xref: /openbmc/linux/mm/page-writeback.c (revision 63dc02bd)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
38 
39 /*
40  * Sleep at most 200ms at a time in balance_dirty_pages().
41  */
42 #define MAX_PAUSE		max(HZ/5, 1)
43 
44 /*
45  * Try to keep balance_dirty_pages() call intervals higher than this many pages
46  * by raising pause time to max_pause when falls below it.
47  */
48 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
49 
50 /*
51  * Estimate write bandwidth at 200ms intervals.
52  */
53 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
54 
55 #define RATELIMIT_CALC_SHIFT	10
56 
57 /*
58  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
59  * will look to see if it needs to force writeback or throttling.
60  */
61 static long ratelimit_pages = 32;
62 
63 /* The following parameters are exported via /proc/sys/vm */
64 
65 /*
66  * Start background writeback (via writeback threads) at this percentage
67  */
68 int dirty_background_ratio = 10;
69 
70 /*
71  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
72  * dirty_background_ratio * the amount of dirtyable memory
73  */
74 unsigned long dirty_background_bytes;
75 
76 /*
77  * free highmem will not be subtracted from the total free memory
78  * for calculating free ratios if vm_highmem_is_dirtyable is true
79  */
80 int vm_highmem_is_dirtyable;
81 
82 /*
83  * The generator of dirty data starts writeback at this percentage
84  */
85 int vm_dirty_ratio = 20;
86 
87 /*
88  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
89  * vm_dirty_ratio * the amount of dirtyable memory
90  */
91 unsigned long vm_dirty_bytes;
92 
93 /*
94  * The interval between `kupdate'-style writebacks
95  */
96 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
97 
98 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
99 
100 /*
101  * The longest time for which data is allowed to remain dirty
102  */
103 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
104 
105 /*
106  * Flag that makes the machine dump writes/reads and block dirtyings.
107  */
108 int block_dump;
109 
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115 
116 EXPORT_SYMBOL(laptop_mode);
117 
118 /* End of sysctl-exported parameters */
119 
120 unsigned long global_dirty_limit;
121 
122 /*
123  * Scale the writeback cache size proportional to the relative writeout speeds.
124  *
125  * We do this by keeping a floating proportion between BDIs, based on page
126  * writeback completions [end_page_writeback()]. Those devices that write out
127  * pages fastest will get the larger share, while the slower will get a smaller
128  * share.
129  *
130  * We use page writeout completions because we are interested in getting rid of
131  * dirty pages. Having them written out is the primary goal.
132  *
133  * We introduce a concept of time, a period over which we measure these events,
134  * because demand can/will vary over time. The length of this period itself is
135  * measured in page writeback completions.
136  *
137  */
138 static struct prop_descriptor vm_completions;
139 
140 /*
141  * Work out the current dirty-memory clamping and background writeout
142  * thresholds.
143  *
144  * The main aim here is to lower them aggressively if there is a lot of mapped
145  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
146  * pages.  It is better to clamp down on writers than to start swapping, and
147  * performing lots of scanning.
148  *
149  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
150  *
151  * We don't permit the clamping level to fall below 5% - that is getting rather
152  * excessive.
153  *
154  * We make sure that the background writeout level is below the adjusted
155  * clamping level.
156  */
157 
158 /*
159  * In a memory zone, there is a certain amount of pages we consider
160  * available for the page cache, which is essentially the number of
161  * free and reclaimable pages, minus some zone reserves to protect
162  * lowmem and the ability to uphold the zone's watermarks without
163  * requiring writeback.
164  *
165  * This number of dirtyable pages is the base value of which the
166  * user-configurable dirty ratio is the effictive number of pages that
167  * are allowed to be actually dirtied.  Per individual zone, or
168  * globally by using the sum of dirtyable pages over all zones.
169  *
170  * Because the user is allowed to specify the dirty limit globally as
171  * absolute number of bytes, calculating the per-zone dirty limit can
172  * require translating the configured limit into a percentage of
173  * global dirtyable memory first.
174  */
175 
176 static unsigned long highmem_dirtyable_memory(unsigned long total)
177 {
178 #ifdef CONFIG_HIGHMEM
179 	int node;
180 	unsigned long x = 0;
181 
182 	for_each_node_state(node, N_HIGH_MEMORY) {
183 		struct zone *z =
184 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
185 
186 		x += zone_page_state(z, NR_FREE_PAGES) +
187 		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
188 	}
189 	/*
190 	 * Make sure that the number of highmem pages is never larger
191 	 * than the number of the total dirtyable memory. This can only
192 	 * occur in very strange VM situations but we want to make sure
193 	 * that this does not occur.
194 	 */
195 	return min(x, total);
196 #else
197 	return 0;
198 #endif
199 }
200 
201 /**
202  * global_dirtyable_memory - number of globally dirtyable pages
203  *
204  * Returns the global number of pages potentially available for dirty
205  * page cache.  This is the base value for the global dirty limits.
206  */
207 unsigned long global_dirtyable_memory(void)
208 {
209 	unsigned long x;
210 
211 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
212 	    dirty_balance_reserve;
213 
214 	if (!vm_highmem_is_dirtyable)
215 		x -= highmem_dirtyable_memory(x);
216 
217 	return x + 1;	/* Ensure that we never return 0 */
218 }
219 
220 /*
221  * global_dirty_limits - background-writeback and dirty-throttling thresholds
222  *
223  * Calculate the dirty thresholds based on sysctl parameters
224  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
225  * - vm.dirty_ratio             or  vm.dirty_bytes
226  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
227  * real-time tasks.
228  */
229 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
230 {
231 	unsigned long background;
232 	unsigned long dirty;
233 	unsigned long uninitialized_var(available_memory);
234 	struct task_struct *tsk;
235 
236 	if (!vm_dirty_bytes || !dirty_background_bytes)
237 		available_memory = global_dirtyable_memory();
238 
239 	if (vm_dirty_bytes)
240 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
241 	else
242 		dirty = (vm_dirty_ratio * available_memory) / 100;
243 
244 	if (dirty_background_bytes)
245 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
246 	else
247 		background = (dirty_background_ratio * available_memory) / 100;
248 
249 	if (background >= dirty)
250 		background = dirty / 2;
251 	tsk = current;
252 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
253 		background += background / 4;
254 		dirty += dirty / 4;
255 	}
256 	*pbackground = background;
257 	*pdirty = dirty;
258 	trace_global_dirty_state(background, dirty);
259 }
260 
261 /**
262  * zone_dirtyable_memory - number of dirtyable pages in a zone
263  * @zone: the zone
264  *
265  * Returns the zone's number of pages potentially available for dirty
266  * page cache.  This is the base value for the per-zone dirty limits.
267  */
268 static unsigned long zone_dirtyable_memory(struct zone *zone)
269 {
270 	/*
271 	 * The effective global number of dirtyable pages may exclude
272 	 * highmem as a big-picture measure to keep the ratio between
273 	 * dirty memory and lowmem reasonable.
274 	 *
275 	 * But this function is purely about the individual zone and a
276 	 * highmem zone can hold its share of dirty pages, so we don't
277 	 * care about vm_highmem_is_dirtyable here.
278 	 */
279 	return zone_page_state(zone, NR_FREE_PAGES) +
280 	       zone_reclaimable_pages(zone) -
281 	       zone->dirty_balance_reserve;
282 }
283 
284 /**
285  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
286  * @zone: the zone
287  *
288  * Returns the maximum number of dirty pages allowed in a zone, based
289  * on the zone's dirtyable memory.
290  */
291 static unsigned long zone_dirty_limit(struct zone *zone)
292 {
293 	unsigned long zone_memory = zone_dirtyable_memory(zone);
294 	struct task_struct *tsk = current;
295 	unsigned long dirty;
296 
297 	if (vm_dirty_bytes)
298 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
299 			zone_memory / global_dirtyable_memory();
300 	else
301 		dirty = vm_dirty_ratio * zone_memory / 100;
302 
303 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
304 		dirty += dirty / 4;
305 
306 	return dirty;
307 }
308 
309 /**
310  * zone_dirty_ok - tells whether a zone is within its dirty limits
311  * @zone: the zone to check
312  *
313  * Returns %true when the dirty pages in @zone are within the zone's
314  * dirty limit, %false if the limit is exceeded.
315  */
316 bool zone_dirty_ok(struct zone *zone)
317 {
318 	unsigned long limit = zone_dirty_limit(zone);
319 
320 	return zone_page_state(zone, NR_FILE_DIRTY) +
321 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
322 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
323 }
324 
325 /*
326  * couple the period to the dirty_ratio:
327  *
328  *   period/2 ~ roundup_pow_of_two(dirty limit)
329  */
330 static int calc_period_shift(void)
331 {
332 	unsigned long dirty_total;
333 
334 	if (vm_dirty_bytes)
335 		dirty_total = vm_dirty_bytes / PAGE_SIZE;
336 	else
337 		dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) /
338 				100;
339 	return 2 + ilog2(dirty_total - 1);
340 }
341 
342 /*
343  * update the period when the dirty threshold changes.
