1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that makes the machine dump writes/reads and block dirtyings. 113 */ 114 int block_dump; 115 116 /* 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 118 * a full sync is triggered after this time elapses without any disk activity. 119 */ 120 int laptop_mode; 121 122 EXPORT_SYMBOL(laptop_mode); 123 124 /* End of sysctl-exported parameters */ 125 126 struct wb_domain global_wb_domain; 127 128 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 129 struct dirty_throttle_control { 130 #ifdef CONFIG_CGROUP_WRITEBACK 131 struct wb_domain *dom; 132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 133 #endif 134 struct bdi_writeback *wb; 135 struct fprop_local_percpu *wb_completions; 136 137 unsigned long avail; /* dirtyable */ 138 unsigned long dirty; /* file_dirty + write + nfs */ 139 unsigned long thresh; /* dirty threshold */ 140 unsigned long bg_thresh; /* dirty background threshold */ 141 142 unsigned long wb_dirty; /* per-wb counterparts */ 143 unsigned long wb_thresh; 144 unsigned long wb_bg_thresh; 145 146 unsigned long pos_ratio; 147 }; 148 149 /* 150 * Length of period for aging writeout fractions of bdis. This is an 151 * arbitrarily chosen number. The longer the period, the slower fractions will 152 * reflect changes in current writeout rate. 153 */ 154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 155 156 #ifdef CONFIG_CGROUP_WRITEBACK 157 158 #define GDTC_INIT(__wb) .wb = (__wb), \ 159 .dom = &global_wb_domain, \ 160 .wb_completions = &(__wb)->completions 161 162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 163 164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 165 .dom = mem_cgroup_wb_domain(__wb), \ 166 .wb_completions = &(__wb)->memcg_completions, \ 167 .gdtc = __gdtc 168 169 static bool mdtc_valid(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 175 { 176 return dtc->dom; 177 } 178 179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 180 { 181 return mdtc->gdtc; 182 } 183 184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 185 { 186 return &wb->memcg_completions; 187 } 188 189 static void wb_min_max_ratio(struct bdi_writeback *wb, 190 unsigned long *minp, unsigned long *maxp) 191 { 192 unsigned long this_bw = wb->avg_write_bandwidth; 193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 194 unsigned long long min = wb->bdi->min_ratio; 195 unsigned long long max = wb->bdi->max_ratio; 196 197 /* 198 * @wb may already be clean by the time control reaches here and 199 * the total may not include its bw. 200 */ 201 if (this_bw < tot_bw) { 202 if (min) { 203 min *= this_bw; 204 do_div(min, tot_bw); 205 } 206 if (max < 100) { 207 max *= this_bw; 208 do_div(max, tot_bw); 209 } 210 } 211 212 *minp = min; 213 *maxp = max; 214 } 215 216 #else /* CONFIG_CGROUP_WRITEBACK */ 217 218 #define GDTC_INIT(__wb) .wb = (__wb), \ 219 .wb_completions = &(__wb)->completions 220 #define GDTC_INIT_NO_WB 221 #define MDTC_INIT(__wb, __gdtc) 222 223 static bool mdtc_valid(struct dirty_throttle_control *dtc) 224 { 225 return false; 226 } 227 228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 229 { 230 return &global_wb_domain; 231 } 232 233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 234 { 235 return NULL; 236 } 237 238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 239 { 240 return NULL; 241 } 242 243 static void wb_min_max_ratio(struct bdi_writeback *wb, 244 unsigned long *minp, unsigned long *maxp) 245 { 246 *minp = wb->bdi->min_ratio; 247 *maxp = wb->bdi->max_ratio; 248 } 249 250 #endif /* CONFIG_CGROUP_WRITEBACK */ 251 252 /* 253 * In a memory zone, there is a certain amount of pages we consider 254 * available for the page cache, which is essentially the number of 255 * free and reclaimable pages, minus some zone reserves to protect 256 * lowmem and the ability to uphold the zone's watermarks without 257 * requiring writeback. 258 * 259 * This number of dirtyable pages is the base value of which the 260 * user-configurable dirty ratio is the effictive number of pages that 261 * are allowed to be actually dirtied. Per individual zone, or 262 * globally by using the sum of dirtyable pages over all zones. 263 * 264 * Because the user is allowed to specify the dirty limit globally as 265 * absolute number of bytes, calculating the per-zone dirty limit can 266 * require translating the configured limit into a percentage of 267 * global dirtyable memory first. 268 */ 269 270 /** 271 * node_dirtyable_memory - number of dirtyable pages in a node 272 * @pgdat: the node 273 * 274 * Returns the node's number of pages potentially available for dirty 275 * page cache. This is the base value for the per-node dirty limits. 276 */ 277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 278 { 279 unsigned long nr_pages = 0; 280 int z; 281 282 for (z = 0; z < MAX_NR_ZONES; z++) { 283 struct zone *zone = pgdat->node_zones + z; 284 285 if (!populated_zone(zone)) 286 continue; 287 288 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 289 } 290 291 /* 292 * Pages reserved for the kernel should not be considered 293 * dirtyable, to prevent a situation where reclaim has to 294 * clean pages in order to balance the zones. 295 */ 296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 297 298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 300 301 return nr_pages; 302 } 303 304 static unsigned long highmem_dirtyable_memory(unsigned long total) 305 { 306 #ifdef CONFIG_HIGHMEM 307 int node; 308 unsigned long x = 0; 309 int i; 310 311 for_each_node_state(node, N_HIGH_MEMORY) { 312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 313 struct zone *z; 314 unsigned long nr_pages; 315 316 if (!is_highmem_idx(i)) 317 continue; 318 319 z = &NODE_DATA(node)->node_zones[i]; 320 if (!populated_zone(z)) 321 continue; 322 323 nr_pages = zone_page_state(z, NR_FREE_PAGES); 324 /* watch for underflows */ 325 nr_pages -= min(nr_pages, high_wmark_pages(z)); 326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 328 x += nr_pages; 329 } 330 } 331 332 /* 333 * Unreclaimable memory (kernel memory or anonymous memory 334 * without swap) can bring down the dirtyable pages below 335 * the zone's dirty balance reserve and the above calculation 336 * will underflow. However we still want to add in nodes 337 * which are below threshold (negative values) to get a more 338 * accurate calculation but make sure that the total never 339 * underflows. 340 */ 341 if ((long)x < 0) 342 x = 0; 343 344 /* 345 * Make sure that the number of highmem pages is never larger 346 * than the number of the total dirtyable memory. This can only 347 * occur in very strange VM situations but we want to make sure 348 * that this does not occur. 349 */ 350 return min(x, total); 351 #else 352 return 0; 353 #endif 354 } 355 356 /** 357 * global_dirtyable_memory - number of globally dirtyable pages 358 * 359 * Returns the global number of pages potentially available for dirty 360 * page cache. This is the base value for the global dirty limits. 361 */ 362 static unsigned long global_dirtyable_memory(void) 363 { 364 unsigned long x; 365 366 x = global_zone_page_state(NR_FREE_PAGES); 367 /* 368 * Pages reserved for the kernel should not be considered 369 * dirtyable, to prevent a situation where reclaim has to 370 * clean pages in order to balance the zones. 371 */ 372 x -= min(x, totalreserve_pages); 373 374 x += global_node_page_state(NR_INACTIVE_FILE); 375 x += global_node_page_state(NR_ACTIVE_FILE); 376 377 if (!vm_highmem_is_dirtyable) 378 x -= highmem_dirtyable_memory(x); 379 380 return x + 1; /* Ensure that we never return 0 */ 381 } 382 383 /** 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 385 * @dtc: dirty_throttle_control of interest 386 * 387 * Calculate @dtc->thresh and ->bg_thresh considering 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 389 * must ensure that @dtc->avail is set before calling this function. The 390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 391 * real-time tasks. 392 */ 393 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 394 { 395 const unsigned long available_memory = dtc->avail; 396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 397 unsigned long bytes = vm_dirty_bytes; 398 unsigned long bg_bytes = dirty_background_bytes; 399 /* convert ratios to per-PAGE_SIZE for higher precision */ 400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 402 unsigned long thresh; 403 unsigned long bg_thresh; 404 struct task_struct *tsk; 405 406 /* gdtc is !NULL iff @dtc is for memcg domain */ 407 if (gdtc) { 408 unsigned long global_avail = gdtc->avail; 409 410 /* 411 * The byte settings can't be applied directly to memcg 412 * domains. Convert them to ratios by scaling against 413 * globally available memory. As the ratios are in 414 * per-PAGE_SIZE, they can be obtained by dividing bytes by 415 * number of pages. 416 */ 417 if (bytes) 418 ratio = min(DIV_ROUND_UP(bytes, global_avail), 419 PAGE_SIZE); 420 if (bg_bytes) 421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 422 PAGE_SIZE); 423 bytes = bg_bytes = 0; 424 } 425 426 if (bytes) 427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 428 else 429 thresh = (ratio * available_memory) / PAGE_SIZE; 430 431 if (bg_bytes) 432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 433 else 434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 435 436 if (bg_thresh >= thresh) 437 bg_thresh = thresh / 2; 438 tsk = current; 439 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 440 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 441 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 442 } 443 dtc->thresh = thresh; 444 dtc->bg_thresh = bg_thresh; 445 446 /* we should eventually report the domain in the TP */ 447 if (!gdtc) 448 trace_global_dirty_state(bg_thresh, thresh); 449 } 450 451 /** 452 * global_dirty_limits - background-writeback and dirty-throttling thresholds 453 * @pbackground: out parameter for bg_thresh 454 * @pdirty: out parameter for thresh 455 * 456 * Calculate bg_thresh and thresh for global_wb_domain. See 457 * domain_dirty_limits() for details. 458 */ 459 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 460 { 461 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 462 463 gdtc.avail = global_dirtyable_memory(); 464 domain_dirty_limits(&gdtc); 465 466 *pbackground = gdtc.bg_thresh; 467 *pdirty = gdtc.thresh; 468 } 469 470 /** 471 * node_dirty_limit - maximum number of dirty pages allowed in a node 472 * @pgdat: the node 473 * 474 * Returns the maximum number of dirty pages allowed in a node, based 475 * on the node's dirtyable memory. 