1 /* 2 * mm/page-writeback.c 3 * 4 * Copyright (C) 2002, Linus Torvalds. 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra 6 * 7 * Contains functions related to writing back dirty pages at the 8 * address_space level. 9 * 10 * 10Apr2002 Andrew Morton 11 * Initial version 12 */ 13 14 #include <linux/kernel.h> 15 #include <linux/export.h> 16 #include <linux/spinlock.h> 17 #include <linux/fs.h> 18 #include <linux/mm.h> 19 #include <linux/swap.h> 20 #include <linux/slab.h> 21 #include <linux/pagemap.h> 22 #include <linux/writeback.h> 23 #include <linux/init.h> 24 #include <linux/backing-dev.h> 25 #include <linux/task_io_accounting_ops.h> 26 #include <linux/blkdev.h> 27 #include <linux/mpage.h> 28 #include <linux/rmap.h> 29 #include <linux/percpu.h> 30 #include <linux/notifier.h> 31 #include <linux/smp.h> 32 #include <linux/sysctl.h> 33 #include <linux/cpu.h> 34 #include <linux/syscalls.h> 35 #include <linux/buffer_head.h> /* __set_page_dirty_buffers */ 36 #include <linux/pagevec.h> 37 #include <linux/timer.h> 38 #include <linux/sched/rt.h> 39 #include <linux/sched/signal.h> 40 #include <linux/mm_inline.h> 41 #include <trace/events/writeback.h> 42 43 #include "internal.h" 44 45 /* 46 * Sleep at most 200ms at a time in balance_dirty_pages(). 47 */ 48 #define MAX_PAUSE max(HZ/5, 1) 49 50 /* 51 * Try to keep balance_dirty_pages() call intervals higher than this many pages 52 * by raising pause time to max_pause when falls below it. 53 */ 54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10)) 55 56 /* 57 * Estimate write bandwidth at 200ms intervals. 58 */ 59 #define BANDWIDTH_INTERVAL max(HZ/5, 1) 60 61 #define RATELIMIT_CALC_SHIFT 10 62 63 /* 64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited 65 * will look to see if it needs to force writeback or throttling. 66 */ 67 static long ratelimit_pages = 32; 68 69 /* The following parameters are exported via /proc/sys/vm */ 70 71 /* 72 * Start background writeback (via writeback threads) at this percentage 73 */ 74 int dirty_background_ratio = 10; 75 76 /* 77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of 78 * dirty_background_ratio * the amount of dirtyable memory 79 */ 80 unsigned long dirty_background_bytes; 81 82 /* 83 * free highmem will not be subtracted from the total free memory 84 * for calculating free ratios if vm_highmem_is_dirtyable is true 85 */ 86 int vm_highmem_is_dirtyable; 87 88 /* 89 * The generator of dirty data starts writeback at this percentage 90 */ 91 int vm_dirty_ratio = 20; 92 93 /* 94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of 95 * vm_dirty_ratio * the amount of dirtyable memory 96 */ 97 unsigned long vm_dirty_bytes; 98 99 /* 100 * The interval between `kupdate'-style writebacks 101 */ 102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */ 103 104 EXPORT_SYMBOL_GPL(dirty_writeback_interval); 105 106 /* 107 * The longest time for which data is allowed to remain dirty 108 */ 109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */ 110 111 /* 112 * Flag that makes the machine dump writes/reads and block dirtyings. 113 */ 114 int block_dump; 115 116 /* 117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies: 118 * a full sync is triggered after this time elapses without any disk activity. 119 */ 120 int laptop_mode; 121 122 EXPORT_SYMBOL(laptop_mode); 123 124 /* End of sysctl-exported parameters */ 125 126 struct wb_domain global_wb_domain; 127 128 /* consolidated parameters for balance_dirty_pages() and its subroutines */ 129 struct dirty_throttle_control { 130 #ifdef CONFIG_CGROUP_WRITEBACK 131 struct wb_domain *dom; 132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */ 133 #endif 134 struct bdi_writeback *wb; 135 struct fprop_local_percpu *wb_completions; 136 137 unsigned long avail; /* dirtyable */ 138 unsigned long dirty; /* file_dirty + write + nfs */ 139 unsigned long thresh; /* dirty threshold */ 140 unsigned long bg_thresh; /* dirty background threshold */ 141 142 unsigned long wb_dirty; /* per-wb counterparts */ 143 unsigned long wb_thresh; 144 unsigned long wb_bg_thresh; 145 146 unsigned long pos_ratio; 147 }; 148 149 /* 