1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/pagevec.h> 36 #include <linux/timer.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/signal.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 112 * a full sync is triggered after this time elapses without any disk activity. 113 */ 114 int laptop_mode; 115 116 EXPORT_SYMBOL(laptop_mode); 117 118 /* End of sysctl-exported parameters */ 119 120 struct wb_domain global_wb_domain; 121 122 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 123 struct dirty_throttle_control { 124 #ifdef CONFIG_CGROUP_WRITEBACK 125 struct wb_domain *dom; 126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 127 #endif 128 struct bdi_writeback *wb; 129 struct fprop_local_percpu *wb_completions; 130 131 unsigned long avail; /* dirtyable */ 132 unsigned long dirty; /* file_dirty + write + nfs */ 133 unsigned long thresh; /* dirty threshold */ 134 unsigned long bg_thresh; /* dirty background threshold */ 135 136 unsigned long wb_dirty; /* per-wb counterparts */ 137 unsigned long wb_thresh; 138 unsigned long wb_bg_thresh; 139 140 unsigned long pos_ratio; 141 }; 142 143 /* 144 * Length of period for aging writeout fractions of bdis. This is an 145 * arbitrarily chosen number. The longer the period, the slower fractions will 146 * reflect changes in current writeout rate. 147 */ 148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 149 150 #ifdef CONFIG_CGROUP_WRITEBACK 151 152 #define GDTC_INIT(__wb) .wb = (__wb), \ 153 .dom = &global_wb_domain, \ 154 .wb_completions = &(__wb)->completions 155 156 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 157 158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 159 .dom = mem_cgroup_wb_domain(__wb), \ 160 .wb_completions = &(__wb)->memcg_completions, \ 161 .gdtc = __gdtc 162 163 static bool mdtc_valid(struct dirty_throttle_control *dtc) 164 { 165 return dtc->dom; 166 } 167 168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 174 { 175 return mdtc->gdtc; 176 } 177 178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 179 { 180 return &wb->memcg_completions; 181 } 182 183 static void wb_min_max_ratio(struct bdi_writeback *wb, 184 unsigned long *minp, unsigned long *maxp) 185 { 186 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 188 unsigned long long min = wb->bdi->min_ratio; 189 unsigned long long max = wb->bdi->max_ratio; 190 191 /* 192 * @wb may already be clean by the time control reaches here and 193 * the total may not include its bw. 194 */ 195 if (this_bw < tot_bw) { 196 if (min) { 197 min *= this_bw; 198 min = div64_ul(min, tot_bw); 199 } 200 if (max < 100) { 201 max *= this_bw; 202 max = div64_ul(max, tot_bw); 203 } 204 } 205 206 *minp = min; 207 *maxp = max; 208 } 209 210 #else /* CONFIG_CGROUP_WRITEBACK */ 211 212 #define GDTC_INIT(__wb) .wb = (__wb), \ 213 .wb_completions = &(__wb)->completions 214 #define GDTC_INIT_NO_WB 215 #define MDTC_INIT(__wb, __gdtc) 216 217 static bool mdtc_valid(struct dirty_throttle_control *dtc) 218 { 219 return false; 220 } 221 222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 223 { 224 return &global_wb_domain; 225 } 226 227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 228 { 229 return NULL; 230 } 231 232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 233 { 234 return NULL; 235 } 236 237 static void wb_min_max_ratio(struct bdi_writeback *wb, 238 unsigned long *minp, unsigned long *maxp) 239 { 240 *minp = wb->bdi->min_ratio; 241 *maxp = wb->bdi->max_ratio; 242 } 243 244 #endif /* CONFIG_CGROUP_WRITEBACK */ 245 246 /* 247 * In a memory zone, there is a certain amount of pages we consider 248 * available for the page cache, which is essentially the number of 249 * free and reclaimable pages, minus some zone reserves to protect 250 * lowmem and the ability to uphold the zone's watermarks without 251 * requiring writeback. 252 * 253 * This number of dirtyable pages is the base value of which the 254 * user-configurable dirty ratio is the effective number of pages that 255 * are allowed to be actually dirtied. Per individual zone, or 256 * globally by using the sum of dirtyable pages over all zones. 257 * 258 * Because the user is allowed to specify the dirty limit globally as 259 * absolute number of bytes, calculating the per-zone dirty limit can 260 * require translating the configured limit into a percentage of 261 * global dirtyable memory first. 262 */ 263 264 /** 265 * node_dirtyable_memory - number of dirtyable pages in a node 266 * @pgdat: the node 267 * 268 * Return: the node's number of pages potentially available for dirty 269 * page cache. This is the base value for the per-node dirty limits. 270 */ 271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 272 { 273 unsigned long nr_pages = 0; 274 int z; 275 276 for (z = 0; z < MAX_NR_ZONES; z++) { 277 struct zone *zone = pgdat->node_zones + z; 278 279 if (!populated_zone(zone)) 280 continue; 281 282 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 283 } 284 285 /* 286 * Pages reserved for the kernel should not be considered 287 * dirtyable, to prevent a situation where reclaim has to 288 * clean pages in order to balance the zones. 289 */ 290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 291 292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 294 295 return nr_pages; 296 } 297 298 static unsigned long highmem_dirtyable_memory(unsigned long total) 299 { 300 #ifdef CONFIG_HIGHMEM 301 int node; 302 unsigned long x = 0; 303 int i; 304 305 for_each_node_state(node, N_HIGH_MEMORY) { 306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 307 struct zone *z; 308 unsigned long nr_pages; 309 310 if (!is_highmem_idx(i)) 311 continue; 312 313 z = &NODE_DATA(node)->node_zones[i]; 314 if (!populated_zone(z)) 315 continue; 316 317 nr_pages = zone_page_state(z, NR_FREE_PAGES); 318 /* watch for underflows */ 319 nr_pages -= min(nr_pages, high_wmark_pages(z)); 320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 322 x += nr_pages; 323 } 324 } 325 326 /* 327 * Unreclaimable memory (kernel memory or anonymous memory 328 * without swap) can bring down the dirtyable pages below 329 * the zone's dirty balance reserve and the above calculation 330 * will underflow. However we still want to add in nodes 331 * which are below threshold (negative values) to get a more 332 * accurate calculation but make sure that the total never 333 * underflows. 334 */ 335 if ((long)x < 0) 336 x = 0; 337 338 /* 339 * Make sure that the number of highmem pages is never larger 340 * than the number of the total dirtyable memory. This can only 341 * occur in very strange VM situations but we want to make sure 342 * that this does not occur. 343 */ 344 return min(x, total); 345 #else 346 return 0; 347 #endif 348 } 349 350 /** 351 * global_dirtyable_memory - number of globally dirtyable pages 352 * 353 * Return: the global number of pages potentially available for dirty 354 * page cache. This is the base value for the global dirty limits. 355 */ 356 static unsigned long global_dirtyable_memory(void) 357 { 358 unsigned long x; 359 360 x = global_zone_page_state(NR_FREE_PAGES); 361 /* 362 * Pages reserved for the kernel should not be considered 363 * dirtyable, to prevent a situation where reclaim has to 364 * clean pages in order to balance the zones. 365 */ 366 x -= min(x, totalreserve_pages); 367 368 x += global_node_page_state(NR_INACTIVE_FILE); 369 x += global_node_page_state(NR_ACTIVE_FILE); 370 371 if (!vm_highmem_is_dirtyable) 372 x -= highmem_dirtyable_memory(x); 373 374 return x + 1; /* Ensure that we never return 0 */ 375 } 376 377 /** 378 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 379 * @dtc: dirty_throttle_control of interest 380 * 381 * Calculate @dtc->thresh and ->bg_thresh considering 382 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 383 * must ensure that @dtc->avail is set before calling this function. The 384 * dirty limits will be lifted by 1/4 for real-time tasks. 385 */ 386 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 387 { 388 const unsigned long available_memory = dtc->avail; 389 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 390 unsigned long bytes = vm_dirty_bytes; 391 unsigned long bg_bytes = dirty_background_bytes; 392 /* convert ratios to per-PAGE_SIZE for higher precision */ 393 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 394 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 395 unsigned long thresh; 396 unsigned long bg_thresh; 397 struct task_struct *tsk; 398 399 /* gdtc is !NULL iff @dtc is for memcg domain */ 400 if (gdtc) { 401 unsigned long global_avail = gdtc->avail; 402 403 /* 404 * The byte settings can't be applied directly to memcg 405 * domains. Convert them to ratios by scaling against 406 * globally available memory. As the ratios are in 407 * per-PAGE_SIZE, they can be obtained by dividing bytes by 408 * number of pages. 409 */ 410 if (bytes) 411 ratio = min(DIV_ROUND_UP(bytes, global_avail), 412 PAGE_SIZE); 413 if (bg_bytes) 414 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 415 PAGE_SIZE); 416 bytes = bg_bytes = 0; 417 } 418 419 if (bytes) 420 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 421 else 422 thresh = (ratio * available_memory) / PAGE_SIZE; 423 424 if (bg_bytes) 425 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 426 else 427 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 428 429 if (bg_thresh >= thresh) 430 bg_thresh = thresh / 2; 431 tsk = current; 432 if (rt_task(tsk)) { 433 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 434 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 435 } 436 dtc->thresh = thresh; 437 dtc->bg_thresh = bg_thresh; 438 439 /* we should eventually report the domain in the TP */ 440 if (!gdtc) 441 trace_global_dirty_state(bg_thresh, thresh); 442 } 443 444 /** 445 * global_dirty_limits - background-writeback and dirty-throttling thresholds 446 * @pbackground: out parameter for bg_thresh 447 * @pdirty: out parameter for thresh 448 * 449 * Calculate bg_thresh and thresh for global_wb_domain. See 450 * domain_dirty_limits() for details. 451 */ 452 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 453 { 454 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 455 456 gdtc.avail = global_dirtyable_memory(); 457 domain_dirty_limits(&gdtc); 458 459 *pbackground = gdtc.bg_thresh; 460 *pdirty = gdtc.thresh; 461 } 462 463 /** 464 * node_dirty_limit - maximum number of dirty pages allowed in a node 465 * @pgdat: the node 466 * 467 * Return: the maximum number of dirty pages allowed in a node, based 468 * on the node's dirtyable memory. 469 */ 470 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 471 { 472 unsigned long node_memory = node_dirtyable_memory(pgdat); 473 struct task_struct *tsk = current; 474 unsigned long dirty; 475 476 if (vm_dirty_bytes) 477 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 478 node_memory / global_dirtyable_memory(); 479 else 480 dirty = vm_dirty_ratio * node_memory / 100; 481 482 if (rt_task(tsk)) 483 dirty += dirty / 4; 484 485 return dirty; 486 } 487 488 /** 489 * node_dirty_ok - tells whether a node is within its dirty limits 490 * @pgdat: the node to check 491 * 492 * Return: %true when the dirty pages in @pgdat are within the node's 493 * dirty limit, %false if the limit is exceeded. 