xref: /openbmc/linux/mm/page-writeback.c (revision 15b7cc78)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 struct wb_domain global_wb_domain;
126 
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 	struct wb_domain	*dom;
131 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132 #endif
133 	struct bdi_writeback	*wb;
134 	struct fprop_local_percpu *wb_completions;
135 
136 	unsigned long		avail;		/* dirtyable */
137 	unsigned long		dirty;		/* file_dirty + write + nfs */
138 	unsigned long		thresh;		/* dirty threshold */
139 	unsigned long		bg_thresh;	/* dirty background threshold */
140 
141 	unsigned long		wb_dirty;	/* per-wb counterparts */
142 	unsigned long		wb_thresh;
143 	unsigned long		wb_bg_thresh;
144 
145 	unsigned long		pos_ratio;
146 };
147 
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154 
155 #ifdef CONFIG_CGROUP_WRITEBACK
156 
157 #define GDTC_INIT(__wb)		.wb = (__wb),				\
158 				.dom = &global_wb_domain,		\
159 				.wb_completions = &(__wb)->completions
160 
161 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 
163 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
164 				.dom = mem_cgroup_wb_domain(__wb),	\
165 				.wb_completions = &(__wb)->memcg_completions, \
166 				.gdtc = __gdtc
167 
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170 	return dtc->dom;
171 }
172 
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175 	return dtc->dom;
176 }
177 
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180 	return mdtc->gdtc;
181 }
182 
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185 	return &wb->memcg_completions;
186 }
187 
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 			     unsigned long *minp, unsigned long *maxp)
190 {
191 	unsigned long this_bw = wb->avg_write_bandwidth;
192 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 	unsigned long long min = wb->bdi->min_ratio;
194 	unsigned long long max = wb->bdi->max_ratio;
195 
196 	/*
197 	 * @wb may already be clean by the time control reaches here and
198 	 * the total may not include its bw.
199 	 */
200 	if (this_bw < tot_bw) {
201 		if (min) {
202 			min *= this_bw;
203 			do_div(min, tot_bw);
204 		}
205 		if (max < 100) {
206 			max *= this_bw;
207 			do_div(max, tot_bw);
208 		}
209 	}
210 
211 	*minp = min;
212 	*maxp = max;
213 }
214 
215 #else	/* CONFIG_CGROUP_WRITEBACK */
216 
217 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
218 				.wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221 
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224 	return false;
225 }
226 
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229 	return &global_wb_domain;
230 }
231 
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234 	return NULL;
235 }
236 
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239 	return NULL;
240 }
241 
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 			     unsigned long *minp, unsigned long *maxp)
244 {
245 	*minp = wb->bdi->min_ratio;
246 	*maxp = wb->bdi->max_ratio;
247 }
248 
249 #endif	/* CONFIG_CGROUP_WRITEBACK */
250 
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268 
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278 	unsigned long nr_pages;
279 
280 	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 	/*
282 	 * Pages reserved for the kernel should not be considered
283 	 * dirtyable, to prevent a situation where reclaim has to
284 	 * clean pages in order to balance the zones.
285 	 */
286 	nr_pages -= min(nr_pages, zone->totalreserve_pages);
287 
288 	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
289 	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290 
291 	return nr_pages;
292 }
293 
294 static unsigned long highmem_dirtyable_memory(unsigned long total)
295 {
296 #ifdef CONFIG_HIGHMEM
297 	int node;
298 	unsigned long x = 0;
299 	int i;
300 
301 	for_each_node_state(node, N_HIGH_MEMORY) {
302 		for (i = 0; i < MAX_NR_ZONES; i++) {
303 			struct zone *z = &NODE_DATA(node)->node_zones[i];
304 
305 			if (is_highmem(z))
306 				x += zone_dirtyable_memory(z);
307 		}
308 	}
309 	/*
310 	 * Unreclaimable memory (kernel memory or anonymous memory
311 	 * without swap) can bring down the dirtyable pages below
312 	 * the zone's dirty balance reserve and the above calculation
313 	 * will underflow.  However we still want to add in nodes
314 	 * which are below threshold (negative values) to get a more
315 	 * accurate calculation but make sure that the total never
316 	 * underflows.
317 	 */
318 	if ((long)x < 0)
319 		x = 0;
320 
321 	/*
322 	 * Make sure that the number of highmem pages is never larger
323 	 * than the number of the total dirtyable memory. This can only
324 	 * occur in very strange VM situations but we want to make sure
325 	 * that this does not occur.
326 	 */
327 	return min(x, total);
328 #else
329 	return 0;
330 #endif
331 }
332 
333 /**
334  * global_dirtyable_memory - number of globally dirtyable pages
335  *
336  * Returns the global number of pages potentially available for dirty
337  * page cache.  This is the base value for the global dirty limits.
338  */
339 static unsigned long global_dirtyable_memory(void)
340 {
341 	unsigned long x;
342 
343 	x = global_page_state(NR_FREE_PAGES);
344 	/*
345 	 * Pages reserved for the kernel should not be considered
346 	 * dirtyable, to prevent a situation where reclaim has to
347 	 * clean pages in order to balance the zones.
348 	 */
349 	x -= min(x, totalreserve_pages);
350 
351 	x += global_page_state(NR_INACTIVE_FILE);
352 	x += global_page_state(NR_ACTIVE_FILE);
353 
354 	if (!vm_highmem_is_dirtyable)
355 		x -= highmem_dirtyable_memory(x);
356 
357 	return x + 1;	/* Ensure that we never return 0 */
358 }
359 
360 /**
361  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
362  * @dtc: dirty_throttle_control of interest
363  *
364  * Calculate @dtc->thresh and ->bg_thresh considering
365  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
366  * must ensure that @dtc->avail is set before calling this function.  The
367  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
368  * real-time tasks.
369  */
370 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
371 {
372 	const unsigned long available_memory = dtc->avail;
373 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
374 	unsigned long bytes = vm_dirty_bytes;
375 	unsigned long bg_bytes = dirty_background_bytes;
376 	unsigned long ratio = vm_dirty_ratio;
377 	unsigned long bg_ratio = dirty_background_ratio;
378 	unsigned long thresh;
379 	unsigned long bg_thresh;
380 	struct task_struct *tsk;
381 
382 	/* gdtc is !NULL iff @dtc is for memcg domain */
383 	if (gdtc) {
384 		unsigned long global_avail = gdtc->avail;
385 
386 		/*
387 		 * The byte settings can't be applied directly to memcg
388 		 * domains.  Convert them to ratios by scaling against
389 		 * globally available memory.
390 		 */
391 		if (bytes)
392 			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
393 				    global_avail, 100UL);
394 		if (bg_bytes)
395 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
396 				       global_avail, 100UL);
397 		bytes = bg_bytes = 0;
398 	}
399 
400 	if (bytes)
401 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
402 	else
403 		thresh = (ratio * available_memory) / 100;
404 
405 	if (bg_bytes)
406 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
407 	else
408 		bg_thresh = (bg_ratio * available_memory) / 100;
409 
410 	if (bg_thresh >= thresh)
411 		bg_thresh = thresh / 2;
412 	tsk = current;
413 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
414 		bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
415 		thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
416 	}
417 	dtc->thresh = thresh;
418 	dtc->bg_thresh = bg_thresh;
419 
420 	/* we should eventually report the domain in the TP */
421 	if (!gdtc)
422 		trace_global_dirty_state(bg_thresh, thresh);
423 }
424 
425 /**
426  * global_dirty_limits - background-writeback and dirty-throttling thresholds
427  * @pbackground: out parameter for bg_thresh
428  * @pdirty: out parameter for thresh
429  *
430  * Calculate bg_thresh and thresh for global_wb_domain.  See
431  * domain_dirty_limits() for details.
432  */
433 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
434 {
435 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
436 
437 	gdtc.avail = global_dirtyable_memory();
438 	domain_dirty_limits(&gdtc);
439 
440 	*pbackground = gdtc.bg_thresh;
441 	*pdirty = gdtc.thresh;
442 }
443 
444 /**
445  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
446  * @zone: the zone
447  *
448  * Returns the maximum number of dirty pages allowed in a zone, based
449  * on the zone's dirtyable memory.
450  */
451 static unsigned long zone_dirty_limit(struct zone *zone)
452 {
453 	unsigned long zone_memory = zone_dirtyable_memory(zone);
454 	struct task_struct *tsk = current;
455 	unsigned long dirty;
456 
457 	if (vm_dirty_bytes)
458 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
459 			zone_memory / global_dirtyable_memory();
460 	else
461 		dirty = vm_dirty_ratio * zone_memory / 100;
462 
463 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
464 		dirty += dirty / 4;
465 
466 	return dirty;
467 }
468 
469 /**
470  * zone_dirty_ok - tells whether a zone is within its dirty limits
471  * @zone: the zone to check
472  *
473  * Returns %true when the dirty pages in @zone are within the zone's
474  * dirty limit, %false if the limit is exceeded.
475  */
476 bool zone_dirty_ok(struct zone *zone)
477 {
478 	unsigned long limit = zone_dirty_limit(zone);
479 
480 	return zone_page_state(zone, NR_FILE_DIRTY) +
481 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
482 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
483 }
484 
485 int dirty_background_ratio_handler(struct ctl_table *table, int write,
486 		void __user *buffer, size_t *lenp,
487 		loff_t *ppos)
488 {
489 	int ret;
490 
491 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
492 	if (ret == 0 && write)
493 		dirty_background_bytes = 0;
494 	return ret;
495 }
496 
497 int dirty_background_bytes_handler(struct ctl_table *table, int write,
498 		void __user *buffer, size_t *lenp,
499 		loff_t *ppos)
500 {
501 	int ret;
502 
503 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
504 	if (ret == 0 && write)
505 		dirty_background_ratio = 0;
506 	return ret;
507 }
508 
509 int dirty_ratio_handler(struct ctl_table *table, int write,
510 		void __user *buffer, size_t *lenp,
511 		loff_t *ppos)
512 {
513 	int old_ratio = vm_dirty_ratio;
514 	int ret;
515 
516 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
517 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
518 		writeback_set_ratelimit();
519 		vm_dirty_bytes = 0;
520 	}
521 	return ret;
522 }
523 
524 int dirty_bytes_handler(struct ctl_table *table, int write,
525 		void __user *buffer, size_t *lenp,
526 		loff_t *ppos)
527 {
528 	unsigned long old_bytes = vm_dirty_bytes;
529 	int ret;
530 
531 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
532 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
533 		writeback_set_ratelimit();
534 		vm_dirty_ratio = 0;
535 	}
536 	return ret;
537 }
538 
539 static unsigned long wp_next_time(unsigned long cur_time)
540 {
541 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
542 	/* 0 has a special meaning... */
543 	if (!cur_time)
544 		return 1;
545 	return cur_time;
546 }
547 
548 static void wb_domain_writeout_inc(struct wb_domain *dom,
549 				   struct fprop_local_percpu *completions,
550 				   unsigned int max_prop_frac)
551 {
552 	__fprop_inc_percpu_max(&dom->completions, completions,
553 			       max_prop_frac);
554 	/* First event after period switching was turned off? */
555 	if (!unlikely(dom->period_time)) {
556 		/*
557 		 * We can race with other __bdi_writeout_inc calls here but
558 		 * it does not cause any harm since the resulting time when
559 		 * timer will fire and what is in writeout_period_time will be
560 		 * roughly the same.