476 */ 477 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 478 { 479 unsigned long node_memory = node_dirtyable_memory(pgdat); 480 struct task_struct *tsk = current; 481 unsigned long dirty; 482 483 if (vm_dirty_bytes) 484 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 485 node_memory / global_dirtyable_memory(); 486 else 487 dirty = vm_dirty_ratio * node_memory / 100; 488 489 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 490 dirty += dirty / 4; 491 492 return dirty; 493 } 494 495 /** 496 * node_dirty_ok - tells whether a node is within its dirty limits 497 * @pgdat: the node to check 498 * 499 * Returns %true when the dirty pages in @pgdat are within the node's 500 * dirty limit, %false if the limit is exceeded. 501 */ 502 bool node_dirty_ok(struct pglist_data *pgdat) 503 { 504 unsigned long limit = node_dirty_limit(pgdat); 505 unsigned long nr_pages = 0; 506 507 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 508 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS); 509 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 510 511 return nr_pages <= limit; 512 } 513 514 int dirty_background_ratio_handler(struct ctl_table *table, int write, 515 void __user *buffer, size_t *lenp, 516 loff_t *ppos) 517 { 518 int ret; 519 520 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 521 if (ret == 0 && write) 522 dirty_background_bytes = 0; 523 return ret; 524 } 525 526 int dirty_background_bytes_handler(struct ctl_table *table, int write, 527 void __user *buffer, size_t *lenp, 528 loff_t *ppos) 529 { 530 int ret; 531 532 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 533 if (ret == 0 && write) 534 dirty_background_ratio = 0; 535 return ret; 536 } 537 538 int dirty_ratio_handler(struct ctl_table *table, int write, 539 void __user *buffer, size_t *lenp, 540 loff_t *ppos) 541 { 542 int old_ratio = vm_dirty_ratio; 543 int ret; 544 545 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 546 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 547 writeback_set_ratelimit(); 548 vm_dirty_bytes = 0; 549 } 550 return ret; 551 } 552 553 int dirty_bytes_handler(struct ctl_table *table, int write, 554 void __user *buffer, size_t *lenp, 555 loff_t *ppos) 556 { 557 unsigned long old_bytes = vm_dirty_bytes; 558 int ret; 559 560 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 561 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 562 writeback_set_ratelimit(); 563 vm_dirty_ratio = 0; 564 } 565 return ret; 566 } 567 568 static unsigned long wp_next_time(unsigned long cur_time) 569 { 570 cur_time += VM_COMPLETIONS_PERIOD_LEN; 571 /* 0 has a special meaning... */ 572 if (!cur_time) 573 return 1; 574 return cur_time; 575 } 576 577 static void wb_domain_writeout_inc(struct wb_domain *dom, 578 struct fprop_local_percpu *completions, 579 unsigned int max_prop_frac) 580 { 581 __fprop_inc_percpu_max(&dom->completions, completions, 582 max_prop_frac); 583 /* First event after period switching was turned off? */ 584 if (unlikely(!dom->period_time)) { 585 /* 586 * We can race with other __bdi_writeout_inc calls here but 587 * it does not cause any harm since the resulting time when 588 * timer will fire and what is in writeout_period_time will be 589 * roughly the same. 590 */ 591 dom->period_time = wp_next_time(jiffies); 592 mod_timer(&dom->period_timer, dom->period_time); 593 } 594 } 595 596 /* 597 * Increment @wb's writeout completion count and the global writeout 598 * completion count. Called from test_clear_page_writeback(). 599 */ 600 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 601 { 602 struct wb_domain *cgdom; 603 604 inc_wb_stat(wb, WB_WRITTEN); 605 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 606 wb->bdi->max_prop_frac); 607 608 cgdom = mem_cgroup_wb_domain(wb); 609 if (cgdom) 610 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 611 wb->bdi->max_prop_frac); 612 } 613 614 void wb_writeout_inc(struct bdi_writeback *wb) 615 { 616 unsigned long flags; 617 618 local_irq_save(flags); 619 __wb_writeout_inc(wb); 620 local_irq_restore(flags); 621 } 622 EXPORT_SYMBOL_GPL(wb_writeout_inc); 623 624 /* 625 * On idle system, we can be called long after we scheduled because we use 626 * deferred timers so count with missed periods. 627 */ 628 static void writeout_period(unsigned long t) 629 { 630 struct wb_domain *dom = (void *)t; 631 int miss_periods = (jiffies - dom->period_time) / 632 VM_COMPLETIONS_PERIOD_LEN; 633 634 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 635 dom->period_time = wp_next_time(dom->period_time + 636 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 637 mod_timer(&dom->period_timer, dom->period_time); 638 } else { 639 /* 640 * Aging has zeroed all fractions. Stop wasting CPU on period 641 * updates. 642 */ 643 dom->period_time = 0; 644 } 645 } 646 647 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 648 { 649 memset(dom, 0, sizeof(*dom)); 650 651 spin_lock_init(&dom->lock); 652 653 setup_deferrable_timer(&dom->period_timer, writeout_period, 654 (unsigned long)dom); 655 656 dom->dirty_limit_tstamp = jiffies; 657 658 return fprop_global_init(&dom->completions, gfp); 659 } 660 661 #ifdef CONFIG_CGROUP_WRITEBACK 662 void wb_domain_exit(struct wb_domain *dom) 663 { 664 del_timer_sync(&dom->period_timer); 665 fprop_global_destroy(&dom->completions); 666 } 667 #endif 668 669 /* 670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 671 * registered backing devices, which, for obvious reasons, can not 672 * exceed 100%. 673 */ 674 static unsigned int bdi_min_ratio; 675 676 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 677 { 678 int ret = 0; 679 680 spin_lock_bh(&bdi_lock); 681 if (min_ratio > bdi->max_ratio) { 682 ret = -EINVAL; 683 } else { 684 min_ratio -= bdi->min_ratio; 685 if (bdi_min_ratio + min_ratio < 100) { 686 bdi_min_ratio += min_ratio; 687 bdi->min_ratio += min_ratio; 688 } else { 689 ret = -EINVAL; 690 } 691 } 692 spin_unlock_bh(&bdi_lock); 693 694 return ret; 695 } 696 697 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 698 { 699 int ret = 0; 700 701 if (max_ratio > 100) 702 return -EINVAL; 703 704 spin_lock_bh(&bdi_lock); 705 if (bdi->min_ratio > max_ratio) { 706 ret = -EINVAL; 707 } else { 708 bdi->max_ratio = max_ratio; 709 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 710 } 711 spin_unlock_bh(&bdi_lock); 712 713 return ret; 714 } 715 EXPORT_SYMBOL(bdi_set_max_ratio); 716 717 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 718 unsigned long bg_thresh) 719 { 720 return (thresh + bg_thresh) / 2; 721 } 722 723 static unsigned long hard_dirty_limit(struct wb_domain *dom, 724 unsigned long thresh) 725 { 726 return max(thresh, dom->dirty_limit); 727 } 728 729 /* 730 * Memory which can be further allocated to a memcg domain is capped by 731 * system-wide clean memory excluding the amount being used in the domain. 732 */ 733 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 734 unsigned long filepages, unsigned long headroom) 735 { 736 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 737 unsigned long clean = filepages - min(filepages, mdtc->dirty); 738 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 739 unsigned long other_clean = global_clean - min(global_clean, clean); 740 741 mdtc->avail = filepages + min(headroom, other_clean); 742 } 743 744 /** 745 * __wb_calc_thresh - @wb's share of dirty throttling threshold 746 * @dtc: dirty_throttle_context of interest 747 * 748 * Returns @wb's dirty limit in pages. The term "dirty" in the context of 749 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 750 * 751 * Note that balance_dirty_pages() will only seriously take it as a hard limit 752 * when sleeping max_pause per page is not enough to keep the dirty pages under 753 * control. For example, when the device is completely stalled due to some error 754 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 755 * In the other normal situations, it acts more gently by throttling the tasks 756 * more (rather than completely block them) when the wb dirty pages go high. 757 * 758 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 759 * - starving fast devices 760 * - piling up dirty pages (that will take long time to sync) on slow devices 761 * 762 * The wb's share of dirty limit will be adapting to its throughput and 763 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 764 */ 765 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 766 { 767 struct wb_domain *dom = dtc_dom(dtc); 768 unsigned long thresh = dtc->thresh; 769 u64 wb_thresh; 770 long numerator, denominator; 771 unsigned long wb_min_ratio, wb_max_ratio; 772 773 /* 774 * Calculate this BDI's share of the thresh ratio. 775 */ 776 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 777 &numerator, &denominator); 778 779 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 780 wb_thresh *= numerator; 781 do_div(wb_thresh, denominator); 782 783 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 784 785 wb_thresh += (thresh * wb_min_ratio) / 100; 786 if (wb_thresh > (thresh * wb_max_ratio) / 100) 787 wb_thresh = thresh * wb_max_ratio / 100; 788 789 return wb_thresh; 790 } 791 792 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 793 { 794 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 795 .thresh = thresh }; 796 return __wb_calc_thresh(&gdtc); 797 } 798 799 /* 800 * setpoint - dirty 3 801 * f(dirty) := 1.0 + (----------------) 802 * limit - setpoint 803 * 804 * it's a 3rd order polynomial that subjects to 805 * 806 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 807 * (2) f(setpoint) = 1.0 => the balance point 808 * (3) f(limit) = 0 => the hard limit 809 * (4) df/dx <= 0 => negative feedback control 810 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 811 * => fast response on large errors; small oscillation near setpoint 812 */ 813 static long long pos_ratio_polynom(unsigned long setpoint, 814 unsigned long dirty, 815 unsigned long limit) 816 { 817 long long pos_ratio; 818 long x; 819 820 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 821 (limit - setpoint) | 1); 822 pos_ratio = x; 823 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 824 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 825 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 826 827 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 828 } 829 830 /* 831 * Dirty position control. 832 * 833 * (o) global/bdi setpoints 834 * 835 * We want the dirty pages be balanced around the global/wb setpoints. 836 * When the number of dirty pages is higher/lower than the setpoint, the 837 * dirty position control ratio (and hence task dirty ratelimit) will be 838 * decreased/increased to bring the dirty pages back to the setpoint. 839 * 840 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 841 * 842 * if (dirty < setpoint) scale up pos_ratio 843 * if (dirty > setpoint) scale down pos_ratio 844 * 845 * if (wb_dirty < wb_setpoint) scale up pos_ratio 846 * if (wb_dirty > wb_setpoint) scale down pos_ratio 847 * 848 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 849 * 850 * (o) global control line 851 * 852 * ^ pos_ratio 853 * | 854 * | |<===== global dirty control scope ======>| 855 * 2.0 .............* 856 * | .* 857 * | . * 858 * | . * 859 * | . * 860 * | . * 861 * | . * 862 * 1.0 ................................