; 2192 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2193 range_whole = 1; 2194 } 2195 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2196 tag_pages_for_writeback(mapping, index, end); 2197 tag = PAGECACHE_TAG_TOWRITE; 2198 } else { 2199 tag = PAGECACHE_TAG_DIRTY; 2200 } 2201 done_index = index; 2202 while (!done && (index <= end)) { 2203 int i; 2204 2205 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2206 tag); 2207 if (nr_pages == 0) 2208 break; 2209 2210 for (i = 0; i < nr_pages; i++) { 2211 struct page *page = pvec.pages[i]; 2212 2213 done_index = page->index; 2214 2215 lock_page(page); 2216 2217 /* 2218 * Page truncated or invalidated. We can freely skip it 2219 * then, even for data integrity operations: the page 2220 * has disappeared concurrently, so there could be no 2221 * real expectation of this data interity operation 2222 * even if there is now a new, dirty page at the same 2223 * pagecache address. 2224 */ 2225 if (unlikely(page->mapping != mapping)) { 2226 continue_unlock: 2227 unlock_page(page); 2228 continue; 2229 } 2230 2231 if (!PageDirty(page)) { 2232 /* someone wrote it for us */ 2233 goto continue_unlock; 2234 } 2235 2236 if (PageWriteback(page)) { 2237 if (wbc->sync_mode != WB_SYNC_NONE) 2238 wait_on_page_writeback(page); 2239 else 2240 goto continue_unlock; 2241 } 2242 2243 BUG_ON(PageWriteback(page)); 2244 if (!clear_page_dirty_for_io(page)) 2245 goto continue_unlock; 2246 2247 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2248 error = (*writepage)(page, wbc, data); 2249 if (unlikely(error)) { 2250 /* 2251 * Handle errors according to the type of 2252 * writeback. There's no need to continue for 2253 * background writeback. Just push done_index 2254 * past this page so media errors won't choke 2255 * writeout for the entire file. For integrity 2256 * writeback, we must process the entire dirty 2257 * set regardless of errors because the fs may 2258 * still have state to clear for each page. In 2259 * that case we continue processing and return 2260 * the first error. 2261 */ 2262 if (error == AOP_WRITEPAGE_ACTIVATE) { 2263 unlock_page(page); 2264 error = 0; 2265 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2266 ret = error; 2267 done_index = page->index + 1; 2268 done = 1; 2269 break; 2270 } 2271 if (!ret) 2272 ret = error; 2273 } 2274 2275 /* 2276 * We stop writing back only if we are not doing 2277 * integrity sync. In case of integrity sync we have to 2278 * keep going until we have written all the pages 2279 * we tagged for writeback prior to entering this loop. 2280 */ 2281 if (--wbc->nr_to_write <= 0 && 2282 wbc->sync_mode == WB_SYNC_NONE) { 2283 done = 1; 2284 break; 2285 } 2286 } 2287 pagevec_release(&pvec); 2288 cond_resched(); 2289 } 2290 2291 /* 2292 * If we hit the last page and there is more work to be done: wrap 2293 * back the index back to the start of the file for the next 2294 * time we are called. 2295 */ 2296 if (wbc->range_cyclic && !done) 2297 done_index = 0; 2298 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2299 mapping->writeback_index = done_index; 2300 2301 return ret; 2302 } 2303 EXPORT_SYMBOL(write_cache_pages); 2304 2305 /* 2306 * Function used by generic_writepages to call the real writepage 2307 * function and set the mapping flags on error 2308 */ 2309 static int __writepage(struct page *page, struct writeback_control *wbc, 2310 void *data) 2311 { 2312 struct address_space *mapping = data; 2313 int ret = mapping->a_ops->writepage(page, wbc); 2314 mapping_set_error(mapping, ret); 2315 return ret; 2316 } 2317 2318 /** 2319 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2320 * @mapping: address space structure to write 2321 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2322 * 2323 * This is a library function, which implements the writepages() 2324 * address_space_operation. 