1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <trace/events/writeback.h> 38 39 /* 40 * Sleep at most 200ms at a time in balance_dirty_pages(). 41 */ 42 #define MAX_PAUSE max(HZ/5, 1) 43 44 /* 45 * Try to keep balance_dirty_pages() call intervals higher than this many pages 46 * by raising pause time to max_pause when falls below it. 47 */ 48 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 49 50 /* 51 * Estimate write bandwidth at 200ms intervals. 52 */ 53 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 54 55 #define RATELIMIT_CALC_SHIFT 10 56 57 /* 58 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 59 * will look to see if it needs to force writeback or throttling. 60 */ 61 static long ratelimit_pages = 32; 62 63 /* The following parameters are exported via /proc/sys/vm */ 64 65 /* 66 * Start background writeback (via writeback threads) at this percentage 67 */ 68 int dirty_background_ratio = 10; 69 70 /* 71 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 72 * dirty_background_ratio * the amount of dirtyable memory 73 */ 74 unsigned long dirty_background_bytes; 75 76 /* 77 * free highmem will not be subtracted from the total free memory 78 * for calculating free ratios if vm_highmem_is_dirtyable is true 79 */ 80 int vm_highmem_is_dirtyable; 81 82 /* 83 * The generator of dirty data starts writeback at this percentage 84 */ 85 int vm_dirty_ratio = 20; 86 87 /* 88 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 89 * vm_dirty_ratio * the amount of dirtyable memory 90 */ 91 unsigned long vm_dirty_bytes; 92 93 /* 94 * The interval between `kupdate'-style writebacks 95 */ 96 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 97 98 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 99 100 /* 101 * The longest time for which data is allowed to remain dirty 102 */ 103 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 104 105 /* 106 * Flag that makes the machine dump writes/reads and block dirtyings. 107 */ 108 int block_dump; 109 110 /* 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 112 * a full sync is triggered after this time elapses without any disk activity. 113 */ 114 int laptop_mode; 115 116 EXPORT_SYMBOL(laptop_mode); 117 118 /* End of sysctl-exported parameters */ 119 120 unsigned long global_dirty_limit; 121 122 /* 123 * Scale the writeback cache size proportional to the relative writeout speeds. 124 * 125 * We do this by keeping a floating proportion between BDIs, based on page 126 * writeback completions [end_page_writeback()]. Those devices that write out 127 * pages fastest will get the larger share, while the slower will get a smaller 128 * share. 129 * 130 * We use page writeout completions because we are interested in getting rid of 131 * dirty pages. Having them written out is the primary goal. 132 * 133 * We introduce a concept of time, a period over which we measure these events, 134 * because demand can/will vary over time. The length of this period itself is 135 * measured in page writeback completions. 136 * 137 */ 138 static struct prop_descriptor vm_completions; 139 140 /* 141 * Work out the current dirty-memory clamping and background writeout 142 * thresholds. 143 * 144 * The main aim here is to lower them aggressively if there is a lot of mapped 145 * memory around. To avoid stressing page reclaim with lots of unreclaimable 146 * pages. It is better to clamp down on writers than to start swapping, and 147 * performing lots of scanning. 148 * 149 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 150 * 151 * We don't permit the clamping level to fall below 5% - that is getting rather 152 * excessive. 153 * 154 * We make sure that the background writeout level is below the adjusted 155 * clamping level. 156 */ 157 158 /* 159 * In a memory zone, there is a certain amount of pages we consider 160 * available for the page cache, which is essentially the number of 161 * free and reclaimable pages, minus some zone reserves to protect 162 * lowmem and the ability to uphold the zone's watermarks without 163 * requiring writeback. 164 * 165 * This number of dirtyable pages is the base value of which the 166 * user-configurable dirty ratio is the effictive number of pages that 167 * are allowed to be actually dirtied. Per individual zone, or 168 * globally by using the sum of dirtyable pages over all zones. 169 * 170 * Because the user is allowed to specify the dirty limit globally as 171 * absolute number of bytes, calculating the per-zone dirty limit can 172 * require translating the configured limit into a percentage of 173 * global dirtyable memory first. 174 */ 175 176 static unsigned long highmem_dirtyable_memory(unsigned long total) 177 { 178 #ifdef CONFIG_HIGHMEM 179 int node; 180 unsigned long x = 0; 181 182 for_each_node_state(node, N_HIGH_MEMORY) { 183 struct zone *z = 184 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 185 186 x += zone_page_state(z, NR_FREE_PAGES) + 187 zone_reclaimable_pages(z) - z->dirty_balance_reserve; 188 } 189 /* 190 * Make sure that the number of highmem pages is never larger 191 * than the number of the total dirtyable memory. This can only 192 * occur in very strange VM situations but we want to make sure 193 * that this does not occur. 194 */ 195 return min(x, total); 196 #else 197 return 0; 198 #endif 199 } 200 201 /** 202 * global_dirtyable_memory - number of globally dirtyable pages 203 * 204 * Returns the global number of pages potentially available for dirty 205 * page cache. This is the base value for the global dirty limits. 206 */ 207 unsigned long global_dirtyable_memory(void) 208 { 209 unsigned long x; 210 211 x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() - 212 dirty_balance_reserve; 213 214 if (!vm_highmem_is_dirtyable) 215 x -= highmem_dirtyable_memory(x); 216 217 return x + 1; /* Ensure that we never return 0 */ 218 } 219 220 /* 221 * global_dirty_limits - background-writeback and dirty-throttling thresholds 222 * 223 * Calculate the dirty thresholds based on sysctl parameters 224 * - vm.dirty_background_ratio or vm.dirty_background_bytes 225 * - vm.dirty_ratio or vm.dirty_bytes 226 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 227 * real-time tasks. 228 */ 229 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 230 { 231 unsigned long background; 232 unsigned long dirty; 233 unsigned long uninitialized_var(available_memory); 234 struct task_struct *tsk; 235 236 if (!vm_dirty_bytes || !dirty_background_bytes) 237 available_memory = global_dirtyable_memory(); 238 239 if (vm_dirty_bytes) 240 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 241 else 242 dirty = (vm_dirty_ratio * available_memory) / 100; 243 244 if (dirty_background_bytes) 245 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 246 else 247 background = (dirty_background_ratio * available_memory) / 100; 248 249 if (background >= dirty) 250 background = dirty / 2; 251 tsk = current; 252 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 253 background += background / 4; 254 dirty += dirty / 4; 255 } 256 *pbackground = background; 257 *pdirty = dirty; 258 trace_global_dirty_state(background, dirty); 259 } 260 261 /** 262 * zone_dirtyable_memory - number of dirtyable pages in a zone 263 * @zone: the zone 264 * 265 * Returns the zone's number of pages potentially available for dirty 266 * page cache. This is the base value for the per-zone dirty limits. 267 */ 268 static unsigned long zone_dirtyable_memory(struct zone *zone) 269 { 270 /* 271 * The effective global number of dirtyable pages may exclude 272 * highmem as a big-picture measure to keep the ratio between 273 * dirty memory and lowmem reasonable. 274 * 275 * But this function is purely about the individual zone and a 276 * highmem zone can hold its share of dirty pages, so we don't 277 * care about vm_highmem_is_dirtyable here. 278 */ 279 return zone_page_state(zone, NR_FREE_PAGES) + 280 zone_reclaimable_pages(zone) - 281 zone->dirty_balance_reserve; 282 } 283 284 /** 285 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 286 * @zone: the zone 287 * 288 * Returns the maximum number of dirty pages allowed in a zone, based 289 * on the zone's dirtyable memory. 290 */ 291 static unsigned long zone_dirty_limit(struct zone *zone) 292 { 293 unsigned long zone_memory = zone_dirtyable_memory(zone); 294 struct task_struct *tsk = current; 295 unsigned long dirty; 296 297 if (vm_dirty_bytes) 298 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 299 zone_memory / global_dirtyable_memory(); 300 else 301 dirty = vm_dirty_ratio * zone_memory / 100; 302 303 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 304 dirty += dirty / 4; 305 306 return dirty; 307 } 308 309 /** 310 * zone_dirty_ok - tells whether a zone is within its dirty limits 311 * @zone: the zone to check 312 * 313 * Returns %true when the dirty pages in @zone are within the zone's 314 * dirty limit, %false if the limit is exceeded. 