1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that makes the machine dump writes/reads and block dirtyings. 112 */ 113 int block_dump; 114 115 /* 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 117 * a full sync is triggered after this time elapses without any disk activity. 118 */ 119 int laptop_mode; 120 121 EXPORT_SYMBOL(laptop_mode); 122 123 /* End of sysctl-exported parameters */ 124 125 struct wb_domain global_wb_domain; 126 127 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 128 struct dirty_throttle_control { 129 #ifdef CONFIG_CGROUP_WRITEBACK 130 struct wb_domain *dom; 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 132 #endif 133 struct bdi_writeback *wb; 134 struct fprop_local_percpu *wb_completions; 135 136 unsigned long avail; /* dirtyable */ 137 unsigned long dirty; /* file_dirty + write + nfs */ 138 unsigned long thresh; /* dirty threshold */ 139 unsigned long bg_thresh; /* dirty background threshold */ 140 141 unsigned long wb_dirty; /* per-wb counterparts */ 142 unsigned long wb_thresh; 143 unsigned long wb_bg_thresh; 144 145 unsigned long pos_ratio; 146 }; 147 148 /* 149 * Length of period for aging writeout fractions of bdis. This is an 150 * arbitrarily chosen number. The longer the period, the slower fractions will 151 * reflect changes in current writeout rate. 152 */ 153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 154 155 #ifdef CONFIG_CGROUP_WRITEBACK 156 157 #define GDTC_INIT(__wb) .wb = (__wb), \ 158 .dom = &global_wb_domain, \ 159 .wb_completions = &(__wb)->completions 160 161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 162 163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 164 .dom = mem_cgroup_wb_domain(__wb), \ 165 .wb_completions = &(__wb)->memcg_completions, \ 166 .gdtc = __gdtc 167 168 static bool mdtc_valid(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 174 { 175 return dtc->dom; 176 } 177 178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 179 { 180 return mdtc->gdtc; 181 } 182 183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 184 { 185 return &wb->memcg_completions; 186 } 187 188 static void wb_min_max_ratio(struct bdi_writeback *wb, 189 unsigned long *minp, unsigned long *maxp) 190 { 191 unsigned long this_bw = wb->avg_write_bandwidth; 192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 193 unsigned long long min = wb->bdi->min_ratio; 194 unsigned long long max = wb->bdi->max_ratio; 195 196 /* 197 * @wb may already be clean by the time control reaches here and 198 * the total may not include its bw. 199 */ 200 if (this_bw < tot_bw) { 201 if (min) { 202 min *= this_bw; 203 do_div(min, tot_bw); 204 } 205 if (max < 100) { 206 max *= this_bw; 207 do_div(max, tot_bw); 208 } 209 } 210 211 *minp = min; 212 *maxp = max; 213 } 214 215 #else /* CONFIG_CGROUP_WRITEBACK */ 216 217 #define GDTC_INIT(__wb) .wb = (__wb), \ 218 .wb_completions = &(__wb)->completions 219 #define GDTC_INIT_NO_WB 220 #define MDTC_INIT(__wb, __gdtc) 221 222 static bool mdtc_valid(struct dirty_throttle_control *dtc) 223 { 224 return false; 225 } 226 227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 228 { 229 return &global_wb_domain; 230 } 231 232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 233 { 234 return NULL; 235 } 236 237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 238 { 239 return NULL; 240 } 241 242 static void wb_min_max_ratio(struct bdi_writeback *wb, 243 unsigned long *minp, unsigned long *maxp) 244 { 245 *minp = wb->bdi->min_ratio; 246 *maxp = wb->bdi->max_ratio; 247 } 248 249 #endif /* CONFIG_CGROUP_WRITEBACK */ 250 251 /* 252 * In a memory zone, there is a certain amount of pages we consider 253 * available for the page cache, which is essentially the number of 254 * free and reclaimable pages, minus some zone reserves to protect 255 * lowmem and the ability to uphold the zone's watermarks without 256 * requiring writeback. 257 * 258 * This number of dirtyable pages is the base value of which the 259 * user-configurable dirty ratio is the effictive number of pages that 260 * are allowed to be actually dirtied. Per individual zone, or 261 * globally by using the sum of dirtyable pages over all zones. 262 * 263 * Because the user is allowed to specify the dirty limit globally as 264 * absolute number of bytes, calculating the per-zone dirty limit can 265 * require translating the configured limit into a percentage of 266 * global dirtyable memory first. 267 */ 268 269 /** 270 * node_dirtyable_memory - number of dirtyable pages in a node 271 * @pgdat: the node 272 * 273 * Returns the node's number of pages potentially available for dirty 274 * page cache. This is the base value for the per-node dirty limits. 275 */ 276 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 277 { 278 unsigned long nr_pages = 0; 279 int z; 280 281 for (z = 0; z < MAX_NR_ZONES; z++) { 282 struct zone *zone = pgdat->node_zones + z; 283 284 if (!populated_zone(zone)) 285 continue; 286 287 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 288 } 289 290 /* 291 * Pages reserved for the kernel should not be considered 292 * dirtyable, to prevent a situation where reclaim has to 293 * clean pages in order to balance the zones. 294 */ 295 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 296 297 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 298 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 299 300 return nr_pages; 301 } 302 303 static unsigned long highmem_dirtyable_memory(unsigned long total) 304 { 305 #ifdef CONFIG_HIGHMEM 306 int node; 307 unsigned long x = 0; 308 int i; 309 310 for_each_node_state(node, N_HIGH_MEMORY) { 311 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 312 struct zone *z; 313 unsigned long nr_pages; 314 315 if (!is_highmem_idx(i)) 316 continue; 317 318 z = &NODE_DATA(node)->node_zones[i]; 319 if (!populated_zone(z)) 320 continue; 321 322 nr_pages = zone_page_state(z, NR_FREE_PAGES); 323 /* watch for underflows */ 324 nr_pages -= min(nr_pages, high_wmark_pages(z)); 325 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 326 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 327 x += nr_pages; 328 } 329 } 330 331 /* 332 * Unreclaimable memory (kernel memory or anonymous memory 333 * without swap) can bring down the dirtyable pages below 334 * the zone's dirty balance reserve and the above calculation 335 * will underflow. However we still want to add in nodes 336 * which are below threshold (negative values) to get a more 337 * accurate calculation but make sure that the total never 338 * underflows. 339 */ 340 if ((long)x < 0) 341 x = 0; 342 343 /* 344 * Make sure that the number of highmem pages is never larger 345 * than the number of the total dirtyable memory. This can only 346 * occur in very strange VM situations but we want to make sure 347 * that this does not occur. 348 */ 349 return min(x, total); 350 #else 351 return 0; 352 #endif 353 } 354 355 /** 356 * global_dirtyable_memory - number of globally dirtyable pages 357 * 358 * Returns the global number of pages potentially available for dirty 359 * page cache. This is the base value for the global dirty limits. 360 */ 361 static unsigned long global_dirtyable_memory(void) 362 { 363 unsigned long x; 364 365 x = global_page_state(NR_FREE_PAGES); 366 /* 367 * Pages reserved for the kernel should not be considered 368 * dirtyable, to prevent a situation where reclaim has to 369 * clean pages in order to balance the zones. 370 */ 371 x -= min(x, totalreserve_pages); 372 373 x += global_node_page_state(NR_INACTIVE_FILE); 374 x += global_node_page_state(NR_ACTIVE_FILE); 375 376 if (!vm_highmem_is_dirtyable) 377 x -= highmem_dirtyable_memory(x); 378 379 return x + 1; /* Ensure that we never return 0 */ 380 } 381 382 /** 383 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 384 * @dtc: dirty_throttle_control of interest 385 * 386 * Calculate @dtc->thresh and ->bg_thresh considering 387 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 388 * must ensure that @dtc->avail is set before calling this function. The 389 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 390 * real-time tasks. 391 */ 392 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 393 { 394 const unsigned long available_memory = dtc->avail; 395 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 396 unsigned long bytes = vm_dirty_bytes; 397 unsigned long bg_bytes = dirty_background_bytes; 398 /* convert ratios to per-PAGE_SIZE for higher precision */ 399 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 400 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 401 unsigned long thresh; 402 unsigned long bg_thresh; 403 struct task_struct *tsk; 404 405 /* gdtc is !NULL iff @dtc is for memcg domain */ 406 if (gdtc) { 407 unsigned long global_avail = gdtc->avail; 408 409 /* 410 * The byte settings can't be applied directly to memcg 411 * domains. Convert them to ratios by scaling against 412 * globally available memory. As the ratios are in 413 * per-PAGE_SIZE, they can be obtained by dividing bytes by 414 * number of pages. 415 */ 416 if (bytes) 417 ratio = min(DIV_ROUND_UP(bytes, global_avail), 418 PAGE_SIZE); 419 if (bg_bytes) 420 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 421 PAGE_SIZE); 422 bytes = bg_bytes = 0; 423 } 424 425 if (bytes) 426 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 427 else 428 thresh = (ratio * available_memory) / PAGE_SIZE; 429 430 if (bg_bytes) 431 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 432 else 433 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 434 435 if (bg_thresh >= thresh) 436 bg_thresh = thresh / 2; 437 tsk = current; 438 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 439 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 440 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 441 } 442 dtc->thresh = thresh; 443 dtc->bg_thresh = bg_thresh; 444 445 /* we should eventually report the domain in the TP */ 446 if (!gdtc) 447 trace_global_dirty_state(bg_thresh, thresh); 448 } 449 450 /** 451 * global_dirty_limits - background-writeback and dirty-throttling thresholds 452 * @pbackground: out parameter for bg_thresh 453 * @pdirty: out parameter for thresh 454 * 455 * Calculate bg_thresh and thresh for global_wb_domain. See 456 * domain_dirty_limits() for details. 457 */ 458 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 459 { 460 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 461 462 gdtc.avail = global_dirtyable_memory(); 463 domain_dirty_limits(&gdtc); 464 465 *pbackground = gdtc.bg_thresh; 466 *pdirty = gdtc.thresh; 467 } 468 469 /** 470 * node_dirty_limit - maximum number of dirty pages allowed in a node 471 * @pgdat: the node 472 * 473 * Returns the maximum number of dirty pages allowed in a node, based 474 * on the node's dirtyable memory. 