xref: /openbmc/linux/mm/page-writeback.c (revision 110e6f26)
1 /*
2  * mm/page-writeback.c
3  *
4  * Copyright (C) 2002, Linus Torvalds.
5  * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
6  *
7  * Contains functions related to writing back dirty pages at the
8  * address_space level.
9  *
10  * 10Apr2002	Andrew Morton
11  *		Initial version
12  */
13 
14 #include <linux/kernel.h>
15 #include <linux/export.h>
16 #include <linux/spinlock.h>
17 #include <linux/fs.h>
18 #include <linux/mm.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/mm_inline.h>
40 #include <trace/events/writeback.h>
41 
42 #include "internal.h"
43 
44 /*
45  * Sleep at most 200ms at a time in balance_dirty_pages().
46  */
47 #define MAX_PAUSE		max(HZ/5, 1)
48 
49 /*
50  * Try to keep balance_dirty_pages() call intervals higher than this many pages
51  * by raising pause time to max_pause when falls below it.
52  */
53 #define DIRTY_POLL_THRESH	(128 >> (PAGE_SHIFT - 10))
54 
55 /*
56  * Estimate write bandwidth at 200ms intervals.
57  */
58 #define BANDWIDTH_INTERVAL	max(HZ/5, 1)
59 
60 #define RATELIMIT_CALC_SHIFT	10
61 
62 /*
63  * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64  * will look to see if it needs to force writeback or throttling.
65  */
66 static long ratelimit_pages = 32;
67 
68 /* The following parameters are exported via /proc/sys/vm */
69 
70 /*
71  * Start background writeback (via writeback threads) at this percentage
72  */
73 int dirty_background_ratio = 10;
74 
75 /*
76  * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77  * dirty_background_ratio * the amount of dirtyable memory
78  */
79 unsigned long dirty_background_bytes;
80 
81 /*
82  * free highmem will not be subtracted from the total free memory
83  * for calculating free ratios if vm_highmem_is_dirtyable is true
84  */
85 int vm_highmem_is_dirtyable;
86 
87 /*
88  * The generator of dirty data starts writeback at this percentage
89  */
90 int vm_dirty_ratio = 20;
91 
92 /*
93  * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94  * vm_dirty_ratio * the amount of dirtyable memory
95  */
96 unsigned long vm_dirty_bytes;
97 
98 /*
99  * The interval between `kupdate'-style writebacks
100  */
101 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
102 
103 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104 
105 /*
106  * The longest time for which data is allowed to remain dirty
107  */
108 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
109 
110 /*
111  * Flag that makes the machine dump writes/reads and block dirtyings.
112  */
113 int block_dump;
114 
115 /*
116  * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117  * a full sync is triggered after this time elapses without any disk activity.
118  */
119 int laptop_mode;
120 
121 EXPORT_SYMBOL(laptop_mode);
122 
123 /* End of sysctl-exported parameters */
124 
125 struct wb_domain global_wb_domain;
126 
127 /* consolidated parameters for balance_dirty_pages() and its subroutines */
128 struct dirty_throttle_control {
129 #ifdef CONFIG_CGROUP_WRITEBACK
130 	struct wb_domain	*dom;
131 	struct dirty_throttle_control *gdtc;	/* only set in memcg dtc's */
132 #endif
133 	struct bdi_writeback	*wb;
134 	struct fprop_local_percpu *wb_completions;
135 
136 	unsigned long		avail;		/* dirtyable */
137 	unsigned long		dirty;		/* file_dirty + write + nfs */
138 	unsigned long		thresh;		/* dirty threshold */
139 	unsigned long		bg_thresh;	/* dirty background threshold */
140 
141 	unsigned long		wb_dirty;	/* per-wb counterparts */
142 	unsigned long		wb_thresh;
143 	unsigned long		wb_bg_thresh;
144 
145 	unsigned long		pos_ratio;
146 };
147 
148 /*
149  * Length of period for aging writeout fractions of bdis. This is an
150  * arbitrarily chosen number. The longer the period, the slower fractions will
151  * reflect changes in current writeout rate.
152  */
153 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
154 
155 #ifdef CONFIG_CGROUP_WRITEBACK
156 
157 #define GDTC_INIT(__wb)		.wb = (__wb),				\
158 				.dom = &global_wb_domain,		\
159 				.wb_completions = &(__wb)->completions
160 
161 #define GDTC_INIT_NO_WB		.dom = &global_wb_domain
162 
163 #define MDTC_INIT(__wb, __gdtc)	.wb = (__wb),				\
164 				.dom = mem_cgroup_wb_domain(__wb),	\
165 				.wb_completions = &(__wb)->memcg_completions, \
166 				.gdtc = __gdtc
167 
168 static bool mdtc_valid(struct dirty_throttle_control *dtc)
169 {
170 	return dtc->dom;
171 }
172 
173 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
174 {
175 	return dtc->dom;
176 }
177 
178 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
179 {
180 	return mdtc->gdtc;
181 }
182 
183 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
184 {
185 	return &wb->memcg_completions;
186 }
187 
188 static void wb_min_max_ratio(struct bdi_writeback *wb,
189 			     unsigned long *minp, unsigned long *maxp)
190 {
191 	unsigned long this_bw = wb->avg_write_bandwidth;
192 	unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
193 	unsigned long long min = wb->bdi->min_ratio;
194 	unsigned long long max = wb->bdi->max_ratio;
195 
196 	/*
197 	 * @wb may already be clean by the time control reaches here and
198 	 * the total may not include its bw.
199 	 */
200 	if (this_bw < tot_bw) {
201 		if (min) {
202 			min *= this_bw;
203 			do_div(min, tot_bw);
204 		}
205 		if (max < 100) {
206 			max *= this_bw;
207 			do_div(max, tot_bw);
208 		}
209 	}
210 
211 	*minp = min;
212 	*maxp = max;
213 }
214 
215 #else	/* CONFIG_CGROUP_WRITEBACK */
216 
217 #define GDTC_INIT(__wb)		.wb = (__wb),                           \
218 				.wb_completions = &(__wb)->completions
219 #define GDTC_INIT_NO_WB
220 #define MDTC_INIT(__wb, __gdtc)
221 
222 static bool mdtc_valid(struct dirty_throttle_control *dtc)
223 {
224 	return false;
225 }
226 
227 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
228 {
229 	return &global_wb_domain;
230 }
231 
232 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
233 {
234 	return NULL;
235 }
236 
237 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
238 {
239 	return NULL;
240 }
241 
242 static void wb_min_max_ratio(struct bdi_writeback *wb,
243 			     unsigned long *minp, unsigned long *maxp)
244 {
245 	*minp = wb->bdi->min_ratio;
246 	*maxp = wb->bdi->max_ratio;
247 }
248 
249 #endif	/* CONFIG_CGROUP_WRITEBACK */
250 
251 /*
252  * In a memory zone, there is a certain amount of pages we consider
253  * available for the page cache, which is essentially the number of
254  * free and reclaimable pages, minus some zone reserves to protect
255  * lowmem and the ability to uphold the zone's watermarks without
256  * requiring writeback.
257  *
258  * This number of dirtyable pages is the base value of which the
259  * user-configurable dirty ratio is the effictive number of pages that
260  * are allowed to be actually dirtied.  Per individual zone, or
261  * globally by using the sum of dirtyable pages over all zones.
262  *
263  * Because the user is allowed to specify the dirty limit globally as
264  * absolute number of bytes, calculating the per-zone dirty limit can
265  * require translating the configured limit into a percentage of
266  * global dirtyable memory first.
267  */
268 
269 /**
270  * zone_dirtyable_memory - number of dirtyable pages in a zone
271  * @zone: the zone
272  *
273  * Returns the zone's number of pages potentially available for dirty
274  * page cache.  This is the base value for the per-zone dirty limits.
275  */
276 static unsigned long zone_dirtyable_memory(struct zone *zone)
277 {
278 	unsigned long nr_pages;
279 
280 	nr_pages = zone_page_state(zone, NR_FREE_PAGES);
281 	/*
282 	 * Pages reserved for the kernel should not be considered
283 	 * dirtyable, to prevent a situation where reclaim has to
284 	 * clean pages in order to balance the zones.
285 	 */
286 	nr_pages -= min(nr_pages, zone->totalreserve_pages);
287 
288 	nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
289 	nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
290 
291 	return nr_pages;
292 }
293 
294 static unsigned long highmem_dirtyable_memory(unsigned long total)
295 {
296 #ifdef CONFIG_HIGHMEM
297 	int node;
298 	unsigned long x = 0;
299 
300 	for_each_node_state(node, N_HIGH_MEMORY) {
301 		struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
302 
303 		x += zone_dirtyable_memory(z);
304 	}
305 	/*
306 	 * Unreclaimable memory (kernel memory or anonymous memory
307 	 * without swap) can bring down the dirtyable pages below
308 	 * the zone's dirty balance reserve and the above calculation
309 	 * will underflow.  However we still want to add in nodes
310 	 * which are below threshold (negative values) to get a more
311 	 * accurate calculation but make sure that the total never
312 	 * underflows.
313 	 */
314 	if ((long)x < 0)
315 		x = 0;
316 
317 	/*
318 	 * Make sure that the number of highmem pages is never larger
319 	 * than the number of the total dirtyable memory. This can only
320 	 * occur in very strange VM situations but we want to make sure
321 	 * that this does not occur.
322 	 */
323 	return min(x, total);
324 #else
325 	return 0;
326 #endif
327 }
328 
329 /**
330  * global_dirtyable_memory - number of globally dirtyable pages
331  *
332  * Returns the global number of pages potentially available for dirty
333  * page cache.  This is the base value for the global dirty limits.
334  */
335 static unsigned long global_dirtyable_memory(void)
336 {
337 	unsigned long x;
338 
339 	x = global_page_state(NR_FREE_PAGES);
340 	/*
341 	 * Pages reserved for the kernel should not be considered
342 	 * dirtyable, to prevent a situation where reclaim has to
343 	 * clean pages in order to balance the zones.
344 	 */
345 	x -= min(x, totalreserve_pages);
346 
347 	x += global_page_state(NR_INACTIVE_FILE);
348 	x += global_page_state(NR_ACTIVE_FILE);
349 
350 	if (!vm_highmem_is_dirtyable)
351 		x -= highmem_dirtyable_memory(x);
352 
353 	return x + 1;	/* Ensure that we never return 0 */
354 }
355 
356 /**
357  * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
358  * @dtc: dirty_throttle_control of interest
359  *
360  * Calculate @dtc->thresh and ->bg_thresh considering
361  * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}.  The caller
362  * must ensure that @dtc->avail is set before calling this function.  The
363  * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
364  * real-time tasks.
365  */
366 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
367 {
368 	const unsigned long available_memory = dtc->avail;
369 	struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
370 	unsigned long bytes = vm_dirty_bytes;
371 	unsigned long bg_bytes = dirty_background_bytes;
372 	unsigned long ratio = vm_dirty_ratio;
373 	unsigned long bg_ratio = dirty_background_ratio;
374 	unsigned long thresh;
375 	unsigned long bg_thresh;
376 	struct task_struct *tsk;
377 
378 	/* gdtc is !NULL iff @dtc is for memcg domain */
379 	if (gdtc) {
380 		unsigned long global_avail = gdtc->avail;
381 
382 		/*
383 		 * The byte settings can't be applied directly to memcg
384 		 * domains.  Convert them to ratios by scaling against
385 		 * globally available memory.
386 		 */
387 		if (bytes)
388 			ratio = min(DIV_ROUND_UP(bytes, PAGE_SIZE) * 100 /
389 				    global_avail, 100UL);
390 		if (bg_bytes)
391 			bg_ratio = min(DIV_ROUND_UP(bg_bytes, PAGE_SIZE) * 100 /
392 				       global_avail, 100UL);
393 		bytes = bg_bytes = 0;
394 	}
395 
396 	if (bytes)
397 		thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
398 	else
399 		thresh = (ratio * available_memory) / 100;
400 
401 	if (bg_bytes)
402 		bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
403 	else
404 		bg_thresh = (bg_ratio * available_memory) / 100;
405 
406 	if (bg_thresh >= thresh)
407 		bg_thresh = thresh / 2;
408 	tsk = current;
409 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
410 		bg_thresh += bg_thresh / 4;
411 		thresh += thresh / 4;
412 	}
413 	dtc->thresh = thresh;
414 	dtc->bg_thresh = bg_thresh;
415 
416 	/* we should eventually report the domain in the TP */
417 	if (!gdtc)
418 		trace_global_dirty_state(bg_thresh, thresh);
419 }
420 
421 /**
422  * global_dirty_limits - background-writeback and dirty-throttling thresholds
423  * @pbackground: out parameter for bg_thresh
424  * @pdirty: out parameter for thresh
425  *
426  * Calculate bg_thresh and thresh for global_wb_domain.  See
427  * domain_dirty_limits() for details.