315 */ 316 bool zone_dirty_ok(struct zone *zone) 317 { 318 unsigned long limit = zone_dirty_limit(zone); 319 320 return zone_page_state(zone, NR_FILE_DIRTY) + 321 zone_page_state(zone, NR_UNSTABLE_NFS) + 322 zone_page_state(zone, NR_WRITEBACK) <= limit; 323 } 324 325 /* 326 * couple the period to the dirty_ratio: 327 * 328 * period/2 ~ roundup_pow_of_two(dirty limit) 329 */ 330 static int calc_period_shift(void) 331 { 332 unsigned long dirty_total; 333 334 if (vm_dirty_bytes) 335 dirty_total = vm_dirty_bytes / PAGE_SIZE; 336 else 337 dirty_total = (vm_dirty_ratio * global_dirtyable_memory()) / 338 100; 339 return 2 + ilog2(dirty_total - 1); 340 } 341 342 /* 343 * update the period when the dirty threshold changes. 344 */ 345 static void update_completion_period(void) 346 { 347 int shift = calc_period_shift(); 348 prop_change_shift(&vm_completions, shift); 349 350 writeback_set_ratelimit(); 351 } 352 353 int dirty_background_ratio_handler(struct ctl_table *table, int write, 354 void __user *buffer, size_t *lenp, 355 loff_t *ppos) 356 { 357 int ret; 358 359 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 360 if (ret == 0 && write) 361 dirty_background_bytes = 0; 362 return ret; 363 } 364 365 int dirty_background_bytes_handler(struct ctl_table *table, int write, 366 void __user *buffer, size_t *lenp, 367 loff_t *ppos) 368 { 369 int ret; 370 371 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 372 if (ret == 0 && write) 373 dirty_background_ratio = 0; 374 return ret; 375 } 376 377 int dirty_ratio_handler(struct ctl_table *table, int write, 378 void __user *buffer, size_t *lenp, 379 loff_t *ppos) 380 { 381 int old_ratio = vm_dirty_ratio; 382 int ret; 383 384 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 385 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 386 update_completion_period(); 387 vm_dirty_bytes = 0; 388 } 389 return ret; 390 } 391 392 int dirty_bytes_handler(struct ctl_table *table, int write, 393 void __user *buffer, size_t *lenp, 394 loff_t *ppos) 395 { 396 unsigned long old_bytes = vm_dirty_bytes; 397 int ret; 398 399 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 400 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 401 update_completion_period(); 402 vm_dirty_ratio = 0; 403 } 404 return ret; 405 } 406 407 /* 408 * Increment the BDI's writeout completion count and the global writeout 409 * completion count. Called from test_clear_page_writeback(). 410 */ 411 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 412 { 413 __inc_bdi_stat(bdi, BDI_WRITTEN); 414 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 415 bdi->max_prop_frac); 416 } 417 418 void bdi_writeout_inc(struct backing_dev_info *bdi) 419 { 420 unsigned long flags; 421 422 local_irq_save(flags); 423 __bdi_writeout_inc(bdi); 424 local_irq_restore(flags); 425 } 426 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 427 428 /* 429 * Obtain an accurate fraction of the BDI's portion. 430 */ 431 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 432 long *numerator, long *denominator) 433 { 434 prop_fraction_percpu(&vm_completions, &bdi->completions, 435 numerator, denominator); 436 } 437 438 /* 439 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 440 * registered backing devices, which, for obvious reasons, can not 441 * exceed 100%. 442 */ 443 static unsigned int bdi_min_ratio; 444 445 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 446 { 447 int ret = 0; 448 449 spin_lock_bh(&bdi_lock); 450 if (min_ratio > bdi->max_ratio) { 451 ret = -EINVAL; 452 } else { 453 min_ratio -= bdi->min_ratio; 454 if (bdi_min_ratio + min_ratio < 100) { 455 bdi_min_ratio += min_ratio; 456 bdi->min_ratio += min_ratio; 457 } else { 458 ret = -EINVAL; 459 } 460 } 461 spin_unlock_bh(&bdi_lock); 462 463 return ret; 464 } 465 466 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 467 { 468 int ret = 0; 469 470 if (max_ratio > 100) 471 return -EINVAL; 472 473 spin_lock_bh(&bdi_lock); 474 if (bdi->min_ratio > max_ratio) { 475 ret = -EINVAL; 476 } else { 477 bdi->max_ratio = max_ratio; 478 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 479 } 480 spin_unlock_bh(&bdi_lock); 481 482 return ret; 483 } 484 EXPORT_SYMBOL(bdi_set_max_ratio); 485 486 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 487 unsigned long bg_thresh) 488 { 489 return (thresh + bg_thresh) / 2; 490 } 491 492 static unsigned long hard_dirty_limit(unsigned long thresh) 493 { 494 return max(thresh, global_dirty_limit); 495 } 496 497 /** 498 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 499 * @bdi: the backing_dev_info to query 500 * @dirty: global dirty limit in pages 501 * 502 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 503 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 504 * 505 * Note that balance_dirty_pages() will only seriously take it as a hard limit 506 * when sleeping max_pause per page is not enough to keep the dirty pages under 507 * control. For example, when the device is completely stalled due to some error 508 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 509 * In the other normal situations, it acts more gently by throttling the tasks 510 * more (rather than completely block them) when the bdi dirty pages go high. 511 * 512 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 513 * - starving fast devices 514 * - piling up dirty pages (that will take long time to sync) on slow devices 515 * 516 * The bdi's share of dirty limit will be adapting to its throughput and 517 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 518 */ 519 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 520 { 521 u64 bdi_dirty; 522 long numerator, denominator; 523 524 /* 525 * Calculate this BDI's share of the dirty ratio. 526 */ 527 bdi_writeout_fraction(bdi, &numerator, &denominator); 528 529 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 530 bdi_dirty *= numerator; 531 do_div(bdi_dirty, denominator); 532 533 bdi_dirty += (dirty * bdi->min_ratio) / 100; 534 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 535 bdi_dirty = dirty * bdi->max_ratio / 100; 536 537 return bdi_dirty; 538 } 539 540 /* 541 * Dirty position control. 542 * 543 * (o) global/bdi setpoints 544 * 545 * We want the dirty pages be balanced around the global/bdi setpoints. 546 * When the number of dirty pages is higher/lower than the setpoint, the 547 * dirty position control ratio (and hence task dirty ratelimit) will be 548 * decreased/increased to bring the dirty pages back to the setpoint. 549 * 550 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 551 * 552 * if (dirty < setpoint) scale up pos_ratio 553 * if (dirty > setpoint) scale down pos_ratio 554 * 555 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio 556 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio 557 * 558 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 559 * 560 * (o) global control line 561 * 562 * ^ pos_ratio 563 * | 564 * | |<===== global dirty control scope ======>| 565 * 2.0 .............* 566 * | .* 567 * | . * 568 * | . * 569 * | . * 570 * | . * 571 * | . * 572 * 1.0 ................................* 573 * | . . * 574 * | . . * 575 * | . . * 576 * | . . * 577 * | . . * 578 * 0 +------------.------------------.----------------------*-------------> 579 * freerun^ setpoint^ limit^ dirty pages 580 * 581 * (o) bdi control line 582 * 583 * ^ pos_ratio 584 * | 585 * | * 586 * | * 587 * | * 588 * | * 589 * | * |<=========== span ============>| 590 * 1.0 .......................* 591 * | . * 592 * | . * 593 * | . * 594 * | . * 595 * | . * 596 * | . * 597 * | . * 598 * | . * 599 * | . * 600 * | . * 601 * | . * 602 * 1/4 ...............................................* * * * * * * * * * * * 603 * | . . 604 * | . . 605 * | . . 606 * 0 +----------------------.-------------------------------.-------------> 607 * bdi_setpoint^ x_intercept^ 608 * 609 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can 610 * be smoothly throttled down to normal if it starts high in situations like 611 * - start writing to a slow SD card and a fast disk at the same time. The SD 612 * card's bdi_dirty may rush to many times higher than bdi_setpoint. 