475 */ 476 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 477 { 478 unsigned long node_memory = node_dirtyable_memory(pgdat); 479 struct task_struct *tsk = current; 480 unsigned long dirty; 481 482 if (vm_dirty_bytes) 483 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 484 node_memory / global_dirtyable_memory(); 485 else 486 dirty = vm_dirty_ratio * node_memory / 100; 487 488 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 489 dirty += dirty / 4; 490 491 return dirty; 492 } 493 494 /** 495 * node_dirty_ok - tells whether a node is within its dirty limits 496 * @pgdat: the node to check 497 * 498 * Returns %true when the dirty pages in @pgdat are within the node's 499 * dirty limit, %false if the limit is exceeded. 500 */ 501 bool node_dirty_ok(struct pglist_data *pgdat) 502 { 503 unsigned long limit = node_dirty_limit(pgdat); 504 unsigned long nr_pages = 0; 505 506 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 507 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS); 508 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 509 510 return nr_pages <= limit; 511 } 512 513 int dirty_background_ratio_handler(struct ctl_table *table, int write, 514 void __user *buffer, size_t *lenp, 515 loff_t *ppos) 516 { 517 int ret; 518 519 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 520 if (ret == 0 && write) 521 dirty_background_bytes = 0; 522 return ret; 523 } 524 525 int dirty_background_bytes_handler(struct ctl_table *table, int write, 526 void __user *buffer, size_t *lenp, 527 loff_t *ppos) 528 { 529 int ret; 530 531 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 532 if (ret == 0 && write) 533 dirty_background_ratio = 0; 534 return ret; 535 } 536 537 int dirty_ratio_handler(struct ctl_table *table, int write, 538 void __user *buffer, size_t *lenp, 539 loff_t *ppos) 540 { 541 int old_ratio = vm_dirty_ratio; 542 int ret; 543 544 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 545 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 546 writeback_set_ratelimit(); 547 vm_dirty_bytes = 0; 548 } 549 return ret; 550 } 551 552 int dirty_bytes_handler(struct ctl_table *table, int write, 553 void __user *buffer, size_t *lenp, 554 loff_t *ppos) 555 { 556 unsigned long old_bytes = vm_dirty_bytes; 557 int ret; 558 559 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 560 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 561 writeback_set_ratelimit(); 562 vm_dirty_ratio = 0; 563 } 564 return ret; 565 } 566 567 static unsigned long wp_next_time(unsigned long cur_time) 568 { 569 cur_time += VM_COMPLETIONS_PERIOD_LEN; 570 /* 0 has a special meaning... */ 571 if (!cur_time) 572 return 1; 573 return cur_time; 574 } 575 576 static void wb_domain_writeout_inc(struct wb_domain *dom, 577 struct fprop_local_percpu *completions, 578 unsigned int max_prop_frac) 579 { 580 __fprop_inc_percpu_max(&dom->completions, completions, 581 max_prop_frac); 582 /* First event after period switching was turned off? */ 583 if (!unlikely(dom->period_time)) { 584 /* 585 * We can race with other __bdi_writeout_inc calls here but 586 * it does not cause any harm since the resulting time when 587 * timer will fire and what is in writeout_period_time will be 588 * roughly the same. 589 */ 590 dom->period_time = wp_next_time(jiffies); 591 mod_timer(&dom->period_timer, dom->period_time); 592 } 593 } 594 595 /* 596 * Increment @wb's writeout completion count and the global writeout 597 * completion count. Called from test_clear_page_writeback(). 598 */ 599 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 600 { 601 struct wb_domain *cgdom; 602 603 __inc_wb_stat(wb, WB_WRITTEN); 604 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 605 wb->bdi->max_prop_frac); 606 607 cgdom = mem_cgroup_wb_domain(wb); 608 if (cgdom) 609 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 610 wb->bdi->max_prop_frac); 611 } 612 613 void wb_writeout_inc(struct bdi_writeback *wb) 614 { 615 unsigned long flags; 616 617 local_irq_save(flags); 618 __wb_writeout_inc(wb); 619 local_irq_restore(flags); 620 } 621 EXPORT_SYMBOL_GPL(wb_writeout_inc); 622 623 /* 624 * On idle system, we can be called long after we scheduled because we use 625 * deferred timers so count with missed periods. 626 */ 627 static void writeout_period(unsigned long t) 628 { 629 struct wb_domain *dom = (void *)t; 630 int miss_periods = (jiffies - dom->period_time) / 631 VM_COMPLETIONS_PERIOD_LEN; 632 633 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 634 dom->period_time = wp_next_time(dom->period_time + 635 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 636 mod_timer(&dom->period_timer, dom->period_time); 637 } else { 638 /* 639 * Aging has zeroed all fractions. Stop wasting CPU on period 640 * updates. 641 */ 642 dom->period_time = 0; 643 } 644 } 645 646 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 647 { 648 memset(dom, 0, sizeof(*dom)); 649 650 spin_lock_init(&dom->lock); 651 652 init_timer_deferrable(&dom->period_timer); 653 dom->period_timer.function = writeout_period; 654 dom->period_timer.data = (unsigned long)dom; 655 656 dom->dirty_limit_tstamp = jiffies; 657 658 return fprop_global_init(&dom->completions, gfp); 659 } 660 661 #ifdef CONFIG_CGROUP_WRITEBACK 662 void wb_domain_exit(struct wb_domain *dom) 663 { 664 del_timer_sync(&dom->period_timer); 665 fprop_global_destroy(&dom->completions); 666 } 667 #endif 668 669 /* 670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 671 * registered backing devices, which, for obvious reasons, can not 672 * exceed 100%. 673 */ 674 static unsigned int bdi_min_ratio; 675 676 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 677 { 678 int ret = 0; 679 680 spin_lock_bh(&bdi_lock); 681 if (min_ratio > bdi->max_ratio) { 682 ret = -EINVAL; 683 } else { 684 min_ratio -= bdi->min_ratio; 685 if (bdi_min_ratio + min_ratio < 100) { 686 bdi_min_ratio += min_ratio; 687 bdi->min_ratio += min_ratio; 688 } else { 689 ret = -EINVAL; 690 } 691 } 692 spin_unlock_bh(&bdi_lock); 693 694 return ret; 695 } 696 697 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 698 { 699 int ret = 0; 700 701 if (max_ratio > 100) 702 return -EINVAL; 703 704 spin_lock_bh(&bdi_lock); 705 if (bdi->min_ratio > max_ratio) { 706 ret = -EINVAL; 707 } else { 708 bdi->max_ratio = max_ratio; 709 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 710 } 711 spin_unlock_bh(&bdi_lock); 712 713 return ret; 714 } 715 EXPORT_SYMBOL(bdi_set_max_ratio); 716 717 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 718 unsigned long bg_thresh) 719 { 720 return (thresh + bg_thresh) / 2; 721 } 722 723 static unsigned long hard_dirty_limit(struct wb_domain *dom, 724 unsigned long thresh) 725 { 726 return max(thresh, dom->dirty_limit); 727 } 728 729 /* 730 * Memory which can be further allocated to a memcg domain is capped by 731 * system-wide clean memory excluding the amount being used in the domain. 732 */ 733 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 734 unsigned long filepages, unsigned long headroom) 735 { 736 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 737 unsigned long clean = filepages - min(filepages, mdtc->dirty); 738 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 739 unsigned long other_clean = global_clean - min(global_clean, clean); 740 741 mdtc->avail = filepages + min(headroom, other_clean); 742 } 743 744 /** 745 * __wb_calc_thresh - @wb's share of dirty throttling threshold 746 * @dtc: dirty_throttle_context of interest 747 * 748 * Returns @wb's dirty limit in pages. The term "dirty" in the context of 749 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 750 * 751 * Note that balance_dirty_pages() will only seriously take it as a hard limit 752 * when sleeping max_pause per page is not enough to keep the dirty pages under 753 * control. For example, when the device is completely stalled due to some error 754 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 755 * In the other normal situations, it acts more gently by throttling the tasks 756 * more (rather than completely block them) when the wb dirty pages go high. 757 * 758 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 759 * - starving fast devices 760 * - piling up dirty pages (that will take long time to sync) on slow devices 761 * 762 * The wb's share of dirty limit will be adapting to its throughput and 763 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 764 */ 765 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 766 { 767 struct wb_domain *dom = dtc_dom(dtc); 768 unsigned long thresh = dtc->thresh; 769 u64 wb_thresh; 770 long numerator, denominator; 771 unsigned long wb_min_ratio, wb_max_ratio; 772 773 /* 774 * Calculate this BDI's share of the thresh ratio. 775 */ 776 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 777 &numerator, &denominator); 778 779 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 780 wb_thresh *= numerator; 781 do_div(wb_thresh, denominator); 782 783 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 784 785 wb_thresh += (thresh * wb_min_ratio) / 100; 786 if (wb_thresh > (thresh * wb_max_ratio) / 100) 787 wb_thresh = thresh * wb_max_ratio / 100; 788 789 return wb_thresh; 790 } 791 792 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 793 { 794 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 795 .thresh = thresh }; 796 return __wb_calc_thresh(&gdtc); 797 } 798 799 /* 800 * setpoint - dirty 3 801 * f(dirty) := 1.0 + (----------------) 802 * limit - setpoint 803 * 804 * it's a 3rd order polynomial that subjects to 805 * 806 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 807 * (2) f(setpoint) = 1.0 => the balance point 808 * (3) f(limit) = 0 => the hard limit 809 * (4) df/dx <= 0 => negative feedback control 810 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 811 * => fast response on large errors; small oscillation near setpoint 812 */ 813 static long long pos_ratio_polynom(unsigned long setpoint, 814 unsigned long dirty, 815 unsigned long limit) 816 { 817 long long pos_ratio; 818 long x; 819 820 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 821 (limit - setpoint) | 1); 822 pos_ratio = x; 823 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 824 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 825 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 826 827 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 828 } 829 830 /* 831 * Dirty position control. 832 * 833 * (o) global/bdi setpoints 834 * 835 * We want the dirty pages be balanced around the global/wb setpoints. 836 * When the number of dirty pages is higher/lower than the setpoint, the 837 * dirty position control ratio (and hence task dirty ratelimit) will be 838 * decreased/increased to bring the dirty pages back to the setpoint. 839 * 840 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 841 * 842 * if (dirty < setpoint) scale up pos_ratio 843 * if (dirty > setpoint) scale down pos_ratio 844 * 845 * if (wb_dirty < wb_setpoint) scale up pos_ratio 846 * if (wb_dirty > wb_setpoint) scale down pos_ratio 847 * 848 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 849 * 850 * (o) global control line 851 * 852 * ^ pos_ratio 853 * | 854 * | |<===== global dirty control scope ======>| 855 * 2.0 .............