1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that makes the machine dump writes/reads and block dirtyings. 112 */ 113 int block_dump; 114 115 /* 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 117 * a full sync is triggered after this time elapses without any disk activity. 118 */ 119 int laptop_mode; 120 121 EXPORT_SYMBOL(laptop_mode); 122 123 /* End of sysctl-exported parameters */ 124 125 unsigned long global_dirty_limit; 126 127 /* 128 * Scale the writeback cache size proportional to the relative writeout speeds. 129 * 130 * We do this by keeping a floating proportion between BDIs, based on page 131 * writeback completions [end_page_writeback()]. Those devices that write out 132 * pages fastest will get the larger share, while the slower will get a smaller 133 * share. 134 * 135 * We use page writeout completions because we are interested in getting rid of 136 * dirty pages. Having them written out is the primary goal. 137 * 138 * We introduce a concept of time, a period over which we measure these events, 139 * because demand can/will vary over time. The length of this period itself is 140 * measured in page writeback completions. 141 * 142 */ 143 static struct fprop_global writeout_completions; 144 145 static void writeout_period(unsigned long t); 146 /* Timer for aging of writeout_completions */ 147 static struct timer_list writeout_period_timer = 148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); 149 static unsigned long writeout_period_time = 0; 150 151 /* 152 * Length of period for aging writeout fractions of bdis. This is an 153 * arbitrarily chosen number. The longer the period, the slower fractions will 154 * reflect changes in current writeout rate. 155 */ 156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 157 158 /* 159 * In a memory zone, there is a certain amount of pages we consider 160 * available for the page cache, which is essentially the number of 161 * free and reclaimable pages, minus some zone reserves to protect 162 * lowmem and the ability to uphold the zone's watermarks without 163 * requiring writeback. 164 * 165 * This number of dirtyable pages is the base value of which the 166 * user-configurable dirty ratio is the effictive number of pages that 167 * are allowed to be actually dirtied. Per individual zone, or 168 * globally by using the sum of dirtyable pages over all zones. 169 * 170 * Because the user is allowed to specify the dirty limit globally as 171 * absolute number of bytes, calculating the per-zone dirty limit can 172 * require translating the configured limit into a percentage of 173 * global dirtyable memory first. 174 */ 175 176 /** 177 * zone_dirtyable_memory - number of dirtyable pages in a zone 178 * @zone: the zone 179 * 180 * Returns the zone's number of pages potentially available for dirty 181 * page cache. This is the base value for the per-zone dirty limits. 182 */ 183 static unsigned long zone_dirtyable_memory(struct zone *zone) 184 { 185 unsigned long nr_pages; 186 187 nr_pages = zone_page_state(zone, NR_FREE_PAGES); 188 nr_pages -= min(nr_pages, zone->dirty_balance_reserve); 189 190 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); 191 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); 192 193 return nr_pages; 194 } 195 196 static unsigned long highmem_dirtyable_memory(unsigned long total) 197 { 198 #ifdef CONFIG_HIGHMEM 199 int node; 200 unsigned long x = 0; 201 202 for_each_node_state(node, N_HIGH_MEMORY) { 203 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 204 205 x += zone_dirtyable_memory(z); 206 } 207 /* 208 * Unreclaimable memory (kernel memory or anonymous memory 209 * without swap) can bring down the dirtyable pages below 210 * the zone's dirty balance reserve and the above calculation 211 * will underflow. However we still want to add in nodes 212 * which are below threshold (negative values) to get a more 213 * accurate calculation but make sure that the total never 214 * underflows. 215 */ 216 if ((long)x < 0) 217 x = 0; 218 219 /* 220 * Make sure that the number of highmem pages is never larger 221 * than the number of the total dirtyable memory. This can only 222 * occur in very strange VM situations but we want to make sure 223 * that this does not occur. 224 */ 225 return min(x, total); 226 #else 227 return 0; 228 #endif 229 } 230 231 /** 232 * global_dirtyable_memory - number of globally dirtyable pages 233 * 234 * Returns the global number of pages potentially available for dirty 235 * page cache. This is the base value for the global dirty limits. 236 */ 237 static unsigned long global_dirtyable_memory(void) 238 { 239 unsigned long x; 240 241 x = global_page_state(NR_FREE_PAGES); 242 x -= min(x, dirty_balance_reserve); 243 244 x += global_page_state(NR_INACTIVE_FILE); 245 x += global_page_state(NR_ACTIVE_FILE); 246 247 if (!vm_highmem_is_dirtyable) 248 x -= highmem_dirtyable_memory(x); 249 250 return x + 1; /* Ensure that we never return 0 */ 251 } 252 253 /* 254 * global_dirty_limits - background-writeback and dirty-throttling thresholds 255 * 256 * Calculate the dirty thresholds based on sysctl parameters 257 * - vm.dirty_background_ratio or vm.dirty_background_bytes 258 * - vm.dirty_ratio or vm.dirty_bytes 259 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 260 * real-time tasks. 261 */ 262 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 263 { 264 unsigned long background; 265 unsigned long dirty; 266 unsigned long uninitialized_var(available_memory); 267 struct task_struct *tsk; 268 269 if (!vm_dirty_bytes || !dirty_background_bytes) 270 available_memory = global_dirtyable_memory(); 271 272 if (vm_dirty_bytes) 273 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 274 else 275 dirty = (vm_dirty_ratio * available_memory) / 100; 276 277 if (dirty_background_bytes) 278 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 279 else 280 background = (dirty_background_ratio * available_memory) / 100; 281 282 if (background >= dirty) 283 background = dirty / 2; 284 tsk = current; 285 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 286 background += background / 4; 287 dirty += dirty / 4; 288 } 289 *pbackground = background; 290 *pdirty = dirty; 291 trace_global_dirty_state(background, dirty); 292 } 293 294 /** 295 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 296 * @zone: the zone 297 * 298 * Returns the maximum number of dirty pages allowed in a zone, based 299 * on the zone's dirtyable memory. 300 */ 301 static unsigned long zone_dirty_limit(struct zone *zone) 302 { 303 unsigned long zone_memory = zone_dirtyable_memory(zone); 304 struct task_struct *tsk = current; 305 unsigned long dirty; 306 307 if (vm_dirty_bytes) 308 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 309 zone_memory / global_dirtyable_memory(); 310 else 311 dirty = vm_dirty_ratio * zone_memory / 100; 312 313 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 314 dirty += dirty / 4; 315 316 return dirty; 317 } 318 319 /** 320 * zone_dirty_ok - tells whether a zone is within its dirty limits 321 * @zone: the zone to check 322 * 323 * Returns %true when the dirty pages in @zone are within the zone's 324 * dirty limit, %false if the limit is exceeded. 325 */ 326 bool zone_dirty_ok(struct zone *zone) 327 { 328 unsigned long limit = zone_dirty_limit(zone); 329 330 return zone_page_state(zone, NR_FILE_DIRTY) + 331 zone_page_state(zone, NR_UNSTABLE_NFS) + 332 zone_page_state(zone, NR_WRITEBACK) <= limit; 333 } 334 335 int dirty_background_ratio_handler(struct ctl_table *table, int write, 336 void __user *buffer, size_t *lenp, 337 loff_t *ppos) 338 { 339 int ret; 340 341 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 342 if (ret == 0 && write) 343 dirty_background_bytes = 0; 344 return ret; 345 } 346 347 int dirty_background_bytes_handler(struct ctl_table *table, int write, 348 void __user *buffer, size_t *lenp, 349 loff_t *ppos) 350 { 351 int ret; 352 353 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 354 if (ret == 0 && write) 355 dirty_background_ratio = 0; 356 return ret; 357 } 358 359 int dirty_ratio_handler(struct ctl_table *table, int write, 360 void __user *buffer, size_t *lenp, 361 loff_t *ppos) 362 { 363 int old_ratio = vm_dirty_ratio; 364 int ret; 365 366 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 367 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 368 writeback_set_ratelimit(); 369 vm_dirty_bytes = 0; 370 } 371 return ret; 372 } 373 374 int dirty_bytes_handler(struct ctl_table *table, int write, 375 void __user *buffer, size_t *lenp, 376 loff_t *ppos) 377 { 378 unsigned long old_bytes = vm_dirty_bytes; 379 int ret; 380 381 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 382 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 383 writeback_set_ratelimit(); 384 vm_dirty_ratio = 0; 385 } 386 return ret; 387 } 388 389 static unsigned long wp_next_time(unsigned long cur_time) 390 { 391 cur_time += VM_COMPLETIONS_PERIOD_LEN; 392 /* 0 has a special meaning... */ 393 if (!cur_time) 394 return 1; 395 return cur_time; 396 } 397 398 /* 399 * Increment the BDI's writeout completion count and the global writeout 400 * completion count. Called from test_clear_page_writeback(). 