494 */ 495 bool node_dirty_ok(struct pglist_data *pgdat) 496 { 497 unsigned long limit = node_dirty_limit(pgdat); 498 unsigned long nr_pages = 0; 499 500 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 501 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 502 503 return nr_pages <= limit; 504 } 505 506 int dirty_background_ratio_handler(struct ctl_table *table, int write, 507 void *buffer, size_t *lenp, loff_t *ppos) 508 { 509 int ret; 510 511 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 512 if (ret == 0 && write) 513 dirty_background_bytes = 0; 514 return ret; 515 } 516 517 int dirty_background_bytes_handler(struct ctl_table *table, int write, 518 void *buffer, size_t *lenp, loff_t *ppos) 519 { 520 int ret; 521 522 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 523 if (ret == 0 && write) 524 dirty_background_ratio = 0; 525 return ret; 526 } 527 528 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 529 size_t *lenp, loff_t *ppos) 530 { 531 int old_ratio = vm_dirty_ratio; 532 int ret; 533 534 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 535 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 536 writeback_set_ratelimit(); 537 vm_dirty_bytes = 0; 538 } 539 return ret; 540 } 541 542 int dirty_bytes_handler(struct ctl_table *table, int write, 543 void *buffer, size_t *lenp, loff_t *ppos) 544 { 545 unsigned long old_bytes = vm_dirty_bytes; 546 int ret; 547 548 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 549 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 550 writeback_set_ratelimit(); 551 vm_dirty_ratio = 0; 552 } 553 return ret; 554 } 555 556 static unsigned long wp_next_time(unsigned long cur_time) 557 { 558 cur_time += VM_COMPLETIONS_PERIOD_LEN; 559 /* 0 has a special meaning... */ 560 if (!cur_time) 561 return 1; 562 return cur_time; 563 } 564 565 static void wb_domain_writeout_inc(struct wb_domain *dom, 566 struct fprop_local_percpu *completions, 567 unsigned int max_prop_frac) 568 { 569 __fprop_inc_percpu_max(&dom->completions, completions, 570 max_prop_frac); 571 /* First event after period switching was turned off? */ 572 if (unlikely(!dom->period_time)) { 573 /* 574 * We can race with other __bdi_writeout_inc calls here but 575 * it does not cause any harm since the resulting time when 576 * timer will fire and what is in writeout_period_time will be 577 * roughly the same. 578 */ 579 dom->period_time = wp_next_time(jiffies); 580 mod_timer(&dom->period_timer, dom->period_time); 581 } 582 } 583 584 /* 585 * Increment @wb's writeout completion count and the global writeout 586 * completion count. Called from test_clear_page_writeback(). 587 */ 588 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 589 { 590 struct wb_domain *cgdom; 591 592 inc_wb_stat(wb, WB_WRITTEN); 593 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 594 wb->bdi->max_prop_frac); 595 596 cgdom = mem_cgroup_wb_domain(wb); 597 if (cgdom) 598 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 599 wb->bdi->max_prop_frac); 600 } 601 602 void wb_writeout_inc(struct bdi_writeback *wb) 603 { 604 unsigned long flags; 605 606 local_irq_save(flags); 607 __wb_writeout_inc(wb); 608 local_irq_restore(flags); 609 } 610 EXPORT_SYMBOL_GPL(wb_writeout_inc); 611 612 /* 613 * On idle system, we can be called long after we scheduled because we use 614 * deferred timers so count with missed periods. 615 */ 616 static void writeout_period(struct timer_list *t) 617 { 618 struct wb_domain *dom = from_timer(dom, t, period_timer); 619 int miss_periods = (jiffies - dom->period_time) / 620 VM_COMPLETIONS_PERIOD_LEN; 621 622 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 623 dom->period_time = wp_next_time(dom->period_time + 624 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 625 mod_timer(&dom->period_timer, dom->period_time); 626 } else { 627 /* 628 * Aging has zeroed all fractions. Stop wasting CPU on period 629 * updates. 630 */ 631 dom->period_time = 0; 632 } 633 } 634 635 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 636 { 637 memset(dom, 0, sizeof(*dom)); 638 639 spin_lock_init(&dom->lock); 640 641 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 642 643 dom->dirty_limit_tstamp = jiffies; 644 645 return fprop_global_init(&dom->completions, gfp); 646 } 647 648 #ifdef CONFIG_CGROUP_WRITEBACK 649 void wb_domain_exit(struct wb_domain *dom) 650 { 651 del_timer_sync(&dom->period_timer); 652 fprop_global_destroy(&dom->completions); 653 } 654 #endif 655 656 /* 657 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 658 * registered backing devices, which, for obvious reasons, can not 659 * exceed 100%. 660 */ 661 static unsigned int bdi_min_ratio; 662 663 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 664 { 665 int ret = 0; 666 667 spin_lock_bh(&bdi_lock); 668 if (min_ratio > bdi->max_ratio) { 669 ret = -EINVAL; 670 } else { 671 min_ratio -= bdi->min_ratio; 672 if (bdi_min_ratio + min_ratio < 100) { 673 bdi_min_ratio += min_ratio; 674 bdi->min_ratio += min_ratio; 675 } else { 676 ret = -EINVAL; 677 } 678 } 679 spin_unlock_bh(&bdi_lock); 680 681 return ret; 682 } 683 684 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 685 { 686 int ret = 0; 687 688 if (max_ratio > 100) 689 return -EINVAL; 690 691 spin_lock_bh(&bdi_lock); 692 if (bdi->min_ratio > max_ratio) { 693 ret = -EINVAL; 694 } else { 695 bdi->max_ratio = max_ratio; 696 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 697 } 698 spin_unlock_bh(&bdi_lock); 699 700 return ret; 701 } 702 EXPORT_SYMBOL(bdi_set_max_ratio); 703 704 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 705 unsigned long bg_thresh) 706 { 707 return (thresh + bg_thresh) / 2; 708 } 709 710 static unsigned long hard_dirty_limit(struct wb_domain *dom, 711 unsigned long thresh) 712 { 713 return max(thresh, dom->dirty_limit); 714 } 715 716 /* 717 * Memory which can be further allocated to a memcg domain is capped by 718 * system-wide clean memory excluding the amount being used in the domain. 719 */ 720 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 721 unsigned long filepages, unsigned long headroom) 722 { 723 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 724 unsigned long clean = filepages - min(filepages, mdtc->dirty); 725 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 726 unsigned long other_clean = global_clean - min(global_clean, clean); 727 728 mdtc->avail = filepages + min(headroom, other_clean); 729 } 730 731 /** 732 * __wb_calc_thresh - @wb's share of dirty throttling threshold 733 * @dtc: dirty_throttle_context of interest 734 * 735 * Note that balance_dirty_pages() will only seriously take it as a hard limit 736 * when sleeping max_pause per page is not enough to keep the dirty pages under 737 * control. For example, when the device is completely stalled due to some error 738 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 739 * In the other normal situations, it acts more gently by throttling the tasks 740 * more (rather than completely block them) when the wb dirty pages go high. 741 * 742 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 743 * - starving fast devices 744 * - piling up dirty pages (that will take long time to sync) on slow devices 745 * 746 * The wb's share of dirty limit will be adapting to its throughput and 747 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 748 * 749 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 750 * dirty balancing includes all PG_dirty and PG_writeback pages. 751 */ 752 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 753 { 754 struct wb_domain *dom = dtc_dom(dtc); 755 unsigned long thresh = dtc->thresh; 756 u64 wb_thresh; 757 unsigned long numerator, denominator; 758 unsigned long wb_min_ratio, wb_max_ratio; 759 760 /* 761 * Calculate this BDI's share of the thresh ratio. 762 */ 763 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 764 &numerator, &denominator); 765 766 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 767 wb_thresh *= numerator; 768 wb_thresh = div64_ul(wb_thresh, denominator); 769 770 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 771 772 wb_thresh += (thresh * wb_min_ratio) / 100; 773 if (wb_thresh > (thresh * wb_max_ratio) / 100) 774 wb_thresh = thresh * wb_max_ratio / 100; 775 776 return wb_thresh; 777 } 778 779 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 780 { 781 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 782 .thresh = thresh }; 783 return __wb_calc_thresh(&gdtc); 784 } 785 786 /* 787 * setpoint - dirty 3 788 * f(dirty) := 1.0 + (----------------) 789 * limit - setpoint 790 * 791 * it's a 3rd order polynomial that subjects to 792 * 793 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 794 * (2) f(setpoint) = 1.0 => the balance point 795 * (3) f(limit) = 0 => the hard limit 796 * (4) df/dx <= 0 => negative feedback control 797 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 798 * => fast response on large errors; small oscillation near setpoint 799 */ 800 static long long pos_ratio_polynom(unsigned long setpoint, 801 unsigned long dirty, 802 unsigned long limit) 803 { 804 long long pos_ratio; 805 long x; 806 807 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 808 (limit - setpoint) | 1); 809 pos_ratio = x; 810 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 811 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 812 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 813 814 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 815 } 816 817 /* 818 * Dirty position control. 819 * 820 * (o) global/bdi setpoints 821 * 822 * We want the dirty pages be balanced around the global/wb setpoints. 823 * When the number of dirty pages is higher/lower than the setpoint, the 824 * dirty position control ratio (and hence task dirty ratelimit) will be 825 * decreased/increased to bring the dirty pages back to the setpoint. 826 * 827 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 828 * 829 * if (dirty < setpoint) scale up pos_ratio 830 * if (dirty > setpoint) scale down pos_ratio 831 * 832 * if (wb_dirty < wb_setpoint) scale up pos_ratio 833 * if (wb_dirty > wb_setpoint) scale down pos_ratio 834 * 835 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 836 * 837 * (o) global control line 838 * 839 * ^ pos_ratio 840 * | 841 * | |<===== global dirty control scope ======>| 842 * 2.0 * * * * * * * 843 * | .* 844 * | . * 845 * | . * 846 * | . * 847 * | . * 848 * | . * 849 * 1.0 ................................* 850 * | . . * 851 * | . . * 852 * | . . * 853 * | . . * 854 * | . . * 855 * 0 +------------.------------------.----------------------*-------------> 856 * freerun^ setpoint^ limit^ dirty pages 857 * 858 * (o) wb control line 859 * 860 * ^ pos_ratio 861 * | 862 * | * 863 * | * 864 * | * 865 * | * 866 * | * |<=========== span ============>| 867 * 1.0 .......................* 868 * | . * 869 * | . * 870 * | . * 871 * | . * 872 * | . * 873 * | . * 874 * | . * 875 * | . * 876 * | . * 877 * | . * 878 * | . * 879 * 1/4 ...............................................* * * * * * * * * * * * 880 * | . . 881 * | . . 882 * | . . 883 * 0 +----------------------.-------------------------------.