1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/mm_inline.h> 40 #include <trace/events/writeback.h> 41 42 #include "internal.h" 43 44 /* 45 * Sleep at most 200ms at a time in balance_dirty_pages(). 46 */ 47 #define MAX_PAUSE max(HZ/5, 1) 48 49 /* 50 * Try to keep balance_dirty_pages() call intervals higher than this many pages 51 * by raising pause time to max_pause when falls below it. 52 */ 53 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 54 55 /* 56 * Estimate write bandwidth at 200ms intervals. 57 */ 58 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 59 60 #define RATELIMIT_CALC_SHIFT 10 61 62 /* 63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 64 * will look to see if it needs to force writeback or throttling. 65 */ 66 static long ratelimit_pages = 32; 67 68 /* The following parameters are exported via /proc/sys/vm */ 69 70 /* 71 * Start background writeback (via writeback threads) at this percentage 72 */ 73 int dirty_background_ratio = 10; 74 75 /* 76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 77 * dirty_background_ratio * the amount of dirtyable memory 78 */ 79 unsigned long dirty_background_bytes; 80 81 /* 82 * free highmem will not be subtracted from the total free memory 83 * for calculating free ratios if vm_highmem_is_dirtyable is true 84 */ 85 int vm_highmem_is_dirtyable; 86 87 /* 88 * The generator of dirty data starts writeback at this percentage 89 */ 90 int vm_dirty_ratio = 20; 91 92 /* 93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 94 * vm_dirty_ratio * the amount of dirtyable memory 95 */ 96 unsigned long vm_dirty_bytes; 97 98 /* 99 * The interval between `kupdate'-style writebacks 100 */ 101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 102 103 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 104 105 /* 106 * The longest time for which data is allowed to remain dirty 107 */ 108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 109 110 /* 111 * Flag that makes the machine dump writes/reads and block dirtyings. 112 */ 113 int block_dump; 114 115 /* 116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 117 * a full sync is triggered after this time elapses without any disk activity. 118 */ 119 int laptop_mode; 120 121 EXPORT_SYMBOL(laptop_mode); 122 123 /* End of sysctl-exported parameters */ 124 125 struct wb_domain global_wb_domain; 126 127 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 128 struct dirty_throttle_control { 129 #ifdef CONFIG_CGROUP_WRITEBACK 130 struct wb_domain *dom; 131 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 132 #endif 133 struct bdi_writeback *wb; 134 struct fprop_local_percpu *wb_completions; 135 136 unsigned long avail; /* dirtyable */ 137 unsigned long dirty; /* file_dirty + write + nfs */ 138 unsigned long thresh; /* dirty threshold */ 139 unsigned long bg_thresh; /* dirty background threshold */ 140 141 unsigned long wb_dirty; /* per-wb counterparts */ 142 unsigned long wb_thresh; 143 unsigned long wb_bg_thresh; 144 145 unsigned long pos_ratio; 146 }; 147 148 /* 149 * Length of period for aging writeout fractions of bdis. This is an 150 * arbitrarily chosen number. The longer the period, the slower fractions will 151 * reflect changes in current writeout rate. 152 */ 153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 154 155 #ifdef CONFIG_CGROUP_WRITEBACK 156 157 #define GDTC_INIT(__wb) .wb = (__wb), \ 158 .dom = &global_wb_domain, \ 159 .wb_completions = &(__wb)->completions 160 161 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 162 163 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 164 .dom = mem_cgroup_wb_domain(__wb), \ 165 .wb_completions = &(__wb)->memcg_completions, \ 166 .gdtc = __gdtc 167 168 static bool mdtc_valid(struct dirty_throttle_control *dtc) 169 { 170 return dtc->dom; 171 } 172 173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 174 { 175 return dtc->dom; 176 } 177 178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 179 { 180 return mdtc->gdtc; 181 } 182 183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 184 { 185 return &wb->memcg_completions; 186 } 187 188 static void wb_min_max_ratio(struct bdi_writeback *wb, 189 unsigned long *minp, unsigned long *maxp) 190 { 191 unsigned long this_bw = wb->avg_write_bandwidth; 192 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 193 unsigned long long min = wb->bdi->min_ratio; 194 unsigned long long max = wb->bdi->max_ratio; 195 196 /* 197 * @wb may already be clean by the time control reaches here and 198 * the total may not include its bw. 199 */ 200 if (this_bw < tot_bw) { 201 if (min) { 202 min *= this_bw; 203 do_div(min, tot_bw); 204 } 205 if (max < 100) { 206 max *= this_bw; 207 do_div(max, tot_bw); 208 } 209 } 210 211 *minp = min; 212 *maxp = max; 213 } 214 215 #else /* CONFIG_CGROUP_WRITEBACK */ 216 217 #define GDTC_INIT(__wb) .wb = (__wb), \ 218 .wb_completions = &(__wb)->completions 219 #define GDTC_INIT_NO_WB 220 #define MDTC_INIT(__wb, __gdtc) 221 222 static bool mdtc_valid(struct dirty_throttle_control *dtc) 223 { 224 return false; 225 } 226 227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 228 { 229 return &global_wb_domain; 230 } 231 232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 233 { 234 return NULL; 235 } 236 237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 238 { 239 return NULL; 240 } 241 242 static void wb_min_max_ratio(struct bdi_writeback *wb, 243 unsigned long *minp, unsigned long *maxp) 244 { 245 *minp = wb->bdi->min_ratio; 246 *maxp = wb->bdi->max_ratio; 247 } 248 249 #endif /* CONFIG_CGROUP_WRITEBACK */ 250 251 /* 252 * In a memory zone, there is a certain amount of pages we consider 253 * available for the page cache, which is essentially the number of 254 * free and reclaimable pages, minus some zone reserves to protect 255 * lowmem and the ability to uphold the zone's watermarks without 256 * requiring writeback. 257 * 258 * This number of dirtyable pages is the base value of which the 259 * user-configurable dirty ratio is the effictive number of pages that 260 * are allowed to be actually dirtied. Per individual zone, or 261 * globally by using the sum of dirtyable pages over all zones. 262 * 263 * Because the user is allowed to specify the dirty limit globally as 264 * absolute number of bytes, calculating the per-zone dirty limit can 265 * require translating the configured limit into a percentage of 266 * global dirtyable memory first. 267 */ 268 269 /** 270 * zone_dirtyable_memory - number of dirtyable pages in a zone 271 * @zone: the zone 272 * 273 * Returns the zone's number of pages potentially available for dirty 274 * page cache. This is the base value for the per-zone dirty limits. 275 */ 276 static unsigned long zone_dirtyable_memory(struct zone *zone) 277 { 278 unsigned long nr_pages; 279 280 nr_pages = zone_page_state(zone, NR_FREE_PAGES); 281 /* 282 * Pages reserved for the kernel should not be considered 283 * dirtyable, to prevent a situation where reclaim has to 284 * clean pages in order to balance the zones. 285 */ 286 nr_pages -= min(nr_pages, zone->totalreserve_pages); 287 288 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE); 289 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE); 290 291 return nr_pages; 292 } 293 294 static unsigned long highmem_dirtyable_memory(unsigned long total) 295 { 296 #ifdef CONFIG_HIGHMEM 297 int node; 298 unsigned long x = 0; 299 300 for_each_node_state(node, N_HIGH_MEMORY) { 301 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 302 303 x += zone_dirtyable_memory(z); 304 } 305 /* 306 * Unreclaimable memory (kernel memory or anonymous memory 307 * without swap) can bring down the dirtyable pages below 308 * the zone's dirty balance reserve and the above calculation 309 * will underflow. However we still want to add in nodes 310 * which are below threshold (negative values) to get a more 311 * accurate calculation but make sure that the total never 312 * underflows. 313 */ 314 if ((long)x < 0) 315 x = 0; 316 317 /* 318 * Make sure that the number of highmem pages is never larger 319 * than the number of the total dirtyable memory. This can only 320 * occur in very strange VM situations but we want to make sure 321 * that this does not occur. 322 */ 323 return min(x, total); 324 #else 325 return 0; 326 #endif 327 } 328 329 /** 330 * global_dirtyable_memory - number of globally dirtyable pages 331 * 332 * Returns the global number of pages potentially available for dirty 333 * page cache. This is the base value for the global dirty limits. 334 */ 335 static unsigned long global_dirtyable_memory(void) 336 { 337 unsigned long x; 338 339 x = global_page_state(NR_FREE_PAGES); 340 /* 341 * Pages reserved for the kernel should not be considered 342 * dirtyable, to prevent a situation where reclaim has to 343 * clean pages in order to balance the zones. 344 */ 345 x -= min(x, totalreserve_pages); 346 347 x += global_page_state(NR_INACTIVE_FILE); 348 x += global_page_state(NR_ACTIVE_FILE); 349 350 if (!vm_highmem_is_dirtyable) 351 x -= highmem_dirtyable_memory(x); 352 353 return x + 1; /* Ensure that we never return 0 */ 354 } 355 356 /** 357 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 358 * @dtc: dirty_throttle_control of interest 359 * 360 * Calculate @dtc->thresh and ->bg_thresh considering 361 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 362 * must ensure that @dtc->avail is set before calling this function. The 363 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 364 * real-time tasks. 365 */ 366 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 367 { 368 const unsigned long available_memory = dtc->avail; 369 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 370 unsigned long bytes = vm_dirty_bytes; 371 unsigned long bg_bytes = dirty_background_bytes; 372 unsigned long ratio = vm_dirty_ratio; 373 unsigned long bg_ratio = dirty_background_ratio; 374 unsigned long thresh; 375 unsigned long bg_thresh; 376 struct task_struct *tsk; 377 378 /* gdtc is !NULL iff @dtc is for memcg domain */ 379 if (gdtc) { 380 unsigned long global_avail = gdtc->avail; 381 382 /* 383 * The byte settings can't be applied directly to memcg 384 * domains. Convert them to ratios by scaling against 385 * globally available memory. 386 */ 387 if (bytes) 388 ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 / 389 global_avail, 100UL); 390 if (bg_bytes) 391 bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 / 392 global_avail, 100UL); 393 bytes = bg_bytes = 0; 394 } 395 396 if (bytes) 397 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 398 else 399 thresh = (ratio * available_memory) / 100; 400 401 if (bg_bytes) 402 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 403 else 404 bg_thresh = (bg_ratio * available_memory) / 100; 405 406 if (bg_thresh >= thresh) 407 bg_thresh = thresh / 2; 408 tsk = current; 409 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 410 bg_thresh += bg_thresh / 4; 411 thresh += thresh / 4; 412 } 413 dtc->thresh = thresh; 414 dtc->bg_thresh = bg_thresh; 415 416 /* we should eventually report the domain in the TP */ 417 if (!gdtc) 418 trace_global_dirty_state(bg_thresh, thresh); 419 } 420 421 /** 422 * global_dirty_limits - background-writeback and dirty-throttling thresholds 423 * @pbackground: out parameter for bg_thresh 424 * @pdirty: out parameter for thresh 425 * 426 * Calculate bg_thresh and thresh for global_wb_domain. See 427 * domain_dirty_limits() for details. 