1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 }; 143 144 /* 145 * Length of period for aging writeout fractions of bdis. This is an 146 * arbitrarily chosen number. The longer the period, the slower fractions will 147 * reflect changes in current writeout rate. 148 */ 149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 150 151 #ifdef CONFIG_CGROUP_WRITEBACK 152 153 #define GDTC_INIT(__wb) .wb = (__wb), \ 154 .dom = &global_wb_domain, \ 155 .wb_completions = &(__wb)->completions 156 157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 158 159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 160 .dom = mem_cgroup_wb_domain(__wb), \ 161 .wb_completions = &(__wb)->memcg_completions, \ 162 .gdtc = __gdtc 163 164 static bool mdtc_valid(struct dirty_throttle_control *dtc) 165 { 166 return dtc->dom; 167 } 168 169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 175 { 176 return mdtc->gdtc; 177 } 178 179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 180 { 181 return &wb->memcg_completions; 182 } 183 184 static void wb_min_max_ratio(struct bdi_writeback *wb, 185 unsigned long *minp, unsigned long *maxp) 186 { 187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 189 unsigned long long min = wb->bdi->min_ratio; 190 unsigned long long max = wb->bdi->max_ratio; 191 192 /* 193 * @wb may already be clean by the time control reaches here and 194 * the total may not include its bw. 195 */ 196 if (this_bw < tot_bw) { 197 if (min) { 198 min *= this_bw; 199 min = div64_ul(min, tot_bw); 200 } 201 if (max < 100 * BDI_RATIO_SCALE) { 202 max *= this_bw; 203 max = div64_ul(max, tot_bw); 204 } 205 } 206 207 *minp = min; 208 *maxp = max; 209 } 210 211 #else /* CONFIG_CGROUP_WRITEBACK */ 212 213 #define GDTC_INIT(__wb) .wb = (__wb), \ 214 .wb_completions = &(__wb)->completions 215 #define GDTC_INIT_NO_WB 216 #define MDTC_INIT(__wb, __gdtc) 217 218 static bool mdtc_valid(struct dirty_throttle_control *dtc) 219 { 220 return false; 221 } 222 223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 224 { 225 return &global_wb_domain; 226 } 227 228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 229 { 230 return NULL; 231 } 232 233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 234 { 235 return NULL; 236 } 237 238 static void wb_min_max_ratio(struct bdi_writeback *wb, 239 unsigned long *minp, unsigned long *maxp) 240 { 241 *minp = wb->bdi->min_ratio; 242 *maxp = wb->bdi->max_ratio; 243 } 244 245 #endif /* CONFIG_CGROUP_WRITEBACK */ 246 247 /* 248 * In a memory zone, there is a certain amount of pages we consider 249 * available for the page cache, which is essentially the number of 250 * free and reclaimable pages, minus some zone reserves to protect 251 * lowmem and the ability to uphold the zone's watermarks without 252 * requiring writeback. 253 * 254 * This number of dirtyable pages is the base value of which the 255 * user-configurable dirty ratio is the effective number of pages that 256 * are allowed to be actually dirtied. Per individual zone, or 257 * globally by using the sum of dirtyable pages over all zones. 258 * 259 * Because the user is allowed to specify the dirty limit globally as 260 * absolute number of bytes, calculating the per-zone dirty limit can 261 * require translating the configured limit into a percentage of 262 * global dirtyable memory first. 263 */ 264 265 /** 266 * node_dirtyable_memory - number of dirtyable pages in a node 267 * @pgdat: the node 268 * 269 * Return: the node's number of pages potentially available for dirty 270 * page cache. This is the base value for the per-node dirty limits. 271 */ 272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 273 { 274 unsigned long nr_pages = 0; 275 int z; 276 277 for (z = 0; z < MAX_NR_ZONES; z++) { 278 struct zone *zone = pgdat->node_zones + z; 279 280 if (!populated_zone(zone)) 281 continue; 282 283 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 284 } 285 286 /* 287 * Pages reserved for the kernel should not be considered 288 * dirtyable, to prevent a situation where reclaim has to 289 * clean pages in order to balance the zones. 290 */ 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 292 293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 295 296 return nr_pages; 297 } 298 299 static unsigned long highmem_dirtyable_memory(unsigned long total) 300 { 301 #ifdef CONFIG_HIGHMEM 302 int node; 303 unsigned long x = 0; 304 int i; 305 306 for_each_node_state(node, N_HIGH_MEMORY) { 307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 308 struct zone *z; 309 unsigned long nr_pages; 310 311 if (!is_highmem_idx(i)) 312 continue; 313 314 z = &NODE_DATA(node)->node_zones[i]; 315 if (!populated_zone(z)) 316 continue; 317 318 nr_pages = zone_page_state(z, NR_FREE_PAGES); 319 /* watch for underflows */ 320 nr_pages -= min(nr_pages, high_wmark_pages(z)); 321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 323 x += nr_pages; 324 } 325 } 326 327 /* 328 * Make sure that the number of highmem pages is never larger 329 * than the number of the total dirtyable memory. This can only 330 * occur in very strange VM situations but we want to make sure 331 * that this does not occur. 332 */ 333 return min(x, total); 334 #else 335 return 0; 336 #endif 337 } 338 339 /** 340 * global_dirtyable_memory - number of globally dirtyable pages 341 * 342 * Return: the global number of pages potentially available for dirty 343 * page cache. This is the base value for the global dirty limits. 344 */ 345 static unsigned long global_dirtyable_memory(void) 346 { 347 unsigned long x; 348 349 x = global_zone_page_state(NR_FREE_PAGES); 350 /* 351 * Pages reserved for the kernel should not be considered 352 * dirtyable, to prevent a situation where reclaim has to 353 * clean pages in order to balance the zones. 354 */ 355 x -= min(x, totalreserve_pages); 356 357 x += global_node_page_state(NR_INACTIVE_FILE); 358 x += global_node_page_state(NR_ACTIVE_FILE); 359 360 if (!vm_highmem_is_dirtyable) 361 x -= highmem_dirtyable_memory(x); 362 363 return x + 1; /* Ensure that we never return 0 */ 364 } 365 366 /** 367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 368 * @dtc: dirty_throttle_control of interest 369 * 370 * Calculate @dtc->thresh and ->bg_thresh considering 371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 372 * must ensure that @dtc->avail is set before calling this function. The 373 * dirty limits will be lifted by 1/4 for real-time tasks. 374 */ 375 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 376 { 377 const unsigned long available_memory = dtc->avail; 378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 379 unsigned long bytes = vm_dirty_bytes; 380 unsigned long bg_bytes = dirty_background_bytes; 381 /* convert ratios to per-PAGE_SIZE for higher precision */ 382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 384 unsigned long thresh; 385 unsigned long bg_thresh; 386 struct task_struct *tsk; 387 388 /* gdtc is !NULL iff @dtc is for memcg domain */ 389 if (gdtc) { 390 unsigned long global_avail = gdtc->avail; 391 392 /* 393 * The byte settings can't be applied directly to memcg 394 * domains. Convert them to ratios by scaling against 395 * globally available memory. As the ratios are in 396 * per-PAGE_SIZE, they can be obtained by dividing bytes by 397 * number of pages. 398 */ 399 if (bytes) 400 ratio = min(DIV_ROUND_UP(bytes, global_avail), 401 PAGE_SIZE); 402 if (bg_bytes) 403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 404 PAGE_SIZE); 405 bytes = bg_bytes = 0; 406 } 407 408 if (bytes) 409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 410 else 411 thresh = (ratio * available_memory) / PAGE_SIZE; 412 413 if (bg_bytes) 414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 415 else 416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 417 418 if (bg_thresh >= thresh) 419 bg_thresh = thresh / 2; 420 tsk = current; 421 if (rt_task(tsk)) { 422 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 423 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 424 } 425 dtc->thresh = thresh; 426 dtc->bg_thresh = bg_thresh; 427 428 /* we should eventually report the domain in the TP */ 429 if (!gdtc) 430 trace_global_dirty_state(bg_thresh, thresh); 431 } 432 433 /** 434 * global_dirty_limits - background-writeback and dirty-throttling thresholds 435 * @pbackground: out parameter for bg_thresh 436 * @pdirty: out parameter for thresh 437 * 438 * Calculate bg_thresh and thresh for global_wb_domain. See 439 * domain_dirty_limits() for details. 440 */ 441 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 442 { 443 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 444 445 gdtc.avail = global_dirtyable_memory(); 446 domain_dirty_limits(&gdtc); 447 448 *pbackground = gdtc.bg_thresh; 449 *pdirty = gdtc.thresh; 450 } 451 452 /** 453 * node_dirty_limit - maximum number of dirty pages allowed in a node 454 * @pgdat: the node 455 * 456 * Return: the maximum number of dirty pages allowed in a node, based 457 * on the node's dirtyable memory. 458 */ 459 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 460 { 461 unsigned long node_memory = node_dirtyable_memory(pgdat); 462 struct task_struct *tsk = current; 463 unsigned long dirty; 464 465 if (vm_dirty_bytes) 466 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 467 node_memory / global_dirtyable_memory(); 468 else 469 dirty = vm_dirty_ratio * node_memory / 100; 470 471 if (rt_task(tsk)) 472 dirty += dirty / 4; 473 474 return dirty; 475 } 476 477 /** 478 * node_dirty_ok - tells whether a node is within its dirty limits 479 * @pgdat: the node to check 480 * 481 * Return: %true when the dirty pages in @pgdat are within the node's 482 * dirty limit, %false if the limit is exceeded. 483 */ 484 bool node_dirty_ok(struct pglist_data *pgdat) 485 { 486 unsigned long limit = node_dirty_limit(pgdat); 487 unsigned long nr_pages = 0; 488 489 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 490 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 491 492 return nr_pages <= limit; 493 } 494 495 #ifdef CONFIG_SYSCTL 496 static int dirty_background_ratio_handler(struct ctl_table *table, int write, 497 void *buffer, size_t *lenp, loff_t *ppos) 498 { 499 int ret; 500 501 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 502 if (ret == 0 && write) 503 dirty_background_bytes = 0; 504 return ret; 505 } 506 507 static int dirty_background_bytes_handler(struct ctl_table *table, int write, 508 void *buffer, size_t *lenp, loff_t *ppos) 509 { 510 int ret; 511 512 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 513 if (ret == 0 && write) 514 dirty_background_ratio = 0; 515 return ret; 516 } 517 518 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 519 size_t *lenp, loff_t *ppos) 520 { 521 int old_ratio = vm_dirty_ratio; 522 int ret; 523 524 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 525 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 526 writeback_set_ratelimit(); 527 vm_dirty_bytes = 0; 528 } 529 return ret; 530 } 531 532 static int dirty_bytes_handler(struct ctl_table *table, int write, 533 void *buffer, size_t *lenp, loff_t *ppos) 534 { 535 unsigned long old_bytes = vm_dirty_bytes; 536 int ret; 537 538 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 539 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 540 writeback_set_ratelimit(); 541 vm_dirty_ratio = 0; 542 } 543 return ret; 544 } 545 #endif 546 547 static unsigned long wp_next_time(unsigned long cur_time) 548 { 549 cur_time += VM_COMPLETIONS_PERIOD_LEN; 550 /* 0 has a special meaning... */ 551 if (!cur_time) 552 return 1; 553 return cur_time; 554 } 555 556 static void wb_domain_writeout_add(struct wb_domain *dom, 557 struct fprop_local_percpu *completions, 558 unsigned int max_prop_frac, long nr) 559 { 560 __fprop_add_percpu_max(&dom->completions, completions, 561 max_prop_frac, nr); 562 /* First event after period switching was turned off? */ 563 if (unlikely(!dom->period_time)) { 564 /* 565 * We can race with other __bdi_writeout_inc calls here but 566 * it does not cause any harm since the resulting time when 567 * timer will fire and what is in writeout_period_time will be 568 * roughly the same. 569 */ 570 dom->period_time = wp_next_time(jiffies); 571 mod_timer(&dom->period_timer, dom->period_time); 572 } 573 } 574 575 /* 576 * Increment @wb's writeout completion count and the global writeout 577 * completion count. Called from __folio_end_writeback(). 