1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that makes the machine dump writes/reads and block dirtyings. 112 */ 113 int block_dump; 114 115 /* 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 117 * a full sync is triggered after this time elapses without any disk activity. 118 */ 119 int laptop_mode; 120 121 EXPORT_SYMBOL(laptop_mode); 122 123 /* End of sysctl-exported parameters */ 124 125 unsigned long global_dirty_limit; 126 127 /* 128 * Scale the writeback cache size proportional to the relative writeout speeds. 129 * 130 * We do this by keeping a floating proportion between BDIs, based on page 131 * writeback completions [end_page_writeback()]. Those devices that write out 132 * pages fastest will get the larger share, while the slower will get a smaller 133 * share. 134 * 135 * We use page writeout completions because we are interested in getting rid of 136 * dirty pages. Having them written out is the primary goal. 137 * 138 * We introduce a concept of time, a period over which we measure these events, 139 * because demand can/will vary over time. The length of this period itself is 140 * measured in page writeback completions. 141 * 142 */ 143 static struct fprop_global writeout_completions; 144 145 static void writeout_period(unsigned long t); 146 /* Timer for aging of writeout_completions */ 147 static struct timer_list writeout_period_timer = 148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0); 149 static unsigned long writeout_period_time = 0; 150 151 /* 152 * Length of period for aging writeout fractions of bdis. This is an 153 * arbitrarily chosen number. The longer the period, the slower fractions will 154 * reflect changes in current writeout rate. 155 */ 156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 157 158 /* 159 * In a memory zone, there is a certain amount of pages we consider 160 * available for the page cache, which is essentially the number of 161 * free and reclaimable pages, minus some zone reserves to protect 162 * lowmem and the ability to uphold the zone's watermarks without 163 * requiring writeback. 164 * 165 * This number of dirtyable pages is the base value of which the 166 * user-configurable dirty ratio is the effictive number of pages that 167 * are allowed to be actually dirtied. Per individual zone, or 168 * globally by using the sum of dirtyable pages over all zones. 169 * 170 * Because the user is allowed to specify the dirty limit globally as 171 * absolute number of bytes, calculating the per-zone dirty limit can 172 * require translating the configured limit into a percentage of 173 * global dirtyable memory first. 174 */ 175 176 /** 177 * zone_dirtyable_memory - number of dirtyable pages in a zone 178 * @zone: the zone 179 * 180 * Returns the zone's number of pages potentially available for dirty 181 * page cache. This is the base value for the per-zone dirty limits. 182 */ 183 static unsigned long zone_dirtyable_memory(struct zone *zone) 184 { 185 unsigned long nr_pages; 186 187 nr_pages = zone_page_state(zone, NR_FREE_PAGES); 188 nr_pages -= min(nr_pages, zone->dirty_balance_reserve); 189 190 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); 191 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); 192 193 return nr_pages; 194 } 195 196 static unsigned long highmem_dirtyable_memory(unsigned long total) 197 { 198 #ifdef CONFIG_HIGHMEM 199 int node; 200 unsigned long x = 0; 201 202 for_each_node_state(node, N_HIGH_MEMORY) { 203 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 204 205 x += zone_dirtyable_memory(z); 206 } 207 /* 208 * Unreclaimable memory (kernel memory or anonymous memory 209 * without swap) can bring down the dirtyable pages below 210 * the zone's dirty balance reserve and the above calculation 211 * will underflow. However we still want to add in nodes 212 * which are below threshold (negative values) to get a more 213 * accurate calculation but make sure that the total never 214 * underflows. 215 */ 216 if ((long)x < 0) 217 x = 0; 218 219 /* 220 * Make sure that the number of highmem pages is never larger 221 * than the number of the total dirtyable memory. This can only 222 * occur in very strange VM situations but we want to make sure 223 * that this does not occur. 224 */ 225 return min(x, total); 226 #else 227 return 0; 228 #endif 229 } 230 231 /** 232 * global_dirtyable_memory - number of globally dirtyable pages 233 * 234 * Returns the global number of pages potentially available for dirty 235 * page cache. This is the base value for the global dirty limits. 236 */ 237 static unsigned long global_dirtyable_memory(void) 238 { 239 unsigned long x; 240 241 x = global_page_state(NR_FREE_PAGES); 242 x -= min(x, dirty_balance_reserve); 243 244 x += global_page_state(NR_INACTIVE_FILE); 245 x += global_page_state(NR_ACTIVE_FILE); 246 247 if (!vm_highmem_is_dirtyable) 248 x -= highmem_dirtyable_memory(x); 249 250 return x + 1; /* Ensure that we never return 0 */ 251 } 252 253 /* 254 * global_dirty_limits - background-writeback and dirty-throttling thresholds 255 * 256 * Calculate the dirty thresholds based on sysctl parameters 257 * - vm.dirty_background_ratio or vm.dirty_background_bytes 258 * - vm.dirty_ratio or vm.dirty_bytes 259 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 260 * real-time tasks. 261 */ 262 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 263 { 264 const unsigned long available_memory = global_dirtyable_memory(); 265 unsigned long background; 266 unsigned long dirty; 267 struct task_struct *tsk; 268 269 if (vm_dirty_bytes) 270 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE); 271 else 272 dirty = (vm_dirty_ratio * available_memory) / 100; 273 274 if (dirty_background_bytes) 275 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE); 276 else 277 background = (dirty_background_ratio * available_memory) / 100; 278 279 if (background >= dirty) 280 background = dirty / 2; 281 tsk = current; 282 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 283 background += background / 4; 284 dirty += dirty / 4; 285 } 286 *pbackground = background; 287 *pdirty = dirty; 288 trace_global_dirty_state(background, dirty); 289 } 290 291 /** 292 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 293 * @zone: the zone 294 * 295 * Returns the maximum number of dirty pages allowed in a zone, based 296 * on the zone's dirtyable memory. 297 */ 298 static unsigned long zone_dirty_limit(struct zone *zone) 299 { 300 unsigned long zone_memory = zone_dirtyable_memory(zone); 301 struct task_struct *tsk = current; 302 unsigned long dirty; 303 304 if (vm_dirty_bytes) 305 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 306 zone_memory / global_dirtyable_memory(); 307 else 308 dirty = vm_dirty_ratio * zone_memory / 100; 309 310 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 311 dirty += dirty / 4; 312 313 return dirty; 314 } 315 316 /** 317 * zone_dirty_ok - tells whether a zone is within its dirty limits 318 * @zone: the zone to check 319 * 320 * Returns %true when the dirty pages in @zone are within the zone's 321 * dirty limit, %false if the limit is exceeded. 322 */ 323 bool zone_dirty_ok(struct zone *zone) 324 { 325 unsigned long limit = zone_dirty_limit(zone); 326 327 return zone_page_state(zone, NR_FILE_DIRTY) + 328 zone_page_state(zone, NR_UNSTABLE_NFS) + 329 zone_page_state(zone, NR_WRITEBACK) <= limit; 330 } 331 332 int dirty_background_ratio_handler(struct ctl_table *table, int write, 333 void __user *buffer, size_t *lenp, 334 loff_t *ppos) 335 { 336 int ret; 337 338 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 339 if (ret == 0 && write) 340 dirty_background_bytes = 0; 341 return ret; 342 } 343 344 int dirty_background_bytes_handler(struct ctl_table *table, int write, 345 void __user *buffer, size_t *lenp, 346 loff_t *ppos) 347 { 348 int ret; 349 350 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 351 if (ret == 0 && write) 352 dirty_background_ratio = 0; 353 return ret; 354 } 355 356 int dirty_ratio_handler(struct ctl_table *table, int write, 357 void __user *buffer, size_t *lenp, 358 loff_t *ppos) 359 { 360 int old_ratio = vm_dirty_ratio; 361 int ret; 362 363 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 364 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 365 writeback_set_ratelimit(); 366 vm_dirty_bytes = 0; 367 } 368 return ret; 369 } 370 371 int dirty_bytes_handler(struct ctl_table *table, int write, 372 void __user *buffer, size_t *lenp, 373 loff_t *ppos) 374 { 375 unsigned long old_bytes = vm_dirty_bytes; 376 int ret; 377 378 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 379 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 380 writeback_set_ratelimit(); 381 vm_dirty_ratio = 0; 382 } 383 return ret; 384 } 385 386 static unsigned long wp_next_time(unsigned long cur_time) 387 { 388 cur_time += VM_COMPLETIONS_PERIOD_LEN; 389 /* 0 has a special meaning... */ 390 if (!cur_time) 391 return 1; 392 return cur_time; 393 } 394 395 /* 396 * Increment the BDI's writeout completion count and the global writeout 397 * completion count. Called from test_clear_page_writeback(). 