1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/export.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/mm.h> 20 #include <linux/swap.h> 21 #include <linux/slab.h> 22 #include <linux/pagemap.h> 23 #include <linux/writeback.h> 24 #include <linux/init.h> 25 #include <linux/backing-dev.h> 26 #include <linux/task_io_accounting_ops.h> 27 #include <linux/blkdev.h> 28 #include <linux/mpage.h> 29 #include <linux/rmap.h> 30 #include <linux/percpu.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/pagevec.h> 36 #include <linux/timer.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/signal.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 112 * a full sync is triggered after this time elapses without any disk activity. 113 */ 114 int laptop_mode; 115 116 EXPORT_SYMBOL(laptop_mode); 117 118 /* End of sysctl-exported parameters */ 119 120 struct wb_domain global_wb_domain; 121 122 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 123 struct dirty_throttle_control { 124 #ifdef CONFIG_CGROUP_WRITEBACK 125 struct wb_domain *dom; 126 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 127 #endif 128 struct bdi_writeback *wb; 129 struct fprop_local_percpu *wb_completions; 130 131 unsigned long avail; /* dirtyable */ 132 unsigned long dirty; /* file_dirty + write + nfs */ 133 unsigned long thresh; /* dirty threshold */ 134 unsigned long bg_thresh; /* dirty background threshold */ 135 136 unsigned long wb_dirty; /* per-wb counterparts */ 137 unsigned long wb_thresh; 138 unsigned long wb_bg_thresh; 139 140 unsigned long pos_ratio; 141 }; 142 143 /* 144 * Length of period for aging writeout fractions of bdis. This is an 145 * arbitrarily chosen number. The longer the period, the slower fractions will 146 * reflect changes in current writeout rate. 147 */ 148 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 149 150 #ifdef CONFIG_CGROUP_WRITEBACK 151 152 #define GDTC_INIT(__wb) .wb = (__wb), \ 153 .dom = &global_wb_domain, \ 154 .wb_completions = &(__wb)->completions 155 156 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 157 158 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 159 .dom = mem_cgroup_wb_domain(__wb), \ 160 .wb_completions = &(__wb)->memcg_completions, \ 161 .gdtc = __gdtc 162 163 static bool mdtc_valid(struct dirty_throttle_control *dtc) 164 { 165 return dtc->dom; 166 } 167 168 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 174 { 175 return mdtc->gdtc; 176 } 177 178 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 179 { 180 return &wb->memcg_completions; 181 } 182 183 static void wb_min_max_ratio(struct bdi_writeback *wb, 184 unsigned long *minp, unsigned long *maxp) 185 { 186 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 187 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 188 unsigned long long min = wb->bdi->min_ratio; 189 unsigned long long max = wb->bdi->max_ratio; 190 191 /* 192 * @wb may already be clean by the time control reaches here and 193 * the total may not include its bw. 194 */ 195 if (this_bw < tot_bw) { 196 if (min) { 197 min *= this_bw; 198 min = div64_ul(min, tot_bw); 199 } 200 if (max < 100) { 201 max *= this_bw; 202 max = div64_ul(max, tot_bw); 203 } 204 } 205 206 *minp = min; 207 *maxp = max; 208 } 209 210 #else /* CONFIG_CGROUP_WRITEBACK */ 211 212 #define GDTC_INIT(__wb) .wb = (__wb), \ 213 .wb_completions = &(__wb)->completions 214 #define GDTC_INIT_NO_WB 215 #define MDTC_INIT(__wb, __gdtc) 216 217 static bool mdtc_valid(struct dirty_throttle_control *dtc) 218 { 219 return false; 220 } 221 222 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 223 { 224 return &global_wb_domain; 225 } 226 227 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 228 { 229 return NULL; 230 } 231 232 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 233 { 234 return NULL; 235 } 236 237 static void wb_min_max_ratio(struct bdi_writeback *wb, 238 unsigned long *minp, unsigned long *maxp) 239 { 240 *minp = wb->bdi->min_ratio; 241 *maxp = wb->bdi->max_ratio; 242 } 243 244 #endif /* CONFIG_CGROUP_WRITEBACK */ 245 246 /* 247 * In a memory zone, there is a certain amount of pages we consider 248 * available for the page cache, which is essentially the number of 249 * free and reclaimable pages, minus some zone reserves to protect 250 * lowmem and the ability to uphold the zone's watermarks without 251 * requiring writeback. 252 * 253 * This number of dirtyable pages is the base value of which the 254 * user-configurable dirty ratio is the effective number of pages that 255 * are allowed to be actually dirtied. Per individual zone, or 256 * globally by using the sum of dirtyable pages over all zones. 257 * 258 * Because the user is allowed to specify the dirty limit globally as 259 * absolute number of bytes, calculating the per-zone dirty limit can 260 * require translating the configured limit into a percentage of 261 * global dirtyable memory first. 262 */ 263 264 /** 265 * node_dirtyable_memory - number of dirtyable pages in a node 266 * @pgdat: the node 267 * 268 * Return: the node's number of pages potentially available for dirty 269 * page cache. This is the base value for the per-node dirty limits. 270 */ 271 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 272 { 273 unsigned long nr_pages = 0; 274 int z; 275 276 for (z = 0; z < MAX_NR_ZONES; z++) { 277 struct zone *zone = pgdat->node_zones + z; 278 279 if (!populated_zone(zone)) 280 continue; 281 282 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 283 } 284 285 /* 286 * Pages reserved for the kernel should not be considered 287 * dirtyable, to prevent a situation where reclaim has to 288 * clean pages in order to balance the zones. 289 */ 290 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 291 292 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 293 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 294 295 return nr_pages; 296 } 297 298 static unsigned long highmem_dirtyable_memory(unsigned long total) 299 { 300 #ifdef CONFIG_HIGHMEM 301 int node; 302 unsigned long x = 0; 303 int i; 304 305 for_each_node_state(node, N_HIGH_MEMORY) { 306 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 307 struct zone *z; 308 unsigned long nr_pages; 309 310 if (!is_highmem_idx(i)) 311 continue; 312 313 z = &NODE_DATA(node)->node_zones[i]; 314 if (!populated_zone(z)) 315 continue; 316 317 nr_pages = zone_page_state(z, NR_FREE_PAGES); 318 /* watch for underflows */ 319 nr_pages -= min(nr_pages, high_wmark_pages(z)); 320 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 321 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 322 x += nr_pages; 323 } 324 } 325 326 /* 327 * Make sure that the number of highmem pages is never larger 328 * than the number of the total dirtyable memory. This can only 329 * occur in very strange VM situations but we want to make sure 330 * that this does not occur. 331 */ 332 return min(x, total); 333 #else 334 return 0; 335 #endif 336 } 337 338 /** 339 * global_dirtyable_memory - number of globally dirtyable pages 340 * 341 * Return: the global number of pages potentially available for dirty 342 * page cache. This is the base value for the global dirty limits. 343 */ 344 static unsigned long global_dirtyable_memory(void) 345 { 346 unsigned long x; 347 348 x = global_zone_page_state(NR_FREE_PAGES); 349 /* 350 * Pages reserved for the kernel should not be considered 351 * dirtyable, to prevent a situation where reclaim has to 352 * clean pages in order to balance the zones. 353 */ 354 x -= min(x, totalreserve_pages); 355 356 x += global_node_page_state(NR_INACTIVE_FILE); 357 x += global_node_page_state(NR_ACTIVE_FILE); 358 359 if (!vm_highmem_is_dirtyable) 360 x -= highmem_dirtyable_memory(x); 361 362 return x + 1; /* Ensure that we never return 0 */ 363 } 364 365 /** 366 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 367 * @dtc: dirty_throttle_control of interest 368 * 369 * Calculate @dtc->thresh and ->bg_thresh considering 370 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 371 * must ensure that @dtc->avail is set before calling this function. The 372 * dirty limits will be lifted by 1/4 for real-time tasks. 373 */ 374 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 375 { 376 const unsigned long available_memory = dtc->avail; 377 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 378 unsigned long bytes = vm_dirty_bytes; 379 unsigned long bg_bytes = dirty_background_bytes; 380 /* convert ratios to per-PAGE_SIZE for higher precision */ 381 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 382 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 383 unsigned long thresh; 384 unsigned long bg_thresh; 385 struct task_struct *tsk; 386 387 /* gdtc is !NULL iff @dtc is for memcg domain */ 388 if (gdtc) { 389 unsigned long global_avail = gdtc->avail; 390 391 /* 392 * The byte settings can't be applied directly to memcg 393 * domains. Convert them to ratios by scaling against 394 * globally available memory. As the ratios are in 395 * per-PAGE_SIZE, they can be obtained by dividing bytes by 396 * number of pages. 397 */ 398 if (bytes) 399 ratio = min(DIV_ROUND_UP(bytes, global_avail), 400 PAGE_SIZE); 401 if (bg_bytes) 402 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 403 PAGE_SIZE); 404 bytes = bg_bytes = 0; 405 } 406 407 if (bytes) 408 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 409 else 410 thresh = (ratio * available_memory) / PAGE_SIZE; 411 412 if (bg_bytes) 413 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 414 else 415 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 416 417 if (bg_thresh >= thresh) 418 bg_thresh = thresh / 2; 419 tsk = current; 420 if (rt_task(tsk)) { 421 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 422 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 423 } 424 dtc->thresh = thresh; 425 dtc->bg_thresh = bg_thresh; 426 427 /* we should eventually report the domain in the TP */ 428 if (!gdtc) 429 trace_global_dirty_state(bg_thresh, thresh); 430 } 431 432 /** 433 * global_dirty_limits - background-writeback and dirty-throttling thresholds 434 * @pbackground: out parameter for bg_thresh 435 * @pdirty: out parameter for thresh 436 * 437 * Calculate bg_thresh and thresh for global_wb_domain. See 438 * domain_dirty_limits() for details. 439 */ 440 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 441 { 442 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 443 444 gdtc.avail = global_dirtyable_memory(); 445 domain_dirty_limits(&gdtc); 446 447 *pbackground = gdtc.bg_thresh; 448 *pdirty = gdtc.thresh; 449 } 450 451 /** 452 * node_dirty_limit - maximum number of dirty pages allowed in a node 453 * @pgdat: the node 454 * 455 * Return: the maximum number of dirty pages allowed in a node, based 456 * on the node's dirtyable memory. 457 */ 458 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 459 { 460 unsigned long node_memory = node_dirtyable_memory(pgdat); 461 struct task_struct *tsk = current; 462 unsigned long dirty; 463 464 if (vm_dirty_bytes) 465 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 466 node_memory / global_dirtyable_memory(); 467 else 468 dirty = vm_dirty_ratio * node_memory / 100; 469 470 if (rt_task(tsk)) 471 dirty += dirty / 4; 472 473 return dirty; 474 } 475 476 /** 477 * node_dirty_ok - tells whether a node is within its dirty limits 478 * @pgdat: the node to check 479 * 480 * Return: %true when the dirty pages in @pgdat are within the node's 481 * dirty limit, %false if the limit is exceeded. 