-------------> 884 * wb_setpoint^ x_intercept^ 885 * 886 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 887 * be smoothly throttled down to normal if it starts high in situations like 888 * - start writing to a slow SD card and a fast disk at the same time. The SD 889 * card's wb_dirty may rush to many times higher than wb_setpoint. 890 * - the wb dirty thresh drops quickly due to change of JBOD workload 891 */ 892 static void wb_position_ratio(struct dirty_throttle_control *dtc) 893 { 894 struct bdi_writeback *wb = dtc->wb; 895 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 896 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 897 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 898 unsigned long wb_thresh = dtc->wb_thresh; 899 unsigned long x_intercept; 900 unsigned long setpoint; /* dirty pages' target balance point */ 901 unsigned long wb_setpoint; 902 unsigned long span; 903 long long pos_ratio; /* for scaling up/down the rate limit */ 904 long x; 905 906 dtc->pos_ratio = 0; 907 908 if (unlikely(dtc->dirty >= limit)) 909 return; 910 911 /* 912 * global setpoint 913 * 914 * See comment for pos_ratio_polynom(). 915 */ 916 setpoint = (freerun + limit) / 2; 917 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 918 919 /* 920 * The strictlimit feature is a tool preventing mistrusted filesystems 921 * from growing a large number of dirty pages before throttling. For 922 * such filesystems balance_dirty_pages always checks wb counters 923 * against wb limits. Even if global "nr_dirty" is under "freerun". 924 * This is especially important for fuse which sets bdi->max_ratio to 925 * 1% by default. Without strictlimit feature, fuse writeback may 926 * consume arbitrary amount of RAM because it is accounted in 927 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 928 * 929 * Here, in wb_position_ratio(), we calculate pos_ratio based on 930 * two values: wb_dirty and wb_thresh. Let's consider an example: 931 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 932 * limits are set by default to 10% and 20% (background and throttle). 933 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 934 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 935 * about ~6K pages (as the average of background and throttle wb 936 * limits). The 3rd order polynomial will provide positive feedback if 937 * wb_dirty is under wb_setpoint and vice versa. 938 * 939 * Note, that we cannot use global counters in these calculations 940 * because we want to throttle process writing to a strictlimit wb 941 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 942 * in the example above). 943 */ 944 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 945 long long wb_pos_ratio; 946 947 if (dtc->wb_dirty < 8) { 948 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 949 2 << RATELIMIT_CALC_SHIFT); 950 return; 951 } 952 953 if (dtc->wb_dirty >= wb_thresh) 954 return; 955 956 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 957 dtc->wb_bg_thresh); 958 959 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 960 return; 961 962 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 963 wb_thresh); 964 965 /* 966 * Typically, for strictlimit case, wb_setpoint << setpoint 967 * and pos_ratio >> wb_pos_ratio. In the other words global 968 * state ("dirty") is not limiting factor and we have to 969 * make decision based on wb counters. But there is an 970 * important case when global pos_ratio should get precedence: 971 * global limits are exceeded (e.g. due to activities on other 972 * wb's) while given strictlimit wb is below limit. 973 * 974 * "pos_ratio * wb_pos_ratio" would work for the case above, 975 * but it would look too non-natural for the case of all 976 * activity in the system coming from a single strictlimit wb 977 * with bdi->max_ratio == 100%. 978 * 979 * Note that min() below somewhat changes the dynamics of the 980 * control system. Normally, pos_ratio value can be well over 3 981 * (when globally we are at freerun and wb is well below wb 982 * setpoint). Now the maximum pos_ratio in the same situation 983 * is 2. We might want to tweak this if we observe the control 984 * system is too slow to adapt. 985 */ 986 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 987 return; 988 } 989 990 /* 991 * We have computed basic pos_ratio above based on global situation. If 992 * the wb is over/under its share of dirty pages, we want to scale 993 * pos_ratio further down/up. That is done by the following mechanism. 994 */ 995 996 /* 997 * wb setpoint 998 * 999 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1000 * 1001 * x_intercept - wb_dirty 1002 * := -------------------------- 1003 * x_intercept - wb_setpoint 1004 * 1005 * The main wb control line is a linear function that subjects to 1006 * 1007 * (1) f(wb_setpoint) = 1.0 1008 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1009 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1010 * 1011 * For single wb case, the dirty pages are observed to fluctuate 1012 * regularly within range 1013 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1014 * for various filesystems, where (2) can yield in a reasonable 12.5% 1015 * fluctuation range for pos_ratio. 1016 * 1017 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1018 * own size, so move the slope over accordingly and choose a slope that 1019 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1020 */ 1021 if (unlikely(wb_thresh > dtc->thresh)) 1022 wb_thresh = dtc->thresh; 1023 /* 1024 * It's very possible that wb_thresh is close to 0 not because the 1025 * device is slow, but that it has remained inactive for long time. 1026 * Honour such devices a reasonable good (hopefully IO efficient) 1027 * threshold, so that the occasional writes won't be blocked and active 1028 * writes can rampup the threshold quickly. 1029 */ 1030 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1031 /* 1032 * scale global setpoint to wb's: 1033 * wb_setpoint = setpoint * wb_thresh / thresh 1034 */ 1035 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1036 wb_setpoint = setpoint * (u64)x >> 16; 1037 /* 1038 * Use span=(8*write_bw) in single wb case as indicated by 1039 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1040 * 1041 * wb_thresh thresh - wb_thresh 1042 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1043 * thresh thresh 1044 */ 1045 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1046 x_intercept = wb_setpoint + span; 1047 1048 if (dtc->wb_dirty < x_intercept - span / 4) { 1049 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1050 (x_intercept - wb_setpoint) | 1); 1051 } else 1052 pos_ratio /= 4; 1053 1054 /* 1055 * wb reserve area, safeguard against dirty pool underrun and disk idle 1056 * It may push the desired control point of global dirty pages higher 1057 * than setpoint. 1058 */ 1059 x_intercept = wb_thresh / 2; 1060 if (dtc->wb_dirty < x_intercept) { 1061 if (dtc->wb_dirty > x_intercept / 8) 1062 pos_ratio = div_u64(pos_ratio * x_intercept, 1063 dtc->wb_dirty); 1064 else 1065 pos_ratio *= 8; 1066 } 1067 1068 dtc->pos_ratio = pos_ratio; 1069 } 1070 1071 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1072 unsigned long elapsed, 1073 unsigned long written) 1074 { 1075 const unsigned long period = roundup_pow_of_two(3 * HZ); 1076 unsigned long avg = wb->avg_write_bandwidth; 1077 unsigned long old = wb->write_bandwidth; 1078 u64 bw; 1079 1080 /* 1081 * bw = written * HZ / elapsed 1082 * 1083 * bw * elapsed + write_bandwidth * (period - elapsed) 1084 * write_bandwidth = --------------------------------------------------- 1085 * period 1086 * 1087 * @written may have decreased due to account_page_redirty(). 1088 * Avoid underflowing @bw calculation. 1089 */ 1090 bw = written - min(written, wb->written_stamp); 1091 bw *= HZ; 1092 if (unlikely(elapsed > period)) { 1093 bw = div64_ul(bw, elapsed); 1094 avg = bw; 1095 goto out; 1096 } 1097 bw += (u64)wb->write_bandwidth * (period - elapsed); 1098 bw >>= ilog2(period); 1099 1100 /* 1101 * one more level of smoothing, for filtering out sudden spikes 1102 */ 1103 if (avg > old && old >= (unsigned long)bw) 1104 avg -= (avg - old) >> 3; 1105 1106 if (avg < old && old <= (unsigned long)bw) 1107 avg += (old - avg) >> 3; 1108 1109 out: 1110 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1111 avg = max(avg, 1LU); 1112 if (wb_has_dirty_io(wb)) { 1113 long delta = avg - wb->avg_write_bandwidth; 1114 WARN_ON_ONCE(atomic_long_add_return(delta, 1115 &wb->bdi->tot_write_bandwidth) <= 0); 1116 } 1117 wb->write_bandwidth = bw; 1118 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1119 } 1120 1121 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1122 { 1123 struct wb_domain *dom = dtc_dom(dtc); 1124 unsigned long thresh = dtc->thresh; 1125 unsigned long limit = dom->dirty_limit; 1126 1127 /* 1128 * Follow up in one step. 1129 */ 1130 if (limit < thresh) { 1131 limit = thresh; 1132 goto update; 1133 } 1134 1135 /* 1136 * Follow down slowly. Use the higher one as the target, because thresh 1137 * may drop below dirty. This is exactly the reason to introduce 1138 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1139 */ 1140 thresh = max(thresh, dtc->dirty); 1141 if (limit > thresh) { 1142 limit -= (limit - thresh) >> 5; 1143 goto update; 1144 } 1145 return; 1146 update: 1147 dom->dirty_limit = limit; 1148 } 1149 1150 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1151 unsigned long now) 1152 { 1153 struct wb_domain *dom = dtc_dom(dtc); 1154 1155 /* 1156 * check locklessly first to optimize away locking for the most time 1157 */ 1158 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1159 return; 1160 1161 spin_lock(&dom->lock); 1162 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1163 update_dirty_limit(dtc); 1164 dom->dirty_limit_tstamp = now; 1165 } 1166 spin_unlock(&dom->lock); 1167 } 1168 1169 /* 1170 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1171 * 1172 * Normal wb tasks will be curbed at or below it in long term. 1173 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1174 */ 1175 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1176 unsigned long dirtied, 1177 unsigned long elapsed) 1178 { 1179 struct bdi_writeback *wb = dtc->wb; 1180 unsigned long dirty = dtc->dirty; 1181 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1182 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1183 unsigned long setpoint = (freerun + limit) / 2; 1184 unsigned long write_bw = wb->avg_write_bandwidth; 1185 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1186 unsigned long dirty_rate; 1187 unsigned long task_ratelimit; 1188 unsigned long balanced_dirty_ratelimit; 1189 unsigned long step; 1190 unsigned long x; 1191 unsigned long shift; 1192 1193 /* 1194 * The dirty rate will match the writeout rate in long term, except 1195 * when dirty pages are truncated by userspace or re-dirtied by FS. 1196 */ 1197 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1198 1199 /* 1200 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1201 */ 1202 task_ratelimit = (u64)dirty_ratelimit * 1203 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1204 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1205 1206 /* 1207 * A linear estimation of the "balanced" throttle rate. The theory is, 1208 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1209 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1210 * formula will yield the balanced rate limit (write_bw / N). 