* 856 * | .* 857 * | . * 858 * | . * 859 * | . * 860 * | . * 861 * | . * 862 * 1.0 ................................* 863 * | . . * 864 * | . . * 865 * | . . * 866 * | . . * 867 * | . . * 868 * 0 +------------.------------------.----------------------*-------------> 869 * freerun^ setpoint^ limit^ dirty pages 870 * 871 * (o) wb control line 872 * 873 * ^ pos_ratio 874 * | 875 * | * 876 * | * 877 * | * 878 * | * 879 * | * |<=========== span ============>| 880 * 1.0 .......................* 881 * | . * 882 * | . * 883 * | . * 884 * | . * 885 * | . * 886 * | . * 887 * | . * 888 * | . * 889 * | . * 890 * | . * 891 * | . * 892 * 1/4 ...............................................* * * * * * * * * * * * 893 * | . . 894 * | . . 895 * | . . 896 * 0 +----------------------.-------------------------------.-------------> 897 * wb_setpoint^ x_intercept^ 898 * 899 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 900 * be smoothly throttled down to normal if it starts high in situations like 901 * - start writing to a slow SD card and a fast disk at the same time. The SD 902 * card's wb_dirty may rush to many times higher than wb_setpoint. 903 * - the wb dirty thresh drops quickly due to change of JBOD workload 904 */ 905 static void wb_position_ratio(struct dirty_throttle_control *dtc) 906 { 907 struct bdi_writeback *wb = dtc->wb; 908 unsigned long write_bw = wb->avg_write_bandwidth; 909 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 910 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 911 unsigned long wb_thresh = dtc->wb_thresh; 912 unsigned long x_intercept; 913 unsigned long setpoint; /* dirty pages' target balance point */ 914 unsigned long wb_setpoint; 915 unsigned long span; 916 long long pos_ratio; /* for scaling up/down the rate limit */ 917 long x; 918 919 dtc->pos_ratio = 0; 920 921 if (unlikely(dtc->dirty >= limit)) 922 return; 923 924 /* 925 * global setpoint 926 * 927 * See comment for pos_ratio_polynom(). 928 */ 929 setpoint = (freerun + limit) / 2; 930 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 931 932 /* 933 * The strictlimit feature is a tool preventing mistrusted filesystems 934 * from growing a large number of dirty pages before throttling. For 935 * such filesystems balance_dirty_pages always checks wb counters 936 * against wb limits. Even if global "nr_dirty" is under "freerun". 937 * This is especially important for fuse which sets bdi->max_ratio to 938 * 1% by default. Without strictlimit feature, fuse writeback may 939 * consume arbitrary amount of RAM because it is accounted in 940 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 941 * 942 * Here, in wb_position_ratio(), we calculate pos_ratio based on 943 * two values: wb_dirty and wb_thresh. Let's consider an example: 944 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 945 * limits are set by default to 10% and 20% (background and throttle). 946 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 947 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 948 * about ~6K pages (as the average of background and throttle wb 949 * limits). The 3rd order polynomial will provide positive feedback if 950 * wb_dirty is under wb_setpoint and vice versa. 951 * 952 * Note, that we cannot use global counters in these calculations 953 * because we want to throttle process writing to a strictlimit wb 954 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 955 * in the example above). 956 */ 957 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 958 long long wb_pos_ratio; 959 960 if (dtc->wb_dirty < 8) { 961 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 962 2 << RATELIMIT_CALC_SHIFT); 963 return; 964 } 965 966 if (dtc->wb_dirty >= wb_thresh) 967 return; 968 969 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 970 dtc->wb_bg_thresh); 971 972 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 973 return; 974 975 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 976 wb_thresh); 977 978 /* 979 * Typically, for strictlimit case, wb_setpoint << setpoint 980 * and pos_ratio >> wb_pos_ratio. In the other words global 981 * state ("dirty") is not limiting factor and we have to 982 * make decision based on wb counters. But there is an 983 * important case when global pos_ratio should get precedence: 984 * global limits are exceeded (e.g. due to activities on other 985 * wb's) while given strictlimit wb is below limit. 986 * 987 * "pos_ratio * wb_pos_ratio" would work for the case above, 988 * but it would look too non-natural for the case of all 989 * activity in the system coming from a single strictlimit wb 990 * with bdi->max_ratio == 100%. 991 * 992 * Note that min() below somewhat changes the dynamics of the 993 * control system. Normally, pos_ratio value can be well over 3 994 * (when globally we are at freerun and wb is well below wb 995 * setpoint). Now the maximum pos_ratio in the same situation 996 * is 2. We might want to tweak this if we observe the control 997 * system is too slow to adapt. 998 */ 999 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1000 return; 1001 } 1002 1003 /* 1004 * We have computed basic pos_ratio above based on global situation. If 1005 * the wb is over/under its share of dirty pages, we want to scale 1006 * pos_ratio further down/up. That is done by the following mechanism. 1007 */ 1008 1009 /* 1010 * wb setpoint 1011 * 1012 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1013 * 1014 * x_intercept - wb_dirty 1015 * := -------------------------- 1016 * x_intercept - wb_setpoint 1017 * 1018 * The main wb control line is a linear function that subjects to 1019 * 1020 * (1) f(wb_setpoint) = 1.0 1021 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1022 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1023 * 1024 * For single wb case, the dirty pages are observed to fluctuate 1025 * regularly within range 1026 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1027 * for various filesystems, where (2) can yield in a reasonable 12.5% 1028 * fluctuation range for pos_ratio. 1029 * 1030 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1031 * own size, so move the slope over accordingly and choose a slope that 1032 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1033 */ 1034 if (unlikely(wb_thresh > dtc->thresh)) 1035 wb_thresh = dtc->thresh; 1036 /* 1037 * It's very possible that wb_thresh is close to 0 not because the 1038 * device is slow, but that it has remained inactive for long time. 1039 * Honour such devices a reasonable good (hopefully IO efficient) 1040 * threshold, so that the occasional writes won't be blocked and active 1041 * writes can rampup the threshold quickly. 1042 */ 1043 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1044 /* 1045 * scale global setpoint to wb's: 1046 * wb_setpoint = setpoint * wb_thresh / thresh 1047 */ 1048 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1049 wb_setpoint = setpoint * (u64)x >> 16; 1050 /* 1051 * Use span=(8*write_bw) in single wb case as indicated by 1052 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1053 * 1054 * wb_thresh thresh - wb_thresh 1055 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1056 * thresh thresh 1057 */ 1058 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1059 x_intercept = wb_setpoint + span; 1060 1061 if (dtc->wb_dirty < x_intercept - span / 4) { 1062 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1063 (x_intercept - wb_setpoint) | 1); 1064 } else 1065 pos_ratio /= 4; 1066 1067 /* 1068 * wb reserve area, safeguard against dirty pool underrun and disk idle 1069 * It may push the desired control point of global dirty pages higher 1070 * than setpoint. 1071 */ 1072 x_intercept = wb_thresh / 2; 1073 if (dtc->wb_dirty < x_intercept) { 1074 if (dtc->wb_dirty > x_intercept / 8) 1075 pos_ratio = div_u64(pos_ratio * x_intercept, 1076 dtc->wb_dirty); 1077 else 1078 pos_ratio *= 8; 1079 } 1080 1081 dtc->pos_ratio = pos_ratio; 1082 } 1083 1084 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1085 unsigned long elapsed, 1086 unsigned long written) 1087 { 1088 const unsigned long period = roundup_pow_of_two(3 * HZ); 1089 unsigned long avg = wb->avg_write_bandwidth; 1090 unsigned long old = wb->write_bandwidth; 1091 u64 bw; 1092 1093 /* 1094 * bw = written * HZ / elapsed 1095 * 1096 * bw * elapsed + write_bandwidth * (period - elapsed) 1097 * write_bandwidth = --------------------------------------------------- 1098 * period 1099 * 1100 * @written may have decreased due to account_page_redirty(). 1101 * Avoid underflowing @bw calculation. 1102 */ 1103 bw = written - min(written, wb->written_stamp); 1104 bw *= HZ; 1105 if (unlikely(elapsed > period)) { 1106 do_div(bw, elapsed); 1107 avg = bw; 1108 goto out; 1109 } 1110 bw += (u64)wb->write_bandwidth * (period - elapsed); 1111 bw >>= ilog2(period); 1112 1113 /* 1114 * one more level of smoothing, for filtering out sudden spikes 1115 */ 1116 if (avg > old && old >= (unsigned long)bw) 1117 avg -= (avg - old) >> 3; 1118 1119 if (avg < old && old <= (unsigned long)bw) 1120 avg += (old - avg) >> 3; 1121 1122 out: 1123 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1124 avg = max(avg, 1LU); 1125 if (wb_has_dirty_io(wb)) { 1126 long delta = avg - wb->avg_write_bandwidth; 1127 WARN_ON_ONCE(atomic_long_add_return(delta, 1128 &wb->bdi->tot_write_bandwidth) <= 0); 1129 } 1130 wb->write_bandwidth = bw; 1131 wb->avg_write_bandwidth = avg; 1132 } 1133 1134 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1135 { 1136 struct wb_domain *dom = dtc_dom(dtc); 1137 unsigned long thresh = dtc->thresh; 1138 unsigned long limit = dom->dirty_limit; 1139 1140 /* 1141 * Follow up in one step. 1142 */ 1143 if (limit < thresh) { 1144 limit = thresh; 1145 goto update; 1146 } 1147 1148 /* 1149 * Follow down slowly. Use the higher one as the target, because thresh 1150 * may drop below dirty. This is exactly the reason to introduce 1151 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1152 */ 1153 thresh = max(thresh, dtc->dirty); 1154 if (limit > thresh) { 1155 limit -= (limit - thresh) >> 5; 1156 goto update; 1157 } 1158 return; 1159 update: 1160 dom->dirty_limit = limit; 1161 } 1162 1163 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1164 unsigned long now) 1165 { 1166 struct wb_domain *dom = dtc_dom(dtc); 1167 1168 /* 1169 * check locklessly first to optimize away locking for the most time 1170 */ 1171 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1172 return; 1173 1174 spin_lock(&dom->lock); 1175 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1176 update_dirty_limit(dtc); 1177 dom->dirty_limit_tstamp = now; 1178 } 1179 spin_unlock(&dom->lock); 1180 } 1181 1182 /* 1183 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1184 * 1185 * Normal wb tasks will be curbed at or below it in long term. 1186 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1187 */ 1188 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1189 unsigned long dirtied, 1190 unsigned long elapsed) 1191 { 1192 struct bdi_writeback *wb = dtc->wb; 1193 unsigned long dirty = dtc->dirty; 1194 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1195 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1196 unsigned long setpoint = (freerun + limit) / 2; 1197 unsigned long write_bw = wb->avg_write_bandwidth; 1198 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1199 unsigned long dirty_rate; 1200 unsigned long task_ratelimit; 1201 unsigned long balanced_dirty_ratelimit; 1202 unsigned long step; 1203 unsigned long x; 1204 unsigned long shift; 1205 1206 /* 1207 * The dirty rate will match the writeout rate in long term, except 1208 * when dirty pages are truncated by userspace or re-dirtied by FS. 1209 */ 1210 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1211 1212 /* 1213 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1214 */ 1215 task_ratelimit = (u64)dirty_ratelimit * 1216 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1217 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1218 1219 /* 1220 * A linear estimation of the "balanced" throttle rate. The theory is, 1221 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1222 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1223 * formula will yield the balanced rate limit (write_bw / N). 