1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com> 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 akpm@zip.com.au 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/module.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> 36 #include <linux/pagevec.h> 37 38 /* 39 * The maximum number of pages to writeout in a single bdflush/kupdate 40 * operation. We do this so we don't hold I_SYNC against an inode for 41 * enormous amounts of time, which would block a userspace task which has 42 * been forced to throttle against that inode. Also, the code reevaluates 43 * the dirty each time it has written this many pages. 44 */ 45 #define MAX_WRITEBACK_PAGES 1024 46 47 /* 48 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 49 * will look to see if it needs to force writeback or throttling. 50 */ 51 static long ratelimit_pages = 32; 52 53 /* 54 * When balance_dirty_pages decides that the caller needs to perform some 55 * non-background writeback, this is how many pages it will attempt to write. 56 * It should be somewhat larger than RATELIMIT_PAGES to ensure that reasonably 57 * large amounts of I/O are submitted. 58 */ 59 static inline long sync_writeback_pages(void) 60 { 61 return ratelimit_pages + ratelimit_pages / 2; 62 } 63 64 /* The following parameters are exported via /proc/sys/vm */ 65 66 /* 67 * Start background writeback (via pdflush) at this percentage 68 */ 69 int dirty_background_ratio = 5; 70 71 /* 72 * free highmem will not be subtracted from the total free memory 73 * for calculating free ratios if vm_highmem_is_dirtyable is true 74 */ 75 int vm_highmem_is_dirtyable; 76 77 /* 78 * The generator of dirty data starts writeback at this percentage 79 */ 80 int vm_dirty_ratio = 10; 81 82 /* 83 * The interval between `kupdate'-style writebacks, in jiffies 84 */ 85 int dirty_writeback_interval = 5 * HZ; 86 87 /* 88 * The longest number of jiffies for which data is allowed to remain dirty 89 */ 90 int dirty_expire_interval = 30 * HZ; 91 92 /* 93 * Flag that makes the machine dump writes/reads and block dirtyings. 94 */ 95 int block_dump; 96 97 /* 98 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 99 * a full sync is triggered after this time elapses without any disk activity. 100 */ 101 int laptop_mode; 102 103 EXPORT_SYMBOL(laptop_mode); 104 105 /* End of sysctl-exported parameters */ 106 107 108 static void background_writeout(unsigned long _min_pages); 109 110 /* 111 * Scale the writeback cache size proportional to the relative writeout speeds. 112 * 113 * We do this by keeping a floating proportion between BDIs, based on page 114 * writeback completions [end_page_writeback()]. Those devices that write out 115 * pages fastest will get the larger share, while the slower will get a smaller 116 * share. 117 * 118 * We use page writeout completions because we are interested in getting rid of 119 * dirty pages. Having them written out is the primary goal. 120 * 121 * We introduce a concept of time, a period over which we measure these events, 122 * because demand can/will vary over time. The length of this period itself is 123 * measured in page writeback completions. 124 * 125 */ 126 static struct prop_descriptor vm_completions; 127 static struct prop_descriptor vm_dirties; 128 129 static unsigned long determine_dirtyable_memory(void); 130 131 /* 132 * couple the period to the dirty_ratio: 133 * 134 * period/2 ~ roundup_pow_of_two(dirty limit) 135 */ 136 static int calc_period_shift(void) 137 { 138 unsigned long dirty_total; 139 140 dirty_total = (vm_dirty_ratio * determine_dirtyable_memory()) / 100; 141 return 2 + ilog2(dirty_total - 1); 142 } 143 144 /* 145 * update the period when the dirty ratio changes. 146 */ 147 int dirty_ratio_handler(struct ctl_table *table, int write, 148 struct file *filp, void __user *buffer, size_t *lenp, 149 loff_t *ppos) 150 { 151 int old_ratio = vm_dirty_ratio; 152 int ret = proc_dointvec_minmax(table, write, filp, buffer, lenp, ppos); 153 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 154 int shift = calc_period_shift(); 155 prop_change_shift(&vm_completions, shift); 156 prop_change_shift(&vm_dirties, shift); 157 } 158 return ret; 159 } 160 161 /* 162 * Increment the BDI's writeout completion count and the global writeout 163 * completion count. Called from test_clear_page_writeback(). 164 */ 165 static inline void __bdi_writeout_inc(struct backing_dev_info *bdi) 166 { 167 __prop_inc_percpu_max(&vm_completions, &bdi->completions, 168 bdi->max_prop_frac); 169 } 170 171 void bdi_writeout_inc(struct backing_dev_info *bdi) 172 { 173 unsigned long flags; 174 175 local_irq_save(flags); 176 __bdi_writeout_inc(bdi); 177 local_irq_restore(flags); 178 } 179 EXPORT_SYMBOL_GPL(bdi_writeout_inc); 180 181 static inline void task_dirty_inc(struct task_struct *tsk) 182 { 183 prop_inc_single(&vm_dirties, &tsk->dirties); 184 } 185 186 /* 187 * Obtain an accurate fraction of the BDI's portion. 