578 */ 579 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 580 { 581 struct wb_domain *cgdom; 582 583 wb_stat_mod(wb, WB_WRITTEN, nr); 584 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 585 wb->bdi->max_prop_frac, nr); 586 587 cgdom = mem_cgroup_wb_domain(wb); 588 if (cgdom) 589 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 590 wb->bdi->max_prop_frac, nr); 591 } 592 593 void wb_writeout_inc(struct bdi_writeback *wb) 594 { 595 unsigned long flags; 596 597 local_irq_save(flags); 598 __wb_writeout_add(wb, 1); 599 local_irq_restore(flags); 600 } 601 EXPORT_SYMBOL_GPL(wb_writeout_inc); 602 603 /* 604 * On idle system, we can be called long after we scheduled because we use 605 * deferred timers so count with missed periods. 606 */ 607 static void writeout_period(struct timer_list *t) 608 { 609 struct wb_domain *dom = from_timer(dom, t, period_timer); 610 int miss_periods = (jiffies - dom->period_time) / 611 VM_COMPLETIONS_PERIOD_LEN; 612 613 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 614 dom->period_time = wp_next_time(dom->period_time + 615 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 616 mod_timer(&dom->period_timer, dom->period_time); 617 } else { 618 /* 619 * Aging has zeroed all fractions. Stop wasting CPU on period 620 * updates. 621 */ 622 dom->period_time = 0; 623 } 624 } 625 626 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 627 { 628 memset(dom, 0, sizeof(*dom)); 629 630 spin_lock_init(&dom->lock); 631 632 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 633 634 dom->dirty_limit_tstamp = jiffies; 635 636 return fprop_global_init(&dom->completions, gfp); 637 } 638 639 #ifdef CONFIG_CGROUP_WRITEBACK 640 void wb_domain_exit(struct wb_domain *dom) 641 { 642 del_timer_sync(&dom->period_timer); 643 fprop_global_destroy(&dom->completions); 644 } 645 #endif 646 647 /* 648 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 649 * registered backing devices, which, for obvious reasons, can not 650 * exceed 100%. 651 */ 652 static unsigned int bdi_min_ratio; 653 654 static int bdi_check_pages_limit(unsigned long pages) 655 { 656 unsigned long max_dirty_pages = global_dirtyable_memory(); 657 658 if (pages > max_dirty_pages) 659 return -EINVAL; 660 661 return 0; 662 } 663 664 static unsigned long bdi_ratio_from_pages(unsigned long pages) 665 { 666 unsigned long background_thresh; 667 unsigned long dirty_thresh; 668 unsigned long ratio; 669 670 global_dirty_limits(&background_thresh, &dirty_thresh); 671 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 672 673 return ratio; 674 } 675 676 static u64 bdi_get_bytes(unsigned int ratio) 677 { 678 unsigned long background_thresh; 679 unsigned long dirty_thresh; 680 u64 bytes; 681 682 global_dirty_limits(&background_thresh, &dirty_thresh); 683 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 684 685 return bytes; 686 } 687 688 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 689 { 690 unsigned int delta; 691 int ret = 0; 692 693 if (min_ratio > 100 * BDI_RATIO_SCALE) 694 return -EINVAL; 695 min_ratio *= BDI_RATIO_SCALE; 696 697 spin_lock_bh(&bdi_lock); 698 if (min_ratio > bdi->max_ratio) { 699 ret = -EINVAL; 700 } else { 701 if (min_ratio < bdi->min_ratio) { 702 delta = bdi->min_ratio - min_ratio; 703 bdi_min_ratio -= delta; 704 bdi->min_ratio = min_ratio; 705 } else { 706 delta = min_ratio - bdi->min_ratio; 707 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 708 bdi_min_ratio += delta; 709 bdi->min_ratio = min_ratio; 710 } else { 711 ret = -EINVAL; 712 } 713 } 714 } 715 spin_unlock_bh(&bdi_lock); 716 717 return ret; 718 } 719 720 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 721 { 722 int ret = 0; 723 724 if (max_ratio > 100 * BDI_RATIO_SCALE) 725 return -EINVAL; 726 727 spin_lock_bh(&bdi_lock); 728 if (bdi->min_ratio > max_ratio) { 729 ret = -EINVAL; 730 } else { 731 bdi->max_ratio = max_ratio; 732 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 733 } 734 spin_unlock_bh(&bdi_lock); 735 736 return ret; 737 } 738 739 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 740 { 741 return __bdi_set_min_ratio(bdi, min_ratio); 742 } 743 744 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 745 { 746 return __bdi_set_max_ratio(bdi, max_ratio); 747 } 748 749 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 750 { 751 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 752 } 753 754 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 755 { 756 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 757 } 758 EXPORT_SYMBOL(bdi_set_max_ratio); 759 760 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 761 { 762 return bdi_get_bytes(bdi->min_ratio); 763 } 764 765 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 766 { 767 int ret; 768 unsigned long pages = min_bytes >> PAGE_SHIFT; 769 unsigned long min_ratio; 770 771 ret = bdi_check_pages_limit(pages); 772 if (ret) 773 return ret; 774 775 min_ratio = bdi_ratio_from_pages(pages); 776 return __bdi_set_min_ratio(bdi, min_ratio); 777 } 778 779 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 780 { 781 return bdi_get_bytes(bdi->max_ratio); 782 } 783 784 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 785 { 786 int ret; 787 unsigned long pages = max_bytes >> PAGE_SHIFT; 788 unsigned long max_ratio; 789 790 ret = bdi_check_pages_limit(pages); 791 if (ret) 792 return ret; 793 794 max_ratio = bdi_ratio_from_pages(pages); 795 return __bdi_set_max_ratio(bdi, max_ratio); 796 } 797 798 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 799 { 800 if (strict_limit > 1) 801 return -EINVAL; 802 803 spin_lock_bh(&bdi_lock); 804 if (strict_limit) 805 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 806 else 807 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 808 spin_unlock_bh(&bdi_lock); 809 810 return 0; 811 } 812 813 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 814 unsigned long bg_thresh) 815 { 816 return (thresh + bg_thresh) / 2; 817 } 818 819 static unsigned long hard_dirty_limit(struct wb_domain *dom, 820 unsigned long thresh) 821 { 822 return max(thresh, dom->dirty_limit); 823 } 824 825 /* 826 * Memory which can be further allocated to a memcg domain is capped by 827 * system-wide clean memory excluding the amount being used in the domain. 828 */ 829 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 830 unsigned long filepages, unsigned long headroom) 831 { 832 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 833 unsigned long clean = filepages - min(filepages, mdtc->dirty); 834 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 835 unsigned long other_clean = global_clean - min(global_clean, clean); 836 837 mdtc->avail = filepages + min(headroom, other_clean); 838 } 839 840 /** 841 * __wb_calc_thresh - @wb's share of dirty throttling threshold 842 * @dtc: dirty_throttle_context of interest 843 * 844 * Note that balance_dirty_pages() will only seriously take it as a hard limit 845 * when sleeping max_pause per page is not enough to keep the dirty pages under 846 * control. For example, when the device is completely stalled due to some error 847 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 848 * In the other normal situations, it acts more gently by throttling the tasks 849 * more (rather than completely block them) when the wb dirty pages go high. 850 * 851 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 852 * - starving fast devices 853 * - piling up dirty pages (that will take long time to sync) on slow devices 854 * 855 * The wb's share of dirty limit will be adapting to its throughput and 856 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 857 * 858 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 859 * dirty balancing includes all PG_dirty and PG_writeback pages. 860 */ 861 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 862 { 863 struct wb_domain *dom = dtc_dom(dtc); 864 unsigned long thresh = dtc->thresh; 865 u64 wb_thresh; 866 unsigned long numerator, denominator; 867 unsigned long wb_min_ratio, wb_max_ratio; 868 869 /* 870 * Calculate this BDI's share of the thresh ratio. 871 */ 872 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 873 &numerator, &denominator); 874 875 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 876 wb_thresh *= numerator; 877 wb_thresh = div64_ul(wb_thresh, denominator); 878 879 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 880 881 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 882 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE)) 883 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 884 885 return wb_thresh; 886 } 887 888 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 889 { 890 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 891 .thresh = thresh }; 892 return __wb_calc_thresh(&gdtc); 893 } 894 895 /* 896 * setpoint - dirty 3 897 * f(dirty) := 1.0 + (----------------) 898 * limit - setpoint 899 * 900 * it's a 3rd order polynomial that subjects to 901 * 902 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 903 * (2) f(setpoint) = 1.0 => the balance point 904 * (3) f(limit) = 0 => the hard limit 905 * (4) df/dx <= 0 => negative feedback control 906 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 907 * => fast response on large errors; small oscillation near setpoint 908 */ 909 static long long pos_ratio_polynom(unsigned long setpoint, 910 unsigned long dirty, 911 unsigned long limit) 912 { 913 long long pos_ratio; 914 long x; 915 916 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 917 (limit - setpoint) | 1); 918 pos_ratio = x; 919 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 920 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 921 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 922 923 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 924 } 925 926 /* 927 * Dirty position control. 928 * 929 * (o) global/bdi setpoints 930 * 931 * We want the dirty pages be balanced around the global/wb setpoints. 932 * When the number of dirty pages is higher/lower than the setpoint, the 933 * dirty position control ratio (and hence task dirty ratelimit) will be 934 * decreased/increased to bring the dirty pages back to the setpoint. 935 * 936 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 937 * 938 * if (dirty < setpoint) scale up pos_ratio 939 * if (dirty > setpoint) scale down pos_ratio 940 * 941 * if (wb_dirty < wb_setpoint) scale up pos_ratio 942 * if (wb_dirty > wb_setpoint) scale down pos_ratio 943 * 944 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 945 * 946 * (o) global control line 947 * 948 * ^ pos_ratio 949 * | 950 * | |<===== global dirty control scope ======>| 951 * 2.0 * * * * * * * 952 * | .* 953 * | . * 954 * | . * 955 * | . * 956 * | . * 957 * | . * 958 * 1.0 ................................* 959 * | . . * 960 * | . . * 961 * | . . * 962 * | . . * 963 * | . . * 964 * 0 +------------.------------------.----------------------*-------------> 965 * freerun^ setpoint^ limit^ dirty pages 966 * 967 * (o) wb control line 968 * 969 * ^ pos_ratio 970 * | 971 * | * 972 * | * 973 * | * 974 * | * 975 * | * |<=========== span ============>| 976 * 1.0 .......................* 977 * | . * 978 * | . * 979 * | . * 980 * | . * 981 * | . * 982 * | . * 983 * | . * 984 * | . * 985 * | . * 986 * | . * 987 * | . * 988 * 1/4 ...............................................* * * * * * * * * * * * 989 * | . . 990 * | . . 991 * | . . 992 * 0 +----------------------.-------------------------------.-------------> 993 * wb_setpoint^ x_intercept^ 994 * 995 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 996 * be smoothly throttled down to normal if it starts high in situations like 997 * - start writing to a slow SD card and a fast disk at the same time. The SD 998 * card's wb_dirty may rush to many times higher than wb_setpoint. 