561 		 */
562 		dom->period_time = wp_next_time(jiffies);
563 		mod_timer(&dom->period_timer, dom->period_time);
564 	}
565 }
566 
567 /*
568  * Increment @wb's writeout completion count and the global writeout
569  * completion count. Called from test_clear_page_writeback().
570  */
571 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
572 {
573 	struct wb_domain *cgdom;
574 
575 	__inc_wb_stat(wb, WB_WRITTEN);
576 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
577 			       wb->bdi->max_prop_frac);
578 
579 	cgdom = mem_cgroup_wb_domain(wb);
580 	if (cgdom)
581 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
582 				       wb->bdi->max_prop_frac);
583 }
584 
585 void wb_writeout_inc(struct bdi_writeback *wb)
586 {
587 	unsigned long flags;
588 
589 	local_irq_save(flags);
590 	__wb_writeout_inc(wb);
591 	local_irq_restore(flags);
592 }
593 EXPORT_SYMBOL_GPL(wb_writeout_inc);
594 
595 /*
596  * On idle system, we can be called long after we scheduled because we use
597  * deferred timers so count with missed periods.
598  */
599 static void writeout_period(unsigned long t)
600 {
601 	struct wb_domain *dom = (void *)t;
602 	int miss_periods = (jiffies - dom->period_time) /
603 						 VM_COMPLETIONS_PERIOD_LEN;
604 
605 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
606 		dom->period_time = wp_next_time(dom->period_time +
607 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
608 		mod_timer(&dom->period_timer, dom->period_time);
609 	} else {
610 		/*
611 		 * Aging has zeroed all fractions. Stop wasting CPU on period
612 		 * updates.
613 		 */
614 		dom->period_time = 0;
615 	}
616 }
617 
618 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
619 {
620 	memset(dom, 0, sizeof(*dom));
621 
622 	spin_lock_init(&dom->lock);
623 
624 	init_timer_deferrable(&dom->period_timer);
625 	dom->period_timer.function = writeout_period;
626 	dom->period_timer.data = (unsigned long)dom;
627 
628 	dom->dirty_limit_tstamp = jiffies;
629 
630 	return fprop_global_init(&dom->completions, gfp);
631 }
632 
633 #ifdef CONFIG_CGROUP_WRITEBACK
634 void wb_domain_exit(struct wb_domain *dom)
635 {
636 	del_timer_sync(&dom->period_timer);
637 	fprop_global_destroy(&dom->completions);
638 }
639 #endif
640 
641 /*
642  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
643  * registered backing devices, which, for obvious reasons, can not
644  * exceed 100%.
645  */
646 static unsigned int bdi_min_ratio;
647 
648 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
649 {
650 	int ret = 0;
651 
652 	spin_lock_bh(&bdi_lock);
653 	if (min_ratio > bdi->max_ratio) {
654 		ret = -EINVAL;
655 	} else {
656 		min_ratio -= bdi->min_ratio;
657 		if (bdi_min_ratio + min_ratio < 100) {
658 			bdi_min_ratio += min_ratio;
659 			bdi->min_ratio += min_ratio;
660 		} else {
661 			ret = -EINVAL;
662 		}
663 	}
664 	spin_unlock_bh(&bdi_lock);
665 
666 	return ret;
667 }
668 
669 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
670 {
671 	int ret = 0;
672 
673 	if (max_ratio > 100)
674 		return -EINVAL;
675 
676 	spin_lock_bh(&bdi_lock);
677 	if (bdi->min_ratio > max_ratio) {
678 		ret = -EINVAL;
679 	} else {
680 		bdi->max_ratio = max_ratio;
681 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
682 	}
683 	spin_unlock_bh(&bdi_lock);
684 
685 	return ret;
686 }
687 EXPORT_SYMBOL(bdi_set_max_ratio);
688 
689 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
690 					   unsigned long bg_thresh)
691 {
692 	return (thresh + bg_thresh) / 2;
693 }
694 
695 static unsigned long hard_dirty_limit(struct wb_domain *dom,
696 				      unsigned long thresh)
697 {
698 	return max(thresh, dom->dirty_limit);
699 }
700 
701 /*
702  * Memory which can be further allocated to a memcg domain is capped by
703  * system-wide clean memory excluding the amount being used in the domain.
704  */
705 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
706 			    unsigned long filepages, unsigned long headroom)
707 {
708 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
709 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
710 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
711 	unsigned long other_clean = global_clean - min(global_clean, clean);
712 
713 	mdtc->avail = filepages + min(headroom, other_clean);
714 }
715 
716 /**
717  * __wb_calc_thresh - @wb's share of dirty throttling threshold
718  * @dtc: dirty_throttle_context of interest
719  *
720  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
721  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
722  *
723  * Note that balance_dirty_pages() will only seriously take it as a hard limit
724  * when sleeping max_pause per page is not enough to keep the dirty pages under
725  * control. For example, when the device is completely stalled due to some error
726  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
727  * In the other normal situations, it acts more gently by throttling the tasks
728  * more (rather than completely block them) when the wb dirty pages go high.
729  *
730  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
731  * - starving fast devices
732  * - piling up dirty pages (that will take long time to sync) on slow devices
733  *
734  * The wb's share of dirty limit will be adapting to its throughput and
735  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
736  */
737 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
738 {
739 	struct wb_domain *dom = dtc_dom(dtc);
740 	unsigned long thresh = dtc->thresh;
741 	u64 wb_thresh;
742 	long numerator, denominator;
743 	unsigned long wb_min_ratio, wb_max_ratio;
744 
745 	/*
746 	 * Calculate this BDI's share of the thresh ratio.
747 	 */
748 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
749 			      &numerator, &denominator);
750 
751 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
752 	wb_thresh *= numerator;
753 	do_div(wb_thresh, denominator);
754 
755 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
756 
757 	wb_thresh += (thresh * wb_min_ratio) / 100;
758 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
759 		wb_thresh = thresh * wb_max_ratio / 100;
760 
761 	return wb_thresh;
762 }
763 
764 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
765 {
766 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
767 					       .thresh = thresh };
768 	return __wb_calc_thresh(&gdtc);
769 }
770 
771 /*
772  *                           setpoint - dirty 3
773  *        f(dirty) := 1.0 + (----------------)
774  *                           limit - setpoint
775  *
776  * it's a 3rd order polynomial that subjects to
777  *
778  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
779  * (2) f(setpoint) = 1.0 => the balance point
780  * (3) f(limit)    = 0   => the hard limit
781  * (4) df/dx      <= 0	 => negative feedback control
782  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
783  *     => fast response on large errors; small oscillation near setpoint
784  */
785 static long long pos_ratio_polynom(unsigned long setpoint,
786 					  unsigned long dirty,
787 					  unsigned long limit)
788 {
789 	long long pos_ratio;
790 	long x;
791 
792 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
793 		      (limit - setpoint) | 1);
794 	pos_ratio = x;
795 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
796 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
797 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
798 
799 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
800 }
801 
802 /*
803  * Dirty position control.
804  *
805  * (o) global/bdi setpoints
806  *
807  * We want the dirty pages be balanced around the global/wb setpoints.
808  * When the number of dirty pages is higher/lower than the setpoint, the
809  * dirty position control ratio (and hence task dirty ratelimit) will be
810  * decreased/increased to bring the dirty pages back to the setpoint.
811  *
812  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
813  *
814  *     if (dirty < setpoint) scale up   pos_ratio
815  *     if (dirty > setpoint) scale down pos_ratio
816  *
817  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
818  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
819  *
820  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
821  *
822  * (o) global control line
823  *
824  *     ^ pos_ratio
825  *     |
826  *     |            |<===== global dirty control scope ======>|
827  * 2.0 .............*
828  *     |            .*
829  *     |            . *
830  *     |            .   *
831  *     |            .     *
832  *     |            .        *
833  *     |            .            *
834  * 1.0 ................................*
835  *     |            .                  .     *
836  *     |            .                  .          *
837  *     |            .                  .              *
838  *     |            .                  .                 *
839  *     |            .                  .                    *
840  *   0 +------------.------------------.----------------------*------------->
841  *           freerun^          setpoint^                 limit^   dirty pages
842  *
843  * (o) wb control line
844  *
845  *     ^ pos_ratio
846  *     |
847  *     |            *
848  *     |              *
849  *     |                *
850  *     |                  *
851  *     |                    * |<=========== span ============>|
852  * 1.0 .......................*
853  *     |                      . *
854  *     |                      .   *
855  *     |                      .     *
856  *     |                      .       *
857  *     |                      .         *
858  *     |                      .           *
859  *     |                      .             *
860  *     |                      .               *
861  *     |                      .                 *
862  *     |                      .                   *
863  *     |                      .                     *
864  * 1/4 ...............................................* * * * * * * * * * * *
865  *     |                      .                         .
866  *     |                      .                           .
867  *     |                      .                             .
868  *   0 +----------------------.-------------------------------.------------->
869  *                wb_setpoint^                    x_intercept^
870  *
871  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
872  * be smoothly throttled down to normal if it starts high in situations like
873  * - start writing to a slow SD card and a fast disk at the same time. The SD
874  *   card's wb_dirty may rush to many times higher than wb_setpoint.
875  * - the wb dirty thresh drops quickly due to change of JBOD workload
876  */
877 static void wb_position_ratio(struct dirty_throttle_control *dtc)
878 {
879 	struct bdi_writeback *wb = dtc->wb;
880 	unsigned long write_bw = wb->avg_write_bandwidth;
881 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
882 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
883 	unsigned long wb_thresh = dtc->wb_thresh;
884 	unsigned long x_intercept;
885 	unsigned long setpoint;		/* dirty pages' target balance point */
886 	unsigned long wb_setpoint;
887 	unsigned long span;
888 	long long pos_ratio;		/* for scaling up/down the rate limit */
889 	long x;
890 
891 	dtc->pos_ratio = 0;
892 
893 	if (unlikely(dtc->dirty >= limit))
894 		return;
895 
896 	/*
897 	 * global setpoint
898 	 *
899 	 * See comment for pos_ratio_polynom().
