xref: /openbmc/linux/mm/page-writeback.c (revision 4a44a19b)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 unsigned long global_dirty_limit;
126 
127 /*
128  * Scale the writeback cache size proportional to the relative writeout speeds.
129  *
130  * We do this by keeping a floating proportion between BDIs, based on page
131  * writeback completions [end_page_writeback()]. Those devices that write out
132  * pages fastest will get the larger share, while the slower will get a smaller
133  * share.
134  *
135  * We use page writeout completions because we are interested in getting rid of
136  * dirty pages. Having them written out is the primary goal.
137  *
138  * We introduce a concept of time, a period over which we measure these events,
139  * because demand can/will vary over time. The length of this period itself is
140  * measured in page writeback completions.
141  *
142  */
143 static struct fprop_global writeout_completions;
144 
145 static void writeout_period(unsigned long t);
146 /* Timer for aging of writeout_completions */
147 static struct timer_list writeout_period_timer =
148 		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149 static unsigned long writeout_period_time = 0;
150 
151 /*
152  * Length of period for aging writeout fractions of bdis. This is an
153  * arbitrarily chosen number. The longer the period, the slower fractions will
154  * reflect changes in current writeout rate.
155  */
156 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
157 
158 /*
159  * In a memory zone, there is a certain amount of pages we consider
160  * available for the page cache, which is essentially the number of
161  * free and reclaimable pages, minus some zone reserves to protect
162  * lowmem and the ability to uphold the zone's watermarks without
163  * requiring writeback.
164  *
165  * This number of dirtyable pages is the base value of which the
166  * user-configurable dirty ratio is the effictive number of pages that
167  * are allowed to be actually dirtied.  Per individual zone, or
168  * globally by using the sum of dirtyable pages over all zones.
169  *
170  * Because the user is allowed to specify the dirty limit globally as
171  * absolute number of bytes, calculating the per-zone dirty limit can
172  * require translating the configured limit into a percentage of
173  * global dirtyable memory first.
174  */
175 
176 /**
177  * zone_dirtyable_memory - number of dirtyable pages in a zone
178  * @zone: the zone
179  *
180  * Returns the zone's number of pages potentially available for dirty
181  * page cache.  This is the base value for the per-zone dirty limits.
182  */
183 static unsigned long zone_dirtyable_memory(struct zone *zone)
184 {
185 	unsigned long nr_pages;
186 
187 	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
188 	nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
189 
190 	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
191 	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
192 
193 	return nr_pages;
194 }
195 
196 static unsigned long highmem_dirtyable_memory(unsigned long total)
197 {
198 #ifdef CONFIG_HIGHMEM
199 	int node;
200 	unsigned long x = 0;
201 
202 	for_each_node_state(node, N_HIGH_MEMORY) {
203 		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
204 
205 		x += zone_dirtyable_memory(z);
206 	}
207 	/*
208 	 * Unreclaimable memory (kernel memory or anonymous memory
209 	 * without swap) can bring down the dirtyable pages below
210 	 * the zone's dirty balance reserve and the above calculation
211 	 * will underflow.  However we still want to add in nodes
212 	 * which are below threshold (negative values) to get a more
213 	 * accurate calculation but make sure that the total never
214 	 * underflows.
215 	 */
216 	if ((long)x < 0)
217 		x = 0;
218 
219 	/*
220 	 * Make sure that the number of highmem pages is never larger
221 	 * than the number of the total dirtyable memory. This can only
222 	 * occur in very strange VM situations but we want to make sure
223 	 * that this does not occur.
224 	 */
225 	return min(x, total);
226 #else
227 	return 0;
228 #endif
229 }
230 
231 /**
232  * global_dirtyable_memory - number of globally dirtyable pages
233  *
234  * Returns the global number of pages potentially available for dirty
235  * page cache.  This is the base value for the global dirty limits.
236  */
237 static unsigned long global_dirtyable_memory(void)
238 {
239 	unsigned long x;
240 
241 	x = global_page_state(NR_FREE_PAGES);
242 	x -= min(x, dirty_balance_reserve);
243 
244 	x += global_page_state(NR_INACTIVE_FILE);
245 	x += global_page_state(NR_ACTIVE_FILE);
246 
247 	if (!vm_highmem_is_dirtyable)
248 		x -= highmem_dirtyable_memory(x);
249 
250 	return x + 1;	/* Ensure that we never return 0 */
251 }
252 
253 /*
254  * global_dirty_limits - background-writeback and dirty-throttling thresholds
255  *
256  * Calculate the dirty thresholds based on sysctl parameters
257  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
258  * - vm.dirty_ratio             or  vm.dirty_bytes
259  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
260  * real-time tasks.
261  */
262 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
263 {
264 	const unsigned long available_memory = global_dirtyable_memory();
265 	unsigned long background;
266 	unsigned long dirty;
267 	struct task_struct *tsk;
268 
269 	if (vm_dirty_bytes)
270 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271 	else
272 		dirty = (vm_dirty_ratio * available_memory) / 100;
273 
274 	if (dirty_background_bytes)
275 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276 	else
277 		background = (dirty_background_ratio * available_memory) / 100;
278 
279 	if (background >= dirty)
280 		background = dirty / 2;
281 	tsk = current;
282 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283 		background += background / 4;
284 		dirty += dirty / 4;
285 	}
286 	*pbackground = background;
287 	*pdirty = dirty;
288 	trace_global_dirty_state(background, dirty);
289 }
290 
291 /**
292  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
293  * @zone: the zone
294  *
295  * Returns the maximum number of dirty pages allowed in a zone, based
296  * on the zone's dirtyable memory.
297  */
298 static unsigned long zone_dirty_limit(struct zone *zone)
299 {
300 	unsigned long zone_memory = zone_dirtyable_memory(zone);
301 	struct task_struct *tsk = current;
302 	unsigned long dirty;
303 
304 	if (vm_dirty_bytes)
305 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
306 			zone_memory / global_dirtyable_memory();
307 	else
308 		dirty = vm_dirty_ratio * zone_memory / 100;
309 
310 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
311 		dirty += dirty / 4;
312 
313 	return dirty;
314 }
315 
316 /**
317  * zone_dirty_ok - tells whether a zone is within its dirty limits
318  * @zone: the zone to check
319  *
320  * Returns %true when the dirty pages in @zone are within the zone's
321  * dirty limit, %false if the limit is exceeded.
322  */
323 bool zone_dirty_ok(struct zone *zone)
324 {
325 	unsigned long limit = zone_dirty_limit(zone);
326 
327 	return zone_page_state(zone, NR_FILE_DIRTY) +
328 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
329 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
330 }
331 
332 int dirty_background_ratio_handler(struct ctl_table *table, int write,
333 		void __user *buffer, size_t *lenp,
334 		loff_t *ppos)
335 {
336 	int ret;
337 
338 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
339 	if (ret == 0 && write)
340 		dirty_background_bytes = 0;
341 	return ret;
342 }
343 
344 int dirty_background_bytes_handler(struct ctl_table *table, int write,
345 		void __user *buffer, size_t *lenp,
346 		loff_t *ppos)
347 {
348 	int ret;
349 
350 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
351 	if (ret == 0 && write)
352 		dirty_background_ratio = 0;
353 	return ret;
354 }
355 
356 int dirty_ratio_handler(struct ctl_table *table, int write,
357 		void __user *buffer, size_t *lenp,
358 		loff_t *ppos)
359 {
360 	int old_ratio = vm_dirty_ratio;
361 	int ret;
362 
363 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
364 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
365 		writeback_set_ratelimit();
366 		vm_dirty_bytes = 0;
367 	}
368 	return ret;
369 }
370 
371 int dirty_bytes_handler(struct ctl_table *table, int write,
372 		void __user *buffer, size_t *lenp,
373 		loff_t *ppos)
374 {
375 	unsigned long old_bytes = vm_dirty_bytes;
376 	int ret;
377 
378 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
379 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
380 		writeback_set_ratelimit();
381 		vm_dirty_ratio = 0;
382 	}
383 	return ret;
384 }
385 
386 static unsigned long wp_next_time(unsigned long cur_time)
387 {
388 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
389 	/* 0 has a special meaning... */
390 	if (!cur_time)
391 		return 1;
392 	return cur_time;
393 }
394 
395 /*
396  * Increment the BDI's writeout completion count and the global writeout
397  * completion count. Called from test_clear_page_writeback().
398  */
399 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
400 {
401 	__inc_bdi_stat(bdi, BDI_WRITTEN);
402 	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
403 			       bdi->max_prop_frac);
404 	/* First event after period switching was turned off? */
405 	if (!unlikely(writeout_period_time)) {
406 		/*
407 		 * We can race with other __bdi_writeout_inc calls here but
408 		 * it does not cause any harm since the resulting time when
409 		 * timer will fire and what is in writeout_period_time will be
410 		 * roughly the same.
411 		 */
412 		writeout_period_time = wp_next_time(jiffies);
413 		mod_timer(&writeout_period_timer, writeout_period_time);
414 	}
415 }
416 
417 void bdi_writeout_inc(struct backing_dev_info *bdi)
418 {
419 	unsigned long flags;
420 
421 	local_irq_save(flags);
422 	__bdi_writeout_inc(bdi);
423 	local_irq_restore(flags);
424 }
425 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
426 
427 /*
428  * Obtain an accurate fraction of the BDI's portion.
429  */
430 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
431 		long *numerator, long *denominator)
432 {
433 	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
434 				numerator, denominator);
435 }
436 
437 /*
438  * On idle system, we can be called long after we scheduled because we use
439  * deferred timers so count with missed periods.
