1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * mm/page-writeback.c 4 * 5 * Copyright (C) 2002, Linus Torvalds. 6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 7 * 8 * Contains functions related to writing back dirty pages at the 9 * address_space level. 10 * 11 * 10Apr2002 Andrew Morton 12 * Initial version 13 */ 14 15 #include <linux/kernel.h> 16 #include <linux/math64.h> 17 #include <linux/export.h> 18 #include <linux/spinlock.h> 19 #include <linux/fs.h> 20 #include <linux/mm.h> 21 #include <linux/swap.h> 22 #include <linux/slab.h> 23 #include <linux/pagemap.h> 24 #include <linux/writeback.h> 25 #include <linux/init.h> 26 #include <linux/backing-dev.h> 27 #include <linux/task_io_accounting_ops.h> 28 #include <linux/blkdev.h> 29 #include <linux/mpage.h> 30 #include <linux/rmap.h> 31 #include <linux/percpu.h> 32 #include <linux/smp.h> 33 #include <linux/sysctl.h> 34 #include <linux/cpu.h> 35 #include <linux/syscalls.h> 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 static int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 static unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 static int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 static int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 static unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 113 * a full sync is triggered after this time elapses without any disk activity. 114 */ 115 int laptop_mode; 116 117 EXPORT_SYMBOL(laptop_mode); 118 119 /* End of sysctl-exported parameters */ 120 121 struct wb_domain global_wb_domain; 122 123 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 124 struct dirty_throttle_control { 125 #ifdef CONFIG_CGROUP_WRITEBACK 126 struct wb_domain *dom; 127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 128 #endif 129 struct bdi_writeback *wb; 130 struct fprop_local_percpu *wb_completions; 131 132 unsigned long avail; /* dirtyable */ 133 unsigned long dirty; /* file_dirty + write + nfs */ 134 unsigned long thresh; /* dirty threshold */ 135 unsigned long bg_thresh; /* dirty background threshold */ 136 137 unsigned long wb_dirty; /* per-wb counterparts */ 138 unsigned long wb_thresh; 139 unsigned long wb_bg_thresh; 140 141 unsigned long pos_ratio; 142 }; 143 144 /* 145 * Length of period for aging writeout fractions of bdis. This is an 146 * arbitrarily chosen number. The longer the period, the slower fractions will 147 * reflect changes in current writeout rate. 148 */ 149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 150 151 #ifdef CONFIG_CGROUP_WRITEBACK 152 153 #define GDTC_INIT(__wb) .wb = (__wb), \ 154 .dom = &global_wb_domain, \ 155 .wb_completions = &(__wb)->completions 156 157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 158 159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 160 .dom = mem_cgroup_wb_domain(__wb), \ 161 .wb_completions = &(__wb)->memcg_completions, \ 162 .gdtc = __gdtc 163 164 static bool mdtc_valid(struct dirty_throttle_control *dtc) 165 { 166 return dtc->dom; 167 } 168 169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 175 { 176 return mdtc->gdtc; 177 } 178 179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 180 { 181 return &wb->memcg_completions; 182 } 183 184 static void wb_min_max_ratio(struct bdi_writeback *wb, 185 unsigned long *minp, unsigned long *maxp) 186 { 187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth); 188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 189 unsigned long long min = wb->bdi->min_ratio; 190 unsigned long long max = wb->bdi->max_ratio; 191 192 /* 193 * @wb may already be clean by the time control reaches here and 194 * the total may not include its bw. 195 */ 196 if (this_bw < tot_bw) { 197 if (min) { 198 min *= this_bw; 199 min = div64_ul(min, tot_bw); 200 } 201 if (max < 100 * BDI_RATIO_SCALE) { 202 max *= this_bw; 203 max = div64_ul(max, tot_bw); 204 } 205 } 206 207 *minp = min; 208 *maxp = max; 209 } 210 211 #else /* CONFIG_CGROUP_WRITEBACK */ 212 213 #define GDTC_INIT(__wb) .wb = (__wb), \ 214 .wb_completions = &(__wb)->completions 215 #define GDTC_INIT_NO_WB 216 #define MDTC_INIT(__wb, __gdtc) 217 218 static bool mdtc_valid(struct dirty_throttle_control *dtc) 219 { 220 return false; 221 } 222 223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 224 { 225 return &global_wb_domain; 226 } 227 228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 229 { 230 return NULL; 231 } 232 233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 234 { 235 return NULL; 236 } 237 238 static void wb_min_max_ratio(struct bdi_writeback *wb, 239 unsigned long *minp, unsigned long *maxp) 240 { 241 *minp = wb->bdi->min_ratio; 242 *maxp = wb->bdi->max_ratio; 243 } 244 245 #endif /* CONFIG_CGROUP_WRITEBACK */ 246 247 /* 248 * In a memory zone, there is a certain amount of pages we consider 249 * available for the page cache, which is essentially the number of 250 * free and reclaimable pages, minus some zone reserves to protect 251 * lowmem and the ability to uphold the zone's watermarks without 252 * requiring writeback. 253 * 254 * This number of dirtyable pages is the base value of which the 255 * user-configurable dirty ratio is the effective number of pages that 256 * are allowed to be actually dirtied. Per individual zone, or 257 * globally by using the sum of dirtyable pages over all zones. 258 * 259 * Because the user is allowed to specify the dirty limit globally as 260 * absolute number of bytes, calculating the per-zone dirty limit can 261 * require translating the configured limit into a percentage of 262 * global dirtyable memory first. 263 */ 264 265 /** 266 * node_dirtyable_memory - number of dirtyable pages in a node 267 * @pgdat: the node 268 * 269 * Return: the node's number of pages potentially available for dirty 270 * page cache. This is the base value for the per-node dirty limits. 271 */ 272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 273 { 274 unsigned long nr_pages = 0; 275 int z; 276 277 for (z = 0; z < MAX_NR_ZONES; z++) { 278 struct zone *zone = pgdat->node_zones + z; 279 280 if (!populated_zone(zone)) 281 continue; 282 283 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 284 } 285 286 /* 287 * Pages reserved for the kernel should not be considered 288 * dirtyable, to prevent a situation where reclaim has to 289 * clean pages in order to balance the zones. 290 */ 291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 292 293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 295 296 return nr_pages; 297 } 298 299 static unsigned long highmem_dirtyable_memory(unsigned long total) 300 { 301 #ifdef CONFIG_HIGHMEM 302 int node; 303 unsigned long x = 0; 304 int i; 305 306 for_each_node_state(node, N_HIGH_MEMORY) { 307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 308 struct zone *z; 309 unsigned long nr_pages; 310 311 if (!is_highmem_idx(i)) 312 continue; 313 314 z = &NODE_DATA(node)->node_zones[i]; 315 if (!populated_zone(z)) 316 continue; 317 318 nr_pages = zone_page_state(z, NR_FREE_PAGES); 319 /* watch for underflows */ 320 nr_pages -= min(nr_pages, high_wmark_pages(z)); 321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 323 x += nr_pages; 324 } 325 } 326 327 /* 328 * Make sure that the number of highmem pages is never larger 329 * than the number of the total dirtyable memory. This can only 330 * occur in very strange VM situations but we want to make sure 331 * that this does not occur. 332 */ 333 return min(x, total); 334 #else 335 return 0; 336 #endif 337 } 338 339 /** 340 * global_dirtyable_memory - number of globally dirtyable pages 341 * 342 * Return: the global number of pages potentially available for dirty 343 * page cache. This is the base value for the global dirty limits. 344 */ 345 static unsigned long global_dirtyable_memory(void) 346 { 347 unsigned long x; 348 349 x = global_zone_page_state(NR_FREE_PAGES); 350 /* 351 * Pages reserved for the kernel should not be considered 352 * dirtyable, to prevent a situation where reclaim has to 353 * clean pages in order to balance the zones. 354 */ 355 x -= min(x, totalreserve_pages); 356 357 x += global_node_page_state(NR_INACTIVE_FILE); 358 x += global_node_page_state(NR_ACTIVE_FILE); 359 360 if (!vm_highmem_is_dirtyable) 361 x -= highmem_dirtyable_memory(x); 362 363 return x + 1; /* Ensure that we never return 0 */ 364 } 365 366 /** 367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 368 * @dtc: dirty_throttle_control of interest 369 * 370 * Calculate @dtc->thresh and ->bg_thresh considering 371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 372 * must ensure that @dtc->avail is set before calling this function. The 373 * dirty limits will be lifted by 1/4 for real-time tasks. 374 */ 375 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 376 { 377 const unsigned long available_memory = dtc->avail; 378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 379 unsigned long bytes = vm_dirty_bytes; 380 unsigned long bg_bytes = dirty_background_bytes; 381 /* convert ratios to per-PAGE_SIZE for higher precision */ 382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 384 unsigned long thresh; 385 unsigned long bg_thresh; 386 struct task_struct *tsk; 387 388 /* gdtc is !NULL iff @dtc is for memcg domain */ 389 if (gdtc) { 390 unsigned long global_avail = gdtc->avail; 391 392 /* 393 * The byte settings can't be applied directly to memcg 394 * domains. Convert them to ratios by scaling against 395 * globally available memory. As the ratios are in 396 * per-PAGE_SIZE, they can be obtained by dividing bytes by 397 * number of pages. 398 */ 399 if (bytes) 400 ratio = min(DIV_ROUND_UP(bytes, global_avail), 401 PAGE_SIZE); 402 if (bg_bytes) 403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 404 PAGE_SIZE); 405 bytes = bg_bytes = 0; 406 } 407 408 if (bytes) 409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 410 else 411 thresh = (ratio * available_memory) / PAGE_SIZE; 412 413 if (bg_bytes) 414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 415 else 416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 417 418 tsk = current; 419 if (rt_task(tsk)) { 420 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 421 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 422 } 423 /* 424 * Dirty throttling logic assumes the limits in page units fit into 425 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 426 */ 427 if (thresh > UINT_MAX) 428 thresh = UINT_MAX; 429 /* This makes sure bg_thresh is within 32-bits as well */ 430 if (bg_thresh >= thresh) 431 bg_thresh = thresh / 2; 432 dtc->thresh = thresh; 433 dtc->bg_thresh = bg_thresh; 434 435 /* we should eventually report the domain in the TP */ 436 if (!gdtc) 437 trace_global_dirty_state(bg_thresh, thresh); 438 } 439 440 /** 441 * global_dirty_limits - background-writeback and dirty-throttling thresholds 442 * @pbackground: out parameter for bg_thresh 443 * @pdirty: out parameter for thresh 444 * 445 * Calculate bg_thresh and thresh for global_wb_domain. See 446 * domain_dirty_limits() for details. 447 */ 448 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 449 { 450 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 451 452 gdtc.avail = global_dirtyable_memory(); 453 domain_dirty_limits(&gdtc); 454 455 *pbackground = gdtc.bg_thresh; 456 *pdirty = gdtc.thresh; 457 } 458 459 /** 460 * node_dirty_limit - maximum number of dirty pages allowed in a node 461 * @pgdat: the node 462 * 463 * Return: the maximum number of dirty pages allowed in a node, based 464 * on the node's dirtyable memory. 465 */ 466 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 467 { 468 unsigned long node_memory = node_dirtyable_memory(pgdat); 469 struct task_struct *tsk = current; 470 unsigned long dirty; 471 472 if (vm_dirty_bytes) 473 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 474 node_memory / global_dirtyable_memory(); 475 else 476 dirty = vm_dirty_ratio * node_memory / 100; 477 478 if (rt_task(tsk)) 479 dirty += dirty / 4; 480 481 /* 482 * Dirty throttling logic assumes the limits in page units fit into 483 * 32-bits. This gives 16TB dirty limits max which is hopefully enough. 484 */ 485 return min_t(unsigned long, dirty, UINT_MAX); 486 } 487 488 /** 489 * node_dirty_ok - tells whether a node is within its dirty limits 490 * @pgdat: the node to check 491 * 492 * Return: %true when the dirty pages in @pgdat are within the node's 493 * dirty limit, %false if the limit is exceeded. 