900 	 */
901 	setpoint = (freerun + limit) / 2;
902 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
903 
904 	/*
905 	 * The strictlimit feature is a tool preventing mistrusted filesystems
906 	 * from growing a large number of dirty pages before throttling. For
907 	 * such filesystems balance_dirty_pages always checks wb counters
908 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
909 	 * This is especially important for fuse which sets bdi->max_ratio to
910 	 * 1% by default. Without strictlimit feature, fuse writeback may
911 	 * consume arbitrary amount of RAM because it is accounted in
912 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
913 	 *
914 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
915 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
916 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
917 	 * limits are set by default to 10% and 20% (background and throttle).
918 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
919 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
920 	 * about ~6K pages (as the average of background and throttle wb
921 	 * limits). The 3rd order polynomial will provide positive feedback if
922 	 * wb_dirty is under wb_setpoint and vice versa.
923 	 *
924 	 * Note, that we cannot use global counters in these calculations
925 	 * because we want to throttle process writing to a strictlimit wb
926 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
927 	 * in the example above).
928 	 */
929 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
930 		long long wb_pos_ratio;
931 
932 		if (dtc->wb_dirty < 8) {
933 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
934 					   2 << RATELIMIT_CALC_SHIFT);
935 			return;
936 		}
937 
938 		if (dtc->wb_dirty >= wb_thresh)
939 			return;
940 
941 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
942 						    dtc->wb_bg_thresh);
943 
944 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
945 			return;
946 
947 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
948 						 wb_thresh);
949 
950 		/*
951 		 * Typically, for strictlimit case, wb_setpoint << setpoint
952 		 * and pos_ratio >> wb_pos_ratio. In the other words global
953 		 * state ("dirty") is not limiting factor and we have to
954 		 * make decision based on wb counters. But there is an
955 		 * important case when global pos_ratio should get precedence:
956 		 * global limits are exceeded (e.g. due to activities on other
957 		 * wb's) while given strictlimit wb is below limit.
958 		 *
959 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
960 		 * but it would look too non-natural for the case of all
961 		 * activity in the system coming from a single strictlimit wb
962 		 * with bdi->max_ratio == 100%.
963 		 *
964 		 * Note that min() below somewhat changes the dynamics of the
965 		 * control system. Normally, pos_ratio value can be well over 3
966 		 * (when globally we are at freerun and wb is well below wb
967 		 * setpoint). Now the maximum pos_ratio in the same situation
968 		 * is 2. We might want to tweak this if we observe the control
969 		 * system is too slow to adapt.
970 		 */
971 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
972 		return;
973 	}
974 
975 	/*
976 	 * We have computed basic pos_ratio above based on global situation. If
977 	 * the wb is over/under its share of dirty pages, we want to scale
978 	 * pos_ratio further down/up. That is done by the following mechanism.
979 	 */
980 
981 	/*
982 	 * wb setpoint
983 	 *
984 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
985 	 *
986 	 *                        x_intercept - wb_dirty
987 	 *                     := --------------------------
988 	 *                        x_intercept - wb_setpoint
989 	 *
990 	 * The main wb control line is a linear function that subjects to
991 	 *
992 	 * (1) f(wb_setpoint) = 1.0
993 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
994 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
995 	 *
996 	 * For single wb case, the dirty pages are observed to fluctuate
997 	 * regularly within range
998 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
999 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
1000 	 * fluctuation range for pos_ratio.
1001 	 *
1002 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1003 	 * own size, so move the slope over accordingly and choose a slope that
1004 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1005 	 */
1006 	if (unlikely(wb_thresh > dtc->thresh))
1007 		wb_thresh = dtc->thresh;
1008 	/*
1009 	 * It's very possible that wb_thresh is close to 0 not because the
1010 	 * device is slow, but that it has remained inactive for long time.
1011 	 * Honour such devices a reasonable good (hopefully IO efficient)
1012 	 * threshold, so that the occasional writes won't be blocked and active
1013 	 * writes can rampup the threshold quickly.
1014 	 */
1015 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1016 	/*
1017 	 * scale global setpoint to wb's:
1018 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1019 	 */
1020 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1021 	wb_setpoint = setpoint * (u64)x >> 16;
1022 	/*
1023 	 * Use span=(8*write_bw) in single wb case as indicated by
1024 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1025 	 *
1026 	 *        wb_thresh                    thresh - wb_thresh
1027 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1028 	 *         thresh                           thresh
1029 	 */
1030 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1031 	x_intercept = wb_setpoint + span;
1032 
1033 	if (dtc->wb_dirty < x_intercept - span / 4) {
1034 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1035 				      (x_intercept - wb_setpoint) | 1);
1036 	} else
1037 		pos_ratio /= 4;
1038 
1039 	/*
1040 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1041 	 * It may push the desired control point of global dirty pages higher
1042 	 * than setpoint.
1043 	 */
1044 	x_intercept = wb_thresh / 2;
1045 	if (dtc->wb_dirty < x_intercept) {
1046 		if (dtc->wb_dirty > x_intercept / 8)
1047 			pos_ratio = div_u64(pos_ratio * x_intercept,
1048 					    dtc->wb_dirty);
1049 		else
1050 			pos_ratio *= 8;
1051 	}
1052 
1053 	dtc->pos_ratio = pos_ratio;
1054 }
1055 
1056 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1057 				      unsigned long elapsed,
1058 				      unsigned long written)
1059 {
1060 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1061 	unsigned long avg = wb->avg_write_bandwidth;
1062 	unsigned long old = wb->write_bandwidth;
1063 	u64 bw;
1064 
1065 	/*
1066 	 * bw = written * HZ / elapsed
1067 	 *
1068 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1069 	 * write_bandwidth = ---------------------------------------------------
1070 	 *                                          period
1071 	 *
1072 	 * @written may have decreased due to account_page_redirty().
1073 	 * Avoid underflowing @bw calculation.
1074 	 */
1075 	bw = written - min(written, wb->written_stamp);
1076 	bw *= HZ;
1077 	if (unlikely(elapsed > period)) {
1078 		do_div(bw, elapsed);
1079 		avg = bw;
1080 		goto out;
1081 	}
1082 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1083 	bw >>= ilog2(period);
1084 
1085 	/*
1086 	 * one more level of smoothing, for filtering out sudden spikes
1087 	 */
1088 	if (avg > old && old >= (unsigned long)bw)
1089 		avg -= (avg - old) >> 3;
1090 
1091 	if (avg < old && old <= (unsigned long)bw)
1092 		avg += (old - avg) >> 3;
1093 
1094 out:
1095 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1096 	avg = max(avg, 1LU);
1097 	if (wb_has_dirty_io(wb)) {
1098 		long delta = avg - wb->avg_write_bandwidth;
1099 		WARN_ON_ONCE(atomic_long_add_return(delta,
1100 					&wb->bdi->tot_write_bandwidth) <= 0);
1101 	}
1102 	wb->write_bandwidth = bw;
1103 	wb->avg_write_bandwidth = avg;
1104 }
1105 
1106 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1107 {
1108 	struct wb_domain *dom = dtc_dom(dtc);
1109 	unsigned long thresh = dtc->thresh;
1110 	unsigned long limit = dom->dirty_limit;
1111 
1112 	/*
1113 	 * Follow up in one step.
1114 	 */
1115 	if (limit < thresh) {
1116 		limit = thresh;
1117 		goto update;
1118 	}
1119 
1120 	/*
1121 	 * Follow down slowly. Use the higher one as the target, because thresh
1122 	 * may drop below dirty. This is exactly the reason to introduce
1123 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1124 	 */
1125 	thresh = max(thresh, dtc->dirty);
1126 	if (limit > thresh) {
1127 		limit -= (limit - thresh) >> 5;
1128 		goto update;
1129 	}
1130 	return;
1131 update:
1132 	dom->dirty_limit = limit;
1133 }
1134 
1135 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1136 				    unsigned long now)
1137 {
1138 	struct wb_domain *dom = dtc_dom(dtc);
1139 
1140 	/*
1141 	 * check locklessly first to optimize away locking for the most time
1142 	 */
1143 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1144 		return;
1145 
1146 	spin_lock(&dom->lock);
1147 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1148 		update_dirty_limit(dtc);
1149 		dom->dirty_limit_tstamp = now;
1150 	}
1151 	spin_unlock(&dom->lock);
1152 }
1153 
1154 /*
1155  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1156  *
1157  * Normal wb tasks will be curbed at or below it in long term.
1158  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1159  */
1160 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1161 				      unsigned long dirtied,
1162 				      unsigned long elapsed)
1163 {
1164 	struct bdi_writeback *wb = dtc->wb;
1165 	unsigned long dirty = dtc->dirty;
1166 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1167 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1168 	unsigned long setpoint = (freerun + limit) / 2;
1169 	unsigned long write_bw = wb->avg_write_bandwidth;
1170 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1171 	unsigned long dirty_rate;
1172 	unsigned long task_ratelimit;
1173 	unsigned long balanced_dirty_ratelimit;
1174 	unsigned long step;
1175 	unsigned long x;
1176 	unsigned long shift;
1177 
1178 	/*
1179 	 * The dirty rate will match the writeout rate in long term, except
1180 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1181 	 */
1182 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1183 
1184 	/*
1185 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1186 	 */
1187 	task_ratelimit = (u64)dirty_ratelimit *
1188 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1189 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1190 
1191 	/*
1192 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1193 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1194 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1195 	 * formula will yield the balanced rate limit (write_bw / N).
1196 	 *
1197 	 * Note that the expanded form is not a pure rate feedback:
1198 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1199 	 * but also takes pos_ratio into account:
1200 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1201 	 *
1202 	 * (1) is not realistic because pos_ratio also takes part in balancing
1203 	 * the dirty rate.  Consider the state
1204 	 *	pos_ratio = 0.5						     (3)
1205 	 *	rate = 2 * (write_bw / N)				     (4)
1206 	 * If (1) is used, it will stuck in that state! Because each dd will
1207 	 * be throttled at
1208 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1209 	 * yielding
1210 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1211 	 * put (6) into (1) we get
1212 	 *	rate_(i+1) = rate_(i)					     (7)
1213 	 *
1214 	 * So we end up using (2) to always keep
1215 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1216 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1217 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1218 	 * the dirty count meet the setpoint, but also where the slope of
1219 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1220 	 */
1221 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1222 					   dirty_rate | 1);
1223 	/*
1224 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1225 	 */
1226 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1227 		balanced_dirty_ratelimit = write_bw;
1228 
1229 	/*
1230 	 * We could safely do this and return immediately:
1231 	 *
1232 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1233 	 *
1234 	 * However to get a more stable dirty_ratelimit, the below elaborated
1235 	 * code makes use of task_ratelimit to filter out singular points and
1236 	 * limit the step size.