613 * - the bdi dirty thresh drops quickly due to change of JBOD workload 614 */ 615 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, 616 unsigned long thresh, 617 unsigned long bg_thresh, 618 unsigned long dirty, 619 unsigned long bdi_thresh, 620 unsigned long bdi_dirty) 621 { 622 unsigned long write_bw = bdi->avg_write_bandwidth; 623 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 624 unsigned long limit = hard_dirty_limit(thresh); 625 unsigned long x_intercept; 626 unsigned long setpoint; /* dirty pages' target balance point */ 627 unsigned long bdi_setpoint; 628 unsigned long span; 629 long long pos_ratio; /* for scaling up/down the rate limit */ 630 long x; 631 632 if (unlikely(dirty >= limit)) 633 return 0; 634 635 /* 636 * global setpoint 637 * 638 * setpoint - dirty 3 639 * f(dirty) := 1.0 + (----------------) 640 * limit - setpoint 641 * 642 * it's a 3rd order polynomial that subjects to 643 * 644 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 645 * (2) f(setpoint) = 1.0 => the balance point 646 * (3) f(limit) = 0 => the hard limit 647 * (4) df/dx <= 0 => negative feedback control 648 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 649 * => fast response on large errors; small oscillation near setpoint 650 */ 651 setpoint = (freerun + limit) / 2; 652 x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT, 653 limit - setpoint + 1); 654 pos_ratio = x; 655 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 656 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 657 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 658 659 /* 660 * We have computed basic pos_ratio above based on global situation. If 661 * the bdi is over/under its share of dirty pages, we want to scale 662 * pos_ratio further down/up. That is done by the following mechanism. 663 */ 664 665 /* 666 * bdi setpoint 667 * 668 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) 669 * 670 * x_intercept - bdi_dirty 671 * := -------------------------- 672 * x_intercept - bdi_setpoint 673 * 674 * The main bdi control line is a linear function that subjects to 675 * 676 * (1) f(bdi_setpoint) = 1.0 677 * (2) k = - 1 / (8 * write_bw) (in single bdi case) 678 * or equally: x_intercept = bdi_setpoint + 8 * write_bw 679 * 680 * For single bdi case, the dirty pages are observed to fluctuate 681 * regularly within range 682 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] 683 * for various filesystems, where (2) can yield in a reasonable 12.5% 684 * fluctuation range for pos_ratio. 685 * 686 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its 687 * own size, so move the slope over accordingly and choose a slope that 688 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. 689 */ 690 if (unlikely(bdi_thresh > thresh)) 691 bdi_thresh = thresh; 692 /* 693 * It's very possible that bdi_thresh is close to 0 not because the 694 * device is slow, but that it has remained inactive for long time. 695 * Honour such devices a reasonable good (hopefully IO efficient) 696 * threshold, so that the occasional writes won't be blocked and active 697 * writes can rampup the threshold quickly. 698 */ 699 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); 700 /* 701 * scale global setpoint to bdi's: 702 * bdi_setpoint = setpoint * bdi_thresh / thresh 703 */ 704 x = div_u64((u64)bdi_thresh << 16, thresh + 1); 705 bdi_setpoint = setpoint * (u64)x >> 16; 706 /* 707 * Use span=(8*write_bw) in single bdi case as indicated by 708 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. 709 * 710 * bdi_thresh thresh - bdi_thresh 711 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh 712 * thresh thresh 713 */ 714 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; 715 x_intercept = bdi_setpoint + span; 716 717 if (bdi_dirty < x_intercept - span / 4) { 718 pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty), 719 x_intercept - bdi_setpoint + 1); 720 } else 721 pos_ratio /= 4; 722 723 /* 724 * bdi reserve area, safeguard against dirty pool underrun and disk idle 725 * It may push the desired control point of global dirty pages higher 726 * than setpoint. 727 */ 728 x_intercept = bdi_thresh / 2; 729 if (bdi_dirty < x_intercept) { 730 if (bdi_dirty > x_intercept / 8) 731 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); 732 else 733 pos_ratio *= 8; 734 } 735 736 return pos_ratio; 737 } 738 739 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 740 unsigned long elapsed, 741 unsigned long written) 742 { 743 const unsigned long period = roundup_pow_of_two(3 * HZ); 744 unsigned long avg = bdi->avg_write_bandwidth; 745 unsigned long old = bdi->write_bandwidth; 746 u64 bw; 747 748 /* 749 * bw = written * HZ / elapsed 750 * 751 * bw * elapsed + write_bandwidth * (period - elapsed) 752 * write_bandwidth = --------------------------------------------------- 753 * period 754 */ 755 bw = written - bdi->written_stamp; 756 bw *= HZ; 757 if (unlikely(elapsed > period)) { 758 do_div(bw, elapsed); 759 avg = bw; 760 goto out; 761 } 762 bw += (u64)bdi->write_bandwidth * (period - elapsed); 763 bw >>= ilog2(period); 764 765 /* 766 * one more level of smoothing, for filtering out sudden spikes 767 */ 768 if (avg > old && old >= (unsigned long)bw) 769 avg -= (avg - old) >> 3; 770 771 if (avg < old && old <= (unsigned long)bw) 772 avg += (old - avg) >> 3; 773 774 out: 775 bdi->write_bandwidth = bw; 776 bdi->avg_write_bandwidth = avg; 777 } 778 779 /* 780 * The global dirtyable memory and dirty threshold could be suddenly knocked 781 * down by a large amount (eg. on the startup of KVM in a swapless system). 782 * This may throw the system into deep dirty exceeded state and throttle 783 * heavy/light dirtiers alike. To retain good responsiveness, maintain 784 * global_dirty_limit for tracking slowly down to the knocked down dirty 785 * threshold. 786 */ 787 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 788 { 789 unsigned long limit = global_dirty_limit; 790 791 /* 792 * Follow up in one step. 793 */ 794 if (limit < thresh) { 795 limit = thresh; 796 goto update; 797 } 798 799 /* 800 * Follow down slowly. Use the higher one as the target, because thresh 801 * may drop below dirty. This is exactly the reason to introduce 802 * global_dirty_limit which is guaranteed to lie above the dirty pages. 803 */ 804 thresh = max(thresh, dirty); 805 if (limit > thresh) { 806 limit -= (limit - thresh) >> 5; 807 goto update; 808 } 809 return; 810 update: 811 global_dirty_limit = limit; 812 } 813 814 static void global_update_bandwidth(unsigned long thresh, 815 unsigned long dirty, 816 unsigned long now) 817 { 818 static DEFINE_SPINLOCK(dirty_lock); 819 static unsigned long update_time; 820 821 /* 822 * check locklessly first to optimize away locking for the most time 823 */ 824 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 825 return; 826 827 spin_lock(&dirty_lock); 828 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 829 update_dirty_limit(thresh, dirty); 830 update_time = now; 831 } 832 spin_unlock(&dirty_lock); 833 } 834 835 /* 836 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. 837 * 838 * Normal bdi tasks will be curbed at or below it in long term. 839 * Obviously it should be around (write_bw / N) when there are N dd tasks. 840 */ 841 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, 842 unsigned long thresh, 843 unsigned long bg_thresh, 844 unsigned long dirty, 845 unsigned long bdi_thresh, 846 unsigned long bdi_dirty, 847 unsigned long dirtied, 848 unsigned long elapsed) 849 { 850 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 851 unsigned long limit = hard_dirty_limit(thresh); 852 unsigned long setpoint = (freerun + limit) / 2; 853 unsigned long write_bw = bdi->avg_write_bandwidth; 854 unsigned long dirty_ratelimit = bdi->dirty_ratelimit; 855 unsigned long dirty_rate; 856 unsigned long task_ratelimit; 857 unsigned long balanced_dirty_ratelimit; 858 unsigned long pos_ratio; 859 unsigned long step; 860 unsigned long x; 861 862 /* 863 * The dirty rate will match the writeout rate in long term, except 864 * when dirty pages are truncated by userspace or re-dirtied by FS. 865 */ 866 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; 867 868 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, 869 bdi_thresh, bdi_dirty); 870 /* 871 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 872 */ 873 task_ratelimit = (u64)dirty_ratelimit * 874 pos_ratio >> RATELIMIT_CALC_SHIFT; 875 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 876 877 /* 878 * A linear estimation of the "balanced" throttle rate. The theory is, 879 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's 880 * dirty_rate will be measured to be (N * task_ratelimit). So the below 881 * formula will yield the balanced rate limit (write_bw / N). 