xref: /openbmc/linux/mm/page-writeback.c (revision 47010c04)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/page-writeback.c
4  *
5  * Copyright (C) 2002, Linus Torvalds.
6  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7  *
8  * Contains functions related to writing back dirty pages at the
9  * address_space level.
10  *
11  * 10Apr2002	Andrew Morton
12  *		Initial version
13  */
14 
15 #include <linux/kernel.h>
16 #include <linux/export.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/mm.h>
20 #include <linux/swap.h>
21 #include <linux/slab.h>
22 #include <linux/pagemap.h>
23 #include <linux/writeback.h>
24 #include <linux/init.h>
25 #include <linux/backing-dev.h>
26 #include <linux/task_io_accounting_ops.h>
27 #include <linux/blkdev.h>
28 #include <linux/mpage.h>
29 #include <linux/rmap.h>
30 #include <linux/percpu.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/pagevec.h>
36 #include <linux/timer.h>
37 #include <linux/sched/rt.h>
38 #include <linux/sched/signal.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
112  * a full sync is triggered after this time elapses without any disk activity.
113  */
114 int laptop_mode;
115 
116 EXPORT_SYMBOL(laptop_mode);
117 
118 /* End of sysctl-exported parameters */
119 
120 struct wb_domain global_wb_domain;
121 
122 /* consolidated parameters for balance_dirty_pages() and its subroutines */
123 struct dirty_throttle_control {
124 #ifdef CONFIG_CGROUP_WRITEBACK
125 	struct wb_domain	*dom;
126 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
127 #endif
128 	struct bdi_writeback	*wb;
129 	struct fprop_local_percpu *wb_completions;
130 
131 	unsigned long		avail;		/* dirtyable */
132 	unsigned long		dirty;		/* file_dirty + write + nfs */
133 	unsigned long		thresh;		/* dirty threshold */
134 	unsigned long		bg_thresh;	/* dirty background threshold */
135 
136 	unsigned long		wb_dirty;	/* per-wb counterparts */
137 	unsigned long		wb_thresh;
138 	unsigned long		wb_bg_thresh;
139 
140 	unsigned long		pos_ratio;
141 };
142 
143 /*
144  * Length of period for aging writeout fractions of bdis. This is an
145  * arbitrarily chosen number. The longer the period, the slower fractions will
146  * reflect changes in current writeout rate.
147  */
148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
149 
150 #ifdef CONFIG_CGROUP_WRITEBACK
151 
152 #define GDTC_INIT(__wb)		.wb = (__wb),				\
153 				.dom = &global_wb_domain,		\
154 				.wb_completions = &(__wb)->completions
155 
156 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
157 
158 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
159 				.dom = mem_cgroup_wb_domain(__wb),	\
160 				.wb_completions = &(__wb)->memcg_completions, \
161 				.gdtc = __gdtc
162 
163 static bool mdtc_valid(struct dirty_throttle_control *dtc)
164 {
165 	return dtc->dom;
166 }
167 
168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
169 {
170 	return dtc->dom;
171 }
172 
173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
174 {
175 	return mdtc->gdtc;
176 }
177 
178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
179 {
180 	return &wb->memcg_completions;
181 }
182 
183 static void wb_min_max_ratio(struct bdi_writeback *wb,
184 			     unsigned long *minp, unsigned long *maxp)
185 {
186 	unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
187 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
188 	unsigned long long min = wb->bdi->min_ratio;
189 	unsigned long long max = wb->bdi->max_ratio;
190 
191 	/*
192 	 * @wb may already be clean by the time control reaches here and
193 	 * the total may not include its bw.
194 	 */
195 	if (this_bw < tot_bw) {
196 		if (min) {
197 			min *= this_bw;
198 			min = div64_ul(min, tot_bw);
199 		}
200 		if (max < 100) {
201 			max *= this_bw;
202 			max = div64_ul(max, tot_bw);
203 		}
204 	}
205 
206 	*minp = min;
207 	*maxp = max;
208 }
209 
210 #else	/* CONFIG_CGROUP_WRITEBACK */
211 
212 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
213 				.wb_completions = &(__wb)->completions
214 #define GDTC_INIT_NO_WB
215 #define MDTC_INIT(__wb, __gdtc)
216 
217 static bool mdtc_valid(struct dirty_throttle_control *dtc)
218 {
219 	return false;
220 }
221 
222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
223 {
224 	return &global_wb_domain;
225 }
226 
227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
228 {
229 	return NULL;
230 }
231 
232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
233 {
234 	return NULL;
235 }
236 
237 static void wb_min_max_ratio(struct bdi_writeback *wb,
238 			     unsigned long *minp, unsigned long *maxp)
239 {
240 	*minp = wb->bdi->min_ratio;
241 	*maxp = wb->bdi->max_ratio;
242 }
243 
244 #endif	/* CONFIG_CGROUP_WRITEBACK */
245 
246 /*
247  * In a memory zone, there is a certain amount of pages we consider
248  * available for the page cache, which is essentially the number of
249  * free and reclaimable pages, minus some zone reserves to protect
250  * lowmem and the ability to uphold the zone's watermarks without
251  * requiring writeback.
252  *
253  * This number of dirtyable pages is the base value of which the
254  * user-configurable dirty ratio is the effective number of pages that
255  * are allowed to be actually dirtied.  Per individual zone, or
256  * globally by using the sum of dirtyable pages over all zones.
257  *
258  * Because the user is allowed to specify the dirty limit globally as
259  * absolute number of bytes, calculating the per-zone dirty limit can
260  * require translating the configured limit into a percentage of
261  * global dirtyable memory first.
262  */
263 
264 /**
265  * node_dirtyable_memory - number of dirtyable pages in a node
266  * @pgdat: the node
267  *
268  * Return: the node's number of pages potentially available for dirty
269  * page cache.  This is the base value for the per-node dirty limits.
270  */
271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
272 {
273 	unsigned long nr_pages = 0;
274 	int z;
275 
276 	for (z = 0; z < MAX_NR_ZONES; z++) {
277 		struct zone *zone = pgdat->node_zones + z;
278 
279 		if (!populated_zone(zone))
280 			continue;
281 
282 		nr_pages += zone_page_state(zone, NR_FREE_PAGES);
283 	}
284 
285 	/*
286 	 * Pages reserved for the kernel should not be considered
287 	 * dirtyable, to prevent a situation where reclaim has to
288 	 * clean pages in order to balance the zones.
289 	 */
290 	nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
291 
292 	nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
293 	nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
294 
295 	return nr_pages;
296 }
297 
298 static unsigned long highmem_dirtyable_memory(unsigned long total)
299 {
300 #ifdef CONFIG_HIGHMEM
301 	int node;
302 	unsigned long x = 0;
303 	int i;
304 
305 	for_each_node_state(node, N_HIGH_MEMORY) {
306 		for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
307 			struct zone *z;
308 			unsigned long nr_pages;
309 
310 			if (!is_highmem_idx(i))
311 				continue;
312 
313 			z = &NODE_DATA(node)->node_zones[i];
314 			if (!populated_zone(z))
315 				continue;
316 
317 			nr_pages = zone_page_state(z, NR_FREE_PAGES);
318 			/* watch for underflows */
319 			nr_pages -= min(nr_pages, high_wmark_pages(z));
320 			nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
321 			nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
322 			x += nr_pages;
323 		}
324 	}
325 
326 	/*
327 	 * Make sure that the number of highmem pages is never larger
328 	 * than the number of the total dirtyable memory. This can only
329 	 * occur in very strange VM situations but we want to make sure
330 	 * that this does not occur.
331 	 */
332 	return min(x, total);
333 #else
334 	return 0;
335 #endif
336 }
337 
338 /**
339  * global_dirtyable_memory - number of globally dirtyable pages
340  *
341  * Return: the global number of pages potentially available for dirty
342  * page cache.  This is the base value for the global dirty limits.
343  */
344 static unsigned long global_dirtyable_memory(void)
345 {
346 	unsigned long x;
347 
348 	x = global_zone_page_state(NR_FREE_PAGES);
349 	/*
350 	 * Pages reserved for the kernel should not be considered
351 	 * dirtyable, to prevent a situation where reclaim has to
352 	 * clean pages in order to balance the zones.
353 	 */
354 	x -= min(x, totalreserve_pages);
355 
356 	x += global_node_page_state(NR_INACTIVE_FILE);
357 	x += global_node_page_state(NR_ACTIVE_FILE);
358 
359 	if (!vm_highmem_is_dirtyable)
360 		x -= highmem_dirtyable_memory(x);
361 
362 	return x + 1;	/* Ensure that we never return 0 */
363 }
364 
365 /**
366  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
367  * @dtc: dirty_throttle_control of interest
368  *
369  * Calculate @dtc->thresh and ->bg_thresh considering
370  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
371  * must ensure that @dtc->avail is set before calling this function.  The
372  * dirty limits will be lifted by 1/4 for real-time tasks.
373  */
374 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
375 {
376 	const unsigned long available_memory = dtc->avail;
377 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
378 	unsigned long bytes = vm_dirty_bytes;
379 	unsigned long bg_bytes = dirty_background_bytes;
380 	/* convert ratios to per-PAGE_SIZE for higher precision */
381 	unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
382 	unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
383 	unsigned long thresh;
384 	unsigned long bg_thresh;
385 	struct task_struct *tsk;
386 
387 	/* gdtc is !NULL iff @dtc is for memcg domain */
388 	if (gdtc) {
389 		unsigned long global_avail = gdtc->avail;
390 
391 		/*
392 		 * The byte settings can't be applied directly to memcg
393 		 * domains.  Convert them to ratios by scaling against
394 		 * globally available memory.  As the ratios are in
395 		 * per-PAGE_SIZE, they can be obtained by dividing bytes by
396 		 * number of pages.
397 		 */
398 		if (bytes)
399 			ratio = min(DIV_ROUND_UP(bytes, global_avail),
400 				    PAGE_SIZE);
401 		if (bg_bytes)
402 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
403 				       PAGE_SIZE);
404 		bytes = bg_bytes = 0;
405 	}
406 
407 	if (bytes)
408 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
409 	else
410 		thresh = (ratio * available_memory) / PAGE_SIZE;
411 
412 	if (bg_bytes)
413 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
414 	else
415 		bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
416 
417 	if (bg_thresh >= thresh)
418 		bg_thresh = thresh / 2;
419 	tsk = current;
420 	if (rt_task(tsk)) {
421 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
422 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
423 	}
424 	dtc->thresh = thresh;
425 	dtc->bg_thresh = bg_thresh;
426 
427 	/* we should eventually report the domain in the TP */
428 	if (!gdtc)
429 		trace_global_dirty_state(bg_thresh, thresh);
430 }
431 
432 /**
433  * global_dirty_limits - background-writeback and dirty-throttling thresholds
434  * @pbackground: out parameter for bg_thresh
435  * @pdirty: out parameter for thresh
436  *
437  * Calculate bg_thresh and thresh for global_wb_domain.  See
438  * domain_dirty_limits() for details.
439  */
440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
441 {
442 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
443 
444 	gdtc.avail = global_dirtyable_memory();
445 	domain_dirty_limits(&gdtc);
446 
447 	*pbackground = gdtc.bg_thresh;
448 	*pdirty = gdtc.thresh;
449 }
450 
451 /**
452  * node_dirty_limit - maximum number of dirty pages allowed in a node
453  * @pgdat: the node
454  *
455  * Return: the maximum number of dirty pages allowed in a node, based
456  * on the node's dirtyable memory.
