xref: /openbmc/linux/mm/page-writeback.c (revision 2d6bed9c)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <trace/events/writeback.h>
39 
40 /*
41  * Sleep at most 200ms at a time in balance_dirty_pages().
42  */
43 #define MAX_PAUSE		max(HZ/5, 1)
44 
45 /*
46  * Try to keep balance_dirty_pages() call intervals higher than this many pages
47  * by raising pause time to max_pause when falls below it.
48  */
49 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
50 
51 /*
52  * Estimate write bandwidth at 200ms intervals.
53  */
54 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
55 
56 #define RATELIMIT_CALC_SHIFT	10
57 
58 /*
59  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
60  * will look to see if it needs to force writeback or throttling.
61  */
62 static long ratelimit_pages = 32;
63 
64 /* The following parameters are exported via /proc/sys/vm */
65 
66 /*
67  * Start background writeback (via writeback threads) at this percentage
68  */
69 int dirty_background_ratio = 10;
70 
71 /*
72  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
73  * dirty_background_ratio * the amount of dirtyable memory
74  */
75 unsigned long dirty_background_bytes;
76 
77 /*
78  * free highmem will not be subtracted from the total free memory
79  * for calculating free ratios if vm_highmem_is_dirtyable is true
80  */
81 int vm_highmem_is_dirtyable;
82 
83 /*
84  * The generator of dirty data starts writeback at this percentage
85  */
86 int vm_dirty_ratio = 20;
87 
88 /*
89  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
90  * vm_dirty_ratio * the amount of dirtyable memory
91  */
92 unsigned long vm_dirty_bytes;
93 
94 /*
95  * The interval between `kupdate'-style writebacks
96  */
97 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
98 
99 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
100 
101 /*
102  * The longest time for which data is allowed to remain dirty
103  */
104 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
105 
106 /*
107  * Flag that makes the machine dump writes/reads and block dirtyings.
108  */
109 int block_dump;
110 
111 /*
112  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113  * a full sync is triggered after this time elapses without any disk activity.
114  */
115 int laptop_mode;
116 
117 EXPORT_SYMBOL(laptop_mode);
118 
119 /* End of sysctl-exported parameters */
120 
121 unsigned long global_dirty_limit;
122 
123 /*
124  * Scale the writeback cache size proportional to the relative writeout speeds.
125  *
126  * We do this by keeping a floating proportion between BDIs, based on page
127  * writeback completions [end_page_writeback()]. Those devices that write out
128  * pages fastest will get the larger share, while the slower will get a smaller
129  * share.
130  *
131  * We use page writeout completions because we are interested in getting rid of
132  * dirty pages. Having them written out is the primary goal.
133  *
134  * We introduce a concept of time, a period over which we measure these events,
135  * because demand can/will vary over time. The length of this period itself is
136  * measured in page writeback completions.
137  *
138  */
139 static struct fprop_global writeout_completions;
140 
141 static void writeout_period(unsigned long t);
142 /* Timer for aging of writeout_completions */
143 static struct timer_list writeout_period_timer =
144 		TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
145 static unsigned long writeout_period_time = 0;
146 
147 /*
148  * Length of period for aging writeout fractions of bdis. This is an
149  * arbitrarily chosen number. The longer the period, the slower fractions will
150  * reflect changes in current writeout rate.
151  */
152 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
153 
154 /*
155  * Work out the current dirty-memory clamping and background writeout
156  * thresholds.
157  *
158  * The main aim here is to lower them aggressively if there is a lot of mapped
159  * memory around.  To avoid stressing page reclaim with lots of unreclaimable
160  * pages.  It is better to clamp down on writers than to start swapping, and
161  * performing lots of scanning.
162  *
163  * We only allow 1/2 of the currently-unmapped memory to be dirtied.
164  *
165  * We don't permit the clamping level to fall below 5% - that is getting rather
166  * excessive.
167  *
168  * We make sure that the background writeout level is below the adjusted
169  * clamping level.
170  */
171 
172 /*
173  * In a memory zone, there is a certain amount of pages we consider
174  * available for the page cache, which is essentially the number of
175  * free and reclaimable pages, minus some zone reserves to protect
176  * lowmem and the ability to uphold the zone's watermarks without
177  * requiring writeback.
178  *
179  * This number of dirtyable pages is the base value of which the
180  * user-configurable dirty ratio is the effictive number of pages that
181  * are allowed to be actually dirtied.  Per individual zone, or
182  * globally by using the sum of dirtyable pages over all zones.
183  *
184  * Because the user is allowed to specify the dirty limit globally as
185  * absolute number of bytes, calculating the per-zone dirty limit can
186  * require translating the configured limit into a percentage of
187  * global dirtyable memory first.
188  */
189 
190 static unsigned long highmem_dirtyable_memory(unsigned long total)
191 {
192 #ifdef CONFIG_HIGHMEM
193 	int node;
194 	unsigned long x = 0;
195 
196 	for_each_node_state(node, N_HIGH_MEMORY) {
197 		struct zone *z =
198 			&NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
199 
200 		x += zone_page_state(z, NR_FREE_PAGES) +
201 		     zone_reclaimable_pages(z) - z->dirty_balance_reserve;
202 	}
203 	/*
204 	 * Make sure that the number of highmem pages is never larger
205 	 * than the number of the total dirtyable memory. This can only
206 	 * occur in very strange VM situations but we want to make sure
207 	 * that this does not occur.
208 	 */
209 	return min(x, total);
210 #else
211 	return 0;
212 #endif
213 }
214 
215 /**
216  * global_dirtyable_memory - number of globally dirtyable pages
217  *
218  * Returns the global number of pages potentially available for dirty
219  * page cache.  This is the base value for the global dirty limits.
220  */
221 static unsigned long global_dirtyable_memory(void)
222 {
223 	unsigned long x;
224 
225 	x = global_page_state(NR_FREE_PAGES) + global_reclaimable_pages() -
226 	    dirty_balance_reserve;
227 
228 	if (!vm_highmem_is_dirtyable)
229 		x -= highmem_dirtyable_memory(x);
230 
231 	return x + 1;	/* Ensure that we never return 0 */
232 }
233 
234 /*
235  * global_dirty_limits - background-writeback and dirty-throttling thresholds
236  *
237  * Calculate the dirty thresholds based on sysctl parameters
238  * - vm.dirty_background_ratio  or  vm.dirty_background_bytes
239  * - vm.dirty_ratio             or  vm.dirty_bytes
240  * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
241  * real-time tasks.
242  */
243 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
244 {
245 	unsigned long background;
246 	unsigned long dirty;
247 	unsigned long uninitialized_var(available_memory);
248 	struct task_struct *tsk;
249 
250 	if (!vm_dirty_bytes || !dirty_background_bytes)
251 		available_memory = global_dirtyable_memory();
252 
253 	if (vm_dirty_bytes)
254 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
255 	else
256 		dirty = (vm_dirty_ratio * available_memory) / 100;
257 
258 	if (dirty_background_bytes)
259 		background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
260 	else
261 		background = (dirty_background_ratio * available_memory) / 100;
262 
263 	if (background >= dirty)
264 		background = dirty / 2;
265 	tsk = current;
266 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
267 		background += background / 4;
268 		dirty += dirty / 4;
269 	}
270 	*pbackground = background;
271 	*pdirty = dirty;
272 	trace_global_dirty_state(background, dirty);
273 }
274 
275 /**
276  * zone_dirtyable_memory - number of dirtyable pages in a zone
277  * @zone: the zone
278  *
279  * Returns the zone's number of pages potentially available for dirty
280  * page cache.  This is the base value for the per-zone dirty limits.
281  */
282 static unsigned long zone_dirtyable_memory(struct zone *zone)
283 {
284 	/*
285 	 * The effective global number of dirtyable pages may exclude
286 	 * highmem as a big-picture measure to keep the ratio between
287 	 * dirty memory and lowmem reasonable.
288 	 *
289 	 * But this function is purely about the individual zone and a
290 	 * highmem zone can hold its share of dirty pages, so we don't
291 	 * care about vm_highmem_is_dirtyable here.
292 	 */
293 	return zone_page_state(zone, NR_FREE_PAGES) +
294 	       zone_reclaimable_pages(zone) -
295 	       zone->dirty_balance_reserve;
296 }
297 
298 /**
299  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
300  * @zone: the zone
301  *
302  * Returns the maximum number of dirty pages allowed in a zone, based
303  * on the zone's dirtyable memory.
304  */
305 static unsigned long zone_dirty_limit(struct zone *zone)
306 {
307 	unsigned long zone_memory = zone_dirtyable_memory(zone);
308 	struct task_struct *tsk = current;
309 	unsigned long dirty;
310 
311 	if (vm_dirty_bytes)
312 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
313 			zone_memory / global_dirtyable_memory();
314 	else
315 		dirty = vm_dirty_ratio * zone_memory / 100;
316 
317 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
318 		dirty += dirty / 4;
319 
320 	return dirty;
321 }
322 
323 /**
324  * zone_dirty_ok - tells whether a zone is within its dirty limits
325  * @zone: the zone to check
326  *
327  * Returns %true when the dirty pages in @zone are within the zone's
328  * dirty limit, %false if the limit is exceeded.