482 */ 483 bool node_dirty_ok(struct pglist_data *pgdat) 484 { 485 unsigned long limit = node_dirty_limit(pgdat); 486 unsigned long nr_pages = 0; 487 488 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 489 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 490 491 return nr_pages <= limit; 492 } 493 494 int dirty_background_ratio_handler(struct ctl_table *table, int write, 495 void *buffer, size_t *lenp, loff_t *ppos) 496 { 497 int ret; 498 499 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 500 if (ret == 0 && write) 501 dirty_background_bytes = 0; 502 return ret; 503 } 504 505 int dirty_background_bytes_handler(struct ctl_table *table, int write, 506 void *buffer, size_t *lenp, loff_t *ppos) 507 { 508 int ret; 509 510 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 511 if (ret == 0 && write) 512 dirty_background_ratio = 0; 513 return ret; 514 } 515 516 int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 517 size_t *lenp, loff_t *ppos) 518 { 519 int old_ratio = vm_dirty_ratio; 520 int ret; 521 522 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 523 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 524 writeback_set_ratelimit(); 525 vm_dirty_bytes = 0; 526 } 527 return ret; 528 } 529 530 int dirty_bytes_handler(struct ctl_table *table, int write, 531 void *buffer, size_t *lenp, loff_t *ppos) 532 { 533 unsigned long old_bytes = vm_dirty_bytes; 534 int ret; 535 536 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 537 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 538 writeback_set_ratelimit(); 539 vm_dirty_ratio = 0; 540 } 541 return ret; 542 } 543 544 static unsigned long wp_next_time(unsigned long cur_time) 545 { 546 cur_time += VM_COMPLETIONS_PERIOD_LEN; 547 /* 0 has a special meaning... */ 548 if (!cur_time) 549 return 1; 550 return cur_time; 551 } 552 553 static void wb_domain_writeout_add(struct wb_domain *dom, 554 struct fprop_local_percpu *completions, 555 unsigned int max_prop_frac, long nr) 556 { 557 __fprop_add_percpu_max(&dom->completions, completions, 558 max_prop_frac, nr); 559 /* First event after period switching was turned off? */ 560 if (unlikely(!dom->period_time)) { 561 /* 562 * We can race with other __bdi_writeout_inc calls here but 563 * it does not cause any harm since the resulting time when 564 * timer will fire and what is in writeout_period_time will be 565 * roughly the same. 566 */ 567 dom->period_time = wp_next_time(jiffies); 568 mod_timer(&dom->period_timer, dom->period_time); 569 } 570 } 571 572 /* 573 * Increment @wb's writeout completion count and the global writeout 574 * completion count. Called from __folio_end_writeback(). 575 */ 576 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 577 { 578 struct wb_domain *cgdom; 579 580 wb_stat_mod(wb, WB_WRITTEN, nr); 581 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 582 wb->bdi->max_prop_frac, nr); 583 584 cgdom = mem_cgroup_wb_domain(wb); 585 if (cgdom) 586 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 587 wb->bdi->max_prop_frac, nr); 588 } 589 590 void wb_writeout_inc(struct bdi_writeback *wb) 591 { 592 unsigned long flags; 593 594 local_irq_save(flags); 595 __wb_writeout_add(wb, 1); 596 local_irq_restore(flags); 597 } 598 EXPORT_SYMBOL_GPL(wb_writeout_inc); 599 600 /* 601 * On idle system, we can be called long after we scheduled because we use 602 * deferred timers so count with missed periods. 603 */ 604 static void writeout_period(struct timer_list *t) 605 { 606 struct wb_domain *dom = from_timer(dom, t, period_timer); 607 int miss_periods = (jiffies - dom->period_time) / 608 VM_COMPLETIONS_PERIOD_LEN; 609 610 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 611 dom->period_time = wp_next_time(dom->period_time + 612 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 613 mod_timer(&dom->period_timer, dom->period_time); 614 } else { 615 /* 616 * Aging has zeroed all fractions. Stop wasting CPU on period 617 * updates. 618 */ 619 dom->period_time = 0; 620 } 621 } 622 623 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 624 { 625 memset(dom, 0, sizeof(*dom)); 626 627 spin_lock_init(&dom->lock); 628 629 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 630 631 dom->dirty_limit_tstamp = jiffies; 632 633 return fprop_global_init(&dom->completions, gfp); 634 } 635 636 #ifdef CONFIG_CGROUP_WRITEBACK 637 void wb_domain_exit(struct wb_domain *dom) 638 { 639 del_timer_sync(&dom->period_timer); 640 fprop_global_destroy(&dom->completions); 641 } 642 #endif 643 644 /* 645 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 646 * registered backing devices, which, for obvious reasons, can not 647 * exceed 100%. 648 */ 649 static unsigned int bdi_min_ratio; 650 651 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 652 { 653 unsigned int delta; 654 int ret = 0; 655 656 spin_lock_bh(&bdi_lock); 657 if (min_ratio > bdi->max_ratio) { 658 ret = -EINVAL; 659 } else { 660 if (min_ratio < bdi->min_ratio) { 661 delta = bdi->min_ratio - min_ratio; 662 bdi_min_ratio -= delta; 663 bdi->min_ratio = min_ratio; 664 } else { 665 delta = min_ratio - bdi->min_ratio; 666 if (bdi_min_ratio + delta < 100) { 667 bdi_min_ratio += delta; 668 bdi->min_ratio = min_ratio; 669 } else { 670 ret = -EINVAL; 671 } 672 } 673 } 674 spin_unlock_bh(&bdi_lock); 675 676 return ret; 677 } 678 679 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 680 { 681 int ret = 0; 682 683 if (max_ratio > 100) 684 return -EINVAL; 685 686 spin_lock_bh(&bdi_lock); 687 if (bdi->min_ratio > max_ratio) { 688 ret = -EINVAL; 689 } else { 690 bdi->max_ratio = max_ratio; 691 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 692 } 693 spin_unlock_bh(&bdi_lock); 694 695 return ret; 696 } 697 EXPORT_SYMBOL(bdi_set_max_ratio); 698 699 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 700 unsigned long bg_thresh) 701 { 702 return (thresh + bg_thresh) / 2; 703 } 704 705 static unsigned long hard_dirty_limit(struct wb_domain *dom, 706 unsigned long thresh) 707 { 708 return max(thresh, dom->dirty_limit); 709 } 710 711 /* 712 * Memory which can be further allocated to a memcg domain is capped by 713 * system-wide clean memory excluding the amount being used in the domain. 714 */ 715 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 716 unsigned long filepages, unsigned long headroom) 717 { 718 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 719 unsigned long clean = filepages - min(filepages, mdtc->dirty); 720 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 721 unsigned long other_clean = global_clean - min(global_clean, clean); 722 723 mdtc->avail = filepages + min(headroom, other_clean); 724 } 725 726 /** 727 * __wb_calc_thresh - @wb's share of dirty throttling threshold 728 * @dtc: dirty_throttle_context of interest 729 * 730 * Note that balance_dirty_pages() will only seriously take it as a hard limit 731 * when sleeping max_pause per page is not enough to keep the dirty pages under 732 * control. For example, when the device is completely stalled due to some error 733 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 734 * In the other normal situations, it acts more gently by throttling the tasks 735 * more (rather than completely block them) when the wb dirty pages go high. 736 * 737 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 738 * - starving fast devices 739 * - piling up dirty pages (that will take long time to sync) on slow devices 740 * 741 * The wb's share of dirty limit will be adapting to its throughput and 742 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 743 * 744 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 745 * dirty balancing includes all PG_dirty and PG_writeback pages. 746 */ 747 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 748 { 749 struct wb_domain *dom = dtc_dom(dtc); 750 unsigned long thresh = dtc->thresh; 751 u64 wb_thresh; 752 unsigned long numerator, denominator; 753 unsigned long wb_min_ratio, wb_max_ratio; 754 755 /* 756 * Calculate this BDI's share of the thresh ratio. 757 */ 758 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 759 &numerator, &denominator); 760 761 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 762 wb_thresh *= numerator; 763 wb_thresh = div64_ul(wb_thresh, denominator); 764 765 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 766 767 wb_thresh += (thresh * wb_min_ratio) / 100; 768 if (wb_thresh > (thresh * wb_max_ratio) / 100) 769 wb_thresh = thresh * wb_max_ratio / 100; 770 771 return wb_thresh; 772 } 773 774 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 775 { 776 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 777 .thresh = thresh }; 778 return __wb_calc_thresh(&gdtc); 779 } 780 781 /* 782 * setpoint - dirty 3 783 * f(dirty) := 1.0 + (----------------) 784 * limit - setpoint 785 * 786 * it's a 3rd order polynomial that subjects to 787 * 788 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 789 * (2) f(setpoint) = 1.0 => the balance point 790 * (3) f(limit) = 0 => the hard limit 791 * (4) df/dx <= 0 => negative feedback control 792 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 793 * => fast response on large errors; small oscillation near setpoint 794 */ 795 static long long pos_ratio_polynom(unsigned long setpoint, 796 unsigned long dirty, 797 unsigned long limit) 798 { 799 long long pos_ratio; 800 long x; 801 802 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 803 (limit - setpoint) | 1); 804 pos_ratio = x; 805 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 806 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 807 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 808 809 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 810 } 811 812 /* 813 * Dirty position control. 814 * 815 * (o) global/bdi setpoints 816 * 817 * We want the dirty pages be balanced around the global/wb setpoints. 818 * When the number of dirty pages is higher/lower than the setpoint, the 819 * dirty position control ratio (and hence task dirty ratelimit) will be 820 * decreased/increased to bring the dirty pages back to the setpoint. 821 * 822 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 823 * 824 * if (dirty < setpoint) scale up pos_ratio 825 * if (dirty > setpoint) scale down pos_ratio 826 * 827 * if (wb_dirty < wb_setpoint) scale up pos_ratio 828 * if (wb_dirty > wb_setpoint) scale down pos_ratio 829 * 830 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 831 * 832 * (o) global control line 833 * 834 * ^ pos_ratio 835 * | 836 * | |<===== global dirty control scope ======>| 837 * 2.0 * * * * * * * 838 * | .* 839 * | . * 840 * | . * 841 * | . * 842 * | . * 843 * | . * 844 * 1.0 ................................* 845 * | . . * 846 * | . . * 847 * | . . * 848 * | . . * 849 * | . . * 850 * 0 +------------.------------------.----------------------*-------------> 851 * freerun^ setpoint^ limit^ dirty pages 852 * 853 * (o) wb control line 854 * 855 * ^ pos_ratio 856 * | 857 * | * 858 * | * 859 * | * 860 * | * 861 * | * |<=========== span ============>| 862 * 1.0 .......................* 863 * | . * 864 * | . * 865 * | . * 866 * | . * 867 * | . * 868 * | . * 869 * | . * 870 * | . * 871 * | . * 872 * | . * 873 * | . * 874 * 1/4 ...............................................* * * * * * * * * * * * 875 * | . . 876 * | . . 877 * | . . 878 * 0 +----------------------.-------------------------------.-------------> 879 * wb_setpoint^ x_intercept^ 880 * 881 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 882 * be smoothly throttled down to normal if it starts high in situations like 883 * - start writing to a slow SD card and a fast disk at the same time. The SD 884 * card's wb_dirty may rush to many times higher than wb_setpoint. 