428  */
429 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
430 {
431 	struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
432 
433 	gdtc.avail = global_dirtyable_memory();
434 	domain_dirty_limits(&gdtc);
435 
436 	*pbackground = gdtc.bg_thresh;
437 	*pdirty = gdtc.thresh;
438 }
439 
440 /**
441  * zone_dirty_limit - maximum number of dirty pages allowed in a zone
442  * @zone: the zone
443  *
444  * Returns the maximum number of dirty pages allowed in a zone, based
445  * on the zone's dirtyable memory.
446  */
447 static unsigned long zone_dirty_limit(struct zone *zone)
448 {
449 	unsigned long zone_memory = zone_dirtyable_memory(zone);
450 	struct task_struct *tsk = current;
451 	unsigned long dirty;
452 
453 	if (vm_dirty_bytes)
454 		dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
455 			zone_memory / global_dirtyable_memory();
456 	else
457 		dirty = vm_dirty_ratio * zone_memory / 100;
458 
459 	if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
460 		dirty += dirty / 4;
461 
462 	return dirty;
463 }
464 
465 /**
466  * zone_dirty_ok - tells whether a zone is within its dirty limits
467  * @zone: the zone to check
468  *
469  * Returns %true when the dirty pages in @zone are within the zone's
470  * dirty limit, %false if the limit is exceeded.
471  */
472 bool zone_dirty_ok(struct zone *zone)
473 {
474 	unsigned long limit = zone_dirty_limit(zone);
475 
476 	return zone_page_state(zone, NR_FILE_DIRTY) +
477 	       zone_page_state(zone, NR_UNSTABLE_NFS) +
478 	       zone_page_state(zone, NR_WRITEBACK) <= limit;
479 }
480 
481 int dirty_background_ratio_handler(struct ctl_table *table, int write,
482 		void __user *buffer, size_t *lenp,
483 		loff_t *ppos)
484 {
485 	int ret;
486 
487 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
488 	if (ret == 0 && write)
489 		dirty_background_bytes = 0;
490 	return ret;
491 }
492 
493 int dirty_background_bytes_handler(struct ctl_table *table, int write,
494 		void __user *buffer, size_t *lenp,
495 		loff_t *ppos)
496 {
497 	int ret;
498 
499 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
500 	if (ret == 0 && write)
501 		dirty_background_ratio = 0;
502 	return ret;
503 }
504 
505 int dirty_ratio_handler(struct ctl_table *table, int write,
506 		void __user *buffer, size_t *lenp,
507 		loff_t *ppos)
508 {
509 	int old_ratio = vm_dirty_ratio;
510 	int ret;
511 
512 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
513 	if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
514 		writeback_set_ratelimit();
515 		vm_dirty_bytes = 0;
516 	}
517 	return ret;
518 }
519 
520 int dirty_bytes_handler(struct ctl_table *table, int write,
521 		void __user *buffer, size_t *lenp,
522 		loff_t *ppos)
523 {
524 	unsigned long old_bytes = vm_dirty_bytes;
525 	int ret;
526 
527 	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
528 	if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
529 		writeback_set_ratelimit();
530 		vm_dirty_ratio = 0;
531 	}
532 	return ret;
533 }
534 
535 static unsigned long wp_next_time(unsigned long cur_time)
536 {
537 	cur_time += VM_COMPLETIONS_PERIOD_LEN;
538 	/* 0 has a special meaning... */
539 	if (!cur_time)
540 		return 1;
541 	return cur_time;
542 }
543 
544 static void wb_domain_writeout_inc(struct wb_domain *dom,
545 				   struct fprop_local_percpu *completions,
546 				   unsigned int max_prop_frac)
547 {
548 	__fprop_inc_percpu_max(&dom->completions, completions,
549 			       max_prop_frac);
550 	/* First event after period switching was turned off? */
551 	if (!unlikely(dom->period_time)) {
552 		/*
553 		 * We can race with other __bdi_writeout_inc calls here but
554 		 * it does not cause any harm since the resulting time when
555 		 * timer will fire and what is in writeout_period_time will be
556 		 * roughly the same.
557 		 */
558 		dom->period_time = wp_next_time(jiffies);
559 		mod_timer(&dom->period_timer, dom->period_time);
560 	}
561 }
562 
563 /*
564  * Increment @wb's writeout completion count and the global writeout
565  * completion count. Called from test_clear_page_writeback().
566  */
567 static inline void __wb_writeout_inc(struct bdi_writeback *wb)
568 {
569 	struct wb_domain *cgdom;
570 
571 	__inc_wb_stat(wb, WB_WRITTEN);
572 	wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
573 			       wb->bdi->max_prop_frac);
574 
575 	cgdom = mem_cgroup_wb_domain(wb);
576 	if (cgdom)
577 		wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
578 				       wb->bdi->max_prop_frac);
579 }
580 
581 void wb_writeout_inc(struct bdi_writeback *wb)
582 {
583 	unsigned long flags;
584 
585 	local_irq_save(flags);
586 	__wb_writeout_inc(wb);
587 	local_irq_restore(flags);
588 }
589 EXPORT_SYMBOL_GPL(wb_writeout_inc);
590 
591 /*
592  * On idle system, we can be called long after we scheduled because we use
593  * deferred timers so count with missed periods.
594  */
595 static void writeout_period(unsigned long t)
596 {
597 	struct wb_domain *dom = (void *)t;
598 	int miss_periods = (jiffies - dom->period_time) /
599 						 VM_COMPLETIONS_PERIOD_LEN;
600 
601 	if (fprop_new_period(&dom->completions, miss_periods + 1)) {
602 		dom->period_time = wp_next_time(dom->period_time +
603 				miss_periods * VM_COMPLETIONS_PERIOD_LEN);
604 		mod_timer(&dom->period_timer, dom->period_time);
605 	} else {
606 		/*
607 		 * Aging has zeroed all fractions. Stop wasting CPU on period
608 		 * updates.
609 		 */
610 		dom->period_time = 0;
611 	}
612 }
613 
614 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
615 {
616 	memset(dom, 0, sizeof(*dom));
617 
618 	spin_lock_init(&dom->lock);
619 
620 	init_timer_deferrable(&dom->period_timer);
621 	dom->period_timer.function = writeout_period;
622 	dom->period_timer.data = (unsigned long)dom;
623 
624 	dom->dirty_limit_tstamp = jiffies;
625 
626 	return fprop_global_init(&dom->completions, gfp);
627 }
628 
629 #ifdef CONFIG_CGROUP_WRITEBACK
630 void wb_domain_exit(struct wb_domain *dom)
631 {
632 	del_timer_sync(&dom->period_timer);
633 	fprop_global_destroy(&dom->completions);
634 }
635 #endif
636 
637 /*
638  * bdi_min_ratio keeps the sum of the minimum dirty shares of all
639  * registered backing devices, which, for obvious reasons, can not
640  * exceed 100%.
641  */
642 static unsigned int bdi_min_ratio;
643 
644 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
645 {
646 	int ret = 0;
647 
648 	spin_lock_bh(&bdi_lock);
649 	if (min_ratio > bdi->max_ratio) {
650 		ret = -EINVAL;
651 	} else {
652 		min_ratio -= bdi->min_ratio;
653 		if (bdi_min_ratio + min_ratio < 100) {
654 			bdi_min_ratio += min_ratio;
655 			bdi->min_ratio += min_ratio;
656 		} else {
657 			ret = -EINVAL;
658 		}
659 	}
660 	spin_unlock_bh(&bdi_lock);
661 
662 	return ret;
663 }
664 
665 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
666 {
667 	int ret = 0;
668 
669 	if (max_ratio > 100)
670 		return -EINVAL;
671 
672 	spin_lock_bh(&bdi_lock);
673 	if (bdi->min_ratio > max_ratio) {
674 		ret = -EINVAL;
675 	} else {
676 		bdi->max_ratio = max_ratio;
677 		bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
678 	}
679 	spin_unlock_bh(&bdi_lock);
680 
681 	return ret;
682 }
683 EXPORT_SYMBOL(bdi_set_max_ratio);
684 
685 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
686 					   unsigned long bg_thresh)
687 {
688 	return (thresh + bg_thresh) / 2;
689 }
690 
691 static unsigned long hard_dirty_limit(struct wb_domain *dom,
692 				      unsigned long thresh)
693 {
694 	return max(thresh, dom->dirty_limit);
695 }
696 
697 /*
698  * Memory which can be further allocated to a memcg domain is capped by
699  * system-wide clean memory excluding the amount being used in the domain.
700  */
701 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
702 			    unsigned long filepages, unsigned long headroom)
703 {
704 	struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
705 	unsigned long clean = filepages - min(filepages, mdtc->dirty);
706 	unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
707 	unsigned long other_clean = global_clean - min(global_clean, clean);
708 
709 	mdtc->avail = filepages + min(headroom, other_clean);
710 }
711 
712 /**
713  * __wb_calc_thresh - @wb's share of dirty throttling threshold
714  * @dtc: dirty_throttle_context of interest
715  *
716  * Returns @wb's dirty limit in pages. The term "dirty" in the context of
717  * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
718  *
719  * Note that balance_dirty_pages() will only seriously take it as a hard limit
720  * when sleeping max_pause per page is not enough to keep the dirty pages under
721  * control. For example, when the device is completely stalled due to some error
722  * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
723  * In the other normal situations, it acts more gently by throttling the tasks
724  * more (rather than completely block them) when the wb dirty pages go high.
725  *
726  * It allocates high/low dirty limits to fast/slow devices, in order to prevent
727  * - starving fast devices
728  * - piling up dirty pages (that will take long time to sync) on slow devices
729  *
730  * The wb's share of dirty limit will be adapting to its throughput and
731  * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
732  */
733 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
734 {
735 	struct wb_domain *dom = dtc_dom(dtc);
736 	unsigned long thresh = dtc->thresh;
737 	u64 wb_thresh;
738 	long numerator, denominator;
739 	unsigned long wb_min_ratio, wb_max_ratio;
740 
741 	/*
742 	 * Calculate this BDI's share of the thresh ratio.
743 	 */
744 	fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
745 			      &numerator, &denominator);
746 
747 	wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
748 	wb_thresh *= numerator;
749 	do_div(wb_thresh, denominator);
750 
751 	wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
752 
753 	wb_thresh += (thresh * wb_min_ratio) / 100;
754 	if (wb_thresh > (thresh * wb_max_ratio) / 100)
755 		wb_thresh = thresh * wb_max_ratio / 100;
756 
757 	return wb_thresh;
758 }
759 
760 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
761 {
762 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
763 					       .thresh = thresh };
764 	return __wb_calc_thresh(&gdtc);
765 }
766 
767 /*
768  *                           setpoint - dirty 3
769  *        f(dirty) := 1.0 + (----------------)
770  *                           limit - setpoint
771  *
772  * it's a 3rd order polynomial that subjects to
773  *
774  * (1) f(freerun)  = 2.0 => rampup dirty_ratelimit reasonably fast
775  * (2) f(setpoint) = 1.0 => the balance point
776  * (3) f(limit)    = 0   => the hard limit
777  * (4) df/dx      <= 0	 => negative feedback control
778  * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
779  *     => fast response on large errors; small oscillation near setpoint
780  */
781 static long long pos_ratio_polynom(unsigned long setpoint,
782 					  unsigned long dirty,
783 					  unsigned long limit)
784 {
785 	long long pos_ratio;
786 	long x;
787 
788 	x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
789 		      (limit - setpoint) | 1);
790 	pos_ratio = x;
791 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
792 	pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
793 	pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
794 
795 	return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
796 }
797 
798 /*
799  * Dirty position control.
800  *
801  * (o) global/bdi setpoints
802  *
803  * We want the dirty pages be balanced around the global/wb setpoints.
