1 /* 2 * mm/page-writeback.c. 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * 6 * Contains functions related to writing back dirty pages at the 7 * address_space level. 8 * 9 * 10Apr2002 akpm@zip.com.au 10 * Initial version 11 */ 12 13 #include <linux/kernel.h> 14 #include <linux/module.h> 15 #include <linux/spinlock.h> 16 #include <linux/fs.h> 17 #include <linux/mm.h> 18 #include <linux/swap.h> 19 #include <linux/slab.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/init.h> 23 #include <linux/backing-dev.h> 24 #include <linux/blkdev.h> 25 #include <linux/mpage.h> 26 #include <linux/percpu.h> 27 #include <linux/notifier.h> 28 #include <linux/smp.h> 29 #include <linux/sysctl.h> 30 #include <linux/cpu.h> 31 #include <linux/syscalls.h> 32 33 /* 34 * The maximum number of pages to writeout in a single bdflush/kupdate 35 * operation. We do this so we don't hold I_LOCK against an inode for 36 * enormous amounts of time, which would block a userspace task which has 37 * been forced to throttle against that inode. Also, the code reevaluates 38 * the dirty each time it has written this many pages. 39 */ 40 #define MAX_WRITEBACK_PAGES 1024 41 42 /* 43 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 44 * will look to see if it needs to force writeback or throttling. 45 */ 46 static long ratelimit_pages = 32; 47 48 static long total_pages; /* The total number of pages in the machine. */ 49 static int dirty_exceeded; /* Dirty mem may be over limit */ 50 51 /* 52 * When balance_dirty_pages decides that the caller needs to perform some 53 * non-background writeback, this is how many pages it will attempt to write. 54 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 55 * large amounts of I/O are submitted. 56 */ 57 static inline long sync_writeback_pages(void) 58 { 59 return ratelimit_pages + ratelimit_pages / 2; 60 } 61 62 /* The following parameters are exported via /proc/sys/vm */ 63 64 /* 65 * Start background writeback (via pdflush) at this percentage 66 */ 67 int dirty_background_ratio = 10; 68 69 /* 70 * The generator of dirty data starts writeback at this percentage 71 */ 72 int vm_dirty_ratio = 40; 73 74 /* 75 * The interval between `kupdate'-style writebacks, in centiseconds 76 * (hundredths of a second) 77 */ 78 int dirty_writeback_centisecs = 5 * 100; 79 80 /* 81 * The longest number of centiseconds for which data is allowed to remain dirty 82 */ 83 int dirty_expire_centisecs = 30 * 100; 84 85 /* 86 * Flag that makes the machine dump writes/reads and block dirtyings. 87 */ 88 int block_dump; 89 90 /* 91 * Flag that puts the machine in "laptop mode". 92 */ 93 int laptop_mode; 94 95 EXPORT_SYMBOL(laptop_mode); 96 97 /* End of sysctl-exported parameters */ 98 99 100 static void background_writeout(unsigned long _min_pages); 101 102 struct writeback_state 103 { 104 unsigned long nr_dirty; 105 unsigned long nr_unstable; 106 unsigned long nr_mapped; 107 unsigned long nr_writeback; 108 }; 109 110 static void get_writeback_state(struct writeback_state *wbs) 111 { 112 wbs->nr_dirty = read_page_state(nr_dirty); 113 wbs->nr_unstable = read_page_state(nr_unstable); 114 wbs->nr_mapped = read_page_state(nr_mapped); 115 wbs->nr_writeback = read_page_state(nr_writeback); 116 } 117 118 /* 119 * Work out the current dirty-memory clamping and background writeout 120 * thresholds. 121 * 122 * The main aim here is to lower them aggressively if there is a lot of mapped 123 * memory around. To avoid stressing page reclaim with lots of unreclaimable 124 * pages. It is better to clamp down on writers than to start swapping, and 125 * performing lots of scanning. 126 * 127 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 128 * 129 * We don't permit the clamping level to fall below 5% - that is getting rather 130 * excessive. 131 * 132 * We make sure that the background writeout level is below the adjusted 133 * clamping level. 134 */ 135 static void 136 get_dirty_limits(struct writeback_state *wbs, long *pbackground, long *pdirty, 137 struct address_space *mapping) 138 { 139 int background_ratio; /* Percentages */ 140 int dirty_ratio; 141 int unmapped_ratio; 142 long background; 143 long dirty; 144 unsigned long available_memory = total_pages; 145 struct task_struct *tsk; 146 147 get_writeback_state(wbs); 148 149 #ifdef CONFIG_HIGHMEM 150 /* 151 * If this mapping can only allocate from low memory, 152 * we exclude high memory from our count. 