1211 * 1212 * Note that the expanded form is not a pure rate feedback: 1213 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1214 * but also takes pos_ratio into account: 1215 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1216 * 1217 * (1) is not realistic because pos_ratio also takes part in balancing 1218 * the dirty rate. Consider the state 1219 * pos_ratio = 0.5 (3) 1220 * rate = 2 * (write_bw / N) (4) 1221 * If (1) is used, it will stuck in that state! Because each dd will 1222 * be throttled at 1223 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1224 * yielding 1225 * dirty_rate = N * task_ratelimit = write_bw (6) 1226 * put (6) into (1) we get 1227 * rate_(i+1) = rate_(i) (7) 1228 * 1229 * So we end up using (2) to always keep 1230 * rate_(i+1) ~= (write_bw / N) (8) 1231 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1232 * pos_ratio is able to drive itself to 1.0, which is not only where 1233 * the dirty count meet the setpoint, but also where the slope of 1234 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1235 */ 1236 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1237 dirty_rate | 1); 1238 /* 1239 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1240 */ 1241 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1242 balanced_dirty_ratelimit = write_bw; 1243 1244 /* 1245 * We could safely do this and return immediately: 1246 * 1247 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1248 * 1249 * However to get a more stable dirty_ratelimit, the below elaborated 1250 * code makes use of task_ratelimit to filter out singular points and 1251 * limit the step size. 1252 * 1253 * The below code essentially only uses the relative value of 1254 * 1255 * task_ratelimit - dirty_ratelimit 1256 * = (pos_ratio - 1) * dirty_ratelimit 1257 * 1258 * which reflects the direction and size of dirty position error. 1259 */ 1260 1261 /* 1262 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1263 * task_ratelimit is on the same side of dirty_ratelimit, too. 1264 * For example, when 1265 * - dirty_ratelimit > balanced_dirty_ratelimit 1266 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1267 * lowering dirty_ratelimit will help meet both the position and rate 1268 * control targets. Otherwise, don't update dirty_ratelimit if it will 1269 * only help meet the rate target. After all, what the users ultimately 1270 * feel and care are stable dirty rate and small position error. 1271 * 1272 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1273 * and filter out the singular points of balanced_dirty_ratelimit. Which 1274 * keeps jumping around randomly and can even leap far away at times 1275 * due to the small 200ms estimation period of dirty_rate (we want to 1276 * keep that period small to reduce time lags). 1277 */ 1278 step = 0; 1279 1280 /* 1281 * For strictlimit case, calculations above were based on wb counters 1282 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1283 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1284 * Hence, to calculate "step" properly, we have to use wb_dirty as 1285 * "dirty" and wb_setpoint as "setpoint". 1286 * 1287 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1288 * it's possible that wb_thresh is close to zero due to inactivity 1289 * of backing device. 1290 */ 1291 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1292 dirty = dtc->wb_dirty; 1293 if (dtc->wb_dirty < 8) 1294 setpoint = dtc->wb_dirty + 1; 1295 else 1296 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1297 } 1298 1299 if (dirty < setpoint) { 1300 x = min3(wb->balanced_dirty_ratelimit, 1301 balanced_dirty_ratelimit, task_ratelimit); 1302 if (dirty_ratelimit < x) 1303 step = x - dirty_ratelimit; 1304 } else { 1305 x = max3(wb->balanced_dirty_ratelimit, 1306 balanced_dirty_ratelimit, task_ratelimit); 1307 if (dirty_ratelimit > x) 1308 step = dirty_ratelimit - x; 1309 } 1310 1311 /* 1312 * Don't pursue 100% rate matching. It's impossible since the balanced 1313 * rate itself is constantly fluctuating. So decrease the track speed 1314 * when it gets close to the target. Helps eliminate pointless tremors. 1315 */ 1316 shift = dirty_ratelimit / (2 * step + 1); 1317 if (shift < BITS_PER_LONG) 1318 step = DIV_ROUND_UP(step >> shift, 8); 1319 else 1320 step = 0; 1321 1322 if (dirty_ratelimit < balanced_dirty_ratelimit) 1323 dirty_ratelimit += step; 1324 else 1325 dirty_ratelimit -= step; 1326 1327 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1328 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1329 1330 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1331 } 1332 1333 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1334 struct dirty_throttle_control *mdtc, 1335 bool update_ratelimit) 1336 { 1337 struct bdi_writeback *wb = gdtc->wb; 1338 unsigned long now = jiffies; 1339 unsigned long elapsed; 1340 unsigned long dirtied; 1341 unsigned long written; 1342 1343 spin_lock(&wb->list_lock); 1344 1345 /* 1346 * Lockless checks for elapsed time are racy and delayed update after 1347 * IO completion doesn't do it at all (to make sure written pages are 1348 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1349 * division errors. 1350 */ 1351 elapsed = max(now - wb->bw_time_stamp, 1UL); 1352 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1353 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1354 1355 if (update_ratelimit) { 1356 domain_update_dirty_limit(gdtc, now); 1357 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1358 1359 /* 1360 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1361 * compiler has no way to figure that out. Help it. 1362 */ 1363 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1364 domain_update_dirty_limit(mdtc, now); 1365 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1366 } 1367 } 1368 wb_update_write_bandwidth(wb, elapsed, written); 1369 1370 wb->dirtied_stamp = dirtied; 1371 wb->written_stamp = written; 1372 WRITE_ONCE(wb->bw_time_stamp, now); 1373 spin_unlock(&wb->list_lock); 1374 } 1375 1376 void wb_update_bandwidth(struct bdi_writeback *wb) 1377 { 1378 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1379 1380 __wb_update_bandwidth(&gdtc, NULL, false); 1381 } 1382 1383 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1384 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1385 1386 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1387 { 1388 unsigned long now = jiffies; 1389 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1390 1391 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1392 !atomic_read(&wb->writeback_inodes)) { 1393 spin_lock(&wb->list_lock); 1394 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1395 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1396 WRITE_ONCE(wb->bw_time_stamp, now); 1397 spin_unlock(&wb->list_lock); 1398 } 1399 } 1400 1401 /* 1402 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1403 * will look to see if it needs to start dirty throttling. 1404 * 1405 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1406 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1407 * (the number of pages we may dirty without exceeding the dirty limits). 1408 */ 1409 static unsigned long dirty_poll_interval(unsigned long dirty, 1410 unsigned long thresh) 1411 { 1412 if (thresh > dirty) 1413 return 1UL << (ilog2(thresh - dirty) >> 1); 1414 1415 return 1; 1416 } 1417 1418 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1419 unsigned long wb_dirty) 1420 { 1421 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1422 unsigned long t; 1423 1424 /* 1425 * Limit pause time for small memory systems. If sleeping for too long 1426 * time, a small pool of dirty/writeback pages may go empty and disk go 1427 * idle. 1428 * 1429 * 8 serves as the safety ratio. 1430 */ 1431 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1432 t++; 1433 1434 return min_t(unsigned long, t, MAX_PAUSE); 1435 } 1436 1437 static long wb_min_pause(struct bdi_writeback *wb, 1438 long max_pause, 1439 unsigned long task_ratelimit, 1440 unsigned long dirty_ratelimit, 1441 int *nr_dirtied_pause) 1442 { 1443 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1444 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1445 long t; /* target pause */ 1446 long pause; /* estimated next pause */ 1447 int pages; /* target nr_dirtied_pause */ 1448 1449 /* target for 10ms pause on 1-dd case */ 1450 t = max(1, HZ / 100); 1451 1452 /* 1453 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1454 * overheads. 1455 * 1456 * (N * 10ms) on 2^N concurrent tasks. 1457 */ 1458 if (hi > lo) 1459 t += (hi - lo) * (10 * HZ) / 1024; 1460 1461 /* 1462 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1463 * on the much more stable dirty_ratelimit. However the next pause time 1464 * will be computed based on task_ratelimit and the two rate limits may 1465 * depart considerably at some time. Especially if task_ratelimit goes 1466 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1467 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1468 * result task_ratelimit won't be executed faithfully, which could 1469 * eventually bring down dirty_ratelimit. 1470 * 1471 * We apply two rules to fix it up: 1472 * 1) try to estimate the next pause time and if necessary, use a lower 1473 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1474 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1475 * 2) limit the target pause time to max_pause/2, so that the normal 1476 * small fluctuations of task_ratelimit won't trigger rule (1) and 1477 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1478 */ 1479 t = min(t, 1 + max_pause / 2); 1480 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1481 1482 /* 1483 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1484 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1485 * When the 16 consecutive reads are often interrupted by some dirty 1486 * throttling pause during the async writes, cfq will go into idles 1487 * (deadline is fine). So push nr_dirtied_pause as high as possible 1488 * until reaches DIRTY_POLL_THRESH=32 pages. 1489 */ 1490 if (pages < DIRTY_POLL_THRESH) { 1491 t = max_pause; 1492 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1493 if (pages > DIRTY_POLL_THRESH) { 1494 pages = DIRTY_POLL_THRESH; 1495 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1496 } 1497 } 1498 1499 pause = HZ * pages / (task_ratelimit + 1); 1500 if (pause > max_pause) { 1501 t = max_pause; 1502 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1503 } 1504 1505 *nr_dirtied_pause = pages; 1506 /* 1507 * The minimal pause time will normally be half the target pause time. 1508 */ 1509 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1510 } 1511 1512 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1513 { 1514 struct bdi_writeback *wb = dtc->wb; 1515 unsigned long wb_reclaimable; 1516 1517 /* 1518 * wb_thresh is not treated as some limiting factor as 1519 * dirty_thresh, due to reasons 1520 * - in JBOD setup, wb_thresh can fluctuate a lot 1521 * - in a system with HDD and USB key, the USB key may somehow 1522 * go into state (wb_dirty >> wb_thresh) either because 1523 * wb_dirty starts high, or because wb_thresh drops low. 1524 * In this case we don't want to hard throttle the USB key 1525 * dirtiers for 100 seconds until wb_dirty drops under 1526 * wb_thresh. Instead the auxiliary wb control line in 1527 * wb_position_ratio() will let the dirtier task progress 1528 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1529 */ 1530 dtc->wb_thresh = __wb_calc_thresh(dtc); 1531 dtc->wb_bg_thresh = dtc->thresh ? 