999 * - the wb dirty thresh drops quickly due to change of JBOD workload 1000 */ 1001 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1002 { 1003 struct bdi_writeback *wb = dtc->wb; 1004 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1005 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1006 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1007 unsigned long wb_thresh = dtc->wb_thresh; 1008 unsigned long x_intercept; 1009 unsigned long setpoint; /* dirty pages' target balance point */ 1010 unsigned long wb_setpoint; 1011 unsigned long span; 1012 long long pos_ratio; /* for scaling up/down the rate limit */ 1013 long x; 1014 1015 dtc->pos_ratio = 0; 1016 1017 if (unlikely(dtc->dirty >= limit)) 1018 return; 1019 1020 /* 1021 * global setpoint 1022 * 1023 * See comment for pos_ratio_polynom(). 1024 */ 1025 setpoint = (freerun + limit) / 2; 1026 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1027 1028 /* 1029 * The strictlimit feature is a tool preventing mistrusted filesystems 1030 * from growing a large number of dirty pages before throttling. For 1031 * such filesystems balance_dirty_pages always checks wb counters 1032 * against wb limits. Even if global "nr_dirty" is under "freerun". 1033 * This is especially important for fuse which sets bdi->max_ratio to 1034 * 1% by default. Without strictlimit feature, fuse writeback may 1035 * consume arbitrary amount of RAM because it is accounted in 1036 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1037 * 1038 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1039 * two values: wb_dirty and wb_thresh. Let's consider an example: 1040 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1041 * limits are set by default to 10% and 20% (background and throttle). 1042 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1043 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1044 * about ~6K pages (as the average of background and throttle wb 1045 * limits). The 3rd order polynomial will provide positive feedback if 1046 * wb_dirty is under wb_setpoint and vice versa. 1047 * 1048 * Note, that we cannot use global counters in these calculations 1049 * because we want to throttle process writing to a strictlimit wb 1050 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1051 * in the example above). 1052 */ 1053 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1054 long long wb_pos_ratio; 1055 1056 if (dtc->wb_dirty < 8) { 1057 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1058 2 << RATELIMIT_CALC_SHIFT); 1059 return; 1060 } 1061 1062 if (dtc->wb_dirty >= wb_thresh) 1063 return; 1064 1065 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1066 dtc->wb_bg_thresh); 1067 1068 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1069 return; 1070 1071 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1072 wb_thresh); 1073 1074 /* 1075 * Typically, for strictlimit case, wb_setpoint << setpoint 1076 * and pos_ratio >> wb_pos_ratio. In the other words global 1077 * state ("dirty") is not limiting factor and we have to 1078 * make decision based on wb counters. But there is an 1079 * important case when global pos_ratio should get precedence: 1080 * global limits are exceeded (e.g. due to activities on other 1081 * wb's) while given strictlimit wb is below limit. 1082 * 1083 * "pos_ratio * wb_pos_ratio" would work for the case above, 1084 * but it would look too non-natural for the case of all 1085 * activity in the system coming from a single strictlimit wb 1086 * with bdi->max_ratio == 100%. 1087 * 1088 * Note that min() below somewhat changes the dynamics of the 1089 * control system. Normally, pos_ratio value can be well over 3 1090 * (when globally we are at freerun and wb is well below wb 1091 * setpoint). Now the maximum pos_ratio in the same situation 1092 * is 2. We might want to tweak this if we observe the control 1093 * system is too slow to adapt. 1094 */ 1095 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1096 return; 1097 } 1098 1099 /* 1100 * We have computed basic pos_ratio above based on global situation. If 1101 * the wb is over/under its share of dirty pages, we want to scale 1102 * pos_ratio further down/up. That is done by the following mechanism. 1103 */ 1104 1105 /* 1106 * wb setpoint 1107 * 1108 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1109 * 1110 * x_intercept - wb_dirty 1111 * := -------------------------- 1112 * x_intercept - wb_setpoint 1113 * 1114 * The main wb control line is a linear function that subjects to 1115 * 1116 * (1) f(wb_setpoint) = 1.0 1117 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1118 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1119 * 1120 * For single wb case, the dirty pages are observed to fluctuate 1121 * regularly within range 1122 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1123 * for various filesystems, where (2) can yield in a reasonable 12.5% 1124 * fluctuation range for pos_ratio. 1125 * 1126 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1127 * own size, so move the slope over accordingly and choose a slope that 1128 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1129 */ 1130 if (unlikely(wb_thresh > dtc->thresh)) 1131 wb_thresh = dtc->thresh; 1132 /* 1133 * It's very possible that wb_thresh is close to 0 not because the 1134 * device is slow, but that it has remained inactive for long time. 1135 * Honour such devices a reasonable good (hopefully IO efficient) 1136 * threshold, so that the occasional writes won't be blocked and active 1137 * writes can rampup the threshold quickly. 1138 */ 1139 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1140 /* 1141 * scale global setpoint to wb's: 1142 * wb_setpoint = setpoint * wb_thresh / thresh 1143 */ 1144 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1145 wb_setpoint = setpoint * (u64)x >> 16; 1146 /* 1147 * Use span=(8*write_bw) in single wb case as indicated by 1148 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1149 * 1150 * wb_thresh thresh - wb_thresh 1151 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1152 * thresh thresh 1153 */ 1154 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1155 x_intercept = wb_setpoint + span; 1156 1157 if (dtc->wb_dirty < x_intercept - span / 4) { 1158 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1159 (x_intercept - wb_setpoint) | 1); 1160 } else 1161 pos_ratio /= 4; 1162 1163 /* 1164 * wb reserve area, safeguard against dirty pool underrun and disk idle 1165 * It may push the desired control point of global dirty pages higher 1166 * than setpoint. 1167 */ 1168 x_intercept = wb_thresh / 2; 1169 if (dtc->wb_dirty < x_intercept) { 1170 if (dtc->wb_dirty > x_intercept / 8) 1171 pos_ratio = div_u64(pos_ratio * x_intercept, 1172 dtc->wb_dirty); 1173 else 1174 pos_ratio *= 8; 1175 } 1176 1177 dtc->pos_ratio = pos_ratio; 1178 } 1179 1180 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1181 unsigned long elapsed, 1182 unsigned long written) 1183 { 1184 const unsigned long period = roundup_pow_of_two(3 * HZ); 1185 unsigned long avg = wb->avg_write_bandwidth; 1186 unsigned long old = wb->write_bandwidth; 1187 u64 bw; 1188 1189 /* 1190 * bw = written * HZ / elapsed 1191 * 1192 * bw * elapsed + write_bandwidth * (period - elapsed) 1193 * write_bandwidth = --------------------------------------------------- 1194 * period 1195 * 1196 * @written may have decreased due to folio_redirty_for_writepage(). 1197 * Avoid underflowing @bw calculation. 1198 */ 1199 bw = written - min(written, wb->written_stamp); 1200 bw *= HZ; 1201 if (unlikely(elapsed > period)) { 1202 bw = div64_ul(bw, elapsed); 1203 avg = bw; 1204 goto out; 1205 } 1206 bw += (u64)wb->write_bandwidth * (period - elapsed); 1207 bw >>= ilog2(period); 1208 1209 /* 1210 * one more level of smoothing, for filtering out sudden spikes 1211 */ 1212 if (avg > old && old >= (unsigned long)bw) 1213 avg -= (avg - old) >> 3; 1214 1215 if (avg < old && old <= (unsigned long)bw) 1216 avg += (old - avg) >> 3; 1217 1218 out: 1219 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1220 avg = max(avg, 1LU); 1221 if (wb_has_dirty_io(wb)) { 1222 long delta = avg - wb->avg_write_bandwidth; 1223 WARN_ON_ONCE(atomic_long_add_return(delta, 1224 &wb->bdi->tot_write_bandwidth) <= 0); 1225 } 1226 wb->write_bandwidth = bw; 1227 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1228 } 1229 1230 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1231 { 1232 struct wb_domain *dom = dtc_dom(dtc); 1233 unsigned long thresh = dtc->thresh; 1234 unsigned long limit = dom->dirty_limit; 1235 1236 /* 1237 * Follow up in one step. 1238 */ 1239 if (limit < thresh) { 1240 limit = thresh; 1241 goto update; 1242 } 1243 1244 /* 1245 * Follow down slowly. Use the higher one as the target, because thresh 1246 * may drop below dirty. This is exactly the reason to introduce 1247 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1248 */ 1249 thresh = max(thresh, dtc->dirty); 1250 if (limit > thresh) { 1251 limit -= (limit - thresh) >> 5; 1252 goto update; 1253 } 1254 return; 1255 update: 1256 dom->dirty_limit = limit; 1257 } 1258 1259 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1260 unsigned long now) 1261 { 1262 struct wb_domain *dom = dtc_dom(dtc); 1263 1264 /* 1265 * check locklessly first to optimize away locking for the most time 1266 */ 1267 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1268 return; 1269 1270 spin_lock(&dom->lock); 1271 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1272 update_dirty_limit(dtc); 1273 dom->dirty_limit_tstamp = now; 1274 } 1275 spin_unlock(&dom->lock); 1276 } 1277 1278 /* 1279 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1280 * 1281 * Normal wb tasks will be curbed at or below it in long term. 1282 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1283 */ 1284 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1285 unsigned long dirtied, 1286 unsigned long elapsed) 1287 { 1288 struct bdi_writeback *wb = dtc->wb; 1289 unsigned long dirty = dtc->dirty; 1290 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1291 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1292 unsigned long setpoint = (freerun + limit) / 2; 1293 unsigned long write_bw = wb->avg_write_bandwidth; 1294 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1295 unsigned long dirty_rate; 1296 unsigned long task_ratelimit; 1297 unsigned long balanced_dirty_ratelimit; 1298 unsigned long step; 1299 unsigned long x; 1300 unsigned long shift; 1301 1302 /* 1303 * The dirty rate will match the writeout rate in long term, except 1304 * when dirty pages are truncated by userspace or re-dirtied by FS. 1305 */ 1306 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1307 1308 /* 1309 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1310 */ 1311 task_ratelimit = (u64)dirty_ratelimit * 1312 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1313 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1314 1315 /* 1316 * A linear estimation of the "balanced" throttle rate. The theory is, 1317 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1318 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1319 * formula will yield the balanced rate limit (write_bw / N). 