398 */ 399 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 400 { 401 __inc_bdi_stat(bdi, BDI_WRITTEN); 402 __fprop_inc_percpu_max(&writeout_completions, &bdi->completions, 403 bdi->max_prop_frac); 404 /* First event after period switching was turned off? */ 405 if (!unlikely(writeout_period_time)) { 406 /* 407 * We can race with other __bdi_writeout_inc calls here but 408 * it does not cause any harm since the resulting time when 409 * timer will fire and what is in writeout_period_time will be 410 * roughly the same. 411 */ 412 writeout_period_time = wp_next_time(jiffies); 413 mod_timer(&writeout_period_timer, writeout_period_time); 414 } 415 } 416 417 void bdi_writeout_inc(struct backing_dev_info *bdi) 418 { 419 unsigned long flags; 420 421 local_irq_save(flags); 422 __bdi_writeout_inc(bdi); 423 local_irq_restore(flags); 424 } 425 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 426 427 /* 428 * Obtain an accurate fraction of the BDI's portion. 429 */ 430 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 431 long *numerator, long *denominator) 432 { 433 fprop_fraction_percpu(&writeout_completions, &bdi->completions, 434 numerator, denominator); 435 } 436 437 /* 438 * On idle system, we can be called long after we scheduled because we use 439 * deferred timers so count with missed periods. 440 */ 441 static void writeout_period(unsigned long t) 442 { 443 int miss_periods = (jiffies - writeout_period_time) / 444 VM_COMPLETIONS_PERIOD_LEN; 445 446 if (fprop_new_period(&writeout_completions, miss_periods + 1)) { 447 writeout_period_time = wp_next_time(writeout_period_time + 448 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 449 mod_timer(&writeout_period_timer, writeout_period_time); 450 } else { 451 /* 452 * Aging has zeroed all fractions. Stop wasting CPU on period 453 * updates. 454 */ 455 writeout_period_time = 0; 456 } 457 } 458 459 /* 460 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 461 * registered backing devices, which, for obvious reasons, can not 462 * exceed 100%. 463 */ 464 static unsigned int bdi_min_ratio; 465 466 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 467 { 468 int ret = 0; 469 470 spin_lock_bh(&bdi_lock); 471 if (min_ratio > bdi->max_ratio) { 472 ret = -EINVAL; 473 } else { 474 min_ratio -= bdi->min_ratio; 475 if (bdi_min_ratio + min_ratio < 100) { 476 bdi_min_ratio += min_ratio; 477 bdi->min_ratio += min_ratio; 478 } else { 479 ret = -EINVAL; 480 } 481 } 482 spin_unlock_bh(&bdi_lock); 483 484 return ret; 485 } 486 487 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 488 { 489 int ret = 0; 490 491 if (max_ratio > 100) 492 return -EINVAL; 493 494 spin_lock_bh(&bdi_lock); 495 if (bdi->min_ratio > max_ratio) { 496 ret = -EINVAL; 497 } else { 498 bdi->max_ratio = max_ratio; 499 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 500 } 501 spin_unlock_bh(&bdi_lock); 502 503 return ret; 504 } 505 EXPORT_SYMBOL(bdi_set_max_ratio); 506 507 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 508 unsigned long bg_thresh) 509 { 510 return (thresh + bg_thresh) / 2; 511 } 512 513 static unsigned long hard_dirty_limit(unsigned long thresh) 514 { 515 return max(thresh, global_dirty_limit); 516 } 517 518 /** 519 * bdi_dirty_limit - @bdi's share of dirty throttling threshold 520 * @bdi: the backing_dev_info to query 521 * @dirty: global dirty limit in pages 522 * 523 * Returns @bdi's dirty limit in pages. The term "dirty" in the context of 524 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 525 * 526 * Note that balance_dirty_pages() will only seriously take it as a hard limit 527 * when sleeping max_pause per page is not enough to keep the dirty pages under 528 * control. For example, when the device is completely stalled due to some error 529 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 530 * In the other normal situations, it acts more gently by throttling the tasks 531 * more (rather than completely block them) when the bdi dirty pages go high. 532 * 533 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 534 * - starving fast devices 535 * - piling up dirty pages (that will take long time to sync) on slow devices 536 * 537 * The bdi's share of dirty limit will be adapting to its throughput and 538 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 539 */ 540 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty) 541 { 542 u64 bdi_dirty; 543 long numerator, denominator; 544 545 /* 546 * Calculate this BDI's share of the dirty ratio. 547 */ 548 bdi_writeout_fraction(bdi, &numerator, &denominator); 549 550 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 551 bdi_dirty *= numerator; 552 do_div(bdi_dirty, denominator); 553 554 bdi_dirty += (dirty * bdi->min_ratio) / 100; 555 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 556 bdi_dirty = dirty * bdi->max_ratio / 100; 557 558 return bdi_dirty; 559 } 560 561 /* 562 * setpoint - dirty 3 563 * f(dirty) := 1.0 + (----------------) 564 * limit - setpoint 565 * 566 * it's a 3rd order polynomial that subjects to 567 * 568 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 569 * (2) f(setpoint) = 1.0 => the balance point 570 * (3) f(limit) = 0 => the hard limit 571 * (4) df/dx <= 0 => negative feedback control 572 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 573 * => fast response on large errors; small oscillation near setpoint 574 */ 575 static long long pos_ratio_polynom(unsigned long setpoint, 576 unsigned long dirty, 577 unsigned long limit) 578 { 579 long long pos_ratio; 580 long x; 581 582 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 583 limit - setpoint + 1); 584 pos_ratio = x; 585 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 586 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 587 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 588 589 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 590 } 591 592 /* 593 * Dirty position control. 594 * 595 * (o) global/bdi setpoints 596 * 597 * We want the dirty pages be balanced around the global/bdi setpoints. 598 * When the number of dirty pages is higher/lower than the setpoint, the 599 * dirty position control ratio (and hence task dirty ratelimit) will be 600 * decreased/increased to bring the dirty pages back to the setpoint. 601 * 602 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 603 * 604 * if (dirty < setpoint) scale up pos_ratio 605 * if (dirty > setpoint) scale down pos_ratio 606 * 607 * if (bdi_dirty < bdi_setpoint) scale up pos_ratio 608 * if (bdi_dirty > bdi_setpoint) scale down pos_ratio 609 * 610 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 611 * 612 * (o) global control line 613 * 614 * ^ pos_ratio 615 * | 616 * | |<===== global dirty control scope ======>| 617 * 2.0 .............* 618 * | .* 619 * | . * 620 * | . * 621 * | . * 622 * | . * 623 * | . * 624 * 1.0 ................................* 625 * | . . * 626 * | . . * 627 * | . . * 628 * | . . * 629 * | . . * 630 * 0 +------------.------------------.----------------------*-------------> 631 * freerun^ setpoint^ limit^ dirty pages 632 * 633 * (o) bdi control line 634 * 635 * ^ pos_ratio 636 * | 637 * | * 638 * | * 639 * | * 640 * | * 641 * | * |<=========== span ============>| 642 * 1.0 .......................* 643 * | . * 644 * | . * 645 * | . * 646 * | . * 647 * | . * 648 * | . * 649 * | . * 650 * | . * 651 * | . * 652 * | . * 653 * | . * 654 * 1/4 ...............................................* * * * * * * * * * * * 655 * | . . 656 * | . . 657 * | . . 658 * 0 +----------------------.-------------------------------.-------------> 659 * bdi_setpoint^ x_intercept^ 660 * 661 * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can 662 * be smoothly throttled down to normal if it starts high in situations like 663 * - start writing to a slow SD card and a fast disk at the same time. The SD 664 * card's bdi_dirty may rush to many times higher than bdi_setpoint. 665 * - the bdi dirty thresh drops quickly due to change of JBOD workload 666 */ 667 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi, 668 unsigned long thresh, 669 unsigned long bg_thresh, 670 unsigned long dirty, 671 unsigned long bdi_thresh, 672 unsigned long bdi_dirty) 673 { 674 unsigned long write_bw = bdi->avg_write_bandwidth; 675 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 676 unsigned long limit = hard_dirty_limit(thresh); 677 unsigned long x_intercept; 678 unsigned long setpoint; /* dirty pages' target balance point */ 679 unsigned long bdi_setpoint; 680 unsigned long span; 681 long long pos_ratio; /* for scaling up/down the rate limit */ 682 long x; 683 684 if (unlikely(dirty >= limit)) 685 return 0; 686 687 /* 688 * global setpoint 689 * 690 * See comment for pos_ratio_polynom(). 691 */ 692 setpoint = (freerun + limit) / 2; 693 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit); 694 695 /* 696 * The strictlimit feature is a tool preventing mistrusted filesystems 697 * from growing a large number of dirty pages before throttling. For 698 * such filesystems balance_dirty_pages always checks bdi counters 699 * against bdi limits. Even if global "nr_dirty" is under "freerun". 700 * This is especially important for fuse which sets bdi->max_ratio to 701 * 1% by default. Without strictlimit feature, fuse writeback may 702 * consume arbitrary amount of RAM because it is accounted in 703 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 704 * 705 * Here, in bdi_position_ratio(), we calculate pos_ratio based on 706 * two values: bdi_dirty and bdi_thresh. Let's consider an example: 707 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 708 * limits are set by default to 10% and 20% (background and throttle). 709 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 710 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is 711 * about ~6K pages (as the average of background and throttle bdi 712 * limits). The 3rd order polynomial will provide positive feedback if 713 * bdi_dirty is under bdi_setpoint and vice versa. 