457  */
458 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
459 {
460 	unsigned long node_memory = node_dirtyable_memory(pgdat);
461 	struct task_struct *tsk = current;
462 	unsigned long dirty;
463 
464 	if (vm_dirty_bytes)
465 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
466 			node_memory / global_dirtyable_memory();
467 	else
468 		dirty = vm_dirty_ratio * node_memory / 100;
469 
470 	if (rt_task(tsk))
471 		dirty += dirty / 4;
472 
473 	return dirty;
474 }
475 
476 /**
477  * node_dirty_ok - tells whether a node is within its dirty limits
478  * @pgdat: the node to check
479  *
480  * Return: %true when the dirty pages in @pgdat are within the node's
481  * dirty limit, %false if the limit is exceeded.
482  */
483 bool node_dirty_ok(struct pglist_data *pgdat)
484 {
485 	unsigned long limit = node_dirty_limit(pgdat);
486 	unsigned long nr_pages = 0;
487 
488 	nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
489 	nr_pages += node_page_state(pgdat, NR_WRITEBACK);
490 
491 	return nr_pages <= limit;
492 }
493 
494 int dirty_background_ratio_handler(struct ctl_table *table, int write,
495 		void *buffer, size_t *lenp, loff_t *ppos)
496 {
497 	int ret;
498 
499 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
500 	if (ret == 0 && write)
501 		dirty_background_bytes = 0;
502 	return ret;
503 }
504 
505 int dirty_background_bytes_handler(struct ctl_table *table, int write,
506 		void *buffer, size_t *lenp, loff_t *ppos)
507 {
508 	int ret;
509 
510 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
511 	if (ret == 0 && write)
512 		dirty_background_ratio = 0;
513 	return ret;
514 }
515 
516 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
517 		size_t *lenp, loff_t *ppos)
518 {
519 	int old_ratio = vm_dirty_ratio;
520 	int ret;
521 
522 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
523 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
524 		writeback_set_ratelimit();
525 		vm_dirty_bytes = 0;
526 	}
527 	return ret;
528 }
529 
530 int dirty_bytes_handler(struct ctl_table *table, int write,
531 		void *buffer, size_t *lenp, loff_t *ppos)
532 {
533 	unsigned long old_bytes = vm_dirty_bytes;
534 	int ret;
535 
536 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
537 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
538 		writeback_set_ratelimit();
539 		vm_dirty_ratio = 0;
540 	}
541 	return ret;
542 }
543 
544 static unsigned long wp_next_time(unsigned long cur_time)
545 {
546 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
547 	/* 0 has a special meaning... */
548 	if (!cur_time)
549 		return 1;
550 	return cur_time;
551 }
552 
553 static void wb_domain_writeout_add(struct wb_domain *dom,
554 				   struct fprop_local_percpu *completions,
555 				   unsigned int max_prop_frac, long nr)
556 {
557 	__fprop_add_percpu_max(&dom->completions, completions,
558 			       max_prop_frac, nr);
559 	/* First event after period switching was turned off? */
560 	if (unlikely(!dom->period_time)) {
561 		/*
562 		 * We can race with other __bdi_writeout_inc calls here but
563 		 * it does not cause any harm since the resulting time when
564 		 * timer will fire and what is in writeout_period_time will be
565 		 * roughly the same.
566 		 */
567 		dom->period_time = wp_next_time(jiffies);
568 		mod_timer(&dom->period_timer, dom->period_time);
569 	}
570 }
571 
572 /*
573  * Increment @wb's writeout completion count and the global writeout
574  * completion count. Called from __folio_end_writeback().
575  */
576 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
577 {
578 	struct wb_domain *cgdom;
579 
580 	wb_stat_mod(wb, WB_WRITTEN, nr);
581 	wb_domain_writeout_add(&global_wb_domain, &wb->completions,
582 			       wb->bdi->max_prop_frac, nr);
583 
584 	cgdom = mem_cgroup_wb_domain(wb);
585 	if (cgdom)
586 		wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
587 				       wb->bdi->max_prop_frac, nr);
588 }
589 
590 void wb_writeout_inc(struct bdi_writeback *wb)
591 {
592 	unsigned long flags;
593 
594 	local_irq_save(flags);
595 	__wb_writeout_add(wb, 1);
596 	local_irq_restore(flags);
597 }
598 EXPORT_SYMBOL_GPL(wb_writeout_inc);
599 
600 /*
601  * On idle system, we can be called long after we scheduled because we use
602  * deferred timers so count with missed periods.
603  */
604 static void writeout_period(struct timer_list *t)
605 {
606 	struct wb_domain *dom = from_timer(dom, t, period_timer);
607 	int miss_periods = (jiffies - dom->period_time) /
608 						 VM_COMPLETIONS_PERIOD_LEN;
609 
610 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
611 		dom->period_time = wp_next_time(dom->period_time +
612 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
613 		mod_timer(&dom->period_timer, dom->period_time);
614 	} else {
615 		/*
616 		 * Aging has zeroed all fractions. Stop wasting CPU on period
617 		 * updates.
618 		 */
619 		dom->period_time = 0;
620 	}
621 }
622 
623 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
624 {
625 	memset(dom, 0, sizeof(*dom));
626 
627 	spin_lock_init(&dom->lock);
628 
629 	timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
630 
631 	dom->dirty_limit_tstamp = jiffies;
632 
633 	return fprop_global_init(&dom->completions, gfp);
634 }
635 
636 #ifdef CONFIG_CGROUP_WRITEBACK
637 void wb_domain_exit(struct wb_domain *dom)
638 {
639 	del_timer_sync(&dom->period_timer);
640 	fprop_global_destroy(&dom->completions);
641 }
642 #endif
643 
644 /*
645  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
646  * registered backing devices, which, for obvious reasons, can not
647  * exceed 100%.
648  */
649 static unsigned int bdi_min_ratio;
650 
651 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
652 {
653 	unsigned int delta;
654 	int ret = 0;
655 
656 	spin_lock_bh(&bdi_lock);
657 	if (min_ratio > bdi->max_ratio) {
658 		ret = -EINVAL;
659 	} else {
660 		if (min_ratio < bdi->min_ratio) {
661 			delta = bdi->min_ratio - min_ratio;
662 			bdi_min_ratio -= delta;
663 			bdi->min_ratio = min_ratio;
664 		} else {
665 			delta = min_ratio - bdi->min_ratio;
666 			if (bdi_min_ratio + delta < 100) {
667 				bdi_min_ratio += delta;
668 				bdi->min_ratio = min_ratio;
669 			} else {
670 				ret = -EINVAL;
671 			}
672 		}
673 	}
674 	spin_unlock_bh(&bdi_lock);
675 
676 	return ret;
677 }
678 
679 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
680 {
681 	int ret = 0;
682 
683 	if (max_ratio > 100)
684 		return -EINVAL;
685 
686 	spin_lock_bh(&bdi_lock);
687 	if (bdi->min_ratio > max_ratio) {
688 		ret = -EINVAL;
689 	} else {
690 		bdi->max_ratio = max_ratio;
691 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
692 	}
693 	spin_unlock_bh(&bdi_lock);
694 
695 	return ret;
696 }
697 EXPORT_SYMBOL(bdi_set_max_ratio);
698 
699 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
700 					   unsigned long bg_thresh)
701 {
702 	return (thresh + bg_thresh) / 2;
703 }
704 
705 static unsigned long hard_dirty_limit(struct wb_domain *dom,
706 				      unsigned long thresh)
707 {
708 	return max(thresh, dom->dirty_limit);
709 }
710 
711 /*
712  * Memory which can be further allocated to a memcg domain is capped by
713  * system-wide clean memory excluding the amount being used in the domain.
714  */
715 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
716 			    unsigned long filepages, unsigned long headroom)
717 {
718 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
719 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
720 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
721 	unsigned long other_clean = global_clean - min(global_clean, clean);
722 
723 	mdtc->avail = filepages + min(headroom, other_clean);
724 }
725 
726 /**
727  * __wb_calc_thresh - @wb's share of dirty throttling threshold
728  * @dtc: dirty_throttle_context of interest
729  *
730  * Note that balance_dirty_pages() will only seriously take it as a hard limit
731  * when sleeping max_pause per page is not enough to keep the dirty pages under
732  * control. For example, when the device is completely stalled due to some error
733  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
734  * In the other normal situations, it acts more gently by throttling the tasks
735  * more (rather than completely block them) when the wb dirty pages go high.
736  *
737  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
738  * - starving fast devices
739  * - piling up dirty pages (that will take long time to sync) on slow devices
740  *
741  * The wb's share of dirty limit will be adapting to its throughput and
742  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
743  *
744  * Return: @wb's dirty limit in pages. The term "dirty" in the context of
745  * dirty balancing includes all PG_dirty and PG_writeback pages.
746  */
747 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
748 {
749 	struct wb_domain *dom = dtc_dom(dtc);
750 	unsigned long thresh = dtc->thresh;
751 	u64 wb_thresh;
752 	unsigned long numerator, denominator;
753 	unsigned long wb_min_ratio, wb_max_ratio;
754 
755 	/*
756 	 * Calculate this BDI's share of the thresh ratio.
757 	 */
758 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
759 			      &numerator, &denominator);
760 
761 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
762 	wb_thresh *= numerator;
763 	wb_thresh = div64_ul(wb_thresh, denominator);
764 
765 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
766 
767 	wb_thresh += (thresh * wb_min_ratio) / 100;
768 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
769 		wb_thresh = thresh * wb_max_ratio / 100;
770 
771 	return wb_thresh;
772 }
773 
774 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
775 {
776 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
777 					       .thresh = thresh };
778 	return __wb_calc_thresh(&gdtc);
779 }
780 
781 /*
782  *                           setpoint - dirty 3
783  *        f(dirty) := 1.0 + (----------------)
784  *                           limit - setpoint
785  *
786  * it's a 3rd order polynomial that subjects to
787  *
788  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
789  * (2) f(setpoint) = 1.0 => the balance point
790  * (3) f(limit)    = 0   => the hard limit
791  * (4) df/dx      <= 0	 => negative feedback control
792  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
793  *     => fast response on large errors; small oscillation near setpoint
794  */
795 static long long pos_ratio_polynom(unsigned long setpoint,
796 					  unsigned long dirty,
797 					  unsigned long limit)
798 {
799 	long long pos_ratio;
800 	long x;
801 
802 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
803 		      (limit - setpoint) | 1);
804 	pos_ratio = x;
805 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
806 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
807 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
808 
809 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
810 }
811 
812 /*
813  * Dirty position control.
814  *
815  * (o) global/bdi setpoints
816  *
817  * We want the dirty pages be balanced around the global/wb setpoints.
818  * When the number of dirty pages is higher/lower than the setpoint, the
819  * dirty position control ratio (and hence task dirty ratelimit) will be
820  * decreased/increased to bring the dirty pages back to the setpoint.
821  *
822  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
823  *
824  *     if (dirty < setpoint) scale up   pos_ratio
825  *     if (dirty > setpoint) scale down pos_ratio
826  *
827  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
828  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
829  *
830  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
831  *
832  * (o) global control line
833  *
834  *     ^ pos_ratio
835  *     |
836  *     |            |<===== global dirty control scope ======>|
837  * 2.0  * * * * * * *
838  *     |            .*
839  *     |            . *
840  *     |            .   *
841  *     |            .     *
842  *     |            .        *
843  *     |            .            *
844  * 1.0 ................................*
845  *     |            .                  .     *
846  *     |            .                  .          *
847  *     |            .                  .              *
848  *     |            .                  .                 *
849  *     |            .                  .                    *
850  *   0 +------------.------------------.----------------------*------------->
851  *           freerun^          setpoint^                 limit^   dirty pages
852  *
853  * (o) wb control line
854  *
855  *     ^ pos_ratio
856  *     |
857  *     |            *
858  *     |              *
859  *     |                *
860  *     |                  *
861  *     |                    * |<=========== span ============>|
862  * 1.0 .......................*
863  *     |                      . *
864  *     |                      .   *
865  *     |                      .     *
866  *     |                      .       *
867  *     |                      .         *
868  *     |                      .           *
869  *     |                      .             *
870  *     |                      .               *
871  *     |                      .                 *
872  *     |                      .                   *
873  *     |                      .                     *
874  * 1/4 ...............................................* * * * * * * * * * * *
875  *     |                      .                         .