804  * When the number of dirty pages is higher/lower than the setpoint, the
805  * dirty position control ratio (and hence task dirty ratelimit) will be
806  * decreased/increased to bring the dirty pages back to the setpoint.
807  *
808  *     pos_ratio = 1 << RATELIMIT_CALC_SHIFT
809  *
810  *     if (dirty < setpoint) scale up   pos_ratio
811  *     if (dirty > setpoint) scale down pos_ratio
812  *
813  *     if (wb_dirty < wb_setpoint) scale up   pos_ratio
814  *     if (wb_dirty > wb_setpoint) scale down pos_ratio
815  *
816  *     task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
817  *
818  * (o) global control line
819  *
820  *     ^ pos_ratio
821  *     |
822  *     |            |<===== global dirty control scope ======>|
823  * 2.0 .............*
824  *     |            .*
825  *     |            . *
826  *     |            .   *
827  *     |            .     *
828  *     |            .        *
829  *     |            .            *
830  * 1.0 ................................*
831  *     |            .                  .     *
832  *     |            .                  .          *
833  *     |            .                  .              *
834  *     |            .                  .                 *
835  *     |            .                  .                    *
836  *   0 +------------.------------------.----------------------*------------->
837  *           freerun^          setpoint^                 limit^   dirty pages
838  *
839  * (o) wb control line
840  *
841  *     ^ pos_ratio
842  *     |
843  *     |            *
844  *     |              *
845  *     |                *
846  *     |                  *
847  *     |                    * |<=========== span ============>|
848  * 1.0 .......................*
849  *     |                      . *
850  *     |                      .   *
851  *     |                      .     *
852  *     |                      .       *
853  *     |                      .         *
854  *     |                      .           *
855  *     |                      .             *
856  *     |                      .               *
857  *     |                      .                 *
858  *     |                      .                   *
859  *     |                      .                     *
860  * 1/4 ...............................................* * * * * * * * * * * *
861  *     |                      .                         .
862  *     |                      .                           .
863  *     |                      .                             .
864  *   0 +----------------------.-------------------------------.------------->
865  *                wb_setpoint^                    x_intercept^
866  *
867  * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
868  * be smoothly throttled down to normal if it starts high in situations like
869  * - start writing to a slow SD card and a fast disk at the same time. The SD
870  *   card's wb_dirty may rush to many times higher than wb_setpoint.
871  * - the wb dirty thresh drops quickly due to change of JBOD workload
872  */
873 static void wb_position_ratio(struct dirty_throttle_control *dtc)
874 {
875 	struct bdi_writeback *wb = dtc->wb;
876 	unsigned long write_bw = wb->avg_write_bandwidth;
877 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
878 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
879 	unsigned long wb_thresh = dtc->wb_thresh;
880 	unsigned long x_intercept;
881 	unsigned long setpoint;		/* dirty pages' target balance point */
882 	unsigned long wb_setpoint;
883 	unsigned long span;
884 	long long pos_ratio;		/* for scaling up/down the rate limit */
885 	long x;
886 
887 	dtc->pos_ratio = 0;
888 
889 	if (unlikely(dtc->dirty >= limit))
890 		return;
891 
892 	/*
893 	 * global setpoint
894 	 *
895 	 * See comment for pos_ratio_polynom().
896 	 */
897 	setpoint = (freerun + limit) / 2;
898 	pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
899 
900 	/*
901 	 * The strictlimit feature is a tool preventing mistrusted filesystems
902 	 * from growing a large number of dirty pages before throttling. For
903 	 * such filesystems balance_dirty_pages always checks wb counters
904 	 * against wb limits. Even if global "nr_dirty" is under "freerun".
905 	 * This is especially important for fuse which sets bdi->max_ratio to
906 	 * 1% by default. Without strictlimit feature, fuse writeback may
907 	 * consume arbitrary amount of RAM because it is accounted in
908 	 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
909 	 *
910 	 * Here, in wb_position_ratio(), we calculate pos_ratio based on
911 	 * two values: wb_dirty and wb_thresh. Let's consider an example:
912 	 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
913 	 * limits are set by default to 10% and 20% (background and throttle).
914 	 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
915 	 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
916 	 * about ~6K pages (as the average of background and throttle wb
917 	 * limits). The 3rd order polynomial will provide positive feedback if
918 	 * wb_dirty is under wb_setpoint and vice versa.
919 	 *
920 	 * Note, that we cannot use global counters in these calculations
921 	 * because we want to throttle process writing to a strictlimit wb
922 	 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
923 	 * in the example above).
924 	 */
925 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
926 		long long wb_pos_ratio;
927 
928 		if (dtc->wb_dirty < 8) {
929 			dtc->pos_ratio = min_t(long long, pos_ratio * 2,
930 					   2 << RATELIMIT_CALC_SHIFT);
931 			return;
932 		}
933 
934 		if (dtc->wb_dirty >= wb_thresh)
935 			return;
936 
937 		wb_setpoint = dirty_freerun_ceiling(wb_thresh,
938 						    dtc->wb_bg_thresh);
939 
940 		if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
941 			return;
942 
943 		wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
944 						 wb_thresh);
945 
946 		/*
947 		 * Typically, for strictlimit case, wb_setpoint << setpoint
948 		 * and pos_ratio >> wb_pos_ratio. In the other words global
949 		 * state ("dirty") is not limiting factor and we have to
950 		 * make decision based on wb counters. But there is an
951 		 * important case when global pos_ratio should get precedence:
952 		 * global limits are exceeded (e.g. due to activities on other
953 		 * wb's) while given strictlimit wb is below limit.
954 		 *
955 		 * "pos_ratio * wb_pos_ratio" would work for the case above,
956 		 * but it would look too non-natural for the case of all
957 		 * activity in the system coming from a single strictlimit wb
958 		 * with bdi->max_ratio == 100%.
959 		 *
960 		 * Note that min() below somewhat changes the dynamics of the
961 		 * control system. Normally, pos_ratio value can be well over 3
962 		 * (when globally we are at freerun and wb is well below wb
963 		 * setpoint). Now the maximum pos_ratio in the same situation
964 		 * is 2. We might want to tweak this if we observe the control
965 		 * system is too slow to adapt.
966 		 */
967 		dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
968 		return;
969 	}
970 
971 	/*
972 	 * We have computed basic pos_ratio above based on global situation. If
973 	 * the wb is over/under its share of dirty pages, we want to scale
974 	 * pos_ratio further down/up. That is done by the following mechanism.
975 	 */
976 
977 	/*
978 	 * wb setpoint
979 	 *
980 	 *        f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
981 	 *
982 	 *                        x_intercept - wb_dirty
983 	 *                     := --------------------------
984 	 *                        x_intercept - wb_setpoint
985 	 *
986 	 * The main wb control line is a linear function that subjects to
987 	 *
988 	 * (1) f(wb_setpoint) = 1.0
989 	 * (2) k = - 1 / (8 * write_bw)  (in single wb case)
990 	 *     or equally: x_intercept = wb_setpoint + 8 * write_bw
991 	 *
992 	 * For single wb case, the dirty pages are observed to fluctuate
993 	 * regularly within range
994 	 *        [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
995 	 * for various filesystems, where (2) can yield in a reasonable 12.5%
996 	 * fluctuation range for pos_ratio.
997 	 *
998 	 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
999 	 * own size, so move the slope over accordingly and choose a slope that
1000 	 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1001 	 */
1002 	if (unlikely(wb_thresh > dtc->thresh))
1003 		wb_thresh = dtc->thresh;
1004 	/*
1005 	 * It's very possible that wb_thresh is close to 0 not because the
1006 	 * device is slow, but that it has remained inactive for long time.
1007 	 * Honour such devices a reasonable good (hopefully IO efficient)
1008 	 * threshold, so that the occasional writes won't be blocked and active
1009 	 * writes can rampup the threshold quickly.
1010 	 */
1011 	wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1012 	/*
1013 	 * scale global setpoint to wb's:
1014 	 *	wb_setpoint = setpoint * wb_thresh / thresh
1015 	 */
1016 	x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1017 	wb_setpoint = setpoint * (u64)x >> 16;
1018 	/*
1019 	 * Use span=(8*write_bw) in single wb case as indicated by
1020 	 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1021 	 *
1022 	 *        wb_thresh                    thresh - wb_thresh
1023 	 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1024 	 *         thresh                           thresh
1025 	 */
1026 	span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1027 	x_intercept = wb_setpoint + span;
1028 
1029 	if (dtc->wb_dirty < x_intercept - span / 4) {
1030 		pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1031 				      (x_intercept - wb_setpoint) | 1);
1032 	} else
1033 		pos_ratio /= 4;
1034 
1035 	/*
1036 	 * wb reserve area, safeguard against dirty pool underrun and disk idle
1037 	 * It may push the desired control point of global dirty pages higher
1038 	 * than setpoint.
1039 	 */
1040 	x_intercept = wb_thresh / 2;
1041 	if (dtc->wb_dirty < x_intercept) {
1042 		if (dtc->wb_dirty > x_intercept / 8)
1043 			pos_ratio = div_u64(pos_ratio * x_intercept,
1044 					    dtc->wb_dirty);
1045 		else
1046 			pos_ratio *= 8;
1047 	}
1048 
1049 	dtc->pos_ratio = pos_ratio;
1050 }
1051 
1052 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1053 				      unsigned long elapsed,
1054 				      unsigned long written)
1055 {
1056 	const unsigned long period = roundup_pow_of_two(3 * HZ);
1057 	unsigned long avg = wb->avg_write_bandwidth;
1058 	unsigned long old = wb->write_bandwidth;
1059 	u64 bw;
1060 
1061 	/*
1062 	 * bw = written * HZ / elapsed
1063 	 *
1064 	 *                   bw * elapsed + write_bandwidth * (period - elapsed)
1065 	 * write_bandwidth = ---------------------------------------------------
1066 	 *                                          period
1067 	 *
1068 	 * @written may have decreased due to account_page_redirty().
1069 	 * Avoid underflowing @bw calculation.
1070 	 */
1071 	bw = written - min(written, wb->written_stamp);
1072 	bw *= HZ;
1073 	if (unlikely(elapsed > period)) {
1074 		do_div(bw, elapsed);
1075 		avg = bw;
1076 		goto out;
1077 	}
1078 	bw += (u64)wb->write_bandwidth * (period - elapsed);
1079 	bw >>= ilog2(period);
1080 
1081 	/*
1082 	 * one more level of smoothing, for filtering out sudden spikes
1083 	 */
1084 	if (avg > old && old >= (unsigned long)bw)
1085 		avg -= (avg - old) >> 3;
1086 
1087 	if (avg < old && old <= (unsigned long)bw)
1088 		avg += (old - avg) >> 3;
1089 
1090 out:
1091 	/* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1092 	avg = max(avg, 1LU);
1093 	if (wb_has_dirty_io(wb)) {
1094 		long delta = avg - wb->avg_write_bandwidth;
1095 		WARN_ON_ONCE(atomic_long_add_return(delta,
1096 					&wb->bdi->tot_write_bandwidth) <= 0);
1097 	}
1098 	wb->write_bandwidth = bw;
1099 	wb->avg_write_bandwidth = avg;
1100 }
1101 
1102 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1103 {
1104 	struct wb_domain *dom = dtc_dom(dtc);
1105 	unsigned long thresh = dtc->thresh;
1106 	unsigned long limit = dom->dirty_limit;
1107 
1108 	/*
1109 	 * Follow up in one step.
1110 	 */
1111 	if (limit < thresh) {
1112 		limit = thresh;
1113 		goto update;
1114 	}
1115 
1116 	/*
1117 	 * Follow down slowly. Use the higher one as the target, because thresh
1118 	 * may drop below dirty. This is exactly the reason to introduce
1119 	 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1120 	 */
1121 	thresh = max(thresh, dtc->dirty);
1122 	if (limit > thresh) {
1123 		limit -= (limit - thresh) >> 5;
1124 		goto update;
1125 	}
1126 	return;
1127 update:
1128 	dom->dirty_limit = limit;
1129 }
1130 
1131 static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
1132 				    unsigned long now)
1133 {
1134 	struct wb_domain *dom = dtc_dom(dtc);
1135 
1136 	/*
1137 	 * check locklessly first to optimize away locking for the most time
1138 	 */
1139 	if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1140 		return;
1141 
1142 	spin_lock(&dom->lock);
1143 	if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1144 		update_dirty_limit(dtc);
1145 		dom->dirty_limit_tstamp = now;
1146 	}
1147 	spin_unlock(&dom->lock);
1148 }
1149 
1150 /*
1151  * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1152  *
1153  * Normal wb tasks will be curbed at or below it in long term.