714 * 715 * Note, that we cannot use global counters in these calculations 716 * because we want to throttle process writing to a strictlimit BDI 717 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 718 * in the example above). 719 */ 720 if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 721 long long bdi_pos_ratio; 722 unsigned long bdi_bg_thresh; 723 724 if (bdi_dirty < 8) 725 return min_t(long long, pos_ratio * 2, 726 2 << RATELIMIT_CALC_SHIFT); 727 728 if (bdi_dirty >= bdi_thresh) 729 return 0; 730 731 bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh); 732 bdi_setpoint = dirty_freerun_ceiling(bdi_thresh, 733 bdi_bg_thresh); 734 735 if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh) 736 return 0; 737 738 bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty, 739 bdi_thresh); 740 741 /* 742 * Typically, for strictlimit case, bdi_setpoint << setpoint 743 * and pos_ratio >> bdi_pos_ratio. In the other words global 744 * state ("dirty") is not limiting factor and we have to 745 * make decision based on bdi counters. But there is an 746 * important case when global pos_ratio should get precedence: 747 * global limits are exceeded (e.g. due to activities on other 748 * BDIs) while given strictlimit BDI is below limit. 749 * 750 * "pos_ratio * bdi_pos_ratio" would work for the case above, 751 * but it would look too non-natural for the case of all 752 * activity in the system coming from a single strictlimit BDI 753 * with bdi->max_ratio == 100%. 754 * 755 * Note that min() below somewhat changes the dynamics of the 756 * control system. Normally, pos_ratio value can be well over 3 757 * (when globally we are at freerun and bdi is well below bdi 758 * setpoint). Now the maximum pos_ratio in the same situation 759 * is 2. We might want to tweak this if we observe the control 760 * system is too slow to adapt. 761 */ 762 return min(pos_ratio, bdi_pos_ratio); 763 } 764 765 /* 766 * We have computed basic pos_ratio above based on global situation. If 767 * the bdi is over/under its share of dirty pages, we want to scale 768 * pos_ratio further down/up. That is done by the following mechanism. 769 */ 770 771 /* 772 * bdi setpoint 773 * 774 * f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint) 775 * 776 * x_intercept - bdi_dirty 777 * := -------------------------- 778 * x_intercept - bdi_setpoint 779 * 780 * The main bdi control line is a linear function that subjects to 781 * 782 * (1) f(bdi_setpoint) = 1.0 783 * (2) k = - 1 / (8 * write_bw) (in single bdi case) 784 * or equally: x_intercept = bdi_setpoint + 8 * write_bw 785 * 786 * For single bdi case, the dirty pages are observed to fluctuate 787 * regularly within range 788 * [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2] 789 * for various filesystems, where (2) can yield in a reasonable 12.5% 790 * fluctuation range for pos_ratio. 791 * 792 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its 793 * own size, so move the slope over accordingly and choose a slope that 794 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh. 795 */ 796 if (unlikely(bdi_thresh > thresh)) 797 bdi_thresh = thresh; 798 /* 799 * It's very possible that bdi_thresh is close to 0 not because the 800 * device is slow, but that it has remained inactive for long time. 801 * Honour such devices a reasonable good (hopefully IO efficient) 802 * threshold, so that the occasional writes won't be blocked and active 803 * writes can rampup the threshold quickly. 804 */ 805 bdi_thresh = max(bdi_thresh, (limit - dirty) / 8); 806 /* 807 * scale global setpoint to bdi's: 808 * bdi_setpoint = setpoint * bdi_thresh / thresh 809 */ 810 x = div_u64((u64)bdi_thresh << 16, thresh + 1); 811 bdi_setpoint = setpoint * (u64)x >> 16; 812 /* 813 * Use span=(8*write_bw) in single bdi case as indicated by 814 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case. 815 * 816 * bdi_thresh thresh - bdi_thresh 817 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh 818 * thresh thresh 819 */ 820 span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16; 821 x_intercept = bdi_setpoint + span; 822 823 if (bdi_dirty < x_intercept - span / 4) { 824 pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty), 825 x_intercept - bdi_setpoint + 1); 826 } else 827 pos_ratio /= 4; 828 829 /* 830 * bdi reserve area, safeguard against dirty pool underrun and disk idle 831 * It may push the desired control point of global dirty pages higher 832 * than setpoint. 833 */ 834 x_intercept = bdi_thresh / 2; 835 if (bdi_dirty < x_intercept) { 836 if (bdi_dirty > x_intercept / 8) 837 pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty); 838 else 839 pos_ratio *= 8; 840 } 841 842 return pos_ratio; 843 } 844 845 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi, 846 unsigned long elapsed, 847 unsigned long written) 848 { 849 const unsigned long period = roundup_pow_of_two(3 * HZ); 850 unsigned long avg = bdi->avg_write_bandwidth; 851 unsigned long old = bdi->write_bandwidth; 852 u64 bw; 853 854 /* 855 * bw = written * HZ / elapsed 856 * 857 * bw * elapsed + write_bandwidth * (period - elapsed) 858 * write_bandwidth = --------------------------------------------------- 859 * period 860 */ 861 bw = written - bdi->written_stamp; 862 bw *= HZ; 863 if (unlikely(elapsed > period)) { 864 do_div(bw, elapsed); 865 avg = bw; 866 goto out; 867 } 868 bw += (u64)bdi->write_bandwidth * (period - elapsed); 869 bw >>= ilog2(period); 870 871 /* 872 * one more level of smoothing, for filtering out sudden spikes 873 */ 874 if (avg > old && old >= (unsigned long)bw) 875 avg -= (avg - old) >> 3; 876 877 if (avg < old && old <= (unsigned long)bw) 878 avg += (old - avg) >> 3; 879 880 out: 881 bdi->write_bandwidth = bw; 882 bdi->avg_write_bandwidth = avg; 883 } 884 885 /* 886 * The global dirtyable memory and dirty threshold could be suddenly knocked 887 * down by a large amount (eg. on the startup of KVM in a swapless system). 888 * This may throw the system into deep dirty exceeded state and throttle 889 * heavy/light dirtiers alike. To retain good responsiveness, maintain 890 * global_dirty_limit for tracking slowly down to the knocked down dirty 891 * threshold. 892 */ 893 static void update_dirty_limit(unsigned long thresh, unsigned long dirty) 894 { 895 unsigned long limit = global_dirty_limit; 896 897 /* 898 * Follow up in one step. 899 */ 900 if (limit < thresh) { 901 limit = thresh; 902 goto update; 903 } 904 905 /* 906 * Follow down slowly. Use the higher one as the target, because thresh 907 * may drop below dirty. This is exactly the reason to introduce 908 * global_dirty_limit which is guaranteed to lie above the dirty pages. 909 */ 910 thresh = max(thresh, dirty); 911 if (limit > thresh) { 912 limit -= (limit - thresh) >> 5; 913 goto update; 914 } 915 return; 916 update: 917 global_dirty_limit = limit; 918 } 919 920 static void global_update_bandwidth(unsigned long thresh, 921 unsigned long dirty, 922 unsigned long now) 923 { 924 static DEFINE_SPINLOCK(dirty_lock); 925 static unsigned long update_time; 926 927 /* 928 * check locklessly first to optimize away locking for the most time 929 */ 930 if (time_before(now, update_time + BANDWIDTH_INTERVAL)) 931 return; 932 933 spin_lock(&dirty_lock); 934 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) { 935 update_dirty_limit(thresh, dirty); 936 update_time = now; 937 } 938 spin_unlock(&dirty_lock); 939 } 940 941 /* 942 * Maintain bdi->dirty_ratelimit, the base dirty throttle rate. 943 * 944 * Normal bdi tasks will be curbed at or below it in long term. 945 * Obviously it should be around (write_bw / N) when there are N dd tasks. 946 */ 947 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi, 948 unsigned long thresh, 949 unsigned long bg_thresh, 950 unsigned long dirty, 951 unsigned long bdi_thresh, 952 unsigned long bdi_dirty, 953 unsigned long dirtied, 954 unsigned long elapsed) 955 { 956 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh); 957 unsigned long limit = hard_dirty_limit(thresh); 958 unsigned long setpoint = (freerun + limit) / 2; 959 unsigned long write_bw = bdi->avg_write_bandwidth; 960 unsigned long dirty_ratelimit = bdi->dirty_ratelimit; 961 unsigned long dirty_rate; 962 unsigned long task_ratelimit; 963 unsigned long balanced_dirty_ratelimit; 964 unsigned long pos_ratio; 965 unsigned long step; 966 unsigned long x; 967 968 /* 969 * The dirty rate will match the writeout rate in long term, except 970 * when dirty pages are truncated by userspace or re-dirtied by FS. 971 */ 972 dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed; 973 974 pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty, 975 bdi_thresh, bdi_dirty); 976 /* 977 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 978 */ 979 task_ratelimit = (u64)dirty_ratelimit * 980 pos_ratio >> RATELIMIT_CALC_SHIFT; 981 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 982 983 /* 984 * A linear estimation of the "balanced" throttle rate. The theory is, 985 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's 986 * dirty_rate will be measured to be (N * task_ratelimit). So the below 987 * formula will yield the balanced rate limit (write_bw / N). 