* 863 * | . . * 864 * | . . * 865 * | . . * 866 * | . . * 867 * | . . * 868 * 0 +------------.------------------.----------------------*-------------> 869 * freerun^ setpoint^ limit^ dirty pages 870 * 871 * (o) wb control line 872 * 873 * ^ pos_ratio 874 * | 875 * | * 876 * | * 877 * | * 878 * | * 879 * | * |<=========== span ============>| 880 * 1.0 .......................* 881 * | . * 882 * | . * 883 * | . * 884 * | . * 885 * | . * 886 * | . * 887 * | . * 888 * | . * 889 * | . * 890 * | . * 891 * | . * 892 * 1/4 ...............................................* * * * * * * * * * * * 893 * | . . 894 * | . . 895 * | . . 896 * 0 +----------------------.-------------------------------.-------------> 897 * wb_setpoint^ x_intercept^ 898 * 899 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 900 * be smoothly throttled down to normal if it starts high in situations like 901 * - start writing to a slow SD card and a fast disk at the same time. The SD 902 * card's wb_dirty may rush to many times higher than wb_setpoint. 903 * - the wb dirty thresh drops quickly due to change of JBOD workload 904 */ 905 static void wb_position_ratio(struct dirty_throttle_control *dtc) 906 { 907 struct bdi_writeback *wb = dtc->wb; 908 unsigned long write_bw = wb->avg_write_bandwidth; 909 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 910 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 911 unsigned long wb_thresh = dtc->wb_thresh; 912 unsigned long x_intercept; 913 unsigned long setpoint; /* dirty pages' target balance point */ 914 unsigned long wb_setpoint; 915 unsigned long span; 916 long long pos_ratio; /* for scaling up/down the rate limit */ 917 long x; 918 919 dtc->pos_ratio = 0; 920 921 if (unlikely(dtc->dirty >= limit)) 922 return; 923 924 /* 925 * global setpoint 926 * 927 * See comment for pos_ratio_polynom(). 928 */ 929 setpoint = (freerun + limit) / 2; 930 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 931 932 /* 933 * The strictlimit feature is a tool preventing mistrusted filesystems 934 * from growing a large number of dirty pages before throttling. For 935 * such filesystems balance_dirty_pages always checks wb counters 936 * against wb limits. Even if global "nr_dirty" is under "freerun". 937 * This is especially important for fuse which sets bdi->max_ratio to 938 * 1% by default. Without strictlimit feature, fuse writeback may 939 * consume arbitrary amount of RAM because it is accounted in 940 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 941 * 942 * Here, in wb_position_ratio(), we calculate pos_ratio based on 943 * two values: wb_dirty and wb_thresh. Let's consider an example: 944 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 945 * limits are set by default to 10% and 20% (background and throttle). 946 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 947 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 948 * about ~6K pages (as the average of background and throttle wb 949 * limits). The 3rd order polynomial will provide positive feedback if 950 * wb_dirty is under wb_setpoint and vice versa. 951 * 952 * Note, that we cannot use global counters in these calculations 953 * because we want to throttle process writing to a strictlimit wb 954 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 955 * in the example above). 956 */ 957 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 958 long long wb_pos_ratio; 959 960 if (dtc->wb_dirty < 8) { 961 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 962 2 << RATELIMIT_CALC_SHIFT); 963 return; 964 } 965 966 if (dtc->wb_dirty >= wb_thresh) 967 return; 968 969 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 970 dtc->wb_bg_thresh); 971 972 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 973 return; 974 975 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 976 wb_thresh); 977 978 /* 979 * Typically, for strictlimit case, wb_setpoint << setpoint 980 * and pos_ratio >> wb_pos_ratio. In the other words global 981 * state ("dirty") is not limiting factor and we have to 982 * make decision based on wb counters. But there is an 983 * important case when global pos_ratio should get precedence: 984 * global limits are exceeded (e.g. due to activities on other 985 * wb's) while given strictlimit wb is below limit. 986 * 987 * "pos_ratio * wb_pos_ratio" would work for the case above, 988 * but it would look too non-natural for the case of all 989 * activity in the system coming from a single strictlimit wb 990 * with bdi->max_ratio == 100%. 991 * 992 * Note that min() below somewhat changes the dynamics of the 993 * control system. Normally, pos_ratio value can be well over 3 994 * (when globally we are at freerun and wb is well below wb 995 * setpoint). Now the maximum pos_ratio in the same situation 996 * is 2. We might want to tweak this if we observe the control 997 * system is too slow to adapt. 998 */ 999 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1000 return; 1001 } 1002 1003 /* 1004 * We have computed basic pos_ratio above based on global situation. If 1005 * the wb is over/under its share of dirty pages, we want to scale 1006 * pos_ratio further down/up. That is done by the following mechanism. 1007 */ 1008 1009 /* 1010 * wb setpoint 1011 * 1012 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1013 * 1014 * x_intercept - wb_dirty 1015 * := -------------------------- 1016 * x_intercept - wb_setpoint 1017 * 1018 * The main wb control line is a linear function that subjects to 1019 * 1020 * (1) f(wb_setpoint) = 1.0 1021 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1022 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1023 * 1024 * For single wb case, the dirty pages are observed to fluctuate 1025 * regularly within range 1026 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1027 * for various filesystems, where (2) can yield in a reasonable 12.5% 1028 * fluctuation range for pos_ratio. 1029 * 1030 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1031 * own size, so move the slope over accordingly and choose a slope that 1032 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1033 */ 1034 if (unlikely(wb_thresh > dtc->thresh)) 1035 wb_thresh = dtc->thresh; 1036 /* 1037 * It's very possible that wb_thresh is close to 0 not because the 1038 * device is slow, but that it has remained inactive for long time. 1039 * Honour such devices a reasonable good (hopefully IO efficient) 1040 * threshold, so that the occasional writes won't be blocked and active 1041 * writes can rampup the threshold quickly. 1042 */ 1043 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1044 /* 1045 * scale global setpoint to wb's: 1046 * wb_setpoint = setpoint * wb_thresh / thresh 1047 */ 1048 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1049 wb_setpoint = setpoint * (u64)x >> 16; 1050 /* 1051 * Use span=(8*write_bw) in single wb case as indicated by 1052 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1053 * 1054 * wb_thresh thresh - wb_thresh 1055 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1056 * thresh thresh 1057 */ 1058 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1059 x_intercept = wb_setpoint + span; 1060 1061 if (dtc->wb_dirty < x_intercept - span / 4) { 1062 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1063 (x_intercept - wb_setpoint) | 1); 1064 } else 1065 pos_ratio /= 4; 1066 1067 /* 1068 * wb reserve area, safeguard against dirty pool underrun and disk idle 1069 * It may push the desired control point of global dirty pages higher 1070 * than setpoint. 1071 */ 1072 x_intercept = wb_thresh / 2; 1073 if (dtc->wb_dirty < x_intercept) { 1074 if (dtc->wb_dirty > x_intercept / 8) 1075 pos_ratio = div_u64(pos_ratio * x_intercept, 1076 dtc->wb_dirty); 1077 else 1078 pos_ratio *= 8; 1079 } 1080 1081 dtc->pos_ratio = pos_ratio; 1082 } 1083 1084 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1085 unsigned long elapsed, 1086 unsigned long written) 1087 { 1088 const unsigned long period = roundup_pow_of_two(3 * HZ); 1089 unsigned long avg = wb->avg_write_bandwidth; 1090 unsigned long old = wb->write_bandwidth; 1091 u64 bw; 1092 1093 /* 1094 * bw = written * HZ / elapsed 1095 * 1096 * bw * elapsed + write_bandwidth * (period - elapsed) 1097 * write_bandwidth = --------------------------------------------------- 1098 * period 1099 * 1100 * @written may have decreased due to account_page_redirty(). 1101 * Avoid underflowing @bw calculation. 1102 */ 1103 bw = written - min(written, wb->written_stamp); 1104 bw *= HZ; 1105 if (unlikely(elapsed > period)) { 1106 do_div(bw, elapsed); 1107 avg = bw; 1108 goto out; 1109 } 1110 bw += (u64)wb->write_bandwidth * (period - elapsed); 1111 bw >>= ilog2(period); 1112 1113 /* 1114 * one more level of smoothing, for filtering out sudden spikes 1115 */ 1116 if (avg > old && old >= (unsigned long)bw) 1117 avg -= (avg - old) >> 3; 1118 1119 if (avg < old && old <= (unsigned long)bw) 1120 avg += (old - avg) >> 3; 1121 1122 out: 1123 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1124 avg = max(avg, 1LU); 1125 if (wb_has_dirty_io(wb)) { 1126 long delta = avg - wb->avg_write_bandwidth; 1127 WARN_ON_ONCE(atomic_long_add_return(delta, 1128 &wb->bdi->tot_write_bandwidth) <= 0); 1129 } 1130 wb->write_bandwidth = bw; 1131 wb->avg_write_bandwidth = avg; 1132 } 1133 1134 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1135 { 1136 struct wb_domain *dom = dtc_dom(dtc); 1137 unsigned long thresh = dtc->thresh; 1138 unsigned long limit = dom->dirty_limit; 1139 1140 /* 1141 * Follow up in one step. 1142 */ 1143 if (limit < thresh) { 1144 limit = thresh; 1145 goto update; 1146 } 1147 1148 /* 1149 * Follow down slowly. Use the higher one as the target, because thresh 1150 * may drop below dirty. This is exactly the reason to introduce 1151 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1152 */ 1153 thresh = max(thresh, dtc->dirty); 1154 if (limit > thresh) { 1155 limit -= (limit - thresh) >> 5; 1156 goto update; 1157 } 1158 return; 1159 update: 1160 dom->dirty_limit = limit; 1161 } 1162 1163 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1164 unsigned long now) 1165 { 1166 struct wb_domain *dom = dtc_dom(dtc); 1167 1168 /* 1169 * check locklessly first to optimize away locking for the most time 1170 */ 1171 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1172 return; 1173 1174 spin_lock(&dom->lock); 1175 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1176 update_dirty_limit(dtc); 1177 dom->dirty_limit_tstamp = now; 1178 } 1179 spin_unlock(&dom->lock); 1180 } 1181 1182 /* 1183 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1184 * 1185 * Normal wb tasks will be curbed at or below it in long term. 1186 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1187 */ 1188 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1189 unsigned long dirtied, 1190 unsigned long elapsed) 1191 { 1192 struct bdi_writeback *wb = dtc->wb; 1193 unsigned long dirty = dtc->dirty; 1194 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1195 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1196 unsigned long setpoint = (freerun + limit) / 2; 1197 unsigned long write_bw = wb->avg_write_bandwidth; 1198 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1199 unsigned long dirty_rate; 1200 unsigned long task_ratelimit; 1201 unsigned long balanced_dirty_ratelimit; 1202 unsigned long step; 1203 unsigned long x; 1204 unsigned long shift; 1205 1206 /* 1207 * The dirty rate will match the writeout rate in long term, except 1208 * when dirty pages are truncated by userspace or re-dirtied by FS. 1209 */ 1210 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1211 1212 /* 1213 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1214 */ 1215 task_ratelimit = (u64)dirty_ratelimit * 1216 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1217 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1218 1219 /* 1220 * A linear estimation of the "balanced" throttle rate. The theory is, 1221 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1222 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1223 * formula will yield the balanced rate limit (write_bw / N). 