188 */ 189 static void bdi_writeout_fraction(struct backing_dev_info *bdi, 190 long *numerator, long *denominator) 191 { 192 if (bdi_cap_writeback_dirty(bdi)) { 193 prop_fraction_percpu(&vm_completions, &bdi->completions, 194 numerator, denominator); 195 } else { 196 *numerator = 0; 197 *denominator = 1; 198 } 199 } 200 201 /* 202 * Clip the earned share of dirty pages to that which is actually available. 203 * This avoids exceeding the total dirty_limit when the floating averages 204 * fluctuate too quickly. 205 */ 206 static void 207 clip_bdi_dirty_limit(struct backing_dev_info *bdi, long dirty, long *pbdi_dirty) 208 { 209 long avail_dirty; 210 211 avail_dirty = dirty - 212 (global_page_state(NR_FILE_DIRTY) + 213 global_page_state(NR_WRITEBACK) + 214 global_page_state(NR_UNSTABLE_NFS) + 215 global_page_state(NR_WRITEBACK_TEMP)); 216 217 if (avail_dirty < 0) 218 avail_dirty = 0; 219 220 avail_dirty += bdi_stat(bdi, BDI_RECLAIMABLE) + 221 bdi_stat(bdi, BDI_WRITEBACK); 222 223 *pbdi_dirty = min(*pbdi_dirty, avail_dirty); 224 } 225 226 static inline void task_dirties_fraction(struct task_struct *tsk, 227 long *numerator, long *denominator) 228 { 229 prop_fraction_single(&vm_dirties, &tsk->dirties, 230 numerator, denominator); 231 } 232 233 /* 234 * scale the dirty limit 235 * 236 * task specific dirty limit: 237 * 238 * dirty -= (dirty/8) * p_{t} 239 */ 240 static void task_dirty_limit(struct task_struct *tsk, long *pdirty) 241 { 242 long numerator, denominator; 243 long dirty = *pdirty; 244 u64 inv = dirty >> 3; 245 246 task_dirties_fraction(tsk, &numerator, &denominator); 247 inv *= numerator; 248 do_div(inv, denominator); 249 250 dirty -= inv; 251 if (dirty < *pdirty/2) 252 dirty = *pdirty/2; 253 254 *pdirty = dirty; 255 } 256 257 /* 258 * 259 */ 260 static DEFINE_SPINLOCK(bdi_lock); 261 static unsigned int bdi_min_ratio; 262 263 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 264 { 265 int ret = 0; 266 unsigned long flags; 267 268 spin_lock_irqsave(&bdi_lock, flags); 269 if (min_ratio > bdi->max_ratio) { 270 ret = -EINVAL; 271 } else { 272 min_ratio -= bdi->min_ratio; 273 if (bdi_min_ratio + min_ratio < 100) { 274 bdi_min_ratio += min_ratio; 275 bdi->min_ratio += min_ratio; 276 } else { 277 ret = -EINVAL; 278 } 279 } 280 spin_unlock_irqrestore(&bdi_lock, flags); 281 282 return ret; 283 } 284 285 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 286 { 287 unsigned long flags; 288 int ret = 0; 289 290 if (max_ratio > 100) 291 return -EINVAL; 292 293 spin_lock_irqsave(&bdi_lock, flags); 294 if (bdi->min_ratio > max_ratio) { 295 ret = -EINVAL; 296 } else { 297 bdi->max_ratio = max_ratio; 298 bdi->max_prop_frac = (PROP_FRAC_BASE * max_ratio) / 100; 299 } 300 spin_unlock_irqrestore(&bdi_lock, flags); 301 302 return ret; 303 } 304 EXPORT_SYMBOL(bdi_set_max_ratio); 305 306 /* 307 * Work out the current dirty-memory clamping and background writeout 308 * thresholds. 309 * 310 * The main aim here is to lower them aggressively if there is a lot of mapped 311 * memory around. To avoid stressing page reclaim with lots of unreclaimable 312 * pages. It is better to clamp down on writers than to start swapping, and 313 * performing lots of scanning. 314 * 315 * We only allow 1/2 of the currently-unmapped memory to be dirtied. 316 * 317 * We don't permit the clamping level to fall below 5% - that is getting rather 318 * excessive. 319 * 320 * We make sure that the background writeout level is below the adjusted 321 * clamping level. 322 */ 323 324 static unsigned long highmem_dirtyable_memory(unsigned long total) 325 { 326 #ifdef CONFIG_HIGHMEM 327 int node; 328 unsigned long x = 0; 329 330 for_each_node_state(node, N_HIGH_MEMORY) { 331 struct zone *z = 332 &NODE_DATA(node)->node_zones[ZONE_HIGHMEM]; 333 334 x += zone_page_state(z, NR_FREE_PAGES) 335 + zone_page_state(z, NR_INACTIVE) 336 + zone_page_state(z, NR_ACTIVE); 337 } 338 /* 339 * Make sure that the number of highmem pages is never larger 340 * than the number of the total dirtyable memory. This can only 341 * occur in very strange VM situations but we want to make sure 342 * that this does not occur. 343 */ 344 return min(x, total); 345 #else 346 return 0; 347 #endif 348 } 349 350 static unsigned long determine_dirtyable_memory(void) 351 { 352 unsigned long x; 353 354 x = global_page_state(NR_FREE_PAGES) 355 + global_page_state(NR_INACTIVE) 356 + global_page_state(NR_ACTIVE); 357 358 if (!vm_highmem_is_dirtyable) 359 x -= highmem_dirtyable_memory(x); 360 361 return x + 1; /* Ensure that we never return 0 */ 362 } 363 364 void 365 get_dirty_limits(long *pbackground, long *pdirty, long *pbdi_dirty, 366 struct backing_dev_info *bdi) 367 { 368 int background_ratio; /* Percentages */ 369 int dirty_ratio; 370 long background; 371 long dirty; 372 unsigned long available_memory = determine_dirtyable_memory(); 373 struct task_struct *tsk; 374 375 dirty_ratio = vm_dirty_ratio; 376 if (dirty_ratio < 5) 377 dirty_ratio = 5; 378 379 background_ratio = dirty_background_ratio; 380 if (background_ratio >= dirty_ratio) 381 background_ratio = dirty_ratio / 2; 382 383 background = (background_ratio * available_memory) / 100; 384 dirty = (dirty_ratio * available_memory) / 100; 385 tsk = current; 386 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 387 background += background / 4; 388 dirty += dirty / 4; 389 } 390 *pbackground = background; 391 *pdirty = dirty; 392 393 if (bdi) { 394 u64 bdi_dirty; 395 long numerator, denominator; 396 397 /* 398 * Calculate this BDI's share of the dirty ratio. 