344  */
345 static void update_completion_period(void)
346 {
347 	int shift = calc_period_shift();
348 	prop_change_shift(&vm_completions, shift);
349 
350 	writeback_set_ratelimit();
351 }
352 
353 int dirty_background_ratio_handler(struct ctl_table *table, int write,
354 		void __user *buffer, size_t *lenp,
355 		loff_t *ppos)
356 {
357 	int ret;
358 
359 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
360 	if (ret == 0 && write)
361 		dirty_background_bytes = 0;
362 	return ret;
363 }
364 
365 int dirty_background_bytes_handler(struct ctl_table *table, int write,
366 		void __user *buffer, size_t *lenp,
367 		loff_t *ppos)
368 {
369 	int ret;
370 
371 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
372 	if (ret == 0 && write)
373 		dirty_background_ratio = 0;
374 	return ret;
375 }
376 
377 int dirty_ratio_handler(struct ctl_table *table, int write,
378 		void __user *buffer, size_t *lenp,
379 		loff_t *ppos)
380 {
381 	int old_ratio = vm_dirty_ratio;
382 	int ret;
383 
384 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
385 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
386 		update_completion_period();
387 		vm_dirty_bytes = 0;
388 	}
389 	return ret;
390 }
391 
392 int dirty_bytes_handler(struct ctl_table *table, int write,
393 		void __user *buffer, size_t *lenp,
394 		loff_t *ppos)
395 {
396 	unsigned long old_bytes = vm_dirty_bytes;
397 	int ret;
398 
399 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
400 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
401 		update_completion_period();
402 		vm_dirty_ratio = 0;
403 	}
404 	return ret;
405 }
406 
407 /*
408  * Increment the BDI's writeout completion count and the global writeout
409  * completion count. Called from test_clear_page_writeback().
410  */
411 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
412 {
413 	__inc_bdi_stat(bdi, BDI_WRITTEN);
414 	__prop_inc_percpu_max(&vm_completions, &bdi->completions,
415 			      bdi->max_prop_frac);
416 }
417 
418 void bdi_writeout_inc(struct backing_dev_info *bdi)
419 {
420 	unsigned long flags;
421 
422 	local_irq_save(flags);
423 	__bdi_writeout_inc(bdi);
424 	local_irq_restore(flags);
425 }
426 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
427 
428 /*
429  * Obtain an accurate fraction of the BDI's portion.
430  */
431 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
432 		long *numerator, long *denominator)
433 {
434 	prop_fraction_percpu(&vm_completions, &bdi->completions,
435 				numerator, denominator);
436 }
437 
438 /*
439  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
440  * registered backing devices, which, for obvious reasons, can not
441  * exceed 100%.
442  */
443 static unsigned int bdi_min_ratio;
444 
445 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
446 {
447 	int ret = 0;
448 
449 	spin_lock_bh(&bdi_lock);
450 	if (min_ratio > bdi->max_ratio) {
451 		ret = -EINVAL;
452 	} else {
453 		min_ratio -= bdi->min_ratio;
454 		if (bdi_min_ratio + min_ratio < 100) {
455 			bdi_min_ratio += min_ratio;
456 			bdi->min_ratio += min_ratio;
457 		} else {
458 			ret = -EINVAL;
459 		}
460 	}
461 	spin_unlock_bh(&bdi_lock);
462 
463 	return ret;
464 }
465 
466 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
467 {
468 	int ret = 0;
469 
470 	if (max_ratio > 100)
471 		return -EINVAL;
472 
473 	spin_lock_bh(&bdi_lock);
474 	if (bdi->min_ratio > max_ratio) {
475 		ret = -EINVAL;
476 	} else {
477 		bdi->max_ratio = max_ratio;
478 		bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100;
479 	}
480 	spin_unlock_bh(&bdi_lock);
481 
482 	return ret;
483 }
484 EXPORT_SYMBOL(bdi_set_max_ratio);
485 
486 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
487 					   unsigned long bg_thresh)
488 {
489 	return (thresh + bg_thresh) / 2;
490 }
491 
492 static unsigned long hard_dirty_limit(unsigned long thresh)
493 {
494 	return max(thresh, global_dirty_limit);
495 }
496 
497 /**
498  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
499  * @bdi: the backing_dev_info to query
500  * @dirty: global dirty limit in pages
501  *
502  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
503  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
504  *
505  * Note that balance_dirty_pages() will only seriously take it as a hard limit
506  * when sleeping max_pause per page is not enough to keep the dirty pages under
507  * control. For example, when the device is completely stalled due to some error
508  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
509  * In the other normal situations, it acts more gently by throttling the tasks
510  * more (rather than completely block them) when the bdi dirty pages go high.
511  *
512  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
513  * - starving fast devices
514  * - piling up dirty pages (that will take long time to sync) on slow devices
515  *
516  * The bdi's share of dirty limit will be adapting to its throughput and
517  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
518  */
519 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
520 {
521 	u64 bdi_dirty;
522 	long numerator, denominator;
523 
524 	/*
525 	 * Calculate this BDI's share of the dirty ratio.
526 	 */
527 	bdi_writeout_fraction(bdi, &numerator, &denominator);
528 
529 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
530 	bdi_dirty *= numerator;
531 	do_div(bdi_dirty, denominator);
532 
533 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
534 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
535 		bdi_dirty = dirty * bdi->max_ratio / 100;
536 
537 	return bdi_dirty;
538 }
539 
540 /*
541  * Dirty position control.
542  *
543  * (o) global/bdi setpoints
544  *
545  * We want the dirty pages be balanced around the global/bdi setpoints.
546  * When the number of dirty pages is higher/lower than the setpoint, the
547  * dirty position control ratio (and hence task dirty ratelimit) will be
548  * decreased/increased to bring the dirty pages back to the setpoint.
549  *
550  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
551  *
552  *     if (dirty < setpoint) scale up   pos_ratio
553  *     if (dirty > setpoint) scale down pos_ratio
554  *
555  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
556  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
557  *
558  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
559  *
560  * (o) global control line
561  *
562  *     ^ pos_ratio
563  *     |
564  *     |            |<===== global dirty control scope ======>|
565  * 2.0 .............*
566  *     |            .*
567  *     |            . *
568  *     |            .   *
569  *     |            .     *
570  *     |            .        *
571  *     |            .            *
572  * 1.0 ................................*
573  *     |            .                  .     *
574  *     |            .                  .          *
575  *     |            .                  .              *
576  *     |            .                  .                 *
577  *     |            .                  .                    *
578  *   0 +------------.------------------.----------------------*------------->
579  *           freerun^          setpoint^                 limit^   dirty pages
580  *
581  * (o) bdi control line
582  *
583  *     ^ pos_ratio
584  *     |
585  *     |            *
586  *     |              *
587  *     |                *
588  *     |                  *
589  *     |                    * |<=========== span ============>|
590  * 1.0 .......................*
591  *     |                      . *
592  *     |                      .   *
593  *     |                      .     *
594  *     |                      .       *
595  *     |                      .         *
596  *     |                      .           *
597  *     |                      .             *
598  *     |                      .               *
599  *     |                      .                 *
600  *     |                      .                   *
601  *     |                      .                     *
602  * 1/4 ...............................................* * * * * * * * * * * *
603  *     |                      .                         .
604  *     |                      .                           .
605  *     |                      .                             .
606  *   0 +----------------------.-------------------------------.------------->
607  *                bdi_setpoint^                    x_intercept^
608  *
609  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
610  * be smoothly throttled down to normal if it starts high in situations like
611  * - start writing to a slow SD card and a fast disk at the same time. The SD
612  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
613  * - the bdi dirty thresh drops quickly due to change of JBOD workload
614  */
615 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
616 					unsigned long thresh,
617 					unsigned long bg_thresh,
618 					unsigned long dirty,
619 					unsigned long bdi_thresh,
620 					unsigned long bdi_dirty)
621 {
622 	unsigned long write_bw = bdi->avg_write_bandwidth;
623 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
624 	unsigned long limit = hard_dirty_limit(thresh);
625 	unsigned long x_intercept;
626 	unsigned long setpoint;		/* dirty pages' target balance point */
627 	unsigned long bdi_setpoint;
628 	unsigned long span;
629 	long long pos_ratio;		/* for scaling up/down the rate limit */
630 	long x;
631 
632 	if (unlikely(dirty >= limit))
633 		return 0;
634 
635 	/*
636 	 * global setpoint
637 	 *
638 	 *                           setpoint - dirty 3
639 	 *        f(dirty) := 1.0 + (----------------)
640 	 *                           limit - setpoint
641 	 *
642 	 * it's a 3rd order polynomial that subjects to
643 	 *
644 	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
645 	 * (2) f(setpoint) = 1.0 => the balance point
646 	 * (3) f(limit)    = 0   => the hard limit
647 	 * (4) df/dx      <= 0	 => negative feedback control
648 	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
649 	 *     => fast response on large errors; small oscillation near setpoint
650 	 */
651 	setpoint = (freerun + limit) / 2;
652 	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
653 		    limit - setpoint + 1);
654 	pos_ratio = x;
655 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
656 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
657 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
658 
659 	/*
660 	 * We have computed basic pos_ratio above based on global situation. If
661 	 * the bdi is over/under its share of dirty pages, we want to scale
662 	 * pos_ratio further down/up. That is done by the following mechanism.