494 */ 495 bool node_dirty_ok(struct pglist_data *pgdat) 496 { 497 unsigned long limit = node_dirty_limit(pgdat); 498 unsigned long nr_pages = 0; 499 500 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 501 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 502 503 return nr_pages <= limit; 504 } 505 506 #ifdef CONFIG_SYSCTL 507 static int dirty_background_ratio_handler(struct ctl_table *table, int write, 508 void *buffer, size_t *lenp, loff_t *ppos) 509 { 510 int ret; 511 512 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 513 if (ret == 0 && write) 514 dirty_background_bytes = 0; 515 return ret; 516 } 517 518 static int dirty_background_bytes_handler(struct ctl_table *table, int write, 519 void *buffer, size_t *lenp, loff_t *ppos) 520 { 521 int ret; 522 unsigned long old_bytes = dirty_background_bytes; 523 524 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 525 if (ret == 0 && write) { 526 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) > 527 UINT_MAX) { 528 dirty_background_bytes = old_bytes; 529 return -ERANGE; 530 } 531 dirty_background_ratio = 0; 532 } 533 return ret; 534 } 535 536 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer, 537 size_t *lenp, loff_t *ppos) 538 { 539 int old_ratio = vm_dirty_ratio; 540 int ret; 541 542 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 543 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 544 writeback_set_ratelimit(); 545 vm_dirty_bytes = 0; 546 } 547 return ret; 548 } 549 550 static int dirty_bytes_handler(struct ctl_table *table, int write, 551 void *buffer, size_t *lenp, loff_t *ppos) 552 { 553 unsigned long old_bytes = vm_dirty_bytes; 554 int ret; 555 556 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 557 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 558 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) { 559 vm_dirty_bytes = old_bytes; 560 return -ERANGE; 561 } 562 writeback_set_ratelimit(); 563 vm_dirty_ratio = 0; 564 } 565 return ret; 566 } 567 #endif 568 569 static unsigned long wp_next_time(unsigned long cur_time) 570 { 571 cur_time += VM_COMPLETIONS_PERIOD_LEN; 572 /* 0 has a special meaning... */ 573 if (!cur_time) 574 return 1; 575 return cur_time; 576 } 577 578 static void wb_domain_writeout_add(struct wb_domain *dom, 579 struct fprop_local_percpu *completions, 580 unsigned int max_prop_frac, long nr) 581 { 582 __fprop_add_percpu_max(&dom->completions, completions, 583 max_prop_frac, nr); 584 /* First event after period switching was turned off? */ 585 if (unlikely(!dom->period_time)) { 586 /* 587 * We can race with other __bdi_writeout_inc calls here but 588 * it does not cause any harm since the resulting time when 589 * timer will fire and what is in writeout_period_time will be 590 * roughly the same. 591 */ 592 dom->period_time = wp_next_time(jiffies); 593 mod_timer(&dom->period_timer, dom->period_time); 594 } 595 } 596 597 /* 598 * Increment @wb's writeout completion count and the global writeout 599 * completion count. Called from __folio_end_writeback(). 600 */ 601 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr) 602 { 603 struct wb_domain *cgdom; 604 605 wb_stat_mod(wb, WB_WRITTEN, nr); 606 wb_domain_writeout_add(&global_wb_domain, &wb->completions, 607 wb->bdi->max_prop_frac, nr); 608 609 cgdom = mem_cgroup_wb_domain(wb); 610 if (cgdom) 611 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb), 612 wb->bdi->max_prop_frac, nr); 613 } 614 615 void wb_writeout_inc(struct bdi_writeback *wb) 616 { 617 unsigned long flags; 618 619 local_irq_save(flags); 620 __wb_writeout_add(wb, 1); 621 local_irq_restore(flags); 622 } 623 EXPORT_SYMBOL_GPL(wb_writeout_inc); 624 625 /* 626 * On idle system, we can be called long after we scheduled because we use 627 * deferred timers so count with missed periods. 628 */ 629 static void writeout_period(struct timer_list *t) 630 { 631 struct wb_domain *dom = from_timer(dom, t, period_timer); 632 int miss_periods = (jiffies - dom->period_time) / 633 VM_COMPLETIONS_PERIOD_LEN; 634 635 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 636 dom->period_time = wp_next_time(dom->period_time + 637 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 638 mod_timer(&dom->period_timer, dom->period_time); 639 } else { 640 /* 641 * Aging has zeroed all fractions. Stop wasting CPU on period 642 * updates. 643 */ 644 dom->period_time = 0; 645 } 646 } 647 648 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 649 { 650 memset(dom, 0, sizeof(*dom)); 651 652 spin_lock_init(&dom->lock); 653 654 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 655 656 dom->dirty_limit_tstamp = jiffies; 657 658 return fprop_global_init(&dom->completions, gfp); 659 } 660 661 #ifdef CONFIG_CGROUP_WRITEBACK 662 void wb_domain_exit(struct wb_domain *dom) 663 { 664 del_timer_sync(&dom->period_timer); 665 fprop_global_destroy(&dom->completions); 666 } 667 #endif 668 669 /* 670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 671 * registered backing devices, which, for obvious reasons, can not 672 * exceed 100%. 673 */ 674 static unsigned int bdi_min_ratio; 675 676 static int bdi_check_pages_limit(unsigned long pages) 677 { 678 unsigned long max_dirty_pages = global_dirtyable_memory(); 679 680 if (pages > max_dirty_pages) 681 return -EINVAL; 682 683 return 0; 684 } 685 686 static unsigned long bdi_ratio_from_pages(unsigned long pages) 687 { 688 unsigned long background_thresh; 689 unsigned long dirty_thresh; 690 unsigned long ratio; 691 692 global_dirty_limits(&background_thresh, &dirty_thresh); 693 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh); 694 695 return ratio; 696 } 697 698 static u64 bdi_get_bytes(unsigned int ratio) 699 { 700 unsigned long background_thresh; 701 unsigned long dirty_thresh; 702 u64 bytes; 703 704 global_dirty_limits(&background_thresh, &dirty_thresh); 705 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100; 706 707 return bytes; 708 } 709 710 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 711 { 712 unsigned int delta; 713 int ret = 0; 714 715 if (min_ratio > 100 * BDI_RATIO_SCALE) 716 return -EINVAL; 717 min_ratio *= BDI_RATIO_SCALE; 718 719 spin_lock_bh(&bdi_lock); 720 if (min_ratio > bdi->max_ratio) { 721 ret = -EINVAL; 722 } else { 723 if (min_ratio < bdi->min_ratio) { 724 delta = bdi->min_ratio - min_ratio; 725 bdi_min_ratio -= delta; 726 bdi->min_ratio = min_ratio; 727 } else { 728 delta = min_ratio - bdi->min_ratio; 729 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) { 730 bdi_min_ratio += delta; 731 bdi->min_ratio = min_ratio; 732 } else { 733 ret = -EINVAL; 734 } 735 } 736 } 737 spin_unlock_bh(&bdi_lock); 738 739 return ret; 740 } 741 742 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 743 { 744 int ret = 0; 745 746 if (max_ratio > 100 * BDI_RATIO_SCALE) 747 return -EINVAL; 748 749 spin_lock_bh(&bdi_lock); 750 if (bdi->min_ratio > max_ratio) { 751 ret = -EINVAL; 752 } else { 753 bdi->max_ratio = max_ratio; 754 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 755 } 756 spin_unlock_bh(&bdi_lock); 757 758 return ret; 759 } 760 761 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio) 762 { 763 return __bdi_set_min_ratio(bdi, min_ratio); 764 } 765 766 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio) 767 { 768 return __bdi_set_max_ratio(bdi, max_ratio); 769 } 770 771 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 772 { 773 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE); 774 } 775 776 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio) 777 { 778 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE); 779 } 780 EXPORT_SYMBOL(bdi_set_max_ratio); 781 782 u64 bdi_get_min_bytes(struct backing_dev_info *bdi) 783 { 784 return bdi_get_bytes(bdi->min_ratio); 785 } 786 787 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes) 788 { 789 int ret; 790 unsigned long pages = min_bytes >> PAGE_SHIFT; 791 unsigned long min_ratio; 792 793 ret = bdi_check_pages_limit(pages); 794 if (ret) 795 return ret; 796 797 min_ratio = bdi_ratio_from_pages(pages); 798 return __bdi_set_min_ratio(bdi, min_ratio); 799 } 800 801 u64 bdi_get_max_bytes(struct backing_dev_info *bdi) 802 { 803 return bdi_get_bytes(bdi->max_ratio); 804 } 805 806 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes) 807 { 808 int ret; 809 unsigned long pages = max_bytes >> PAGE_SHIFT; 810 unsigned long max_ratio; 811 812 ret = bdi_check_pages_limit(pages); 813 if (ret) 814 return ret; 815 816 max_ratio = bdi_ratio_from_pages(pages); 817 return __bdi_set_max_ratio(bdi, max_ratio); 818 } 819 820 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit) 821 { 822 if (strict_limit > 1) 823 return -EINVAL; 824 825 spin_lock_bh(&bdi_lock); 826 if (strict_limit) 827 bdi->capabilities |= BDI_CAP_STRICTLIMIT; 828 else 829 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT; 830 spin_unlock_bh(&bdi_lock); 831 832 return 0; 833 } 834 835 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 836 unsigned long bg_thresh) 837 { 838 return (thresh + bg_thresh) / 2; 839 } 840 841 static unsigned long hard_dirty_limit(struct wb_domain *dom, 842 unsigned long thresh) 843 { 844 return max(thresh, dom->dirty_limit); 845 } 846 847 /* 848 * Memory which can be further allocated to a memcg domain is capped by 849 * system-wide clean memory excluding the amount being used in the domain. 850 */ 851 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 852 unsigned long filepages, unsigned long headroom) 853 { 854 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 855 unsigned long clean = filepages - min(filepages, mdtc->dirty); 856 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 857 unsigned long other_clean = global_clean - min(global_clean, clean); 858 859 mdtc->avail = filepages + min(headroom, other_clean); 860 } 861 862 /** 863 * __wb_calc_thresh - @wb's share of dirty throttling threshold 864 * @dtc: dirty_throttle_context of interest 865 * 866 * Note that balance_dirty_pages() will only seriously take it as a hard limit 867 * when sleeping max_pause per page is not enough to keep the dirty pages under 868 * control. For example, when the device is completely stalled due to some error 869 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 870 * In the other normal situations, it acts more gently by throttling the tasks 871 * more (rather than completely block them) when the wb dirty pages go high. 872 * 873 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 874 * - starving fast devices 875 * - piling up dirty pages (that will take long time to sync) on slow devices 876 * 877 * The wb's share of dirty limit will be adapting to its throughput and 878 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 879 * 880 * Return: @wb's dirty limit in pages. The term "dirty" in the context of 881 * dirty balancing includes all PG_dirty and PG_writeback pages. 882 */ 883 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 884 { 885 struct wb_domain *dom = dtc_dom(dtc); 886 unsigned long thresh = dtc->thresh; 887 u64 wb_thresh; 888 unsigned long numerator, denominator; 889 unsigned long wb_min_ratio, wb_max_ratio; 890 891 /* 892 * Calculate this BDI's share of the thresh ratio. 893 */ 894 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 895 &numerator, &denominator); 896 897 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE); 898 wb_thresh *= numerator; 899 wb_thresh = div64_ul(wb_thresh, denominator); 900 901 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 902 903 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE); 904 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE)) 905 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE); 906 907 return wb_thresh; 908 } 909 910 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 911 { 912 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 913 .thresh = thresh }; 914 return __wb_calc_thresh(&gdtc); 915 } 916 917 /* 918 * setpoint - dirty 3 919 * f(dirty) := 1.0 + (----------------) 920 * limit - setpoint 921 * 922 * it's a 3rd order polynomial that subjects to 923 * 924 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 925 * (2) f(setpoint) = 1.0 => the balance point 926 * (3) f(limit) = 0 => the hard limit 927 * (4) df/dx <= 0 => negative feedback control 928 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 929 * => fast response on large errors; small oscillation near setpoint 930 */ 931 static long long pos_ratio_polynom(unsigned long setpoint, 932 unsigned long dirty, 933 unsigned long limit) 934 { 935 long long pos_ratio; 936 long x; 937 938 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 939 (limit - setpoint) | 1); 940 pos_ratio = x; 941 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 942 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 943 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 944 945 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 946 } 947 948 /* 949 * Dirty position control. 