885 * - the wb dirty thresh drops quickly due to change of JBOD workload 886 */ 887 static void wb_position_ratio(struct dirty_throttle_control *dtc) 888 { 889 struct bdi_writeback *wb = dtc->wb; 890 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 891 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 892 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 893 unsigned long wb_thresh = dtc->wb_thresh; 894 unsigned long x_intercept; 895 unsigned long setpoint; /* dirty pages' target balance point */ 896 unsigned long wb_setpoint; 897 unsigned long span; 898 long long pos_ratio; /* for scaling up/down the rate limit */ 899 long x; 900 901 dtc->pos_ratio = 0; 902 903 if (unlikely(dtc->dirty >= limit)) 904 return; 905 906 /* 907 * global setpoint 908 * 909 * See comment for pos_ratio_polynom(). 910 */ 911 setpoint = (freerun + limit) / 2; 912 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 913 914 /* 915 * The strictlimit feature is a tool preventing mistrusted filesystems 916 * from growing a large number of dirty pages before throttling. For 917 * such filesystems balance_dirty_pages always checks wb counters 918 * against wb limits. Even if global "nr_dirty" is under "freerun". 919 * This is especially important for fuse which sets bdi->max_ratio to 920 * 1% by default. Without strictlimit feature, fuse writeback may 921 * consume arbitrary amount of RAM because it is accounted in 922 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 923 * 924 * Here, in wb_position_ratio(), we calculate pos_ratio based on 925 * two values: wb_dirty and wb_thresh. Let's consider an example: 926 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 927 * limits are set by default to 10% and 20% (background and throttle). 928 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 929 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 930 * about ~6K pages (as the average of background and throttle wb 931 * limits). The 3rd order polynomial will provide positive feedback if 932 * wb_dirty is under wb_setpoint and vice versa. 933 * 934 * Note, that we cannot use global counters in these calculations 935 * because we want to throttle process writing to a strictlimit wb 936 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 937 * in the example above). 938 */ 939 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 940 long long wb_pos_ratio; 941 942 if (dtc->wb_dirty < 8) { 943 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 944 2 << RATELIMIT_CALC_SHIFT); 945 return; 946 } 947 948 if (dtc->wb_dirty >= wb_thresh) 949 return; 950 951 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 952 dtc->wb_bg_thresh); 953 954 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 955 return; 956 957 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 958 wb_thresh); 959 960 /* 961 * Typically, for strictlimit case, wb_setpoint << setpoint 962 * and pos_ratio >> wb_pos_ratio. In the other words global 963 * state ("dirty") is not limiting factor and we have to 964 * make decision based on wb counters. But there is an 965 * important case when global pos_ratio should get precedence: 966 * global limits are exceeded (e.g. due to activities on other 967 * wb's) while given strictlimit wb is below limit. 968 * 969 * "pos_ratio * wb_pos_ratio" would work for the case above, 970 * but it would look too non-natural for the case of all 971 * activity in the system coming from a single strictlimit wb 972 * with bdi->max_ratio == 100%. 973 * 974 * Note that min() below somewhat changes the dynamics of the 975 * control system. Normally, pos_ratio value can be well over 3 976 * (when globally we are at freerun and wb is well below wb 977 * setpoint). Now the maximum pos_ratio in the same situation 978 * is 2. We might want to tweak this if we observe the control 979 * system is too slow to adapt. 980 */ 981 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 982 return; 983 } 984 985 /* 986 * We have computed basic pos_ratio above based on global situation. If 987 * the wb is over/under its share of dirty pages, we want to scale 988 * pos_ratio further down/up. That is done by the following mechanism. 989 */ 990 991 /* 992 * wb setpoint 993 * 994 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 995 * 996 * x_intercept - wb_dirty 997 * := -------------------------- 998 * x_intercept - wb_setpoint 999 * 1000 * The main wb control line is a linear function that subjects to 1001 * 1002 * (1) f(wb_setpoint) = 1.0 1003 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1004 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1005 * 1006 * For single wb case, the dirty pages are observed to fluctuate 1007 * regularly within range 1008 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1009 * for various filesystems, where (2) can yield in a reasonable 12.5% 1010 * fluctuation range for pos_ratio. 1011 * 1012 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1013 * own size, so move the slope over accordingly and choose a slope that 1014 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1015 */ 1016 if (unlikely(wb_thresh > dtc->thresh)) 1017 wb_thresh = dtc->thresh; 1018 /* 1019 * It's very possible that wb_thresh is close to 0 not because the 1020 * device is slow, but that it has remained inactive for long time. 1021 * Honour such devices a reasonable good (hopefully IO efficient) 1022 * threshold, so that the occasional writes won't be blocked and active 1023 * writes can rampup the threshold quickly. 1024 */ 1025 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1026 /* 1027 * scale global setpoint to wb's: 1028 * wb_setpoint = setpoint * wb_thresh / thresh 1029 */ 1030 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1031 wb_setpoint = setpoint * (u64)x >> 16; 1032 /* 1033 * Use span=(8*write_bw) in single wb case as indicated by 1034 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1035 * 1036 * wb_thresh thresh - wb_thresh 1037 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1038 * thresh thresh 1039 */ 1040 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1041 x_intercept = wb_setpoint + span; 1042 1043 if (dtc->wb_dirty < x_intercept - span / 4) { 1044 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1045 (x_intercept - wb_setpoint) | 1); 1046 } else 1047 pos_ratio /= 4; 1048 1049 /* 1050 * wb reserve area, safeguard against dirty pool underrun and disk idle 1051 * It may push the desired control point of global dirty pages higher 1052 * than setpoint. 1053 */ 1054 x_intercept = wb_thresh / 2; 1055 if (dtc->wb_dirty < x_intercept) { 1056 if (dtc->wb_dirty > x_intercept / 8) 1057 pos_ratio = div_u64(pos_ratio * x_intercept, 1058 dtc->wb_dirty); 1059 else 1060 pos_ratio *= 8; 1061 } 1062 1063 dtc->pos_ratio = pos_ratio; 1064 } 1065 1066 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1067 unsigned long elapsed, 1068 unsigned long written) 1069 { 1070 const unsigned long period = roundup_pow_of_two(3 * HZ); 1071 unsigned long avg = wb->avg_write_bandwidth; 1072 unsigned long old = wb->write_bandwidth; 1073 u64 bw; 1074 1075 /* 1076 * bw = written * HZ / elapsed 1077 * 1078 * bw * elapsed + write_bandwidth * (period - elapsed) 1079 * write_bandwidth = --------------------------------------------------- 1080 * period 1081 * 1082 * @written may have decreased due to folio_account_redirty(). 1083 * Avoid underflowing @bw calculation. 1084 */ 1085 bw = written - min(written, wb->written_stamp); 1086 bw *= HZ; 1087 if (unlikely(elapsed > period)) { 1088 bw = div64_ul(bw, elapsed); 1089 avg = bw; 1090 goto out; 1091 } 1092 bw += (u64)wb->write_bandwidth * (period - elapsed); 1093 bw >>= ilog2(period); 1094 1095 /* 1096 * one more level of smoothing, for filtering out sudden spikes 1097 */ 1098 if (avg > old && old >= (unsigned long)bw) 1099 avg -= (avg - old) >> 3; 1100 1101 if (avg < old && old <= (unsigned long)bw) 1102 avg += (old - avg) >> 3; 1103 1104 out: 1105 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1106 avg = max(avg, 1LU); 1107 if (wb_has_dirty_io(wb)) { 1108 long delta = avg - wb->avg_write_bandwidth; 1109 WARN_ON_ONCE(atomic_long_add_return(delta, 1110 &wb->bdi->tot_write_bandwidth) <= 0); 1111 } 1112 wb->write_bandwidth = bw; 1113 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1114 } 1115 1116 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1117 { 1118 struct wb_domain *dom = dtc_dom(dtc); 1119 unsigned long thresh = dtc->thresh; 1120 unsigned long limit = dom->dirty_limit; 1121 1122 /* 1123 * Follow up in one step. 1124 */ 1125 if (limit < thresh) { 1126 limit = thresh; 1127 goto update; 1128 } 1129 1130 /* 1131 * Follow down slowly. Use the higher one as the target, because thresh 1132 * may drop below dirty. This is exactly the reason to introduce 1133 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1134 */ 1135 thresh = max(thresh, dtc->dirty); 1136 if (limit > thresh) { 1137 limit -= (limit - thresh) >> 5; 1138 goto update; 1139 } 1140 return; 1141 update: 1142 dom->dirty_limit = limit; 1143 } 1144 1145 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1146 unsigned long now) 1147 { 1148 struct wb_domain *dom = dtc_dom(dtc); 1149 1150 /* 1151 * check locklessly first to optimize away locking for the most time 1152 */ 1153 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1154 return; 1155 1156 spin_lock(&dom->lock); 1157 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1158 update_dirty_limit(dtc); 1159 dom->dirty_limit_tstamp = now; 1160 } 1161 spin_unlock(&dom->lock); 1162 } 1163 1164 /* 1165 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1166 * 1167 * Normal wb tasks will be curbed at or below it in long term. 1168 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1169 */ 1170 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1171 unsigned long dirtied, 1172 unsigned long elapsed) 1173 { 1174 struct bdi_writeback *wb = dtc->wb; 1175 unsigned long dirty = dtc->dirty; 1176 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1177 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1178 unsigned long setpoint = (freerun + limit) / 2; 1179 unsigned long write_bw = wb->avg_write_bandwidth; 1180 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1181 unsigned long dirty_rate; 1182 unsigned long task_ratelimit; 1183 unsigned long balanced_dirty_ratelimit; 1184 unsigned long step; 1185 unsigned long x; 1186 unsigned long shift; 1187 1188 /* 1189 * The dirty rate will match the writeout rate in long term, except 1190 * when dirty pages are truncated by userspace or re-dirtied by FS. 1191 */ 1192 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1193 1194 /* 1195 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1196 */ 1197 task_ratelimit = (u64)dirty_ratelimit * 1198 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1199 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1200 1201 /* 1202 * A linear estimation of the "balanced" throttle rate. The theory is, 1203 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1204 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1205 * formula will yield the balanced rate limit (write_bw / N). 