1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/pagevec.h> 36 #include <linux/timer.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/signal.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that makes the machine dump writes/reads and block dirtyings. 112 */ 113 int block_dump; 114 115 /* 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 117 * a full sync is triggered after this time elapses without any disk activity. 118 */ 119 int laptop_mode; 120 121 EXPORT_SYMBOL(laptop_mode); 122 123 /* End of sysctl-exported parameters */ 124 125 struct wb_domain global_wb_domain; 126 127 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 128 struct dirty_throttle_control { 129 #ifdef CONFIG_CGROUP_WRITEBACK 130 struct wb_domain *dom; 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 132 #endif 133 struct bdi_writeback *wb; 134 struct fprop_local_percpu *wb_completions; 135 136 unsigned long avail; /* dirtyable */ 137 unsigned long dirty; /* file_dirty + write + nfs */ 138 unsigned long thresh; /* dirty threshold */ 139 unsigned long bg_thresh; /* dirty background threshold */ 140 141 unsigned long wb_dirty; /* per-wb counterparts */ 142 unsigned long wb_thresh; 143 unsigned long wb_bg_thresh; 144 145 unsigned long pos_ratio; 146 }; 147 148 /* 149 * Length of period for aging writeout fractions of bdis. This is an 150 * arbitrarily chosen number. The longer the period, the slower fractions will 151 * reflect changes in current writeout rate. 152 */ 153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 154 155 #ifdef CONFIG_CGROUP_WRITEBACK 156 157 #define GDTC_INIT(__wb) .wb = (__wb), \ 158 .dom = &global_wb_domain, \ 159 .wb_completions = &(__wb)->completions 160 161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 162 163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 164 .dom = mem_cgroup_wb_domain(__wb), \ 165 .wb_completions = &(__wb)->memcg_completions, \ 166 .gdtc = __gdtc 167 168 static bool mdtc_valid(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 174 { 175 return dtc->dom; 176 } 177 178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 179 { 180 return mdtc->gdtc; 181 } 182 183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 184 { 185 return &wb->memcg_completions; 186 } 187 188 static void wb_min_max_ratio(struct bdi_writeback *wb, 189 unsigned long *minp, unsigned long *maxp) 190 { 191 unsigned long this_bw = wb->avg_write_bandwidth; 192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 193 unsigned long long min = wb->bdi->min_ratio; 194 unsigned long long max = wb->bdi->max_ratio; 195 196 /* 197 * @wb may already be clean by the time control reaches here and 198 * the total may not include its bw. 199 */ 200 if (this_bw < tot_bw) { 201 if (min) { 202 min *= this_bw; 203 min = div64_ul(min, tot_bw); 204 } 205 if (max < 100) { 206 max *= this_bw; 207 max = div64_ul(max, tot_bw); 208 } 209 } 210 211 *minp = min; 212 *maxp = max; 213 } 214 215 #else /* CONFIG_CGROUP_WRITEBACK */ 216 217 #define GDTC_INIT(__wb) .wb = (__wb), \ 218 .wb_completions = &(__wb)->completions 219 #define GDTC_INIT_NO_WB 220 #define MDTC_INIT(__wb, __gdtc) 221 222 static bool mdtc_valid(struct dirty_throttle_control *dtc) 223 { 224 return false; 225 } 226 227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 228 { 229 return &global_wb_domain; 230 } 231 232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 233 { 234 return NULL; 235 } 236 237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 238 { 239 return NULL; 240 } 241 242 static void wb_min_max_ratio(struct bdi_writeback *wb, 243 unsigned long *minp, unsigned long *maxp) 244 { 245 *minp = wb->bdi->min_ratio; 246 *maxp = wb->bdi->max_ratio; 247 } 248 249 #endif /* CONFIG_CGROUP_WRITEBACK */ 250 251 /* 252 * In a memory zone, there is a certain amount of pages we consider 253 * available for the page cache, which is essentially the number of 254 * free and reclaimable pages, minus some zone reserves to protect 255 * lowmem and the ability to uphold the zone's watermarks without 256 * requiring writeback. 257 * 258 * This number of dirtyable pages is the base value of which the 259 * user-configurable dirty ratio is the effective number of pages that 260 * are allowed to be actually dirtied. Per individual zone, or 261 * globally by using the sum of dirtyable pages over all zones. 262 * 263 * Because the user is allowed to specify the dirty limit globally as 264 * absolute number of bytes, calculating the per-zone dirty limit can 265 * require translating the configured limit into a percentage of 266 * global dirtyable memory first. 267 */ 268 269 /** 270 * node_dirtyable_memory - number of dirtyable pages in a node 271 * @pgdat: the node 272 * 273 * Return: the node's number of pages potentially available for dirty 274 * page cache. This is the base value for the per-node dirty limits. 275 */ 276 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 277 { 278 unsigned long nr_pages = 0; 279 int z; 280 281 for (z = 0; z < MAX_NR_ZONES; z++) { 282 struct zone *zone = pgdat->node_zones + z; 283 284 if (!populated_zone(zone)) 285 continue; 286 287 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 288 } 289 290 /* 291 * Pages reserved for the kernel should not be considered 292 * dirtyable, to prevent a situation where reclaim has to 293 * clean pages in order to balance the zones. 294 */ 295 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 296 297 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 298 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 299 300 return nr_pages; 301 } 302 303 static unsigned long highmem_dirtyable_memory(unsigned long total) 304 { 305 #ifdef CONFIG_HIGHMEM 306 int node; 307 unsigned long x = 0; 308 int i; 309 310 for_each_node_state(node, N_HIGH_MEMORY) { 311 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 312 struct zone *z; 313 unsigned long nr_pages; 314 315 if (!is_highmem_idx(i)) 316 continue; 317 318 z = &NODE_DATA(node)->node_zones[i]; 319 if (!populated_zone(z)) 320 continue; 321 322 nr_pages = zone_page_state(z, NR_FREE_PAGES); 323 /* watch for underflows */ 324 nr_pages -= min(nr_pages, high_wmark_pages(z)); 325 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 326 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 327 x += nr_pages; 328 } 329 } 330 331 /* 332 * Unreclaimable memory (kernel memory or anonymous memory 333 * without swap) can bring down the dirtyable pages below 334 * the zone's dirty balance reserve and the above calculation 335 * will underflow. However we still want to add in nodes 336 * which are below threshold (negative values) to get a more 337 * accurate calculation but make sure that the total never 338 * underflows. 339 */ 340 if ((long)x < 0) 341 x = 0; 342 343 /* 344 * Make sure that the number of highmem pages is never larger 345 * than the number of the total dirtyable memory. This can only 346 * occur in very strange VM situations but we want to make sure 347 * that this does not occur. 348 */ 349 return min(x, total); 350 #else 351 return 0; 352 #endif 353 } 354 355 /** 356 * global_dirtyable_memory - number of globally dirtyable pages 357 * 358 * Return: the global number of pages potentially available for dirty 359 * page cache. This is the base value for the global dirty limits. 360 */ 361 static unsigned long global_dirtyable_memory(void) 362 { 363 unsigned long x; 364 365 x = global_zone_page_state(NR_FREE_PAGES); 366 /* 367 * Pages reserved for the kernel should not be considered 368 * dirtyable, to prevent a situation where reclaim has to 369 * clean pages in order to balance the zones. 370 */ 371 x -= min(x, totalreserve_pages); 372 373 x += global_node_page_state(NR_INACTIVE_FILE); 374 x += global_node_page_state(NR_ACTIVE_FILE); 375 376 if (!vm_highmem_is_dirtyable) 377 x -= highmem_dirtyable_memory(x); 378 379 return x + 1; /* Ensure that we never return 0 */ 380 } 381 382 /** 383 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 384 * @dtc: dirty_throttle_control of interest 385 * 386 * Calculate @dtc->thresh and ->bg_thresh considering 387 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 388 * must ensure that @dtc->avail is set before calling this function. The 389 * dirty limits will be lifted by 1/4 for real-time tasks. 390 */ 391 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 392 { 393 const unsigned long available_memory = dtc->avail; 394 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 395 unsigned long bytes = vm_dirty_bytes; 396 unsigned long bg_bytes = dirty_background_bytes; 397 /* convert ratios to per-PAGE_SIZE for higher precision */ 398 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 399 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 400 unsigned long thresh; 401 unsigned long bg_thresh; 402 struct task_struct *tsk; 403 404 /* gdtc is !NULL iff @dtc is for memcg domain */ 405 if (gdtc) { 406 unsigned long global_avail = gdtc->avail; 407 408 /* 409 * The byte settings can't be applied directly to memcg 410 * domains. Convert them to ratios by scaling against 411 * globally available memory. As the ratios are in 412 * per-PAGE_SIZE, they can be obtained by dividing bytes by 413 * number of pages. 414 */ 415 if (bytes) 416 ratio = min(DIV_ROUND_UP(bytes, global_avail), 417 PAGE_SIZE); 418 if (bg_bytes) 419 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 420 PAGE_SIZE); 421 bytes = bg_bytes = 0; 422 } 423 424 if (bytes) 425 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 426 else 427 thresh = (ratio * available_memory) / PAGE_SIZE; 428 429 if (bg_bytes) 430 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 431 else 432 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 433 434 if (bg_thresh >= thresh) 435 bg_thresh = thresh / 2; 436 tsk = current; 437 if (rt_task(tsk)) { 438 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 439 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 440 } 441 dtc->thresh = thresh; 442 dtc->bg_thresh = bg_thresh; 443 444 /* we should eventually report the domain in the TP */ 445 if (!gdtc) 446 trace_global_dirty_state(bg_thresh, thresh); 447 } 448 449 /** 450 * global_dirty_limits - background-writeback and dirty-throttling thresholds 451 * @pbackground: out parameter for bg_thresh 452 * @pdirty: out parameter for thresh 453 * 454 * Calculate bg_thresh and thresh for global_wb_domain. See 455 * domain_dirty_limits() for details. 456 */ 457 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 458 { 459 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 460 461 gdtc.avail = global_dirtyable_memory(); 462 domain_dirty_limits(&gdtc); 463 464 *pbackground = gdtc.bg_thresh; 465 *pdirty = gdtc.thresh; 466 } 467 468 /** 469 * node_dirty_limit - maximum number of dirty pages allowed in a node 470 * @pgdat: the node 471 * 472 * Return: the maximum number of dirty pages allowed in a node, based 473 * on the node's dirtyable memory. 