950 * 951 * (o) global/bdi setpoints 952 * 953 * We want the dirty pages be balanced around the global/wb setpoints. 954 * When the number of dirty pages is higher/lower than the setpoint, the 955 * dirty position control ratio (and hence task dirty ratelimit) will be 956 * decreased/increased to bring the dirty pages back to the setpoint. 957 * 958 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 959 * 960 * if (dirty < setpoint) scale up pos_ratio 961 * if (dirty > setpoint) scale down pos_ratio 962 * 963 * if (wb_dirty < wb_setpoint) scale up pos_ratio 964 * if (wb_dirty > wb_setpoint) scale down pos_ratio 965 * 966 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 967 * 968 * (o) global control line 969 * 970 * ^ pos_ratio 971 * | 972 * | |<===== global dirty control scope ======>| 973 * 2.0 * * * * * * * 974 * | .* 975 * | . * 976 * | . * 977 * | . * 978 * | . * 979 * | . * 980 * 1.0 ................................* 981 * | . . * 982 * | . . * 983 * | . . * 984 * | . . * 985 * | . . * 986 * 0 +------------.------------------.----------------------*-------------> 987 * freerun^ setpoint^ limit^ dirty pages 988 * 989 * (o) wb control line 990 * 991 * ^ pos_ratio 992 * | 993 * | * 994 * | * 995 * | * 996 * | * 997 * | * |<=========== span ============>| 998 * 1.0 .......................* 999 * | . * 1000 * | . * 1001 * | . * 1002 * | . * 1003 * | . * 1004 * | . * 1005 * | . * 1006 * | . * 1007 * | . * 1008 * | . * 1009 * | . * 1010 * 1/4 ...............................................* * * * * * * * * * * * 1011 * | . . 1012 * | . . 1013 * | . . 1014 * 0 +----------------------.-------------------------------.-------------> 1015 * wb_setpoint^ x_intercept^ 1016 * 1017 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 1018 * be smoothly throttled down to normal if it starts high in situations like 1019 * - start writing to a slow SD card and a fast disk at the same time. The SD 1020 * card's wb_dirty may rush to many times higher than wb_setpoint. 1021 * - the wb dirty thresh drops quickly due to change of JBOD workload 1022 */ 1023 static void wb_position_ratio(struct dirty_throttle_control *dtc) 1024 { 1025 struct bdi_writeback *wb = dtc->wb; 1026 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth); 1027 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1028 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1029 unsigned long wb_thresh = dtc->wb_thresh; 1030 unsigned long x_intercept; 1031 unsigned long setpoint; /* dirty pages' target balance point */ 1032 unsigned long wb_setpoint; 1033 unsigned long span; 1034 long long pos_ratio; /* for scaling up/down the rate limit */ 1035 long x; 1036 1037 dtc->pos_ratio = 0; 1038 1039 if (unlikely(dtc->dirty >= limit)) 1040 return; 1041 1042 /* 1043 * global setpoint 1044 * 1045 * See comment for pos_ratio_polynom(). 1046 */ 1047 setpoint = (freerun + limit) / 2; 1048 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 1049 1050 /* 1051 * The strictlimit feature is a tool preventing mistrusted filesystems 1052 * from growing a large number of dirty pages before throttling. For 1053 * such filesystems balance_dirty_pages always checks wb counters 1054 * against wb limits. Even if global "nr_dirty" is under "freerun". 1055 * This is especially important for fuse which sets bdi->max_ratio to 1056 * 1% by default. Without strictlimit feature, fuse writeback may 1057 * consume arbitrary amount of RAM because it is accounted in 1058 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 1059 * 1060 * Here, in wb_position_ratio(), we calculate pos_ratio based on 1061 * two values: wb_dirty and wb_thresh. Let's consider an example: 1062 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 1063 * limits are set by default to 10% and 20% (background and throttle). 1064 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 1065 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 1066 * about ~6K pages (as the average of background and throttle wb 1067 * limits). The 3rd order polynomial will provide positive feedback if 1068 * wb_dirty is under wb_setpoint and vice versa. 1069 * 1070 * Note, that we cannot use global counters in these calculations 1071 * because we want to throttle process writing to a strictlimit wb 1072 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 1073 * in the example above). 1074 */ 1075 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1076 long long wb_pos_ratio; 1077 1078 if (dtc->wb_dirty < 8) { 1079 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 1080 2 << RATELIMIT_CALC_SHIFT); 1081 return; 1082 } 1083 1084 if (dtc->wb_dirty >= wb_thresh) 1085 return; 1086 1087 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 1088 dtc->wb_bg_thresh); 1089 1090 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 1091 return; 1092 1093 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 1094 wb_thresh); 1095 1096 /* 1097 * Typically, for strictlimit case, wb_setpoint << setpoint 1098 * and pos_ratio >> wb_pos_ratio. In the other words global 1099 * state ("dirty") is not limiting factor and we have to 1100 * make decision based on wb counters. But there is an 1101 * important case when global pos_ratio should get precedence: 1102 * global limits are exceeded (e.g. due to activities on other 1103 * wb's) while given strictlimit wb is below limit. 1104 * 1105 * "pos_ratio * wb_pos_ratio" would work for the case above, 1106 * but it would look too non-natural for the case of all 1107 * activity in the system coming from a single strictlimit wb 1108 * with bdi->max_ratio == 100%. 1109 * 1110 * Note that min() below somewhat changes the dynamics of the 1111 * control system. Normally, pos_ratio value can be well over 3 1112 * (when globally we are at freerun and wb is well below wb 1113 * setpoint). Now the maximum pos_ratio in the same situation 1114 * is 2. We might want to tweak this if we observe the control 1115 * system is too slow to adapt. 1116 */ 1117 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1118 return; 1119 } 1120 1121 /* 1122 * We have computed basic pos_ratio above based on global situation. If 1123 * the wb is over/under its share of dirty pages, we want to scale 1124 * pos_ratio further down/up. That is done by the following mechanism. 1125 */ 1126 1127 /* 1128 * wb setpoint 1129 * 1130 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1131 * 1132 * x_intercept - wb_dirty 1133 * := -------------------------- 1134 * x_intercept - wb_setpoint 1135 * 1136 * The main wb control line is a linear function that subjects to 1137 * 1138 * (1) f(wb_setpoint) = 1.0 1139 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1140 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1141 * 1142 * For single wb case, the dirty pages are observed to fluctuate 1143 * regularly within range 1144 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1145 * for various filesystems, where (2) can yield in a reasonable 12.5% 1146 * fluctuation range for pos_ratio. 1147 * 1148 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1149 * own size, so move the slope over accordingly and choose a slope that 1150 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1151 */ 1152 if (unlikely(wb_thresh > dtc->thresh)) 1153 wb_thresh = dtc->thresh; 1154 /* 1155 * It's very possible that wb_thresh is close to 0 not because the 1156 * device is slow, but that it has remained inactive for long time. 1157 * Honour such devices a reasonable good (hopefully IO efficient) 1158 * threshold, so that the occasional writes won't be blocked and active 1159 * writes can rampup the threshold quickly. 1160 */ 1161 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1162 /* 1163 * scale global setpoint to wb's: 1164 * wb_setpoint = setpoint * wb_thresh / thresh 1165 */ 1166 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1167 wb_setpoint = setpoint * (u64)x >> 16; 1168 /* 1169 * Use span=(8*write_bw) in single wb case as indicated by 1170 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1171 * 1172 * wb_thresh thresh - wb_thresh 1173 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1174 * thresh thresh 1175 */ 1176 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1177 x_intercept = wb_setpoint + span; 1178 1179 if (dtc->wb_dirty < x_intercept - span / 4) { 1180 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1181 (x_intercept - wb_setpoint) | 1); 1182 } else 1183 pos_ratio /= 4; 1184 1185 /* 1186 * wb reserve area, safeguard against dirty pool underrun and disk idle 1187 * It may push the desired control point of global dirty pages higher 1188 * than setpoint. 1189 */ 1190 x_intercept = wb_thresh / 2; 1191 if (dtc->wb_dirty < x_intercept) { 1192 if (dtc->wb_dirty > x_intercept / 8) 1193 pos_ratio = div_u64(pos_ratio * x_intercept, 1194 dtc->wb_dirty); 1195 else 1196 pos_ratio *= 8; 1197 } 1198 1199 dtc->pos_ratio = pos_ratio; 1200 } 1201 1202 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1203 unsigned long elapsed, 1204 unsigned long written) 1205 { 1206 const unsigned long period = roundup_pow_of_two(3 * HZ); 1207 unsigned long avg = wb->avg_write_bandwidth; 1208 unsigned long old = wb->write_bandwidth; 1209 u64 bw; 1210 1211 /* 1212 * bw = written * HZ / elapsed 1213 * 1214 * bw * elapsed + write_bandwidth * (period - elapsed) 1215 * write_bandwidth = --------------------------------------------------- 1216 * period 1217 * 1218 * @written may have decreased due to folio_redirty_for_writepage(). 1219 * Avoid underflowing @bw calculation. 1220 */ 1221 bw = written - min(written, wb->written_stamp); 1222 bw *= HZ; 1223 if (unlikely(elapsed > period)) { 1224 bw = div64_ul(bw, elapsed); 1225 avg = bw; 1226 goto out; 1227 } 1228 bw += (u64)wb->write_bandwidth * (period - elapsed); 1229 bw >>= ilog2(period); 1230 1231 /* 1232 * one more level of smoothing, for filtering out sudden spikes 1233 */ 1234 if (avg > old && old >= (unsigned long)bw) 1235 avg -= (avg - old) >> 3; 1236 1237 if (avg < old && old <= (unsigned long)bw) 1238 avg += (old - avg) >> 3; 1239 1240 out: 1241 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1242 avg = max(avg, 1LU); 1243 if (wb_has_dirty_io(wb)) { 1244 long delta = avg - wb->avg_write_bandwidth; 1245 WARN_ON_ONCE(atomic_long_add_return(delta, 1246 &wb->bdi->tot_write_bandwidth) <= 0); 1247 } 1248 wb->write_bandwidth = bw; 1249 WRITE_ONCE(wb->avg_write_bandwidth, avg); 1250 } 1251 1252 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1253 { 1254 struct wb_domain *dom = dtc_dom(dtc); 1255 unsigned long thresh = dtc->thresh; 1256 unsigned long limit = dom->dirty_limit; 1257 1258 /* 1259 * Follow up in one step. 1260 */ 1261 if (limit < thresh) { 1262 limit = thresh; 1263 goto update; 1264 } 1265 1266 /* 1267 * Follow down slowly. Use the higher one as the target, because thresh 1268 * may drop below dirty. This is exactly the reason to introduce 1269 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1270 */ 1271 thresh = max(thresh, dtc->dirty); 1272 if (limit > thresh) { 1273 limit -= (limit - thresh) >> 5; 1274 goto update; 1275 } 1276 return; 1277 update: 1278 dom->dirty_limit = limit; 1279 } 1280 1281 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc, 1282 unsigned long now) 1283 { 1284 struct wb_domain *dom = dtc_dom(dtc); 1285 1286 /* 1287 * check locklessly first to optimize away locking for the most time 1288 */ 1289 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1290 return; 1291 1292 spin_lock(&dom->lock); 1293 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1294 update_dirty_limit(dtc); 1295 dom->dirty_limit_tstamp = now; 1296 } 1297 spin_unlock(&dom->lock); 1298 } 1299 1300 /* 1301 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1302 * 1303 * Normal wb tasks will be curbed at or below it in long term. 1304 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1305 */ 1306 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1307 unsigned long dirtied, 1308 unsigned long elapsed) 1309 { 1310 struct bdi_writeback *wb = dtc->wb; 1311 unsigned long dirty = dtc->dirty; 1312 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1313 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1314 unsigned long setpoint = (freerun + limit) / 2; 1315 unsigned long write_bw = wb->avg_write_bandwidth; 1316 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1317 unsigned long dirty_rate; 1318 unsigned long task_ratelimit; 1319 unsigned long balanced_dirty_ratelimit; 1320 unsigned long step; 1321 unsigned long x; 1322 unsigned long shift; 1323 1324 /* 1325 * The dirty rate will match the writeout rate in long term, except 1326 * when dirty pages are truncated by userspace or re-dirtied by FS. 1327 */ 1328 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1329 1330 /* 1331 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1332 */ 1333 task_ratelimit = (u64)dirty_ratelimit * 1334 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1335 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1336 1337 /* 1338 * A linear estimation of the "balanced" throttle rate. The theory is, 1339 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1340 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1341 * formula will yield the balanced rate limit (write_bw / N). 