440  */
441 static void writeout_period(unsigned long t)
442 {
443 	int miss_periods = (jiffies - writeout_period_time) /
444 						 VM_COMPLETIONS_PERIOD_LEN;
445 
446 	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
447 		writeout_period_time = wp_next_time(writeout_period_time +
448 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
449 		mod_timer(&writeout_period_timer, writeout_period_time);
450 	} else {
451 		/*
452 		 * Aging has zeroed all fractions. Stop wasting CPU on period
453 		 * updates.
454 		 */
455 		writeout_period_time = 0;
456 	}
457 }
458 
459 /*
460  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
461  * registered backing devices, which, for obvious reasons, can not
462  * exceed 100%.
463  */
464 static unsigned int bdi_min_ratio;
465 
466 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
467 {
468 	int ret = 0;
469 
470 	spin_lock_bh(&bdi_lock);
471 	if (min_ratio > bdi->max_ratio) {
472 		ret = -EINVAL;
473 	} else {
474 		min_ratio -= bdi->min_ratio;
475 		if (bdi_min_ratio + min_ratio < 100) {
476 			bdi_min_ratio += min_ratio;
477 			bdi->min_ratio += min_ratio;
478 		} else {
479 			ret = -EINVAL;
480 		}
481 	}
482 	spin_unlock_bh(&bdi_lock);
483 
484 	return ret;
485 }
486 
487 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
488 {
489 	int ret = 0;
490 
491 	if (max_ratio > 100)
492 		return -EINVAL;
493 
494 	spin_lock_bh(&bdi_lock);
495 	if (bdi->min_ratio > max_ratio) {
496 		ret = -EINVAL;
497 	} else {
498 		bdi->max_ratio = max_ratio;
499 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
500 	}
501 	spin_unlock_bh(&bdi_lock);
502 
503 	return ret;
504 }
505 EXPORT_SYMBOL(bdi_set_max_ratio);
506 
507 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
508 					   unsigned long bg_thresh)
509 {
510 	return (thresh + bg_thresh) / 2;
511 }
512 
513 static unsigned long hard_dirty_limit(unsigned long thresh)
514 {
515 	return max(thresh, global_dirty_limit);
516 }
517 
518 /**
519  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
520  * @bdi: the backing_dev_info to query
521  * @dirty: global dirty limit in pages
522  *
523  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
524  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
525  *
526  * Note that balance_dirty_pages() will only seriously take it as a hard limit
527  * when sleeping max_pause per page is not enough to keep the dirty pages under
528  * control. For example, when the device is completely stalled due to some error
529  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
530  * In the other normal situations, it acts more gently by throttling the tasks
531  * more (rather than completely block them) when the bdi dirty pages go high.
532  *
533  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
534  * - starving fast devices
535  * - piling up dirty pages (that will take long time to sync) on slow devices
536  *
537  * The bdi's share of dirty limit will be adapting to its throughput and
538  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
539  */
540 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
541 {
542 	u64 bdi_dirty;
543 	long numerator, denominator;
544 
545 	/*
546 	 * Calculate this BDI's share of the dirty ratio.
547 	 */
548 	bdi_writeout_fraction(bdi, &numerator, &denominator);
549 
550 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
551 	bdi_dirty *= numerator;
552 	do_div(bdi_dirty, denominator);
553 
554 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
555 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
556 		bdi_dirty = dirty * bdi->max_ratio / 100;
557 
558 	return bdi_dirty;
559 }
560 
561 /*
562  *                           setpoint - dirty 3
563  *        f(dirty) := 1.0 + (----------------)
564  *                           limit - setpoint
565  *
566  * it's a 3rd order polynomial that subjects to
567  *
568  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
569  * (2) f(setpoint) = 1.0 => the balance point
570  * (3) f(limit)    = 0   => the hard limit
571  * (4) df/dx      <= 0	 => negative feedback control
572  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
573  *     => fast response on large errors; small oscillation near setpoint
574  */
575 static long long pos_ratio_polynom(unsigned long setpoint,
576 					  unsigned long dirty,
577 					  unsigned long limit)
578 {
579 	long long pos_ratio;
580 	long x;
581 
582 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
583 		    limit - setpoint + 1);
584 	pos_ratio = x;
585 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
586 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
587 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
588 
589 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
590 }
591 
592 /*
593  * Dirty position control.
594  *
595  * (o) global/bdi setpoints
596  *
597  * We want the dirty pages be balanced around the global/bdi setpoints.
598  * When the number of dirty pages is higher/lower than the setpoint, the
599  * dirty position control ratio (and hence task dirty ratelimit) will be
600  * decreased/increased to bring the dirty pages back to the setpoint.
601  *
602  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
603  *
604  *     if (dirty < setpoint) scale up   pos_ratio
605  *     if (dirty > setpoint) scale down pos_ratio
606  *
607  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
608  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
609  *
610  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
611  *
612  * (o) global control line
613  *
614  *     ^ pos_ratio
615  *     |
616  *     |            |<===== global dirty control scope ======>|
617  * 2.0 .............*
618  *     |            .*
619  *     |            . *
620  *     |            .   *
621  *     |            .     *
622  *     |            .        *
623  *     |            .            *
624  * 1.0 ................................*
625  *     |            .                  .     *
626  *     |            .                  .          *
627  *     |            .                  .              *
628  *     |            .                  .                 *
629  *     |            .                  .                    *
630  *   0 +------------.------------------.----------------------*------------->
631  *           freerun^          setpoint^                 limit^   dirty pages
632  *
633  * (o) bdi control line
634  *
635  *     ^ pos_ratio
636  *     |
637  *     |            *
638  *     |              *
639  *     |                *
640  *     |                  *
641  *     |                    * |<=========== span ============>|
642  * 1.0 .......................*
643  *     |                      . *
644  *     |                      .   *
645  *     |                      .     *
646  *     |                      .       *
647  *     |                      .         *
648  *     |                      .           *
649  *     |                      .             *
650  *     |                      .               *
651  *     |                      .                 *
652  *     |                      .                   *
653  *     |                      .                     *
654  * 1/4 ...............................................* * * * * * * * * * * *
655  *     |                      .                         .
656  *     |                      .                           .
657  *     |                      .                             .
658  *   0 +----------------------.-------------------------------.------------->
659  *                bdi_setpoint^                    x_intercept^
660  *
661  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
662  * be smoothly throttled down to normal if it starts high in situations like
663  * - start writing to a slow SD card and a fast disk at the same time. The SD
664  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
665  * - the bdi dirty thresh drops quickly due to change of JBOD workload
666  */
667 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
668 					unsigned long thresh,
669 					unsigned long bg_thresh,
670 					unsigned long dirty,
671 					unsigned long bdi_thresh,
672 					unsigned long bdi_dirty)
673 {
674 	unsigned long write_bw = bdi->avg_write_bandwidth;
675 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
676 	unsigned long limit = hard_dirty_limit(thresh);
677 	unsigned long x_intercept;
678 	unsigned long setpoint;		/* dirty pages' target balance point */
679 	unsigned long bdi_setpoint;
680 	unsigned long span;
681 	long long pos_ratio;		/* for scaling up/down the rate limit */
682 	long x;
683 
684 	if (unlikely(dirty >= limit))
685 		return 0;
686 
687 	/*
688 	 * global setpoint
689 	 *
690 	 * See comment for pos_ratio_polynom().
691 	 */
692 	setpoint = (freerun + limit) / 2;
693 	pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
694 
695 	/*
696 	 * The strictlimit feature is a tool preventing mistrusted filesystems
697 	 * from growing a large number of dirty pages before throttling. For
698 	 * such filesystems balance_dirty_pages always checks bdi counters
699 	 * against bdi limits. Even if global "nr_dirty" is under "freerun".
700 	 * This is especially important for fuse which sets bdi->max_ratio to
701 	 * 1% by default. Without strictlimit feature, fuse writeback may
702 	 * consume arbitrary amount of RAM because it is accounted in
703 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
704 	 *
705 	 * Here, in bdi_position_ratio(), we calculate pos_ratio based on
706 	 * two values: bdi_dirty and bdi_thresh. Let's consider an example:
707 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
708 	 * limits are set by default to 10% and 20% (background and throttle).
709 	 * Then bdi_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
710 	 * bdi_dirty_limit(bdi, bg_thresh) is about ~4K pages. bdi_setpoint is
711 	 * about ~6K pages (as the average of background and throttle bdi
712 	 * limits). The 3rd order polynomial will provide positive feedback if
713 	 * bdi_dirty is under bdi_setpoint and vice versa.
714 	 *
715 	 * Note, that we cannot use global counters in these calculations
716 	 * because we want to throttle process writing to a strictlimit BDI
717 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
718 	 * in the example above).
719 	 */
720 	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
721 		long long bdi_pos_ratio;
722 		unsigned long bdi_bg_thresh;
723 
724 		if (bdi_dirty < 8)
725 			return min_t(long long, pos_ratio * 2,
726 				     2 << RATELIMIT_CALC_SHIFT);
727 
728 		if (bdi_dirty >= bdi_thresh)
729 			return 0;
730 
731 		bdi_bg_thresh = div_u64((u64)bdi_thresh * bg_thresh, thresh);
732 		bdi_setpoint = dirty_freerun_ceiling(bdi_thresh,
733 						     bdi_bg_thresh);
734 
735 		if (bdi_setpoint == 0 || bdi_setpoint == bdi_thresh)
736 			return 0;
737 
738 		bdi_pos_ratio = pos_ratio_polynom(bdi_setpoint, bdi_dirty,
739 						  bdi_thresh);
740 
741 		/*
742 		 * Typically, for strictlimit case, bdi_setpoint << setpoint
743 		 * and pos_ratio >> bdi_pos_ratio. In the other words global
744 		 * state ("dirty") is not limiting factor and we have to
745 		 * make decision based on bdi counters. But there is an
746 		 * important case when global pos_ratio should get precedence:
747 		 * global limits are exceeded (e.g. due to activities on other
748 		 * BDIs) while given strictlimit BDI is below limit.