1154  * Obviously it should be around (write_bw / N) when there are N dd tasks.
1155  */
1156 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1157 				      unsigned long dirtied,
1158 				      unsigned long elapsed)
1159 {
1160 	struct bdi_writeback *wb = dtc->wb;
1161 	unsigned long dirty = dtc->dirty;
1162 	unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1163 	unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1164 	unsigned long setpoint = (freerun + limit) / 2;
1165 	unsigned long write_bw = wb->avg_write_bandwidth;
1166 	unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1167 	unsigned long dirty_rate;
1168 	unsigned long task_ratelimit;
1169 	unsigned long balanced_dirty_ratelimit;
1170 	unsigned long step;
1171 	unsigned long x;
1172 	unsigned long shift;
1173 
1174 	/*
1175 	 * The dirty rate will match the writeout rate in long term, except
1176 	 * when dirty pages are truncated by userspace or re-dirtied by FS.
1177 	 */
1178 	dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1179 
1180 	/*
1181 	 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1182 	 */
1183 	task_ratelimit = (u64)dirty_ratelimit *
1184 					dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1185 	task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1186 
1187 	/*
1188 	 * A linear estimation of the "balanced" throttle rate. The theory is,
1189 	 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1190 	 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1191 	 * formula will yield the balanced rate limit (write_bw / N).
1192 	 *
1193 	 * Note that the expanded form is not a pure rate feedback:
1194 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate)		     (1)
1195 	 * but also takes pos_ratio into account:
1196 	 *	rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio  (2)
1197 	 *
1198 	 * (1) is not realistic because pos_ratio also takes part in balancing
1199 	 * the dirty rate.  Consider the state
1200 	 *	pos_ratio = 0.5						     (3)
1201 	 *	rate = 2 * (write_bw / N)				     (4)
1202 	 * If (1) is used, it will stuck in that state! Because each dd will
1203 	 * be throttled at
1204 	 *	task_ratelimit = pos_ratio * rate = (write_bw / N)	     (5)
1205 	 * yielding
1206 	 *	dirty_rate = N * task_ratelimit = write_bw		     (6)
1207 	 * put (6) into (1) we get
1208 	 *	rate_(i+1) = rate_(i)					     (7)
1209 	 *
1210 	 * So we end up using (2) to always keep
1211 	 *	rate_(i+1) ~= (write_bw / N)				     (8)
1212 	 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1213 	 * pos_ratio is able to drive itself to 1.0, which is not only where
1214 	 * the dirty count meet the setpoint, but also where the slope of
1215 	 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1216 	 */
1217 	balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1218 					   dirty_rate | 1);
1219 	/*
1220 	 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1221 	 */
1222 	if (unlikely(balanced_dirty_ratelimit > write_bw))
1223 		balanced_dirty_ratelimit = write_bw;
1224 
1225 	/*
1226 	 * We could safely do this and return immediately:
1227 	 *
1228 	 *	wb->dirty_ratelimit = balanced_dirty_ratelimit;
1229 	 *
1230 	 * However to get a more stable dirty_ratelimit, the below elaborated
1231 	 * code makes use of task_ratelimit to filter out singular points and
1232 	 * limit the step size.
1233 	 *
1234 	 * The below code essentially only uses the relative value of
1235 	 *
1236 	 *	task_ratelimit - dirty_ratelimit
1237 	 *	= (pos_ratio - 1) * dirty_ratelimit
1238 	 *
1239 	 * which reflects the direction and size of dirty position error.
1240 	 */
1241 
1242 	/*
1243 	 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1244 	 * task_ratelimit is on the same side of dirty_ratelimit, too.
1245 	 * For example, when
1246 	 * - dirty_ratelimit > balanced_dirty_ratelimit
1247 	 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1248 	 * lowering dirty_ratelimit will help meet both the position and rate
1249 	 * control targets. Otherwise, don't update dirty_ratelimit if it will
1250 	 * only help meet the rate target. After all, what the users ultimately
1251 	 * feel and care are stable dirty rate and small position error.
1252 	 *
1253 	 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1254 	 * and filter out the singular points of balanced_dirty_ratelimit. Which
1255 	 * keeps jumping around randomly and can even leap far away at times
1256 	 * due to the small 200ms estimation period of dirty_rate (we want to
1257 	 * keep that period small to reduce time lags).
1258 	 */
1259 	step = 0;
1260 
1261 	/*
1262 	 * For strictlimit case, calculations above were based on wb counters
1263 	 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1264 	 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1265 	 * Hence, to calculate "step" properly, we have to use wb_dirty as
1266 	 * "dirty" and wb_setpoint as "setpoint".
1267 	 *
1268 	 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1269 	 * it's possible that wb_thresh is close to zero due to inactivity
1270 	 * of backing device.
1271 	 */
1272 	if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1273 		dirty = dtc->wb_dirty;
1274 		if (dtc->wb_dirty < 8)
1275 			setpoint = dtc->wb_dirty + 1;
1276 		else
1277 			setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1278 	}
1279 
1280 	if (dirty < setpoint) {
1281 		x = min3(wb->balanced_dirty_ratelimit,
1282 			 balanced_dirty_ratelimit, task_ratelimit);
1283 		if (dirty_ratelimit < x)
1284 			step = x - dirty_ratelimit;
1285 	} else {
1286 		x = max3(wb->balanced_dirty_ratelimit,
1287 			 balanced_dirty_ratelimit, task_ratelimit);
1288 		if (dirty_ratelimit > x)
1289 			step = dirty_ratelimit - x;
1290 	}
1291 
1292 	/*
1293 	 * Don't pursue 100% rate matching. It's impossible since the balanced
1294 	 * rate itself is constantly fluctuating. So decrease the track speed
1295 	 * when it gets close to the target. Helps eliminate pointless tremors.
1296 	 */
1297 	shift = dirty_ratelimit / (2 * step + 1);
1298 	if (shift < BITS_PER_LONG)
1299 		step = DIV_ROUND_UP(step >> shift, 8);
1300 	else
1301 		step = 0;
1302 
1303 	if (dirty_ratelimit < balanced_dirty_ratelimit)
1304 		dirty_ratelimit += step;
1305 	else
1306 		dirty_ratelimit -= step;
1307 
1308 	wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1309 	wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1310 
1311 	trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1312 }
1313 
1314 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1315 				  struct dirty_throttle_control *mdtc,
1316 				  unsigned long start_time,
1317 				  bool update_ratelimit)
1318 {
1319 	struct bdi_writeback *wb = gdtc->wb;
1320 	unsigned long now = jiffies;
1321 	unsigned long elapsed = now - wb->bw_time_stamp;
1322 	unsigned long dirtied;
1323 	unsigned long written;
1324 
1325 	lockdep_assert_held(&wb->list_lock);
1326 
1327 	/*
1328 	 * rate-limit, only update once every 200ms.
1329 	 */
1330 	if (elapsed < BANDWIDTH_INTERVAL)
1331 		return;
1332 
1333 	dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1334 	written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1335 
1336 	/*
1337 	 * Skip quiet periods when disk bandwidth is under-utilized.
1338 	 * (at least 1s idle time between two flusher runs)
1339 	 */
1340 	if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
1341 		goto snapshot;
1342 
1343 	if (update_ratelimit) {
1344 		domain_update_bandwidth(gdtc, now);
1345 		wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1346 
1347 		/*
1348 		 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1349 		 * compiler has no way to figure that out.  Help it.
1350 		 */
1351 		if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1352 			domain_update_bandwidth(mdtc, now);
1353 			wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1354 		}
1355 	}
1356 	wb_update_write_bandwidth(wb, elapsed, written);
1357 
1358 snapshot:
1359 	wb->dirtied_stamp = dirtied;
1360 	wb->written_stamp = written;
1361 	wb->bw_time_stamp = now;
1362 }
1363 
1364 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
1365 {
1366 	struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1367 
1368 	__wb_update_bandwidth(&gdtc, NULL, start_time, false);
1369 }
1370 
1371 /*
1372  * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1373  * will look to see if it needs to start dirty throttling.
1374  *
1375  * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1376  * global_page_state() too often. So scale it near-sqrt to the safety margin
1377  * (the number of pages we may dirty without exceeding the dirty limits).
1378  */
1379 static unsigned long dirty_poll_interval(unsigned long dirty,
1380 					 unsigned long thresh)
1381 {
1382 	if (thresh > dirty)
1383 		return 1UL << (ilog2(thresh - dirty) >> 1);
1384 
1385 	return 1;
1386 }
1387 
1388 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1389 				  unsigned long wb_dirty)
1390 {
1391 	unsigned long bw = wb->avg_write_bandwidth;
1392 	unsigned long t;
1393 
1394 	/*
1395 	 * Limit pause time for small memory systems. If sleeping for too long
1396 	 * time, a small pool of dirty/writeback pages may go empty and disk go
1397 	 * idle.
1398 	 *
1399 	 * 8 serves as the safety ratio.
1400 	 */
1401 	t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1402 	t++;
1403 
1404 	return min_t(unsigned long, t, MAX_PAUSE);
1405 }
1406 
1407 static long wb_min_pause(struct bdi_writeback *wb,
1408 			 long max_pause,
1409 			 unsigned long task_ratelimit,
1410 			 unsigned long dirty_ratelimit,
1411 			 int *nr_dirtied_pause)
1412 {
1413 	long hi = ilog2(wb->avg_write_bandwidth);
1414 	long lo = ilog2(wb->dirty_ratelimit);
1415 	long t;		/* target pause */
1416 	long pause;	/* estimated next pause */
1417 	int pages;	/* target nr_dirtied_pause */
1418 
1419 	/* target for 10ms pause on 1-dd case */
1420 	t = max(1, HZ / 100);
1421 
1422 	/*
1423 	 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1424 	 * overheads.
1425 	 *
1426 	 * (N * 10ms) on 2^N concurrent tasks.
1427 	 */
1428 	if (hi > lo)
1429 		t += (hi - lo) * (10 * HZ) / 1024;
1430 
1431 	/*
1432 	 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1433 	 * on the much more stable dirty_ratelimit. However the next pause time
1434 	 * will be computed based on task_ratelimit and the two rate limits may
1435 	 * depart considerably at some time. Especially if task_ratelimit goes
1436 	 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1437 	 * pause time will be max_pause*2 _trimmed down_ to max_pause.  As a
1438 	 * result task_ratelimit won't be executed faithfully, which could
1439 	 * eventually bring down dirty_ratelimit.
1440 	 *
1441 	 * We apply two rules to fix it up:
1442 	 * 1) try to estimate the next pause time and if necessary, use a lower
1443 	 *    nr_dirtied_pause so as not to exceed max_pause. When this happens,
1444 	 *    nr_dirtied_pause will be "dancing" with task_ratelimit.
1445 	 * 2) limit the target pause time to max_pause/2, so that the normal
1446 	 *    small fluctuations of task_ratelimit won't trigger rule (1) and
1447 	 *    nr_dirtied_pause will remain as stable as dirty_ratelimit.
1448 	 */
1449 	t = min(t, 1 + max_pause / 2);
1450 	pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1451 
1452 	/*
1453 	 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1454 	 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1455 	 * When the 16 consecutive reads are often interrupted by some dirty
1456 	 * throttling pause during the async writes, cfq will go into idles
1457 	 * (deadline is fine). So push nr_dirtied_pause as high as possible
1458 	 * until reaches DIRTY_POLL_THRESH=32 pages.
1459 	 */
1460 	if (pages < DIRTY_POLL_THRESH) {
1461 		t = max_pause;
1462 		pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1463 		if (pages > DIRTY_POLL_THRESH) {
1464 			pages = DIRTY_POLL_THRESH;
1465 			t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1466 		}
1467 	}
1468 
1469 	pause = HZ * pages / (task_ratelimit + 1);
1470 	if (pause > max_pause) {
1471 		t = max_pause;
1472 		pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1473 	}
1474 
1475 	*nr_dirtied_pause = pages;
1476 	/*
1477 	 * The minimal pause time will normally be half the target pause time.