1224 * 1225 * Note that the expanded form is not a pure rate feedback: 1226 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1227 * but also takes pos_ratio into account: 1228 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1229 * 1230 * (1) is not realistic because pos_ratio also takes part in balancing 1231 * the dirty rate. Consider the state 1232 * pos_ratio = 0.5 (3) 1233 * rate = 2 * (write_bw / N) (4) 1234 * If (1) is used, it will stuck in that state! Because each dd will 1235 * be throttled at 1236 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1237 * yielding 1238 * dirty_rate = N * task_ratelimit = write_bw (6) 1239 * put (6) into (1) we get 1240 * rate_(i+1) = rate_(i) (7) 1241 * 1242 * So we end up using (2) to always keep 1243 * rate_(i+1) ~= (write_bw / N) (8) 1244 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1245 * pos_ratio is able to drive itself to 1.0, which is not only where 1246 * the dirty count meet the setpoint, but also where the slope of 1247 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1248 */ 1249 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1250 dirty_rate | 1); 1251 /* 1252 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1253 */ 1254 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1255 balanced_dirty_ratelimit = write_bw; 1256 1257 /* 1258 * We could safely do this and return immediately: 1259 * 1260 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1261 * 1262 * However to get a more stable dirty_ratelimit, the below elaborated 1263 * code makes use of task_ratelimit to filter out singular points and 1264 * limit the step size. 1265 * 1266 * The below code essentially only uses the relative value of 1267 * 1268 * task_ratelimit - dirty_ratelimit 1269 * = (pos_ratio - 1) * dirty_ratelimit 1270 * 1271 * which reflects the direction and size of dirty position error. 1272 */ 1273 1274 /* 1275 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1276 * task_ratelimit is on the same side of dirty_ratelimit, too. 1277 * For example, when 1278 * - dirty_ratelimit > balanced_dirty_ratelimit 1279 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1280 * lowering dirty_ratelimit will help meet both the position and rate 1281 * control targets. Otherwise, don't update dirty_ratelimit if it will 1282 * only help meet the rate target. After all, what the users ultimately 1283 * feel and care are stable dirty rate and small position error. 1284 * 1285 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1286 * and filter out the singular points of balanced_dirty_ratelimit. Which 1287 * keeps jumping around randomly and can even leap far away at times 1288 * due to the small 200ms estimation period of dirty_rate (we want to 1289 * keep that period small to reduce time lags). 1290 */ 1291 step = 0; 1292 1293 /* 1294 * For strictlimit case, calculations above were based on wb counters 1295 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1296 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1297 * Hence, to calculate "step" properly, we have to use wb_dirty as 1298 * "dirty" and wb_setpoint as "setpoint". 1299 * 1300 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1301 * it's possible that wb_thresh is close to zero due to inactivity 1302 * of backing device. 1303 */ 1304 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1305 dirty = dtc->wb_dirty; 1306 if (dtc->wb_dirty < 8) 1307 setpoint = dtc->wb_dirty + 1; 1308 else 1309 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1310 } 1311 1312 if (dirty < setpoint) { 1313 x = min3(wb->balanced_dirty_ratelimit, 1314 balanced_dirty_ratelimit, task_ratelimit); 1315 if (dirty_ratelimit < x) 1316 step = x - dirty_ratelimit; 1317 } else { 1318 x = max3(wb->balanced_dirty_ratelimit, 1319 balanced_dirty_ratelimit, task_ratelimit); 1320 if (dirty_ratelimit > x) 1321 step = dirty_ratelimit - x; 1322 } 1323 1324 /* 1325 * Don't pursue 100% rate matching. It's impossible since the balanced 1326 * rate itself is constantly fluctuating. So decrease the track speed 1327 * when it gets close to the target. Helps eliminate pointless tremors. 1328 */ 1329 shift = dirty_ratelimit / (2 * step + 1); 1330 if (shift < BITS_PER_LONG) 1331 step = DIV_ROUND_UP(step >> shift, 8); 1332 else 1333 step = 0; 1334 1335 if (dirty_ratelimit < balanced_dirty_ratelimit) 1336 dirty_ratelimit += step; 1337 else 1338 dirty_ratelimit -= step; 1339 1340 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1341 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1342 1343 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1344 } 1345 1346 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1347 struct dirty_throttle_control *mdtc, 1348 unsigned long start_time, 1349 bool update_ratelimit) 1350 { 1351 struct bdi_writeback *wb = gdtc->wb; 1352 unsigned long now = jiffies; 1353 unsigned long elapsed = now - wb->bw_time_stamp; 1354 unsigned long dirtied; 1355 unsigned long written; 1356 1357 lockdep_assert_held(&wb->list_lock); 1358 1359 /* 1360 * rate-limit, only update once every 200ms. 1361 */ 1362 if (elapsed < BANDWIDTH_INTERVAL) 1363 return; 1364 1365 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1366 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1367 1368 /* 1369 * Skip quiet periods when disk bandwidth is under-utilized. 1370 * (at least 1s idle time between two flusher runs) 1371 */ 1372 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1373 goto snapshot; 1374 1375 if (update_ratelimit) { 1376 domain_update_bandwidth(gdtc, now); 1377 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1378 1379 /* 1380 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1381 * compiler has no way to figure that out. Help it. 1382 */ 1383 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1384 domain_update_bandwidth(mdtc, now); 1385 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1386 } 1387 } 1388 wb_update_write_bandwidth(wb, elapsed, written); 1389 1390 snapshot: 1391 wb->dirtied_stamp = dirtied; 1392 wb->written_stamp = written; 1393 wb->bw_time_stamp = now; 1394 } 1395 1396 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1397 { 1398 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1399 1400 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1401 } 1402 1403 /* 1404 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1405 * will look to see if it needs to start dirty throttling. 1406 * 1407 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1408 * global_page_state() too often. So scale it near-sqrt to the safety margin 1409 * (the number of pages we may dirty without exceeding the dirty limits). 1410 */ 1411 static unsigned long dirty_poll_interval(unsigned long dirty, 1412 unsigned long thresh) 1413 { 1414 if (thresh > dirty) 1415 return 1UL << (ilog2(thresh - dirty) >> 1); 1416 1417 return 1; 1418 } 1419 1420 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1421 unsigned long wb_dirty) 1422 { 1423 unsigned long bw = wb->avg_write_bandwidth; 1424 unsigned long t; 1425 1426 /* 1427 * Limit pause time for small memory systems. If sleeping for too long 1428 * time, a small pool of dirty/writeback pages may go empty and disk go 1429 * idle. 1430 * 1431 * 8 serves as the safety ratio. 1432 */ 1433 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1434 t++; 1435 1436 return min_t(unsigned long, t, MAX_PAUSE); 1437 } 1438 1439 static long wb_min_pause(struct bdi_writeback *wb, 1440 long max_pause, 1441 unsigned long task_ratelimit, 1442 unsigned long dirty_ratelimit, 1443 int *nr_dirtied_pause) 1444 { 1445 long hi = ilog2(wb->avg_write_bandwidth); 1446 long lo = ilog2(wb->dirty_ratelimit); 1447 long t; /* target pause */ 1448 long pause; /* estimated next pause */ 1449 int pages; /* target nr_dirtied_pause */ 1450 1451 /* target for 10ms pause on 1-dd case */ 1452 t = max(1, HZ / 100); 1453 1454 /* 1455 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1456 * overheads. 1457 * 1458 * (N * 10ms) on 2^N concurrent tasks. 1459 */ 1460 if (hi > lo) 1461 t += (hi - lo) * (10 * HZ) / 1024; 1462 1463 /* 1464 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1465 * on the much more stable dirty_ratelimit. However the next pause time 1466 * will be computed based on task_ratelimit and the two rate limits may 1467 * depart considerably at some time. Especially if task_ratelimit goes 1468 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1469 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1470 * result task_ratelimit won't be executed faithfully, which could 1471 * eventually bring down dirty_ratelimit. 1472 * 1473 * We apply two rules to fix it up: 1474 * 1) try to estimate the next pause time and if necessary, use a lower 1475 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1476 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1477 * 2) limit the target pause time to max_pause/2, so that the normal 1478 * small fluctuations of task_ratelimit won't trigger rule (1) and 1479 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1480 */ 1481 t = min(t, 1 + max_pause / 2); 1482 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1483 1484 /* 1485 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1486 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1487 * When the 16 consecutive reads are often interrupted by some dirty 1488 * throttling pause during the async writes, cfq will go into idles 1489 * (deadline is fine). So push nr_dirtied_pause as high as possible 1490 * until reaches DIRTY_POLL_THRESH=32 pages. 