474 */ 475 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 476 { 477 unsigned long node_memory = node_dirtyable_memory(pgdat); 478 struct task_struct *tsk = current; 479 unsigned long dirty; 480 481 if (vm_dirty_bytes) 482 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 483 node_memory / global_dirtyable_memory(); 484 else 485 dirty = vm_dirty_ratio * node_memory / 100; 486 487 if (rt_task(tsk)) 488 dirty += dirty / 4; 489 490 return dirty; 491 } 492 493 /** 494 * node_dirty_ok - tells whether a node is within its dirty limits 495 * @pgdat: the node to check 496 * 497 * Return: %true when the dirty pages in @pgdat are within the node's 498 * dirty limit, %false if the limit is exceeded. 499 */ 500 bool node_dirty_ok(struct pglist_data *pgdat) 501 { 502 unsigned long limit = node_dirty_limit(pgdat); 503 unsigned long nr_pages = 0; 504 505 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 506 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 507 508 return nr_pages <= limit; 509 } 510 511 int dirty_background_ratio_handler(struct ctl_table *table, int write, 512 void *buffer, size_t *lenp, loff_t *ppos) 513 { 514 int ret; 515 516 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 517 if (ret == 0 && write) 518 dirty_background_bytes = 0; 519 return ret; 520 } 521 522 int dirty_background_bytes_handler(struct ctl_table *table, int write, 523 void *buffer, size_t *lenp, loff_t *ppos) 524 { 525 int ret; 526 527 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 528 if (ret == 0 && write) 529 dirty_background_ratio = 0; 530 return ret; 531 } 532 533 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 534 size_t *lenp, loff_t *ppos) 535 { 536 int old_ratio = vm_dirty_ratio; 537 int ret; 538 539 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 540 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 541 writeback_set_ratelimit(); 542 vm_dirty_bytes = 0; 543 } 544 return ret; 545 } 546 547 int dirty_bytes_handler(struct ctl_table *table, int write, 548 void *buffer, size_t *lenp, loff_t *ppos) 549 { 550 unsigned long old_bytes = vm_dirty_bytes; 551 int ret; 552 553 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 554 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 555 writeback_set_ratelimit(); 556 vm_dirty_ratio = 0; 557 } 558 return ret; 559 } 560 561 static unsigned long wp_next_time(unsigned long cur_time) 562 { 563 cur_time += VM_COMPLETIONS_PERIOD_LEN; 564 /* 0 has a special meaning... */ 565 if (!cur_time) 566 return 1; 567 return cur_time; 568 } 569 570 static void wb_domain_writeout_inc(struct wb_domain *dom, 571 struct fprop_local_percpu *completions, 572 unsigned int max_prop_frac) 573 { 574 __fprop_inc_percpu_max(&dom->completions, completions, 575 max_prop_frac); 576 /* First event after period switching was turned off? */ 577 if (unlikely(!dom->period_time)) { 578 /* 579 * We can race with other __bdi_writeout_inc calls here but 580 * it does not cause any harm since the resulting time when 581 * timer will fire and what is in writeout_period_time will be 582 * roughly the same. 583 */ 584 dom->period_time = wp_next_time(jiffies); 585 mod_timer(&dom->period_timer, dom->period_time); 586 } 587 } 588 589 /* 590 * Increment @wb's writeout completion count and the global writeout 591 * completion count. Called from test_clear_page_writeback(). 592 */ 593 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 594 { 595 struct wb_domain *cgdom; 596 597 inc_wb_stat(wb, WB_WRITTEN); 598 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 599 wb->bdi->max_prop_frac); 600 601 cgdom = mem_cgroup_wb_domain(wb); 602 if (cgdom) 603 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 604 wb->bdi->max_prop_frac); 605 } 606 607 void wb_writeout_inc(struct bdi_writeback *wb) 608 { 609 unsigned long flags; 610 611 local_irq_save(flags); 612 __wb_writeout_inc(wb); 613 local_irq_restore(flags); 614 } 615 EXPORT_SYMBOL_GPL(wb_writeout_inc); 616 617 /* 618 * On idle system, we can be called long after we scheduled because we use 619 * deferred timers so count with missed periods. 620 */ 621 static void writeout_period(struct timer_list *t) 622 { 623 struct wb_domain *dom = from_timer(dom, t, period_timer); 624 int miss_periods = (jiffies - dom->period_time) / 625 VM_COMPLETIONS_PERIOD_LEN; 626 627 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 628 dom->period_time = wp_next_time(dom->period_time + 629 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 630 mod_timer(&dom->period_timer, dom->period_time); 631 } else { 632 /* 633 * Aging has zeroed all fractions. Stop wasting CPU on period 634 * updates. 635 */ 636 dom->period_time = 0; 637 } 638 } 639 640 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 641 { 642 memset(dom, 0, sizeof(*dom)); 643 644 spin_lock_init(&dom->lock); 645 646 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 647 648 dom->dirty_limit_tstamp = jiffies; 649 650 return fprop_global_init(&dom->completions, gfp); 651 } 652 653 #ifdef CONFIG_CGROUP_WRITEBACK 654 void wb_domain_exit(struct wb_domain *dom) 655 { 656 del_timer_sync(&dom->period_timer); 657 fprop_global_destroy(&dom->completions); 658 } 659 #endif 660 661 /* 662 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 663 * registered backing devices, which, for obvious reasons, can not 664 * exceed 100%. 665 */ 666 static unsigned int bdi_min_ratio; 667 668 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 669 { 670 int ret = 0; 671 672 spin_lock_bh(&bdi_lock); 673 if (min_ratio > bdi->max_ratio) { 674 ret = -EINVAL; 675 } else { 676 min_ratio -= bdi->min_ratio; 677 if (bdi_min_ratio + min_ratio < 100) { 678 bdi_min_ratio += min_ratio; 679 bdi->min_ratio += min_ratio; 680 } else { 681 ret = -EINVAL; 682 } 683 } 684 spin_unlock_bh(&bdi_lock); 685 686 return ret; 687 } 688 689 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 690 { 691 int ret = 0; 692 693 if (max_ratio > 100) 694 return -EINVAL; 695 696 spin_lock_bh(&bdi_lock); 697 if (bdi->min_ratio > max_ratio) { 698 ret = -EINVAL; 699 } else { 700 bdi->max_ratio = max_ratio; 701 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 702 } 703 spin_unlock_bh(&bdi_lock); 704 705 return ret; 706 } 707 EXPORT_SYMBOL(bdi_set_max_ratio); 708 709 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 710 unsigned long bg_thresh) 711 { 712 return (thresh + bg_thresh) / 2; 713 } 714 715 static unsigned long hard_dirty_limit(struct wb_domain *dom, 716 unsigned long thresh) 717 { 718 return max(thresh, dom->dirty_limit); 719 } 720 721 /* 722 * Memory which can be further allocated to a memcg domain is capped by 723 * system-wide clean memory excluding the amount being used in the domain. 724 */ 725 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 726 unsigned long filepages, unsigned long headroom) 727 { 728 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 729 unsigned long clean = filepages - min(filepages, mdtc->dirty); 730 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 731 unsigned long other_clean = global_clean - min(global_clean, clean); 732 733 mdtc->avail = filepages + min(headroom, other_clean); 734 } 735 736 /** 737 * __wb_calc_thresh - @wb's share of dirty throttling threshold 738 * @dtc: dirty_throttle_context of interest 739 * 740 * Note that balance_dirty_pages() will only seriously take it as a hard limit 741 * when sleeping max_pause per page is not enough to keep the dirty pages under 742 * control. For example, when the device is completely stalled due to some error 743 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 744 * In the other normal situations, it acts more gently by throttling the tasks 745 * more (rather than completely block them) when the wb dirty pages go high. 746 * 747 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 748 * - starving fast devices 749 * - piling up dirty pages (that will take long time to sync) on slow devices 750 * 751 * The wb's share of dirty limit will be adapting to its throughput and 752 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 753 * 754 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 755 * dirty balancing includes all PG_dirty and PG_writeback pages. 756 */ 757 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 758 { 759 struct wb_domain *dom = dtc_dom(dtc); 760 unsigned long thresh = dtc->thresh; 761 u64 wb_thresh; 762 unsigned long numerator, denominator; 763 unsigned long wb_min_ratio, wb_max_ratio; 764 765 /* 766 * Calculate this BDI's share of the thresh ratio. 767 */ 768 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 769 &numerator, &denominator); 770 771 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 772 wb_thresh *= numerator; 773 wb_thresh = div64_ul(wb_thresh, denominator); 774 775 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 776 777 wb_thresh += (thresh * wb_min_ratio) / 100; 778 if (wb_thresh > (thresh * wb_max_ratio) / 100) 779 wb_thresh = thresh * wb_max_ratio / 100; 780 781 return wb_thresh; 782 } 783 784 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 785 { 786 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 787 .thresh = thresh }; 788 return __wb_calc_thresh(&gdtc); 789 } 790 791 /* 792 * setpoint - dirty 3 793 * f(dirty) := 1.0 + (----------------) 794 * limit - setpoint 795 * 796 * it's a 3rd order polynomial that subjects to 797 * 798 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 799 * (2) f(setpoint) = 1.0 => the balance point 800 * (3) f(limit) = 0 => the hard limit 801 * (4) df/dx <= 0 => negative feedback control 802 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 803 * => fast response on large errors; small oscillation near setpoint 804 */ 805 static long long pos_ratio_polynom(unsigned long setpoint, 806 unsigned long dirty, 807 unsigned long limit) 808 { 809 long long pos_ratio; 810 long x; 811 812 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 813 (limit - setpoint) | 1); 814 pos_ratio = x; 815 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 816 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 817 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 818 819 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 820 } 821 822 /* 823 * Dirty position control. 824 * 825 * (o) global/bdi setpoints 826 * 827 * We want the dirty pages be balanced around the global/wb setpoints. 828 * When the number of dirty pages is higher/lower than the setpoint, the 829 * dirty position control ratio (and hence task dirty ratelimit) will be 830 * decreased/increased to bring the dirty pages back to the setpoint. 831 * 832 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 833 * 834 * if (dirty < setpoint) scale up pos_ratio 835 * if (dirty > setpoint) scale down pos_ratio 836 * 837 * if (wb_dirty < wb_setpoint) scale up pos_ratio 838 * if (wb_dirty > wb_setpoint) scale down pos_ratio 839 * 840 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 841 * 842 * (o) global control line 843 * 844 * ^ pos_ratio 845 * | 846 * | |<===== global dirty control scope ======>| 847 * 2.0 * * * * * * * 848 * | .* 849 * | . * 850 * | . * 851 * | . * 852 * | . * 853 * | . * 854 * 1.0 ................................* 855 * | . . * 856 * | . . * 857 * | . . * 858 * | . . * 859 * | . . * 860 * 0 +------------.------------------.