399 */ 400 bdi_writeout_fraction(bdi, &numerator, &denominator); 401 402 bdi_dirty = (dirty * (100 - bdi_min_ratio)) / 100; 403 bdi_dirty *= numerator; 404 do_div(bdi_dirty, denominator); 405 bdi_dirty += (dirty * bdi->min_ratio) / 100; 406 if (bdi_dirty > (dirty * bdi->max_ratio) / 100) 407 bdi_dirty = dirty * bdi->max_ratio / 100; 408 409 *pbdi_dirty = bdi_dirty; 410 clip_bdi_dirty_limit(bdi, dirty, pbdi_dirty); 411 task_dirty_limit(current, pbdi_dirty); 412 } 413 } 414 415 /* 416 * balance_dirty_pages() must be called by processes which are generating dirty 417 * data. It looks at the number of dirty pages in the machine and will force 418 * the caller to perform writeback if the system is over `vm_dirty_ratio'. 419 * If we're over `background_thresh' then pdflush is woken to perform some 420 * writeout. 421 */ 422 static void balance_dirty_pages(struct address_space *mapping) 423 { 424 long nr_reclaimable, bdi_nr_reclaimable; 425 long nr_writeback, bdi_nr_writeback; 426 long background_thresh; 427 long dirty_thresh; 428 long bdi_thresh; 429 unsigned long pages_written = 0; 430 unsigned long write_chunk = sync_writeback_pages(); 431 432 struct backing_dev_info *bdi = mapping->backing_dev_info; 433 434 for (;;) { 435 struct writeback_control wbc = { 436 .bdi = bdi, 437 .sync_mode = WB_SYNC_NONE, 438 .older_than_this = NULL, 439 .nr_to_write = write_chunk, 440 .range_cyclic = 1, 441 }; 442 443 get_dirty_limits(&background_thresh, &dirty_thresh, 444 &bdi_thresh, bdi); 445 446 nr_reclaimable = global_page_state(NR_FILE_DIRTY) + 447 global_page_state(NR_UNSTABLE_NFS); 448 nr_writeback = global_page_state(NR_WRITEBACK); 449 450 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 451 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 452 453 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 454 break; 455 456 /* 457 * Throttle it only when the background writeback cannot 458 * catch-up. This avoids (excessively) small writeouts 459 * when the bdi limits are ramping up. 460 */ 461 if (nr_reclaimable + nr_writeback < 462 (background_thresh + dirty_thresh) / 2) 463 break; 464 465 if (!bdi->dirty_exceeded) 466 bdi->dirty_exceeded = 1; 467 468 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable. 469 * Unstable writes are a feature of certain networked 470 * filesystems (i.e. NFS) in which data may have been 471 * written to the server's write cache, but has not yet 472 * been flushed to permanent storage. 473 */ 474 if (bdi_nr_reclaimable) { 475 writeback_inodes(&wbc); 476 pages_written += write_chunk - wbc.nr_to_write; 477 get_dirty_limits(&background_thresh, &dirty_thresh, 478 &bdi_thresh, bdi); 479 } 480 481 /* 482 * In order to avoid the stacked BDI deadlock we need 483 * to ensure we accurately count the 'dirty' pages when 484 * the threshold is low. 485 * 486 * Otherwise it would be possible to get thresh+n pages 487 * reported dirty, even though there are thresh-m pages 488 * actually dirty; with m+n sitting in the percpu 489 * deltas. 490 */ 491 if (bdi_thresh < 2*bdi_stat_error(bdi)) { 492 bdi_nr_reclaimable = bdi_stat_sum(bdi, BDI_RECLAIMABLE); 493 bdi_nr_writeback = bdi_stat_sum(bdi, BDI_WRITEBACK); 494 } else if (bdi_nr_reclaimable) { 495 bdi_nr_reclaimable = bdi_stat(bdi, BDI_RECLAIMABLE); 496 bdi_nr_writeback = bdi_stat(bdi, BDI_WRITEBACK); 497 } 498 499 if (bdi_nr_reclaimable + bdi_nr_writeback <= bdi_thresh) 500 break; 501 if (pages_written >= write_chunk) 502 break; /* We've done our duty */ 503 504 congestion_wait(WRITE, HZ/10); 505 } 506 507 if (bdi_nr_reclaimable + bdi_nr_writeback < bdi_thresh && 508 bdi->dirty_exceeded) 509 bdi->dirty_exceeded = 0; 510 511 if (writeback_in_progress(bdi)) 512 return; /* pdflush is already working this queue */ 513 514 /* 515 * In laptop mode, we wait until hitting the higher threshold before 516 * starting background writeout, and then write out all the way down 517 * to the lower threshold. So slow writers cause minimal disk activity. 