1237 	 *
1238 	 * The below code essentially only uses the relative value of
1239 	 *
1240 	 *	task_ratelimit - dirty_ratelimit
1241 	 *	= (pos_ratio - 1) * dirty_ratelimit
1242 	 *
1243 	 * which reflects the direction and size of dirty position error.
1244 	 */
1245 
1246 	/*
1247 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1248 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1249 	 * For example, when
1250 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1251 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1252 	 * lowering dirty_ratelimit will help meet both the position and rate
1253 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1254 	 * only help meet the rate target. After all, what the users ultimately
1255 	 * feel and care are stable dirty rate and small position error.
1256 	 *
1257 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1258 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1259 	 * keeps jumping around randomly and can even leap far away at times
1260 	 * due to the small 200ms estimation period of dirty_rate (we want to
1261 	 * keep that period small to reduce time lags).
1262 	 */
1263 	step = 0;
1264 
1265 	/*
1266 	 * For strictlimit case, calculations above were based on wb counters
1267 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1268 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1269 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1270 	 * "dirty" and wb_setpoint as "setpoint".
1271 	 *
1272 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1273 	 * it's possible that wb_thresh is close to zero due to inactivity
1274 	 * of backing device.
1275 	 */
1276 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1277 		dirty = dtc->wb_dirty;
1278 		if (dtc->wb_dirty < 8)
1279 			setpoint = dtc->wb_dirty + 1;
1280 		else
1281 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1282 	}
1283 
1284 	if (dirty < setpoint) {
1285 		x = min3(wb->balanced_dirty_ratelimit,
1286 			 balanced_dirty_ratelimit, task_ratelimit);
1287 		if (dirty_ratelimit < x)
1288 			step = x - dirty_ratelimit;
1289 	} else {
1290 		x = max3(wb->balanced_dirty_ratelimit,
1291 			 balanced_dirty_ratelimit, task_ratelimit);
1292 		if (dirty_ratelimit > x)
1293 			step = dirty_ratelimit - x;
1294 	}
1295 
1296 	/*
1297 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1298 	 * rate itself is constantly fluctuating. So decrease the track speed
1299 	 * when it gets close to the target. Helps eliminate pointless tremors.
1300 	 */
1301 	shift = dirty_ratelimit / (2 * step + 1);
1302 	if (shift < BITS_PER_LONG)
1303 		step = DIV_ROUND_UP(step >> shift, 8);
1304 	else
1305 		step = 0;
1306 
1307 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1308 		dirty_ratelimit += step;
1309 	else
1310 		dirty_ratelimit -= step;
1311 
1312 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1313 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1314 
1315 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1316 }
1317 
1318 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1319 				  struct dirty_throttle_control *mdtc,
1320 				  unsigned long start_time,
1321 				  bool update_ratelimit)
1322 {
1323 	struct bdi_writeback *wb = gdtc->wb;
1324 	unsigned long now = jiffies;
1325 	unsigned long elapsed = now - wb->bw_time_stamp;
1326 	unsigned long dirtied;
1327 	unsigned long written;
1328 
1329 	lockdep_assert_held(&wb->list_lock);
1330 
1331 	/*
1332 	 * rate-limit, only update once every 200ms.
1333 	 */
1334 	if (elapsed < BANDWIDTH_INTERVAL)
1335 		return;
1336 
1337 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1338 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1339 
1340 	/*
1341 	 * Skip quiet periods when disk bandwidth is under-utilized.
1342 	 * (at least 1s idle time between two flusher runs)
1343 	 */
1344 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1345 		goto snapshot;
1346 
1347 	if (update_ratelimit) {
1348 		domain_update_bandwidth(gdtc, now);
1349 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1350 
1351 		/*
1352 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1353 		 * compiler has no way to figure that out.  Help it.
1354 		 */
1355 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1356 			domain_update_bandwidth(mdtc, now);
1357 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1358 		}
1359 	}
1360 	wb_update_write_bandwidth(wb, elapsed, written);
1361 
1362 snapshot:
1363 	wb->dirtied_stamp = dirtied;
1364 	wb->written_stamp = written;
1365 	wb->bw_time_stamp = now;
1366 }
1367 
1368 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1369 {
1370 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1371 
1372 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1373 }
1374 
1375 /*
1376  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1377  * will look to see if it needs to start dirty throttling.
1378  *
1379  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1380  * global_page_state() too often. So scale it near-sqrt to the safety margin
1381  * (the number of pages we may dirty without exceeding the dirty limits).
1382  */
1383 static unsigned long dirty_poll_interval(unsigned long dirty,
1384 					 unsigned long thresh)
1385 {
1386 	if (thresh > dirty)
1387 		return 1UL << (ilog2(thresh - dirty) >> 1);
1388 
1389 	return 1;
1390 }
1391 
1392 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1393 				  unsigned long wb_dirty)
1394 {
1395 	unsigned long bw = wb->avg_write_bandwidth;
1396 	unsigned long t;
1397 
1398 	/*
1399 	 * Limit pause time for small memory systems. If sleeping for too long
1400 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1401 	 * idle.
1402 	 *
1403 	 * 8 serves as the safety ratio.
1404 	 */
1405 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1406 	t++;
1407 
1408 	return min_t(unsigned long, t, MAX_PAUSE);
1409 }
1410 
1411 static long wb_min_pause(struct bdi_writeback *wb,
1412 			 long max_pause,
1413 			 unsigned long task_ratelimit,
1414 			 unsigned long dirty_ratelimit,
1415 			 int *nr_dirtied_pause)
1416 {
1417 	long hi = ilog2(wb->avg_write_bandwidth);
1418 	long lo = ilog2(wb->dirty_ratelimit);
1419 	long t;		/* target pause */
1420 	long pause;	/* estimated next pause */
1421 	int pages;	/* target nr_dirtied_pause */
1422 
1423 	/* target for 10ms pause on 1-dd case */
1424 	t = max(1, HZ / 100);
1425 
1426 	/*
1427 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1428 	 * overheads.
1429 	 *
1430 	 * (N * 10ms) on 2^N concurrent tasks.
1431 	 */
1432 	if (hi > lo)
1433 		t += (hi - lo) * (10 * HZ) / 1024;
1434 
1435 	/*
1436 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1437 	 * on the much more stable dirty_ratelimit. However the next pause time
1438 	 * will be computed based on task_ratelimit and the two rate limits may
1439 	 * depart considerably at some time. Especially if task_ratelimit goes
1440 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1441 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1442 	 * result task_ratelimit won't be executed faithfully, which could
1443 	 * eventually bring down dirty_ratelimit.
1444 	 *
1445 	 * We apply two rules to fix it up:
1446 	 * 1) try to estimate the next pause time and if necessary, use a lower
1447 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1448 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1449 	 * 2) limit the target pause time to max_pause/2, so that the normal
1450 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1451 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1452 	 */
1453 	t = min(t, 1 + max_pause / 2);
1454 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1455 
1456 	/*
1457 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1458 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1459 	 * When the 16 consecutive reads are often interrupted by some dirty
1460 	 * throttling pause during the async writes, cfq will go into idles
1461 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1462 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1463 	 */
1464 	if (pages < DIRTY_POLL_THRESH) {
1465 		t = max_pause;
1466 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1467 		if (pages > DIRTY_POLL_THRESH) {
1468 			pages = DIRTY_POLL_THRESH;
1469 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1470 		}
1471 	}
1472 
1473 	pause = HZ * pages / (task_ratelimit + 1);
1474 	if (pause > max_pause) {
1475 		t = max_pause;
1476 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1477 	}
1478 
1479 	*nr_dirtied_pause = pages;
1480 	/*
1481 	 * The minimal pause time will normally be half the target pause time.
1482 	 */
1483 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1484 }
1485 
1486 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1487 {
1488 	struct bdi_writeback *wb = dtc->wb;
1489 	unsigned long wb_reclaimable;
1490 
1491 	/*
1492 	 * wb_thresh is not treated as some limiting factor as
1493 	 * dirty_thresh, due to reasons
1494 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1495 	 * - in a system with HDD and USB key, the USB key may somehow
1496 	 *   go into state (wb_dirty >> wb_thresh) either because
1497 	 *   wb_dirty starts high, or because wb_thresh drops low.
1498 	 *   In this case we don't want to hard throttle the USB key
1499 	 *   dirtiers for 100 seconds until wb_dirty drops under
1500 	 *   wb_thresh. Instead the auxiliary wb control line in
1501 	 *   wb_position_ratio() will let the dirtier task progress
1502 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1503 	 */
1504 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1505 	dtc->wb_bg_thresh = dtc->thresh ?
1506 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1507 
1508 	/*
1509 	 * In order to avoid the stacked BDI deadlock we need
1510 	 * to ensure we accurately count the 'dirty' pages when
1511 	 * the threshold is low.
1512 	 *
1513 	 * Otherwise it would be possible to get thresh+n pages
1514 	 * reported dirty, even though there are thresh-m pages
1515 	 * actually dirty; with m+n sitting in the percpu
1516 	 * deltas.
1517 	 */
1518 	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1519 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1520 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1521 	} else {
1522 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1523 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1524 	}
1525 }
1526 
1527 /*
1528  * balance_dirty_pages() must be called by processes which are generating dirty
1529  * data.  It looks at the number of dirty pages in the machine and will force
1530  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1531  * If we're over `background_thresh' then the writeback threads are woken to
1532  * perform some writeout.
1533  */
1534 static void balance_dirty_pages(struct address_space *mapping,
1535 				struct bdi_writeback *wb,
1536 				unsigned long pages_dirtied)
1537 {
1538 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1539 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1540 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1541 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1542 						     &mdtc_stor : NULL;
1543 	struct dirty_throttle_control *sdtc;
1544 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1545 	long period;
1546 	long pause;
1547 	long max_pause;
1548 	long min_pause;
1549 	int nr_dirtied_pause;
1550 	bool dirty_exceeded = false;
1551 	unsigned long task_ratelimit;
1552 	unsigned long dirty_ratelimit;
1553 	struct backing_dev_info *bdi = wb->bdi;
1554 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1555 	unsigned long start_time = jiffies;
1556 
1557 	for (;;) {
1558 		unsigned long now = jiffies;
1559 		unsigned long dirty, thresh, bg_thresh;
1560 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1561 		unsigned long m_thresh = 0;
1562 		unsigned long m_bg_thresh = 0;
1563 
1564 		/*
1565 		 * Unstable writes are a feature of certain networked
1566 		 * filesystems (i.e. NFS) in which data may have been
1567 		 * written to the server's write cache, but has not yet
1568 		 * been flushed to permanent storage.