663 	 */
664 
665 	/*
666 	 * bdi setpoint
667 	 *
668 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
669 	 *
670 	 *                        x_intercept - bdi_dirty
671 	 *                     := --------------------------
672 	 *                        x_intercept - bdi_setpoint
673 	 *
674 	 * The main bdi control line is a linear function that subjects to
675 	 *
676 	 * (1) f(bdi_setpoint) = 1.0
677 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
678 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
679 	 *
680 	 * For single bdi case, the dirty pages are observed to fluctuate
681 	 * regularly within range
682 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
683 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
684 	 * fluctuation range for pos_ratio.
685 	 *
686 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
687 	 * own size, so move the slope over accordingly and choose a slope that
688 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
689 	 */
690 	if (unlikely(bdi_thresh > thresh))
691 		bdi_thresh = thresh;
692 	/*
693 	 * It's very possible that bdi_thresh is close to 0 not because the
694 	 * device is slow, but that it has remained inactive for long time.
695 	 * Honour such devices a reasonable good (hopefully IO efficient)
696 	 * threshold, so that the occasional writes won't be blocked and active
697 	 * writes can rampup the threshold quickly.
698 	 */
699 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
700 	/*
701 	 * scale global setpoint to bdi's:
702 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
703 	 */
704 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
705 	bdi_setpoint = setpoint * (u64)x >> 16;
706 	/*
707 	 * Use span=(8*write_bw) in single bdi case as indicated by
708 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
709 	 *
710 	 *        bdi_thresh                    thresh - bdi_thresh
711 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
712 	 *          thresh                            thresh
713 	 */
714 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
715 	x_intercept = bdi_setpoint + span;
716 
717 	if (bdi_dirty < x_intercept - span / 4) {
718 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
719 				    x_intercept - bdi_setpoint + 1);
720 	} else
721 		pos_ratio /= 4;
722 
723 	/*
724 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
725 	 * It may push the desired control point of global dirty pages higher
726 	 * than setpoint.
727 	 */
728 	x_intercept = bdi_thresh / 2;
729 	if (bdi_dirty < x_intercept) {
730 		if (bdi_dirty > x_intercept / 8)
731 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
732 		else
733 			pos_ratio *= 8;
734 	}
735 
736 	return pos_ratio;
737 }
738 
739 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
740 				       unsigned long elapsed,
741 				       unsigned long written)
742 {
743 	const unsigned long period = roundup_pow_of_two(3 * HZ);
744 	unsigned long avg = bdi->avg_write_bandwidth;
745 	unsigned long old = bdi->write_bandwidth;
746 	u64 bw;
747 
748 	/*
749 	 * bw = written * HZ / elapsed
750 	 *
751 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
752 	 * write_bandwidth = ---------------------------------------------------
753 	 *                                          period
754 	 */
755 	bw = written - bdi->written_stamp;
756 	bw *= HZ;
757 	if (unlikely(elapsed > period)) {
758 		do_div(bw, elapsed);
759 		avg = bw;
760 		goto out;
761 	}
762 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
763 	bw >>= ilog2(period);
764 
765 	/*
766 	 * one more level of smoothing, for filtering out sudden spikes
767 	 */
768 	if (avg > old && old >= (unsigned long)bw)
769 		avg -= (avg - old) >> 3;
770 
771 	if (avg < old && old <= (unsigned long)bw)
772 		avg += (old - avg) >> 3;
773 
774 out:
775 	bdi->write_bandwidth = bw;
776 	bdi->avg_write_bandwidth = avg;
777 }
778 
779 /*
780  * The global dirtyable memory and dirty threshold could be suddenly knocked
781  * down by a large amount (eg. on the startup of KVM in a swapless system).
782  * This may throw the system into deep dirty exceeded state and throttle
783  * heavy/light dirtiers alike. To retain good responsiveness, maintain
784  * global_dirty_limit for tracking slowly down to the knocked down dirty
785  * threshold.
786  */
787 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
788 {
789 	unsigned long limit = global_dirty_limit;
790 
791 	/*
792 	 * Follow up in one step.
793 	 */
794 	if (limit < thresh) {
795 		limit = thresh;
796 		goto update;
797 	}
798 
799 	/*
800 	 * Follow down slowly. Use the higher one as the target, because thresh
801 	 * may drop below dirty. This is exactly the reason to introduce
802 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
803 	 */
804 	thresh = max(thresh, dirty);
805 	if (limit > thresh) {
806 		limit -= (limit - thresh) >> 5;
807 		goto update;
808 	}
809 	return;
810 update:
811 	global_dirty_limit = limit;
812 }
813 
814 static void global_update_bandwidth(unsigned long thresh,
815 				    unsigned long dirty,
816 				    unsigned long now)
817 {
818 	static DEFINE_SPINLOCK(dirty_lock);
819 	static unsigned long update_time;
820 
821 	/*
822 	 * check locklessly first to optimize away locking for the most time
823 	 */
824 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
825 		return;
826 
827 	spin_lock(&dirty_lock);
828 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
829 		update_dirty_limit(thresh, dirty);
830 		update_time = now;
831 	}
832 	spin_unlock(&dirty_lock);
833 }
834 
835 /*
836  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
837  *
838  * Normal bdi tasks will be curbed at or below it in long term.
839  * Obviously it should be around (write_bw / N) when there are N dd tasks.
840  */
841 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
842 				       unsigned long thresh,
843 				       unsigned long bg_thresh,
844 				       unsigned long dirty,
845 				       unsigned long bdi_thresh,
846 				       unsigned long bdi_dirty,
847 				       unsigned long dirtied,
848 				       unsigned long elapsed)
849 {
850 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
851 	unsigned long limit = hard_dirty_limit(thresh);
852 	unsigned long setpoint = (freerun + limit) / 2;
853 	unsigned long write_bw = bdi->avg_write_bandwidth;
854 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
855 	unsigned long dirty_rate;
856 	unsigned long task_ratelimit;
857 	unsigned long balanced_dirty_ratelimit;
858 	unsigned long pos_ratio;
859 	unsigned long step;
860 	unsigned long x;
861 
862 	/*
863 	 * The dirty rate will match the writeout rate in long term, except
864 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
865 	 */
866 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
867 
868 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
869 				       bdi_thresh, bdi_dirty);
870 	/*
871 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
872 	 */
873 	task_ratelimit = (u64)dirty_ratelimit *
874 					pos_ratio >> RATELIMIT_CALC_SHIFT;
875 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
876 
877 	/*
878 	 * A linear estimation of the "balanced" throttle rate. The theory is,
879 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
880 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
881 	 * formula will yield the balanced rate limit (write_bw / N).
882 	 *
883 	 * Note that the expanded form is not a pure rate feedback:
884 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
885 	 * but also takes pos_ratio into account:
886 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
887 	 *
888 	 * (1) is not realistic because pos_ratio also takes part in balancing
889 	 * the dirty rate.  Consider the state
890 	 *	pos_ratio = 0.5						     (3)
891 	 *	rate = 2 * (write_bw / N)				     (4)
892 	 * If (1) is used, it will stuck in that state! Because each dd will
893 	 * be throttled at
894 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
895 	 * yielding
896 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
897 	 * put (6) into (1) we get
898 	 *	rate_(i+1) = rate_(i)					     (7)
899 	 *
900 	 * So we end up using (2) to always keep
901 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
902 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
903 	 * pos_ratio is able to drive itself to 1.0, which is not only where
904 	 * the dirty count meet the setpoint, but also where the slope of
905 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
906 	 */
907 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
908 					   dirty_rate | 1);
909 	/*
910 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
911 	 */
912 	if (unlikely(balanced_dirty_ratelimit > write_bw))
913 		balanced_dirty_ratelimit = write_bw;
914 
915 	/*
916 	 * We could safely do this and return immediately:
917 	 *
918 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
919 	 *
920 	 * However to get a more stable dirty_ratelimit, the below elaborated
921 	 * code makes use of task_ratelimit to filter out sigular points and
922 	 * limit the step size.
923 	 *
924 	 * The below code essentially only uses the relative value of
925 	 *
926 	 *	task_ratelimit - dirty_ratelimit
927 	 *	= (pos_ratio - 1) * dirty_ratelimit
928 	 *
929 	 * which reflects the direction and size of dirty position error.