401 */ 402 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 403 { 404 __inc_bdi_stat(bdi, BDI_WRITTEN); 405 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions, 406 bdi->max_prop_frac); 407 /* First event after period switching was turned off? */ 408 if (!unlikely(writeout_period_time)) { 409 /* 410 * We can race with other __bdi_writeout_inc calls here but 411 * it does not cause any harm since the resulting time when 412 * timer will fire and what is in writeout_period_time will be 413 * roughly the same. 414 */ 415 writeout_period_time = wp_next_time(jiffies); 416 mod_timer(&writeout_period_timer, writeout_period_time); 417 } 418 } 419 420 void bdi_writeout_inc(struct backing_dev_info *bdi) 421 { 422 unsigned long flags; 423 424 local_irq_save(flags); 425 __bdi_writeout_inc(bdi); 426 local_irq_restore(flags); 427 } 428 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 429 430 /* 431 * Obtain an accurate fraction of the BDI's portion. 432 */ 433 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 434 long *numerator, long *denominator) 435 { 436 fprop_fraction_percpu(&writeout_completions, &bdi->completions, 437 numerator, denominator); 438 } 439 440 /* 441 * On idle system, we can be called long after we scheduled because we use 442 * deferred timers so count with missed periods. 443 */ 444 static void writeout_period(unsigned long t) 445 { 446 int miss_periods = (jiffies - writeout_period_time) / 447 VM_COMPLETIONS_PERIOD_LEN; 448 449 if (fprop_new_period(&writeout_completions, miss_periods + 1)) { 450 writeout_period_time = wp_next_time(writeout_period_time + 451 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 452 mod_timer(&writeout_period_timer, writeout_period_time); 453 } else { 454 /* 455 * Aging has zeroed all fractions. Stop wasting CPU on period 456 * updates. 457 */ 458 writeout_period_time = 0; 459 } 460 } 461 462 /* 463 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 464 * registered backing devices, which, for obvious reasons, can not 465 * exceed 100%. 466 */ 467 static unsigned int bdi_min_ratio; 468 469 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 470 { 471 int ret = 0; 472 473 spin_lock_bh(&bdi_lock); 474 if (min_ratio > bdi->max_ratio) { 475 ret = -EINVAL; 476 } else { 477 min_ratio -= bdi->min_ratio; 478 if (bdi_min_ratio + min_ratio < 100) { 479 bdi_min_ratio += min_ratio; 480 bdi->min_ratio += min_ratio; 481 } else { 482 ret = -EINVAL; 483 } 484 } 485 spin_unlock_bh(&bdi_lock); 486 487 return ret; 488 } 489 490 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 491 { 492 int ret = 0; 493 494 if (max_ratio > 100) 495 return -EINVAL; 496 497 spin_lock_bh(&bdi_lock); 498 if (bdi->min_ratio > max_ratio) { 499 ret = -EINVAL; 500 } else { 501 bdi->max_ratio = max_ratio; 502 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 503 } 504 spin_unlock_bh(&bdi_lock); 505 506 return ret; 507 } 508 EXPORT_SYMBOL(bdi_set_max_ratio); 509 510 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 511 unsigned long bg_thresh) 512 { 513 return (thresh + bg_thresh) / 2; 514 } 515 516 static unsigned long hard_dirty_limit(unsigned long thresh) 517 { 518 return max(thresh, global_dirty_limit); 519 } 520 521 /** 522 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 523 * @bdi: the backing_dev_info to query 524 * @dirty: global dirty limit in pages 525 * 526 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 527 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 528 * 529 * Note that balance_dirty_pages() will only seriously take it as a hard limit 530 * when sleeping max_pause per page is not enough to keep the dirty pages under 531 * control. For example, when the device is completely stalled due to some error 532 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 533 * In the other normal situations, it acts more gently by throttling the tasks 534 * more (rather than completely block them) when the bdi dirty pages go high. 535 * 536 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 537 * - starving fast devices 538 * - piling up dirty pages (that will take long time to sync) on slow devices 539 * 540 * The bdi's share of dirty limit will be adapting to its throughput and 541 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 542 */ 543 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 544 { 545 u64 bdi_dirty; 546 long numerator, denominator; 547 548 /* 549 * Calculate this BDI's share of the dirty ratio. 550 */ 551 bdi_writeout_fraction(bdi, &numerator, &denominator); 552 553 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 554 bdi_dirty *= numerator; 555 do_div(bdi_dirty, denominator); 556 557 bdi_dirty += (dirty * bdi->min_ratio) / 100; 558 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 559 bdi_dirty = dirty * bdi->max_ratio / 100; 560 561 return bdi_dirty; 562 } 563 564 /* 565 * setpoint - dirty 3 566 * f(dirty) := 1.0 + (----------------) 567 * limit - setpoint 568 * 569 * it's a 3rd order polynomial that subjects to 570 * 571 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 572 * (2) f(setpoint) = 1.0 => the balance point 573 * (3) f(limit) = 0 => the hard limit 574 * (4) df/dx <= 0 => negative feedback control 575 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 576 * => fast response on large errors; small oscillation near setpoint 577 */ 578 static long long pos_ratio_polynom(unsigned long setpoint, 579 unsigned long dirty, 580 unsigned long limit) 581 { 582 long long pos_ratio; 583 long x; 584 585 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 586 limit - setpoint + 1); 587 pos_ratio = x; 588 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 589 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 590 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 591 592 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 593 } 594 595 /* 596 * Dirty position control. 597 * 598 * (o) global/bdi setpoints 599 * 600 * We want the dirty pages be balanced around the global/bdi setpoints. 601 * When the number of dirty pages is higher/lower than the setpoint, the 602 * dirty position control ratio (and hence task dirty ratelimit) will be 603 * decreased/increased to bring the dirty pages back to the setpoint. 604 * 605 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 606 * 607 * if (dirty < setpoint) scale up pos_ratio 608 * if (dirty > setpoint) scale down pos_ratio 609 * 610 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio 611 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio 612 * 613 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 614 * 615 * (o) global control line 616 * 617 * ^ pos_ratio 618 * | 619 * | |<===== global dirty control scope ======>| 620 * 2.0 .............* 621 * | .* 622 * | . * 623 * | . * 624 * | . * 625 * | . * 626 * | . * 627 * 1.0 ................................* 628 * | . . * 629 * | . . * 630 * | . . * 631 * | . . * 632 * | . . * 633 * 0 +------------.------------------.----------------------*-------------> 634 * freerun^ setpoint^ limit^ dirty pages 635 * 636 * (o) bdi control line 637 * 638 * ^ pos_ratio 639 * | 640 * | * 641 * | * 642 * | * 643 * | * 644 * | * |<=========== span ============>| 645 * 1.0 .......................* 646 * | . * 647 * | . * 648 * | . * 649 * | . * 650 * | . * 651 * | . * 652 * | . * 653 * | . * 654 * | . * 655 * | . * 656 * | . * 657 * 1/4 ...............................................* * * * * * * * * * * * 658 * | . . 659 * | . . 660 * | . . 661 * 0 +----------------------.-------------------------------.-------------> 662 * bdi_setpoint^ x_intercept^ 663 * 664 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can 665 * be smoothly throttled down to normal if it starts high in situations like 666 * - start writing to a slow SD card and a fast disk at the same time. The SD 667 * card's bdi_dirty may rush to many times higher than bdi_setpoint. 668 * - the bdi dirty thresh drops quickly due to change of JBOD workload 669 */ 670 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, 671 unsigned long thresh, 672 unsigned long bg_thresh, 673 unsigned long dirty, 674 unsigned long bdi_thresh, 675 unsigned long bdi_dirty) 676 { 677 unsigned long write_bw = bdi->avg_write_bandwidth; 678 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 679 unsigned long limit = hard_dirty_limit(thresh); 680 unsigned long x_intercept; 681 unsigned long setpoint; /* dirty pages' target balance point */ 682 unsigned long bdi_setpoint; 683 unsigned long span; 684 long long pos_ratio; /* for scaling up/down the rate limit */ 685 long x; 686 687 if (unlikely(dirty >= limit)) 688 return 0; 689 690 /* 691 * global setpoint 692 * 693 * See comment for pos_ratio_polynom(). 694 */ 695 setpoint = (freerun + limit) / 2; 696 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit); 697 698 /* 699 * The strictlimit feature is a tool preventing mistrusted filesystems 700 * from growing a large number of dirty pages before throttling. For 701 * such filesystems balance_dirty_pages always checks bdi counters 702 * against bdi limits. Even if global "nr_dirty" is under "freerun". 703 * This is especially important for fuse which sets bdi->max_ratio to 704 * 1% by default. Without strictlimit feature, fuse writeback may 705 * consume arbitrary amount of RAM because it is accounted in 706 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 707 * 708 * Here, in bdi_position_ratio(), we calculate pos_ratio based on 709 * two values: bdi_dirty and bdi_thresh. Let's consider an example: 710 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 711 * limits are set by default to 10% and 20% (background and throttle). 712 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 713 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is 714 * about ~6K pages (as the average of background and throttle bdi 715 * limits). The 3rd order polynomial will provide positive feedback if 716 * bdi_dirty is under bdi_setpoint and vice versa. 