1532 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1533 1534 /* 1535 * In order to avoid the stacked BDI deadlock we need 1536 * to ensure we accurately count the 'dirty' pages when 1537 * the threshold is low. 1538 * 1539 * Otherwise it would be possible to get thresh+n pages 1540 * reported dirty, even though there are thresh-m pages 1541 * actually dirty; with m+n sitting in the percpu 1542 * deltas. 1543 */ 1544 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1545 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1546 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1547 } else { 1548 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1549 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1550 } 1551 } 1552 1553 /* 1554 * balance_dirty_pages() must be called by processes which are generating dirty 1555 * data. It looks at the number of dirty pages in the machine and will force 1556 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1557 * If we're over `background_thresh' then the writeback threads are woken to 1558 * perform some writeout. 1559 */ 1560 static void balance_dirty_pages(struct bdi_writeback *wb, 1561 unsigned long pages_dirtied) 1562 { 1563 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1564 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1565 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1566 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1567 &mdtc_stor : NULL; 1568 struct dirty_throttle_control *sdtc; 1569 unsigned long nr_reclaimable; /* = file_dirty */ 1570 long period; 1571 long pause; 1572 long max_pause; 1573 long min_pause; 1574 int nr_dirtied_pause; 1575 bool dirty_exceeded = false; 1576 unsigned long task_ratelimit; 1577 unsigned long dirty_ratelimit; 1578 struct backing_dev_info *bdi = wb->bdi; 1579 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1580 unsigned long start_time = jiffies; 1581 1582 for (;;) { 1583 unsigned long now = jiffies; 1584 unsigned long dirty, thresh, bg_thresh; 1585 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1586 unsigned long m_thresh = 0; 1587 unsigned long m_bg_thresh = 0; 1588 1589 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1590 gdtc->avail = global_dirtyable_memory(); 1591 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1592 1593 domain_dirty_limits(gdtc); 1594 1595 if (unlikely(strictlimit)) { 1596 wb_dirty_limits(gdtc); 1597 1598 dirty = gdtc->wb_dirty; 1599 thresh = gdtc->wb_thresh; 1600 bg_thresh = gdtc->wb_bg_thresh; 1601 } else { 1602 dirty = gdtc->dirty; 1603 thresh = gdtc->thresh; 1604 bg_thresh = gdtc->bg_thresh; 1605 } 1606 1607 if (mdtc) { 1608 unsigned long filepages, headroom, writeback; 1609 1610 /* 1611 * If @wb belongs to !root memcg, repeat the same 1612 * basic calculations for the memcg domain. 1613 */ 1614 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1615 &mdtc->dirty, &writeback); 1616 mdtc->dirty += writeback; 1617 mdtc_calc_avail(mdtc, filepages, headroom); 1618 1619 domain_dirty_limits(mdtc); 1620 1621 if (unlikely(strictlimit)) { 1622 wb_dirty_limits(mdtc); 1623 m_dirty = mdtc->wb_dirty; 1624 m_thresh = mdtc->wb_thresh; 1625 m_bg_thresh = mdtc->wb_bg_thresh; 1626 } else { 1627 m_dirty = mdtc->dirty; 1628 m_thresh = mdtc->thresh; 1629 m_bg_thresh = mdtc->bg_thresh; 1630 } 1631 } 1632 1633 /* 1634 * Throttle it only when the background writeback cannot 1635 * catch-up. This avoids (excessively) small writeouts 1636 * when the wb limits are ramping up in case of !strictlimit. 1637 * 1638 * In strictlimit case make decision based on the wb counters 1639 * and limits. Small writeouts when the wb limits are ramping 1640 * up are the price we consciously pay for strictlimit-ing. 1641 * 1642 * If memcg domain is in effect, @dirty should be under 1643 * both global and memcg freerun ceilings. 1644 */ 1645 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1646 (!mdtc || 1647 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1648 unsigned long intv; 1649 unsigned long m_intv; 1650 1651 free_running: 1652 intv = dirty_poll_interval(dirty, thresh); 1653 m_intv = ULONG_MAX; 1654 1655 current->dirty_paused_when = now; 1656 current->nr_dirtied = 0; 1657 if (mdtc) 1658 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1659 current->nr_dirtied_pause = min(intv, m_intv); 1660 break; 1661 } 1662 1663 if (unlikely(!writeback_in_progress(wb))) 1664 wb_start_background_writeback(wb); 1665 1666 mem_cgroup_flush_foreign(wb); 1667 1668 /* 1669 * Calculate global domain's pos_ratio and select the 1670 * global dtc by default. 1671 */ 1672 if (!strictlimit) { 1673 wb_dirty_limits(gdtc); 1674 1675 if ((current->flags & PF_LOCAL_THROTTLE) && 1676 gdtc->wb_dirty < 1677 dirty_freerun_ceiling(gdtc->wb_thresh, 1678 gdtc->wb_bg_thresh)) 1679 /* 1680 * LOCAL_THROTTLE tasks must not be throttled 1681 * when below the per-wb freerun ceiling. 1682 */ 1683 goto free_running; 1684 } 1685 1686 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1687 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1688 1689 wb_position_ratio(gdtc); 1690 sdtc = gdtc; 1691 1692 if (mdtc) { 1693 /* 1694 * If memcg domain is in effect, calculate its 1695 * pos_ratio. @wb should satisfy constraints from 1696 * both global and memcg domains. Choose the one 1697 * w/ lower pos_ratio. 1698 */ 1699 if (!strictlimit) { 1700 wb_dirty_limits(mdtc); 1701 1702 if ((current->flags & PF_LOCAL_THROTTLE) && 1703 mdtc->wb_dirty < 1704 dirty_freerun_ceiling(mdtc->wb_thresh, 1705 mdtc->wb_bg_thresh)) 1706 /* 1707 * LOCAL_THROTTLE tasks must not be 1708 * throttled when below the per-wb 1709 * freerun ceiling. 1710 */ 1711 goto free_running; 1712 } 1713 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1714 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1715 1716 wb_position_ratio(mdtc); 1717 if (mdtc->pos_ratio < gdtc->pos_ratio) 1718 sdtc = mdtc; 1719 } 1720 1721 if (dirty_exceeded && !wb->dirty_exceeded) 1722 wb->dirty_exceeded = 1; 1723 1724 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1725 BANDWIDTH_INTERVAL)) 1726 __wb_update_bandwidth(gdtc, mdtc, true); 1727 1728 /* throttle according to the chosen dtc */ 1729 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1730 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1731 RATELIMIT_CALC_SHIFT; 1732 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1733 min_pause = wb_min_pause(wb, max_pause, 1734 task_ratelimit, dirty_ratelimit, 1735 &nr_dirtied_pause); 1736 1737 if (unlikely(task_ratelimit == 0)) { 1738 period = max_pause; 1739 pause = max_pause; 1740 goto pause; 1741 } 1742 period = HZ * pages_dirtied / task_ratelimit; 1743 pause = period; 1744 if (current->dirty_paused_when) 1745 pause -= now - current->dirty_paused_when; 1746 /* 1747 * For less than 1s think time (ext3/4 may block the dirtier 1748 * for up to 800ms from time to time on 1-HDD; so does xfs, 1749 * however at much less frequency), try to compensate it in 1750 * future periods by updating the virtual time; otherwise just 1751 * do a reset, as it may be a light dirtier. 1752 */ 1753 if (pause < min_pause) { 1754 trace_balance_dirty_pages(wb, 1755 sdtc->thresh, 1756 sdtc->bg_thresh, 1757 sdtc->dirty, 1758 sdtc->wb_thresh, 1759 sdtc->wb_dirty, 1760 dirty_ratelimit, 1761 task_ratelimit, 1762 pages_dirtied, 1763 period, 1764 min(pause, 0L), 1765 start_time); 1766 if (pause < -HZ) { 1767 current->dirty_paused_when = now; 1768 current->nr_dirtied = 0; 1769 } else if (period) { 1770 current->dirty_paused_when += period; 1771 current->nr_dirtied = 0; 1772 } else if (current->nr_dirtied_pause <= pages_dirtied) 1773 current->nr_dirtied_pause += pages_dirtied; 1774 break; 1775 } 1776 if (unlikely(pause > max_pause)) { 1777 /* for occasional dropped task_ratelimit */ 1778 now += min(pause - max_pause, max_pause); 1779 pause = max_pause; 1780 } 1781 1782 pause: 1783 trace_balance_dirty_pages(wb, 1784 sdtc->thresh, 1785 sdtc->bg_thresh, 1786 sdtc->dirty, 1787 sdtc->wb_thresh, 1788 sdtc->wb_dirty, 1789 dirty_ratelimit, 1790 task_ratelimit, 1791 pages_dirtied, 1792 period, 1793 pause, 1794 start_time); 1795 __set_current_state(TASK_KILLABLE); 1796 wb->dirty_sleep = now; 1797 io_schedule_timeout(pause); 1798 1799 current->dirty_paused_when = now + pause; 1800 current->nr_dirtied = 0; 1801 current->nr_dirtied_pause = nr_dirtied_pause; 1802 1803 /* 1804 * This is typically equal to (dirty < thresh) and can also 1805 * keep "1000+ dd on a slow USB stick" under control. 1806 */ 1807 if (task_ratelimit) 1808 break; 1809 1810 /* 1811 * In the case of an unresponsive NFS server and the NFS dirty 1812 * pages exceeds dirty_thresh, give the other good wb's a pipe 1813 * to go through, so that tasks on them still remain responsive. 1814 * 1815 * In theory 1 page is enough to keep the consumer-producer 1816 * pipe going: the flusher cleans 1 page => the task dirties 1 1817 * more page. However wb_dirty has accounting errors. So use 1818 * the larger and more IO friendly wb_stat_error. 1819 */ 1820 if (sdtc->wb_dirty <= wb_stat_error()) 1821 break; 1822 1823 if (fatal_signal_pending(current)) 1824 break; 1825 } 1826 1827 if (!dirty_exceeded && wb->dirty_exceeded) 1828 wb->dirty_exceeded = 0; 1829 1830 if (writeback_in_progress(wb)) 1831 return; 1832 1833 /* 1834 * In laptop mode, we wait until hitting the higher threshold before 1835 * starting background writeout, and then write out all the way down 1836 * to the lower threshold. So slow writers cause minimal disk activity. 1837 * 1838 * In normal mode, we start background writeout at the lower 1839 * background_thresh, to keep the amount of dirty memory low. 1840 */ 1841 if (laptop_mode) 1842 return; 1843 1844 if (nr_reclaimable > gdtc->bg_thresh) 1845 wb_start_background_writeback(wb); 1846 } 1847 1848 static DEFINE_PER_CPU(int, bdp_ratelimits); 1849 1850 /* 1851 * Normal tasks are throttled by 1852 * loop { 1853 * dirty tsk->nr_dirtied_pause pages; 1854 * take a snap in balance_dirty_pages(); 1855 * } 1856 * However there is a worst case. If every task exit immediately when dirtied 1857 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1858 * called to throttle the page dirties. The solution is to save the not yet 1859 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1860 * randomly into the running tasks. This works well for the above worst case, 1861 * as the new task will pick up and accumulate the old task's leaked dirty 1862 * count and eventually get throttled. 1863 */ 1864 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1865 1866 /** 1867 * balance_dirty_pages_ratelimited - balance dirty memory state 1868 * @mapping: address_space which was dirtied 1869 * 1870 * Processes which are dirtying memory should call in here once for each page 1871 * which was newly dirtied. The function will periodically check the system's 1872 * dirty state and will initiate writeback if needed. 