1206 * 1207 * Note that the expanded form is not a pure rate feedback: 1208 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1209 * but also takes pos_ratio into account: 1210 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1211 * 1212 * (1) is not realistic because pos_ratio also takes part in balancing 1213 * the dirty rate. Consider the state 1214 * pos_ratio = 0.5 (3) 1215 * rate = 2 * (write_bw / N) (4) 1216 * If (1) is used, it will stuck in that state! Because each dd will 1217 * be throttled at 1218 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1219 * yielding 1220 * dirty_rate = N * task_ratelimit = write_bw (6) 1221 * put (6) into (1) we get 1222 * rate_(i+1) = rate_(i) (7) 1223 * 1224 * So we end up using (2) to always keep 1225 * rate_(i+1) ~= (write_bw / N) (8) 1226 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1227 * pos_ratio is able to drive itself to 1.0, which is not only where 1228 * the dirty count meet the setpoint, but also where the slope of 1229 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1230 */ 1231 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1232 dirty_rate | 1); 1233 /* 1234 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1235 */ 1236 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1237 balanced_dirty_ratelimit = write_bw; 1238 1239 /* 1240 * We could safely do this and return immediately: 1241 * 1242 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1243 * 1244 * However to get a more stable dirty_ratelimit, the below elaborated 1245 * code makes use of task_ratelimit to filter out singular points and 1246 * limit the step size. 1247 * 1248 * The below code essentially only uses the relative value of 1249 * 1250 * task_ratelimit - dirty_ratelimit 1251 * = (pos_ratio - 1) * dirty_ratelimit 1252 * 1253 * which reflects the direction and size of dirty position error. 1254 */ 1255 1256 /* 1257 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1258 * task_ratelimit is on the same side of dirty_ratelimit, too. 1259 * For example, when 1260 * - dirty_ratelimit > balanced_dirty_ratelimit 1261 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1262 * lowering dirty_ratelimit will help meet both the position and rate 1263 * control targets. Otherwise, don't update dirty_ratelimit if it will 1264 * only help meet the rate target. After all, what the users ultimately 1265 * feel and care are stable dirty rate and small position error. 1266 * 1267 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1268 * and filter out the singular points of balanced_dirty_ratelimit. Which 1269 * keeps jumping around randomly and can even leap far away at times 1270 * due to the small 200ms estimation period of dirty_rate (we want to 1271 * keep that period small to reduce time lags). 1272 */ 1273 step = 0; 1274 1275 /* 1276 * For strictlimit case, calculations above were based on wb counters 1277 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1278 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1279 * Hence, to calculate "step" properly, we have to use wb_dirty as 1280 * "dirty" and wb_setpoint as "setpoint". 1281 * 1282 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1283 * it's possible that wb_thresh is close to zero due to inactivity 1284 * of backing device. 1285 */ 1286 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1287 dirty = dtc->wb_dirty; 1288 if (dtc->wb_dirty < 8) 1289 setpoint = dtc->wb_dirty + 1; 1290 else 1291 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1292 } 1293 1294 if (dirty < setpoint) { 1295 x = min3(wb->balanced_dirty_ratelimit, 1296 balanced_dirty_ratelimit, task_ratelimit); 1297 if (dirty_ratelimit < x) 1298 step = x - dirty_ratelimit; 1299 } else { 1300 x = max3(wb->balanced_dirty_ratelimit, 1301 balanced_dirty_ratelimit, task_ratelimit); 1302 if (dirty_ratelimit > x) 1303 step = dirty_ratelimit - x; 1304 } 1305 1306 /* 1307 * Don't pursue 100% rate matching. It's impossible since the balanced 1308 * rate itself is constantly fluctuating. So decrease the track speed 1309 * when it gets close to the target. Helps eliminate pointless tremors. 1310 */ 1311 shift = dirty_ratelimit / (2 * step + 1); 1312 if (shift < BITS_PER_LONG) 1313 step = DIV_ROUND_UP(step >> shift, 8); 1314 else 1315 step = 0; 1316 1317 if (dirty_ratelimit < balanced_dirty_ratelimit) 1318 dirty_ratelimit += step; 1319 else 1320 dirty_ratelimit -= step; 1321 1322 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1323 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1324 1325 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1326 } 1327 1328 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1329 struct dirty_throttle_control *mdtc, 1330 bool update_ratelimit) 1331 { 1332 struct bdi_writeback *wb = gdtc->wb; 1333 unsigned long now = jiffies; 1334 unsigned long elapsed; 1335 unsigned long dirtied; 1336 unsigned long written; 1337 1338 spin_lock(&wb->list_lock); 1339 1340 /* 1341 * Lockless checks for elapsed time are racy and delayed update after 1342 * IO completion doesn't do it at all (to make sure written pages are 1343 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1344 * division errors. 1345 */ 1346 elapsed = max(now - wb->bw_time_stamp, 1UL); 1347 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1348 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1349 1350 if (update_ratelimit) { 1351 domain_update_dirty_limit(gdtc, now); 1352 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1353 1354 /* 1355 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1356 * compiler has no way to figure that out. Help it. 1357 */ 1358 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1359 domain_update_dirty_limit(mdtc, now); 1360 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1361 } 1362 } 1363 wb_update_write_bandwidth(wb, elapsed, written); 1364 1365 wb->dirtied_stamp = dirtied; 1366 wb->written_stamp = written; 1367 WRITE_ONCE(wb->bw_time_stamp, now); 1368 spin_unlock(&wb->list_lock); 1369 } 1370 1371 void wb_update_bandwidth(struct bdi_writeback *wb) 1372 { 1373 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1374 1375 __wb_update_bandwidth(&gdtc, NULL, false); 1376 } 1377 1378 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1379 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1380 1381 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1382 { 1383 unsigned long now = jiffies; 1384 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1385 1386 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1387 !atomic_read(&wb->writeback_inodes)) { 1388 spin_lock(&wb->list_lock); 1389 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1390 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1391 WRITE_ONCE(wb->bw_time_stamp, now); 1392 spin_unlock(&wb->list_lock); 1393 } 1394 } 1395 1396 /* 1397 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1398 * will look to see if it needs to start dirty throttling. 1399 * 1400 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1401 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1402 * (the number of pages we may dirty without exceeding the dirty limits). 1403 */ 1404 static unsigned long dirty_poll_interval(unsigned long dirty, 1405 unsigned long thresh) 1406 { 1407 if (thresh > dirty) 1408 return 1UL << (ilog2(thresh - dirty) >> 1); 1409 1410 return 1; 1411 } 1412 1413 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1414 unsigned long wb_dirty) 1415 { 1416 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1417 unsigned long t; 1418 1419 /* 1420 * Limit pause time for small memory systems. If sleeping for too long 1421 * time, a small pool of dirty/writeback pages may go empty and disk go 1422 * idle. 1423 * 1424 * 8 serves as the safety ratio. 1425 */ 1426 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1427 t++; 1428 1429 return min_t(unsigned long, t, MAX_PAUSE); 1430 } 1431 1432 static long wb_min_pause(struct bdi_writeback *wb, 1433 long max_pause, 1434 unsigned long task_ratelimit, 1435 unsigned long dirty_ratelimit, 1436 int *nr_dirtied_pause) 1437 { 1438 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1439 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1440 long t; /* target pause */ 1441 long pause; /* estimated next pause */ 1442 int pages; /* target nr_dirtied_pause */ 1443 1444 /* target for 10ms pause on 1-dd case */ 1445 t = max(1, HZ / 100); 1446 1447 /* 1448 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1449 * overheads. 1450 * 1451 * (N * 10ms) on 2^N concurrent tasks. 1452 */ 1453 if (hi > lo) 1454 t += (hi - lo) * (10 * HZ) / 1024; 1455 1456 /* 1457 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1458 * on the much more stable dirty_ratelimit. However the next pause time 1459 * will be computed based on task_ratelimit and the two rate limits may 1460 * depart considerably at some time. Especially if task_ratelimit goes 1461 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1462 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1463 * result task_ratelimit won't be executed faithfully, which could 1464 * eventually bring down dirty_ratelimit. 1465 * 1466 * We apply two rules to fix it up: 1467 * 1) try to estimate the next pause time and if necessary, use a lower 1468 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1469 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1470 * 2) limit the target pause time to max_pause/2, so that the normal 1471 * small fluctuations of task_ratelimit won't trigger rule (1) and 1472 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1473 */ 1474 t = min(t, 1 + max_pause / 2); 1475 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1476 1477 /* 1478 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1479 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1480 * When the 16 consecutive reads are often interrupted by some dirty 1481 * throttling pause during the async writes, cfq will go into idles 1482 * (deadline is fine). So push nr_dirtied_pause as high as possible 1483 * until reaches DIRTY_POLL_THRESH=32 pages. 1484 */ 1485 if (pages < DIRTY_POLL_THRESH) { 1486 t = max_pause; 1487 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1488 if (pages > DIRTY_POLL_THRESH) { 1489 pages = DIRTY_POLL_THRESH; 1490 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1491 } 1492 } 1493 1494 pause = HZ * pages / (task_ratelimit + 1); 1495 if (pause > max_pause) { 1496 t = max_pause; 1497 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1498 } 1499 1500 *nr_dirtied_pause = pages; 1501 /* 1502 * The minimal pause time will normally be half the target pause time. 1503 */ 1504 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1505 } 1506 1507 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1508 { 1509 struct bdi_writeback *wb = dtc->wb; 1510 unsigned long wb_reclaimable; 1511 1512 /* 1513 * wb_thresh is not treated as some limiting factor as 1514 * dirty_thresh, due to reasons 1515 * - in JBOD setup, wb_thresh can fluctuate a lot 1516 * - in a system with HDD and USB key, the USB key may somehow 1517 * go into state (wb_dirty >> wb_thresh) either because 1518 * wb_dirty starts high, or because wb_thresh drops low. 1519 * In this case we don't want to hard throttle the USB key 1520 * dirtiers for 100 seconds until wb_dirty drops under 1521 * wb_thresh. Instead the auxiliary wb control line in 1522 * wb_position_ratio() will let the dirtier task progress 1523 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1524 */ 1525 dtc->wb_thresh = __wb_calc_thresh(dtc); 1526 dtc->wb_bg_thresh = dtc->thresh ? 1527 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1528 1529 /* 1530 * In order to avoid the stacked BDI deadlock we need 1531 * to ensure we accurately count the 'dirty' pages when 1532 * the threshold is low. 1533 * 1534 * Otherwise it would be possible to get thresh+n pages 1535 * reported dirty, even though there are thresh-m pages 1536 * actually dirty; with m+n sitting in the percpu 1537 * deltas. 1538 */ 1539 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1540 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1541 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1542 } else { 1543 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1544 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1545 } 1546 } 1547 1548 /* 1549 * balance_dirty_pages() must be called by processes which are generating dirty 1550 * data. It looks at the number of dirty pages in the machine and will force 1551 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1552 * If we're over `background_thresh' then the writeback threads are woken to 1553 * perform some writeout. 