1320 * 1321 * Note that the expanded form is not a pure rate feedback: 1322 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1323 * but also takes pos_ratio into account: 1324 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1325 * 1326 * (1) is not realistic because pos_ratio also takes part in balancing 1327 * the dirty rate. Consider the state 1328 * pos_ratio = 0.5 (3) 1329 * rate = 2 * (write_bw / N) (4) 1330 * If (1) is used, it will stuck in that state! Because each dd will 1331 * be throttled at 1332 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1333 * yielding 1334 * dirty_rate = N * task_ratelimit = write_bw (6) 1335 * put (6) into (1) we get 1336 * rate_(i+1) = rate_(i) (7) 1337 * 1338 * So we end up using (2) to always keep 1339 * rate_(i+1) ~= (write_bw / N) (8) 1340 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1341 * pos_ratio is able to drive itself to 1.0, which is not only where 1342 * the dirty count meet the setpoint, but also where the slope of 1343 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1344 */ 1345 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1346 dirty_rate | 1); 1347 /* 1348 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1349 */ 1350 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1351 balanced_dirty_ratelimit = write_bw; 1352 1353 /* 1354 * We could safely do this and return immediately: 1355 * 1356 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1357 * 1358 * However to get a more stable dirty_ratelimit, the below elaborated 1359 * code makes use of task_ratelimit to filter out singular points and 1360 * limit the step size. 1361 * 1362 * The below code essentially only uses the relative value of 1363 * 1364 * task_ratelimit - dirty_ratelimit 1365 * = (pos_ratio - 1) * dirty_ratelimit 1366 * 1367 * which reflects the direction and size of dirty position error. 1368 */ 1369 1370 /* 1371 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1372 * task_ratelimit is on the same side of dirty_ratelimit, too. 1373 * For example, when 1374 * - dirty_ratelimit > balanced_dirty_ratelimit 1375 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1376 * lowering dirty_ratelimit will help meet both the position and rate 1377 * control targets. Otherwise, don't update dirty_ratelimit if it will 1378 * only help meet the rate target. After all, what the users ultimately 1379 * feel and care are stable dirty rate and small position error. 1380 * 1381 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1382 * and filter out the singular points of balanced_dirty_ratelimit. Which 1383 * keeps jumping around randomly and can even leap far away at times 1384 * due to the small 200ms estimation period of dirty_rate (we want to 1385 * keep that period small to reduce time lags). 1386 */ 1387 step = 0; 1388 1389 /* 1390 * For strictlimit case, calculations above were based on wb counters 1391 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1392 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1393 * Hence, to calculate "step" properly, we have to use wb_dirty as 1394 * "dirty" and wb_setpoint as "setpoint". 1395 * 1396 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1397 * it's possible that wb_thresh is close to zero due to inactivity 1398 * of backing device. 1399 */ 1400 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1401 dirty = dtc->wb_dirty; 1402 if (dtc->wb_dirty < 8) 1403 setpoint = dtc->wb_dirty + 1; 1404 else 1405 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1406 } 1407 1408 if (dirty < setpoint) { 1409 x = min3(wb->balanced_dirty_ratelimit, 1410 balanced_dirty_ratelimit, task_ratelimit); 1411 if (dirty_ratelimit < x) 1412 step = x - dirty_ratelimit; 1413 } else { 1414 x = max3(wb->balanced_dirty_ratelimit, 1415 balanced_dirty_ratelimit, task_ratelimit); 1416 if (dirty_ratelimit > x) 1417 step = dirty_ratelimit - x; 1418 } 1419 1420 /* 1421 * Don't pursue 100% rate matching. It's impossible since the balanced 1422 * rate itself is constantly fluctuating. So decrease the track speed 1423 * when it gets close to the target. Helps eliminate pointless tremors. 1424 */ 1425 shift = dirty_ratelimit / (2 * step + 1); 1426 if (shift < BITS_PER_LONG) 1427 step = DIV_ROUND_UP(step >> shift, 8); 1428 else 1429 step = 0; 1430 1431 if (dirty_ratelimit < balanced_dirty_ratelimit) 1432 dirty_ratelimit += step; 1433 else 1434 dirty_ratelimit -= step; 1435 1436 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1437 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1438 1439 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1440 } 1441 1442 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1443 struct dirty_throttle_control *mdtc, 1444 bool update_ratelimit) 1445 { 1446 struct bdi_writeback *wb = gdtc->wb; 1447 unsigned long now = jiffies; 1448 unsigned long elapsed; 1449 unsigned long dirtied; 1450 unsigned long written; 1451 1452 spin_lock(&wb->list_lock); 1453 1454 /* 1455 * Lockless checks for elapsed time are racy and delayed update after 1456 * IO completion doesn't do it at all (to make sure written pages are 1457 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1458 * division errors. 1459 */ 1460 elapsed = max(now - wb->bw_time_stamp, 1UL); 1461 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1462 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1463 1464 if (update_ratelimit) { 1465 domain_update_dirty_limit(gdtc, now); 1466 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1467 1468 /* 1469 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1470 * compiler has no way to figure that out. Help it. 1471 */ 1472 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1473 domain_update_dirty_limit(mdtc, now); 1474 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1475 } 1476 } 1477 wb_update_write_bandwidth(wb, elapsed, written); 1478 1479 wb->dirtied_stamp = dirtied; 1480 wb->written_stamp = written; 1481 WRITE_ONCE(wb->bw_time_stamp, now); 1482 spin_unlock(&wb->list_lock); 1483 } 1484 1485 void wb_update_bandwidth(struct bdi_writeback *wb) 1486 { 1487 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1488 1489 __wb_update_bandwidth(&gdtc, NULL, false); 1490 } 1491 1492 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1493 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1494 1495 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1496 { 1497 unsigned long now = jiffies; 1498 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1499 1500 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1501 !atomic_read(&wb->writeback_inodes)) { 1502 spin_lock(&wb->list_lock); 1503 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1504 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1505 WRITE_ONCE(wb->bw_time_stamp, now); 1506 spin_unlock(&wb->list_lock); 1507 } 1508 } 1509 1510 /* 1511 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1512 * will look to see if it needs to start dirty throttling. 1513 * 1514 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1515 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1516 * (the number of pages we may dirty without exceeding the dirty limits). 1517 */ 1518 static unsigned long dirty_poll_interval(unsigned long dirty, 1519 unsigned long thresh) 1520 { 1521 if (thresh > dirty) 1522 return 1UL << (ilog2(thresh - dirty) >> 1); 1523 1524 return 1; 1525 } 1526 1527 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1528 unsigned long wb_dirty) 1529 { 1530 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1531 unsigned long t; 1532 1533 /* 1534 * Limit pause time for small memory systems. If sleeping for too long 1535 * time, a small pool of dirty/writeback pages may go empty and disk go 1536 * idle. 1537 * 1538 * 8 serves as the safety ratio. 1539 */ 1540 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1541 t++; 1542 1543 return min_t(unsigned long, t, MAX_PAUSE); 1544 } 1545 1546 static long wb_min_pause(struct bdi_writeback *wb, 1547 long max_pause, 1548 unsigned long task_ratelimit, 1549 unsigned long dirty_ratelimit, 1550 int *nr_dirtied_pause) 1551 { 1552 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1553 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1554 long t; /* target pause */ 1555 long pause; /* estimated next pause */ 1556 int pages; /* target nr_dirtied_pause */ 1557 1558 /* target for 10ms pause on 1-dd case */ 1559 t = max(1, HZ / 100); 1560 1561 /* 1562 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1563 * overheads. 1564 * 1565 * (N * 10ms) on 2^N concurrent tasks. 1566 */ 1567 if (hi > lo) 1568 t += (hi - lo) * (10 * HZ) / 1024; 1569 1570 /* 1571 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1572 * on the much more stable dirty_ratelimit. However the next pause time 1573 * will be computed based on task_ratelimit and the two rate limits may 1574 * depart considerably at some time. Especially if task_ratelimit goes 1575 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1576 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1577 * result task_ratelimit won't be executed faithfully, which could 1578 * eventually bring down dirty_ratelimit. 1579 * 1580 * We apply two rules to fix it up: 1581 * 1) try to estimate the next pause time and if necessary, use a lower 1582 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1583 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1584 * 2) limit the target pause time to max_pause/2, so that the normal 1585 * small fluctuations of task_ratelimit won't trigger rule (1) and 1586 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1587 */ 1588 t = min(t, 1 + max_pause / 2); 1589 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1590 1591 /* 1592 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1593 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1594 * When the 16 consecutive reads are often interrupted by some dirty 1595 * throttling pause during the async writes, cfq will go into idles 1596 * (deadline is fine). So push nr_dirtied_pause as high as possible 1597 * until reaches DIRTY_POLL_THRESH=32 pages. 1598 */ 1599 if (pages < DIRTY_POLL_THRESH) { 1600 t = max_pause; 1601 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1602 if (pages > DIRTY_POLL_THRESH) { 1603 pages = DIRTY_POLL_THRESH; 1604 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1605 } 1606 } 1607 1608 pause = HZ * pages / (task_ratelimit + 1); 1609 if (pause > max_pause) { 1610 t = max_pause; 1611 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1612 } 1613 1614 *nr_dirtied_pause = pages; 1615 /* 1616 * The minimal pause time will normally be half the target pause time. 1617 */ 1618 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1619 } 1620 1621 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1622 { 1623 struct bdi_writeback *wb = dtc->wb; 1624 unsigned long wb_reclaimable; 1625 1626 /* 1627 * wb_thresh is not treated as some limiting factor as 1628 * dirty_thresh, due to reasons 1629 * - in JBOD setup, wb_thresh can fluctuate a lot 1630 * - in a system with HDD and USB key, the USB key may somehow 1631 * go into state (wb_dirty >> wb_thresh) either because 1632 * wb_dirty starts high, or because wb_thresh drops low. 1633 * In this case we don't want to hard throttle the USB key 1634 * dirtiers for 100 seconds until wb_dirty drops under 1635 * wb_thresh. Instead the auxiliary wb control line in 1636 * wb_position_ratio() will let the dirtier task progress 1637 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1638 */ 1639 dtc->wb_thresh = __wb_calc_thresh(dtc); 1640 dtc->wb_bg_thresh = dtc->thresh ? 1641 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1642 1643 /* 1644 * In order to avoid the stacked BDI deadlock we need 1645 * to ensure we accurately count the 'dirty' pages when 1646 * the threshold is low. 1647 * 1648 * Otherwise it would be possible to get thresh+n pages 1649 * reported dirty, even though there are thresh-m pages 1650 * actually dirty; with m+n sitting in the percpu 1651 * deltas. 1652 */ 1653 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1654 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1655 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1656 } else { 1657 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1658 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1659 } 1660 } 1661 1662 /* 1663 * balance_dirty_pages() must be called by processes which are generating dirty 1664 * data. It looks at the number of dirty pages in the machine and will force 1665 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1666 * If we're over `background_thresh' then the writeback threads are woken to 1667 * perform some writeout. 