153 */ 154 if (mapping && !(mapping_gfp_mask(mapping) & __GFP_HIGHMEM)) 155 available_memory -= totalhigh_pages; 156 #endif 157 158 159 unmapped_ratio = 100 - (wbs->nr_mapped * 100) / total_pages; 160 161 dirty_ratio = vm_dirty_ratio; 162 if (dirty_ratio > unmapped_ratio / 2) 163 dirty_ratio = unmapped_ratio / 2; 164 165 if (dirty_ratio < 5) 166 dirty_ratio = 5; 167 168 background_ratio = dirty_background_ratio; 169 if (background_ratio >= dirty_ratio) 170 background_ratio = dirty_ratio / 2; 171 172 background = (background_ratio * available_memory) / 100; 173 dirty = (dirty_ratio * available_memory) / 100; 174 tsk = current; 175 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 176 background += background / 4; 177 dirty += dirty / 4; 178 } 179 *pbackground = background; 180 *pdirty = dirty; 181 } 182 183 /* 184 * balance_dirty_pages() must be called by processes which are generating dirty 185 * data. It looks at the number of dirty pages in the machine and will force 186 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 187 * If we're over `background_thresh' then pdflush is woken to perform some 188 * writeout. 189 */ 190 static void balance_dirty_pages(struct address_space *mapping) 191 { 192 struct writeback_state wbs; 193 long nr_reclaimable; 194 long background_thresh; 195 long dirty_thresh; 196 unsigned long pages_written = 0; 197 unsigned long write_chunk = sync_writeback_pages(); 198 199 struct backing_dev_info *bdi = mapping->backing_dev_info; 200 201 for (;;) { 202 struct writeback_control wbc = { 203 .bdi = bdi, 204 .sync_mode = WB_SYNC_NONE, 205 .older_than_this = NULL, 206 .nr_to_write = write_chunk, 207 }; 208 209 get_dirty_limits(&wbs, &background_thresh, 210 &dirty_thresh, mapping); 211 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; 212 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) 213 break; 214 215 dirty_exceeded = 1; 216 217 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 218 * Unstable writes are a feature of certain networked 219 * filesystems (i.e. NFS) in which data may have been 220 * written to the server's write cache, but has not yet 221 * been flushed to permanent storage. 222 */ 223 if (nr_reclaimable) { 224 writeback_inodes(&wbc); 225 get_dirty_limits(&wbs, &background_thresh, 226 &dirty_thresh, mapping); 227 nr_reclaimable = wbs.nr_dirty + wbs.nr_unstable; 228 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) 229 break; 230 pages_written += write_chunk - wbc.nr_to_write; 231 if (pages_written >= write_chunk) 232 break; /* We've done our duty */ 233 } 234 blk_congestion_wait(WRITE, HZ/10); 235 } 236 237 if (nr_reclaimable + wbs.nr_writeback <= dirty_thresh) 238 dirty_exceeded = 0; 239 240 if (writeback_in_progress(bdi)) 241 return; /* pdflush is already working this queue */ 242 243 /* 244 * In laptop mode, we wait until hitting the higher threshold before 245 * starting background writeout, and then write out all the way down 246 * to the lower threshold. So slow writers cause minimal disk activity. 247 * 248 * In normal mode, we start background writeout at the lower 249 * background_thresh, to keep the amount of dirty memory low. 250 */ 251 if ((laptop_mode && pages_written) || 252 (!laptop_mode && (nr_reclaimable > background_thresh))) 253 pdflush_operation(background_writeout, 0); 254 } 255 256 /** 257 * balance_dirty_pages_ratelimited - balance dirty memory state 258 * @mapping: address_space which was dirtied 259 * 260 * Processes which are dirtying memory should call in here once for each page 261 * which was newly dirtied. The function will periodically check the system's 262 * dirty state and will initiate writeback if needed. 