518 * 519 * In normal mode, we start background writeout at the lower 520 * background_thresh, to keep the amount of dirty memory low. 521 */ 522 if ((laptop_mode && pages_written) || 523 (!laptop_mode && (global_page_state(NR_FILE_DIRTY) 524 + global_page_state(NR_UNSTABLE_NFS) 525 > background_thresh))) 526 pdflush_operation(background_writeout, 0); 527 } 528 529 void set_page_dirty_balance(struct page *page, int page_mkwrite) 530 { 531 if (set_page_dirty(page) || page_mkwrite) { 532 struct address_space *mapping = page_mapping(page); 533 534 if (mapping) 535 balance_dirty_pages_ratelimited(mapping); 536 } 537 } 538 539 /** 540 * balance_dirty_pages_ratelimited_nr - balance dirty memory state 541 * @mapping: address_space which was dirtied 542 * @nr_pages_dirtied: number of pages which the caller has just dirtied 543 * 544 * Processes which are dirtying memory should call in here once for each page 545 * which was newly dirtied. The function will periodically check the system's 546 * dirty state and will initiate writeback if needed. 547 * 548 * On really big machines, get_writeback_state is expensive, so try to avoid 549 * calling it too often (ratelimiting). But once we're over the dirty memory 550 * limit we decrease the ratelimiting by a lot, to prevent individual processes 551 * from overshooting the limit by (ratelimit_pages) each. 552 */ 553 void balance_dirty_pages_ratelimited_nr(struct address_space *mapping, 554 unsigned long nr_pages_dirtied) 555 { 556 static DEFINE_PER_CPU(unsigned long, ratelimits) = 0; 557 unsigned long ratelimit; 558 unsigned long *p; 559 560 ratelimit = ratelimit_pages; 561 if (mapping->backing_dev_info->dirty_exceeded) 562 ratelimit = 8; 563 564 /* 565 * Check the rate limiting. Also, we do not want to throttle real-time 566 * tasks in balance_dirty_pages(). Period. 567 */ 568 preempt_disable(); 569 p = &__get_cpu_var(ratelimits); 570 *p += nr_pages_dirtied; 571 if (unlikely(*p >= ratelimit)) { 572 *p = 0; 573 preempt_enable(); 574 balance_dirty_pages(mapping); 575 return; 576 } 577 preempt_enable(); 578 } 579 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr); 580 581 void throttle_vm_writeout(gfp_t gfp_mask) 582 { 583 long background_thresh; 584 long dirty_thresh; 585 586 for ( ; ; ) { 587 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 588 589 /* 590 * Boost the allowable dirty threshold a bit for page 591 * allocators so they don't get DoS'ed by heavy writers 592 */ 593 dirty_thresh += dirty_thresh / 10; /* wheeee... */ 594 595 if (global_page_state(NR_UNSTABLE_NFS) + 596 global_page_state(NR_WRITEBACK) <= dirty_thresh) 597 break; 598 congestion_wait(WRITE, HZ/10); 599 600 /* 601 * The caller might hold locks which can prevent IO completion 602 * or progress in the filesystem. So we cannot just sit here 603 * waiting for IO to complete. 604 */ 605 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO)) 606 break; 607 } 608 } 609 610 /* 611 * writeback at least _min_pages, and keep writing until the amount of dirty 612 * memory is less than the background threshold, or until we're all clean. 613 */ 614 static void background_writeout(unsigned long _min_pages) 615 { 616 long min_pages = _min_pages; 617 struct writeback_control wbc = { 618 .bdi = NULL, 619 .sync_mode = WB_SYNC_NONE, 620 .older_than_this = NULL, 621 .nr_to_write = 0, 622 .nonblocking = 1, 623 .range_cyclic = 1, 624 }; 625 626 for ( ; ; ) { 627 long background_thresh; 628 long dirty_thresh; 629 630 get_dirty_limits(&background_thresh, &dirty_thresh, NULL, NULL); 631 if (global_page_state(NR_FILE_DIRTY) + 632 global_page_state(NR_UNSTABLE_NFS) < background_thresh 633 && min_pages <= 0) 634 break; 635 wbc.more_io = 0; 636 wbc.encountered_congestion = 0; 637 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 638 wbc.pages_skipped = 0; 639 writeback_inodes(&wbc); 640 min_pages -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 641 if (wbc.nr_to_write > 0 || wbc.pages_skipped > 0) { 642 /* Wrote less than expected */ 643 if (wbc.encountered_congestion || wbc.more_io) 644 congestion_wait(WRITE, HZ/10); 645 else 646 break; 647 } 648 } 649 } 650 651 /* 652 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back 653 * the whole world. Returns 0 if a pdflush thread was dispatched. Returns 654 * -1 if all pdflush threads were busy. 655 */ 656 int wakeup_pdflush(long nr_pages) 657 { 658 if (nr_pages == 0) 659 nr_pages = global_page_state(NR_FILE_DIRTY) + 660 global_page_state(NR_UNSTABLE_NFS); 661 return pdflush_operation(background_writeout, nr_pages); 662 } 663 664 static void wb_timer_fn(unsigned long unused); 665 static void laptop_timer_fn(unsigned long unused); 666 667 static DEFINE_TIMER(wb_timer, wb_timer_fn, 0, 0); 668 static DEFINE_TIMER(laptop_mode_wb_timer, laptop_timer_fn, 0, 0); 669 670 /* 671 * Periodic writeback of "old" data. 672 * 673 * Define "old": the first time one of an inode's pages is dirtied, we mark the 674 * dirtying-time in the inode's address_space. So this periodic writeback code 675 * just walks the superblock inode list, writing back any inodes which are 676 * older than a specific point in time. 677 * 678 * Try to run once per dirty_writeback_interval. But if a writeback event 679 * takes longer than a dirty_writeback_interval interval, then leave a 680 * one-second gap. 681 * 682 * older_than_this takes precedence over nr_to_write. So we'll only write back 683 * all dirty pages if they are all attached to "old" mappings. 