150 * Length of period for aging writeout fractions of bdis. This is an 151 * arbitrarily chosen number. The longer the period, the slower fractions will 152 * reflect changes in current writeout rate. 153 */ 154 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ) 155 156 #ifdef CONFIG_CGROUP_WRITEBACK 157 158 #define GDTC_INIT(__wb) .wb = (__wb), \ 159 .dom = &global_wb_domain, \ 160 .wb_completions = &(__wb)->completions 161 162 #define GDTC_INIT_NO_WB .dom = &global_wb_domain 163 164 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \ 165 .dom = mem_cgroup_wb_domain(__wb), \ 166 .wb_completions = &(__wb)->memcg_completions, \ 167 .gdtc = __gdtc 168 169 static bool mdtc_valid(struct dirty_throttle_control *dtc) 170 { 171 return dtc->dom; 172 } 173 174 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 175 { 176 return dtc->dom; 177 } 178 179 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 180 { 181 return mdtc->gdtc; 182 } 183 184 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 185 { 186 return &wb->memcg_completions; 187 } 188 189 static void wb_min_max_ratio(struct bdi_writeback *wb, 190 unsigned long *minp, unsigned long *maxp) 191 { 192 unsigned long this_bw = wb->avg_write_bandwidth; 193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth); 194 unsigned long long min = wb->bdi->min_ratio; 195 unsigned long long max = wb->bdi->max_ratio; 196 197 /* 198 * @wb may already be clean by the time control reaches here and 199 * the total may not include its bw. 200 */ 201 if (this_bw < tot_bw) { 202 if (min) { 203 min *= this_bw; 204 do_div(min, tot_bw); 205 } 206 if (max < 100) { 207 max *= this_bw; 208 do_div(max, tot_bw); 209 } 210 } 211 212 *minp = min; 213 *maxp = max; 214 } 215 216 #else /* CONFIG_CGROUP_WRITEBACK */ 217 218 #define GDTC_INIT(__wb) .wb = (__wb), \ 219 .wb_completions = &(__wb)->completions 220 #define GDTC_INIT_NO_WB 221 #define MDTC_INIT(__wb, __gdtc) 222 223 static bool mdtc_valid(struct dirty_throttle_control *dtc) 224 { 225 return false; 226 } 227 228 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc) 229 { 230 return &global_wb_domain; 231 } 232 233 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc) 234 { 235 return NULL; 236 } 237 238 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb) 239 { 240 return NULL; 241 } 242 243 static void wb_min_max_ratio(struct bdi_writeback *wb, 244 unsigned long *minp, unsigned long *maxp) 245 { 246 *minp = wb->bdi->min_ratio; 247 *maxp = wb->bdi->max_ratio; 248 } 249 250 #endif /* CONFIG_CGROUP_WRITEBACK */ 251 252 /* 253 * In a memory zone, there is a certain amount of pages we consider 254 * available for the page cache, which is essentially the number of 255 * free and reclaimable pages, minus some zone reserves to protect 256 * lowmem and the ability to uphold the zone's watermarks without 257 * requiring writeback. 258 * 259 * This number of dirtyable pages is the base value of which the 260 * user-configurable dirty ratio is the effictive number of pages that 261 * are allowed to be actually dirtied. Per individual zone, or 262 * globally by using the sum of dirtyable pages over all zones. 263 * 264 * Because the user is allowed to specify the dirty limit globally as 265 * absolute number of bytes, calculating the per-zone dirty limit can 266 * require translating the configured limit into a percentage of 267 * global dirtyable memory first. 268 */ 269 270 /** 271 * node_dirtyable_memory - number of dirtyable pages in a node 272 * @pgdat: the node 273 * 274 * Returns the node's number of pages potentially available for dirty 275 * page cache. This is the base value for the per-node dirty limits. 276 */ 277 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat) 278 { 279 unsigned long nr_pages = 0; 280 int z; 281 282 for (z = 0; z < MAX_NR_ZONES; z++) { 283 struct zone *zone = pgdat->node_zones + z; 284 285 if (!populated_zone(zone)) 286 continue; 287 288 nr_pages += zone_page_state(zone, NR_FREE_PAGES); 289 } 290 291 /* 292 * Pages reserved for the kernel should not be considered 293 * dirtyable, to prevent a situation where reclaim has to 294 * clean pages in order to balance the zones. 