428 */ 429 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 430 { 431 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 432 433 gdtc.avail = global_dirtyable_memory(); 434 domain_dirty_limits(&gdtc); 435 436 *pbackground = gdtc.bg_thresh; 437 *pdirty = gdtc.thresh; 438 } 439 440 /** 441 * zone_dirty_limit - maximum number of dirty pages allowed in a zone 442 * @zone: the zone 443 * 444 * Returns the maximum number of dirty pages allowed in a zone, based 445 * on the zone's dirtyable memory. 446 */ 447 static unsigned long zone_dirty_limit(struct zone *zone) 448 { 449 unsigned long zone_memory = zone_dirtyable_memory(zone); 450 struct task_struct *tsk = current; 451 unsigned long dirty; 452 453 if (vm_dirty_bytes) 454 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 455 zone_memory / global_dirtyable_memory(); 456 else 457 dirty = vm_dirty_ratio * zone_memory / 100; 458 459 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 460 dirty += dirty / 4; 461 462 return dirty; 463 } 464 465 /** 466 * zone_dirty_ok - tells whether a zone is within its dirty limits 467 * @zone: the zone to check 468 * 469 * Returns %true when the dirty pages in @zone are within the zone's 470 * dirty limit, %false if the limit is exceeded. 471 */ 472 bool zone_dirty_ok(struct zone *zone) 473 { 474 unsigned long limit = zone_dirty_limit(zone); 475 476 return zone_page_state(zone, NR_FILE_DIRTY) + 477 zone_page_state(zone, NR_UNSTABLE_NFS) + 478 zone_page_state(zone, NR_WRITEBACK) <= limit; 479 } 480 481 int dirty_background_ratio_handler(struct ctl_table *table, int write, 482 void __user *buffer, size_t *lenp, 483 loff_t *ppos) 484 { 485 int ret; 486 487 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 488 if (ret == 0 && write) 489 dirty_background_bytes = 0; 490 return ret; 491 } 492 493 int dirty_background_bytes_handler(struct ctl_table *table, int write, 494 void __user *buffer, size_t *lenp, 495 loff_t *ppos) 496 { 497 int ret; 498 499 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 500 if (ret == 0 && write) 501 dirty_background_ratio = 0; 502 return ret; 503 } 504 505 int dirty_ratio_handler(struct ctl_table *table, int write, 506 void __user *buffer, size_t *lenp, 507 loff_t *ppos) 508 { 509 int old_ratio = vm_dirty_ratio; 510 int ret; 511 512 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 513 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 514 writeback_set_ratelimit(); 515 vm_dirty_bytes = 0; 516 } 517 return ret; 518 } 519 520 int dirty_bytes_handler(struct ctl_table *table, int write, 521 void __user *buffer, size_t *lenp, 522 loff_t *ppos) 523 { 524 unsigned long old_bytes = vm_dirty_bytes; 525 int ret; 526 527 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 528 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 529 writeback_set_ratelimit(); 530 vm_dirty_ratio = 0; 531 } 532 return ret; 533 } 534 535 static unsigned long wp_next_time(unsigned long cur_time) 536 { 537 cur_time += VM_COMPLETIONS_PERIOD_LEN; 538 /* 0 has a special meaning... */ 539 if (!cur_time) 540 return 1; 541 return cur_time; 542 } 543 544 static void wb_domain_writeout_inc(struct wb_domain *dom, 545 struct fprop_local_percpu *completions, 546 unsigned int max_prop_frac) 547 { 548 __fprop_inc_percpu_max(&dom->completions, completions, 549 max_prop_frac); 550 /* First event after period switching was turned off? */ 551 if (!unlikely(dom->period_time)) { 552 /* 553 * We can race with other __bdi_writeout_inc calls here but 554 * it does not cause any harm since the resulting time when 555 * timer will fire and what is in writeout_period_time will be 556 * roughly the same. 557 */ 558 dom->period_time = wp_next_time(jiffies); 559 mod_timer(&dom->period_timer, dom->period_time); 560 } 561 } 562 563 /* 564 * Increment @wb's writeout completion count and the global writeout 565 * completion count. Called from test_clear_page_writeback(). 566 */ 567 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 568 { 569 struct wb_domain *cgdom; 570 571 __inc_wb_stat(wb, WB_WRITTEN); 572 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 573 wb->bdi->max_prop_frac); 574 575 cgdom = mem_cgroup_wb_domain(wb); 576 if (cgdom) 577 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 578 wb->bdi->max_prop_frac); 579 } 580 581 void wb_writeout_inc(struct bdi_writeback *wb) 582 { 583 unsigned long flags; 584 585 local_irq_save(flags); 586 __wb_writeout_inc(wb); 587 local_irq_restore(flags); 588 } 589 EXPORT_SYMBOL_GPL(wb_writeout_inc); 590 591 /* 592 * On idle system, we can be called long after we scheduled because we use 593 * deferred timers so count with missed periods. 594 */ 595 static void writeout_period(unsigned long t) 596 { 597 struct wb_domain *dom = (void *)t; 598 int miss_periods = (jiffies - dom->period_time) / 599 VM_COMPLETIONS_PERIOD_LEN; 600 601 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 602 dom->period_time = wp_next_time(dom->period_time + 603 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 604 mod_timer(&dom->period_timer, dom->period_time); 605 } else { 606 /* 607 * Aging has zeroed all fractions. Stop wasting CPU on period 608 * updates. 609 */ 610 dom->period_time = 0; 611 } 612 } 613 614 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 615 { 616 memset(dom, 0, sizeof(*dom)); 617 618 spin_lock_init(&dom->lock); 619 620 init_timer_deferrable(&dom->period_timer); 621 dom->period_timer.function = writeout_period; 622 dom->period_timer.data = (unsigned long)dom; 623 624 dom->dirty_limit_tstamp = jiffies; 625 626 return fprop_global_init(&dom->completions, gfp); 627 } 628 629 #ifdef CONFIG_CGROUP_WRITEBACK 630 void wb_domain_exit(struct wb_domain *dom) 631 { 632 del_timer_sync(&dom->period_timer); 633 fprop_global_destroy(&dom->completions); 634 } 635 #endif 636 637 /* 638 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 639 * registered backing devices, which, for obvious reasons, can not 640 * exceed 100%. 641 */ 642 static unsigned int bdi_min_ratio; 643 644 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 645 { 646 int ret = 0; 647 648 spin_lock_bh(&bdi_lock); 649 if (min_ratio > bdi->max_ratio) { 650 ret = -EINVAL; 651 } else { 652 min_ratio -= bdi->min_ratio; 653 if (bdi_min_ratio + min_ratio < 100) { 654 bdi_min_ratio += min_ratio; 655 bdi->min_ratio += min_ratio; 656 } else { 657 ret = -EINVAL; 658 } 659 } 660 spin_unlock_bh(&bdi_lock); 661 662 return ret; 663 } 664 665 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 666 { 667 int ret = 0; 668 669 if (max_ratio > 100) 670 return -EINVAL; 671 672 spin_lock_bh(&bdi_lock); 673 if (bdi->min_ratio > max_ratio) { 674 ret = -EINVAL; 675 } else { 676 bdi->max_ratio = max_ratio; 677 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 678 } 679 spin_unlock_bh(&bdi_lock); 680 681 return ret; 682 } 683 EXPORT_SYMBOL(bdi_set_max_ratio); 684 685 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 686 unsigned long bg_thresh) 687 { 688 return (thresh + bg_thresh) / 2; 689 } 690 691 static unsigned long hard_dirty_limit(struct wb_domain *dom, 692 unsigned long thresh) 693 { 694 return max(thresh, dom->dirty_limit); 695 } 696 697 /* 698 * Memory which can be further allocated to a memcg domain is capped by 699 * system-wide clean memory excluding the amount being used in the domain. 700 */ 701 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 702 unsigned long filepages, unsigned long headroom) 703 { 704 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 705 unsigned long clean = filepages - min(filepages, mdtc->dirty); 706 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 707 unsigned long other_clean = global_clean - min(global_clean, clean); 708 709 mdtc->avail = filepages + min(headroom, other_clean); 710 } 711 712 /** 713 * __wb_calc_thresh - @wb's share of dirty throttling threshold 714 * @dtc: dirty_throttle_context of interest 715 * 716 * Returns @wb's dirty limit in pages. The term "dirty" in the context of 717 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 718 * 719 * Note that balance_dirty_pages() will only seriously take it as a hard limit 720 * when sleeping max_pause per page is not enough to keep the dirty pages under 721 * control. For example, when the device is completely stalled due to some error 722 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 723 * In the other normal situations, it acts more gently by throttling the tasks 724 * more (rather than completely block them) when the wb dirty pages go high. 725 * 726 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 727 * - starving fast devices 728 * - piling up dirty pages (that will take long time to sync) on slow devices 729 * 730 * The wb's share of dirty limit will be adapting to its throughput and 731 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 732 */ 733 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 734 { 735 struct wb_domain *dom = dtc_dom(dtc); 736 unsigned long thresh = dtc->thresh; 737 u64 wb_thresh; 738 long numerator, denominator; 739 unsigned long wb_min_ratio, wb_max_ratio; 740 741 /* 742 * Calculate this BDI's share of the thresh ratio. 743 */ 744 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 745 &numerator, &denominator); 746 747 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 748 wb_thresh *= numerator; 749 do_div(wb_thresh, denominator); 750 751 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 752 753 wb_thresh += (thresh * wb_min_ratio) / 100; 754 if (wb_thresh > (thresh * wb_max_ratio) / 100) 755 wb_thresh = thresh * wb_max_ratio / 100; 756 757 return wb_thresh; 758 } 759 760 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 761 { 762 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 763 .thresh = thresh }; 764 return __wb_calc_thresh(&gdtc); 765 } 766 767 /* 768 * setpoint - dirty 3 769 * f(dirty) := 1.0 + (----------------) 770 * limit - setpoint 771 * 772 * it's a 3rd order polynomial that subjects to 773 * 774 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 775 * (2) f(setpoint) = 1.0 => the balance point 776 * (3) f(limit) = 0 => the hard limit 777 * (4) df/dx <= 0 => negative feedback control 778 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 779 * => fast response on large errors; small oscillation near setpoint 780 */ 781 static long long pos_ratio_polynom(unsigned long setpoint, 782 unsigned long dirty, 783 unsigned long limit) 784 { 785 long long pos_ratio; 786 long x; 787 788 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 789 (limit - setpoint) | 1); 790 pos_ratio = x; 791 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 792 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 793 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 794 795 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 796 } 797 798 /* 799 * Dirty position control. 