930 	 */
931 
932 	/*
933 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
934 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
935 	 * For example, when
936 	 * - dirty_ratelimit > balanced_dirty_ratelimit
937 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
938 	 * lowering dirty_ratelimit will help meet both the position and rate
939 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
940 	 * only help meet the rate target. After all, what the users ultimately
941 	 * feel and care are stable dirty rate and small position error.
942 	 *
943 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
944 	 * and filter out the sigular points of balanced_dirty_ratelimit. Which
945 	 * keeps jumping around randomly and can even leap far away at times
946 	 * due to the small 200ms estimation period of dirty_rate (we want to
947 	 * keep that period small to reduce time lags).
948 	 */
949 	step = 0;
950 	if (dirty < setpoint) {
951 		x = min(bdi->balanced_dirty_ratelimit,
952 			 min(balanced_dirty_ratelimit, task_ratelimit));
953 		if (dirty_ratelimit < x)
954 			step = x - dirty_ratelimit;
955 	} else {
956 		x = max(bdi->balanced_dirty_ratelimit,
957 			 max(balanced_dirty_ratelimit, task_ratelimit));
958 		if (dirty_ratelimit > x)
959 			step = dirty_ratelimit - x;
960 	}
961 
962 	/*
963 	 * Don't pursue 100% rate matching. It's impossible since the balanced
964 	 * rate itself is constantly fluctuating. So decrease the track speed
965 	 * when it gets close to the target. Helps eliminate pointless tremors.
966 	 */
967 	step >>= dirty_ratelimit / (2 * step + 1);
968 	/*
969 	 * Limit the tracking speed to avoid overshooting.
970 	 */
971 	step = (step + 7) / 8;
972 
973 	if (dirty_ratelimit < balanced_dirty_ratelimit)
974 		dirty_ratelimit += step;
975 	else
976 		dirty_ratelimit -= step;
977 
978 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
979 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
980 
981 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
982 }
983 
984 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
985 			    unsigned long thresh,
986 			    unsigned long bg_thresh,
987 			    unsigned long dirty,
988 			    unsigned long bdi_thresh,
989 			    unsigned long bdi_dirty,
990 			    unsigned long start_time)
991 {
992 	unsigned long now = jiffies;
993 	unsigned long elapsed = now - bdi->bw_time_stamp;
994 	unsigned long dirtied;
995 	unsigned long written;
996 
997 	/*
998 	 * rate-limit, only update once every 200ms.
999 	 */
1000 	if (elapsed < BANDWIDTH_INTERVAL)
1001 		return;
1002 
1003 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1004 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1005 
1006 	/*
1007 	 * Skip quiet periods when disk bandwidth is under-utilized.
1008 	 * (at least 1s idle time between two flusher runs)
1009 	 */
1010 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1011 		goto snapshot;
1012 
1013 	if (thresh) {
1014 		global_update_bandwidth(thresh, dirty, now);
1015 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1016 					   bdi_thresh, bdi_dirty,
1017 					   dirtied, elapsed);
1018 	}
1019 	bdi_update_write_bandwidth(bdi, elapsed, written);
1020 
1021 snapshot:
1022 	bdi->dirtied_stamp = dirtied;
1023 	bdi->written_stamp = written;
1024 	bdi->bw_time_stamp = now;
1025 }
1026 
1027 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1028 				 unsigned long thresh,
1029 				 unsigned long bg_thresh,
1030 				 unsigned long dirty,
1031 				 unsigned long bdi_thresh,
1032 				 unsigned long bdi_dirty,
1033 				 unsigned long start_time)
1034 {
1035 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1036 		return;
1037 	spin_lock(&bdi->wb.list_lock);
1038 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1039 			       bdi_thresh, bdi_dirty, start_time);
1040 	spin_unlock(&bdi->wb.list_lock);
1041 }
1042 
1043 /*
1044  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1045  * will look to see if it needs to start dirty throttling.
1046  *
1047  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1048  * global_page_state() too often. So scale it near-sqrt to the safety margin
1049  * (the number of pages we may dirty without exceeding the dirty limits).
1050  */
1051 static unsigned long dirty_poll_interval(unsigned long dirty,
1052 					 unsigned long thresh)
1053 {
1054 	if (thresh > dirty)
1055 		return 1UL << (ilog2(thresh - dirty) >> 1);
1056 
1057 	return 1;
1058 }
1059 
1060 static long bdi_max_pause(struct backing_dev_info *bdi,
1061 			  unsigned long bdi_dirty)
1062 {
1063 	long bw = bdi->avg_write_bandwidth;
1064 	long t;
1065 
1066 	/*
1067 	 * Limit pause time for small memory systems. If sleeping for too long
1068 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1069 	 * idle.
1070 	 *
1071 	 * 8 serves as the safety ratio.
1072 	 */
1073 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1074 	t++;
1075 
1076 	return min_t(long, t, MAX_PAUSE);
1077 }
1078 
1079 static long bdi_min_pause(struct backing_dev_info *bdi,
1080 			  long max_pause,
1081 			  unsigned long task_ratelimit,
1082 			  unsigned long dirty_ratelimit,
1083 			  int *nr_dirtied_pause)
1084 {
1085 	long hi = ilog2(bdi->avg_write_bandwidth);
1086 	long lo = ilog2(bdi->dirty_ratelimit);
1087 	long t;		/* target pause */
1088 	long pause;	/* estimated next pause */
1089 	int pages;	/* target nr_dirtied_pause */
1090 
1091 	/* target for 10ms pause on 1-dd case */
1092 	t = max(1, HZ / 100);
1093 
1094 	/*
1095 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1096 	 * overheads.
1097 	 *
1098 	 * (N * 10ms) on 2^N concurrent tasks.
1099 	 */
1100 	if (hi > lo)
1101 		t += (hi - lo) * (10 * HZ) / 1024;
1102 
1103 	/*
1104 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1105 	 * on the much more stable dirty_ratelimit. However the next pause time
1106 	 * will be computed based on task_ratelimit and the two rate limits may
1107 	 * depart considerably at some time. Especially if task_ratelimit goes
1108 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1109 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1110 	 * result task_ratelimit won't be executed faithfully, which could
1111 	 * eventually bring down dirty_ratelimit.
1112 	 *
1113 	 * We apply two rules to fix it up:
1114 	 * 1) try to estimate the next pause time and if necessary, use a lower
1115 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1116 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1117 	 * 2) limit the target pause time to max_pause/2, so that the normal
1118 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1119 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1120 	 */
1121 	t = min(t, 1 + max_pause / 2);
1122 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1123 
1124 	/*
1125 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1126 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1127 	 * When the 16 consecutive reads are often interrupted by some dirty
1128 	 * throttling pause during the async writes, cfq will go into idles
1129 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1130 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1131 	 */
1132 	if (pages < DIRTY_POLL_THRESH) {
1133 		t = max_pause;
1134 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1135 		if (pages > DIRTY_POLL_THRESH) {
1136 			pages = DIRTY_POLL_THRESH;
1137 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1138 		}
1139 	}
1140 
1141 	pause = HZ * pages / (task_ratelimit + 1);
1142 	if (pause > max_pause) {
1143 		t = max_pause;
1144 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1145 	}
1146 
1147 	*nr_dirtied_pause = pages;
1148 	/*
1149 	 * The minimal pause time will normally be half the target pause time.
1150 	 */
1151 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1152 }
1153 
1154 /*
1155  * balance_dirty_pages() must be called by processes which are generating dirty
1156  * data.  It looks at the number of dirty pages in the machine and will force
1157  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1158  * If we're over `background_thresh' then the writeback threads are woken to
1159  * perform some writeout.
1160  */
1161 static void balance_dirty_pages(struct address_space *mapping,
1162 				unsigned long pages_dirtied)
1163 {
1164 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1165 	unsigned long bdi_reclaimable;
1166 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1167 	unsigned long bdi_dirty;
1168 	unsigned long freerun;
1169 	unsigned long background_thresh;
1170 	unsigned long dirty_thresh;
1171 	unsigned long bdi_thresh;
1172 	long period;
1173 	long pause;
1174 	long max_pause;
1175 	long min_pause;
1176 	int nr_dirtied_pause;
1177 	bool dirty_exceeded = false;
1178 	unsigned long task_ratelimit;
1179 	unsigned long dirty_ratelimit;
1180 	unsigned long pos_ratio;
1181 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1182 	unsigned long start_time = jiffies;
1183 
1184 	for (;;) {
1185 		unsigned long now = jiffies;
1186 
1187 		/*
1188 		 * Unstable writes are a feature of certain networked
1189 		 * filesystems (i.e. NFS) in which data may have been
1190 		 * written to the server's write cache, but has not yet
1191 		 * been flushed to permanent storage.