1569 		 */
1570 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1571 					global_page_state(NR_UNSTABLE_NFS);
1572 		gdtc->avail = global_dirtyable_memory();
1573 		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1574 
1575 		domain_dirty_limits(gdtc);
1576 
1577 		if (unlikely(strictlimit)) {
1578 			wb_dirty_limits(gdtc);
1579 
1580 			dirty = gdtc->wb_dirty;
1581 			thresh = gdtc->wb_thresh;
1582 			bg_thresh = gdtc->wb_bg_thresh;
1583 		} else {
1584 			dirty = gdtc->dirty;
1585 			thresh = gdtc->thresh;
1586 			bg_thresh = gdtc->bg_thresh;
1587 		}
1588 
1589 		if (mdtc) {
1590 			unsigned long filepages, headroom, writeback;
1591 
1592 			/*
1593 			 * If @wb belongs to !root memcg, repeat the same
1594 			 * basic calculations for the memcg domain.
1595 			 */
1596 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1597 					    &mdtc->dirty, &writeback);
1598 			mdtc->dirty += writeback;
1599 			mdtc_calc_avail(mdtc, filepages, headroom);
1600 
1601 			domain_dirty_limits(mdtc);
1602 
1603 			if (unlikely(strictlimit)) {
1604 				wb_dirty_limits(mdtc);
1605 				m_dirty = mdtc->wb_dirty;
1606 				m_thresh = mdtc->wb_thresh;
1607 				m_bg_thresh = mdtc->wb_bg_thresh;
1608 			} else {
1609 				m_dirty = mdtc->dirty;
1610 				m_thresh = mdtc->thresh;
1611 				m_bg_thresh = mdtc->bg_thresh;
1612 			}
1613 		}
1614 
1615 		/*
1616 		 * Throttle it only when the background writeback cannot
1617 		 * catch-up. This avoids (excessively) small writeouts
1618 		 * when the wb limits are ramping up in case of !strictlimit.
1619 		 *
1620 		 * In strictlimit case make decision based on the wb counters
1621 		 * and limits. Small writeouts when the wb limits are ramping
1622 		 * up are the price we consciously pay for strictlimit-ing.
1623 		 *
1624 		 * If memcg domain is in effect, @dirty should be under
1625 		 * both global and memcg freerun ceilings.
1626 		 */
1627 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1628 		    (!mdtc ||
1629 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1630 			unsigned long intv = dirty_poll_interval(dirty, thresh);
1631 			unsigned long m_intv = ULONG_MAX;
1632 
1633 			current->dirty_paused_when = now;
1634 			current->nr_dirtied = 0;
1635 			if (mdtc)
1636 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1637 			current->nr_dirtied_pause = min(intv, m_intv);
1638 			break;
1639 		}
1640 
1641 		if (unlikely(!writeback_in_progress(wb)))
1642 			wb_start_background_writeback(wb);
1643 
1644 		/*
1645 		 * Calculate global domain's pos_ratio and select the
1646 		 * global dtc by default.
1647 		 */
1648 		if (!strictlimit)
1649 			wb_dirty_limits(gdtc);
1650 
1651 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1652 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1653 
1654 		wb_position_ratio(gdtc);
1655 		sdtc = gdtc;
1656 
1657 		if (mdtc) {
1658 			/*
1659 			 * If memcg domain is in effect, calculate its
1660 			 * pos_ratio.  @wb should satisfy constraints from
1661 			 * both global and memcg domains.  Choose the one
1662 			 * w/ lower pos_ratio.
1663 			 */
1664 			if (!strictlimit)
1665 				wb_dirty_limits(mdtc);
1666 
1667 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1668 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1669 
1670 			wb_position_ratio(mdtc);
1671 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1672 				sdtc = mdtc;
1673 		}
1674 
1675 		if (dirty_exceeded && !wb->dirty_exceeded)
1676 			wb->dirty_exceeded = 1;
1677 
1678 		if (time_is_before_jiffies(wb->bw_time_stamp +
1679 					   BANDWIDTH_INTERVAL)) {
1680 			spin_lock(&wb->list_lock);
1681 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1682 			spin_unlock(&wb->list_lock);
1683 		}
1684 
1685 		/* throttle according to the chosen dtc */
1686 		dirty_ratelimit = wb->dirty_ratelimit;
1687 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1688 							RATELIMIT_CALC_SHIFT;
1689 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1690 		min_pause = wb_min_pause(wb, max_pause,
1691 					 task_ratelimit, dirty_ratelimit,
1692 					 &nr_dirtied_pause);
1693 
1694 		if (unlikely(task_ratelimit == 0)) {
1695 			period = max_pause;
1696 			pause = max_pause;
1697 			goto pause;
1698 		}
1699 		period = HZ * pages_dirtied / task_ratelimit;
1700 		pause = period;
1701 		if (current->dirty_paused_when)
1702 			pause -= now - current->dirty_paused_when;
1703 		/*
1704 		 * For less than 1s think time (ext3/4 may block the dirtier
1705 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1706 		 * however at much less frequency), try to compensate it in
1707 		 * future periods by updating the virtual time; otherwise just
1708 		 * do a reset, as it may be a light dirtier.
1709 		 */
1710 		if (pause < min_pause) {
1711 			trace_balance_dirty_pages(wb,
1712 						  sdtc->thresh,
1713 						  sdtc->bg_thresh,
1714 						  sdtc->dirty,
1715 						  sdtc->wb_thresh,
1716 						  sdtc->wb_dirty,
1717 						  dirty_ratelimit,
1718 						  task_ratelimit,
1719 						  pages_dirtied,
1720 						  period,
1721 						  min(pause, 0L),
1722 						  start_time);
1723 			if (pause < -HZ) {
1724 				current->dirty_paused_when = now;
1725 				current->nr_dirtied = 0;
1726 			} else if (period) {
1727 				current->dirty_paused_when += period;
1728 				current->nr_dirtied = 0;
1729 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1730 				current->nr_dirtied_pause += pages_dirtied;
1731 			break;
1732 		}
1733 		if (unlikely(pause > max_pause)) {
1734 			/* for occasional dropped task_ratelimit */
1735 			now += min(pause - max_pause, max_pause);
1736 			pause = max_pause;
1737 		}
1738 
1739 pause:
1740 		trace_balance_dirty_pages(wb,
1741 					  sdtc->thresh,
1742 					  sdtc->bg_thresh,
1743 					  sdtc->dirty,
1744 					  sdtc->wb_thresh,
1745 					  sdtc->wb_dirty,
1746 					  dirty_ratelimit,
1747 					  task_ratelimit,
1748 					  pages_dirtied,
1749 					  period,
1750 					  pause,
1751 					  start_time);
1752 		__set_current_state(TASK_KILLABLE);
1753 		io_schedule_timeout(pause);
1754 
1755 		current->dirty_paused_when = now + pause;
1756 		current->nr_dirtied = 0;
1757 		current->nr_dirtied_pause = nr_dirtied_pause;
1758 
1759 		/*
1760 		 * This is typically equal to (dirty < thresh) and can also
1761 		 * keep "1000+ dd on a slow USB stick" under control.
1762 		 */
1763 		if (task_ratelimit)
1764 			break;
1765 
1766 		/*
1767 		 * In the case of an unresponding NFS server and the NFS dirty
1768 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1769 		 * to go through, so that tasks on them still remain responsive.
1770 		 *
1771 		 * In theory 1 page is enough to keep the comsumer-producer
1772 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1773 		 * more page. However wb_dirty has accounting errors.  So use
1774 		 * the larger and more IO friendly wb_stat_error.
1775 		 */
1776 		if (sdtc->wb_dirty <= wb_stat_error(wb))
1777 			break;
1778 
1779 		if (fatal_signal_pending(current))
1780 			break;
1781 	}
1782 
1783 	if (!dirty_exceeded && wb->dirty_exceeded)
1784 		wb->dirty_exceeded = 0;
1785 
1786 	if (writeback_in_progress(wb))
1787 		return;
1788 
1789 	/*
1790 	 * In laptop mode, we wait until hitting the higher threshold before
1791 	 * starting background writeout, and then write out all the way down
1792 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1793 	 *
1794 	 * In normal mode, we start background writeout at the lower
1795 	 * background_thresh, to keep the amount of dirty memory low.
1796 	 */
1797 	if (laptop_mode)
1798 		return;
1799 
1800 	if (nr_reclaimable > gdtc->bg_thresh)
1801 		wb_start_background_writeback(wb);
1802 }
1803 
1804 static DEFINE_PER_CPU(int, bdp_ratelimits);
1805 
1806 /*
1807  * Normal tasks are throttled by
1808  *	loop {
1809  *		dirty tsk->nr_dirtied_pause pages;
1810  *		take a snap in balance_dirty_pages();
1811  *	}
1812  * However there is a worst case. If every task exit immediately when dirtied
1813  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1814  * called to throttle the page dirties. The solution is to save the not yet
1815  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1816  * randomly into the running tasks. This works well for the above worst case,
1817  * as the new task will pick up and accumulate the old task's leaked dirty
1818  * count and eventually get throttled.
1819  */
1820 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1821 
1822 /**
1823  * balance_dirty_pages_ratelimited - balance dirty memory state
1824  * @mapping: address_space which was dirtied
1825  *
1826  * Processes which are dirtying memory should call in here once for each page
1827  * which was newly dirtied.  The function will periodically check the system's
1828  * dirty state and will initiate writeback if needed.
1829  *
1830  * On really big machines, get_writeback_state is expensive, so try to avoid
1831  * calling it too often (ratelimiting).  But once we're over the dirty memory
1832  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1833  * from overshooting the limit by (ratelimit_pages) each.
1834  */
1835 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1836 {
1837 	struct inode *inode = mapping->host;
1838 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1839 	struct bdi_writeback *wb = NULL;
1840 	int ratelimit;
1841 	int *p;
1842 
1843 	if (!bdi_cap_account_dirty(bdi))
1844 		return;
1845 
1846 	if (inode_cgwb_enabled(inode))
1847 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1848 	if (!wb)
1849 		wb = &bdi->wb;
1850 
1851 	ratelimit = current->nr_dirtied_pause;
1852 	if (wb->dirty_exceeded)
1853 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1854 
1855 	preempt_disable();
1856 	/*
1857 	 * This prevents one CPU to accumulate too many dirtied pages without
1858 	 * calling into balance_dirty_pages(), which can happen when there are
1859 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1860 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1861 	 */
1862 	p =  this_cpu_ptr(&bdp_ratelimits);
1863 	if (unlikely(current->nr_dirtied >= ratelimit))
1864 		*p = 0;
1865 	else if (unlikely(*p >= ratelimit_pages)) {
1866 		*p = 0;
1867 		ratelimit = 0;
1868 	}
1869 	/*
1870 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1871 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1872 	 * the dirty throttling and livelock other long-run dirtiers.