1554 */ 1555 static void balance_dirty_pages(struct bdi_writeback *wb, 1556 unsigned long pages_dirtied) 1557 { 1558 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1559 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1560 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1561 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1562 &mdtc_stor : NULL; 1563 struct dirty_throttle_control *sdtc; 1564 unsigned long nr_reclaimable; /* = file_dirty */ 1565 long period; 1566 long pause; 1567 long max_pause; 1568 long min_pause; 1569 int nr_dirtied_pause; 1570 bool dirty_exceeded = false; 1571 unsigned long task_ratelimit; 1572 unsigned long dirty_ratelimit; 1573 struct backing_dev_info *bdi = wb->bdi; 1574 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1575 unsigned long start_time = jiffies; 1576 1577 for (;;) { 1578 unsigned long now = jiffies; 1579 unsigned long dirty, thresh, bg_thresh; 1580 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1581 unsigned long m_thresh = 0; 1582 unsigned long m_bg_thresh = 0; 1583 1584 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1585 gdtc->avail = global_dirtyable_memory(); 1586 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1587 1588 domain_dirty_limits(gdtc); 1589 1590 if (unlikely(strictlimit)) { 1591 wb_dirty_limits(gdtc); 1592 1593 dirty = gdtc->wb_dirty; 1594 thresh = gdtc->wb_thresh; 1595 bg_thresh = gdtc->wb_bg_thresh; 1596 } else { 1597 dirty = gdtc->dirty; 1598 thresh = gdtc->thresh; 1599 bg_thresh = gdtc->bg_thresh; 1600 } 1601 1602 if (mdtc) { 1603 unsigned long filepages, headroom, writeback; 1604 1605 /* 1606 * If @wb belongs to !root memcg, repeat the same 1607 * basic calculations for the memcg domain. 1608 */ 1609 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1610 &mdtc->dirty, &writeback); 1611 mdtc->dirty += writeback; 1612 mdtc_calc_avail(mdtc, filepages, headroom); 1613 1614 domain_dirty_limits(mdtc); 1615 1616 if (unlikely(strictlimit)) { 1617 wb_dirty_limits(mdtc); 1618 m_dirty = mdtc->wb_dirty; 1619 m_thresh = mdtc->wb_thresh; 1620 m_bg_thresh = mdtc->wb_bg_thresh; 1621 } else { 1622 m_dirty = mdtc->dirty; 1623 m_thresh = mdtc->thresh; 1624 m_bg_thresh = mdtc->bg_thresh; 1625 } 1626 } 1627 1628 /* 1629 * Throttle it only when the background writeback cannot 1630 * catch-up. This avoids (excessively) small writeouts 1631 * when the wb limits are ramping up in case of !strictlimit. 1632 * 1633 * In strictlimit case make decision based on the wb counters 1634 * and limits. Small writeouts when the wb limits are ramping 1635 * up are the price we consciously pay for strictlimit-ing. 1636 * 1637 * If memcg domain is in effect, @dirty should be under 1638 * both global and memcg freerun ceilings. 1639 */ 1640 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1641 (!mdtc || 1642 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1643 unsigned long intv; 1644 unsigned long m_intv; 1645 1646 free_running: 1647 intv = dirty_poll_interval(dirty, thresh); 1648 m_intv = ULONG_MAX; 1649 1650 current->dirty_paused_when = now; 1651 current->nr_dirtied = 0; 1652 if (mdtc) 1653 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1654 current->nr_dirtied_pause = min(intv, m_intv); 1655 break; 1656 } 1657 1658 if (unlikely(!writeback_in_progress(wb))) 1659 wb_start_background_writeback(wb); 1660 1661 mem_cgroup_flush_foreign(wb); 1662 1663 /* 1664 * Calculate global domain's pos_ratio and select the 1665 * global dtc by default. 1666 */ 1667 if (!strictlimit) { 1668 wb_dirty_limits(gdtc); 1669 1670 if ((current->flags & PF_LOCAL_THROTTLE) && 1671 gdtc->wb_dirty < 1672 dirty_freerun_ceiling(gdtc->wb_thresh, 1673 gdtc->wb_bg_thresh)) 1674 /* 1675 * LOCAL_THROTTLE tasks must not be throttled 1676 * when below the per-wb freerun ceiling. 1677 */ 1678 goto free_running; 1679 } 1680 1681 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1682 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1683 1684 wb_position_ratio(gdtc); 1685 sdtc = gdtc; 1686 1687 if (mdtc) { 1688 /* 1689 * If memcg domain is in effect, calculate its 1690 * pos_ratio. @wb should satisfy constraints from 1691 * both global and memcg domains. Choose the one 1692 * w/ lower pos_ratio. 1693 */ 1694 if (!strictlimit) { 1695 wb_dirty_limits(mdtc); 1696 1697 if ((current->flags & PF_LOCAL_THROTTLE) && 1698 mdtc->wb_dirty < 1699 dirty_freerun_ceiling(mdtc->wb_thresh, 1700 mdtc->wb_bg_thresh)) 1701 /* 1702 * LOCAL_THROTTLE tasks must not be 1703 * throttled when below the per-wb 1704 * freerun ceiling. 1705 */ 1706 goto free_running; 1707 } 1708 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1709 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1710 1711 wb_position_ratio(mdtc); 1712 if (mdtc->pos_ratio < gdtc->pos_ratio) 1713 sdtc = mdtc; 1714 } 1715 1716 if (dirty_exceeded && !wb->dirty_exceeded) 1717 wb->dirty_exceeded = 1; 1718 1719 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1720 BANDWIDTH_INTERVAL)) 1721 __wb_update_bandwidth(gdtc, mdtc, true); 1722 1723 /* throttle according to the chosen dtc */ 1724 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1725 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1726 RATELIMIT_CALC_SHIFT; 1727 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1728 min_pause = wb_min_pause(wb, max_pause, 1729 task_ratelimit, dirty_ratelimit, 1730 &nr_dirtied_pause); 1731 1732 if (unlikely(task_ratelimit == 0)) { 1733 period = max_pause; 1734 pause = max_pause; 1735 goto pause; 1736 } 1737 period = HZ * pages_dirtied / task_ratelimit; 1738 pause = period; 1739 if (current->dirty_paused_when) 1740 pause -= now - current->dirty_paused_when; 1741 /* 1742 * For less than 1s think time (ext3/4 may block the dirtier 1743 * for up to 800ms from time to time on 1-HDD; so does xfs, 1744 * however at much less frequency), try to compensate it in 1745 * future periods by updating the virtual time; otherwise just 1746 * do a reset, as it may be a light dirtier. 1747 */ 1748 if (pause < min_pause) { 1749 trace_balance_dirty_pages(wb, 1750 sdtc->thresh, 1751 sdtc->bg_thresh, 1752 sdtc->dirty, 1753 sdtc->wb_thresh, 1754 sdtc->wb_dirty, 1755 dirty_ratelimit, 1756 task_ratelimit, 1757 pages_dirtied, 1758 period, 1759 min(pause, 0L), 1760 start_time); 1761 if (pause < -HZ) { 1762 current->dirty_paused_when = now; 1763 current->nr_dirtied = 0; 1764 } else if (period) { 1765 current->dirty_paused_when += period; 1766 current->nr_dirtied = 0; 1767 } else if (current->nr_dirtied_pause <= pages_dirtied) 1768 current->nr_dirtied_pause += pages_dirtied; 1769 break; 1770 } 1771 if (unlikely(pause > max_pause)) { 1772 /* for occasional dropped task_ratelimit */ 1773 now += min(pause - max_pause, max_pause); 1774 pause = max_pause; 1775 } 1776 1777 pause: 1778 trace_balance_dirty_pages(wb, 1779 sdtc->thresh, 1780 sdtc->bg_thresh, 1781 sdtc->dirty, 1782 sdtc->wb_thresh, 1783 sdtc->wb_dirty, 1784 dirty_ratelimit, 1785 task_ratelimit, 1786 pages_dirtied, 1787 period, 1788 pause, 1789 start_time); 1790 __set_current_state(TASK_KILLABLE); 1791 wb->dirty_sleep = now; 1792 io_schedule_timeout(pause); 1793 1794 current->dirty_paused_when = now + pause; 1795 current->nr_dirtied = 0; 1796 current->nr_dirtied_pause = nr_dirtied_pause; 1797 1798 /* 1799 * This is typically equal to (dirty < thresh) and can also 1800 * keep "1000+ dd on a slow USB stick" under control. 1801 */ 1802 if (task_ratelimit) 1803 break; 1804 1805 /* 1806 * In the case of an unresponsive NFS server and the NFS dirty 1807 * pages exceeds dirty_thresh, give the other good wb's a pipe 1808 * to go through, so that tasks on them still remain responsive. 1809 * 1810 * In theory 1 page is enough to keep the consumer-producer 1811 * pipe going: the flusher cleans 1 page => the task dirties 1 1812 * more page. However wb_dirty has accounting errors. So use 1813 * the larger and more IO friendly wb_stat_error. 1814 */ 1815 if (sdtc->wb_dirty <= wb_stat_error()) 1816 break; 1817 1818 if (fatal_signal_pending(current)) 1819 break; 1820 } 1821 1822 if (!dirty_exceeded && wb->dirty_exceeded) 1823 wb->dirty_exceeded = 0; 1824 1825 if (writeback_in_progress(wb)) 1826 return; 1827 1828 /* 1829 * In laptop mode, we wait until hitting the higher threshold before 1830 * starting background writeout, and then write out all the way down 1831 * to the lower threshold. So slow writers cause minimal disk activity. 1832 * 1833 * In normal mode, we start background writeout at the lower 1834 * background_thresh, to keep the amount of dirty memory low. 1835 */ 1836 if (laptop_mode) 1837 return; 1838 1839 if (nr_reclaimable > gdtc->bg_thresh) 1840 wb_start_background_writeback(wb); 1841 } 1842 1843 static DEFINE_PER_CPU(int, bdp_ratelimits); 1844 1845 /* 1846 * Normal tasks are throttled by 1847 * loop { 1848 * dirty tsk->nr_dirtied_pause pages; 1849 * take a snap in balance_dirty_pages(); 1850 * } 1851 * However there is a worst case. If every task exit immediately when dirtied 1852 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1853 * called to throttle the page dirties. The solution is to save the not yet 1854 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1855 * randomly into the running tasks. This works well for the above worst case, 1856 * as the new task will pick up and accumulate the old task's leaked dirty 1857 * count and eventually get throttled. 1858 */ 1859 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1860 1861 /** 1862 * balance_dirty_pages_ratelimited - balance dirty memory state 1863 * @mapping: address_space which was dirtied 1864 * 1865 * Processes which are dirtying memory should call in here once for each page 1866 * which was newly dirtied. The function will periodically check the system's 1867 * dirty state and will initiate writeback if needed. 1868 * 1869 * Once we're over the dirty memory limit we decrease the ratelimiting 1870 * by a lot, to prevent individual processes from overshooting the limit 1871 * by (ratelimit_pages) each. 1872 */ 1873 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1874 { 1875 struct inode *inode = mapping->host; 1876 struct backing_dev_info *bdi = inode_to_bdi(inode); 1877 struct bdi_writeback *wb = NULL; 1878 int ratelimit; 1879 int *p; 1880 1881 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 1882 return; 1883 1884 if (inode_cgwb_enabled(inode)) 1885 wb = wb_get_create_current(bdi, GFP_KERNEL); 1886 if (!wb) 1887 wb = &bdi->wb; 1888 1889 ratelimit = current->nr_dirtied_pause; 1890 if (wb->dirty_exceeded) 1891 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1892 1893 preempt_disable(); 1894 /* 1895 * This prevents one CPU to accumulate too many dirtied pages without 1896 * calling into balance_dirty_pages(), which can happen when there are 1897 * 1000+ tasks, all of them start dirtying pages at exactly the same 1898 * time, hence all honoured too large initial task->nr_dirtied_pause. 1899 */ 1900 p = this_cpu_ptr(&bdp_ratelimits); 1901 if (unlikely(current->nr_dirtied >= ratelimit)) 1902 *p = 0; 1903 else if (unlikely(*p >= ratelimit_pages)) { 1904 *p = 0; 1905 ratelimit = 0; 1906 } 1907 /* 1908 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1909 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1910 * the dirty throttling and livelock other long-run dirtiers. 1911 */ 1912 p = this_cpu_ptr(&dirty_throttle_leaks); 1913 if (*p > 0 && current->nr_dirtied < ratelimit) { 1914 unsigned long nr_pages_dirtied; 1915 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1916 *p -= nr_pages_dirtied; 1917 current->nr_dirtied += nr_pages_dirtied; 1918 } 1919 preempt_enable(); 1920 1921 if (unlikely(current->nr_dirtied >= ratelimit)) 1922 balance_dirty_pages(wb, current->nr_dirtied); 1923 1924 wb_put(wb); 1925 } 1926 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1927 1928 /** 1929 * wb_over_bg_thresh - does @wb need to be written back? 1930 * @wb: bdi_writeback of interest 1931 * 1932 * Determines whether background writeback should keep writing @wb or it's 1933 * clean enough. 