1224 * 1225 * Note that the expanded form is not a pure rate feedback: 1226 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1227 * but also takes pos_ratio into account: 1228 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1229 * 1230 * (1) is not realistic because pos_ratio also takes part in balancing 1231 * the dirty rate. Consider the state 1232 * pos_ratio = 0.5 (3) 1233 * rate = 2 * (write_bw / N) (4) 1234 * If (1) is used, it will stuck in that state! Because each dd will 1235 * be throttled at 1236 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1237 * yielding 1238 * dirty_rate = N * task_ratelimit = write_bw (6) 1239 * put (6) into (1) we get 1240 * rate_(i+1) = rate_(i) (7) 1241 * 1242 * So we end up using (2) to always keep 1243 * rate_(i+1) ~= (write_bw / N) (8) 1244 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1245 * pos_ratio is able to drive itself to 1.0, which is not only where 1246 * the dirty count meet the setpoint, but also where the slope of 1247 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1248 */ 1249 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1250 dirty_rate | 1); 1251 /* 1252 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1253 */ 1254 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1255 balanced_dirty_ratelimit = write_bw; 1256 1257 /* 1258 * We could safely do this and return immediately: 1259 * 1260 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1261 * 1262 * However to get a more stable dirty_ratelimit, the below elaborated 1263 * code makes use of task_ratelimit to filter out singular points and 1264 * limit the step size. 1265 * 1266 * The below code essentially only uses the relative value of 1267 * 1268 * task_ratelimit - dirty_ratelimit 1269 * = (pos_ratio - 1) * dirty_ratelimit 1270 * 1271 * which reflects the direction and size of dirty position error. 1272 */ 1273 1274 /* 1275 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1276 * task_ratelimit is on the same side of dirty_ratelimit, too. 1277 * For example, when 1278 * - dirty_ratelimit > balanced_dirty_ratelimit 1279 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1280 * lowering dirty_ratelimit will help meet both the position and rate 1281 * control targets. Otherwise, don't update dirty_ratelimit if it will 1282 * only help meet the rate target. After all, what the users ultimately 1283 * feel and care are stable dirty rate and small position error. 1284 * 1285 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1286 * and filter out the singular points of balanced_dirty_ratelimit. Which 1287 * keeps jumping around randomly and can even leap far away at times 1288 * due to the small 200ms estimation period of dirty_rate (we want to 1289 * keep that period small to reduce time lags). 1290 */ 1291 step = 0; 1292 1293 /* 1294 * For strictlimit case, calculations above were based on wb counters 1295 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1296 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1297 * Hence, to calculate "step" properly, we have to use wb_dirty as 1298 * "dirty" and wb_setpoint as "setpoint". 1299 * 1300 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1301 * it's possible that wb_thresh is close to zero due to inactivity 1302 * of backing device. 1303 */ 1304 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1305 dirty = dtc->wb_dirty; 1306 if (dtc->wb_dirty < 8) 1307 setpoint = dtc->wb_dirty + 1; 1308 else 1309 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1310 } 1311 1312 if (dirty < setpoint) { 1313 x = min3(wb->balanced_dirty_ratelimit, 1314 balanced_dirty_ratelimit, task_ratelimit); 1315 if (dirty_ratelimit < x) 1316 step = x - dirty_ratelimit; 1317 } else { 1318 x = max3(wb->balanced_dirty_ratelimit, 1319 balanced_dirty_ratelimit, task_ratelimit); 1320 if (dirty_ratelimit > x) 1321 step = dirty_ratelimit - x; 1322 } 1323 1324 /* 1325 * Don't pursue 100% rate matching. It's impossible since the balanced 1326 * rate itself is constantly fluctuating. So decrease the track speed 1327 * when it gets close to the target. Helps eliminate pointless tremors. 1328 */ 1329 shift = dirty_ratelimit / (2 * step + 1); 1330 if (shift < BITS_PER_LONG) 1331 step = DIV_ROUND_UP(step >> shift, 8); 1332 else 1333 step = 0; 1334 1335 if (dirty_ratelimit < balanced_dirty_ratelimit) 1336 dirty_ratelimit += step; 1337 else 1338 dirty_ratelimit -= step; 1339 1340 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1341 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1342 1343 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1344 } 1345 1346 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1347 struct dirty_throttle_control *mdtc, 1348 unsigned long start_time, 1349 bool update_ratelimit) 1350 { 1351 struct bdi_writeback *wb = gdtc->wb; 1352 unsigned long now = jiffies; 1353 unsigned long elapsed = now - wb->bw_time_stamp; 1354 unsigned long dirtied; 1355 unsigned long written; 1356 1357 lockdep_assert_held(&wb->list_lock); 1358 1359 /* 1360 * rate-limit, only update once every 200ms. 1361 */ 1362 if (elapsed < BANDWIDTH_INTERVAL) 1363 return; 1364 1365 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1366 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1367 1368 /* 1369 * Skip quiet periods when disk bandwidth is under-utilized. 1370 * (at least 1s idle time between two flusher runs) 1371 */ 1372 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1373 goto snapshot; 1374 1375 if (update_ratelimit) { 1376 domain_update_bandwidth(gdtc, now); 1377 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1378 1379 /* 1380 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1381 * compiler has no way to figure that out. Help it. 1382 */ 1383 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1384 domain_update_bandwidth(mdtc, now); 1385 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1386 } 1387 } 1388 wb_update_write_bandwidth(wb, elapsed, written); 1389 1390 snapshot: 1391 wb->dirtied_stamp = dirtied; 1392 wb->written_stamp = written; 1393 wb->bw_time_stamp = now; 1394 } 1395 1396 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1397 { 1398 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1399 1400 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1401 } 1402 1403 /* 1404 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1405 * will look to see if it needs to start dirty throttling. 1406 * 1407 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1408 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1409 * (the number of pages we may dirty without exceeding the dirty limits). 1410 */ 1411 static unsigned long dirty_poll_interval(unsigned long dirty, 1412 unsigned long thresh) 1413 { 1414 if (thresh > dirty) 1415 return 1UL << (ilog2(thresh - dirty) >> 1); 1416 1417 return 1; 1418 } 1419 1420 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1421 unsigned long wb_dirty) 1422 { 1423 unsigned long bw = wb->avg_write_bandwidth; 1424 unsigned long t; 1425 1426 /* 1427 * Limit pause time for small memory systems. If sleeping for too long 1428 * time, a small pool of dirty/writeback pages may go empty and disk go 1429 * idle. 1430 * 1431 * 8 serves as the safety ratio. 1432 */ 1433 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1434 t++; 1435 1436 return min_t(unsigned long, t, MAX_PAUSE); 1437 } 1438 1439 static long wb_min_pause(struct bdi_writeback *wb, 1440 long max_pause, 1441 unsigned long task_ratelimit, 1442 unsigned long dirty_ratelimit, 1443 int *nr_dirtied_pause) 1444 { 1445 long hi = ilog2(wb->avg_write_bandwidth); 1446 long lo = ilog2(wb->dirty_ratelimit); 1447 long t; /* target pause */ 1448 long pause; /* estimated next pause */ 1449 int pages; /* target nr_dirtied_pause */ 1450 1451 /* target for 10ms pause on 1-dd case */ 1452 t = max(1, HZ / 100); 1453 1454 /* 1455 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1456 * overheads. 1457 * 1458 * (N * 10ms) on 2^N concurrent tasks. 1459 */ 1460 if (hi > lo) 1461 t += (hi - lo) * (10 * HZ) / 1024; 1462 1463 /* 1464 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1465 * on the much more stable dirty_ratelimit. However the next pause time 1466 * will be computed based on task_ratelimit and the two rate limits may 1467 * depart considerably at some time. Especially if task_ratelimit goes 1468 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1469 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1470 * result task_ratelimit won't be executed faithfully, which could 1471 * eventually bring down dirty_ratelimit. 1472 * 1473 * We apply two rules to fix it up: 1474 * 1) try to estimate the next pause time and if necessary, use a lower 1475 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1476 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1477 * 2) limit the target pause time to max_pause/2, so that the normal 1478 * small fluctuations of task_ratelimit won't trigger rule (1) and 1479 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1480 */ 1481 t = min(t, 1 + max_pause / 2); 1482 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1483 1484 /* 1485 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1486 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1487 * When the 16 consecutive reads are often interrupted by some dirty 1488 * throttling pause during the async writes, cfq will go into idles 1489 * (deadline is fine). So push nr_dirtied_pause as high as possible 1490 * until reaches DIRTY_POLL_THRESH=32 pages. 