717 * 718 * Note, that we cannot use global counters in these calculations 719 * because we want to throttle process writing to a strictlimit BDI 720 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 721 * in the example above). 722 */ 723 if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 724 long long bdi_pos_ratio; 725 unsigned long bdi_bg_thresh; 726 727 if (bdi_dirty < 8) 728 return min_t(long long, pos_ratio * 2, 729 2 << RATELIMIT_CALC_SHIFT); 730 731 if (bdi_dirty >= bdi_thresh) 732 return 0; 733 734 bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh); 735 bdi_setpoint = dirty_freerun_ceiling(bdi_thresh, 736 bdi_bg_thresh); 737 738 if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh) 739 return 0; 740 741 bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty, 742 bdi_thresh); 743 744 /* 745 * Typically, for strictlimit case, bdi_setpoint << setpoint 746 * and pos_ratio >> bdi_pos_ratio. In the other words global 747 * state ("dirty") is not limiting factor and we have to 748 * make decision based on bdi counters. But there is an 749 * important case when global pos_ratio should get precedence: 750 * global limits are exceeded (e.g. due to activities on other 751 * BDIs) while given strictlimit BDI is below limit. 752 * 753 * "pos_ratio * bdi_pos_ratio" would work for the case above, 754 * but it would look too non-natural for the case of all 755 * activity in the system coming from a single strictlimit BDI 756 * with bdi->max_ratio == 100%. 757 * 758 * Note that min() below somewhat changes the dynamics of the 759 * control system. Normally, pos_ratio value can be well over 3 760 * (when globally we are at freerun and bdi is well below bdi 761 * setpoint). Now the maximum pos_ratio in the same situation 762 * is 2. We might want to tweak this if we observe the control 763 * system is too slow to adapt. 764 */ 765 return min(pos_ratio, bdi_pos_ratio); 766 } 767 768 /* 769 * We have computed basic pos_ratio above based on global situation. If 770 * the bdi is over/under its share of dirty pages, we want to scale 771 * pos_ratio further down/up. That is done by the following mechanism. 772 */ 773 774 /* 775 * bdi setpoint 776 * 777 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) 778 * 779 * x_intercept - bdi_dirty 780 * := -------------------------- 781 * x_intercept - bdi_setpoint 782 * 783 * The main bdi control line is a linear function that subjects to 784 * 785 * (1) f(bdi_setpoint) = 1.0 786 * (2) k = - 1 / (8 * write_bw) (in single bdi case) 787 * or equally: x_intercept = bdi_setpoint + 8 * write_bw 788 * 789 * For single bdi case, the dirty pages are observed to fluctuate 790 * regularly within range 791 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] 792 * for various filesystems, where (2) can yield in a reasonable 12.5% 793 * fluctuation range for pos_ratio. 794 * 795 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its 796 * own size, so move the slope over accordingly and choose a slope that 797 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. 798 */ 799 if (unlikely(bdi_thresh > thresh)) 800 bdi_thresh = thresh; 801 /* 802 * It's very possible that bdi_thresh is close to 0 not because the 803 * device is slow, but that it has remained inactive for long time. 804 * Honour such devices a reasonable good (hopefully IO efficient) 805 * threshold, so that the occasional writes won't be blocked and active 806 * writes can rampup the threshold quickly. 807 */ 808 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); 809 /* 810 * scale global setpoint to bdi's: 811 * bdi_setpoint = setpoint * bdi_thresh / thresh 812 */ 813 x = div_u64((u64)bdi_thresh << 16, thresh + 1); 814 bdi_setpoint = setpoint * (u64)x >> 16; 815 /* 816 * Use span=(8*write_bw) in single bdi case as indicated by 817 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. 818 * 819 * bdi_thresh thresh - bdi_thresh 820 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh 821 * thresh thresh 822 */ 823 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; 824 x_intercept = bdi_setpoint + span; 825 826 if (bdi_dirty < x_intercept - span / 4) { 827 pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty), 828 x_intercept - bdi_setpoint + 1); 829 } else 830 pos_ratio /= 4; 831 832 /* 833 * bdi reserve area, safeguard against dirty pool underrun and disk idle 834 * It may push the desired control point of global dirty pages higher 835 * than setpoint. 836 */ 837 x_intercept = bdi_thresh / 2; 838 if (bdi_dirty < x_intercept) { 839 if (bdi_dirty > x_intercept / 8) 840 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); 841 else 842 pos_ratio *= 8; 843 } 844 845 return pos_ratio; 846 } 847 848 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 849 unsigned long elapsed, 850 unsigned long written) 851 { 852 const unsigned long period = roundup_pow_of_two(3 * HZ); 853 unsigned long avg = bdi->avg_write_bandwidth; 854 unsigned long old = bdi->write_bandwidth; 855 u64 bw; 856 857 /* 858 * bw = written * HZ / elapsed 859 * 860 * bw * elapsed + write_bandwidth * (period - elapsed) 861 * write_bandwidth = --------------------------------------------------- 862 * period 863 */ 864 bw = written - bdi->written_stamp; 865 bw *= HZ; 866 if (unlikely(elapsed > period)) { 867 do_div(bw, elapsed); 868 avg = bw; 869 goto out; 870 } 871 bw += (u64)bdi->write_bandwidth * (period - elapsed); 872 bw >>= ilog2(period); 873 874 /* 875 * one more level of smoothing, for filtering out sudden spikes 876 */ 877 if (avg > old && old >= (unsigned long)bw) 878 avg -= (avg - old) >> 3; 879 880 if (avg < old && old <= (unsigned long)bw) 881 avg += (old - avg) >> 3; 882 883 out: 884 bdi->write_bandwidth = bw; 885 bdi->avg_write_bandwidth = avg; 886 } 887 888 /* 889 * The global dirtyable memory and dirty threshold could be suddenly knocked 890 * down by a large amount (eg. on the startup of KVM in a swapless system). 891 * This may throw the system into deep dirty exceeded state and throttle 892 * heavy/light dirtiers alike. To retain good responsiveness, maintain 893 * global_dirty_limit for tracking slowly down to the knocked down dirty 894 * threshold. 895 */ 896 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 897 { 898 unsigned long limit = global_dirty_limit; 899 900 /* 901 * Follow up in one step. 902 */ 903 if (limit < thresh) { 904 limit = thresh; 905 goto update; 906 } 907 908 /* 909 * Follow down slowly. Use the higher one as the target, because thresh 910 * may drop below dirty. This is exactly the reason to introduce 911 * global_dirty_limit which is guaranteed to lie above the dirty pages. 912 */ 913 thresh = max(thresh, dirty); 914 if (limit > thresh) { 915 limit -= (limit - thresh) >> 5; 916 goto update; 917 } 918 return; 919 update: 920 global_dirty_limit = limit; 921 } 922 923 static void global_update_bandwidth(unsigned long thresh, 924 unsigned long dirty, 925 unsigned long now) 926 { 927 static DEFINE_SPINLOCK(dirty_lock); 928 static unsigned long update_time; 929 930 /* 931 * check locklessly first to optimize away locking for the most time 932 */ 933 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 934 return; 935 936 spin_lock(&dirty_lock); 937 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 938 update_dirty_limit(thresh, dirty); 939 update_time = now; 940 } 941 spin_unlock(&dirty_lock); 942 } 943 944 /* 945 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. 946 * 947 * Normal bdi tasks will be curbed at or below it in long term. 948 * Obviously it should be around (write_bw / N) when there are N dd tasks. 949 */ 950 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, 951 unsigned long thresh, 952 unsigned long bg_thresh, 953 unsigned long dirty, 954 unsigned long bdi_thresh, 955 unsigned long bdi_dirty, 956 unsigned long dirtied, 957 unsigned long elapsed) 958 { 959 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 960 unsigned long limit = hard_dirty_limit(thresh); 961 unsigned long setpoint = (freerun + limit) / 2; 962 unsigned long write_bw = bdi->avg_write_bandwidth; 963 unsigned long dirty_ratelimit = bdi->dirty_ratelimit; 964 unsigned long dirty_rate; 965 unsigned long task_ratelimit; 966 unsigned long balanced_dirty_ratelimit; 967 unsigned long pos_ratio; 968 unsigned long step; 969 unsigned long x; 970 971 /* 972 * The dirty rate will match the writeout rate in long term, except 973 * when dirty pages are truncated by userspace or re-dirtied by FS. 974 */ 975 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; 976 977 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, 978 bdi_thresh, bdi_dirty); 979 /* 980 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 981 */ 982 task_ratelimit = (u64)dirty_ratelimit * 983 pos_ratio >> RATELIMIT_CALC_SHIFT; 984 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 985 986 /* 987 * A linear estimation of the "balanced" throttle rate. The theory is, 988 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's 989 * dirty_rate will be measured to be (N * task_ratelimit). So the below 990 * formula will yield the balanced rate limit (write_bw / N). 