1934 * 1935 * Return: %true if writeback should continue. 1936 */ 1937 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1938 { 1939 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1940 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1941 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1942 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1943 &mdtc_stor : NULL; 1944 unsigned long reclaimable; 1945 unsigned long thresh; 1946 1947 /* 1948 * Similar to balance_dirty_pages() but ignores pages being written 1949 * as we're trying to decide whether to put more under writeback. 1950 */ 1951 gdtc->avail = global_dirtyable_memory(); 1952 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 1953 domain_dirty_limits(gdtc); 1954 1955 if (gdtc->dirty > gdtc->bg_thresh) 1956 return true; 1957 1958 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 1959 if (thresh < 2 * wb_stat_error()) 1960 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1961 else 1962 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1963 1964 if (reclaimable > thresh) 1965 return true; 1966 1967 if (mdtc) { 1968 unsigned long filepages, headroom, writeback; 1969 1970 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1971 &writeback); 1972 mdtc_calc_avail(mdtc, filepages, headroom); 1973 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1974 1975 if (mdtc->dirty > mdtc->bg_thresh) 1976 return true; 1977 1978 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 1979 if (thresh < 2 * wb_stat_error()) 1980 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1981 else 1982 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1983 1984 if (reclaimable > thresh) 1985 return true; 1986 } 1987 1988 return false; 1989 } 1990 1991 /* 1992 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1993 */ 1994 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1995 void *buffer, size_t *length, loff_t *ppos) 1996 { 1997 unsigned int old_interval = dirty_writeback_interval; 1998 int ret; 1999 2000 ret = proc_dointvec(table, write, buffer, length, ppos); 2001 2002 /* 2003 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2004 * and a different non-zero value will wakeup the writeback threads. 2005 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2006 * iterate over all bdis and wbs. 2007 * The reason we do this is to make the change take effect immediately. 2008 */ 2009 if (!ret && write && dirty_writeback_interval && 2010 dirty_writeback_interval != old_interval) 2011 wakeup_flusher_threads(WB_REASON_PERIODIC); 2012 2013 return ret; 2014 } 2015 2016 void laptop_mode_timer_fn(struct timer_list *t) 2017 { 2018 struct backing_dev_info *backing_dev_info = 2019 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2020 2021 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2022 } 2023 2024 /* 2025 * We've spun up the disk and we're in laptop mode: schedule writeback 2026 * of all dirty data a few seconds from now. If the flush is already scheduled 2027 * then push it back - the user is still using the disk. 2028 */ 2029 void laptop_io_completion(struct backing_dev_info *info) 2030 { 2031 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2032 } 2033 2034 /* 2035 * We're in laptop mode and we've just synced. The sync's writes will have 2036 * caused another writeback to be scheduled by laptop_io_completion. 2037 * Nothing needs to be written back anymore, so we unschedule the writeback. 2038 */ 2039 void laptop_sync_completion(void) 2040 { 2041 struct backing_dev_info *bdi; 2042 2043 rcu_read_lock(); 2044 2045 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2046 del_timer(&bdi->laptop_mode_wb_timer); 2047 2048 rcu_read_unlock(); 2049 } 2050 2051 /* 2052 * If ratelimit_pages is too high then we can get into dirty-data overload 2053 * if a large number of processes all perform writes at the same time. 2054 * 2055 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2056 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2057 * thresholds. 2058 */ 2059 2060 void writeback_set_ratelimit(void) 2061 { 2062 struct wb_domain *dom = &global_wb_domain; 2063 unsigned long background_thresh; 2064 unsigned long dirty_thresh; 2065 2066 global_dirty_limits(&background_thresh, &dirty_thresh); 2067 dom->dirty_limit = dirty_thresh; 2068 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2069 if (ratelimit_pages < 16) 2070 ratelimit_pages = 16; 2071 } 2072 2073 static int page_writeback_cpu_online(unsigned int cpu) 2074 { 2075 writeback_set_ratelimit(); 2076 return 0; 2077 } 2078 2079 /* 2080 * Called early on to tune the page writeback dirty limits. 2081 * 2082 * We used to scale dirty pages according to how total memory 2083 * related to pages that could be allocated for buffers. 2084 * 2085 * However, that was when we used "dirty_ratio" to scale with 2086 * all memory, and we don't do that any more. "dirty_ratio" 2087 * is now applied to total non-HIGHPAGE memory, and as such we can't 2088 * get into the old insane situation any more where we had 2089 * large amounts of dirty pages compared to a small amount of 2090 * non-HIGHMEM memory. 2091 * 2092 * But we might still want to scale the dirty_ratio by how 2093 * much memory the box has.. 2094 */ 2095 void __init page_writeback_init(void) 2096 { 2097 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2098 2099 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2100 page_writeback_cpu_online, NULL); 2101 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2102 page_writeback_cpu_online); 2103 } 2104 2105 /** 2106 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2107 * @mapping: address space structure to write 2108 * @start: starting page index 2109 * @end: ending page index (inclusive) 2110 * 2111 * This function scans the page range from @start to @end (inclusive) and tags 2112 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2113 * that write_cache_pages (or whoever calls this function) will then use 2114 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2115 * used to avoid livelocking of writeback by a process steadily creating new 2116 * dirty pages in the file (thus it is important for this function to be quick 2117 * so that it can tag pages faster than a dirtying process can create them). 2118 */ 2119 void tag_pages_for_writeback(struct address_space *mapping, 2120 pgoff_t start, pgoff_t end) 2121 { 2122 XA_STATE(xas, &mapping->i_pages, start); 2123 unsigned int tagged = 0; 2124 void *page; 2125 2126 xas_lock_irq(&xas); 2127 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2128 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2129 if (++tagged % XA_CHECK_SCHED) 2130 continue; 2131 2132 xas_pause(&xas); 2133 xas_unlock_irq(&xas); 2134 cond_resched(); 2135 xas_lock_irq(&xas); 2136 } 2137 xas_unlock_irq(&xas); 2138 } 2139 EXPORT_SYMBOL(tag_pages_for_writeback); 2140 2141 /** 2142 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2143 * @mapping: address space structure to write 2144 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2145 * @writepage: function called for each page 2146 * @data: data passed to writepage function 2147 * 2148 * If a page is already under I/O, write_cache_pages() skips it, even 2149 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2150 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2151 * and msync() need to guarantee that all the data which was dirty at the time 2152 * the call was made get new I/O started against them. If wbc->sync_mode is 2153 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2154 * existing IO to complete. 2155 * 2156 * To avoid livelocks (when other process dirties new pages), we first tag 2157 * pages which should be written back with TOWRITE tag and only then start 2158 * writing them. For data-integrity sync we have to be careful so that we do 2159 * not miss some pages (e.g., because some other process has cleared TOWRITE 2160 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2161 * by the process clearing the DIRTY tag (and submitting the page for IO). 2162 * 2163 * To avoid deadlocks between range_cyclic writeback and callers that hold 2164 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2165 * we do not loop back to the start of the file. Doing so causes a page 2166 * lock/page writeback access order inversion - we should only ever lock 2167 * multiple pages in ascending page->index order, and looping back to the start 2168 * of the file violates that rule and causes deadlocks. 2169 * 2170 * Return: %0 on success, negative error code otherwise 2171 */ 2172 int write_cache_pages(struct address_space *mapping, 2173 struct writeback_control *wbc, writepage_t writepage, 2174 void *data) 2175 { 2176 int ret = 0; 2177 int done = 0; 2178 int error; 2179 struct pagevec pvec; 2180 int nr_pages; 2181 pgoff_t index; 2182 pgoff_t end; /* Inclusive */ 2183 pgoff_t done_index; 2184 int range_whole = 0; 2185 xa_mark_t tag; 2186 2187 pagevec_init(&pvec); 2188 if (wbc->range_cyclic) { 2189 index = mapping->writeback_index; /* prev offset */ 2190 end = -1; 2191 } else { 2192 index = wbc->range_start >> PAGE_SHIFT; 2193 end = wbc->range_end >> PAGE_SHIFT; 2194 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2195 range_whole = 1; 2196 } 2197 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2198 tag_pages_for_writeback(mapping, index, end); 2199 tag = PAGECACHE_TAG_TOWRITE; 2200 } else { 2201 tag = PAGECACHE_TAG_DIRTY; 2202 } 2203 done_index = index; 2204 while (!done && (index <= end)) { 2205 int i; 2206 2207 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2208 tag); 2209 if (nr_pages == 0) 2210 break; 2211 2212 for (i = 0; i < nr_pages; i++) { 2213 struct page *page = pvec.pages[i]; 2214 2215 done_index = page->index; 2216 2217 lock_page(page); 2218 2219 /* 2220 * Page truncated or invalidated. We can freely skip it 2221 * then, even for data integrity operations: the page 2222 * has disappeared concurrently, so there could be no 2223 * real expectation of this data integrity operation 2224 * even if there is now a new, dirty page at the same 2225 * pagecache address. 2226 */ 2227 if (unlikely(page->mapping != mapping)) { 2228 continue_unlock: 2229 unlock_page(page); 2230 continue; 2231 } 2232 2233 if (!PageDirty(page)) { 2234 /* someone wrote it for us */ 2235 goto continue_unlock; 2236 } 2237 2238 if (PageWriteback(page)) { 2239 if (wbc->sync_mode != WB_SYNC_NONE) 2240 wait_on_page_writeback(page); 2241 else 2242 goto continue_unlock; 2243 } 2244 2245 BUG_ON(PageWriteback(page)); 2246 if (!clear_page_dirty_for_io(page)) 2247 goto continue_unlock; 2248 2249 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2250 error = (*writepage)(page, wbc, data); 2251 if (unlikely(error)) { 2252 /* 2253 * Handle errors according to the type of 2254 * writeback. There's no need to continue for 2255 * background writeback. Just push done_index 2256 * past this page so media errors won't choke 2257 * writeout for the entire file. For integrity 2258 * writeback, we must process the entire dirty 2259 * set regardless of errors because the fs may 2260 * still have state to clear for each page. In 2261 * that case we continue processing and return 2262 * the first error. 