882 * 883 * Note that the expanded form is not a pure rate feedback: 884 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 885 * but also takes pos_ratio into account: 886 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 887 * 888 * (1) is not realistic because pos_ratio also takes part in balancing 889 * the dirty rate. Consider the state 890 * pos_ratio = 0.5 (3) 891 * rate = 2 * (write_bw / N) (4) 892 * If (1) is used, it will stuck in that state! Because each dd will 893 * be throttled at 894 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 895 * yielding 896 * dirty_rate = N * task_ratelimit = write_bw (6) 897 * put (6) into (1) we get 898 * rate_(i+1) = rate_(i) (7) 899 * 900 * So we end up using (2) to always keep 901 * rate_(i+1) ~= (write_bw / N) (8) 902 * regardless of the value of pos_ratio. As long as (8) is satisfied, 903 * pos_ratio is able to drive itself to 1.0, which is not only where 904 * the dirty count meet the setpoint, but also where the slope of 905 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 906 */ 907 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 908 dirty_rate | 1); 909 /* 910 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 911 */ 912 if (unlikely(balanced_dirty_ratelimit > write_bw)) 913 balanced_dirty_ratelimit = write_bw; 914 915 /* 916 * We could safely do this and return immediately: 917 * 918 * bdi->dirty_ratelimit = balanced_dirty_ratelimit; 919 * 920 * However to get a more stable dirty_ratelimit, the below elaborated 921 * code makes use of task_ratelimit to filter out sigular points and 922 * limit the step size. 923 * 924 * The below code essentially only uses the relative value of 925 * 926 * task_ratelimit - dirty_ratelimit 927 * = (pos_ratio - 1) * dirty_ratelimit 928 * 929 * which reflects the direction and size of dirty position error. 930 */ 931 932 /* 933 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 934 * task_ratelimit is on the same side of dirty_ratelimit, too. 935 * For example, when 936 * - dirty_ratelimit > balanced_dirty_ratelimit 937 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 938 * lowering dirty_ratelimit will help meet both the position and rate 939 * control targets. Otherwise, don't update dirty_ratelimit if it will 940 * only help meet the rate target. After all, what the users ultimately 941 * feel and care are stable dirty rate and small position error. 942 * 943 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 944 * and filter out the sigular points of balanced_dirty_ratelimit. Which 945 * keeps jumping around randomly and can even leap far away at times 946 * due to the small 200ms estimation period of dirty_rate (we want to 947 * keep that period small to reduce time lags). 948 */ 949 step = 0; 950 if (dirty < setpoint) { 951 x = min(bdi->balanced_dirty_ratelimit, 952 min(balanced_dirty_ratelimit, task_ratelimit)); 953 if (dirty_ratelimit < x) 954 step = x - dirty_ratelimit; 955 } else { 956 x = max(bdi->balanced_dirty_ratelimit, 957 max(balanced_dirty_ratelimit, task_ratelimit)); 958 if (dirty_ratelimit > x) 959 step = dirty_ratelimit - x; 960 } 961 962 /* 963 * Don't pursue 100% rate matching. It's impossible since the balanced 964 * rate itself is constantly fluctuating. So decrease the track speed 965 * when it gets close to the target. Helps eliminate pointless tremors. 966 */ 967 step >>= dirty_ratelimit / (2 * step + 1); 968 /* 969 * Limit the tracking speed to avoid overshooting. 970 */ 971 step = (step + 7) / 8; 972 973 if (dirty_ratelimit < balanced_dirty_ratelimit) 974 dirty_ratelimit += step; 975 else 976 dirty_ratelimit -= step; 977 978 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); 979 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 980 981 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); 982 } 983 984 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 985 unsigned long thresh, 986 unsigned long bg_thresh, 987 unsigned long dirty, 988 unsigned long bdi_thresh, 989 unsigned long bdi_dirty, 990 unsigned long start_time) 991 { 992 unsigned long now = jiffies; 993 unsigned long elapsed = now - bdi->bw_time_stamp; 994 unsigned long dirtied; 995 unsigned long written; 996 997 /* 998 * rate-limit, only update once every 200ms. 999 */ 1000 if (elapsed < BANDWIDTH_INTERVAL) 1001 return; 1002 1003 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); 1004 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 1005 1006 /* 1007 * Skip quiet periods when disk bandwidth is under-utilized. 1008 * (at least 1s idle time between two flusher runs) 1009 */ 1010 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 1011 goto snapshot; 1012 1013 if (thresh) { 1014 global_update_bandwidth(thresh, dirty, now); 1015 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, 1016 bdi_thresh, bdi_dirty, 1017 dirtied, elapsed); 1018 } 1019 bdi_update_write_bandwidth(bdi, elapsed, written); 1020 1021 snapshot: 1022 bdi->dirtied_stamp = dirtied; 1023 bdi->written_stamp = written; 1024 bdi->bw_time_stamp = now; 1025 } 1026 1027 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 1028 unsigned long thresh, 1029 unsigned long bg_thresh, 1030 unsigned long dirty, 1031 unsigned long bdi_thresh, 1032 unsigned long bdi_dirty, 1033 unsigned long start_time) 1034 { 1035 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 1036 return; 1037 spin_lock(&bdi->wb.list_lock); 1038 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, 1039 bdi_thresh, bdi_dirty, start_time); 1040 spin_unlock(&bdi->wb.list_lock); 1041 } 1042 1043 /* 1044 * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr() 1045 * will look to see if it needs to start dirty throttling. 1046 * 1047 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1048 * global_page_state() too often. So scale it near-sqrt to the safety margin 1049 * (the number of pages we may dirty without exceeding the dirty limits). 1050 */ 1051 static unsigned long dirty_poll_interval(unsigned long dirty, 1052 unsigned long thresh) 1053 { 1054 if (thresh > dirty) 1055 return 1UL << (ilog2(thresh - dirty) >> 1); 1056 1057 return 1; 1058 } 1059 1060 static long bdi_max_pause(struct backing_dev_info *bdi, 1061 unsigned long bdi_dirty) 1062 { 1063 long bw = bdi->avg_write_bandwidth; 1064 long t; 1065 1066 /* 1067 * Limit pause time for small memory systems. If sleeping for too long 1068 * time, a small pool of dirty/writeback pages may go empty and disk go 1069 * idle. 1070 * 1071 * 8 serves as the safety ratio. 1072 */ 1073 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1074 t++; 1075 1076 return min_t(long, t, MAX_PAUSE); 1077 } 1078 1079 static long bdi_min_pause(struct backing_dev_info *bdi, 1080 long max_pause, 1081 unsigned long task_ratelimit, 1082 unsigned long dirty_ratelimit, 1083 int *nr_dirtied_pause) 1084 { 1085 long hi = ilog2(bdi->avg_write_bandwidth); 1086 long lo = ilog2(bdi->dirty_ratelimit); 1087 long t; /* target pause */ 1088 long pause; /* estimated next pause */ 1089 int pages; /* target nr_dirtied_pause */ 1090 1091 /* target for 10ms pause on 1-dd case */ 1092 t = max(1, HZ / 100); 1093 1094 /* 1095 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1096 * overheads. 1097 * 1098 * (N * 10ms) on 2^N concurrent tasks. 1099 */ 1100 if (hi > lo) 1101 t += (hi - lo) * (10 * HZ) / 1024; 1102 1103 /* 1104 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1105 * on the much more stable dirty_ratelimit. However the next pause time 1106 * will be computed based on task_ratelimit and the two rate limits may 1107 * depart considerably at some time. Especially if task_ratelimit goes 1108 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1109 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1110 * result task_ratelimit won't be executed faithfully, which could 1111 * eventually bring down dirty_ratelimit. 1112 * 1113 * We apply two rules to fix it up: 1114 * 1) try to estimate the next pause time and if necessary, use a lower 1115 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1116 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1117 * 2) limit the target pause time to max_pause/2, so that the normal 1118 * small fluctuations of task_ratelimit won't trigger rule (1) and 1119 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1120 */ 1121 t = min(t, 1 + max_pause / 2); 1122 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1123 1124 /* 1125 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1126 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1127 * When the 16 consecutive reads are often interrupted by some dirty 1128 * throttling pause during the async writes, cfq will go into idles 1129 * (deadline is fine). So push nr_dirtied_pause as high as possible 1130 * until reaches DIRTY_POLL_THRESH=32 pages. 1131 */ 1132 if (pages < DIRTY_POLL_THRESH) { 1133 t = max_pause; 1134 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1135 if (pages > DIRTY_POLL_THRESH) { 1136 pages = DIRTY_POLL_THRESH; 1137 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1138 } 1139 } 1140 1141 pause = HZ * pages / (task_ratelimit + 1); 1142 if (pause > max_pause) { 1143 t = max_pause; 1144 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1145 } 1146 1147 *nr_dirtied_pause = pages; 1148 /* 1149 * The minimal pause time will normally be half the target pause time. 1150 */ 1151 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1152 } 1153 1154 /* 1155 * balance_dirty_pages() must be called by processes which are generating dirty 1156 * data. It looks at the number of dirty pages in the machine and will force 1157 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1158 * If we're over `background_thresh' then the writeback threads are woken to 1159 * perform some writeout. 