876  *     |                      .                           .
877  *     |                      .                             .
878  *   0 +----------------------.-------------------------------.------------->
879  *                wb_setpoint^                    x_intercept^
880  *
881  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
882  * be smoothly throttled down to normal if it starts high in situations like
883  * - start writing to a slow SD card and a fast disk at the same time. The SD
884  *   card's wb_dirty may rush to many times higher than wb_setpoint.
885  * - the wb dirty thresh drops quickly due to change of JBOD workload
886  */
887 static void wb_position_ratio(struct dirty_throttle_control *dtc)
888 {
889 	struct bdi_writeback *wb = dtc->wb;
890 	unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
891 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
892 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
893 	unsigned long wb_thresh = dtc->wb_thresh;
894 	unsigned long x_intercept;
895 	unsigned long setpoint;		/* dirty pages' target balance point */
896 	unsigned long wb_setpoint;
897 	unsigned long span;
898 	long long pos_ratio;		/* for scaling up/down the rate limit */
899 	long x;
900 
901 	dtc->pos_ratio = 0;
902 
903 	if (unlikely(dtc->dirty >= limit))
904 		return;
905 
906 	/*
907 	 * global setpoint
908 	 *
909 	 * See comment for pos_ratio_polynom().
910 	 */
911 	setpoint = (freerun + limit) / 2;
912 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
913 
914 	/*
915 	 * The strictlimit feature is a tool preventing mistrusted filesystems
916 	 * from growing a large number of dirty pages before throttling. For
917 	 * such filesystems balance_dirty_pages always checks wb counters
918 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
919 	 * This is especially important for fuse which sets bdi->max_ratio to
920 	 * 1% by default. Without strictlimit feature, fuse writeback may
921 	 * consume arbitrary amount of RAM because it is accounted in
922 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
923 	 *
924 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
925 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
926 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
927 	 * limits are set by default to 10% and 20% (background and throttle).
928 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
929 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
930 	 * about ~6K pages (as the average of background and throttle wb
931 	 * limits). The 3rd order polynomial will provide positive feedback if
932 	 * wb_dirty is under wb_setpoint and vice versa.
933 	 *
934 	 * Note, that we cannot use global counters in these calculations
935 	 * because we want to throttle process writing to a strictlimit wb
936 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
937 	 * in the example above).
938 	 */
939 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
940 		long long wb_pos_ratio;
941 
942 		if (dtc->wb_dirty < 8) {
943 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
944 					   2 << RATELIMIT_CALC_SHIFT);
945 			return;
946 		}
947 
948 		if (dtc->wb_dirty >= wb_thresh)
949 			return;
950 
951 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
952 						    dtc->wb_bg_thresh);
953 
954 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
955 			return;
956 
957 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
958 						 wb_thresh);
959 
960 		/*
961 		 * Typically, for strictlimit case, wb_setpoint << setpoint
962 		 * and pos_ratio >> wb_pos_ratio. In the other words global
963 		 * state ("dirty") is not limiting factor and we have to
964 		 * make decision based on wb counters. But there is an
965 		 * important case when global pos_ratio should get precedence:
966 		 * global limits are exceeded (e.g. due to activities on other
967 		 * wb's) while given strictlimit wb is below limit.
968 		 *
969 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
970 		 * but it would look too non-natural for the case of all
971 		 * activity in the system coming from a single strictlimit wb
972 		 * with bdi->max_ratio == 100%.
973 		 *
974 		 * Note that min() below somewhat changes the dynamics of the
975 		 * control system. Normally, pos_ratio value can be well over 3
976 		 * (when globally we are at freerun and wb is well below wb
977 		 * setpoint). Now the maximum pos_ratio in the same situation
978 		 * is 2. We might want to tweak this if we observe the control
979 		 * system is too slow to adapt.
980 		 */
981 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
982 		return;
983 	}
984 
985 	/*
986 	 * We have computed basic pos_ratio above based on global situation. If
987 	 * the wb is over/under its share of dirty pages, we want to scale
988 	 * pos_ratio further down/up. That is done by the following mechanism.
989 	 */
990 
991 	/*
992 	 * wb setpoint
993 	 *
994 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
995 	 *
996 	 *                        x_intercept - wb_dirty
997 	 *                     := --------------------------
998 	 *                        x_intercept - wb_setpoint
999 	 *
1000 	 * The main wb control line is a linear function that subjects to
1001 	 *
1002 	 * (1) f(wb_setpoint) = 1.0
1003 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
1004 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
1005 	 *
1006 	 * For single wb case, the dirty pages are observed to fluctuate
1007 	 * regularly within range
1008 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1009 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1010 	 * fluctuation range for pos_ratio.
1011 	 *
1012 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1013 	 * own size, so move the slope over accordingly and choose a slope that
1014 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1015 	 */
1016 	if (unlikely(wb_thresh > dtc->thresh))
1017 		wb_thresh = dtc->thresh;
1018 	/*
1019 	 * It's very possible that wb_thresh is close to 0 not because the
1020 	 * device is slow, but that it has remained inactive for long time.
1021 	 * Honour such devices a reasonable good (hopefully IO efficient)
1022 	 * threshold, so that the occasional writes won't be blocked and active
1023 	 * writes can rampup the threshold quickly.
1024 	 */
1025 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1026 	/*
1027 	 * scale global setpoint to wb's:
1028 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1029 	 */
1030 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1031 	wb_setpoint = setpoint * (u64)x >> 16;
1032 	/*
1033 	 * Use span=(8*write_bw) in single wb case as indicated by
1034 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1035 	 *
1036 	 *        wb_thresh                    thresh - wb_thresh
1037 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1038 	 *         thresh                           thresh
1039 	 */
1040 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1041 	x_intercept = wb_setpoint + span;
1042 
1043 	if (dtc->wb_dirty < x_intercept - span / 4) {
1044 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1045 				      (x_intercept - wb_setpoint) | 1);
1046 	} else
1047 		pos_ratio /= 4;
1048 
1049 	/*
1050 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1051 	 * It may push the desired control point of global dirty pages higher
1052 	 * than setpoint.
1053 	 */
1054 	x_intercept = wb_thresh / 2;
1055 	if (dtc->wb_dirty < x_intercept) {
1056 		if (dtc->wb_dirty > x_intercept / 8)
1057 			pos_ratio = div_u64(pos_ratio * x_intercept,
1058 					    dtc->wb_dirty);
1059 		else
1060 			pos_ratio *= 8;
1061 	}
1062 
1063 	dtc->pos_ratio = pos_ratio;
1064 }
1065 
1066 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1067 				      unsigned long elapsed,
1068 				      unsigned long written)
1069 {
1070 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1071 	unsigned long avg = wb->avg_write_bandwidth;
1072 	unsigned long old = wb->write_bandwidth;
1073 	u64 bw;
1074 
1075 	/*
1076 	 * bw = written * HZ / elapsed
1077 	 *
1078 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1079 	 * write_bandwidth = ---------------------------------------------------
1080 	 *                                          period
1081 	 *
1082 	 * @written may have decreased due to folio_account_redirty().
1083 	 * Avoid underflowing @bw calculation.
1084 	 */
1085 	bw = written - min(written, wb->written_stamp);
1086 	bw *= HZ;
1087 	if (unlikely(elapsed > period)) {
1088 		bw = div64_ul(bw, elapsed);
1089 		avg = bw;
1090 		goto out;
1091 	}
1092 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1093 	bw >>= ilog2(period);
1094 
1095 	/*
1096 	 * one more level of smoothing, for filtering out sudden spikes
1097 	 */
1098 	if (avg > old && old >= (unsigned long)bw)
1099 		avg -= (avg - old) >> 3;
1100 
1101 	if (avg < old && old <= (unsigned long)bw)
1102 		avg += (old - avg) >> 3;
1103 
1104 out:
1105 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1106 	avg = max(avg, 1LU);
1107 	if (wb_has_dirty_io(wb)) {
1108 		long delta = avg - wb->avg_write_bandwidth;
1109 		WARN_ON_ONCE(atomic_long_add_return(delta,
1110 					&wb->bdi->tot_write_bandwidth) <= 0);
1111 	}
1112 	wb->write_bandwidth = bw;
1113 	WRITE_ONCE(wb->avg_write_bandwidth, avg);
1114 }
1115 
1116 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1117 {
1118 	struct wb_domain *dom = dtc_dom(dtc);
1119 	unsigned long thresh = dtc->thresh;
1120 	unsigned long limit = dom->dirty_limit;
1121 
1122 	/*
1123 	 * Follow up in one step.
1124 	 */
1125 	if (limit < thresh) {
1126 		limit = thresh;
1127 		goto update;
1128 	}
1129 
1130 	/*
1131 	 * Follow down slowly. Use the higher one as the target, because thresh
1132 	 * may drop below dirty. This is exactly the reason to introduce
1133 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1134 	 */
1135 	thresh = max(thresh, dtc->dirty);
1136 	if (limit > thresh) {
1137 		limit -= (limit - thresh) >> 5;
1138 		goto update;
1139 	}
1140 	return;
1141 update:
1142 	dom->dirty_limit = limit;
1143 }
1144 
1145 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1146 				      unsigned long now)
1147 {
1148 	struct wb_domain *dom = dtc_dom(dtc);
1149 
1150 	/*
1151 	 * check locklessly first to optimize away locking for the most time
1152 	 */
1153 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1154 		return;
1155 
1156 	spin_lock(&dom->lock);
1157 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1158 		update_dirty_limit(dtc);
1159 		dom->dirty_limit_tstamp = now;
1160 	}
1161 	spin_unlock(&dom->lock);
1162 }
1163 
1164 /*
1165  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1166  *
1167  * Normal wb tasks will be curbed at or below it in long term.
1168  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1169  */
1170 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1171 				      unsigned long dirtied,
1172 				      unsigned long elapsed)
1173 {
1174 	struct bdi_writeback *wb = dtc->wb;
1175 	unsigned long dirty = dtc->dirty;
1176 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1177 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1178 	unsigned long setpoint = (freerun + limit) / 2;
1179 	unsigned long write_bw = wb->avg_write_bandwidth;
1180 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1181 	unsigned long dirty_rate;
1182 	unsigned long task_ratelimit;
1183 	unsigned long balanced_dirty_ratelimit;
1184 	unsigned long step;
1185 	unsigned long x;
1186 	unsigned long shift;
1187 
1188 	/*
1189 	 * The dirty rate will match the writeout rate in long term, except
1190 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1191 	 */
1192 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1193 
1194 	/*
1195 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1196 	 */
1197 	task_ratelimit = (u64)dirty_ratelimit *
1198 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1199 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1200 
1201 	/*
1202 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1203 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1204 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1205 	 * formula will yield the balanced rate limit (write_bw / N).
1206 	 *
1207 	 * Note that the expanded form is not a pure rate feedback:
1208 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1209 	 * but also takes pos_ratio into account:
1210 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1211 	 *
1212 	 * (1) is not realistic because pos_ratio also takes part in balancing
1213 	 * the dirty rate.  Consider the state
1214 	 *	pos_ratio = 0.5						     (3)
1215 	 *	rate = 2 * (write_bw / N)				     (4)
1216 	 * If (1) is used, it will stuck in that state! Because each dd will
1217 	 * be throttled at
1218 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1219 	 * yielding
1220 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1221 	 * put (6) into (1) we get
1222 	 *	rate_(i+1) = rate_(i)					     (7)
1223 	 *
1224 	 * So we end up using (2) to always keep
1225 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1226 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1227 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1228 	 * the dirty count meet the setpoint, but also where the slope of
1229 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1230 	 */
1231 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1232 					   dirty_rate | 1);
1233 	/*
1234 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1235 	 */
1236 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1237 		balanced_dirty_ratelimit = write_bw;
1238 
1239 	/*
1240 	 * We could safely do this and return immediately:
1241 	 *
1242 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1243 	 *
1244 	 * However to get a more stable dirty_ratelimit, the below elaborated
1245 	 * code makes use of task_ratelimit to filter out singular points and
1246 	 * limit the step size.