1478 	 */
1479 	return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1480 }
1481 
1482 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1483 {
1484 	struct bdi_writeback *wb = dtc->wb;
1485 	unsigned long wb_reclaimable;
1486 
1487 	/*
1488 	 * wb_thresh is not treated as some limiting factor as
1489 	 * dirty_thresh, due to reasons
1490 	 * - in JBOD setup, wb_thresh can fluctuate a lot
1491 	 * - in a system with HDD and USB key, the USB key may somehow
1492 	 *   go into state (wb_dirty >> wb_thresh) either because
1493 	 *   wb_dirty starts high, or because wb_thresh drops low.
1494 	 *   In this case we don't want to hard throttle the USB key
1495 	 *   dirtiers for 100 seconds until wb_dirty drops under
1496 	 *   wb_thresh. Instead the auxiliary wb control line in
1497 	 *   wb_position_ratio() will let the dirtier task progress
1498 	 *   at some rate <= (write_bw / 2) for bringing down wb_dirty.
1499 	 */
1500 	dtc->wb_thresh = __wb_calc_thresh(dtc);
1501 	dtc->wb_bg_thresh = dtc->thresh ?
1502 		div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1503 
1504 	/*
1505 	 * In order to avoid the stacked BDI deadlock we need
1506 	 * to ensure we accurately count the 'dirty' pages when
1507 	 * the threshold is low.
1508 	 *
1509 	 * Otherwise it would be possible to get thresh+n pages
1510 	 * reported dirty, even though there are thresh-m pages
1511 	 * actually dirty; with m+n sitting in the percpu
1512 	 * deltas.
1513 	 */
1514 	if (dtc->wb_thresh < 2 * wb_stat_error(wb)) {
1515 		wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1516 		dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1517 	} else {
1518 		wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1519 		dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1520 	}
1521 }
1522 
1523 /*
1524  * balance_dirty_pages() must be called by processes which are generating dirty
1525  * data.  It looks at the number of dirty pages in the machine and will force
1526  * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1527  * If we're over `background_thresh' then the writeback threads are woken to
1528  * perform some writeout.
1529  */
1530 static void balance_dirty_pages(struct address_space *mapping,
1531 				struct bdi_writeback *wb,
1532 				unsigned long pages_dirtied)
1533 {
1534 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1535 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1536 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1537 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1538 						     &mdtc_stor : NULL;
1539 	struct dirty_throttle_control *sdtc;
1540 	unsigned long nr_reclaimable;	/* = file_dirty + unstable_nfs */
1541 	long period;
1542 	long pause;
1543 	long max_pause;
1544 	long min_pause;
1545 	int nr_dirtied_pause;
1546 	bool dirty_exceeded = false;
1547 	unsigned long task_ratelimit;
1548 	unsigned long dirty_ratelimit;
1549 	struct backing_dev_info *bdi = wb->bdi;
1550 	bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1551 	unsigned long start_time = jiffies;
1552 
1553 	for (;;) {
1554 		unsigned long now = jiffies;
1555 		unsigned long dirty, thresh, bg_thresh;
1556 		unsigned long m_dirty = 0;	/* stop bogus uninit warnings */
1557 		unsigned long m_thresh = 0;
1558 		unsigned long m_bg_thresh = 0;
1559 
1560 		/*
1561 		 * Unstable writes are a feature of certain networked
1562 		 * filesystems (i.e. NFS) in which data may have been
1563 		 * written to the server's write cache, but has not yet
1564 		 * been flushed to permanent storage.
1565 		 */
1566 		nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1567 					global_page_state(NR_UNSTABLE_NFS);
1568 		gdtc->avail = global_dirtyable_memory();
1569 		gdtc->dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
1570 
1571 		domain_dirty_limits(gdtc);
1572 
1573 		if (unlikely(strictlimit)) {
1574 			wb_dirty_limits(gdtc);
1575 
1576 			dirty = gdtc->wb_dirty;
1577 			thresh = gdtc->wb_thresh;
1578 			bg_thresh = gdtc->wb_bg_thresh;
1579 		} else {
1580 			dirty = gdtc->dirty;
1581 			thresh = gdtc->thresh;
1582 			bg_thresh = gdtc->bg_thresh;
1583 		}
1584 
1585 		if (mdtc) {
1586 			unsigned long filepages, headroom, writeback;
1587 
1588 			/*
1589 			 * If @wb belongs to !root memcg, repeat the same
1590 			 * basic calculations for the memcg domain.
1591 			 */
1592 			mem_cgroup_wb_stats(wb, &filepages, &headroom,
1593 					    &mdtc->dirty, &writeback);
1594 			mdtc->dirty += writeback;
1595 			mdtc_calc_avail(mdtc, filepages, headroom);
1596 
1597 			domain_dirty_limits(mdtc);
1598 
1599 			if (unlikely(strictlimit)) {
1600 				wb_dirty_limits(mdtc);
1601 				m_dirty = mdtc->wb_dirty;
1602 				m_thresh = mdtc->wb_thresh;
1603 				m_bg_thresh = mdtc->wb_bg_thresh;
1604 			} else {
1605 				m_dirty = mdtc->dirty;
1606 				m_thresh = mdtc->thresh;
1607 				m_bg_thresh = mdtc->bg_thresh;
1608 			}
1609 		}
1610 
1611 		/*
1612 		 * Throttle it only when the background writeback cannot
1613 		 * catch-up. This avoids (excessively) small writeouts
1614 		 * when the wb limits are ramping up in case of !strictlimit.
1615 		 *
1616 		 * In strictlimit case make decision based on the wb counters
1617 		 * and limits. Small writeouts when the wb limits are ramping
1618 		 * up are the price we consciously pay for strictlimit-ing.
1619 		 *
1620 		 * If memcg domain is in effect, @dirty should be under
1621 		 * both global and memcg freerun ceilings.
1622 		 */
1623 		if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1624 		    (!mdtc ||
1625 		     m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1626 			unsigned long intv = dirty_poll_interval(dirty, thresh);
1627 			unsigned long m_intv = ULONG_MAX;
1628 
1629 			current->dirty_paused_when = now;
1630 			current->nr_dirtied = 0;
1631 			if (mdtc)
1632 				m_intv = dirty_poll_interval(m_dirty, m_thresh);
1633 			current->nr_dirtied_pause = min(intv, m_intv);
1634 			break;
1635 		}
1636 
1637 		if (unlikely(!writeback_in_progress(wb)))
1638 			wb_start_background_writeback(wb);
1639 
1640 		/*
1641 		 * Calculate global domain's pos_ratio and select the
1642 		 * global dtc by default.
1643 		 */
1644 		if (!strictlimit)
1645 			wb_dirty_limits(gdtc);
1646 
1647 		dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1648 			((gdtc->dirty > gdtc->thresh) || strictlimit);
1649 
1650 		wb_position_ratio(gdtc);
1651 		sdtc = gdtc;
1652 
1653 		if (mdtc) {
1654 			/*
1655 			 * If memcg domain is in effect, calculate its
1656 			 * pos_ratio.  @wb should satisfy constraints from
1657 			 * both global and memcg domains.  Choose the one
1658 			 * w/ lower pos_ratio.
1659 			 */
1660 			if (!strictlimit)
1661 				wb_dirty_limits(mdtc);
1662 
1663 			dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1664 				((mdtc->dirty > mdtc->thresh) || strictlimit);
1665 
1666 			wb_position_ratio(mdtc);
1667 			if (mdtc->pos_ratio < gdtc->pos_ratio)
1668 				sdtc = mdtc;
1669 		}
1670 
1671 		if (dirty_exceeded && !wb->dirty_exceeded)
1672 			wb->dirty_exceeded = 1;
1673 
1674 		if (time_is_before_jiffies(wb->bw_time_stamp +
1675 					   BANDWIDTH_INTERVAL)) {
1676 			spin_lock(&wb->list_lock);
1677 			__wb_update_bandwidth(gdtc, mdtc, start_time, true);
1678 			spin_unlock(&wb->list_lock);
1679 		}
1680 
1681 		/* throttle according to the chosen dtc */
1682 		dirty_ratelimit = wb->dirty_ratelimit;
1683 		task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1684 							RATELIMIT_CALC_SHIFT;
1685 		max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1686 		min_pause = wb_min_pause(wb, max_pause,
1687 					 task_ratelimit, dirty_ratelimit,
1688 					 &nr_dirtied_pause);
1689 
1690 		if (unlikely(task_ratelimit == 0)) {
1691 			period = max_pause;
1692 			pause = max_pause;
1693 			goto pause;
1694 		}
1695 		period = HZ * pages_dirtied / task_ratelimit;
1696 		pause = period;
1697 		if (current->dirty_paused_when)
1698 			pause -= now - current->dirty_paused_when;
1699 		/*
1700 		 * For less than 1s think time (ext3/4 may block the dirtier
1701 		 * for up to 800ms from time to time on 1-HDD; so does xfs,
1702 		 * however at much less frequency), try to compensate it in
1703 		 * future periods by updating the virtual time; otherwise just
1704 		 * do a reset, as it may be a light dirtier.
1705 		 */
1706 		if (pause < min_pause) {
1707 			trace_balance_dirty_pages(wb,
1708 						  sdtc->thresh,
1709 						  sdtc->bg_thresh,
1710 						  sdtc->dirty,
1711 						  sdtc->wb_thresh,
1712 						  sdtc->wb_dirty,
1713 						  dirty_ratelimit,
1714 						  task_ratelimit,
1715 						  pages_dirtied,
1716 						  period,
1717 						  min(pause, 0L),
1718 						  start_time);
1719 			if (pause < -HZ) {
1720 				current->dirty_paused_when = now;
1721 				current->nr_dirtied = 0;
1722 			} else if (period) {
1723 				current->dirty_paused_when += period;
1724 				current->nr_dirtied = 0;
1725 			} else if (current->nr_dirtied_pause <= pages_dirtied)
1726 				current->nr_dirtied_pause += pages_dirtied;
1727 			break;
1728 		}
1729 		if (unlikely(pause > max_pause)) {
1730 			/* for occasional dropped task_ratelimit */
1731 			now += min(pause - max_pause, max_pause);
1732 			pause = max_pause;
1733 		}
1734 
1735 pause:
1736 		trace_balance_dirty_pages(wb,
1737 					  sdtc->thresh,
1738 					  sdtc->bg_thresh,
1739 					  sdtc->dirty,
1740 					  sdtc->wb_thresh,
1741 					  sdtc->wb_dirty,
1742 					  dirty_ratelimit,
1743 					  task_ratelimit,
1744 					  pages_dirtied,
1745 					  period,
1746 					  pause,
1747 					  start_time);
1748 		__set_current_state(TASK_KILLABLE);
1749 		io_schedule_timeout(pause);
1750 
1751 		current->dirty_paused_when = now + pause;
1752 		current->nr_dirtied = 0;
1753 		current->nr_dirtied_pause = nr_dirtied_pause;
1754 
1755 		/*
1756 		 * This is typically equal to (dirty < thresh) and can also
1757 		 * keep "1000+ dd on a slow USB stick" under control.
1758 		 */
1759 		if (task_ratelimit)
1760 			break;
1761 
1762 		/*
1763 		 * In the case of an unresponding NFS server and the NFS dirty
1764 		 * pages exceeds dirty_thresh, give the other good wb's a pipe
1765 		 * to go through, so that tasks on them still remain responsive.
1766 		 *
1767 		 * In theory 1 page is enough to keep the comsumer-producer
1768 		 * pipe going: the flusher cleans 1 page => the task dirties 1
1769 		 * more page. However wb_dirty has accounting errors.  So use
1770 		 * the larger and more IO friendly wb_stat_error.
1771 		 */
1772 		if (sdtc->wb_dirty <= wb_stat_error(wb))
1773 			break;
1774 
1775 		if (fatal_signal_pending(current))
1776 			break;
1777 	}
1778 
1779 	if (!dirty_exceeded && wb->dirty_exceeded)
1780 		wb->dirty_exceeded = 0;
1781 
1782 	if (writeback_in_progress(wb))
1783 		return;
1784 
1785 	/*
1786 	 * In laptop mode, we wait until hitting the higher threshold before
1787 	 * starting background writeout, and then write out all the way down
1788 	 * to the lower threshold.  So slow writers cause minimal disk activity.
1789 	 *
1790 	 * In normal mode, we start background writeout at the lower
1791 	 * background_thresh, to keep the amount of dirty memory low.