749 		 *
750 		 * "pos_ratio * bdi_pos_ratio" would work for the case above,
751 		 * but it would look too non-natural for the case of all
752 		 * activity in the system coming from a single strictlimit BDI
753 		 * with bdi->max_ratio == 100%.
754 		 *
755 		 * Note that min() below somewhat changes the dynamics of the
756 		 * control system. Normally, pos_ratio value can be well over 3
757 		 * (when globally we are at freerun and bdi is well below bdi
758 		 * setpoint). Now the maximum pos_ratio in the same situation
759 		 * is 2. We might want to tweak this if we observe the control
760 		 * system is too slow to adapt.
761 		 */
762 		return min(pos_ratio, bdi_pos_ratio);
763 	}
764 
765 	/*
766 	 * We have computed basic pos_ratio above based on global situation. If
767 	 * the bdi is over/under its share of dirty pages, we want to scale
768 	 * pos_ratio further down/up. That is done by the following mechanism.
769 	 */
770 
771 	/*
772 	 * bdi setpoint
773 	 *
774 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
775 	 *
776 	 *                        x_intercept - bdi_dirty
777 	 *                     := --------------------------
778 	 *                        x_intercept - bdi_setpoint
779 	 *
780 	 * The main bdi control line is a linear function that subjects to
781 	 *
782 	 * (1) f(bdi_setpoint) = 1.0
783 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
784 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
785 	 *
786 	 * For single bdi case, the dirty pages are observed to fluctuate
787 	 * regularly within range
788 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
789 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
790 	 * fluctuation range for pos_ratio.
791 	 *
792 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
793 	 * own size, so move the slope over accordingly and choose a slope that
794 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
795 	 */
796 	if (unlikely(bdi_thresh > thresh))
797 		bdi_thresh = thresh;
798 	/*
799 	 * It's very possible that bdi_thresh is close to 0 not because the
800 	 * device is slow, but that it has remained inactive for long time.
801 	 * Honour such devices a reasonable good (hopefully IO efficient)
802 	 * threshold, so that the occasional writes won't be blocked and active
803 	 * writes can rampup the threshold quickly.
804 	 */
805 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
806 	/*
807 	 * scale global setpoint to bdi's:
808 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
809 	 */
810 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
811 	bdi_setpoint = setpoint * (u64)x >> 16;
812 	/*
813 	 * Use span=(8*write_bw) in single bdi case as indicated by
814 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
815 	 *
816 	 *        bdi_thresh                    thresh - bdi_thresh
817 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
818 	 *          thresh                            thresh
819 	 */
820 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
821 	x_intercept = bdi_setpoint + span;
822 
823 	if (bdi_dirty < x_intercept - span / 4) {
824 		pos_ratio = div64_u64(pos_ratio * (x_intercept - bdi_dirty),
825 				    x_intercept - bdi_setpoint + 1);
826 	} else
827 		pos_ratio /= 4;
828 
829 	/*
830 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
831 	 * It may push the desired control point of global dirty pages higher
832 	 * than setpoint.
833 	 */
834 	x_intercept = bdi_thresh / 2;
835 	if (bdi_dirty < x_intercept) {
836 		if (bdi_dirty > x_intercept / 8)
837 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
838 		else
839 			pos_ratio *= 8;
840 	}
841 
842 	return pos_ratio;
843 }
844 
845 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
846 				       unsigned long elapsed,
847 				       unsigned long written)
848 {
849 	const unsigned long period = roundup_pow_of_two(3 * HZ);
850 	unsigned long avg = bdi->avg_write_bandwidth;
851 	unsigned long old = bdi->write_bandwidth;
852 	u64 bw;
853 
854 	/*
855 	 * bw = written * HZ / elapsed
856 	 *
857 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
858 	 * write_bandwidth = ---------------------------------------------------
859 	 *                                          period
860 	 */
861 	bw = written - bdi->written_stamp;
862 	bw *= HZ;
863 	if (unlikely(elapsed > period)) {
864 		do_div(bw, elapsed);
865 		avg = bw;
866 		goto out;
867 	}
868 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
869 	bw >>= ilog2(period);
870 
871 	/*
872 	 * one more level of smoothing, for filtering out sudden spikes
873 	 */
874 	if (avg > old && old >= (unsigned long)bw)
875 		avg -= (avg - old) >> 3;
876 
877 	if (avg < old && old <= (unsigned long)bw)
878 		avg += (old - avg) >> 3;
879 
880 out:
881 	bdi->write_bandwidth = bw;
882 	bdi->avg_write_bandwidth = avg;
883 }
884 
885 /*
886  * The global dirtyable memory and dirty threshold could be suddenly knocked
887  * down by a large amount (eg. on the startup of KVM in a swapless system).
888  * This may throw the system into deep dirty exceeded state and throttle
889  * heavy/light dirtiers alike. To retain good responsiveness, maintain
890  * global_dirty_limit for tracking slowly down to the knocked down dirty
891  * threshold.
892  */
893 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
894 {
895 	unsigned long limit = global_dirty_limit;
896 
897 	/*
898 	 * Follow up in one step.
899 	 */
900 	if (limit < thresh) {
901 		limit = thresh;
902 		goto update;
903 	}
904 
905 	/*
906 	 * Follow down slowly. Use the higher one as the target, because thresh
907 	 * may drop below dirty. This is exactly the reason to introduce
908 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
909 	 */
910 	thresh = max(thresh, dirty);
911 	if (limit > thresh) {
912 		limit -= (limit - thresh) >> 5;
913 		goto update;
914 	}
915 	return;
916 update:
917 	global_dirty_limit = limit;
918 }
919 
920 static void global_update_bandwidth(unsigned long thresh,
921 				    unsigned long dirty,
922 				    unsigned long now)
923 {
924 	static DEFINE_SPINLOCK(dirty_lock);
925 	static unsigned long update_time;
926 
927 	/*
928 	 * check locklessly first to optimize away locking for the most time
929 	 */
930 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
931 		return;
932 
933 	spin_lock(&dirty_lock);
934 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
935 		update_dirty_limit(thresh, dirty);
936 		update_time = now;
937 	}
938 	spin_unlock(&dirty_lock);
939 }
940 
941 /*
942  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
943  *
944  * Normal bdi tasks will be curbed at or below it in long term.
945  * Obviously it should be around (write_bw / N) when there are N dd tasks.
946  */
947 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
948 				       unsigned long thresh,
949 				       unsigned long bg_thresh,
950 				       unsigned long dirty,
951 				       unsigned long bdi_thresh,
952 				       unsigned long bdi_dirty,
953 				       unsigned long dirtied,
954 				       unsigned long elapsed)
955 {
956 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
957 	unsigned long limit = hard_dirty_limit(thresh);
958 	unsigned long setpoint = (freerun + limit) / 2;
959 	unsigned long write_bw = bdi->avg_write_bandwidth;
960 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
961 	unsigned long dirty_rate;
962 	unsigned long task_ratelimit;
963 	unsigned long balanced_dirty_ratelimit;
964 	unsigned long pos_ratio;
965 	unsigned long step;
966 	unsigned long x;
967 
968 	/*
969 	 * The dirty rate will match the writeout rate in long term, except
970 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
971 	 */
972 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
973 
974 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
975 				       bdi_thresh, bdi_dirty);
976 	/*
977 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
978 	 */
979 	task_ratelimit = (u64)dirty_ratelimit *
980 					pos_ratio >> RATELIMIT_CALC_SHIFT;
981 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
982 
983 	/*
984 	 * A linear estimation of the "balanced" throttle rate. The theory is,
985 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
986 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
987 	 * formula will yield the balanced rate limit (write_bw / N).
988 	 *
989 	 * Note that the expanded form is not a pure rate feedback:
990 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
991 	 * but also takes pos_ratio into account:
992 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
993 	 *
994 	 * (1) is not realistic because pos_ratio also takes part in balancing
995 	 * the dirty rate.  Consider the state
996 	 *	pos_ratio = 0.5						     (3)
997 	 *	rate = 2 * (write_bw / N)				     (4)
998 	 * If (1) is used, it will stuck in that state! Because each dd will
999 	 * be throttled at
1000 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1001 	 * yielding
1002 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1003 	 * put (6) into (1) we get
1004 	 *	rate_(i+1) = rate_(i)					     (7)
1005 	 *
1006 	 * So we end up using (2) to always keep
1007 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1008 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1009 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1010 	 * the dirty count meet the setpoint, but also where the slope of
1011 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1012 	 */
1013 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1014 					   dirty_rate | 1);
1015 	/*
1016 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1017 	 */
1018 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1019 		balanced_dirty_ratelimit = write_bw;
1020 
1021 	/*
1022 	 * We could safely do this and return immediately:
1023 	 *
1024 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
1025 	 *
1026 	 * However to get a more stable dirty_ratelimit, the below elaborated
1027 	 * code makes use of task_ratelimit to filter out singular points and
1028 	 * limit the step size.
1029 	 *
1030 	 * The below code essentially only uses the relative value of
1031 	 *
1032 	 *	task_ratelimit - dirty_ratelimit
1033 	 *	= (pos_ratio - 1) * dirty_ratelimit
1034 	 *
1035 	 * which reflects the direction and size of dirty position error.