2325 * 2326 * Return: %0 on success, negative error code otherwise 2327 */ 2328 int generic_writepages(struct address_space *mapping, 2329 struct writeback_control *wbc) 2330 { 2331 struct blk_plug plug; 2332 int ret; 2333 2334 /* deal with chardevs and other special file */ 2335 if (!mapping->a_ops->writepage) 2336 return 0; 2337 2338 blk_start_plug(&plug); 2339 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2340 blk_finish_plug(&plug); 2341 return ret; 2342 } 2343 2344 EXPORT_SYMBOL(generic_writepages); 2345 2346 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2347 { 2348 int ret; 2349 2350 if (wbc->nr_to_write <= 0) 2351 return 0; 2352 while (1) { 2353 if (mapping->a_ops->writepages) 2354 ret = mapping->a_ops->writepages(mapping, wbc); 2355 else 2356 ret = generic_writepages(mapping, wbc); 2357 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2358 break; 2359 cond_resched(); 2360 congestion_wait(BLK_RW_ASYNC, HZ/50); 2361 } 2362 return ret; 2363 } 2364 2365 /** 2366 * write_one_page - write out a single page and wait on I/O 2367 * @page: the page to write 2368 * 2369 * The page must be locked by the caller and will be unlocked upon return. 2370 * 2371 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2372 * function returns. 2373 * 2374 * Return: %0 on success, negative error code otherwise 2375 */ 2376 int write_one_page(struct page *page) 2377 { 2378 struct address_space *mapping = page->mapping; 2379 int ret = 0; 2380 struct writeback_control wbc = { 2381 .sync_mode = WB_SYNC_ALL, 2382 .nr_to_write = 1, 2383 }; 2384 2385 BUG_ON(!PageLocked(page)); 2386 2387 wait_on_page_writeback(page); 2388 2389 if (clear_page_dirty_for_io(page)) { 2390 get_page(page); 2391 ret = mapping->a_ops->writepage(page, &wbc); 2392 if (ret == 0) 2393 wait_on_page_writeback(page); 2394 put_page(page); 2395 } else { 2396 unlock_page(page); 2397 } 2398 2399 if (!ret) 2400 ret = filemap_check_errors(mapping); 2401 return ret; 2402 } 2403 EXPORT_SYMBOL(write_one_page); 2404 2405 /* 2406 * For address_spaces which do not use buffers nor write back. 2407 */ 2408 int __set_page_dirty_no_writeback(struct page *page) 2409 { 2410 if (!PageDirty(page)) 2411 return !TestSetPageDirty(page); 2412 return 0; 2413 } 2414 2415 /* 2416 * Helper function for set_page_dirty family. 2417 * 2418 * Caller must hold lock_page_memcg(). 2419 * 2420 * NOTE: This relies on being atomic wrt interrupts. 2421 */ 2422 void account_page_dirtied(struct page *page, struct address_space *mapping) 2423 { 2424 struct inode *inode = mapping->host; 2425 2426 trace_writeback_dirty_page(page, mapping); 2427 2428 if (mapping_cap_account_dirty(mapping)) { 2429 struct bdi_writeback *wb; 2430 2431 inode_attach_wb(inode, page); 2432 wb = inode_to_wb(inode); 2433 2434 __inc_lruvec_page_state(page, NR_FILE_DIRTY); 2435 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2436 __inc_node_page_state(page, NR_DIRTIED); 2437 inc_wb_stat(wb, WB_RECLAIMABLE); 2438 inc_wb_stat(wb, WB_DIRTIED); 2439 task_io_account_write(PAGE_SIZE); 2440 current->nr_dirtied++; 2441 this_cpu_inc(bdp_ratelimits); 2442 2443 mem_cgroup_track_foreign_dirty(page, wb); 2444 } 2445 } 2446 2447 /* 2448 * Helper function for deaccounting dirty page without writeback. 2449 * 2450 * Caller must hold lock_page_memcg(). 2451 */ 2452 void account_page_cleaned(struct page *page, struct address_space *mapping, 2453 struct bdi_writeback *wb) 2454 { 2455 if (mapping_cap_account_dirty(mapping)) { 2456 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2457 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2458 dec_wb_stat(wb, WB_RECLAIMABLE); 2459 task_io_account_cancelled_write(PAGE_SIZE); 2460 } 2461 } 2462 2463 /* 2464 * For address_spaces which do not use buffers. Just tag the page as dirty in 2465 * the xarray. 2466 * 2467 * This is also used when a single buffer is being dirtied: we want to set the 2468 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2469 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2470 * 2471 * The caller must ensure this doesn't race with truncation. Most will simply 2472 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2473 * the pte lock held, which also locks out truncation. 