1342 * 1343 * Note that the expanded form is not a pure rate feedback: 1344 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1345 * but also takes pos_ratio into account: 1346 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1347 * 1348 * (1) is not realistic because pos_ratio also takes part in balancing 1349 * the dirty rate. Consider the state 1350 * pos_ratio = 0.5 (3) 1351 * rate = 2 * (write_bw / N) (4) 1352 * If (1) is used, it will stuck in that state! Because each dd will 1353 * be throttled at 1354 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1355 * yielding 1356 * dirty_rate = N * task_ratelimit = write_bw (6) 1357 * put (6) into (1) we get 1358 * rate_(i+1) = rate_(i) (7) 1359 * 1360 * So we end up using (2) to always keep 1361 * rate_(i+1) ~= (write_bw / N) (8) 1362 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1363 * pos_ratio is able to drive itself to 1.0, which is not only where 1364 * the dirty count meet the setpoint, but also where the slope of 1365 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1366 */ 1367 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1368 dirty_rate | 1); 1369 /* 1370 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1371 */ 1372 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1373 balanced_dirty_ratelimit = write_bw; 1374 1375 /* 1376 * We could safely do this and return immediately: 1377 * 1378 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1379 * 1380 * However to get a more stable dirty_ratelimit, the below elaborated 1381 * code makes use of task_ratelimit to filter out singular points and 1382 * limit the step size. 1383 * 1384 * The below code essentially only uses the relative value of 1385 * 1386 * task_ratelimit - dirty_ratelimit 1387 * = (pos_ratio - 1) * dirty_ratelimit 1388 * 1389 * which reflects the direction and size of dirty position error. 1390 */ 1391 1392 /* 1393 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1394 * task_ratelimit is on the same side of dirty_ratelimit, too. 1395 * For example, when 1396 * - dirty_ratelimit > balanced_dirty_ratelimit 1397 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1398 * lowering dirty_ratelimit will help meet both the position and rate 1399 * control targets. Otherwise, don't update dirty_ratelimit if it will 1400 * only help meet the rate target. After all, what the users ultimately 1401 * feel and care are stable dirty rate and small position error. 1402 * 1403 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1404 * and filter out the singular points of balanced_dirty_ratelimit. Which 1405 * keeps jumping around randomly and can even leap far away at times 1406 * due to the small 200ms estimation period of dirty_rate (we want to 1407 * keep that period small to reduce time lags). 1408 */ 1409 step = 0; 1410 1411 /* 1412 * For strictlimit case, calculations above were based on wb counters 1413 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1414 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1415 * Hence, to calculate "step" properly, we have to use wb_dirty as 1416 * "dirty" and wb_setpoint as "setpoint". 1417 * 1418 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1419 * it's possible that wb_thresh is close to zero due to inactivity 1420 * of backing device. 1421 */ 1422 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1423 dirty = dtc->wb_dirty; 1424 if (dtc->wb_dirty < 8) 1425 setpoint = dtc->wb_dirty + 1; 1426 else 1427 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1428 } 1429 1430 if (dirty < setpoint) { 1431 x = min3(wb->balanced_dirty_ratelimit, 1432 balanced_dirty_ratelimit, task_ratelimit); 1433 if (dirty_ratelimit < x) 1434 step = x - dirty_ratelimit; 1435 } else { 1436 x = max3(wb->balanced_dirty_ratelimit, 1437 balanced_dirty_ratelimit, task_ratelimit); 1438 if (dirty_ratelimit > x) 1439 step = dirty_ratelimit - x; 1440 } 1441 1442 /* 1443 * Don't pursue 100% rate matching. It's impossible since the balanced 1444 * rate itself is constantly fluctuating. So decrease the track speed 1445 * when it gets close to the target. Helps eliminate pointless tremors. 1446 */ 1447 shift = dirty_ratelimit / (2 * step + 1); 1448 if (shift < BITS_PER_LONG) 1449 step = DIV_ROUND_UP(step >> shift, 8); 1450 else 1451 step = 0; 1452 1453 if (dirty_ratelimit < balanced_dirty_ratelimit) 1454 dirty_ratelimit += step; 1455 else 1456 dirty_ratelimit -= step; 1457 1458 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL)); 1459 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1460 1461 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1462 } 1463 1464 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1465 struct dirty_throttle_control *mdtc, 1466 bool update_ratelimit) 1467 { 1468 struct bdi_writeback *wb = gdtc->wb; 1469 unsigned long now = jiffies; 1470 unsigned long elapsed; 1471 unsigned long dirtied; 1472 unsigned long written; 1473 1474 spin_lock(&wb->list_lock); 1475 1476 /* 1477 * Lockless checks for elapsed time are racy and delayed update after 1478 * IO completion doesn't do it at all (to make sure written pages are 1479 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid 1480 * division errors. 1481 */ 1482 elapsed = max(now - wb->bw_time_stamp, 1UL); 1483 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1484 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1485 1486 if (update_ratelimit) { 1487 domain_update_dirty_limit(gdtc, now); 1488 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1489 1490 /* 1491 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1492 * compiler has no way to figure that out. Help it. 1493 */ 1494 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1495 domain_update_dirty_limit(mdtc, now); 1496 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1497 } 1498 } 1499 wb_update_write_bandwidth(wb, elapsed, written); 1500 1501 wb->dirtied_stamp = dirtied; 1502 wb->written_stamp = written; 1503 WRITE_ONCE(wb->bw_time_stamp, now); 1504 spin_unlock(&wb->list_lock); 1505 } 1506 1507 void wb_update_bandwidth(struct bdi_writeback *wb) 1508 { 1509 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1510 1511 __wb_update_bandwidth(&gdtc, NULL, false); 1512 } 1513 1514 /* Interval after which we consider wb idle and don't estimate bandwidth */ 1515 #define WB_BANDWIDTH_IDLE_JIF (HZ) 1516 1517 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb) 1518 { 1519 unsigned long now = jiffies; 1520 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp); 1521 1522 if (elapsed > WB_BANDWIDTH_IDLE_JIF && 1523 !atomic_read(&wb->writeback_inodes)) { 1524 spin_lock(&wb->list_lock); 1525 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED); 1526 wb->written_stamp = wb_stat(wb, WB_WRITTEN); 1527 WRITE_ONCE(wb->bw_time_stamp, now); 1528 spin_unlock(&wb->list_lock); 1529 } 1530 } 1531 1532 /* 1533 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1534 * will look to see if it needs to start dirty throttling. 1535 * 1536 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1537 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1538 * (the number of pages we may dirty without exceeding the dirty limits). 1539 */ 1540 static unsigned long dirty_poll_interval(unsigned long dirty, 1541 unsigned long thresh) 1542 { 1543 if (thresh > dirty) 1544 return 1UL << (ilog2(thresh - dirty) >> 1); 1545 1546 return 1; 1547 } 1548 1549 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1550 unsigned long wb_dirty) 1551 { 1552 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth); 1553 unsigned long t; 1554 1555 /* 1556 * Limit pause time for small memory systems. If sleeping for too long 1557 * time, a small pool of dirty/writeback pages may go empty and disk go 1558 * idle. 1559 * 1560 * 8 serves as the safety ratio. 1561 */ 1562 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1563 t++; 1564 1565 return min_t(unsigned long, t, MAX_PAUSE); 1566 } 1567 1568 static long wb_min_pause(struct bdi_writeback *wb, 1569 long max_pause, 1570 unsigned long task_ratelimit, 1571 unsigned long dirty_ratelimit, 1572 int *nr_dirtied_pause) 1573 { 1574 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth)); 1575 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit)); 1576 long t; /* target pause */ 1577 long pause; /* estimated next pause */ 1578 int pages; /* target nr_dirtied_pause */ 1579 1580 /* target for 10ms pause on 1-dd case */ 1581 t = max(1, HZ / 100); 1582 1583 /* 1584 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1585 * overheads. 1586 * 1587 * (N * 10ms) on 2^N concurrent tasks. 1588 */ 1589 if (hi > lo) 1590 t += (hi - lo) * (10 * HZ) / 1024; 1591 1592 /* 1593 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1594 * on the much more stable dirty_ratelimit. However the next pause time 1595 * will be computed based on task_ratelimit and the two rate limits may 1596 * depart considerably at some time. Especially if task_ratelimit goes 1597 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1598 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1599 * result task_ratelimit won't be executed faithfully, which could 1600 * eventually bring down dirty_ratelimit. 1601 * 1602 * We apply two rules to fix it up: 1603 * 1) try to estimate the next pause time and if necessary, use a lower 1604 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1605 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1606 * 2) limit the target pause time to max_pause/2, so that the normal 1607 * small fluctuations of task_ratelimit won't trigger rule (1) and 1608 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1609 */ 1610 t = min(t, 1 + max_pause / 2); 1611 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1612 1613 /* 1614 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1615 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1616 * When the 16 consecutive reads are often interrupted by some dirty 1617 * throttling pause during the async writes, cfq will go into idles 1618 * (deadline is fine). So push nr_dirtied_pause as high as possible 1619 * until reaches DIRTY_POLL_THRESH=32 pages. 1620 */ 1621 if (pages < DIRTY_POLL_THRESH) { 1622 t = max_pause; 1623 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1624 if (pages > DIRTY_POLL_THRESH) { 1625 pages = DIRTY_POLL_THRESH; 1626 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1627 } 1628 } 1629 1630 pause = HZ * pages / (task_ratelimit + 1); 1631 if (pause > max_pause) { 1632 t = max_pause; 1633 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1634 } 1635 1636 *nr_dirtied_pause = pages; 1637 /* 1638 * The minimal pause time will normally be half the target pause time. 1639 */ 1640 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1641 } 1642 1643 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1644 { 1645 struct bdi_writeback *wb = dtc->wb; 1646 unsigned long wb_reclaimable; 1647 1648 /* 1649 * wb_thresh is not treated as some limiting factor as 1650 * dirty_thresh, due to reasons 1651 * - in JBOD setup, wb_thresh can fluctuate a lot 1652 * - in a system with HDD and USB key, the USB key may somehow 1653 * go into state (wb_dirty >> wb_thresh) either because 1654 * wb_dirty starts high, or because wb_thresh drops low. 1655 * In this case we don't want to hard throttle the USB key 1656 * dirtiers for 100 seconds until wb_dirty drops under 1657 * wb_thresh. Instead the auxiliary wb control line in 1658 * wb_position_ratio() will let the dirtier task progress 1659 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1660 */ 1661 dtc->wb_thresh = __wb_calc_thresh(dtc); 1662 dtc->wb_bg_thresh = dtc->thresh ? 