988 * 989 * Note that the expanded form is not a pure rate feedback: 990 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 991 * but also takes pos_ratio into account: 992 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 993 * 994 * (1) is not realistic because pos_ratio also takes part in balancing 995 * the dirty rate. Consider the state 996 * pos_ratio = 0.5 (3) 997 * rate = 2 * (write_bw / N) (4) 998 * If (1) is used, it will stuck in that state! Because each dd will 999 * be throttled at 1000 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1001 * yielding 1002 * dirty_rate = N * task_ratelimit = write_bw (6) 1003 * put (6) into (1) we get 1004 * rate_(i+1) = rate_(i) (7) 1005 * 1006 * So we end up using (2) to always keep 1007 * rate_(i+1) ~= (write_bw / N) (8) 1008 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1009 * pos_ratio is able to drive itself to 1.0, which is not only where 1010 * the dirty count meet the setpoint, but also where the slope of 1011 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1012 */ 1013 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1014 dirty_rate | 1); 1015 /* 1016 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1017 */ 1018 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1019 balanced_dirty_ratelimit = write_bw; 1020 1021 /* 1022 * We could safely do this and return immediately: 1023 * 1024 * bdi->dirty_ratelimit = balanced_dirty_ratelimit; 1025 * 1026 * However to get a more stable dirty_ratelimit, the below elaborated 1027 * code makes use of task_ratelimit to filter out singular points and 1028 * limit the step size. 1029 * 1030 * The below code essentially only uses the relative value of 1031 * 1032 * task_ratelimit - dirty_ratelimit 1033 * = (pos_ratio - 1) * dirty_ratelimit 1034 * 1035 * which reflects the direction and size of dirty position error. 1036 */ 1037 1038 /* 1039 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1040 * task_ratelimit is on the same side of dirty_ratelimit, too. 1041 * For example, when 1042 * - dirty_ratelimit > balanced_dirty_ratelimit 1043 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1044 * lowering dirty_ratelimit will help meet both the position and rate 1045 * control targets. Otherwise, don't update dirty_ratelimit if it will 1046 * only help meet the rate target. After all, what the users ultimately 1047 * feel and care are stable dirty rate and small position error. 1048 * 1049 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1050 * and filter out the singular points of balanced_dirty_ratelimit. Which 1051 * keeps jumping around randomly and can even leap far away at times 1052 * due to the small 200ms estimation period of dirty_rate (we want to 1053 * keep that period small to reduce time lags). 1054 */ 1055 step = 0; 1056 1057 /* 1058 * For strictlimit case, calculations above were based on bdi counters 1059 * and limits (starting from pos_ratio = bdi_position_ratio() and up to 1060 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1061 * Hence, to calculate "step" properly, we have to use bdi_dirty as 1062 * "dirty" and bdi_setpoint as "setpoint". 1063 * 1064 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because 1065 * it's possible that bdi_thresh is close to zero due to inactivity 1066 * of backing device (see the implementation of bdi_dirty_limit()). 1067 */ 1068 if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1069 dirty = bdi_dirty; 1070 if (bdi_dirty < 8) 1071 setpoint = bdi_dirty + 1; 1072 else 1073 setpoint = (bdi_thresh + 1074 bdi_dirty_limit(bdi, bg_thresh)) / 2; 1075 } 1076 1077 if (dirty < setpoint) { 1078 x = min3(bdi->balanced_dirty_ratelimit, 1079 balanced_dirty_ratelimit, task_ratelimit); 1080 if (dirty_ratelimit < x) 1081 step = x - dirty_ratelimit; 1082 } else { 1083 x = max3(bdi->balanced_dirty_ratelimit, 1084 balanced_dirty_ratelimit, task_ratelimit); 1085 if (dirty_ratelimit > x) 1086 step = dirty_ratelimit - x; 1087 } 1088 1089 /* 1090 * Don't pursue 100% rate matching. It's impossible since the balanced 1091 * rate itself is constantly fluctuating. So decrease the track speed 1092 * when it gets close to the target. Helps eliminate pointless tremors. 1093 */ 1094 step >>= dirty_ratelimit / (2 * step + 1); 1095 /* 1096 * Limit the tracking speed to avoid overshooting. 1097 */ 1098 step = (step + 7) / 8; 1099 1100 if (dirty_ratelimit < balanced_dirty_ratelimit) 1101 dirty_ratelimit += step; 1102 else 1103 dirty_ratelimit -= step; 1104 1105 bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1106 bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1107 1108 trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit); 1109 } 1110 1111 void __bdi_update_bandwidth(struct backing_dev_info *bdi, 1112 unsigned long thresh, 1113 unsigned long bg_thresh, 1114 unsigned long dirty, 1115 unsigned long bdi_thresh, 1116 unsigned long bdi_dirty, 1117 unsigned long start_time) 1118 { 1119 unsigned long now = jiffies; 1120 unsigned long elapsed = now - bdi->bw_time_stamp; 1121 unsigned long dirtied; 1122 unsigned long written; 1123 1124 /* 1125 * rate-limit, only update once every 200ms. 1126 */ 1127 if (elapsed < BANDWIDTH_INTERVAL) 1128 return; 1129 1130 dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]); 1131 written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]); 1132 1133 /* 1134 * Skip quiet periods when disk bandwidth is under-utilized. 1135 * (at least 1s idle time between two flusher runs) 1136 */ 1137 if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time)) 1138 goto snapshot; 1139 1140 if (thresh) { 1141 global_update_bandwidth(thresh, dirty, now); 1142 bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty, 1143 bdi_thresh, bdi_dirty, 1144 dirtied, elapsed); 1145 } 1146 bdi_update_write_bandwidth(bdi, elapsed, written); 1147 1148 snapshot: 1149 bdi->dirtied_stamp = dirtied; 1150 bdi->written_stamp = written; 1151 bdi->bw_time_stamp = now; 1152 } 1153 1154 static void bdi_update_bandwidth(struct backing_dev_info *bdi, 1155 unsigned long thresh, 1156 unsigned long bg_thresh, 1157 unsigned long dirty, 1158 unsigned long bdi_thresh, 1159 unsigned long bdi_dirty, 1160 unsigned long start_time) 1161 { 1162 if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL)) 1163 return; 1164 spin_lock(&bdi->wb.list_lock); 1165 __bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty, 1166 bdi_thresh, bdi_dirty, start_time); 1167 spin_unlock(&bdi->wb.list_lock); 1168 } 1169 1170 /* 1171 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1172 * will look to see if it needs to start dirty throttling. 1173 * 1174 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1175 * global_page_state() too often. So scale it near-sqrt to the safety margin 1176 * (the number of pages we may dirty without exceeding the dirty limits). 1177 */ 1178 static unsigned long dirty_poll_interval(unsigned long dirty, 1179 unsigned long thresh) 1180 { 1181 if (thresh > dirty) 1182 return 1UL << (ilog2(thresh - dirty) >> 1); 1183 1184 return 1; 1185 } 1186 1187 static unsigned long bdi_max_pause(struct backing_dev_info *bdi, 1188 unsigned long bdi_dirty) 1189 { 1190 unsigned long bw = bdi->avg_write_bandwidth; 1191 unsigned long t; 1192 1193 /* 1194 * Limit pause time for small memory systems. If sleeping for too long 1195 * time, a small pool of dirty/writeback pages may go empty and disk go 1196 * idle. 1197 * 1198 * 8 serves as the safety ratio. 1199 */ 1200 t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1201 t++; 1202 1203 return min_t(unsigned long, t, MAX_PAUSE); 1204 } 1205 1206 static long bdi_min_pause(struct backing_dev_info *bdi, 1207 long max_pause, 1208 unsigned long task_ratelimit, 1209 unsigned long dirty_ratelimit, 1210 int *nr_dirtied_pause) 1211 { 1212 long hi = ilog2(bdi->avg_write_bandwidth); 1213 long lo = ilog2(bdi->dirty_ratelimit); 1214 long t; /* target pause */ 1215 long pause; /* estimated next pause */ 1216 int pages; /* target nr_dirtied_pause */ 1217 1218 /* target for 10ms pause on 1-dd case */ 1219 t = max(1, HZ / 100); 1220 1221 /* 1222 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1223 * overheads. 1224 * 1225 * (N * 10ms) on 2^N concurrent tasks. 1226 */ 1227 if (hi > lo) 1228 t += (hi - lo) * (10 * HZ) / 1024; 1229 1230 /* 1231 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1232 * on the much more stable dirty_ratelimit. However the next pause time 1233 * will be computed based on task_ratelimit and the two rate limits may 1234 * depart considerably at some time. Especially if task_ratelimit goes 1235 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1236 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1237 * result task_ratelimit won't be executed faithfully, which could 1238 * eventually bring down dirty_ratelimit. 1239 * 1240 * We apply two rules to fix it up: 1241 * 1) try to estimate the next pause time and if necessary, use a lower 1242 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1243 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1244 * 2) limit the target pause time to max_pause/2, so that the normal 1245 * small fluctuations of task_ratelimit won't trigger rule (1) and 1246 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1247 */ 1248 t = min(t, 1 + max_pause / 2); 1249 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1250 1251 /* 1252 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1253 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1254 * When the 16 consecutive reads are often interrupted by some dirty 1255 * throttling pause during the async writes, cfq will go into idles 1256 * (deadline is fine). So push nr_dirtied_pause as high as possible 1257 * until reaches DIRTY_POLL_THRESH=32 pages. 