684 */ 685 static void wb_kupdate(unsigned long arg) 686 { 687 unsigned long oldest_jif; 688 unsigned long start_jif; 689 unsigned long next_jif; 690 long nr_to_write; 691 struct writeback_control wbc = { 692 .bdi = NULL, 693 .sync_mode = WB_SYNC_NONE, 694 .older_than_this = &oldest_jif, 695 .nr_to_write = 0, 696 .nonblocking = 1, 697 .for_kupdate = 1, 698 .range_cyclic = 1, 699 }; 700 701 sync_supers(); 702 703 oldest_jif = jiffies - dirty_expire_interval; 704 start_jif = jiffies; 705 next_jif = start_jif + dirty_writeback_interval; 706 nr_to_write = global_page_state(NR_FILE_DIRTY) + 707 global_page_state(NR_UNSTABLE_NFS) + 708 (inodes_stat.nr_inodes - inodes_stat.nr_unused); 709 while (nr_to_write > 0) { 710 wbc.more_io = 0; 711 wbc.encountered_congestion = 0; 712 wbc.nr_to_write = MAX_WRITEBACK_PAGES; 713 writeback_inodes(&wbc); 714 if (wbc.nr_to_write > 0) { 715 if (wbc.encountered_congestion || wbc.more_io) 716 congestion_wait(WRITE, HZ/10); 717 else 718 break; /* All the old data is written */ 719 } 720 nr_to_write -= MAX_WRITEBACK_PAGES - wbc.nr_to_write; 721 } 722 if (time_before(next_jif, jiffies + HZ)) 723 next_jif = jiffies + HZ; 724 if (dirty_writeback_interval) 725 mod_timer(&wb_timer, next_jif); 726 } 727 728 /* 729 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 730 */ 731 int dirty_writeback_centisecs_handler(ctl_table *table, int write, 732 struct file *file, void __user *buffer, size_t *length, loff_t *ppos) 733 { 734 proc_dointvec_userhz_jiffies(table, write, file, buffer, length, ppos); 735 if (dirty_writeback_interval) 736 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 737 else 738 del_timer(&wb_timer); 739 return 0; 740 } 741 742 static void wb_timer_fn(unsigned long unused) 743 { 744 if (pdflush_operation(wb_kupdate, 0) < 0) 745 mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */ 746 } 747 748 static void laptop_flush(unsigned long unused) 749 { 750 sys_sync(); 751 } 752 753 static void laptop_timer_fn(unsigned long unused) 754 { 755 pdflush_operation(laptop_flush, 0); 756 } 757 758 /* 759 * We've spun up the disk and we're in laptop mode: schedule writeback 760 * of all dirty data a few seconds from now. If the flush is already scheduled 761 * then push it back - the user is still using the disk. 762 */ 763 void laptop_io_completion(void) 764 { 765 mod_timer(&laptop_mode_wb_timer, jiffies + laptop_mode); 766 } 767 768 /* 769 * We're in laptop mode and we've just synced. The sync's writes will have 770 * caused another writeback to be scheduled by laptop_io_completion. 771 * Nothing needs to be written back anymore, so we unschedule the writeback. 772 */ 773 void laptop_sync_completion(void) 774 { 775 del_timer(&laptop_mode_wb_timer); 776 } 777 778 /* 779 * If ratelimit_pages is too high then we can get into dirty-data overload 780 * if a large number of processes all perform writes at the same time. 781 * If it is too low then SMP machines will call the (expensive) 782 * get_writeback_state too often. 783 * 784 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 785 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 786 * thresholds before writeback cuts in. 787 * 788 * But the limit should not be set too high. Because it also controls the 789 * amount of memory which the balance_dirty_pages() caller has to write back. 790 * If this is too large then the caller will block on the IO queue all the 791 * time. So limit it to four megabytes - the balance_dirty_pages() caller 792 * will write six megabyte chunks, max. 793 */ 794 795 void writeback_set_ratelimit(void) 796 { 797 ratelimit_pages = vm_total_pages / (num_online_cpus() * 32); 798 if (ratelimit_pages < 16) 799 ratelimit_pages = 16; 800 if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024) 801 ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE; 802 } 803 804 static int __cpuinit 805 ratelimit_handler(struct notifier_block *self, unsigned long u, void *v) 806 { 807 writeback_set_ratelimit(); 808 return NOTIFY_DONE; 809 } 810 811 static struct notifier_block __cpuinitdata ratelimit_nb = { 812 .notifier_call = ratelimit_handler, 813 .next = NULL, 814 }; 815 816 /* 817 * Called early on to tune the page writeback dirty limits. 818 * 819 * We used to scale dirty pages according to how total memory 820 * related to pages that could be allocated for buffers (by 821 * comparing nr_free_buffer_pages() to vm_total_pages. 822 * 823 * However, that was when we used "dirty_ratio" to scale with 824 * all memory, and we don't do that any more. "dirty_ratio" 825 * is now applied to total non-HIGHPAGE memory (by subtracting 826 * totalhigh_pages from vm_total_pages), and as such we can't 827 * get into the old insane situation any more where we had 828 * large amounts of dirty pages compared to a small amount of 829 * non-HIGHMEM memory. 