1491 */ 1492 if (pages < DIRTY_POLL_THRESH) { 1493 t = max_pause; 1494 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1495 if (pages > DIRTY_POLL_THRESH) { 1496 pages = DIRTY_POLL_THRESH; 1497 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1498 } 1499 } 1500 1501 pause = HZ * pages / (task_ratelimit + 1); 1502 if (pause > max_pause) { 1503 t = max_pause; 1504 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1505 } 1506 1507 *nr_dirtied_pause = pages; 1508 /* 1509 * The minimal pause time will normally be half the target pause time. 1510 */ 1511 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1512 } 1513 1514 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1515 { 1516 struct bdi_writeback *wb = dtc->wb; 1517 unsigned long wb_reclaimable; 1518 1519 /* 1520 * wb_thresh is not treated as some limiting factor as 1521 * dirty_thresh, due to reasons 1522 * - in JBOD setup, wb_thresh can fluctuate a lot 1523 * - in a system with HDD and USB key, the USB key may somehow 1524 * go into state (wb_dirty >> wb_thresh) either because 1525 * wb_dirty starts high, or because wb_thresh drops low. 1526 * In this case we don't want to hard throttle the USB key 1527 * dirtiers for 100 seconds until wb_dirty drops under 1528 * wb_thresh. Instead the auxiliary wb control line in 1529 * wb_position_ratio() will let the dirtier task progress 1530 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1531 */ 1532 dtc->wb_thresh = __wb_calc_thresh(dtc); 1533 dtc->wb_bg_thresh = dtc->thresh ? 1534 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1535 1536 /* 1537 * In order to avoid the stacked BDI deadlock we need 1538 * to ensure we accurately count the 'dirty' pages when 1539 * the threshold is low. 1540 * 1541 * Otherwise it would be possible to get thresh+n pages 1542 * reported dirty, even though there are thresh-m pages 1543 * actually dirty; with m+n sitting in the percpu 1544 * deltas. 1545 */ 1546 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) { 1547 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1548 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1549 } else { 1550 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1551 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1552 } 1553 } 1554 1555 /* 1556 * balance_dirty_pages() must be called by processes which are generating dirty 1557 * data. It looks at the number of dirty pages in the machine and will force 1558 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1559 * If we're over `background_thresh' then the writeback threads are woken to 1560 * perform some writeout. 1561 */ 1562 static void balance_dirty_pages(struct address_space *mapping, 1563 struct bdi_writeback *wb, 1564 unsigned long pages_dirtied) 1565 { 1566 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1567 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1568 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1569 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1570 &mdtc_stor : NULL; 1571 struct dirty_throttle_control *sdtc; 1572 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1573 long period; 1574 long pause; 1575 long max_pause; 1576 long min_pause; 1577 int nr_dirtied_pause; 1578 bool dirty_exceeded = false; 1579 unsigned long task_ratelimit; 1580 unsigned long dirty_ratelimit; 1581 struct backing_dev_info *bdi = wb->bdi; 1582 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1583 unsigned long start_time = jiffies; 1584 1585 for (;;) { 1586 unsigned long now = jiffies; 1587 unsigned long dirty, thresh, bg_thresh; 1588 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1589 unsigned long m_thresh = 0; 1590 unsigned long m_bg_thresh = 0; 1591 1592 /* 1593 * Unstable writes are a feature of certain networked 1594 * filesystems (i.e. NFS) in which data may have been 1595 * written to the server's write cache, but has not yet 1596 * been flushed to permanent storage. 1597 */ 1598 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) + 1599 global_node_page_state(NR_UNSTABLE_NFS); 1600 gdtc->avail = global_dirtyable_memory(); 1601 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1602 1603 domain_dirty_limits(gdtc); 1604 1605 if (unlikely(strictlimit)) { 1606 wb_dirty_limits(gdtc); 1607 1608 dirty = gdtc->wb_dirty; 1609 thresh = gdtc->wb_thresh; 1610 bg_thresh = gdtc->wb_bg_thresh; 1611 } else { 1612 dirty = gdtc->dirty; 1613 thresh = gdtc->thresh; 1614 bg_thresh = gdtc->bg_thresh; 1615 } 1616 1617 if (mdtc) { 1618 unsigned long filepages, headroom, writeback; 1619 1620 /* 1621 * If @wb belongs to !root memcg, repeat the same 1622 * basic calculations for the memcg domain. 1623 */ 1624 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1625 &mdtc->dirty, &writeback); 1626 mdtc->dirty += writeback; 1627 mdtc_calc_avail(mdtc, filepages, headroom); 1628 1629 domain_dirty_limits(mdtc); 1630 1631 if (unlikely(strictlimit)) { 1632 wb_dirty_limits(mdtc); 1633 m_dirty = mdtc->wb_dirty; 1634 m_thresh = mdtc->wb_thresh; 1635 m_bg_thresh = mdtc->wb_bg_thresh; 1636 } else { 1637 m_dirty = mdtc->dirty; 1638 m_thresh = mdtc->thresh; 1639 m_bg_thresh = mdtc->bg_thresh; 1640 } 1641 } 1642 1643 /* 1644 * Throttle it only when the background writeback cannot 1645 * catch-up. This avoids (excessively) small writeouts 1646 * when the wb limits are ramping up in case of !strictlimit. 1647 * 1648 * In strictlimit case make decision based on the wb counters 1649 * and limits. Small writeouts when the wb limits are ramping 1650 * up are the price we consciously pay for strictlimit-ing. 1651 * 1652 * If memcg domain is in effect, @dirty should be under 1653 * both global and memcg freerun ceilings. 1654 */ 1655 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1656 (!mdtc || 1657 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1658 unsigned long intv = dirty_poll_interval(dirty, thresh); 1659 unsigned long m_intv = ULONG_MAX; 1660 1661 current->dirty_paused_when = now; 1662 current->nr_dirtied = 0; 1663 if (mdtc) 1664 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1665 current->nr_dirtied_pause = min(intv, m_intv); 1666 break; 1667 } 1668 1669 if (unlikely(!writeback_in_progress(wb))) 1670 wb_start_background_writeback(wb); 1671 1672 /* 1673 * Calculate global domain's pos_ratio and select the 1674 * global dtc by default. 1675 */ 1676 if (!strictlimit) 1677 wb_dirty_limits(gdtc); 1678 1679 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1680 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1681 1682 wb_position_ratio(gdtc); 1683 sdtc = gdtc; 1684 1685 if (mdtc) { 1686 /* 1687 * If memcg domain is in effect, calculate its 1688 * pos_ratio. @wb should satisfy constraints from 1689 * both global and memcg domains. Choose the one 1690 * w/ lower pos_ratio. 1691 */ 1692 if (!strictlimit) 1693 wb_dirty_limits(mdtc); 1694 1695 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1696 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1697 1698 wb_position_ratio(mdtc); 1699 if (mdtc->pos_ratio < gdtc->pos_ratio) 1700 sdtc = mdtc; 1701 } 1702 1703 if (dirty_exceeded && !wb->dirty_exceeded) 1704 wb->dirty_exceeded = 1; 1705 1706 if (time_is_before_jiffies(wb->bw_time_stamp + 1707 BANDWIDTH_INTERVAL)) { 1708 spin_lock(&wb->list_lock); 1709 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1710 spin_unlock(&wb->list_lock); 1711 } 1712 1713 /* throttle according to the chosen dtc */ 1714 dirty_ratelimit = wb->dirty_ratelimit; 1715 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1716 RATELIMIT_CALC_SHIFT; 1717 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1718 min_pause = wb_min_pause(wb, max_pause, 1719 task_ratelimit, dirty_ratelimit, 1720 &nr_dirtied_pause); 1721 1722 if (unlikely(task_ratelimit == 0)) { 1723 period = max_pause; 1724 pause = max_pause; 1725 goto pause; 1726 } 1727 period = HZ * pages_dirtied / task_ratelimit; 1728 pause = period; 1729 if (current->dirty_paused_when) 1730 pause -= now - current->dirty_paused_when; 1731 /* 1732 * For less than 1s think time (ext3/4 may block the dirtier 1733 * for up to 800ms from time to time on 1-HDD; so does xfs, 1734 * however at much less frequency), try to compensate it in 1735 * future periods by updating the virtual time; otherwise just 1736 * do a reset, as it may be a light dirtier. 1737 */ 1738 if (pause < min_pause) { 1739 trace_balance_dirty_pages(wb, 1740 sdtc->thresh, 1741 sdtc->bg_thresh, 1742 sdtc->dirty, 1743 sdtc->wb_thresh, 1744 sdtc->wb_dirty, 1745 dirty_ratelimit, 1746 task_ratelimit, 1747 pages_dirtied, 1748 period, 1749 min(pause, 0L), 1750 start_time); 1751 if (pause < -HZ) { 1752 current->dirty_paused_when = now; 1753 current->nr_dirtied = 0; 1754 } else if (period) { 1755 current->dirty_paused_when += period; 1756 current->nr_dirtied = 0; 1757 } else if (current->nr_dirtied_pause <= pages_dirtied) 1758 current->nr_dirtied_pause += pages_dirtied; 1759 break; 1760 } 1761 if (unlikely(pause > max_pause)) { 1762 /* for occasional dropped task_ratelimit */ 1763 now += min(pause - max_pause, max_pause); 1764 pause = max_pause; 1765 } 1766 1767 pause: 1768 trace_balance_dirty_pages(wb, 1769 sdtc->thresh, 1770 sdtc->bg_thresh, 1771 sdtc->dirty, 1772 sdtc->wb_thresh, 1773 sdtc->wb_dirty, 1774 dirty_ratelimit, 1775 task_ratelimit, 1776 pages_dirtied, 1777 period, 1778 pause, 1779 start_time); 1780 __set_current_state(TASK_KILLABLE); 1781 wb->dirty_sleep = now; 1782 io_schedule_timeout(pause); 1783 1784 current->dirty_paused_when = now + pause; 1785 current->nr_dirtied = 0; 1786 current->nr_dirtied_pause = nr_dirtied_pause; 1787 1788 /* 1789 * This is typically equal to (dirty < thresh) and can also 1790 * keep "1000+ dd on a slow USB stick" under control. 1791 */ 1792 if (task_ratelimit) 1793 break; 1794 1795 /* 1796 * In the case of an unresponding NFS server and the NFS dirty 1797 * pages exceeds dirty_thresh, give the other good wb's a pipe 1798 * to go through, so that tasks on them still remain responsive. 1799 * 1800 * In theory 1 page is enough to keep the comsumer-producer 1801 * pipe going: the flusher cleans 1 page => the task dirties 1 1802 * more page. However wb_dirty has accounting errors. So use 1803 * the larger and more IO friendly wb_stat_error. 1804 */ 1805 if (sdtc->wb_dirty <= wb_stat_error(wb)) 1806 break; 1807 1808 if (fatal_signal_pending(current)) 1809 break; 1810 } 1811 1812 if (!dirty_exceeded && wb->dirty_exceeded) 1813 wb->dirty_exceeded = 0; 1814 1815 if (writeback_in_progress(wb)) 1816 return; 1817 1818 /* 1819 * In laptop mode, we wait until hitting the higher threshold before 1820 * starting background writeout, and then write out all the way down 1821 * to the lower threshold. So slow writers cause minimal disk activity. 