1036 	 */
1037 
1038 	/*
1039 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1040 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1041 	 * For example, when
1042 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1043 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1044 	 * lowering dirty_ratelimit will help meet both the position and rate
1045 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1046 	 * only help meet the rate target. After all, what the users ultimately
1047 	 * feel and care are stable dirty rate and small position error.
1048 	 *
1049 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1050 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1051 	 * keeps jumping around randomly and can even leap far away at times
1052 	 * due to the small 200ms estimation period of dirty_rate (we want to
1053 	 * keep that period small to reduce time lags).
1054 	 */
1055 	step = 0;
1056 
1057 	/*
1058 	 * For strictlimit case, calculations above were based on bdi counters
1059 	 * and limits (starting from pos_ratio = bdi_position_ratio() and up to
1060 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1061 	 * Hence, to calculate "step" properly, we have to use bdi_dirty as
1062 	 * "dirty" and bdi_setpoint as "setpoint".
1063 	 *
1064 	 * We rampup dirty_ratelimit forcibly if bdi_dirty is low because
1065 	 * it's possible that bdi_thresh is close to zero due to inactivity
1066 	 * of backing device (see the implementation of bdi_dirty_limit()).
1067 	 */
1068 	if (unlikely(bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1069 		dirty = bdi_dirty;
1070 		if (bdi_dirty < 8)
1071 			setpoint = bdi_dirty + 1;
1072 		else
1073 			setpoint = (bdi_thresh +
1074 				    bdi_dirty_limit(bdi, bg_thresh)) / 2;
1075 	}
1076 
1077 	if (dirty < setpoint) {
1078 		x = min3(bdi->balanced_dirty_ratelimit,
1079 			 balanced_dirty_ratelimit, task_ratelimit);
1080 		if (dirty_ratelimit < x)
1081 			step = x - dirty_ratelimit;
1082 	} else {
1083 		x = max3(bdi->balanced_dirty_ratelimit,
1084 			 balanced_dirty_ratelimit, task_ratelimit);
1085 		if (dirty_ratelimit > x)
1086 			step = dirty_ratelimit - x;
1087 	}
1088 
1089 	/*
1090 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1091 	 * rate itself is constantly fluctuating. So decrease the track speed
1092 	 * when it gets close to the target. Helps eliminate pointless tremors.
1093 	 */
1094 	step >>= dirty_ratelimit / (2 * step + 1);
1095 	/*
1096 	 * Limit the tracking speed to avoid overshooting.
1097 	 */
1098 	step = (step + 7) / 8;
1099 
1100 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1101 		dirty_ratelimit += step;
1102 	else
1103 		dirty_ratelimit -= step;
1104 
1105 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1106 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1107 
1108 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1109 }
1110 
1111 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1112 			    unsigned long thresh,
1113 			    unsigned long bg_thresh,
1114 			    unsigned long dirty,
1115 			    unsigned long bdi_thresh,
1116 			    unsigned long bdi_dirty,
1117 			    unsigned long start_time)
1118 {
1119 	unsigned long now = jiffies;
1120 	unsigned long elapsed = now - bdi->bw_time_stamp;
1121 	unsigned long dirtied;
1122 	unsigned long written;
1123 
1124 	/*
1125 	 * rate-limit, only update once every 200ms.
1126 	 */
1127 	if (elapsed < BANDWIDTH_INTERVAL)
1128 		return;
1129 
1130 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1131 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1132 
1133 	/*
1134 	 * Skip quiet periods when disk bandwidth is under-utilized.
1135 	 * (at least 1s idle time between two flusher runs)
1136 	 */
1137 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1138 		goto snapshot;
1139 
1140 	if (thresh) {
1141 		global_update_bandwidth(thresh, dirty, now);
1142 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1143 					   bdi_thresh, bdi_dirty,
1144 					   dirtied, elapsed);
1145 	}
1146 	bdi_update_write_bandwidth(bdi, elapsed, written);
1147 
1148 snapshot:
1149 	bdi->dirtied_stamp = dirtied;
1150 	bdi->written_stamp = written;
1151 	bdi->bw_time_stamp = now;
1152 }
1153 
1154 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1155 				 unsigned long thresh,
1156 				 unsigned long bg_thresh,
1157 				 unsigned long dirty,
1158 				 unsigned long bdi_thresh,
1159 				 unsigned long bdi_dirty,
1160 				 unsigned long start_time)
1161 {
1162 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1163 		return;
1164 	spin_lock(&bdi->wb.list_lock);
1165 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1166 			       bdi_thresh, bdi_dirty, start_time);
1167 	spin_unlock(&bdi->wb.list_lock);
1168 }
1169 
1170 /*
1171  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1172  * will look to see if it needs to start dirty throttling.
1173  *
1174  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1175  * global_page_state() too often. So scale it near-sqrt to the safety margin
1176  * (the number of pages we may dirty without exceeding the dirty limits).
1177  */
1178 static unsigned long dirty_poll_interval(unsigned long dirty,
1179 					 unsigned long thresh)
1180 {
1181 	if (thresh > dirty)
1182 		return 1UL << (ilog2(thresh - dirty) >> 1);
1183 
1184 	return 1;
1185 }
1186 
1187 static unsigned long bdi_max_pause(struct backing_dev_info *bdi,
1188 				   unsigned long bdi_dirty)
1189 {
1190 	unsigned long bw = bdi->avg_write_bandwidth;
1191 	unsigned long t;
1192 
1193 	/*
1194 	 * Limit pause time for small memory systems. If sleeping for too long
1195 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1196 	 * idle.
1197 	 *
1198 	 * 8 serves as the safety ratio.
1199 	 */
1200 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1201 	t++;
1202 
1203 	return min_t(unsigned long, t, MAX_PAUSE);
1204 }
1205 
1206 static long bdi_min_pause(struct backing_dev_info *bdi,
1207 			  long max_pause,
1208 			  unsigned long task_ratelimit,
1209 			  unsigned long dirty_ratelimit,
1210 			  int *nr_dirtied_pause)
1211 {
1212 	long hi = ilog2(bdi->avg_write_bandwidth);
1213 	long lo = ilog2(bdi->dirty_ratelimit);
1214 	long t;		/* target pause */
1215 	long pause;	/* estimated next pause */
1216 	int pages;	/* target nr_dirtied_pause */
1217 
1218 	/* target for 10ms pause on 1-dd case */
1219 	t = max(1, HZ / 100);
1220 
1221 	/*
1222 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1223 	 * overheads.
1224 	 *
1225 	 * (N * 10ms) on 2^N concurrent tasks.
1226 	 */
1227 	if (hi > lo)
1228 		t += (hi - lo) * (10 * HZ) / 1024;
1229 
1230 	/*
1231 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1232 	 * on the much more stable dirty_ratelimit. However the next pause time
1233 	 * will be computed based on task_ratelimit and the two rate limits may
1234 	 * depart considerably at some time. Especially if task_ratelimit goes
1235 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1236 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1237 	 * result task_ratelimit won't be executed faithfully, which could
1238 	 * eventually bring down dirty_ratelimit.
1239 	 *
1240 	 * We apply two rules to fix it up:
1241 	 * 1) try to estimate the next pause time and if necessary, use a lower
1242 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1243 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1244 	 * 2) limit the target pause time to max_pause/2, so that the normal
1245 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1246 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1247 	 */
1248 	t = min(t, 1 + max_pause / 2);
1249 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1250 
1251 	/*
1252 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1253 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1254 	 * When the 16 consecutive reads are often interrupted by some dirty
1255 	 * throttling pause during the async writes, cfq will go into idles
1256 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1257 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1258 	 */
1259 	if (pages < DIRTY_POLL_THRESH) {
1260 		t = max_pause;
1261 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1262 		if (pages > DIRTY_POLL_THRESH) {
1263 			pages = DIRTY_POLL_THRESH;
1264 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1265 		}
1266 	}
1267 
1268 	pause = HZ * pages / (task_ratelimit + 1);
1269 	if (pause > max_pause) {
1270 		t = max_pause;
1271 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1272 	}
1273 
1274 	*nr_dirtied_pause = pages;
1275 	/*
1276 	 * The minimal pause time will normally be half the target pause time.
1277 	 */
1278 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1279 }
1280 
1281 static inline void bdi_dirty_limits(struct backing_dev_info *bdi,
1282 				    unsigned long dirty_thresh,
1283 				    unsigned long background_thresh,
1284 				    unsigned long *bdi_dirty,
1285 				    unsigned long *bdi_thresh,
1286 				    unsigned long *bdi_bg_thresh)
1287 {
1288 	unsigned long bdi_reclaimable;
1289 
1290 	/*
1291 	 * bdi_thresh is not treated as some limiting factor as
1292 	 * dirty_thresh, due to reasons
1293 	 * - in JBOD setup, bdi_thresh can fluctuate a lot
1294 	 * - in a system with HDD and USB key, the USB key may somehow
1295 	 *   go into state (bdi_dirty >> bdi_thresh) either because
1296 	 *   bdi_dirty starts high, or because bdi_thresh drops low.
1297 	 *   In this case we don't want to hard throttle the USB key
1298 	 *   dirtiers for 100 seconds until bdi_dirty drops under
1299 	 *   bdi_thresh. Instead the auxiliary bdi control line in
1300 	 *   bdi_position_ratio() will let the dirtier task progress
1301 	 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1302 	 */
1303 	*bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1304 
1305 	if (bdi_bg_thresh)
1306 		*bdi_bg_thresh = dirty_thresh ? div_u64((u64)*bdi_thresh *
1307 							background_thresh,
1308 							dirty_thresh) : 0;
1309 
1310 	/*
1311 	 * In order to avoid the stacked BDI deadlock we need
1312 	 * to ensure we accurately count the 'dirty' pages when
1313 	 * the threshold is low.