1668 */ 1669 static int balance_dirty_pages(struct bdi_writeback *wb, 1670 unsigned long pages_dirtied, unsigned int flags) 1671 { 1672 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1673 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1674 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1675 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1676 &mdtc_stor : NULL; 1677 struct dirty_throttle_control *sdtc; 1678 unsigned long nr_reclaimable; /* = file_dirty */ 1679 long period; 1680 long pause; 1681 long max_pause; 1682 long min_pause; 1683 int nr_dirtied_pause; 1684 bool dirty_exceeded = false; 1685 unsigned long task_ratelimit; 1686 unsigned long dirty_ratelimit; 1687 struct backing_dev_info *bdi = wb->bdi; 1688 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1689 unsigned long start_time = jiffies; 1690 int ret = 0; 1691 1692 for (;;) { 1693 unsigned long now = jiffies; 1694 unsigned long dirty, thresh, bg_thresh; 1695 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1696 unsigned long m_thresh = 0; 1697 unsigned long m_bg_thresh = 0; 1698 1699 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1700 gdtc->avail = global_dirtyable_memory(); 1701 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1702 1703 domain_dirty_limits(gdtc); 1704 1705 if (unlikely(strictlimit)) { 1706 wb_dirty_limits(gdtc); 1707 1708 dirty = gdtc->wb_dirty; 1709 thresh = gdtc->wb_thresh; 1710 bg_thresh = gdtc->wb_bg_thresh; 1711 } else { 1712 dirty = gdtc->dirty; 1713 thresh = gdtc->thresh; 1714 bg_thresh = gdtc->bg_thresh; 1715 } 1716 1717 if (mdtc) { 1718 unsigned long filepages, headroom, writeback; 1719 1720 /* 1721 * If @wb belongs to !root memcg, repeat the same 1722 * basic calculations for the memcg domain. 1723 */ 1724 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1725 &mdtc->dirty, &writeback); 1726 mdtc->dirty += writeback; 1727 mdtc_calc_avail(mdtc, filepages, headroom); 1728 1729 domain_dirty_limits(mdtc); 1730 1731 if (unlikely(strictlimit)) { 1732 wb_dirty_limits(mdtc); 1733 m_dirty = mdtc->wb_dirty; 1734 m_thresh = mdtc->wb_thresh; 1735 m_bg_thresh = mdtc->wb_bg_thresh; 1736 } else { 1737 m_dirty = mdtc->dirty; 1738 m_thresh = mdtc->thresh; 1739 m_bg_thresh = mdtc->bg_thresh; 1740 } 1741 } 1742 1743 /* 1744 * In laptop mode, we wait until hitting the higher threshold 1745 * before starting background writeout, and then write out all 1746 * the way down to the lower threshold. So slow writers cause 1747 * minimal disk activity. 1748 * 1749 * In normal mode, we start background writeout at the lower 1750 * background_thresh, to keep the amount of dirty memory low. 1751 */ 1752 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh && 1753 !writeback_in_progress(wb)) 1754 wb_start_background_writeback(wb); 1755 1756 /* 1757 * Throttle it only when the background writeback cannot 1758 * catch-up. This avoids (excessively) small writeouts 1759 * when the wb limits are ramping up in case of !strictlimit. 1760 * 1761 * In strictlimit case make decision based on the wb counters 1762 * and limits. Small writeouts when the wb limits are ramping 1763 * up are the price we consciously pay for strictlimit-ing. 1764 * 1765 * If memcg domain is in effect, @dirty should be under 1766 * both global and memcg freerun ceilings. 1767 */ 1768 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1769 (!mdtc || 1770 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1771 unsigned long intv; 1772 unsigned long m_intv; 1773 1774 free_running: 1775 intv = dirty_poll_interval(dirty, thresh); 1776 m_intv = ULONG_MAX; 1777 1778 current->dirty_paused_when = now; 1779 current->nr_dirtied = 0; 1780 if (mdtc) 1781 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1782 current->nr_dirtied_pause = min(intv, m_intv); 1783 break; 1784 } 1785 1786 /* Start writeback even when in laptop mode */ 1787 if (unlikely(!writeback_in_progress(wb))) 1788 wb_start_background_writeback(wb); 1789 1790 mem_cgroup_flush_foreign(wb); 1791 1792 /* 1793 * Calculate global domain's pos_ratio and select the 1794 * global dtc by default. 1795 */ 1796 if (!strictlimit) { 1797 wb_dirty_limits(gdtc); 1798 1799 if ((current->flags & PF_LOCAL_THROTTLE) && 1800 gdtc->wb_dirty < 1801 dirty_freerun_ceiling(gdtc->wb_thresh, 1802 gdtc->wb_bg_thresh)) 1803 /* 1804 * LOCAL_THROTTLE tasks must not be throttled 1805 * when below the per-wb freerun ceiling. 1806 */ 1807 goto free_running; 1808 } 1809 1810 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1811 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1812 1813 wb_position_ratio(gdtc); 1814 sdtc = gdtc; 1815 1816 if (mdtc) { 1817 /* 1818 * If memcg domain is in effect, calculate its 1819 * pos_ratio. @wb should satisfy constraints from 1820 * both global and memcg domains. Choose the one 1821 * w/ lower pos_ratio. 1822 */ 1823 if (!strictlimit) { 1824 wb_dirty_limits(mdtc); 1825 1826 if ((current->flags & PF_LOCAL_THROTTLE) && 1827 mdtc->wb_dirty < 1828 dirty_freerun_ceiling(mdtc->wb_thresh, 1829 mdtc->wb_bg_thresh)) 1830 /* 1831 * LOCAL_THROTTLE tasks must not be 1832 * throttled when below the per-wb 1833 * freerun ceiling. 1834 */ 1835 goto free_running; 1836 } 1837 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1838 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1839 1840 wb_position_ratio(mdtc); 1841 if (mdtc->pos_ratio < gdtc->pos_ratio) 1842 sdtc = mdtc; 1843 } 1844 1845 if (dirty_exceeded != wb->dirty_exceeded) 1846 wb->dirty_exceeded = dirty_exceeded; 1847 1848 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1849 BANDWIDTH_INTERVAL)) 1850 __wb_update_bandwidth(gdtc, mdtc, true); 1851 1852 /* throttle according to the chosen dtc */ 1853 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1854 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1855 RATELIMIT_CALC_SHIFT; 1856 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1857 min_pause = wb_min_pause(wb, max_pause, 1858 task_ratelimit, dirty_ratelimit, 1859 &nr_dirtied_pause); 1860 1861 if (unlikely(task_ratelimit == 0)) { 1862 period = max_pause; 1863 pause = max_pause; 1864 goto pause; 1865 } 1866 period = HZ * pages_dirtied / task_ratelimit; 1867 pause = period; 1868 if (current->dirty_paused_when) 1869 pause -= now - current->dirty_paused_when; 1870 /* 1871 * For less than 1s think time (ext3/4 may block the dirtier 1872 * for up to 800ms from time to time on 1-HDD; so does xfs, 1873 * however at much less frequency), try to compensate it in 1874 * future periods by updating the virtual time; otherwise just 1875 * do a reset, as it may be a light dirtier. 1876 */ 1877 if (pause < min_pause) { 1878 trace_balance_dirty_pages(wb, 1879 sdtc->thresh, 1880 sdtc->bg_thresh, 1881 sdtc->dirty, 1882 sdtc->wb_thresh, 1883 sdtc->wb_dirty, 1884 dirty_ratelimit, 1885 task_ratelimit, 1886 pages_dirtied, 1887 period, 1888 min(pause, 0L), 1889 start_time); 1890 if (pause < -HZ) { 1891 current->dirty_paused_when = now; 1892 current->nr_dirtied = 0; 1893 } else if (period) { 1894 current->dirty_paused_when += period; 1895 current->nr_dirtied = 0; 1896 } else if (current->nr_dirtied_pause <= pages_dirtied) 1897 current->nr_dirtied_pause += pages_dirtied; 1898 break; 1899 } 1900 if (unlikely(pause > max_pause)) { 1901 /* for occasional dropped task_ratelimit */ 1902 now += min(pause - max_pause, max_pause); 1903 pause = max_pause; 1904 } 1905 1906 pause: 1907 trace_balance_dirty_pages(wb, 1908 sdtc->thresh, 1909 sdtc->bg_thresh, 1910 sdtc->dirty, 1911 sdtc->wb_thresh, 1912 sdtc->wb_dirty, 1913 dirty_ratelimit, 1914 task_ratelimit, 1915 pages_dirtied, 1916 period, 1917 pause, 1918 start_time); 1919 if (flags & BDP_ASYNC) { 1920 ret = -EAGAIN; 1921 break; 1922 } 1923 __set_current_state(TASK_KILLABLE); 1924 wb->dirty_sleep = now; 1925 io_schedule_timeout(pause); 1926 1927 current->dirty_paused_when = now + pause; 1928 current->nr_dirtied = 0; 1929 current->nr_dirtied_pause = nr_dirtied_pause; 1930 1931 /* 1932 * This is typically equal to (dirty < thresh) and can also 1933 * keep "1000+ dd on a slow USB stick" under control. 1934 */ 1935 if (task_ratelimit) 1936 break; 1937 1938 /* 1939 * In the case of an unresponsive NFS server and the NFS dirty 1940 * pages exceeds dirty_thresh, give the other good wb's a pipe 1941 * to go through, so that tasks on them still remain responsive. 1942 * 1943 * In theory 1 page is enough to keep the consumer-producer 1944 * pipe going: the flusher cleans 1 page => the task dirties 1 1945 * more page. However wb_dirty has accounting errors. So use 1946 * the larger and more IO friendly wb_stat_error. 1947 */ 1948 if (sdtc->wb_dirty <= wb_stat_error()) 1949 break; 1950 1951 if (fatal_signal_pending(current)) 1952 break; 1953 } 1954 return ret; 1955 } 1956 1957 static DEFINE_PER_CPU(int, bdp_ratelimits); 1958 1959 /* 1960 * Normal tasks are throttled by 1961 * loop { 1962 * dirty tsk->nr_dirtied_pause pages; 1963 * take a snap in balance_dirty_pages(); 1964 * } 1965 * However there is a worst case. If every task exit immediately when dirtied 1966 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1967 * called to throttle the page dirties. The solution is to save the not yet 1968 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1969 * randomly into the running tasks. This works well for the above worst case, 1970 * as the new task will pick up and accumulate the old task's leaked dirty 1971 * count and eventually get throttled. 1972 */ 1973 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1974 1975 /** 1976 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 1977 * @mapping: address_space which was dirtied. 1978 * @flags: BDP flags. 1979 * 1980 * Processes which are dirtying memory should call in here once for each page 1981 * which was newly dirtied. The function will periodically check the system's 1982 * dirty state and will initiate writeback if needed. 1983 * 1984 * See balance_dirty_pages_ratelimited() for details. 1985 * 1986 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 1987 * indicate that memory is out of balance and the caller must wait 1988 * for I/O to complete. Otherwise, it will return 0 to indicate 1989 * that either memory was already in balance, or it was able to sleep 1990 * until the amount of dirty memory returned to balance. 1991 */ 1992 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 1993 unsigned int flags) 1994 { 1995 struct inode *inode = mapping->host; 1996 struct backing_dev_info *bdi = inode_to_bdi(inode); 1997 struct bdi_writeback *wb = NULL; 1998 int ratelimit; 1999 int ret = 0; 2000 int *p; 2001 2002 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2003 return ret; 2004 2005 if (inode_cgwb_enabled(inode)) 2006 wb = wb_get_create_current(bdi, GFP_KERNEL); 2007 if (!wb) 2008 wb = &bdi->wb; 2009 2010 ratelimit = current->nr_dirtied_pause; 2011 if (wb->dirty_exceeded) 2012 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2013 2014 preempt_disable(); 2015 /* 2016 * This prevents one CPU to accumulate too many dirtied pages without 2017 * calling into balance_dirty_pages(), which can happen when there are 2018 * 1000+ tasks, all of them start dirtying pages at exactly the same 2019 * time, hence all honoured too large initial task->nr_dirtied_pause. 2020 */ 2021 p = this_cpu_ptr(&bdp_ratelimits); 2022 if (unlikely(current->nr_dirtied >= ratelimit)) 2023 *p = 0; 2024 else if (unlikely(*p >= ratelimit_pages)) { 2025 *p = 0; 2026 ratelimit = 0; 2027 } 2028 /* 2029 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2030 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2031 * the dirty throttling and livelock other long-run dirtiers. 2032 */ 2033 p = this_cpu_ptr(&dirty_throttle_leaks); 2034 if (*p > 0 && current->nr_dirtied < ratelimit) { 2035 unsigned long nr_pages_dirtied; 2036 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2037 *p -= nr_pages_dirtied; 2038 current->nr_dirtied += nr_pages_dirtied; 2039 } 2040 preempt_enable(); 2041 2042 if (unlikely(current->nr_dirtied >= ratelimit)) 2043 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2044 2045 wb_put(wb); 2046 return ret; 2047 } 2048 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2049 2050 /** 2051 * balance_dirty_pages_ratelimited - balance dirty memory state. 