263 * 264 * On really big machines, get_writeback_state is expensive, so try to avoid 265 * calling it too often (ratelimiting). But once we're over the dirty memory 266 * limit we decrease the ratelimiting by a lot, to prevent individual processes 267 * from overshooting the limit by (ratelimit_pages) each. 268 */ 269 void balance_dirty_pages_ratelimited(struct address_space *mapping) 270 { 271 static DEFINE_PER_CPU(int, ratelimits) = 0; 272 long ratelimit; 273 274 ratelimit = ratelimit_pages; 275 if (dirty_exceeded) 276 ratelimit = 8; 277 278 /* 279 * Check the rate limiting. Also, we do not want to throttle real-time 280 * tasks in balance_dirty_pages(). Period. 281 */ 282 if (get_cpu_var(ratelimits)++ >= ratelimit) { 283 __get_cpu_var(ratelimits) = 0; 284 put_cpu_var(ratelimits); 285 balance_dirty_pages(mapping); 286 return; 287 } 288 put_cpu_var(ratelimits); 289 } 290 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 291 292 void throttle_vm_writeout(void) 293 { 294 struct writeback_state wbs; 295 long background_thresh; 296 long dirty_thresh; 297 298 for ( ; ; ) { 299 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); 300 301 /* 302 * Boost the allowable dirty threshold a bit for page 303 * allocators so they don't get DoS'ed by heavy writers 304 */ 305 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 306 307 if (wbs.nr_unstable + wbs.nr_writeback <= dirty_thresh) 308 break; 309 blk_congestion_wait(WRITE, HZ/10); 310 } 311 } 312 313 314 /* 315 * writeback at least _min_pages, and keep writing until the amount of dirty 316 * memory is less than the background threshold, or until we're all clean. 317 */ 318 static void background_writeout(unsigned long _min_pages) 319 { 320 long min_pages = _min_pages; 321 struct writeback_control wbc = { 322 .bdi = NULL, 323 .sync_mode = WB_SYNC_NONE, 324 .older_than_this = NULL, 325 .nr_to_write = 0, 326 .nonblocking = 1, 327 }; 328 329 for ( ; ; ) { 330 struct writeback_state wbs; 331 long background_thresh; 332 long dirty_thresh; 333 334 get_dirty_limits(&wbs, &background_thresh, &dirty_thresh, NULL); 335 if (wbs.nr_dirty + wbs.nr_unstable < background_thresh 336 && min_pages <= 0) 337 break; 338 wbc.encountered_congestion = 0; 339 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 340 wbc.pages_skipped = 0; 341 writeback_inodes(&wbc); 342 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 343 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { 344 /* Wrote less than expected */ 345 blk_congestion_wait(WRITE, HZ/10); 346 if (!wbc.encountered_congestion) 347 break; 348 } 349 } 350 } 351 352 /* 353 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 354 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns 355 * -1 if all pdflush threads were busy. 356 */ 357 int wakeup_pdflush(long nr_pages) 358 { 359 if (nr_pages == 0) { 360 struct writeback_state wbs; 361 362 get_writeback_state(&wbs); 363 nr_pages = wbs.nr_dirty + wbs.nr_unstable; 364 } 365 return pdflush_operation(background_writeout, nr_pages); 366 } 367 368 static void wb_timer_fn(unsigned long unused); 369 static void laptop_timer_fn(unsigned long unused); 370 371 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); 372 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 373 374 /* 375 * Periodic writeback of "old" data. 376 * 377 * Define "old": the first time one of an inode's pages is dirtied, we mark the 378 * dirtying-time in the inode's address_space. So this periodic writeback code 379 * just walks the superblock inode list, writing back any inodes which are 380 * older than a specific point in time. 381 * 382 * Try to run once per dirty_writeback_centisecs. But if a writeback event 383 * takes longer than a dirty_writeback_centisecs interval, then leave a 384 * one-second gap. 385 * 386 * older_than_this takes precedence over nr_to_write. So we'll only write back 387 * all dirty pages if they are all attached to "old" mappings. 