1491 */ 1492 if (pages < DIRTY_POLL_THRESH) { 1493 t = max_pause; 1494 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1495 if (pages > DIRTY_POLL_THRESH) { 1496 pages = DIRTY_POLL_THRESH; 1497 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1498 } 1499 } 1500 1501 pause = HZ * pages / (task_ratelimit + 1); 1502 if (pause > max_pause) { 1503 t = max_pause; 1504 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1505 } 1506 1507 *nr_dirtied_pause = pages; 1508 /* 1509 * The minimal pause time will normally be half the target pause time. 1510 */ 1511 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1512 } 1513 1514 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1515 { 1516 struct bdi_writeback *wb = dtc->wb; 1517 unsigned long wb_reclaimable; 1518 1519 /* 1520 * wb_thresh is not treated as some limiting factor as 1521 * dirty_thresh, due to reasons 1522 * - in JBOD setup, wb_thresh can fluctuate a lot 1523 * - in a system with HDD and USB key, the USB key may somehow 1524 * go into state (wb_dirty >> wb_thresh) either because 1525 * wb_dirty starts high, or because wb_thresh drops low. 1526 * In this case we don't want to hard throttle the USB key 1527 * dirtiers for 100 seconds until wb_dirty drops under 1528 * wb_thresh. Instead the auxiliary wb control line in 1529 * wb_position_ratio() will let the dirtier task progress 1530 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1531 */ 1532 dtc->wb_thresh = __wb_calc_thresh(dtc); 1533 dtc->wb_bg_thresh = dtc->thresh ? 1534 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1535 1536 /* 1537 * In order to avoid the stacked BDI deadlock we need 1538 * to ensure we accurately count the 'dirty' pages when 1539 * the threshold is low. 1540 * 1541 * Otherwise it would be possible to get thresh+n pages 1542 * reported dirty, even though there are thresh-m pages 1543 * actually dirty; with m+n sitting in the percpu 1544 * deltas. 1545 */ 1546 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) { 1547 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1548 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1549 } else { 1550 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1551 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1552 } 1553 } 1554 1555 /* 1556 * balance_dirty_pages() must be called by processes which are generating dirty 1557 * data. It looks at the number of dirty pages in the machine and will force 1558 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1559 * If we're over `background_thresh' then the writeback threads are woken to 1560 * perform some writeout. 1561 */ 1562 static void balance_dirty_pages(struct address_space *mapping, 1563 struct bdi_writeback *wb, 1564 unsigned long pages_dirtied) 1565 { 1566 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1567 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1568 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1569 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1570 &mdtc_stor : NULL; 1571 struct dirty_throttle_control *sdtc; 1572 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1573 long period; 1574 long pause; 1575 long max_pause; 1576 long min_pause; 1577 int nr_dirtied_pause; 1578 bool dirty_exceeded = false; 1579 unsigned long task_ratelimit; 1580 unsigned long dirty_ratelimit; 1581 struct backing_dev_info *bdi = wb->bdi; 1582 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1583 unsigned long start_time = jiffies; 1584 1585 for (;;) { 1586 unsigned long now = jiffies; 1587 unsigned long dirty, thresh, bg_thresh; 1588 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1589 unsigned long m_thresh = 0; 1590 unsigned long m_bg_thresh = 0; 1591 1592 /* 1593 * Unstable writes are a feature of certain networked 1594 * filesystems (i.e. NFS) in which data may have been 1595 * written to the server's write cache, but has not yet 1596 * been flushed to permanent storage. 1597 */ 1598 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) + 1599 global_node_page_state(NR_UNSTABLE_NFS); 1600 gdtc->avail = global_dirtyable_memory(); 1601 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1602 1603 domain_dirty_limits(gdtc); 1604 1605 if (unlikely(strictlimit)) { 1606 wb_dirty_limits(gdtc); 1607 1608 dirty = gdtc->wb_dirty; 1609 thresh = gdtc->wb_thresh; 1610 bg_thresh = gdtc->wb_bg_thresh; 1611 } else { 1612 dirty = gdtc->dirty; 1613 thresh = gdtc->thresh; 1614 bg_thresh = gdtc->bg_thresh; 1615 } 1616 1617 if (mdtc) { 1618 unsigned long filepages, headroom, writeback; 1619 1620 /* 1621 * If @wb belongs to !root memcg, repeat the same 1622 * basic calculations for the memcg domain. 1623 */ 1624 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1625 &mdtc->dirty, &writeback); 1626 mdtc->dirty += writeback; 1627 mdtc_calc_avail(mdtc, filepages, headroom); 1628 1629 domain_dirty_limits(mdtc); 1630 1631 if (unlikely(strictlimit)) { 1632 wb_dirty_limits(mdtc); 1633 m_dirty = mdtc->wb_dirty; 1634 m_thresh = mdtc->wb_thresh; 1635 m_bg_thresh = mdtc->wb_bg_thresh; 1636 } else { 1637 m_dirty = mdtc->dirty; 1638 m_thresh = mdtc->thresh; 1639 m_bg_thresh = mdtc->bg_thresh; 1640 } 1641 } 1642 1643 /* 1644 * Throttle it only when the background writeback cannot 1645 * catch-up. This avoids (excessively) small writeouts 1646 * when the wb limits are ramping up in case of !strictlimit. 1647 * 1648 * In strictlimit case make decision based on the wb counters 1649 * and limits. Small writeouts when the wb limits are ramping 1650 * up are the price we consciously pay for strictlimit-ing. 1651 * 1652 * If memcg domain is in effect, @dirty should be under 1653 * both global and memcg freerun ceilings. 1654 */ 1655 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1656 (!mdtc || 1657 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1658 unsigned long intv = dirty_poll_interval(dirty, thresh); 1659 unsigned long m_intv = ULONG_MAX; 1660 1661 current->dirty_paused_when = now; 1662 current->nr_dirtied = 0; 1663 if (mdtc) 1664 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1665 current->nr_dirtied_pause = min(intv, m_intv); 1666 break; 1667 } 1668 1669 if (unlikely(!writeback_in_progress(wb))) 1670 wb_start_background_writeback(wb); 1671 1672 /* 1673 * Calculate global domain's pos_ratio and select the 1674 * global dtc by default. 1675 */ 1676 if (!strictlimit) 1677 wb_dirty_limits(gdtc); 1678 1679 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1680 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1681 1682 wb_position_ratio(gdtc); 1683 sdtc = gdtc; 1684 1685 if (mdtc) { 1686 /* 1687 * If memcg domain is in effect, calculate its 1688 * pos_ratio. @wb should satisfy constraints from 1689 * both global and memcg domains. Choose the one 1690 * w/ lower pos_ratio. 1691 */ 1692 if (!strictlimit) 1693 wb_dirty_limits(mdtc); 1694 1695 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1696 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1697 1698 wb_position_ratio(mdtc); 1699 if (mdtc->pos_ratio < gdtc->pos_ratio) 1700 sdtc = mdtc; 1701 } 1702 1703 if (dirty_exceeded && !wb->dirty_exceeded) 1704 wb->dirty_exceeded = 1; 1705 1706 if (time_is_before_jiffies(wb->bw_time_stamp + 1707 BANDWIDTH_INTERVAL)) { 1708 spin_lock(&wb->list_lock); 1709 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1710 spin_unlock(&wb->list_lock); 1711 } 1712 1713 /* throttle according to the chosen dtc */ 1714 dirty_ratelimit = wb->dirty_ratelimit; 1715 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1716 RATELIMIT_CALC_SHIFT; 1717 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1718 min_pause = wb_min_pause(wb, max_pause, 1719 task_ratelimit, dirty_ratelimit, 1720 &nr_dirtied_pause); 1721 1722 if (unlikely(task_ratelimit == 0)) { 1723 period = max_pause; 1724 pause = max_pause; 1725 goto pause; 1726 } 1727 period = HZ * pages_dirtied / task_ratelimit; 1728 pause = period; 1729 if (current->dirty_paused_when) 1730 pause -= now - current->dirty_paused_when; 1731 /* 1732 * For less than 1s think time (ext3/4 may block the dirtier 1733 * for up to 800ms from time to time on 1-HDD; so does xfs, 1734 * however at much less frequency), try to compensate it in 1735 * future periods by updating the virtual time; otherwise just 1736 * do a reset, as it may be a light dirtier. 1737 */ 1738 if (pause < min_pause) { 1739 trace_balance_dirty_pages(wb, 1740 sdtc->thresh, 1741 sdtc->bg_thresh, 1742 sdtc->dirty, 1743 sdtc->wb_thresh, 1744 sdtc->wb_dirty, 1745 dirty_ratelimit, 1746 task_ratelimit, 1747 pages_dirtied, 1748 period, 1749 min(pause, 0L), 1750 start_time); 1751 if (pause < -HZ) { 1752 current->dirty_paused_when = now; 1753 current->nr_dirtied = 0; 1754 } else if (period) { 1755 current->dirty_paused_when += period; 1756 current->nr_dirtied = 0; 1757 } else if (current->nr_dirtied_pause <= pages_dirtied) 1758 current->nr_dirtied_pause += pages_dirtied; 1759 break; 1760 } 1761 if (unlikely(pause > max_pause)) { 1762 /* for occasional dropped task_ratelimit */ 1763 now += min(pause - max_pause, max_pause); 1764 pause = max_pause; 1765 } 1766 1767 pause: 1768 trace_balance_dirty_pages(wb, 1769 sdtc->thresh, 1770 sdtc->bg_thresh, 1771 sdtc->dirty, 1772 sdtc->wb_thresh, 1773 sdtc->wb_dirty, 1774 dirty_ratelimit, 1775 task_ratelimit, 1776 pages_dirtied, 1777 period, 1778 pause, 1779 start_time); 1780 __set_current_state(TASK_KILLABLE); 1781 wb->dirty_sleep = now; 1782 io_schedule_timeout(pause); 1783 1784 current->dirty_paused_when = now + pause; 1785 current->nr_dirtied = 0; 1786 current->nr_dirtied_pause = nr_dirtied_pause; 1787 1788 /* 1789 * This is typically equal to (dirty < thresh) and can also 1790 * keep "1000+ dd on a slow USB stick" under control. 1791 */ 1792 if (task_ratelimit) 1793 break; 1794 1795 /* 1796 * In the case of an unresponding NFS server and the NFS dirty 1797 * pages exceeds dirty_thresh, give the other good wb's a pipe 1798 * to go through, so that tasks on them still remain responsive. 1799 * 1800 * In theory 1 page is enough to keep the consumer-producer 1801 * pipe going: the flusher cleans 1 page => the task dirties 1 1802 * more page. However wb_dirty has accounting errors. So use 1803 * the larger and more IO friendly wb_stat_error. 1804 */ 1805 if (sdtc->wb_dirty <= wb_stat_error(wb)) 1806 break; 1807 1808 if (fatal_signal_pending(current)) 1809 break; 1810 } 1811 1812 if (!dirty_exceeded && wb->dirty_exceeded) 1813 wb->dirty_exceeded = 0; 1814 1815 if (writeback_in_progress(wb)) 1816 return; 1817 1818 /* 1819 * In laptop mode, we wait until hitting the higher threshold before 1820 * starting background writeout, and then write out all the way down 1821 * to the lower threshold. So slow writers cause minimal disk activity. 1822 * 1823 * In normal mode, we start background writeout at the lower 1824 * background_thresh, to keep the amount of dirty memory low. 1825 */ 1826 if (laptop_mode) 1827 return; 1828 1829 if (nr_reclaimable > gdtc->bg_thresh) 1830 wb_start_background_writeback(wb); 1831 } 1832 1833 static DEFINE_PER_CPU(int, bdp_ratelimits); 1834 1835 /* 1836 * Normal tasks are throttled by 1837 * loop { 1838 * dirty tsk->nr_dirtied_pause pages; 1839 * take a snap in balance_dirty_pages(); 1840 * } 1841 * However there is a worst case. If every task exit immediately when dirtied 1842 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1843 * called to throttle the page dirties. The solution is to save the not yet 1844 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1845 * randomly into the running tasks. This works well for the above worst case, 1846 * as the new task will pick up and accumulate the old task's leaked dirty 1847 * count and eventually get throttled. 