1247 	 *
1248 	 * The below code essentially only uses the relative value of
1249 	 *
1250 	 *	task_ratelimit - dirty_ratelimit
1251 	 *	= (pos_ratio - 1) * dirty_ratelimit
1252 	 *
1253 	 * which reflects the direction and size of dirty position error.
1254 	 */
1255 
1256 	/*
1257 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1258 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1259 	 * For example, when
1260 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1261 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1262 	 * lowering dirty_ratelimit will help meet both the position and rate
1263 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1264 	 * only help meet the rate target. After all, what the users ultimately
1265 	 * feel and care are stable dirty rate and small position error.
1266 	 *
1267 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1268 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1269 	 * keeps jumping around randomly and can even leap far away at times
1270 	 * due to the small 200ms estimation period of dirty_rate (we want to
1271 	 * keep that period small to reduce time lags).
1272 	 */
1273 	step = 0;
1274 
1275 	/*
1276 	 * For strictlimit case, calculations above were based on wb counters
1277 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1278 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1279 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1280 	 * "dirty" and wb_setpoint as "setpoint".
1281 	 *
1282 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1283 	 * it's possible that wb_thresh is close to zero due to inactivity
1284 	 * of backing device.
1285 	 */
1286 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1287 		dirty = dtc->wb_dirty;
1288 		if (dtc->wb_dirty < 8)
1289 			setpoint = dtc->wb_dirty + 1;
1290 		else
1291 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1292 	}
1293 
1294 	if (dirty < setpoint) {
1295 		x = min3(wb->balanced_dirty_ratelimit,
1296 			 balanced_dirty_ratelimit, task_ratelimit);
1297 		if (dirty_ratelimit < x)
1298 			step = x - dirty_ratelimit;
1299 	} else {
1300 		x = max3(wb->balanced_dirty_ratelimit,
1301 			 balanced_dirty_ratelimit, task_ratelimit);
1302 		if (dirty_ratelimit > x)
1303 			step = dirty_ratelimit - x;
1304 	}
1305 
1306 	/*
1307 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1308 	 * rate itself is constantly fluctuating. So decrease the track speed
1309 	 * when it gets close to the target. Helps eliminate pointless tremors.
1310 	 */
1311 	shift = dirty_ratelimit / (2 * step + 1);
1312 	if (shift < BITS_PER_LONG)
1313 		step = DIV_ROUND_UP(step >> shift, 8);
1314 	else
1315 		step = 0;
1316 
1317 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1318 		dirty_ratelimit += step;
1319 	else
1320 		dirty_ratelimit -= step;
1321 
1322 	WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1323 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1324 
1325 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1326 }
1327 
1328 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1329 				  struct dirty_throttle_control *mdtc,
1330 				  bool update_ratelimit)
1331 {
1332 	struct bdi_writeback *wb = gdtc->wb;
1333 	unsigned long now = jiffies;
1334 	unsigned long elapsed;
1335 	unsigned long dirtied;
1336 	unsigned long written;
1337 
1338 	spin_lock(&wb->list_lock);
1339 
1340 	/*
1341 	 * Lockless checks for elapsed time are racy and delayed update after
1342 	 * IO completion doesn't do it at all (to make sure written pages are
1343 	 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1344 	 * division errors.
1345 	 */
1346 	elapsed = max(now - wb->bw_time_stamp, 1UL);
1347 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1348 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1349 
1350 	if (update_ratelimit) {
1351 		domain_update_dirty_limit(gdtc, now);
1352 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1353 
1354 		/*
1355 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1356 		 * compiler has no way to figure that out.  Help it.
1357 		 */
1358 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1359 			domain_update_dirty_limit(mdtc, now);
1360 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1361 		}
1362 	}
1363 	wb_update_write_bandwidth(wb, elapsed, written);
1364 
1365 	wb->dirtied_stamp = dirtied;
1366 	wb->written_stamp = written;
1367 	WRITE_ONCE(wb->bw_time_stamp, now);
1368 	spin_unlock(&wb->list_lock);
1369 }
1370 
1371 void wb_update_bandwidth(struct bdi_writeback *wb)
1372 {
1373 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1374 
1375 	__wb_update_bandwidth(&gdtc, NULL, false);
1376 }
1377 
1378 /* Interval after which we consider wb idle and don't estimate bandwidth */
1379 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1380 
1381 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1382 {
1383 	unsigned long now = jiffies;
1384 	unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1385 
1386 	if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1387 	    !atomic_read(&wb->writeback_inodes)) {
1388 		spin_lock(&wb->list_lock);
1389 		wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1390 		wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1391 		WRITE_ONCE(wb->bw_time_stamp, now);
1392 		spin_unlock(&wb->list_lock);
1393 	}
1394 }
1395 
1396 /*
1397  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1398  * will look to see if it needs to start dirty throttling.
1399  *
1400  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1401  * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1402  * (the number of pages we may dirty without exceeding the dirty limits).
1403  */
1404 static unsigned long dirty_poll_interval(unsigned long dirty,
1405 					 unsigned long thresh)
1406 {
1407 	if (thresh > dirty)
1408 		return 1UL << (ilog2(thresh - dirty) >> 1);
1409 
1410 	return 1;
1411 }
1412 
1413 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1414 				  unsigned long wb_dirty)
1415 {
1416 	unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1417 	unsigned long t;
1418 
1419 	/*
1420 	 * Limit pause time for small memory systems. If sleeping for too long
1421 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1422 	 * idle.
1423 	 *
1424 	 * 8 serves as the safety ratio.
1425 	 */
1426 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1427 	t++;
1428 
1429 	return min_t(unsigned long, t, MAX_PAUSE);
1430 }
1431 
1432 static long wb_min_pause(struct bdi_writeback *wb,
1433 			 long max_pause,
1434 			 unsigned long task_ratelimit,
1435 			 unsigned long dirty_ratelimit,
1436 			 int *nr_dirtied_pause)
1437 {
1438 	long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1439 	long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1440 	long t;		/* target pause */
1441 	long pause;	/* estimated next pause */
1442 	int pages;	/* target nr_dirtied_pause */
1443 
1444 	/* target for 10ms pause on 1-dd case */
1445 	t = max(1, HZ / 100);
1446 
1447 	/*
1448 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1449 	 * overheads.
1450 	 *
1451 	 * (N * 10ms) on 2^N concurrent tasks.
1452 	 */
1453 	if (hi > lo)
1454 		t += (hi - lo) * (10 * HZ) / 1024;
1455 
1456 	/*
1457 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1458 	 * on the much more stable dirty_ratelimit. However the next pause time
1459 	 * will be computed based on task_ratelimit and the two rate limits may
1460 	 * depart considerably at some time. Especially if task_ratelimit goes
1461 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1462 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1463 	 * result task_ratelimit won't be executed faithfully, which could
1464 	 * eventually bring down dirty_ratelimit.
1465 	 *
1466 	 * We apply two rules to fix it up:
1467 	 * 1) try to estimate the next pause time and if necessary, use a lower
1468 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1469 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1470 	 * 2) limit the target pause time to max_pause/2, so that the normal
1471 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1472 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1473 	 */
1474 	t = min(t, 1 + max_pause / 2);
1475 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1476 
1477 	/*
1478 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1479 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1480 	 * When the 16 consecutive reads are often interrupted by some dirty
1481 	 * throttling pause during the async writes, cfq will go into idles
1482 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1483 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1484 	 */
1485 	if (pages < DIRTY_POLL_THRESH) {
1486 		t = max_pause;
1487 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1488 		if (pages > DIRTY_POLL_THRESH) {
1489 			pages = DIRTY_POLL_THRESH;
1490 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1491 		}
1492 	}
1493 
1494 	pause = HZ * pages / (task_ratelimit + 1);
1495 	if (pause > max_pause) {
1496 		t = max_pause;
1497 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1498 	}
1499 
1500 	*nr_dirtied_pause = pages;
1501 	/*
1502 	 * The minimal pause time will normally be half the target pause time.
1503 	 */
1504 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1505 }
1506 
1507 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1508 {
1509 	struct bdi_writeback *wb = dtc->wb;
1510 	unsigned long wb_reclaimable;
1511 
1512 	/*
1513 	 * wb_thresh is not treated as some limiting factor as
1514 	 * dirty_thresh, due to reasons
1515 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1516 	 * - in a system with HDD and USB key, the USB key may somehow
1517 	 *   go into state (wb_dirty >> wb_thresh) either because
1518 	 *   wb_dirty starts high, or because wb_thresh drops low.
1519 	 *   In this case we don't want to hard throttle the USB key
1520 	 *   dirtiers for 100 seconds until wb_dirty drops under
1521 	 *   wb_thresh. Instead the auxiliary wb control line in
1522 	 *   wb_position_ratio() will let the dirtier task progress
1523 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1524 	 */
1525 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1526 	dtc->wb_bg_thresh = dtc->thresh ?
1527 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1528 
1529 	/*
1530 	 * In order to avoid the stacked BDI deadlock we need
1531 	 * to ensure we accurately count the 'dirty' pages when
1532 	 * the threshold is low.
1533 	 *
1534 	 * Otherwise it would be possible to get thresh+n pages
1535 	 * reported dirty, even though there are thresh-m pages
1536 	 * actually dirty; with m+n sitting in the percpu
1537 	 * deltas.
1538 	 */
1539 	if (dtc->wb_thresh < 2 * wb_stat_error()) {
1540 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1541 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1542 	} else {
1543 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1544 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1545 	}
1546 }
1547 
1548 /*
1549  * balance_dirty_pages() must be called by processes which are generating dirty
1550  * data.  It looks at the number of dirty pages in the machine and will force
1551  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1552  * If we're over `background_thresh' then the writeback threads are woken to
1553  * perform some writeout.
1554  */
1555 static void balance_dirty_pages(struct bdi_writeback *wb,
1556 				unsigned long pages_dirtied)
1557 {
1558 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1559 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1560 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1561 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1562 						     &mdtc_stor : NULL;
1563 	struct dirty_throttle_control *sdtc;
1564 	unsigned long nr_reclaimable;	/* = file_dirty */
1565 	long period;
1566 	long pause;
1567 	long max_pause;
1568 	long min_pause;
1569 	int nr_dirtied_pause;
1570 	bool dirty_exceeded = false;
1571 	unsigned long task_ratelimit;
1572 	unsigned long dirty_ratelimit;
1573 	struct backing_dev_info *bdi = wb->bdi;
1574 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1575 	unsigned long start_time = jiffies;
1576 
1577 	for (;;) {
1578 		unsigned long now = jiffies;
1579 		unsigned long dirty, thresh, bg_thresh;
1580 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1581 		unsigned long m_thresh = 0;
1582 		unsigned long m_bg_thresh = 0;
1583 
1584 		nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1585 		gdtc->avail = global_dirtyable_memory();
1586 		gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1587 
1588 		domain_dirty_limits(gdtc);
1589 
1590 		if (unlikely(strictlimit)) {
1591 			wb_dirty_limits(gdtc);
1592 
1593 			dirty = gdtc->wb_dirty;
1594 			thresh = gdtc->wb_thresh;
1595 			bg_thresh = gdtc->wb_bg_thresh;
1596 		} else {
1597 			dirty = gdtc->dirty;
1598 			thresh = gdtc->thresh;
1599 			bg_thresh = gdtc->bg_thresh;
1600 		}
1601 
1602 		if (mdtc) {
1603 			unsigned long filepages, headroom, writeback;
1604 
1605 			/*
1606 			 * If @wb belongs to !root memcg, repeat the same
1607 			 * basic calculations for the memcg domain.