388 */ 389 static void wb_kupdate(unsigned long arg) 390 { 391 unsigned long oldest_jif; 392 unsigned long start_jif; 393 unsigned long next_jif; 394 long nr_to_write; 395 struct writeback_state wbs; 396 struct writeback_control wbc = { 397 .bdi = NULL, 398 .sync_mode = WB_SYNC_NONE, 399 .older_than_this = &oldest_jif, 400 .nr_to_write = 0, 401 .nonblocking = 1, 402 .for_kupdate = 1, 403 }; 404 405 sync_supers(); 406 407 get_writeback_state(&wbs); 408 oldest_jif = jiffies - (dirty_expire_centisecs * HZ) / 100; 409 start_jif = jiffies; 410 next_jif = start_jif + (dirty_writeback_centisecs * HZ) / 100; 411 nr_to_write = wbs.nr_dirty + wbs.nr_unstable + 412 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 413 while (nr_to_write > 0) { 414 wbc.encountered_congestion = 0; 415 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 416 writeback_inodes(&wbc); 417 if (wbc.nr_to_write > 0) { 418 if (wbc.encountered_congestion) 419 blk_congestion_wait(WRITE, HZ/10); 420 else 421 break; /* All the old data is written */ 422 } 423 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 424 } 425 if (time_before(next_jif, jiffies + HZ)) 426 next_jif = jiffies + HZ; 427 if (dirty_writeback_centisecs) 428 mod_timer(&wb_timer, next_jif); 429 } 430 431 /* 432 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 433 */ 434 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 435 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 436 { 437 proc_dointvec(table, write, file, buffer, length, ppos); 438 if (dirty_writeback_centisecs) { 439 mod_timer(&wb_timer, 440 jiffies + (dirty_writeback_centisecs * HZ) / 100); 441 } else { 442 del_timer(&wb_timer); 443 } 444 return 0; 445 } 446 447 static void wb_timer_fn(unsigned long unused) 448 { 449 if (pdflush_operation(wb_kupdate, 0) < 0) 450 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ 451 } 452 453 static void laptop_flush(unsigned long unused) 454 { 455 sys_sync(); 456 } 457 458 static void laptop_timer_fn(unsigned long unused) 459 { 460 pdflush_operation(laptop_flush, 0); 461 } 462 463 /* 464 * We've spun up the disk and we're in laptop mode: schedule writeback 465 * of all dirty data a few seconds from now. If the flush is already scheduled 466 * then push it back - the user is still using the disk. 467 */ 468 void laptop_io_completion(void) 469 { 470 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode * HZ); 471 } 472 473 /* 474 * We're in laptop mode and we've just synced. The sync's writes will have 475 * caused another writeback to be scheduled by laptop_io_completion. 476 * Nothing needs to be written back anymore, so we unschedule the writeback. 477 */ 478 void laptop_sync_completion(void) 479 { 480 del_timer(&laptop_mode_wb_timer); 481 } 482 483 /* 484 * If ratelimit_pages is too high then we can get into dirty-data overload 485 * if a large number of processes all perform writes at the same time. 486 * If it is too low then SMP machines will call the (expensive) 487 * get_writeback_state too often. 488 * 489 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 490 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 491 * thresholds before writeback cuts in. 492 * 493 * But the limit should not be set too high. Because it also controls the 494 * amount of memory which the balance_dirty_pages() caller has to write back. 495 * If this is too large then the caller will block on the IO queue all the 496 * time. So limit it to four megabytes - the balance_dirty_pages() caller 497 * will write six megabyte chunks, max. 498 */ 499 500 static void set_ratelimit(void) 501 { 502 ratelimit_pages = total_pages / (num_online_cpus() * 32); 503 if (ratelimit_pages < 16) 504 ratelimit_pages = 16; 505 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 506 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 507 } 508 509 static int 510 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 511 { 512 set_ratelimit(); 513 return 0; 514 } 515 516 static struct notifier_block ratelimit_nb = { 517 .notifier_call = ratelimit_handler, 518 .next = NULL, 519 }; 520 521 /* 522 * If the machine has a large highmem:lowmem ratio then scale back the default 523 * dirty memory thresholds: allowing too much dirty highmem pins an excessive 524 * number of buffer_heads. 