2474 */ 2475 int __set_page_dirty_nobuffers(struct page *page) 2476 { 2477 lock_page_memcg(page); 2478 if (!TestSetPageDirty(page)) { 2479 struct address_space *mapping = page_mapping(page); 2480 unsigned long flags; 2481 2482 if (!mapping) { 2483 unlock_page_memcg(page); 2484 return 1; 2485 } 2486 2487 xa_lock_irqsave(&mapping->i_pages, flags); 2488 BUG_ON(page_mapping(page) != mapping); 2489 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2490 account_page_dirtied(page, mapping); 2491 __xa_set_mark(&mapping->i_pages, page_index(page), 2492 PAGECACHE_TAG_DIRTY); 2493 xa_unlock_irqrestore(&mapping->i_pages, flags); 2494 unlock_page_memcg(page); 2495 2496 if (mapping->host) { 2497 /* !PageAnon && !swapper_space */ 2498 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2499 } 2500 return 1; 2501 } 2502 unlock_page_memcg(page); 2503 return 0; 2504 } 2505 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2506 2507 /* 2508 * Call this whenever redirtying a page, to de-account the dirty counters 2509 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written 2510 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to 2511 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2512 * control. 2513 */ 2514 void account_page_redirty(struct page *page) 2515 { 2516 struct address_space *mapping = page->mapping; 2517 2518 if (mapping && mapping_cap_account_dirty(mapping)) { 2519 struct inode *inode = mapping->host; 2520 struct bdi_writeback *wb; 2521 struct wb_lock_cookie cookie = {}; 2522 2523 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2524 current->nr_dirtied--; 2525 dec_node_page_state(page, NR_DIRTIED); 2526 dec_wb_stat(wb, WB_DIRTIED); 2527 unlocked_inode_to_wb_end(inode, &cookie); 2528 } 2529 } 2530 EXPORT_SYMBOL(account_page_redirty); 2531 2532 /* 2533 * When a writepage implementation decides that it doesn't want to write this 2534 * page for some reason, it should redirty the locked page via 2535 * redirty_page_for_writepage() and it should then unlock the page and return 0 2536 */ 2537 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2538 { 2539 int ret; 2540 2541 wbc->pages_skipped++; 2542 ret = __set_page_dirty_nobuffers(page); 2543 account_page_redirty(page); 2544 return ret; 2545 } 2546 EXPORT_SYMBOL(redirty_page_for_writepage); 2547 2548 /* 2549 * Dirty a page. 2550 * 2551 * For pages with a mapping this should be done under the page lock 2552 * for the benefit of asynchronous memory errors who prefer a consistent 2553 * dirty state. This rule can be broken in some special cases, 2554 * but should be better not to. 2555 * 2556 * If the mapping doesn't provide a set_page_dirty a_op, then 2557 * just fall through and assume that it wants buffer_heads. 2558 */ 2559 int set_page_dirty(struct page *page) 2560 { 2561 struct address_space *mapping = page_mapping(page); 2562 2563 page = compound_head(page); 2564 if (likely(mapping)) { 2565 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2566 /* 2567 * readahead/lru_deactivate_page could remain 2568 * PG_readahead/PG_reclaim due to race with end_page_writeback 2569 * About readahead, if the page is written, the flags would be 2570 * reset. So no problem. 2571 * About lru_deactivate_page, if the page is redirty, the flag 2572 * will be reset. So no problem. but if the page is used by readahead 2573 * it will confuse readahead and make it restart the size rampup 2574 * process. But it's a trivial problem. 2575 */ 2576 if (PageReclaim(page)) 2577 ClearPageReclaim(page); 2578 #ifdef CONFIG_BLOCK 2579 if (!spd) 2580 spd = __set_page_dirty_buffers; 2581 #endif 2582 return (*spd)(page); 2583 } 2584 if (!PageDirty(page)) { 2585 if (!TestSetPageDirty(page)) 2586 return 1; 2587 } 2588 return 0; 2589 } 2590 EXPORT_SYMBOL(set_page_dirty); 2591 2592 /* 2593 * set_page_dirty() is racy if the caller has no reference against 2594 * page->mapping->host, and if the page is unlocked. This is because another 2595 * CPU could truncate the page off the mapping and then free the mapping. 2596 * 2597 * Usually, the page _is_ locked, or the caller is a user-space process which 2598 * holds a reference on the inode by having an open file. 2599 * 2600 * In other cases, the page should be locked before running set_page_dirty(). 