1873 	 */
1874 	p = this_cpu_ptr(&dirty_throttle_leaks);
1875 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1876 		unsigned long nr_pages_dirtied;
1877 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1878 		*p -= nr_pages_dirtied;
1879 		current->nr_dirtied += nr_pages_dirtied;
1880 	}
1881 	preempt_enable();
1882 
1883 	if (unlikely(current->nr_dirtied >= ratelimit))
1884 		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1885 
1886 	wb_put(wb);
1887 }
1888 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1889 
1890 /**
1891  * wb_over_bg_thresh - does @wb need to be written back?
1892  * @wb: bdi_writeback of interest
1893  *
1894  * Determines whether background writeback should keep writing @wb or it's
1895  * clean enough.  Returns %true if writeback should continue.
1896  */
1897 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1898 {
1899 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1900 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1901 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1902 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1903 						     &mdtc_stor : NULL;
1904 
1905 	/*
1906 	 * Similar to balance_dirty_pages() but ignores pages being written
1907 	 * as we're trying to decide whether to put more under writeback.
1908 	 */
1909 	gdtc->avail = global_dirtyable_memory();
1910 	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1911 		      global_page_state(NR_UNSTABLE_NFS);
1912 	domain_dirty_limits(gdtc);
1913 
1914 	if (gdtc->dirty > gdtc->bg_thresh)
1915 		return true;
1916 
1917 	if (wb_stat(wb, WB_RECLAIMABLE) >
1918 	    wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
1919 		return true;
1920 
1921 	if (mdtc) {
1922 		unsigned long filepages, headroom, writeback;
1923 
1924 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1925 				    &writeback);
1926 		mdtc_calc_avail(mdtc, filepages, headroom);
1927 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1928 
1929 		if (mdtc->dirty > mdtc->bg_thresh)
1930 			return true;
1931 
1932 		if (wb_stat(wb, WB_RECLAIMABLE) >
1933 		    wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
1934 			return true;
1935 	}
1936 
1937 	return false;
1938 }
1939 
1940 void throttle_vm_writeout(gfp_t gfp_mask)
1941 {
1942 	unsigned long background_thresh;
1943 	unsigned long dirty_thresh;
1944 
1945         for ( ; ; ) {
1946 		global_dirty_limits(&background_thresh, &dirty_thresh);
1947 		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1948 
1949                 /*
1950                  * Boost the allowable dirty threshold a bit for page
1951                  * allocators so they don't get DoS'ed by heavy writers
1952                  */
1953                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1954 
1955                 if (global_page_state(NR_UNSTABLE_NFS) +
1956 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1957                         	break;
1958                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1959 
1960 		/*
1961 		 * The caller might hold locks which can prevent IO completion
1962 		 * or progress in the filesystem.  So we cannot just sit here
1963 		 * waiting for IO to complete.
1964 		 */
1965 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1966 			break;
1967         }
1968 }
1969 
1970 /*
1971  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1972  */
1973 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1974 	void __user *buffer, size_t *length, loff_t *ppos)
1975 {
1976 	proc_dointvec(table, write, buffer, length, ppos);
1977 	return 0;
1978 }
1979 
1980 #ifdef CONFIG_BLOCK
1981 void laptop_mode_timer_fn(unsigned long data)
1982 {
1983 	struct request_queue *q = (struct request_queue *)data;
1984 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1985 		global_page_state(NR_UNSTABLE_NFS);
1986 	struct bdi_writeback *wb;
1987 
1988 	/*
1989 	 * We want to write everything out, not just down to the dirty
1990 	 * threshold
1991 	 */
1992 	if (!bdi_has_dirty_io(&q->backing_dev_info))
1993 		return;
1994 
1995 	rcu_read_lock();
1996 	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1997 		if (wb_has_dirty_io(wb))
1998 			wb_start_writeback(wb, nr_pages, true,
1999 					   WB_REASON_LAPTOP_TIMER);
2000 	rcu_read_unlock();
2001 }
2002 
2003 /*
2004  * We've spun up the disk and we're in laptop mode: schedule writeback
2005  * of all dirty data a few seconds from now.  If the flush is already scheduled
2006  * then push it back - the user is still using the disk.
2007  */
2008 void laptop_io_completion(struct backing_dev_info *info)
2009 {
2010 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2011 }
2012 
2013 /*
2014  * We're in laptop mode and we've just synced. The sync's writes will have
2015  * caused another writeback to be scheduled by laptop_io_completion.
2016  * Nothing needs to be written back anymore, so we unschedule the writeback.
2017  */
2018 void laptop_sync_completion(void)
2019 {
2020 	struct backing_dev_info *bdi;
2021 
2022 	rcu_read_lock();
2023 
2024 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2025 		del_timer(&bdi->laptop_mode_wb_timer);
2026 
2027 	rcu_read_unlock();
2028 }
2029 #endif
2030 
2031 /*
2032  * If ratelimit_pages is too high then we can get into dirty-data overload
2033  * if a large number of processes all perform writes at the same time.
2034  * If it is too low then SMP machines will call the (expensive)
2035  * get_writeback_state too often.
2036  *
2037  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2038  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2039  * thresholds.
2040  */
2041 
2042 void writeback_set_ratelimit(void)
2043 {
2044 	struct wb_domain *dom = &global_wb_domain;
2045 	unsigned long background_thresh;
2046 	unsigned long dirty_thresh;
2047 
2048 	global_dirty_limits(&background_thresh, &dirty_thresh);
2049 	dom->dirty_limit = dirty_thresh;
2050 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2051 	if (ratelimit_pages < 16)
2052 		ratelimit_pages = 16;
2053 }
2054 
2055 static int
2056 ratelimit_handler(struct notifier_block *self, unsigned long action,
2057 		  void *hcpu)
2058 {
2059 
2060 	switch (action & ~CPU_TASKS_FROZEN) {
2061 	case CPU_ONLINE:
2062 	case CPU_DEAD:
2063 		writeback_set_ratelimit();
2064 		return NOTIFY_OK;
2065 	default:
2066 		return NOTIFY_DONE;
2067 	}
2068 }
2069 
2070 static struct notifier_block ratelimit_nb = {
2071 	.notifier_call	= ratelimit_handler,
2072 	.next		= NULL,
2073 };
2074 
2075 /*
2076  * Called early on to tune the page writeback dirty limits.
2077  *
2078  * We used to scale dirty pages according to how total memory
2079  * related to pages that could be allocated for buffers (by
2080  * comparing nr_free_buffer_pages() to vm_total_pages.
2081  *
2082  * However, that was when we used "dirty_ratio" to scale with
2083  * all memory, and we don't do that any more. "dirty_ratio"
2084  * is now applied to total non-HIGHPAGE memory (by subtracting
2085  * totalhigh_pages from vm_total_pages), and as such we can't
2086  * get into the old insane situation any more where we had
2087  * large amounts of dirty pages compared to a small amount of
2088  * non-HIGHMEM memory.
2089  *
2090  * But we might still want to scale the dirty_ratio by how
2091  * much memory the box has..
2092  */
2093 void __init page_writeback_init(void)
2094 {
2095 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2096 
2097 	writeback_set_ratelimit();
2098 	register_cpu_notifier(&ratelimit_nb);
2099 }
2100 
2101 /**
2102  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2103  * @mapping: address space structure to write
2104  * @start: starting page index
2105  * @end: ending page index (inclusive)
2106  *
2107  * This function scans the page range from @start to @end (inclusive) and tags
2108  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2109  * that write_cache_pages (or whoever calls this function) will then use
2110  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2111  * used to avoid livelocking of writeback by a process steadily creating new
2112  * dirty pages in the file (thus it is important for this function to be quick
2113  * so that it can tag pages faster than a dirtying process can create them).
2114  */
2115 /*
2116  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2117  */
2118 void tag_pages_for_writeback(struct address_space *mapping,
2119 			     pgoff_t start, pgoff_t end)
2120 {
2121 #define WRITEBACK_TAG_BATCH 4096
2122 	unsigned long tagged;
2123 
2124 	do {
2125 		spin_lock_irq(&mapping->tree_lock);
2126 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2127 				&start, end, WRITEBACK_TAG_BATCH,
2128 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2129 		spin_unlock_irq(&mapping->tree_lock);
2130 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2131 		cond_resched();
2132 		/* We check 'start' to handle wrapping when end == ~0UL */
2133 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2134 }
2135 EXPORT_SYMBOL(tag_pages_for_writeback);
2136 
2137 /**
2138  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2139  * @mapping: address space structure to write
2140  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2141  * @writepage: function called for each page
2142  * @data: data passed to writepage function
2143  *
2144  * If a page is already under I/O, write_cache_pages() skips it, even
2145  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2146  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2147  * and msync() need to guarantee that all the data which was dirty at the time
2148  * the call was made get new I/O started against them.  If wbc->sync_mode is
2149  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2150  * existing IO to complete.
2151  *
2152  * To avoid livelocks (when other process dirties new pages), we first tag
2153  * pages which should be written back with TOWRITE tag and only then start
2154  * writing them. For data-integrity sync we have to be careful so that we do
2155  * not miss some pages (e.g., because some other process has cleared TOWRITE
2156  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2157  * by the process clearing the DIRTY tag (and submitting the page for IO).
2158  */
2159 int write_cache_pages(struct address_space *mapping,
2160 		      struct writeback_control *wbc, writepage_t writepage,
2161 		      void *data)
2162 {
2163 	int ret = 0;
2164 	int done = 0;
2165 	struct pagevec pvec;
2166 	int nr_pages;
2167 	pgoff_t uninitialized_var(writeback_index);
2168 	pgoff_t index;
2169 	pgoff_t end;		/* Inclusive */
2170 	pgoff_t done_index;
2171 	int cycled;
2172 	int range_whole = 0;
2173 	int tag;
2174 
2175 	pagevec_init(&pvec, 0);
2176 	if (wbc->range_cyclic) {
2177 		writeback_index = mapping->writeback_index; /* prev offset */
2178 		index = writeback_index;
2179 		if (index == 0)
2180 			cycled = 1;
2181 		else
2182 			cycled = 0;
2183 		end = -1;
2184 	} else {
2185 		index = wbc->range_start >> PAGE_SHIFT;
2186 		end = wbc->range_end >> PAGE_SHIFT;
2187 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2188 			range_whole = 1;
2189 		cycled = 1; /* ignore range_cyclic tests */
2190 	}
2191 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2192 		tag = PAGECACHE_TAG_TOWRITE;
2193 	else
2194 		tag = PAGECACHE_TAG_DIRTY;
2195 retry:
2196 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2197 		tag_pages_for_writeback(mapping, index, end);
2198 	done_index = index;
2199 	while (!done && (index <= end)) {
2200 		int i;
2201 
2202 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2203 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2204 		if (nr_pages == 0)
2205 			break;
2206 
2207 		for (i = 0; i < nr_pages; i++) {
2208 			struct page *page = pvec.pages[i];
2209 
2210 			/*
2211 			 * At this point, the page may be truncated or
2212 			 * invalidated (changing page->mapping to NULL), or
2213 			 * even swizzled back from swapper_space to tmpfs file
2214 			 * mapping. However, page->index will not change
2215 			 * because we have a reference on the page.