2052 * @mapping: address_space which was dirtied. 2053 * 2054 * Processes which are dirtying memory should call in here once for each page 2055 * which was newly dirtied. The function will periodically check the system's 2056 * dirty state and will initiate writeback if needed. 2057 * 2058 * Once we're over the dirty memory limit we decrease the ratelimiting 2059 * by a lot, to prevent individual processes from overshooting the limit 2060 * by (ratelimit_pages) each. 2061 */ 2062 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2063 { 2064 balance_dirty_pages_ratelimited_flags(mapping, 0); 2065 } 2066 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2067 2068 /** 2069 * wb_over_bg_thresh - does @wb need to be written back? 2070 * @wb: bdi_writeback of interest 2071 * 2072 * Determines whether background writeback should keep writing @wb or it's 2073 * clean enough. 2074 * 2075 * Return: %true if writeback should continue. 2076 */ 2077 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2078 { 2079 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 2080 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 2081 struct dirty_throttle_control * const gdtc = &gdtc_stor; 2082 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 2083 &mdtc_stor : NULL; 2084 unsigned long reclaimable; 2085 unsigned long thresh; 2086 2087 /* 2088 * Similar to balance_dirty_pages() but ignores pages being written 2089 * as we're trying to decide whether to put more under writeback. 2090 */ 2091 gdtc->avail = global_dirtyable_memory(); 2092 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 2093 domain_dirty_limits(gdtc); 2094 2095 if (gdtc->dirty > gdtc->bg_thresh) 2096 return true; 2097 2098 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 2099 if (thresh < 2 * wb_stat_error()) 2100 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2101 else 2102 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2103 2104 if (reclaimable > thresh) 2105 return true; 2106 2107 if (mdtc) { 2108 unsigned long filepages, headroom, writeback; 2109 2110 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 2111 &writeback); 2112 mdtc_calc_avail(mdtc, filepages, headroom); 2113 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 2114 2115 if (mdtc->dirty > mdtc->bg_thresh) 2116 return true; 2117 2118 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 2119 if (thresh < 2 * wb_stat_error()) 2120 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2121 else 2122 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2123 2124 if (reclaimable > thresh) 2125 return true; 2126 } 2127 2128 return false; 2129 } 2130 2131 #ifdef CONFIG_SYSCTL 2132 /* 2133 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2134 */ 2135 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 2136 void *buffer, size_t *length, loff_t *ppos) 2137 { 2138 unsigned int old_interval = dirty_writeback_interval; 2139 int ret; 2140 2141 ret = proc_dointvec(table, write, buffer, length, ppos); 2142 2143 /* 2144 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2145 * and a different non-zero value will wakeup the writeback threads. 2146 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2147 * iterate over all bdis and wbs. 2148 * The reason we do this is to make the change take effect immediately. 2149 */ 2150 if (!ret && write && dirty_writeback_interval && 2151 dirty_writeback_interval != old_interval) 2152 wakeup_flusher_threads(WB_REASON_PERIODIC); 2153 2154 return ret; 2155 } 2156 #endif 2157 2158 void laptop_mode_timer_fn(struct timer_list *t) 2159 { 2160 struct backing_dev_info *backing_dev_info = 2161 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2162 2163 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2164 } 2165 2166 /* 2167 * We've spun up the disk and we're in laptop mode: schedule writeback 2168 * of all dirty data a few seconds from now. If the flush is already scheduled 2169 * then push it back - the user is still using the disk. 2170 */ 2171 void laptop_io_completion(struct backing_dev_info *info) 2172 { 2173 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2174 } 2175 2176 /* 2177 * We're in laptop mode and we've just synced. The sync's writes will have 2178 * caused another writeback to be scheduled by laptop_io_completion. 2179 * Nothing needs to be written back anymore, so we unschedule the writeback. 2180 */ 2181 void laptop_sync_completion(void) 2182 { 2183 struct backing_dev_info *bdi; 2184 2185 rcu_read_lock(); 2186 2187 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2188 del_timer(&bdi->laptop_mode_wb_timer); 2189 2190 rcu_read_unlock(); 2191 } 2192 2193 /* 2194 * If ratelimit_pages is too high then we can get into dirty-data overload 2195 * if a large number of processes all perform writes at the same time. 2196 * 2197 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2198 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2199 * thresholds. 2200 */ 2201 2202 void writeback_set_ratelimit(void) 2203 { 2204 struct wb_domain *dom = &global_wb_domain; 2205 unsigned long background_thresh; 2206 unsigned long dirty_thresh; 2207 2208 global_dirty_limits(&background_thresh, &dirty_thresh); 2209 dom->dirty_limit = dirty_thresh; 2210 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2211 if (ratelimit_pages < 16) 2212 ratelimit_pages = 16; 2213 } 2214 2215 static int page_writeback_cpu_online(unsigned int cpu) 2216 { 2217 writeback_set_ratelimit(); 2218 return 0; 2219 } 2220 2221 #ifdef CONFIG_SYSCTL 2222 2223 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2224 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2225 2226 static struct ctl_table vm_page_writeback_sysctls[] = { 2227 { 2228 .procname = "dirty_background_ratio", 2229 .data = &dirty_background_ratio, 2230 .maxlen = sizeof(dirty_background_ratio), 2231 .mode = 0644, 2232 .proc_handler = dirty_background_ratio_handler, 2233 .extra1 = SYSCTL_ZERO, 2234 .extra2 = SYSCTL_ONE_HUNDRED, 2235 }, 2236 { 2237 .procname = "dirty_background_bytes", 2238 .data = &dirty_background_bytes, 2239 .maxlen = sizeof(dirty_background_bytes), 2240 .mode = 0644, 2241 .proc_handler = dirty_background_bytes_handler, 2242 .extra1 = SYSCTL_LONG_ONE, 2243 }, 2244 { 2245 .procname = "dirty_ratio", 2246 .data = &vm_dirty_ratio, 2247 .maxlen = sizeof(vm_dirty_ratio), 2248 .mode = 0644, 2249 .proc_handler = dirty_ratio_handler, 2250 .extra1 = SYSCTL_ZERO, 2251 .extra2 = SYSCTL_ONE_HUNDRED, 2252 }, 2253 { 2254 .procname = "dirty_bytes", 2255 .data = &vm_dirty_bytes, 2256 .maxlen = sizeof(vm_dirty_bytes), 2257 .mode = 0644, 2258 .proc_handler = dirty_bytes_handler, 2259 .extra1 = (void *)&dirty_bytes_min, 2260 }, 2261 { 2262 .procname = "dirty_writeback_centisecs", 2263 .data = &dirty_writeback_interval, 2264 .maxlen = sizeof(dirty_writeback_interval), 2265 .mode = 0644, 2266 .proc_handler = dirty_writeback_centisecs_handler, 2267 }, 2268 { 2269 .procname = "dirty_expire_centisecs", 2270 .data = &dirty_expire_interval, 2271 .maxlen = sizeof(dirty_expire_interval), 2272 .mode = 0644, 2273 .proc_handler = proc_dointvec_minmax, 2274 .extra1 = SYSCTL_ZERO, 2275 }, 2276 #ifdef CONFIG_HIGHMEM 2277 { 2278 .procname = "highmem_is_dirtyable", 2279 .data = &vm_highmem_is_dirtyable, 2280 .maxlen = sizeof(vm_highmem_is_dirtyable), 2281 .mode = 0644, 2282 .proc_handler = proc_dointvec_minmax, 2283 .extra1 = SYSCTL_ZERO, 2284 .extra2 = SYSCTL_ONE, 2285 }, 2286 #endif 2287 { 2288 .procname = "laptop_mode", 2289 .data = &laptop_mode, 2290 .maxlen = sizeof(laptop_mode), 2291 .mode = 0644, 2292 .proc_handler = proc_dointvec_jiffies, 2293 }, 2294 {} 2295 }; 2296 #endif 2297 2298 /* 2299 * Called early on to tune the page writeback dirty limits. 2300 * 2301 * We used to scale dirty pages according to how total memory 2302 * related to pages that could be allocated for buffers. 2303 * 2304 * However, that was when we used "dirty_ratio" to scale with 2305 * all memory, and we don't do that any more. "dirty_ratio" 2306 * is now applied to total non-HIGHPAGE memory, and as such we can't 2307 * get into the old insane situation any more where we had 2308 * large amounts of dirty pages compared to a small amount of 2309 * non-HIGHMEM memory. 2310 * 2311 * But we might still want to scale the dirty_ratio by how 2312 * much memory the box has.. 2313 */ 2314 void __init page_writeback_init(void) 2315 { 2316 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2317 2318 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2319 page_writeback_cpu_online, NULL); 2320 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2321 page_writeback_cpu_online); 2322 #ifdef CONFIG_SYSCTL 2323 register_sysctl_init("vm", vm_page_writeback_sysctls); 2324 #endif 2325 } 2326 2327 /** 2328 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2329 * @mapping: address space structure to write 2330 * @start: starting page index 2331 * @end: ending page index (inclusive) 2332 * 2333 * This function scans the page range from @start to @end (inclusive) and tags 2334 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2335 * that write_cache_pages (or whoever calls this function) will then use 2336 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2337 * used to avoid livelocking of writeback by a process steadily creating new 2338 * dirty pages in the file (thus it is important for this function to be quick 2339 * so that it can tag pages faster than a dirtying process can create them). 2340 */ 2341 void tag_pages_for_writeback(struct address_space *mapping, 2342 pgoff_t start, pgoff_t end) 2343 { 2344 XA_STATE(xas, &mapping->i_pages, start); 2345 unsigned int tagged = 0; 2346 void *page; 2347 2348 xas_lock_irq(&xas); 2349 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2350 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2351 if (++tagged % XA_CHECK_SCHED) 2352 continue; 2353 2354 xas_pause(&xas); 2355 xas_unlock_irq(&xas); 2356 cond_resched(); 2357 xas_lock_irq(&xas); 2358 } 2359 xas_unlock_irq(&xas); 2360 } 2361 EXPORT_SYMBOL(tag_pages_for_writeback); 2362 2363 /** 2364 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2365 * @mapping: address space structure to write 2366 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2367 * @writepage: function called for each page 2368 * @data: data passed to writepage function 2369 * 2370 * If a page is already under I/O, write_cache_pages() skips it, even 2371 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2372 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2373 * and msync() need to guarantee that all the data which was dirty at the time 2374 * the call was made get new I/O started against them. If wbc->sync_mode is 2375 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2376 * existing IO to complete. 2377 * 2378 * To avoid livelocks (when other process dirties new pages), we first tag 2379 * pages which should be written back with TOWRITE tag and only then start 2380 * writing them. For data-integrity sync we have to be careful so that we do 2381 * not miss some pages (e.g., because some other process has cleared TOWRITE 2382 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2383 * by the process clearing the DIRTY tag (and submitting the page for IO). 2384 * 2385 * To avoid deadlocks between range_cyclic writeback and callers that hold 2386 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2387 * we do not loop back to the start of the file. Doing so causes a page 2388 * lock/page writeback access order inversion - we should only ever lock 2389 * multiple pages in ascending page->index order, and looping back to the start 2390 * of the file violates that rule and causes deadlocks. 