2263 */ 2264 if (error == AOP_WRITEPAGE_ACTIVATE) { 2265 unlock_page(page); 2266 error = 0; 2267 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2268 ret = error; 2269 done_index = page->index + 1; 2270 done = 1; 2271 break; 2272 } 2273 if (!ret) 2274 ret = error; 2275 } 2276 2277 /* 2278 * We stop writing back only if we are not doing 2279 * integrity sync. In case of integrity sync we have to 2280 * keep going until we have written all the pages 2281 * we tagged for writeback prior to entering this loop. 2282 */ 2283 if (--wbc->nr_to_write <= 0 && 2284 wbc->sync_mode == WB_SYNC_NONE) { 2285 done = 1; 2286 break; 2287 } 2288 } 2289 pagevec_release(&pvec); 2290 cond_resched(); 2291 } 2292 2293 /* 2294 * If we hit the last page and there is more work to be done: wrap 2295 * back the index back to the start of the file for the next 2296 * time we are called. 2297 */ 2298 if (wbc->range_cyclic && !done) 2299 done_index = 0; 2300 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2301 mapping->writeback_index = done_index; 2302 2303 return ret; 2304 } 2305 EXPORT_SYMBOL(write_cache_pages); 2306 2307 /* 2308 * Function used by generic_writepages to call the real writepage 2309 * function and set the mapping flags on error 2310 */ 2311 static int __writepage(struct page *page, struct writeback_control *wbc, 2312 void *data) 2313 { 2314 struct address_space *mapping = data; 2315 int ret = mapping->a_ops->writepage(page, wbc); 2316 mapping_set_error(mapping, ret); 2317 return ret; 2318 } 2319 2320 /** 2321 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2322 * @mapping: address space structure to write 2323 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2324 * 2325 * This is a library function, which implements the writepages() 2326 * address_space_operation. 2327 * 2328 * Return: %0 on success, negative error code otherwise 2329 */ 2330 int generic_writepages(struct address_space *mapping, 2331 struct writeback_control *wbc) 2332 { 2333 struct blk_plug plug; 2334 int ret; 2335 2336 /* deal with chardevs and other special file */ 2337 if (!mapping->a_ops->writepage) 2338 return 0; 2339 2340 blk_start_plug(&plug); 2341 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2342 blk_finish_plug(&plug); 2343 return ret; 2344 } 2345 2346 EXPORT_SYMBOL(generic_writepages); 2347 2348 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2349 { 2350 int ret; 2351 struct bdi_writeback *wb; 2352 2353 if (wbc->nr_to_write <= 0) 2354 return 0; 2355 wb = inode_to_wb_wbc(mapping->host, wbc); 2356 wb_bandwidth_estimate_start(wb); 2357 while (1) { 2358 if (mapping->a_ops->writepages) 2359 ret = mapping->a_ops->writepages(mapping, wbc); 2360 else 2361 ret = generic_writepages(mapping, wbc); 2362 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2363 break; 2364 2365 /* 2366 * Lacking an allocation context or the locality or writeback 2367 * state of any of the inode's pages, throttle based on 2368 * writeback activity on the local node. It's as good a 2369 * guess as any. 2370 */ 2371 reclaim_throttle(NODE_DATA(numa_node_id()), 2372 VMSCAN_THROTTLE_WRITEBACK); 2373 } 2374 /* 2375 * Usually few pages are written by now from those we've just submitted 2376 * but if there's constant writeback being submitted, this makes sure 2377 * writeback bandwidth is updated once in a while. 2378 */ 2379 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2380 BANDWIDTH_INTERVAL)) 2381 wb_update_bandwidth(wb); 2382 return ret; 2383 } 2384 2385 /** 2386 * folio_write_one - write out a single folio and wait on I/O. 2387 * @folio: The folio to write. 2388 * 2389 * The folio must be locked by the caller and will be unlocked upon return. 2390 * 2391 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2392 * function returns. 2393 * 2394 * Return: %0 on success, negative error code otherwise 2395 */ 2396 int folio_write_one(struct folio *folio) 2397 { 2398 struct address_space *mapping = folio->mapping; 2399 int ret = 0; 2400 struct writeback_control wbc = { 2401 .sync_mode = WB_SYNC_ALL, 2402 .nr_to_write = folio_nr_pages(folio), 2403 }; 2404 2405 BUG_ON(!folio_test_locked(folio)); 2406 2407 folio_wait_writeback(folio); 2408 2409 if (folio_clear_dirty_for_io(folio)) { 2410 folio_get(folio); 2411 ret = mapping->a_ops->writepage(&folio->page, &wbc); 2412 if (ret == 0) 2413 folio_wait_writeback(folio); 2414 folio_put(folio); 2415 } else { 2416 folio_unlock(folio); 2417 } 2418 2419 if (!ret) 2420 ret = filemap_check_errors(mapping); 2421 return ret; 2422 } 2423 EXPORT_SYMBOL(folio_write_one); 2424 2425 /* 2426 * For address_spaces which do not use buffers nor write back. 2427 */ 2428 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2429 { 2430 if (!folio_test_dirty(folio)) 2431 return !folio_test_set_dirty(folio); 2432 return false; 2433 } 2434 EXPORT_SYMBOL(noop_dirty_folio); 2435 2436 /* 2437 * Helper function for set_page_dirty family. 2438 * 2439 * Caller must hold lock_page_memcg(). 2440 * 2441 * NOTE: This relies on being atomic wrt interrupts. 2442 */ 2443 static void folio_account_dirtied(struct folio *folio, 2444 struct address_space *mapping) 2445 { 2446 struct inode *inode = mapping->host; 2447 2448 trace_writeback_dirty_folio(folio, mapping); 2449 2450 if (mapping_can_writeback(mapping)) { 2451 struct bdi_writeback *wb; 2452 long nr = folio_nr_pages(folio); 2453 2454 inode_attach_wb(inode, &folio->page); 2455 wb = inode_to_wb(inode); 2456 2457 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2458 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2459 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2460 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2461 wb_stat_mod(wb, WB_DIRTIED, nr); 2462 task_io_account_write(nr * PAGE_SIZE); 2463 current->nr_dirtied += nr; 2464 __this_cpu_add(bdp_ratelimits, nr); 2465 2466 mem_cgroup_track_foreign_dirty(folio, wb); 2467 } 2468 } 2469 2470 /* 2471 * Helper function for deaccounting dirty page without writeback. 2472 * 2473 * Caller must hold lock_page_memcg(). 2474 */ 2475 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2476 { 2477 long nr = folio_nr_pages(folio); 2478 2479 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2480 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2481 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2482 task_io_account_cancelled_write(nr * PAGE_SIZE); 2483 } 2484 2485 /* 2486 * Mark the folio dirty, and set it dirty in the page cache, and mark 2487 * the inode dirty. 2488 * 2489 * If warn is true, then emit a warning if the folio is not uptodate and has 2490 * not been truncated. 2491 * 2492 * The caller must hold lock_page_memcg(). Most callers have the folio 2493 * locked. A few have the folio blocked from truncation through other 2494 * means (eg zap_page_range() has it mapped and is holding the page table 2495 * lock). This can also be called from mark_buffer_dirty(), which I 2496 * cannot prove is always protected against truncate. 2497 */ 2498 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2499 int warn) 2500 { 2501 unsigned long flags; 2502 2503 xa_lock_irqsave(&mapping->i_pages, flags); 2504 if (folio->mapping) { /* Race with truncate? */ 2505 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2506 folio_account_dirtied(folio, mapping); 2507 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2508 PAGECACHE_TAG_DIRTY); 2509 } 2510 xa_unlock_irqrestore(&mapping->i_pages, flags); 2511 } 2512 2513 /** 2514 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2515 * @mapping: Address space this folio belongs to. 2516 * @folio: Folio to be marked as dirty. 2517 * 2518 * Filesystems which do not use buffer heads should call this function 2519 * from their set_page_dirty address space operation. It ignores the 2520 * contents of folio_get_private(), so if the filesystem marks individual 2521 * blocks as dirty, the filesystem should handle that itself. 2522 * 2523 * This is also sometimes used by filesystems which use buffer_heads when 2524 * a single buffer is being dirtied: we want to set the folio dirty in 2525 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2526 * whereas block_dirty_folio() is a "top-down" dirtying. 2527 * 2528 * The caller must ensure this doesn't race with truncation. Most will 2529 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2530 * folio mapped and the pte lock held, which also locks out truncation. 2531 */ 2532 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2533 { 2534 folio_memcg_lock(folio); 2535 if (folio_test_set_dirty(folio)) { 2536 folio_memcg_unlock(folio); 2537 return false; 2538 } 2539 2540 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2541 folio_memcg_unlock(folio); 2542 2543 if (mapping->host) { 2544 /* !PageAnon && !swapper_space */ 2545 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2546 } 2547 return true; 2548 } 2549 EXPORT_SYMBOL(filemap_dirty_folio); 2550 2551 /** 2552 * folio_account_redirty - Manually account for redirtying a page. 2553 * @folio: The folio which is being redirtied. 2554 * 2555 * Most filesystems should call folio_redirty_for_writepage() instead 2556 * of this fuction. If your filesystem is doing writeback outside the 2557 * context of a writeback_control(), it can call this when redirtying 2558 * a folio, to de-account the dirty counters (NR_DIRTIED, WB_DIRTIED, 2559 * tsk->nr_dirtied), so that they match the written counters (NR_WRITTEN, 2560 * WB_WRITTEN) in long term. The mismatches will lead to systematic errors 2561 * in balanced_dirty_ratelimit and the dirty pages position control. 2562 */ 2563 void folio_account_redirty(struct folio *folio) 2564 { 2565 struct address_space *mapping = folio->mapping; 2566 2567 if (mapping && mapping_can_writeback(mapping)) { 2568 struct inode *inode = mapping->host; 2569 struct bdi_writeback *wb; 2570 struct wb_lock_cookie cookie = {}; 2571 long nr = folio_nr_pages(folio); 2572 2573 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2574 current->nr_dirtied -= nr; 2575 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2576 wb_stat_mod(wb, WB_DIRTIED, -nr); 2577 unlocked_inode_to_wb_end(inode, &cookie); 2578 } 2579 } 2580 EXPORT_SYMBOL(folio_account_redirty); 2581 2582 /** 2583 * folio_redirty_for_writepage - Decline to write a dirty folio. 2584 * @wbc: The writeback control. 2585 * @folio: The folio. 2586 * 2587 * When a writepage implementation decides that it doesn't want to write 2588 * @folio for some reason, it should call this function, unlock @folio and 2589 * return 0. 2590 * 2591 * Return: True if we redirtied the folio. False if someone else dirtied 2592 * it first. 2593 */ 2594 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2595 struct folio *folio) 2596 { 2597 bool ret; 2598 long nr = folio_nr_pages(folio); 2599 2600 wbc->pages_skipped += nr; 2601 ret = filemap_dirty_folio(folio->mapping, folio); 2602 folio_account_redirty(folio); 2603 2604 return ret; 2605 } 2606 EXPORT_SYMBOL(folio_redirty_for_writepage); 2607 2608 /** 2609 * folio_mark_dirty - Mark a folio as being modified. 2610 * @folio: The folio. 2611 * 2612 * For folios with a mapping this should be done with the folio lock held 2613 * for the benefit of asynchronous memory errors who prefer a consistent 2614 * dirty state. This rule can be broken in some special cases, 2615 * but should be better not to. 2616 * 2617 * Return: True if the folio was newly dirtied, false if it was already dirty. 2618 */ 2619 bool folio_mark_dirty(struct folio *folio) 2620 { 2621 struct address_space *mapping = folio_mapping(folio); 2622 2623 if (likely(mapping)) { 2624 /* 2625 * readahead/lru_deactivate_page could remain 2626 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2627 * About readahead, if the folio is written, the flags would be 2628 * reset. So no problem. 2629 * About lru_deactivate_page, if the folio is redirtied, 2630 * the flag will be reset. So no problem. but if the 2631 * folio is used by readahead it will confuse readahead 2632 * and make it restart the size rampup process. But it's 2633 * a trivial problem. 