525 */ 526 void __init page_writeback_init(void) 527 { 528 long buffer_pages = nr_free_buffer_pages(); 529 long correction; 530 531 total_pages = nr_free_pagecache_pages(); 532 533 correction = (100 * 4 * buffer_pages) / total_pages; 534 535 if (correction < 100) { 536 dirty_background_ratio *= correction; 537 dirty_background_ratio /= 100; 538 vm_dirty_ratio *= correction; 539 vm_dirty_ratio /= 100; 540 541 if (dirty_background_ratio <= 0) 542 dirty_background_ratio = 1; 543 if (vm_dirty_ratio <= 0) 544 vm_dirty_ratio = 1; 545 } 546 mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100); 547 set_ratelimit(); 548 register_cpu_notifier(&ratelimit_nb); 549 } 550 551 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 552 { 553 int ret; 554 555 if (wbc->nr_to_write <= 0) 556 return 0; 557 wbc->for_writepages = 1; 558 if (mapping->a_ops->writepages) 559 ret = mapping->a_ops->writepages(mapping, wbc); 560 else 561 ret = generic_writepages(mapping, wbc); 562 wbc->for_writepages = 0; 563 return ret; 564 } 565 566 /** 567 * write_one_page - write out a single page and optionally wait on I/O 568 * 569 * @page: the page to write 570 * @wait: if true, wait on writeout 571 * 572 * The page must be locked by the caller and will be unlocked upon return. 573 * 574 * write_one_page() returns a negative error code if I/O failed. 575 */ 576 int write_one_page(struct page *page, int wait) 577 { 578 struct address_space *mapping = page->mapping; 579 int ret = 0; 580 struct writeback_control wbc = { 581 .sync_mode = WB_SYNC_ALL, 582 .nr_to_write = 1, 583 }; 584 585 BUG_ON(!PageLocked(page)); 586 587 if (wait) 588 wait_on_page_writeback(page); 589 590 if (clear_page_dirty_for_io(page)) { 591 page_cache_get(page); 592 ret = mapping->a_ops->writepage(page, &wbc); 593 if (ret == 0 && wait) { 594 wait_on_page_writeback(page); 595 if (PageError(page)) 596 ret = -EIO; 597 } 598 page_cache_release(page); 599 } else { 600 unlock_page(page); 601 } 602 return ret; 603 } 604 EXPORT_SYMBOL(write_one_page); 605 606 /* 607 * For address_spaces which do not use buffers. Just tag the page as dirty in 608 * its radix tree. 609 * 610 * This is also used when a single buffer is being dirtied: we want to set the 611 * page dirty in that case, but not all the buffers. This is a "bottom-up" 612 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 613 * 614 * Most callers have locked the page, which pins the address_space in memory. 615 * But zap_pte_range() does not lock the page, however in that case the 616 * mapping is pinned by the vma's ->vm_file reference. 617 * 618 * We take care to handle the case where the page was truncated from the 619 * mapping by re-checking page_mapping() insode tree_lock. 620 */ 621 int __set_page_dirty_nobuffers(struct page *page) 622 { 623 int ret = 0; 624 625 if (!TestSetPageDirty(page)) { 626 struct address_space *mapping = page_mapping(page); 627 struct address_space *mapping2; 628 629 if (mapping) { 630 write_lock_irq(&mapping->tree_lock); 631 mapping2 = page_mapping(page); 632 if (mapping2) { /* Race with truncate? */ 633 BUG_ON(mapping2 != mapping); 634 if (mapping_cap_account_dirty(mapping)) 635 inc_page_state(nr_dirty); 636 radix_tree_tag_set(&mapping->page_tree, 637 page_index(page), PAGECACHE_TAG_DIRTY); 638 } 639 write_unlock_irq(&mapping->tree_lock); 640 if (mapping->host) { 641 /* !PageAnon && !swapper_space */ 642 __mark_inode_dirty(mapping->host, 643 I_DIRTY_PAGES); 644 } 645 } 646 } 647 return ret; 648 } 649 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 650 651 /* 652 * When a writepage implementation decides that it doesn't want to write this 653 * page for some reason, it should redirty the locked page via 654 * redirty_page_for_writepage() and it should then unlock the page and return 0 655 */ 656 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 657 { 658 wbc->pages_skipped++; 659 return __set_page_dirty_nobuffers(page); 660 } 661 EXPORT_SYMBOL(redirty_page_for_writepage); 662 663 /* 664 * If the mapping doesn't provide a set_page_dirty a_op, then 665 * just fall through and assume that it wants buffer_heads. 666 */ 667 int fastcall set_page_dirty(struct page *page) 668 { 669 struct address_space *mapping = page_mapping(page); 670 671 if (likely(mapping)) { 672 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 673 if (spd) 674 return (*spd)(page); 675 return __set_page_dirty_buffers(page); 676 } 677 if (!PageDirty(page)) 678 SetPageDirty(page); 679 return 0; 680 } 681 EXPORT_SYMBOL(set_page_dirty); 682 683 /* 684 * set_page_dirty() is racy if the caller has no reference against 685 * page->mapping->host, and if the page is unlocked. This is because another 686 * CPU could truncate the page off the mapping and then free the mapping. 