830 * 831 * But we might still want to scale the dirty_ratio by how 832 * much memory the box has.. 833 */ 834 void __init page_writeback_init(void) 835 { 836 int shift; 837 838 mod_timer(&wb_timer, jiffies + dirty_writeback_interval); 839 writeback_set_ratelimit(); 840 register_cpu_notifier(&ratelimit_nb); 841 842 shift = calc_period_shift(); 843 prop_descriptor_init(&vm_completions, shift); 844 prop_descriptor_init(&vm_dirties, shift); 845 } 846 847 /** 848 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 849 * @mapping: address space structure to write 850 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 851 * @writepage: function called for each page 852 * @data: data passed to writepage function 853 * 854 * If a page is already under I/O, write_cache_pages() skips it, even 855 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 856 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 857 * and msync() need to guarantee that all the data which was dirty at the time 858 * the call was made get new I/O started against them. If wbc->sync_mode is 859 * WB_SYNC_ALL then we were called for data integrity and we must wait for 860 * existing IO to complete. 861 */ 862 int write_cache_pages(struct address_space *mapping, 863 struct writeback_control *wbc, writepage_t writepage, 864 void *data) 865 { 866 struct backing_dev_info *bdi = mapping->backing_dev_info; 867 int ret = 0; 868 int done = 0; 869 struct pagevec pvec; 870 int nr_pages; 871 pgoff_t index; 872 pgoff_t end; /* Inclusive */ 873 int scanned = 0; 874 int range_whole = 0; 875 876 if (wbc->nonblocking && bdi_write_congested(bdi)) { 877 wbc->encountered_congestion = 1; 878 return 0; 879 } 880 881 pagevec_init(&pvec, 0); 882 if (wbc->range_cyclic) { 883 index = mapping->writeback_index; /* Start from prev offset */ 884 end = -1; 885 } else { 886 index = wbc->range_start >> PAGE_CACHE_SHIFT; 887 end = wbc->range_end >> PAGE_CACHE_SHIFT; 888 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 889 range_whole = 1; 890 scanned = 1; 891 } 892 retry: 893 while (!done && (index <= end) && 894 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 895 PAGECACHE_TAG_DIRTY, 896 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 897 unsigned i; 898 899 scanned = 1; 900 for (i = 0; i < nr_pages; i++) { 901 struct page *page = pvec.pages[i]; 902 903 /* 904 * At this point we hold neither mapping->tree_lock nor 905 * lock on the page itself: the page may be truncated or 906 * invalidated (changing page->mapping to NULL), or even 907 * swizzled back from swapper_space to tmpfs file 908 * mapping 909 */ 910 lock_page(page); 911 912 if (unlikely(page->mapping != mapping)) { 913 unlock_page(page); 914 continue; 915 } 916 917 if (!wbc->range_cyclic && page->index > end) { 918 done = 1; 919 unlock_page(page); 920 continue; 921 } 922 923 if (wbc->sync_mode != WB_SYNC_NONE) 924 wait_on_page_writeback(page); 925 926 if (PageWriteback(page) || 927 !clear_page_dirty_for_io(page)) { 928 unlock_page(page); 929 continue; 930 } 931 932 ret = (*writepage)(page, wbc, data); 933 934 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 935 unlock_page(page); 936 ret = 0; 937 } 938 if (ret || (--(wbc->nr_to_write) <= 0)) 939 done = 1; 940 if (wbc->nonblocking && bdi_write_congested(bdi)) { 941 wbc->encountered_congestion = 1; 942 done = 1; 943 } 944 } 945 pagevec_release(&pvec); 946 cond_resched(); 947 } 948 if (!scanned && !done) { 949 /* 950 * We hit the last page and there is more work to be done: wrap 951 * back to the start of the file 952 */ 953 scanned = 1; 954 index = 0; 955 goto retry; 956 } 957 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 958 mapping->writeback_index = index; 959 return ret; 960 } 961 EXPORT_SYMBOL(write_cache_pages); 962 963 /* 964 * Function used by generic_writepages to call the real writepage 965 * function and set the mapping flags on error 966 */ 967 static int __writepage(struct page *page, struct writeback_control *wbc, 968 void *data) 969 { 970 struct address_space *mapping = data; 971 int ret = mapping->a_ops->writepage(page, wbc); 972 mapping_set_error(mapping, ret); 973 return ret; 974 } 975 976 /** 977 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 978 * @mapping: address space structure to write 979 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 980 * 981 * This is a library function, which implements the writepages() 982 * address_space_operation. 983 */ 984 int generic_writepages(struct address_space *mapping, 985 struct writeback_control *wbc) 986 { 987 /* deal with chardevs and other special file */ 988 if (!mapping->a_ops->writepage) 989 return 0; 990 991 return write_cache_pages(mapping, wbc, __writepage, mapping); 992 } 993 994 EXPORT_SYMBOL(generic_writepages); 995 996 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 997 { 998 int ret; 999 1000 if (wbc->nr_to_write <= 0) 1001 return 0; 1002 wbc->for_writepages = 1; 1003 if (mapping->a_ops->writepages) 1004 ret = mapping->a_ops->writepages(mapping, wbc); 1005 else 1006 ret = generic_writepages(mapping, wbc); 1007 wbc->for_writepages = 0; 1008 return ret; 1009 } 1010 1011 /** 1012 * write_one_page - write out a single page and optionally wait on I/O 1013 * @page: the page to write 1014 * @wait: if true, wait on writeout 1015 * 1016 * The page must be locked by the caller and will be unlocked upon return. 