329  */
330 bool zone_dirty_ok(struct zone *zone)
331 {
332 	unsigned long limit = zone_dirty_limit(zone);
333 
334 	return zone_page_state(zone, NR_FILE_DIRTY) +
335 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
336 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
337 }
338 
339 int dirty_background_ratio_handler(struct ctl_table *table, int write,
340 		void __user *buffer, size_t *lenp,
341 		loff_t *ppos)
342 {
343 	int ret;
344 
345 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
346 	if (ret == 0 && write)
347 		dirty_background_bytes = 0;
348 	return ret;
349 }
350 
351 int dirty_background_bytes_handler(struct ctl_table *table, int write,
352 		void __user *buffer, size_t *lenp,
353 		loff_t *ppos)
354 {
355 	int ret;
356 
357 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
358 	if (ret == 0 && write)
359 		dirty_background_ratio = 0;
360 	return ret;
361 }
362 
363 int dirty_ratio_handler(struct ctl_table *table, int write,
364 		void __user *buffer, size_t *lenp,
365 		loff_t *ppos)
366 {
367 	int old_ratio = vm_dirty_ratio;
368 	int ret;
369 
370 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
371 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
372 		writeback_set_ratelimit();
373 		vm_dirty_bytes = 0;
374 	}
375 	return ret;
376 }
377 
378 int dirty_bytes_handler(struct ctl_table *table, int write,
379 		void __user *buffer, size_t *lenp,
380 		loff_t *ppos)
381 {
382 	unsigned long old_bytes = vm_dirty_bytes;
383 	int ret;
384 
385 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
386 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
387 		writeback_set_ratelimit();
388 		vm_dirty_ratio = 0;
389 	}
390 	return ret;
391 }
392 
393 static unsigned long wp_next_time(unsigned long cur_time)
394 {
395 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
396 	/* 0 has a special meaning... */
397 	if (!cur_time)
398 		return 1;
399 	return cur_time;
400 }
401 
402 /*
403  * Increment the BDI's writeout completion count and the global writeout
404  * completion count. Called from test_clear_page_writeback().
405  */
406 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi)
407 {
408 	__inc_bdi_stat(bdi, BDI_WRITTEN);
409 	__fprop_inc_percpu_max(&writeout_completions, &bdi->completions,
410 			       bdi->max_prop_frac);
411 	/* First event after period switching was turned off? */
412 	if (!unlikely(writeout_period_time)) {
413 		/*
414 		 * We can race with other __bdi_writeout_inc calls here but
415 		 * it does not cause any harm since the resulting time when
416 		 * timer will fire and what is in writeout_period_time will be
417 		 * roughly the same.
418 		 */
419 		writeout_period_time = wp_next_time(jiffies);
420 		mod_timer(&writeout_period_timer, writeout_period_time);
421 	}
422 }
423 
424 void bdi_writeout_inc(struct backing_dev_info *bdi)
425 {
426 	unsigned long flags;
427 
428 	local_irq_save(flags);
429 	__bdi_writeout_inc(bdi);
430 	local_irq_restore(flags);
431 }
432 EXPORT_SYMBOL_GPL(bdi_writeout_inc);
433 
434 /*
435  * Obtain an accurate fraction of the BDI's portion.
436  */
437 static void bdi_writeout_fraction(struct backing_dev_info *bdi,
438 		long *numerator, long *denominator)
439 {
440 	fprop_fraction_percpu(&writeout_completions, &bdi->completions,
441 				numerator, denominator);
442 }
443 
444 /*
445  * On idle system, we can be called long after we scheduled because we use
446  * deferred timers so count with missed periods.
447  */
448 static void writeout_period(unsigned long t)
449 {
450 	int miss_periods = (jiffies - writeout_period_time) /
451 						 VM_COMPLETIONS_PERIOD_LEN;
452 
453 	if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
454 		writeout_period_time = wp_next_time(writeout_period_time +
455 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
456 		mod_timer(&writeout_period_timer, writeout_period_time);
457 	} else {
458 		/*
459 		 * Aging has zeroed all fractions. Stop wasting CPU on period
460 		 * updates.
461 		 */
462 		writeout_period_time = 0;
463 	}
464 }
465 
466 /*
467  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
468  * registered backing devices, which, for obvious reasons, can not
469  * exceed 100%.
470  */
471 static unsigned int bdi_min_ratio;
472 
473 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
474 {
475 	int ret = 0;
476 
477 	spin_lock_bh(&bdi_lock);
478 	if (min_ratio > bdi->max_ratio) {
479 		ret = -EINVAL;
480 	} else {
481 		min_ratio -= bdi->min_ratio;
482 		if (bdi_min_ratio + min_ratio < 100) {
483 			bdi_min_ratio += min_ratio;
484 			bdi->min_ratio += min_ratio;
485 		} else {
486 			ret = -EINVAL;
487 		}
488 	}
489 	spin_unlock_bh(&bdi_lock);
490 
491 	return ret;
492 }
493 
494 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
495 {
496 	int ret = 0;
497 
498 	if (max_ratio > 100)
499 		return -EINVAL;
500 
501 	spin_lock_bh(&bdi_lock);
502 	if (bdi->min_ratio > max_ratio) {
503 		ret = -EINVAL;
504 	} else {
505 		bdi->max_ratio = max_ratio;
506 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
507 	}
508 	spin_unlock_bh(&bdi_lock);
509 
510 	return ret;
511 }
512 EXPORT_SYMBOL(bdi_set_max_ratio);
513 
514 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
515 					   unsigned long bg_thresh)
516 {
517 	return (thresh + bg_thresh) / 2;
518 }
519 
520 static unsigned long hard_dirty_limit(unsigned long thresh)
521 {
522 	return max(thresh, global_dirty_limit);
523 }
524 
525 /**
526  * bdi_dirty_limit - @bdi's share of dirty throttling threshold
527  * @bdi: the backing_dev_info to query
528  * @dirty: global dirty limit in pages
529  *
530  * Returns @bdi's dirty limit in pages. The term "dirty" in the context of
531  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
532  *
533  * Note that balance_dirty_pages() will only seriously take it as a hard limit
534  * when sleeping max_pause per page is not enough to keep the dirty pages under
535  * control. For example, when the device is completely stalled due to some error
536  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
537  * In the other normal situations, it acts more gently by throttling the tasks
538  * more (rather than completely block them) when the bdi dirty pages go high.
539  *
540  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
541  * - starving fast devices
542  * - piling up dirty pages (that will take long time to sync) on slow devices
543  *
544  * The bdi's share of dirty limit will be adapting to its throughput and
545  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
546  */
547 unsigned long bdi_dirty_limit(struct backing_dev_info *bdi, unsigned long dirty)
548 {
549 	u64 bdi_dirty;
550 	long numerator, denominator;
551 
552 	/*
553 	 * Calculate this BDI's share of the dirty ratio.
554 	 */
555 	bdi_writeout_fraction(bdi, &numerator, &denominator);
556 
557 	bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
558 	bdi_dirty *= numerator;
559 	do_div(bdi_dirty, denominator);
560 
561 	bdi_dirty += (dirty * bdi->min_ratio) / 100;
562 	if (bdi_dirty > (dirty * bdi->max_ratio) / 100)
563 		bdi_dirty = dirty * bdi->max_ratio / 100;
564 
565 	return bdi_dirty;
566 }
567 
568 /*
569  * Dirty position control.
570  *
571  * (o) global/bdi setpoints
572  *
573  * We want the dirty pages be balanced around the global/bdi setpoints.
574  * When the number of dirty pages is higher/lower than the setpoint, the
575  * dirty position control ratio (and hence task dirty ratelimit) will be
576  * decreased/increased to bring the dirty pages back to the setpoint.
577  *
578  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
579  *
580  *     if (dirty < setpoint) scale up   pos_ratio
581  *     if (dirty > setpoint) scale down pos_ratio
582  *
583  *     if (bdi_dirty < bdi_setpoint) scale up   pos_ratio
584  *     if (bdi_dirty > bdi_setpoint) scale down pos_ratio
585  *
586  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
587  *
588  * (o) global control line
589  *
590  *     ^ pos_ratio
591  *     |
592  *     |            |<===== global dirty control scope ======>|
593  * 2.0 .............*
594  *     |            .*
595  *     |            . *
596  *     |            .   *
597  *     |            .     *
598  *     |            .        *
599  *     |            .            *
600  * 1.0 ................................*
601  *     |            .                  .     *
602  *     |            .                  .          *
603  *     |            .                  .              *
604  *     |            .                  .                 *
605  *     |            .                  .                    *
606  *   0 +------------.------------------.----------------------*------------->
607  *           freerun^          setpoint^                 limit^   dirty pages
608  *
609  * (o) bdi control line
610  *
611  *     ^ pos_ratio
612  *     |
613  *     |            *
614  *     |              *
615  *     |                *
616  *     |                  *
617  *     |                    * |<=========== span ============>|
618  * 1.0 .......................*
619  *     |                      . *
620  *     |                      .   *
621  *     |                      .     *
622  *     |                      .       *
623  *     |                      .         *
624  *     |                      .           *
625  *     |                      .             *
626  *     |                      .               *
627  *     |                      .                 *
628  *     |                      .                   *
629  *     |                      .                     *
630  * 1/4 ...............................................* * * * * * * * * * * *
631  *     |                      .                         .
632  *     |                      .                           .
633  *     |                      .                             .
634  *   0 +----------------------.-------------------------------.------------->
635  *                bdi_setpoint^                    x_intercept^
636  *
637  * The bdi control line won't drop below pos_ratio=1/4, so that bdi_dirty can
638  * be smoothly throttled down to normal if it starts high in situations like
639  * - start writing to a slow SD card and a fast disk at the same time. The SD
640  *   card's bdi_dirty may rush to many times higher than bdi_setpoint.