2634 */ 2635 if (folio_test_reclaim(folio)) 2636 folio_clear_reclaim(folio); 2637 return mapping->a_ops->dirty_folio(mapping, folio); 2638 } 2639 2640 return noop_dirty_folio(mapping, folio); 2641 } 2642 EXPORT_SYMBOL(folio_mark_dirty); 2643 2644 /* 2645 * set_page_dirty() is racy if the caller has no reference against 2646 * page->mapping->host, and if the page is unlocked. This is because another 2647 * CPU could truncate the page off the mapping and then free the mapping. 2648 * 2649 * Usually, the page _is_ locked, or the caller is a user-space process which 2650 * holds a reference on the inode by having an open file. 2651 * 2652 * In other cases, the page should be locked before running set_page_dirty(). 2653 */ 2654 int set_page_dirty_lock(struct page *page) 2655 { 2656 int ret; 2657 2658 lock_page(page); 2659 ret = set_page_dirty(page); 2660 unlock_page(page); 2661 return ret; 2662 } 2663 EXPORT_SYMBOL(set_page_dirty_lock); 2664 2665 /* 2666 * This cancels just the dirty bit on the kernel page itself, it does NOT 2667 * actually remove dirty bits on any mmap's that may be around. It also 2668 * leaves the page tagged dirty, so any sync activity will still find it on 2669 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2670 * look at the dirty bits in the VM. 2671 * 2672 * Doing this should *normally* only ever be done when a page is truncated, 2673 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2674 * this when it notices that somebody has cleaned out all the buffers on a 2675 * page without actually doing it through the VM. Can you say "ext3 is 2676 * horribly ugly"? Thought you could. 2677 */ 2678 void __folio_cancel_dirty(struct folio *folio) 2679 { 2680 struct address_space *mapping = folio_mapping(folio); 2681 2682 if (mapping_can_writeback(mapping)) { 2683 struct inode *inode = mapping->host; 2684 struct bdi_writeback *wb; 2685 struct wb_lock_cookie cookie = {}; 2686 2687 folio_memcg_lock(folio); 2688 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2689 2690 if (folio_test_clear_dirty(folio)) 2691 folio_account_cleaned(folio, wb); 2692 2693 unlocked_inode_to_wb_end(inode, &cookie); 2694 folio_memcg_unlock(folio); 2695 } else { 2696 folio_clear_dirty(folio); 2697 } 2698 } 2699 EXPORT_SYMBOL(__folio_cancel_dirty); 2700 2701 /* 2702 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2703 * Returns true if the folio was previously dirty. 2704 * 2705 * This is for preparing to put the folio under writeout. We leave 2706 * the folio tagged as dirty in the xarray so that a concurrent 2707 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2708 * The ->writepage implementation will run either folio_start_writeback() 2709 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2710 * and xarray dirty tag back into sync. 2711 * 2712 * This incoherency between the folio's dirty flag and xarray tag is 2713 * unfortunate, but it only exists while the folio is locked. 2714 */ 2715 bool folio_clear_dirty_for_io(struct folio *folio) 2716 { 2717 struct address_space *mapping = folio_mapping(folio); 2718 bool ret = false; 2719 2720 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2721 2722 if (mapping && mapping_can_writeback(mapping)) { 2723 struct inode *inode = mapping->host; 2724 struct bdi_writeback *wb; 2725 struct wb_lock_cookie cookie = {}; 2726 2727 /* 2728 * Yes, Virginia, this is indeed insane. 2729 * 2730 * We use this sequence to make sure that 2731 * (a) we account for dirty stats properly 2732 * (b) we tell the low-level filesystem to 2733 * mark the whole folio dirty if it was 2734 * dirty in a pagetable. Only to then 2735 * (c) clean the folio again and return 1 to 2736 * cause the writeback. 2737 * 2738 * This way we avoid all nasty races with the 2739 * dirty bit in multiple places and clearing 2740 * them concurrently from different threads. 2741 * 2742 * Note! Normally the "folio_mark_dirty(folio)" 2743 * has no effect on the actual dirty bit - since 2744 * that will already usually be set. But we 2745 * need the side effects, and it can help us 2746 * avoid races. 2747 * 2748 * We basically use the folio "master dirty bit" 2749 * as a serialization point for all the different 2750 * threads doing their things. 2751 */ 2752 if (folio_mkclean(folio)) 2753 folio_mark_dirty(folio); 2754 /* 2755 * We carefully synchronise fault handlers against 2756 * installing a dirty pte and marking the folio dirty 2757 * at this point. We do this by having them hold the 2758 * page lock while dirtying the folio, and folios are 2759 * always locked coming in here, so we get the desired 2760 * exclusion. 2761 */ 2762 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2763 if (folio_test_clear_dirty(folio)) { 2764 long nr = folio_nr_pages(folio); 2765 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2766 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2767 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2768 ret = true; 2769 } 2770 unlocked_inode_to_wb_end(inode, &cookie); 2771 return ret; 2772 } 2773 return folio_test_clear_dirty(folio); 2774 } 2775 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2776 2777 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2778 { 2779 atomic_inc(&wb->writeback_inodes); 2780 } 2781 2782 static void wb_inode_writeback_end(struct bdi_writeback *wb) 2783 { 2784 atomic_dec(&wb->writeback_inodes); 2785 /* 2786 * Make sure estimate of writeback throughput gets updated after 2787 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 2788 * (which is the interval other bandwidth updates use for batching) so 2789 * that if multiple inodes end writeback at a similar time, they get 2790 * batched into one bandwidth update. 2791 */ 2792 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 2793 } 2794 2795 bool __folio_end_writeback(struct folio *folio) 2796 { 2797 long nr = folio_nr_pages(folio); 2798 struct address_space *mapping = folio_mapping(folio); 2799 bool ret; 2800 2801 folio_memcg_lock(folio); 2802 if (mapping && mapping_use_writeback_tags(mapping)) { 2803 struct inode *inode = mapping->host; 2804 struct backing_dev_info *bdi = inode_to_bdi(inode); 2805 unsigned long flags; 2806 2807 xa_lock_irqsave(&mapping->i_pages, flags); 2808 ret = folio_test_clear_writeback(folio); 2809 if (ret) { 2810 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 2811 PAGECACHE_TAG_WRITEBACK); 2812 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2813 struct bdi_writeback *wb = inode_to_wb(inode); 2814 2815 wb_stat_mod(wb, WB_WRITEBACK, -nr); 2816 __wb_writeout_add(wb, nr); 2817 if (!mapping_tagged(mapping, 2818 PAGECACHE_TAG_WRITEBACK)) 2819 wb_inode_writeback_end(wb); 2820 } 2821 } 2822 2823 if (mapping->host && !mapping_tagged(mapping, 2824 PAGECACHE_TAG_WRITEBACK)) 2825 sb_clear_inode_writeback(mapping->host); 2826 2827 xa_unlock_irqrestore(&mapping->i_pages, flags); 2828 } else { 2829 ret = folio_test_clear_writeback(folio); 2830 } 2831 if (ret) { 2832 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 2833 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2834 node_stat_mod_folio(folio, NR_WRITTEN, nr); 2835 } 2836 folio_memcg_unlock(folio); 2837 return ret; 2838 } 2839 2840 bool __folio_start_writeback(struct folio *folio, bool keep_write) 2841 { 2842 long nr = folio_nr_pages(folio); 2843 struct address_space *mapping = folio_mapping(folio); 2844 bool ret; 2845 int access_ret; 2846 2847 folio_memcg_lock(folio); 2848 if (mapping && mapping_use_writeback_tags(mapping)) { 2849 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 2850 struct inode *inode = mapping->host; 2851 struct backing_dev_info *bdi = inode_to_bdi(inode); 2852 unsigned long flags; 2853 2854 xas_lock_irqsave(&xas, flags); 2855 xas_load(&xas); 2856 ret = folio_test_set_writeback(folio); 2857 if (!ret) { 2858 bool on_wblist; 2859 2860 on_wblist = mapping_tagged(mapping, 2861 PAGECACHE_TAG_WRITEBACK); 2862 2863 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 2864 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2865 struct bdi_writeback *wb = inode_to_wb(inode); 2866 2867 wb_stat_mod(wb, WB_WRITEBACK, nr); 2868 if (!on_wblist) 2869 wb_inode_writeback_start(wb); 2870 } 2871 2872 /* 2873 * We can come through here when swapping 2874 * anonymous folios, so we don't necessarily 2875 * have an inode to track for sync. 2876 */ 2877 if (mapping->host && !on_wblist) 2878 sb_mark_inode_writeback(mapping->host); 2879 } 2880 if (!folio_test_dirty(folio)) 2881 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 2882 if (!keep_write) 2883 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 2884 xas_unlock_irqrestore(&xas, flags); 2885 } else { 2886 ret = folio_test_set_writeback(folio); 2887 } 2888 if (!ret) { 2889 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 2890 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2891 } 2892 folio_memcg_unlock(folio); 2893 access_ret = arch_make_folio_accessible(folio); 2894 /* 2895 * If writeback has been triggered on a page that cannot be made 2896 * accessible, it is too late to recover here. 2897 */ 2898 VM_BUG_ON_FOLIO(access_ret != 0, folio); 2899 2900 return ret; 2901 } 2902 EXPORT_SYMBOL(__folio_start_writeback); 2903 2904 /** 2905 * folio_wait_writeback - Wait for a folio to finish writeback. 2906 * @folio: The folio to wait for. 2907 * 2908 * If the folio is currently being written back to storage, wait for the 2909 * I/O to complete. 2910 * 2911 * Context: Sleeps. Must be called in process context and with 2912 * no spinlocks held. Caller should hold a reference on the folio. 2913 * If the folio is not locked, writeback may start again after writeback 2914 * has finished. 2915 */ 2916 void folio_wait_writeback(struct folio *folio) 2917 { 2918 while (folio_test_writeback(folio)) { 2919 trace_folio_wait_writeback(folio, folio_mapping(folio)); 2920 folio_wait_bit(folio, PG_writeback); 2921 } 2922 } 2923 EXPORT_SYMBOL_GPL(folio_wait_writeback); 2924 2925 /** 2926 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 2927 * @folio: The folio to wait for. 2928 * 2929 * If the folio is currently being written back to storage, wait for the 2930 * I/O to complete or a fatal signal to arrive. 2931 * 2932 * Context: Sleeps. Must be called in process context and with 2933 * no spinlocks held. Caller should hold a reference on the folio. 2934 * If the folio is not locked, writeback may start again after writeback 2935 * has finished. 2936 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 2937 */ 2938 int folio_wait_writeback_killable(struct folio *folio) 2939 { 2940 while (folio_test_writeback(folio)) { 2941 trace_folio_wait_writeback(folio, folio_mapping(folio)); 2942 if (folio_wait_bit_killable(folio, PG_writeback)) 2943 return -EINTR; 2944 } 2945 2946 return 0; 2947 } 2948 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 2949 2950 /** 2951 * folio_wait_stable() - wait for writeback to finish, if necessary. 2952 * @folio: The folio to wait on. 2953 * 2954 * This function determines if the given folio is related to a backing 2955 * device that requires folio contents to be held stable during writeback. 2956 * If so, then it will wait for any pending writeback to complete. 2957 * 2958 * Context: Sleeps. Must be called in process context and with 2959 * no spinlocks held. Caller should hold a reference on the folio. 2960 * If the folio is not locked, writeback may start again after writeback 2961 * has finished. 2962 */ 2963 void folio_wait_stable(struct folio *folio) 2964 { 2965 if (folio_inode(folio)->i_sb->s_iflags & SB_I_STABLE_WRITES) 2966 folio_wait_writeback(folio); 2967 } 2968 EXPORT_SYMBOL_GPL(folio_wait_stable); 2969