295 */ 296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages); 297 298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE); 299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE); 300 301 return nr_pages; 302 } 303 304 static unsigned long highmem_dirtyable_memory(unsigned long total) 305 { 306 #ifdef CONFIG_HIGHMEM 307 int node; 308 unsigned long x = 0; 309 int i; 310 311 for_each_node_state(node, N_HIGH_MEMORY) { 312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) { 313 struct zone *z; 314 unsigned long nr_pages; 315 316 if (!is_highmem_idx(i)) 317 continue; 318 319 z = &NODE_DATA(node)->node_zones[i]; 320 if (!populated_zone(z)) 321 continue; 322 323 nr_pages = zone_page_state(z, NR_FREE_PAGES); 324 /* watch for underflows */ 325 nr_pages -= min(nr_pages, high_wmark_pages(z)); 326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE); 327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE); 328 x += nr_pages; 329 } 330 } 331 332 /* 333 * Unreclaimable memory (kernel memory or anonymous memory 334 * without swap) can bring down the dirtyable pages below 335 * the zone's dirty balance reserve and the above calculation 336 * will underflow. However we still want to add in nodes 337 * which are below threshold (negative values) to get a more 338 * accurate calculation but make sure that the total never 339 * underflows. 340 */ 341 if ((long)x < 0) 342 x = 0; 343 344 /* 345 * Make sure that the number of highmem pages is never larger 346 * than the number of the total dirtyable memory. This can only 347 * occur in very strange VM situations but we want to make sure 348 * that this does not occur. 349 */ 350 return min(x, total); 351 #else 352 return 0; 353 #endif 354 } 355 356 /** 357 * global_dirtyable_memory - number of globally dirtyable pages 358 * 359 * Returns the global number of pages potentially available for dirty 360 * page cache. This is the base value for the global dirty limits. 361 */ 362 static unsigned long global_dirtyable_memory(void) 363 { 364 unsigned long x; 365 366 x = global_zone_page_state(NR_FREE_PAGES); 367 /* 368 * Pages reserved for the kernel should not be considered 369 * dirtyable, to prevent a situation where reclaim has to 370 * clean pages in order to balance the zones. 371 */ 372 x -= min(x, totalreserve_pages); 373 374 x += global_node_page_state(NR_INACTIVE_FILE); 375 x += global_node_page_state(NR_ACTIVE_FILE); 376 377 if (!vm_highmem_is_dirtyable) 378 x -= highmem_dirtyable_memory(x); 379 380 return x + 1; /* Ensure that we never return 0 */ 381 } 382 383 /** 384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain 385 * @dtc: dirty_throttle_control of interest 386 * 387 * Calculate @dtc->thresh and ->bg_thresh considering 388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller 389 * must ensure that @dtc->avail is set before calling this function. The 390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and 391 * real-time tasks. 392 */ 393 static void domain_dirty_limits(struct dirty_throttle_control *dtc) 394 { 395 const unsigned long available_memory = dtc->avail; 396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc); 397 unsigned long bytes = vm_dirty_bytes; 398 unsigned long bg_bytes = dirty_background_bytes; 399 /* convert ratios to per-PAGE_SIZE for higher precision */ 400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100; 401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100; 402 unsigned long thresh; 403 unsigned long bg_thresh; 404 struct task_struct *tsk; 405 406 /* gdtc is !NULL iff @dtc is for memcg domain */ 407 if (gdtc) { 408 unsigned long global_avail = gdtc->avail; 409 410 /* 411 * The byte settings can't be applied directly to memcg 412 * domains. Convert them to ratios by scaling against 413 * globally available memory. As the ratios are in 414 * per-PAGE_SIZE, they can be obtained by dividing bytes by 415 * number of pages. 