641  * - the bdi dirty thresh drops quickly due to change of JBOD workload
642  */
643 static unsigned long bdi_position_ratio(struct backing_dev_info *bdi,
644 					unsigned long thresh,
645 					unsigned long bg_thresh,
646 					unsigned long dirty,
647 					unsigned long bdi_thresh,
648 					unsigned long bdi_dirty)
649 {
650 	unsigned long write_bw = bdi->avg_write_bandwidth;
651 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
652 	unsigned long limit = hard_dirty_limit(thresh);
653 	unsigned long x_intercept;
654 	unsigned long setpoint;		/* dirty pages' target balance point */
655 	unsigned long bdi_setpoint;
656 	unsigned long span;
657 	long long pos_ratio;		/* for scaling up/down the rate limit */
658 	long x;
659 
660 	if (unlikely(dirty >= limit))
661 		return 0;
662 
663 	/*
664 	 * global setpoint
665 	 *
666 	 *                           setpoint - dirty 3
667 	 *        f(dirty) := 1.0 + (----------------)
668 	 *                           limit - setpoint
669 	 *
670 	 * it's a 3rd order polynomial that subjects to
671 	 *
672 	 * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
673 	 * (2) f(setpoint) = 1.0 => the balance point
674 	 * (3) f(limit)    = 0   => the hard limit
675 	 * (4) df/dx      <= 0	 => negative feedback control
676 	 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
677 	 *     => fast response on large errors; small oscillation near setpoint
678 	 */
679 	setpoint = (freerun + limit) / 2;
680 	x = div_s64((setpoint - dirty) << RATELIMIT_CALC_SHIFT,
681 		    limit - setpoint + 1);
682 	pos_ratio = x;
683 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
684 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
685 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
686 
687 	/*
688 	 * We have computed basic pos_ratio above based on global situation. If
689 	 * the bdi is over/under its share of dirty pages, we want to scale
690 	 * pos_ratio further down/up. That is done by the following mechanism.
691 	 */
692 
693 	/*
694 	 * bdi setpoint
695 	 *
696 	 *        f(bdi_dirty) := 1.0 + k * (bdi_dirty - bdi_setpoint)
697 	 *
698 	 *                        x_intercept - bdi_dirty
699 	 *                     := --------------------------
700 	 *                        x_intercept - bdi_setpoint
701 	 *
702 	 * The main bdi control line is a linear function that subjects to
703 	 *
704 	 * (1) f(bdi_setpoint) = 1.0
705 	 * (2) k = - 1 / (8 * write_bw)  (in single bdi case)
706 	 *     or equally: x_intercept = bdi_setpoint + 8 * write_bw
707 	 *
708 	 * For single bdi case, the dirty pages are observed to fluctuate
709 	 * regularly within range
710 	 *        [bdi_setpoint - write_bw/2, bdi_setpoint + write_bw/2]
711 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
712 	 * fluctuation range for pos_ratio.
713 	 *
714 	 * For JBOD case, bdi_thresh (not bdi_dirty!) could fluctuate up to its
715 	 * own size, so move the slope over accordingly and choose a slope that
716 	 * yields 100% pos_ratio fluctuation on suddenly doubled bdi_thresh.
717 	 */
718 	if (unlikely(bdi_thresh > thresh))
719 		bdi_thresh = thresh;
720 	/*
721 	 * It's very possible that bdi_thresh is close to 0 not because the
722 	 * device is slow, but that it has remained inactive for long time.
723 	 * Honour such devices a reasonable good (hopefully IO efficient)
724 	 * threshold, so that the occasional writes won't be blocked and active
725 	 * writes can rampup the threshold quickly.
726 	 */
727 	bdi_thresh = max(bdi_thresh, (limit - dirty) / 8);
728 	/*
729 	 * scale global setpoint to bdi's:
730 	 *	bdi_setpoint = setpoint * bdi_thresh / thresh
731 	 */
732 	x = div_u64((u64)bdi_thresh << 16, thresh + 1);
733 	bdi_setpoint = setpoint * (u64)x >> 16;
734 	/*
735 	 * Use span=(8*write_bw) in single bdi case as indicated by
736 	 * (thresh - bdi_thresh ~= 0) and transit to bdi_thresh in JBOD case.
737 	 *
738 	 *        bdi_thresh                    thresh - bdi_thresh
739 	 * span = ---------- * (8 * write_bw) + ------------------- * bdi_thresh
740 	 *          thresh                            thresh
741 	 */
742 	span = (thresh - bdi_thresh + 8 * write_bw) * (u64)x >> 16;
743 	x_intercept = bdi_setpoint + span;
744 
745 	if (bdi_dirty < x_intercept - span / 4) {
746 		pos_ratio = div_u64(pos_ratio * (x_intercept - bdi_dirty),
747 				    x_intercept - bdi_setpoint + 1);
748 	} else
749 		pos_ratio /= 4;
750 
751 	/*
752 	 * bdi reserve area, safeguard against dirty pool underrun and disk idle
753 	 * It may push the desired control point of global dirty pages higher
754 	 * than setpoint.
755 	 */
756 	x_intercept = bdi_thresh / 2;
757 	if (bdi_dirty < x_intercept) {
758 		if (bdi_dirty > x_intercept / 8)
759 			pos_ratio = div_u64(pos_ratio * x_intercept, bdi_dirty);
760 		else
761 			pos_ratio *= 8;
762 	}
763 
764 	return pos_ratio;
765 }
766 
767 static void bdi_update_write_bandwidth(struct backing_dev_info *bdi,
768 				       unsigned long elapsed,
769 				       unsigned long written)
770 {
771 	const unsigned long period = roundup_pow_of_two(3 * HZ);
772 	unsigned long avg = bdi->avg_write_bandwidth;
773 	unsigned long old = bdi->write_bandwidth;
774 	u64 bw;
775 
776 	/*
777 	 * bw = written * HZ / elapsed
778 	 *
779 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
780 	 * write_bandwidth = ---------------------------------------------------
781 	 *                                          period
782 	 */
783 	bw = written - bdi->written_stamp;
784 	bw *= HZ;
785 	if (unlikely(elapsed > period)) {
786 		do_div(bw, elapsed);
787 		avg = bw;
788 		goto out;
789 	}
790 	bw += (u64)bdi->write_bandwidth * (period - elapsed);
791 	bw >>= ilog2(period);
792 
793 	/*
794 	 * one more level of smoothing, for filtering out sudden spikes
795 	 */
796 	if (avg > old && old >= (unsigned long)bw)
797 		avg -= (avg - old) >> 3;
798 
799 	if (avg < old && old <= (unsigned long)bw)
800 		avg += (old - avg) >> 3;
801 
802 out:
803 	bdi->write_bandwidth = bw;
804 	bdi->avg_write_bandwidth = avg;
805 }
806 
807 /*
808  * The global dirtyable memory and dirty threshold could be suddenly knocked
809  * down by a large amount (eg. on the startup of KVM in a swapless system).
810  * This may throw the system into deep dirty exceeded state and throttle
811  * heavy/light dirtiers alike. To retain good responsiveness, maintain
812  * global_dirty_limit for tracking slowly down to the knocked down dirty
813  * threshold.
814  */
815 static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
816 {
817 	unsigned long limit = global_dirty_limit;
818 
819 	/*
820 	 * Follow up in one step.
821 	 */
822 	if (limit < thresh) {
823 		limit = thresh;
824 		goto update;
825 	}
826 
827 	/*
828 	 * Follow down slowly. Use the higher one as the target, because thresh
829 	 * may drop below dirty. This is exactly the reason to introduce
830 	 * global_dirty_limit which is guaranteed to lie above the dirty pages.
831 	 */
832 	thresh = max(thresh, dirty);
833 	if (limit > thresh) {
834 		limit -= (limit - thresh) >> 5;
835 		goto update;
836 	}
837 	return;
838 update:
839 	global_dirty_limit = limit;
840 }
841 
842 static void global_update_bandwidth(unsigned long thresh,
843 				    unsigned long dirty,
844 				    unsigned long now)
845 {
846 	static DEFINE_SPINLOCK(dirty_lock);
847 	static unsigned long update_time;
848 
849 	/*
850 	 * check locklessly first to optimize away locking for the most time
851 	 */
852 	if (time_before(now, update_time + BANDWIDTH_INTERVAL))
853 		return;
854 
855 	spin_lock(&dirty_lock);
856 	if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
857 		update_dirty_limit(thresh, dirty);
858 		update_time = now;
859 	}
860 	spin_unlock(&dirty_lock);
861 }
862 
863 /*
864  * Maintain bdi->dirty_ratelimit, the base dirty throttle rate.
865  *
866  * Normal bdi tasks will be curbed at or below it in long term.
867  * Obviously it should be around (write_bw / N) when there are N dd tasks.
868  */
869 static void bdi_update_dirty_ratelimit(struct backing_dev_info *bdi,
870 				       unsigned long thresh,
871 				       unsigned long bg_thresh,
872 				       unsigned long dirty,
873 				       unsigned long bdi_thresh,
874 				       unsigned long bdi_dirty,
875 				       unsigned long dirtied,
876 				       unsigned long elapsed)
877 {
878 	unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
879 	unsigned long limit = hard_dirty_limit(thresh);
880 	unsigned long setpoint = (freerun + limit) / 2;
881 	unsigned long write_bw = bdi->avg_write_bandwidth;
882 	unsigned long dirty_ratelimit = bdi->dirty_ratelimit;
883 	unsigned long dirty_rate;
884 	unsigned long task_ratelimit;
885 	unsigned long balanced_dirty_ratelimit;
886 	unsigned long pos_ratio;
887 	unsigned long step;
888 	unsigned long x;
889 
890 	/*
891 	 * The dirty rate will match the writeout rate in long term, except
892 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
893 	 */
894 	dirty_rate = (dirtied - bdi->dirtied_stamp) * HZ / elapsed;
895 
896 	pos_ratio = bdi_position_ratio(bdi, thresh, bg_thresh, dirty,
897 				       bdi_thresh, bdi_dirty);
898 	/*
899 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
900 	 */
901 	task_ratelimit = (u64)dirty_ratelimit *
902 					pos_ratio >> RATELIMIT_CALC_SHIFT;
903 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
904 
905 	/*
906 	 * A linear estimation of the "balanced" throttle rate. The theory is,
907 	 * if there are N dd tasks, each throttled at task_ratelimit, the bdi's
908 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
909 	 * formula will yield the balanced rate limit (write_bw / N).