1822 * 1823 * In normal mode, we start background writeout at the lower 1824 * background_thresh, to keep the amount of dirty memory low. 1825 */ 1826 if (laptop_mode) 1827 return; 1828 1829 if (nr_reclaimable > gdtc->bg_thresh) 1830 wb_start_background_writeback(wb); 1831 } 1832 1833 static DEFINE_PER_CPU(int, bdp_ratelimits); 1834 1835 /* 1836 * Normal tasks are throttled by 1837 * loop { 1838 * dirty tsk->nr_dirtied_pause pages; 1839 * take a snap in balance_dirty_pages(); 1840 * } 1841 * However there is a worst case. If every task exit immediately when dirtied 1842 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1843 * called to throttle the page dirties. The solution is to save the not yet 1844 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1845 * randomly into the running tasks. This works well for the above worst case, 1846 * as the new task will pick up and accumulate the old task's leaked dirty 1847 * count and eventually get throttled. 1848 */ 1849 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1850 1851 /** 1852 * balance_dirty_pages_ratelimited - balance dirty memory state 1853 * @mapping: address_space which was dirtied 1854 * 1855 * Processes which are dirtying memory should call in here once for each page 1856 * which was newly dirtied. The function will periodically check the system's 1857 * dirty state and will initiate writeback if needed. 1858 * 1859 * On really big machines, get_writeback_state is expensive, so try to avoid 1860 * calling it too often (ratelimiting). But once we're over the dirty memory 1861 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1862 * from overshooting the limit by (ratelimit_pages) each. 1863 */ 1864 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1865 { 1866 struct inode *inode = mapping->host; 1867 struct backing_dev_info *bdi = inode_to_bdi(inode); 1868 struct bdi_writeback *wb = NULL; 1869 int ratelimit; 1870 int *p; 1871 1872 if (!bdi_cap_account_dirty(bdi)) 1873 return; 1874 1875 if (inode_cgwb_enabled(inode)) 1876 wb = wb_get_create_current(bdi, GFP_KERNEL); 1877 if (!wb) 1878 wb = &bdi->wb; 1879 1880 ratelimit = current->nr_dirtied_pause; 1881 if (wb->dirty_exceeded) 1882 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1883 1884 preempt_disable(); 1885 /* 1886 * This prevents one CPU to accumulate too many dirtied pages without 1887 * calling into balance_dirty_pages(), which can happen when there are 1888 * 1000+ tasks, all of them start dirtying pages at exactly the same 1889 * time, hence all honoured too large initial task->nr_dirtied_pause. 1890 */ 1891 p = this_cpu_ptr(&bdp_ratelimits); 1892 if (unlikely(current->nr_dirtied >= ratelimit)) 1893 *p = 0; 1894 else if (unlikely(*p >= ratelimit_pages)) { 1895 *p = 0; 1896 ratelimit = 0; 1897 } 1898 /* 1899 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1900 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1901 * the dirty throttling and livelock other long-run dirtiers. 1902 */ 1903 p = this_cpu_ptr(&dirty_throttle_leaks); 1904 if (*p > 0 && current->nr_dirtied < ratelimit) { 1905 unsigned long nr_pages_dirtied; 1906 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1907 *p -= nr_pages_dirtied; 1908 current->nr_dirtied += nr_pages_dirtied; 1909 } 1910 preempt_enable(); 1911 1912 if (unlikely(current->nr_dirtied >= ratelimit)) 1913 balance_dirty_pages(mapping, wb, current->nr_dirtied); 1914 1915 wb_put(wb); 1916 } 1917 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1918 1919 /** 1920 * wb_over_bg_thresh - does @wb need to be written back? 1921 * @wb: bdi_writeback of interest 1922 * 1923 * Determines whether background writeback should keep writing @wb or it's 1924 * clean enough. Returns %true if writeback should continue. 1925 */ 1926 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1927 { 1928 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1929 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1930 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1931 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1932 &mdtc_stor : NULL; 1933 1934 /* 1935 * Similar to balance_dirty_pages() but ignores pages being written 1936 * as we're trying to decide whether to put more under writeback. 1937 */ 1938 gdtc->avail = global_dirtyable_memory(); 1939 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) + 1940 global_node_page_state(NR_UNSTABLE_NFS); 1941 domain_dirty_limits(gdtc); 1942 1943 if (gdtc->dirty > gdtc->bg_thresh) 1944 return true; 1945 1946 if (wb_stat(wb, WB_RECLAIMABLE) > 1947 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) 1948 return true; 1949 1950 if (mdtc) { 1951 unsigned long filepages, headroom, writeback; 1952 1953 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1954 &writeback); 1955 mdtc_calc_avail(mdtc, filepages, headroom); 1956 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1957 1958 if (mdtc->dirty > mdtc->bg_thresh) 1959 return true; 1960 1961 if (wb_stat(wb, WB_RECLAIMABLE) > 1962 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) 1963 return true; 1964 } 1965 1966 return false; 1967 } 1968 1969 /* 1970 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1971 */ 1972 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1973 void __user *buffer, size_t *length, loff_t *ppos) 1974 { 1975 proc_dointvec(table, write, buffer, length, ppos); 1976 return 0; 1977 } 1978 1979 #ifdef CONFIG_BLOCK 1980 void laptop_mode_timer_fn(unsigned long data) 1981 { 1982 struct request_queue *q = (struct request_queue *)data; 1983 int nr_pages = global_node_page_state(NR_FILE_DIRTY) + 1984 global_node_page_state(NR_UNSTABLE_NFS); 1985 struct bdi_writeback *wb; 1986 1987 /* 1988 * We want to write everything out, not just down to the dirty 1989 * threshold 1990 */ 1991 if (!bdi_has_dirty_io(&q->backing_dev_info)) 1992 return; 1993 1994 rcu_read_lock(); 1995 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node) 1996 if (wb_has_dirty_io(wb)) 1997 wb_start_writeback(wb, nr_pages, true, 1998 WB_REASON_LAPTOP_TIMER); 1999 rcu_read_unlock(); 2000 } 2001 2002 /* 2003 * We've spun up the disk and we're in laptop mode: schedule writeback 2004 * of all dirty data a few seconds from now. If the flush is already scheduled 2005 * then push it back - the user is still using the disk. 2006 */ 2007 void laptop_io_completion(struct backing_dev_info *info) 2008 { 2009 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2010 } 2011 2012 /* 2013 * We're in laptop mode and we've just synced. The sync's writes will have 2014 * caused another writeback to be scheduled by laptop_io_completion. 2015 * Nothing needs to be written back anymore, so we unschedule the writeback. 2016 */ 2017 void laptop_sync_completion(void) 2018 { 2019 struct backing_dev_info *bdi; 2020 2021 rcu_read_lock(); 2022 2023 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2024 del_timer(&bdi->laptop_mode_wb_timer); 2025 2026 rcu_read_unlock(); 2027 } 2028 #endif 2029 2030 /* 2031 * If ratelimit_pages is too high then we can get into dirty-data overload 2032 * if a large number of processes all perform writes at the same time. 2033 * If it is too low then SMP machines will call the (expensive) 2034 * get_writeback_state too often. 2035 * 2036 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2037 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2038 * thresholds. 2039 */ 2040 2041 void writeback_set_ratelimit(void) 2042 { 2043 struct wb_domain *dom = &global_wb_domain; 2044 unsigned long background_thresh; 2045 unsigned long dirty_thresh; 2046 2047 global_dirty_limits(&background_thresh, &dirty_thresh); 2048 dom->dirty_limit = dirty_thresh; 2049 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2050 if (ratelimit_pages < 16) 2051 ratelimit_pages = 16; 2052 } 2053 2054 static int page_writeback_cpu_online(unsigned int cpu) 2055 { 2056 writeback_set_ratelimit(); 2057 return 0; 2058 } 2059 2060 /* 2061 * Called early on to tune the page writeback dirty limits. 2062 * 2063 * We used to scale dirty pages according to how total memory 2064 * related to pages that could be allocated for buffers (by 2065 * comparing nr_free_buffer_pages() to vm_total_pages. 2066 * 2067 * However, that was when we used "dirty_ratio" to scale with 2068 * all memory, and we don't do that any more. "dirty_ratio" 2069 * is now applied to total non-HIGHPAGE memory (by subtracting 2070 * totalhigh_pages from vm_total_pages), and as such we can't 2071 * get into the old insane situation any more where we had 2072 * large amounts of dirty pages compared to a small amount of 2073 * non-HIGHMEM memory. 2074 * 2075 * But we might still want to scale the dirty_ratio by how 2076 * much memory the box has.. 2077 */ 2078 void __init page_writeback_init(void) 2079 { 2080 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2081 2082 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2083 page_writeback_cpu_online, NULL); 2084 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2085 page_writeback_cpu_online); 2086 } 2087 2088 /** 2089 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2090 * @mapping: address space structure to write 2091 * @start: starting page index 2092 * @end: ending page index (inclusive) 2093 * 2094 * This function scans the page range from @start to @end (inclusive) and tags 2095 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2096 * that write_cache_pages (or whoever calls this function) will then use 2097 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2098 * used to avoid livelocking of writeback by a process steadily creating new 2099 * dirty pages in the file (thus it is important for this function to be quick 2100 * so that it can tag pages faster than a dirtying process can create them). 2101 */ 2102 /* 2103 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 2104 */ 2105 void tag_pages_for_writeback(struct address_space *mapping, 2106 pgoff_t start, pgoff_t end) 2107 { 2108 #define WRITEBACK_TAG_BATCH 4096 2109 unsigned long tagged = 0; 2110 struct radix_tree_iter iter; 2111 void **slot; 2112 2113 spin_lock_irq(&mapping->tree_lock); 2114 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start, 2115 PAGECACHE_TAG_DIRTY) { 2116 if (iter.index > end) 2117 break; 2118 radix_tree_iter_tag_set(&mapping->page_tree, &iter, 2119 PAGECACHE_TAG_TOWRITE); 2120 tagged++; 2121 if ((tagged % WRITEBACK_TAG_BATCH) != 0) 2122 continue; 2123 slot = radix_tree_iter_resume(slot, &iter); 2124 spin_unlock_irq(&mapping->tree_lock); 2125 cond_resched(); 2126 spin_lock_irq(&mapping->tree_lock); 2127 } 2128 spin_unlock_irq(&mapping->tree_lock); 2129 } 2130 EXPORT_SYMBOL(tag_pages_for_writeback); 2131 2132 /** 2133 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2134 * @mapping: address space structure to write 2135 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2136 * @writepage: function called for each page 2137 * @data: data passed to writepage function 2138 * 2139 * If a page is already under I/O, write_cache_pages() skips it, even 2140 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2141 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2142 * and msync() need to guarantee that all the data which was dirty at the time 2143 * the call was made get new I/O started against them. If wbc->sync_mode is 2144 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2145 * existing IO to complete. 