2216 			 */
2217 			if (page->index > end) {
2218 				/*
2219 				 * can't be range_cyclic (1st pass) because
2220 				 * end == -1 in that case.
2221 				 */
2222 				done = 1;
2223 				break;
2224 			}
2225 
2226 			done_index = page->index;
2227 
2228 			lock_page(page);
2229 
2230 			/*
2231 			 * Page truncated or invalidated. We can freely skip it
2232 			 * then, even for data integrity operations: the page
2233 			 * has disappeared concurrently, so there could be no
2234 			 * real expectation of this data interity operation
2235 			 * even if there is now a new, dirty page at the same
2236 			 * pagecache address.
2237 			 */
2238 			if (unlikely(page->mapping != mapping)) {
2239 continue_unlock:
2240 				unlock_page(page);
2241 				continue;
2242 			}
2243 
2244 			if (!PageDirty(page)) {
2245 				/* someone wrote it for us */
2246 				goto continue_unlock;
2247 			}
2248 
2249 			if (PageWriteback(page)) {
2250 				if (wbc->sync_mode != WB_SYNC_NONE)
2251 					wait_on_page_writeback(page);
2252 				else
2253 					goto continue_unlock;
2254 			}
2255 
2256 			BUG_ON(PageWriteback(page));
2257 			if (!clear_page_dirty_for_io(page))
2258 				goto continue_unlock;
2259 
2260 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2261 			ret = (*writepage)(page, wbc, data);
2262 			if (unlikely(ret)) {
2263 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2264 					unlock_page(page);
2265 					ret = 0;
2266 				} else {
2267 					/*
2268 					 * done_index is set past this page,
2269 					 * so media errors will not choke
2270 					 * background writeout for the entire
2271 					 * file. This has consequences for
2272 					 * range_cyclic semantics (ie. it may
2273 					 * not be suitable for data integrity
2274 					 * writeout).
2275 					 */
2276 					done_index = page->index + 1;
2277 					done = 1;
2278 					break;
2279 				}
2280 			}
2281 
2282 			/*
2283 			 * We stop writing back only if we are not doing
2284 			 * integrity sync. In case of integrity sync we have to
2285 			 * keep going until we have written all the pages
2286 			 * we tagged for writeback prior to entering this loop.
2287 			 */
2288 			if (--wbc->nr_to_write <= 0 &&
2289 			    wbc->sync_mode == WB_SYNC_NONE) {
2290 				done = 1;
2291 				break;
2292 			}
2293 		}
2294 		pagevec_release(&pvec);
2295 		cond_resched();
2296 	}
2297 	if (!cycled && !done) {
2298 		/*
2299 		 * range_cyclic:
2300 		 * We hit the last page and there is more work to be done: wrap
2301 		 * back to the start of the file
2302 		 */
2303 		cycled = 1;
2304 		index = 0;
2305 		end = writeback_index - 1;
2306 		goto retry;
2307 	}
2308 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2309 		mapping->writeback_index = done_index;
2310 
2311 	return ret;
2312 }
2313 EXPORT_SYMBOL(write_cache_pages);
2314 
2315 /*
2316  * Function used by generic_writepages to call the real writepage
2317  * function and set the mapping flags on error
2318  */
2319 static int __writepage(struct page *page, struct writeback_control *wbc,
2320 		       void *data)
2321 {
2322 	struct address_space *mapping = data;
2323 	int ret = mapping->a_ops->writepage(page, wbc);
2324 	mapping_set_error(mapping, ret);
2325 	return ret;
2326 }
2327 
2328 /**
2329  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2330  * @mapping: address space structure to write
2331  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2332  *
2333  * This is a library function, which implements the writepages()
2334  * address_space_operation.
2335  */
2336 int generic_writepages(struct address_space *mapping,
2337 		       struct writeback_control *wbc)
2338 {
2339 	struct blk_plug plug;
2340 	int ret;
2341 
2342 	/* deal with chardevs and other special file */
2343 	if (!mapping->a_ops->writepage)
2344 		return 0;
2345 
2346 	blk_start_plug(&plug);
2347 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2348 	blk_finish_plug(&plug);
2349 	return ret;
2350 }
2351 
2352 EXPORT_SYMBOL(generic_writepages);
2353 
2354 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2355 {
2356 	int ret;
2357 
2358 	if (wbc->nr_to_write <= 0)
2359 		return 0;
2360 	if (mapping->a_ops->writepages)
2361 		ret = mapping->a_ops->writepages(mapping, wbc);
2362 	else
2363 		ret = generic_writepages(mapping, wbc);
2364 	return ret;
2365 }
2366 
2367 /**
2368  * write_one_page - write out a single page and optionally wait on I/O
2369  * @page: the page to write
2370  * @wait: if true, wait on writeout
2371  *
2372  * The page must be locked by the caller and will be unlocked upon return.
2373  *
2374  * write_one_page() returns a negative error code if I/O failed.
2375  */
2376 int write_one_page(struct page *page, int wait)
2377 {
2378 	struct address_space *mapping = page->mapping;
2379 	int ret = 0;
2380 	struct writeback_control wbc = {
2381 		.sync_mode = WB_SYNC_ALL,
2382 		.nr_to_write = 1,
2383 	};
2384 
2385 	BUG_ON(!PageLocked(page));
2386 
2387 	if (wait)
2388 		wait_on_page_writeback(page);
2389 
2390 	if (clear_page_dirty_for_io(page)) {
2391 		get_page(page);
2392 		ret = mapping->a_ops->writepage(page, &wbc);
2393 		if (ret == 0 && wait) {
2394 			wait_on_page_writeback(page);
2395 			if (PageError(page))
2396 				ret = -EIO;
2397 		}
2398 		put_page(page);
2399 	} else {
2400 		unlock_page(page);
2401 	}
2402 	return ret;
2403 }
2404 EXPORT_SYMBOL(write_one_page);
2405 
2406 /*
2407  * For address_spaces which do not use buffers nor write back.
2408  */
2409 int __set_page_dirty_no_writeback(struct page *page)
2410 {
2411 	if (!PageDirty(page))
2412 		return !TestSetPageDirty(page);
2413 	return 0;
2414 }
2415 
2416 /*
2417  * Helper function for set_page_dirty family.
2418  *
2419  * Caller must hold lock_page_memcg().
2420  *
2421  * NOTE: This relies on being atomic wrt interrupts.
2422  */
2423 void account_page_dirtied(struct page *page, struct address_space *mapping)
2424 {
2425 	struct inode *inode = mapping->host;
2426 
2427 	trace_writeback_dirty_page(page, mapping);
2428 
2429 	if (mapping_cap_account_dirty(mapping)) {
2430 		struct bdi_writeback *wb;
2431 
2432 		inode_attach_wb(inode, page);
2433 		wb = inode_to_wb(inode);
2434 
2435 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2436 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2437 		__inc_zone_page_state(page, NR_DIRTIED);
2438 		__inc_wb_stat(wb, WB_RECLAIMABLE);
2439 		__inc_wb_stat(wb, WB_DIRTIED);
2440 		task_io_account_write(PAGE_SIZE);
2441 		current->nr_dirtied++;
2442 		this_cpu_inc(bdp_ratelimits);
2443 	}
2444 }
2445 EXPORT_SYMBOL(account_page_dirtied);
2446 
2447 /*
2448  * Helper function for deaccounting dirty page without writeback.
2449  *
2450  * Caller must hold lock_page_memcg().
2451  */
2452 void account_page_cleaned(struct page *page, struct address_space *mapping,
2453 			  struct bdi_writeback *wb)
2454 {
2455 	if (mapping_cap_account_dirty(mapping)) {
2456 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2457 		dec_zone_page_state(page, NR_FILE_DIRTY);
2458 		dec_wb_stat(wb, WB_RECLAIMABLE);
2459 		task_io_account_cancelled_write(PAGE_SIZE);
2460 	}
2461 }
2462 
2463 /*
2464  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2465  * its radix tree.
2466  *
2467  * This is also used when a single buffer is being dirtied: we want to set the
2468  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2469  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2470  *
2471  * The caller must ensure this doesn't race with truncation.  Most will simply
2472  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2473  * the pte lock held, which also locks out truncation.
2474  */
2475 int __set_page_dirty_nobuffers(struct page *page)
2476 {
2477 	lock_page_memcg(page);
2478 	if (!TestSetPageDirty(page)) {
2479 		struct address_space *mapping = page_mapping(page);
2480 		unsigned long flags;
2481 
2482 		if (!mapping) {
2483 			unlock_page_memcg(page);
2484 			return 1;
2485 		}
2486 
2487 		spin_lock_irqsave(&mapping->tree_lock, flags);
2488 		BUG_ON(page_mapping(page) != mapping);
2489 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2490 		account_page_dirtied(page, mapping);
2491 		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2492 				   PAGECACHE_TAG_DIRTY);
2493 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2494 		unlock_page_memcg(page);
2495 
2496 		if (mapping->host) {
2497 			/* !PageAnon && !swapper_space */
2498 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2499 		}
2500 		return 1;
2501 	}
2502 	unlock_page_memcg(page);
2503 	return 0;
2504 }
2505 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2506 
2507 /*
2508  * Call this whenever redirtying a page, to de-account the dirty counters
2509  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2510  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2511  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2512  * control.