1160 */ 1161 static void balance_dirty_pages(struct address_space *mapping, 1162 unsigned long pages_dirtied) 1163 { 1164 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1165 unsigned long bdi_reclaimable; 1166 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 1167 unsigned long bdi_dirty; 1168 unsigned long freerun; 1169 unsigned long background_thresh; 1170 unsigned long dirty_thresh; 1171 unsigned long bdi_thresh; 1172 long period; 1173 long pause; 1174 long max_pause; 1175 long min_pause; 1176 int nr_dirtied_pause; 1177 bool dirty_exceeded = false; 1178 unsigned long task_ratelimit; 1179 unsigned long dirty_ratelimit; 1180 unsigned long pos_ratio; 1181 struct backing_dev_info *bdi = mapping->backing_dev_info; 1182 unsigned long start_time = jiffies; 1183 1184 for (;;) { 1185 unsigned long now = jiffies; 1186 1187 /* 1188 * Unstable writes are a feature of certain networked 1189 * filesystems (i.e. NFS) in which data may have been 1190 * written to the server's write cache, but has not yet 1191 * been flushed to permanent storage. 1192 */ 1193 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1194 global_page_state(NR_UNSTABLE_NFS); 1195 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1196 1197 global_dirty_limits(&background_thresh, &dirty_thresh); 1198 1199 /* 1200 * Throttle it only when the background writeback cannot 1201 * catch-up. This avoids (excessively) small writeouts 1202 * when the bdi limits are ramping up. 1203 */ 1204 freerun = dirty_freerun_ceiling(dirty_thresh, 1205 background_thresh); 1206 if (nr_dirty <= freerun) { 1207 current->dirty_paused_when = now; 1208 current->nr_dirtied = 0; 1209 current->nr_dirtied_pause = 1210 dirty_poll_interval(nr_dirty, dirty_thresh); 1211 break; 1212 } 1213 1214 if (unlikely(!writeback_in_progress(bdi))) 1215 bdi_start_background_writeback(bdi); 1216 1217 /* 1218 * bdi_thresh is not treated as some limiting factor as 1219 * dirty_thresh, due to reasons 1220 * - in JBOD setup, bdi_thresh can fluctuate a lot 1221 * - in a system with HDD and USB key, the USB key may somehow 1222 * go into state (bdi_dirty >> bdi_thresh) either because 1223 * bdi_dirty starts high, or because bdi_thresh drops low. 1224 * In this case we don't want to hard throttle the USB key 1225 * dirtiers for 100 seconds until bdi_dirty drops under 1226 * bdi_thresh. Instead the auxiliary bdi control line in 1227 * bdi_position_ratio() will let the dirtier task progress 1228 * at some rate <= (write_bw / 2) for bringing down bdi_dirty. 1229 */ 1230 bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 1231 1232 /* 1233 * In order to avoid the stacked BDI deadlock we need 1234 * to ensure we accurately count the 'dirty' pages when 1235 * the threshold is low. 1236 * 1237 * Otherwise it would be possible to get thresh+n pages 1238 * reported dirty, even though there are thresh-m pages 1239 * actually dirty; with m+n sitting in the percpu 1240 * deltas. 1241 */ 1242 if (bdi_thresh < 2 * bdi_stat_error(bdi)) { 1243 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 1244 bdi_dirty = bdi_reclaimable + 1245 bdi_stat_sum(bdi, BDI_WRITEBACK); 1246 } else { 1247 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 1248 bdi_dirty = bdi_reclaimable + 1249 bdi_stat(bdi, BDI_WRITEBACK); 1250 } 1251 1252 dirty_exceeded = (bdi_dirty > bdi_thresh) && 1253 (nr_dirty > dirty_thresh); 1254 if (dirty_exceeded && !bdi->dirty_exceeded) 1255 bdi->dirty_exceeded = 1; 1256 1257 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, 1258 nr_dirty, bdi_thresh, bdi_dirty, 1259 start_time); 1260 1261 dirty_ratelimit = bdi->dirty_ratelimit; 1262 pos_ratio = bdi_position_ratio(bdi, dirty_thresh, 1263 background_thresh, nr_dirty, 1264 bdi_thresh, bdi_dirty); 1265 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> 1266 RATELIMIT_CALC_SHIFT; 1267 max_pause = bdi_max_pause(bdi, bdi_dirty); 1268 min_pause = bdi_min_pause(bdi, max_pause, 1269 task_ratelimit, dirty_ratelimit, 1270 &nr_dirtied_pause); 1271 1272 if (unlikely(task_ratelimit == 0)) { 1273 period = max_pause; 1274 pause = max_pause; 1275 goto pause; 1276 } 1277 period = HZ * pages_dirtied / task_ratelimit; 1278 pause = period; 1279 if (current->dirty_paused_when) 1280 pause -= now - current->dirty_paused_when; 1281 /* 1282 * For less than 1s think time (ext3/4 may block the dirtier 1283 * for up to 800ms from time to time on 1-HDD; so does xfs, 1284 * however at much less frequency), try to compensate it in 1285 * future periods by updating the virtual time; otherwise just 1286 * do a reset, as it may be a light dirtier. 1287 */ 1288 if (pause < min_pause) { 1289 trace_balance_dirty_pages(bdi, 1290 dirty_thresh, 1291 background_thresh, 1292 nr_dirty, 1293 bdi_thresh, 1294 bdi_dirty, 1295 dirty_ratelimit, 1296 task_ratelimit, 1297 pages_dirtied, 1298 period, 1299 min(pause, 0L), 1300 start_time); 1301 if (pause < -HZ) { 1302 current->dirty_paused_when = now; 1303 current->nr_dirtied = 0; 1304 } else if (period) { 1305 current->dirty_paused_when += period; 1306 current->nr_dirtied = 0; 1307 } else if (current->nr_dirtied_pause <= pages_dirtied) 1308 current->nr_dirtied_pause += pages_dirtied; 1309 break; 1310 } 1311 if (unlikely(pause > max_pause)) { 1312 /* for occasional dropped task_ratelimit */ 1313 now += min(pause - max_pause, max_pause); 1314 pause = max_pause; 1315 } 1316 1317 pause: 1318 trace_balance_dirty_pages(bdi, 1319 dirty_thresh, 1320 background_thresh, 1321 nr_dirty, 1322 bdi_thresh, 1323 bdi_dirty, 1324 dirty_ratelimit, 1325 task_ratelimit, 1326 pages_dirtied, 1327 period, 1328 pause, 1329 start_time); 1330 __set_current_state(TASK_KILLABLE); 1331 io_schedule_timeout(pause); 1332 1333 current->dirty_paused_when = now + pause; 1334 current->nr_dirtied = 0; 1335 current->nr_dirtied_pause = nr_dirtied_pause; 1336 1337 /* 1338 * This is typically equal to (nr_dirty < dirty_thresh) and can 1339 * also keep "1000+ dd on a slow USB stick" under control. 1340 */ 1341 if (task_ratelimit) 1342 break; 1343 1344 /* 1345 * In the case of an unresponding NFS server and the NFS dirty 1346 * pages exceeds dirty_thresh, give the other good bdi's a pipe 1347 * to go through, so that tasks on them still remain responsive. 1348 * 1349 * In theory 1 page is enough to keep the comsumer-producer 1350 * pipe going: the flusher cleans 1 page => the task dirties 1 1351 * more page. However bdi_dirty has accounting errors. So use 1352 * the larger and more IO friendly bdi_stat_error. 1353 */ 1354 if (bdi_dirty <= bdi_stat_error(bdi)) 1355 break; 1356 1357 if (fatal_signal_pending(current)) 1358 break; 1359 } 1360 1361 if (!dirty_exceeded && bdi->dirty_exceeded) 1362 bdi->dirty_exceeded = 0; 1363 1364 if (writeback_in_progress(bdi)) 1365 return; 1366 1367 /* 1368 * In laptop mode, we wait until hitting the higher threshold before 1369 * starting background writeout, and then write out all the way down 1370 * to the lower threshold. So slow writers cause minimal disk activity. 1371 * 1372 * In normal mode, we start background writeout at the lower 1373 * background_thresh, to keep the amount of dirty memory low. 1374 */ 1375 if (laptop_mode) 1376 return; 1377 1378 if (nr_reclaimable > background_thresh) 1379 bdi_start_background_writeback(bdi); 1380 } 1381 1382 void set_page_dirty_balance(struct page *page, int page_mkwrite) 1383 { 1384 if (set_page_dirty(page) || page_mkwrite) { 1385 struct address_space *mapping = page_mapping(page); 1386 1387 if (mapping) 1388 balance_dirty_pages_ratelimited(mapping); 1389 } 1390 } 1391 1392 static DEFINE_PER_CPU(int, bdp_ratelimits); 1393 1394 /* 1395 * Normal tasks are throttled by 1396 * loop { 1397 * dirty tsk->nr_dirtied_pause pages; 1398 * take a snap in balance_dirty_pages(); 1399 * } 1400 * However there is a worst case. If every task exit immediately when dirtied 1401 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1402 * called to throttle the page dirties. The solution is to save the not yet 1403 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1404 * randomly into the running tasks. This works well for the above worst case, 1405 * as the new task will pick up and accumulate the old task's leaked dirty 1406 * count and eventually get throttled. 1407 */ 1408 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1409 1410 /** 1411 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 1412 * @mapping: address_space which was dirtied 1413 * @nr_pages_dirtied: number of pages which the caller has just dirtied 1414 * 1415 * Processes which are dirtying memory should call in here once for each page 1416 * which was newly dirtied. The function will periodically check the system's 1417 * dirty state and will initiate writeback if needed. 