1258 */ 1259 if (pages < DIRTY_POLL_THRESH) { 1260 t = max_pause; 1261 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1262 if (pages > DIRTY_POLL_THRESH) { 1263 pages = DIRTY_POLL_THRESH; 1264 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1265 } 1266 } 1267 1268 pause = HZ * pages / (task_ratelimit + 1); 1269 if (pause > max_pause) { 1270 t = max_pause; 1271 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1272 } 1273 1274 *nr_dirtied_pause = pages; 1275 /* 1276 * The minimal pause time will normally be half the target pause time. 1277 */ 1278 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1279 } 1280 1281 static inline void bdi_dirty_limits(struct backing_dev_info *bdi, 1282 unsigned long dirty_thresh, 1283 unsigned long background_thresh, 1284 unsigned long *bdi_dirty, 1285 unsigned long *bdi_thresh, 1286 unsigned long *bdi_bg_thresh) 1287 { 1288 unsigned long bdi_reclaimable; 1289 1290 /* 1291 * bdi_thresh is not treated as some limiting factor as 1292 * dirty_thresh, due to reasons 1293 * - in JBOD setup, bdi_thresh can fluctuate a lot 1294 * - in a system with HDD and USB key, the USB key may somehow 1295 * go into state (bdi_dirty >> bdi_thresh) either because 1296 * bdi_dirty starts high, or because bdi_thresh drops low. 1297 * In this case we don't want to hard throttle the USB key 1298 * dirtiers for 100 seconds until bdi_dirty drops under 1299 * bdi_thresh. Instead the auxiliary bdi control line in 1300 * bdi_position_ratio() will let the dirtier task progress 1301 * at some rate <= (write_bw / 2) for bringing down bdi_dirty. 1302 */ 1303 *bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh); 1304 1305 if (bdi_bg_thresh) 1306 *bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh * 1307 background_thresh, 1308 dirty_thresh) : 0; 1309 1310 /* 1311 * In order to avoid the stacked BDI deadlock we need 1312 * to ensure we accurately count the 'dirty' pages when 1313 * the threshold is low. 1314 * 1315 * Otherwise it would be possible to get thresh+n pages 1316 * reported dirty, even though there are thresh-m pages 1317 * actually dirty; with m+n sitting in the percpu 1318 * deltas. 1319 */ 1320 if (*bdi_thresh < 2 * bdi_stat_error(bdi)) { 1321 bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 1322 *bdi_dirty = bdi_reclaimable + 1323 bdi_stat_sum(bdi, BDI_WRITEBACK); 1324 } else { 1325 bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 1326 *bdi_dirty = bdi_reclaimable + 1327 bdi_stat(bdi, BDI_WRITEBACK); 1328 } 1329 } 1330 1331 /* 1332 * balance_dirty_pages() must be called by processes which are generating dirty 1333 * data. It looks at the number of dirty pages in the machine and will force 1334 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1335 * If we're over `background_thresh' then the writeback threads are woken to 1336 * perform some writeout. 1337 */ 1338 static void balance_dirty_pages(struct address_space *mapping, 1339 unsigned long pages_dirtied) 1340 { 1341 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1342 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */ 1343 unsigned long background_thresh; 1344 unsigned long dirty_thresh; 1345 long period; 1346 long pause; 1347 long max_pause; 1348 long min_pause; 1349 int nr_dirtied_pause; 1350 bool dirty_exceeded = false; 1351 unsigned long task_ratelimit; 1352 unsigned long dirty_ratelimit; 1353 unsigned long pos_ratio; 1354 struct backing_dev_info *bdi = mapping->backing_dev_info; 1355 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1356 unsigned long start_time = jiffies; 1357 1358 for (;;) { 1359 unsigned long now = jiffies; 1360 unsigned long uninitialized_var(bdi_thresh); 1361 unsigned long thresh; 1362 unsigned long uninitialized_var(bdi_dirty); 1363 unsigned long dirty; 1364 unsigned long bg_thresh; 1365 1366 /* 1367 * Unstable writes are a feature of certain networked 1368 * filesystems (i.e. NFS) in which data may have been 1369 * written to the server's write cache, but has not yet 1370 * been flushed to permanent storage. 1371 */ 1372 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1373 global_page_state(NR_UNSTABLE_NFS); 1374 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1375 1376 global_dirty_limits(&background_thresh, &dirty_thresh); 1377 1378 if (unlikely(strictlimit)) { 1379 bdi_dirty_limits(bdi, dirty_thresh, background_thresh, 1380 &bdi_dirty, &bdi_thresh, &bg_thresh); 1381 1382 dirty = bdi_dirty; 1383 thresh = bdi_thresh; 1384 } else { 1385 dirty = nr_dirty; 1386 thresh = dirty_thresh; 1387 bg_thresh = background_thresh; 1388 } 1389 1390 /* 1391 * Throttle it only when the background writeback cannot 1392 * catch-up. This avoids (excessively) small writeouts 1393 * when the bdi limits are ramping up in case of !strictlimit. 1394 * 1395 * In strictlimit case make decision based on the bdi counters 1396 * and limits. Small writeouts when the bdi limits are ramping 1397 * up are the price we consciously pay for strictlimit-ing. 1398 */ 1399 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) { 1400 current->dirty_paused_when = now; 1401 current->nr_dirtied = 0; 1402 current->nr_dirtied_pause = 1403 dirty_poll_interval(dirty, thresh); 1404 break; 1405 } 1406 1407 if (unlikely(!writeback_in_progress(bdi))) 1408 bdi_start_background_writeback(bdi); 1409 1410 if (!strictlimit) 1411 bdi_dirty_limits(bdi, dirty_thresh, background_thresh, 1412 &bdi_dirty, &bdi_thresh, NULL); 1413 1414 dirty_exceeded = (bdi_dirty > bdi_thresh) && 1415 ((nr_dirty > dirty_thresh) || strictlimit); 1416 if (dirty_exceeded && !bdi->dirty_exceeded) 1417 bdi->dirty_exceeded = 1; 1418 1419 bdi_update_bandwidth(bdi, dirty_thresh, background_thresh, 1420 nr_dirty, bdi_thresh, bdi_dirty, 1421 start_time); 1422 1423 dirty_ratelimit = bdi->dirty_ratelimit; 1424 pos_ratio = bdi_position_ratio(bdi, dirty_thresh, 1425 background_thresh, nr_dirty, 1426 bdi_thresh, bdi_dirty); 1427 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >> 1428 RATELIMIT_CALC_SHIFT; 1429 max_pause = bdi_max_pause(bdi, bdi_dirty); 1430 min_pause = bdi_min_pause(bdi, max_pause, 1431 task_ratelimit, dirty_ratelimit, 1432 &nr_dirtied_pause); 1433 1434 if (unlikely(task_ratelimit == 0)) { 1435 period = max_pause; 1436 pause = max_pause; 1437 goto pause; 1438 } 1439 period = HZ * pages_dirtied / task_ratelimit; 1440 pause = period; 1441 if (current->dirty_paused_when) 1442 pause -= now - current->dirty_paused_when; 1443 /* 1444 * For less than 1s think time (ext3/4 may block the dirtier 1445 * for up to 800ms from time to time on 1-HDD; so does xfs, 1446 * however at much less frequency), try to compensate it in 1447 * future periods by updating the virtual time; otherwise just 1448 * do a reset, as it may be a light dirtier. 1449 */ 1450 if (pause < min_pause) { 1451 trace_balance_dirty_pages(bdi, 1452 dirty_thresh, 1453 background_thresh, 1454 nr_dirty, 1455 bdi_thresh, 1456 bdi_dirty, 1457 dirty_ratelimit, 1458 task_ratelimit, 1459 pages_dirtied, 1460 period, 1461 min(pause, 0L), 1462 start_time); 1463 if (pause < -HZ) { 1464 current->dirty_paused_when = now; 1465 current->nr_dirtied = 0; 1466 } else if (period) { 1467 current->dirty_paused_when += period; 1468 current->nr_dirtied = 0; 1469 } else if (current->nr_dirtied_pause <= pages_dirtied) 1470 current->nr_dirtied_pause += pages_dirtied; 1471 break; 1472 } 1473 if (unlikely(pause > max_pause)) { 1474 /* for occasional dropped task_ratelimit */ 1475 now += min(pause - max_pause, max_pause); 1476 pause = max_pause; 1477 } 1478 1479 pause: 1480 trace_balance_dirty_pages(bdi, 1481 dirty_thresh, 1482 background_thresh, 1483 nr_dirty, 1484 bdi_thresh, 1485 bdi_dirty, 1486 dirty_ratelimit, 1487 task_ratelimit, 1488 pages_dirtied, 1489 period, 1490 pause, 1491 start_time); 1492 __set_current_state(TASK_KILLABLE); 1493 io_schedule_timeout(pause); 1494 1495 current->dirty_paused_when = now + pause; 1496 current->nr_dirtied = 0; 1497 current->nr_dirtied_pause = nr_dirtied_pause; 1498 1499 /* 1500 * This is typically equal to (nr_dirty < dirty_thresh) and can 1501 * also keep "1000+ dd on a slow USB stick" under control. 1502 */ 1503 if (task_ratelimit) 1504 break; 1505 1506 /* 1507 * In the case of an unresponding NFS server and the NFS dirty 1508 * pages exceeds dirty_thresh, give the other good bdi's a pipe 1509 * to go through, so that tasks on them still remain responsive. 1510 * 1511 * In theory 1 page is enough to keep the comsumer-producer 1512 * pipe going: the flusher cleans 1 page => the task dirties 1 1513 * more page. However bdi_dirty has accounting errors. So use 1514 * the larger and more IO friendly bdi_stat_error. 1515 */ 1516 if (bdi_dirty <= bdi_stat_error(bdi)) 1517 break; 1518 1519 if (fatal_signal_pending(current)) 1520 break; 1521 } 1522 1523 if (!dirty_exceeded && bdi->dirty_exceeded) 1524 bdi->dirty_exceeded = 0; 1525 1526 if (writeback_in_progress(bdi)) 1527 return; 1528 1529 /* 1530 * In laptop mode, we wait until hitting the higher threshold before 1531 * starting background writeout, and then write out all the way down 1532 * to the lower threshold. So slow writers cause minimal disk activity. 1533 * 1534 * In normal mode, we start background writeout at the lower 1535 * background_thresh, to keep the amount of dirty memory low. 1536 */ 1537 if (laptop_mode) 1538 return; 1539 1540 if (nr_reclaimable > background_thresh) 1541 bdi_start_background_writeback(bdi); 1542 } 1543 1544 void set_page_dirty_balance(struct page *page) 1545 { 1546 if (set_page_dirty(page)) { 1547 struct address_space *mapping = page_mapping(page); 1548 1549 if (mapping) 1550 balance_dirty_pages_ratelimited(mapping); 1551 } 1552 } 1553 1554 static DEFINE_PER_CPU(int, bdp_ratelimits); 1555 1556 /* 1557 * Normal tasks are throttled by 1558 * loop { 1559 * dirty tsk->nr_dirtied_pause pages; 1560 * take a snap in balance_dirty_pages(); 1561 * } 1562 * However there is a worst case. If every task exit immediately when dirtied 1563 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1564 * called to throttle the page dirties. The solution is to save the not yet 1565 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1566 * randomly into the running tasks. This works well for the above worst case, 1567 * as the new task will pick up and accumulate the old task's leaked dirty 1568 * count and eventually get throttled. 