1873 * 1874 * Once we're over the dirty memory limit we decrease the ratelimiting 1875 * by a lot, to prevent individual processes from overshooting the limit 1876 * by (ratelimit_pages) each. 1877 */ 1878 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1879 { 1880 struct inode *inode = mapping->host; 1881 struct backing_dev_info *bdi = inode_to_bdi(inode); 1882 struct bdi_writeback *wb = NULL; 1883 int ratelimit; 1884 int *p; 1885 1886 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 1887 return; 1888 1889 if (inode_cgwb_enabled(inode)) 1890 wb = wb_get_create_current(bdi, GFP_KERNEL); 1891 if (!wb) 1892 wb = &bdi->wb; 1893 1894 ratelimit = current->nr_dirtied_pause; 1895 if (wb->dirty_exceeded) 1896 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1897 1898 preempt_disable(); 1899 /* 1900 * This prevents one CPU to accumulate too many dirtied pages without 1901 * calling into balance_dirty_pages(), which can happen when there are 1902 * 1000+ tasks, all of them start dirtying pages at exactly the same 1903 * time, hence all honoured too large initial task->nr_dirtied_pause. 1904 */ 1905 p = this_cpu_ptr(&bdp_ratelimits); 1906 if (unlikely(current->nr_dirtied >= ratelimit)) 1907 *p = 0; 1908 else if (unlikely(*p >= ratelimit_pages)) { 1909 *p = 0; 1910 ratelimit = 0; 1911 } 1912 /* 1913 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1914 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1915 * the dirty throttling and livelock other long-run dirtiers. 1916 */ 1917 p = this_cpu_ptr(&dirty_throttle_leaks); 1918 if (*p > 0 && current->nr_dirtied < ratelimit) { 1919 unsigned long nr_pages_dirtied; 1920 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1921 *p -= nr_pages_dirtied; 1922 current->nr_dirtied += nr_pages_dirtied; 1923 } 1924 preempt_enable(); 1925 1926 if (unlikely(current->nr_dirtied >= ratelimit)) 1927 balance_dirty_pages(wb, current->nr_dirtied); 1928 1929 wb_put(wb); 1930 } 1931 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1932 1933 /** 1934 * wb_over_bg_thresh - does @wb need to be written back? 1935 * @wb: bdi_writeback of interest 1936 * 1937 * Determines whether background writeback should keep writing @wb or it's 1938 * clean enough. 1939 * 1940 * Return: %true if writeback should continue. 1941 */ 1942 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1943 { 1944 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1945 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1946 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1947 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1948 &mdtc_stor : NULL; 1949 unsigned long reclaimable; 1950 unsigned long thresh; 1951 1952 /* 1953 * Similar to balance_dirty_pages() but ignores pages being written 1954 * as we're trying to decide whether to put more under writeback. 1955 */ 1956 gdtc->avail = global_dirtyable_memory(); 1957 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 1958 domain_dirty_limits(gdtc); 1959 1960 if (gdtc->dirty > gdtc->bg_thresh) 1961 return true; 1962 1963 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 1964 if (thresh < 2 * wb_stat_error()) 1965 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1966 else 1967 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1968 1969 if (reclaimable > thresh) 1970 return true; 1971 1972 if (mdtc) { 1973 unsigned long filepages, headroom, writeback; 1974 1975 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1976 &writeback); 1977 mdtc_calc_avail(mdtc, filepages, headroom); 1978 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1979 1980 if (mdtc->dirty > mdtc->bg_thresh) 1981 return true; 1982 1983 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 1984 if (thresh < 2 * wb_stat_error()) 1985 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1986 else 1987 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1988 1989 if (reclaimable > thresh) 1990 return true; 1991 } 1992 1993 return false; 1994 } 1995 1996 /* 1997 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1998 */ 1999 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 2000 void *buffer, size_t *length, loff_t *ppos) 2001 { 2002 unsigned int old_interval = dirty_writeback_interval; 2003 int ret; 2004 2005 ret = proc_dointvec(table, write, buffer, length, ppos); 2006 2007 /* 2008 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2009 * and a different non-zero value will wakeup the writeback threads. 2010 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2011 * iterate over all bdis and wbs. 2012 * The reason we do this is to make the change take effect immediately. 2013 */ 2014 if (!ret && write && dirty_writeback_interval && 2015 dirty_writeback_interval != old_interval) 2016 wakeup_flusher_threads(WB_REASON_PERIODIC); 2017 2018 return ret; 2019 } 2020 2021 void laptop_mode_timer_fn(struct timer_list *t) 2022 { 2023 struct backing_dev_info *backing_dev_info = 2024 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2025 2026 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2027 } 2028 2029 /* 2030 * We've spun up the disk and we're in laptop mode: schedule writeback 2031 * of all dirty data a few seconds from now. If the flush is already scheduled 2032 * then push it back - the user is still using the disk. 2033 */ 2034 void laptop_io_completion(struct backing_dev_info *info) 2035 { 2036 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2037 } 2038 2039 /* 2040 * We're in laptop mode and we've just synced. The sync's writes will have 2041 * caused another writeback to be scheduled by laptop_io_completion. 2042 * Nothing needs to be written back anymore, so we unschedule the writeback. 2043 */ 2044 void laptop_sync_completion(void) 2045 { 2046 struct backing_dev_info *bdi; 2047 2048 rcu_read_lock(); 2049 2050 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2051 del_timer(&bdi->laptop_mode_wb_timer); 2052 2053 rcu_read_unlock(); 2054 } 2055 2056 /* 2057 * If ratelimit_pages is too high then we can get into dirty-data overload 2058 * if a large number of processes all perform writes at the same time. 2059 * 2060 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2061 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2062 * thresholds. 2063 */ 2064 2065 void writeback_set_ratelimit(void) 2066 { 2067 struct wb_domain *dom = &global_wb_domain; 2068 unsigned long background_thresh; 2069 unsigned long dirty_thresh; 2070 2071 global_dirty_limits(&background_thresh, &dirty_thresh); 2072 dom->dirty_limit = dirty_thresh; 2073 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2074 if (ratelimit_pages < 16) 2075 ratelimit_pages = 16; 2076 } 2077 2078 static int page_writeback_cpu_online(unsigned int cpu) 2079 { 2080 writeback_set_ratelimit(); 2081 return 0; 2082 } 2083 2084 /* 2085 * Called early on to tune the page writeback dirty limits. 2086 * 2087 * We used to scale dirty pages according to how total memory 2088 * related to pages that could be allocated for buffers. 2089 * 2090 * However, that was when we used "dirty_ratio" to scale with 2091 * all memory, and we don't do that any more. "dirty_ratio" 2092 * is now applied to total non-HIGHPAGE memory, and as such we can't 2093 * get into the old insane situation any more where we had 2094 * large amounts of dirty pages compared to a small amount of 2095 * non-HIGHMEM memory. 2096 * 2097 * But we might still want to scale the dirty_ratio by how 2098 * much memory the box has.. 2099 */ 2100 void __init page_writeback_init(void) 2101 { 2102 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2103 2104 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2105 page_writeback_cpu_online, NULL); 2106 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2107 page_writeback_cpu_online); 2108 } 2109 2110 /** 2111 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2112 * @mapping: address space structure to write 2113 * @start: starting page index 2114 * @end: ending page index (inclusive) 2115 * 2116 * This function scans the page range from @start to @end (inclusive) and tags 2117 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2118 * that write_cache_pages (or whoever calls this function) will then use 2119 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2120 * used to avoid livelocking of writeback by a process steadily creating new 2121 * dirty pages in the file (thus it is important for this function to be quick 2122 * so that it can tag pages faster than a dirtying process can create them). 2123 */ 2124 void tag_pages_for_writeback(struct address_space *mapping, 2125 pgoff_t start, pgoff_t end) 2126 { 2127 XA_STATE(xas, &mapping->i_pages, start); 2128 unsigned int tagged = 0; 2129 void *page; 2130 2131 xas_lock_irq(&xas); 2132 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2133 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2134 if (++tagged % XA_CHECK_SCHED) 2135 continue; 2136 2137 xas_pause(&xas); 2138 xas_unlock_irq(&xas); 2139 cond_resched(); 2140 xas_lock_irq(&xas); 2141 } 2142 xas_unlock_irq(&xas); 2143 } 2144 EXPORT_SYMBOL(tag_pages_for_writeback); 2145 2146 /** 2147 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2148 * @mapping: address space structure to write 2149 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2150 * @writepage: function called for each page 2151 * @data: data passed to writepage function 2152 * 2153 * If a page is already under I/O, write_cache_pages() skips it, even 2154 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2155 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2156 * and msync() need to guarantee that all the data which was dirty at the time 2157 * the call was made get new I/O started against them. If wbc->sync_mode is 2158 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2159 * existing IO to complete. 2160 * 2161 * To avoid livelocks (when other process dirties new pages), we first tag 2162 * pages which should be written back with TOWRITE tag and only then start 2163 * writing them. For data-integrity sync we have to be careful so that we do 2164 * not miss some pages (e.g., because some other process has cleared TOWRITE 2165 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2166 * by the process clearing the DIRTY tag (and submitting the page for IO). 2167 * 2168 * To avoid deadlocks between range_cyclic writeback and callers that hold 2169 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2170 * we do not loop back to the start of the file. Doing so causes a page 2171 * lock/page writeback access order inversion - we should only ever lock 2172 * multiple pages in ascending page->index order, and looping back to the start 2173 * of the file violates that rule and causes deadlocks. 