1418 * 1419 * On really big machines, get_writeback_state is expensive, so try to avoid 1420 * calling it too often (ratelimiting). But once we're over the dirty memory 1421 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1422 * from overshooting the limit by (ratelimit_pages) each. 1423 */ 1424 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 1425 unsigned long nr_pages_dirtied) 1426 { 1427 struct backing_dev_info *bdi = mapping->backing_dev_info; 1428 int ratelimit; 1429 int *p; 1430 1431 if (!bdi_cap_account_dirty(bdi)) 1432 return; 1433 1434 ratelimit = current->nr_dirtied_pause; 1435 if (bdi->dirty_exceeded) 1436 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1437 1438 preempt_disable(); 1439 /* 1440 * This prevents one CPU to accumulate too many dirtied pages without 1441 * calling into balance_dirty_pages(), which can happen when there are 1442 * 1000+ tasks, all of them start dirtying pages at exactly the same 1443 * time, hence all honoured too large initial task->nr_dirtied_pause. 1444 */ 1445 p = &__get_cpu_var(bdp_ratelimits); 1446 if (unlikely(current->nr_dirtied >= ratelimit)) 1447 *p = 0; 1448 else if (unlikely(*p >= ratelimit_pages)) { 1449 *p = 0; 1450 ratelimit = 0; 1451 } 1452 /* 1453 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1454 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1455 * the dirty throttling and livelock other long-run dirtiers. 1456 */ 1457 p = &__get_cpu_var(dirty_throttle_leaks); 1458 if (*p > 0 && current->nr_dirtied < ratelimit) { 1459 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1460 *p -= nr_pages_dirtied; 1461 current->nr_dirtied += nr_pages_dirtied; 1462 } 1463 preempt_enable(); 1464 1465 if (unlikely(current->nr_dirtied >= ratelimit)) 1466 balance_dirty_pages(mapping, current->nr_dirtied); 1467 } 1468 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 1469 1470 void throttle_vm_writeout(gfp_t gfp_mask) 1471 { 1472 unsigned long background_thresh; 1473 unsigned long dirty_thresh; 1474 1475 for ( ; ; ) { 1476 global_dirty_limits(&background_thresh, &dirty_thresh); 1477 dirty_thresh = hard_dirty_limit(dirty_thresh); 1478 1479 /* 1480 * Boost the allowable dirty threshold a bit for page 1481 * allocators so they don't get DoS'ed by heavy writers 1482 */ 1483 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1484 1485 if (global_page_state(NR_UNSTABLE_NFS) + 1486 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1487 break; 1488 congestion_wait(BLK_RW_ASYNC, HZ/10); 1489 1490 /* 1491 * The caller might hold locks which can prevent IO completion 1492 * or progress in the filesystem. So we cannot just sit here 1493 * waiting for IO to complete. 1494 */ 1495 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1496 break; 1497 } 1498 } 1499 1500 /* 1501 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1502 */ 1503 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 1504 void __user *buffer, size_t *length, loff_t *ppos) 1505 { 1506 proc_dointvec(table, write, buffer, length, ppos); 1507 bdi_arm_supers_timer(); 1508 return 0; 1509 } 1510 1511 #ifdef CONFIG_BLOCK 1512 void laptop_mode_timer_fn(unsigned long data) 1513 { 1514 struct request_queue *q = (struct request_queue *)data; 1515 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1516 global_page_state(NR_UNSTABLE_NFS); 1517 1518 /* 1519 * We want to write everything out, not just down to the dirty 1520 * threshold 1521 */ 1522 if (bdi_has_dirty_io(&q->backing_dev_info)) 1523 bdi_start_writeback(&q->backing_dev_info, nr_pages, 1524 WB_REASON_LAPTOP_TIMER); 1525 } 1526 1527 /* 1528 * We've spun up the disk and we're in laptop mode: schedule writeback 1529 * of all dirty data a few seconds from now. If the flush is already scheduled 1530 * then push it back - the user is still using the disk. 1531 */ 1532 void laptop_io_completion(struct backing_dev_info *info) 1533 { 1534 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1535 } 1536 1537 /* 1538 * We're in laptop mode and we've just synced. The sync's writes will have 1539 * caused another writeback to be scheduled by laptop_io_completion. 1540 * Nothing needs to be written back anymore, so we unschedule the writeback. 1541 */ 1542 void laptop_sync_completion(void) 1543 { 1544 struct backing_dev_info *bdi; 1545 1546 rcu_read_lock(); 1547 1548 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1549 del_timer(&bdi->laptop_mode_wb_timer); 1550 1551 rcu_read_unlock(); 1552 } 1553 #endif 1554 1555 /* 1556 * If ratelimit_pages is too high then we can get into dirty-data overload 1557 * if a large number of processes all perform writes at the same time. 1558 * If it is too low then SMP machines will call the (expensive) 1559 * get_writeback_state too often. 1560 * 1561 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 1562 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 1563 * thresholds. 1564 */ 1565 1566 void writeback_set_ratelimit(void) 1567 { 1568 unsigned long background_thresh; 1569 unsigned long dirty_thresh; 1570 global_dirty_limits(&background_thresh, &dirty_thresh); 1571 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 1572 if (ratelimit_pages < 16) 1573 ratelimit_pages = 16; 1574 } 1575 1576 static int __cpuinit 1577 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 1578 { 1579 writeback_set_ratelimit(); 1580 return NOTIFY_DONE; 1581 } 1582 1583 static struct notifier_block __cpuinitdata ratelimit_nb = { 1584 .notifier_call = ratelimit_handler, 1585 .next = NULL, 1586 }; 1587 1588 /* 1589 * Called early on to tune the page writeback dirty limits. 1590 * 1591 * We used to scale dirty pages according to how total memory 1592 * related to pages that could be allocated for buffers (by 1593 * comparing nr_free_buffer_pages() to vm_total_pages. 1594 * 1595 * However, that was when we used "dirty_ratio" to scale with 1596 * all memory, and we don't do that any more. "dirty_ratio" 1597 * is now applied to total non-HIGHPAGE memory (by subtracting 1598 * totalhigh_pages from vm_total_pages), and as such we can't 1599 * get into the old insane situation any more where we had 1600 * large amounts of dirty pages compared to a small amount of 1601 * non-HIGHMEM memory. 1602 * 1603 * But we might still want to scale the dirty_ratio by how 1604 * much memory the box has.. 1605 */ 1606 void __init page_writeback_init(void) 1607 { 1608 int shift; 1609 1610 writeback_set_ratelimit(); 1611 register_cpu_notifier(&ratelimit_nb); 1612 1613 shift = calc_period_shift(); 1614 prop_descriptor_init(&vm_completions, shift); 1615 } 1616 1617 /** 1618 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1619 * @mapping: address space structure to write 1620 * @start: starting page index 1621 * @end: ending page index (inclusive) 1622 * 1623 * This function scans the page range from @start to @end (inclusive) and tags 1624 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1625 * that write_cache_pages (or whoever calls this function) will then use 1626 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1627 * used to avoid livelocking of writeback by a process steadily creating new 1628 * dirty pages in the file (thus it is important for this function to be quick 1629 * so that it can tag pages faster than a dirtying process can create them). 1630 */ 1631 /* 1632 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1633 */ 1634 void tag_pages_for_writeback(struct address_space *mapping, 1635 pgoff_t start, pgoff_t end) 1636 { 1637 #define WRITEBACK_TAG_BATCH 4096 1638 unsigned long tagged; 1639 1640 do { 1641 spin_lock_irq(&mapping->tree_lock); 1642 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1643 &start, end, WRITEBACK_TAG_BATCH, 1644 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1645 spin_unlock_irq(&mapping->tree_lock); 1646 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1647 cond_resched(); 1648 /* We check 'start' to handle wrapping when end == ~0UL */ 1649 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1650 } 1651 EXPORT_SYMBOL(tag_pages_for_writeback); 1652 1653 /** 1654 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1655 * @mapping: address space structure to write 1656 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1657 * @writepage: function called for each page 1658 * @data: data passed to writepage function 1659 * 1660 * If a page is already under I/O, write_cache_pages() skips it, even 1661 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1662 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1663 * and msync() need to guarantee that all the data which was dirty at the time 1664 * the call was made get new I/O started against them. If wbc->sync_mode is 1665 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1666 * existing IO to complete. 