2601 */ 2602 int set_page_dirty_lock(struct page *page) 2603 { 2604 int ret; 2605 2606 lock_page(page); 2607 ret = set_page_dirty(page); 2608 unlock_page(page); 2609 return ret; 2610 } 2611 EXPORT_SYMBOL(set_page_dirty_lock); 2612 2613 /* 2614 * This cancels just the dirty bit on the kernel page itself, it does NOT 2615 * actually remove dirty bits on any mmap's that may be around. It also 2616 * leaves the page tagged dirty, so any sync activity will still find it on 2617 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2618 * look at the dirty bits in the VM. 2619 * 2620 * Doing this should *normally* only ever be done when a page is truncated, 2621 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2622 * this when it notices that somebody has cleaned out all the buffers on a 2623 * page without actually doing it through the VM. Can you say "ext3 is 2624 * horribly ugly"? Thought you could. 2625 */ 2626 void __cancel_dirty_page(struct page *page) 2627 { 2628 struct address_space *mapping = page_mapping(page); 2629 2630 if (mapping_cap_account_dirty(mapping)) { 2631 struct inode *inode = mapping->host; 2632 struct bdi_writeback *wb; 2633 struct wb_lock_cookie cookie = {}; 2634 2635 lock_page_memcg(page); 2636 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2637 2638 if (TestClearPageDirty(page)) 2639 account_page_cleaned(page, mapping, wb); 2640 2641 unlocked_inode_to_wb_end(inode, &cookie); 2642 unlock_page_memcg(page); 2643 } else { 2644 ClearPageDirty(page); 2645 } 2646 } 2647 EXPORT_SYMBOL(__cancel_dirty_page); 2648 2649 /* 2650 * Clear a page's dirty flag, while caring for dirty memory accounting. 2651 * Returns true if the page was previously dirty. 2652 * 2653 * This is for preparing to put the page under writeout. We leave the page 2654 * tagged as dirty in the xarray so that a concurrent write-for-sync 2655 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2656 * implementation will run either set_page_writeback() or set_page_dirty(), 2657 * at which stage we bring the page's dirty flag and xarray dirty tag 2658 * back into sync. 2659 * 2660 * This incoherency between the page's dirty flag and xarray tag is 2661 * unfortunate, but it only exists while the page is locked. 2662 */ 2663 int clear_page_dirty_for_io(struct page *page) 2664 { 2665 struct address_space *mapping = page_mapping(page); 2666 int ret = 0; 2667 2668 VM_BUG_ON_PAGE(!PageLocked(page), page); 2669 2670 if (mapping && mapping_cap_account_dirty(mapping)) { 2671 struct inode *inode = mapping->host; 2672 struct bdi_writeback *wb; 2673 struct wb_lock_cookie cookie = {}; 2674 2675 /* 2676 * Yes, Virginia, this is indeed insane. 2677 * 2678 * We use this sequence to make sure that 2679 * (a) we account for dirty stats properly 2680 * (b) we tell the low-level filesystem to 2681 * mark the whole page dirty if it was 2682 * dirty in a pagetable. Only to then 2683 * (c) clean the page again and return 1 to 2684 * cause the writeback. 2685 * 2686 * This way we avoid all nasty races with the 2687 * dirty bit in multiple places and clearing 2688 * them concurrently from different threads. 2689 * 2690 * Note! Normally the "set_page_dirty(page)" 2691 * has no effect on the actual dirty bit - since 2692 * that will already usually be set. But we 2693 * need the side effects, and it can help us 2694 * avoid races. 2695 * 2696 * We basically use the page "master dirty bit" 2697 * as a serialization point for all the different 2698 * threads doing their things. 2699 */ 2700 if (page_mkclean(page)) 2701 set_page_dirty(page); 2702 /* 2703 * We carefully synchronise fault handlers against 2704 * installing a dirty pte and marking the page dirty 2705 * at this point. We do this by having them hold the 2706 * page lock while dirtying the page, and pages are 2707 * always locked coming in here, so we get the desired 2708 * exclusion. 