1192 		 */
1193 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1194 					global_page_state(NR_UNSTABLE_NFS);
1195 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1196 
1197 		global_dirty_limits(&background_thresh, &dirty_thresh);
1198 
1199 		/*
1200 		 * Throttle it only when the background writeback cannot
1201 		 * catch-up. This avoids (excessively) small writeouts
1202 		 * when the bdi limits are ramping up.
1203 		 */
1204 		freerun = dirty_freerun_ceiling(dirty_thresh,
1205 						background_thresh);
1206 		if (nr_dirty <= freerun) {
1207 			current->dirty_paused_when = now;
1208 			current->nr_dirtied = 0;
1209 			current->nr_dirtied_pause =
1210 				dirty_poll_interval(nr_dirty, dirty_thresh);
1211 			break;
1212 		}
1213 
1214 		if (unlikely(!writeback_in_progress(bdi)))
1215 			bdi_start_background_writeback(bdi);
1216 
1217 		/*
1218 		 * bdi_thresh is not treated as some limiting factor as
1219 		 * dirty_thresh, due to reasons
1220 		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1221 		 * - in a system with HDD and USB key, the USB key may somehow
1222 		 *   go into state (bdi_dirty >> bdi_thresh) either because
1223 		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1224 		 *   In this case we don't want to hard throttle the USB key
1225 		 *   dirtiers for 100 seconds until bdi_dirty drops under
1226 		 *   bdi_thresh. Instead the auxiliary bdi control line in
1227 		 *   bdi_position_ratio() will let the dirtier task progress
1228 		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1229 		 */
1230 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1231 
1232 		/*
1233 		 * In order to avoid the stacked BDI deadlock we need
1234 		 * to ensure we accurately count the 'dirty' pages when
1235 		 * the threshold is low.
1236 		 *
1237 		 * Otherwise it would be possible to get thresh+n pages
1238 		 * reported dirty, even though there are thresh-m pages
1239 		 * actually dirty; with m+n sitting in the percpu
1240 		 * deltas.
1241 		 */
1242 		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1243 			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1244 			bdi_dirty = bdi_reclaimable +
1245 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1246 		} else {
1247 			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1248 			bdi_dirty = bdi_reclaimable +
1249 				    bdi_stat(bdi, BDI_WRITEBACK);
1250 		}
1251 
1252 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1253 				  (nr_dirty > dirty_thresh);
1254 		if (dirty_exceeded && !bdi->dirty_exceeded)
1255 			bdi->dirty_exceeded = 1;
1256 
1257 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1258 				     nr_dirty, bdi_thresh, bdi_dirty,
1259 				     start_time);
1260 
1261 		dirty_ratelimit = bdi->dirty_ratelimit;
1262 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1263 					       background_thresh, nr_dirty,
1264 					       bdi_thresh, bdi_dirty);
1265 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1266 							RATELIMIT_CALC_SHIFT;
1267 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1268 		min_pause = bdi_min_pause(bdi, max_pause,
1269 					  task_ratelimit, dirty_ratelimit,
1270 					  &nr_dirtied_pause);
1271 
1272 		if (unlikely(task_ratelimit == 0)) {
1273 			period = max_pause;
1274 			pause = max_pause;
1275 			goto pause;
1276 		}
1277 		period = HZ * pages_dirtied / task_ratelimit;
1278 		pause = period;
1279 		if (current->dirty_paused_when)
1280 			pause -= now - current->dirty_paused_when;
1281 		/*
1282 		 * For less than 1s think time (ext3/4 may block the dirtier
1283 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1284 		 * however at much less frequency), try to compensate it in
1285 		 * future periods by updating the virtual time; otherwise just
1286 		 * do a reset, as it may be a light dirtier.
1287 		 */
1288 		if (pause < min_pause) {
1289 			trace_balance_dirty_pages(bdi,
1290 						  dirty_thresh,
1291 						  background_thresh,
1292 						  nr_dirty,
1293 						  bdi_thresh,
1294 						  bdi_dirty,
1295 						  dirty_ratelimit,
1296 						  task_ratelimit,
1297 						  pages_dirtied,
1298 						  period,
1299 						  min(pause, 0L),
1300 						  start_time);
1301 			if (pause < -HZ) {
1302 				current->dirty_paused_when = now;
1303 				current->nr_dirtied = 0;
1304 			} else if (period) {
1305 				current->dirty_paused_when += period;
1306 				current->nr_dirtied = 0;
1307 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1308 				current->nr_dirtied_pause += pages_dirtied;
1309 			break;
1310 		}
1311 		if (unlikely(pause > max_pause)) {
1312 			/* for occasional dropped task_ratelimit */
1313 			now += min(pause - max_pause, max_pause);
1314 			pause = max_pause;
1315 		}
1316 
1317 pause:
1318 		trace_balance_dirty_pages(bdi,
1319 					  dirty_thresh,
1320 					  background_thresh,
1321 					  nr_dirty,
1322 					  bdi_thresh,
1323 					  bdi_dirty,
1324 					  dirty_ratelimit,
1325 					  task_ratelimit,
1326 					  pages_dirtied,
1327 					  period,
1328 					  pause,
1329 					  start_time);
1330 		__set_current_state(TASK_KILLABLE);
1331 		io_schedule_timeout(pause);
1332 
1333 		current->dirty_paused_when = now + pause;
1334 		current->nr_dirtied = 0;
1335 		current->nr_dirtied_pause = nr_dirtied_pause;
1336 
1337 		/*
1338 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1339 		 * also keep "1000+ dd on a slow USB stick" under control.
1340 		 */
1341 		if (task_ratelimit)
1342 			break;
1343 
1344 		/*
1345 		 * In the case of an unresponding NFS server and the NFS dirty
1346 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1347 		 * to go through, so that tasks on them still remain responsive.
1348 		 *
1349 		 * In theory 1 page is enough to keep the comsumer-producer
1350 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1351 		 * more page. However bdi_dirty has accounting errors.  So use
1352 		 * the larger and more IO friendly bdi_stat_error.
1353 		 */
1354 		if (bdi_dirty <= bdi_stat_error(bdi))
1355 			break;
1356 
1357 		if (fatal_signal_pending(current))
1358 			break;
1359 	}
1360 
1361 	if (!dirty_exceeded && bdi->dirty_exceeded)
1362 		bdi->dirty_exceeded = 0;
1363 
1364 	if (writeback_in_progress(bdi))
1365 		return;
1366 
1367 	/*
1368 	 * In laptop mode, we wait until hitting the higher threshold before
1369 	 * starting background writeout, and then write out all the way down
1370 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1371 	 *
1372 	 * In normal mode, we start background writeout at the lower
1373 	 * background_thresh, to keep the amount of dirty memory low.
1374 	 */
1375 	if (laptop_mode)
1376 		return;
1377 
1378 	if (nr_reclaimable > background_thresh)
1379 		bdi_start_background_writeback(bdi);
1380 }
1381 
1382 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1383 {
1384 	if (set_page_dirty(page) || page_mkwrite) {
1385 		struct address_space *mapping = page_mapping(page);
1386 
1387 		if (mapping)
1388 			balance_dirty_pages_ratelimited(mapping);
1389 	}
1390 }
1391 
1392 static DEFINE_PER_CPU(int, bdp_ratelimits);
1393 
1394 /*
1395  * Normal tasks are throttled by
1396  *	loop {
1397  *		dirty tsk->nr_dirtied_pause pages;
1398  *		take a snap in balance_dirty_pages();
1399  *	}
1400  * However there is a worst case. If every task exit immediately when dirtied
1401  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1402  * called to throttle the page dirties. The solution is to save the not yet
1403  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1404  * randomly into the running tasks. This works well for the above worst case,
1405  * as the new task will pick up and accumulate the old task's leaked dirty
1406  * count and eventually get throttled.
1407  */
1408 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1409 
1410 /**
1411  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1412  * @mapping: address_space which was dirtied
1413  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1414  *
1415  * Processes which are dirtying memory should call in here once for each page
1416  * which was newly dirtied.  The function will periodically check the system's
1417  * dirty state and will initiate writeback if needed.
1418  *
1419  * On really big machines, get_writeback_state is expensive, so try to avoid
1420  * calling it too often (ratelimiting).  But once we're over the dirty memory
1421  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1422  * from overshooting the limit by (ratelimit_pages) each.
1423  */
1424 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1425 					unsigned long nr_pages_dirtied)
1426 {
1427 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1428 	int ratelimit;
1429 	int *p;
1430 
1431 	if (!bdi_cap_account_dirty(bdi))
1432 		return;
1433 
1434 	ratelimit = current->nr_dirtied_pause;
1435 	if (bdi->dirty_exceeded)
1436 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1437 
1438 	preempt_disable();
1439 	/*
1440 	 * This prevents one CPU to accumulate too many dirtied pages without
1441 	 * calling into balance_dirty_pages(), which can happen when there are
1442 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1443 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1444 	 */
1445 	p =  &__get_cpu_var(bdp_ratelimits);
1446 	if (unlikely(current->nr_dirtied >= ratelimit))
1447 		*p = 0;
1448 	else if (unlikely(*p >= ratelimit_pages)) {
1449 		*p = 0;
1450 		ratelimit = 0;
1451 	}
1452 	/*
1453 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1454 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1455 	 * the dirty throttling and livelock other long-run dirtiers.