1667 * 1668 * To avoid livelocks (when other process dirties new pages), we first tag 1669 * pages which should be written back with TOWRITE tag and only then start 1670 * writing them. For data-integrity sync we have to be careful so that we do 1671 * not miss some pages (e.g., because some other process has cleared TOWRITE 1672 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1673 * by the process clearing the DIRTY tag (and submitting the page for IO). 1674 */ 1675 int write_cache_pages(struct address_space *mapping, 1676 struct writeback_control *wbc, writepage_t writepage, 1677 void *data) 1678 { 1679 int ret = 0; 1680 int done = 0; 1681 struct pagevec pvec; 1682 int nr_pages; 1683 pgoff_t uninitialized_var(writeback_index); 1684 pgoff_t index; 1685 pgoff_t end; /* Inclusive */ 1686 pgoff_t done_index; 1687 int cycled; 1688 int range_whole = 0; 1689 int tag; 1690 1691 pagevec_init(&pvec, 0); 1692 if (wbc->range_cyclic) { 1693 writeback_index = mapping->writeback_index; /* prev offset */ 1694 index = writeback_index; 1695 if (index == 0) 1696 cycled = 1; 1697 else 1698 cycled = 0; 1699 end = -1; 1700 } else { 1701 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1702 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1703 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1704 range_whole = 1; 1705 cycled = 1; /* ignore range_cyclic tests */ 1706 } 1707 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1708 tag = PAGECACHE_TAG_TOWRITE; 1709 else 1710 tag = PAGECACHE_TAG_DIRTY; 1711 retry: 1712 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1713 tag_pages_for_writeback(mapping, index, end); 1714 done_index = index; 1715 while (!done && (index <= end)) { 1716 int i; 1717 1718 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1719 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1720 if (nr_pages == 0) 1721 break; 1722 1723 for (i = 0; i < nr_pages; i++) { 1724 struct page *page = pvec.pages[i]; 1725 1726 /* 1727 * At this point, the page may be truncated or 1728 * invalidated (changing page->mapping to NULL), or 1729 * even swizzled back from swapper_space to tmpfs file 1730 * mapping. However, page->index will not change 1731 * because we have a reference on the page. 1732 */ 1733 if (page->index > end) { 1734 /* 1735 * can't be range_cyclic (1st pass) because 1736 * end == -1 in that case. 1737 */ 1738 done = 1; 1739 break; 1740 } 1741 1742 done_index = page->index; 1743 1744 lock_page(page); 1745 1746 /* 1747 * Page truncated or invalidated. We can freely skip it 1748 * then, even for data integrity operations: the page 1749 * has disappeared concurrently, so there could be no 1750 * real expectation of this data interity operation 1751 * even if there is now a new, dirty page at the same 1752 * pagecache address. 1753 */ 1754 if (unlikely(page->mapping != mapping)) { 1755 continue_unlock: 1756 unlock_page(page); 1757 continue; 1758 } 1759 1760 if (!PageDirty(page)) { 1761 /* someone wrote it for us */ 1762 goto continue_unlock; 1763 } 1764 1765 if (PageWriteback(page)) { 1766 if (wbc->sync_mode != WB_SYNC_NONE) 1767 wait_on_page_writeback(page); 1768 else 1769 goto continue_unlock; 1770 } 1771 1772 BUG_ON(PageWriteback(page)); 1773 if (!clear_page_dirty_for_io(page)) 1774 goto continue_unlock; 1775 1776 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1777 ret = (*writepage)(page, wbc, data); 1778 if (unlikely(ret)) { 1779 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1780 unlock_page(page); 1781 ret = 0; 1782 } else { 1783 /* 1784 * done_index is set past this page, 1785 * so media errors will not choke 1786 * background writeout for the entire 1787 * file. This has consequences for 1788 * range_cyclic semantics (ie. it may 1789 * not be suitable for data integrity 1790 * writeout). 1791 */ 1792 done_index = page->index + 1; 1793 done = 1; 1794 break; 1795 } 1796 } 1797 1798 /* 1799 * We stop writing back only if we are not doing 1800 * integrity sync. In case of integrity sync we have to 1801 * keep going until we have written all the pages 1802 * we tagged for writeback prior to entering this loop. 1803 */ 1804 if (--wbc->nr_to_write <= 0 && 1805 wbc->sync_mode == WB_SYNC_NONE) { 1806 done = 1; 1807 break; 1808 } 1809 } 1810 pagevec_release(&pvec); 1811 cond_resched(); 1812 } 1813 if (!cycled && !done) { 1814 /* 1815 * range_cyclic: 1816 * We hit the last page and there is more work to be done: wrap 1817 * back to the start of the file 1818 */ 1819 cycled = 1; 1820 index = 0; 1821 end = writeback_index - 1; 1822 goto retry; 1823 } 1824 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1825 mapping->writeback_index = done_index; 1826 1827 return ret; 1828 } 1829 EXPORT_SYMBOL(write_cache_pages); 1830 1831 /* 1832 * Function used by generic_writepages to call the real writepage 1833 * function and set the mapping flags on error 1834 */ 1835 static int __writepage(struct page *page, struct writeback_control *wbc, 1836 void *data) 1837 { 1838 struct address_space *mapping = data; 1839 int ret = mapping->a_ops->writepage(page, wbc); 1840 mapping_set_error(mapping, ret); 1841 return ret; 1842 } 1843 1844 /** 1845 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 1846 * @mapping: address space structure to write 1847 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1848 * 1849 * This is a library function, which implements the writepages() 1850 * address_space_operation. 1851 */ 1852 int generic_writepages(struct address_space *mapping, 1853 struct writeback_control *wbc) 1854 { 1855 struct blk_plug plug; 1856 int ret; 1857 1858 /* deal with chardevs and other special file */ 1859 if (!mapping->a_ops->writepage) 1860 return 0; 1861 1862 blk_start_plug(&plug); 1863 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 1864 blk_finish_plug(&plug); 1865 return ret; 1866 } 1867 1868 EXPORT_SYMBOL(generic_writepages); 1869 1870 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 1871 { 1872 int ret; 1873 1874 if (wbc->nr_to_write <= 0) 1875 return 0; 1876 if (mapping->a_ops->writepages) 1877 ret = mapping->a_ops->writepages(mapping, wbc); 1878 else 1879 ret = generic_writepages(mapping, wbc); 1880 return ret; 1881 } 1882 1883 /** 1884 * write_one_page - write out a single page and optionally wait on I/O 1885 * @page: the page to write 1886 * @wait: if true, wait on writeout 1887 * 1888 * The page must be locked by the caller and will be unlocked upon return. 1889 * 1890 * write_one_page() returns a negative error code if I/O failed. 1891 */ 1892 int write_one_page(struct page *page, int wait) 1893 { 1894 struct address_space *mapping = page->mapping; 1895 int ret = 0; 1896 struct writeback_control wbc = { 1897 .sync_mode = WB_SYNC_ALL, 1898 .nr_to_write = 1, 1899 }; 1900 1901 BUG_ON(!PageLocked(page)); 1902 1903 if (wait) 1904 wait_on_page_writeback(page); 1905 1906 if (clear_page_dirty_for_io(page)) { 1907 page_cache_get(page); 1908 ret = mapping->a_ops->writepage(page, &wbc); 1909 if (ret == 0 && wait) { 1910 wait_on_page_writeback(page); 1911 if (PageError(page)) 1912 ret = -EIO; 1913 } 1914 page_cache_release(page); 1915 } else { 1916 unlock_page(page); 1917 } 1918 return ret; 1919 } 1920 EXPORT_SYMBOL(write_one_page); 1921 1922 /* 1923 * For address_spaces which do not use buffers nor write back. 1924 */ 1925 int __set_page_dirty_no_writeback(struct page *page) 1926 { 1927 if (!PageDirty(page)) 1928 return !TestSetPageDirty(page); 1929 return 0; 1930 } 1931 1932 /* 1933 * Helper function for set_page_dirty family. 1934 * NOTE: This relies on being atomic wrt interrupts. 1935 */ 1936 void account_page_dirtied(struct page *page, struct address_space *mapping) 1937 { 1938 if (mapping_cap_account_dirty(mapping)) { 1939 __inc_zone_page_state(page, NR_FILE_DIRTY); 1940 __inc_zone_page_state(page, NR_DIRTIED); 1941 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 1942 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 1943 task_io_account_write(PAGE_CACHE_SIZE); 1944 current->nr_dirtied++; 1945 this_cpu_inc(bdp_ratelimits); 1946 } 1947 } 1948 EXPORT_SYMBOL(account_page_dirtied); 1949 1950 /* 1951 * Helper function for set_page_writeback family. 1952 * NOTE: Unlike account_page_dirtied this does not rely on being atomic 1953 * wrt interrupts. 1954 */ 1955 void account_page_writeback(struct page *page) 1956 { 1957 inc_zone_page_state(page, NR_WRITEBACK); 1958 } 1959 EXPORT_SYMBOL(account_page_writeback); 1960 1961 /* 1962 * For address_spaces which do not use buffers. Just tag the page as dirty in 1963 * its radix tree. 1964 * 1965 * This is also used when a single buffer is being dirtied: we want to set the 1966 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1967 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1968 * 1969 * Most callers have locked the page, which pins the address_space in memory. 1970 * But zap_pte_range() does not lock the page, however in that case the 1971 * mapping is pinned by the vma's ->vm_file reference. 