910 	 *
911 	 * Note that the expanded form is not a pure rate feedback:
912 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
913 	 * but also takes pos_ratio into account:
914 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
915 	 *
916 	 * (1) is not realistic because pos_ratio also takes part in balancing
917 	 * the dirty rate.  Consider the state
918 	 *	pos_ratio = 0.5						     (3)
919 	 *	rate = 2 * (write_bw / N)				     (4)
920 	 * If (1) is used, it will stuck in that state! Because each dd will
921 	 * be throttled at
922 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
923 	 * yielding
924 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
925 	 * put (6) into (1) we get
926 	 *	rate_(i+1) = rate_(i)					     (7)
927 	 *
928 	 * So we end up using (2) to always keep
929 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
930 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
931 	 * pos_ratio is able to drive itself to 1.0, which is not only where
932 	 * the dirty count meet the setpoint, but also where the slope of
933 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
934 	 */
935 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
936 					   dirty_rate | 1);
937 	/*
938 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
939 	 */
940 	if (unlikely(balanced_dirty_ratelimit > write_bw))
941 		balanced_dirty_ratelimit = write_bw;
942 
943 	/*
944 	 * We could safely do this and return immediately:
945 	 *
946 	 *	bdi->dirty_ratelimit = balanced_dirty_ratelimit;
947 	 *
948 	 * However to get a more stable dirty_ratelimit, the below elaborated
949 	 * code makes use of task_ratelimit to filter out singular points and
950 	 * limit the step size.
951 	 *
952 	 * The below code essentially only uses the relative value of
953 	 *
954 	 *	task_ratelimit - dirty_ratelimit
955 	 *	= (pos_ratio - 1) * dirty_ratelimit
956 	 *
957 	 * which reflects the direction and size of dirty position error.
958 	 */
959 
960 	/*
961 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
962 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
963 	 * For example, when
964 	 * - dirty_ratelimit > balanced_dirty_ratelimit
965 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
966 	 * lowering dirty_ratelimit will help meet both the position and rate
967 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
968 	 * only help meet the rate target. After all, what the users ultimately
969 	 * feel and care are stable dirty rate and small position error.
970 	 *
971 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
972 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
973 	 * keeps jumping around randomly and can even leap far away at times
974 	 * due to the small 200ms estimation period of dirty_rate (we want to
975 	 * keep that period small to reduce time lags).
976 	 */
977 	step = 0;
978 	if (dirty < setpoint) {
979 		x = min(bdi->balanced_dirty_ratelimit,
980 			 min(balanced_dirty_ratelimit, task_ratelimit));
981 		if (dirty_ratelimit < x)
982 			step = x - dirty_ratelimit;
983 	} else {
984 		x = max(bdi->balanced_dirty_ratelimit,
985 			 max(balanced_dirty_ratelimit, task_ratelimit));
986 		if (dirty_ratelimit > x)
987 			step = dirty_ratelimit - x;
988 	}
989 
990 	/*
991 	 * Don't pursue 100% rate matching. It's impossible since the balanced
992 	 * rate itself is constantly fluctuating. So decrease the track speed
993 	 * when it gets close to the target. Helps eliminate pointless tremors.
994 	 */
995 	step >>= dirty_ratelimit / (2 * step + 1);
996 	/*
997 	 * Limit the tracking speed to avoid overshooting.
998 	 */
999 	step = (step + 7) / 8;
1000 
1001 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1002 		dirty_ratelimit += step;
1003 	else
1004 		dirty_ratelimit -= step;
1005 
1006 	bdi->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1007 	bdi->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1008 
1009 	trace_bdi_dirty_ratelimit(bdi, dirty_rate, task_ratelimit);
1010 }
1011 
1012 void __bdi_update_bandwidth(struct backing_dev_info *bdi,
1013 			    unsigned long thresh,
1014 			    unsigned long bg_thresh,
1015 			    unsigned long dirty,
1016 			    unsigned long bdi_thresh,
1017 			    unsigned long bdi_dirty,
1018 			    unsigned long start_time)
1019 {
1020 	unsigned long now = jiffies;
1021 	unsigned long elapsed = now - bdi->bw_time_stamp;
1022 	unsigned long dirtied;
1023 	unsigned long written;
1024 
1025 	/*
1026 	 * rate-limit, only update once every 200ms.
1027 	 */
1028 	if (elapsed < BANDWIDTH_INTERVAL)
1029 		return;
1030 
1031 	dirtied = percpu_counter_read(&bdi->bdi_stat[BDI_DIRTIED]);
1032 	written = percpu_counter_read(&bdi->bdi_stat[BDI_WRITTEN]);
1033 
1034 	/*
1035 	 * Skip quiet periods when disk bandwidth is under-utilized.
1036 	 * (at least 1s idle time between two flusher runs)
1037 	 */
1038 	if (elapsed > HZ && time_before(bdi->bw_time_stamp, start_time))
1039 		goto snapshot;
1040 
1041 	if (thresh) {
1042 		global_update_bandwidth(thresh, dirty, now);
1043 		bdi_update_dirty_ratelimit(bdi, thresh, bg_thresh, dirty,
1044 					   bdi_thresh, bdi_dirty,
1045 					   dirtied, elapsed);
1046 	}
1047 	bdi_update_write_bandwidth(bdi, elapsed, written);
1048 
1049 snapshot:
1050 	bdi->dirtied_stamp = dirtied;
1051 	bdi->written_stamp = written;
1052 	bdi->bw_time_stamp = now;
1053 }
1054 
1055 static void bdi_update_bandwidth(struct backing_dev_info *bdi,
1056 				 unsigned long thresh,
1057 				 unsigned long bg_thresh,
1058 				 unsigned long dirty,
1059 				 unsigned long bdi_thresh,
1060 				 unsigned long bdi_dirty,
1061 				 unsigned long start_time)
1062 {
1063 	if (time_is_after_eq_jiffies(bdi->bw_time_stamp + BANDWIDTH_INTERVAL))
1064 		return;
1065 	spin_lock(&bdi->wb.list_lock);
1066 	__bdi_update_bandwidth(bdi, thresh, bg_thresh, dirty,
1067 			       bdi_thresh, bdi_dirty, start_time);
1068 	spin_unlock(&bdi->wb.list_lock);
1069 }
1070 
1071 /*
1072  * After a task dirtied this many pages, balance_dirty_pages_ratelimited_nr()
1073  * will look to see if it needs to start dirty throttling.
1074  *
1075  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1076  * global_page_state() too often. So scale it near-sqrt to the safety margin
1077  * (the number of pages we may dirty without exceeding the dirty limits).
1078  */
1079 static unsigned long dirty_poll_interval(unsigned long dirty,
1080 					 unsigned long thresh)
1081 {
1082 	if (thresh > dirty)
1083 		return 1UL << (ilog2(thresh - dirty) >> 1);
1084 
1085 	return 1;
1086 }
1087 
1088 static long bdi_max_pause(struct backing_dev_info *bdi,
1089 			  unsigned long bdi_dirty)
1090 {
1091 	long bw = bdi->avg_write_bandwidth;
1092 	long t;
1093 
1094 	/*
1095 	 * Limit pause time for small memory systems. If sleeping for too long
1096 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1097 	 * idle.
1098 	 *
1099 	 * 8 serves as the safety ratio.
1100 	 */
1101 	t = bdi_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1102 	t++;
1103 
1104 	return min_t(long, t, MAX_PAUSE);
1105 }
1106 
1107 static long bdi_min_pause(struct backing_dev_info *bdi,
1108 			  long max_pause,
1109 			  unsigned long task_ratelimit,
1110 			  unsigned long dirty_ratelimit,
1111 			  int *nr_dirtied_pause)
1112 {
1113 	long hi = ilog2(bdi->avg_write_bandwidth);
1114 	long lo = ilog2(bdi->dirty_ratelimit);
1115 	long t;		/* target pause */
1116 	long pause;	/* estimated next pause */
1117 	int pages;	/* target nr_dirtied_pause */
1118 
1119 	/* target for 10ms pause on 1-dd case */
1120 	t = max(1, HZ / 100);
1121 
1122 	/*
1123 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1124 	 * overheads.
1125 	 *
1126 	 * (N * 10ms) on 2^N concurrent tasks.
1127 	 */
1128 	if (hi > lo)
1129 		t += (hi - lo) * (10 * HZ) / 1024;
1130 
1131 	/*
1132 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1133 	 * on the much more stable dirty_ratelimit. However the next pause time
1134 	 * will be computed based on task_ratelimit and the two rate limits may
1135 	 * depart considerably at some time. Especially if task_ratelimit goes
1136 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1137 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1138 	 * result task_ratelimit won't be executed faithfully, which could
1139 	 * eventually bring down dirty_ratelimit.
1140 	 *
1141 	 * We apply two rules to fix it up:
1142 	 * 1) try to estimate the next pause time and if necessary, use a lower
1143 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1144 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1145 	 * 2) limit the target pause time to max_pause/2, so that the normal
1146 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1147 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1148 	 */
1149 	t = min(t, 1 + max_pause / 2);
1150 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1151 
1152 	/*
1153 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1154 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1155 	 * When the 16 consecutive reads are often interrupted by some dirty
1156 	 * throttling pause during the async writes, cfq will go into idles
1157 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1158 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1159 	 */
1160 	if (pages < DIRTY_POLL_THRESH) {
1161 		t = max_pause;
1162 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1163 		if (pages > DIRTY_POLL_THRESH) {
1164 			pages = DIRTY_POLL_THRESH;
1165 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1166 		}
1167 	}
1168 
1169 	pause = HZ * pages / (task_ratelimit + 1);
1170 	if (pause > max_pause) {
1171 		t = max_pause;
1172 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1173 	}
1174 
1175 	*nr_dirtied_pause = pages;
1176 	/*
1177 	 * The minimal pause time will normally be half the target pause time.