800 * 801 * (o) global/bdi setpoints 802 * 803 * We want the dirty pages be balanced around the global/wb setpoints. 804 * When the number of dirty pages is higher/lower than the setpoint, the 805 * dirty position control ratio (and hence task dirty ratelimit) will be 806 * decreased/increased to bring the dirty pages back to the setpoint. 807 * 808 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 809 * 810 * if (dirty < setpoint) scale up pos_ratio 811 * if (dirty > setpoint) scale down pos_ratio 812 * 813 * if (wb_dirty < wb_setpoint) scale up pos_ratio 814 * if (wb_dirty > wb_setpoint) scale down pos_ratio 815 * 816 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 817 * 818 * (o) global control line 819 * 820 * ^ pos_ratio 821 * | 822 * | |<===== global dirty control scope ======>| 823 * 2.0 .............* 824 * | .* 825 * | . * 826 * | . * 827 * | . * 828 * | . * 829 * | . * 830 * 1.0 ................................* 831 * | . . * 832 * | . . * 833 * | . . * 834 * | . . * 835 * | . . * 836 * 0 +------------.------------------.----------------------*-------------> 837 * freerun^ setpoint^ limit^ dirty pages 838 * 839 * (o) wb control line 840 * 841 * ^ pos_ratio 842 * | 843 * | * 844 * | * 845 * | * 846 * | * 847 * | * |<=========== span ============>| 848 * 1.0 .......................* 849 * | . * 850 * | . * 851 * | . * 852 * | . * 853 * | . * 854 * | . * 855 * | . * 856 * | . * 857 * | . * 858 * | . * 859 * | . * 860 * 1/4 ...............................................* * * * * * * * * * * * 861 * | . . 862 * | . . 863 * | . . 864 * 0 +----------------------.-------------------------------.-------------> 865 * wb_setpoint^ x_intercept^ 866 * 867 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 868 * be smoothly throttled down to normal if it starts high in situations like 869 * - start writing to a slow SD card and a fast disk at the same time. The SD 870 * card's wb_dirty may rush to many times higher than wb_setpoint. 871 * - the wb dirty thresh drops quickly due to change of JBOD workload 872 */ 873 static void wb_position_ratio(struct dirty_throttle_control *dtc) 874 { 875 struct bdi_writeback *wb = dtc->wb; 876 unsigned long write_bw = wb->avg_write_bandwidth; 877 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 878 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 879 unsigned long wb_thresh = dtc->wb_thresh; 880 unsigned long x_intercept; 881 unsigned long setpoint; /* dirty pages' target balance point */ 882 unsigned long wb_setpoint; 883 unsigned long span; 884 long long pos_ratio; /* for scaling up/down the rate limit */ 885 long x; 886 887 dtc->pos_ratio = 0; 888 889 if (unlikely(dtc->dirty >= limit)) 890 return; 891 892 /* 893 * global setpoint 894 * 895 * See comment for pos_ratio_polynom(). 896 */ 897 setpoint = (freerun + limit) / 2; 898 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 899 900 /* 901 * The strictlimit feature is a tool preventing mistrusted filesystems 902 * from growing a large number of dirty pages before throttling. For 903 * such filesystems balance_dirty_pages always checks wb counters 904 * against wb limits. Even if global "nr_dirty" is under "freerun". 905 * This is especially important for fuse which sets bdi->max_ratio to 906 * 1% by default. Without strictlimit feature, fuse writeback may 907 * consume arbitrary amount of RAM because it is accounted in 908 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 909 * 910 * Here, in wb_position_ratio(), we calculate pos_ratio based on 911 * two values: wb_dirty and wb_thresh. Let's consider an example: 912 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 913 * limits are set by default to 10% and 20% (background and throttle). 914 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 915 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 916 * about ~6K pages (as the average of background and throttle wb 917 * limits). The 3rd order polynomial will provide positive feedback if 918 * wb_dirty is under wb_setpoint and vice versa. 919 * 920 * Note, that we cannot use global counters in these calculations 921 * because we want to throttle process writing to a strictlimit wb 922 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 923 * in the example above). 924 */ 925 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 926 long long wb_pos_ratio; 927 928 if (dtc->wb_dirty < 8) { 929 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 930 2 << RATELIMIT_CALC_SHIFT); 931 return; 932 } 933 934 if (dtc->wb_dirty >= wb_thresh) 935 return; 936 937 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 938 dtc->wb_bg_thresh); 939 940 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 941 return; 942 943 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 944 wb_thresh); 945 946 /* 947 * Typically, for strictlimit case, wb_setpoint << setpoint 948 * and pos_ratio >> wb_pos_ratio. In the other words global 949 * state ("dirty") is not limiting factor and we have to 950 * make decision based on wb counters. But there is an 951 * important case when global pos_ratio should get precedence: 952 * global limits are exceeded (e.g. due to activities on other 953 * wb's) while given strictlimit wb is below limit. 954 * 955 * "pos_ratio * wb_pos_ratio" would work for the case above, 956 * but it would look too non-natural for the case of all 957 * activity in the system coming from a single strictlimit wb 958 * with bdi->max_ratio == 100%. 959 * 960 * Note that min() below somewhat changes the dynamics of the 961 * control system. Normally, pos_ratio value can be well over 3 962 * (when globally we are at freerun and wb is well below wb 963 * setpoint). Now the maximum pos_ratio in the same situation 964 * is 2. We might want to tweak this if we observe the control 965 * system is too slow to adapt. 966 */ 967 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 968 return; 969 } 970 971 /* 972 * We have computed basic pos_ratio above based on global situation. If 973 * the wb is over/under its share of dirty pages, we want to scale 974 * pos_ratio further down/up. That is done by the following mechanism. 975 */ 976 977 /* 978 * wb setpoint 979 * 980 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 981 * 982 * x_intercept - wb_dirty 983 * := -------------------------- 984 * x_intercept - wb_setpoint 985 * 986 * The main wb control line is a linear function that subjects to 987 * 988 * (1) f(wb_setpoint) = 1.0 989 * (2) k = - 1 / (8 * write_bw) (in single wb case) 990 * or equally: x_intercept = wb_setpoint + 8 * write_bw 991 * 992 * For single wb case, the dirty pages are observed to fluctuate 993 * regularly within range 994 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 995 * for various filesystems, where (2) can yield in a reasonable 12.5% 996 * fluctuation range for pos_ratio. 997 * 998 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 999 * own size, so move the slope over accordingly and choose a slope that 1000 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1001 */ 1002 if (unlikely(wb_thresh > dtc->thresh)) 1003 wb_thresh = dtc->thresh; 1004 /* 1005 * It's very possible that wb_thresh is close to 0 not because the 1006 * device is slow, but that it has remained inactive for long time. 1007 * Honour such devices a reasonable good (hopefully IO efficient) 1008 * threshold, so that the occasional writes won't be blocked and active 1009 * writes can rampup the threshold quickly. 1010 */ 1011 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1012 /* 1013 * scale global setpoint to wb's: 1014 * wb_setpoint = setpoint * wb_thresh / thresh 1015 */ 1016 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1017 wb_setpoint = setpoint * (u64)x >> 16; 1018 /* 1019 * Use span=(8*write_bw) in single wb case as indicated by 1020 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1021 * 1022 * wb_thresh thresh - wb_thresh 1023 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1024 * thresh thresh 1025 */ 1026 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1027 x_intercept = wb_setpoint + span; 1028 1029 if (dtc->wb_dirty < x_intercept - span / 4) { 1030 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1031 (x_intercept - wb_setpoint) | 1); 1032 } else 1033 pos_ratio /= 4; 1034 1035 /* 1036 * wb reserve area, safeguard against dirty pool underrun and disk idle 1037 * It may push the desired control point of global dirty pages higher 1038 * than setpoint. 1039 */ 1040 x_intercept = wb_thresh / 2; 1041 if (dtc->wb_dirty < x_intercept) { 1042 if (dtc->wb_dirty > x_intercept / 8) 1043 pos_ratio = div_u64(pos_ratio * x_intercept, 1044 dtc->wb_dirty); 1045 else 1046 pos_ratio *= 8; 1047 } 1048 1049 dtc->pos_ratio = pos_ratio; 1050 } 1051 1052 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1053 unsigned long elapsed, 1054 unsigned long written) 1055 { 1056 const unsigned long period = roundup_pow_of_two(3 * HZ); 1057 unsigned long avg = wb->avg_write_bandwidth; 1058 unsigned long old = wb->write_bandwidth; 1059 u64 bw; 1060 1061 /* 1062 * bw = written * HZ / elapsed 1063 * 1064 * bw * elapsed + write_bandwidth * (period - elapsed) 1065 * write_bandwidth = --------------------------------------------------- 1066 * period 1067 * 1068 * @written may have decreased due to account_page_redirty(). 1069 * Avoid underflowing @bw calculation. 1070 */ 1071 bw = written - min(written, wb->written_stamp); 1072 bw *= HZ; 1073 if (unlikely(elapsed > period)) { 1074 do_div(bw, elapsed); 1075 avg = bw; 1076 goto out; 1077 } 1078 bw += (u64)wb->write_bandwidth * (period - elapsed); 1079 bw >>= ilog2(period); 1080 1081 /* 1082 * one more level of smoothing, for filtering out sudden spikes 1083 */ 1084 if (avg > old && old >= (unsigned long)bw) 1085 avg -= (avg - old) >> 3; 1086 1087 if (avg < old && old <= (unsigned long)bw) 1088 avg += (old - avg) >> 3; 1089 1090 out: 1091 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1092 avg = max(avg, 1LU); 1093 if (wb_has_dirty_io(wb)) { 1094 long delta = avg - wb->avg_write_bandwidth; 1095 WARN_ON_ONCE(atomic_long_add_return(delta, 1096 &wb->bdi->tot_write_bandwidth) <= 0); 1097 } 1098 wb->write_bandwidth = bw; 1099 wb->avg_write_bandwidth = avg; 1100 } 1101 1102 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1103 { 1104 struct wb_domain *dom = dtc_dom(dtc); 1105 unsigned long thresh = dtc->thresh; 1106 unsigned long limit = dom->dirty_limit; 1107 1108 /* 1109 * Follow up in one step. 1110 */ 1111 if (limit < thresh) { 1112 limit = thresh; 1113 goto update; 1114 } 1115 1116 /* 1117 * Follow down slowly. Use the higher one as the target, because thresh 1118 * may drop below dirty. This is exactly the reason to introduce 1119 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1120 */ 1121 thresh = max(thresh, dtc->dirty); 1122 if (limit > thresh) { 1123 limit -= (limit - thresh) >> 5; 1124 goto update; 1125 } 1126 return; 1127 update: 1128 dom->dirty_limit = limit; 1129 } 1130 1131 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1132 unsigned long now) 1133 { 1134 struct wb_domain *dom = dtc_dom(dtc); 1135 1136 /* 1137 * check locklessly first to optimize away locking