2513  */
2514 void account_page_redirty(struct page *page)
2515 {
2516 	struct address_space *mapping = page->mapping;
2517 
2518 	if (mapping && mapping_cap_account_dirty(mapping)) {
2519 		struct inode *inode = mapping->host;
2520 		struct bdi_writeback *wb;
2521 		bool locked;
2522 
2523 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2524 		current->nr_dirtied--;
2525 		dec_zone_page_state(page, NR_DIRTIED);
2526 		dec_wb_stat(wb, WB_DIRTIED);
2527 		unlocked_inode_to_wb_end(inode, locked);
2528 	}
2529 }
2530 EXPORT_SYMBOL(account_page_redirty);
2531 
2532 /*
2533  * When a writepage implementation decides that it doesn't want to write this
2534  * page for some reason, it should redirty the locked page via
2535  * redirty_page_for_writepage() and it should then unlock the page and return 0
2536  */
2537 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2538 {
2539 	int ret;
2540 
2541 	wbc->pages_skipped++;
2542 	ret = __set_page_dirty_nobuffers(page);
2543 	account_page_redirty(page);
2544 	return ret;
2545 }
2546 EXPORT_SYMBOL(redirty_page_for_writepage);
2547 
2548 /*
2549  * Dirty a page.
2550  *
2551  * For pages with a mapping this should be done under the page lock
2552  * for the benefit of asynchronous memory errors who prefer a consistent
2553  * dirty state. This rule can be broken in some special cases,
2554  * but should be better not to.
2555  *
2556  * If the mapping doesn't provide a set_page_dirty a_op, then
2557  * just fall through and assume that it wants buffer_heads.
2558  */
2559 int set_page_dirty(struct page *page)
2560 {
2561 	struct address_space *mapping = page_mapping(page);
2562 
2563 	if (likely(mapping)) {
2564 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2565 		/*
2566 		 * readahead/lru_deactivate_page could remain
2567 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2568 		 * About readahead, if the page is written, the flags would be
2569 		 * reset. So no problem.
2570 		 * About lru_deactivate_page, if the page is redirty, the flag
2571 		 * will be reset. So no problem. but if the page is used by readahead
2572 		 * it will confuse readahead and make it restart the size rampup
2573 		 * process. But it's a trivial problem.
2574 		 */
2575 		if (PageReclaim(page))
2576 			ClearPageReclaim(page);
2577 #ifdef CONFIG_BLOCK
2578 		if (!spd)
2579 			spd = __set_page_dirty_buffers;
2580 #endif
2581 		return (*spd)(page);
2582 	}
2583 	if (!PageDirty(page)) {
2584 		if (!TestSetPageDirty(page))
2585 			return 1;
2586 	}
2587 	return 0;
2588 }
2589 EXPORT_SYMBOL(set_page_dirty);
2590 
2591 /*
2592  * set_page_dirty() is racy if the caller has no reference against
2593  * page->mapping->host, and if the page is unlocked.  This is because another
2594  * CPU could truncate the page off the mapping and then free the mapping.
2595  *
2596  * Usually, the page _is_ locked, or the caller is a user-space process which
2597  * holds a reference on the inode by having an open file.
2598  *
2599  * In other cases, the page should be locked before running set_page_dirty().
2600  */
2601 int set_page_dirty_lock(struct page *page)
2602 {
2603 	int ret;
2604 
2605 	lock_page(page);
2606 	ret = set_page_dirty(page);
2607 	unlock_page(page);
2608 	return ret;
2609 }
2610 EXPORT_SYMBOL(set_page_dirty_lock);
2611 
2612 /*
2613  * This cancels just the dirty bit on the kernel page itself, it does NOT
2614  * actually remove dirty bits on any mmap's that may be around. It also
2615  * leaves the page tagged dirty, so any sync activity will still find it on
2616  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2617  * look at the dirty bits in the VM.
2618  *
2619  * Doing this should *normally* only ever be done when a page is truncated,
2620  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2621  * this when it notices that somebody has cleaned out all the buffers on a
2622  * page without actually doing it through the VM. Can you say "ext3 is
2623  * horribly ugly"? Thought you could.
2624  */
2625 void cancel_dirty_page(struct page *page)
2626 {
2627 	struct address_space *mapping = page_mapping(page);
2628 
2629 	if (mapping_cap_account_dirty(mapping)) {
2630 		struct inode *inode = mapping->host;
2631 		struct bdi_writeback *wb;
2632 		bool locked;
2633 
2634 		lock_page_memcg(page);
2635 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2636 
2637 		if (TestClearPageDirty(page))
2638 			account_page_cleaned(page, mapping, wb);
2639 
2640 		unlocked_inode_to_wb_end(inode, locked);
2641 		unlock_page_memcg(page);
2642 	} else {
2643 		ClearPageDirty(page);
2644 	}
2645 }
2646 EXPORT_SYMBOL(cancel_dirty_page);
2647 
2648 /*
2649  * Clear a page's dirty flag, while caring for dirty memory accounting.
2650  * Returns true if the page was previously dirty.
2651  *
2652  * This is for preparing to put the page under writeout.  We leave the page
2653  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2654  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2655  * implementation will run either set_page_writeback() or set_page_dirty(),
2656  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2657  * back into sync.
2658  *
2659  * This incoherency between the page's dirty flag and radix-tree tag is
2660  * unfortunate, but it only exists while the page is locked.
2661  */
2662 int clear_page_dirty_for_io(struct page *page)
2663 {
2664 	struct address_space *mapping = page_mapping(page);
2665 	int ret = 0;
2666 
2667 	BUG_ON(!PageLocked(page));
2668 
2669 	if (mapping && mapping_cap_account_dirty(mapping)) {
2670 		struct inode *inode = mapping->host;
2671 		struct bdi_writeback *wb;
2672 		bool locked;
2673 
2674 		/*
2675 		 * Yes, Virginia, this is indeed insane.
2676 		 *
2677 		 * We use this sequence to make sure that
2678 		 *  (a) we account for dirty stats properly
2679 		 *  (b) we tell the low-level filesystem to
2680 		 *      mark the whole page dirty if it was
2681 		 *      dirty in a pagetable. Only to then
2682 		 *  (c) clean the page again and return 1 to
2683 		 *      cause the writeback.
2684 		 *
2685 		 * This way we avoid all nasty races with the
2686 		 * dirty bit in multiple places and clearing
2687 		 * them concurrently from different threads.
2688 		 *
2689 		 * Note! Normally the "set_page_dirty(page)"
2690 		 * has no effect on the actual dirty bit - since
2691 		 * that will already usually be set. But we
2692 		 * need the side effects, and it can help us
2693 		 * avoid races.
2694 		 *
2695 		 * We basically use the page "master dirty bit"
2696 		 * as a serialization point for all the different
2697 		 * threads doing their things.
2698 		 */
2699 		if (page_mkclean(page))
2700 			set_page_dirty(page);
2701 		/*
2702 		 * We carefully synchronise fault handlers against
2703 		 * installing a dirty pte and marking the page dirty
2704 		 * at this point.  We do this by having them hold the
2705 		 * page lock while dirtying the page, and pages are
2706 		 * always locked coming in here, so we get the desired
2707 		 * exclusion.
2708 		 */
2709 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2710 		if (TestClearPageDirty(page)) {
2711 			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2712 			dec_zone_page_state(page, NR_FILE_DIRTY);
2713 			dec_wb_stat(wb, WB_RECLAIMABLE);
2714 			ret = 1;
2715 		}
2716 		unlocked_inode_to_wb_end(inode, locked);
2717 		return ret;
2718 	}
2719 	return TestClearPageDirty(page);
2720 }
2721 EXPORT_SYMBOL(clear_page_dirty_for_io);
2722 
2723 int test_clear_page_writeback(struct page *page)
2724 {
2725 	struct address_space *mapping = page_mapping(page);
2726 	int ret;
2727 
2728 	lock_page_memcg(page);
2729 	if (mapping) {
2730 		struct inode *inode = mapping->host;
2731 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2732 		unsigned long flags;
2733 
2734 		spin_lock_irqsave(&mapping->tree_lock, flags);
2735 		ret = TestClearPageWriteback(page);
2736 		if (ret) {
2737 			radix_tree_tag_clear(&mapping->page_tree,
2738 						page_index(page),
2739 						PAGECACHE_TAG_WRITEBACK);
2740 			if (bdi_cap_account_writeback(bdi)) {
2741 				struct bdi_writeback *wb = inode_to_wb(inode);
2742 
2743 				__dec_wb_stat(wb, WB_WRITEBACK);
2744 				__wb_writeout_inc(wb);
2745 			}
2746 		}
2747 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2748 	} else {
2749 		ret = TestClearPageWriteback(page);
2750 	}
2751 	if (ret) {
2752 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2753 		dec_zone_page_state(page, NR_WRITEBACK);
2754 		inc_zone_page_state(page, NR_WRITTEN);
2755 	}
2756 	unlock_page_memcg(page);
2757 	return ret;
2758 }
2759 
2760 int __test_set_page_writeback(struct page *page, bool keep_write)
2761 {
2762 	struct address_space *mapping = page_mapping(page);
2763 	int ret;
2764 
2765 	lock_page_memcg(page);
2766 	if (mapping) {
2767 		struct inode *inode = mapping->host;
2768 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2769 		unsigned long flags;
2770 
2771 		spin_lock_irqsave(&mapping->tree_lock, flags);
2772 		ret = TestSetPageWriteback(page);
2773 		if (!ret) {
2774 			radix_tree_tag_set(&mapping->page_tree,
2775 						page_index(page),
2776 						PAGECACHE_TAG_WRITEBACK);
2777 			if (bdi_cap_account_writeback(bdi))
2778 				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2779 		}
2780 		if (!PageDirty(page))
2781 			radix_tree_tag_clear(&mapping->page_tree,
2782 						page_index(page),
2783 						PAGECACHE_TAG_DIRTY);
2784 		if (!keep_write)
2785 			radix_tree_tag_clear(&mapping->page_tree,
2786 						page_index(page),
2787 						PAGECACHE_TAG_TOWRITE);
2788 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2789 	} else {
2790 		ret = TestSetPageWriteback(page);
2791 	}
2792 	if (!ret) {
2793 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2794 		inc_zone_page_state(page, NR_WRITEBACK);
2795 	}
2796 	unlock_page_memcg(page);
2797 	return ret;
2798 
2799 }
2800 EXPORT_SYMBOL(__test_set_page_writeback);
2801 
2802 /*
2803  * Return true if any of the pages in the mapping are marked with the
2804  * passed tag.
2805  */
2806 int mapping_tagged(struct address_space *mapping, int tag)
2807 {
2808 	return radix_tree_tagged(&mapping->page_tree, tag);
2809 }
2810 EXPORT_SYMBOL(mapping_tagged);
2811 
2812 /**
2813  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2814  * @page:	The page to wait on.
2815  *
2816  * This function determines if the given page is related to a backing device
2817  * that requires page contents to be held stable during writeback.  If so, then
2818  * it will wait for any pending writeback to complete.
2819  */
2820 void wait_for_stable_page(struct page *page)
2821 {
2822 	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2823 		wait_on_page_writeback(page);
2824 }
2825 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2826