416 */ 417 if (bytes) 418 ratio = min(DIV_ROUND_UP(bytes, global_avail), 419 PAGE_SIZE); 420 if (bg_bytes) 421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail), 422 PAGE_SIZE); 423 bytes = bg_bytes = 0; 424 } 425 426 if (bytes) 427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE); 428 else 429 thresh = (ratio * available_memory) / PAGE_SIZE; 430 431 if (bg_bytes) 432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE); 433 else 434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE; 435 436 if (unlikely(bg_thresh >= thresh)) { 437 pr_warn("vm direct limit must be set greater than background limit.\n"); 438 bg_thresh = thresh / 2; 439 } 440 441 tsk = current; 442 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) { 443 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32; 444 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32; 445 } 446 dtc->thresh = thresh; 447 dtc->bg_thresh = bg_thresh; 448 449 /* we should eventually report the domain in the TP */ 450 if (!gdtc) 451 trace_global_dirty_state(bg_thresh, thresh); 452 } 453 454 /** 455 * global_dirty_limits - background-writeback and dirty-throttling thresholds 456 * @pbackground: out parameter for bg_thresh 457 * @pdirty: out parameter for thresh 458 * 459 * Calculate bg_thresh and thresh for global_wb_domain. See 460 * domain_dirty_limits() for details. 461 */ 462 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty) 463 { 464 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB }; 465 466 gdtc.avail = global_dirtyable_memory(); 467 domain_dirty_limits(&gdtc); 468 469 *pbackground = gdtc.bg_thresh; 470 *pdirty = gdtc.thresh; 471 } 472 473 /** 474 * node_dirty_limit - maximum number of dirty pages allowed in a node 475 * @pgdat: the node 476 * 477 * Returns the maximum number of dirty pages allowed in a node, based 478 * on the node's dirtyable memory. 479 */ 480 static unsigned long node_dirty_limit(struct pglist_data *pgdat) 481 { 482 unsigned long node_memory = node_dirtyable_memory(pgdat); 483 struct task_struct *tsk = current; 484 unsigned long dirty; 485 486 if (vm_dirty_bytes) 487 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) * 488 node_memory / global_dirtyable_memory(); 489 else 490 dirty = vm_dirty_ratio * node_memory / 100; 491 492 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) 493 dirty += dirty / 4; 494 495 return dirty; 496 } 497 498 /** 499 * node_dirty_ok - tells whether a node is within its dirty limits 500 * @pgdat: the node to check 501 * 502 * Returns %true when the dirty pages in @pgdat are within the node's 503 * dirty limit, %false if the limit is exceeded. 504 */ 505 bool node_dirty_ok(struct pglist_data *pgdat) 506 { 507 unsigned long limit = node_dirty_limit(pgdat); 508 unsigned long nr_pages = 0; 509 510 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY); 511 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS); 512 nr_pages += node_page_state(pgdat, NR_WRITEBACK); 513 514 return nr_pages <= limit; 515 } 516 517 int dirty_background_ratio_handler(struct ctl_table *table, int write, 518 void __user *buffer, size_t *lenp, 519 loff_t *ppos) 520 { 521 int ret; 522 523 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 524 if (ret == 0 && write) 525 dirty_background_bytes = 0; 526 return ret; 527 } 528 529 int dirty_background_bytes_handler(struct ctl_table *table, int write, 530 void __user *buffer, size_t *lenp, 531 loff_t *ppos) 532 { 533 int ret; 534 535 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 536 if (ret == 0 && write) 537 dirty_background_ratio = 0; 538 return ret; 539 } 540 541 int dirty_ratio_handler(struct ctl_table *table, int write, 542 void __user *buffer, size_t *lenp, 543 loff_t *ppos) 544 { 545 int old_ratio = vm_dirty_ratio; 546 int ret; 547 548 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos); 549 if (ret == 0 && write && vm_dirty_ratio != old_ratio) { 550 writeback_set_ratelimit(); 551 vm_dirty_bytes = 0; 552 } 553 return ret; 554 } 555 556 int dirty_bytes_handler(struct ctl_table *table, int write, 557 void __user *buffer, size_t *lenp, 558 loff_t *ppos) 559 { 560 unsigned long old_bytes = vm_dirty_bytes; 561 int ret; 562 563 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos); 564 if (ret == 0 && write && vm_dirty_bytes != old_bytes) { 