2146 * 2147 * To avoid livelocks (when other process dirties new pages), we first tag 2148 * pages which should be written back with TOWRITE tag and only then start 2149 * writing them. For data-integrity sync we have to be careful so that we do 2150 * not miss some pages (e.g., because some other process has cleared TOWRITE 2151 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2152 * by the process clearing the DIRTY tag (and submitting the page for IO). 2153 */ 2154 int write_cache_pages(struct address_space *mapping, 2155 struct writeback_control *wbc, writepage_t writepage, 2156 void *data) 2157 { 2158 int ret = 0; 2159 int done = 0; 2160 struct pagevec pvec; 2161 int nr_pages; 2162 pgoff_t uninitialized_var(writeback_index); 2163 pgoff_t index; 2164 pgoff_t end; /* Inclusive */ 2165 pgoff_t done_index; 2166 int cycled; 2167 int range_whole = 0; 2168 int tag; 2169 2170 pagevec_init(&pvec, 0); 2171 if (wbc->range_cyclic) { 2172 writeback_index = mapping->writeback_index; /* prev offset */ 2173 index = writeback_index; 2174 if (index == 0) 2175 cycled = 1; 2176 else 2177 cycled = 0; 2178 end = -1; 2179 } else { 2180 index = wbc->range_start >> PAGE_SHIFT; 2181 end = wbc->range_end >> PAGE_SHIFT; 2182 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2183 range_whole = 1; 2184 cycled = 1; /* ignore range_cyclic tests */ 2185 } 2186 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2187 tag = PAGECACHE_TAG_TOWRITE; 2188 else 2189 tag = PAGECACHE_TAG_DIRTY; 2190 retry: 2191 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2192 tag_pages_for_writeback(mapping, index, end); 2193 done_index = index; 2194 while (!done && (index <= end)) { 2195 int i; 2196 2197 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2198 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2199 if (nr_pages == 0) 2200 break; 2201 2202 for (i = 0; i < nr_pages; i++) { 2203 struct page *page = pvec.pages[i]; 2204 2205 /* 2206 * At this point, the page may be truncated or 2207 * invalidated (changing page->mapping to NULL), or 2208 * even swizzled back from swapper_space to tmpfs file 2209 * mapping. However, page->index will not change 2210 * because we have a reference on the page. 2211 */ 2212 if (page->index > end) { 2213 /* 2214 * can't be range_cyclic (1st pass) because 2215 * end == -1 in that case. 2216 */ 2217 done = 1; 2218 break; 2219 } 2220 2221 done_index = page->index; 2222 2223 lock_page(page); 2224 2225 /* 2226 * Page truncated or invalidated. We can freely skip it 2227 * then, even for data integrity operations: the page 2228 * has disappeared concurrently, so there could be no 2229 * real expectation of this data interity operation 2230 * even if there is now a new, dirty page at the same 2231 * pagecache address. 2232 */ 2233 if (unlikely(page->mapping != mapping)) { 2234 continue_unlock: 2235 unlock_page(page); 2236 continue; 2237 } 2238 2239 if (!PageDirty(page)) { 2240 /* someone wrote it for us */ 2241 goto continue_unlock; 2242 } 2243 2244 if (PageWriteback(page)) { 2245 if (wbc->sync_mode != WB_SYNC_NONE) 2246 wait_on_page_writeback(page); 2247 else 2248 goto continue_unlock; 2249 } 2250 2251 BUG_ON(PageWriteback(page)); 2252 if (!clear_page_dirty_for_io(page)) 2253 goto continue_unlock; 2254 2255 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2256 ret = (*writepage)(page, wbc, data); 2257 if (unlikely(ret)) { 2258 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2259 unlock_page(page); 2260 ret = 0; 2261 } else { 2262 /* 2263 * done_index is set past this page, 2264 * so media errors will not choke 2265 * background writeout for the entire 2266 * file. This has consequences for 2267 * range_cyclic semantics (ie. it may 2268 * not be suitable for data integrity 2269 * writeout). 2270 */ 2271 done_index = page->index + 1; 2272 done = 1; 2273 break; 2274 } 2275 } 2276 2277 /* 2278 * We stop writing back only if we are not doing 2279 * integrity sync. In case of integrity sync we have to 2280 * keep going until we have written all the pages 2281 * we tagged for writeback prior to entering this loop. 2282 */ 2283 if (--wbc->nr_to_write <= 0 && 2284 wbc->sync_mode == WB_SYNC_NONE) { 2285 done = 1; 2286 break; 2287 } 2288 } 2289 pagevec_release(&pvec); 2290 cond_resched(); 2291 } 2292 if (!cycled && !done) { 2293 /* 2294 * range_cyclic: 2295 * We hit the last page and there is more work to be done: wrap 2296 * back to the start of the file 2297 */ 2298 cycled = 1; 2299 index = 0; 2300 end = writeback_index - 1; 2301 goto retry; 2302 } 2303 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2304 mapping->writeback_index = done_index; 2305 2306 return ret; 2307 } 2308 EXPORT_SYMBOL(write_cache_pages); 2309 2310 /* 2311 * Function used by generic_writepages to call the real writepage 2312 * function and set the mapping flags on error 2313 */ 2314 static int __writepage(struct page *page, struct writeback_control *wbc, 2315 void *data) 2316 { 2317 struct address_space *mapping = data; 2318 int ret = mapping->a_ops->writepage(page, wbc); 2319 mapping_set_error(mapping, ret); 2320 return ret; 2321 } 2322 2323 /** 2324 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2325 * @mapping: address space structure to write 2326 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2327 * 2328 * This is a library function, which implements the writepages() 2329 * address_space_operation. 2330 */ 2331 int generic_writepages(struct address_space *mapping, 2332 struct writeback_control *wbc) 2333 { 2334 struct blk_plug plug; 2335 int ret; 2336 2337 /* deal with chardevs and other special file */ 2338 if (!mapping->a_ops->writepage) 2339 return 0; 2340 2341 blk_start_plug(&plug); 2342 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2343 blk_finish_plug(&plug); 2344 return ret; 2345 } 2346 2347 EXPORT_SYMBOL(generic_writepages); 2348 2349 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2350 { 2351 int ret; 2352 2353 if (wbc->nr_to_write <= 0) 2354 return 0; 2355 if (mapping->a_ops->writepages) 2356 ret = mapping->a_ops->writepages(mapping, wbc); 2357 else 2358 ret = generic_writepages(mapping, wbc); 2359 return ret; 2360 } 2361 2362 /** 2363 * write_one_page - write out a single page and optionally wait on I/O 2364 * @page: the page to write 2365 * @wait: if true, wait on writeout 2366 * 2367 * The page must be locked by the caller and will be unlocked upon return. 2368 * 2369 * write_one_page() returns a negative error code if I/O failed. 2370 */ 2371 int write_one_page(struct page *page, int wait) 2372 { 2373 struct address_space *mapping = page->mapping; 2374 int ret = 0; 2375 struct writeback_control wbc = { 2376 .sync_mode = WB_SYNC_ALL, 2377 .nr_to_write = 1, 2378 }; 2379 2380 BUG_ON(!PageLocked(page)); 2381 2382 if (wait) 2383 wait_on_page_writeback(page); 2384 2385 if (clear_page_dirty_for_io(page)) { 2386 get_page(page); 2387 ret = mapping->a_ops->writepage(page, &wbc); 2388 if (ret == 0 && wait) { 2389 wait_on_page_writeback(page); 2390 if (PageError(page)) 2391 ret = -EIO; 2392 } 2393 put_page(page); 2394 } else { 2395 unlock_page(page); 2396 } 2397 return ret; 2398 } 2399 EXPORT_SYMBOL(write_one_page); 2400 2401 /* 2402 * For address_spaces which do not use buffers nor write back. 2403 */ 2404 int __set_page_dirty_no_writeback(struct page *page) 2405 { 2406 if (!PageDirty(page)) 2407 return !TestSetPageDirty(page); 2408 return 0; 2409 } 2410 2411 /* 2412 * Helper function for set_page_dirty family. 2413 * 2414 * Caller must hold lock_page_memcg(). 2415 * 2416 * NOTE: This relies on being atomic wrt interrupts. 2417 */ 2418 void account_page_dirtied(struct page *page, struct address_space *mapping) 2419 { 2420 struct inode *inode = mapping->host; 2421 2422 trace_writeback_dirty_page(page, mapping); 2423 2424 if (mapping_cap_account_dirty(mapping)) { 2425 struct bdi_writeback *wb; 2426 2427 inode_attach_wb(inode, page); 2428 wb = inode_to_wb(inode); 2429 2430 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY); 2431 __inc_node_page_state(page, NR_FILE_DIRTY); 2432 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2433 __inc_node_page_state(page, NR_DIRTIED); 2434 __inc_wb_stat(wb, WB_RECLAIMABLE); 2435 __inc_wb_stat(wb, WB_DIRTIED); 2436 task_io_account_write(PAGE_SIZE); 2437 current->nr_dirtied++; 2438 this_cpu_inc(bdp_ratelimits); 2439 } 2440 } 2441 EXPORT_SYMBOL(account_page_dirtied); 2442 2443 /* 2444 * Helper function for deaccounting dirty page without writeback. 2445 * 2446 * Caller must hold lock_page_memcg(). 2447 */ 2448 void account_page_cleaned(struct page *page, struct address_space *mapping, 2449 struct bdi_writeback *wb) 2450 { 2451 if (mapping_cap_account_dirty(mapping)) { 2452 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY); 2453 dec_node_page_state(page, NR_FILE_DIRTY); 2454 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2455 dec_wb_stat(wb, WB_RECLAIMABLE); 2456 task_io_account_cancelled_write(PAGE_SIZE); 2457 } 2458 } 2459 2460 /* 2461 * For address_spaces which do not use buffers. Just tag the page as dirty in 2462 * its radix tree. 2463 * 2464 * This is also used when a single buffer is being dirtied: we want to set the 2465 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2466 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2467 * 2468 * The caller must ensure this doesn't race with truncation. Most will simply 2469 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2470 * the pte lock held, which also locks out truncation. 2471 */ 2472 int __set_page_dirty_nobuffers(struct page *page) 2473 { 2474 lock_page_memcg(page); 2475 if (!TestSetPageDirty(page)) { 2476 struct address_space *mapping = page_mapping(page); 2477 unsigned long flags; 2478 2479 if (!mapping) { 2480 unlock_page_memcg(page); 2481 return 1; 2482 } 2483 2484 spin_lock_irqsave(&mapping->tree_lock, flags); 2485 BUG_ON(page_mapping(page) != mapping); 2486 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2487 account_page_dirtied(page, mapping); 2488 radix_tree_tag_set(&mapping->page_tree, page_index(page), 2489 PAGECACHE_TAG_DIRTY); 2490 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2491 unlock_page_memcg(page); 2492 2493 if (mapping->host) { 2494 /* !PageAnon && !swapper_space */ 2495 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2496 } 2497 return 1; 2498 } 2499 unlock_page_memcg(page); 2500 return 0; 2501 } 2502 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2503 2504 /* 2505 * Call this whenever redirtying a page, to de-account the dirty counters 2506 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2507 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2508 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2509 * control. 