----------------------*-------------> 861 * freerun^ setpoint^ limit^ dirty pages 862 * 863 * (o) wb control line 864 * 865 * ^ pos_ratio 866 * | 867 * | * 868 * | * 869 * | * 870 * | * 871 * | * |<=========== span ============>| 872 * 1.0 .......................* 873 * | . * 874 * | . * 875 * | . * 876 * | . * 877 * | . * 878 * | . * 879 * | . * 880 * | . * 881 * | . * 882 * | . * 883 * | . * 884 * 1/4 ...............................................* * * * * * * * * * * * 885 * | . . 886 * | . . 887 * | . . 888 * 0 +----------------------.-------------------------------.-------------> 889 * wb_setpoint^ x_intercept^ 890 * 891 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 892 * be smoothly throttled down to normal if it starts high in situations like 893 * - start writing to a slow SD card and a fast disk at the same time. The SD 894 * card's wb_dirty may rush to many times higher than wb_setpoint. 895 * - the wb dirty thresh drops quickly due to change of JBOD workload 896 */ 897 static void wb_position_ratio(struct dirty_throttle_control *dtc) 898 { 899 struct bdi_writeback *wb = dtc->wb; 900 unsigned long write_bw = wb->avg_write_bandwidth; 901 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 902 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 903 unsigned long wb_thresh = dtc->wb_thresh; 904 unsigned long x_intercept; 905 unsigned long setpoint; /* dirty pages' target balance point */ 906 unsigned long wb_setpoint; 907 unsigned long span; 908 long long pos_ratio; /* for scaling up/down the rate limit */ 909 long x; 910 911 dtc->pos_ratio = 0; 912 913 if (unlikely(dtc->dirty >= limit)) 914 return; 915 916 /* 917 * global setpoint 918 * 919 * See comment for pos_ratio_polynom(). 920 */ 921 setpoint = (freerun + limit) / 2; 922 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 923 924 /* 925 * The strictlimit feature is a tool preventing mistrusted filesystems 926 * from growing a large number of dirty pages before throttling. For 927 * such filesystems balance_dirty_pages always checks wb counters 928 * against wb limits. Even if global "nr_dirty" is under "freerun". 929 * This is especially important for fuse which sets bdi->max_ratio to 930 * 1% by default. Without strictlimit feature, fuse writeback may 931 * consume arbitrary amount of RAM because it is accounted in 932 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 933 * 934 * Here, in wb_position_ratio(), we calculate pos_ratio based on 935 * two values: wb_dirty and wb_thresh. Let's consider an example: 936 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 937 * limits are set by default to 10% and 20% (background and throttle). 938 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 939 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 940 * about ~6K pages (as the average of background and throttle wb 941 * limits). The 3rd order polynomial will provide positive feedback if 942 * wb_dirty is under wb_setpoint and vice versa. 943 * 944 * Note, that we cannot use global counters in these calculations 945 * because we want to throttle process writing to a strictlimit wb 946 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 947 * in the example above). 948 */ 949 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 950 long long wb_pos_ratio; 951 952 if (dtc->wb_dirty < 8) { 953 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 954 2 << RATELIMIT_CALC_SHIFT); 955 return; 956 } 957 958 if (dtc->wb_dirty >= wb_thresh) 959 return; 960 961 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 962 dtc->wb_bg_thresh); 963 964 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 965 return; 966 967 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 968 wb_thresh); 969 970 /* 971 * Typically, for strictlimit case, wb_setpoint << setpoint 972 * and pos_ratio >> wb_pos_ratio. In the other words global 973 * state ("dirty") is not limiting factor and we have to 974 * make decision based on wb counters. But there is an 975 * important case when global pos_ratio should get precedence: 976 * global limits are exceeded (e.g. due to activities on other 977 * wb's) while given strictlimit wb is below limit. 978 * 979 * "pos_ratio * wb_pos_ratio" would work for the case above, 980 * but it would look too non-natural for the case of all 981 * activity in the system coming from a single strictlimit wb 982 * with bdi->max_ratio == 100%. 983 * 984 * Note that min() below somewhat changes the dynamics of the 985 * control system. Normally, pos_ratio value can be well over 3 986 * (when globally we are at freerun and wb is well below wb 987 * setpoint). Now the maximum pos_ratio in the same situation 988 * is 2. We might want to tweak this if we observe the control 989 * system is too slow to adapt. 990 */ 991 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 992 return; 993 } 994 995 /* 996 * We have computed basic pos_ratio above based on global situation. If 997 * the wb is over/under its share of dirty pages, we want to scale 998 * pos_ratio further down/up. That is done by the following mechanism. 999 */ 1000 1001 /* 1002 * wb setpoint 1003 * 1004 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1005 * 1006 * x_intercept - wb_dirty 1007 * := -------------------------- 1008 * x_intercept - wb_setpoint 1009 * 1010 * The main wb control line is a linear function that subjects to 1011 * 1012 * (1) f(wb_setpoint) = 1.0 1013 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1014 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1015 * 1016 * For single wb case, the dirty pages are observed to fluctuate 1017 * regularly within range 1018 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1019 * for various filesystems, where (2) can yield in a reasonable 12.5% 1020 * fluctuation range for pos_ratio. 1021 * 1022 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1023 * own size, so move the slope over accordingly and choose a slope that 1024 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1025 */ 1026 if (unlikely(wb_thresh > dtc->thresh)) 1027 wb_thresh = dtc->thresh; 1028 /* 1029 * It's very possible that wb_thresh is close to 0 not because the 1030 * device is slow, but that it has remained inactive for long time. 1031 * Honour such devices a reasonable good (hopefully IO efficient) 1032 * threshold, so that the occasional writes won't be blocked and active 1033 * writes can rampup the threshold quickly. 1034 */ 1035 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1036 /* 1037 * scale global setpoint to wb's: 1038 * wb_setpoint = setpoint * wb_thresh / thresh 1039 */ 1040 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1041 wb_setpoint = setpoint * (u64)x >> 16; 1042 /* 1043 * Use span=(8*write_bw) in single wb case as indicated by 1044 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1045 * 1046 * wb_thresh thresh - wb_thresh 1047 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1048 * thresh thresh 1049 */ 1050 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1051 x_intercept = wb_setpoint + span; 1052 1053 if (dtc->wb_dirty < x_intercept - span / 4) { 1054 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1055 (x_intercept - wb_setpoint) | 1); 1056 } else 1057 pos_ratio /= 4; 1058 1059 /* 1060 * wb reserve area, safeguard against dirty pool underrun and disk idle 1061 * It may push the desired control point of global dirty pages higher 1062 * than setpoint. 1063 */ 1064 x_intercept = wb_thresh / 2; 1065 if (dtc->wb_dirty < x_intercept) { 1066 if (dtc->wb_dirty > x_intercept / 8) 1067 pos_ratio = div_u64(pos_ratio * x_intercept, 1068 dtc->wb_dirty); 1069 else 1070 pos_ratio *= 8; 1071 } 1072 1073 dtc->pos_ratio = pos_ratio; 1074 } 1075 1076 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1077 unsigned long elapsed, 1078 unsigned long written) 1079 { 1080 const unsigned long period = roundup_pow_of_two(3 * HZ); 1081 unsigned long avg = wb->avg_write_bandwidth; 1082 unsigned long old = wb->write_bandwidth; 1083 u64 bw; 1084 1085 /* 1086 * bw = written * HZ / elapsed 1087 * 1088 * bw * elapsed + write_bandwidth * (period - elapsed) 1089 * write_bandwidth = --------------------------------------------------- 1090 * period 1091 * 1092 * @written may have decreased due to account_page_redirty(). 1093 * Avoid underflowing @bw calculation. 1094 */ 1095 bw = written - min(written, wb->written_stamp); 1096 bw *= HZ; 1097 if (unlikely(elapsed > period)) { 1098 bw = div64_ul(bw, elapsed); 1099 avg = bw; 1100 goto out; 1101 } 1102 bw += (u64)wb->write_bandwidth * (period - elapsed); 1103 bw >>= ilog2(period); 1104 1105 /* 1106 * one more level of smoothing, for filtering out sudden spikes 1107 */ 1108 if (avg > old && old >= (unsigned long)bw) 1109 avg -= (avg - old) >> 3; 1110 1111 if (avg < old && old <= (unsigned long)bw) 1112 avg += (old - avg) >> 3; 1113 1114 out: 1115 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1116 avg = max(avg, 1LU); 1117 if (wb_has_dirty_io(wb)) { 1118 long delta = avg - wb->avg_write_bandwidth; 1119 WARN_ON_ONCE(atomic_long_add_return(delta, 1120 &wb->bdi->tot_write_bandwidth) <= 0); 1121 } 1122 wb->write_bandwidth = bw; 1123 wb->avg_write_bandwidth = avg; 1124 } 1125 1126 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1127 { 1128 struct wb_domain *dom = dtc_dom(dtc); 1129 unsigned long thresh = dtc->thresh; 1130 unsigned long limit = dom->dirty_limit; 1131 1132 /* 1133 * Follow up in one step. 1134 */ 1135 if (limit < thresh) { 1136 limit = thresh; 1137 goto update; 1138 } 1139 1140 /* 1141 * Follow down slowly. Use the higher one as the target, because thresh 1142 * may drop below dirty. This is exactly the reason to introduce 1143 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1144 */ 1145 thresh = max(thresh, dtc->dirty); 1146 if (limit > thresh) { 1147 limit -= (limit - thresh) >> 5; 1148 goto update; 1149 } 1150 return; 1151 update: 1152 dom->dirty_limit = limit; 1153 } 1154 1155 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1156 unsigned long now) 1157 { 1158 struct wb_domain *dom = dtc_dom(dtc); 1159 1160 /* 1161 * check locklessly first to optimize away locking for the most time 1162 */ 1163 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1164 return; 1165 1166 spin_lock(&dom->lock); 1167 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1168 update_dirty_limit(dtc); 1169 dom->dirty_limit_tstamp = now; 1170 } 1171 spin_unlock(&dom->lock); 1172 } 1173 1174 /* 1175 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1176 * 1177 * Normal wb tasks will be curbed at or below it in long term. 1178 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1179 */ 1180 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1181 unsigned long dirtied, 1182 unsigned long elapsed) 1183 { 1184 struct bdi_writeback *wb = dtc->wb; 1185 unsigned long dirty = dtc->dirty; 1186 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1187 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1188 unsigned long setpoint = (freerun + limit) / 2; 1189 unsigned long write_bw = wb->avg_write_bandwidth; 1190 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1191 unsigned long dirty_rate; 1192 unsigned long task_ratelimit; 1193 unsigned long balanced_dirty_ratelimit; 1194 unsigned long step; 1195 unsigned long x; 1196 unsigned long shift; 1197 1198 /* 1199 * The dirty rate will match the writeout rate in long term, except 1200 * when dirty pages are truncated by userspace or re-dirtied by FS. 1201 */ 1202 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1203 1204 /* 1205 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1206 */ 1207 task_ratelimit = (u64)dirty_ratelimit * 1208 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1209 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1210 1211 /* 1212 * A linear estimation of the "balanced" throttle rate. The theory is, 1213 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1214 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1215 * formula will yield the balanced rate limit (write_bw / N). 