1848 */ 1849 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1850 1851 /** 1852 * balance_dirty_pages_ratelimited - balance dirty memory state 1853 * @mapping: address_space which was dirtied 1854 * 1855 * Processes which are dirtying memory should call in here once for each page 1856 * which was newly dirtied. The function will periodically check the system's 1857 * dirty state and will initiate writeback if needed. 1858 * 1859 * On really big machines, get_writeback_state is expensive, so try to avoid 1860 * calling it too often (ratelimiting). But once we're over the dirty memory 1861 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1862 * from overshooting the limit by (ratelimit_pages) each. 1863 */ 1864 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1865 { 1866 struct inode *inode = mapping->host; 1867 struct backing_dev_info *bdi = inode_to_bdi(inode); 1868 struct bdi_writeback *wb = NULL; 1869 int ratelimit; 1870 int *p; 1871 1872 if (!bdi_cap_account_dirty(bdi)) 1873 return; 1874 1875 if (inode_cgwb_enabled(inode)) 1876 wb = wb_get_create_current(bdi, GFP_KERNEL); 1877 if (!wb) 1878 wb = &bdi->wb; 1879 1880 ratelimit = current->nr_dirtied_pause; 1881 if (wb->dirty_exceeded) 1882 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1883 1884 preempt_disable(); 1885 /* 1886 * This prevents one CPU to accumulate too many dirtied pages without 1887 * calling into balance_dirty_pages(), which can happen when there are 1888 * 1000+ tasks, all of them start dirtying pages at exactly the same 1889 * time, hence all honoured too large initial task->nr_dirtied_pause. 1890 */ 1891 p = this_cpu_ptr(&bdp_ratelimits); 1892 if (unlikely(current->nr_dirtied >= ratelimit)) 1893 *p = 0; 1894 else if (unlikely(*p >= ratelimit_pages)) { 1895 *p = 0; 1896 ratelimit = 0; 1897 } 1898 /* 1899 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1900 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1901 * the dirty throttling and livelock other long-run dirtiers. 1902 */ 1903 p = this_cpu_ptr(&dirty_throttle_leaks); 1904 if (*p > 0 && current->nr_dirtied < ratelimit) { 1905 unsigned long nr_pages_dirtied; 1906 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1907 *p -= nr_pages_dirtied; 1908 current->nr_dirtied += nr_pages_dirtied; 1909 } 1910 preempt_enable(); 1911 1912 if (unlikely(current->nr_dirtied >= ratelimit)) 1913 balance_dirty_pages(mapping, wb, current->nr_dirtied); 1914 1915 wb_put(wb); 1916 } 1917 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1918 1919 /** 1920 * wb_over_bg_thresh - does @wb need to be written back? 1921 * @wb: bdi_writeback of interest 1922 * 1923 * Determines whether background writeback should keep writing @wb or it's 1924 * clean enough. Returns %true if writeback should continue. 1925 */ 1926 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1927 { 1928 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1929 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1930 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1931 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1932 &mdtc_stor : NULL; 1933 1934 /* 1935 * Similar to balance_dirty_pages() but ignores pages being written 1936 * as we're trying to decide whether to put more under writeback. 1937 */ 1938 gdtc->avail = global_dirtyable_memory(); 1939 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) + 1940 global_node_page_state(NR_UNSTABLE_NFS); 1941 domain_dirty_limits(gdtc); 1942 1943 if (gdtc->dirty > gdtc->bg_thresh) 1944 return true; 1945 1946 if (wb_stat(wb, WB_RECLAIMABLE) > 1947 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) 1948 return true; 1949 1950 if (mdtc) { 1951 unsigned long filepages, headroom, writeback; 1952 1953 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1954 &writeback); 1955 mdtc_calc_avail(mdtc, filepages, headroom); 1956 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1957 1958 if (mdtc->dirty > mdtc->bg_thresh) 1959 return true; 1960 1961 if (wb_stat(wb, WB_RECLAIMABLE) > 1962 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) 1963 return true; 1964 } 1965 1966 return false; 1967 } 1968 1969 /* 1970 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1971 */ 1972 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1973 void __user *buffer, size_t *length, loff_t *ppos) 1974 { 1975 proc_dointvec(table, write, buffer, length, ppos); 1976 return 0; 1977 } 1978 1979 #ifdef CONFIG_BLOCK 1980 void laptop_mode_timer_fn(unsigned long data) 1981 { 1982 struct request_queue *q = (struct request_queue *)data; 1983 int nr_pages = global_node_page_state(NR_FILE_DIRTY) + 1984 global_node_page_state(NR_UNSTABLE_NFS); 1985 struct bdi_writeback *wb; 1986 1987 /* 1988 * We want to write everything out, not just down to the dirty 1989 * threshold 1990 */ 1991 if (!bdi_has_dirty_io(q->backing_dev_info)) 1992 return; 1993 1994 rcu_read_lock(); 1995 list_for_each_entry_rcu(wb, &q->backing_dev_info->wb_list, bdi_node) 1996 if (wb_has_dirty_io(wb)) 1997 wb_start_writeback(wb, nr_pages, true, 1998 WB_REASON_LAPTOP_TIMER); 1999 rcu_read_unlock(); 2000 } 2001 2002 /* 2003 * We've spun up the disk and we're in laptop mode: schedule writeback 2004 * of all dirty data a few seconds from now. If the flush is already scheduled 2005 * then push it back - the user is still using the disk. 2006 */ 2007 void laptop_io_completion(struct backing_dev_info *info) 2008 { 2009 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2010 } 2011 2012 /* 2013 * We're in laptop mode and we've just synced. The sync's writes will have 2014 * caused another writeback to be scheduled by laptop_io_completion. 2015 * Nothing needs to be written back anymore, so we unschedule the writeback. 2016 */ 2017 void laptop_sync_completion(void) 2018 { 2019 struct backing_dev_info *bdi; 2020 2021 rcu_read_lock(); 2022 2023 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2024 del_timer(&bdi->laptop_mode_wb_timer); 2025 2026 rcu_read_unlock(); 2027 } 2028 #endif 2029 2030 /* 2031 * If ratelimit_pages is too high then we can get into dirty-data overload 2032 * if a large number of processes all perform writes at the same time. 2033 * If it is too low then SMP machines will call the (expensive) 2034 * get_writeback_state too often. 2035 * 2036 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2037 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2038 * thresholds. 2039 */ 2040 2041 void writeback_set_ratelimit(void) 2042 { 2043 struct wb_domain *dom = &global_wb_domain; 2044 unsigned long background_thresh; 2045 unsigned long dirty_thresh; 2046 2047 global_dirty_limits(&background_thresh, &dirty_thresh); 2048 dom->dirty_limit = dirty_thresh; 2049 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2050 if (ratelimit_pages < 16) 2051 ratelimit_pages = 16; 2052 } 2053 2054 static int page_writeback_cpu_online(unsigned int cpu) 2055 { 2056 writeback_set_ratelimit(); 2057 return 0; 2058 } 2059 2060 /* 2061 * Called early on to tune the page writeback dirty limits. 2062 * 2063 * We used to scale dirty pages according to how total memory 2064 * related to pages that could be allocated for buffers (by 2065 * comparing nr_free_buffer_pages() to vm_total_pages. 2066 * 2067 * However, that was when we used "dirty_ratio" to scale with 2068 * all memory, and we don't do that any more. "dirty_ratio" 2069 * is now applied to total non-HIGHPAGE memory (by subtracting 2070 * totalhigh_pages from vm_total_pages), and as such we can't 2071 * get into the old insane situation any more where we had 2072 * large amounts of dirty pages compared to a small amount of 2073 * non-HIGHMEM memory. 2074 * 2075 * But we might still want to scale the dirty_ratio by how 2076 * much memory the box has.. 2077 */ 2078 void __init page_writeback_init(void) 2079 { 2080 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2081 2082 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2083 page_writeback_cpu_online, NULL); 2084 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2085 page_writeback_cpu_online); 2086 } 2087 2088 /** 2089 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2090 * @mapping: address space structure to write 2091 * @start: starting page index 2092 * @end: ending page index (inclusive) 2093 * 2094 * This function scans the page range from @start to @end (inclusive) and tags 2095 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2096 * that write_cache_pages (or whoever calls this function) will then use 2097 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2098 * used to avoid livelocking of writeback by a process steadily creating new 2099 * dirty pages in the file (thus it is important for this function to be quick 2100 * so that it can tag pages faster than a dirtying process can create them). 2101 */ 2102 /* 2103 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 2104 */ 2105 void tag_pages_for_writeback(struct address_space *mapping, 2106 pgoff_t start, pgoff_t end) 2107 { 2108 #define WRITEBACK_TAG_BATCH 4096 2109 unsigned long tagged = 0; 2110 struct radix_tree_iter iter; 2111 void **slot; 2112 2113 spin_lock_irq(&mapping->tree_lock); 2114 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start, 2115 PAGECACHE_TAG_DIRTY) { 2116 if (iter.index > end) 2117 break; 2118 radix_tree_iter_tag_set(&mapping->page_tree, &iter, 2119 PAGECACHE_TAG_TOWRITE); 2120 tagged++; 2121 if ((tagged % WRITEBACK_TAG_BATCH) != 0) 2122 continue; 2123 slot = radix_tree_iter_resume(slot, &iter); 2124 spin_unlock_irq(&mapping->tree_lock); 2125 cond_resched(); 2126 spin_lock_irq(&mapping->tree_lock); 2127 } 2128 spin_unlock_irq(&mapping->tree_lock); 2129 } 2130 EXPORT_SYMBOL(tag_pages_for_writeback); 2131 2132 /** 2133 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2134 * @mapping: address space structure to write 2135 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2136 * @writepage: function called for each page 2137 * @data: data passed to writepage function 2138 * 2139 * If a page is already under I/O, write_cache_pages() skips it, even 2140 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2141 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2142 * and msync() need to guarantee that all the data which was dirty at the time 2143 * the call was made get new I/O started against them. If wbc->sync_mode is 2144 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2145 * existing IO to complete. 