1972 * 1973 * We take care to handle the case where the page was truncated from the 1974 * mapping by re-checking page_mapping() inside tree_lock. 1975 */ 1976 int __set_page_dirty_nobuffers(struct page *page) 1977 { 1978 if (!TestSetPageDirty(page)) { 1979 struct address_space *mapping = page_mapping(page); 1980 struct address_space *mapping2; 1981 1982 if (!mapping) 1983 return 1; 1984 1985 spin_lock_irq(&mapping->tree_lock); 1986 mapping2 = page_mapping(page); 1987 if (mapping2) { /* Race with truncate? */ 1988 BUG_ON(mapping2 != mapping); 1989 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1990 account_page_dirtied(page, mapping); 1991 radix_tree_tag_set(&mapping->page_tree, 1992 page_index(page), PAGECACHE_TAG_DIRTY); 1993 } 1994 spin_unlock_irq(&mapping->tree_lock); 1995 if (mapping->host) { 1996 /* !PageAnon && !swapper_space */ 1997 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1998 } 1999 return 1; 2000 } 2001 return 0; 2002 } 2003 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2004 2005 /* 2006 * Call this whenever redirtying a page, to de-account the dirty counters 2007 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2008 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2009 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2010 * control. 2011 */ 2012 void account_page_redirty(struct page *page) 2013 { 2014 struct address_space *mapping = page->mapping; 2015 if (mapping && mapping_cap_account_dirty(mapping)) { 2016 current->nr_dirtied--; 2017 dec_zone_page_state(page, NR_DIRTIED); 2018 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2019 } 2020 } 2021 EXPORT_SYMBOL(account_page_redirty); 2022 2023 /* 2024 * When a writepage implementation decides that it doesn't want to write this 2025 * page for some reason, it should redirty the locked page via 2026 * redirty_page_for_writepage() and it should then unlock the page and return 0 2027 */ 2028 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2029 { 2030 wbc->pages_skipped++; 2031 account_page_redirty(page); 2032 return __set_page_dirty_nobuffers(page); 2033 } 2034 EXPORT_SYMBOL(redirty_page_for_writepage); 2035 2036 /* 2037 * Dirty a page. 2038 * 2039 * For pages with a mapping this should be done under the page lock 2040 * for the benefit of asynchronous memory errors who prefer a consistent 2041 * dirty state. This rule can be broken in some special cases, 2042 * but should be better not to. 2043 * 2044 * If the mapping doesn't provide a set_page_dirty a_op, then 2045 * just fall through and assume that it wants buffer_heads. 2046 */ 2047 int set_page_dirty(struct page *page) 2048 { 2049 struct address_space *mapping = page_mapping(page); 2050 2051 if (likely(mapping)) { 2052 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2053 /* 2054 * readahead/lru_deactivate_page could remain 2055 * PG_readahead/PG_reclaim due to race with end_page_writeback 2056 * About readahead, if the page is written, the flags would be 2057 * reset. So no problem. 2058 * About lru_deactivate_page, if the page is redirty, the flag 2059 * will be reset. So no problem. but if the page is used by readahead 2060 * it will confuse readahead and make it restart the size rampup 2061 * process. But it's a trivial problem. 2062 */ 2063 ClearPageReclaim(page); 2064 #ifdef CONFIG_BLOCK 2065 if (!spd) 2066 spd = __set_page_dirty_buffers; 2067 #endif 2068 return (*spd)(page); 2069 } 2070 if (!PageDirty(page)) { 2071 if (!TestSetPageDirty(page)) 2072 return 1; 2073 } 2074 return 0; 2075 } 2076 EXPORT_SYMBOL(set_page_dirty); 2077 2078 /* 2079 * set_page_dirty() is racy if the caller has no reference against 2080 * page->mapping->host, and if the page is unlocked. This is because another 2081 * CPU could truncate the page off the mapping and then free the mapping. 2082 * 2083 * Usually, the page _is_ locked, or the caller is a user-space process which 2084 * holds a reference on the inode by having an open file. 2085 * 2086 * In other cases, the page should be locked before running set_page_dirty(). 2087 */ 2088 int set_page_dirty_lock(struct page *page) 2089 { 2090 int ret; 2091 2092 lock_page(page); 2093 ret = set_page_dirty(page); 2094 unlock_page(page); 2095 return ret; 2096 } 2097 EXPORT_SYMBOL(set_page_dirty_lock); 2098 2099 /* 2100 * Clear a page's dirty flag, while caring for dirty memory accounting. 2101 * Returns true if the page was previously dirty. 2102 * 2103 * This is for preparing to put the page under writeout. We leave the page 2104 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2105 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2106 * implementation will run either set_page_writeback() or set_page_dirty(), 2107 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2108 * back into sync. 2109 * 2110 * This incoherency between the page's dirty flag and radix-tree tag is 2111 * unfortunate, but it only exists while the page is locked. 2112 */ 2113 int clear_page_dirty_for_io(struct page *page) 2114 { 2115 struct address_space *mapping = page_mapping(page); 2116 2117 BUG_ON(!PageLocked(page)); 2118 2119 if (mapping && mapping_cap_account_dirty(mapping)) { 2120 /* 2121 * Yes, Virginia, this is indeed insane. 2122 * 2123 * We use this sequence to make sure that 2124 * (a) we account for dirty stats properly 2125 * (b) we tell the low-level filesystem to 2126 * mark the whole page dirty if it was 2127 * dirty in a pagetable. Only to then 2128 * (c) clean the page again and return 1 to 2129 * cause the writeback. 2130 * 2131 * This way we avoid all nasty races with the 2132 * dirty bit in multiple places and clearing 2133 * them concurrently from different threads. 2134 * 2135 * Note! Normally the "set_page_dirty(page)" 2136 * has no effect on the actual dirty bit - since 2137 * that will already usually be set. But we 2138 * need the side effects, and it can help us 2139 * avoid races. 2140 * 2141 * We basically use the page "master dirty bit" 2142 * as a serialization point for all the different 2143 * threads doing their things. 2144 */ 2145 if (page_mkclean(page)) 2146 set_page_dirty(page); 2147 /* 2148 * We carefully synchronise fault handlers against 2149 * installing a dirty pte and marking the page dirty 2150 * at this point. We do this by having them hold the 2151 * page lock at some point after installing their 2152 * pte, but before marking the page dirty. 2153 * Pages are always locked coming in here, so we get 2154 * the desired exclusion. See mm/memory.c:do_wp_page() 2155 * for more comments. 2156 */ 2157 if (TestClearPageDirty(page)) { 2158 dec_zone_page_state(page, NR_FILE_DIRTY); 2159 dec_bdi_stat(mapping->backing_dev_info, 2160 BDI_RECLAIMABLE); 2161 return 1; 2162 } 2163 return 0; 2164 } 2165 return TestClearPageDirty(page); 2166 } 2167 EXPORT_SYMBOL(clear_page_dirty_for_io); 2168 2169 int test_clear_page_writeback(struct page *page) 2170 { 2171 struct address_space *mapping = page_mapping(page); 2172 int ret; 2173 2174 if (mapping) { 2175 struct backing_dev_info *bdi = mapping->backing_dev_info; 2176 unsigned long flags; 2177 2178 spin_lock_irqsave(&mapping->tree_lock, flags); 2179 ret = TestClearPageWriteback(page); 2180 if (ret) { 2181 radix_tree_tag_clear(&mapping->page_tree, 2182 page_index(page), 2183 PAGECACHE_TAG_WRITEBACK); 2184 if (bdi_cap_account_writeback(bdi)) { 2185 __dec_bdi_stat(bdi, BDI_WRITEBACK); 2186 __bdi_writeout_inc(bdi); 2187 } 2188 } 2189 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2190 } else { 2191 ret = TestClearPageWriteback(page); 2192 } 2193 if (ret) { 2194 dec_zone_page_state(page, NR_WRITEBACK); 2195 inc_zone_page_state(page, NR_WRITTEN); 2196 } 2197 return ret; 2198 } 2199 2200 int test_set_page_writeback(struct page *page) 2201 { 2202 struct address_space *mapping = page_mapping(page); 2203 int ret; 2204 2205 if (mapping) { 2206 struct backing_dev_info *bdi = mapping->backing_dev_info; 2207 unsigned long flags; 2208 2209 spin_lock_irqsave(&mapping->tree_lock, flags); 2210 ret = TestSetPageWriteback(page); 2211 if (!ret) { 2212 radix_tree_tag_set(&mapping->page_tree, 2213 page_index(page), 2214 PAGECACHE_TAG_WRITEBACK); 2215 if (bdi_cap_account_writeback(bdi)) 2216 __inc_bdi_stat(bdi, BDI_WRITEBACK); 2217 } 2218 if (!PageDirty(page)) 2219 radix_tree_tag_clear(&mapping->page_tree, 2220 page_index(page), 2221 PAGECACHE_TAG_DIRTY); 2222 radix_tree_tag_clear(&mapping->page_tree, 2223 page_index(page), 2224 PAGECACHE_TAG_TOWRITE); 2225 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2226 } else { 2227 ret = TestSetPageWriteback(page); 2228 } 2229 if (!ret) 2230 account_page_writeback(page); 2231 return ret; 2232 2233 } 2234 EXPORT_SYMBOL(test_set_page_writeback); 2235 2236 /* 2237 * Return true if any of the pages in the mapping are marked with the 2238 * passed tag. 2239 */ 2240 int mapping_tagged(struct address_space *mapping, int tag) 2241 { 2242 return radix_tree_tagged(&mapping->page_tree, tag); 2243 } 2244 EXPORT_SYMBOL(mapping_tagged); 2245