991 * 992 * Note that the expanded form is not a pure rate feedback: 993 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 994 * but also takes pos_ratio into account: 995 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 996 * 997 * (1) is not realistic because pos_ratio also takes part in balancing 998 * the dirty rate. Consider the state 999 * pos_ratio = 0.5 (3) 1000 * rate = 2 * (write_bw / N) (4) 1001 * If (1) is used, it will stuck in that state! Because each dd will 1002 * be throttled at 1003 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1004 * yielding 1005 * dirty_rate = N * task_ratelimit = write_bw (6) 1006 * put (6) into (1) we get 1007 * rate_(i+1) = rate_(i) (7) 1008 * 1009 * So we end up using (2) to always keep 1010 * rate_(i+1) ~= (write_bw / N) (8) 1011 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1012 * pos_ratio is able to drive itself to 1.0, which is not only where 1013 * the dirty count meet the setpoint, but also where the slope of 1014 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1015 */ 1016 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1017 dirty_rate | 1); 1018 /* 1019 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1020 */ 1021 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1022 balanced_dirty_ratelimit = write_bw; 1023 1024 /* 1025 * We could safely do this and return immediately: 1026 * 1027 * bdi->dirty_ratelimit = balanced_dirty_ratelimit; 1028 * 1029 * However to get a more stable dirty_ratelimit, the below elaborated 1030 * code makes use of task_ratelimit to filter out singular points and 1031 * limit the step size. 1032 * 1033 * The below code essentially only uses the relative value of 1034 * 1035 * task_ratelimit - dirty_ratelimit 1036 * = (pos_ratio - 1) * dirty_ratelimit 1037 * 1038 * which reflects the direction and size of dirty position error. 1039 */ 1040 1041 /* 1042 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1043 * task_ratelimit is on the same side of dirty_ratelimit, too. 1044 * For example, when 1045 * - dirty_ratelimit > balanced_dirty_ratelimit 1046 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1047 * lowering dirty_ratelimit will help meet both the position and rate 1048 * control targets. Otherwise, don't update dirty_ratelimit if it will 1049 * only help meet the rate target. After all, what the users ultimately 1050 * feel and care are stable dirty rate and small position error. 1051 * 1052 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1053 * and filter out the singular points of balanced_dirty_ratelimit. Which 1054 * keeps jumping around randomly and can even leap far away at times 1055 * due to the small 200ms estimation period of dirty_rate (we want to 1056 * keep that period small to reduce time lags). 1057 */ 1058 step = 0; 1059 1060 /* 1061 * For strictlimit case, calculations above were based on bdi counters 1062 * and limits (starting from pos_ratio = bdi_position_ratio() and up to 1063 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1064 * Hence, to calculate "step" properly, we have to use bdi_dirty as 1065 * "dirty" and bdi_setpoint as "setpoint". 1066 * 1067 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because 1068 * it's possible that bdi_thresh is close to zero due to inactivity 1069 * of backing device (see the implementation of bdi_dirty_limit()). 1070 */ 1071 if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1072 dirty = bdi_dirty; 1073 if (bdi_dirty < 8) 1074 setpoint = bdi_dirty + 1; 1075 else 1076 setpoint = (bdi_thresh + 1077 bdi_dirty_limit(bdi, bg_thresh)) / 2; 1078 } 1079 1080 if (dirty < setpoint) { 1081 x = min(bdi->balanced_dirty_ratelimit, 1082 min(balanced_dirty_ratelimit, task_ratelimit)); 1083 if (dirty_ratelimit < x) 1084 step = x - dirty_ratelimit; 1085 } else { 1086 x = max(bdi->balanced_dirty_ratelimit, 1087 max(balanced_dirty_ratelimit, task_ratelimit)); 1088 if (dirty_ratelimit > x) 1089 step = dirty_ratelimit - x; 1090 } 1091 1092 /* 1093 * Don't pursue 100% rate matching. It's impossible since the balanced 1094 * rate itself is constantly fluctuating. So decrease the track speed 1095 * when it gets close to the target. Helps eliminate pointless tremors. 1096 */ 1097 step >>= dirty_ratelimit / (2 * step + 1); 1098 /* 1099 * Limit the tracking speed to avoid overshooting. 1100 */ 1101 step = (step + 7) / 8; 1102 1103 if (dirty_ratelimit < balanced_dirty_ratelimit) 1104 dirty_ratelimit += step; 1105 else 1106 dirty_ratelimit -= step; 1107 1108 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1109 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1110 1111 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); 1112 } 1113 1114 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 1115 unsigned long thresh, 1116 unsigned long bg_thresh, 1117 unsigned long dirty, 1118 unsigned long bdi_thresh, 1119 unsigned long bdi_dirty, 1120 unsigned long start_time) 1121 { 1122 unsigned long now = jiffies; 1123 unsigned long elapsed = now - bdi->bw_time_stamp; 1124 unsigned long dirtied; 1125 unsigned long written; 1126 1127 /* 1128 * rate-limit, only update once every 200ms. 1129 */ 1130 if (elapsed < BANDWIDTH_INTERVAL) 1131 return; 1132 1133 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); 1134 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 1135 1136 /* 1137 * Skip quiet periods when disk bandwidth is under-utilized. 1138 * (at least 1s idle time between two flusher runs) 1139 */ 1140 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 1141 goto snapshot; 1142 1143 if (thresh) { 1144 global_update_bandwidth(thresh, dirty, now); 1145 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, 1146 bdi_thresh, bdi_dirty, 1147 dirtied, elapsed); 1148 } 1149 bdi_update_write_bandwidth(bdi, elapsed, written); 1150 1151 snapshot: 1152 bdi->dirtied_stamp = dirtied; 1153 bdi->written_stamp = written; 1154 bdi->bw_time_stamp = now; 1155 } 1156 1157 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 1158 unsigned long thresh, 1159 unsigned long bg_thresh, 1160 unsigned long dirty, 1161 unsigned long bdi_thresh, 1162 unsigned long bdi_dirty, 1163 unsigned long start_time) 1164 { 1165 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 1166 return; 1167 spin_lock(&bdi->wb.list_lock); 1168 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, 1169 bdi_thresh, bdi_dirty, start_time); 1170 spin_unlock(&bdi->wb.list_lock); 1171 } 1172 1173 /* 1174 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1175 * will look to see if it needs to start dirty throttling. 1176 * 1177 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1178 * global_page_state() too often. So scale it near-sqrt to the safety margin 1179 * (the number of pages we may dirty without exceeding the dirty limits). 1180 */ 1181 static unsigned long dirty_poll_interval(unsigned long dirty, 1182 unsigned long thresh) 1183 { 1184 if (thresh > dirty) 1185 return 1UL << (ilog2(thresh - dirty) >> 1); 1186 1187 return 1; 1188 } 1189 1190 static unsigned long bdi_max_pause(struct backing_dev_info *bdi, 1191 unsigned long bdi_dirty) 1192 { 1193 unsigned long bw = bdi->avg_write_bandwidth; 1194 unsigned long t; 1195 1196 /* 1197 * Limit pause time for small memory systems. If sleeping for too long 1198 * time, a small pool of dirty/writeback pages may go empty and disk go 1199 * idle. 1200 * 1201 * 8 serves as the safety ratio. 1202 */ 1203 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1204 t++; 1205 1206 return min_t(unsigned long, t, MAX_PAUSE); 1207 } 1208 1209 static long bdi_min_pause(struct backing_dev_info *bdi, 1210 long max_pause, 1211 unsigned long task_ratelimit, 1212 unsigned long dirty_ratelimit, 1213 int *nr_dirtied_pause) 1214 { 1215 long hi = ilog2(bdi->avg_write_bandwidth); 1216 long lo = ilog2(bdi->dirty_ratelimit); 1217 long t; /* target pause */ 1218 long pause; /* estimated next pause */ 1219 int pages; /* target nr_dirtied_pause */ 1220 1221 /* target for 10ms pause on 1-dd case */ 1222 t = max(1, HZ / 100); 1223 1224 /* 1225 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1226 * overheads. 1227 * 1228 * (N * 10ms) on 2^N concurrent tasks. 1229 */ 1230 if (hi > lo) 1231 t += (hi - lo) * (10 * HZ) / 1024; 1232 1233 /* 1234 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1235 * on the much more stable dirty_ratelimit. However the next pause time 1236 * will be computed based on task_ratelimit and the two rate limits may 1237 * depart considerably at some time. Especially if task_ratelimit goes 1238 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1239 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1240 * result task_ratelimit won't be executed faithfully, which could 1241 * eventually bring down dirty_ratelimit. 1242 * 1243 * We apply two rules to fix it up: 1244 * 1) try to estimate the next pause time and if necessary, use a lower 1245 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1246 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1247 * 2) limit the target pause time to max_pause/2, so that the normal 1248 * small fluctuations of task_ratelimit won't trigger rule (1) and 1249 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1250 */ 1251 t = min(t, 1 + max_pause / 2); 1252 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1253 1254 /* 1255 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1256 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1257 * When the 16 consecutive reads are often interrupted by some dirty 1258 * throttling pause during the async writes, cfq will go into idles 1259 * (deadline is fine). So push nr_dirtied_pause as high as possible 1260 * until reaches DIRTY_POLL_THRESH=32 pages. 