2510 */ 2511 void account_page_redirty(struct page *page) 2512 { 2513 struct address_space *mapping = page->mapping; 2514 2515 if (mapping && mapping_cap_account_dirty(mapping)) { 2516 struct inode *inode = mapping->host; 2517 struct bdi_writeback *wb; 2518 bool locked; 2519 2520 wb = unlocked_inode_to_wb_begin(inode, &locked); 2521 current->nr_dirtied--; 2522 dec_node_page_state(page, NR_DIRTIED); 2523 dec_wb_stat(wb, WB_DIRTIED); 2524 unlocked_inode_to_wb_end(inode, locked); 2525 } 2526 } 2527 EXPORT_SYMBOL(account_page_redirty); 2528 2529 /* 2530 * When a writepage implementation decides that it doesn't want to write this 2531 * page for some reason, it should redirty the locked page via 2532 * redirty_page_for_writepage() and it should then unlock the page and return 0 2533 */ 2534 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2535 { 2536 int ret; 2537 2538 wbc->pages_skipped++; 2539 ret = __set_page_dirty_nobuffers(page); 2540 account_page_redirty(page); 2541 return ret; 2542 } 2543 EXPORT_SYMBOL(redirty_page_for_writepage); 2544 2545 /* 2546 * Dirty a page. 2547 * 2548 * For pages with a mapping this should be done under the page lock 2549 * for the benefit of asynchronous memory errors who prefer a consistent 2550 * dirty state. This rule can be broken in some special cases, 2551 * but should be better not to. 2552 * 2553 * If the mapping doesn't provide a set_page_dirty a_op, then 2554 * just fall through and assume that it wants buffer_heads. 2555 */ 2556 int set_page_dirty(struct page *page) 2557 { 2558 struct address_space *mapping = page_mapping(page); 2559 2560 page = compound_head(page); 2561 if (likely(mapping)) { 2562 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2563 /* 2564 * readahead/lru_deactivate_page could remain 2565 * PG_readahead/PG_reclaim due to race with end_page_writeback 2566 * About readahead, if the page is written, the flags would be 2567 * reset. So no problem. 2568 * About lru_deactivate_page, if the page is redirty, the flag 2569 * will be reset. So no problem. but if the page is used by readahead 2570 * it will confuse readahead and make it restart the size rampup 2571 * process. But it's a trivial problem. 2572 */ 2573 if (PageReclaim(page)) 2574 ClearPageReclaim(page); 2575 #ifdef CONFIG_BLOCK 2576 if (!spd) 2577 spd = __set_page_dirty_buffers; 2578 #endif 2579 return (*spd)(page); 2580 } 2581 if (!PageDirty(page)) { 2582 if (!TestSetPageDirty(page)) 2583 return 1; 2584 } 2585 return 0; 2586 } 2587 EXPORT_SYMBOL(set_page_dirty); 2588 2589 /* 2590 * set_page_dirty() is racy if the caller has no reference against 2591 * page->mapping->host, and if the page is unlocked. This is because another 2592 * CPU could truncate the page off the mapping and then free the mapping. 2593 * 2594 * Usually, the page _is_ locked, or the caller is a user-space process which 2595 * holds a reference on the inode by having an open file. 2596 * 2597 * In other cases, the page should be locked before running set_page_dirty(). 2598 */ 2599 int set_page_dirty_lock(struct page *page) 2600 { 2601 int ret; 2602 2603 lock_page(page); 2604 ret = set_page_dirty(page); 2605 unlock_page(page); 2606 return ret; 2607 } 2608 EXPORT_SYMBOL(set_page_dirty_lock); 2609 2610 /* 2611 * This cancels just the dirty bit on the kernel page itself, it does NOT 2612 * actually remove dirty bits on any mmap's that may be around. It also 2613 * leaves the page tagged dirty, so any sync activity will still find it on 2614 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2615 * look at the dirty bits in the VM. 2616 * 2617 * Doing this should *normally* only ever be done when a page is truncated, 2618 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2619 * this when it notices that somebody has cleaned out all the buffers on a 2620 * page without actually doing it through the VM. Can you say "ext3 is 2621 * horribly ugly"? Thought you could. 2622 */ 2623 void cancel_dirty_page(struct page *page) 2624 { 2625 struct address_space *mapping = page_mapping(page); 2626 2627 if (mapping_cap_account_dirty(mapping)) { 2628 struct inode *inode = mapping->host; 2629 struct bdi_writeback *wb; 2630 bool locked; 2631 2632 lock_page_memcg(page); 2633 wb = unlocked_inode_to_wb_begin(inode, &locked); 2634 2635 if (TestClearPageDirty(page)) 2636 account_page_cleaned(page, mapping, wb); 2637 2638 unlocked_inode_to_wb_end(inode, locked); 2639 unlock_page_memcg(page); 2640 } else { 2641 ClearPageDirty(page); 2642 } 2643 } 2644 EXPORT_SYMBOL(cancel_dirty_page); 2645 2646 /* 2647 * Clear a page's dirty flag, while caring for dirty memory accounting. 2648 * Returns true if the page was previously dirty. 2649 * 2650 * This is for preparing to put the page under writeout. We leave the page 2651 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2652 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2653 * implementation will run either set_page_writeback() or set_page_dirty(), 2654 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2655 * back into sync. 2656 * 2657 * This incoherency between the page's dirty flag and radix-tree tag is 2658 * unfortunate, but it only exists while the page is locked. 2659 */ 2660 int clear_page_dirty_for_io(struct page *page) 2661 { 2662 struct address_space *mapping = page_mapping(page); 2663 int ret = 0; 2664 2665 BUG_ON(!PageLocked(page)); 2666 2667 if (mapping && mapping_cap_account_dirty(mapping)) { 2668 struct inode *inode = mapping->host; 2669 struct bdi_writeback *wb; 2670 bool locked; 2671 2672 /* 2673 * Yes, Virginia, this is indeed insane. 2674 * 2675 * We use this sequence to make sure that 2676 * (a) we account for dirty stats properly 2677 * (b) we tell the low-level filesystem to 2678 * mark the whole page dirty if it was 2679 * dirty in a pagetable. Only to then 2680 * (c) clean the page again and return 1 to 2681 * cause the writeback. 2682 * 2683 * This way we avoid all nasty races with the 2684 * dirty bit in multiple places and clearing 2685 * them concurrently from different threads. 2686 * 2687 * Note! Normally the "set_page_dirty(page)" 2688 * has no effect on the actual dirty bit - since 2689 * that will already usually be set. But we 2690 * need the side effects, and it can help us 2691 * avoid races. 2692 * 2693 * We basically use the page "master dirty bit" 2694 * as a serialization point for all the different 2695 * threads doing their things. 2696 */ 2697 if (page_mkclean(page)) 2698 set_page_dirty(page); 2699 /* 2700 * We carefully synchronise fault handlers against 2701 * installing a dirty pte and marking the page dirty 2702 * at this point. We do this by having them hold the 2703 * page lock while dirtying the page, and pages are 2704 * always locked coming in here, so we get the desired 2705 * exclusion. 2706 */ 2707 wb = unlocked_inode_to_wb_begin(inode, &locked); 2708 if (TestClearPageDirty(page)) { 2709 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY); 2710 dec_node_page_state(page, NR_FILE_DIRTY); 2711 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2712 dec_wb_stat(wb, WB_RECLAIMABLE); 2713 ret = 1; 2714 } 2715 unlocked_inode_to_wb_end(inode, locked); 2716 return ret; 2717 } 2718 return TestClearPageDirty(page); 2719 } 2720 EXPORT_SYMBOL(clear_page_dirty_for_io); 2721 2722 int test_clear_page_writeback(struct page *page) 2723 { 2724 struct address_space *mapping = page_mapping(page); 2725 int ret; 2726 2727 lock_page_memcg(page); 2728 if (mapping && mapping_use_writeback_tags(mapping)) { 2729 struct inode *inode = mapping->host; 2730 struct backing_dev_info *bdi = inode_to_bdi(inode); 2731 unsigned long flags; 2732 2733 spin_lock_irqsave(&mapping->tree_lock, flags); 2734 ret = TestClearPageWriteback(page); 2735 if (ret) { 2736 radix_tree_tag_clear(&mapping->page_tree, 2737 page_index(page), 2738 PAGECACHE_TAG_WRITEBACK); 2739 if (bdi_cap_account_writeback(bdi)) { 2740 struct bdi_writeback *wb = inode_to_wb(inode); 2741 2742 __dec_wb_stat(wb, WB_WRITEBACK); 2743 __wb_writeout_inc(wb); 2744 } 2745 } 2746 2747 if (mapping->host && !mapping_tagged(mapping, 2748 PAGECACHE_TAG_WRITEBACK)) 2749 sb_clear_inode_writeback(mapping->host); 2750 2751 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2752 } else { 2753 ret = TestClearPageWriteback(page); 2754 } 2755 if (ret) { 2756 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); 2757 dec_node_page_state(page, NR_WRITEBACK); 2758 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2759 inc_node_page_state(page, NR_WRITTEN); 2760 } 2761 unlock_page_memcg(page); 2762 return ret; 2763 } 2764 2765 int __test_set_page_writeback(struct page *page, bool keep_write) 2766 { 2767 struct address_space *mapping = page_mapping(page); 2768 int ret; 2769 2770 lock_page_memcg(page); 2771 if (mapping && mapping_use_writeback_tags(mapping)) { 2772 struct inode *inode = mapping->host; 2773 struct backing_dev_info *bdi = inode_to_bdi(inode); 2774 unsigned long flags; 2775 2776 spin_lock_irqsave(&mapping->tree_lock, flags); 2777 ret = TestSetPageWriteback(page); 2778 if (!ret) { 2779 bool on_wblist; 2780 2781 on_wblist = mapping_tagged(mapping, 2782 PAGECACHE_TAG_WRITEBACK); 2783 2784 radix_tree_tag_set(&mapping->page_tree, 2785 page_index(page), 2786 PAGECACHE_TAG_WRITEBACK); 2787 if (bdi_cap_account_writeback(bdi)) 2788 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2789 2790 /* 2791 * We can come through here when swapping anonymous 2792 * pages, so we don't necessarily have an inode to track 2793 * for sync. 2794 */ 2795 if (mapping->host && !on_wblist) 2796 sb_mark_inode_writeback(mapping->host); 2797 } 2798 if (!PageDirty(page)) 2799 radix_tree_tag_clear(&mapping->page_tree, 2800 page_index(page), 2801 PAGECACHE_TAG_DIRTY); 2802 if (!keep_write) 2803 radix_tree_tag_clear(&mapping->page_tree, 2804 page_index(page), 2805 PAGECACHE_TAG_TOWRITE); 2806 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2807 } else { 2808 ret = TestSetPageWriteback(page); 2809 } 2810 if (!ret) { 2811 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); 2812 inc_node_page_state(page, NR_WRITEBACK); 2813 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2814 } 2815 unlock_page_memcg(page); 2816 return ret; 2817 2818 } 2819 EXPORT_SYMBOL(__test_set_page_writeback); 2820 2821 /* 2822 * Return true if any of the pages in the mapping are marked with the 2823 * passed tag. 2824 */ 2825 int mapping_tagged(struct address_space *mapping, int tag) 2826 { 2827 return radix_tree_tagged(&mapping->page_tree, tag); 2828 } 2829 EXPORT_SYMBOL(mapping_tagged); 2830 2831 /** 2832 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2833 * @page: The page to wait on. 2834 * 2835 * This function determines if the given page is related to a backing device 2836 * that requires page contents to be held stable during writeback. If so, then 2837 * it will wait for any pending writeback to complete. 2838 */ 2839 void wait_for_stable_page(struct page *page) 2840 { 2841 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2842 wait_on_page_writeback(page); 2843 } 2844 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2845