1178 	 */
1179 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1180 }
1181 
1182 /*
1183  * balance_dirty_pages() must be called by processes which are generating dirty
1184  * data.  It looks at the number of dirty pages in the machine and will force
1185  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1186  * If we're over `background_thresh' then the writeback threads are woken to
1187  * perform some writeout.
1188  */
1189 static void balance_dirty_pages(struct address_space *mapping,
1190 				unsigned long pages_dirtied)
1191 {
1192 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1193 	unsigned long bdi_reclaimable;
1194 	unsigned long nr_dirty;  /* = file_dirty + writeback + unstable_nfs */
1195 	unsigned long bdi_dirty;
1196 	unsigned long freerun;
1197 	unsigned long background_thresh;
1198 	unsigned long dirty_thresh;
1199 	unsigned long bdi_thresh;
1200 	long period;
1201 	long pause;
1202 	long max_pause;
1203 	long min_pause;
1204 	int nr_dirtied_pause;
1205 	bool dirty_exceeded = false;
1206 	unsigned long task_ratelimit;
1207 	unsigned long dirty_ratelimit;
1208 	unsigned long pos_ratio;
1209 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1210 	unsigned long start_time = jiffies;
1211 
1212 	for (;;) {
1213 		unsigned long now = jiffies;
1214 
1215 		/*
1216 		 * Unstable writes are a feature of certain networked
1217 		 * filesystems (i.e. NFS) in which data may have been
1218 		 * written to the server's write cache, but has not yet
1219 		 * been flushed to permanent storage.
1220 		 */
1221 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1222 					global_page_state(NR_UNSTABLE_NFS);
1223 		nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1224 
1225 		global_dirty_limits(&background_thresh, &dirty_thresh);
1226 
1227 		/*
1228 		 * Throttle it only when the background writeback cannot
1229 		 * catch-up. This avoids (excessively) small writeouts
1230 		 * when the bdi limits are ramping up.
1231 		 */
1232 		freerun = dirty_freerun_ceiling(dirty_thresh,
1233 						background_thresh);
1234 		if (nr_dirty <= freerun) {
1235 			current->dirty_paused_when = now;
1236 			current->nr_dirtied = 0;
1237 			current->nr_dirtied_pause =
1238 				dirty_poll_interval(nr_dirty, dirty_thresh);
1239 			break;
1240 		}
1241 
1242 		if (unlikely(!writeback_in_progress(bdi)))
1243 			bdi_start_background_writeback(bdi);
1244 
1245 		/*
1246 		 * bdi_thresh is not treated as some limiting factor as
1247 		 * dirty_thresh, due to reasons
1248 		 * - in JBOD setup, bdi_thresh can fluctuate a lot
1249 		 * - in a system with HDD and USB key, the USB key may somehow
1250 		 *   go into state (bdi_dirty >> bdi_thresh) either because
1251 		 *   bdi_dirty starts high, or because bdi_thresh drops low.
1252 		 *   In this case we don't want to hard throttle the USB key
1253 		 *   dirtiers for 100 seconds until bdi_dirty drops under
1254 		 *   bdi_thresh. Instead the auxiliary bdi control line in
1255 		 *   bdi_position_ratio() will let the dirtier task progress
1256 		 *   at some rate <= (write_bw / 2) for bringing down bdi_dirty.
1257 		 */
1258 		bdi_thresh = bdi_dirty_limit(bdi, dirty_thresh);
1259 
1260 		/*
1261 		 * In order to avoid the stacked BDI deadlock we need
1262 		 * to ensure we accurately count the 'dirty' pages when
1263 		 * the threshold is low.
1264 		 *
1265 		 * Otherwise it would be possible to get thresh+n pages
1266 		 * reported dirty, even though there are thresh-m pages
1267 		 * actually dirty; with m+n sitting in the percpu
1268 		 * deltas.
1269 		 */
1270 		if (bdi_thresh < 2 * bdi_stat_error(bdi)) {
1271 			bdi_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE);
1272 			bdi_dirty = bdi_reclaimable +
1273 				    bdi_stat_sum(bdi, BDI_WRITEBACK);
1274 		} else {
1275 			bdi_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE);
1276 			bdi_dirty = bdi_reclaimable +
1277 				    bdi_stat(bdi, BDI_WRITEBACK);
1278 		}
1279 
1280 		dirty_exceeded = (bdi_dirty > bdi_thresh) &&
1281 				  (nr_dirty > dirty_thresh);
1282 		if (dirty_exceeded && !bdi->dirty_exceeded)
1283 			bdi->dirty_exceeded = 1;
1284 
1285 		bdi_update_bandwidth(bdi, dirty_thresh, background_thresh,
1286 				     nr_dirty, bdi_thresh, bdi_dirty,
1287 				     start_time);
1288 
1289 		dirty_ratelimit = bdi->dirty_ratelimit;
1290 		pos_ratio = bdi_position_ratio(bdi, dirty_thresh,
1291 					       background_thresh, nr_dirty,
1292 					       bdi_thresh, bdi_dirty);
1293 		task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1294 							RATELIMIT_CALC_SHIFT;
1295 		max_pause = bdi_max_pause(bdi, bdi_dirty);
1296 		min_pause = bdi_min_pause(bdi, max_pause,
1297 					  task_ratelimit, dirty_ratelimit,
1298 					  &nr_dirtied_pause);
1299 
1300 		if (unlikely(task_ratelimit == 0)) {
1301 			period = max_pause;
1302 			pause = max_pause;
1303 			goto pause;
1304 		}
1305 		period = HZ * pages_dirtied / task_ratelimit;
1306 		pause = period;
1307 		if (current->dirty_paused_when)
1308 			pause -= now - current->dirty_paused_when;
1309 		/*
1310 		 * For less than 1s think time (ext3/4 may block the dirtier
1311 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1312 		 * however at much less frequency), try to compensate it in
1313 		 * future periods by updating the virtual time; otherwise just
1314 		 * do a reset, as it may be a light dirtier.
1315 		 */
1316 		if (pause < min_pause) {
1317 			trace_balance_dirty_pages(bdi,
1318 						  dirty_thresh,
1319 						  background_thresh,
1320 						  nr_dirty,
1321 						  bdi_thresh,
1322 						  bdi_dirty,
1323 						  dirty_ratelimit,
1324 						  task_ratelimit,
1325 						  pages_dirtied,
1326 						  period,
1327 						  min(pause, 0L),
1328 						  start_time);
1329 			if (pause < -HZ) {
1330 				current->dirty_paused_when = now;
1331 				current->nr_dirtied = 0;
1332 			} else if (period) {
1333 				current->dirty_paused_when += period;
1334 				current->nr_dirtied = 0;
1335 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1336 				current->nr_dirtied_pause += pages_dirtied;
1337 			break;
1338 		}
1339 		if (unlikely(pause > max_pause)) {
1340 			/* for occasional dropped task_ratelimit */
1341 			now += min(pause - max_pause, max_pause);
1342 			pause = max_pause;
1343 		}
1344 
1345 pause:
1346 		trace_balance_dirty_pages(bdi,
1347 					  dirty_thresh,
1348 					  background_thresh,
1349 					  nr_dirty,
1350 					  bdi_thresh,
1351 					  bdi_dirty,
1352 					  dirty_ratelimit,
1353 					  task_ratelimit,
1354 					  pages_dirtied,
1355 					  period,
1356 					  pause,
1357 					  start_time);
1358 		__set_current_state(TASK_KILLABLE);
1359 		io_schedule_timeout(pause);
1360 
1361 		current->dirty_paused_when = now + pause;
1362 		current->nr_dirtied = 0;
1363 		current->nr_dirtied_pause = nr_dirtied_pause;
1364 
1365 		/*
1366 		 * This is typically equal to (nr_dirty < dirty_thresh) and can
1367 		 * also keep "1000+ dd on a slow USB stick" under control.
1368 		 */
1369 		if (task_ratelimit)
1370 			break;
1371 
1372 		/*
1373 		 * In the case of an unresponding NFS server and the NFS dirty
1374 		 * pages exceeds dirty_thresh, give the other good bdi's a pipe
1375 		 * to go through, so that tasks on them still remain responsive.
1376 		 *
1377 		 * In theory 1 page is enough to keep the comsumer-producer
1378 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1379 		 * more page. However bdi_dirty has accounting errors.  So use
1380 		 * the larger and more IO friendly bdi_stat_error.
1381 		 */
1382 		if (bdi_dirty <= bdi_stat_error(bdi))
1383 			break;
1384 
1385 		if (fatal_signal_pending(current))
1386 			break;
1387 	}
1388 
1389 	if (!dirty_exceeded && bdi->dirty_exceeded)
1390 		bdi->dirty_exceeded = 0;
1391 
1392 	if (writeback_in_progress(bdi))
1393 		return;
1394 
1395 	/*
1396 	 * In laptop mode, we wait until hitting the higher threshold before
1397 	 * starting background writeout, and then write out all the way down
1398 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1399 	 *
1400 	 * In normal mode, we start background writeout at the lower
1401 	 * background_thresh, to keep the amount of dirty memory low.
1402 	 */
1403 	if (laptop_mode)
1404 		return;
1405 
1406 	if (nr_reclaimable > background_thresh)
1407 		bdi_start_background_writeback(bdi);
1408 }
1409 
1410 void set_page_dirty_balance(struct page *page, int page_mkwrite)
1411 {
1412 	if (set_page_dirty(page) || page_mkwrite) {
1413 		struct address_space *mapping = page_mapping(page);
1414 
1415 		if (mapping)
1416 			balance_dirty_pages_ratelimited(mapping);
1417 	}
1418 }
1419 
1420 static DEFINE_PER_CPU(int, bdp_ratelimits);
1421 
1422 /*
1423  * Normal tasks are throttled by
1424  *	loop {
1425  *		dirty tsk->nr_dirtied_pause pages;
1426  *		take a snap in balance_dirty_pages();
1427  *	}
1428  * However there is a worst case. If every task exit immediately when dirtied
1429  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1430  * called to throttle the page dirties. The solution is to save the not yet
1431  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1432  * randomly into the running tasks. This works well for the above worst case,
1433  * as the new task will pick up and accumulate the old task's leaked dirty
1434  * count and eventually get throttled.