1569 */ 1570 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1571 1572 /** 1573 * balance_dirty_pages_ratelimited - balance dirty memory state 1574 * @mapping: address_space which was dirtied 1575 * 1576 * Processes which are dirtying memory should call in here once for each page 1577 * which was newly dirtied. The function will periodically check the system's 1578 * dirty state and will initiate writeback if needed. 1579 * 1580 * On really big machines, get_writeback_state is expensive, so try to avoid 1581 * calling it too often (ratelimiting). But once we're over the dirty memory 1582 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1583 * from overshooting the limit by (ratelimit_pages) each. 1584 */ 1585 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1586 { 1587 struct backing_dev_info *bdi = mapping->backing_dev_info; 1588 int ratelimit; 1589 int *p; 1590 1591 if (!bdi_cap_account_dirty(bdi)) 1592 return; 1593 1594 ratelimit = current->nr_dirtied_pause; 1595 if (bdi->dirty_exceeded) 1596 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1597 1598 preempt_disable(); 1599 /* 1600 * This prevents one CPU to accumulate too many dirtied pages without 1601 * calling into balance_dirty_pages(), which can happen when there are 1602 * 1000+ tasks, all of them start dirtying pages at exactly the same 1603 * time, hence all honoured too large initial task->nr_dirtied_pause. 1604 */ 1605 p = this_cpu_ptr(&bdp_ratelimits); 1606 if (unlikely(current->nr_dirtied >= ratelimit)) 1607 *p = 0; 1608 else if (unlikely(*p >= ratelimit_pages)) { 1609 *p = 0; 1610 ratelimit = 0; 1611 } 1612 /* 1613 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1614 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1615 * the dirty throttling and livelock other long-run dirtiers. 1616 */ 1617 p = this_cpu_ptr(&dirty_throttle_leaks); 1618 if (*p > 0 && current->nr_dirtied < ratelimit) { 1619 unsigned long nr_pages_dirtied; 1620 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1621 *p -= nr_pages_dirtied; 1622 current->nr_dirtied += nr_pages_dirtied; 1623 } 1624 preempt_enable(); 1625 1626 if (unlikely(current->nr_dirtied >= ratelimit)) 1627 balance_dirty_pages(mapping, current->nr_dirtied); 1628 } 1629 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1630 1631 void throttle_vm_writeout(gfp_t gfp_mask) 1632 { 1633 unsigned long background_thresh; 1634 unsigned long dirty_thresh; 1635 1636 for ( ; ; ) { 1637 global_dirty_limits(&background_thresh, &dirty_thresh); 1638 dirty_thresh = hard_dirty_limit(dirty_thresh); 1639 1640 /* 1641 * Boost the allowable dirty threshold a bit for page 1642 * allocators so they don't get DoS'ed by heavy writers 1643 */ 1644 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1645 1646 if (global_page_state(NR_UNSTABLE_NFS) + 1647 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1648 break; 1649 congestion_wait(BLK_RW_ASYNC, HZ/10); 1650 1651 /* 1652 * The caller might hold locks which can prevent IO completion 1653 * or progress in the filesystem. So we cannot just sit here 1654 * waiting for IO to complete. 1655 */ 1656 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1657 break; 1658 } 1659 } 1660 1661 /* 1662 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1663 */ 1664 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1665 void __user *buffer, size_t *length, loff_t *ppos) 1666 { 1667 proc_dointvec(table, write, buffer, length, ppos); 1668 return 0; 1669 } 1670 1671 #ifdef CONFIG_BLOCK 1672 void laptop_mode_timer_fn(unsigned long data) 1673 { 1674 struct request_queue *q = (struct request_queue *)data; 1675 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1676 global_page_state(NR_UNSTABLE_NFS); 1677 1678 /* 1679 * We want to write everything out, not just down to the dirty 1680 * threshold 1681 */ 1682 if (bdi_has_dirty_io(&q->backing_dev_info)) 1683 bdi_start_writeback(&q->backing_dev_info, nr_pages, 1684 WB_REASON_LAPTOP_TIMER); 1685 } 1686 1687 /* 1688 * We've spun up the disk and we're in laptop mode: schedule writeback 1689 * of all dirty data a few seconds from now. If the flush is already scheduled 1690 * then push it back - the user is still using the disk. 1691 */ 1692 void laptop_io_completion(struct backing_dev_info *info) 1693 { 1694 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 1695 } 1696 1697 /* 1698 * We're in laptop mode and we've just synced. The sync's writes will have 1699 * caused another writeback to be scheduled by laptop_io_completion. 1700 * Nothing needs to be written back anymore, so we unschedule the writeback. 1701 */ 1702 void laptop_sync_completion(void) 1703 { 1704 struct backing_dev_info *bdi; 1705 1706 rcu_read_lock(); 1707 1708 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 1709 del_timer(&bdi->laptop_mode_wb_timer); 1710 1711 rcu_read_unlock(); 1712 } 1713 #endif 1714 1715 /* 1716 * If ratelimit_pages is too high then we can get into dirty-data overload 1717 * if a large number of processes all perform writes at the same time. 1718 * If it is too low then SMP machines will call the (expensive) 1719 * get_writeback_state too often. 1720 * 1721 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 1722 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 1723 * thresholds. 1724 */ 1725 1726 void writeback_set_ratelimit(void) 1727 { 1728 unsigned long background_thresh; 1729 unsigned long dirty_thresh; 1730 global_dirty_limits(&background_thresh, &dirty_thresh); 1731 global_dirty_limit = dirty_thresh; 1732 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 1733 if (ratelimit_pages < 16) 1734 ratelimit_pages = 16; 1735 } 1736 1737 static int 1738 ratelimit_handler(struct notifier_block *self, unsigned long action, 1739 void *hcpu) 1740 { 1741 1742 switch (action & ~CPU_TASKS_FROZEN) { 1743 case CPU_ONLINE: 1744 case CPU_DEAD: 1745 writeback_set_ratelimit(); 1746 return NOTIFY_OK; 1747 default: 1748 return NOTIFY_DONE; 1749 } 1750 } 1751 1752 static struct notifier_block ratelimit_nb = { 1753 .notifier_call = ratelimit_handler, 1754 .next = NULL, 1755 }; 1756 1757 /* 1758 * Called early on to tune the page writeback dirty limits. 1759 * 1760 * We used to scale dirty pages according to how total memory 1761 * related to pages that could be allocated for buffers (by 1762 * comparing nr_free_buffer_pages() to vm_total_pages. 1763 * 1764 * However, that was when we used "dirty_ratio" to scale with 1765 * all memory, and we don't do that any more. "dirty_ratio" 1766 * is now applied to total non-HIGHPAGE memory (by subtracting 1767 * totalhigh_pages from vm_total_pages), and as such we can't 1768 * get into the old insane situation any more where we had 1769 * large amounts of dirty pages compared to a small amount of 1770 * non-HIGHMEM memory. 1771 * 1772 * But we might still want to scale the dirty_ratio by how 1773 * much memory the box has.. 1774 */ 1775 void __init page_writeback_init(void) 1776 { 1777 writeback_set_ratelimit(); 1778 register_cpu_notifier(&ratelimit_nb); 1779 1780 fprop_global_init(&writeout_completions, GFP_KERNEL); 1781 } 1782 1783 /** 1784 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 1785 * @mapping: address space structure to write 1786 * @start: starting page index 1787 * @end: ending page index (inclusive) 1788 * 1789 * This function scans the page range from @start to @end (inclusive) and tags 1790 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 1791 * that write_cache_pages (or whoever calls this function) will then use 1792 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 1793 * used to avoid livelocking of writeback by a process steadily creating new 1794 * dirty pages in the file (thus it is important for this function to be quick 1795 * so that it can tag pages faster than a dirtying process can create them). 1796 */ 1797 /* 1798 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 1799 */ 1800 void tag_pages_for_writeback(struct address_space *mapping, 1801 pgoff_t start, pgoff_t end) 1802 { 1803 #define WRITEBACK_TAG_BATCH 4096 1804 unsigned long tagged; 1805 1806 do { 1807 spin_lock_irq(&mapping->tree_lock); 1808 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 1809 &start, end, WRITEBACK_TAG_BATCH, 1810 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 1811 spin_unlock_irq(&mapping->tree_lock); 1812 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 1813 cond_resched(); 1814 /* We check 'start' to handle wrapping when end == ~0UL */ 1815 } while (tagged >= WRITEBACK_TAG_BATCH && start); 1816 } 1817 EXPORT_SYMBOL(tag_pages_for_writeback); 1818 1819 /** 1820 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 1821 * @mapping: address space structure to write 1822 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 1823 * @writepage: function called for each page 1824 * @data: data passed to writepage function 1825 * 1826 * If a page is already under I/O, write_cache_pages() skips it, even 1827 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 1828 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 1829 * and msync() need to guarantee that all the data which was dirty at the time 1830 * the call was made get new I/O started against them. If wbc->sync_mode is 1831 * WB_SYNC_ALL then we were called for data integrity and we must wait for 1832 * existing IO to complete. 