1608 			 */
1609 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1610 					    &mdtc->dirty, &writeback);
1611 			mdtc->dirty += writeback;
1612 			mdtc_calc_avail(mdtc, filepages, headroom);
1613 
1614 			domain_dirty_limits(mdtc);
1615 
1616 			if (unlikely(strictlimit)) {
1617 				wb_dirty_limits(mdtc);
1618 				m_dirty = mdtc->wb_dirty;
1619 				m_thresh = mdtc->wb_thresh;
1620 				m_bg_thresh = mdtc->wb_bg_thresh;
1621 			} else {
1622 				m_dirty = mdtc->dirty;
1623 				m_thresh = mdtc->thresh;
1624 				m_bg_thresh = mdtc->bg_thresh;
1625 			}
1626 		}
1627 
1628 		/*
1629 		 * Throttle it only when the background writeback cannot
1630 		 * catch-up. This avoids (excessively) small writeouts
1631 		 * when the wb limits are ramping up in case of !strictlimit.
1632 		 *
1633 		 * In strictlimit case make decision based on the wb counters
1634 		 * and limits. Small writeouts when the wb limits are ramping
1635 		 * up are the price we consciously pay for strictlimit-ing.
1636 		 *
1637 		 * If memcg domain is in effect, @dirty should be under
1638 		 * both global and memcg freerun ceilings.
1639 		 */
1640 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1641 		    (!mdtc ||
1642 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1643 			unsigned long intv;
1644 			unsigned long m_intv;
1645 
1646 free_running:
1647 			intv = dirty_poll_interval(dirty, thresh);
1648 			m_intv = ULONG_MAX;
1649 
1650 			current->dirty_paused_when = now;
1651 			current->nr_dirtied = 0;
1652 			if (mdtc)
1653 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1654 			current->nr_dirtied_pause = min(intv, m_intv);
1655 			break;
1656 		}
1657 
1658 		if (unlikely(!writeback_in_progress(wb)))
1659 			wb_start_background_writeback(wb);
1660 
1661 		mem_cgroup_flush_foreign(wb);
1662 
1663 		/*
1664 		 * Calculate global domain's pos_ratio and select the
1665 		 * global dtc by default.
1666 		 */
1667 		if (!strictlimit) {
1668 			wb_dirty_limits(gdtc);
1669 
1670 			if ((current->flags & PF_LOCAL_THROTTLE) &&
1671 			    gdtc->wb_dirty <
1672 			    dirty_freerun_ceiling(gdtc->wb_thresh,
1673 						  gdtc->wb_bg_thresh))
1674 				/*
1675 				 * LOCAL_THROTTLE tasks must not be throttled
1676 				 * when below the per-wb freerun ceiling.
1677 				 */
1678 				goto free_running;
1679 		}
1680 
1681 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1682 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1683 
1684 		wb_position_ratio(gdtc);
1685 		sdtc = gdtc;
1686 
1687 		if (mdtc) {
1688 			/*
1689 			 * If memcg domain is in effect, calculate its
1690 			 * pos_ratio.  @wb should satisfy constraints from
1691 			 * both global and memcg domains.  Choose the one
1692 			 * w/ lower pos_ratio.
1693 			 */
1694 			if (!strictlimit) {
1695 				wb_dirty_limits(mdtc);
1696 
1697 				if ((current->flags & PF_LOCAL_THROTTLE) &&
1698 				    mdtc->wb_dirty <
1699 				    dirty_freerun_ceiling(mdtc->wb_thresh,
1700 							  mdtc->wb_bg_thresh))
1701 					/*
1702 					 * LOCAL_THROTTLE tasks must not be
1703 					 * throttled when below the per-wb
1704 					 * freerun ceiling.
1705 					 */
1706 					goto free_running;
1707 			}
1708 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1709 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1710 
1711 			wb_position_ratio(mdtc);
1712 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1713 				sdtc = mdtc;
1714 		}
1715 
1716 		if (dirty_exceeded && !wb->dirty_exceeded)
1717 			wb->dirty_exceeded = 1;
1718 
1719 		if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1720 					   BANDWIDTH_INTERVAL))
1721 			__wb_update_bandwidth(gdtc, mdtc, true);
1722 
1723 		/* throttle according to the chosen dtc */
1724 		dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1725 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1726 							RATELIMIT_CALC_SHIFT;
1727 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1728 		min_pause = wb_min_pause(wb, max_pause,
1729 					 task_ratelimit, dirty_ratelimit,
1730 					 &nr_dirtied_pause);
1731 
1732 		if (unlikely(task_ratelimit == 0)) {
1733 			period = max_pause;
1734 			pause = max_pause;
1735 			goto pause;
1736 		}
1737 		period = HZ * pages_dirtied / task_ratelimit;
1738 		pause = period;
1739 		if (current->dirty_paused_when)
1740 			pause -= now - current->dirty_paused_when;
1741 		/*
1742 		 * For less than 1s think time (ext3/4 may block the dirtier
1743 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1744 		 * however at much less frequency), try to compensate it in
1745 		 * future periods by updating the virtual time; otherwise just
1746 		 * do a reset, as it may be a light dirtier.
1747 		 */
1748 		if (pause < min_pause) {
1749 			trace_balance_dirty_pages(wb,
1750 						  sdtc->thresh,
1751 						  sdtc->bg_thresh,
1752 						  sdtc->dirty,
1753 						  sdtc->wb_thresh,
1754 						  sdtc->wb_dirty,
1755 						  dirty_ratelimit,
1756 						  task_ratelimit,
1757 						  pages_dirtied,
1758 						  period,
1759 						  min(pause, 0L),
1760 						  start_time);
1761 			if (pause < -HZ) {
1762 				current->dirty_paused_when = now;
1763 				current->nr_dirtied = 0;
1764 			} else if (period) {
1765 				current->dirty_paused_when += period;
1766 				current->nr_dirtied = 0;
1767 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1768 				current->nr_dirtied_pause += pages_dirtied;
1769 			break;
1770 		}
1771 		if (unlikely(pause > max_pause)) {
1772 			/* for occasional dropped task_ratelimit */
1773 			now += min(pause - max_pause, max_pause);
1774 			pause = max_pause;
1775 		}
1776 
1777 pause:
1778 		trace_balance_dirty_pages(wb,
1779 					  sdtc->thresh,
1780 					  sdtc->bg_thresh,
1781 					  sdtc->dirty,
1782 					  sdtc->wb_thresh,
1783 					  sdtc->wb_dirty,
1784 					  dirty_ratelimit,
1785 					  task_ratelimit,
1786 					  pages_dirtied,
1787 					  period,
1788 					  pause,
1789 					  start_time);
1790 		__set_current_state(TASK_KILLABLE);
1791 		wb->dirty_sleep = now;
1792 		io_schedule_timeout(pause);
1793 
1794 		current->dirty_paused_when = now + pause;
1795 		current->nr_dirtied = 0;
1796 		current->nr_dirtied_pause = nr_dirtied_pause;
1797 
1798 		/*
1799 		 * This is typically equal to (dirty < thresh) and can also
1800 		 * keep "1000+ dd on a slow USB stick" under control.
1801 		 */
1802 		if (task_ratelimit)
1803 			break;
1804 
1805 		/*
1806 		 * In the case of an unresponsive NFS server and the NFS dirty
1807 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1808 		 * to go through, so that tasks on them still remain responsive.
1809 		 *
1810 		 * In theory 1 page is enough to keep the consumer-producer
1811 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1812 		 * more page. However wb_dirty has accounting errors.  So use
1813 		 * the larger and more IO friendly wb_stat_error.
1814 		 */
1815 		if (sdtc->wb_dirty <= wb_stat_error())
1816 			break;
1817 
1818 		if (fatal_signal_pending(current))
1819 			break;
1820 	}
1821 
1822 	if (!dirty_exceeded && wb->dirty_exceeded)
1823 		wb->dirty_exceeded = 0;
1824 
1825 	if (writeback_in_progress(wb))
1826 		return;
1827 
1828 	/*
1829 	 * In laptop mode, we wait until hitting the higher threshold before
1830 	 * starting background writeout, and then write out all the way down
1831 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1832 	 *
1833 	 * In normal mode, we start background writeout at the lower
1834 	 * background_thresh, to keep the amount of dirty memory low.
1835 	 */
1836 	if (laptop_mode)
1837 		return;
1838 
1839 	if (nr_reclaimable > gdtc->bg_thresh)
1840 		wb_start_background_writeback(wb);
1841 }
1842 
1843 static DEFINE_PER_CPU(int, bdp_ratelimits);
1844 
1845 /*
1846  * Normal tasks are throttled by
1847  *	loop {
1848  *		dirty tsk->nr_dirtied_pause pages;
1849  *		take a snap in balance_dirty_pages();
1850  *	}
1851  * However there is a worst case. If every task exit immediately when dirtied
1852  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1853  * called to throttle the page dirties. The solution is to save the not yet
1854  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1855  * randomly into the running tasks. This works well for the above worst case,
1856  * as the new task will pick up and accumulate the old task's leaked dirty
1857  * count and eventually get throttled.
1858  */
1859 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1860 
1861 /**
1862  * balance_dirty_pages_ratelimited - balance dirty memory state
1863  * @mapping: address_space which was dirtied
1864  *
1865  * Processes which are dirtying memory should call in here once for each page
1866  * which was newly dirtied.  The function will periodically check the system's
1867  * dirty state and will initiate writeback if needed.
1868  *
1869  * Once we're over the dirty memory limit we decrease the ratelimiting
1870  * by a lot, to prevent individual processes from overshooting the limit
1871  * by (ratelimit_pages) each.
1872  */
1873 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1874 {
1875 	struct inode *inode = mapping->host;
1876 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1877 	struct bdi_writeback *wb = NULL;
1878 	int ratelimit;
1879 	int *p;
1880 
1881 	if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
1882 		return;
1883 
1884 	if (inode_cgwb_enabled(inode))
1885 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1886 	if (!wb)
1887 		wb = &bdi->wb;
1888 
1889 	ratelimit = current->nr_dirtied_pause;
1890 	if (wb->dirty_exceeded)
1891 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1892 
1893 	preempt_disable();
1894 	/*
1895 	 * This prevents one CPU to accumulate too many dirtied pages without
1896 	 * calling into balance_dirty_pages(), which can happen when there are
1897 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1898 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1899 	 */
1900 	p =  this_cpu_ptr(&bdp_ratelimits);
1901 	if (unlikely(current->nr_dirtied >= ratelimit))
1902 		*p = 0;
1903 	else if (unlikely(*p >= ratelimit_pages)) {
1904 		*p = 0;
1905 		ratelimit = 0;
1906 	}
1907 	/*
1908 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1909 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1910 	 * the dirty throttling and livelock other long-run dirtiers.
1911 	 */
1912 	p = this_cpu_ptr(&dirty_throttle_leaks);
1913 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1914 		unsigned long nr_pages_dirtied;
1915 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1916 		*p -= nr_pages_dirtied;
1917 		current->nr_dirtied += nr_pages_dirtied;
1918 	}
1919 	preempt_enable();
1920 
1921 	if (unlikely(current->nr_dirtied >= ratelimit))
1922 		balance_dirty_pages(wb, current->nr_dirtied);
1923 
1924 	wb_put(wb);
1925 }
1926 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1927 
1928 /**
1929  * wb_over_bg_thresh - does @wb need to be written back?
1930  * @wb: bdi_writeback of interest
1931  *
1932  * Determines whether background writeback should keep writing @wb or it's
1933  * clean enough.
1934  *
1935  * Return: %true if writeback should continue.
1936  */
1937 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1938 {
1939 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1940 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1941 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1942 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1943 						     &mdtc_stor : NULL;
1944 	unsigned long reclaimable;
1945 	unsigned long thresh;
1946 
1947 	/*
1948 	 * Similar to balance_dirty_pages() but ignores pages being written
1949 	 * as we're trying to decide whether to put more under writeback.