2174 * 2175 * Return: %0 on success, negative error code otherwise 2176 */ 2177 int write_cache_pages(struct address_space *mapping, 2178 struct writeback_control *wbc, writepage_t writepage, 2179 void *data) 2180 { 2181 int ret = 0; 2182 int done = 0; 2183 int error; 2184 struct pagevec pvec; 2185 int nr_pages; 2186 pgoff_t index; 2187 pgoff_t end; /* Inclusive */ 2188 pgoff_t done_index; 2189 int range_whole = 0; 2190 xa_mark_t tag; 2191 2192 pagevec_init(&pvec); 2193 if (wbc->range_cyclic) { 2194 index = mapping->writeback_index; /* prev offset */ 2195 end = -1; 2196 } else { 2197 index = wbc->range_start >> PAGE_SHIFT; 2198 end = wbc->range_end >> PAGE_SHIFT; 2199 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2200 range_whole = 1; 2201 } 2202 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2203 tag_pages_for_writeback(mapping, index, end); 2204 tag = PAGECACHE_TAG_TOWRITE; 2205 } else { 2206 tag = PAGECACHE_TAG_DIRTY; 2207 } 2208 done_index = index; 2209 while (!done && (index <= end)) { 2210 int i; 2211 2212 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2213 tag); 2214 if (nr_pages == 0) 2215 break; 2216 2217 for (i = 0; i < nr_pages; i++) { 2218 struct page *page = pvec.pages[i]; 2219 2220 done_index = page->index; 2221 2222 lock_page(page); 2223 2224 /* 2225 * Page truncated or invalidated. We can freely skip it 2226 * then, even for data integrity operations: the page 2227 * has disappeared concurrently, so there could be no 2228 * real expectation of this data integrity operation 2229 * even if there is now a new, dirty page at the same 2230 * pagecache address. 2231 */ 2232 if (unlikely(page->mapping != mapping)) { 2233 continue_unlock: 2234 unlock_page(page); 2235 continue; 2236 } 2237 2238 if (!PageDirty(page)) { 2239 /* someone wrote it for us */ 2240 goto continue_unlock; 2241 } 2242 2243 if (PageWriteback(page)) { 2244 if (wbc->sync_mode != WB_SYNC_NONE) 2245 wait_on_page_writeback(page); 2246 else 2247 goto continue_unlock; 2248 } 2249 2250 BUG_ON(PageWriteback(page)); 2251 if (!clear_page_dirty_for_io(page)) 2252 goto continue_unlock; 2253 2254 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2255 error = (*writepage)(page, wbc, data); 2256 if (unlikely(error)) { 2257 /* 2258 * Handle errors according to the type of 2259 * writeback. There's no need to continue for 2260 * background writeback. Just push done_index 2261 * past this page so media errors won't choke 2262 * writeout for the entire file. For integrity 2263 * writeback, we must process the entire dirty 2264 * set regardless of errors because the fs may 2265 * still have state to clear for each page. In 2266 * that case we continue processing and return 2267 * the first error. 2268 */ 2269 if (error == AOP_WRITEPAGE_ACTIVATE) { 2270 unlock_page(page); 2271 error = 0; 2272 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2273 ret = error; 2274 done_index = page->index + 1; 2275 done = 1; 2276 break; 2277 } 2278 if (!ret) 2279 ret = error; 2280 } 2281 2282 /* 2283 * We stop writing back only if we are not doing 2284 * integrity sync. In case of integrity sync we have to 2285 * keep going until we have written all the pages 2286 * we tagged for writeback prior to entering this loop. 2287 */ 2288 if (--wbc->nr_to_write <= 0 && 2289 wbc->sync_mode == WB_SYNC_NONE) { 2290 done = 1; 2291 break; 2292 } 2293 } 2294 pagevec_release(&pvec); 2295 cond_resched(); 2296 } 2297 2298 /* 2299 * If we hit the last page and there is more work to be done: wrap 2300 * back the index back to the start of the file for the next 2301 * time we are called. 2302 */ 2303 if (wbc->range_cyclic && !done) 2304 done_index = 0; 2305 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2306 mapping->writeback_index = done_index; 2307 2308 return ret; 2309 } 2310 EXPORT_SYMBOL(write_cache_pages); 2311 2312 /* 2313 * Function used by generic_writepages to call the real writepage 2314 * function and set the mapping flags on error 2315 */ 2316 static int __writepage(struct page *page, struct writeback_control *wbc, 2317 void *data) 2318 { 2319 struct address_space *mapping = data; 2320 int ret = mapping->a_ops->writepage(page, wbc); 2321 mapping_set_error(mapping, ret); 2322 return ret; 2323 } 2324 2325 /** 2326 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2327 * @mapping: address space structure to write 2328 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2329 * 2330 * This is a library function, which implements the writepages() 2331 * address_space_operation. 2332 * 2333 * Return: %0 on success, negative error code otherwise 2334 */ 2335 int generic_writepages(struct address_space *mapping, 2336 struct writeback_control *wbc) 2337 { 2338 struct blk_plug plug; 2339 int ret; 2340 2341 /* deal with chardevs and other special file */ 2342 if (!mapping->a_ops->writepage) 2343 return 0; 2344 2345 blk_start_plug(&plug); 2346 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2347 blk_finish_plug(&plug); 2348 return ret; 2349 } 2350 2351 EXPORT_SYMBOL(generic_writepages); 2352 2353 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2354 { 2355 int ret; 2356 struct bdi_writeback *wb; 2357 2358 if (wbc->nr_to_write <= 0) 2359 return 0; 2360 wb = inode_to_wb_wbc(mapping->host, wbc); 2361 wb_bandwidth_estimate_start(wb); 2362 while (1) { 2363 if (mapping->a_ops->writepages) 2364 ret = mapping->a_ops->writepages(mapping, wbc); 2365 else 2366 ret = generic_writepages(mapping, wbc); 2367 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2368 break; 2369 cond_resched(); 2370 congestion_wait(BLK_RW_ASYNC, HZ/50); 2371 } 2372 /* 2373 * Usually few pages are written by now from those we've just submitted 2374 * but if there's constant writeback being submitted, this makes sure 2375 * writeback bandwidth is updated once in a while. 2376 */ 2377 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2378 BANDWIDTH_INTERVAL)) 2379 wb_update_bandwidth(wb); 2380 return ret; 2381 } 2382 2383 /** 2384 * write_one_page - write out a single page and wait on I/O 2385 * @page: the page to write 2386 * 2387 * The page must be locked by the caller and will be unlocked upon return. 2388 * 2389 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2390 * function returns. 2391 * 2392 * Return: %0 on success, negative error code otherwise 2393 */ 2394 int write_one_page(struct page *page) 2395 { 2396 struct address_space *mapping = page->mapping; 2397 int ret = 0; 2398 struct writeback_control wbc = { 2399 .sync_mode = WB_SYNC_ALL, 2400 .nr_to_write = 1, 2401 }; 2402 2403 BUG_ON(!PageLocked(page)); 2404 2405 wait_on_page_writeback(page); 2406 2407 if (clear_page_dirty_for_io(page)) { 2408 get_page(page); 2409 ret = mapping->a_ops->writepage(page, &wbc); 2410 if (ret == 0) 2411 wait_on_page_writeback(page); 2412 put_page(page); 2413 } else { 2414 unlock_page(page); 2415 } 2416 2417 if (!ret) 2418 ret = filemap_check_errors(mapping); 2419 return ret; 2420 } 2421 EXPORT_SYMBOL(write_one_page); 2422 2423 /* 2424 * For address_spaces which do not use buffers nor write back. 2425 */ 2426 int __set_page_dirty_no_writeback(struct page *page) 2427 { 2428 if (!PageDirty(page)) 2429 return !TestSetPageDirty(page); 2430 return 0; 2431 } 2432 EXPORT_SYMBOL(__set_page_dirty_no_writeback); 2433 2434 /* 2435 * Helper function for set_page_dirty family. 2436 * 2437 * Caller must hold lock_page_memcg(). 2438 * 2439 * NOTE: This relies on being atomic wrt interrupts. 2440 */ 2441 static void account_page_dirtied(struct page *page, 2442 struct address_space *mapping) 2443 { 2444 struct inode *inode = mapping->host; 2445 2446 trace_writeback_dirty_page(page, mapping); 2447 2448 if (mapping_can_writeback(mapping)) { 2449 struct bdi_writeback *wb; 2450 2451 inode_attach_wb(inode, page); 2452 wb = inode_to_wb(inode); 2453 2454 __inc_lruvec_page_state(page, NR_FILE_DIRTY); 2455 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2456 __inc_node_page_state(page, NR_DIRTIED); 2457 inc_wb_stat(wb, WB_RECLAIMABLE); 2458 inc_wb_stat(wb, WB_DIRTIED); 2459 task_io_account_write(PAGE_SIZE); 2460 current->nr_dirtied++; 2461 __this_cpu_inc(bdp_ratelimits); 2462 2463 mem_cgroup_track_foreign_dirty(page, wb); 2464 } 2465 } 2466 2467 /* 2468 * Helper function for deaccounting dirty page without writeback. 2469 * 2470 * Caller must hold lock_page_memcg(). 2471 */ 2472 void account_page_cleaned(struct page *page, struct address_space *mapping, 2473 struct bdi_writeback *wb) 2474 { 2475 if (mapping_can_writeback(mapping)) { 2476 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2477 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2478 dec_wb_stat(wb, WB_RECLAIMABLE); 2479 task_io_account_cancelled_write(PAGE_SIZE); 2480 } 2481 } 2482 2483 /* 2484 * Mark the page dirty, and set it dirty in the page cache, and mark the inode 2485 * dirty. 2486 * 2487 * If warn is true, then emit a warning if the page is not uptodate and has 2488 * not been truncated. 2489 * 2490 * The caller must hold lock_page_memcg(). 2491 */ 2492 void __set_page_dirty(struct page *page, struct address_space *mapping, 2493 int warn) 2494 { 2495 unsigned long flags; 2496 2497 xa_lock_irqsave(&mapping->i_pages, flags); 2498 if (page->mapping) { /* Race with truncate? */ 2499 WARN_ON_ONCE(warn && !PageUptodate(page)); 2500 account_page_dirtied(page, mapping); 2501 __xa_set_mark(&mapping->i_pages, page_index(page), 2502 PAGECACHE_TAG_DIRTY); 2503 } 2504 xa_unlock_irqrestore(&mapping->i_pages, flags); 2505 } 2506 2507 /* 2508 * For address_spaces which do not use buffers. Just tag the page as dirty in 2509 * the xarray. 2510 * 2511 * This is also used when a single buffer is being dirtied: we want to set the 2512 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2513 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2514 * 2515 * The caller must ensure this doesn't race with truncation. Most will simply 2516 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2517 * the pte lock held, which also locks out truncation. 2518 */ 2519 int __set_page_dirty_nobuffers(struct page *page) 2520 { 2521 lock_page_memcg(page); 2522 if (!TestSetPageDirty(page)) { 2523 struct address_space *mapping = page_mapping(page); 2524 2525 if (!mapping) { 2526 unlock_page_memcg(page); 2527 return 1; 2528 } 2529 __set_page_dirty(page, mapping, !PagePrivate(page)); 2530 unlock_page_memcg(page); 2531 2532 if (mapping->host) { 2533 /* !PageAnon && !swapper_space */ 2534 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2535 } 2536 return 1; 2537 } 2538 unlock_page_memcg(page); 2539 return 0; 2540 } 2541 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2542 2543 /* 2544 * Call this whenever redirtying a page, to de-account the dirty counters 2545 * (NR_DIRTIED, WB_DIRTIED, tsk->nr_dirtied), so that they match the written 2546 * counters (NR_WRITTEN, WB_WRITTEN) in long term. The mismatches will lead to 2547 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2548 * control. 2549 */ 2550 void account_page_redirty(struct page *page) 2551 { 2552 struct address_space *mapping = page->mapping; 2553 2554 if (mapping && mapping_can_writeback(mapping)) { 2555 struct inode *inode = mapping->host; 2556 struct bdi_writeback *wb; 2557 struct wb_lock_cookie cookie = {}; 2558 2559 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2560 current->nr_dirtied--; 2561 dec_node_page_state(page, NR_DIRTIED); 2562 dec_wb_stat(wb, WB_DIRTIED); 2563 unlocked_inode_to_wb_end(inode, &cookie); 2564 } 2565 } 2566 EXPORT_SYMBOL(account_page_redirty); 2567 2568 /* 2569 * When a writepage implementation decides that it doesn't want to write this 2570 * page for some reason, it should redirty the locked page via 2571 * redirty_page_for_writepage() and it should then unlock the page and return 0 2572 */ 2573 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2574 { 2575 int ret; 2576 2577 wbc->pages_skipped++; 2578 ret = __set_page_dirty_nobuffers(page); 2579 account_page_redirty(page); 2580 return ret; 2581 } 2582 EXPORT_SYMBOL(redirty_page_for_writepage); 2583 2584 /* 2585 * Dirty a page. 2586 * 2587 * For pages with a mapping this should be done under the page lock for the 2588 * benefit of asynchronous memory errors who prefer a consistent dirty state. 