2391 * 2392 * Return: %0 on success, negative error code otherwise 2393 */ 2394 int write_cache_pages(struct address_space *mapping, 2395 struct writeback_control *wbc, writepage_t writepage, 2396 void *data) 2397 { 2398 int ret = 0; 2399 int done = 0; 2400 int error; 2401 struct folio_batch fbatch; 2402 int nr_folios; 2403 pgoff_t index; 2404 pgoff_t end; /* Inclusive */ 2405 pgoff_t done_index; 2406 int range_whole = 0; 2407 xa_mark_t tag; 2408 2409 folio_batch_init(&fbatch); 2410 if (wbc->range_cyclic) { 2411 index = mapping->writeback_index; /* prev offset */ 2412 end = -1; 2413 } else { 2414 index = wbc->range_start >> PAGE_SHIFT; 2415 end = wbc->range_end >> PAGE_SHIFT; 2416 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2417 range_whole = 1; 2418 } 2419 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2420 tag_pages_for_writeback(mapping, index, end); 2421 tag = PAGECACHE_TAG_TOWRITE; 2422 } else { 2423 tag = PAGECACHE_TAG_DIRTY; 2424 } 2425 done_index = index; 2426 while (!done && (index <= end)) { 2427 int i; 2428 2429 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2430 tag, &fbatch); 2431 2432 if (nr_folios == 0) 2433 break; 2434 2435 for (i = 0; i < nr_folios; i++) { 2436 struct folio *folio = fbatch.folios[i]; 2437 unsigned long nr; 2438 2439 done_index = folio->index; 2440 2441 folio_lock(folio); 2442 2443 /* 2444 * Page truncated or invalidated. We can freely skip it 2445 * then, even for data integrity operations: the page 2446 * has disappeared concurrently, so there could be no 2447 * real expectation of this data integrity operation 2448 * even if there is now a new, dirty page at the same 2449 * pagecache address. 2450 */ 2451 if (unlikely(folio->mapping != mapping)) { 2452 continue_unlock: 2453 folio_unlock(folio); 2454 continue; 2455 } 2456 2457 if (!folio_test_dirty(folio)) { 2458 /* someone wrote it for us */ 2459 goto continue_unlock; 2460 } 2461 2462 if (folio_test_writeback(folio)) { 2463 if (wbc->sync_mode != WB_SYNC_NONE) 2464 folio_wait_writeback(folio); 2465 else 2466 goto continue_unlock; 2467 } 2468 2469 BUG_ON(folio_test_writeback(folio)); 2470 if (!folio_clear_dirty_for_io(folio)) 2471 goto continue_unlock; 2472 2473 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2474 error = writepage(folio, wbc, data); 2475 nr = folio_nr_pages(folio); 2476 if (unlikely(error)) { 2477 /* 2478 * Handle errors according to the type of 2479 * writeback. There's no need to continue for 2480 * background writeback. Just push done_index 2481 * past this page so media errors won't choke 2482 * writeout for the entire file. For integrity 2483 * writeback, we must process the entire dirty 2484 * set regardless of errors because the fs may 2485 * still have state to clear for each page. In 2486 * that case we continue processing and return 2487 * the first error. 2488 */ 2489 if (error == AOP_WRITEPAGE_ACTIVATE) { 2490 folio_unlock(folio); 2491 error = 0; 2492 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2493 ret = error; 2494 done_index = folio->index + nr; 2495 done = 1; 2496 break; 2497 } 2498 if (!ret) 2499 ret = error; 2500 } 2501 2502 /* 2503 * We stop writing back only if we are not doing 2504 * integrity sync. In case of integrity sync we have to 2505 * keep going until we have written all the pages 2506 * we tagged for writeback prior to entering this loop. 2507 */ 2508 wbc->nr_to_write -= nr; 2509 if (wbc->nr_to_write <= 0 && 2510 wbc->sync_mode == WB_SYNC_NONE) { 2511 done = 1; 2512 break; 2513 } 2514 } 2515 folio_batch_release(&fbatch); 2516 cond_resched(); 2517 } 2518 2519 /* 2520 * If we hit the last page and there is more work to be done: wrap 2521 * back the index back to the start of the file for the next 2522 * time we are called. 2523 */ 2524 if (wbc->range_cyclic && !done) 2525 done_index = 0; 2526 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2527 mapping->writeback_index = done_index; 2528 2529 return ret; 2530 } 2531 EXPORT_SYMBOL(write_cache_pages); 2532 2533 static int writepage_cb(struct folio *folio, struct writeback_control *wbc, 2534 void *data) 2535 { 2536 struct address_space *mapping = data; 2537 int ret = mapping->a_ops->writepage(&folio->page, wbc); 2538 mapping_set_error(mapping, ret); 2539 return ret; 2540 } 2541 2542 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2543 { 2544 int ret; 2545 struct bdi_writeback *wb; 2546 2547 if (wbc->nr_to_write <= 0) 2548 return 0; 2549 wb = inode_to_wb_wbc(mapping->host, wbc); 2550 wb_bandwidth_estimate_start(wb); 2551 while (1) { 2552 if (mapping->a_ops->writepages) { 2553 ret = mapping->a_ops->writepages(mapping, wbc); 2554 } else if (mapping->a_ops->writepage) { 2555 struct blk_plug plug; 2556 2557 blk_start_plug(&plug); 2558 ret = write_cache_pages(mapping, wbc, writepage_cb, 2559 mapping); 2560 blk_finish_plug(&plug); 2561 } else { 2562 /* deal with chardevs and other special files */ 2563 ret = 0; 2564 } 2565 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2566 break; 2567 2568 /* 2569 * Lacking an allocation context or the locality or writeback 2570 * state of any of the inode's pages, throttle based on 2571 * writeback activity on the local node. It's as good a 2572 * guess as any. 2573 */ 2574 reclaim_throttle(NODE_DATA(numa_node_id()), 2575 VMSCAN_THROTTLE_WRITEBACK); 2576 } 2577 /* 2578 * Usually few pages are written by now from those we've just submitted 2579 * but if there's constant writeback being submitted, this makes sure 2580 * writeback bandwidth is updated once in a while. 2581 */ 2582 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2583 BANDWIDTH_INTERVAL)) 2584 wb_update_bandwidth(wb); 2585 return ret; 2586 } 2587 2588 /* 2589 * For address_spaces which do not use buffers nor write back. 2590 */ 2591 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2592 { 2593 if (!folio_test_dirty(folio)) 2594 return !folio_test_set_dirty(folio); 2595 return false; 2596 } 2597 EXPORT_SYMBOL(noop_dirty_folio); 2598 2599 /* 2600 * Helper function for set_page_dirty family. 2601 * 2602 * Caller must hold folio_memcg_lock(). 2603 * 2604 * NOTE: This relies on being atomic wrt interrupts. 2605 */ 2606 static void folio_account_dirtied(struct folio *folio, 2607 struct address_space *mapping) 2608 { 2609 struct inode *inode = mapping->host; 2610 2611 trace_writeback_dirty_folio(folio, mapping); 2612 2613 if (mapping_can_writeback(mapping)) { 2614 struct bdi_writeback *wb; 2615 long nr = folio_nr_pages(folio); 2616 2617 inode_attach_wb(inode, folio); 2618 wb = inode_to_wb(inode); 2619 2620 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2621 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2622 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2623 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2624 wb_stat_mod(wb, WB_DIRTIED, nr); 2625 task_io_account_write(nr * PAGE_SIZE); 2626 current->nr_dirtied += nr; 2627 __this_cpu_add(bdp_ratelimits, nr); 2628 2629 mem_cgroup_track_foreign_dirty(folio, wb); 2630 } 2631 } 2632 2633 /* 2634 * Helper function for deaccounting dirty page without writeback. 2635 * 2636 * Caller must hold folio_memcg_lock(). 2637 */ 2638 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2639 { 2640 long nr = folio_nr_pages(folio); 2641 2642 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2643 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2644 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2645 task_io_account_cancelled_write(nr * PAGE_SIZE); 2646 } 2647 2648 /* 2649 * Mark the folio dirty, and set it dirty in the page cache, and mark 2650 * the inode dirty. 2651 * 2652 * If warn is true, then emit a warning if the folio is not uptodate and has 2653 * not been truncated. 2654 * 2655 * The caller must hold folio_memcg_lock(). Most callers have the folio 2656 * locked. A few have the folio blocked from truncation through other 2657 * means (eg zap_vma_pages() has it mapped and is holding the page table 2658 * lock). This can also be called from mark_buffer_dirty(), which I 2659 * cannot prove is always protected against truncate. 2660 */ 2661 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2662 int warn) 2663 { 2664 unsigned long flags; 2665 2666 xa_lock_irqsave(&mapping->i_pages, flags); 2667 if (folio->mapping) { /* Race with truncate? */ 2668 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2669 folio_account_dirtied(folio, mapping); 2670 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2671 PAGECACHE_TAG_DIRTY); 2672 } 2673 xa_unlock_irqrestore(&mapping->i_pages, flags); 2674 } 2675 2676 /** 2677 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2678 * @mapping: Address space this folio belongs to. 2679 * @folio: Folio to be marked as dirty. 2680 * 2681 * Filesystems which do not use buffer heads should call this function 2682 * from their set_page_dirty address space operation. It ignores the 2683 * contents of folio_get_private(), so if the filesystem marks individual 2684 * blocks as dirty, the filesystem should handle that itself. 2685 * 2686 * This is also sometimes used by filesystems which use buffer_heads when 2687 * a single buffer is being dirtied: we want to set the folio dirty in 2688 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2689 * whereas block_dirty_folio() is a "top-down" dirtying. 2690 * 2691 * The caller must ensure this doesn't race with truncation. Most will 2692 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2693 * folio mapped and the pte lock held, which also locks out truncation. 2694 */ 2695 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2696 { 2697 folio_memcg_lock(folio); 2698 if (folio_test_set_dirty(folio)) { 2699 folio_memcg_unlock(folio); 2700 return false; 2701 } 2702 2703 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2704 folio_memcg_unlock(folio); 2705 2706 if (mapping->host) { 2707 /* !PageAnon && !swapper_space */ 2708 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2709 } 2710 return true; 2711 } 2712 EXPORT_SYMBOL(filemap_dirty_folio); 2713 2714 /** 2715 * folio_redirty_for_writepage - Decline to write a dirty folio. 2716 * @wbc: The writeback control. 2717 * @folio: The folio. 2718 * 2719 * When a writepage implementation decides that it doesn't want to write 2720 * @folio for some reason, it should call this function, unlock @folio and 2721 * return 0. 2722 * 2723 * Return: True if we redirtied the folio. False if someone else dirtied 2724 * it first. 2725 */ 2726 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2727 struct folio *folio) 2728 { 2729 struct address_space *mapping = folio->mapping; 2730 long nr = folio_nr_pages(folio); 2731 bool ret; 2732 2733 wbc->pages_skipped += nr; 2734 ret = filemap_dirty_folio(mapping, folio); 2735 if (mapping && mapping_can_writeback(mapping)) { 2736 struct inode *inode = mapping->host; 2737 struct bdi_writeback *wb; 2738 struct wb_lock_cookie cookie = {}; 2739 2740 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2741 current->nr_dirtied -= nr; 2742 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2743 wb_stat_mod(wb, WB_DIRTIED, -nr); 2744 unlocked_inode_to_wb_end(inode, &cookie); 2745 } 2746 return ret; 2747 } 2748 EXPORT_SYMBOL(folio_redirty_for_writepage); 2749 2750 /** 2751 * folio_mark_dirty - Mark a folio as being modified. 2752 * @folio: The folio. 2753 * 2754 * The folio may not be truncated while this function is running. 2755 * Holding the folio lock is sufficient to prevent truncation, but some 2756 * callers cannot acquire a sleeping lock. These callers instead hold 2757 * the page table lock for a page table which contains at least one page 2758 * in this folio. Truncation will block on the page table lock as it 2759 * unmaps pages before removing the folio from its mapping. 2760 * 2761 * Return: True if the folio was newly dirtied, false if it was already dirty. 2762 */ 2763 bool folio_mark_dirty(struct folio *folio) 2764 { 2765 struct address_space *mapping = folio_mapping(folio); 2766 2767 if (likely(mapping)) { 2768 /* 2769 * readahead/folio_deactivate could remain 2770 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2771 * About readahead, if the folio is written, the flags would be 2772 * reset. So no problem. 