1314 	 *
1315 	 * Otherwise it would be possible to get thresh+n pages
1316 	 * reported dirty, even though there are thresh-m pages
1317 	 * actually dirty; with m+n sitting in the percpu
1318 	 * deltas.
1319 	 */
1320 	if (*bdi_thresh < 2 * bdi_stat_error(bdi)) {
1321 		bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1322 		*bdi_dirty = bdi_reclaimable +
1323 			bdi_stat_sum(bdi, BDI_WRITEBACK);
1324 	} else {
1325 		bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1326 		*bdi_dirty = bdi_reclaimable +
1327 			bdi_stat(bdi, BDI_WRITEBACK);
1328 	}
1329 }
1330 
1331 /*
1332  * balance_dirty_pages() must be called by processes which are generating dirty
1333  * data.  It looks at the number of dirty pages in the machine and will force
1334  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1335  * If we're over `background_thresh' then the writeback threads are woken to
1336  * perform some writeout.
1337  */
1338 static void balance_dirty_pages(struct address_space *mapping,
1339 				unsigned long pages_dirtied)
1340 {
1341 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1342 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1343 	unsigned long background_thresh;
1344 	unsigned long dirty_thresh;
1345 	long period;
1346 	long pause;
1347 	long max_pause;
1348 	long min_pause;
1349 	int nr_dirtied_pause;
1350 	bool dirty_exceeded = false;
1351 	unsigned long task_ratelimit;
1352 	unsigned long dirty_ratelimit;
1353 	unsigned long pos_ratio;
1354 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1355 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1356 	unsigned long start_time = jiffies;
1357 
1358 	for (;;) {
1359 		unsigned long now = jiffies;
1360 		unsigned long uninitialized_var(bdi_thresh);
1361 		unsigned long thresh;
1362 		unsigned long uninitialized_var(bdi_dirty);
1363 		unsigned long dirty;
1364 		unsigned long bg_thresh;
1365 
1366 		/*
1367 		 * Unstable writes are a feature of certain networked
1368 		 * filesystems (i.e. NFS) in which data may have been
1369 		 * written to the server's write cache, but has not yet
1370 		 * been flushed to permanent storage.
1371 		 */
1372 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1373 					global_page_state(NR_UNSTABLE_NFS);
1374 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1375 
1376 		global_dirty_limits(&background_thresh, &dirty_thresh);
1377 
1378 		if (unlikely(strictlimit)) {
1379 			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1380 					 &bdi_dirty, &bdi_thresh, &bg_thresh);
1381 
1382 			dirty = bdi_dirty;
1383 			thresh = bdi_thresh;
1384 		} else {
1385 			dirty = nr_dirty;
1386 			thresh = dirty_thresh;
1387 			bg_thresh = background_thresh;
1388 		}
1389 
1390 		/*
1391 		 * Throttle it only when the background writeback cannot
1392 		 * catch-up. This avoids (excessively) small writeouts
1393 		 * when the bdi limits are ramping up in case of !strictlimit.
1394 		 *
1395 		 * In strictlimit case make decision based on the bdi counters
1396 		 * and limits. Small writeouts when the bdi limits are ramping
1397 		 * up are the price we consciously pay for strictlimit-ing.
1398 		 */
1399 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
1400 			current->dirty_paused_when = now;
1401 			current->nr_dirtied = 0;
1402 			current->nr_dirtied_pause =
1403 				dirty_poll_interval(dirty, thresh);
1404 			break;
1405 		}
1406 
1407 		if (unlikely(!writeback_in_progress(bdi)))
1408 			bdi_start_background_writeback(bdi);
1409 
1410 		if (!strictlimit)
1411 			bdi_dirty_limits(bdi, dirty_thresh, background_thresh,
1412 					 &bdi_dirty, &bdi_thresh, NULL);
1413 
1414 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1415 				 ((nr_dirty > dirty_thresh) || strictlimit);
1416 		if (dirty_exceeded && !bdi->dirty_exceeded)
1417 			bdi->dirty_exceeded = 1;
1418 
1419 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1420 				     nr_dirty, bdi_thresh, bdi_dirty,
1421 				     start_time);
1422 
1423 		dirty_ratelimit = bdi->dirty_ratelimit;
1424 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1425 					       background_thresh, nr_dirty,
1426 					       bdi_thresh, bdi_dirty);
1427 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1428 							RATELIMIT_CALC_SHIFT;
1429 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1430 		min_pause = bdi_min_pause(bdi, max_pause,
1431 					  task_ratelimit, dirty_ratelimit,
1432 					  &nr_dirtied_pause);
1433 
1434 		if (unlikely(task_ratelimit == 0)) {
1435 			period = max_pause;
1436 			pause = max_pause;
1437 			goto pause;
1438 		}
1439 		period = HZ * pages_dirtied / task_ratelimit;
1440 		pause = period;
1441 		if (current->dirty_paused_when)
1442 			pause -= now - current->dirty_paused_when;
1443 		/*
1444 		 * For less than 1s think time (ext3/4 may block the dirtier
1445 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1446 		 * however at much less frequency), try to compensate it in
1447 		 * future periods by updating the virtual time; otherwise just
1448 		 * do a reset, as it may be a light dirtier.
1449 		 */
1450 		if (pause < min_pause) {
1451 			trace_balance_dirty_pages(bdi,
1452 						  dirty_thresh,
1453 						  background_thresh,
1454 						  nr_dirty,
1455 						  bdi_thresh,
1456 						  bdi_dirty,
1457 						  dirty_ratelimit,
1458 						  task_ratelimit,
1459 						  pages_dirtied,
1460 						  period,
1461 						  min(pause, 0L),
1462 						  start_time);
1463 			if (pause < -HZ) {
1464 				current->dirty_paused_when = now;
1465 				current->nr_dirtied = 0;
1466 			} else if (period) {
1467 				current->dirty_paused_when += period;
1468 				current->nr_dirtied = 0;
1469 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1470 				current->nr_dirtied_pause += pages_dirtied;
1471 			break;
1472 		}
1473 		if (unlikely(pause > max_pause)) {
1474 			/* for occasional dropped task_ratelimit */
1475 			now += min(pause - max_pause, max_pause);
1476 			pause = max_pause;
1477 		}
1478 
1479 pause:
1480 		trace_balance_dirty_pages(bdi,
1481 					  dirty_thresh,
1482 					  background_thresh,
1483 					  nr_dirty,
1484 					  bdi_thresh,
1485 					  bdi_dirty,
1486 					  dirty_ratelimit,
1487 					  task_ratelimit,
1488 					  pages_dirtied,
1489 					  period,
1490 					  pause,
1491 					  start_time);
1492 		__set_current_state(TASK_KILLABLE);
1493 		io_schedule_timeout(pause);
1494 
1495 		current->dirty_paused_when = now + pause;
1496 		current->nr_dirtied = 0;
1497 		current->nr_dirtied_pause = nr_dirtied_pause;
1498 
1499 		/*
1500 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1501 		 * also keep "1000+ dd on a slow USB stick" under control.
1502 		 */
1503 		if (task_ratelimit)
1504 			break;
1505 
1506 		/*
1507 		 * In the case of an unresponding NFS server and the NFS dirty
1508 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1509 		 * to go through, so that tasks on them still remain responsive.
1510 		 *
1511 		 * In theory 1 page is enough to keep the comsumer-producer
1512 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1513 		 * more page. However bdi_dirty has accounting errors.  So use
1514 		 * the larger and more IO friendly bdi_stat_error.
1515 		 */
1516 		if (bdi_dirty <= bdi_stat_error(bdi))
1517 			break;
1518 
1519 		if (fatal_signal_pending(current))
1520 			break;
1521 	}
1522 
1523 	if (!dirty_exceeded && bdi->dirty_exceeded)
1524 		bdi->dirty_exceeded = 0;
1525 
1526 	if (writeback_in_progress(bdi))
1527 		return;
1528 
1529 	/*
1530 	 * In laptop mode, we wait until hitting the higher threshold before
1531 	 * starting background writeout, and then write out all the way down
1532 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1533 	 *
1534 	 * In normal mode, we start background writeout at the lower
1535 	 * background_thresh, to keep the amount of dirty memory low.
1536 	 */
1537 	if (laptop_mode)
1538 		return;
1539 
1540 	if (nr_reclaimable > background_thresh)
1541 		bdi_start_background_writeback(bdi);
1542 }
1543 
1544 void set_page_dirty_balance(struct page *page)
1545 {
1546 	if (set_page_dirty(page)) {
1547 		struct address_space *mapping = page_mapping(page);
1548 
1549 		if (mapping)
1550 			balance_dirty_pages_ratelimited(mapping);
1551 	}
1552 }
1553 
1554 static DEFINE_PER_CPU(int, bdp_ratelimits);
1555 
1556 /*
1557  * Normal tasks are throttled by
1558  *	loop {
1559  *		dirty tsk->nr_dirtied_pause pages;
1560  *		take a snap in balance_dirty_pages();
1561  *	}
1562  * However there is a worst case. If every task exit immediately when dirtied
1563  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1564  * called to throttle the page dirties. The solution is to save the not yet
1565  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1566  * randomly into the running tasks. This works well for the above worst case,
1567  * as the new task will pick up and accumulate the old task's leaked dirty
1568  * count and eventually get throttled.
1569  */
1570 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1571 
1572 /**
1573  * balance_dirty_pages_ratelimited - balance dirty memory state
1574  * @mapping: address_space which was dirtied
1575  *
1576  * Processes which are dirtying memory should call in here once for each page
1577  * which was newly dirtied.  The function will periodically check the system's
1578  * dirty state and will initiate writeback if needed.