for the most time 1138 */ 1139 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1140 return; 1141 1142 spin_lock(&dom->lock); 1143 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1144 update_dirty_limit(dtc); 1145 dom->dirty_limit_tstamp = now; 1146 } 1147 spin_unlock(&dom->lock); 1148 } 1149 1150 /* 1151 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1152 * 1153 * Normal wb tasks will be curbed at or below it in long term. 1154 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1155 */ 1156 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1157 unsigned long dirtied, 1158 unsigned long elapsed) 1159 { 1160 struct bdi_writeback *wb = dtc->wb; 1161 unsigned long dirty = dtc->dirty; 1162 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1163 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1164 unsigned long setpoint = (freerun + limit) / 2; 1165 unsigned long write_bw = wb->avg_write_bandwidth; 1166 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1167 unsigned long dirty_rate; 1168 unsigned long task_ratelimit; 1169 unsigned long balanced_dirty_ratelimit; 1170 unsigned long step; 1171 unsigned long x; 1172 1173 /* 1174 * The dirty rate will match the writeout rate in long term, except 1175 * when dirty pages are truncated by userspace or re-dirtied by FS. 1176 */ 1177 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1178 1179 /* 1180 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1181 */ 1182 task_ratelimit = (u64)dirty_ratelimit * 1183 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1184 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1185 1186 /* 1187 * A linear estimation of the "balanced" throttle rate. The theory is, 1188 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1189 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1190 * formula will yield the balanced rate limit (write_bw / N). 1191 * 1192 * Note that the expanded form is not a pure rate feedback: 1193 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1194 * but also takes pos_ratio into account: 1195 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1196 * 1197 * (1) is not realistic because pos_ratio also takes part in balancing 1198 * the dirty rate. Consider the state 1199 * pos_ratio = 0.5 (3) 1200 * rate = 2 * (write_bw / N) (4) 1201 * If (1) is used, it will stuck in that state! Because each dd will 1202 * be throttled at 1203 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1204 * yielding 1205 * dirty_rate = N * task_ratelimit = write_bw (6) 1206 * put (6) into (1) we get 1207 * rate_(i+1) = rate_(i) (7) 1208 * 1209 * So we end up using (2) to always keep 1210 * rate_(i+1) ~= (write_bw / N) (8) 1211 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1212 * pos_ratio is able to drive itself to 1.0, which is not only where 1213 * the dirty count meet the setpoint, but also where the slope of 1214 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1215 */ 1216 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1217 dirty_rate | 1); 1218 /* 1219 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1220 */ 1221 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1222 balanced_dirty_ratelimit = write_bw; 1223 1224 /* 1225 * We could safely do this and return immediately: 1226 * 1227 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1228 * 1229 * However to get a more stable dirty_ratelimit, the below elaborated 1230 * code makes use of task_ratelimit to filter out singular points and 1231 * limit the step size. 1232 * 1233 * The below code essentially only uses the relative value of 1234 * 1235 * task_ratelimit - dirty_ratelimit 1236 * = (pos_ratio - 1) * dirty_ratelimit 1237 * 1238 * which reflects the direction and size of dirty position error. 1239 */ 1240 1241 /* 1242 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1243 * task_ratelimit is on the same side of dirty_ratelimit, too. 1244 * For example, when 1245 * - dirty_ratelimit > balanced_dirty_ratelimit 1246 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1247 * lowering dirty_ratelimit will help meet both the position and rate 1248 * control targets. Otherwise, don't update dirty_ratelimit if it will 1249 * only help meet the rate target. After all, what the users ultimately 1250 * feel and care are stable dirty rate and small position error. 1251 * 1252 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1253 * and filter out the singular points of balanced_dirty_ratelimit. Which 1254 * keeps jumping around randomly and can even leap far away at times 1255 * due to the small 200ms estimation period of dirty_rate (we want to 1256 * keep that period small to reduce time lags). 1257 */ 1258 step = 0; 1259 1260 /* 1261 * For strictlimit case, calculations above were based on wb counters 1262 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1263 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1264 * Hence, to calculate "step" properly, we have to use wb_dirty as 1265 * "dirty" and wb_setpoint as "setpoint". 1266 * 1267 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1268 * it's possible that wb_thresh is close to zero due to inactivity 1269 * of backing device. 1270 */ 1271 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1272 dirty = dtc->wb_dirty; 1273 if (dtc->wb_dirty < 8) 1274 setpoint = dtc->wb_dirty + 1; 1275 else 1276 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1277 } 1278 1279 if (dirty < setpoint) { 1280 x = min3(wb->balanced_dirty_ratelimit, 1281 balanced_dirty_ratelimit, task_ratelimit); 1282 if (dirty_ratelimit < x) 1283 step = x - dirty_ratelimit; 1284 } else { 1285 x = max3(wb->balanced_dirty_ratelimit, 1286 balanced_dirty_ratelimit, task_ratelimit); 1287 if (dirty_ratelimit > x) 1288 step = dirty_ratelimit - x; 1289 } 1290 1291 /* 1292 * Don't pursue 100% rate matching. It's impossible since the balanced 1293 * rate itself is constantly fluctuating. So decrease the track speed 1294 * when it gets close to the target. Helps eliminate pointless tremors. 1295 */ 1296 step >>= dirty_ratelimit / (2 * step + 1); 1297 /* 1298 * Limit the tracking speed to avoid overshooting. 1299 */ 1300 step = (step + 7) / 8; 1301 1302 if (dirty_ratelimit < balanced_dirty_ratelimit) 1303 dirty_ratelimit += step; 1304 else 1305 dirty_ratelimit -= step; 1306 1307 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1308 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1309 1310 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1311 } 1312 1313 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1314 struct dirty_throttle_control *mdtc, 1315 unsigned long start_time, 1316 bool update_ratelimit) 1317 { 1318 struct bdi_writeback *wb = gdtc->wb; 1319 unsigned long now = jiffies; 1320 unsigned long elapsed = now - wb->bw_time_stamp; 1321 unsigned long dirtied; 1322 unsigned long written; 1323 1324 lockdep_assert_held(&wb->list_lock); 1325 1326 /* 1327 * rate-limit, only update once every 200ms. 1328 */ 1329 if (elapsed < BANDWIDTH_INTERVAL) 1330 return; 1331 1332 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1333 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1334 1335 /* 1336 * Skip quiet periods when disk bandwidth is under-utilized. 1337 * (at least 1s idle time between two flusher runs) 1338 */ 1339 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1340 goto snapshot; 1341 1342 if (update_ratelimit) { 1343 domain_update_bandwidth(gdtc, now); 1344 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1345 1346 /* 1347 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1348 * compiler has no way to figure that out. Help it. 1349 */ 1350 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1351 domain_update_bandwidth(mdtc, now); 1352 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1353 } 1354 } 1355 wb_update_write_bandwidth(wb, elapsed, written); 1356 1357 snapshot: 1358 wb->dirtied_stamp = dirtied; 1359 wb->written_stamp = written; 1360 wb->bw_time_stamp = now; 1361 } 1362 1363 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1364 { 1365 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1366 1367 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1368 } 1369 1370 /* 1371 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1372 * will look to see if it needs to start dirty throttling. 1373 * 1374 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1375 * global_page_state() too often. So scale it near-sqrt to the safety margin 1376 * (the number of pages we may dirty without exceeding the dirty limits). 1377 */ 1378 static unsigned long dirty_poll_interval(unsigned long dirty, 1379 unsigned long thresh) 1380 { 1381 if (thresh > dirty) 1382 return 1UL << (ilog2(thresh - dirty) >> 1); 1383 1384 return 1; 1385 } 1386 1387 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1388 unsigned long wb_dirty) 1389 { 1390 unsigned long bw = wb->avg_write_bandwidth; 1391 unsigned long t; 1392 1393 /* 1394 * Limit pause time for small memory systems. If sleeping for too long 1395 * time, a small pool of dirty/writeback pages may go empty and disk go 1396 * idle. 1397 * 1398 * 8 serves as the safety ratio. 1399 */ 1400 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1401 t++; 1402 1403 return min_t(unsigned long, t, MAX_PAUSE); 1404 } 1405 1406 static long wb_min_pause(struct bdi_writeback *wb, 1407 long max_pause, 1408 unsigned long task_ratelimit, 1409 unsigned long dirty_ratelimit, 1410 int *nr_dirtied_pause) 1411 { 1412 long hi = ilog2(wb->avg_write_bandwidth); 1413 long lo = ilog2(wb->dirty_ratelimit); 1414 long t; /* target pause */ 1415 long pause; /* estimated next pause */ 1416 int pages; /* target nr_dirtied_pause */ 1417 1418 /* target for 10ms pause on 1-dd case */ 1419 t = max(1, HZ / 100); 1420 1421 /* 1422 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1423 * overheads. 1424 * 1425 * (N * 10ms) on 2^N concurrent tasks. 1426 */ 1427 if (hi > lo) 1428 t += (hi - lo) * (10 * HZ) / 1024; 1429 1430 /* 1431 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1432 * on the much more stable dirty_ratelimit. However the next pause time 1433 * will be computed based on task_ratelimit and the two rate limits may 1434 * depart considerably at some time. Especially if task_ratelimit goes 1435 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1436 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1437 * result task_ratelimit won't be executed faithfully, which could 1438 * eventually bring down dirty_ratelimit. 1439 * 1440 * We apply two rules to fix it up: 1441 * 1) try to estimate the next pause time and if necessary, use a lower 1442 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1443 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1444 * 2) limit the target pause time to max_pause/2, so that the normal 1445 * small fluctuations of task_ratelimit won't trigger rule (1) and 1446 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1447 */ 1448 t = min(t, 1 + max_pause / 2); 1449 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1450 1451 /* 1452 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1453 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1454 * When the 16 consecutive reads are often interrupted by some dirty 1455 * throttling pause during the async writes, cfq will go into idles 1456 * (deadline is fine). So push nr_dirtied_pause as high as possible 1457 * until reaches DIRTY_POLL_THRESH=32 pages. 