1261 */ 1262 if (pages < DIRTY_POLL_THRESH) { 1263 t = max_pause; 1264 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1265 if (pages > DIRTY_POLL_THRESH) { 1266 pages = DIRTY_POLL_THRESH; 1267 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1268 } 1269 } 1270 1271 pause = HZ * pages / (task_ratelimit + 1); 1272 if (pause > max_pause) { 1273 t = max_pause; 1274 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1275 } 1276 1277 *nr_dirtied_pause = pages; 1278 /* 1279 * The minimal pause time will normally be half the target pause time. 1280 */ 1281 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1282 } 1283 1284 static inline void bdi_dirty_limits(struct backing_dev_info *bdi, 1285 unsigned long dirty_thresh, 1286 unsigned long background_thresh, 1287 unsigned long *bdi_dirty, 1288 unsigned long *bdi_thresh, 1289 unsigned long *bdi_bg_thresh) 1290 { 1291 unsigned long bdi_reclaimable; 1292 1293 /* 1294 * bdi_thresh is not treated as some limiting factor as 1295 * dirty_thresh, due to reasons 1296 * - in JBOD setup, bdi_thresh can fluctuate a lot 1297 * - in a system with HDD and USB key, the USB key may somehow 1298 * go into state (bdi_dirty >> bdi_thresh) either because 1299 * bdi_dirty starts high, or because bdi_thresh drops low. 1300 * In this case we don't want to hard throttle the USB key 1301 * dirtiers for 100 seconds until bdi_dirty drops under 1302 * bdi_thresh. Instead the auxiliary bdi control line in 1303 * bdi_position_ratio() will let the dirtier task progress 1304 * at some rate <= (write_bw / 2) for bringing down bdi_dirty. 1305 */ 1306 *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 1307 1308 if (bdi_bg_thresh) 1309 *bdi_bg_thresh = div_u64((u64)*bdi_thresh * 1310 background_thresh, 1311 dirty_thresh); 1312 1313 /* 1314 * In order to avoid the stacked BDI deadlock we need 1315 * to ensure we accurately count the 'dirty' pages when 1316 * the threshold is low. 1317 * 1318 * Otherwise it would be possible to get thresh+n pages 1319 * reported dirty, even though there are thresh-m pages 1320 * actually dirty; with m+n sitting in the percpu 1321 * deltas. 1322 */ 1323 if (*bdi_thresh < 2 * bdi_stat_error(bdi)) { 1324 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 1325 *bdi_dirty = bdi_reclaimable + 1326 bdi_stat_sum(bdi, BDI_WRITEBACK); 1327 } else { 1328 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 1329 *bdi_dirty = bdi_reclaimable + 1330 bdi_stat(bdi, BDI_WRITEBACK); 1331 } 1332 } 1333 1334 /* 1335 * balance_dirty_pages() must be called by processes which are generating dirty 1336 * data. It looks at the number of dirty pages in the machine and will force 1337 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1338 * If we're over `background_thresh' then the writeback threads are woken to 1339 * perform some writeout. 1340 */ 1341 static void balance_dirty_pages(struct address_space *mapping, 1342 unsigned long pages_dirtied) 1343 { 1344 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1345 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 1346 unsigned long background_thresh; 1347 unsigned long dirty_thresh; 1348 long period; 1349 long pause; 1350 long max_pause; 1351 long min_pause; 1352 int nr_dirtied_pause; 1353 bool dirty_exceeded = false; 1354 unsigned long task_ratelimit; 1355 unsigned long dirty_ratelimit; 1356 unsigned long pos_ratio; 1357 struct backing_dev_info *bdi = mapping->backing_dev_info; 1358 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1359 unsigned long start_time = jiffies; 1360 1361 for (;;) { 1362 unsigned long now = jiffies; 1363 unsigned long uninitialized_var(bdi_thresh); 1364 unsigned long thresh; 1365 unsigned long uninitialized_var(bdi_dirty); 1366 unsigned long dirty; 1367 unsigned long bg_thresh; 1368 1369 /* 1370 * Unstable writes are a feature of certain networked 1371 * filesystems (i.e. NFS) in which data may have been 1372 * written to the server's write cache, but has not yet 1373 * been flushed to permanent storage. 1374 */ 1375 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1376 global_page_state(NR_UNSTABLE_NFS); 1377 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1378 1379 global_dirty_limits(&background_thresh, &dirty_thresh); 1380 1381 if (unlikely(strictlimit)) { 1382 bdi_dirty_limits(bdi, dirty_thresh, background_thresh, 1383 &bdi_dirty, &bdi_thresh, &bg_thresh); 1384 1385 dirty = bdi_dirty; 1386 thresh = bdi_thresh; 1387 } else { 1388 dirty = nr_dirty; 1389 thresh = dirty_thresh; 1390 bg_thresh = background_thresh; 1391 } 1392 1393 /* 1394 * Throttle it only when the background writeback cannot 1395 * catch-up. This avoids (excessively) small writeouts 1396 * when the bdi limits are ramping up in case of !strictlimit. 1397 * 1398 * In strictlimit case make decision based on the bdi counters 1399 * and limits. Small writeouts when the bdi limits are ramping 1400 * up are the price we consciously pay for strictlimit-ing. 1401 */ 1402 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) { 1403 current->dirty_paused_when = now; 1404 current->nr_dirtied = 0; 1405 current->nr_dirtied_pause = 1406 dirty_poll_interval(dirty, thresh); 1407 break; 1408 } 1409 1410 if (unlikely(!writeback_in_progress(bdi))) 1411 bdi_start_background_writeback(bdi); 1412 1413 if (!strictlimit) 1414 bdi_dirty_limits(bdi, dirty_thresh, background_thresh, 1415 &bdi_dirty, &bdi_thresh, NULL); 1416 1417 dirty_exceeded = (bdi_dirty > bdi_thresh) && 1418 ((nr_dirty > dirty_thresh) || strictlimit); 1419 if (dirty_exceeded && !bdi->dirty_exceeded) 1420 bdi->dirty_exceeded = 1; 1421 1422 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, 1423 nr_dirty, bdi_thresh, bdi_dirty, 1424 start_time); 1425 1426 dirty_ratelimit = bdi->dirty_ratelimit; 1427 pos_ratio = bdi_position_ratio(bdi, dirty_thresh, 1428 background_thresh, nr_dirty, 1429 bdi_thresh, bdi_dirty); 1430 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> 1431 RATELIMIT_CALC_SHIFT; 1432 max_pause = bdi_max_pause(bdi, bdi_dirty); 1433 min_pause = bdi_min_pause(bdi, max_pause, 1434 task_ratelimit, dirty_ratelimit, 1435 &nr_dirtied_pause); 1436 1437 if (unlikely(task_ratelimit == 0)) { 1438 period = max_pause; 1439 pause = max_pause; 1440 goto pause; 1441 } 1442 period = HZ * pages_dirtied / task_ratelimit; 1443 pause = period; 1444 if (current->dirty_paused_when) 1445 pause -= now - current->dirty_paused_when; 1446 /* 1447 * For less than 1s think time (ext3/4 may block the dirtier 1448 * for up to 800ms from time to time on 1-HDD; so does xfs, 1449 * however at much less frequency), try to compensate it in 1450 * future periods by updating the virtual time; otherwise just 1451 * do a reset, as it may be a light dirtier. 1452 */ 1453 if (pause < min_pause) { 1454 trace_balance_dirty_pages(bdi, 1455 dirty_thresh, 1456 background_thresh, 1457 nr_dirty, 1458 bdi_thresh, 1459 bdi_dirty, 1460 dirty_ratelimit, 1461 task_ratelimit, 1462 pages_dirtied, 1463 period, 1464 min(pause, 0L), 1465 start_time); 1466 if (pause < -HZ) { 1467 current->dirty_paused_when = now; 1468 current->nr_dirtied = 0; 1469 } else if (period) { 1470 current->dirty_paused_when += period; 1471 current->nr_dirtied = 0; 1472 } else if (current->nr_dirtied_pause <= pages_dirtied) 1473 current->nr_dirtied_pause += pages_dirtied; 1474 break; 1475 } 1476 if (unlikely(pause > max_pause)) { 1477 /* for occasional dropped task_ratelimit */ 1478 now += min(pause - max_pause, max_pause); 1479 pause = max_pause; 1480 } 1481 1482 pause: 1483 trace_balance_dirty_pages(bdi, 1484 dirty_thresh, 1485 background_thresh, 1486 nr_dirty, 1487 bdi_thresh, 1488 bdi_dirty, 1489 dirty_ratelimit, 1490 task_ratelimit, 1491 pages_dirtied, 1492 period, 1493 pause, 1494 start_time); 1495 __set_current_state(TASK_KILLABLE); 1496 io_schedule_timeout(pause); 1497 1498 current->dirty_paused_when = now + pause; 1499 current->nr_dirtied = 0; 1500 current->nr_dirtied_pause = nr_dirtied_pause; 1501 1502 /* 1503 * This is typically equal to (nr_dirty < dirty_thresh) and can 1504 * also keep "1000+ dd on a slow USB stick" under control. 1505 */ 1506 if (task_ratelimit) 1507 break; 1508 1509 /* 1510 * In the case of an unresponding NFS server and the NFS dirty 1511 * pages exceeds dirty_thresh, give the other good bdi's a pipe 1512 * to go through, so that tasks on them still remain responsive. 1513 * 1514 * In theory 1 page is enough to keep the comsumer-producer 1515 * pipe going: the flusher cleans 1 page => the task dirties 1 1516 * more page. However bdi_dirty has accounting errors. So use 1517 * the larger and more IO friendly bdi_stat_error. 1518 */ 1519 if (bdi_dirty <= bdi_stat_error(bdi)) 1520 break; 1521 1522 if (fatal_signal_pending(current)) 1523 break; 1524 } 1525 1526 if (!dirty_exceeded && bdi->dirty_exceeded) 1527 bdi->dirty_exceeded = 0; 1528 1529 if (writeback_in_progress(bdi)) 1530 return; 1531 1532 /* 1533 * In laptop mode, we wait until hitting the higher threshold before 1534 * starting background writeout, and then write out all the way down 1535 * to the lower threshold. So slow writers cause minimal disk activity. 1536 * 1537 * In normal mode, we start background writeout at the lower 1538 * background_thresh, to keep the amount of dirty memory low. 1539 */ 1540 if (laptop_mode) 1541 return; 1542 1543 if (nr_reclaimable > background_thresh) 1544 bdi_start_background_writeback(bdi); 1545 } 1546 1547 void set_page_dirty_balance(struct page *page) 1548 { 1549 if (set_page_dirty(page)) { 1550 struct address_space *mapping = page_mapping(page); 1551 1552 if (mapping) 1553 balance_dirty_pages_ratelimited(mapping); 1554 } 1555 } 1556 1557 static DEFINE_PER_CPU(int, bdp_ratelimits); 1558 1559 /* 1560 * Normal tasks are throttled by 1561 * loop { 1562 * dirty tsk->nr_dirtied_pause pages; 1563 * take a snap in balance_dirty_pages(); 1564 * } 1565 * However there is a worst case. If every task exit immediately when dirtied 1566 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1567 * called to throttle the page dirties. The solution is to save the not yet 1568 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1569 * randomly into the running tasks. This works well for the above worst case, 1570 * as the new task will pick up and accumulate the old task's leaked dirty 1571 * count and eventually get throttled. 