2773 * About folio_deactivate, if the folio is redirtied, 2774 * the flag will be reset. So no problem. but if the 2775 * folio is used by readahead it will confuse readahead 2776 * and make it restart the size rampup process. But it's 2777 * a trivial problem. 2778 */ 2779 if (folio_test_reclaim(folio)) 2780 folio_clear_reclaim(folio); 2781 return mapping->a_ops->dirty_folio(mapping, folio); 2782 } 2783 2784 return noop_dirty_folio(mapping, folio); 2785 } 2786 EXPORT_SYMBOL(folio_mark_dirty); 2787 2788 /* 2789 * set_page_dirty() is racy if the caller has no reference against 2790 * page->mapping->host, and if the page is unlocked. This is because another 2791 * CPU could truncate the page off the mapping and then free the mapping. 2792 * 2793 * Usually, the page _is_ locked, or the caller is a user-space process which 2794 * holds a reference on the inode by having an open file. 2795 * 2796 * In other cases, the page should be locked before running set_page_dirty(). 2797 */ 2798 int set_page_dirty_lock(struct page *page) 2799 { 2800 int ret; 2801 2802 lock_page(page); 2803 ret = set_page_dirty(page); 2804 unlock_page(page); 2805 return ret; 2806 } 2807 EXPORT_SYMBOL(set_page_dirty_lock); 2808 2809 /* 2810 * This cancels just the dirty bit on the kernel page itself, it does NOT 2811 * actually remove dirty bits on any mmap's that may be around. It also 2812 * leaves the page tagged dirty, so any sync activity will still find it on 2813 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2814 * look at the dirty bits in the VM. 2815 * 2816 * Doing this should *normally* only ever be done when a page is truncated, 2817 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2818 * this when it notices that somebody has cleaned out all the buffers on a 2819 * page without actually doing it through the VM. Can you say "ext3 is 2820 * horribly ugly"? Thought you could. 2821 */ 2822 void __folio_cancel_dirty(struct folio *folio) 2823 { 2824 struct address_space *mapping = folio_mapping(folio); 2825 2826 if (mapping_can_writeback(mapping)) { 2827 struct inode *inode = mapping->host; 2828 struct bdi_writeback *wb; 2829 struct wb_lock_cookie cookie = {}; 2830 2831 folio_memcg_lock(folio); 2832 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2833 2834 if (folio_test_clear_dirty(folio)) 2835 folio_account_cleaned(folio, wb); 2836 2837 unlocked_inode_to_wb_end(inode, &cookie); 2838 folio_memcg_unlock(folio); 2839 } else { 2840 folio_clear_dirty(folio); 2841 } 2842 } 2843 EXPORT_SYMBOL(__folio_cancel_dirty); 2844 2845 /* 2846 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2847 * Returns true if the folio was previously dirty. 2848 * 2849 * This is for preparing to put the folio under writeout. We leave 2850 * the folio tagged as dirty in the xarray so that a concurrent 2851 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2852 * The ->writepage implementation will run either folio_start_writeback() 2853 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2854 * and xarray dirty tag back into sync. 2855 * 2856 * This incoherency between the folio's dirty flag and xarray tag is 2857 * unfortunate, but it only exists while the folio is locked. 2858 */ 2859 bool folio_clear_dirty_for_io(struct folio *folio) 2860 { 2861 struct address_space *mapping = folio_mapping(folio); 2862 bool ret = false; 2863 2864 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2865 2866 if (mapping && mapping_can_writeback(mapping)) { 2867 struct inode *inode = mapping->host; 2868 struct bdi_writeback *wb; 2869 struct wb_lock_cookie cookie = {}; 2870 2871 /* 2872 * Yes, Virginia, this is indeed insane. 2873 * 2874 * We use this sequence to make sure that 2875 * (a) we account for dirty stats properly 2876 * (b) we tell the low-level filesystem to 2877 * mark the whole folio dirty if it was 2878 * dirty in a pagetable. Only to then 2879 * (c) clean the folio again and return 1 to 2880 * cause the writeback. 2881 * 2882 * This way we avoid all nasty races with the 2883 * dirty bit in multiple places and clearing 2884 * them concurrently from different threads. 2885 * 2886 * Note! Normally the "folio_mark_dirty(folio)" 2887 * has no effect on the actual dirty bit - since 2888 * that will already usually be set. But we 2889 * need the side effects, and it can help us 2890 * avoid races. 2891 * 2892 * We basically use the folio "master dirty bit" 2893 * as a serialization point for all the different 2894 * threads doing their things. 2895 */ 2896 if (folio_mkclean(folio)) 2897 folio_mark_dirty(folio); 2898 /* 2899 * We carefully synchronise fault handlers against 2900 * installing a dirty pte and marking the folio dirty 2901 * at this point. We do this by having them hold the 2902 * page lock while dirtying the folio, and folios are 2903 * always locked coming in here, so we get the desired 2904 * exclusion. 2905 */ 2906 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2907 if (folio_test_clear_dirty(folio)) { 2908 long nr = folio_nr_pages(folio); 2909 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2910 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2911 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2912 ret = true; 2913 } 2914 unlocked_inode_to_wb_end(inode, &cookie); 2915 return ret; 2916 } 2917 return folio_test_clear_dirty(folio); 2918 } 2919 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2920 2921 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2922 { 2923 atomic_inc(&wb->writeback_inodes); 2924 } 2925 2926 static void wb_inode_writeback_end(struct bdi_writeback *wb) 2927 { 2928 unsigned long flags; 2929 atomic_dec(&wb->writeback_inodes); 2930 /* 2931 * Make sure estimate of writeback throughput gets updated after 2932 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 2933 * (which is the interval other bandwidth updates use for batching) so 2934 * that if multiple inodes end writeback at a similar time, they get 2935 * batched into one bandwidth update. 2936 */ 2937 spin_lock_irqsave(&wb->work_lock, flags); 2938 if (test_bit(WB_registered, &wb->state)) 2939 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 2940 spin_unlock_irqrestore(&wb->work_lock, flags); 2941 } 2942 2943 bool __folio_end_writeback(struct folio *folio) 2944 { 2945 long nr = folio_nr_pages(folio); 2946 struct address_space *mapping = folio_mapping(folio); 2947 bool ret; 2948 2949 folio_memcg_lock(folio); 2950 if (mapping && mapping_use_writeback_tags(mapping)) { 2951 struct inode *inode = mapping->host; 2952 struct backing_dev_info *bdi = inode_to_bdi(inode); 2953 unsigned long flags; 2954 2955 xa_lock_irqsave(&mapping->i_pages, flags); 2956 ret = folio_test_clear_writeback(folio); 2957 if (ret) { 2958 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 2959 PAGECACHE_TAG_WRITEBACK); 2960 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2961 struct bdi_writeback *wb = inode_to_wb(inode); 2962 2963 wb_stat_mod(wb, WB_WRITEBACK, -nr); 2964 __wb_writeout_add(wb, nr); 2965 if (!mapping_tagged(mapping, 2966 PAGECACHE_TAG_WRITEBACK)) 2967 wb_inode_writeback_end(wb); 2968 } 2969 } 2970 2971 if (mapping->host && !mapping_tagged(mapping, 2972 PAGECACHE_TAG_WRITEBACK)) 2973 sb_clear_inode_writeback(mapping->host); 2974 2975 xa_unlock_irqrestore(&mapping->i_pages, flags); 2976 } else { 2977 ret = folio_test_clear_writeback(folio); 2978 } 2979 if (ret) { 2980 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 2981 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2982 node_stat_mod_folio(folio, NR_WRITTEN, nr); 2983 } 2984 folio_memcg_unlock(folio); 2985 return ret; 2986 } 2987 2988 bool __folio_start_writeback(struct folio *folio, bool keep_write) 2989 { 2990 long nr = folio_nr_pages(folio); 2991 struct address_space *mapping = folio_mapping(folio); 2992 bool ret; 2993 int access_ret; 2994 2995 folio_memcg_lock(folio); 2996 if (mapping && mapping_use_writeback_tags(mapping)) { 2997 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 2998 struct inode *inode = mapping->host; 2999 struct backing_dev_info *bdi = inode_to_bdi(inode); 3000 unsigned long flags; 3001 3002 xas_lock_irqsave(&xas, flags); 3003 xas_load(&xas); 3004 ret = folio_test_set_writeback(folio); 3005 if (!ret) { 3006 bool on_wblist; 3007 3008 on_wblist = mapping_tagged(mapping, 3009 PAGECACHE_TAG_WRITEBACK); 3010 3011 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3012 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3013 struct bdi_writeback *wb = inode_to_wb(inode); 3014 3015 wb_stat_mod(wb, WB_WRITEBACK, nr); 3016 if (!on_wblist) 3017 wb_inode_writeback_start(wb); 3018 } 3019 3020 /* 3021 * We can come through here when swapping 3022 * anonymous folios, so we don't necessarily 3023 * have an inode to track for sync. 3024 */ 3025 if (mapping->host && !on_wblist) 3026 sb_mark_inode_writeback(mapping->host); 3027 } 3028 if (!folio_test_dirty(folio)) 3029 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3030 if (!keep_write) 3031 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3032 xas_unlock_irqrestore(&xas, flags); 3033 } else { 3034 ret = folio_test_set_writeback(folio); 3035 } 3036 if (!ret) { 3037 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3038 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3039 } 3040 folio_memcg_unlock(folio); 3041 access_ret = arch_make_folio_accessible(folio); 3042 /* 3043 * If writeback has been triggered on a page that cannot be made 3044 * accessible, it is too late to recover here. 3045 */ 3046 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3047 3048 return ret; 3049 } 3050 EXPORT_SYMBOL(__folio_start_writeback); 3051 3052 /** 3053 * folio_wait_writeback - Wait for a folio to finish writeback. 3054 * @folio: The folio to wait for. 3055 * 3056 * If the folio is currently being written back to storage, wait for the 3057 * I/O to complete. 3058 * 3059 * Context: Sleeps. Must be called in process context and with 3060 * no spinlocks held. Caller should hold a reference on the folio. 3061 * If the folio is not locked, writeback may start again after writeback 3062 * has finished. 3063 */ 3064 void folio_wait_writeback(struct folio *folio) 3065 { 3066 while (folio_test_writeback(folio)) { 3067 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3068 folio_wait_bit(folio, PG_writeback); 3069 } 3070 } 3071 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3072 3073 /** 3074 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3075 * @folio: The folio to wait for. 3076 * 3077 * If the folio is currently being written back to storage, wait for the 3078 * I/O to complete or a fatal signal to arrive. 3079 * 3080 * Context: Sleeps. Must be called in process context and with 3081 * no spinlocks held. Caller should hold a reference on the folio. 3082 * If the folio is not locked, writeback may start again after writeback 3083 * has finished. 3084 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3085 */ 3086 int folio_wait_writeback_killable(struct folio *folio) 3087 { 3088 while (folio_test_writeback(folio)) { 3089 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3090 if (folio_wait_bit_killable(folio, PG_writeback)) 3091 return -EINTR; 3092 } 3093 3094 return 0; 3095 } 3096 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3097 3098 /** 3099 * folio_wait_stable() - wait for writeback to finish, if necessary. 3100 * @folio: The folio to wait on. 3101 * 3102 * This function determines if the given folio is related to a backing 3103 * device that requires folio contents to be held stable during writeback. 3104 * If so, then it will wait for any pending writeback to complete. 3105 * 3106 * Context: Sleeps. Must be called in process context and with 3107 * no spinlocks held. Caller should hold a reference on the folio. 3108 * If the folio is not locked, writeback may start again after writeback 3109 * has finished. 3110 */ 3111 void folio_wait_stable(struct folio *folio) 3112 { 3113 if (mapping_stable_writes(folio_mapping(folio))) 3114 folio_wait_writeback(folio); 3115 } 3116 EXPORT_SYMBOL_GPL(folio_wait_stable); 3117