1458 */ 1459 if (pages < DIRTY_POLL_THRESH) { 1460 t = max_pause; 1461 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1462 if (pages > DIRTY_POLL_THRESH) { 1463 pages = DIRTY_POLL_THRESH; 1464 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1465 } 1466 } 1467 1468 pause = HZ * pages / (task_ratelimit + 1); 1469 if (pause > max_pause) { 1470 t = max_pause; 1471 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1472 } 1473 1474 *nr_dirtied_pause = pages; 1475 /* 1476 * The minimal pause time will normally be half the target pause time. 1477 */ 1478 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1479 } 1480 1481 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1482 { 1483 struct bdi_writeback *wb = dtc->wb; 1484 unsigned long wb_reclaimable; 1485 1486 /* 1487 * wb_thresh is not treated as some limiting factor as 1488 * dirty_thresh, due to reasons 1489 * - in JBOD setup, wb_thresh can fluctuate a lot 1490 * - in a system with HDD and USB key, the USB key may somehow 1491 * go into state (wb_dirty >> wb_thresh) either because 1492 * wb_dirty starts high, or because wb_thresh drops low. 1493 * In this case we don't want to hard throttle the USB key 1494 * dirtiers for 100 seconds until wb_dirty drops under 1495 * wb_thresh. Instead the auxiliary wb control line in 1496 * wb_position_ratio() will let the dirtier task progress 1497 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1498 */ 1499 dtc->wb_thresh = __wb_calc_thresh(dtc); 1500 dtc->wb_bg_thresh = dtc->thresh ? 1501 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1502 1503 /* 1504 * In order to avoid the stacked BDI deadlock we need 1505 * to ensure we accurately count the 'dirty' pages when 1506 * the threshold is low. 1507 * 1508 * Otherwise it would be possible to get thresh+n pages 1509 * reported dirty, even though there are thresh-m pages 1510 * actually dirty; with m+n sitting in the percpu 1511 * deltas. 1512 */ 1513 if (dtc->wb_thresh < 2 * wb_stat_error(wb)) { 1514 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1515 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1516 } else { 1517 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1518 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1519 } 1520 } 1521 1522 /* 1523 * balance_dirty_pages() must be called by processes which are generating dirty 1524 * data. It looks at the number of dirty pages in the machine and will force 1525 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1526 * If we're over `background_thresh' then the writeback threads are woken to 1527 * perform some writeout. 1528 */ 1529 static void balance_dirty_pages(struct address_space *mapping, 1530 struct bdi_writeback *wb, 1531 unsigned long pages_dirtied) 1532 { 1533 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1534 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1535 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1536 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1537 &mdtc_stor : NULL; 1538 struct dirty_throttle_control *sdtc; 1539 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1540 long period; 1541 long pause; 1542 long max_pause; 1543 long min_pause; 1544 int nr_dirtied_pause; 1545 bool dirty_exceeded = false; 1546 unsigned long task_ratelimit; 1547 unsigned long dirty_ratelimit; 1548 struct backing_dev_info *bdi = wb->bdi; 1549 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1550 unsigned long start_time = jiffies; 1551 1552 for (;;) { 1553 unsigned long now = jiffies; 1554 unsigned long dirty, thresh, bg_thresh; 1555 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1556 unsigned long m_thresh = 0; 1557 unsigned long m_bg_thresh = 0; 1558 1559 /* 1560 * Unstable writes are a feature of certain networked 1561 * filesystems (i.e. NFS) in which data may have been 1562 * written to the server's write cache, but has not yet 1563 * been flushed to permanent storage. 1564 */ 1565 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 1566 global_page_state(NR_UNSTABLE_NFS); 1567 gdtc->avail = global_dirtyable_memory(); 1568 gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK); 1569 1570 domain_dirty_limits(gdtc); 1571 1572 if (unlikely(strictlimit)) { 1573 wb_dirty_limits(gdtc); 1574 1575 dirty = gdtc->wb_dirty; 1576 thresh = gdtc->wb_thresh; 1577 bg_thresh = gdtc->wb_bg_thresh; 1578 } else { 1579 dirty = gdtc->dirty; 1580 thresh = gdtc->thresh; 1581 bg_thresh = gdtc->bg_thresh; 1582 } 1583 1584 if (mdtc) { 1585 unsigned long filepages, headroom, writeback; 1586 1587 /* 1588 * If @wb belongs to !root memcg, repeat the same 1589 * basic calculations for the memcg domain. 1590 */ 1591 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1592 &mdtc->dirty, &writeback); 1593 mdtc->dirty += writeback; 1594 mdtc_calc_avail(mdtc, filepages, headroom); 1595 1596 domain_dirty_limits(mdtc); 1597 1598 if (unlikely(strictlimit)) { 1599 wb_dirty_limits(mdtc); 1600 m_dirty = mdtc->wb_dirty; 1601 m_thresh = mdtc->wb_thresh; 1602 m_bg_thresh = mdtc->wb_bg_thresh; 1603 } else { 1604 m_dirty = mdtc->dirty; 1605 m_thresh = mdtc->thresh; 1606 m_bg_thresh = mdtc->bg_thresh; 1607 } 1608 } 1609 1610 /* 1611 * Throttle it only when the background writeback cannot 1612 * catch-up. This avoids (excessively) small writeouts 1613 * when the wb limits are ramping up in case of !strictlimit. 1614 * 1615 * In strictlimit case make decision based on the wb counters 1616 * and limits. Small writeouts when the wb limits are ramping 1617 * up are the price we consciously pay for strictlimit-ing. 1618 * 1619 * If memcg domain is in effect, @dirty should be under 1620 * both global and memcg freerun ceilings. 1621 */ 1622 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1623 (!mdtc || 1624 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1625 unsigned long intv = dirty_poll_interval(dirty, thresh); 1626 unsigned long m_intv = ULONG_MAX; 1627 1628 current->dirty_paused_when = now; 1629 current->nr_dirtied = 0; 1630 if (mdtc) 1631 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1632 current->nr_dirtied_pause = min(intv, m_intv); 1633 break; 1634 } 1635 1636 if (unlikely(!writeback_in_progress(wb))) 1637 wb_start_background_writeback(wb); 1638 1639 /* 1640 * Calculate global domain's pos_ratio and select the 1641 * global dtc by default. 1642 */ 1643 if (!strictlimit) 1644 wb_dirty_limits(gdtc); 1645 1646 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1647 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1648 1649 wb_position_ratio(gdtc); 1650 sdtc = gdtc; 1651 1652 if (mdtc) { 1653 /* 1654 * If memcg domain is in effect, calculate its 1655 * pos_ratio. @wb should satisfy constraints from 1656 * both global and memcg domains. Choose the one 1657 * w/ lower pos_ratio. 1658 */ 1659 if (!strictlimit) 1660 wb_dirty_limits(mdtc); 1661 1662 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1663 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1664 1665 wb_position_ratio(mdtc); 1666 if (mdtc->pos_ratio < gdtc->pos_ratio) 1667 sdtc = mdtc; 1668 } 1669 1670 if (dirty_exceeded && !wb->dirty_exceeded) 1671 wb->dirty_exceeded = 1; 1672 1673 if (time_is_before_jiffies(wb->bw_time_stamp + 1674 BANDWIDTH_INTERVAL)) { 1675 spin_lock(&wb->list_lock); 1676 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1677 spin_unlock(&wb->list_lock); 1678 } 1679 1680 /* throttle according to the chosen dtc */ 1681 dirty_ratelimit = wb->dirty_ratelimit; 1682 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1683 RATELIMIT_CALC_SHIFT; 1684 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1685 min_pause = wb_min_pause(wb, max_pause, 1686 task_ratelimit, dirty_ratelimit, 1687 &nr_dirtied_pause); 1688 1689 if (unlikely(task_ratelimit == 0)) { 1690 period = max_pause; 1691 pause = max_pause; 1692 goto pause; 1693 } 1694 period = HZ * pages_dirtied / task_ratelimit; 1695 pause = period; 1696 if (current->dirty_paused_when) 1697 pause -= now - current->dirty_paused_when; 1698 /* 1699 * For less than 1s think time (ext3/4 may block the dirtier 1700 * for up to 800ms from time to time on 1-HDD; so does xfs, 1701 * however at much less frequency), try to compensate it in 1702 * future periods by updating the virtual time; otherwise just 1703 * do a reset, as it may be a light dirtier. 1704 */ 1705 if (pause < min_pause) { 1706 trace_balance_dirty_pages(wb, 1707 sdtc->thresh, 1708 sdtc->bg_thresh, 1709 sdtc->dirty, 1710 sdtc->wb_thresh, 1711 sdtc->wb_dirty, 1712 dirty_ratelimit, 1713 task_ratelimit, 1714 pages_dirtied, 1715 period, 1716 min(pause, 0L), 1717 start_time); 1718 if (pause < -HZ) { 1719 current->dirty_paused_when = now; 1720 current->nr_dirtied = 0; 1721 } else if (period) { 1722 current->dirty_paused_when += period; 1723 current->nr_dirtied = 0; 1724 } else if (current->nr_dirtied_pause <= pages_dirtied) 1725 current->nr_dirtied_pause += pages_dirtied; 1726 break; 1727 } 1728 if (unlikely(pause > max_pause)) { 1729 /* for occasional dropped task_ratelimit */ 1730 now += min(pause - max_pause, max_pause); 1731 pause = max_pause; 1732 } 1733 1734 pause: 1735 trace_balance_dirty_pages(wb, 1736 sdtc->thresh, 1737 sdtc->bg_thresh, 1738 sdtc->dirty, 1739 sdtc->wb_thresh, 1740 sdtc->wb_dirty, 1741 dirty_ratelimit, 1742 task_ratelimit, 1743 pages_dirtied, 1744 period, 1745 pause, 1746 start_time); 1747 __set_current_state(TASK_KILLABLE); 1748 io_schedule_timeout(pause); 1749 1750 current->dirty_paused_when = now + pause; 1751 current->nr_dirtied = 0; 1752 current->nr_dirtied_pause = nr_dirtied_pause; 1753 1754 /* 1755 * This is typically equal to (dirty < thresh) and can also 1756 * keep "1000+ dd on a slow USB stick" under control. 1757 */ 1758 if (task_ratelimit) 1759 break; 1760 1761 /* 1762 * In the case of an unresponding NFS server and the NFS dirty 1763 * pages exceeds dirty_thresh, give the other good wb's a pipe 1764 * to go through, so that tasks on them still remain responsive. 1765 * 1766 * In theory 1 page is enough to keep the comsumer-producer 1767 * pipe going: the flusher cleans 1 page => the task dirties 1 1768 * more page. However wb_dirty has accounting errors. So use 1769 * the larger and more IO friendly wb_stat_error. 1770 */ 1771 if (sdtc->wb_dirty <= wb_stat_error(wb)) 1772 break; 1773 1774 if (fatal_signal_pending(current)) 1775 break; 1776 } 1777 1778 if (!dirty_exceeded && wb->dirty_exceeded) 1779 wb->dirty_exceeded = 0; 1780 1781 if (writeback_in_progress(wb)) 1782 return; 1783 1784 /* 1785 * In laptop mode, we wait until hitting the higher threshold before 1786 * starting background writeout, and then write out all the way down 1787 * to the lower threshold. So slow writers cause minimal disk activity. 