565 writeback_set_ratelimit(); 566 vm_dirty_ratio = 0; 567 } 568 return ret; 569 } 570 571 static unsigned long wp_next_time(unsigned long cur_time) 572 { 573 cur_time += VM_COMPLETIONS_PERIOD_LEN; 574 /* 0 has a special meaning... */ 575 if (!cur_time) 576 return 1; 577 return cur_time; 578 } 579 580 static void wb_domain_writeout_inc(struct wb_domain *dom, 581 struct fprop_local_percpu *completions, 582 unsigned int max_prop_frac) 583 { 584 __fprop_inc_percpu_max(&dom->completions, completions, 585 max_prop_frac); 586 /* First event after period switching was turned off? */ 587 if (unlikely(!dom->period_time)) { 588 /* 589 * We can race with other __bdi_writeout_inc calls here but 590 * it does not cause any harm since the resulting time when 591 * timer will fire and what is in writeout_period_time will be 592 * roughly the same. 593 */ 594 dom->period_time = wp_next_time(jiffies); 595 mod_timer(&dom->period_timer, dom->period_time); 596 } 597 } 598 599 /* 600 * Increment @wb's writeout completion count and the global writeout 601 * completion count. Called from test_clear_page_writeback(). 602 */ 603 static inline void __wb_writeout_inc(struct bdi_writeback *wb) 604 { 605 struct wb_domain *cgdom; 606 607 inc_wb_stat(wb, WB_WRITTEN); 608 wb_domain_writeout_inc(&global_wb_domain, &wb->completions, 609 wb->bdi->max_prop_frac); 610 611 cgdom = mem_cgroup_wb_domain(wb); 612 if (cgdom) 613 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb), 614 wb->bdi->max_prop_frac); 615 } 616 617 void wb_writeout_inc(struct bdi_writeback *wb) 618 { 619 unsigned long flags; 620 621 local_irq_save(flags); 622 __wb_writeout_inc(wb); 623 local_irq_restore(flags); 624 } 625 EXPORT_SYMBOL_GPL(wb_writeout_inc); 626 627 /* 628 * On idle system, we can be called long after we scheduled because we use 629 * deferred timers so count with missed periods. 630 */ 631 static void writeout_period(struct timer_list *t) 632 { 633 struct wb_domain *dom = from_timer(dom, t, period_timer); 634 int miss_periods = (jiffies - dom->period_time) / 635 VM_COMPLETIONS_PERIOD_LEN; 636 637 if (fprop_new_period(&dom->completions, miss_periods + 1)) { 638 dom->period_time = wp_next_time(dom->period_time + 639 miss_periods * VM_COMPLETIONS_PERIOD_LEN); 640 mod_timer(&dom->period_timer, dom->period_time); 641 } else { 642 /* 643 * Aging has zeroed all fractions. Stop wasting CPU on period 644 * updates. 645 */ 646 dom->period_time = 0; 647 } 648 } 649 650 int wb_domain_init(struct wb_domain *dom, gfp_t gfp) 651 { 652 memset(dom, 0, sizeof(*dom)); 653 654 spin_lock_init(&dom->lock); 655 656 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE); 657 658 dom->dirty_limit_tstamp = jiffies; 659 660 return fprop_global_init(&dom->completions, gfp); 661 } 662 663 #ifdef CONFIG_CGROUP_WRITEBACK 664 void wb_domain_exit(struct wb_domain *dom) 665 { 666 del_timer_sync(&dom->period_timer); 667 fprop_global_destroy(&dom->completions); 668 } 669 #endif 670 671 /* 672 * bdi_min_ratio keeps the sum of the minimum dirty shares of all 673 * registered backing devices, which, for obvious reasons, can not 674 * exceed 100%. 675 */ 676 static unsigned int bdi_min_ratio; 677 678 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio) 679 { 680 int ret = 0; 681 682 spin_lock_bh(&bdi_lock); 683 if (min_ratio > bdi->max_ratio) { 684 ret = -EINVAL; 685 } else { 686 min_ratio -= bdi->min_ratio; 687 if (bdi_min_ratio + min_ratio < 100) { 688 bdi_min_ratio += min_ratio; 689 bdi->min_ratio += min_ratio; 690 } else { 691 ret = -EINVAL; 692 } 693 } 694 spin_unlock_bh(&bdi_lock); 695 696 return ret; 697 } 698 699 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio) 700 { 701 int ret = 0; 702 703 if (max_ratio > 100) 704 return -EINVAL; 705 706 spin_lock_bh(&bdi_lock); 707 if (bdi->min_ratio > max_ratio) { 708 ret = -EINVAL; 709 } else { 710 bdi->max_ratio = max_ratio; 711 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100; 712 } 713 spin_unlock_bh(&bdi_lock); 714 715 return ret; 716 } 717 EXPORT_SYMBOL(bdi_set_max_ratio); 718 719 static unsigned long dirty_freerun_ceiling(unsigned long thresh, 720 unsigned long bg_thresh) 721 { 722 return (thresh + bg_thresh) / 2; 723 } 724 725 static unsigned long hard_dirty_limit(struct wb_domain *dom, 726 unsigned long thresh) 727 { 728 return max(thresh, dom->dirty_limit); 729 } 730 731 /* 732 * Memory which can be further allocated to a memcg domain is capped by 733 * system-wide clean memory excluding the amount being used in the domain. 