1216 * 1217 * Note that the expanded form is not a pure rate feedback: 1218 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1219 * but also takes pos_ratio into account: 1220 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1221 * 1222 * (1) is not realistic because pos_ratio also takes part in balancing 1223 * the dirty rate. Consider the state 1224 * pos_ratio = 0.5 (3) 1225 * rate = 2 * (write_bw / N) (4) 1226 * If (1) is used, it will stuck in that state! Because each dd will 1227 * be throttled at 1228 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1229 * yielding 1230 * dirty_rate = N * task_ratelimit = write_bw (6) 1231 * put (6) into (1) we get 1232 * rate_(i+1) = rate_(i) (7) 1233 * 1234 * So we end up using (2) to always keep 1235 * rate_(i+1) ~= (write_bw / N) (8) 1236 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1237 * pos_ratio is able to drive itself to 1.0, which is not only where 1238 * the dirty count meet the setpoint, but also where the slope of 1239 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1240 */ 1241 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1242 dirty_rate | 1); 1243 /* 1244 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1245 */ 1246 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1247 balanced_dirty_ratelimit = write_bw; 1248 1249 /* 1250 * We could safely do this and return immediately: 1251 * 1252 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1253 * 1254 * However to get a more stable dirty_ratelimit, the below elaborated 1255 * code makes use of task_ratelimit to filter out singular points and 1256 * limit the step size. 1257 * 1258 * The below code essentially only uses the relative value of 1259 * 1260 * task_ratelimit - dirty_ratelimit 1261 * = (pos_ratio - 1) * dirty_ratelimit 1262 * 1263 * which reflects the direction and size of dirty position error. 1264 */ 1265 1266 /* 1267 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1268 * task_ratelimit is on the same side of dirty_ratelimit, too. 1269 * For example, when 1270 * - dirty_ratelimit > balanced_dirty_ratelimit 1271 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1272 * lowering dirty_ratelimit will help meet both the position and rate 1273 * control targets. Otherwise, don't update dirty_ratelimit if it will 1274 * only help meet the rate target. After all, what the users ultimately 1275 * feel and care are stable dirty rate and small position error. 1276 * 1277 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1278 * and filter out the singular points of balanced_dirty_ratelimit. Which 1279 * keeps jumping around randomly and can even leap far away at times 1280 * due to the small 200ms estimation period of dirty_rate (we want to 1281 * keep that period small to reduce time lags). 1282 */ 1283 step = 0; 1284 1285 /* 1286 * For strictlimit case, calculations above were based on wb counters 1287 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1288 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1289 * Hence, to calculate "step" properly, we have to use wb_dirty as 1290 * "dirty" and wb_setpoint as "setpoint". 1291 * 1292 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1293 * it's possible that wb_thresh is close to zero due to inactivity 1294 * of backing device. 1295 */ 1296 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1297 dirty = dtc->wb_dirty; 1298 if (dtc->wb_dirty < 8) 1299 setpoint = dtc->wb_dirty + 1; 1300 else 1301 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1302 } 1303 1304 if (dirty < setpoint) { 1305 x = min3(wb->balanced_dirty_ratelimit, 1306 balanced_dirty_ratelimit, task_ratelimit); 1307 if (dirty_ratelimit < x) 1308 step = x - dirty_ratelimit; 1309 } else { 1310 x = max3(wb->balanced_dirty_ratelimit, 1311 balanced_dirty_ratelimit, task_ratelimit); 1312 if (dirty_ratelimit > x) 1313 step = dirty_ratelimit - x; 1314 } 1315 1316 /* 1317 * Don't pursue 100% rate matching. It's impossible since the balanced 1318 * rate itself is constantly fluctuating. So decrease the track speed 1319 * when it gets close to the target. Helps eliminate pointless tremors. 1320 */ 1321 shift = dirty_ratelimit / (2 * step + 1); 1322 if (shift < BITS_PER_LONG) 1323 step = DIV_ROUND_UP(step >> shift, 8); 1324 else 1325 step = 0; 1326 1327 if (dirty_ratelimit < balanced_dirty_ratelimit) 1328 dirty_ratelimit += step; 1329 else 1330 dirty_ratelimit -= step; 1331 1332 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1333 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1334 1335 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1336 } 1337 1338 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1339 struct dirty_throttle_control *mdtc, 1340 unsigned long start_time, 1341 bool update_ratelimit) 1342 { 1343 struct bdi_writeback *wb = gdtc->wb; 1344 unsigned long now = jiffies; 1345 unsigned long elapsed = now - wb->bw_time_stamp; 1346 unsigned long dirtied; 1347 unsigned long written; 1348 1349 lockdep_assert_held(&wb->list_lock); 1350 1351 /* 1352 * rate-limit, only update once every 200ms. 1353 */ 1354 if (elapsed < BANDWIDTH_INTERVAL) 1355 return; 1356 1357 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1358 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1359 1360 /* 1361 * Skip quiet periods when disk bandwidth is under-utilized. 1362 * (at least 1s idle time between two flusher runs) 1363 */ 1364 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1365 goto snapshot; 1366 1367 if (update_ratelimit) { 1368 domain_update_bandwidth(gdtc, now); 1369 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1370 1371 /* 1372 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1373 * compiler has no way to figure that out. Help it. 1374 */ 1375 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1376 domain_update_bandwidth(mdtc, now); 1377 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1378 } 1379 } 1380 wb_update_write_bandwidth(wb, elapsed, written); 1381 1382 snapshot: 1383 wb->dirtied_stamp = dirtied; 1384 wb->written_stamp = written; 1385 wb->bw_time_stamp = now; 1386 } 1387 1388 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1389 { 1390 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1391 1392 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1393 } 1394 1395 /* 1396 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1397 * will look to see if it needs to start dirty throttling. 1398 * 1399 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1400 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1401 * (the number of pages we may dirty without exceeding the dirty limits). 1402 */ 1403 static unsigned long dirty_poll_interval(unsigned long dirty, 1404 unsigned long thresh) 1405 { 1406 if (thresh > dirty) 1407 return 1UL << (ilog2(thresh - dirty) >> 1); 1408 1409 return 1; 1410 } 1411 1412 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1413 unsigned long wb_dirty) 1414 { 1415 unsigned long bw = wb->avg_write_bandwidth; 1416 unsigned long t; 1417 1418 /* 1419 * Limit pause time for small memory systems. If sleeping for too long 1420 * time, a small pool of dirty/writeback pages may go empty and disk go 1421 * idle. 1422 * 1423 * 8 serves as the safety ratio. 1424 */ 1425 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1426 t++; 1427 1428 return min_t(unsigned long, t, MAX_PAUSE); 1429 } 1430 1431 static long wb_min_pause(struct bdi_writeback *wb, 1432 long max_pause, 1433 unsigned long task_ratelimit, 1434 unsigned long dirty_ratelimit, 1435 int *nr_dirtied_pause) 1436 { 1437 long hi = ilog2(wb->avg_write_bandwidth); 1438 long lo = ilog2(wb->dirty_ratelimit); 1439 long t; /* target pause */ 1440 long pause; /* estimated next pause */ 1441 int pages; /* target nr_dirtied_pause */ 1442 1443 /* target for 10ms pause on 1-dd case */ 1444 t = max(1, HZ / 100); 1445 1446 /* 1447 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1448 * overheads. 1449 * 1450 * (N * 10ms) on 2^N concurrent tasks. 1451 */ 1452 if (hi > lo) 1453 t += (hi - lo) * (10 * HZ) / 1024; 1454 1455 /* 1456 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1457 * on the much more stable dirty_ratelimit. However the next pause time 1458 * will be computed based on task_ratelimit and the two rate limits may 1459 * depart considerably at some time. Especially if task_ratelimit goes 1460 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1461 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1462 * result task_ratelimit won't be executed faithfully, which could 1463 * eventually bring down dirty_ratelimit. 1464 * 1465 * We apply two rules to fix it up: 1466 * 1) try to estimate the next pause time and if necessary, use a lower 1467 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1468 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1469 * 2) limit the target pause time to max_pause/2, so that the normal 1470 * small fluctuations of task_ratelimit won't trigger rule (1) and 1471 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1472 */ 1473 t = min(t, 1 + max_pause / 2); 1474 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1475 1476 /* 1477 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1478 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1479 * When the 16 consecutive reads are often interrupted by some dirty 1480 * throttling pause during the async writes, cfq will go into idles 1481 * (deadline is fine). So push nr_dirtied_pause as high as possible 1482 * until reaches DIRTY_POLL_THRESH=32 pages. 