1950 	 */
1951 	gdtc->avail = global_dirtyable_memory();
1952 	gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
1953 	domain_dirty_limits(gdtc);
1954 
1955 	if (gdtc->dirty > gdtc->bg_thresh)
1956 		return true;
1957 
1958 	thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
1959 	if (thresh < 2 * wb_stat_error())
1960 		reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1961 	else
1962 		reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1963 
1964 	if (reclaimable > thresh)
1965 		return true;
1966 
1967 	if (mdtc) {
1968 		unsigned long filepages, headroom, writeback;
1969 
1970 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1971 				    &writeback);
1972 		mdtc_calc_avail(mdtc, filepages, headroom);
1973 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1974 
1975 		if (mdtc->dirty > mdtc->bg_thresh)
1976 			return true;
1977 
1978 		thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
1979 		if (thresh < 2 * wb_stat_error())
1980 			reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1981 		else
1982 			reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1983 
1984 		if (reclaimable > thresh)
1985 			return true;
1986 	}
1987 
1988 	return false;
1989 }
1990 
1991 /*
1992  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1993  */
1994 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1995 		void *buffer, size_t *length, loff_t *ppos)
1996 {
1997 	unsigned int old_interval = dirty_writeback_interval;
1998 	int ret;
1999 
2000 	ret = proc_dointvec(table, write, buffer, length, ppos);
2001 
2002 	/*
2003 	 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2004 	 * and a different non-zero value will wakeup the writeback threads.
2005 	 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2006 	 * iterate over all bdis and wbs.
2007 	 * The reason we do this is to make the change take effect immediately.
2008 	 */
2009 	if (!ret && write && dirty_writeback_interval &&
2010 		dirty_writeback_interval != old_interval)
2011 		wakeup_flusher_threads(WB_REASON_PERIODIC);
2012 
2013 	return ret;
2014 }
2015 
2016 void laptop_mode_timer_fn(struct timer_list *t)
2017 {
2018 	struct backing_dev_info *backing_dev_info =
2019 		from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2020 
2021 	wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2022 }
2023 
2024 /*
2025  * We've spun up the disk and we're in laptop mode: schedule writeback
2026  * of all dirty data a few seconds from now.  If the flush is already scheduled
2027  * then push it back - the user is still using the disk.
2028  */
2029 void laptop_io_completion(struct backing_dev_info *info)
2030 {
2031 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2032 }
2033 
2034 /*
2035  * We're in laptop mode and we've just synced. The sync's writes will have
2036  * caused another writeback to be scheduled by laptop_io_completion.
2037  * Nothing needs to be written back anymore, so we unschedule the writeback.
2038  */
2039 void laptop_sync_completion(void)
2040 {
2041 	struct backing_dev_info *bdi;
2042 
2043 	rcu_read_lock();
2044 
2045 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2046 		del_timer(&bdi->laptop_mode_wb_timer);
2047 
2048 	rcu_read_unlock();
2049 }
2050 
2051 /*
2052  * If ratelimit_pages is too high then we can get into dirty-data overload
2053  * if a large number of processes all perform writes at the same time.
2054  *
2055  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2056  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2057  * thresholds.
2058  */
2059 
2060 void writeback_set_ratelimit(void)
2061 {
2062 	struct wb_domain *dom = &global_wb_domain;
2063 	unsigned long background_thresh;
2064 	unsigned long dirty_thresh;
2065 
2066 	global_dirty_limits(&background_thresh, &dirty_thresh);
2067 	dom->dirty_limit = dirty_thresh;
2068 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2069 	if (ratelimit_pages < 16)
2070 		ratelimit_pages = 16;
2071 }
2072 
2073 static int page_writeback_cpu_online(unsigned int cpu)
2074 {
2075 	writeback_set_ratelimit();
2076 	return 0;
2077 }
2078 
2079 /*
2080  * Called early on to tune the page writeback dirty limits.
2081  *
2082  * We used to scale dirty pages according to how total memory
2083  * related to pages that could be allocated for buffers.
2084  *
2085  * However, that was when we used "dirty_ratio" to scale with
2086  * all memory, and we don't do that any more. "dirty_ratio"
2087  * is now applied to total non-HIGHPAGE memory, and as such we can't
2088  * get into the old insane situation any more where we had
2089  * large amounts of dirty pages compared to a small amount of
2090  * non-HIGHMEM memory.
2091  *
2092  * But we might still want to scale the dirty_ratio by how
2093  * much memory the box has..
2094  */
2095 void __init page_writeback_init(void)
2096 {
2097 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2098 
2099 	cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2100 			  page_writeback_cpu_online, NULL);
2101 	cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2102 			  page_writeback_cpu_online);
2103 }
2104 
2105 /**
2106  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2107  * @mapping: address space structure to write
2108  * @start: starting page index
2109  * @end: ending page index (inclusive)
2110  *
2111  * This function scans the page range from @start to @end (inclusive) and tags
2112  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2113  * that write_cache_pages (or whoever calls this function) will then use
2114  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2115  * used to avoid livelocking of writeback by a process steadily creating new
2116  * dirty pages in the file (thus it is important for this function to be quick
2117  * so that it can tag pages faster than a dirtying process can create them).
2118  */
2119 void tag_pages_for_writeback(struct address_space *mapping,
2120 			     pgoff_t start, pgoff_t end)
2121 {
2122 	XA_STATE(xas, &mapping->i_pages, start);
2123 	unsigned int tagged = 0;
2124 	void *page;
2125 
2126 	xas_lock_irq(&xas);
2127 	xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2128 		xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2129 		if (++tagged % XA_CHECK_SCHED)
2130 			continue;
2131 
2132 		xas_pause(&xas);
2133 		xas_unlock_irq(&xas);
2134 		cond_resched();
2135 		xas_lock_irq(&xas);
2136 	}
2137 	xas_unlock_irq(&xas);
2138 }
2139 EXPORT_SYMBOL(tag_pages_for_writeback);
2140 
2141 /**
2142  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2143  * @mapping: address space structure to write
2144  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2145  * @writepage: function called for each page
2146  * @data: data passed to writepage function
2147  *
2148  * If a page is already under I/O, write_cache_pages() skips it, even
2149  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2150  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2151  * and msync() need to guarantee that all the data which was dirty at the time
2152  * the call was made get new I/O started against them.  If wbc->sync_mode is
2153  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2154  * existing IO to complete.
2155  *
2156  * To avoid livelocks (when other process dirties new pages), we first tag
2157  * pages which should be written back with TOWRITE tag and only then start
2158  * writing them. For data-integrity sync we have to be careful so that we do
2159  * not miss some pages (e.g., because some other process has cleared TOWRITE
2160  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2161  * by the process clearing the DIRTY tag (and submitting the page for IO).
2162  *
2163  * To avoid deadlocks between range_cyclic writeback and callers that hold
2164  * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2165  * we do not loop back to the start of the file. Doing so causes a page
2166  * lock/page writeback access order inversion - we should only ever lock
2167  * multiple pages in ascending page->index order, and looping back to the start
2168  * of the file violates that rule and causes deadlocks.
2169  *
2170  * Return: %0 on success, negative error code otherwise
2171  */
2172 int write_cache_pages(struct address_space *mapping,
2173 		      struct writeback_control *wbc, writepage_t writepage,
2174 		      void *data)
2175 {
2176 	int ret = 0;
2177 	int done = 0;
2178 	int error;
2179 	struct pagevec pvec;
2180 	int nr_pages;
2181 	pgoff_t index;
2182 	pgoff_t end;		/* Inclusive */
2183 	pgoff_t done_index;
2184 	int range_whole = 0;
2185 	xa_mark_t tag;
2186 
2187 	pagevec_init(&pvec);
2188 	if (wbc->range_cyclic) {
2189 		index = mapping->writeback_index; /* prev offset */
2190 		end = -1;
2191 	} else {
2192 		index = wbc->range_start >> PAGE_SHIFT;
2193 		end = wbc->range_end >> PAGE_SHIFT;
2194 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2195 			range_whole = 1;
2196 	}
2197 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2198 		tag_pages_for_writeback(mapping, index, end);
2199 		tag = PAGECACHE_TAG_TOWRITE;
2200 	} else {
2201 		tag = PAGECACHE_TAG_DIRTY;
2202 	}
2203 	done_index = index;
2204 	while (!done && (index <= end)) {
2205 		int i;
2206 
2207 		nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2208 				tag);
2209 		if (nr_pages == 0)
2210 			break;
2211 
2212 		for (i = 0; i < nr_pages; i++) {
2213 			struct page *page = pvec.pages[i];
2214 
2215 			done_index = page->index;
2216 
2217 			lock_page(page);
2218 
2219 			/*
2220 			 * Page truncated or invalidated. We can freely skip it
2221 			 * then, even for data integrity operations: the page
2222 			 * has disappeared concurrently, so there could be no
2223 			 * real expectation of this data integrity operation
2224 			 * even if there is now a new, dirty page at the same
2225 			 * pagecache address.
2226 			 */
2227 			if (unlikely(page->mapping != mapping)) {
2228 continue_unlock:
2229 				unlock_page(page);
2230 				continue;
2231 			}
2232 
2233 			if (!PageDirty(page)) {
2234 				/* someone wrote it for us */
2235 				goto continue_unlock;
2236 			}
2237 
2238 			if (PageWriteback(page)) {
2239 				if (wbc->sync_mode != WB_SYNC_NONE)
2240 					wait_on_page_writeback(page);
2241 				else
2242 					goto continue_unlock;
2243 			}
2244 
2245 			BUG_ON(PageWriteback(page));
2246 			if (!clear_page_dirty_for_io(page))
2247 				goto continue_unlock;
2248 
2249 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2250 			error = (*writepage)(page, wbc, data);
2251 			if (unlikely(error)) {
2252 				/*
2253 				 * Handle errors according to the type of
2254 				 * writeback. There's no need to continue for
2255 				 * background writeback. Just push done_index
2256 				 * past this page so media errors won't choke
2257 				 * writeout for the entire file. For integrity
2258 				 * writeback, we must process the entire dirty
2259 				 * set regardless of errors because the fs may
2260 				 * still have state to clear for each page. In
2261 				 * that case we continue processing and return
2262 				 * the first error.
2263 				 */
2264 				if (error == AOP_WRITEPAGE_ACTIVATE) {
2265 					unlock_page(page);
2266 					error = 0;
2267 				} else if (wbc->sync_mode != WB_SYNC_ALL) {
2268 					ret = error;
2269 					done_index = page->index + 1;
2270 					done = 1;
2271 					break;
2272 				}
2273 				if (!ret)
2274 					ret = error;
2275 			}
2276 
2277 			/*
2278 			 * We stop writing back only if we are not doing
2279 			 * integrity sync. In case of integrity sync we have to
2280 			 * keep going until we have written all the pages
2281 			 * we tagged for writeback prior to entering this loop.
2282 			 */
2283 			if (--wbc->nr_to_write <= 0 &&
2284 			    wbc->sync_mode == WB_SYNC_NONE) {
2285 				done = 1;
2286 				break;
2287 			}
2288 		}
2289 		pagevec_release(&pvec);
2290 		cond_resched();
2291 	}
2292 
2293 	/*
2294 	 * If we hit the last page and there is more work to be done: wrap
2295 	 * back the index back to the start of the file for the next
2296 	 * time we are called.
2297 	 */
2298 	if (wbc->range_cyclic && !done)
2299 		done_index = 0;
2300 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2301 		mapping->writeback_index = done_index;
2302 
2303 	return ret;
2304 }
2305 EXPORT_SYMBOL(write_cache_pages);
2306 
2307 /*
2308  * Function used by generic_writepages to call the real writepage
2309  * function and set the mapping flags on error
2310  */
2311 static int __writepage(struct page *page, struct writeback_control *wbc,
2312 		       void *data)
2313 {
2314 	struct address_space *mapping = data;
2315 	int ret = mapping->a_ops->writepage(page, wbc);
2316 	mapping_set_error(mapping, ret);
2317 	return ret;
2318 }
2319 
2320 /**
2321  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2322  * @mapping: address space structure to write
2323  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2324  *
2325  * This is a library function, which implements the writepages()
2326  * address_space_operation.