1663 div64_u64(dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1664 1665 /* 1666 * In order to avoid the stacked BDI deadlock we need 1667 * to ensure we accurately count the 'dirty' pages when 1668 * the threshold is low. 1669 * 1670 * Otherwise it would be possible to get thresh+n pages 1671 * reported dirty, even though there are thresh-m pages 1672 * actually dirty; with m+n sitting in the percpu 1673 * deltas. 1674 */ 1675 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1676 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1677 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1678 } else { 1679 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1680 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1681 } 1682 } 1683 1684 /* 1685 * balance_dirty_pages() must be called by processes which are generating dirty 1686 * data. It looks at the number of dirty pages in the machine and will force 1687 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1688 * If we're over `background_thresh' then the writeback threads are woken to 1689 * perform some writeout. 1690 */ 1691 static int balance_dirty_pages(struct bdi_writeback *wb, 1692 unsigned long pages_dirtied, unsigned int flags) 1693 { 1694 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1695 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1696 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1697 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1698 &mdtc_stor : NULL; 1699 struct dirty_throttle_control *sdtc; 1700 unsigned long nr_reclaimable; /* = file_dirty */ 1701 long period; 1702 long pause; 1703 long max_pause; 1704 long min_pause; 1705 int nr_dirtied_pause; 1706 bool dirty_exceeded = false; 1707 unsigned long task_ratelimit; 1708 unsigned long dirty_ratelimit; 1709 struct backing_dev_info *bdi = wb->bdi; 1710 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1711 unsigned long start_time = jiffies; 1712 int ret = 0; 1713 1714 for (;;) { 1715 unsigned long now = jiffies; 1716 unsigned long dirty, thresh, bg_thresh; 1717 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1718 unsigned long m_thresh = 0; 1719 unsigned long m_bg_thresh = 0; 1720 1721 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY); 1722 gdtc->avail = global_dirtyable_memory(); 1723 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1724 1725 domain_dirty_limits(gdtc); 1726 1727 if (unlikely(strictlimit)) { 1728 wb_dirty_limits(gdtc); 1729 1730 dirty = gdtc->wb_dirty; 1731 thresh = gdtc->wb_thresh; 1732 bg_thresh = gdtc->wb_bg_thresh; 1733 } else { 1734 dirty = gdtc->dirty; 1735 thresh = gdtc->thresh; 1736 bg_thresh = gdtc->bg_thresh; 1737 } 1738 1739 if (mdtc) { 1740 unsigned long filepages, headroom, writeback; 1741 1742 /* 1743 * If @wb belongs to !root memcg, repeat the same 1744 * basic calculations for the memcg domain. 1745 */ 1746 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1747 &mdtc->dirty, &writeback); 1748 mdtc->dirty += writeback; 1749 mdtc_calc_avail(mdtc, filepages, headroom); 1750 1751 domain_dirty_limits(mdtc); 1752 1753 if (unlikely(strictlimit)) { 1754 wb_dirty_limits(mdtc); 1755 m_dirty = mdtc->wb_dirty; 1756 m_thresh = mdtc->wb_thresh; 1757 m_bg_thresh = mdtc->wb_bg_thresh; 1758 } else { 1759 m_dirty = mdtc->dirty; 1760 m_thresh = mdtc->thresh; 1761 m_bg_thresh = mdtc->bg_thresh; 1762 } 1763 } 1764 1765 /* 1766 * In laptop mode, we wait until hitting the higher threshold 1767 * before starting background writeout, and then write out all 1768 * the way down to the lower threshold. So slow writers cause 1769 * minimal disk activity. 1770 * 1771 * In normal mode, we start background writeout at the lower 1772 * background_thresh, to keep the amount of dirty memory low. 1773 */ 1774 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh && 1775 !writeback_in_progress(wb)) 1776 wb_start_background_writeback(wb); 1777 1778 /* 1779 * Throttle it only when the background writeback cannot 1780 * catch-up. This avoids (excessively) small writeouts 1781 * when the wb limits are ramping up in case of !strictlimit. 1782 * 1783 * In strictlimit case make decision based on the wb counters 1784 * and limits. Small writeouts when the wb limits are ramping 1785 * up are the price we consciously pay for strictlimit-ing. 1786 * 1787 * If memcg domain is in effect, @dirty should be under 1788 * both global and memcg freerun ceilings. 1789 */ 1790 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1791 (!mdtc || 1792 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1793 unsigned long intv; 1794 unsigned long m_intv; 1795 1796 free_running: 1797 intv = dirty_poll_interval(dirty, thresh); 1798 m_intv = ULONG_MAX; 1799 1800 current->dirty_paused_when = now; 1801 current->nr_dirtied = 0; 1802 if (mdtc) 1803 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1804 current->nr_dirtied_pause = min(intv, m_intv); 1805 break; 1806 } 1807 1808 /* Start writeback even when in laptop mode */ 1809 if (unlikely(!writeback_in_progress(wb))) 1810 wb_start_background_writeback(wb); 1811 1812 mem_cgroup_flush_foreign(wb); 1813 1814 /* 1815 * Calculate global domain's pos_ratio and select the 1816 * global dtc by default. 1817 */ 1818 if (!strictlimit) { 1819 wb_dirty_limits(gdtc); 1820 1821 if ((current->flags & PF_LOCAL_THROTTLE) && 1822 gdtc->wb_dirty < 1823 dirty_freerun_ceiling(gdtc->wb_thresh, 1824 gdtc->wb_bg_thresh)) 1825 /* 1826 * LOCAL_THROTTLE tasks must not be throttled 1827 * when below the per-wb freerun ceiling. 1828 */ 1829 goto free_running; 1830 } 1831 1832 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1833 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1834 1835 wb_position_ratio(gdtc); 1836 sdtc = gdtc; 1837 1838 if (mdtc) { 1839 /* 1840 * If memcg domain is in effect, calculate its 1841 * pos_ratio. @wb should satisfy constraints from 1842 * both global and memcg domains. Choose the one 1843 * w/ lower pos_ratio. 1844 */ 1845 if (!strictlimit) { 1846 wb_dirty_limits(mdtc); 1847 1848 if ((current->flags & PF_LOCAL_THROTTLE) && 1849 mdtc->wb_dirty < 1850 dirty_freerun_ceiling(mdtc->wb_thresh, 1851 mdtc->wb_bg_thresh)) 1852 /* 1853 * LOCAL_THROTTLE tasks must not be 1854 * throttled when below the per-wb 1855 * freerun ceiling. 1856 */ 1857 goto free_running; 1858 } 1859 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1860 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1861 1862 wb_position_ratio(mdtc); 1863 if (mdtc->pos_ratio < gdtc->pos_ratio) 1864 sdtc = mdtc; 1865 } 1866 1867 if (dirty_exceeded != wb->dirty_exceeded) 1868 wb->dirty_exceeded = dirty_exceeded; 1869 1870 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 1871 BANDWIDTH_INTERVAL)) 1872 __wb_update_bandwidth(gdtc, mdtc, true); 1873 1874 /* throttle according to the chosen dtc */ 1875 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit); 1876 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1877 RATELIMIT_CALC_SHIFT; 1878 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1879 min_pause = wb_min_pause(wb, max_pause, 1880 task_ratelimit, dirty_ratelimit, 1881 &nr_dirtied_pause); 1882 1883 if (unlikely(task_ratelimit == 0)) { 1884 period = max_pause; 1885 pause = max_pause; 1886 goto pause; 1887 } 1888 period = HZ * pages_dirtied / task_ratelimit; 1889 pause = period; 1890 if (current->dirty_paused_when) 1891 pause -= now - current->dirty_paused_when; 1892 /* 1893 * For less than 1s think time (ext3/4 may block the dirtier 1894 * for up to 800ms from time to time on 1-HDD; so does xfs, 1895 * however at much less frequency), try to compensate it in 1896 * future periods by updating the virtual time; otherwise just 1897 * do a reset, as it may be a light dirtier. 1898 */ 1899 if (pause < min_pause) { 1900 trace_balance_dirty_pages(wb, 1901 sdtc->thresh, 1902 sdtc->bg_thresh, 1903 sdtc->dirty, 1904 sdtc->wb_thresh, 1905 sdtc->wb_dirty, 1906 dirty_ratelimit, 1907 task_ratelimit, 1908 pages_dirtied, 1909 period, 1910 min(pause, 0L), 1911 start_time); 1912 if (pause < -HZ) { 1913 current->dirty_paused_when = now; 1914 current->nr_dirtied = 0; 1915 } else if (period) { 1916 current->dirty_paused_when += period; 1917 current->nr_dirtied = 0; 1918 } else if (current->nr_dirtied_pause <= pages_dirtied) 1919 current->nr_dirtied_pause += pages_dirtied; 1920 break; 1921 } 1922 if (unlikely(pause > max_pause)) { 1923 /* for occasional dropped task_ratelimit */ 1924 now += min(pause - max_pause, max_pause); 1925 pause = max_pause; 1926 } 1927 1928 pause: 1929 trace_balance_dirty_pages(wb, 1930 sdtc->thresh, 1931 sdtc->bg_thresh, 1932 sdtc->dirty, 1933 sdtc->wb_thresh, 1934 sdtc->wb_dirty, 1935 dirty_ratelimit, 1936 task_ratelimit, 1937 pages_dirtied, 1938 period, 1939 pause, 1940 start_time); 1941 if (flags & BDP_ASYNC) { 1942 ret = -EAGAIN; 1943 break; 1944 } 1945 __set_current_state(TASK_KILLABLE); 1946 bdi->last_bdp_sleep = jiffies; 1947 io_schedule_timeout(pause); 1948 1949 current->dirty_paused_when = now + pause; 1950 current->nr_dirtied = 0; 1951 current->nr_dirtied_pause = nr_dirtied_pause; 1952 1953 /* 1954 * This is typically equal to (dirty < thresh) and can also 1955 * keep "1000+ dd on a slow USB stick" under control. 1956 */ 1957 if (task_ratelimit) 1958 break; 1959 1960 /* 1961 * In the case of an unresponsive NFS server and the NFS dirty 1962 * pages exceeds dirty_thresh, give the other good wb's a pipe 1963 * to go through, so that tasks on them still remain responsive. 1964 * 1965 * In theory 1 page is enough to keep the consumer-producer 1966 * pipe going: the flusher cleans 1 page => the task dirties 1 1967 * more page. However wb_dirty has accounting errors. So use 1968 * the larger and more IO friendly wb_stat_error. 1969 */ 1970 if (sdtc->wb_dirty <= wb_stat_error()) 1971 break; 1972 1973 if (fatal_signal_pending(current)) 1974 break; 1975 } 1976 return ret; 1977 } 1978 1979 static DEFINE_PER_CPU(int, bdp_ratelimits); 1980 1981 /* 1982 * Normal tasks are throttled by 1983 * loop { 1984 * dirty tsk->nr_dirtied_pause pages; 1985 * take a snap in balance_dirty_pages(); 1986 * } 1987 * However there is a worst case. If every task exit immediately when dirtied 1988 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1989 * called to throttle the page dirties. The solution is to save the not yet 1990 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1991 * randomly into the running tasks. This works well for the above worst case, 1992 * as the new task will pick up and accumulate the old task's leaked dirty 1993 * count and eventually get throttled. 1994 */ 1995 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1996 1997 /** 1998 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state. 1999 * @mapping: address_space which was dirtied. 2000 * @flags: BDP flags. 2001 * 2002 * Processes which are dirtying memory should call in here once for each page 2003 * which was newly dirtied. The function will periodically check the system's 2004 * dirty state and will initiate writeback if needed. 2005 * 2006 * See balance_dirty_pages_ratelimited() for details. 2007 * 2008 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to 2009 * indicate that memory is out of balance and the caller must wait 2010 * for I/O to complete. Otherwise, it will return 0 to indicate 2011 * that either memory was already in balance, or it was able to sleep 2012 * until the amount of dirty memory returned to balance. 2013 */ 2014 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping, 2015 unsigned int flags) 2016 { 2017 struct inode *inode = mapping->host; 2018 struct backing_dev_info *bdi = inode_to_bdi(inode); 2019 struct bdi_writeback *wb = NULL; 2020 int ratelimit; 2021 int ret = 0; 2022 int *p; 2023 2024 if (!(bdi->capabilities & BDI_CAP_WRITEBACK)) 2025 return ret; 2026 2027 if (inode_cgwb_enabled(inode)) 2028 wb = wb_get_create_current(bdi, GFP_KERNEL); 2029 if (!wb) 2030 wb = &bdi->wb; 2031 2032 ratelimit = current->nr_dirtied_pause; 2033 if (wb->dirty_exceeded) 2034 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 2035 2036 preempt_disable(); 2037 /* 2038 * This prevents one CPU to accumulate too many dirtied pages without 2039 * calling into balance_dirty_pages(), which can happen when there are 2040 * 1000+ tasks, all of them start dirtying pages at exactly the same 2041 * time, hence all honoured too large initial task->nr_dirtied_pause. 