2589 * This rule can be broken in some special cases, but should be better not to. 2590 */ 2591 int set_page_dirty(struct page *page) 2592 { 2593 struct address_space *mapping = page_mapping(page); 2594 2595 page = compound_head(page); 2596 if (likely(mapping)) { 2597 /* 2598 * readahead/lru_deactivate_page could remain 2599 * PG_readahead/PG_reclaim due to race with end_page_writeback 2600 * About readahead, if the page is written, the flags would be 2601 * reset. So no problem. 2602 * About lru_deactivate_page, if the page is redirty, the flag 2603 * will be reset. So no problem. but if the page is used by readahead 2604 * it will confuse readahead and make it restart the size rampup 2605 * process. But it's a trivial problem. 2606 */ 2607 if (PageReclaim(page)) 2608 ClearPageReclaim(page); 2609 return mapping->a_ops->set_page_dirty(page); 2610 } 2611 if (!PageDirty(page)) { 2612 if (!TestSetPageDirty(page)) 2613 return 1; 2614 } 2615 return 0; 2616 } 2617 EXPORT_SYMBOL(set_page_dirty); 2618 2619 /* 2620 * set_page_dirty() is racy if the caller has no reference against 2621 * page->mapping->host, and if the page is unlocked. This is because another 2622 * CPU could truncate the page off the mapping and then free the mapping. 2623 * 2624 * Usually, the page _is_ locked, or the caller is a user-space process which 2625 * holds a reference on the inode by having an open file. 2626 * 2627 * In other cases, the page should be locked before running set_page_dirty(). 2628 */ 2629 int set_page_dirty_lock(struct page *page) 2630 { 2631 int ret; 2632 2633 lock_page(page); 2634 ret = set_page_dirty(page); 2635 unlock_page(page); 2636 return ret; 2637 } 2638 EXPORT_SYMBOL(set_page_dirty_lock); 2639 2640 /* 2641 * This cancels just the dirty bit on the kernel page itself, it does NOT 2642 * actually remove dirty bits on any mmap's that may be around. It also 2643 * leaves the page tagged dirty, so any sync activity will still find it on 2644 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2645 * look at the dirty bits in the VM. 2646 * 2647 * Doing this should *normally* only ever be done when a page is truncated, 2648 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2649 * this when it notices that somebody has cleaned out all the buffers on a 2650 * page without actually doing it through the VM. Can you say "ext3 is 2651 * horribly ugly"? Thought you could. 2652 */ 2653 void __cancel_dirty_page(struct page *page) 2654 { 2655 struct address_space *mapping = page_mapping(page); 2656 2657 if (mapping_can_writeback(mapping)) { 2658 struct inode *inode = mapping->host; 2659 struct bdi_writeback *wb; 2660 struct wb_lock_cookie cookie = {}; 2661 2662 lock_page_memcg(page); 2663 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2664 2665 if (TestClearPageDirty(page)) 2666 account_page_cleaned(page, mapping, wb); 2667 2668 unlocked_inode_to_wb_end(inode, &cookie); 2669 unlock_page_memcg(page); 2670 } else { 2671 ClearPageDirty(page); 2672 } 2673 } 2674 EXPORT_SYMBOL(__cancel_dirty_page); 2675 2676 /* 2677 * Clear a page's dirty flag, while caring for dirty memory accounting. 2678 * Returns true if the page was previously dirty. 2679 * 2680 * This is for preparing to put the page under writeout. We leave the page 2681 * tagged as dirty in the xarray so that a concurrent write-for-sync 2682 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2683 * implementation will run either set_page_writeback() or set_page_dirty(), 2684 * at which stage we bring the page's dirty flag and xarray dirty tag 2685 * back into sync. 2686 * 2687 * This incoherency between the page's dirty flag and xarray tag is 2688 * unfortunate, but it only exists while the page is locked. 2689 */ 2690 int clear_page_dirty_for_io(struct page *page) 2691 { 2692 struct address_space *mapping = page_mapping(page); 2693 int ret = 0; 2694 2695 VM_BUG_ON_PAGE(!PageLocked(page), page); 2696 2697 if (mapping && mapping_can_writeback(mapping)) { 2698 struct inode *inode = mapping->host; 2699 struct bdi_writeback *wb; 2700 struct wb_lock_cookie cookie = {}; 2701 2702 /* 2703 * Yes, Virginia, this is indeed insane. 2704 * 2705 * We use this sequence to make sure that 2706 * (a) we account for dirty stats properly 2707 * (b) we tell the low-level filesystem to 2708 * mark the whole page dirty if it was 2709 * dirty in a pagetable. Only to then 2710 * (c) clean the page again and return 1 to 2711 * cause the writeback. 2712 * 2713 * This way we avoid all nasty races with the 2714 * dirty bit in multiple places and clearing 2715 * them concurrently from different threads. 2716 * 2717 * Note! Normally the "set_page_dirty(page)" 2718 * has no effect on the actual dirty bit - since 2719 * that will already usually be set. But we 2720 * need the side effects, and it can help us 2721 * avoid races. 2722 * 2723 * We basically use the page "master dirty bit" 2724 * as a serialization point for all the different 2725 * threads doing their things. 2726 */ 2727 if (page_mkclean(page)) 2728 set_page_dirty(page); 2729 /* 2730 * We carefully synchronise fault handlers against 2731 * installing a dirty pte and marking the page dirty 2732 * at this point. We do this by having them hold the 2733 * page lock while dirtying the page, and pages are 2734 * always locked coming in here, so we get the desired 2735 * exclusion. 2736 */ 2737 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2738 if (TestClearPageDirty(page)) { 2739 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2740 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2741 dec_wb_stat(wb, WB_RECLAIMABLE); 2742 ret = 1; 2743 } 2744 unlocked_inode_to_wb_end(inode, &cookie); 2745 return ret; 2746 } 2747 return TestClearPageDirty(page); 2748 } 2749 EXPORT_SYMBOL(clear_page_dirty_for_io); 2750 2751 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2752 { 2753 atomic_inc(&wb->writeback_inodes); 2754 } 2755 2756 static void wb_inode_writeback_end(struct bdi_writeback *wb) 2757 { 2758 atomic_dec(&wb->writeback_inodes); 2759 /* 2760 * Make sure estimate of writeback throughput gets updated after 2761 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 2762 * (which is the interval other bandwidth updates use for batching) so 2763 * that if multiple inodes end writeback at a similar time, they get 2764 * batched into one bandwidth update. 2765 */ 2766 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 2767 } 2768 2769 int test_clear_page_writeback(struct page *page) 2770 { 2771 struct address_space *mapping = page_mapping(page); 2772 int ret; 2773 2774 lock_page_memcg(page); 2775 if (mapping && mapping_use_writeback_tags(mapping)) { 2776 struct inode *inode = mapping->host; 2777 struct backing_dev_info *bdi = inode_to_bdi(inode); 2778 unsigned long flags; 2779 2780 xa_lock_irqsave(&mapping->i_pages, flags); 2781 ret = TestClearPageWriteback(page); 2782 if (ret) { 2783 __xa_clear_mark(&mapping->i_pages, page_index(page), 2784 PAGECACHE_TAG_WRITEBACK); 2785 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2786 struct bdi_writeback *wb = inode_to_wb(inode); 2787 2788 dec_wb_stat(wb, WB_WRITEBACK); 2789 __wb_writeout_inc(wb); 2790 if (!mapping_tagged(mapping, 2791 PAGECACHE_TAG_WRITEBACK)) 2792 wb_inode_writeback_end(wb); 2793 } 2794 } 2795 2796 if (mapping->host && !mapping_tagged(mapping, 2797 PAGECACHE_TAG_WRITEBACK)) 2798 sb_clear_inode_writeback(mapping->host); 2799 2800 xa_unlock_irqrestore(&mapping->i_pages, flags); 2801 } else { 2802 ret = TestClearPageWriteback(page); 2803 } 2804 if (ret) { 2805 dec_lruvec_page_state(page, NR_WRITEBACK); 2806 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2807 inc_node_page_state(page, NR_WRITTEN); 2808 } 2809 unlock_page_memcg(page); 2810 return ret; 2811 } 2812 2813 int __test_set_page_writeback(struct page *page, bool keep_write) 2814 { 2815 struct address_space *mapping = page_mapping(page); 2816 int ret, access_ret; 2817 2818 lock_page_memcg(page); 2819 if (mapping && mapping_use_writeback_tags(mapping)) { 2820 XA_STATE(xas, &mapping->i_pages, page_index(page)); 2821 struct inode *inode = mapping->host; 2822 struct backing_dev_info *bdi = inode_to_bdi(inode); 2823 unsigned long flags; 2824 2825 xas_lock_irqsave(&xas, flags); 2826 xas_load(&xas); 2827 ret = TestSetPageWriteback(page); 2828 if (!ret) { 2829 bool on_wblist; 2830 2831 on_wblist = mapping_tagged(mapping, 2832 PAGECACHE_TAG_WRITEBACK); 2833 2834 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2835 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2836 struct bdi_writeback *wb = inode_to_wb(inode); 2837 2838 inc_wb_stat(wb, WB_WRITEBACK); 2839 if (!on_wblist) 2840 wb_inode_writeback_start(wb); 2841 } 2842 2843 /* 2844 * We can come through here when swapping anonymous 2845 * pages, so we don't necessarily have an inode to track 2846 * for sync. 2847 */ 2848 if (mapping->host && !on_wblist) 2849 sb_mark_inode_writeback(mapping->host); 2850 } 2851 if (!PageDirty(page)) 2852 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2853 if (!keep_write) 2854 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2855 xas_unlock_irqrestore(&xas, flags); 2856 } else { 2857 ret = TestSetPageWriteback(page); 2858 } 2859 if (!ret) { 2860 inc_lruvec_page_state(page, NR_WRITEBACK); 2861 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2862 } 2863 unlock_page_memcg(page); 2864 access_ret = arch_make_page_accessible(page); 2865 /* 2866 * If writeback has been triggered on a page that cannot be made 2867 * accessible, it is too late to recover here. 2868 */ 2869 VM_BUG_ON_PAGE(access_ret != 0, page); 2870 2871 return ret; 2872 2873 } 2874 EXPORT_SYMBOL(__test_set_page_writeback); 2875 2876 /* 2877 * Wait for a page to complete writeback 2878 */ 2879 void wait_on_page_writeback(struct page *page) 2880 { 2881 while (PageWriteback(page)) { 2882 trace_wait_on_page_writeback(page, page_mapping(page)); 2883 wait_on_page_bit(page, PG_writeback); 2884 } 2885 } 2886 EXPORT_SYMBOL_GPL(wait_on_page_writeback); 2887 2888 /* 2889 * Wait for a page to complete writeback. Returns -EINTR if we get a 2890 * fatal signal while waiting. 2891 */ 2892 int wait_on_page_writeback_killable(struct page *page) 2893 { 2894 while (PageWriteback(page)) { 2895 trace_wait_on_page_writeback(page, page_mapping(page)); 2896 if (wait_on_page_bit_killable(page, PG_writeback)) 2897 return -EINTR; 2898 } 2899 2900 return 0; 2901 } 2902 EXPORT_SYMBOL_GPL(wait_on_page_writeback_killable); 2903 2904 /** 2905 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2906 * @page: The page to wait on. 2907 * 2908 * This function determines if the given page is related to a backing device 2909 * that requires page contents to be held stable during writeback. If so, then 2910 * it will wait for any pending writeback to complete. 2911 */ 2912 void wait_for_stable_page(struct page *page) 2913 { 2914 page = thp_head(page); 2915 if (page->mapping->host->i_sb->s_iflags & SB_I_STABLE_WRITES) 2916 wait_on_page_writeback(page); 2917 } 2918 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2919