1579  *
1580  * On really big machines, get_writeback_state is expensive, so try to avoid
1581  * calling it too often (ratelimiting).  But once we're over the dirty memory
1582  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1583  * from overshooting the limit by (ratelimit_pages) each.
1584  */
1585 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1586 {
1587 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1588 	int ratelimit;
1589 	int *p;
1590 
1591 	if (!bdi_cap_account_dirty(bdi))
1592 		return;
1593 
1594 	ratelimit = current->nr_dirtied_pause;
1595 	if (bdi->dirty_exceeded)
1596 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1597 
1598 	preempt_disable();
1599 	/*
1600 	 * This prevents one CPU to accumulate too many dirtied pages without
1601 	 * calling into balance_dirty_pages(), which can happen when there are
1602 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1603 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1604 	 */
1605 	p =  this_cpu_ptr(&bdp_ratelimits);
1606 	if (unlikely(current->nr_dirtied >= ratelimit))
1607 		*p = 0;
1608 	else if (unlikely(*p >= ratelimit_pages)) {
1609 		*p = 0;
1610 		ratelimit = 0;
1611 	}
1612 	/*
1613 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1614 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1615 	 * the dirty throttling and livelock other long-run dirtiers.
1616 	 */
1617 	p = this_cpu_ptr(&dirty_throttle_leaks);
1618 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1619 		unsigned long nr_pages_dirtied;
1620 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1621 		*p -= nr_pages_dirtied;
1622 		current->nr_dirtied += nr_pages_dirtied;
1623 	}
1624 	preempt_enable();
1625 
1626 	if (unlikely(current->nr_dirtied >= ratelimit))
1627 		balance_dirty_pages(mapping, current->nr_dirtied);
1628 }
1629 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1630 
1631 void throttle_vm_writeout(gfp_t gfp_mask)
1632 {
1633 	unsigned long background_thresh;
1634 	unsigned long dirty_thresh;
1635 
1636         for ( ; ; ) {
1637 		global_dirty_limits(&background_thresh, &dirty_thresh);
1638 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1639 
1640                 /*
1641                  * Boost the allowable dirty threshold a bit for page
1642                  * allocators so they don't get DoS'ed by heavy writers
1643                  */
1644                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1645 
1646                 if (global_page_state(NR_UNSTABLE_NFS) +
1647 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1648                         	break;
1649                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1650 
1651 		/*
1652 		 * The caller might hold locks which can prevent IO completion
1653 		 * or progress in the filesystem.  So we cannot just sit here
1654 		 * waiting for IO to complete.
1655 		 */
1656 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1657 			break;
1658         }
1659 }
1660 
1661 /*
1662  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1663  */
1664 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1665 	void __user *buffer, size_t *length, loff_t *ppos)
1666 {
1667 	proc_dointvec(table, write, buffer, length, ppos);
1668 	return 0;
1669 }
1670 
1671 #ifdef CONFIG_BLOCK
1672 void laptop_mode_timer_fn(unsigned long data)
1673 {
1674 	struct request_queue *q = (struct request_queue *)data;
1675 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1676 		global_page_state(NR_UNSTABLE_NFS);
1677 
1678 	/*
1679 	 * We want to write everything out, not just down to the dirty
1680 	 * threshold
1681 	 */
1682 	if (bdi_has_dirty_io(&q->backing_dev_info))
1683 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1684 					WB_REASON_LAPTOP_TIMER);
1685 }
1686 
1687 /*
1688  * We've spun up the disk and we're in laptop mode: schedule writeback
1689  * of all dirty data a few seconds from now.  If the flush is already scheduled
1690  * then push it back - the user is still using the disk.
1691  */
1692 void laptop_io_completion(struct backing_dev_info *info)
1693 {
1694 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1695 }
1696 
1697 /*
1698  * We're in laptop mode and we've just synced. The sync's writes will have
1699  * caused another writeback to be scheduled by laptop_io_completion.
1700  * Nothing needs to be written back anymore, so we unschedule the writeback.
1701  */
1702 void laptop_sync_completion(void)
1703 {
1704 	struct backing_dev_info *bdi;
1705 
1706 	rcu_read_lock();
1707 
1708 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1709 		del_timer(&bdi->laptop_mode_wb_timer);
1710 
1711 	rcu_read_unlock();
1712 }
1713 #endif
1714 
1715 /*
1716  * If ratelimit_pages is too high then we can get into dirty-data overload
1717  * if a large number of processes all perform writes at the same time.
1718  * If it is too low then SMP machines will call the (expensive)
1719  * get_writeback_state too often.
1720  *
1721  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1722  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1723  * thresholds.
1724  */
1725 
1726 void writeback_set_ratelimit(void)
1727 {
1728 	unsigned long background_thresh;
1729 	unsigned long dirty_thresh;
1730 	global_dirty_limits(&background_thresh, &dirty_thresh);
1731 	global_dirty_limit = dirty_thresh;
1732 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1733 	if (ratelimit_pages < 16)
1734 		ratelimit_pages = 16;
1735 }
1736 
1737 static int
1738 ratelimit_handler(struct notifier_block *self, unsigned long action,
1739 		  void *hcpu)
1740 {
1741 
1742 	switch (action & ~CPU_TASKS_FROZEN) {
1743 	case CPU_ONLINE:
1744 	case CPU_DEAD:
1745 		writeback_set_ratelimit();
1746 		return NOTIFY_OK;
1747 	default:
1748 		return NOTIFY_DONE;
1749 	}
1750 }
1751 
1752 static struct notifier_block ratelimit_nb = {
1753 	.notifier_call	= ratelimit_handler,
1754 	.next		= NULL,
1755 };
1756 
1757 /*
1758  * Called early on to tune the page writeback dirty limits.
1759  *
1760  * We used to scale dirty pages according to how total memory
1761  * related to pages that could be allocated for buffers (by
1762  * comparing nr_free_buffer_pages() to vm_total_pages.
1763  *
1764  * However, that was when we used "dirty_ratio" to scale with
1765  * all memory, and we don't do that any more. "dirty_ratio"
1766  * is now applied to total non-HIGHPAGE memory (by subtracting
1767  * totalhigh_pages from vm_total_pages), and as such we can't
1768  * get into the old insane situation any more where we had
1769  * large amounts of dirty pages compared to a small amount of
1770  * non-HIGHMEM memory.
1771  *
1772  * But we might still want to scale the dirty_ratio by how
1773  * much memory the box has..
1774  */
1775 void __init page_writeback_init(void)
1776 {
1777 	writeback_set_ratelimit();
1778 	register_cpu_notifier(&ratelimit_nb);
1779 
1780 	fprop_global_init(&writeout_completions, GFP_KERNEL);
1781 }
1782 
1783 /**
1784  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1785  * @mapping: address space structure to write
1786  * @start: starting page index
1787  * @end: ending page index (inclusive)
1788  *
1789  * This function scans the page range from @start to @end (inclusive) and tags
1790  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1791  * that write_cache_pages (or whoever calls this function) will then use
1792  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1793  * used to avoid livelocking of writeback by a process steadily creating new
1794  * dirty pages in the file (thus it is important for this function to be quick
1795  * so that it can tag pages faster than a dirtying process can create them).
1796  */
1797 /*
1798  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1799  */
1800 void tag_pages_for_writeback(struct address_space *mapping,
1801 			     pgoff_t start, pgoff_t end)
1802 {
1803 #define WRITEBACK_TAG_BATCH 4096
1804 	unsigned long tagged;
1805 
1806 	do {
1807 		spin_lock_irq(&mapping->tree_lock);
1808 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1809 				&start, end, WRITEBACK_TAG_BATCH,
1810 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1811 		spin_unlock_irq(&mapping->tree_lock);
1812 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1813 		cond_resched();
1814 		/* We check 'start' to handle wrapping when end == ~0UL */
1815 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1816 }
1817 EXPORT_SYMBOL(tag_pages_for_writeback);
1818 
1819 /**
1820  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1821  * @mapping: address space structure to write
1822  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1823  * @writepage: function called for each page
1824  * @data: data passed to writepage function
1825  *
1826  * If a page is already under I/O, write_cache_pages() skips it, even
1827  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1828  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1829  * and msync() need to guarantee that all the data which was dirty at the time
1830  * the call was made get new I/O started against them.  If wbc->sync_mode is
1831  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1832  * existing IO to complete.
1833  *
1834  * To avoid livelocks (when other process dirties new pages), we first tag
1835  * pages which should be written back with TOWRITE tag and only then start
1836  * writing them. For data-integrity sync we have to be careful so that we do
1837  * not miss some pages (e.g., because some other process has cleared TOWRITE
1838  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1839  * by the process clearing the DIRTY tag (and submitting the page for IO).