2042 */ 2043 p = this_cpu_ptr(&bdp_ratelimits); 2044 if (unlikely(current->nr_dirtied >= ratelimit)) 2045 *p = 0; 2046 else if (unlikely(*p >= ratelimit_pages)) { 2047 *p = 0; 2048 ratelimit = 0; 2049 } 2050 /* 2051 * Pick up the dirtied pages by the exited tasks. This avoids lots of 2052 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 2053 * the dirty throttling and livelock other long-run dirtiers. 2054 */ 2055 p = this_cpu_ptr(&dirty_throttle_leaks); 2056 if (*p > 0 && current->nr_dirtied < ratelimit) { 2057 unsigned long nr_pages_dirtied; 2058 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 2059 *p -= nr_pages_dirtied; 2060 current->nr_dirtied += nr_pages_dirtied; 2061 } 2062 preempt_enable(); 2063 2064 if (unlikely(current->nr_dirtied >= ratelimit)) 2065 ret = balance_dirty_pages(wb, current->nr_dirtied, flags); 2066 2067 wb_put(wb); 2068 return ret; 2069 } 2070 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags); 2071 2072 /** 2073 * balance_dirty_pages_ratelimited - balance dirty memory state. 2074 * @mapping: address_space which was dirtied. 2075 * 2076 * Processes which are dirtying memory should call in here once for each page 2077 * which was newly dirtied. The function will periodically check the system's 2078 * dirty state and will initiate writeback if needed. 2079 * 2080 * Once we're over the dirty memory limit we decrease the ratelimiting 2081 * by a lot, to prevent individual processes from overshooting the limit 2082 * by (ratelimit_pages) each. 2083 */ 2084 void balance_dirty_pages_ratelimited(struct address_space *mapping) 2085 { 2086 balance_dirty_pages_ratelimited_flags(mapping, 0); 2087 } 2088 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 2089 2090 /** 2091 * wb_over_bg_thresh - does @wb need to be written back? 2092 * @wb: bdi_writeback of interest 2093 * 2094 * Determines whether background writeback should keep writing @wb or it's 2095 * clean enough. 2096 * 2097 * Return: %true if writeback should continue. 2098 */ 2099 bool wb_over_bg_thresh(struct bdi_writeback *wb) 2100 { 2101 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 2102 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 2103 struct dirty_throttle_control * const gdtc = &gdtc_stor; 2104 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 2105 &mdtc_stor : NULL; 2106 unsigned long reclaimable; 2107 unsigned long thresh; 2108 2109 /* 2110 * Similar to balance_dirty_pages() but ignores pages being written 2111 * as we're trying to decide whether to put more under writeback. 2112 */ 2113 gdtc->avail = global_dirtyable_memory(); 2114 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY); 2115 domain_dirty_limits(gdtc); 2116 2117 if (gdtc->dirty > gdtc->bg_thresh) 2118 return true; 2119 2120 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh); 2121 if (thresh < 2 * wb_stat_error()) 2122 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2123 else 2124 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2125 2126 if (reclaimable > thresh) 2127 return true; 2128 2129 if (mdtc) { 2130 unsigned long filepages, headroom, writeback; 2131 2132 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 2133 &writeback); 2134 mdtc_calc_avail(mdtc, filepages, headroom); 2135 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 2136 2137 if (mdtc->dirty > mdtc->bg_thresh) 2138 return true; 2139 2140 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh); 2141 if (thresh < 2 * wb_stat_error()) 2142 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 2143 else 2144 reclaimable = wb_stat(wb, WB_RECLAIMABLE); 2145 2146 if (reclaimable > thresh) 2147 return true; 2148 } 2149 2150 return false; 2151 } 2152 2153 #ifdef CONFIG_SYSCTL 2154 /* 2155 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 2156 */ 2157 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 2158 void *buffer, size_t *length, loff_t *ppos) 2159 { 2160 unsigned int old_interval = dirty_writeback_interval; 2161 int ret; 2162 2163 ret = proc_dointvec(table, write, buffer, length, ppos); 2164 2165 /* 2166 * Writing 0 to dirty_writeback_interval will disable periodic writeback 2167 * and a different non-zero value will wakeup the writeback threads. 2168 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 2169 * iterate over all bdis and wbs. 2170 * The reason we do this is to make the change take effect immediately. 2171 */ 2172 if (!ret && write && dirty_writeback_interval && 2173 dirty_writeback_interval != old_interval) 2174 wakeup_flusher_threads(WB_REASON_PERIODIC); 2175 2176 return ret; 2177 } 2178 #endif 2179 2180 void laptop_mode_timer_fn(struct timer_list *t) 2181 { 2182 struct backing_dev_info *backing_dev_info = 2183 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2184 2185 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2186 } 2187 2188 /* 2189 * We've spun up the disk and we're in laptop mode: schedule writeback 2190 * of all dirty data a few seconds from now. If the flush is already scheduled 2191 * then push it back - the user is still using the disk. 2192 */ 2193 void laptop_io_completion(struct backing_dev_info *info) 2194 { 2195 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2196 } 2197 2198 /* 2199 * We're in laptop mode and we've just synced. The sync's writes will have 2200 * caused another writeback to be scheduled by laptop_io_completion. 2201 * Nothing needs to be written back anymore, so we unschedule the writeback. 2202 */ 2203 void laptop_sync_completion(void) 2204 { 2205 struct backing_dev_info *bdi; 2206 2207 rcu_read_lock(); 2208 2209 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2210 del_timer(&bdi->laptop_mode_wb_timer); 2211 2212 rcu_read_unlock(); 2213 } 2214 2215 /* 2216 * If ratelimit_pages is too high then we can get into dirty-data overload 2217 * if a large number of processes all perform writes at the same time. 2218 * 2219 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2220 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2221 * thresholds. 2222 */ 2223 2224 void writeback_set_ratelimit(void) 2225 { 2226 struct wb_domain *dom = &global_wb_domain; 2227 unsigned long background_thresh; 2228 unsigned long dirty_thresh; 2229 2230 global_dirty_limits(&background_thresh, &dirty_thresh); 2231 dom->dirty_limit = dirty_thresh; 2232 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2233 if (ratelimit_pages < 16) 2234 ratelimit_pages = 16; 2235 } 2236 2237 static int page_writeback_cpu_online(unsigned int cpu) 2238 { 2239 writeback_set_ratelimit(); 2240 return 0; 2241 } 2242 2243 #ifdef CONFIG_SYSCTL 2244 2245 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */ 2246 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE; 2247 2248 static struct ctl_table vm_page_writeback_sysctls[] = { 2249 { 2250 .procname = "dirty_background_ratio", 2251 .data = &dirty_background_ratio, 2252 .maxlen = sizeof(dirty_background_ratio), 2253 .mode = 0644, 2254 .proc_handler = dirty_background_ratio_handler, 2255 .extra1 = SYSCTL_ZERO, 2256 .extra2 = SYSCTL_ONE_HUNDRED, 2257 }, 2258 { 2259 .procname = "dirty_background_bytes", 2260 .data = &dirty_background_bytes, 2261 .maxlen = sizeof(dirty_background_bytes), 2262 .mode = 0644, 2263 .proc_handler = dirty_background_bytes_handler, 2264 .extra1 = SYSCTL_LONG_ONE, 2265 }, 2266 { 2267 .procname = "dirty_ratio", 2268 .data = &vm_dirty_ratio, 2269 .maxlen = sizeof(vm_dirty_ratio), 2270 .mode = 0644, 2271 .proc_handler = dirty_ratio_handler, 2272 .extra1 = SYSCTL_ZERO, 2273 .extra2 = SYSCTL_ONE_HUNDRED, 2274 }, 2275 { 2276 .procname = "dirty_bytes", 2277 .data = &vm_dirty_bytes, 2278 .maxlen = sizeof(vm_dirty_bytes), 2279 .mode = 0644, 2280 .proc_handler = dirty_bytes_handler, 2281 .extra1 = (void *)&dirty_bytes_min, 2282 }, 2283 { 2284 .procname = "dirty_writeback_centisecs", 2285 .data = &dirty_writeback_interval, 2286 .maxlen = sizeof(dirty_writeback_interval), 2287 .mode = 0644, 2288 .proc_handler = dirty_writeback_centisecs_handler, 2289 }, 2290 { 2291 .procname = "dirty_expire_centisecs", 2292 .data = &dirty_expire_interval, 2293 .maxlen = sizeof(dirty_expire_interval), 2294 .mode = 0644, 2295 .proc_handler = proc_dointvec_minmax, 2296 .extra1 = SYSCTL_ZERO, 2297 }, 2298 #ifdef CONFIG_HIGHMEM 2299 { 2300 .procname = "highmem_is_dirtyable", 2301 .data = &vm_highmem_is_dirtyable, 2302 .maxlen = sizeof(vm_highmem_is_dirtyable), 2303 .mode = 0644, 2304 .proc_handler = proc_dointvec_minmax, 2305 .extra1 = SYSCTL_ZERO, 2306 .extra2 = SYSCTL_ONE, 2307 }, 2308 #endif 2309 { 2310 .procname = "laptop_mode", 2311 .data = &laptop_mode, 2312 .maxlen = sizeof(laptop_mode), 2313 .mode = 0644, 2314 .proc_handler = proc_dointvec_jiffies, 2315 }, 2316 {} 2317 }; 2318 #endif 2319 2320 /* 2321 * Called early on to tune the page writeback dirty limits. 2322 * 2323 * We used to scale dirty pages according to how total memory 2324 * related to pages that could be allocated for buffers. 2325 * 2326 * However, that was when we used "dirty_ratio" to scale with 2327 * all memory, and we don't do that any more. "dirty_ratio" 2328 * is now applied to total non-HIGHPAGE memory, and as such we can't 2329 * get into the old insane situation any more where we had 2330 * large amounts of dirty pages compared to a small amount of 2331 * non-HIGHMEM memory. 2332 * 2333 * But we might still want to scale the dirty_ratio by how 2334 * much memory the box has.. 2335 */ 2336 void __init page_writeback_init(void) 2337 { 2338 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2339 2340 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2341 page_writeback_cpu_online, NULL); 2342 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2343 page_writeback_cpu_online); 2344 #ifdef CONFIG_SYSCTL 2345 register_sysctl_init("vm", vm_page_writeback_sysctls); 2346 #endif 2347 } 2348 2349 /** 2350 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2351 * @mapping: address space structure to write 2352 * @start: starting page index 2353 * @end: ending page index (inclusive) 2354 * 2355 * This function scans the page range from @start to @end (inclusive) and tags 2356 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2357 * that write_cache_pages (or whoever calls this function) will then use 2358 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2359 * used to avoid livelocking of writeback by a process steadily creating new 2360 * dirty pages in the file (thus it is important for this function to be quick 2361 * so that it can tag pages faster than a dirtying process can create them). 2362 */ 2363 void tag_pages_for_writeback(struct address_space *mapping, 2364 pgoff_t start, pgoff_t end) 2365 { 2366 XA_STATE(xas, &mapping->i_pages, start); 2367 unsigned int tagged = 0; 2368 void *page; 2369 2370 xas_lock_irq(&xas); 2371 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) { 2372 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE); 2373 if (++tagged % XA_CHECK_SCHED) 2374 continue; 2375 2376 xas_pause(&xas); 2377 xas_unlock_irq(&xas); 2378 cond_resched(); 2379 xas_lock_irq(&xas); 2380 } 2381 xas_unlock_irq(&xas); 2382 } 2383 EXPORT_SYMBOL(tag_pages_for_writeback); 2384 2385 /** 2386 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2387 * @mapping: address space structure to write 2388 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2389 * @writepage: function called for each page 2390 * @data: data passed to writepage function 2391 * 2392 * If a page is already under I/O, write_cache_pages() skips it, even 2393 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2394 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2395 * and msync() need to guarantee that all the data which was dirty at the time 2396 * the call was made get new I/O started against them. If wbc->sync_mode is 2397 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2398 * existing IO to complete. 2399 * 2400 * To avoid livelocks (when other process dirties new pages), we first tag 2401 * pages which should be written back with TOWRITE tag and only then start 2402 * writing them. For data-integrity sync we have to be careful so that we do 2403 * not miss some pages (e.g., because some other process has cleared TOWRITE 2404 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2405 * by the process clearing the DIRTY tag (and submitting the page for IO). 