1483 */ 1484 if (pages < DIRTY_POLL_THRESH) { 1485 t = max_pause; 1486 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1487 if (pages > DIRTY_POLL_THRESH) { 1488 pages = DIRTY_POLL_THRESH; 1489 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1490 } 1491 } 1492 1493 pause = HZ * pages / (task_ratelimit + 1); 1494 if (pause > max_pause) { 1495 t = max_pause; 1496 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1497 } 1498 1499 *nr_dirtied_pause = pages; 1500 /* 1501 * The minimal pause time will normally be half the target pause time. 1502 */ 1503 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1504 } 1505 1506 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1507 { 1508 struct bdi_writeback *wb = dtc->wb; 1509 unsigned long wb_reclaimable; 1510 1511 /* 1512 * wb_thresh is not treated as some limiting factor as 1513 * dirty_thresh, due to reasons 1514 * - in JBOD setup, wb_thresh can fluctuate a lot 1515 * - in a system with HDD and USB key, the USB key may somehow 1516 * go into state (wb_dirty >> wb_thresh) either because 1517 * wb_dirty starts high, or because wb_thresh drops low. 1518 * In this case we don't want to hard throttle the USB key 1519 * dirtiers for 100 seconds until wb_dirty drops under 1520 * wb_thresh. Instead the auxiliary wb control line in 1521 * wb_position_ratio() will let the dirtier task progress 1522 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1523 */ 1524 dtc->wb_thresh = __wb_calc_thresh(dtc); 1525 dtc->wb_bg_thresh = dtc->thresh ? 1526 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1527 1528 /* 1529 * In order to avoid the stacked BDI deadlock we need 1530 * to ensure we accurately count the 'dirty' pages when 1531 * the threshold is low. 1532 * 1533 * Otherwise it would be possible to get thresh+n pages 1534 * reported dirty, even though there are thresh-m pages 1535 * actually dirty; with m+n sitting in the percpu 1536 * deltas. 1537 */ 1538 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1539 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1540 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1541 } else { 1542 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1543 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1544 } 1545 } 1546 1547 /* 1548 * balance_dirty_pages() must be called by processes which are generating dirty 1549 * data. It looks at the number of dirty pages in the machine and will force 1550 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1551 * If we're over `background_thresh' then the writeback threads are woken to 1552 * perform some writeout. 1553 */ 1554 static void balance_dirty_pages(struct bdi_writeback *wb, 1555 unsigned long pages_dirtied) 1556 { 1557 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1558 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1559 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1560 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1561 &mdtc_stor : NULL; 1562 struct dirty_throttle_control *sdtc; 1563 unsigned long nr_reclaimable; /* = file_dirty */ 1564 long period; 1565 long pause; 1566 long max_pause; 1567 long min_pause; 1568 int nr_dirtied_pause; 1569 bool dirty_exceeded = false; 1570 unsigned long task_ratelimit; 1571 unsigned long dirty_ratelimit; 1572 struct backing_dev_info *bdi = wb->bdi; 1573 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1574 unsigned long start_time = jiffies; 1575 1576 for (;;) { 1577 unsigned long now = jiffies; 1578 unsigned long dirty, thresh, bg_thresh; 1579 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1580 unsigned long m_thresh = 0; 1581 unsigned long m_bg_thresh = 0; 1582 1583 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1584 gdtc->avail = global_dirtyable_memory(); 1585 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1586 1587 domain_dirty_limits(gdtc); 1588 1589 if (unlikely(strictlimit)) { 1590 wb_dirty_limits(gdtc); 1591 1592 dirty = gdtc->wb_dirty; 1593 thresh = gdtc->wb_thresh; 1594 bg_thresh = gdtc->wb_bg_thresh; 1595 } else { 1596 dirty = gdtc->dirty; 1597 thresh = gdtc->thresh; 1598 bg_thresh = gdtc->bg_thresh; 1599 } 1600 1601 if (mdtc) { 1602 unsigned long filepages, headroom, writeback; 1603 1604 /* 1605 * If @wb belongs to !root memcg, repeat the same 1606 * basic calculations for the memcg domain. 1607 */ 1608 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1609 &mdtc->dirty, &writeback); 1610 mdtc->dirty += writeback; 1611 mdtc_calc_avail(mdtc, filepages, headroom); 1612 1613 domain_dirty_limits(mdtc); 1614 1615 if (unlikely(strictlimit)) { 1616 wb_dirty_limits(mdtc); 1617 m_dirty = mdtc->wb_dirty; 1618 m_thresh = mdtc->wb_thresh; 1619 m_bg_thresh = mdtc->wb_bg_thresh; 1620 } else { 1621 m_dirty = mdtc->dirty; 1622 m_thresh = mdtc->thresh; 1623 m_bg_thresh = mdtc->bg_thresh; 1624 } 1625 } 1626 1627 /* 1628 * Throttle it only when the background writeback cannot 1629 * catch-up. This avoids (excessively) small writeouts 1630 * when the wb limits are ramping up in case of !strictlimit. 1631 * 1632 * In strictlimit case make decision based on the wb counters 1633 * and limits. Small writeouts when the wb limits are ramping 1634 * up are the price we consciously pay for strictlimit-ing. 1635 * 1636 * If memcg domain is in effect, @dirty should be under 1637 * both global and memcg freerun ceilings. 1638 */ 1639 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1640 (!mdtc || 1641 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1642 unsigned long intv; 1643 unsigned long m_intv; 1644 1645 free_running: 1646 intv = dirty_poll_interval(dirty, thresh); 1647 m_intv = ULONG_MAX; 1648 1649 current->dirty_paused_when = now; 1650 current->nr_dirtied = 0; 1651 if (mdtc) 1652 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1653 current->nr_dirtied_pause = min(intv, m_intv); 1654 break; 1655 } 1656 1657 if (unlikely(!writeback_in_progress(wb))) 1658 wb_start_background_writeback(wb); 1659 1660 mem_cgroup_flush_foreign(wb); 1661 1662 /* 1663 * Calculate global domain's pos_ratio and select the 1664 * global dtc by default. 1665 */ 1666 if (!strictlimit) { 1667 wb_dirty_limits(gdtc); 1668 1669 if ((current->flags & PF_LOCAL_THROTTLE) && 1670 gdtc->wb_dirty < 1671 dirty_freerun_ceiling(gdtc->wb_thresh, 1672 gdtc->wb_bg_thresh)) 1673 /* 1674 * LOCAL_THROTTLE tasks must not be throttled 1675 * when below the per-wb freerun ceiling. 1676 */ 1677 goto free_running; 1678 } 1679 1680 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1681 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1682 1683 wb_position_ratio(gdtc); 1684 sdtc = gdtc; 1685 1686 if (mdtc) { 1687 /* 1688 * If memcg domain is in effect, calculate its 1689 * pos_ratio. @wb should satisfy constraints from 1690 * both global and memcg domains. Choose the one 1691 * w/ lower pos_ratio. 1692 */ 1693 if (!strictlimit) { 1694 wb_dirty_limits(mdtc); 1695 1696 if ((current->flags & PF_LOCAL_THROTTLE) && 1697 mdtc->wb_dirty < 1698 dirty_freerun_ceiling(mdtc->wb_thresh, 1699 mdtc->wb_bg_thresh)) 1700 /* 1701 * LOCAL_THROTTLE tasks must not be 1702 * throttled when below the per-wb 1703 * freerun ceiling. 1704 */ 1705 goto free_running; 1706 } 1707 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1708 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1709 1710 wb_position_ratio(mdtc); 1711 if (mdtc->pos_ratio < gdtc->pos_ratio) 1712 sdtc = mdtc; 1713 } 1714 1715 if (dirty_exceeded && !wb->dirty_exceeded) 1716 wb->dirty_exceeded = 1; 1717 1718 if (time_is_before_jiffies(wb->bw_time_stamp + 1719 BANDWIDTH_INTERVAL)) { 1720 spin_lock(&wb->list_lock); 1721 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1722 spin_unlock(&wb->list_lock); 1723 } 1724 1725 /* throttle according to the chosen dtc */ 1726 dirty_ratelimit = wb->dirty_ratelimit; 1727 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1728 RATELIMIT_CALC_SHIFT; 1729 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1730 min_pause = wb_min_pause(wb, max_pause, 1731 task_ratelimit, dirty_ratelimit, 1732 &nr_dirtied_pause); 1733 1734 if (unlikely(task_ratelimit == 0)) { 1735 period = max_pause; 1736 pause = max_pause; 1737 goto pause; 1738 } 1739 period = HZ * pages_dirtied / task_ratelimit; 1740 pause = period; 1741 if (current->dirty_paused_when) 1742 pause -= now - current->dirty_paused_when; 1743 /* 1744 * For less than 1s think time (ext3/4 may block the dirtier 1745 * for up to 800ms from time to time on 1-HDD; so does xfs, 1746 * however at much less frequency), try to compensate it in 1747 * future periods by updating the virtual time; otherwise just 1748 * do a reset, as it may be a light dirtier. 1749 */ 1750 if (pause < min_pause) { 1751 trace_balance_dirty_pages(wb, 1752 sdtc->thresh, 1753 sdtc->bg_thresh, 1754 sdtc->dirty, 1755 sdtc->wb_thresh, 1756 sdtc->wb_dirty, 1757 dirty_ratelimit, 1758 task_ratelimit, 1759 pages_dirtied, 1760 period, 1761 min(pause, 0L), 1762 start_time); 1763 if (pause < -HZ) { 1764 current->dirty_paused_when = now; 1765 current->nr_dirtied = 0; 1766 } else if (period) { 1767 current->dirty_paused_when += period; 1768 current->nr_dirtied = 0; 1769 } else if (current->nr_dirtied_pause <= pages_dirtied) 1770 current->nr_dirtied_pause += pages_dirtied; 1771 break; 1772 } 1773 if (unlikely(pause > max_pause)) { 1774 /* for occasional dropped task_ratelimit */ 1775 now += min(pause - max_pause, max_pause); 1776 pause = max_pause; 1777 } 1778 1779 pause: 1780 trace_balance_dirty_pages(wb, 1781 sdtc->thresh, 1782 sdtc->bg_thresh, 1783 sdtc->dirty, 1784 sdtc->wb_thresh, 1785 sdtc->wb_dirty, 1786 dirty_ratelimit, 1787 task_ratelimit, 1788 pages_dirtied, 1789 period, 1790 pause, 1791 start_time); 1792 __set_current_state(TASK_KILLABLE); 1793 wb->dirty_sleep = now; 1794 io_schedule_timeout(pause); 1795 1796 current->dirty_paused_when = now + pause; 1797 current->nr_dirtied = 0; 1798 current->nr_dirtied_pause = nr_dirtied_pause; 1799 1800 /* 1801 * This is typically equal to (dirty < thresh) and can also 1802 * keep "1000+ dd on a slow USB stick" under control. 1803 */ 1804 if (task_ratelimit) 1805 break; 1806 1807 /* 1808 * In the case of an unresponsive NFS server and the NFS dirty 1809 * pages exceeds dirty_thresh, give the other good wb's a pipe 1810 * to go through, so that tasks on them still remain responsive. 1811 * 1812 * In theory 1 page is enough to keep the consumer-producer 1813 * pipe going: the flusher cleans 1 page => the task dirties 1 1814 * more page. However wb_dirty has accounting errors. So use 1815 * the larger and more IO friendly wb_stat_error. 1816 */ 1817 if (sdtc->wb_dirty <= wb_stat_error()) 1818 break; 1819 1820 if (fatal_signal_pending(current)) 1821 break; 1822 } 1823 1824 if (!dirty_exceeded && wb->dirty_exceeded) 1825 wb->dirty_exceeded = 0; 1826 1827 if (writeback_in_progress(wb)) 1828 return; 1829 1830 /* 1831 * In laptop mode, we wait until hitting the higher threshold before 1832 * starting background writeout, and then write out all the way down 1833 * to the lower threshold. So slow writers cause minimal disk activity. 1834 * 1835 * In normal mode, we start background writeout at the lower 1836 * background_thresh, to keep the amount of dirty memory low. 1837 */ 1838 if (laptop_mode) 1839 return; 1840 1841 if (nr_reclaimable > gdtc->bg_thresh) 1842 wb_start_background_writeback(wb); 1843 } 1844 1845 static DEFINE_PER_CPU(int, bdp_ratelimits); 1846 1847 /* 1848 * Normal tasks are throttled by 1849 * loop { 1850 * dirty tsk->nr_dirtied_pause pages; 1851 * take a snap in balance_dirty_pages(); 1852 * } 1853 * However there is a worst case. If every task exit immediately when dirtied 1854 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1855 * called to throttle the page dirties. The solution is to save the not yet 1856 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1857 * randomly into the running tasks. This works well for the above worst case, 1858 * as the new task will pick up and accumulate the old task's leaked dirty 1859 * count and eventually get throttled. 