1435  */
1436 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1437 
1438 /**
1439  * balance_dirty_pages_ratelimited_nr - balance dirty memory state
1440  * @mapping: address_space which was dirtied
1441  * @nr_pages_dirtied: number of pages which the caller has just dirtied
1442  *
1443  * Processes which are dirtying memory should call in here once for each page
1444  * which was newly dirtied.  The function will periodically check the system's
1445  * dirty state and will initiate writeback if needed.
1446  *
1447  * On really big machines, get_writeback_state is expensive, so try to avoid
1448  * calling it too often (ratelimiting).  But once we're over the dirty memory
1449  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1450  * from overshooting the limit by (ratelimit_pages) each.
1451  */
1452 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping,
1453 					unsigned long nr_pages_dirtied)
1454 {
1455 	struct backing_dev_info *bdi = mapping->backing_dev_info;
1456 	int ratelimit;
1457 	int *p;
1458 
1459 	if (!bdi_cap_account_dirty(bdi))
1460 		return;
1461 
1462 	ratelimit = current->nr_dirtied_pause;
1463 	if (bdi->dirty_exceeded)
1464 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1465 
1466 	preempt_disable();
1467 	/*
1468 	 * This prevents one CPU to accumulate too many dirtied pages without
1469 	 * calling into balance_dirty_pages(), which can happen when there are
1470 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1471 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1472 	 */
1473 	p =  &__get_cpu_var(bdp_ratelimits);
1474 	if (unlikely(current->nr_dirtied >= ratelimit))
1475 		*p = 0;
1476 	else if (unlikely(*p >= ratelimit_pages)) {
1477 		*p = 0;
1478 		ratelimit = 0;
1479 	}
1480 	/*
1481 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1482 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1483 	 * the dirty throttling and livelock other long-run dirtiers.
1484 	 */
1485 	p = &__get_cpu_var(dirty_throttle_leaks);
1486 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1487 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1488 		*p -= nr_pages_dirtied;
1489 		current->nr_dirtied += nr_pages_dirtied;
1490 	}
1491 	preempt_enable();
1492 
1493 	if (unlikely(current->nr_dirtied >= ratelimit))
1494 		balance_dirty_pages(mapping, current->nr_dirtied);
1495 }
1496 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr);
1497 
1498 void throttle_vm_writeout(gfp_t gfp_mask)
1499 {
1500 	unsigned long background_thresh;
1501 	unsigned long dirty_thresh;
1502 
1503         for ( ; ; ) {
1504 		global_dirty_limits(&background_thresh, &dirty_thresh);
1505 		dirty_thresh = hard_dirty_limit(dirty_thresh);
1506 
1507                 /*
1508                  * Boost the allowable dirty threshold a bit for page
1509                  * allocators so they don't get DoS'ed by heavy writers
1510                  */
1511                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1512 
1513                 if (global_page_state(NR_UNSTABLE_NFS) +
1514 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1515                         	break;
1516                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1517 
1518 		/*
1519 		 * The caller might hold locks which can prevent IO completion
1520 		 * or progress in the filesystem.  So we cannot just sit here
1521 		 * waiting for IO to complete.
1522 		 */
1523 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1524 			break;
1525         }
1526 }
1527 
1528 /*
1529  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1530  */
1531 int dirty_writeback_centisecs_handler(ctl_table *table, int write,
1532 	void __user *buffer, size_t *length, loff_t *ppos)
1533 {
1534 	proc_dointvec(table, write, buffer, length, ppos);
1535 	return 0;
1536 }
1537 
1538 #ifdef CONFIG_BLOCK
1539 void laptop_mode_timer_fn(unsigned long data)
1540 {
1541 	struct request_queue *q = (struct request_queue *)data;
1542 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1543 		global_page_state(NR_UNSTABLE_NFS);
1544 
1545 	/*
1546 	 * We want to write everything out, not just down to the dirty
1547 	 * threshold
1548 	 */
1549 	if (bdi_has_dirty_io(&q->backing_dev_info))
1550 		bdi_start_writeback(&q->backing_dev_info, nr_pages,
1551 					WB_REASON_LAPTOP_TIMER);
1552 }
1553 
1554 /*
1555  * We've spun up the disk and we're in laptop mode: schedule writeback
1556  * of all dirty data a few seconds from now.  If the flush is already scheduled
1557  * then push it back - the user is still using the disk.
1558  */
1559 void laptop_io_completion(struct backing_dev_info *info)
1560 {
1561 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1562 }
1563 
1564 /*
1565  * We're in laptop mode and we've just synced. The sync's writes will have
1566  * caused another writeback to be scheduled by laptop_io_completion.
1567  * Nothing needs to be written back anymore, so we unschedule the writeback.
1568  */
1569 void laptop_sync_completion(void)
1570 {
1571 	struct backing_dev_info *bdi;
1572 
1573 	rcu_read_lock();
1574 
1575 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1576 		del_timer(&bdi->laptop_mode_wb_timer);
1577 
1578 	rcu_read_unlock();
1579 }
1580 #endif
1581 
1582 /*
1583  * If ratelimit_pages is too high then we can get into dirty-data overload
1584  * if a large number of processes all perform writes at the same time.
1585  * If it is too low then SMP machines will call the (expensive)
1586  * get_writeback_state too often.
1587  *
1588  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1589  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
1590  * thresholds.
1591  */
1592 
1593 void writeback_set_ratelimit(void)
1594 {
1595 	unsigned long background_thresh;
1596 	unsigned long dirty_thresh;
1597 	global_dirty_limits(&background_thresh, &dirty_thresh);
1598 	global_dirty_limit = dirty_thresh;
1599 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1600 	if (ratelimit_pages < 16)
1601 		ratelimit_pages = 16;
1602 }
1603 
1604 static int __cpuinit
1605 ratelimit_handler(struct notifier_block *self, unsigned long action,
1606 		  void *hcpu)
1607 {
1608 
1609 	switch (action & ~CPU_TASKS_FROZEN) {
1610 	case CPU_ONLINE:
1611 	case CPU_DEAD:
1612 		writeback_set_ratelimit();
1613 		return NOTIFY_OK;
1614 	default:
1615 		return NOTIFY_DONE;
1616 	}
1617 }
1618 
1619 static struct notifier_block __cpuinitdata ratelimit_nb = {
1620 	.notifier_call	= ratelimit_handler,
1621 	.next		= NULL,
1622 };
1623 
1624 /*
1625  * Called early on to tune the page writeback dirty limits.
1626  *
1627  * We used to scale dirty pages according to how total memory
1628  * related to pages that could be allocated for buffers (by
1629  * comparing nr_free_buffer_pages() to vm_total_pages.
1630  *
1631  * However, that was when we used "dirty_ratio" to scale with
1632  * all memory, and we don't do that any more. "dirty_ratio"
1633  * is now applied to total non-HIGHPAGE memory (by subtracting
1634  * totalhigh_pages from vm_total_pages), and as such we can't
1635  * get into the old insane situation any more where we had
1636  * large amounts of dirty pages compared to a small amount of
1637  * non-HIGHMEM memory.
1638  *
1639  * But we might still want to scale the dirty_ratio by how
1640  * much memory the box has..
1641  */
1642 void __init page_writeback_init(void)
1643 {
1644 	writeback_set_ratelimit();
1645 	register_cpu_notifier(&ratelimit_nb);
1646 
1647 	fprop_global_init(&writeout_completions);
1648 }
1649 
1650 /**
1651  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1652  * @mapping: address space structure to write
1653  * @start: starting page index
1654  * @end: ending page index (inclusive)
1655  *
1656  * This function scans the page range from @start to @end (inclusive) and tags
1657  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1658  * that write_cache_pages (or whoever calls this function) will then use
1659  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
1660  * used to avoid livelocking of writeback by a process steadily creating new
1661  * dirty pages in the file (thus it is important for this function to be quick
1662  * so that it can tag pages faster than a dirtying process can create them).
1663  */
1664 /*
1665  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1666  */
1667 void tag_pages_for_writeback(struct address_space *mapping,
1668 			     pgoff_t start, pgoff_t end)
1669 {
1670 #define WRITEBACK_TAG_BATCH 4096
1671 	unsigned long tagged;
1672 
1673 	do {
1674 		spin_lock_irq(&mapping->tree_lock);
1675 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1676 				&start, end, WRITEBACK_TAG_BATCH,
1677 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1678 		spin_unlock_irq(&mapping->tree_lock);
1679 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1680 		cond_resched();
1681 		/* We check 'start' to handle wrapping when end == ~0UL */
1682 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
1683 }
1684 EXPORT_SYMBOL(tag_pages_for_writeback);
1685 
1686 /**
1687  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
1688  * @mapping: address space structure to write
1689  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1690  * @writepage: function called for each page
1691  * @data: data passed to writepage function
1692  *
1693  * If a page is already under I/O, write_cache_pages() skips it, even
1694  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
1695  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
1696  * and msync() need to guarantee that all the data which was dirty at the time
1697  * the call was made get new I/O started against them.  If wbc->sync_mode is
1698  * WB_SYNC_ALL then we were called for data integrity and we must wait for
1699  * existing IO to complete.
1700  *
1701  * To avoid livelocks (when other process dirties new pages), we first tag
1702  * pages which should be written back with TOWRITE tag and only then start
1703  * writing them. For data-integrity sync we have to be careful so that we do
1704  * not miss some pages (e.g., because some other process has cleared TOWRITE
1705  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1706  * by the process clearing the DIRTY tag (and submitting the page for IO).