1840  */
1841 int write_cache_pages(struct address_space *mapping,
1842 		      struct writeback_control *wbc, writepage_t writepage,
1843 		      void *data)
1844 {
1845 	int ret = 0;
1846 	int done = 0;
1847 	struct pagevec pvec;
1848 	int nr_pages;
1849 	pgoff_t uninitialized_var(writeback_index);
1850 	pgoff_t index;
1851 	pgoff_t end;		/* Inclusive */
1852 	pgoff_t done_index;
1853 	int cycled;
1854 	int range_whole = 0;
1855 	int tag;
1856 
1857 	pagevec_init(&pvec, 0);
1858 	if (wbc->range_cyclic) {
1859 		writeback_index = mapping->writeback_index; /* prev offset */
1860 		index = writeback_index;
1861 		if (index == 0)
1862 			cycled = 1;
1863 		else
1864 			cycled = 0;
1865 		end = -1;
1866 	} else {
1867 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1868 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1869 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1870 			range_whole = 1;
1871 		cycled = 1; /* ignore range_cyclic tests */
1872 	}
1873 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1874 		tag = PAGECACHE_TAG_TOWRITE;
1875 	else
1876 		tag = PAGECACHE_TAG_DIRTY;
1877 retry:
1878 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1879 		tag_pages_for_writeback(mapping, index, end);
1880 	done_index = index;
1881 	while (!done && (index <= end)) {
1882 		int i;
1883 
1884 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1885 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1886 		if (nr_pages == 0)
1887 			break;
1888 
1889 		for (i = 0; i < nr_pages; i++) {
1890 			struct page *page = pvec.pages[i];
1891 
1892 			/*
1893 			 * At this point, the page may be truncated or
1894 			 * invalidated (changing page->mapping to NULL), or
1895 			 * even swizzled back from swapper_space to tmpfs file
1896 			 * mapping. However, page->index will not change
1897 			 * because we have a reference on the page.
1898 			 */
1899 			if (page->index > end) {
1900 				/*
1901 				 * can't be range_cyclic (1st pass) because
1902 				 * end == -1 in that case.
1903 				 */
1904 				done = 1;
1905 				break;
1906 			}
1907 
1908 			done_index = page->index;
1909 
1910 			lock_page(page);
1911 
1912 			/*
1913 			 * Page truncated or invalidated. We can freely skip it
1914 			 * then, even for data integrity operations: the page
1915 			 * has disappeared concurrently, so there could be no
1916 			 * real expectation of this data interity operation
1917 			 * even if there is now a new, dirty page at the same
1918 			 * pagecache address.
1919 			 */
1920 			if (unlikely(page->mapping != mapping)) {
1921 continue_unlock:
1922 				unlock_page(page);
1923 				continue;
1924 			}
1925 
1926 			if (!PageDirty(page)) {
1927 				/* someone wrote it for us */
1928 				goto continue_unlock;
1929 			}
1930 
1931 			if (PageWriteback(page)) {
1932 				if (wbc->sync_mode != WB_SYNC_NONE)
1933 					wait_on_page_writeback(page);
1934 				else
1935 					goto continue_unlock;
1936 			}
1937 
1938 			BUG_ON(PageWriteback(page));
1939 			if (!clear_page_dirty_for_io(page))
1940 				goto continue_unlock;
1941 
1942 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1943 			ret = (*writepage)(page, wbc, data);
1944 			if (unlikely(ret)) {
1945 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1946 					unlock_page(page);
1947 					ret = 0;
1948 				} else {
1949 					/*
1950 					 * done_index is set past this page,
1951 					 * so media errors will not choke
1952 					 * background writeout for the entire
1953 					 * file. This has consequences for
1954 					 * range_cyclic semantics (ie. it may
1955 					 * not be suitable for data integrity
1956 					 * writeout).
1957 					 */
1958 					done_index = page->index + 1;
1959 					done = 1;
1960 					break;
1961 				}
1962 			}
1963 
1964 			/*
1965 			 * We stop writing back only if we are not doing
1966 			 * integrity sync. In case of integrity sync we have to
1967 			 * keep going until we have written all the pages
1968 			 * we tagged for writeback prior to entering this loop.
1969 			 */
1970 			if (--wbc->nr_to_write <= 0 &&
1971 			    wbc->sync_mode == WB_SYNC_NONE) {
1972 				done = 1;
1973 				break;
1974 			}
1975 		}
1976 		pagevec_release(&pvec);
1977 		cond_resched();
1978 	}
1979 	if (!cycled && !done) {
1980 		/*
1981 		 * range_cyclic:
1982 		 * We hit the last page and there is more work to be done: wrap
1983 		 * back to the start of the file
1984 		 */
1985 		cycled = 1;
1986 		index = 0;
1987 		end = writeback_index - 1;
1988 		goto retry;
1989 	}
1990 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1991 		mapping->writeback_index = done_index;
1992 
1993 	return ret;
1994 }
1995 EXPORT_SYMBOL(write_cache_pages);
1996 
1997 /*
1998  * Function used by generic_writepages to call the real writepage
1999  * function and set the mapping flags on error
2000  */
2001 static int __writepage(struct page *page, struct writeback_control *wbc,
2002 		       void *data)
2003 {
2004 	struct address_space *mapping = data;
2005 	int ret = mapping->a_ops->writepage(page, wbc);
2006 	mapping_set_error(mapping, ret);
2007 	return ret;
2008 }
2009 
2010 /**
2011  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2012  * @mapping: address space structure to write
2013  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2014  *
2015  * This is a library function, which implements the writepages()
2016  * address_space_operation.
2017  */
2018 int generic_writepages(struct address_space *mapping,
2019 		       struct writeback_control *wbc)
2020 {
2021 	struct blk_plug plug;
2022 	int ret;
2023 
2024 	/* deal with chardevs and other special file */
2025 	if (!mapping->a_ops->writepage)
2026 		return 0;
2027 
2028 	blk_start_plug(&plug);
2029 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2030 	blk_finish_plug(&plug);
2031 	return ret;
2032 }
2033 
2034 EXPORT_SYMBOL(generic_writepages);
2035 
2036 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2037 {
2038 	int ret;
2039 
2040 	if (wbc->nr_to_write <= 0)
2041 		return 0;
2042 	if (mapping->a_ops->writepages)
2043 		ret = mapping->a_ops->writepages(mapping, wbc);
2044 	else
2045 		ret = generic_writepages(mapping, wbc);
2046 	return ret;
2047 }
2048 
2049 /**
2050  * write_one_page - write out a single page and optionally wait on I/O
2051  * @page: the page to write
2052  * @wait: if true, wait on writeout
2053  *
2054  * The page must be locked by the caller and will be unlocked upon return.
2055  *
2056  * write_one_page() returns a negative error code if I/O failed.
2057  */
2058 int write_one_page(struct page *page, int wait)
2059 {
2060 	struct address_space *mapping = page->mapping;
2061 	int ret = 0;
2062 	struct writeback_control wbc = {
2063 		.sync_mode = WB_SYNC_ALL,
2064 		.nr_to_write = 1,
2065 	};
2066 
2067 	BUG_ON(!PageLocked(page));
2068 
2069 	if (wait)
2070 		wait_on_page_writeback(page);
2071 
2072 	if (clear_page_dirty_for_io(page)) {
2073 		page_cache_get(page);
2074 		ret = mapping->a_ops->writepage(page, &wbc);
2075 		if (ret == 0 && wait) {
2076 			wait_on_page_writeback(page);
2077 			if (PageError(page))
2078 				ret = -EIO;
2079 		}
2080 		page_cache_release(page);
2081 	} else {
2082 		unlock_page(page);
2083 	}
2084 	return ret;
2085 }
2086 EXPORT_SYMBOL(write_one_page);
2087 
2088 /*
2089  * For address_spaces which do not use buffers nor write back.
2090  */
2091 int __set_page_dirty_no_writeback(struct page *page)
2092 {
2093 	if (!PageDirty(page))
2094 		return !TestSetPageDirty(page);
2095 	return 0;
2096 }
2097 
2098 /*
2099  * Helper function for set_page_dirty family.
2100  * NOTE: This relies on being atomic wrt interrupts.
2101  */
2102 void account_page_dirtied(struct page *page, struct address_space *mapping)
2103 {
2104 	trace_writeback_dirty_page(page, mapping);
2105 
2106 	if (mapping_cap_account_dirty(mapping)) {
2107 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2108 		__inc_zone_page_state(page, NR_DIRTIED);
2109 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
2110 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2111 		task_io_account_write(PAGE_CACHE_SIZE);
2112 		current->nr_dirtied++;
2113 		this_cpu_inc(bdp_ratelimits);
2114 	}
2115 }
2116 EXPORT_SYMBOL(account_page_dirtied);
2117 
2118 /*
2119  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2120  * its radix tree.
2121  *
2122  * This is also used when a single buffer is being dirtied: we want to set the
2123  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2124  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2125  *
2126  * Most callers have locked the page, which pins the address_space in memory.
2127  * But zap_pte_range() does not lock the page, however in that case the
2128  * mapping is pinned by the vma's ->vm_file reference.
2129  *
2130  * We take care to handle the case where the page was truncated from the
2131  * mapping by re-checking page_mapping() inside tree_lock.
2132  */
2133 int __set_page_dirty_nobuffers(struct page *page)
2134 {
2135 	if (!TestSetPageDirty(page)) {
2136 		struct address_space *mapping = page_mapping(page);
2137 		struct address_space *mapping2;
2138 		unsigned long flags;
2139 
2140 		if (!mapping)
2141 			return 1;
2142 
2143 		spin_lock_irqsave(&mapping->tree_lock, flags);
2144 		mapping2 = page_mapping(page);
2145 		if (mapping2) { /* Race with truncate? */
2146 			BUG_ON(mapping2 != mapping);
2147 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2148 			account_page_dirtied(page, mapping);
2149 			radix_tree_tag_set(&mapping->page_tree,
2150 				page_index(page), PAGECACHE_TAG_DIRTY);
2151 		}
2152 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2153 		if (mapping->host) {
2154 			/* !PageAnon && !swapper_space */
2155 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2156 		}
2157 		return 1;
2158 	}
2159 	return 0;
2160 }
2161 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2162 
2163 /*
2164  * Call this whenever redirtying a page, to de-account the dirty counters
2165  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2166  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2167  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2168  * control.