1456 	 */
1457 	p = &__get_cpu_var(dirty_throttle_leaks);
1458 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1459 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1460 		*p -= nr_pages_dirtied;
1461 		current->nr_dirtied += nr_pages_dirtied;
1462 	}
1463 	preempt_enable();
1464 
1465 	if (unlikely(current->nr_dirtied >= ratelimit))
1466 		balance_dirty_pages(mapping, current->nr_dirtied);
1467 }
1468 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1469 
1470 void throttle_vm_writeout(gfp_t gfp_mask)
1471 {
1472 	unsigned long background_thresh;
1473 	unsigned long dirty_thresh;
1474 
1475         for ( ; ; ) {
1476 		global_dirty_limits(&background_thresh, &dirty_thresh);
1477 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1478 
1479                 /*
1480                  * Boost the allowable dirty threshold a bit for page
1481                  * allocators so they don't get DoS'ed by heavy writers
1482                  */
1483                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1484 
1485                 if (global_page_state(NR_UNSTABLE_NFS) +
1486 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1487                         	break;
1488                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1489 
1490 		/*
1491 		 * The caller might hold locks which can prevent IO completion
1492 		 * or progress in the filesystem.  So we cannot just sit here
1493 		 * waiting for IO to complete.
1494 		 */
1495 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1496 			break;
1497         }
1498 }
1499 
1500 /*
1501  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1502  */
1503 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1504 	void __user *buffer, size_t *length, loff_t *ppos)
1505 {
1506 	proc_dointvec(table, write, buffer, length, ppos);
1507 	bdi_arm_supers_timer();
1508 	return 0;
1509 }
1510 
1511 #ifdef CONFIG_BLOCK
1512 void laptop_mode_timer_fn(unsigned long data)
1513 {
1514 	struct request_queue *q = (struct request_queue *)data;
1515 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1516 		global_page_state(NR_UNSTABLE_NFS);
1517 
1518 	/*
1519 	 * We want to write everything out, not just down to the dirty
1520 	 * threshold
1521 	 */
1522 	if (bdi_has_dirty_io(&q->backing_dev_info))
1523 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1524 					WB_REASON_LAPTOP_TIMER);
1525 }
1526 
1527 /*
1528  * We've spun up the disk and we're in laptop mode: schedule writeback
1529  * of all dirty data a few seconds from now.  If the flush is already scheduled
1530  * then push it back - the user is still using the disk.
1531  */
1532 void laptop_io_completion(struct backing_dev_info *info)
1533 {
1534 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1535 }
1536 
1537 /*
1538  * We're in laptop mode and we've just synced. The sync's writes will have
1539  * caused another writeback to be scheduled by laptop_io_completion.
1540  * Nothing needs to be written back anymore, so we unschedule the writeback.
1541  */
1542 void laptop_sync_completion(void)
1543 {
1544 	struct backing_dev_info *bdi;
1545 
1546 	rcu_read_lock();
1547 
1548 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1549 		del_timer(&bdi->laptop_mode_wb_timer);
1550 
1551 	rcu_read_unlock();
1552 }
1553 #endif
1554 
1555 /*
1556  * If ratelimit_pages is too high then we can get into dirty-data overload
1557  * if a large number of processes all perform writes at the same time.
1558  * If it is too low then SMP machines will call the (expensive)
1559  * get_writeback_state too often.
1560  *
1561  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1562  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1563  * thresholds.
1564  */
1565 
1566 void writeback_set_ratelimit(void)
1567 {
1568 	unsigned long background_thresh;
1569 	unsigned long dirty_thresh;
1570 	global_dirty_limits(&background_thresh, &dirty_thresh);
1571 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1572 	if (ratelimit_pages < 16)
1573 		ratelimit_pages = 16;
1574 }
1575 
1576 static int __cpuinit
1577 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v)
1578 {
1579 	writeback_set_ratelimit();
1580 	return NOTIFY_DONE;
1581 }
1582 
1583 static struct notifier_block __cpuinitdata ratelimit_nb = {
1584 	.notifier_call	= ratelimit_handler,
1585 	.next		= NULL,
1586 };
1587 
1588 /*
1589  * Called early on to tune the page writeback dirty limits.
1590  *
1591  * We used to scale dirty pages according to how total memory
1592  * related to pages that could be allocated for buffers (by
1593  * comparing nr_free_buffer_pages() to vm_total_pages.
1594  *
1595  * However, that was when we used "dirty_ratio" to scale with
1596  * all memory, and we don't do that any more. "dirty_ratio"
1597  * is now applied to total non-HIGHPAGE memory (by subtracting
1598  * totalhigh_pages from vm_total_pages), and as such we can't
1599  * get into the old insane situation any more where we had
1600  * large amounts of dirty pages compared to a small amount of
1601  * non-HIGHMEM memory.
1602  *
1603  * But we might still want to scale the dirty_ratio by how
1604  * much memory the box has..
1605  */
1606 void __init page_writeback_init(void)
1607 {
1608 	int shift;
1609 
1610 	writeback_set_ratelimit();
1611 	register_cpu_notifier(&ratelimit_nb);
1612 
1613 	shift = calc_period_shift();
1614 	prop_descriptor_init(&vm_completions, shift);
1615 }
1616 
1617 /**
1618  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1619  * @mapping: address space structure to write
1620  * @start: starting page index
1621  * @end: ending page index (inclusive)
1622  *
1623  * This function scans the page range from @start to @end (inclusive) and tags
1624  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1625  * that write_cache_pages (or whoever calls this function) will then use
1626  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1627  * used to avoid livelocking of writeback by a process steadily creating new
1628  * dirty pages in the file (thus it is important for this function to be quick
1629  * so that it can tag pages faster than a dirtying process can create them).
1630  */
1631 /*
1632  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1633  */
1634 void tag_pages_for_writeback(struct address_space *mapping,
1635 			     pgoff_t start, pgoff_t end)
1636 {
1637 #define WRITEBACK_TAG_BATCH 4096
1638 	unsigned long tagged;
1639 
1640 	do {
1641 		spin_lock_irq(&mapping->tree_lock);
1642 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1643 				&start, end, WRITEBACK_TAG_BATCH,
1644 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1645 		spin_unlock_irq(&mapping->tree_lock);
1646 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1647 		cond_resched();
1648 		/* We check 'start' to handle wrapping when end == ~0UL */
1649 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1650 }
1651 EXPORT_SYMBOL(tag_pages_for_writeback);
1652 
1653 /**
1654  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1655  * @mapping: address space structure to write
1656  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1657  * @writepage: function called for each page
1658  * @data: data passed to writepage function
1659  *
1660  * If a page is already under I/O, write_cache_pages() skips it, even
1661  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1662  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1663  * and msync() need to guarantee that all the data which was dirty at the time
1664  * the call was made get new I/O started against them.  If wbc->sync_mode is
1665  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1666  * existing IO to complete.
1667  *
1668  * To avoid livelocks (when other process dirties new pages), we first tag
1669  * pages which should be written back with TOWRITE tag and only then start
1670  * writing them. For data-integrity sync we have to be careful so that we do
1671  * not miss some pages (e.g., because some other process has cleared TOWRITE
1672  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1673  * by the process clearing the DIRTY tag (and submitting the page for IO).
1674  */
1675 int write_cache_pages(struct address_space *mapping,
1676 		      struct writeback_control *wbc, writepage_t writepage,
1677 		      void *data)
1678 {
1679 	int ret = 0;
1680 	int done = 0;
1681 	struct pagevec pvec;
1682 	int nr_pages;
1683 	pgoff_t uninitialized_var(writeback_index);
1684 	pgoff_t index;
1685 	pgoff_t end;		/* Inclusive */
1686 	pgoff_t done_index;
1687 	int cycled;
1688 	int range_whole = 0;
1689 	int tag;
1690 
1691 	pagevec_init(&pvec, 0);
1692 	if (wbc->range_cyclic) {
1693 		writeback_index = mapping->writeback_index; /* prev offset */
1694 		index = writeback_index;
1695 		if (index == 0)
1696 			cycled = 1;
1697 		else
1698 			cycled = 0;
1699 		end = -1;
1700 	} else {
1701 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1702 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1703 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1704 			range_whole = 1;
1705 		cycled = 1; /* ignore range_cyclic tests */
1706 	}
1707 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1708 		tag = PAGECACHE_TAG_TOWRITE;
1709 	else
1710 		tag = PAGECACHE_TAG_DIRTY;
1711 retry:
1712 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1713 		tag_pages_for_writeback(mapping, index, end);
1714 	done_index = index;
1715 	while (!done && (index <= end)) {
1716 		int i;
1717 
1718 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1719 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1720 		if (nr_pages == 0)
1721 			break;
1722 
1723 		for (i = 0; i < nr_pages; i++) {
1724 			struct page *page = pvec.pages[i];
1725 
1726 			/*
1727 			 * At this point, the page may be truncated or
1728 			 * invalidated (changing page->mapping to NULL), or
1729 			 * even swizzled back from swapper_space to tmpfs file
1730 			 * mapping. However, page->index will not change
1731 			 * because we have a reference on the page.