1833 * 1834 * To avoid livelocks (when other process dirties new pages), we first tag 1835 * pages which should be written back with TOWRITE tag and only then start 1836 * writing them. For data-integrity sync we have to be careful so that we do 1837 * not miss some pages (e.g., because some other process has cleared TOWRITE 1838 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 1839 * by the process clearing the DIRTY tag (and submitting the page for IO). 1840 */ 1841 int write_cache_pages(struct address_space *mapping, 1842 struct writeback_control *wbc, writepage_t writepage, 1843 void *data) 1844 { 1845 int ret = 0; 1846 int done = 0; 1847 struct pagevec pvec; 1848 int nr_pages; 1849 pgoff_t uninitialized_var(writeback_index); 1850 pgoff_t index; 1851 pgoff_t end; /* Inclusive */ 1852 pgoff_t done_index; 1853 int cycled; 1854 int range_whole = 0; 1855 int tag; 1856 1857 pagevec_init(&pvec, 0); 1858 if (wbc->range_cyclic) { 1859 writeback_index = mapping->writeback_index; /* prev offset */ 1860 index = writeback_index; 1861 if (index == 0) 1862 cycled = 1; 1863 else 1864 cycled = 0; 1865 end = -1; 1866 } else { 1867 index = wbc->range_start >> PAGE_CACHE_SHIFT; 1868 end = wbc->range_end >> PAGE_CACHE_SHIFT; 1869 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 1870 range_whole = 1; 1871 cycled = 1; /* ignore range_cyclic tests */ 1872 } 1873 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1874 tag = PAGECACHE_TAG_TOWRITE; 1875 else 1876 tag = PAGECACHE_TAG_DIRTY; 1877 retry: 1878 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 1879 tag_pages_for_writeback(mapping, index, end); 1880 done_index = index; 1881 while (!done && (index <= end)) { 1882 int i; 1883 1884 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 1885 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 1886 if (nr_pages == 0) 1887 break; 1888 1889 for (i = 0; i < nr_pages; i++) { 1890 struct page *page = pvec.pages[i]; 1891 1892 /* 1893 * At this point, the page may be truncated or 1894 * invalidated (changing page->mapping to NULL), or 1895 * even swizzled back from swapper_space to tmpfs file 1896 * mapping. However, page->index will not change 1897 * because we have a reference on the page. 1898 */ 1899 if (page->index > end) { 1900 /* 1901 * can't be range_cyclic (1st pass) because 1902 * end == -1 in that case. 1903 */ 1904 done = 1; 1905 break; 1906 } 1907 1908 done_index = page->index; 1909 1910 lock_page(page); 1911 1912 /* 1913 * Page truncated or invalidated. We can freely skip it 1914 * then, even for data integrity operations: the page 1915 * has disappeared concurrently, so there could be no 1916 * real expectation of this data interity operation 1917 * even if there is now a new, dirty page at the same 1918 * pagecache address. 1919 */ 1920 if (unlikely(page->mapping != mapping)) { 1921 continue_unlock: 1922 unlock_page(page); 1923 continue; 1924 } 1925 1926 if (!PageDirty(page)) { 1927 /* someone wrote it for us */ 1928 goto continue_unlock; 1929 } 1930 1931 if (PageWriteback(page)) { 1932 if (wbc->sync_mode != WB_SYNC_NONE) 1933 wait_on_page_writeback(page); 1934 else 1935 goto continue_unlock; 1936 } 1937 1938 BUG_ON(PageWriteback(page)); 1939 if (!clear_page_dirty_for_io(page)) 1940 goto continue_unlock; 1941 1942 trace_wbc_writepage(wbc, mapping->backing_dev_info); 1943 ret = (*writepage)(page, wbc, data); 1944 if (unlikely(ret)) { 1945 if (ret == AOP_WRITEPAGE_ACTIVATE) { 1946 unlock_page(page); 1947 ret = 0; 1948 } else { 1949 /* 1950 * done_index is set past this page, 1951 * so media errors will not choke 1952 * background writeout for the entire 1953 * file. This has consequences for 1954 * range_cyclic semantics (ie. it may 1955 * not be suitable for data integrity 1956 * writeout). 1957 */ 1958 done_index = page->index + 1; 1959 done = 1; 1960 break; 1961 } 1962 } 1963 1964 /* 1965 * We stop writing back only if we are not doing 1966 * integrity sync. In case of integrity sync we have to 1967 * keep going until we have written all the pages 1968 * we tagged for writeback prior to entering this loop. 1969 */ 1970 if (--wbc->nr_to_write <= 0 && 1971 wbc->sync_mode == WB_SYNC_NONE) { 1972 done = 1; 1973 break; 1974 } 1975 } 1976 pagevec_release(&pvec); 1977 cond_resched(); 1978 } 1979 if (!cycled && !done) { 1980 /* 1981 * range_cyclic: 1982 * We hit the last page and there is more work to be done: wrap 1983 * back to the start of the file 1984 */ 1985 cycled = 1; 1986 index = 0; 1987 end = writeback_index - 1; 1988 goto retry; 1989 } 1990 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 1991 mapping->writeback_index = done_index; 1992 1993 return ret; 1994 } 1995 EXPORT_SYMBOL(write_cache_pages); 1996 1997 /* 1998 * Function used by generic_writepages to call the real writepage 1999 * function and set the mapping flags on error 2000 */ 2001 static int __writepage(struct page *page, struct writeback_control *wbc, 2002 void *data) 2003 { 2004 struct address_space *mapping = data; 2005 int ret = mapping->a_ops->writepage(page, wbc); 2006 mapping_set_error(mapping, ret); 2007 return ret; 2008 } 2009 2010 /** 2011 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2012 * @mapping: address space structure to write 2013 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2014 * 2015 * This is a library function, which implements the writepages() 2016 * address_space_operation. 2017 */ 2018 int generic_writepages(struct address_space *mapping, 2019 struct writeback_control *wbc) 2020 { 2021 struct blk_plug plug; 2022 int ret; 2023 2024 /* deal with chardevs and other special file */ 2025 if (!mapping->a_ops->writepage) 2026 return 0; 2027 2028 blk_start_plug(&plug); 2029 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2030 blk_finish_plug(&plug); 2031 return ret; 2032 } 2033 2034 EXPORT_SYMBOL(generic_writepages); 2035 2036 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2037 { 2038 int ret; 2039 2040 if (wbc->nr_to_write <= 0) 2041 return 0; 2042 if (mapping->a_ops->writepages) 2043 ret = mapping->a_ops->writepages(mapping, wbc); 2044 else 2045 ret = generic_writepages(mapping, wbc); 2046 return ret; 2047 } 2048 2049 /** 2050 * write_one_page - write out a single page and optionally wait on I/O 2051 * @page: the page to write 2052 * @wait: if true, wait on writeout 2053 * 2054 * The page must be locked by the caller and will be unlocked upon return. 2055 * 2056 * write_one_page() returns a negative error code if I/O failed. 2057 */ 2058 int write_one_page(struct page *page, int wait) 2059 { 2060 struct address_space *mapping = page->mapping; 2061 int ret = 0; 2062 struct writeback_control wbc = { 2063 .sync_mode = WB_SYNC_ALL, 2064 .nr_to_write = 1, 2065 }; 2066 2067 BUG_ON(!PageLocked(page)); 2068 2069 if (wait) 2070 wait_on_page_writeback(page); 2071 2072 if (clear_page_dirty_for_io(page)) { 2073 page_cache_get(page); 2074 ret = mapping->a_ops->writepage(page, &wbc); 2075 if (ret == 0 && wait) { 2076 wait_on_page_writeback(page); 2077 if (PageError(page)) 2078 ret = -EIO; 2079 } 2080 page_cache_release(page); 2081 } else { 2082 unlock_page(page); 2083 } 2084 return ret; 2085 } 2086 EXPORT_SYMBOL(write_one_page); 2087 2088 /* 2089 * For address_spaces which do not use buffers nor write back. 2090 */ 2091 int __set_page_dirty_no_writeback(struct page *page) 2092 { 2093 if (!PageDirty(page)) 2094 return !TestSetPageDirty(page); 2095 return 0; 2096 } 2097 2098 /* 2099 * Helper function for set_page_dirty family. 2100 * NOTE: This relies on being atomic wrt interrupts. 2101 */ 2102 void account_page_dirtied(struct page *page, struct address_space *mapping) 2103 { 2104 trace_writeback_dirty_page(page, mapping); 2105 2106 if (mapping_cap_account_dirty(mapping)) { 2107 __inc_zone_page_state(page, NR_FILE_DIRTY); 2108 __inc_zone_page_state(page, NR_DIRTIED); 2109 __inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE); 2110 __inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2111 task_io_account_write(PAGE_CACHE_SIZE); 2112 current->nr_dirtied++; 2113 this_cpu_inc(bdp_ratelimits); 2114 } 2115 } 2116 EXPORT_SYMBOL(account_page_dirtied); 2117 2118 /* 2119 * For address_spaces which do not use buffers. Just tag the page as dirty in 2120 * its radix tree. 2121 * 2122 * This is also used when a single buffer is being dirtied: we want to set the 2123 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2124 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2125 * 2126 * Most callers have locked the page, which pins the address_space in memory. 2127 * But zap_pte_range() does not lock the page, however in that case the 2128 * mapping is pinned by the vma's ->vm_file reference. 2129 * 2130 * We take care to handle the case where the page was truncated from the 2131 * mapping by re-checking page_mapping() inside tree_lock. 2132 */ 2133 int __set_page_dirty_nobuffers(struct page *page) 2134 { 2135 if (!TestSetPageDirty(page)) { 2136 struct address_space *mapping = page_mapping(page); 2137 struct address_space *mapping2; 2138 unsigned long flags; 2139 2140 if (!mapping) 2141 return 1; 2142 2143 spin_lock_irqsave(&mapping->tree_lock, flags); 2144 mapping2 = page_mapping(page); 2145 if (mapping2) { /* Race with truncate? */ 2146 BUG_ON(mapping2 != mapping); 2147 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2148 account_page_dirtied(page, mapping); 2149 radix_tree_tag_set(&mapping->page_tree, 2150 page_index(page), PAGECACHE_TAG_DIRTY); 2151 } 2152 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2153 if (mapping->host) { 2154 /* !PageAnon && !swapper_space */ 2155 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2156 } 2157 return 1; 2158 } 2159 return 0; 2160 } 2161 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2162 2163 /* 2164 * Call this whenever redirtying a page, to de-account the dirty counters 2165 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2166 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2167 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2168 * control. 