2709 */ 2710 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2711 if (TestClearPageDirty(page)) { 2712 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2713 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2714 dec_wb_stat(wb, WB_RECLAIMABLE); 2715 ret = 1; 2716 } 2717 unlocked_inode_to_wb_end(inode, &cookie); 2718 return ret; 2719 } 2720 return TestClearPageDirty(page); 2721 } 2722 EXPORT_SYMBOL(clear_page_dirty_for_io); 2723 2724 int test_clear_page_writeback(struct page *page) 2725 { 2726 struct address_space *mapping = page_mapping(page); 2727 struct mem_cgroup *memcg; 2728 struct lruvec *lruvec; 2729 int ret; 2730 2731 memcg = lock_page_memcg(page); 2732 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 2733 if (mapping && mapping_use_writeback_tags(mapping)) { 2734 struct inode *inode = mapping->host; 2735 struct backing_dev_info *bdi = inode_to_bdi(inode); 2736 unsigned long flags; 2737 2738 xa_lock_irqsave(&mapping->i_pages, flags); 2739 ret = TestClearPageWriteback(page); 2740 if (ret) { 2741 __xa_clear_mark(&mapping->i_pages, page_index(page), 2742 PAGECACHE_TAG_WRITEBACK); 2743 if (bdi_cap_account_writeback(bdi)) { 2744 struct bdi_writeback *wb = inode_to_wb(inode); 2745 2746 dec_wb_stat(wb, WB_WRITEBACK); 2747 __wb_writeout_inc(wb); 2748 } 2749 } 2750 2751 if (mapping->host && !mapping_tagged(mapping, 2752 PAGECACHE_TAG_WRITEBACK)) 2753 sb_clear_inode_writeback(mapping->host); 2754 2755 xa_unlock_irqrestore(&mapping->i_pages, flags); 2756 } else { 2757 ret = TestClearPageWriteback(page); 2758 } 2759 /* 2760 * NOTE: Page might be free now! Writeback doesn't hold a page 2761 * reference on its own, it relies on truncation to wait for 2762 * the clearing of PG_writeback. The below can only access 2763 * page state that is static across allocation cycles. 2764 */ 2765 if (ret) { 2766 dec_lruvec_state(lruvec, NR_WRITEBACK); 2767 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2768 inc_node_page_state(page, NR_WRITTEN); 2769 } 2770 __unlock_page_memcg(memcg); 2771 return ret; 2772 } 2773 2774 int __test_set_page_writeback(struct page *page, bool keep_write) 2775 { 2776 struct address_space *mapping = page_mapping(page); 2777 int ret, access_ret; 2778 2779 lock_page_memcg(page); 2780 if (mapping && mapping_use_writeback_tags(mapping)) { 2781 XA_STATE(xas, &mapping->i_pages, page_index(page)); 2782 struct inode *inode = mapping->host; 2783 struct backing_dev_info *bdi = inode_to_bdi(inode); 2784 unsigned long flags; 2785 2786 xas_lock_irqsave(&xas, flags); 2787 xas_load(&xas); 2788 ret = TestSetPageWriteback(page); 2789 if (!ret) { 2790 bool on_wblist; 2791 2792 on_wblist = mapping_tagged(mapping, 2793 PAGECACHE_TAG_WRITEBACK); 2794 2795 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2796 if (bdi_cap_account_writeback(bdi)) 2797 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2798 2799 /* 2800 * We can come through here when swapping anonymous 2801 * pages, so we don't necessarily have an inode to track 2802 * for sync. 2803 */ 2804 if (mapping->host && !on_wblist) 2805 sb_mark_inode_writeback(mapping->host); 2806 } 2807 if (!PageDirty(page)) 2808 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2809 if (!keep_write) 2810 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2811 xas_unlock_irqrestore(&xas, flags); 2812 } else { 2813 ret = TestSetPageWriteback(page); 2814 } 2815 if (!ret) { 2816 inc_lruvec_page_state(page, NR_WRITEBACK); 2817 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2818 } 2819 unlock_page_memcg(page); 2820 access_ret = arch_make_page_accessible(page); 2821 /* 2822 * If writeback has been triggered on a page that cannot be made 2823 * accessible, it is too late to recover here. 2824 */ 2825 VM_BUG_ON_PAGE(access_ret != 0, page); 2826 2827 return ret; 2828 2829 } 2830 EXPORT_SYMBOL(__test_set_page_writeback); 2831 2832 /* 2833 * Wait for a page to complete writeback 2834 */ 2835 void wait_on_page_writeback(struct page *page) 2836 { 2837 if (PageWriteback(page)) { 2838 trace_wait_on_page_writeback(page, page_mapping(page)); 2839 wait_on_page_bit(page, PG_writeback); 2840 } 2841 } 2842 EXPORT_SYMBOL_GPL(wait_on_page_writeback); 2843 2844 /** 2845 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2846 * @page: The page to wait on. 2847 * 2848 * This function determines if the given page is related to a backing device 2849 * that requires page contents to be held stable during writeback. If so, then 2850 * it will wait for any pending writeback to complete. 2851 */ 2852 void wait_for_stable_page(struct page *page) 2853 { 2854 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2855 wait_on_page_writeback(page); 2856 } 2857 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2858