1788 * 1789 * In normal mode, we start background writeout at the lower 1790 * background_thresh, to keep the amount of dirty memory low. 1791 */ 1792 if (laptop_mode) 1793 return; 1794 1795 if (nr_reclaimable > gdtc->bg_thresh) 1796 wb_start_background_writeback(wb); 1797 } 1798 1799 static DEFINE_PER_CPU(int, bdp_ratelimits); 1800 1801 /* 1802 * Normal tasks are throttled by 1803 * loop { 1804 * dirty tsk->nr_dirtied_pause pages; 1805 * take a snap in balance_dirty_pages(); 1806 * } 1807 * However there is a worst case. If every task exit immediately when dirtied 1808 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1809 * called to throttle the page dirties. The solution is to save the not yet 1810 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1811 * randomly into the running tasks. This works well for the above worst case, 1812 * as the new task will pick up and accumulate the old task's leaked dirty 1813 * count and eventually get throttled. 1814 */ 1815 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1816 1817 /** 1818 * balance_dirty_pages_ratelimited - balance dirty memory state 1819 * @mapping: address_space which was dirtied 1820 * 1821 * Processes which are dirtying memory should call in here once for each page 1822 * which was newly dirtied. The function will periodically check the system's 1823 * dirty state and will initiate writeback if needed. 1824 * 1825 * On really big machines, get_writeback_state is expensive, so try to avoid 1826 * calling it too often (ratelimiting). But once we're over the dirty memory 1827 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1828 * from overshooting the limit by (ratelimit_pages) each. 1829 */ 1830 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1831 { 1832 struct inode *inode = mapping->host; 1833 struct backing_dev_info *bdi = inode_to_bdi(inode); 1834 struct bdi_writeback *wb = NULL; 1835 int ratelimit; 1836 int *p; 1837 1838 if (!bdi_cap_account_dirty(bdi)) 1839 return; 1840 1841 if (inode_cgwb_enabled(inode)) 1842 wb = wb_get_create_current(bdi, GFP_KERNEL); 1843 if (!wb) 1844 wb = &bdi->wb; 1845 1846 ratelimit = current->nr_dirtied_pause; 1847 if (wb->dirty_exceeded) 1848 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1849 1850 preempt_disable(); 1851 /* 1852 * This prevents one CPU to accumulate too many dirtied pages without 1853 * calling into balance_dirty_pages(), which can happen when there are 1854 * 1000+ tasks, all of them start dirtying pages at exactly the same 1855 * time, hence all honoured too large initial task->nr_dirtied_pause. 1856 */ 1857 p = this_cpu_ptr(&bdp_ratelimits); 1858 if (unlikely(current->nr_dirtied >= ratelimit)) 1859 *p = 0; 1860 else if (unlikely(*p >= ratelimit_pages)) { 1861 *p = 0; 1862 ratelimit = 0; 1863 } 1864 /* 1865 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1866 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1867 * the dirty throttling and livelock other long-run dirtiers. 1868 */ 1869 p = this_cpu_ptr(&dirty_throttle_leaks); 1870 if (*p > 0 && current->nr_dirtied < ratelimit) { 1871 unsigned long nr_pages_dirtied; 1872 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1873 *p -= nr_pages_dirtied; 1874 current->nr_dirtied += nr_pages_dirtied; 1875 } 1876 preempt_enable(); 1877 1878 if (unlikely(current->nr_dirtied >= ratelimit)) 1879 balance_dirty_pages(mapping, wb, current->nr_dirtied); 1880 1881 wb_put(wb); 1882 } 1883 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1884 1885 /** 1886 * wb_over_bg_thresh - does @wb need to be written back? 1887 * @wb: bdi_writeback of interest 1888 * 1889 * Determines whether background writeback should keep writing @wb or it's 1890 * clean enough. Returns %true if writeback should continue. 1891 */ 1892 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1893 { 1894 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1895 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1896 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1897 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1898 &mdtc_stor : NULL; 1899 1900 /* 1901 * Similar to balance_dirty_pages() but ignores pages being written 1902 * as we're trying to decide whether to put more under writeback. 1903 */ 1904 gdtc->avail = global_dirtyable_memory(); 1905 gdtc->dirty = global_page_state(NR_FILE_DIRTY) + 1906 global_page_state(NR_UNSTABLE_NFS); 1907 domain_dirty_limits(gdtc); 1908 1909 if (gdtc->dirty > gdtc->bg_thresh) 1910 return true; 1911 1912 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc)) 1913 return true; 1914 1915 if (mdtc) { 1916 unsigned long filepages, headroom, writeback; 1917 1918 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1919 &writeback); 1920 mdtc_calc_avail(mdtc, filepages, headroom); 1921 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1922 1923 if (mdtc->dirty > mdtc->bg_thresh) 1924 return true; 1925 1926 if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc)) 1927 return true; 1928 } 1929 1930 return false; 1931 } 1932 1933 void throttle_vm_writeout(gfp_t gfp_mask) 1934 { 1935 unsigned long background_thresh; 1936 unsigned long dirty_thresh; 1937 1938 for ( ; ; ) { 1939 global_dirty_limits(&background_thresh, &dirty_thresh); 1940 dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh); 1941 1942 /* 1943 * Boost the allowable dirty threshold a bit for page 1944 * allocators so they don't get DoS'ed by heavy writers 1945 */ 1946 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 1947 1948 if (global_page_state(NR_UNSTABLE_NFS) + 1949 global_page_state(NR_WRITEBACK) <= dirty_thresh) 1950 break; 1951 congestion_wait(BLK_RW_ASYNC, HZ/10); 1952 1953 /* 1954 * The caller might hold locks which can prevent IO completion 1955 * or progress in the filesystem. So we cannot just sit here 1956 * waiting for IO to complete. 1957 */ 1958 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 1959 break; 1960 } 1961 } 1962 1963 /* 1964 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1965 */ 1966 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1967 void __user *buffer, size_t *length, loff_t *ppos) 1968 { 1969 proc_dointvec(table, write, buffer, length, ppos); 1970 return 0; 1971 } 1972 1973 #ifdef CONFIG_BLOCK 1974 void laptop_mode_timer_fn(unsigned long data) 1975 { 1976 struct request_queue *q = (struct request_queue *)data; 1977 int nr_pages = global_page_state(NR_FILE_DIRTY) + 1978 global_page_state(NR_UNSTABLE_NFS); 1979 struct bdi_writeback *wb; 1980 1981 /* 1982 * We want to write everything out, not just down to the dirty 1983 * threshold 1984 */ 1985 if (!bdi_has_dirty_io(&q->backing_dev_info)) 1986 return; 1987 1988 rcu_read_lock(); 1989 list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node) 1990 if (wb_has_dirty_io(wb)) 1991 wb_start_writeback(wb, nr_pages, true, 1992 WB_REASON_LAPTOP_TIMER); 1993 rcu_read_unlock(); 1994 } 1995 1996 /* 1997 * We've spun up the disk and we're in laptop mode: schedule writeback 1998 * of all dirty data a few seconds from now. If the flush is already scheduled 1999 * then push it back - the user is still using the disk. 2000 */ 2001 void laptop_io_completion(struct backing_dev_info *info) 2002 { 2003 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2004 } 2005 2006 /* 2007 * We're in laptop mode and we've just synced. The sync's writes will have 2008 * caused another writeback to be scheduled by laptop_io_completion. 2009 * Nothing needs to be written back anymore, so we unschedule the writeback. 2010 */ 2011 void laptop_sync_completion(void) 2012 { 2013 struct backing_dev_info *bdi; 2014 2015 rcu_read_lock(); 2016 2017 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2018 del_timer(&bdi->laptop_mode_wb_timer); 2019 2020 rcu_read_unlock(); 2021 } 2022 #endif 2023 2024 /* 2025 * If ratelimit_pages is too high then we can get into dirty-data overload 2026 * if a large number of processes all perform writes at the same time. 2027 * If it is too low then SMP machines will call the (expensive) 2028 * get_writeback_state too often. 2029 * 2030 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2031 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2032 * thresholds. 2033 */ 2034 2035 void writeback_set_ratelimit(void) 2036 { 2037 struct wb_domain *dom = &global_wb_domain; 2038 unsigned long background_thresh; 2039 unsigned long dirty_thresh; 2040 2041 global_dirty_limits(&background_thresh, &dirty_thresh); 2042 dom->dirty_limit = dirty_thresh; 2043 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2044 if (ratelimit_pages < 16) 2045 ratelimit_pages = 16; 2046 } 2047 2048 static int 2049 ratelimit_handler(struct notifier_block *self, unsigned long action, 2050 void *hcpu) 2051 { 2052 2053 switch (action & ~CPU_TASKS_FROZEN) { 2054 case CPU_ONLINE: 2055 case CPU_DEAD: 2056 writeback_set_ratelimit(); 2057 return NOTIFY_OK; 2058 default: 2059 return NOTIFY_DONE; 2060 } 2061 } 2062 2063 static struct notifier_block ratelimit_nb = { 2064 .notifier_call = ratelimit_handler, 2065 .next = NULL, 2066 }; 2067 2068 /* 2069 * Called early on to tune the page writeback dirty limits. 2070 * 2071 * We used to scale dirty pages according to how total memory 2072 * related to pages that could be allocated for buffers (by 2073 * comparing nr_free_buffer_pages() to vm_total_pages. 2074 * 2075 * However, that was when we used "dirty_ratio" to scale with 2076 * all memory, and we don't do that any more. "dirty_ratio" 2077 * is now applied to total non-HIGHPAGE memory (by subtracting 2078 * totalhigh_pages from vm_total_pages), and as such we can't 2079 * get into the old insane situation any more where we had 2080 * large amounts of dirty pages compared to a small amount of 2081 * non-HIGHMEM memory. 2082 * 2083 * But we might still want to scale the dirty_ratio by how 2084 * much memory the box has.. 2085 */ 2086 void __init page_writeback_init(void) 2087 { 2088 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2089 2090 writeback_set_ratelimit(); 2091 register_cpu_notifier(&ratelimit_nb); 2092 } 2093 2094 /** 2095 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2096 * @mapping: address space structure to write 2097 * @start: starting page index 2098 * @end: ending page index (inclusive) 2099 * 2100 * This function scans the page range from @start to @end (inclusive) and tags 2101 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2102 * that write_cache_pages (or whoever calls this function) will then use 2103 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2104 * used to avoid livelocking of writeback by a process steadily creating new 2105 * dirty pages in the file (thus it is important for this function to be quick 2106 * so that it can tag pages faster than a dirtying process can create them). 