1707  */
1708 int write_cache_pages(struct address_space *mapping,
1709 		      struct writeback_control *wbc, writepage_t writepage,
1710 		      void *data)
1711 {
1712 	int ret = 0;
1713 	int done = 0;
1714 	struct pagevec pvec;
1715 	int nr_pages;
1716 	pgoff_t uninitialized_var(writeback_index);
1717 	pgoff_t index;
1718 	pgoff_t end;		/* Inclusive */
1719 	pgoff_t done_index;
1720 	int cycled;
1721 	int range_whole = 0;
1722 	int tag;
1723 
1724 	pagevec_init(&pvec, 0);
1725 	if (wbc->range_cyclic) {
1726 		writeback_index = mapping->writeback_index; /* prev offset */
1727 		index = writeback_index;
1728 		if (index == 0)
1729 			cycled = 1;
1730 		else
1731 			cycled = 0;
1732 		end = -1;
1733 	} else {
1734 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
1735 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
1736 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1737 			range_whole = 1;
1738 		cycled = 1; /* ignore range_cyclic tests */
1739 	}
1740 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1741 		tag = PAGECACHE_TAG_TOWRITE;
1742 	else
1743 		tag = PAGECACHE_TAG_DIRTY;
1744 retry:
1745 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
1746 		tag_pages_for_writeback(mapping, index, end);
1747 	done_index = index;
1748 	while (!done && (index <= end)) {
1749 		int i;
1750 
1751 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
1752 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1753 		if (nr_pages == 0)
1754 			break;
1755 
1756 		for (i = 0; i < nr_pages; i++) {
1757 			struct page *page = pvec.pages[i];
1758 
1759 			/*
1760 			 * At this point, the page may be truncated or
1761 			 * invalidated (changing page->mapping to NULL), or
1762 			 * even swizzled back from swapper_space to tmpfs file
1763 			 * mapping. However, page->index will not change
1764 			 * because we have a reference on the page.
1765 			 */
1766 			if (page->index > end) {
1767 				/*
1768 				 * can't be range_cyclic (1st pass) because
1769 				 * end == -1 in that case.
1770 				 */
1771 				done = 1;
1772 				break;
1773 			}
1774 
1775 			done_index = page->index;
1776 
1777 			lock_page(page);
1778 
1779 			/*
1780 			 * Page truncated or invalidated. We can freely skip it
1781 			 * then, even for data integrity operations: the page
1782 			 * has disappeared concurrently, so there could be no
1783 			 * real expectation of this data interity operation
1784 			 * even if there is now a new, dirty page at the same
1785 			 * pagecache address.
1786 			 */
1787 			if (unlikely(page->mapping != mapping)) {
1788 continue_unlock:
1789 				unlock_page(page);
1790 				continue;
1791 			}
1792 
1793 			if (!PageDirty(page)) {
1794 				/* someone wrote it for us */
1795 				goto continue_unlock;
1796 			}
1797 
1798 			if (PageWriteback(page)) {
1799 				if (wbc->sync_mode != WB_SYNC_NONE)
1800 					wait_on_page_writeback(page);
1801 				else
1802 					goto continue_unlock;
1803 			}
1804 
1805 			BUG_ON(PageWriteback(page));
1806 			if (!clear_page_dirty_for_io(page))
1807 				goto continue_unlock;
1808 
1809 			trace_wbc_writepage(wbc, mapping->backing_dev_info);
1810 			ret = (*writepage)(page, wbc, data);
1811 			if (unlikely(ret)) {
1812 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
1813 					unlock_page(page);
1814 					ret = 0;
1815 				} else {
1816 					/*
1817 					 * done_index is set past this page,
1818 					 * so media errors will not choke
1819 					 * background writeout for the entire
1820 					 * file. This has consequences for
1821 					 * range_cyclic semantics (ie. it may
1822 					 * not be suitable for data integrity
1823 					 * writeout).
1824 					 */
1825 					done_index = page->index + 1;
1826 					done = 1;
1827 					break;
1828 				}
1829 			}
1830 
1831 			/*
1832 			 * We stop writing back only if we are not doing
1833 			 * integrity sync. In case of integrity sync we have to
1834 			 * keep going until we have written all the pages
1835 			 * we tagged for writeback prior to entering this loop.
1836 			 */
1837 			if (--wbc->nr_to_write <= 0 &&
1838 			    wbc->sync_mode == WB_SYNC_NONE) {
1839 				done = 1;
1840 				break;
1841 			}
1842 		}
1843 		pagevec_release(&pvec);
1844 		cond_resched();
1845 	}
1846 	if (!cycled && !done) {
1847 		/*
1848 		 * range_cyclic:
1849 		 * We hit the last page and there is more work to be done: wrap
1850 		 * back to the start of the file
1851 		 */
1852 		cycled = 1;
1853 		index = 0;
1854 		end = writeback_index - 1;
1855 		goto retry;
1856 	}
1857 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1858 		mapping->writeback_index = done_index;
1859 
1860 	return ret;
1861 }
1862 EXPORT_SYMBOL(write_cache_pages);
1863 
1864 /*
1865  * Function used by generic_writepages to call the real writepage
1866  * function and set the mapping flags on error
1867  */
1868 static int __writepage(struct page *page, struct writeback_control *wbc,
1869 		       void *data)
1870 {
1871 	struct address_space *mapping = data;
1872 	int ret = mapping->a_ops->writepage(page, wbc);
1873 	mapping_set_error(mapping, ret);
1874 	return ret;
1875 }
1876 
1877 /**
1878  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1879  * @mapping: address space structure to write
1880  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1881  *
1882  * This is a library function, which implements the writepages()
1883  * address_space_operation.
1884  */
1885 int generic_writepages(struct address_space *mapping,
1886 		       struct writeback_control *wbc)
1887 {
1888 	struct blk_plug plug;
1889 	int ret;
1890 
1891 	/* deal with chardevs and other special file */
1892 	if (!mapping->a_ops->writepage)
1893 		return 0;
1894 
1895 	blk_start_plug(&plug);
1896 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
1897 	blk_finish_plug(&plug);
1898 	return ret;
1899 }
1900 
1901 EXPORT_SYMBOL(generic_writepages);
1902 
1903 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
1904 {
1905 	int ret;
1906 
1907 	if (wbc->nr_to_write <= 0)
1908 		return 0;
1909 	if (mapping->a_ops->writepages)
1910 		ret = mapping->a_ops->writepages(mapping, wbc);
1911 	else
1912 		ret = generic_writepages(mapping, wbc);
1913 	return ret;
1914 }
1915 
1916 /**
1917  * write_one_page - write out a single page and optionally wait on I/O
1918  * @page: the page to write
1919  * @wait: if true, wait on writeout
1920  *
1921  * The page must be locked by the caller and will be unlocked upon return.
1922  *
1923  * write_one_page() returns a negative error code if I/O failed.
1924  */
1925 int write_one_page(struct page *page, int wait)
1926 {
1927 	struct address_space *mapping = page->mapping;
1928 	int ret = 0;
1929 	struct writeback_control wbc = {
1930 		.sync_mode = WB_SYNC_ALL,
1931 		.nr_to_write = 1,
1932 	};
1933 
1934 	BUG_ON(!PageLocked(page));
1935 
1936 	if (wait)
1937 		wait_on_page_writeback(page);
1938 
1939 	if (clear_page_dirty_for_io(page)) {
1940 		page_cache_get(page);
1941 		ret = mapping->a_ops->writepage(page, &wbc);
1942 		if (ret == 0 && wait) {
1943 			wait_on_page_writeback(page);
1944 			if (PageError(page))
1945 				ret = -EIO;
1946 		}
1947 		page_cache_release(page);
1948 	} else {
1949 		unlock_page(page);
1950 	}
1951 	return ret;
1952 }
1953 EXPORT_SYMBOL(write_one_page);
1954 
1955 /*
1956  * For address_spaces which do not use buffers nor write back.
1957  */
1958 int __set_page_dirty_no_writeback(struct page *page)
1959 {
1960 	if (!PageDirty(page))
1961 		return !TestSetPageDirty(page);
1962 	return 0;
1963 }
1964 
1965 /*
1966  * Helper function for set_page_dirty family.
1967  * NOTE: This relies on being atomic wrt interrupts.
1968  */
1969 void account_page_dirtied(struct page *page, struct address_space *mapping)
1970 {
1971 	if (mapping_cap_account_dirty(mapping)) {
1972 		__inc_zone_page_state(page, NR_FILE_DIRTY);
1973 		__inc_zone_page_state(page, NR_DIRTIED);
1974 		__inc_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
1975 		__inc_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
1976 		task_io_account_write(PAGE_CACHE_SIZE);
1977 		current->nr_dirtied++;
1978 		this_cpu_inc(bdp_ratelimits);
1979 	}
1980 }
1981 EXPORT_SYMBOL(account_page_dirtied);
1982 
1983 /*
1984  * Helper function for set_page_writeback family.
1985  * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1986  * wrt interrupts.
1987  */
1988 void account_page_writeback(struct page *page)
1989 {
1990 	inc_zone_page_state(page, NR_WRITEBACK);
1991 }
1992 EXPORT_SYMBOL(account_page_writeback);
1993 
1994 /*
1995  * For address_spaces which do not use buffers.  Just tag the page as dirty in
1996  * its radix tree.
1997  *
1998  * This is also used when a single buffer is being dirtied: we want to set the
1999  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2000  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2001  *
2002  * Most callers have locked the page, which pins the address_space in memory.
2003  * But zap_pte_range() does not lock the page, however in that case the
2004  * mapping is pinned by the vma's ->vm_file reference.
2005  *
2006  * We take care to handle the case where the page was truncated from the
2007  * mapping by re-checking page_mapping() inside tree_lock.