1572 */ 1573 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1574 1575 /** 1576 * balance_dirty_pages_ratelimited - balance dirty memory state 1577 * @mapping: address_space which was dirtied 1578 * 1579 * Processes which are dirtying memory should call in here once for each page 1580 * which was newly dirtied. The function will periodically check the system's 1581 * dirty state and will initiate writeback if needed. 1582 * 1583 * On really big machines, get_writeback_state is expensive, so try to avoid 1584 * calling it too often (ratelimiting). But once we're over the dirty memory 1585 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1586 * from overshooting the limit by (ratelimit_pages) each. 1587 */ 1588 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1589 { 1590 struct backing_dev_info *bdi = mapping->backing_dev_info; 1591 int ratelimit; 1592 int *p; 1593 1594 if (!bdi_cap_account_dirty(bdi)) 1595 return; 1596 1597 ratelimit = current->nr_dirtied_pause; 1598 if (bdi->dirty_exceeded) 1599 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1600 1601 preempt_disable(); 1602 /* 1603 * This prevents one CPU to accumulate too many dirtied pages without 1604 * calling into balance_dirty_pages(), which can happen when there are 1605 * 1000+ tasks, all of them start dirtying pages at exactly the same 1606 * time, hence all honoured too large initial task->nr_dirtied_pause. 1607 */ 1608 p = this_cpu_ptr(&bdp_ratelimits); 1609 if (unlikely(current->nr_dirtied >= ratelimit)) 1610 *p = 0; 1611 else if (unlikely(*p >= ratelimit_pages)) { 1612 *p = 0; 1613 ratelimit = 0; 1614 } 1615 /* 1616 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1617 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1618 * the dirty throttling and livelock other long-run dirtiers. 1619 */ 1620 p = this_cpu_ptr(&dirty_throttle_leaks); 1621 if (*p > 0 && current->nr_dirtied < ratelimit) { 1622 unsigned long nr_pages_dirtied; 1623 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1624 *p -= nr_pages_dirtied; 1625 current->nr_dirtied += nr_pages_dirtied; 1626 } 1627 preempt_enable(); 1628 1629 if (unlikely(current->nr_dirtied >= ratelimit)) 1630 balance_dirty_pages(mapping, current->nr_dirtied); 1631 } 1632 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1633 1634 void throttle_vm_writeout(gfp_t gfp_mask) 1635 { 1636 unsigned long background_thresh; 1637 unsigned long dirty_thresh; 1638 1639 for ( ; ; ) { 1640 global_dirty_limits(&background_thresh, &dirty_thresh); 1641 dirty_thresh = hard_dirty_limit(dirty_thresh); 1642 1643 /* 1644 * Boost the allowable dirty threshold a bit for page 1645 * allocators so they don't get DoS'ed by heavy writers 1646 */ 1647 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1648 1649 if (global_page_state(NR_UNSTABLE_NFS) + 1650 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1651 break; 1652 congestion_wait(BLK_RW_ASYNC, HZ/10); 1653 1654 /* 1655 * The caller might hold locks which can prevent IO completion 1656 * or progress in the filesystem. So we cannot just sit here 1657 * waiting for IO to complete. 1658 */ 1659 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1660 break; 1661 } 1662 } 1663 1664 /* 1665 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1666 */ 1667 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 1668 void __user *buffer, size_t *length, loff_t *ppos) 1669 { 1670 proc_dointvec(table, write, buffer, length, ppos); 1671 return 0; 1672 } 1673 1674 #ifdef CONFIG_BLOCK 1675 void laptop_mode_timer_fn(unsigned long data) 1676 { 1677 struct request_queue *q = (struct request_queue *)data; 1678 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1679 global_page_state(NR_UNSTABLE_NFS); 1680 1681 /* 1682 * We want to write everything out, not just down to the dirty 1683 * threshold 1684 */ 1685 if (bdi_has_dirty_io(&q->backing_dev_info)) 1686 bdi_start_writeback(&q->backing_dev_info, nr_pages, 1687 WB_REASON_LAPTOP_TIMER); 1688 } 1689 1690 /* 1691 * We've spun up the disk and we're in laptop mode: schedule writeback 1692 * of all dirty data a few seconds from now. If the flush is already scheduled 1693 * then push it back - the user is still using the disk. 1694 */ 1695 void laptop_io_completion(struct backing_dev_info *info) 1696 { 1697 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1698 } 1699 1700 /* 1701 * We're in laptop mode and we've just synced. The sync's writes will have 1702 * caused another writeback to be scheduled by laptop_io_completion. 1703 * Nothing needs to be written back anymore, so we unschedule the writeback. 1704 */ 1705 void laptop_sync_completion(void) 1706 { 1707 struct backing_dev_info *bdi; 1708 1709 rcu_read_lock(); 1710 1711 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1712 del_timer(&bdi->laptop_mode_wb_timer); 1713 1714 rcu_read_unlock(); 1715 } 1716 #endif 1717 1718 /* 1719 * If ratelimit_pages is too high then we can get into dirty-data overload 1720 * if a large number of processes all perform writes at the same time. 1721 * If it is too low then SMP machines will call the (expensive) 1722 * get_writeback_state too often. 1723 * 1724 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 1725 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 1726 * thresholds. 1727 */ 1728 1729 void writeback_set_ratelimit(void) 1730 { 1731 unsigned long background_thresh; 1732 unsigned long dirty_thresh; 1733 global_dirty_limits(&background_thresh, &dirty_thresh); 1734 global_dirty_limit = dirty_thresh; 1735 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 1736 if (ratelimit_pages < 16) 1737 ratelimit_pages = 16; 1738 } 1739 1740 static int 1741 ratelimit_handler(struct notifier_block *self, unsigned long action, 1742 void *hcpu) 1743 { 1744 1745 switch (action & ~CPU_TASKS_FROZEN) { 1746 case CPU_ONLINE: 1747 case CPU_DEAD: 1748 writeback_set_ratelimit(); 1749 return NOTIFY_OK; 1750 default: 1751 return NOTIFY_DONE; 1752 } 1753 } 1754 1755 static struct notifier_block ratelimit_nb = { 1756 .notifier_call = ratelimit_handler, 1757 .next = NULL, 1758 }; 1759 1760 /* 1761 * Called early on to tune the page writeback dirty limits. 1762 * 1763 * We used to scale dirty pages according to how total memory 1764 * related to pages that could be allocated for buffers (by 1765 * comparing nr_free_buffer_pages() to vm_total_pages. 1766 * 1767 * However, that was when we used "dirty_ratio" to scale with 1768 * all memory, and we don't do that any more. "dirty_ratio" 1769 * is now applied to total non-HIGHPAGE memory (by subtracting 1770 * totalhigh_pages from vm_total_pages), and as such we can't 1771 * get into the old insane situation any more where we had 1772 * large amounts of dirty pages compared to a small amount of 1773 * non-HIGHMEM memory. 1774 * 1775 * But we might still want to scale the dirty_ratio by how 1776 * much memory the box has.. 1777 */ 1778 void __init page_writeback_init(void) 1779 { 1780 writeback_set_ratelimit(); 1781 register_cpu_notifier(&ratelimit_nb); 1782 1783 fprop_global_init(&writeout_completions); 1784 } 1785 1786 /** 1787 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1788 * @mapping: address space structure to write 1789 * @start: starting page index 1790 * @end: ending page index (inclusive) 1791 * 1792 * This function scans the page range from @start to @end (inclusive) and tags 1793 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1794 * that write_cache_pages (or whoever calls this function) will then use 1795 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1796 * used to avoid livelocking of writeback by a process steadily creating new 1797 * dirty pages in the file (thus it is important for this function to be quick 1798 * so that it can tag pages faster than a dirtying process can create them). 1799 */ 1800 /* 1801 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1802 */ 1803 void tag_pages_for_writeback(struct address_space *mapping, 1804 pgoff_t start, pgoff_t end) 1805 { 1806 #define WRITEBACK_TAG_BATCH 4096 1807 unsigned long tagged; 1808 1809 do { 1810 spin_lock_irq(&mapping->tree_lock); 1811 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1812 &start, end, WRITEBACK_TAG_BATCH, 1813 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1814 spin_unlock_irq(&mapping->tree_lock); 1815 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1816 cond_resched(); 1817 /* We check 'start' to handle wrapping when end == ~0UL */ 1818 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1819 } 1820 EXPORT_SYMBOL(tag_pages_for_writeback); 1821 1822 /** 1823 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1824 * @mapping: address space structure to write 1825 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1826 * @writepage: function called for each page 1827 * @data: data passed to writepage function 1828 * 1829 * If a page is already under I/O, write_cache_pages() skips it, even 1830 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1831 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1832 * and msync() need to guarantee that all the data which was dirty at the time 1833 * the call was made get new I/O started against them. If wbc->sync_mode is 1834 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1835 * existing IO to complete. 