2146 * 2147 * To avoid livelocks (when other process dirties new pages), we first tag 2148 * pages which should be written back with TOWRITE tag and only then start 2149 * writing them. For data-integrity sync we have to be careful so that we do 2150 * not miss some pages (e.g., because some other process has cleared TOWRITE 2151 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2152 * by the process clearing the DIRTY tag (and submitting the page for IO). 2153 */ 2154 int write_cache_pages(struct address_space *mapping, 2155 struct writeback_control *wbc, writepage_t writepage, 2156 void *data) 2157 { 2158 int ret = 0; 2159 int done = 0; 2160 struct pagevec pvec; 2161 int nr_pages; 2162 pgoff_t uninitialized_var(writeback_index); 2163 pgoff_t index; 2164 pgoff_t end; /* Inclusive */ 2165 pgoff_t done_index; 2166 int cycled; 2167 int range_whole = 0; 2168 int tag; 2169 2170 pagevec_init(&pvec, 0); 2171 if (wbc->range_cyclic) { 2172 writeback_index = mapping->writeback_index; /* prev offset */ 2173 index = writeback_index; 2174 if (index == 0) 2175 cycled = 1; 2176 else 2177 cycled = 0; 2178 end = -1; 2179 } else { 2180 index = wbc->range_start >> PAGE_SHIFT; 2181 end = wbc->range_end >> PAGE_SHIFT; 2182 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2183 range_whole = 1; 2184 cycled = 1; /* ignore range_cyclic tests */ 2185 } 2186 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2187 tag = PAGECACHE_TAG_TOWRITE; 2188 else 2189 tag = PAGECACHE_TAG_DIRTY; 2190 retry: 2191 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2192 tag_pages_for_writeback(mapping, index, end); 2193 done_index = index; 2194 while (!done && (index <= end)) { 2195 int i; 2196 2197 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2198 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2199 if (nr_pages == 0) 2200 break; 2201 2202 for (i = 0; i < nr_pages; i++) { 2203 struct page *page = pvec.pages[i]; 2204 2205 /* 2206 * At this point, the page may be truncated or 2207 * invalidated (changing page->mapping to NULL), or 2208 * even swizzled back from swapper_space to tmpfs file 2209 * mapping. However, page->index will not change 2210 * because we have a reference on the page. 2211 */ 2212 if (page->index > end) { 2213 /* 2214 * can't be range_cyclic (1st pass) because 2215 * end == -1 in that case. 2216 */ 2217 done = 1; 2218 break; 2219 } 2220 2221 done_index = page->index; 2222 2223 lock_page(page); 2224 2225 /* 2226 * Page truncated or invalidated. We can freely skip it 2227 * then, even for data integrity operations: the page 2228 * has disappeared concurrently, so there could be no 2229 * real expectation of this data interity operation 2230 * even if there is now a new, dirty page at the same 2231 * pagecache address. 2232 */ 2233 if (unlikely(page->mapping != mapping)) { 2234 continue_unlock: 2235 unlock_page(page); 2236 continue; 2237 } 2238 2239 if (!PageDirty(page)) { 2240 /* someone wrote it for us */ 2241 goto continue_unlock; 2242 } 2243 2244 if (PageWriteback(page)) { 2245 if (wbc->sync_mode != WB_SYNC_NONE) 2246 wait_on_page_writeback(page); 2247 else 2248 goto continue_unlock; 2249 } 2250 2251 BUG_ON(PageWriteback(page)); 2252 if (!clear_page_dirty_for_io(page)) 2253 goto continue_unlock; 2254 2255 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2256 ret = (*writepage)(page, wbc, data); 2257 if (unlikely(ret)) { 2258 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2259 unlock_page(page); 2260 ret = 0; 2261 } else { 2262 /* 2263 * done_index is set past this page, 2264 * so media errors will not choke 2265 * background writeout for the entire 2266 * file. This has consequences for 2267 * range_cyclic semantics (ie. it may 2268 * not be suitable for data integrity 2269 * writeout). 2270 */ 2271 done_index = page->index + 1; 2272 done = 1; 2273 break; 2274 } 2275 } 2276 2277 /* 2278 * We stop writing back only if we are not doing 2279 * integrity sync. In case of integrity sync we have to 2280 * keep going until we have written all the pages 2281 * we tagged for writeback prior to entering this loop. 2282 */ 2283 if (--wbc->nr_to_write <= 0 && 2284 wbc->sync_mode == WB_SYNC_NONE) { 2285 done = 1; 2286 break; 2287 } 2288 } 2289 pagevec_release(&pvec); 2290 cond_resched(); 2291 } 2292 if (!cycled && !done) { 2293 /* 2294 * range_cyclic: 2295 * We hit the last page and there is more work to be done: wrap 2296 * back to the start of the file 2297 */ 2298 cycled = 1; 2299 index = 0; 2300 end = writeback_index - 1; 2301 goto retry; 2302 } 2303 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2304 mapping->writeback_index = done_index; 2305 2306 return ret; 2307 } 2308 EXPORT_SYMBOL(write_cache_pages); 2309 2310 /* 2311 * Function used by generic_writepages to call the real writepage 2312 * function and set the mapping flags on error 2313 */ 2314 static int __writepage(struct page *page, struct writeback_control *wbc, 2315 void *data) 2316 { 2317 struct address_space *mapping = data; 2318 int ret = mapping->a_ops->writepage(page, wbc); 2319 mapping_set_error(mapping, ret); 2320 return ret; 2321 } 2322 2323 /** 2324 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2325 * @mapping: address space structure to write 2326 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2327 * 2328 * This is a library function, which implements the writepages() 2329 * address_space_operation. 2330 */ 2331 int generic_writepages(struct address_space *mapping, 2332 struct writeback_control *wbc) 2333 { 2334 struct blk_plug plug; 2335 int ret; 2336 2337 /* deal with chardevs and other special file */ 2338 if (!mapping->a_ops->writepage) 2339 return 0; 2340 2341 blk_start_plug(&plug); 2342 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2343 blk_finish_plug(&plug); 2344 return ret; 2345 } 2346 2347 EXPORT_SYMBOL(generic_writepages); 2348 2349 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2350 { 2351 int ret; 2352 2353 if (wbc->nr_to_write <= 0) 2354 return 0; 2355 while (1) { 2356 if (mapping->a_ops->writepages) 2357 ret = mapping->a_ops->writepages(mapping, wbc); 2358 else 2359 ret = generic_writepages(mapping, wbc); 2360 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2361 break; 2362 cond_resched(); 2363 congestion_wait(BLK_RW_ASYNC, HZ/50); 2364 } 2365 return ret; 2366 } 2367 2368 /** 2369 * write_one_page - write out a single page and wait on I/O 2370 * @page: the page to write 2371 * 2372 * The page must be locked by the caller and will be unlocked upon return. 2373 * 2374 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2375 * function returns. 2376 */ 2377 int write_one_page(struct page *page) 2378 { 2379 struct address_space *mapping = page->mapping; 2380 int ret = 0; 2381 struct writeback_control wbc = { 2382 .sync_mode = WB_SYNC_ALL, 2383 .nr_to_write = 1, 2384 }; 2385 2386 BUG_ON(!PageLocked(page)); 2387 2388 wait_on_page_writeback(page); 2389 2390 if (clear_page_dirty_for_io(page)) { 2391 get_page(page); 2392 ret = mapping->a_ops->writepage(page, &wbc); 2393 if (ret == 0) 2394 wait_on_page_writeback(page); 2395 put_page(page); 2396 } else { 2397 unlock_page(page); 2398 } 2399 2400 if (!ret) 2401 ret = filemap_check_errors(mapping); 2402 return ret; 2403 } 2404 EXPORT_SYMBOL(write_one_page); 2405 2406 /* 2407 * For address_spaces which do not use buffers nor write back. 2408 */ 2409 int __set_page_dirty_no_writeback(struct page *page) 2410 { 2411 if (!PageDirty(page)) 2412 return !TestSetPageDirty(page); 2413 return 0; 2414 } 2415 2416 /* 2417 * Helper function for set_page_dirty family. 2418 * 2419 * Caller must hold lock_page_memcg(). 2420 * 2421 * NOTE: This relies on being atomic wrt interrupts. 2422 */ 2423 void account_page_dirtied(struct page *page, struct address_space *mapping) 2424 { 2425 struct inode *inode = mapping->host; 2426 2427 trace_writeback_dirty_page(page, mapping); 2428 2429 if (mapping_cap_account_dirty(mapping)) { 2430 struct bdi_writeback *wb; 2431 2432 inode_attach_wb(inode, page); 2433 wb = inode_to_wb(inode); 2434 2435 __inc_lruvec_page_state(page, NR_FILE_DIRTY); 2436 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2437 __inc_node_page_state(page, NR_DIRTIED); 2438 inc_wb_stat(wb, WB_RECLAIMABLE); 2439 inc_wb_stat(wb, WB_DIRTIED); 2440 task_io_account_write(PAGE_SIZE); 2441 current->nr_dirtied++; 2442 this_cpu_inc(bdp_ratelimits); 2443 } 2444 } 2445 EXPORT_SYMBOL(account_page_dirtied); 2446 2447 /* 2448 * Helper function for deaccounting dirty page without writeback. 2449 * 2450 * Caller must hold lock_page_memcg(). 2451 */ 2452 void account_page_cleaned(struct page *page, struct address_space *mapping, 2453 struct bdi_writeback *wb) 2454 { 2455 if (mapping_cap_account_dirty(mapping)) { 2456 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2457 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2458 dec_wb_stat(wb, WB_RECLAIMABLE); 2459 task_io_account_cancelled_write(PAGE_SIZE); 2460 } 2461 } 2462 2463 /* 2464 * For address_spaces which do not use buffers. Just tag the page as dirty in 2465 * its radix tree. 2466 * 2467 * This is also used when a single buffer is being dirtied: we want to set the 2468 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2469 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2470 * 2471 * The caller must ensure this doesn't race with truncation. Most will simply 2472 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2473 * the pte lock held, which also locks out truncation. 2474 */ 2475 int __set_page_dirty_nobuffers(struct page *page) 2476 { 2477 lock_page_memcg(page); 2478 if (!TestSetPageDirty(page)) { 2479 struct address_space *mapping = page_mapping(page); 2480 unsigned long flags; 2481 2482 if (!mapping) { 2483 unlock_page_memcg(page); 2484 return 1; 2485 } 2486 2487 spin_lock_irqsave(&mapping->tree_lock, flags); 2488 BUG_ON(page_mapping(page) != mapping); 2489 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2490 account_page_dirtied(page, mapping); 2491 radix_tree_tag_set(&mapping->page_tree, page_index(page), 2492 PAGECACHE_TAG_DIRTY); 2493 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2494 unlock_page_memcg(page); 2495 2496 if (mapping->host) { 2497 /* !PageAnon && !swapper_space */ 2498 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2499 } 2500 return 1; 2501 } 2502 unlock_page_memcg(page); 2503 return 0; 2504 } 2505 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2506 2507 /* 2508 * Call this whenever redirtying a page, to de-account the dirty counters 2509 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2510 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2511 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2512 * control. 