1860 */ 1861 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1862 1863 /** 1864 * balance_dirty_pages_ratelimited - balance dirty memory state 1865 * @mapping: address_space which was dirtied 1866 * 1867 * Processes which are dirtying memory should call in here once for each page 1868 * which was newly dirtied. The function will periodically check the system's 1869 * dirty state and will initiate writeback if needed. 1870 * 1871 * Once we're over the dirty memory limit we decrease the ratelimiting 1872 * by a lot, to prevent individual processes from overshooting the limit 1873 * by (ratelimit_pages) each. 1874 */ 1875 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1876 { 1877 struct inode *inode = mapping->host; 1878 struct backing_dev_info *bdi = inode_to_bdi(inode); 1879 struct bdi_writeback *wb = NULL; 1880 int ratelimit; 1881 int *p; 1882 1883 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 1884 return; 1885 1886 if (inode_cgwb_enabled(inode)) 1887 wb = wb_get_create_current(bdi, GFP_KERNEL); 1888 if (!wb) 1889 wb = &bdi->wb; 1890 1891 ratelimit = current->nr_dirtied_pause; 1892 if (wb->dirty_exceeded) 1893 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1894 1895 preempt_disable(); 1896 /* 1897 * This prevents one CPU to accumulate too many dirtied pages without 1898 * calling into balance_dirty_pages(), which can happen when there are 1899 * 1000+ tasks, all of them start dirtying pages at exactly the same 1900 * time, hence all honoured too large initial task->nr_dirtied_pause. 1901 */ 1902 p = this_cpu_ptr(&bdp_ratelimits); 1903 if (unlikely(current->nr_dirtied >= ratelimit)) 1904 *p = 0; 1905 else if (unlikely(*p >= ratelimit_pages)) { 1906 *p = 0; 1907 ratelimit = 0; 1908 } 1909 /* 1910 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1911 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1912 * the dirty throttling and livelock other long-run dirtiers. 1913 */ 1914 p = this_cpu_ptr(&dirty_throttle_leaks); 1915 if (*p > 0 && current->nr_dirtied < ratelimit) { 1916 unsigned long nr_pages_dirtied; 1917 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1918 *p -= nr_pages_dirtied; 1919 current->nr_dirtied += nr_pages_dirtied; 1920 } 1921 preempt_enable(); 1922 1923 if (unlikely(current->nr_dirtied >= ratelimit)) 1924 balance_dirty_pages(wb, current->nr_dirtied); 1925 1926 wb_put(wb); 1927 } 1928 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1929 1930 /** 1931 * wb_over_bg_thresh - does @wb need to be written back? 1932 * @wb: bdi_writeback of interest 1933 * 1934 * Determines whether background writeback should keep writing @wb or it's 1935 * clean enough. 1936 * 1937 * Return: %true if writeback should continue. 1938 */ 1939 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1940 { 1941 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1942 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1943 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1944 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1945 &mdtc_stor : NULL; 1946 unsigned long reclaimable; 1947 unsigned long thresh; 1948 1949 /* 1950 * Similar to balance_dirty_pages() but ignores pages being written 1951 * as we're trying to decide whether to put more under writeback. 1952 */ 1953 gdtc->avail = global_dirtyable_memory(); 1954 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 1955 domain_dirty_limits(gdtc); 1956 1957 if (gdtc->dirty > gdtc->bg_thresh) 1958 return true; 1959 1960 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 1961 if (thresh < 2 * wb_stat_error()) 1962 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1963 else 1964 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1965 1966 if (reclaimable > thresh) 1967 return true; 1968 1969 if (mdtc) { 1970 unsigned long filepages, headroom, writeback; 1971 1972 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1973 &writeback); 1974 mdtc_calc_avail(mdtc, filepages, headroom); 1975 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1976 1977 if (mdtc->dirty > mdtc->bg_thresh) 1978 return true; 1979 1980 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 1981 if (thresh < 2 * wb_stat_error()) 1982 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1983 else 1984 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1985 1986 if (reclaimable > thresh) 1987 return true; 1988 } 1989 1990 return false; 1991 } 1992 1993 /* 1994 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1995 */ 1996 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1997 void *buffer, size_t *length, loff_t *ppos) 1998 { 1999 unsigned int old_interval = dirty_writeback_interval; 2000 int ret; 2001 2002 ret = proc_dointvec(table, write, buffer, length, ppos); 2003 2004 /* 2005 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2006 * and a different non-zero value will wakeup the writeback threads. 2007 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2008 * iterate over all bdis and wbs. 2009 * The reason we do this is to make the change take effect immediately. 2010 */ 2011 if (!ret && write && dirty_writeback_interval && 2012 dirty_writeback_interval != old_interval) 2013 wakeup_flusher_threads(WB_REASON_PERIODIC); 2014 2015 return ret; 2016 } 2017 2018 #ifdef CONFIG_BLOCK 2019 void laptop_mode_timer_fn(struct timer_list *t) 2020 { 2021 struct backing_dev_info *backing_dev_info = 2022 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2023 2024 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2025 } 2026 2027 /* 2028 * We've spun up the disk and we're in laptop mode: schedule writeback 2029 * of all dirty data a few seconds from now. If the flush is already scheduled 2030 * then push it back - the user is still using the disk. 2031 */ 2032 void laptop_io_completion(struct backing_dev_info *info) 2033 { 2034 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2035 } 2036 2037 /* 2038 * We're in laptop mode and we've just synced. The sync's writes will have 2039 * caused another writeback to be scheduled by laptop_io_completion. 2040 * Nothing needs to be written back anymore, so we unschedule the writeback. 2041 */ 2042 void laptop_sync_completion(void) 2043 { 2044 struct backing_dev_info *bdi; 2045 2046 rcu_read_lock(); 2047 2048 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2049 del_timer(&bdi->laptop_mode_wb_timer); 2050 2051 rcu_read_unlock(); 2052 } 2053 #endif 2054 2055 /* 2056 * If ratelimit_pages is too high then we can get into dirty-data overload 2057 * if a large number of processes all perform writes at the same time. 2058 * 2059 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2060 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2061 * thresholds. 2062 */ 2063 2064 void writeback_set_ratelimit(void) 2065 { 2066 struct wb_domain *dom = &global_wb_domain; 2067 unsigned long background_thresh; 2068 unsigned long dirty_thresh; 2069 2070 global_dirty_limits(&background_thresh, &dirty_thresh); 2071 dom->dirty_limit = dirty_thresh; 2072 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2073 if (ratelimit_pages < 16) 2074 ratelimit_pages = 16; 2075 } 2076 2077 static int page_writeback_cpu_online(unsigned int cpu) 2078 { 2079 writeback_set_ratelimit(); 2080 return 0; 2081 } 2082 2083 /* 2084 * Called early on to tune the page writeback dirty limits. 2085 * 2086 * We used to scale dirty pages according to how total memory 2087 * related to pages that could be allocated for buffers. 2088 * 2089 * However, that was when we used "dirty_ratio" to scale with 2090 * all memory, and we don't do that any more. "dirty_ratio" 2091 * is now applied to total non-HIGHPAGE memory, and as such we can't 2092 * get into the old insane situation any more where we had 2093 * large amounts of dirty pages compared to a small amount of 2094 * non-HIGHMEM memory. 2095 * 2096 * But we might still want to scale the dirty_ratio by how 2097 * much memory the box has.. 2098 */ 2099 void __init page_writeback_init(void) 2100 { 2101 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2102 2103 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2104 page_writeback_cpu_online, NULL); 2105 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2106 page_writeback_cpu_online); 2107 } 2108 2109 /** 2110 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2111 * @mapping: address space structure to write 2112 * @start: starting page index 2113 * @end: ending page index (inclusive) 2114 * 2115 * This function scans the page range from @start to @end (inclusive) and tags 2116 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2117 * that write_cache_pages (or whoever calls this function) will then use 2118 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2119 * used to avoid livelocking of writeback by a process steadily creating new 2120 * dirty pages in the file (thus it is important for this function to be quick 2121 * so that it can tag pages faster than a dirtying process can create them). 2122 */ 2123 void tag_pages_for_writeback(struct address_space *mapping, 2124 pgoff_t start, pgoff_t end) 2125 { 2126 XA_STATE(xas, &mapping->i_pages, start); 2127 unsigned int tagged = 0; 2128 void *page; 2129 2130 xas_lock_irq(&xas); 2131 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2132 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2133 if (++tagged % XA_CHECK_SCHED) 2134 continue; 2135 2136 xas_pause(&xas); 2137 xas_unlock_irq(&xas); 2138 cond_resched(); 2139 xas_lock_irq(&xas); 2140 } 2141 xas_unlock_irq(&xas); 2142 } 2143 EXPORT_SYMBOL(tag_pages_for_writeback); 2144 2145 /** 2146 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2147 * @mapping: address space structure to write 2148 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2149 * @writepage: function called for each page 2150 * @data: data passed to writepage function 2151 * 2152 * If a page is already under I/O, write_cache_pages() skips it, even 2153 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2154 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2155 * and msync() need to guarantee that all the data which was dirty at the time 2156 * the call was made get new I/O started against them. If wbc->sync_mode is 2157 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2158 * existing IO to complete. 2159 * 2160 * To avoid livelocks (when other process dirties new pages), we first tag 2161 * pages which should be written back with TOWRITE tag and only then start 2162 * writing them. For data-integrity sync we have to be careful so that we do 2163 * not miss some pages (e.g., because some other process has cleared TOWRITE 2164 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2165 * by the process clearing the DIRTY tag (and submitting the page for IO). 