687 * 688 * Usually, the page _is_ locked, or the caller is a user-space process which 689 * holds a reference on the inode by having an open file. 690 * 691 * In other cases, the page should be locked before running set_page_dirty(). 692 */ 693 int set_page_dirty_lock(struct page *page) 694 { 695 int ret; 696 697 lock_page(page); 698 ret = set_page_dirty(page); 699 unlock_page(page); 700 return ret; 701 } 702 EXPORT_SYMBOL(set_page_dirty_lock); 703 704 /* 705 * Clear a page's dirty flag, while caring for dirty memory accounting. 706 * Returns true if the page was previously dirty. 707 */ 708 int test_clear_page_dirty(struct page *page) 709 { 710 struct address_space *mapping = page_mapping(page); 711 unsigned long flags; 712 713 if (mapping) { 714 write_lock_irqsave(&mapping->tree_lock, flags); 715 if (TestClearPageDirty(page)) { 716 radix_tree_tag_clear(&mapping->page_tree, 717 page_index(page), 718 PAGECACHE_TAG_DIRTY); 719 write_unlock_irqrestore(&mapping->tree_lock, flags); 720 if (mapping_cap_account_dirty(mapping)) 721 dec_page_state(nr_dirty); 722 return 1; 723 } 724 write_unlock_irqrestore(&mapping->tree_lock, flags); 725 return 0; 726 } 727 return TestClearPageDirty(page); 728 } 729 EXPORT_SYMBOL(test_clear_page_dirty); 730 731 /* 732 * Clear a page's dirty flag, while caring for dirty memory accounting. 733 * Returns true if the page was previously dirty. 734 * 735 * This is for preparing to put the page under writeout. We leave the page 736 * tagged as dirty in the radix tree so that a concurrent write-for-sync 737 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 738 * implementation will run either set_page_writeback() or set_page_dirty(), 739 * at which stage we bring the page's dirty flag and radix-tree dirty tag 740 * back into sync. 741 * 742 * This incoherency between the page's dirty flag and radix-tree tag is 743 * unfortunate, but it only exists while the page is locked. 744 */ 745 int clear_page_dirty_for_io(struct page *page) 746 { 747 struct address_space *mapping = page_mapping(page); 748 749 if (mapping) { 750 if (TestClearPageDirty(page)) { 751 if (mapping_cap_account_dirty(mapping)) 752 dec_page_state(nr_dirty); 753 return 1; 754 } 755 return 0; 756 } 757 return TestClearPageDirty(page); 758 } 759 EXPORT_SYMBOL(clear_page_dirty_for_io); 760 761 int test_clear_page_writeback(struct page *page) 762 { 763 struct address_space *mapping = page_mapping(page); 764 int ret; 765 766 if (mapping) { 767 unsigned long flags; 768 769 write_lock_irqsave(&mapping->tree_lock, flags); 770 ret = TestClearPageWriteback(page); 771 if (ret) 772 radix_tree_tag_clear(&mapping->page_tree, 773 page_index(page), 774 PAGECACHE_TAG_WRITEBACK); 775 write_unlock_irqrestore(&mapping->tree_lock, flags); 776 } else { 777 ret = TestClearPageWriteback(page); 778 } 779 return ret; 780 } 781 782 int test_set_page_writeback(struct page *page) 783 { 784 struct address_space *mapping = page_mapping(page); 785 int ret; 786 787 if (mapping) { 788 unsigned long flags; 789 790 write_lock_irqsave(&mapping->tree_lock, flags); 791 ret = TestSetPageWriteback(page); 792 if (!ret) 793 radix_tree_tag_set(&mapping->page_tree, 794 page_index(page), 795 PAGECACHE_TAG_WRITEBACK); 796 if (!PageDirty(page)) 797 radix_tree_tag_clear(&mapping->page_tree, 798 page_index(page), 799 PAGECACHE_TAG_DIRTY); 800 write_unlock_irqrestore(&mapping->tree_lock, flags); 801 } else { 802 ret = TestSetPageWriteback(page); 803 } 804 return ret; 805 806 } 807 EXPORT_SYMBOL(test_set_page_writeback); 808 809 /* 810 * Return true if any of the pages in the mapping are marged with the 811 * passed tag. 812 */ 813 int mapping_tagged(struct address_space *mapping, int tag) 814 { 815 unsigned long flags; 816 int ret; 817 818 read_lock_irqsave(&mapping->tree_lock, flags); 819 ret = radix_tree_tagged(&mapping->page_tree, tag); 820 read_unlock_irqrestore(&mapping->tree_lock, flags); 821 return ret; 822 } 823 EXPORT_SYMBOL(mapping_tagged); 824