1792 	 */
1793 	if (laptop_mode)
1794 		return;
1795 
1796 	if (nr_reclaimable > gdtc->bg_thresh)
1797 		wb_start_background_writeback(wb);
1798 }
1799 
1800 static DEFINE_PER_CPU(int, bdp_ratelimits);
1801 
1802 /*
1803  * Normal tasks are throttled by
1804  *	loop {
1805  *		dirty tsk->nr_dirtied_pause pages;
1806  *		take a snap in balance_dirty_pages();
1807  *	}
1808  * However there is a worst case. If every task exit immediately when dirtied
1809  * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1810  * called to throttle the page dirties. The solution is to save the not yet
1811  * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1812  * randomly into the running tasks. This works well for the above worst case,
1813  * as the new task will pick up and accumulate the old task's leaked dirty
1814  * count and eventually get throttled.
1815  */
1816 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1817 
1818 /**
1819  * balance_dirty_pages_ratelimited - balance dirty memory state
1820  * @mapping: address_space which was dirtied
1821  *
1822  * Processes which are dirtying memory should call in here once for each page
1823  * which was newly dirtied.  The function will periodically check the system's
1824  * dirty state and will initiate writeback if needed.
1825  *
1826  * On really big machines, get_writeback_state is expensive, so try to avoid
1827  * calling it too often (ratelimiting).  But once we're over the dirty memory
1828  * limit we decrease the ratelimiting by a lot, to prevent individual processes
1829  * from overshooting the limit by (ratelimit_pages) each.
1830  */
1831 void balance_dirty_pages_ratelimited(struct address_space *mapping)
1832 {
1833 	struct inode *inode = mapping->host;
1834 	struct backing_dev_info *bdi = inode_to_bdi(inode);
1835 	struct bdi_writeback *wb = NULL;
1836 	int ratelimit;
1837 	int *p;
1838 
1839 	if (!bdi_cap_account_dirty(bdi))
1840 		return;
1841 
1842 	if (inode_cgwb_enabled(inode))
1843 		wb = wb_get_create_current(bdi, GFP_KERNEL);
1844 	if (!wb)
1845 		wb = &bdi->wb;
1846 
1847 	ratelimit = current->nr_dirtied_pause;
1848 	if (wb->dirty_exceeded)
1849 		ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1850 
1851 	preempt_disable();
1852 	/*
1853 	 * This prevents one CPU to accumulate too many dirtied pages without
1854 	 * calling into balance_dirty_pages(), which can happen when there are
1855 	 * 1000+ tasks, all of them start dirtying pages at exactly the same
1856 	 * time, hence all honoured too large initial task->nr_dirtied_pause.
1857 	 */
1858 	p =  this_cpu_ptr(&bdp_ratelimits);
1859 	if (unlikely(current->nr_dirtied >= ratelimit))
1860 		*p = 0;
1861 	else if (unlikely(*p >= ratelimit_pages)) {
1862 		*p = 0;
1863 		ratelimit = 0;
1864 	}
1865 	/*
1866 	 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1867 	 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1868 	 * the dirty throttling and livelock other long-run dirtiers.
1869 	 */
1870 	p = this_cpu_ptr(&dirty_throttle_leaks);
1871 	if (*p > 0 && current->nr_dirtied < ratelimit) {
1872 		unsigned long nr_pages_dirtied;
1873 		nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1874 		*p -= nr_pages_dirtied;
1875 		current->nr_dirtied += nr_pages_dirtied;
1876 	}
1877 	preempt_enable();
1878 
1879 	if (unlikely(current->nr_dirtied >= ratelimit))
1880 		balance_dirty_pages(mapping, wb, current->nr_dirtied);
1881 
1882 	wb_put(wb);
1883 }
1884 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1885 
1886 /**
1887  * wb_over_bg_thresh - does @wb need to be written back?
1888  * @wb: bdi_writeback of interest
1889  *
1890  * Determines whether background writeback should keep writing @wb or it's
1891  * clean enough.  Returns %true if writeback should continue.
1892  */
1893 bool wb_over_bg_thresh(struct bdi_writeback *wb)
1894 {
1895 	struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1896 	struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1897 	struct dirty_throttle_control * const gdtc = &gdtc_stor;
1898 	struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1899 						     &mdtc_stor : NULL;
1900 
1901 	/*
1902 	 * Similar to balance_dirty_pages() but ignores pages being written
1903 	 * as we're trying to decide whether to put more under writeback.
1904 	 */
1905 	gdtc->avail = global_dirtyable_memory();
1906 	gdtc->dirty = global_page_state(NR_FILE_DIRTY) +
1907 		      global_page_state(NR_UNSTABLE_NFS);
1908 	domain_dirty_limits(gdtc);
1909 
1910 	if (gdtc->dirty > gdtc->bg_thresh)
1911 		return true;
1912 
1913 	if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(gdtc))
1914 		return true;
1915 
1916 	if (mdtc) {
1917 		unsigned long filepages, headroom, writeback;
1918 
1919 		mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1920 				    &writeback);
1921 		mdtc_calc_avail(mdtc, filepages, headroom);
1922 		domain_dirty_limits(mdtc);	/* ditto, ignore writeback */
1923 
1924 		if (mdtc->dirty > mdtc->bg_thresh)
1925 			return true;
1926 
1927 		if (wb_stat(wb, WB_RECLAIMABLE) > __wb_calc_thresh(mdtc))
1928 			return true;
1929 	}
1930 
1931 	return false;
1932 }
1933 
1934 void throttle_vm_writeout(gfp_t gfp_mask)
1935 {
1936 	unsigned long background_thresh;
1937 	unsigned long dirty_thresh;
1938 
1939         for ( ; ; ) {
1940 		global_dirty_limits(&background_thresh, &dirty_thresh);
1941 		dirty_thresh = hard_dirty_limit(&global_wb_domain, dirty_thresh);
1942 
1943                 /*
1944                  * Boost the allowable dirty threshold a bit for page
1945                  * allocators so they don't get DoS'ed by heavy writers
1946                  */
1947                 dirty_thresh += dirty_thresh / 10;      /* wheeee... */
1948 
1949                 if (global_page_state(NR_UNSTABLE_NFS) +
1950 			global_page_state(NR_WRITEBACK) <= dirty_thresh)
1951                         	break;
1952                 congestion_wait(BLK_RW_ASYNC, HZ/10);
1953 
1954 		/*
1955 		 * The caller might hold locks which can prevent IO completion
1956 		 * or progress in the filesystem.  So we cannot just sit here
1957 		 * waiting for IO to complete.
1958 		 */
1959 		if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1960 			break;
1961         }
1962 }
1963 
1964 /*
1965  * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1966  */
1967 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
1968 	void __user *buffer, size_t *length, loff_t *ppos)
1969 {
1970 	proc_dointvec(table, write, buffer, length, ppos);
1971 	return 0;
1972 }
1973 
1974 #ifdef CONFIG_BLOCK
1975 void laptop_mode_timer_fn(unsigned long data)
1976 {
1977 	struct request_queue *q = (struct request_queue *)data;
1978 	int nr_pages = global_page_state(NR_FILE_DIRTY) +
1979 		global_page_state(NR_UNSTABLE_NFS);
1980 	struct bdi_writeback *wb;
1981 
1982 	/*
1983 	 * We want to write everything out, not just down to the dirty
1984 	 * threshold
1985 	 */
1986 	if (!bdi_has_dirty_io(&q->backing_dev_info))
1987 		return;
1988 
1989 	rcu_read_lock();
1990 	list_for_each_entry_rcu(wb, &q->backing_dev_info.wb_list, bdi_node)
1991 		if (wb_has_dirty_io(wb))
1992 			wb_start_writeback(wb, nr_pages, true,
1993 					   WB_REASON_LAPTOP_TIMER);
1994 	rcu_read_unlock();
1995 }
1996 
1997 /*
1998  * We've spun up the disk and we're in laptop mode: schedule writeback
1999  * of all dirty data a few seconds from now.  If the flush is already scheduled
2000  * then push it back - the user is still using the disk.
2001  */
2002 void laptop_io_completion(struct backing_dev_info *info)
2003 {
2004 	mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2005 }
2006 
2007 /*
2008  * We're in laptop mode and we've just synced. The sync's writes will have
2009  * caused another writeback to be scheduled by laptop_io_completion.
2010  * Nothing needs to be written back anymore, so we unschedule the writeback.
2011  */
2012 void laptop_sync_completion(void)
2013 {
2014 	struct backing_dev_info *bdi;
2015 
2016 	rcu_read_lock();
2017 
2018 	list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2019 		del_timer(&bdi->laptop_mode_wb_timer);
2020 
2021 	rcu_read_unlock();
2022 }
2023 #endif
2024 
2025 /*
2026  * If ratelimit_pages is too high then we can get into dirty-data overload
2027  * if a large number of processes all perform writes at the same time.
2028  * If it is too low then SMP machines will call the (expensive)
2029  * get_writeback_state too often.
2030  *
2031  * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2032  * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2033  * thresholds.
2034  */
2035 
2036 void writeback_set_ratelimit(void)
2037 {
2038 	struct wb_domain *dom = &global_wb_domain;
2039 	unsigned long background_thresh;
2040 	unsigned long dirty_thresh;
2041 
2042 	global_dirty_limits(&background_thresh, &dirty_thresh);
2043 	dom->dirty_limit = dirty_thresh;
2044 	ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2045 	if (ratelimit_pages < 16)
2046 		ratelimit_pages = 16;
2047 }
2048 
2049 static int
2050 ratelimit_handler(struct notifier_block *self, unsigned long action,
2051 		  void *hcpu)
2052 {
2053 
2054 	switch (action & ~CPU_TASKS_FROZEN) {
2055 	case CPU_ONLINE:
2056 	case CPU_DEAD:
2057 		writeback_set_ratelimit();
2058 		return NOTIFY_OK;
2059 	default:
2060 		return NOTIFY_DONE;
2061 	}
2062 }
2063 
2064 static struct notifier_block ratelimit_nb = {
2065 	.notifier_call	= ratelimit_handler,
2066 	.next		= NULL,
2067 };
2068 
2069 /*
2070  * Called early on to tune the page writeback dirty limits.
2071  *
2072  * We used to scale dirty pages according to how total memory
2073  * related to pages that could be allocated for buffers (by
2074  * comparing nr_free_buffer_pages() to vm_total_pages.
2075  *
2076  * However, that was when we used "dirty_ratio" to scale with
2077  * all memory, and we don't do that any more. "dirty_ratio"
2078  * is now applied to total non-HIGHPAGE memory (by subtracting
2079  * totalhigh_pages from vm_total_pages), and as such we can't
2080  * get into the old insane situation any more where we had
2081  * large amounts of dirty pages compared to a small amount of
2082  * non-HIGHMEM memory.
2083  *
2084  * But we might still want to scale the dirty_ratio by how
2085  * much memory the box has..
2086  */
2087 void __init page_writeback_init(void)
2088 {
2089 	BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2090 
2091 	writeback_set_ratelimit();
2092 	register_cpu_notifier(&ratelimit_nb);
2093 }
2094 
2095 /**
2096  * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2097  * @mapping: address space structure to write
2098  * @start: starting page index
2099  * @end: ending page index (inclusive)
2100  *
2101  * This function scans the page range from @start to @end (inclusive) and tags
2102  * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2103  * that write_cache_pages (or whoever calls this function) will then use
2104  * TOWRITE tag to identify pages eligible for writeback.  This mechanism is
2105  * used to avoid livelocking of writeback by a process steadily creating new
2106  * dirty pages in the file (thus it is important for this function to be quick
2107  * so that it can tag pages faster than a dirtying process can create them).
2108  */
2109 /*
2110  * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2111  */
2112 void tag_pages_for_writeback(struct address_space *mapping,
2113 			     pgoff_t start, pgoff_t end)
2114 {
2115 #define WRITEBACK_TAG_BATCH 4096
2116 	unsigned long tagged;
2117 
2118 	do {
2119 		spin_lock_irq(&mapping->tree_lock);
2120 		tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
2121 				&start, end, WRITEBACK_TAG_BATCH,
2122 				PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
2123 		spin_unlock_irq(&mapping->tree_lock);
2124 		WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
2125 		cond_resched();
2126 		/* We check 'start' to handle wrapping when end == ~0UL */
2127 	} while (tagged >= WRITEBACK_TAG_BATCH && start);
2128 }
2129 EXPORT_SYMBOL(tag_pages_for_writeback);
2130 
2131 /**
2132  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2133  * @mapping: address space structure to write
2134  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2135  * @writepage: function called for each page
2136  * @data: data passed to writepage function
2137  *
2138  * If a page is already under I/O, write_cache_pages() skips it, even
2139  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
2140  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
2141  * and msync() need to guarantee that all the data which was dirty at the time
2142  * the call was made get new I/O started against them.  If wbc->sync_mode is
2143  * WB_SYNC_ALL then we were called for data integrity and we must wait for
2144  * existing IO to complete.