1017 * 1018 * write_one_page() returns a negative error code if I/O failed. 1019 */ 1020 int write_one_page(struct page *page, int wait) 1021 { 1022 struct address_space *mapping = page->mapping; 1023 int ret = 0; 1024 struct writeback_control wbc = { 1025 .sync_mode = WB_SYNC_ALL, 1026 .nr_to_write = 1, 1027 }; 1028 1029 BUG_ON(!PageLocked(page)); 1030 1031 if (wait) 1032 wait_on_page_writeback(page); 1033 1034 if (clear_page_dirty_for_io(page)) { 1035 page_cache_get(page); 1036 ret = mapping->a_ops->writepage(page, &wbc); 1037 if (ret == 0 && wait) { 1038 wait_on_page_writeback(page); 1039 if (PageError(page)) 1040 ret = -EIO; 1041 } 1042 page_cache_release(page); 1043 } else { 1044 unlock_page(page); 1045 } 1046 return ret; 1047 } 1048 EXPORT_SYMBOL(write_one_page); 1049 1050 /* 1051 * For address_spaces which do not use buffers nor write back. 1052 */ 1053 int __set_page_dirty_no_writeback(struct page *page) 1054 { 1055 if (!PageDirty(page)) 1056 SetPageDirty(page); 1057 return 0; 1058 } 1059 1060 /* 1061 * For address_spaces which do not use buffers. Just tag the page as dirty in 1062 * its radix tree. 1063 * 1064 * This is also used when a single buffer is being dirtied: we want to set the 1065 * page dirty in that case, but not all the buffers. This is a "bottom-up" 1066 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 1067 * 1068 * Most callers have locked the page, which pins the address_space in memory. 1069 * But zap_pte_range() does not lock the page, however in that case the 1070 * mapping is pinned by the vma's ->vm_file reference. 1071 * 1072 * We take care to handle the case where the page was truncated from the 1073 * mapping by re-checking page_mapping() inside tree_lock. 1074 */ 1075 int __set_page_dirty_nobuffers(struct page *page) 1076 { 1077 if (!TestSetPageDirty(page)) { 1078 struct address_space *mapping = page_mapping(page); 1079 struct address_space *mapping2; 1080 1081 if (!mapping) 1082 return 1; 1083 1084 write_lock_irq(&mapping->tree_lock); 1085 mapping2 = page_mapping(page); 1086 if (mapping2) { /* Race with truncate? */ 1087 BUG_ON(mapping2 != mapping); 1088 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 1089 if (mapping_cap_account_dirty(mapping)) { 1090 __inc_zone_page_state(page, NR_FILE_DIRTY); 1091 __inc_bdi_stat(mapping->backing_dev_info, 1092 BDI_RECLAIMABLE); 1093 task_io_account_write(PAGE_CACHE_SIZE); 1094 } 1095 radix_tree_tag_set(&mapping->page_tree, 1096 page_index(page), PAGECACHE_TAG_DIRTY); 1097 } 1098 write_unlock_irq(&mapping->tree_lock); 1099 if (mapping->host) { 1100 /* !PageAnon && !swapper_space */ 1101 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1102 } 1103 return 1; 1104 } 1105 return 0; 1106 } 1107 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 1108 1109 /* 1110 * When a writepage implementation decides that it doesn't want to write this 1111 * page for some reason, it should redirty the locked page via 1112 * redirty_page_for_writepage() and it should then unlock the page and return 0 1113 */ 1114 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 1115 { 1116 wbc->pages_skipped++; 1117 return __set_page_dirty_nobuffers(page); 1118 } 1119 EXPORT_SYMBOL(redirty_page_for_writepage); 1120 1121 /* 1122 * If the mapping doesn't provide a set_page_dirty a_op, then 1123 * just fall through and assume that it wants buffer_heads. 1124 */ 1125 static int __set_page_dirty(struct page *page) 1126 { 1127 struct address_space *mapping = page_mapping(page); 1128 1129 if (likely(mapping)) { 1130 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 1131 #ifdef CONFIG_BLOCK 1132 if (!spd) 1133 spd = __set_page_dirty_buffers; 1134 #endif 1135 return (*spd)(page); 1136 } 1137 if (!PageDirty(page)) { 1138 if (!TestSetPageDirty(page)) 1139 return 1; 1140 } 1141 return 0; 1142 } 1143 1144 int set_page_dirty(struct page *page) 1145 { 1146 int ret = __set_page_dirty(page); 1147 if (ret) 1148 task_dirty_inc(current); 1149 return ret; 1150 } 1151 EXPORT_SYMBOL(set_page_dirty); 1152 1153 /* 1154 * set_page_dirty() is racy if the caller has no reference against 1155 * page->mapping->host, and if the page is unlocked. This is because another 1156 * CPU could truncate the page off the mapping and then free the mapping. 1157 * 1158 * Usually, the page _is_ locked, or the caller is a user-space process which 1159 * holds a reference on the inode by having an open file. 1160 * 1161 * In other cases, the page should be locked before running set_page_dirty(). 