2406 * 2407 * To avoid deadlocks between range_cyclic writeback and callers that hold 2408 * pages in PageWriteback to aggregate IO until write_cache_pages() returns, 2409 * we do not loop back to the start of the file. Doing so causes a page 2410 * lock/page writeback access order inversion - we should only ever lock 2411 * multiple pages in ascending page->index order, and looping back to the start 2412 * of the file violates that rule and causes deadlocks. 2413 * 2414 * Return: %0 on success, negative error code otherwise 2415 */ 2416 int write_cache_pages(struct address_space *mapping, 2417 struct writeback_control *wbc, writepage_t writepage, 2418 void *data) 2419 { 2420 int ret = 0; 2421 int done = 0; 2422 int error; 2423 struct folio_batch fbatch; 2424 int nr_folios; 2425 pgoff_t index; 2426 pgoff_t end; /* Inclusive */ 2427 pgoff_t done_index; 2428 int range_whole = 0; 2429 xa_mark_t tag; 2430 2431 folio_batch_init(&fbatch); 2432 if (wbc->range_cyclic) { 2433 index = mapping->writeback_index; /* prev offset */ 2434 end = -1; 2435 } else { 2436 index = wbc->range_start >> PAGE_SHIFT; 2437 end = wbc->range_end >> PAGE_SHIFT; 2438 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2439 range_whole = 1; 2440 } 2441 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) { 2442 tag_pages_for_writeback(mapping, index, end); 2443 tag = PAGECACHE_TAG_TOWRITE; 2444 } else { 2445 tag = PAGECACHE_TAG_DIRTY; 2446 } 2447 done_index = index; 2448 while (!done && (index <= end)) { 2449 int i; 2450 2451 nr_folios = filemap_get_folios_tag(mapping, &index, end, 2452 tag, &fbatch); 2453 2454 if (nr_folios == 0) 2455 break; 2456 2457 for (i = 0; i < nr_folios; i++) { 2458 struct folio *folio = fbatch.folios[i]; 2459 unsigned long nr; 2460 2461 done_index = folio->index; 2462 2463 folio_lock(folio); 2464 2465 /* 2466 * Page truncated or invalidated. We can freely skip it 2467 * then, even for data integrity operations: the page 2468 * has disappeared concurrently, so there could be no 2469 * real expectation of this data integrity operation 2470 * even if there is now a new, dirty page at the same 2471 * pagecache address. 2472 */ 2473 if (unlikely(folio->mapping != mapping)) { 2474 continue_unlock: 2475 folio_unlock(folio); 2476 continue; 2477 } 2478 2479 if (!folio_test_dirty(folio)) { 2480 /* someone wrote it for us */ 2481 goto continue_unlock; 2482 } 2483 2484 if (folio_test_writeback(folio)) { 2485 if (wbc->sync_mode != WB_SYNC_NONE) 2486 folio_wait_writeback(folio); 2487 else 2488 goto continue_unlock; 2489 } 2490 2491 BUG_ON(folio_test_writeback(folio)); 2492 if (!folio_clear_dirty_for_io(folio)) 2493 goto continue_unlock; 2494 2495 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2496 error = writepage(folio, wbc, data); 2497 nr = folio_nr_pages(folio); 2498 if (unlikely(error)) { 2499 /* 2500 * Handle errors according to the type of 2501 * writeback. There's no need to continue for 2502 * background writeback. Just push done_index 2503 * past this page so media errors won't choke 2504 * writeout for the entire file. For integrity 2505 * writeback, we must process the entire dirty 2506 * set regardless of errors because the fs may 2507 * still have state to clear for each page. In 2508 * that case we continue processing and return 2509 * the first error. 2510 */ 2511 if (error == AOP_WRITEPAGE_ACTIVATE) { 2512 folio_unlock(folio); 2513 error = 0; 2514 } else if (wbc->sync_mode != WB_SYNC_ALL) { 2515 ret = error; 2516 done_index = folio->index + nr; 2517 done = 1; 2518 break; 2519 } 2520 if (!ret) 2521 ret = error; 2522 } 2523 2524 /* 2525 * We stop writing back only if we are not doing 2526 * integrity sync. In case of integrity sync we have to 2527 * keep going until we have written all the pages 2528 * we tagged for writeback prior to entering this loop. 2529 */ 2530 wbc->nr_to_write -= nr; 2531 if (wbc->nr_to_write <= 0 && 2532 wbc->sync_mode == WB_SYNC_NONE) { 2533 done = 1; 2534 break; 2535 } 2536 } 2537 folio_batch_release(&fbatch); 2538 cond_resched(); 2539 } 2540 2541 /* 2542 * If we hit the last page and there is more work to be done: wrap 2543 * back the index back to the start of the file for the next 2544 * time we are called. 2545 */ 2546 if (wbc->range_cyclic && !done) 2547 done_index = 0; 2548 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2549 mapping->writeback_index = done_index; 2550 2551 return ret; 2552 } 2553 EXPORT_SYMBOL(write_cache_pages); 2554 2555 static int writepage_cb(struct folio *folio, struct writeback_control *wbc, 2556 void *data) 2557 { 2558 struct address_space *mapping = data; 2559 int ret = mapping->a_ops->writepage(&folio->page, wbc); 2560 mapping_set_error(mapping, ret); 2561 return ret; 2562 } 2563 2564 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2565 { 2566 int ret; 2567 struct bdi_writeback *wb; 2568 2569 if (wbc->nr_to_write <= 0) 2570 return 0; 2571 wb = inode_to_wb_wbc(mapping->host, wbc); 2572 wb_bandwidth_estimate_start(wb); 2573 while (1) { 2574 if (mapping->a_ops->writepages) { 2575 ret = mapping->a_ops->writepages(mapping, wbc); 2576 } else if (mapping->a_ops->writepage) { 2577 struct blk_plug plug; 2578 2579 blk_start_plug(&plug); 2580 ret = write_cache_pages(mapping, wbc, writepage_cb, 2581 mapping); 2582 blk_finish_plug(&plug); 2583 } else { 2584 /* deal with chardevs and other special files */ 2585 ret = 0; 2586 } 2587 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL) 2588 break; 2589 2590 /* 2591 * Lacking an allocation context or the locality or writeback 2592 * state of any of the inode's pages, throttle based on 2593 * writeback activity on the local node. It's as good a 2594 * guess as any. 2595 */ 2596 reclaim_throttle(NODE_DATA(numa_node_id()), 2597 VMSCAN_THROTTLE_WRITEBACK); 2598 } 2599 /* 2600 * Usually few pages are written by now from those we've just submitted 2601 * but if there's constant writeback being submitted, this makes sure 2602 * writeback bandwidth is updated once in a while. 2603 */ 2604 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) + 2605 BANDWIDTH_INTERVAL)) 2606 wb_update_bandwidth(wb); 2607 return ret; 2608 } 2609 2610 /* 2611 * For address_spaces which do not use buffers nor write back. 2612 */ 2613 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio) 2614 { 2615 if (!folio_test_dirty(folio)) 2616 return !folio_test_set_dirty(folio); 2617 return false; 2618 } 2619 EXPORT_SYMBOL(noop_dirty_folio); 2620 2621 /* 2622 * Helper function for set_page_dirty family. 2623 * 2624 * Caller must hold folio_memcg_lock(). 2625 * 2626 * NOTE: This relies on being atomic wrt interrupts. 2627 */ 2628 static void folio_account_dirtied(struct folio *folio, 2629 struct address_space *mapping) 2630 { 2631 struct inode *inode = mapping->host; 2632 2633 trace_writeback_dirty_folio(folio, mapping); 2634 2635 if (mapping_can_writeback(mapping)) { 2636 struct bdi_writeback *wb; 2637 long nr = folio_nr_pages(folio); 2638 2639 inode_attach_wb(inode, folio); 2640 wb = inode_to_wb(inode); 2641 2642 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr); 2643 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 2644 __node_stat_mod_folio(folio, NR_DIRTIED, nr); 2645 wb_stat_mod(wb, WB_RECLAIMABLE, nr); 2646 wb_stat_mod(wb, WB_DIRTIED, nr); 2647 task_io_account_write(nr * PAGE_SIZE); 2648 current->nr_dirtied += nr; 2649 __this_cpu_add(bdp_ratelimits, nr); 2650 2651 mem_cgroup_track_foreign_dirty(folio, wb); 2652 } 2653 } 2654 2655 /* 2656 * Helper function for deaccounting dirty page without writeback. 2657 * 2658 * Caller must hold folio_memcg_lock(). 2659 */ 2660 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb) 2661 { 2662 long nr = folio_nr_pages(folio); 2663 2664 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2665 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2666 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2667 task_io_account_cancelled_write(nr * PAGE_SIZE); 2668 } 2669 2670 /* 2671 * Mark the folio dirty, and set it dirty in the page cache, and mark 2672 * the inode dirty. 2673 * 2674 * If warn is true, then emit a warning if the folio is not uptodate and has 2675 * not been truncated. 2676 * 2677 * The caller must hold folio_memcg_lock(). Most callers have the folio 2678 * locked. A few have the folio blocked from truncation through other 2679 * means (eg zap_vma_pages() has it mapped and is holding the page table 2680 * lock). This can also be called from mark_buffer_dirty(), which I 2681 * cannot prove is always protected against truncate. 2682 */ 2683 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping, 2684 int warn) 2685 { 2686 unsigned long flags; 2687 2688 xa_lock_irqsave(&mapping->i_pages, flags); 2689 if (folio->mapping) { /* Race with truncate? */ 2690 WARN_ON_ONCE(warn && !folio_test_uptodate(folio)); 2691 folio_account_dirtied(folio, mapping); 2692 __xa_set_mark(&mapping->i_pages, folio_index(folio), 2693 PAGECACHE_TAG_DIRTY); 2694 } 2695 xa_unlock_irqrestore(&mapping->i_pages, flags); 2696 } 2697 2698 /** 2699 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads. 2700 * @mapping: Address space this folio belongs to. 2701 * @folio: Folio to be marked as dirty. 2702 * 2703 * Filesystems which do not use buffer heads should call this function 2704 * from their set_page_dirty address space operation. It ignores the 2705 * contents of folio_get_private(), so if the filesystem marks individual 2706 * blocks as dirty, the filesystem should handle that itself. 2707 * 2708 * This is also sometimes used by filesystems which use buffer_heads when 2709 * a single buffer is being dirtied: we want to set the folio dirty in 2710 * that case, but not all the buffers. This is a "bottom-up" dirtying, 2711 * whereas block_dirty_folio() is a "top-down" dirtying. 2712 * 2713 * The caller must ensure this doesn't race with truncation. Most will 2714 * simply hold the folio lock, but e.g. zap_pte_range() calls with the 2715 * folio mapped and the pte lock held, which also locks out truncation. 2716 */ 2717 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio) 2718 { 2719 folio_memcg_lock(folio); 2720 if (folio_test_set_dirty(folio)) { 2721 folio_memcg_unlock(folio); 2722 return false; 2723 } 2724 2725 __folio_mark_dirty(folio, mapping, !folio_test_private(folio)); 2726 folio_memcg_unlock(folio); 2727 2728 if (mapping->host) { 2729 /* !PageAnon && !swapper_space */ 2730 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2731 } 2732 return true; 2733 } 2734 EXPORT_SYMBOL(filemap_dirty_folio); 2735 2736 /** 2737 * folio_redirty_for_writepage - Decline to write a dirty folio. 2738 * @wbc: The writeback control. 2739 * @folio: The folio. 2740 * 2741 * When a writepage implementation decides that it doesn't want to write 2742 * @folio for some reason, it should call this function, unlock @folio and 2743 * return 0. 2744 * 2745 * Return: True if we redirtied the folio. False if someone else dirtied 2746 * it first. 2747 */ 2748 bool folio_redirty_for_writepage(struct writeback_control *wbc, 2749 struct folio *folio) 2750 { 2751 struct address_space *mapping = folio->mapping; 2752 long nr = folio_nr_pages(folio); 2753 bool ret; 2754 2755 wbc->pages_skipped += nr; 2756 ret = filemap_dirty_folio(mapping, folio); 2757 if (mapping && mapping_can_writeback(mapping)) { 2758 struct inode *inode = mapping->host; 2759 struct bdi_writeback *wb; 2760 struct wb_lock_cookie cookie = {}; 2761 2762 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2763 current->nr_dirtied -= nr; 2764 node_stat_mod_folio(folio, NR_DIRTIED, -nr); 2765 wb_stat_mod(wb, WB_DIRTIED, -nr); 2766 unlocked_inode_to_wb_end(inode, &cookie); 2767 } 2768 return ret; 2769 } 2770 EXPORT_SYMBOL(folio_redirty_for_writepage); 2771 2772 /** 2773 * folio_mark_dirty - Mark a folio as being modified. 2774 * @folio: The folio. 2775 * 2776 * The folio may not be truncated while this function is running. 2777 * Holding the folio lock is sufficient to prevent truncation, but some 2778 * callers cannot acquire a sleeping lock. These callers instead hold 2779 * the page table lock for a page table which contains at least one page 2780 * in this folio. Truncation will block on the page table lock as it 2781 * unmaps pages before removing the folio from its mapping. 2782 * 2783 * Return: True if the folio was newly dirtied, false if it was already dirty. 