1836 * 1837 * To avoid livelocks (when other process dirties new pages), we first tag 1838 * pages which should be written back with TOWRITE tag and only then start 1839 * writing them. For data-integrity sync we have to be careful so that we do 1840 * not miss some pages (e.g., because some other process has cleared TOWRITE 1841 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1842 * by the process clearing the DIRTY tag (and submitting the page for IO). 1843 */ 1844 int write_cache_pages(struct address_space *mapping, 1845 struct writeback_control *wbc, writepage_t writepage, 1846 void *data) 1847 { 1848 int ret = 0; 1849 int done = 0; 1850 struct pagevec pvec; 1851 int nr_pages; 1852 pgoff_t uninitialized_var(writeback_index); 1853 pgoff_t index; 1854 pgoff_t end; /* Inclusive */ 1855 pgoff_t done_index; 1856 int cycled; 1857 int range_whole = 0; 1858 int tag; 1859 1860 pagevec_init(&pvec, 0); 1861 if (wbc->range_cyclic) { 1862 writeback_index = mapping->writeback_index; /* prev offset */ 1863 index = writeback_index; 1864 if (index == 0) 1865 cycled = 1; 1866 else 1867 cycled = 0; 1868 end = -1; 1869 } else { 1870 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1871 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1872 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1873 range_whole = 1; 1874 cycled = 1; /* ignore range_cyclic tests */ 1875 } 1876 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1877 tag = PAGECACHE_TAG_TOWRITE; 1878 else 1879 tag = PAGECACHE_TAG_DIRTY; 1880 retry: 1881 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1882 tag_pages_for_writeback(mapping, index, end); 1883 done_index = index; 1884 while (!done && (index <= end)) { 1885 int i; 1886 1887 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1888 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1889 if (nr_pages == 0) 1890 break; 1891 1892 for (i = 0; i < nr_pages; i++) { 1893 struct page *page = pvec.pages[i]; 1894 1895 /* 1896 * At this point, the page may be truncated or 1897 * invalidated (changing page->mapping to NULL), or 1898 * even swizzled back from swapper_space to tmpfs file 1899 * mapping. However, page->index will not change 1900 * because we have a reference on the page. 1901 */ 1902 if (page->index > end) { 1903 /* 1904 * can't be range_cyclic (1st pass) because 1905 * end == -1 in that case. 1906 */ 1907 done = 1; 1908 break; 1909 } 1910 1911 done_index = page->index; 1912 1913 lock_page(page); 1914 1915 /* 1916 * Page truncated or invalidated. We can freely skip it 1917 * then, even for data integrity operations: the page 1918 * has disappeared concurrently, so there could be no 1919 * real expectation of this data interity operation 1920 * even if there is now a new, dirty page at the same 1921 * pagecache address. 1922 */ 1923 if (unlikely(page->mapping != mapping)) { 1924 continue_unlock: 1925 unlock_page(page); 1926 continue; 1927 } 1928 1929 if (!PageDirty(page)) { 1930 /* someone wrote it for us */ 1931 goto continue_unlock; 1932 } 1933 1934 if (PageWriteback(page)) { 1935 if (wbc->sync_mode != WB_SYNC_NONE) 1936 wait_on_page_writeback(page); 1937 else 1938 goto continue_unlock; 1939 } 1940 1941 BUG_ON(PageWriteback(page)); 1942 if (!clear_page_dirty_for_io(page)) 1943 goto continue_unlock; 1944 1945 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1946 ret = (*writepage)(page, wbc, data); 1947 if (unlikely(ret)) { 1948 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1949 unlock_page(page); 1950 ret = 0; 1951 } else { 1952 /* 1953 * done_index is set past this page, 1954 * so media errors will not choke 1955 * background writeout for the entire 1956 * file. This has consequences for 1957 * range_cyclic semantics (ie. it may 1958 * not be suitable for data integrity 1959 * writeout). 1960 */ 1961 done_index = page->index + 1; 1962 done = 1; 1963 break; 1964 } 1965 } 1966 1967 /* 1968 * We stop writing back only if we are not doing 1969 * integrity sync. In case of integrity sync we have to 1970 * keep going until we have written all the pages 1971 * we tagged for writeback prior to entering this loop. 1972 */ 1973 if (--wbc->nr_to_write <= 0 && 1974 wbc->sync_mode == WB_SYNC_NONE) { 1975 done = 1; 1976 break; 1977 } 1978 } 1979 pagevec_release(&pvec); 1980 cond_resched(); 1981 } 1982 if (!cycled && !done) { 1983 /* 1984 * range_cyclic: 1985 * We hit the last page and there is more work to be done: wrap 1986 * back to the start of the file 1987 */ 1988 cycled = 1; 1989 index = 0; 1990 end = writeback_index - 1; 1991 goto retry; 1992 } 1993 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1994 mapping->writeback_index = done_index; 1995 1996 return ret; 1997 } 1998 EXPORT_SYMBOL(write_cache_pages); 1999 2000 /* 2001 * Function used by generic_writepages to call the real writepage 2002 * function and set the mapping flags on error 2003 */ 2004 static int __writepage(struct page *page, struct writeback_control *wbc, 2005 void *data) 2006 { 2007 struct address_space *mapping = data; 2008 int ret = mapping->a_ops->writepage(page, wbc); 2009 mapping_set_error(mapping, ret); 2010 return ret; 2011 } 2012 2013 /** 2014 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2015 * @mapping: address space structure to write 2016 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2017 * 2018 * This is a library function, which implements the writepages() 2019 * address_space_operation. 2020 */ 2021 int generic_writepages(struct address_space *mapping, 2022 struct writeback_control *wbc) 2023 { 2024 struct blk_plug plug; 2025 int ret; 2026 2027 /* deal with chardevs and other special file */ 2028 if (!mapping->a_ops->writepage) 2029 return 0; 2030 2031 blk_start_plug(&plug); 2032 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2033 blk_finish_plug(&plug); 2034 return ret; 2035 } 2036 2037 EXPORT_SYMBOL(generic_writepages); 2038 2039 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2040 { 2041 int ret; 2042 2043 if (wbc->nr_to_write <= 0) 2044 return 0; 2045 if (mapping->a_ops->writepages) 2046 ret = mapping->a_ops->writepages(mapping, wbc); 2047 else 2048 ret = generic_writepages(mapping, wbc); 2049 return ret; 2050 } 2051 2052 /** 2053 * write_one_page - write out a single page and optionally wait on I/O 2054 * @page: the page to write 2055 * @wait: if true, wait on writeout 2056 * 2057 * The page must be locked by the caller and will be unlocked upon return. 2058 * 2059 * write_one_page() returns a negative error code if I/O failed. 2060 */ 2061 int write_one_page(struct page *page, int wait) 2062 { 2063 struct address_space *mapping = page->mapping; 2064 int ret = 0; 2065 struct writeback_control wbc = { 2066 .sync_mode = WB_SYNC_ALL, 2067 .nr_to_write = 1, 2068 }; 2069 2070 BUG_ON(!PageLocked(page)); 2071 2072 if (wait) 2073 wait_on_page_writeback(page); 2074 2075 if (clear_page_dirty_for_io(page)) { 2076 page_cache_get(page); 2077 ret = mapping->a_ops->writepage(page, &wbc); 2078 if (ret == 0 && wait) { 2079 wait_on_page_writeback(page); 2080 if (PageError(page)) 2081 ret = -EIO; 2082 } 2083 page_cache_release(page); 2084 } else { 2085 unlock_page(page); 2086 } 2087 return ret; 2088 } 2089 EXPORT_SYMBOL(write_one_page); 2090 2091 /* 2092 * For address_spaces which do not use buffers nor write back. 2093 */ 2094 int __set_page_dirty_no_writeback(struct page *page) 2095 { 2096 if (!PageDirty(page)) 2097 return !TestSetPageDirty(page); 2098 return 0; 2099 } 2100 2101 /* 2102 * Helper function for set_page_dirty family. 2103 * NOTE: This relies on being atomic wrt interrupts. 2104 */ 2105 void account_page_dirtied(struct page *page, struct address_space *mapping) 2106 { 2107 trace_writeback_dirty_page(page, mapping); 2108 2109 if (mapping_cap_account_dirty(mapping)) { 2110 __inc_zone_page_state(page, NR_FILE_DIRTY); 2111 __inc_zone_page_state(page, NR_DIRTIED); 2112 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 2113 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2114 task_io_account_write(PAGE_CACHE_SIZE); 2115 current->nr_dirtied++; 2116 this_cpu_inc(bdp_ratelimits); 2117 } 2118 } 2119 EXPORT_SYMBOL(account_page_dirtied); 2120 2121 /* 2122 * Helper function for set_page_writeback family. 2123 * 2124 * The caller must hold mem_cgroup_begin/end_update_page_stat() lock 2125 * while calling this function. 2126 * See test_set_page_writeback for example. 2127 * 2128 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 2129 * wrt interrupts. 2130 */ 2131 void account_page_writeback(struct page *page) 2132 { 2133 mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); 2134 inc_zone_page_state(page, NR_WRITEBACK); 2135 } 2136 EXPORT_SYMBOL(account_page_writeback); 2137 2138 /* 2139 * For address_spaces which do not use buffers. Just tag the page as dirty in 2140 * its radix tree. 2141 * 2142 * This is also used when a single buffer is being dirtied: we want to set the 2143 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2144 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2145 * 2146 * Most callers have locked the page, which pins the address_space in memory. 2147 * But zap_pte_range() does not lock the page, however in that case the 2148 * mapping is pinned by the vma's ->vm_file reference. 