2008  */
2009 int __set_page_dirty_nobuffers(struct page *page)
2010 {
2011 	if (!TestSetPageDirty(page)) {
2012 		struct address_space *mapping = page_mapping(page);
2013 		struct address_space *mapping2;
2014 
2015 		if (!mapping)
2016 			return 1;
2017 
2018 		spin_lock_irq(&mapping->tree_lock);
2019 		mapping2 = page_mapping(page);
2020 		if (mapping2) { /* Race with truncate? */
2021 			BUG_ON(mapping2 != mapping);
2022 			WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2023 			account_page_dirtied(page, mapping);
2024 			radix_tree_tag_set(&mapping->page_tree,
2025 				page_index(page), PAGECACHE_TAG_DIRTY);
2026 		}
2027 		spin_unlock_irq(&mapping->tree_lock);
2028 		if (mapping->host) {
2029 			/* !PageAnon && !swapper_space */
2030 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2031 		}
2032 		return 1;
2033 	}
2034 	return 0;
2035 }
2036 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2037 
2038 /*
2039  * Call this whenever redirtying a page, to de-account the dirty counters
2040  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2041  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2042  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2043  * control.
2044  */
2045 void account_page_redirty(struct page *page)
2046 {
2047 	struct address_space *mapping = page->mapping;
2048 	if (mapping && mapping_cap_account_dirty(mapping)) {
2049 		current->nr_dirtied--;
2050 		dec_zone_page_state(page, NR_DIRTIED);
2051 		dec_bdi_stat(mapping->backing_dev_info, BDI_DIRTIED);
2052 	}
2053 }
2054 EXPORT_SYMBOL(account_page_redirty);
2055 
2056 /*
2057  * When a writepage implementation decides that it doesn't want to write this
2058  * page for some reason, it should redirty the locked page via
2059  * redirty_page_for_writepage() and it should then unlock the page and return 0
2060  */
2061 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2062 {
2063 	wbc->pages_skipped++;
2064 	account_page_redirty(page);
2065 	return __set_page_dirty_nobuffers(page);
2066 }
2067 EXPORT_SYMBOL(redirty_page_for_writepage);
2068 
2069 /*
2070  * Dirty a page.
2071  *
2072  * For pages with a mapping this should be done under the page lock
2073  * for the benefit of asynchronous memory errors who prefer a consistent
2074  * dirty state. This rule can be broken in some special cases,
2075  * but should be better not to.
2076  *
2077  * If the mapping doesn't provide a set_page_dirty a_op, then
2078  * just fall through and assume that it wants buffer_heads.
2079  */
2080 int set_page_dirty(struct page *page)
2081 {
2082 	struct address_space *mapping = page_mapping(page);
2083 
2084 	if (likely(mapping)) {
2085 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2086 		/*
2087 		 * readahead/lru_deactivate_page could remain
2088 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2089 		 * About readahead, if the page is written, the flags would be
2090 		 * reset. So no problem.
2091 		 * About lru_deactivate_page, if the page is redirty, the flag
2092 		 * will be reset. So no problem. but if the page is used by readahead
2093 		 * it will confuse readahead and make it restart the size rampup
2094 		 * process. But it's a trivial problem.
2095 		 */
2096 		ClearPageReclaim(page);
2097 #ifdef CONFIG_BLOCK
2098 		if (!spd)
2099 			spd = __set_page_dirty_buffers;
2100 #endif
2101 		return (*spd)(page);
2102 	}
2103 	if (!PageDirty(page)) {
2104 		if (!TestSetPageDirty(page))
2105 			return 1;
2106 	}
2107 	return 0;
2108 }
2109 EXPORT_SYMBOL(set_page_dirty);
2110 
2111 /*
2112  * set_page_dirty() is racy if the caller has no reference against
2113  * page->mapping->host, and if the page is unlocked.  This is because another
2114  * CPU could truncate the page off the mapping and then free the mapping.
2115  *
2116  * Usually, the page _is_ locked, or the caller is a user-space process which
2117  * holds a reference on the inode by having an open file.
2118  *
2119  * In other cases, the page should be locked before running set_page_dirty().
2120  */
2121 int set_page_dirty_lock(struct page *page)
2122 {
2123 	int ret;
2124 
2125 	lock_page(page);
2126 	ret = set_page_dirty(page);
2127 	unlock_page(page);
2128 	return ret;
2129 }
2130 EXPORT_SYMBOL(set_page_dirty_lock);
2131 
2132 /*
2133  * Clear a page's dirty flag, while caring for dirty memory accounting.
2134  * Returns true if the page was previously dirty.
2135  *
2136  * This is for preparing to put the page under writeout.  We leave the page
2137  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2138  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2139  * implementation will run either set_page_writeback() or set_page_dirty(),
2140  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2141  * back into sync.
2142  *
2143  * This incoherency between the page's dirty flag and radix-tree tag is
2144  * unfortunate, but it only exists while the page is locked.
2145  */
2146 int clear_page_dirty_for_io(struct page *page)
2147 {
2148 	struct address_space *mapping = page_mapping(page);
2149 
2150 	BUG_ON(!PageLocked(page));
2151 
2152 	if (mapping && mapping_cap_account_dirty(mapping)) {
2153 		/*
2154 		 * Yes, Virginia, this is indeed insane.
2155 		 *
2156 		 * We use this sequence to make sure that
2157 		 *  (a) we account for dirty stats properly
2158 		 *  (b) we tell the low-level filesystem to
2159 		 *      mark the whole page dirty if it was
2160 		 *      dirty in a pagetable. Only to then
2161 		 *  (c) clean the page again and return 1 to
2162 		 *      cause the writeback.
2163 		 *
2164 		 * This way we avoid all nasty races with the
2165 		 * dirty bit in multiple places and clearing
2166 		 * them concurrently from different threads.
2167 		 *
2168 		 * Note! Normally the "set_page_dirty(page)"
2169 		 * has no effect on the actual dirty bit - since
2170 		 * that will already usually be set. But we
2171 		 * need the side effects, and it can help us
2172 		 * avoid races.
2173 		 *
2174 		 * We basically use the page "master dirty bit"
2175 		 * as a serialization point for all the different
2176 		 * threads doing their things.
2177 		 */
2178 		if (page_mkclean(page))
2179 			set_page_dirty(page);
2180 		/*
2181 		 * We carefully synchronise fault handlers against
2182 		 * installing a dirty pte and marking the page dirty
2183 		 * at this point. We do this by having them hold the
2184 		 * page lock at some point after installing their
2185 		 * pte, but before marking the page dirty.
2186 		 * Pages are always locked coming in here, so we get
2187 		 * the desired exclusion. See mm/memory.c:do_wp_page()
2188 		 * for more comments.
2189 		 */
2190 		if (TestClearPageDirty(page)) {
2191 			dec_zone_page_state(page, NR_FILE_DIRTY);
2192 			dec_bdi_stat(mapping->backing_dev_info,
2193 					BDI_RECLAIMABLE);
2194 			return 1;
2195 		}
2196 		return 0;
2197 	}
2198 	return TestClearPageDirty(page);
2199 }
2200 EXPORT_SYMBOL(clear_page_dirty_for_io);
2201 
2202 int test_clear_page_writeback(struct page *page)
2203 {
2204 	struct address_space *mapping = page_mapping(page);
2205 	int ret;
2206 
2207 	if (mapping) {
2208 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2209 		unsigned long flags;
2210 
2211 		spin_lock_irqsave(&mapping->tree_lock, flags);
2212 		ret = TestClearPageWriteback(page);
2213 		if (ret) {
2214 			radix_tree_tag_clear(&mapping->page_tree,
2215 						page_index(page),
2216 						PAGECACHE_TAG_WRITEBACK);
2217 			if (bdi_cap_account_writeback(bdi)) {
2218 				__dec_bdi_stat(bdi, BDI_WRITEBACK);
2219 				__bdi_writeout_inc(bdi);
2220 			}
2221 		}
2222 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2223 	} else {
2224 		ret = TestClearPageWriteback(page);
2225 	}
2226 	if (ret) {
2227 		dec_zone_page_state(page, NR_WRITEBACK);
2228 		inc_zone_page_state(page, NR_WRITTEN);
2229 	}
2230 	return ret;
2231 }
2232 
2233 int test_set_page_writeback(struct page *page)
2234 {
2235 	struct address_space *mapping = page_mapping(page);
2236 	int ret;
2237 
2238 	if (mapping) {
2239 		struct backing_dev_info *bdi = mapping->backing_dev_info;
2240 		unsigned long flags;
2241 
2242 		spin_lock_irqsave(&mapping->tree_lock, flags);
2243 		ret = TestSetPageWriteback(page);
2244 		if (!ret) {
2245 			radix_tree_tag_set(&mapping->page_tree,
2246 						page_index(page),
2247 						PAGECACHE_TAG_WRITEBACK);
2248 			if (bdi_cap_account_writeback(bdi))
2249 				__inc_bdi_stat(bdi, BDI_WRITEBACK);
2250 		}
2251 		if (!PageDirty(page))
2252 			radix_tree_tag_clear(&mapping->page_tree,
2253 						page_index(page),
2254 						PAGECACHE_TAG_DIRTY);
2255 		radix_tree_tag_clear(&mapping->page_tree,
2256 				     page_index(page),
2257 				     PAGECACHE_TAG_TOWRITE);
2258 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2259 	} else {
2260 		ret = TestSetPageWriteback(page);
2261 	}
2262 	if (!ret)
2263 		account_page_writeback(page);
2264 	return ret;
2265 
2266 }
2267 EXPORT_SYMBOL(test_set_page_writeback);
2268 
2269 /*
2270  * Return true if any of the pages in the mapping are marked with the
2271  * passed tag.
2272  */
2273 int mapping_tagged(struct address_space *mapping, int tag)
2274 {
2275 	return radix_tree_tagged(&mapping->page_tree, tag);
2276 }
2277 EXPORT_SYMBOL(mapping_tagged);
2278