2107 */ 2108 /* 2109 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 2110 */ 2111 void tag_pages_for_writeback(struct address_space *mapping, 2112 pgoff_t start, pgoff_t end) 2113 { 2114 #define WRITEBACK_TAG_BATCH 4096 2115 unsigned long tagged; 2116 2117 do { 2118 spin_lock_irq(&mapping->tree_lock); 2119 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree, 2120 &start, end, WRITEBACK_TAG_BATCH, 2121 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE); 2122 spin_unlock_irq(&mapping->tree_lock); 2123 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH); 2124 cond_resched(); 2125 /* We check 'start' to handle wrapping when end == ~0UL */ 2126 } while (tagged >= WRITEBACK_TAG_BATCH && start); 2127 } 2128 EXPORT_SYMBOL(tag_pages_for_writeback); 2129 2130 /** 2131 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2132 * @mapping: address space structure to write 2133 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2134 * @writepage: function called for each page 2135 * @data: data passed to writepage function 2136 * 2137 * If a page is already under I/O, write_cache_pages() skips it, even 2138 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2139 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2140 * and msync() need to guarantee that all the data which was dirty at the time 2141 * the call was made get new I/O started against them. If wbc->sync_mode is 2142 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2143 * existing IO to complete. 2144 * 2145 * To avoid livelocks (when other process dirties new pages), we first tag 2146 * pages which should be written back with TOWRITE tag and only then start 2147 * writing them. For data-integrity sync we have to be careful so that we do 2148 * not miss some pages (e.g., because some other process has cleared TOWRITE 2149 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2150 * by the process clearing the DIRTY tag (and submitting the page for IO). 2151 */ 2152 int write_cache_pages(struct address_space *mapping, 2153 struct writeback_control *wbc, writepage_t writepage, 2154 void *data) 2155 { 2156 int ret = 0; 2157 int done = 0; 2158 struct pagevec pvec; 2159 int nr_pages; 2160 pgoff_t uninitialized_var(writeback_index); 2161 pgoff_t index; 2162 pgoff_t end; /* Inclusive */ 2163 pgoff_t done_index; 2164 int cycled; 2165 int range_whole = 0; 2166 int tag; 2167 2168 pagevec_init(&pvec, 0); 2169 if (wbc->range_cyclic) { 2170 writeback_index = mapping->writeback_index; /* prev offset */ 2171 index = writeback_index; 2172 if (index == 0) 2173 cycled = 1; 2174 else 2175 cycled = 0; 2176 end = -1; 2177 } else { 2178 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2179 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2180 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2181 range_whole = 1; 2182 cycled = 1; /* ignore range_cyclic tests */ 2183 } 2184 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2185 tag = PAGECACHE_TAG_TOWRITE; 2186 else 2187 tag = PAGECACHE_TAG_DIRTY; 2188 retry: 2189 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2190 tag_pages_for_writeback(mapping, index, end); 2191 done_index = index; 2192 while (!done && (index <= end)) { 2193 int i; 2194 2195 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 2196 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1); 2197 if (nr_pages == 0) 2198 break; 2199 2200 for (i = 0; i < nr_pages; i++) { 2201 struct page *page = pvec.pages[i]; 2202 2203 /* 2204 * At this point, the page may be truncated or 2205 * invalidated (changing page->mapping to NULL), or 2206 * even swizzled back from swapper_space to tmpfs file 2207 * mapping. However, page->index will not change 2208 * because we have a reference on the page. 2209 */ 2210 if (page->index > end) { 2211 /* 2212 * can't be range_cyclic (1st pass) because 2213 * end == -1 in that case. 2214 */ 2215 done = 1; 2216 break; 2217 } 2218 2219 done_index = page->index; 2220 2221 lock_page(page); 2222 2223 /* 2224 * Page truncated or invalidated. We can freely skip it 2225 * then, even for data integrity operations: the page 2226 * has disappeared concurrently, so there could be no 2227 * real expectation of this data interity operation 2228 * even if there is now a new, dirty page at the same 2229 * pagecache address. 2230 */ 2231 if (unlikely(page->mapping != mapping)) { 2232 continue_unlock: 2233 unlock_page(page); 2234 continue; 2235 } 2236 2237 if (!PageDirty(page)) { 2238 /* someone wrote it for us */ 2239 goto continue_unlock; 2240 } 2241 2242 if (PageWriteback(page)) { 2243 if (wbc->sync_mode != WB_SYNC_NONE) 2244 wait_on_page_writeback(page); 2245 else 2246 goto continue_unlock; 2247 } 2248 2249 BUG_ON(PageWriteback(page)); 2250 if (!clear_page_dirty_for_io(page)) 2251 goto continue_unlock; 2252 2253 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2254 ret = (*writepage)(page, wbc, data); 2255 if (unlikely(ret)) { 2256 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2257 unlock_page(page); 2258 ret = 0; 2259 } else { 2260 /* 2261 * done_index is set past this page, 2262 * so media errors will not choke 2263 * background writeout for the entire 2264 * file. This has consequences for 2265 * range_cyclic semantics (ie. it may 2266 * not be suitable for data integrity 2267 * writeout). 2268 */ 2269 done_index = page->index + 1; 2270 done = 1; 2271 break; 2272 } 2273 } 2274 2275 /* 2276 * We stop writing back only if we are not doing 2277 * integrity sync. In case of integrity sync we have to 2278 * keep going until we have written all the pages 2279 * we tagged for writeback prior to entering this loop. 2280 */ 2281 if (--wbc->nr_to_write <= 0 && 2282 wbc->sync_mode == WB_SYNC_NONE) { 2283 done = 1; 2284 break; 2285 } 2286 } 2287 pagevec_release(&pvec); 2288 cond_resched(); 2289 } 2290 if (!cycled && !done) { 2291 /* 2292 * range_cyclic: 2293 * We hit the last page and there is more work to be done: wrap 2294 * back to the start of the file 2295 */ 2296 cycled = 1; 2297 index = 0; 2298 end = writeback_index - 1; 2299 goto retry; 2300 } 2301 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2302 mapping->writeback_index = done_index; 2303 2304 return ret; 2305 } 2306 EXPORT_SYMBOL(write_cache_pages); 2307 2308 /* 2309 * Function used by generic_writepages to call the real writepage 2310 * function and set the mapping flags on error 2311 */ 2312 static int __writepage(struct page *page, struct writeback_control *wbc, 2313 void *data) 2314 { 2315 struct address_space *mapping = data; 2316 int ret = mapping->a_ops->writepage(page, wbc); 2317 mapping_set_error(mapping, ret); 2318 return ret; 2319 } 2320 2321 /** 2322 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2323 * @mapping: address space structure to write 2324 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2325 * 2326 * This is a library function, which implements the writepages() 2327 * address_space_operation. 2328 */ 2329 int generic_writepages(struct address_space *mapping, 2330 struct writeback_control *wbc) 2331 { 2332 struct blk_plug plug; 2333 int ret; 2334 2335 /* deal with chardevs and other special file */ 2336 if (!mapping->a_ops->writepage) 2337 return 0; 2338 2339 blk_start_plug(&plug); 2340 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2341 blk_finish_plug(&plug); 2342 return ret; 2343 } 2344 2345 EXPORT_SYMBOL(generic_writepages); 2346 2347 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2348 { 2349 int ret; 2350 2351 if (wbc->nr_to_write <= 0) 2352 return 0; 2353 if (mapping->a_ops->writepages) 2354 ret = mapping->a_ops->writepages(mapping, wbc); 2355 else 2356 ret = generic_writepages(mapping, wbc); 2357 return ret; 2358 } 2359 2360 /** 2361 * write_one_page - write out a single page and optionally wait on I/O 2362 * @page: the page to write 2363 * @wait: if true, wait on writeout 2364 * 2365 * The page must be locked by the caller and will be unlocked upon return. 2366 * 2367 * write_one_page() returns a negative error code if I/O failed. 2368 */ 2369 int write_one_page(struct page *page, int wait) 2370 { 2371 struct address_space *mapping = page->mapping; 2372 int ret = 0; 2373 struct writeback_control wbc = { 2374 .sync_mode = WB_SYNC_ALL, 2375 .nr_to_write = 1, 2376 }; 2377 2378 BUG_ON(!PageLocked(page)); 2379 2380 if (wait) 2381 wait_on_page_writeback(page); 2382 2383 if (clear_page_dirty_for_io(page)) { 2384 page_cache_get(page); 2385 ret = mapping->a_ops->writepage(page, &wbc); 2386 if (ret == 0 && wait) { 2387 wait_on_page_writeback(page); 2388 if (PageError(page)) 2389 ret = -EIO; 2390 } 2391 page_cache_release(page); 2392 } else { 2393 unlock_page(page); 2394 } 2395 return ret; 2396 } 2397 EXPORT_SYMBOL(write_one_page); 2398 2399 /* 2400 * For address_spaces which do not use buffers nor write back. 2401 */ 2402 int __set_page_dirty_no_writeback(struct page *page) 2403 { 2404 if (!PageDirty(page)) 2405 return !TestSetPageDirty(page); 2406 return 0; 2407 } 2408 2409 /* 2410 * Helper function for set_page_dirty family. 2411 * 2412 * Caller must hold mem_cgroup_begin_page_stat(). 2413 * 2414 * NOTE: This relies on being atomic wrt interrupts. 2415 */ 2416 void account_page_dirtied(struct page *page, struct address_space *mapping, 2417 struct mem_cgroup *memcg) 2418 { 2419 struct inode *inode = mapping->host; 2420 2421 trace_writeback_dirty_page(page, mapping); 2422 2423 if (mapping_cap_account_dirty(mapping)) { 2424 struct bdi_writeback *wb; 2425 2426 inode_attach_wb(inode, page); 2427 wb = inode_to_wb(inode); 2428 2429 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY); 2430 __inc_zone_page_state(page, NR_FILE_DIRTY); 2431 __inc_zone_page_state(page, NR_DIRTIED); 2432 __inc_wb_stat(wb, WB_RECLAIMABLE); 2433 __inc_wb_stat(wb, WB_DIRTIED); 2434 task_io_account_write(PAGE_CACHE_SIZE); 2435 current->nr_dirtied++; 2436 this_cpu_inc(bdp_ratelimits); 2437 } 2438 } 2439 EXPORT_SYMBOL(account_page_dirtied); 2440 2441 /* 2442 * Helper function for deaccounting dirty page without writeback. 2443 * 2444 * Caller must hold mem_cgroup_begin_page_stat(). 2445 */ 2446 void account_page_cleaned(struct page *page, struct address_space *mapping, 2447 struct mem_cgroup *memcg, struct bdi_writeback *wb) 2448 { 2449 if (mapping_cap_account_dirty(mapping)) { 2450 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY); 2451 dec_zone_page_state(page, NR_FILE_DIRTY); 2452 dec_wb_stat(wb, WB_RECLAIMABLE); 2453 task_io_account_cancelled_write(PAGE_CACHE_SIZE); 2454 } 2455 } 2456 2457 /* 2458 * For address_spaces which do not use buffers. Just tag the page as dirty in 2459 * its radix tree. 2460 * 2461 * This is also used when a single buffer is being dirtied: we want to set the 2462 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2463 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2464 * 2465 * The caller must ensure this doesn't race with truncation. Most will simply 2466 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2467 * the pte lock held, which also locks out truncation. 2468 */ 2469 int __set_page_dirty_nobuffers(struct page *page) 2470 { 2471 struct mem_cgroup *memcg; 2472 2473 memcg = mem_cgroup_begin_page_stat(page); 2474 if (!TestSetPageDirty(page)) { 2475 struct address_space *mapping = page_mapping(page); 2476 unsigned long flags; 2477 2478 if (!mapping) { 2479 mem_cgroup_end_page_stat(memcg); 2480 return 1; 2481 } 2482 2483 spin_lock_irqsave(&mapping->tree_lock, flags); 2484 BUG_ON(page_mapping(page) != mapping); 2485 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2486 account_page_dirtied(page, mapping, memcg); 2487 radix_tree_tag_set(&mapping->page_tree, page_index(page), 2488 PAGECACHE_TAG_DIRTY); 2489 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2490 mem_cgroup_end_page_stat(memcg); 2491 2492 if (mapping->host) { 2493 /* !PageAnon && !swapper_space */ 2494 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2495 } 2496 return 1; 2497 } 2498 mem_cgroup_end_page_stat(memcg); 2499 return 0; 2500 } 2501 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2502 2503 /* 2504 * Call this whenever redirtying a page, to de-account the dirty counters 2505 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2506 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2507 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2508 * control. 