2166 * 2167 * To avoid deadlocks between range_cyclic writeback and callers that hold 2168 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2169 * we do not loop back to the start of the file. Doing so causes a page 2170 * lock/page writeback access order inversion - we should only ever lock 2171 * multiple pages in ascending page->index order, and looping back to the start 2172 * of the file violates that rule and causes deadlocks. 2173 * 2174 * Return: %0 on success, negative error code otherwise 2175 */ 2176 int write_cache_pages(struct address_space *mapping, 2177 struct writeback_control *wbc, writepage_t writepage, 2178 void *data) 2179 { 2180 int ret = 0; 2181 int done = 0; 2182 int error; 2183 struct pagevec pvec; 2184 int nr_pages; 2185 pgoff_t index; 2186 pgoff_t end; /* Inclusive */ 2187 pgoff_t done_index; 2188 int range_whole = 0; 2189 xa_mark_t tag; 2190 2191 pagevec_init(&pvec); 2192 if (wbc->range_cyclic) { 2193 index = mapping->writeback_index; /* prev offset */ 2194 end = -1; 2195 } else { 2196 index = wbc->range_start >> PAGE_SHIFT; 2197 end = wbc->range_end >> PAGE_SHIFT; 2198 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2199 range_whole = 1; 2200 } 2201 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2202 tag_pages_for_writeback(mapping, index, end); 2203 tag = PAGECACHE_TAG_TOWRITE; 2204 } else { 2205 tag = PAGECACHE_TAG_DIRTY; 2206 } 2207 done_index = index; 2208 while (!done && (index <= end)) { 2209 int i; 2210 2211 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2212 tag); 2213 if (nr_pages == 0) 2214 break; 2215 2216 for (i = 0; i < nr_pages; i++) { 2217 struct page *page = pvec.pages[i]; 2218 2219 done_index = page->index; 2220 2221 lock_page(page); 2222 2223 /* 2224 * Page truncated or invalidated. We can freely skip it 2225 * then, even for data integrity operations: the page 2226 * has disappeared concurrently, so there could be no 2227 * real expectation of this data integrity operation 2228 * even if there is now a new, dirty page at the same 2229 * pagecache address. 2230 */ 2231 if (unlikely(page->mapping != mapping)) { 2232 continue_unlock: 2233 unlock_page(page); 2234 continue; 2235 } 2236 2237 if (!PageDirty(page)) { 2238 /* someone wrote it for us */ 2239 goto continue_unlock; 2240 } 2241 2242 if (PageWriteback(page)) { 2243 if (wbc->sync_mode != WB_SYNC_NONE) 2244 wait_on_page_writeback(page); 2245 else 2246 goto continue_unlock; 2247 } 2248 2249 BUG_ON(PageWriteback(page)); 2250 if (!clear_page_dirty_for_io(page)) 2251 goto continue_unlock; 2252 2253 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2254 error = (*writepage)(page, wbc, data); 2255 if (unlikely(error)) { 2256 /* 2257 * Handle errors according to the type of 2258 * writeback. There's no need to continue for 2259 * background writeback. Just push done_index 2260 * past this page so media errors won't choke 2261 * writeout for the entire file. For integrity 2262 * writeback, we must process the entire dirty 2263 * set regardless of errors because the fs may 2264 * still have state to clear for each page. In 2265 * that case we continue processing and return 2266 * the first error. 2267 */ 2268 if (error == AOP_WRITEPAGE_ACTIVATE) { 2269 unlock_page(page); 2270 error = 0; 2271 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2272 ret = error; 2273 done_index = page->index + 1; 2274 done = 1; 2275 break; 2276 } 2277 if (!ret) 2278 ret = error; 2279 } 2280 2281 /* 2282 * We stop writing back only if we are not doing 2283 * integrity sync. In case of integrity sync we have to 2284 * keep going until we have written all the pages 2285 * we tagged for writeback prior to entering this loop. 2286 */ 2287 if (--wbc->nr_to_write <= 0 && 2288 wbc->sync_mode == WB_SYNC_NONE) { 2289 done = 1; 2290 break; 2291 } 2292 } 2293 pagevec_release(&pvec); 2294 cond_resched(); 2295 } 2296 2297 /* 2298 * If we hit the last page and there is more work to be done: wrap 2299 * back the index back to the start of the file for the next 2300 * time we are called. 2301 */ 2302 if (wbc->range_cyclic && !done) 2303 done_index = 0; 2304 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2305 mapping->writeback_index = done_index; 2306 2307 return ret; 2308 } 2309 EXPORT_SYMBOL(write_cache_pages); 2310 2311 /* 2312 * Function used by generic_writepages to call the real writepage 2313 * function and set the mapping flags on error 2314 */ 2315 static int __writepage(struct page *page, struct writeback_control *wbc, 2316 void *data) 2317 { 2318 struct address_space *mapping = data; 2319 int ret = mapping->a_ops->writepage(page, wbc); 2320 mapping_set_error(mapping, ret); 2321 return ret; 2322 } 2323 2324 /** 2325 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2326 * @mapping: address space structure to write 2327 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2328 * 2329 * This is a library function, which implements the writepages() 2330 * address_space_operation. 2331 * 2332 * Return: %0 on success, negative error code otherwise 2333 */ 2334 int generic_writepages(struct address_space *mapping, 2335 struct writeback_control *wbc) 2336 { 2337 struct blk_plug plug; 2338 int ret; 2339 2340 /* deal with chardevs and other special file */ 2341 if (!mapping->a_ops->writepage) 2342 return 0; 2343 2344 blk_start_plug(&plug); 2345 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2346 blk_finish_plug(&plug); 2347 return ret; 2348 } 2349 2350 EXPORT_SYMBOL(generic_writepages); 2351 2352 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2353 { 2354 int ret; 2355 2356 if (wbc->nr_to_write <= 0) 2357 return 0; 2358 while (1) { 2359 if (mapping->a_ops->writepages) 2360 ret = mapping->a_ops->writepages(mapping, wbc); 2361 else 2362 ret = generic_writepages(mapping, wbc); 2363 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2364 break; 2365 cond_resched(); 2366 congestion_wait(BLK_RW_ASYNC, HZ/50); 2367 } 2368 return ret; 2369 } 2370 2371 /** 2372 * write_one_page - write out a single page and wait on I/O 2373 * @page: the page to write 2374 * 2375 * The page must be locked by the caller and will be unlocked upon return. 2376 * 2377 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2378 * function returns. 2379 * 2380 * Return: %0 on success, negative error code otherwise 2381 */ 2382 int write_one_page(struct page *page) 2383 { 2384 struct address_space *mapping = page->mapping; 2385 int ret = 0; 2386 struct writeback_control wbc = { 2387 .sync_mode = WB_SYNC_ALL, 2388 .nr_to_write = 1, 2389 }; 2390 2391 BUG_ON(!PageLocked(page)); 2392 2393 wait_on_page_writeback(page); 2394 2395 if (clear_page_dirty_for_io(page)) { 2396 get_page(page); 2397 ret = mapping->a_ops->writepage(page, &wbc); 2398 if (ret == 0) 2399 wait_on_page_writeback(page); 2400 put_page(page); 2401 } else { 2402 unlock_page(page); 2403 } 2404 2405 if (!ret) 2406 ret = filemap_check_errors(mapping); 2407 return ret; 2408 } 2409 EXPORT_SYMBOL(write_one_page); 2410 2411 /* 2412 * For address_spaces which do not use buffers nor write back. 2413 */ 2414 int __set_page_dirty_no_writeback(struct page *page) 2415 { 2416 if (!PageDirty(page)) 2417 return !TestSetPageDirty(page); 2418 return 0; 2419 } 2420 EXPORT_SYMBOL(__set_page_dirty_no_writeback); 2421 2422 /* 2423 * Helper function for set_page_dirty family. 2424 * 2425 * Caller must hold lock_page_memcg(). 2426 * 2427 * NOTE: This relies on being atomic wrt interrupts. 2428 */ 2429 static void account_page_dirtied(struct page *page, 2430 struct address_space *mapping) 2431 { 2432 struct inode *inode = mapping->host; 2433 2434 trace_writeback_dirty_page(page, mapping); 2435 2436 if (mapping_can_writeback(mapping)) { 2437 struct bdi_writeback *wb; 2438 2439 inode_attach_wb(inode, page); 2440 wb = inode_to_wb(inode); 2441 2442 __inc_lruvec_page_state(page, NR_FILE_DIRTY); 2443 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2444 __inc_node_page_state(page, NR_DIRTIED); 2445 inc_wb_stat(wb, WB_RECLAIMABLE); 2446 inc_wb_stat(wb, WB_DIRTIED); 2447 task_io_account_write(PAGE_SIZE); 2448 current->nr_dirtied++; 2449 __this_cpu_inc(bdp_ratelimits); 2450 2451 mem_cgroup_track_foreign_dirty(page, wb); 2452 } 2453 } 2454 2455 /* 2456 * Helper function for deaccounting dirty page without writeback. 2457 * 2458 * Caller must hold lock_page_memcg(). 2459 */ 2460 void account_page_cleaned(struct page *page, struct address_space *mapping, 2461 struct bdi_writeback *wb) 2462 { 2463 if (mapping_can_writeback(mapping)) { 2464 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2465 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2466 dec_wb_stat(wb, WB_RECLAIMABLE); 2467 task_io_account_cancelled_write(PAGE_SIZE); 2468 } 2469 } 2470 2471 /* 2472 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 2473 * dirty. 2474 * 2475 * If warn is true, then emit a warning if the page is not uptodate and has 2476 * not been truncated. 2477 * 2478 * The caller must hold lock_page_memcg(). 2479 */ 2480 void __set_page_dirty(struct page *page, struct address_space *mapping, 2481 int warn) 2482 { 2483 unsigned long flags; 2484 2485 xa_lock_irqsave(&mapping->i_pages, flags); 2486 if (page->mapping) { /* Race with truncate? */ 2487 WARN_ON_ONCE(warn && !PageUptodate(page)); 2488 account_page_dirtied(page, mapping); 2489 __xa_set_mark(&mapping->i_pages, page_index(page), 2490 PAGECACHE_TAG_DIRTY); 2491 } 2492 xa_unlock_irqrestore(&mapping->i_pages, flags); 2493 } 2494 2495 /* 2496 * For address_spaces which do not use buffers. Just tag the page as dirty in 2497 * the xarray. 2498 * 2499 * This is also used when a single buffer is being dirtied: we want to set the 2500 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2501 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2502 * 2503 * The caller must ensure this doesn't race with truncation. Most will simply 2504 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2505 * the pte lock held, which also locks out truncation. 2506 */ 2507 int __set_page_dirty_nobuffers(struct page *page) 2508 { 2509 lock_page_memcg(page); 2510 if (!TestSetPageDirty(page)) { 2511 struct address_space *mapping = page_mapping(page); 2512 2513 if (!mapping) { 2514 unlock_page_memcg(page); 2515 return 1; 2516 } 2517 __set_page_dirty(page, mapping, !PagePrivate(page)); 2518 unlock_page_memcg(page); 2519 2520 if (mapping->host) { 2521 /* !PageAnon && !swapper_space */ 2522 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2523 } 2524 return 1; 2525 } 2526 unlock_page_memcg(page); 2527 return 0; 2528 } 2529 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2530 2531 /* 2532 * Call this whenever redirtying a page, to de-account the dirty counters 2533 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written 2534 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to 2535 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2536 * control. 