1732 			 */
1733 			if (page->index > end) {
1734 				/*
1735 				 * can't be range_cyclic (1st pass) because
1736 				 * end == -1 in that case.
1737 				 */
1738 				done = 1;
1739 				break;
1740 			}
1741 
1742 			done_index = page->index;
1743 
1744 			lock_page(page);
1745 
1746 			/*
1747 			 * Page truncated or invalidated. We can freely skip it
1748 			 * then, even for data integrity operations: the page
1749 			 * has disappeared concurrently, so there could be no
1750 			 * real expectation of this data interity operation
1751 			 * even if there is now a new, dirty page at the same
1752 			 * pagecache address.
1753 			 */
1754 			if (unlikely(page->mapping != mapping)) {
1755 continue_unlock:
1756 				unlock_page(page);
1757 				continue;
1758 			}
1759 
1760 			if (!PageDirty(page)) {
1761 				/* someone wrote it for us */
1762 				goto continue_unlock;
1763 			}
1764 
1765 			if (PageWriteback(page)) {
1766 				if (wbc->sync_mode != WB_SYNC_NONE)
1767 					wait_on_page_writeback(page);
1768 				else
1769 					goto continue_unlock;
1770 			}
1771 
1772 			BUG_ON(PageWriteback(page));
1773 			if (!clear_page_dirty_for_io(page))
1774 				goto continue_unlock;
1775 
1776 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1777 			ret = (*writepage)(page, wbc, data);
1778 			if (unlikely(ret)) {
1779 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1780 					unlock_page(page);
1781 					ret = 0;
1782 				} else {
1783 					/*
1784 					 * done_index is set past this page,
1785 					 * so media errors will not choke
1786 					 * background writeout for the entire
1787 					 * file. This has consequences for
1788 					 * range_cyclic semantics (ie. it may
1789 					 * not be suitable for data integrity
1790 					 * writeout).
1791 					 */
1792 					done_index = page->index + 1;
1793 					done = 1;
1794 					break;
1795 				}
1796 			}
1797 
1798 			/*
1799 			 * We stop writing back only if we are not doing
1800 			 * integrity sync. In case of integrity sync we have to
1801 			 * keep going until we have written all the pages
1802 			 * we tagged for writeback prior to entering this loop.
1803 			 */
1804 			if (--wbc->nr_to_write <= 0 &&
1805 			    wbc->sync_mode == WB_SYNC_NONE) {
1806 				done = 1;
1807 				break;
1808 			}
1809 		}
1810 		pagevec_release(&pvec);
1811 		cond_resched();
1812 	}
1813 	if (!cycled && !done) {
1814 		/*
1815 		 * range_cyclic:
1816 		 * We hit the last page and there is more work to be done: wrap
1817 		 * back to the start of the file
1818 		 */
1819 		cycled = 1;
1820 		index = 0;
1821 		end = writeback_index - 1;
1822 		goto retry;
1823 	}
1824 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1825 		mapping->writeback_index = done_index;
1826 
1827 	return ret;
1828 }
1829 EXPORT_SYMBOL(write_cache_pages);
1830 
1831 /*
1832  * Function used by generic_writepages to call the real writepage
1833  * function and set the mapping flags on error
1834  */
1835 static int __writepage(struct page *page, struct writeback_control *wbc,
1836 		       void *data)
1837 {
1838 	struct address_space *mapping = data;
1839 	int ret = mapping->a_ops->writepage(page, wbc);
1840 	mapping_set_error(mapping, ret);
1841 	return ret;
1842 }
1843 
1844 /**
1845  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1846  * @mapping: address space structure to write
1847  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1848  *
1849  * This is a library function, which implements the writepages()
1850  * address_space_operation.
1851  */
1852 int generic_writepages(struct address_space *mapping,
1853 		       struct writeback_control *wbc)
1854 {
1855 	struct blk_plug plug;
1856 	int ret;
1857 
1858 	/* deal with chardevs and other special file */
1859 	if (!mapping->a_ops->writepage)
1860 		return 0;
1861 
1862 	blk_start_plug(&plug);
1863 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1864 	blk_finish_plug(&plug);
1865 	return ret;
1866 }
1867 
1868 EXPORT_SYMBOL(generic_writepages);
1869 
1870 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1871 {
1872 	int ret;
1873 
1874 	if (wbc->nr_to_write <= 0)
1875 		return 0;
1876 	if (mapping->a_ops->writepages)
1877 		ret = mapping->a_ops->writepages(mapping, wbc);
1878 	else
1879 		ret = generic_writepages(mapping, wbc);
1880 	return ret;
1881 }
1882 
1883 /**
1884  * write_one_page - write out a single page and optionally wait on I/O
1885  * @page: the page to write
1886  * @wait: if true, wait on writeout
1887  *
1888  * The page must be locked by the caller and will be unlocked upon return.
1889  *
1890  * write_one_page() returns a negative error code if I/O failed.
1891  */
1892 int write_one_page(struct page *page, int wait)
1893 {
1894 	struct address_space *mapping = page->mapping;
1895 	int ret = 0;
1896 	struct writeback_control wbc = {
1897 		.sync_mode = WB_SYNC_ALL,
1898 		.nr_to_write = 1,
1899 	};
1900 
1901 	BUG_ON(!PageLocked(page));
1902 
1903 	if (wait)
1904 		wait_on_page_writeback(page);
1905 
1906 	if (clear_page_dirty_for_io(page)) {
1907 		page_cache_get(page);
1908 		ret = mapping->a_ops->writepage(page, &wbc);
1909 		if (ret == 0 && wait) {
1910 			wait_on_page_writeback(page);
1911 			if (PageError(page))
1912 				ret = -EIO;
1913 		}
1914 		page_cache_release(page);
1915 	} else {
1916 		unlock_page(page);
1917 	}
1918 	return ret;
1919 }
1920 EXPORT_SYMBOL(write_one_page);
1921 
1922 /*
1923  * For address_spaces which do not use buffers nor write back.
1924  */
1925 int __set_page_dirty_no_writeback(struct page *page)
1926 {
1927 	if (!PageDirty(page))
1928 		return !TestSetPageDirty(page);
1929 	return 0;
1930 }
1931 
1932 /*
1933  * Helper function for set_page_dirty family.
1934  * NOTE: This relies on being atomic wrt interrupts.
1935  */
1936 void account_page_dirtied(struct page *page, struct address_space *mapping)
1937 {
1938 	if (mapping_cap_account_dirty(mapping)) {
1939 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1940 		__inc_zone_page_state(page, NR_DIRTIED);
1941 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1942 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1943 		task_io_account_write(PAGE_CACHE_SIZE);
1944 		current->nr_dirtied++;
1945 		this_cpu_inc(bdp_ratelimits);
1946 	}
1947 }
1948 EXPORT_SYMBOL(account_page_dirtied);
1949 
1950 /*
1951  * Helper function for set_page_writeback family.
1952  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1953  * wrt interrupts.
1954  */
1955 void account_page_writeback(struct page *page)
1956 {
1957 	inc_zone_page_state(page, NR_WRITEBACK);
1958 }
1959 EXPORT_SYMBOL(account_page_writeback);
1960 
1961 /*
1962  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1963  * its radix tree.
1964  *
1965  * This is also used when a single buffer is being dirtied: we want to set the
1966  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
1967  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1968  *
1969  * Most callers have locked the page, which pins the address_space in memory.
1970  * But zap_pte_range() does not lock the page, however in that case the
1971  * mapping is pinned by the vma's ->vm_file reference.
1972  *
1973  * We take care to handle the case where the page was truncated from the
1974  * mapping by re-checking page_mapping() inside tree_lock.
1975  */
1976 int __set_page_dirty_nobuffers(struct page *page)
1977 {
1978 	if (!TestSetPageDirty(page)) {
1979 		struct address_space *mapping = page_mapping(page);
1980 		struct address_space *mapping2;
1981 
1982 		if (!mapping)
1983 			return 1;
1984 
1985 		spin_lock_irq(&mapping->tree_lock);
1986 		mapping2 = page_mapping(page);
1987 		if (mapping2) { /* Race with truncate? */
1988 			BUG_ON(mapping2 != mapping);
1989 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
1990 			account_page_dirtied(page, mapping);
1991 			radix_tree_tag_set(&mapping->page_tree,
1992 				page_index(page), PAGECACHE_TAG_DIRTY);
1993 		}
1994 		spin_unlock_irq(&mapping->tree_lock);
1995 		if (mapping->host) {
1996 			/* !PageAnon && !swapper_space */
1997 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1998 		}
1999 		return 1;
2000 	}
2001 	return 0;
2002 }
2003 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2004 
2005 /*
2006  * Call this whenever redirtying a page, to de-account the dirty counters
2007  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2008  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2009  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2010  * control.