2169  */
2170 void account_page_redirty(struct page *page)
2171 {
2172 	struct address_space *mapping = page->mapping;
2173 	if (mapping && mapping_cap_account_dirty(mapping)) {
2174 		current->nr_dirtied--;
2175 		dec_zone_page_state(page, NR_DIRTIED);
2176 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2177 	}
2178 }
2179 EXPORT_SYMBOL(account_page_redirty);
2180 
2181 /*
2182  * When a writepage implementation decides that it doesn't want to write this
2183  * page for some reason, it should redirty the locked page via
2184  * redirty_page_for_writepage() and it should then unlock the page and return 0
2185  */
2186 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2187 {
2188 	wbc->pages_skipped++;
2189 	account_page_redirty(page);
2190 	return __set_page_dirty_nobuffers(page);
2191 }
2192 EXPORT_SYMBOL(redirty_page_for_writepage);
2193 
2194 /*
2195  * Dirty a page.
2196  *
2197  * For pages with a mapping this should be done under the page lock
2198  * for the benefit of asynchronous memory errors who prefer a consistent
2199  * dirty state. This rule can be broken in some special cases,
2200  * but should be better not to.
2201  *
2202  * If the mapping doesn't provide a set_page_dirty a_op, then
2203  * just fall through and assume that it wants buffer_heads.
2204  */
2205 int set_page_dirty(struct page *page)
2206 {
2207 	struct address_space *mapping = page_mapping(page);
2208 
2209 	if (likely(mapping)) {
2210 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2211 		/*
2212 		 * readahead/lru_deactivate_page could remain
2213 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2214 		 * About readahead, if the page is written, the flags would be
2215 		 * reset. So no problem.
2216 		 * About lru_deactivate_page, if the page is redirty, the flag
2217 		 * will be reset. So no problem. but if the page is used by readahead
2218 		 * it will confuse readahead and make it restart the size rampup
2219 		 * process. But it's a trivial problem.
2220 		 */
2221 		ClearPageReclaim(page);
2222 #ifdef CONFIG_BLOCK
2223 		if (!spd)
2224 			spd = __set_page_dirty_buffers;
2225 #endif
2226 		return (*spd)(page);
2227 	}
2228 	if (!PageDirty(page)) {
2229 		if (!TestSetPageDirty(page))
2230 			return 1;
2231 	}
2232 	return 0;
2233 }
2234 EXPORT_SYMBOL(set_page_dirty);
2235 
2236 /*
2237  * set_page_dirty() is racy if the caller has no reference against
2238  * page->mapping->host, and if the page is unlocked.  This is because another
2239  * CPU could truncate the page off the mapping and then free the mapping.
2240  *
2241  * Usually, the page _is_ locked, or the caller is a user-space process which
2242  * holds a reference on the inode by having an open file.
2243  *
2244  * In other cases, the page should be locked before running set_page_dirty().
2245  */
2246 int set_page_dirty_lock(struct page *page)
2247 {
2248 	int ret;
2249 
2250 	lock_page(page);
2251 	ret = set_page_dirty(page);
2252 	unlock_page(page);
2253 	return ret;
2254 }
2255 EXPORT_SYMBOL(set_page_dirty_lock);
2256 
2257 /*
2258  * Clear a page's dirty flag, while caring for dirty memory accounting.
2259  * Returns true if the page was previously dirty.
2260  *
2261  * This is for preparing to put the page under writeout.  We leave the page
2262  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2263  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2264  * implementation will run either set_page_writeback() or set_page_dirty(),
2265  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2266  * back into sync.
2267  *
2268  * This incoherency between the page's dirty flag and radix-tree tag is
2269  * unfortunate, but it only exists while the page is locked.
2270  */
2271 int clear_page_dirty_for_io(struct page *page)
2272 {
2273 	struct address_space *mapping = page_mapping(page);
2274 
2275 	BUG_ON(!PageLocked(page));
2276 
2277 	if (mapping && mapping_cap_account_dirty(mapping)) {
2278 		/*
2279 		 * Yes, Virginia, this is indeed insane.
2280 		 *
2281 		 * We use this sequence to make sure that
2282 		 *  (a) we account for dirty stats properly
2283 		 *  (b) we tell the low-level filesystem to
2284 		 *      mark the whole page dirty if it was
2285 		 *      dirty in a pagetable. Only to then
2286 		 *  (c) clean the page again and return 1 to
2287 		 *      cause the writeback.
2288 		 *
2289 		 * This way we avoid all nasty races with the
2290 		 * dirty bit in multiple places and clearing
2291 		 * them concurrently from different threads.
2292 		 *
2293 		 * Note! Normally the "set_page_dirty(page)"
2294 		 * has no effect on the actual dirty bit - since
2295 		 * that will already usually be set. But we
2296 		 * need the side effects, and it can help us
2297 		 * avoid races.
2298 		 *
2299 		 * We basically use the page "master dirty bit"
2300 		 * as a serialization point for all the different
2301 		 * threads doing their things.
2302 		 */
2303 		if (page_mkclean(page))
2304 			set_page_dirty(page);
2305 		/*
2306 		 * We carefully synchronise fault handlers against
2307 		 * installing a dirty pte and marking the page dirty
2308 		 * at this point. We do this by having them hold the
2309 		 * page lock at some point after installing their
2310 		 * pte, but before marking the page dirty.
2311 		 * Pages are always locked coming in here, so we get
2312 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2313 		 * for more comments.
2314 		 */
2315 		if (TestClearPageDirty(page)) {
2316 			dec_zone_page_state(page, NR_FILE_DIRTY);
2317 			dec_bdi_stat(mapping->backing_dev_info,
2318 					BDI_RECLAIMABLE);
2319 			return 1;
2320 		}
2321 		return 0;
2322 	}
2323 	return TestClearPageDirty(page);
2324 }
2325 EXPORT_SYMBOL(clear_page_dirty_for_io);
2326 
2327 int test_clear_page_writeback(struct page *page)
2328 {
2329 	struct address_space *mapping = page_mapping(page);
2330 	unsigned long memcg_flags;
2331 	struct mem_cgroup *memcg;
2332 	bool locked;
2333 	int ret;
2334 
2335 	memcg = mem_cgroup_begin_page_stat(page, &locked, &memcg_flags);
2336 	if (mapping) {
2337 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2338 		unsigned long flags;
2339 
2340 		spin_lock_irqsave(&mapping->tree_lock, flags);
2341 		ret = TestClearPageWriteback(page);
2342 		if (ret) {
2343 			radix_tree_tag_clear(&mapping->page_tree,
2344 						page_index(page),
2345 						PAGECACHE_TAG_WRITEBACK);
2346 			if (bdi_cap_account_writeback(bdi)) {
2347 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2348 				__bdi_writeout_inc(bdi);
2349 			}
2350 		}
2351 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2352 	} else {
2353 		ret = TestClearPageWriteback(page);
2354 	}
2355 	if (ret) {
2356 		mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2357 		dec_zone_page_state(page, NR_WRITEBACK);
2358 		inc_zone_page_state(page, NR_WRITTEN);
2359 	}
2360 	mem_cgroup_end_page_stat(memcg, locked, memcg_flags);
2361 	return ret;
2362 }
2363 
2364 int __test_set_page_writeback(struct page *page, bool keep_write)
2365 {
2366 	struct address_space *mapping = page_mapping(page);
2367 	unsigned long memcg_flags;
2368 	struct mem_cgroup *memcg;
2369 	bool locked;
2370 	int ret;
2371 
2372 	memcg = mem_cgroup_begin_page_stat(page, &locked, &memcg_flags);
2373 	if (mapping) {
2374 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2375 		unsigned long flags;
2376 
2377 		spin_lock_irqsave(&mapping->tree_lock, flags);
2378 		ret = TestSetPageWriteback(page);
2379 		if (!ret) {
2380 			radix_tree_tag_set(&mapping->page_tree,
2381 						page_index(page),
2382 						PAGECACHE_TAG_WRITEBACK);
2383 			if (bdi_cap_account_writeback(bdi))
2384 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2385 		}
2386 		if (!PageDirty(page))
2387 			radix_tree_tag_clear(&mapping->page_tree,
2388 						page_index(page),
2389 						PAGECACHE_TAG_DIRTY);
2390 		if (!keep_write)
2391 			radix_tree_tag_clear(&mapping->page_tree,
2392 						page_index(page),
2393 						PAGECACHE_TAG_TOWRITE);
2394 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2395 	} else {
2396 		ret = TestSetPageWriteback(page);
2397 	}
2398 	if (!ret) {
2399 		mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
2400 		inc_zone_page_state(page, NR_WRITEBACK);
2401 	}
2402 	mem_cgroup_end_page_stat(memcg, locked, memcg_flags);
2403 	return ret;
2404 
2405 }
2406 EXPORT_SYMBOL(__test_set_page_writeback);
2407 
2408 /*
2409  * Return true if any of the pages in the mapping are marked with the
2410  * passed tag.
2411  */
2412 int mapping_tagged(struct address_space *mapping, int tag)
2413 {
2414 	return radix_tree_tagged(&mapping->page_tree, tag);
2415 }
2416 EXPORT_SYMBOL(mapping_tagged);
2417 
2418 /**
2419  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2420  * @page:	The page to wait on.
2421  *
2422  * This function determines if the given page is related to a backing device
2423  * that requires page contents to be held stable during writeback.  If so, then
2424  * it will wait for any pending writeback to complete.
2425  */
2426 void wait_for_stable_page(struct page *page)
2427 {
2428 	struct address_space *mapping = page_mapping(page);
2429 	struct backing_dev_info *bdi = mapping->backing_dev_info;
2430 
2431 	if (!bdi_cap_stable_pages_required(bdi))
2432 		return;
2433 
2434 	wait_on_page_writeback(page);
2435 }
2436 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2437