2169 */ 2170 void account_page_redirty(struct page *page) 2171 { 2172 struct address_space *mapping = page->mapping; 2173 if (mapping && mapping_cap_account_dirty(mapping)) { 2174 current->nr_dirtied--; 2175 dec_zone_page_state(page, NR_DIRTIED); 2176 dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED); 2177 } 2178 } 2179 EXPORT_SYMBOL(account_page_redirty); 2180 2181 /* 2182 * When a writepage implementation decides that it doesn't want to write this 2183 * page for some reason, it should redirty the locked page via 2184 * redirty_page_for_writepage() and it should then unlock the page and return 0 2185 */ 2186 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2187 { 2188 wbc->pages_skipped++; 2189 account_page_redirty(page); 2190 return __set_page_dirty_nobuffers(page); 2191 } 2192 EXPORT_SYMBOL(redirty_page_for_writepage); 2193 2194 /* 2195 * Dirty a page. 2196 * 2197 * For pages with a mapping this should be done under the page lock 2198 * for the benefit of asynchronous memory errors who prefer a consistent 2199 * dirty state. This rule can be broken in some special cases, 2200 * but should be better not to. 2201 * 2202 * If the mapping doesn't provide a set_page_dirty a_op, then 2203 * just fall through and assume that it wants buffer_heads. 2204 */ 2205 int set_page_dirty(struct page *page) 2206 { 2207 struct address_space *mapping = page_mapping(page); 2208 2209 if (likely(mapping)) { 2210 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2211 /* 2212 * readahead/lru_deactivate_page could remain 2213 * PG_readahead/PG_reclaim due to race with end_page_writeback 2214 * About readahead, if the page is written, the flags would be 2215 * reset. So no problem. 2216 * About lru_deactivate_page, if the page is redirty, the flag 2217 * will be reset. So no problem. but if the page is used by readahead 2218 * it will confuse readahead and make it restart the size rampup 2219 * process. But it's a trivial problem. 2220 */ 2221 ClearPageReclaim(page); 2222 #ifdef CONFIG_BLOCK 2223 if (!spd) 2224 spd = __set_page_dirty_buffers; 2225 #endif 2226 return (*spd)(page); 2227 } 2228 if (!PageDirty(page)) { 2229 if (!TestSetPageDirty(page)) 2230 return 1; 2231 } 2232 return 0; 2233 } 2234 EXPORT_SYMBOL(set_page_dirty); 2235 2236 /* 2237 * set_page_dirty() is racy if the caller has no reference against 2238 * page->mapping->host, and if the page is unlocked. This is because another 2239 * CPU could truncate the page off the mapping and then free the mapping. 2240 * 2241 * Usually, the page _is_ locked, or the caller is a user-space process which 2242 * holds a reference on the inode by having an open file. 2243 * 2244 * In other cases, the page should be locked before running set_page_dirty(). 2245 */ 2246 int set_page_dirty_lock(struct page *page) 2247 { 2248 int ret; 2249 2250 lock_page(page); 2251 ret = set_page_dirty(page); 2252 unlock_page(page); 2253 return ret; 2254 } 2255 EXPORT_SYMBOL(set_page_dirty_lock); 2256 2257 /* 2258 * Clear a page's dirty flag, while caring for dirty memory accounting. 2259 * Returns true if the page was previously dirty. 2260 * 2261 * This is for preparing to put the page under writeout. We leave the page 2262 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2263 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2264 * implementation will run either set_page_writeback() or set_page_dirty(), 2265 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2266 * back into sync. 2267 * 2268 * This incoherency between the page's dirty flag and radix-tree tag is 2269 * unfortunate, but it only exists while the page is locked. 2270 */ 2271 int clear_page_dirty_for_io(struct page *page) 2272 { 2273 struct address_space *mapping = page_mapping(page); 2274 2275 BUG_ON(!PageLocked(page)); 2276 2277 if (mapping && mapping_cap_account_dirty(mapping)) { 2278 /* 2279 * Yes, Virginia, this is indeed insane. 2280 * 2281 * We use this sequence to make sure that 2282 * (a) we account for dirty stats properly 2283 * (b) we tell the low-level filesystem to 2284 * mark the whole page dirty if it was 2285 * dirty in a pagetable. Only to then 2286 * (c) clean the page again and return 1 to 2287 * cause the writeback. 2288 * 2289 * This way we avoid all nasty races with the 2290 * dirty bit in multiple places and clearing 2291 * them concurrently from different threads. 2292 * 2293 * Note! Normally the "set_page_dirty(page)" 2294 * has no effect on the actual dirty bit - since 2295 * that will already usually be set. But we 2296 * need the side effects, and it can help us 2297 * avoid races. 2298 * 2299 * We basically use the page "master dirty bit" 2300 * as a serialization point for all the different 2301 * threads doing their things. 2302 */ 2303 if (page_mkclean(page)) 2304 set_page_dirty(page); 2305 /* 2306 * We carefully synchronise fault handlers against 2307 * installing a dirty pte and marking the page dirty 2308 * at this point. We do this by having them hold the 2309 * page lock at some point after installing their 2310 * pte, but before marking the page dirty. 2311 * Pages are always locked coming in here, so we get 2312 * the desired exclusion. See mm/memory.c:do_wp_page() 2313 * for more comments. 2314 */ 2315 if (TestClearPageDirty(page)) { 2316 dec_zone_page_state(page, NR_FILE_DIRTY); 2317 dec_bdi_stat(mapping->backing_dev_info, 2318 BDI_RECLAIMABLE); 2319 return 1; 2320 } 2321 return 0; 2322 } 2323 return TestClearPageDirty(page); 2324 } 2325 EXPORT_SYMBOL(clear_page_dirty_for_io); 2326 2327 int test_clear_page_writeback(struct page *page) 2328 { 2329 struct address_space *mapping = page_mapping(page); 2330 unsigned long memcg_flags; 2331 struct mem_cgroup *memcg; 2332 bool locked; 2333 int ret; 2334 2335 memcg = mem_cgroup_begin_page_stat(page, &locked, &memcg_flags); 2336 if (mapping) { 2337 struct backing_dev_info *bdi = mapping->backing_dev_info; 2338 unsigned long flags; 2339 2340 spin_lock_irqsave(&mapping->tree_lock, flags); 2341 ret = TestClearPageWriteback(page); 2342 if (ret) { 2343 radix_tree_tag_clear(&mapping->page_tree, 2344 page_index(page), 2345 PAGECACHE_TAG_WRITEBACK); 2346 if (bdi_cap_account_writeback(bdi)) { 2347 __dec_bdi_stat(bdi, BDI_WRITEBACK); 2348 __bdi_writeout_inc(bdi); 2349 } 2350 } 2351 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2352 } else { 2353 ret = TestClearPageWriteback(page); 2354 } 2355 if (ret) { 2356 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 2357 dec_zone_page_state(page, NR_WRITEBACK); 2358 inc_zone_page_state(page, NR_WRITTEN); 2359 } 2360 mem_cgroup_end_page_stat(memcg, locked, memcg_flags); 2361 return ret; 2362 } 2363 2364 int __test_set_page_writeback(struct page *page, bool keep_write) 2365 { 2366 struct address_space *mapping = page_mapping(page); 2367 unsigned long memcg_flags; 2368 struct mem_cgroup *memcg; 2369 bool locked; 2370 int ret; 2371 2372 memcg = mem_cgroup_begin_page_stat(page, &locked, &memcg_flags); 2373 if (mapping) { 2374 struct backing_dev_info *bdi = mapping->backing_dev_info; 2375 unsigned long flags; 2376 2377 spin_lock_irqsave(&mapping->tree_lock, flags); 2378 ret = TestSetPageWriteback(page); 2379 if (!ret) { 2380 radix_tree_tag_set(&mapping->page_tree, 2381 page_index(page), 2382 PAGECACHE_TAG_WRITEBACK); 2383 if (bdi_cap_account_writeback(bdi)) 2384 __inc_bdi_stat(bdi, BDI_WRITEBACK); 2385 } 2386 if (!PageDirty(page)) 2387 radix_tree_tag_clear(&mapping->page_tree, 2388 page_index(page), 2389 PAGECACHE_TAG_DIRTY); 2390 if (!keep_write) 2391 radix_tree_tag_clear(&mapping->page_tree, 2392 page_index(page), 2393 PAGECACHE_TAG_TOWRITE); 2394 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2395 } else { 2396 ret = TestSetPageWriteback(page); 2397 } 2398 if (!ret) { 2399 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 2400 inc_zone_page_state(page, NR_WRITEBACK); 2401 } 2402 mem_cgroup_end_page_stat(memcg, locked, memcg_flags); 2403 return ret; 2404 2405 } 2406 EXPORT_SYMBOL(__test_set_page_writeback); 2407 2408 /* 2409 * Return true if any of the pages in the mapping are marked with the 2410 * passed tag. 2411 */ 2412 int mapping_tagged(struct address_space *mapping, int tag) 2413 { 2414 return radix_tree_tagged(&mapping->page_tree, tag); 2415 } 2416 EXPORT_SYMBOL(mapping_tagged); 2417 2418 /** 2419 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2420 * @page: The page to wait on. 2421 * 2422 * This function determines if the given page is related to a backing device 2423 * that requires page contents to be held stable during writeback. If so, then 2424 * it will wait for any pending writeback to complete. 2425 */ 2426 void wait_for_stable_page(struct page *page) 2427 { 2428 struct address_space *mapping = page_mapping(page); 2429 struct backing_dev_info *bdi = mapping->backing_dev_info; 2430 2431 if (!bdi_cap_stable_pages_required(bdi)) 2432 return; 2433 2434 wait_on_page_writeback(page); 2435 } 2436 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2437