2509 */ 2510 void account_page_redirty(struct page *page) 2511 { 2512 struct address_space *mapping = page->mapping; 2513 2514 if (mapping && mapping_cap_account_dirty(mapping)) { 2515 struct inode *inode = mapping->host; 2516 struct bdi_writeback *wb; 2517 bool locked; 2518 2519 wb = unlocked_inode_to_wb_begin(inode, &locked); 2520 current->nr_dirtied--; 2521 dec_zone_page_state(page, NR_DIRTIED); 2522 dec_wb_stat(wb, WB_DIRTIED); 2523 unlocked_inode_to_wb_end(inode, locked); 2524 } 2525 } 2526 EXPORT_SYMBOL(account_page_redirty); 2527 2528 /* 2529 * When a writepage implementation decides that it doesn't want to write this 2530 * page for some reason, it should redirty the locked page via 2531 * redirty_page_for_writepage() and it should then unlock the page and return 0 2532 */ 2533 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2534 { 2535 int ret; 2536 2537 wbc->pages_skipped++; 2538 ret = __set_page_dirty_nobuffers(page); 2539 account_page_redirty(page); 2540 return ret; 2541 } 2542 EXPORT_SYMBOL(redirty_page_for_writepage); 2543 2544 /* 2545 * Dirty a page. 2546 * 2547 * For pages with a mapping this should be done under the page lock 2548 * for the benefit of asynchronous memory errors who prefer a consistent 2549 * dirty state. This rule can be broken in some special cases, 2550 * but should be better not to. 2551 * 2552 * If the mapping doesn't provide a set_page_dirty a_op, then 2553 * just fall through and assume that it wants buffer_heads. 2554 */ 2555 int set_page_dirty(struct page *page) 2556 { 2557 struct address_space *mapping = page_mapping(page); 2558 2559 if (likely(mapping)) { 2560 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2561 /* 2562 * readahead/lru_deactivate_page could remain 2563 * PG_readahead/PG_reclaim due to race with end_page_writeback 2564 * About readahead, if the page is written, the flags would be 2565 * reset. So no problem. 2566 * About lru_deactivate_page, if the page is redirty, the flag 2567 * will be reset. So no problem. but if the page is used by readahead 2568 * it will confuse readahead and make it restart the size rampup 2569 * process. But it's a trivial problem. 2570 */ 2571 if (PageReclaim(page)) 2572 ClearPageReclaim(page); 2573 #ifdef CONFIG_BLOCK 2574 if (!spd) 2575 spd = __set_page_dirty_buffers; 2576 #endif 2577 return (*spd)(page); 2578 } 2579 if (!PageDirty(page)) { 2580 if (!TestSetPageDirty(page)) 2581 return 1; 2582 } 2583 return 0; 2584 } 2585 EXPORT_SYMBOL(set_page_dirty); 2586 2587 /* 2588 * set_page_dirty() is racy if the caller has no reference against 2589 * page->mapping->host, and if the page is unlocked. This is because another 2590 * CPU could truncate the page off the mapping and then free the mapping. 2591 * 2592 * Usually, the page _is_ locked, or the caller is a user-space process which 2593 * holds a reference on the inode by having an open file. 2594 * 2595 * In other cases, the page should be locked before running set_page_dirty(). 2596 */ 2597 int set_page_dirty_lock(struct page *page) 2598 { 2599 int ret; 2600 2601 lock_page(page); 2602 ret = set_page_dirty(page); 2603 unlock_page(page); 2604 return ret; 2605 } 2606 EXPORT_SYMBOL(set_page_dirty_lock); 2607 2608 /* 2609 * This cancels just the dirty bit on the kernel page itself, it does NOT 2610 * actually remove dirty bits on any mmap's that may be around. It also 2611 * leaves the page tagged dirty, so any sync activity will still find it on 2612 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2613 * look at the dirty bits in the VM. 2614 * 2615 * Doing this should *normally* only ever be done when a page is truncated, 2616 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2617 * this when it notices that somebody has cleaned out all the buffers on a 2618 * page without actually doing it through the VM. Can you say "ext3 is 2619 * horribly ugly"? Thought you could. 2620 */ 2621 void cancel_dirty_page(struct page *page) 2622 { 2623 struct address_space *mapping = page_mapping(page); 2624 2625 if (mapping_cap_account_dirty(mapping)) { 2626 struct inode *inode = mapping->host; 2627 struct bdi_writeback *wb; 2628 struct mem_cgroup *memcg; 2629 bool locked; 2630 2631 memcg = mem_cgroup_begin_page_stat(page); 2632 wb = unlocked_inode_to_wb_begin(inode, &locked); 2633 2634 if (TestClearPageDirty(page)) 2635 account_page_cleaned(page, mapping, memcg, wb); 2636 2637 unlocked_inode_to_wb_end(inode, locked); 2638 mem_cgroup_end_page_stat(memcg); 2639 } else { 2640 ClearPageDirty(page); 2641 } 2642 } 2643 EXPORT_SYMBOL(cancel_dirty_page); 2644 2645 /* 2646 * Clear a page's dirty flag, while caring for dirty memory accounting. 2647 * Returns true if the page was previously dirty. 2648 * 2649 * This is for preparing to put the page under writeout. We leave the page 2650 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2651 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2652 * implementation will run either set_page_writeback() or set_page_dirty(), 2653 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2654 * back into sync. 2655 * 2656 * This incoherency between the page's dirty flag and radix-tree tag is 2657 * unfortunate, but it only exists while the page is locked. 2658 */ 2659 int clear_page_dirty_for_io(struct page *page) 2660 { 2661 struct address_space *mapping = page_mapping(page); 2662 int ret = 0; 2663 2664 BUG_ON(!PageLocked(page)); 2665 2666 if (mapping && mapping_cap_account_dirty(mapping)) { 2667 struct inode *inode = mapping->host; 2668 struct bdi_writeback *wb; 2669 struct mem_cgroup *memcg; 2670 bool locked; 2671 2672 /* 2673 * Yes, Virginia, this is indeed insane. 2674 * 2675 * We use this sequence to make sure that 2676 * (a) we account for dirty stats properly 2677 * (b) we tell the low-level filesystem to 2678 * mark the whole page dirty if it was 2679 * dirty in a pagetable. Only to then 2680 * (c) clean the page again and return 1 to 2681 * cause the writeback. 2682 * 2683 * This way we avoid all nasty races with the 2684 * dirty bit in multiple places and clearing 2685 * them concurrently from different threads. 2686 * 2687 * Note! Normally the "set_page_dirty(page)" 2688 * has no effect on the actual dirty bit - since 2689 * that will already usually be set. But we 2690 * need the side effects, and it can help us 2691 * avoid races. 2692 * 2693 * We basically use the page "master dirty bit" 2694 * as a serialization point for all the different 2695 * threads doing their things. 2696 */ 2697 if (page_mkclean(page)) 2698 set_page_dirty(page); 2699 /* 2700 * We carefully synchronise fault handlers against 2701 * installing a dirty pte and marking the page dirty 2702 * at this point. We do this by having them hold the 2703 * page lock while dirtying the page, and pages are 2704 * always locked coming in here, so we get the desired 2705 * exclusion. 2706 */ 2707 memcg = mem_cgroup_begin_page_stat(page); 2708 wb = unlocked_inode_to_wb_begin(inode, &locked); 2709 if (TestClearPageDirty(page)) { 2710 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY); 2711 dec_zone_page_state(page, NR_FILE_DIRTY); 2712 dec_wb_stat(wb, WB_RECLAIMABLE); 2713 ret = 1; 2714 } 2715 unlocked_inode_to_wb_end(inode, locked); 2716 mem_cgroup_end_page_stat(memcg); 2717 return ret; 2718 } 2719 return TestClearPageDirty(page); 2720 } 2721 EXPORT_SYMBOL(clear_page_dirty_for_io); 2722 2723 int test_clear_page_writeback(struct page *page) 2724 { 2725 struct address_space *mapping = page_mapping(page); 2726 struct mem_cgroup *memcg; 2727 int ret; 2728 2729 memcg = mem_cgroup_begin_page_stat(page); 2730 if (mapping) { 2731 struct inode *inode = mapping->host; 2732 struct backing_dev_info *bdi = inode_to_bdi(inode); 2733 unsigned long flags; 2734 2735 spin_lock_irqsave(&mapping->tree_lock, flags); 2736 ret = TestClearPageWriteback(page); 2737 if (ret) { 2738 radix_tree_tag_clear(&mapping->page_tree, 2739 page_index(page), 2740 PAGECACHE_TAG_WRITEBACK); 2741 if (bdi_cap_account_writeback(bdi)) { 2742 struct bdi_writeback *wb = inode_to_wb(inode); 2743 2744 __dec_wb_stat(wb, WB_WRITEBACK); 2745 __wb_writeout_inc(wb); 2746 } 2747 } 2748 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2749 } else { 2750 ret = TestClearPageWriteback(page); 2751 } 2752 if (ret) { 2753 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 2754 dec_zone_page_state(page, NR_WRITEBACK); 2755 inc_zone_page_state(page, NR_WRITTEN); 2756 } 2757 mem_cgroup_end_page_stat(memcg); 2758 return ret; 2759 } 2760 2761 int __test_set_page_writeback(struct page *page, bool keep_write) 2762 { 2763 struct address_space *mapping = page_mapping(page); 2764 struct mem_cgroup *memcg; 2765 int ret; 2766 2767 memcg = mem_cgroup_begin_page_stat(page); 2768 if (mapping) { 2769 struct inode *inode = mapping->host; 2770 struct backing_dev_info *bdi = inode_to_bdi(inode); 2771 unsigned long flags; 2772 2773 spin_lock_irqsave(&mapping->tree_lock, flags); 2774 ret = TestSetPageWriteback(page); 2775 if (!ret) { 2776 radix_tree_tag_set(&mapping->page_tree, 2777 page_index(page), 2778 PAGECACHE_TAG_WRITEBACK); 2779 if (bdi_cap_account_writeback(bdi)) 2780 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2781 } 2782 if (!PageDirty(page)) 2783 radix_tree_tag_clear(&mapping->page_tree, 2784 page_index(page), 2785 PAGECACHE_TAG_DIRTY); 2786 if (!keep_write) 2787 radix_tree_tag_clear(&mapping->page_tree, 2788 page_index(page), 2789 PAGECACHE_TAG_TOWRITE); 2790 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2791 } else { 2792 ret = TestSetPageWriteback(page); 2793 } 2794 if (!ret) { 2795 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK); 2796 inc_zone_page_state(page, NR_WRITEBACK); 2797 } 2798 mem_cgroup_end_page_stat(memcg); 2799 return ret; 2800 2801 } 2802 EXPORT_SYMBOL(__test_set_page_writeback); 2803 2804 /* 2805 * Return true if any of the pages in the mapping are marked with the 2806 * passed tag. 2807 */ 2808 int mapping_tagged(struct address_space *mapping, int tag) 2809 { 2810 return radix_tree_tagged(&mapping->page_tree, tag); 2811 } 2812 EXPORT_SYMBOL(mapping_tagged); 2813 2814 /** 2815 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2816 * @page: The page to wait on. 2817 * 2818 * This function determines if the given page is related to a backing device 2819 * that requires page contents to be held stable during writeback. If so, then 2820 * it will wait for any pending writeback to complete. 2821 */ 2822 void wait_for_stable_page(struct page *page) 2823 { 2824 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2825 wait_on_page_writeback(page); 2826 } 2827 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2828