2149 * 2150 * We take care to handle the case where the page was truncated from the 2151 * mapping by re-checking page_mapping() inside tree_lock. 2152 */ 2153 int __set_page_dirty_nobuffers(struct page *page) 2154 { 2155 if (!TestSetPageDirty(page)) { 2156 struct address_space *mapping = page_mapping(page); 2157 struct address_space *mapping2; 2158 unsigned long flags; 2159 2160 if (!mapping) 2161 return 1; 2162 2163 spin_lock_irqsave(&mapping->tree_lock, flags); 2164 mapping2 = page_mapping(page); 2165 if (mapping2) { /* Race with truncate? */ 2166 BUG_ON(mapping2 != mapping); 2167 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2168 account_page_dirtied(page, mapping); 2169 radix_tree_tag_set(&mapping->page_tree, 2170 page_index(page), PAGECACHE_TAG_DIRTY); 2171 } 2172 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2173 if (mapping->host) { 2174 /* !PageAnon && !swapper_space */ 2175 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2176 } 2177 return 1; 2178 } 2179 return 0; 2180 } 2181 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2182 2183 /* 2184 * Call this whenever redirtying a page, to de-account the dirty counters 2185 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2186 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2187 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2188 * control. 2189 */ 2190 void account_page_redirty(struct page *page) 2191 { 2192 struct address_space *mapping = page->mapping; 2193 if (mapping && mapping_cap_account_dirty(mapping)) { 2194 current->nr_dirtied--; 2195 dec_zone_page_state(page, NR_DIRTIED); 2196 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2197 } 2198 } 2199 EXPORT_SYMBOL(account_page_redirty); 2200 2201 /* 2202 * When a writepage implementation decides that it doesn't want to write this 2203 * page for some reason, it should redirty the locked page via 2204 * redirty_page_for_writepage() and it should then unlock the page and return 0 2205 */ 2206 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2207 { 2208 wbc->pages_skipped++; 2209 account_page_redirty(page); 2210 return __set_page_dirty_nobuffers(page); 2211 } 2212 EXPORT_SYMBOL(redirty_page_for_writepage); 2213 2214 /* 2215 * Dirty a page. 2216 * 2217 * For pages with a mapping this should be done under the page lock 2218 * for the benefit of asynchronous memory errors who prefer a consistent 2219 * dirty state. This rule can be broken in some special cases, 2220 * but should be better not to. 2221 * 2222 * If the mapping doesn't provide a set_page_dirty a_op, then 2223 * just fall through and assume that it wants buffer_heads. 2224 */ 2225 int set_page_dirty(struct page *page) 2226 { 2227 struct address_space *mapping = page_mapping(page); 2228 2229 if (likely(mapping)) { 2230 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2231 /* 2232 * readahead/lru_deactivate_page could remain 2233 * PG_readahead/PG_reclaim due to race with end_page_writeback 2234 * About readahead, if the page is written, the flags would be 2235 * reset. So no problem. 2236 * About lru_deactivate_page, if the page is redirty, the flag 2237 * will be reset. So no problem. but if the page is used by readahead 2238 * it will confuse readahead and make it restart the size rampup 2239 * process. But it's a trivial problem. 2240 */ 2241 ClearPageReclaim(page); 2242 #ifdef CONFIG_BLOCK 2243 if (!spd) 2244 spd = __set_page_dirty_buffers; 2245 #endif 2246 return (*spd)(page); 2247 } 2248 if (!PageDirty(page)) { 2249 if (!TestSetPageDirty(page)) 2250 return 1; 2251 } 2252 return 0; 2253 } 2254 EXPORT_SYMBOL(set_page_dirty); 2255 2256 /* 2257 * set_page_dirty() is racy if the caller has no reference against 2258 * page->mapping->host, and if the page is unlocked. This is because another 2259 * CPU could truncate the page off the mapping and then free the mapping. 2260 * 2261 * Usually, the page _is_ locked, or the caller is a user-space process which 2262 * holds a reference on the inode by having an open file. 2263 * 2264 * In other cases, the page should be locked before running set_page_dirty(). 2265 */ 2266 int set_page_dirty_lock(struct page *page) 2267 { 2268 int ret; 2269 2270 lock_page(page); 2271 ret = set_page_dirty(page); 2272 unlock_page(page); 2273 return ret; 2274 } 2275 EXPORT_SYMBOL(set_page_dirty_lock); 2276 2277 /* 2278 * Clear a page's dirty flag, while caring for dirty memory accounting. 2279 * Returns true if the page was previously dirty. 2280 * 2281 * This is for preparing to put the page under writeout. We leave the page 2282 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2283 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2284 * implementation will run either set_page_writeback() or set_page_dirty(), 2285 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2286 * back into sync. 2287 * 2288 * This incoherency between the page's dirty flag and radix-tree tag is 2289 * unfortunate, but it only exists while the page is locked. 2290 */ 2291 int clear_page_dirty_for_io(struct page *page) 2292 { 2293 struct address_space *mapping = page_mapping(page); 2294 2295 BUG_ON(!PageLocked(page)); 2296 2297 if (mapping && mapping_cap_account_dirty(mapping)) { 2298 /* 2299 * Yes, Virginia, this is indeed insane. 2300 * 2301 * We use this sequence to make sure that 2302 * (a) we account for dirty stats properly 2303 * (b) we tell the low-level filesystem to 2304 * mark the whole page dirty if it was 2305 * dirty in a pagetable. Only to then 2306 * (c) clean the page again and return 1 to 2307 * cause the writeback. 2308 * 2309 * This way we avoid all nasty races with the 2310 * dirty bit in multiple places and clearing 2311 * them concurrently from different threads. 2312 * 2313 * Note! Normally the "set_page_dirty(page)" 2314 * has no effect on the actual dirty bit - since 2315 * that will already usually be set. But we 2316 * need the side effects, and it can help us 2317 * avoid races. 2318 * 2319 * We basically use the page "master dirty bit" 2320 * as a serialization point for all the different 2321 * threads doing their things. 2322 */ 2323 if (page_mkclean(page)) 2324 set_page_dirty(page); 2325 /* 2326 * We carefully synchronise fault handlers against 2327 * installing a dirty pte and marking the page dirty 2328 * at this point. We do this by having them hold the 2329 * page lock at some point after installing their 2330 * pte, but before marking the page dirty. 2331 * Pages are always locked coming in here, so we get 2332 * the desired exclusion. See mm/memory.c:do_wp_page() 2333 * for more comments. 2334 */ 2335 if (TestClearPageDirty(page)) { 2336 dec_zone_page_state(page, NR_FILE_DIRTY); 2337 dec_bdi_stat(mapping->backing_dev_info, 2338 BDI_RECLAIMABLE); 2339 return 1; 2340 } 2341 return 0; 2342 } 2343 return TestClearPageDirty(page); 2344 } 2345 EXPORT_SYMBOL(clear_page_dirty_for_io); 2346 2347 int test_clear_page_writeback(struct page *page) 2348 { 2349 struct address_space *mapping = page_mapping(page); 2350 int ret; 2351 bool locked; 2352 unsigned long memcg_flags; 2353 2354 mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags); 2355 if (mapping) { 2356 struct backing_dev_info *bdi = mapping->backing_dev_info; 2357 unsigned long flags; 2358 2359 spin_lock_irqsave(&mapping->tree_lock, flags); 2360 ret = TestClearPageWriteback(page); 2361 if (ret) { 2362 radix_tree_tag_clear(&mapping->page_tree, 2363 page_index(page), 2364 PAGECACHE_TAG_WRITEBACK); 2365 if (bdi_cap_account_writeback(bdi)) { 2366 __dec_bdi_stat(bdi, BDI_WRITEBACK); 2367 __bdi_writeout_inc(bdi); 2368 } 2369 } 2370 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2371 } else { 2372 ret = TestClearPageWriteback(page); 2373 } 2374 if (ret) { 2375 mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK); 2376 dec_zone_page_state(page, NR_WRITEBACK); 2377 inc_zone_page_state(page, NR_WRITTEN); 2378 } 2379 mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags); 2380 return ret; 2381 } 2382 2383 int test_set_page_writeback(struct page *page) 2384 { 2385 struct address_space *mapping = page_mapping(page); 2386 int ret; 2387 bool locked; 2388 unsigned long memcg_flags; 2389 2390 mem_cgroup_begin_update_page_stat(page, &locked, &memcg_flags); 2391 if (mapping) { 2392 struct backing_dev_info *bdi = mapping->backing_dev_info; 2393 unsigned long flags; 2394 2395 spin_lock_irqsave(&mapping->tree_lock, flags); 2396 ret = TestSetPageWriteback(page); 2397 if (!ret) { 2398 radix_tree_tag_set(&mapping->page_tree, 2399 page_index(page), 2400 PAGECACHE_TAG_WRITEBACK); 2401 if (bdi_cap_account_writeback(bdi)) 2402 __inc_bdi_stat(bdi, BDI_WRITEBACK); 2403 } 2404 if (!PageDirty(page)) 2405 radix_tree_tag_clear(&mapping->page_tree, 2406 page_index(page), 2407 PAGECACHE_TAG_DIRTY); 2408 radix_tree_tag_clear(&mapping->page_tree, 2409 page_index(page), 2410 PAGECACHE_TAG_TOWRITE); 2411 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2412 } else { 2413 ret = TestSetPageWriteback(page); 2414 } 2415 if (!ret) 2416 account_page_writeback(page); 2417 mem_cgroup_end_update_page_stat(page, &locked, &memcg_flags); 2418 return ret; 2419 2420 } 2421 EXPORT_SYMBOL(test_set_page_writeback); 2422 2423 /* 2424 * Return true if any of the pages in the mapping are marked with the 2425 * passed tag. 2426 */ 2427 int mapping_tagged(struct address_space *mapping, int tag) 2428 { 2429 return radix_tree_tagged(&mapping->page_tree, tag); 2430 } 2431 EXPORT_SYMBOL(mapping_tagged); 2432 2433 /** 2434 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2435 * @page: The page to wait on. 2436 * 2437 * This function determines if the given page is related to a backing device 2438 * that requires page contents to be held stable during writeback. If so, then 2439 * it will wait for any pending writeback to complete. 2440 */ 2441 void wait_for_stable_page(struct page *page) 2442 { 2443 struct address_space *mapping = page_mapping(page); 2444 struct backing_dev_info *bdi = mapping->backing_dev_info; 2445 2446 if (!bdi_cap_stable_pages_required(bdi)) 2447 return; 2448 2449 wait_on_page_writeback(page); 2450 } 2451 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2452