2145  *
2146  * To avoid livelocks (when other process dirties new pages), we first tag
2147  * pages which should be written back with TOWRITE tag and only then start
2148  * writing them. For data-integrity sync we have to be careful so that we do
2149  * not miss some pages (e.g., because some other process has cleared TOWRITE
2150  * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2151  * by the process clearing the DIRTY tag (and submitting the page for IO).
2152  */
2153 int write_cache_pages(struct address_space *mapping,
2154 		      struct writeback_control *wbc, writepage_t writepage,
2155 		      void *data)
2156 {
2157 	int ret = 0;
2158 	int done = 0;
2159 	struct pagevec pvec;
2160 	int nr_pages;
2161 	pgoff_t uninitialized_var(writeback_index);
2162 	pgoff_t index;
2163 	pgoff_t end;		/* Inclusive */
2164 	pgoff_t done_index;
2165 	int cycled;
2166 	int range_whole = 0;
2167 	int tag;
2168 
2169 	pagevec_init(&pvec, 0);
2170 	if (wbc->range_cyclic) {
2171 		writeback_index = mapping->writeback_index; /* prev offset */
2172 		index = writeback_index;
2173 		if (index == 0)
2174 			cycled = 1;
2175 		else
2176 			cycled = 0;
2177 		end = -1;
2178 	} else {
2179 		index = wbc->range_start >> PAGE_SHIFT;
2180 		end = wbc->range_end >> PAGE_SHIFT;
2181 		if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2182 			range_whole = 1;
2183 		cycled = 1; /* ignore range_cyclic tests */
2184 	}
2185 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2186 		tag = PAGECACHE_TAG_TOWRITE;
2187 	else
2188 		tag = PAGECACHE_TAG_DIRTY;
2189 retry:
2190 	if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2191 		tag_pages_for_writeback(mapping, index, end);
2192 	done_index = index;
2193 	while (!done && (index <= end)) {
2194 		int i;
2195 
2196 		nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
2197 			      min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
2198 		if (nr_pages == 0)
2199 			break;
2200 
2201 		for (i = 0; i < nr_pages; i++) {
2202 			struct page *page = pvec.pages[i];
2203 
2204 			/*
2205 			 * At this point, the page may be truncated or
2206 			 * invalidated (changing page->mapping to NULL), or
2207 			 * even swizzled back from swapper_space to tmpfs file
2208 			 * mapping. However, page->index will not change
2209 			 * because we have a reference on the page.
2210 			 */
2211 			if (page->index > end) {
2212 				/*
2213 				 * can't be range_cyclic (1st pass) because
2214 				 * end == -1 in that case.
2215 				 */
2216 				done = 1;
2217 				break;
2218 			}
2219 
2220 			done_index = page->index;
2221 
2222 			lock_page(page);
2223 
2224 			/*
2225 			 * Page truncated or invalidated. We can freely skip it
2226 			 * then, even for data integrity operations: the page
2227 			 * has disappeared concurrently, so there could be no
2228 			 * real expectation of this data interity operation
2229 			 * even if there is now a new, dirty page at the same
2230 			 * pagecache address.
2231 			 */
2232 			if (unlikely(page->mapping != mapping)) {
2233 continue_unlock:
2234 				unlock_page(page);
2235 				continue;
2236 			}
2237 
2238 			if (!PageDirty(page)) {
2239 				/* someone wrote it for us */
2240 				goto continue_unlock;
2241 			}
2242 
2243 			if (PageWriteback(page)) {
2244 				if (wbc->sync_mode != WB_SYNC_NONE)
2245 					wait_on_page_writeback(page);
2246 				else
2247 					goto continue_unlock;
2248 			}
2249 
2250 			BUG_ON(PageWriteback(page));
2251 			if (!clear_page_dirty_for_io(page))
2252 				goto continue_unlock;
2253 
2254 			trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2255 			ret = (*writepage)(page, wbc, data);
2256 			if (unlikely(ret)) {
2257 				if (ret == AOP_WRITEPAGE_ACTIVATE) {
2258 					unlock_page(page);
2259 					ret = 0;
2260 				} else {
2261 					/*
2262 					 * done_index is set past this page,
2263 					 * so media errors will not choke
2264 					 * background writeout for the entire
2265 					 * file. This has consequences for
2266 					 * range_cyclic semantics (ie. it may
2267 					 * not be suitable for data integrity
2268 					 * writeout).
2269 					 */
2270 					done_index = page->index + 1;
2271 					done = 1;
2272 					break;
2273 				}
2274 			}
2275 
2276 			/*
2277 			 * We stop writing back only if we are not doing
2278 			 * integrity sync. In case of integrity sync we have to
2279 			 * keep going until we have written all the pages
2280 			 * we tagged for writeback prior to entering this loop.
2281 			 */
2282 			if (--wbc->nr_to_write <= 0 &&
2283 			    wbc->sync_mode == WB_SYNC_NONE) {
2284 				done = 1;
2285 				break;
2286 			}
2287 		}
2288 		pagevec_release(&pvec);
2289 		cond_resched();
2290 	}
2291 	if (!cycled && !done) {
2292 		/*
2293 		 * range_cyclic:
2294 		 * We hit the last page and there is more work to be done: wrap
2295 		 * back to the start of the file
2296 		 */
2297 		cycled = 1;
2298 		index = 0;
2299 		end = writeback_index - 1;
2300 		goto retry;
2301 	}
2302 	if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2303 		mapping->writeback_index = done_index;
2304 
2305 	return ret;
2306 }
2307 EXPORT_SYMBOL(write_cache_pages);
2308 
2309 /*
2310  * Function used by generic_writepages to call the real writepage
2311  * function and set the mapping flags on error
2312  */
2313 static int __writepage(struct page *page, struct writeback_control *wbc,
2314 		       void *data)
2315 {
2316 	struct address_space *mapping = data;
2317 	int ret = mapping->a_ops->writepage(page, wbc);
2318 	mapping_set_error(mapping, ret);
2319 	return ret;
2320 }
2321 
2322 /**
2323  * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2324  * @mapping: address space structure to write
2325  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2326  *
2327  * This is a library function, which implements the writepages()
2328  * address_space_operation.
2329  */
2330 int generic_writepages(struct address_space *mapping,
2331 		       struct writeback_control *wbc)
2332 {
2333 	struct blk_plug plug;
2334 	int ret;
2335 
2336 	/* deal with chardevs and other special file */
2337 	if (!mapping->a_ops->writepage)
2338 		return 0;
2339 
2340 	blk_start_plug(&plug);
2341 	ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2342 	blk_finish_plug(&plug);
2343 	return ret;
2344 }
2345 
2346 EXPORT_SYMBOL(generic_writepages);
2347 
2348 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2349 {
2350 	int ret;
2351 
2352 	if (wbc->nr_to_write <= 0)
2353 		return 0;
2354 	if (mapping->a_ops->writepages)
2355 		ret = mapping->a_ops->writepages(mapping, wbc);
2356 	else
2357 		ret = generic_writepages(mapping, wbc);
2358 	return ret;
2359 }
2360 
2361 /**
2362  * write_one_page - write out a single page and optionally wait on I/O
2363  * @page: the page to write
2364  * @wait: if true, wait on writeout
2365  *
2366  * The page must be locked by the caller and will be unlocked upon return.
2367  *
2368  * write_one_page() returns a negative error code if I/O failed.
2369  */
2370 int write_one_page(struct page *page, int wait)
2371 {
2372 	struct address_space *mapping = page->mapping;
2373 	int ret = 0;
2374 	struct writeback_control wbc = {
2375 		.sync_mode = WB_SYNC_ALL,
2376 		.nr_to_write = 1,
2377 	};
2378 
2379 	BUG_ON(!PageLocked(page));
2380 
2381 	if (wait)
2382 		wait_on_page_writeback(page);
2383 
2384 	if (clear_page_dirty_for_io(page)) {
2385 		get_page(page);
2386 		ret = mapping->a_ops->writepage(page, &wbc);
2387 		if (ret == 0 && wait) {
2388 			wait_on_page_writeback(page);
2389 			if (PageError(page))
2390 				ret = -EIO;
2391 		}
2392 		put_page(page);
2393 	} else {
2394 		unlock_page(page);
2395 	}
2396 	return ret;
2397 }
2398 EXPORT_SYMBOL(write_one_page);
2399 
2400 /*
2401  * For address_spaces which do not use buffers nor write back.
2402  */
2403 int __set_page_dirty_no_writeback(struct page *page)
2404 {
2405 	if (!PageDirty(page))
2406 		return !TestSetPageDirty(page);
2407 	return 0;
2408 }
2409 
2410 /*
2411  * Helper function for set_page_dirty family.
2412  *
2413  * Caller must hold lock_page_memcg().
2414  *
2415  * NOTE: This relies on being atomic wrt interrupts.
2416  */
2417 void account_page_dirtied(struct page *page, struct address_space *mapping)
2418 {
2419 	struct inode *inode = mapping->host;
2420 
2421 	trace_writeback_dirty_page(page, mapping);
2422 
2423 	if (mapping_cap_account_dirty(mapping)) {
2424 		struct bdi_writeback *wb;
2425 
2426 		inode_attach_wb(inode, page);
2427 		wb = inode_to_wb(inode);
2428 
2429 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2430 		__inc_zone_page_state(page, NR_FILE_DIRTY);
2431 		__inc_zone_page_state(page, NR_DIRTIED);
2432 		__inc_wb_stat(wb, WB_RECLAIMABLE);
2433 		__inc_wb_stat(wb, WB_DIRTIED);
2434 		task_io_account_write(PAGE_SIZE);
2435 		current->nr_dirtied++;
2436 		this_cpu_inc(bdp_ratelimits);
2437 	}
2438 }
2439 EXPORT_SYMBOL(account_page_dirtied);
2440 
2441 /*
2442  * Helper function for deaccounting dirty page without writeback.
2443  *
2444  * Caller must hold lock_page_memcg().
2445  */
2446 void account_page_cleaned(struct page *page, struct address_space *mapping,
2447 			  struct bdi_writeback *wb)
2448 {
2449 	if (mapping_cap_account_dirty(mapping)) {
2450 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2451 		dec_zone_page_state(page, NR_FILE_DIRTY);
2452 		dec_wb_stat(wb, WB_RECLAIMABLE);
2453 		task_io_account_cancelled_write(PAGE_SIZE);
2454 	}
2455 }
2456 
2457 /*
2458  * For address_spaces which do not use buffers.  Just tag the page as dirty in
2459  * its radix tree.
2460  *
2461  * This is also used when a single buffer is being dirtied: we want to set the
2462  * page dirty in that case, but not all the buffers.  This is a "bottom-up"
2463  * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2464  *
2465  * The caller must ensure this doesn't race with truncation.  Most will simply
2466  * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2467  * the pte lock held, which also locks out truncation.
2468  */
2469 int __set_page_dirty_nobuffers(struct page *page)
2470 {
2471 	lock_page_memcg(page);
2472 	if (!TestSetPageDirty(page)) {
2473 		struct address_space *mapping = page_mapping(page);
2474 		unsigned long flags;
2475 
2476 		if (!mapping) {
2477 			unlock_page_memcg(page);
2478 			return 1;
2479 		}
2480 
2481 		spin_lock_irqsave(&mapping->tree_lock, flags);
2482 		BUG_ON(page_mapping(page) != mapping);
2483 		WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
2484 		account_page_dirtied(page, mapping);
2485 		radix_tree_tag_set(&mapping->page_tree, page_index(page),
2486 				   PAGECACHE_TAG_DIRTY);
2487 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2488 		unlock_page_memcg(page);
2489 
2490 		if (mapping->host) {
2491 			/* !PageAnon && !swapper_space */
2492 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2493 		}
2494 		return 1;
2495 	}
2496 	unlock_page_memcg(page);
2497 	return 0;
2498 }
2499 EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2500 
2501 /*
2502  * Call this whenever redirtying a page, to de-account the dirty counters
2503  * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2504  * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2505  * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2506  * control.