2513 */ 2514 void account_page_redirty(struct page *page) 2515 { 2516 struct address_space *mapping = page->mapping; 2517 2518 if (mapping && mapping_cap_account_dirty(mapping)) { 2519 struct inode *inode = mapping->host; 2520 struct bdi_writeback *wb; 2521 bool locked; 2522 2523 wb = unlocked_inode_to_wb_begin(inode, &locked); 2524 current->nr_dirtied--; 2525 dec_node_page_state(page, NR_DIRTIED); 2526 dec_wb_stat(wb, WB_DIRTIED); 2527 unlocked_inode_to_wb_end(inode, locked); 2528 } 2529 } 2530 EXPORT_SYMBOL(account_page_redirty); 2531 2532 /* 2533 * When a writepage implementation decides that it doesn't want to write this 2534 * page for some reason, it should redirty the locked page via 2535 * redirty_page_for_writepage() and it should then unlock the page and return 0 2536 */ 2537 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2538 { 2539 int ret; 2540 2541 wbc->pages_skipped++; 2542 ret = __set_page_dirty_nobuffers(page); 2543 account_page_redirty(page); 2544 return ret; 2545 } 2546 EXPORT_SYMBOL(redirty_page_for_writepage); 2547 2548 /* 2549 * Dirty a page. 2550 * 2551 * For pages with a mapping this should be done under the page lock 2552 * for the benefit of asynchronous memory errors who prefer a consistent 2553 * dirty state. This rule can be broken in some special cases, 2554 * but should be better not to. 2555 * 2556 * If the mapping doesn't provide a set_page_dirty a_op, then 2557 * just fall through and assume that it wants buffer_heads. 2558 */ 2559 int set_page_dirty(struct page *page) 2560 { 2561 struct address_space *mapping = page_mapping(page); 2562 2563 page = compound_head(page); 2564 if (likely(mapping)) { 2565 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2566 /* 2567 * readahead/lru_deactivate_page could remain 2568 * PG_readahead/PG_reclaim due to race with end_page_writeback 2569 * About readahead, if the page is written, the flags would be 2570 * reset. So no problem. 2571 * About lru_deactivate_page, if the page is redirty, the flag 2572 * will be reset. So no problem. but if the page is used by readahead 2573 * it will confuse readahead and make it restart the size rampup 2574 * process. But it's a trivial problem. 2575 */ 2576 if (PageReclaim(page)) 2577 ClearPageReclaim(page); 2578 #ifdef CONFIG_BLOCK 2579 if (!spd) 2580 spd = __set_page_dirty_buffers; 2581 #endif 2582 return (*spd)(page); 2583 } 2584 if (!PageDirty(page)) { 2585 if (!TestSetPageDirty(page)) 2586 return 1; 2587 } 2588 return 0; 2589 } 2590 EXPORT_SYMBOL(set_page_dirty); 2591 2592 /* 2593 * set_page_dirty() is racy if the caller has no reference against 2594 * page->mapping->host, and if the page is unlocked. This is because another 2595 * CPU could truncate the page off the mapping and then free the mapping. 2596 * 2597 * Usually, the page _is_ locked, or the caller is a user-space process which 2598 * holds a reference on the inode by having an open file. 2599 * 2600 * In other cases, the page should be locked before running set_page_dirty(). 2601 */ 2602 int set_page_dirty_lock(struct page *page) 2603 { 2604 int ret; 2605 2606 lock_page(page); 2607 ret = set_page_dirty(page); 2608 unlock_page(page); 2609 return ret; 2610 } 2611 EXPORT_SYMBOL(set_page_dirty_lock); 2612 2613 /* 2614 * This cancels just the dirty bit on the kernel page itself, it does NOT 2615 * actually remove dirty bits on any mmap's that may be around. It also 2616 * leaves the page tagged dirty, so any sync activity will still find it on 2617 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2618 * look at the dirty bits in the VM. 2619 * 2620 * Doing this should *normally* only ever be done when a page is truncated, 2621 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2622 * this when it notices that somebody has cleaned out all the buffers on a 2623 * page without actually doing it through the VM. Can you say "ext3 is 2624 * horribly ugly"? Thought you could. 2625 */ 2626 void cancel_dirty_page(struct page *page) 2627 { 2628 struct address_space *mapping = page_mapping(page); 2629 2630 if (mapping_cap_account_dirty(mapping)) { 2631 struct inode *inode = mapping->host; 2632 struct bdi_writeback *wb; 2633 bool locked; 2634 2635 lock_page_memcg(page); 2636 wb = unlocked_inode_to_wb_begin(inode, &locked); 2637 2638 if (TestClearPageDirty(page)) 2639 account_page_cleaned(page, mapping, wb); 2640 2641 unlocked_inode_to_wb_end(inode, locked); 2642 unlock_page_memcg(page); 2643 } else { 2644 ClearPageDirty(page); 2645 } 2646 } 2647 EXPORT_SYMBOL(cancel_dirty_page); 2648 2649 /* 2650 * Clear a page's dirty flag, while caring for dirty memory accounting. 2651 * Returns true if the page was previously dirty. 2652 * 2653 * This is for preparing to put the page under writeout. We leave the page 2654 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2655 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2656 * implementation will run either set_page_writeback() or set_page_dirty(), 2657 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2658 * back into sync. 2659 * 2660 * This incoherency between the page's dirty flag and radix-tree tag is 2661 * unfortunate, but it only exists while the page is locked. 2662 */ 2663 int clear_page_dirty_for_io(struct page *page) 2664 { 2665 struct address_space *mapping = page_mapping(page); 2666 int ret = 0; 2667 2668 BUG_ON(!PageLocked(page)); 2669 2670 if (mapping && mapping_cap_account_dirty(mapping)) { 2671 struct inode *inode = mapping->host; 2672 struct bdi_writeback *wb; 2673 bool locked; 2674 2675 /* 2676 * Yes, Virginia, this is indeed insane. 2677 * 2678 * We use this sequence to make sure that 2679 * (a) we account for dirty stats properly 2680 * (b) we tell the low-level filesystem to 2681 * mark the whole page dirty if it was 2682 * dirty in a pagetable. Only to then 2683 * (c) clean the page again and return 1 to 2684 * cause the writeback. 2685 * 2686 * This way we avoid all nasty races with the 2687 * dirty bit in multiple places and clearing 2688 * them concurrently from different threads. 2689 * 2690 * Note! Normally the "set_page_dirty(page)" 2691 * has no effect on the actual dirty bit - since 2692 * that will already usually be set. But we 2693 * need the side effects, and it can help us 2694 * avoid races. 2695 * 2696 * We basically use the page "master dirty bit" 2697 * as a serialization point for all the different 2698 * threads doing their things. 2699 */ 2700 if (page_mkclean(page)) 2701 set_page_dirty(page); 2702 /* 2703 * We carefully synchronise fault handlers against 2704 * installing a dirty pte and marking the page dirty 2705 * at this point. We do this by having them hold the 2706 * page lock while dirtying the page, and pages are 2707 * always locked coming in here, so we get the desired 2708 * exclusion. 2709 */ 2710 wb = unlocked_inode_to_wb_begin(inode, &locked); 2711 if (TestClearPageDirty(page)) { 2712 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2713 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2714 dec_wb_stat(wb, WB_RECLAIMABLE); 2715 ret = 1; 2716 } 2717 unlocked_inode_to_wb_end(inode, locked); 2718 return ret; 2719 } 2720 return TestClearPageDirty(page); 2721 } 2722 EXPORT_SYMBOL(clear_page_dirty_for_io); 2723 2724 int test_clear_page_writeback(struct page *page) 2725 { 2726 struct address_space *mapping = page_mapping(page); 2727 struct mem_cgroup *memcg; 2728 struct lruvec *lruvec; 2729 int ret; 2730 2731 memcg = lock_page_memcg(page); 2732 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 2733 if (mapping && mapping_use_writeback_tags(mapping)) { 2734 struct inode *inode = mapping->host; 2735 struct backing_dev_info *bdi = inode_to_bdi(inode); 2736 unsigned long flags; 2737 2738 spin_lock_irqsave(&mapping->tree_lock, flags); 2739 ret = TestClearPageWriteback(page); 2740 if (ret) { 2741 radix_tree_tag_clear(&mapping->page_tree, 2742 page_index(page), 2743 PAGECACHE_TAG_WRITEBACK); 2744 if (bdi_cap_account_writeback(bdi)) { 2745 struct bdi_writeback *wb = inode_to_wb(inode); 2746 2747 dec_wb_stat(wb, WB_WRITEBACK); 2748 __wb_writeout_inc(wb); 2749 } 2750 } 2751 2752 if (mapping->host && !mapping_tagged(mapping, 2753 PAGECACHE_TAG_WRITEBACK)) 2754 sb_clear_inode_writeback(mapping->host); 2755 2756 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2757 } else { 2758 ret = TestClearPageWriteback(page); 2759 } 2760 /* 2761 * NOTE: Page might be free now! Writeback doesn't hold a page 2762 * reference on its own, it relies on truncation to wait for 2763 * the clearing of PG_writeback. The below can only access 2764 * page state that is static across allocation cycles. 2765 */ 2766 if (ret) { 2767 dec_lruvec_state(lruvec, NR_WRITEBACK); 2768 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2769 inc_node_page_state(page, NR_WRITTEN); 2770 } 2771 __unlock_page_memcg(memcg); 2772 return ret; 2773 } 2774 2775 int __test_set_page_writeback(struct page *page, bool keep_write) 2776 { 2777 struct address_space *mapping = page_mapping(page); 2778 int ret; 2779 2780 lock_page_memcg(page); 2781 if (mapping && mapping_use_writeback_tags(mapping)) { 2782 struct inode *inode = mapping->host; 2783 struct backing_dev_info *bdi = inode_to_bdi(inode); 2784 unsigned long flags; 2785 2786 spin_lock_irqsave(&mapping->tree_lock, flags); 2787 ret = TestSetPageWriteback(page); 2788 if (!ret) { 2789 bool on_wblist; 2790 2791 on_wblist = mapping_tagged(mapping, 2792 PAGECACHE_TAG_WRITEBACK); 2793 2794 radix_tree_tag_set(&mapping->page_tree, 2795 page_index(page), 2796 PAGECACHE_TAG_WRITEBACK); 2797 if (bdi_cap_account_writeback(bdi)) 2798 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2799 2800 /* 2801 * We can come through here when swapping anonymous 2802 * pages, so we don't necessarily have an inode to track 2803 * for sync. 2804 */ 2805 if (mapping->host && !on_wblist) 2806 sb_mark_inode_writeback(mapping->host); 2807 } 2808 if (!PageDirty(page)) 2809 radix_tree_tag_clear(&mapping->page_tree, 2810 page_index(page), 2811 PAGECACHE_TAG_DIRTY); 2812 if (!keep_write) 2813 radix_tree_tag_clear(&mapping->page_tree, 2814 page_index(page), 2815 PAGECACHE_TAG_TOWRITE); 2816 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2817 } else { 2818 ret = TestSetPageWriteback(page); 2819 } 2820 if (!ret) { 2821 inc_lruvec_page_state(page, NR_WRITEBACK); 2822 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2823 } 2824 unlock_page_memcg(page); 2825 return ret; 2826 2827 } 2828 EXPORT_SYMBOL(__test_set_page_writeback); 2829 2830 /* 2831 * Return true if any of the pages in the mapping are marked with the 2832 * passed tag. 2833 */ 2834 int mapping_tagged(struct address_space *mapping, int tag) 2835 { 2836 return radix_tree_tagged(&mapping->page_tree, tag); 2837 } 2838 EXPORT_SYMBOL(mapping_tagged); 2839 2840 /** 2841 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2842 * @page: The page to wait on. 2843 * 2844 * This function determines if the given page is related to a backing device 2845 * that requires page contents to be held stable during writeback. If so, then 2846 * it will wait for any pending writeback to complete. 2847 */ 2848 void wait_for_stable_page(struct page *page) 2849 { 2850 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2851 wait_on_page_writeback(page); 2852 } 2853 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2854