2327  *
2328  * Return: %0 on success, negative error code otherwise
2329  */
2330 int generic_writepages(struct address_space *mapping,
2331 		       struct writeback_control *wbc)
2332 {
2333 	struct blk_plug plug;
2334 	int ret;
2335 
2336 	/* deal with chardevs and other special file */
2337 	if (!mapping->a_ops->writepage)
2338 		return 0;
2339 
2340 	blk_start_plug(&plug);
2341 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2342 	blk_finish_plug(&plug);
2343 	return ret;
2344 }
2345 
2346 EXPORT_SYMBOL(generic_writepages);
2347 
2348 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2349 {
2350 	int ret;
2351 	struct bdi_writeback *wb;
2352 
2353 	if (wbc->nr_to_write <= 0)
2354 		return 0;
2355 	wb = inode_to_wb_wbc(mapping->host, wbc);
2356 	wb_bandwidth_estimate_start(wb);
2357 	while (1) {
2358 		if (mapping->a_ops->writepages)
2359 			ret = mapping->a_ops->writepages(mapping, wbc);
2360 		else
2361 			ret = generic_writepages(mapping, wbc);
2362 		if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2363 			break;
2364 
2365 		/*
2366 		 * Lacking an allocation context or the locality or writeback
2367 		 * state of any of the inode's pages, throttle based on
2368 		 * writeback activity on the local node. It's as good a
2369 		 * guess as any.
2370 		 */
2371 		reclaim_throttle(NODE_DATA(numa_node_id()),
2372 			VMSCAN_THROTTLE_WRITEBACK);
2373 	}
2374 	/*
2375 	 * Usually few pages are written by now from those we've just submitted
2376 	 * but if there's constant writeback being submitted, this makes sure
2377 	 * writeback bandwidth is updated once in a while.
2378 	 */
2379 	if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2380 				   BANDWIDTH_INTERVAL))
2381 		wb_update_bandwidth(wb);
2382 	return ret;
2383 }
2384 
2385 /**
2386  * folio_write_one - write out a single folio and wait on I/O.
2387  * @folio: The folio to write.
2388  *
2389  * The folio must be locked by the caller and will be unlocked upon return.
2390  *
2391  * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2392  * function returns.
2393  *
2394  * Return: %0 on success, negative error code otherwise
2395  */
2396 int folio_write_one(struct folio *folio)
2397 {
2398 	struct address_space *mapping = folio->mapping;
2399 	int ret = 0;
2400 	struct writeback_control wbc = {
2401 		.sync_mode = WB_SYNC_ALL,
2402 		.nr_to_write = folio_nr_pages(folio),
2403 	};
2404 
2405 	BUG_ON(!folio_test_locked(folio));
2406 
2407 	folio_wait_writeback(folio);
2408 
2409 	if (folio_clear_dirty_for_io(folio)) {
2410 		folio_get(folio);
2411 		ret = mapping->a_ops->writepage(&folio->page, &wbc);
2412 		if (ret == 0)
2413 			folio_wait_writeback(folio);
2414 		folio_put(folio);
2415 	} else {
2416 		folio_unlock(folio);
2417 	}
2418 
2419 	if (!ret)
2420 		ret = filemap_check_errors(mapping);
2421 	return ret;
2422 }
2423 EXPORT_SYMBOL(folio_write_one);
2424 
2425 /*
2426  * For address_spaces which do not use buffers nor write back.
2427  */
2428 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2429 {
2430 	if (!folio_test_dirty(folio))
2431 		return !folio_test_set_dirty(folio);
2432 	return false;
2433 }
2434 EXPORT_SYMBOL(noop_dirty_folio);
2435 
2436 /*
2437  * Helper function for set_page_dirty family.
2438  *
2439  * Caller must hold lock_page_memcg().
2440  *
2441  * NOTE: This relies on being atomic wrt interrupts.
2442  */
2443 static void folio_account_dirtied(struct folio *folio,
2444 		struct address_space *mapping)
2445 {
2446 	struct inode *inode = mapping->host;
2447 
2448 	trace_writeback_dirty_folio(folio, mapping);
2449 
2450 	if (mapping_can_writeback(mapping)) {
2451 		struct bdi_writeback *wb;
2452 		long nr = folio_nr_pages(folio);
2453 
2454 		inode_attach_wb(inode, &folio->page);
2455 		wb = inode_to_wb(inode);
2456 
2457 		__lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2458 		__zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2459 		__node_stat_mod_folio(folio, NR_DIRTIED, nr);
2460 		wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2461 		wb_stat_mod(wb, WB_DIRTIED, nr);
2462 		task_io_account_write(nr * PAGE_SIZE);
2463 		current->nr_dirtied += nr;
2464 		__this_cpu_add(bdp_ratelimits, nr);
2465 
2466 		mem_cgroup_track_foreign_dirty(folio, wb);
2467 	}
2468 }
2469 
2470 /*
2471  * Helper function for deaccounting dirty page without writeback.
2472  *
2473  * Caller must hold lock_page_memcg().
2474  */
2475 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2476 {
2477 	long nr = folio_nr_pages(folio);
2478 
2479 	lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2480 	zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2481 	wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2482 	task_io_account_cancelled_write(nr * PAGE_SIZE);
2483 }
2484 
2485 /*
2486  * Mark the folio dirty, and set it dirty in the page cache, and mark
2487  * the inode dirty.
2488  *
2489  * If warn is true, then emit a warning if the folio is not uptodate and has
2490  * not been truncated.
2491  *
2492  * The caller must hold lock_page_memcg().  Most callers have the folio
2493  * locked.  A few have the folio blocked from truncation through other
2494  * means (eg zap_page_range() has it mapped and is holding the page table
2495  * lock).  This can also be called from mark_buffer_dirty(), which I
2496  * cannot prove is always protected against truncate.
2497  */
2498 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2499 			     int warn)
2500 {
2501 	unsigned long flags;
2502 
2503 	xa_lock_irqsave(&mapping->i_pages, flags);
2504 	if (folio->mapping) {	/* Race with truncate? */
2505 		WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2506 		folio_account_dirtied(folio, mapping);
2507 		__xa_set_mark(&mapping->i_pages, folio_index(folio),
2508 				PAGECACHE_TAG_DIRTY);
2509 	}
2510 	xa_unlock_irqrestore(&mapping->i_pages, flags);
2511 }
2512 
2513 /**
2514  * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2515  * @mapping: Address space this folio belongs to.
2516  * @folio: Folio to be marked as dirty.
2517  *
2518  * Filesystems which do not use buffer heads should call this function
2519  * from their set_page_dirty address space operation.  It ignores the
2520  * contents of folio_get_private(), so if the filesystem marks individual
2521  * blocks as dirty, the filesystem should handle that itself.
2522  *
2523  * This is also sometimes used by filesystems which use buffer_heads when
2524  * a single buffer is being dirtied: we want to set the folio dirty in
2525  * that case, but not all the buffers.  This is a "bottom-up" dirtying,
2526  * whereas block_dirty_folio() is a "top-down" dirtying.
2527  *
2528  * The caller must ensure this doesn't race with truncation.  Most will
2529  * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2530  * folio mapped and the pte lock held, which also locks out truncation.
2531  */
2532 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2533 {
2534 	folio_memcg_lock(folio);
2535 	if (folio_test_set_dirty(folio)) {
2536 		folio_memcg_unlock(folio);
2537 		return false;
2538 	}
2539 
2540 	__folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2541 	folio_memcg_unlock(folio);
2542 
2543 	if (mapping->host) {
2544 		/* !PageAnon && !swapper_space */
2545 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2546 	}
2547 	return true;
2548 }
2549 EXPORT_SYMBOL(filemap_dirty_folio);
2550 
2551 /**
2552  * folio_account_redirty - Manually account for redirtying a page.
2553  * @folio: The folio which is being redirtied.
2554  *
2555  * Most filesystems should call folio_redirty_for_writepage() instead
2556  * of this fuction.  If your filesystem is doing writeback outside the
2557  * context of a writeback_control(), it can call this when redirtying
2558  * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED,
2559  * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN,
2560  * WB_WRITTEN) in long term. The mismatches will lead to systematic errors
2561  * in balanced_dirty_ratelimit and the dirty pages position control.
2562  */
2563 void folio_account_redirty(struct folio *folio)
2564 {
2565 	struct address_space *mapping = folio->mapping;
2566 
2567 	if (mapping && mapping_can_writeback(mapping)) {
2568 		struct inode *inode = mapping->host;
2569 		struct bdi_writeback *wb;
2570 		struct wb_lock_cookie cookie = {};
2571 		long nr = folio_nr_pages(folio);
2572 
2573 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2574 		current->nr_dirtied -= nr;
2575 		node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2576 		wb_stat_mod(wb, WB_DIRTIED, -nr);
2577 		unlocked_inode_to_wb_end(inode, &cookie);
2578 	}
2579 }
2580 EXPORT_SYMBOL(folio_account_redirty);
2581 
2582 /**
2583  * folio_redirty_for_writepage - Decline to write a dirty folio.
2584  * @wbc: The writeback control.
2585  * @folio: The folio.
2586  *
2587  * When a writepage implementation decides that it doesn't want to write
2588  * @folio for some reason, it should call this function, unlock @folio and
2589  * return 0.
2590  *
2591  * Return: True if we redirtied the folio.  False if someone else dirtied
2592  * it first.
2593  */
2594 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2595 		struct folio *folio)
2596 {
2597 	bool ret;
2598 	long nr = folio_nr_pages(folio);
2599 
2600 	wbc->pages_skipped += nr;
2601 	ret = filemap_dirty_folio(folio->mapping, folio);
2602 	folio_account_redirty(folio);
2603 
2604 	return ret;
2605 }
2606 EXPORT_SYMBOL(folio_redirty_for_writepage);
2607 
2608 /**
2609  * folio_mark_dirty - Mark a folio as being modified.
2610  * @folio: The folio.
2611  *
2612  * For folios with a mapping this should be done with the folio lock held
2613  * for the benefit of asynchronous memory errors who prefer a consistent
2614  * dirty state. This rule can be broken in some special cases,
2615  * but should be better not to.
2616  *
2617  * Return: True if the folio was newly dirtied, false if it was already dirty.
2618  */
2619 bool folio_mark_dirty(struct folio *folio)
2620 {
2621 	struct address_space *mapping = folio_mapping(folio);
2622 
2623 	if (likely(mapping)) {
2624 		/*
2625 		 * readahead/lru_deactivate_page could remain
2626 		 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2627 		 * About readahead, if the folio is written, the flags would be
2628 		 * reset. So no problem.
2629 		 * About lru_deactivate_page, if the folio is redirtied,
2630 		 * the flag will be reset. So no problem. but if the
2631 		 * folio is used by readahead it will confuse readahead
2632 		 * and make it restart the size rampup process. But it's
2633 		 * a trivial problem.
2634 		 */
2635 		if (folio_test_reclaim(folio))
2636 			folio_clear_reclaim(folio);
2637 		return mapping->a_ops->dirty_folio(mapping, folio);
2638 	}
2639 
2640 	return noop_dirty_folio(mapping, folio);
2641 }
2642 EXPORT_SYMBOL(folio_mark_dirty);
2643 
2644 /*
2645  * set_page_dirty() is racy if the caller has no reference against
2646  * page->mapping->host, and if the page is unlocked.  This is because another
2647  * CPU could truncate the page off the mapping and then free the mapping.