2507  */
2508 void account_page_redirty(struct page *page)
2509 {
2510 	struct address_space *mapping = page->mapping;
2511 
2512 	if (mapping && mapping_cap_account_dirty(mapping)) {
2513 		struct inode *inode = mapping->host;
2514 		struct bdi_writeback *wb;
2515 		bool locked;
2516 
2517 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2518 		current->nr_dirtied--;
2519 		dec_zone_page_state(page, NR_DIRTIED);
2520 		dec_wb_stat(wb, WB_DIRTIED);
2521 		unlocked_inode_to_wb_end(inode, locked);
2522 	}
2523 }
2524 EXPORT_SYMBOL(account_page_redirty);
2525 
2526 /*
2527  * When a writepage implementation decides that it doesn't want to write this
2528  * page for some reason, it should redirty the locked page via
2529  * redirty_page_for_writepage() and it should then unlock the page and return 0
2530  */
2531 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2532 {
2533 	int ret;
2534 
2535 	wbc->pages_skipped++;
2536 	ret = __set_page_dirty_nobuffers(page);
2537 	account_page_redirty(page);
2538 	return ret;
2539 }
2540 EXPORT_SYMBOL(redirty_page_for_writepage);
2541 
2542 /*
2543  * Dirty a page.
2544  *
2545  * For pages with a mapping this should be done under the page lock
2546  * for the benefit of asynchronous memory errors who prefer a consistent
2547  * dirty state. This rule can be broken in some special cases,
2548  * but should be better not to.
2549  *
2550  * If the mapping doesn't provide a set_page_dirty a_op, then
2551  * just fall through and assume that it wants buffer_heads.
2552  */
2553 int set_page_dirty(struct page *page)
2554 {
2555 	struct address_space *mapping = page_mapping(page);
2556 
2557 	if (likely(mapping)) {
2558 		int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
2559 		/*
2560 		 * readahead/lru_deactivate_page could remain
2561 		 * PG_readahead/PG_reclaim due to race with end_page_writeback
2562 		 * About readahead, if the page is written, the flags would be
2563 		 * reset. So no problem.
2564 		 * About lru_deactivate_page, if the page is redirty, the flag
2565 		 * will be reset. So no problem. but if the page is used by readahead
2566 		 * it will confuse readahead and make it restart the size rampup
2567 		 * process. But it's a trivial problem.
2568 		 */
2569 		if (PageReclaim(page))
2570 			ClearPageReclaim(page);
2571 #ifdef CONFIG_BLOCK
2572 		if (!spd)
2573 			spd = __set_page_dirty_buffers;
2574 #endif
2575 		return (*spd)(page);
2576 	}
2577 	if (!PageDirty(page)) {
2578 		if (!TestSetPageDirty(page))
2579 			return 1;
2580 	}
2581 	return 0;
2582 }
2583 EXPORT_SYMBOL(set_page_dirty);
2584 
2585 /*
2586  * set_page_dirty() is racy if the caller has no reference against
2587  * page->mapping->host, and if the page is unlocked.  This is because another
2588  * CPU could truncate the page off the mapping and then free the mapping.
2589  *
2590  * Usually, the page _is_ locked, or the caller is a user-space process which
2591  * holds a reference on the inode by having an open file.
2592  *
2593  * In other cases, the page should be locked before running set_page_dirty().
2594  */
2595 int set_page_dirty_lock(struct page *page)
2596 {
2597 	int ret;
2598 
2599 	lock_page(page);
2600 	ret = set_page_dirty(page);
2601 	unlock_page(page);
2602 	return ret;
2603 }
2604 EXPORT_SYMBOL(set_page_dirty_lock);
2605 
2606 /*
2607  * This cancels just the dirty bit on the kernel page itself, it does NOT
2608  * actually remove dirty bits on any mmap's that may be around. It also
2609  * leaves the page tagged dirty, so any sync activity will still find it on
2610  * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2611  * look at the dirty bits in the VM.
2612  *
2613  * Doing this should *normally* only ever be done when a page is truncated,
2614  * and is not actually mapped anywhere at all. However, fs/buffer.c does
2615  * this when it notices that somebody has cleaned out all the buffers on a
2616  * page without actually doing it through the VM. Can you say "ext3 is
2617  * horribly ugly"? Thought you could.
2618  */
2619 void cancel_dirty_page(struct page *page)
2620 {
2621 	struct address_space *mapping = page_mapping(page);
2622 
2623 	if (mapping_cap_account_dirty(mapping)) {
2624 		struct inode *inode = mapping->host;
2625 		struct bdi_writeback *wb;
2626 		bool locked;
2627 
2628 		lock_page_memcg(page);
2629 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2630 
2631 		if (TestClearPageDirty(page))
2632 			account_page_cleaned(page, mapping, wb);
2633 
2634 		unlocked_inode_to_wb_end(inode, locked);
2635 		unlock_page_memcg(page);
2636 	} else {
2637 		ClearPageDirty(page);
2638 	}
2639 }
2640 EXPORT_SYMBOL(cancel_dirty_page);
2641 
2642 /*
2643  * Clear a page's dirty flag, while caring for dirty memory accounting.
2644  * Returns true if the page was previously dirty.
2645  *
2646  * This is for preparing to put the page under writeout.  We leave the page
2647  * tagged as dirty in the radix tree so that a concurrent write-for-sync
2648  * can discover it via a PAGECACHE_TAG_DIRTY walk.  The ->writepage
2649  * implementation will run either set_page_writeback() or set_page_dirty(),
2650  * at which stage we bring the page's dirty flag and radix-tree dirty tag
2651  * back into sync.
2652  *
2653  * This incoherency between the page's dirty flag and radix-tree tag is
2654  * unfortunate, but it only exists while the page is locked.
2655  */
2656 int clear_page_dirty_for_io(struct page *page)
2657 {
2658 	struct address_space *mapping = page_mapping(page);
2659 	int ret = 0;
2660 
2661 	BUG_ON(!PageLocked(page));
2662 
2663 	if (mapping && mapping_cap_account_dirty(mapping)) {
2664 		struct inode *inode = mapping->host;
2665 		struct bdi_writeback *wb;
2666 		bool locked;
2667 
2668 		/*
2669 		 * Yes, Virginia, this is indeed insane.
2670 		 *
2671 		 * We use this sequence to make sure that
2672 		 *  (a) we account for dirty stats properly
2673 		 *  (b) we tell the low-level filesystem to
2674 		 *      mark the whole page dirty if it was
2675 		 *      dirty in a pagetable. Only to then
2676 		 *  (c) clean the page again and return 1 to
2677 		 *      cause the writeback.
2678 		 *
2679 		 * This way we avoid all nasty races with the
2680 		 * dirty bit in multiple places and clearing
2681 		 * them concurrently from different threads.
2682 		 *
2683 		 * Note! Normally the "set_page_dirty(page)"
2684 		 * has no effect on the actual dirty bit - since
2685 		 * that will already usually be set. But we
2686 		 * need the side effects, and it can help us
2687 		 * avoid races.
2688 		 *
2689 		 * We basically use the page "master dirty bit"
2690 		 * as a serialization point for all the different
2691 		 * threads doing their things.
2692 		 */
2693 		if (page_mkclean(page))
2694 			set_page_dirty(page);
2695 		/*
2696 		 * We carefully synchronise fault handlers against
2697 		 * installing a dirty pte and marking the page dirty
2698 		 * at this point.  We do this by having them hold the
2699 		 * page lock while dirtying the page, and pages are
2700 		 * always locked coming in here, so we get the desired
2701 		 * exclusion.
2702 		 */
2703 		wb = unlocked_inode_to_wb_begin(inode, &locked);
2704 		if (TestClearPageDirty(page)) {
2705 			mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_DIRTY);
2706 			dec_zone_page_state(page, NR_FILE_DIRTY);
2707 			dec_wb_stat(wb, WB_RECLAIMABLE);
2708 			ret = 1;
2709 		}
2710 		unlocked_inode_to_wb_end(inode, locked);
2711 		return ret;
2712 	}
2713 	return TestClearPageDirty(page);
2714 }
2715 EXPORT_SYMBOL(clear_page_dirty_for_io);
2716 
2717 int test_clear_page_writeback(struct page *page)
2718 {
2719 	struct address_space *mapping = page_mapping(page);
2720 	int ret;
2721 
2722 	lock_page_memcg(page);
2723 	if (mapping) {
2724 		struct inode *inode = mapping->host;
2725 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2726 		unsigned long flags;
2727 
2728 		spin_lock_irqsave(&mapping->tree_lock, flags);
2729 		ret = TestClearPageWriteback(page);
2730 		if (ret) {
2731 			radix_tree_tag_clear(&mapping->page_tree,
2732 						page_index(page),
2733 						PAGECACHE_TAG_WRITEBACK);
2734 			if (bdi_cap_account_writeback(bdi)) {
2735 				struct bdi_writeback *wb = inode_to_wb(inode);
2736 
2737 				__dec_wb_stat(wb, WB_WRITEBACK);
2738 				__wb_writeout_inc(wb);
2739 			}
2740 		}
2741 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2742 	} else {
2743 		ret = TestClearPageWriteback(page);
2744 	}
2745 	if (ret) {
2746 		mem_cgroup_dec_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2747 		dec_zone_page_state(page, NR_WRITEBACK);
2748 		inc_zone_page_state(page, NR_WRITTEN);
2749 	}
2750 	unlock_page_memcg(page);
2751 	return ret;
2752 }
2753 
2754 int __test_set_page_writeback(struct page *page, bool keep_write)
2755 {
2756 	struct address_space *mapping = page_mapping(page);
2757 	int ret;
2758 
2759 	lock_page_memcg(page);
2760 	if (mapping) {
2761 		struct inode *inode = mapping->host;
2762 		struct backing_dev_info *bdi = inode_to_bdi(inode);
2763 		unsigned long flags;
2764 
2765 		spin_lock_irqsave(&mapping->tree_lock, flags);
2766 		ret = TestSetPageWriteback(page);
2767 		if (!ret) {
2768 			radix_tree_tag_set(&mapping->page_tree,
2769 						page_index(page),
2770 						PAGECACHE_TAG_WRITEBACK);
2771 			if (bdi_cap_account_writeback(bdi))
2772 				__inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
2773 		}
2774 		if (!PageDirty(page))
2775 			radix_tree_tag_clear(&mapping->page_tree,
2776 						page_index(page),
2777 						PAGECACHE_TAG_DIRTY);
2778 		if (!keep_write)
2779 			radix_tree_tag_clear(&mapping->page_tree,
2780 						page_index(page),
2781 						PAGECACHE_TAG_TOWRITE);
2782 		spin_unlock_irqrestore(&mapping->tree_lock, flags);
2783 	} else {
2784 		ret = TestSetPageWriteback(page);
2785 	}
2786 	if (!ret) {
2787 		mem_cgroup_inc_page_stat(page, MEM_CGROUP_STAT_WRITEBACK);
2788 		inc_zone_page_state(page, NR_WRITEBACK);
2789 	}
2790 	unlock_page_memcg(page);
2791 	return ret;
2792 
2793 }
2794 EXPORT_SYMBOL(__test_set_page_writeback);
2795 
2796 /*
2797  * Return true if any of the pages in the mapping are marked with the
2798  * passed tag.
2799  */
2800 int mapping_tagged(struct address_space *mapping, int tag)
2801 {
2802 	return radix_tree_tagged(&mapping->page_tree, tag);
2803 }
2804 EXPORT_SYMBOL(mapping_tagged);
2805 
2806 /**
2807  * wait_for_stable_page() - wait for writeback to finish, if necessary.
2808  * @page:	The page to wait on.
2809  *
2810  * This function determines if the given page is related to a backing device
2811  * that requires page contents to be held stable during writeback.  If so, then
2812  * it will wait for any pending writeback to complete.
2813  */
2814 void wait_for_stable_page(struct page *page)
2815 {
2816 	if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2817 		wait_on_page_writeback(page);
2818 }
2819 EXPORT_SYMBOL_GPL(wait_for_stable_page);
2820