1162 */ 1163 int set_page_dirty_lock(struct page *page) 1164 { 1165 int ret; 1166 1167 lock_page_nosync(page); 1168 ret = set_page_dirty(page); 1169 unlock_page(page); 1170 return ret; 1171 } 1172 EXPORT_SYMBOL(set_page_dirty_lock); 1173 1174 /* 1175 * Clear a page's dirty flag, while caring for dirty memory accounting. 1176 * Returns true if the page was previously dirty. 1177 * 1178 * This is for preparing to put the page under writeout. We leave the page 1179 * tagged as dirty in the radix tree so that a concurrent write-for-sync 1180 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 1181 * implementation will run either set_page_writeback() or set_page_dirty(), 1182 * at which stage we bring the page's dirty flag and radix-tree dirty tag 1183 * back into sync. 1184 * 1185 * This incoherency between the page's dirty flag and radix-tree tag is 1186 * unfortunate, but it only exists while the page is locked. 1187 */ 1188 int clear_page_dirty_for_io(struct page *page) 1189 { 1190 struct address_space *mapping = page_mapping(page); 1191 1192 BUG_ON(!PageLocked(page)); 1193 1194 ClearPageReclaim(page); 1195 if (mapping && mapping_cap_account_dirty(mapping)) { 1196 /* 1197 * Yes, Virginia, this is indeed insane. 1198 * 1199 * We use this sequence to make sure that 1200 * (a) we account for dirty stats properly 1201 * (b) we tell the low-level filesystem to 1202 * mark the whole page dirty if it was 1203 * dirty in a pagetable. Only to then 1204 * (c) clean the page again and return 1 to 1205 * cause the writeback. 1206 * 1207 * This way we avoid all nasty races with the 1208 * dirty bit in multiple places and clearing 1209 * them concurrently from different threads. 1210 * 1211 * Note! Normally the "set_page_dirty(page)" 1212 * has no effect on the actual dirty bit - since 1213 * that will already usually be set. But we 1214 * need the side effects, and it can help us 1215 * avoid races. 1216 * 1217 * We basically use the page "master dirty bit" 1218 * as a serialization point for all the different 1219 * threads doing their things. 1220 */ 1221 if (page_mkclean(page)) 1222 set_page_dirty(page); 1223 /* 1224 * We carefully synchronise fault handlers against 1225 * installing a dirty pte and marking the page dirty 1226 * at this point. We do this by having them hold the 1227 * page lock at some point after installing their 1228 * pte, but before marking the page dirty. 1229 * Pages are always locked coming in here, so we get 1230 * the desired exclusion. See mm/memory.c:do_wp_page() 1231 * for more comments. 1232 */ 1233 if (TestClearPageDirty(page)) { 1234 dec_zone_page_state(page, NR_FILE_DIRTY); 1235 dec_bdi_stat(mapping->backing_dev_info, 1236 BDI_RECLAIMABLE); 1237 return 1; 1238 } 1239 return 0; 1240 } 1241 return TestClearPageDirty(page); 1242 } 1243 EXPORT_SYMBOL(clear_page_dirty_for_io); 1244 1245 int test_clear_page_writeback(struct page *page) 1246 { 1247 struct address_space *mapping = page_mapping(page); 1248 int ret; 1249 1250 if (mapping) { 1251 struct backing_dev_info *bdi = mapping->backing_dev_info; 1252 unsigned long flags; 1253 1254 write_lock_irqsave(&mapping->tree_lock, flags); 1255 ret = TestClearPageWriteback(page); 1256 if (ret) { 1257 radix_tree_tag_clear(&mapping->page_tree, 1258 page_index(page), 1259 PAGECACHE_TAG_WRITEBACK); 1260 if (bdi_cap_account_writeback(bdi)) { 1261 __dec_bdi_stat(bdi, BDI_WRITEBACK); 1262 __bdi_writeout_inc(bdi); 1263 } 1264 } 1265 write_unlock_irqrestore(&mapping->tree_lock, flags); 1266 } else { 1267 ret = TestClearPageWriteback(page); 1268 } 1269 if (ret) 1270 dec_zone_page_state(page, NR_WRITEBACK); 1271 return ret; 1272 } 1273 1274 int test_set_page_writeback(struct page *page) 1275 { 1276 struct address_space *mapping = page_mapping(page); 1277 int ret; 1278 1279 if (mapping) { 1280 struct backing_dev_info *bdi = mapping->backing_dev_info; 1281 unsigned long flags; 1282 1283 write_lock_irqsave(&mapping->tree_lock, flags); 1284 ret = TestSetPageWriteback(page); 1285 if (!ret) { 1286 radix_tree_tag_set(&mapping->page_tree, 1287 page_index(page), 1288 PAGECACHE_TAG_WRITEBACK); 1289 if (bdi_cap_account_writeback(bdi)) 1290 __inc_bdi_stat(bdi, BDI_WRITEBACK); 1291 } 1292 if (!PageDirty(page)) 1293 radix_tree_tag_clear(&mapping->page_tree, 1294 page_index(page), 1295 PAGECACHE_TAG_DIRTY); 1296 write_unlock_irqrestore(&mapping->tree_lock, flags); 1297 } else { 1298 ret = TestSetPageWriteback(page); 1299 } 1300 if (!ret) 1301 inc_zone_page_state(page, NR_WRITEBACK); 1302 return ret; 1303 1304 } 1305 EXPORT_SYMBOL(test_set_page_writeback); 1306 1307 /* 1308 * Return true if any of the pages in the mapping are marked with the 1309 * passed tag. 1310 */ 1311 int mapping_tagged(struct address_space *mapping, int tag) 1312 { 1313 int ret; 1314 rcu_read_lock(); 1315 ret = radix_tree_tagged(&mapping->page_tree, tag); 1316 rcu_read_unlock(); 1317 return ret; 1318 } 1319 EXPORT_SYMBOL(mapping_tagged); 1320