2648  *
2649  * Usually, the page _is_ locked, or the caller is a user-space process which
2650  * holds a reference on the inode by having an open file.
2651  *
2652  * In other cases, the page should be locked before running set_page_dirty().
2653  */
2654 int set_page_dirty_lock(struct page *page)
2655 {
2656 	int ret;
2657 
2658 	lock_page(page);
2659 	ret = set_page_dirty(page);
2660 	unlock_page(page);
2661 	return ret;
2662 }
2663 EXPORT_SYMBOL(set_page_dirty_lock);
2664 
2665 /*
2666  * This cancels just the dirty bit on the kernel page itself, it does NOT
2667  * actually remove dirty bits on any mmap's that may be around. It also
2668  * leaves the page tagged dirty, so any sync activity will still find it on
2669  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2670  * look at the dirty bits in the VM.
2671  *
2672  * Doing this should *normally* only ever be done when a page is truncated,
2673  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2674  * this when it notices that somebody has cleaned out all the buffers on a
2675  * page without actually doing it through the VM. Can you say "ext3 is
2676  * horribly ugly"? Thought you could.
2677  */
2678 void __folio_cancel_dirty(struct folio *folio)
2679 {
2680 	struct address_space *mapping = folio_mapping(folio);
2681 
2682 	if (mapping_can_writeback(mapping)) {
2683 		struct inode *inode = mapping->host;
2684 		struct bdi_writeback *wb;
2685 		struct wb_lock_cookie cookie = {};
2686 
2687 		folio_memcg_lock(folio);
2688 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2689 
2690 		if (folio_test_clear_dirty(folio))
2691 			folio_account_cleaned(folio, wb);
2692 
2693 		unlocked_inode_to_wb_end(inode, &cookie);
2694 		folio_memcg_unlock(folio);
2695 	} else {
2696 		folio_clear_dirty(folio);
2697 	}
2698 }
2699 EXPORT_SYMBOL(__folio_cancel_dirty);
2700 
2701 /*
2702  * Clear a folio's dirty flag, while caring for dirty memory accounting.
2703  * Returns true if the folio was previously dirty.
2704  *
2705  * This is for preparing to put the folio under writeout.  We leave
2706  * the folio tagged as dirty in the xarray so that a concurrent
2707  * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2708  * The ->writepage implementation will run either folio_start_writeback()
2709  * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2710  * and xarray dirty tag back into sync.
2711  *
2712  * This incoherency between the folio's dirty flag and xarray tag is
2713  * unfortunate, but it only exists while the folio is locked.
2714  */
2715 bool folio_clear_dirty_for_io(struct folio *folio)
2716 {
2717 	struct address_space *mapping = folio_mapping(folio);
2718 	bool ret = false;
2719 
2720 	VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2721 
2722 	if (mapping && mapping_can_writeback(mapping)) {
2723 		struct inode *inode = mapping->host;
2724 		struct bdi_writeback *wb;
2725 		struct wb_lock_cookie cookie = {};
2726 
2727 		/*
2728 		 * Yes, Virginia, this is indeed insane.
2729 		 *
2730 		 * We use this sequence to make sure that
2731 		 *  (a) we account for dirty stats properly
2732 		 *  (b) we tell the low-level filesystem to
2733 		 *      mark the whole folio dirty if it was
2734 		 *      dirty in a pagetable. Only to then
2735 		 *  (c) clean the folio again and return 1 to
2736 		 *      cause the writeback.
2737 		 *
2738 		 * This way we avoid all nasty races with the
2739 		 * dirty bit in multiple places and clearing
2740 		 * them concurrently from different threads.
2741 		 *
2742 		 * Note! Normally the "folio_mark_dirty(folio)"
2743 		 * has no effect on the actual dirty bit - since
2744 		 * that will already usually be set. But we
2745 		 * need the side effects, and it can help us
2746 		 * avoid races.
2747 		 *
2748 		 * We basically use the folio "master dirty bit"
2749 		 * as a serialization point for all the different
2750 		 * threads doing their things.
2751 		 */
2752 		if (folio_mkclean(folio))
2753 			folio_mark_dirty(folio);
2754 		/*
2755 		 * We carefully synchronise fault handlers against
2756 		 * installing a dirty pte and marking the folio dirty
2757 		 * at this point.  We do this by having them hold the
2758 		 * page lock while dirtying the folio, and folios are
2759 		 * always locked coming in here, so we get the desired
2760 		 * exclusion.
2761 		 */
2762 		wb = unlocked_inode_to_wb_begin(inode, &cookie);
2763 		if (folio_test_clear_dirty(folio)) {
2764 			long nr = folio_nr_pages(folio);
2765 			lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2766 			zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2767 			wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2768 			ret = true;
2769 		}
2770 		unlocked_inode_to_wb_end(inode, &cookie);
2771 		return ret;
2772 	}
2773 	return folio_test_clear_dirty(folio);
2774 }
2775 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2776 
2777 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2778 {
2779 	atomic_inc(&wb->writeback_inodes);
2780 }
2781 
2782 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2783 {
2784 	atomic_dec(&wb->writeback_inodes);
2785 	/*
2786 	 * Make sure estimate of writeback throughput gets updated after
2787 	 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2788 	 * (which is the interval other bandwidth updates use for batching) so
2789 	 * that if multiple inodes end writeback at a similar time, they get
2790 	 * batched into one bandwidth update.
2791 	 */
2792 	queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2793 }
2794 
2795 bool __folio_end_writeback(struct folio *folio)
2796 {
2797 	long nr = folio_nr_pages(folio);
2798 	struct address_space *mapping = folio_mapping(folio);
2799 	bool ret;
2800 
2801 	folio_memcg_lock(folio);
2802 	if (mapping && mapping_use_writeback_tags(mapping)) {
2803 		struct inode *inode = mapping->host;
2804 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2805 		unsigned long flags;
2806 
2807 		xa_lock_irqsave(&mapping->i_pages, flags);
2808 		ret = folio_test_clear_writeback(folio);
2809 		if (ret) {
2810 			__xa_clear_mark(&mapping->i_pages, folio_index(folio),
2811 						PAGECACHE_TAG_WRITEBACK);
2812 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2813 				struct bdi_writeback *wb = inode_to_wb(inode);
2814 
2815 				wb_stat_mod(wb, WB_WRITEBACK, -nr);
2816 				__wb_writeout_add(wb, nr);
2817 				if (!mapping_tagged(mapping,
2818 						    PAGECACHE_TAG_WRITEBACK))
2819 					wb_inode_writeback_end(wb);
2820 			}
2821 		}
2822 
2823 		if (mapping->host && !mapping_tagged(mapping,
2824 						     PAGECACHE_TAG_WRITEBACK))
2825 			sb_clear_inode_writeback(mapping->host);
2826 
2827 		xa_unlock_irqrestore(&mapping->i_pages, flags);
2828 	} else {
2829 		ret = folio_test_clear_writeback(folio);
2830 	}
2831 	if (ret) {
2832 		lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
2833 		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2834 		node_stat_mod_folio(folio, NR_WRITTEN, nr);
2835 	}
2836 	folio_memcg_unlock(folio);
2837 	return ret;
2838 }
2839 
2840 bool __folio_start_writeback(struct folio *folio, bool keep_write)
2841 {
2842 	long nr = folio_nr_pages(folio);
2843 	struct address_space *mapping = folio_mapping(folio);
2844 	bool ret;
2845 	int access_ret;
2846 
2847 	folio_memcg_lock(folio);
2848 	if (mapping && mapping_use_writeback_tags(mapping)) {
2849 		XA_STATE(xas, &mapping->i_pages, folio_index(folio));
2850 		struct inode *inode = mapping->host;
2851 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2852 		unsigned long flags;
2853 
2854 		xas_lock_irqsave(&xas, flags);
2855 		xas_load(&xas);
2856 		ret = folio_test_set_writeback(folio);
2857 		if (!ret) {
2858 			bool on_wblist;
2859 
2860 			on_wblist = mapping_tagged(mapping,
2861 						   PAGECACHE_TAG_WRITEBACK);
2862 
2863 			xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
2864 			if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2865 				struct bdi_writeback *wb = inode_to_wb(inode);
2866 
2867 				wb_stat_mod(wb, WB_WRITEBACK, nr);
2868 				if (!on_wblist)
2869 					wb_inode_writeback_start(wb);
2870 			}
2871 
2872 			/*
2873 			 * We can come through here when swapping
2874 			 * anonymous folios, so we don't necessarily
2875 			 * have an inode to track for sync.
2876 			 */
2877 			if (mapping->host && !on_wblist)
2878 				sb_mark_inode_writeback(mapping->host);
2879 		}
2880 		if (!folio_test_dirty(folio))
2881 			xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
2882 		if (!keep_write)
2883 			xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
2884 		xas_unlock_irqrestore(&xas, flags);
2885 	} else {
2886 		ret = folio_test_set_writeback(folio);
2887 	}
2888 	if (!ret) {
2889 		lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
2890 		zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2891 	}
2892 	folio_memcg_unlock(folio);
2893 	access_ret = arch_make_folio_accessible(folio);
2894 	/*
2895 	 * If writeback has been triggered on a page that cannot be made
2896 	 * accessible, it is too late to recover here.
2897 	 */
2898 	VM_BUG_ON_FOLIO(access_ret != 0, folio);
2899 
2900 	return ret;
2901 }
2902 EXPORT_SYMBOL(__folio_start_writeback);
2903 
2904 /**
2905  * folio_wait_writeback - Wait for a folio to finish writeback.
2906  * @folio: The folio to wait for.
2907  *
2908  * If the folio is currently being written back to storage, wait for the
2909  * I/O to complete.
2910  *
2911  * Context: Sleeps.  Must be called in process context and with
2912  * no spinlocks held.  Caller should hold a reference on the folio.
2913  * If the folio is not locked, writeback may start again after writeback
2914  * has finished.
2915  */
2916 void folio_wait_writeback(struct folio *folio)
2917 {
2918 	while (folio_test_writeback(folio)) {
2919 		trace_folio_wait_writeback(folio, folio_mapping(folio));
2920 		folio_wait_bit(folio, PG_writeback);
2921 	}
2922 }
2923 EXPORT_SYMBOL_GPL(folio_wait_writeback);
2924 
2925 /**
2926  * folio_wait_writeback_killable - Wait for a folio to finish writeback.
2927  * @folio: The folio to wait for.
2928  *
2929  * If the folio is currently being written back to storage, wait for the
2930  * I/O to complete or a fatal signal to arrive.
2931  *
2932  * Context: Sleeps.  Must be called in process context and with
2933  * no spinlocks held.  Caller should hold a reference on the folio.
2934  * If the folio is not locked, writeback may start again after writeback
2935  * has finished.
2936  * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
2937  */
2938 int folio_wait_writeback_killable(struct folio *folio)
2939 {
2940 	while (folio_test_writeback(folio)) {
2941 		trace_folio_wait_writeback(folio, folio_mapping(folio));
2942 		if (folio_wait_bit_killable(folio, PG_writeback))
2943 			return -EINTR;
2944 	}
2945 
2946 	return 0;
2947 }
2948 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
2949 
2950 /**
2951  * folio_wait_stable() - wait for writeback to finish, if necessary.
2952  * @folio: The folio to wait on.
2953  *
2954  * This function determines if the given folio is related to a backing
2955  * device that requires folio contents to be held stable during writeback.
2956  * If so, then it will wait for any pending writeback to complete.
2957  *
2958  * Context: Sleeps.  Must be called in process context and with
2959  * no spinlocks held.  Caller should hold a reference on the folio.
2960  * If the folio is not locked, writeback may start again after writeback
2961  * has finished.
2962  */
2963 void folio_wait_stable(struct folio *folio)
2964 {
2965 	if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES)
2966 		folio_wait_writeback(folio);
2967 }
2968 EXPORT_SYMBOL_GPL(folio_wait_stable);
2969