2537 */ 2538 void account_page_redirty(struct page *page) 2539 { 2540 struct address_space *mapping = page->mapping; 2541 2542 if (mapping && mapping_can_writeback(mapping)) { 2543 struct inode *inode = mapping->host; 2544 struct bdi_writeback *wb; 2545 struct wb_lock_cookie cookie = {}; 2546 2547 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2548 current->nr_dirtied--; 2549 dec_node_page_state(page, NR_DIRTIED); 2550 dec_wb_stat(wb, WB_DIRTIED); 2551 unlocked_inode_to_wb_end(inode, &cookie); 2552 } 2553 } 2554 EXPORT_SYMBOL(account_page_redirty); 2555 2556 /* 2557 * When a writepage implementation decides that it doesn't want to write this 2558 * page for some reason, it should redirty the locked page via 2559 * redirty_page_for_writepage() and it should then unlock the page and return 0 2560 */ 2561 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2562 { 2563 int ret; 2564 2565 wbc->pages_skipped++; 2566 ret = __set_page_dirty_nobuffers(page); 2567 account_page_redirty(page); 2568 return ret; 2569 } 2570 EXPORT_SYMBOL(redirty_page_for_writepage); 2571 2572 /* 2573 * Dirty a page. 2574 * 2575 * For pages with a mapping this should be done under the page lock for the 2576 * benefit of asynchronous memory errors who prefer a consistent dirty state. 2577 * This rule can be broken in some special cases, but should be better not to. 2578 */ 2579 int set_page_dirty(struct page *page) 2580 { 2581 struct address_space *mapping = page_mapping(page); 2582 2583 page = compound_head(page); 2584 if (likely(mapping)) { 2585 /* 2586 * readahead/lru_deactivate_page could remain 2587 * PG_readahead/PG_reclaim due to race with end_page_writeback 2588 * About readahead, if the page is written, the flags would be 2589 * reset. So no problem. 2590 * About lru_deactivate_page, if the page is redirty, the flag 2591 * will be reset. So no problem. but if the page is used by readahead 2592 * it will confuse readahead and make it restart the size rampup 2593 * process. But it's a trivial problem. 2594 */ 2595 if (PageReclaim(page)) 2596 ClearPageReclaim(page); 2597 return mapping->a_ops->set_page_dirty(page); 2598 } 2599 if (!PageDirty(page)) { 2600 if (!TestSetPageDirty(page)) 2601 return 1; 2602 } 2603 return 0; 2604 } 2605 EXPORT_SYMBOL(set_page_dirty); 2606 2607 /* 2608 * set_page_dirty() is racy if the caller has no reference against 2609 * page->mapping->host, and if the page is unlocked. This is because another 2610 * CPU could truncate the page off the mapping and then free the mapping. 2611 * 2612 * Usually, the page _is_ locked, or the caller is a user-space process which 2613 * holds a reference on the inode by having an open file. 2614 * 2615 * In other cases, the page should be locked before running set_page_dirty(). 2616 */ 2617 int set_page_dirty_lock(struct page *page) 2618 { 2619 int ret; 2620 2621 lock_page(page); 2622 ret = set_page_dirty(page); 2623 unlock_page(page); 2624 return ret; 2625 } 2626 EXPORT_SYMBOL(set_page_dirty_lock); 2627 2628 /* 2629 * This cancels just the dirty bit on the kernel page itself, it does NOT 2630 * actually remove dirty bits on any mmap's that may be around. It also 2631 * leaves the page tagged dirty, so any sync activity will still find it on 2632 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2633 * look at the dirty bits in the VM. 2634 * 2635 * Doing this should *normally* only ever be done when a page is truncated, 2636 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2637 * this when it notices that somebody has cleaned out all the buffers on a 2638 * page without actually doing it through the VM. Can you say "ext3 is 2639 * horribly ugly"? Thought you could. 2640 */ 2641 void __cancel_dirty_page(struct page *page) 2642 { 2643 struct address_space *mapping = page_mapping(page); 2644 2645 if (mapping_can_writeback(mapping)) { 2646 struct inode *inode = mapping->host; 2647 struct bdi_writeback *wb; 2648 struct wb_lock_cookie cookie = {}; 2649 2650 lock_page_memcg(page); 2651 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2652 2653 if (TestClearPageDirty(page)) 2654 account_page_cleaned(page, mapping, wb); 2655 2656 unlocked_inode_to_wb_end(inode, &cookie); 2657 unlock_page_memcg(page); 2658 } else { 2659 ClearPageDirty(page); 2660 } 2661 } 2662 EXPORT_SYMBOL(__cancel_dirty_page); 2663 2664 /* 2665 * Clear a page's dirty flag, while caring for dirty memory accounting. 2666 * Returns true if the page was previously dirty. 2667 * 2668 * This is for preparing to put the page under writeout. We leave the page 2669 * tagged as dirty in the xarray so that a concurrent write-for-sync 2670 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2671 * implementation will run either set_page_writeback() or set_page_dirty(), 2672 * at which stage we bring the page's dirty flag and xarray dirty tag 2673 * back into sync. 2674 * 2675 * This incoherency between the page's dirty flag and xarray tag is 2676 * unfortunate, but it only exists while the page is locked. 2677 */ 2678 int clear_page_dirty_for_io(struct page *page) 2679 { 2680 struct address_space *mapping = page_mapping(page); 2681 int ret = 0; 2682 2683 VM_BUG_ON_PAGE(!PageLocked(page), page); 2684 2685 if (mapping && mapping_can_writeback(mapping)) { 2686 struct inode *inode = mapping->host; 2687 struct bdi_writeback *wb; 2688 struct wb_lock_cookie cookie = {}; 2689 2690 /* 2691 * Yes, Virginia, this is indeed insane. 2692 * 2693 * We use this sequence to make sure that 2694 * (a) we account for dirty stats properly 2695 * (b) we tell the low-level filesystem to 2696 * mark the whole page dirty if it was 2697 * dirty in a pagetable. Only to then 2698 * (c) clean the page again and return 1 to 2699 * cause the writeback. 2700 * 2701 * This way we avoid all nasty races with the 2702 * dirty bit in multiple places and clearing 2703 * them concurrently from different threads. 2704 * 2705 * Note! Normally the "set_page_dirty(page)" 2706 * has no effect on the actual dirty bit - since 2707 * that will already usually be set. But we 2708 * need the side effects, and it can help us 2709 * avoid races. 2710 * 2711 * We basically use the page "master dirty bit" 2712 * as a serialization point for all the different 2713 * threads doing their things. 2714 */ 2715 if (page_mkclean(page)) 2716 set_page_dirty(page); 2717 /* 2718 * We carefully synchronise fault handlers against 2719 * installing a dirty pte and marking the page dirty 2720 * at this point. We do this by having them hold the 2721 * page lock while dirtying the page, and pages are 2722 * always locked coming in here, so we get the desired 2723 * exclusion. 2724 */ 2725 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2726 if (TestClearPageDirty(page)) { 2727 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2728 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2729 dec_wb_stat(wb, WB_RECLAIMABLE); 2730 ret = 1; 2731 } 2732 unlocked_inode_to_wb_end(inode, &cookie); 2733 return ret; 2734 } 2735 return TestClearPageDirty(page); 2736 } 2737 EXPORT_SYMBOL(clear_page_dirty_for_io); 2738 2739 int test_clear_page_writeback(struct page *page) 2740 { 2741 struct address_space *mapping = page_mapping(page); 2742 int ret; 2743 2744 lock_page_memcg(page); 2745 if (mapping && mapping_use_writeback_tags(mapping)) { 2746 struct inode *inode = mapping->host; 2747 struct backing_dev_info *bdi = inode_to_bdi(inode); 2748 unsigned long flags; 2749 2750 xa_lock_irqsave(&mapping->i_pages, flags); 2751 ret = TestClearPageWriteback(page); 2752 if (ret) { 2753 __xa_clear_mark(&mapping->i_pages, page_index(page), 2754 PAGECACHE_TAG_WRITEBACK); 2755 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2756 struct bdi_writeback *wb = inode_to_wb(inode); 2757 2758 dec_wb_stat(wb, WB_WRITEBACK); 2759 __wb_writeout_inc(wb); 2760 } 2761 } 2762 2763 if (mapping->host && !mapping_tagged(mapping, 2764 PAGECACHE_TAG_WRITEBACK)) 2765 sb_clear_inode_writeback(mapping->host); 2766 2767 xa_unlock_irqrestore(&mapping->i_pages, flags); 2768 } else { 2769 ret = TestClearPageWriteback(page); 2770 } 2771 if (ret) { 2772 dec_lruvec_page_state(page, NR_WRITEBACK); 2773 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2774 inc_node_page_state(page, NR_WRITTEN); 2775 } 2776 unlock_page_memcg(page); 2777 return ret; 2778 } 2779 2780 int __test_set_page_writeback(struct page *page, bool keep_write) 2781 { 2782 struct address_space *mapping = page_mapping(page); 2783 int ret, access_ret; 2784 2785 lock_page_memcg(page); 2786 if (mapping && mapping_use_writeback_tags(mapping)) { 2787 XA_STATE(xas, &mapping->i_pages, page_index(page)); 2788 struct inode *inode = mapping->host; 2789 struct backing_dev_info *bdi = inode_to_bdi(inode); 2790 unsigned long flags; 2791 2792 xas_lock_irqsave(&xas, flags); 2793 xas_load(&xas); 2794 ret = TestSetPageWriteback(page); 2795 if (!ret) { 2796 bool on_wblist; 2797 2798 on_wblist = mapping_tagged(mapping, 2799 PAGECACHE_TAG_WRITEBACK); 2800 2801 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2802 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) 2803 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2804 2805 /* 2806 * We can come through here when swapping anonymous 2807 * pages, so we don't necessarily have an inode to track 2808 * for sync. 2809 */ 2810 if (mapping->host && !on_wblist) 2811 sb_mark_inode_writeback(mapping->host); 2812 } 2813 if (!PageDirty(page)) 2814 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2815 if (!keep_write) 2816 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2817 xas_unlock_irqrestore(&xas, flags); 2818 } else { 2819 ret = TestSetPageWriteback(page); 2820 } 2821 if (!ret) { 2822 inc_lruvec_page_state(page, NR_WRITEBACK); 2823 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2824 } 2825 unlock_page_memcg(page); 2826 access_ret = arch_make_page_accessible(page); 2827 /* 2828 * If writeback has been triggered on a page that cannot be made 2829 * accessible, it is too late to recover here. 2830 */ 2831 VM_BUG_ON_PAGE(access_ret != 0, page); 2832 2833 return ret; 2834 2835 } 2836 EXPORT_SYMBOL(__test_set_page_writeback); 2837 2838 /* 2839 * Wait for a page to complete writeback 2840 */ 2841 void wait_on_page_writeback(struct page *page) 2842 { 2843 while (PageWriteback(page)) { 2844 trace_wait_on_page_writeback(page, page_mapping(page)); 2845 wait_on_page_bit(page, PG_writeback); 2846 } 2847 } 2848 EXPORT_SYMBOL_GPL(wait_on_page_writeback); 2849 2850 /* 2851 * Wait for a page to complete writeback. Returns -EINTR if we get a 2852 * fatal signal while waiting. 2853 */ 2854 int wait_on_page_writeback_killable(struct page *page) 2855 { 2856 while (PageWriteback(page)) { 2857 trace_wait_on_page_writeback(page, page_mapping(page)); 2858 if (wait_on_page_bit_killable(page, PG_writeback)) 2859 return -EINTR; 2860 } 2861 2862 return 0; 2863 } 2864 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable); 2865 2866 /** 2867 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2868 * @page: The page to wait on. 2869 * 2870 * This function determines if the given page is related to a backing device 2871 * that requires page contents to be held stable during writeback. If so, then 2872 * it will wait for any pending writeback to complete. 2873 */ 2874 void wait_for_stable_page(struct page *page) 2875 { 2876 page = thp_head(page); 2877 if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES) 2878 wait_on_page_writeback(page); 2879 } 2880 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2881