2011  */
2012 void account_page_redirty(struct page *page)
2013 {
2014 	struct address_space *mapping = page->mapping;
2015 	if (mapping && mapping_cap_account_dirty(mapping)) {
2016 		current->nr_dirtied--;
2017 		dec_zone_page_state(page, NR_DIRTIED);
2018 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2019 	}
2020 }
2021 EXPORT_SYMBOL(account_page_redirty);
2022 
2023 /*
2024  * When a writepage implementation decides that it doesn't want to write this
2025  * page for some reason, it should redirty the locked page via
2026  * redirty_page_for_writepage() and it should then unlock the page and return 0
2027  */
2028 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2029 {
2030 	wbc->pages_skipped++;
2031 	account_page_redirty(page);
2032 	return __set_page_dirty_nobuffers(page);
2033 }
2034 EXPORT_SYMBOL(redirty_page_for_writepage);
2035 
2036 /*
2037  * Dirty a page.
2038  *
2039  * For pages with a mapping this should be done under the page lock
2040  * for the benefit of asynchronous memory errors who prefer a consistent
2041  * dirty state. This rule can be broken in some special cases,
2042  * but should be better not to.
2043  *
2044  * If the mapping doesn't provide a set_page_dirty a_op, then
2045  * just fall through and assume that it wants buffer_heads.
2046  */
2047 int set_page_dirty(struct page *page)
2048 {
2049 	struct address_space *mapping = page_mapping(page);
2050 
2051 	if (likely(mapping)) {
2052 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2053 		/*
2054 		 * readahead/lru_deactivate_page could remain
2055 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2056 		 * About readahead, if the page is written, the flags would be
2057 		 * reset. So no problem.
2058 		 * About lru_deactivate_page, if the page is redirty, the flag
2059 		 * will be reset. So no problem. but if the page is used by readahead
2060 		 * it will confuse readahead and make it restart the size rampup
2061 		 * process. But it's a trivial problem.
2062 		 */
2063 		ClearPageReclaim(page);
2064 #ifdef CONFIG_BLOCK
2065 		if (!spd)
2066 			spd = __set_page_dirty_buffers;
2067 #endif
2068 		return (*spd)(page);
2069 	}
2070 	if (!PageDirty(page)) {
2071 		if (!TestSetPageDirty(page))
2072 			return 1;
2073 	}
2074 	return 0;
2075 }
2076 EXPORT_SYMBOL(set_page_dirty);
2077 
2078 /*
2079  * set_page_dirty() is racy if the caller has no reference against
2080  * page->mapping->host, and if the page is unlocked.  This is because another
2081  * CPU could truncate the page off the mapping and then free the mapping.
2082  *
2083  * Usually, the page _is_ locked, or the caller is a user-space process which
2084  * holds a reference on the inode by having an open file.
2085  *
2086  * In other cases, the page should be locked before running set_page_dirty().
2087  */
2088 int set_page_dirty_lock(struct page *page)
2089 {
2090 	int ret;
2091 
2092 	lock_page(page);
2093 	ret = set_page_dirty(page);
2094 	unlock_page(page);
2095 	return ret;
2096 }
2097 EXPORT_SYMBOL(set_page_dirty_lock);
2098 
2099 /*
2100  * Clear a page's dirty flag, while caring for dirty memory accounting.
2101  * Returns true if the page was previously dirty.
2102  *
2103  * This is for preparing to put the page under writeout.  We leave the page
2104  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2105  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2106  * implementation will run either set_page_writeback() or set_page_dirty(),
2107  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2108  * back into sync.
2109  *
2110  * This incoherency between the page's dirty flag and radix-tree tag is
2111  * unfortunate, but it only exists while the page is locked.
2112  */
2113 int clear_page_dirty_for_io(struct page *page)
2114 {
2115 	struct address_space *mapping = page_mapping(page);
2116 
2117 	BUG_ON(!PageLocked(page));
2118 
2119 	if (mapping && mapping_cap_account_dirty(mapping)) {
2120 		/*
2121 		 * Yes, Virginia, this is indeed insane.
2122 		 *
2123 		 * We use this sequence to make sure that
2124 		 *  (a) we account for dirty stats properly
2125 		 *  (b) we tell the low-level filesystem to
2126 		 *      mark the whole page dirty if it was
2127 		 *      dirty in a pagetable. Only to then
2128 		 *  (c) clean the page again and return 1 to
2129 		 *      cause the writeback.
2130 		 *
2131 		 * This way we avoid all nasty races with the
2132 		 * dirty bit in multiple places and clearing
2133 		 * them concurrently from different threads.
2134 		 *
2135 		 * Note! Normally the "set_page_dirty(page)"
2136 		 * has no effect on the actual dirty bit - since
2137 		 * that will already usually be set. But we
2138 		 * need the side effects, and it can help us
2139 		 * avoid races.
2140 		 *
2141 		 * We basically use the page "master dirty bit"
2142 		 * as a serialization point for all the different
2143 		 * threads doing their things.
2144 		 */
2145 		if (page_mkclean(page))
2146 			set_page_dirty(page);
2147 		/*
2148 		 * We carefully synchronise fault handlers against
2149 		 * installing a dirty pte and marking the page dirty
2150 		 * at this point. We do this by having them hold the
2151 		 * page lock at some point after installing their
2152 		 * pte, but before marking the page dirty.
2153 		 * Pages are always locked coming in here, so we get
2154 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2155 		 * for more comments.
2156 		 */
2157 		if (TestClearPageDirty(page)) {
2158 			dec_zone_page_state(page, NR_FILE_DIRTY);
2159 			dec_bdi_stat(mapping->backing_dev_info,
2160 					BDI_RECLAIMABLE);
2161 			return 1;
2162 		}
2163 		return 0;
2164 	}
2165 	return TestClearPageDirty(page);
2166 }
2167 EXPORT_SYMBOL(clear_page_dirty_for_io);
2168 
2169 int test_clear_page_writeback(struct page *page)
2170 {
2171 	struct address_space *mapping = page_mapping(page);
2172 	int ret;
2173 
2174 	if (mapping) {
2175 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2176 		unsigned long flags;
2177 
2178 		spin_lock_irqsave(&mapping->tree_lock, flags);
2179 		ret = TestClearPageWriteback(page);
2180 		if (ret) {
2181 			radix_tree_tag_clear(&mapping->page_tree,
2182 						page_index(page),
2183 						PAGECACHE_TAG_WRITEBACK);
2184 			if (bdi_cap_account_writeback(bdi)) {
2185 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2186 				__bdi_writeout_inc(bdi);
2187 			}
2188 		}
2189 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2190 	} else {
2191 		ret = TestClearPageWriteback(page);
2192 	}
2193 	if (ret) {
2194 		dec_zone_page_state(page, NR_WRITEBACK);
2195 		inc_zone_page_state(page, NR_WRITTEN);
2196 	}
2197 	return ret;
2198 }
2199 
2200 int test_set_page_writeback(struct page *page)
2201 {
2202 	struct address_space *mapping = page_mapping(page);
2203 	int ret;
2204 
2205 	if (mapping) {
2206 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2207 		unsigned long flags;
2208 
2209 		spin_lock_irqsave(&mapping->tree_lock, flags);
2210 		ret = TestSetPageWriteback(page);
2211 		if (!ret) {
2212 			radix_tree_tag_set(&mapping->page_tree,
2213 						page_index(page),
2214 						PAGECACHE_TAG_WRITEBACK);
2215 			if (bdi_cap_account_writeback(bdi))
2216 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2217 		}
2218 		if (!PageDirty(page))
2219 			radix_tree_tag_clear(&mapping->page_tree,
2220 						page_index(page),
2221 						PAGECACHE_TAG_DIRTY);
2222 		radix_tree_tag_clear(&mapping->page_tree,
2223 				     page_index(page),
2224 				     PAGECACHE_TAG_TOWRITE);
2225 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2226 	} else {
2227 		ret = TestSetPageWriteback(page);
2228 	}
2229 	if (!ret)
2230 		account_page_writeback(page);
2231 	return ret;
2232 
2233 }
2234 EXPORT_SYMBOL(test_set_page_writeback);
2235 
2236 /*
2237  * Return true if any of the pages in the mapping are marked with the
2238  * passed tag.
2239  */
2240 int mapping_tagged(struct address_space *mapping, int tag)
2241 {
2242 	return radix_tree_tagged(&mapping->page_tree, tag);
2243 }
2244 EXPORT_SYMBOL(mapping_tagged);
2245