2784 */ 2785 bool folio_mark_dirty(struct folio *folio) 2786 { 2787 struct address_space *mapping = folio_mapping(folio); 2788 2789 if (likely(mapping)) { 2790 /* 2791 * readahead/folio_deactivate could remain 2792 * PG_readahead/PG_reclaim due to race with folio_end_writeback 2793 * About readahead, if the folio is written, the flags would be 2794 * reset. So no problem. 2795 * About folio_deactivate, if the folio is redirtied, 2796 * the flag will be reset. So no problem. but if the 2797 * folio is used by readahead it will confuse readahead 2798 * and make it restart the size rampup process. But it's 2799 * a trivial problem. 2800 */ 2801 if (folio_test_reclaim(folio)) 2802 folio_clear_reclaim(folio); 2803 return mapping->a_ops->dirty_folio(mapping, folio); 2804 } 2805 2806 return noop_dirty_folio(mapping, folio); 2807 } 2808 EXPORT_SYMBOL(folio_mark_dirty); 2809 2810 /* 2811 * set_page_dirty() is racy if the caller has no reference against 2812 * page->mapping->host, and if the page is unlocked. This is because another 2813 * CPU could truncate the page off the mapping and then free the mapping. 2814 * 2815 * Usually, the page _is_ locked, or the caller is a user-space process which 2816 * holds a reference on the inode by having an open file. 2817 * 2818 * In other cases, the page should be locked before running set_page_dirty(). 2819 */ 2820 int set_page_dirty_lock(struct page *page) 2821 { 2822 int ret; 2823 2824 lock_page(page); 2825 ret = set_page_dirty(page); 2826 unlock_page(page); 2827 return ret; 2828 } 2829 EXPORT_SYMBOL(set_page_dirty_lock); 2830 2831 /* 2832 * This cancels just the dirty bit on the kernel page itself, it does NOT 2833 * actually remove dirty bits on any mmap's that may be around. It also 2834 * leaves the page tagged dirty, so any sync activity will still find it on 2835 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2836 * look at the dirty bits in the VM. 2837 * 2838 * Doing this should *normally* only ever be done when a page is truncated, 2839 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2840 * this when it notices that somebody has cleaned out all the buffers on a 2841 * page without actually doing it through the VM. Can you say "ext3 is 2842 * horribly ugly"? Thought you could. 2843 */ 2844 void __folio_cancel_dirty(struct folio *folio) 2845 { 2846 struct address_space *mapping = folio_mapping(folio); 2847 2848 if (mapping_can_writeback(mapping)) { 2849 struct inode *inode = mapping->host; 2850 struct bdi_writeback *wb; 2851 struct wb_lock_cookie cookie = {}; 2852 2853 folio_memcg_lock(folio); 2854 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2855 2856 if (folio_test_clear_dirty(folio)) 2857 folio_account_cleaned(folio, wb); 2858 2859 unlocked_inode_to_wb_end(inode, &cookie); 2860 folio_memcg_unlock(folio); 2861 } else { 2862 folio_clear_dirty(folio); 2863 } 2864 } 2865 EXPORT_SYMBOL(__folio_cancel_dirty); 2866 2867 /* 2868 * Clear a folio's dirty flag, while caring for dirty memory accounting. 2869 * Returns true if the folio was previously dirty. 2870 * 2871 * This is for preparing to put the folio under writeout. We leave 2872 * the folio tagged as dirty in the xarray so that a concurrent 2873 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk. 2874 * The ->writepage implementation will run either folio_start_writeback() 2875 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag 2876 * and xarray dirty tag back into sync. 2877 * 2878 * This incoherency between the folio's dirty flag and xarray tag is 2879 * unfortunate, but it only exists while the folio is locked. 2880 */ 2881 bool folio_clear_dirty_for_io(struct folio *folio) 2882 { 2883 struct address_space *mapping = folio_mapping(folio); 2884 bool ret = false; 2885 2886 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio); 2887 2888 if (mapping && mapping_can_writeback(mapping)) { 2889 struct inode *inode = mapping->host; 2890 struct bdi_writeback *wb; 2891 struct wb_lock_cookie cookie = {}; 2892 2893 /* 2894 * Yes, Virginia, this is indeed insane. 2895 * 2896 * We use this sequence to make sure that 2897 * (a) we account for dirty stats properly 2898 * (b) we tell the low-level filesystem to 2899 * mark the whole folio dirty if it was 2900 * dirty in a pagetable. Only to then 2901 * (c) clean the folio again and return 1 to 2902 * cause the writeback. 2903 * 2904 * This way we avoid all nasty races with the 2905 * dirty bit in multiple places and clearing 2906 * them concurrently from different threads. 2907 * 2908 * Note! Normally the "folio_mark_dirty(folio)" 2909 * has no effect on the actual dirty bit - since 2910 * that will already usually be set. But we 2911 * need the side effects, and it can help us 2912 * avoid races. 2913 * 2914 * We basically use the folio "master dirty bit" 2915 * as a serialization point for all the different 2916 * threads doing their things. 2917 */ 2918 if (folio_mkclean(folio)) 2919 folio_mark_dirty(folio); 2920 /* 2921 * We carefully synchronise fault handlers against 2922 * installing a dirty pte and marking the folio dirty 2923 * at this point. We do this by having them hold the 2924 * page lock while dirtying the folio, and folios are 2925 * always locked coming in here, so we get the desired 2926 * exclusion. 2927 */ 2928 wb = unlocked_inode_to_wb_begin(inode, &cookie); 2929 if (folio_test_clear_dirty(folio)) { 2930 long nr = folio_nr_pages(folio); 2931 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr); 2932 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 2933 wb_stat_mod(wb, WB_RECLAIMABLE, -nr); 2934 ret = true; 2935 } 2936 unlocked_inode_to_wb_end(inode, &cookie); 2937 return ret; 2938 } 2939 return folio_test_clear_dirty(folio); 2940 } 2941 EXPORT_SYMBOL(folio_clear_dirty_for_io); 2942 2943 static void wb_inode_writeback_start(struct bdi_writeback *wb) 2944 { 2945 atomic_inc(&wb->writeback_inodes); 2946 } 2947 2948 static void wb_inode_writeback_end(struct bdi_writeback *wb) 2949 { 2950 unsigned long flags; 2951 atomic_dec(&wb->writeback_inodes); 2952 /* 2953 * Make sure estimate of writeback throughput gets updated after 2954 * writeback completed. We delay the update by BANDWIDTH_INTERVAL 2955 * (which is the interval other bandwidth updates use for batching) so 2956 * that if multiple inodes end writeback at a similar time, they get 2957 * batched into one bandwidth update. 2958 */ 2959 spin_lock_irqsave(&wb->work_lock, flags); 2960 if (test_bit(WB_registered, &wb->state)) 2961 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL); 2962 spin_unlock_irqrestore(&wb->work_lock, flags); 2963 } 2964 2965 bool __folio_end_writeback(struct folio *folio) 2966 { 2967 long nr = folio_nr_pages(folio); 2968 struct address_space *mapping = folio_mapping(folio); 2969 bool ret; 2970 2971 folio_memcg_lock(folio); 2972 if (mapping && mapping_use_writeback_tags(mapping)) { 2973 struct inode *inode = mapping->host; 2974 struct backing_dev_info *bdi = inode_to_bdi(inode); 2975 unsigned long flags; 2976 2977 xa_lock_irqsave(&mapping->i_pages, flags); 2978 ret = folio_test_clear_writeback(folio); 2979 if (ret) { 2980 __xa_clear_mark(&mapping->i_pages, folio_index(folio), 2981 PAGECACHE_TAG_WRITEBACK); 2982 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 2983 struct bdi_writeback *wb = inode_to_wb(inode); 2984 2985 wb_stat_mod(wb, WB_WRITEBACK, -nr); 2986 __wb_writeout_add(wb, nr); 2987 if (!mapping_tagged(mapping, 2988 PAGECACHE_TAG_WRITEBACK)) 2989 wb_inode_writeback_end(wb); 2990 } 2991 } 2992 2993 if (mapping->host && !mapping_tagged(mapping, 2994 PAGECACHE_TAG_WRITEBACK)) 2995 sb_clear_inode_writeback(mapping->host); 2996 2997 xa_unlock_irqrestore(&mapping->i_pages, flags); 2998 } else { 2999 ret = folio_test_clear_writeback(folio); 3000 } 3001 if (ret) { 3002 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr); 3003 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr); 3004 node_stat_mod_folio(folio, NR_WRITTEN, nr); 3005 } 3006 folio_memcg_unlock(folio); 3007 return ret; 3008 } 3009 3010 bool __folio_start_writeback(struct folio *folio, bool keep_write) 3011 { 3012 long nr = folio_nr_pages(folio); 3013 struct address_space *mapping = folio_mapping(folio); 3014 bool ret; 3015 int access_ret; 3016 3017 folio_memcg_lock(folio); 3018 if (mapping && mapping_use_writeback_tags(mapping)) { 3019 XA_STATE(xas, &mapping->i_pages, folio_index(folio)); 3020 struct inode *inode = mapping->host; 3021 struct backing_dev_info *bdi = inode_to_bdi(inode); 3022 unsigned long flags; 3023 3024 xas_lock_irqsave(&xas, flags); 3025 xas_load(&xas); 3026 ret = folio_test_set_writeback(folio); 3027 if (!ret) { 3028 bool on_wblist; 3029 3030 on_wblist = mapping_tagged(mapping, 3031 PAGECACHE_TAG_WRITEBACK); 3032 3033 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK); 3034 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) { 3035 struct bdi_writeback *wb = inode_to_wb(inode); 3036 3037 wb_stat_mod(wb, WB_WRITEBACK, nr); 3038 if (!on_wblist) 3039 wb_inode_writeback_start(wb); 3040 } 3041 3042 /* 3043 * We can come through here when swapping 3044 * anonymous folios, so we don't necessarily 3045 * have an inode to track for sync. 3046 */ 3047 if (mapping->host && !on_wblist) 3048 sb_mark_inode_writeback(mapping->host); 3049 } 3050 if (!folio_test_dirty(folio)) 3051 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY); 3052 if (!keep_write) 3053 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE); 3054 xas_unlock_irqrestore(&xas, flags); 3055 } else { 3056 ret = folio_test_set_writeback(folio); 3057 } 3058 if (!ret) { 3059 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr); 3060 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr); 3061 } 3062 folio_memcg_unlock(folio); 3063 access_ret = arch_make_folio_accessible(folio); 3064 /* 3065 * If writeback has been triggered on a page that cannot be made 3066 * accessible, it is too late to recover here. 3067 */ 3068 VM_BUG_ON_FOLIO(access_ret != 0, folio); 3069 3070 return ret; 3071 } 3072 EXPORT_SYMBOL(__folio_start_writeback); 3073 3074 /** 3075 * folio_wait_writeback - Wait for a folio to finish writeback. 3076 * @folio: The folio to wait for. 3077 * 3078 * If the folio is currently being written back to storage, wait for the 3079 * I/O to complete. 3080 * 3081 * Context: Sleeps. Must be called in process context and with 3082 * no spinlocks held. Caller should hold a reference on the folio. 3083 * If the folio is not locked, writeback may start again after writeback 3084 * has finished. 3085 */ 3086 void folio_wait_writeback(struct folio *folio) 3087 { 3088 while (folio_test_writeback(folio)) { 3089 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3090 folio_wait_bit(folio, PG_writeback); 3091 } 3092 } 3093 EXPORT_SYMBOL_GPL(folio_wait_writeback); 3094 3095 /** 3096 * folio_wait_writeback_killable - Wait for a folio to finish writeback. 3097 * @folio: The folio to wait for. 3098 * 3099 * If the folio is currently being written back to storage, wait for the 3100 * I/O to complete or a fatal signal to arrive. 3101 * 3102 * Context: Sleeps. Must be called in process context and with 3103 * no spinlocks held. Caller should hold a reference on the folio. 3104 * If the folio is not locked, writeback may start again after writeback 3105 * has finished. 3106 * Return: 0 on success, -EINTR if we get a fatal signal while waiting. 3107 */ 3108 int folio_wait_writeback_killable(struct folio *folio) 3109 { 3110 while (folio_test_writeback(folio)) { 3111 trace_folio_wait_writeback(folio, folio_mapping(folio)); 3112 if (folio_wait_bit_killable(folio, PG_writeback)) 3113 return -EINTR; 3114 } 3115 3116 return 0; 3117 } 3118 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable); 3119 3120 /** 3121 * folio_wait_stable() - wait for writeback to finish, if necessary. 3122 * @folio: The folio to wait on. 3123 * 3124 * This function determines if the given folio is related to a backing 3125 * device that requires folio contents to be held stable during writeback. 3126 * If so, then it will wait for any pending writeback to complete. 3127 * 3128 * Context: Sleeps. Must be called in process context and with 3129 * no spinlocks held. Caller should hold a reference on the folio. 3130 * If the folio is not locked, writeback may start again after writeback 3131 * has finished. 3132 */ 3133 void folio_wait_stable(struct folio *folio) 3134 { 3135 if (mapping_stable_writes(folio_mapping(folio))) 3136 folio_wait_writeback(folio); 3137 } 3138 EXPORT_SYMBOL_GPL(folio_wait_stable); 3139