734 */ 735 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc, 736 unsigned long filepages, unsigned long headroom) 737 { 738 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc); 739 unsigned long clean = filepages - min(filepages, mdtc->dirty); 740 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty); 741 unsigned long other_clean = global_clean - min(global_clean, clean); 742 743 mdtc->avail = filepages + min(headroom, other_clean); 744 } 745 746 /** 747 * __wb_calc_thresh - @wb's share of dirty throttling threshold 748 * @dtc: dirty_throttle_context of interest 749 * 750 * Returns @wb's dirty limit in pages. The term "dirty" in the context of 751 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages. 752 * 753 * Note that balance_dirty_pages() will only seriously take it as a hard limit 754 * when sleeping max_pause per page is not enough to keep the dirty pages under 755 * control. For example, when the device is completely stalled due to some error 756 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key. 757 * In the other normal situations, it acts more gently by throttling the tasks 758 * more (rather than completely block them) when the wb dirty pages go high. 759 * 760 * It allocates high/low dirty limits to fast/slow devices, in order to prevent 761 * - starving fast devices 762 * - piling up dirty pages (that will take long time to sync) on slow devices 763 * 764 * The wb's share of dirty limit will be adapting to its throughput and 765 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set. 766 */ 767 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc) 768 { 769 struct wb_domain *dom = dtc_dom(dtc); 770 unsigned long thresh = dtc->thresh; 771 u64 wb_thresh; 772 long numerator, denominator; 773 unsigned long wb_min_ratio, wb_max_ratio; 774 775 /* 776 * Calculate this BDI's share of the thresh ratio. 777 */ 778 fprop_fraction_percpu(&dom->completions, dtc->wb_completions, 779 &numerator, &denominator); 780 781 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100; 782 wb_thresh *= numerator; 783 do_div(wb_thresh, denominator); 784 785 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio); 786 787 wb_thresh += (thresh * wb_min_ratio) / 100; 788 if (wb_thresh > (thresh * wb_max_ratio) / 100) 789 wb_thresh = thresh * wb_max_ratio / 100; 790 791 return wb_thresh; 792 } 793 794 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh) 795 { 796 struct dirty_throttle_control gdtc = { GDTC_INIT(wb), 797 .thresh = thresh }; 798 return __wb_calc_thresh(&gdtc); 799 } 800 801 /* 802 * setpoint - dirty 3 803 * f(dirty) := 1.0 + (----------------) 804 * limit - setpoint 805 * 806 * it's a 3rd order polynomial that subjects to 807 * 808 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast 809 * (2) f(setpoint) = 1.0 => the balance point 810 * (3) f(limit) = 0 => the hard limit 811 * (4) df/dx <= 0 => negative feedback control 812 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse) 813 * => fast response on large errors; small oscillation near setpoint 814 */ 815 static long long pos_ratio_polynom(unsigned long setpoint, 816 unsigned long dirty, 817 unsigned long limit) 818 { 819 long long pos_ratio; 820 long x; 821 822 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT, 823 (limit - setpoint) | 1); 824 pos_ratio = x; 825 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 826 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT; 827 pos_ratio += 1 << RATELIMIT_CALC_SHIFT; 828 829 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT); 830 } 831 832 /* 833 * Dirty position control. 834 * 835 * (o) global/bdi setpoints 836 * 837 * We want the dirty pages be balanced around the global/wb setpoints. 838 * When the number of dirty pages is higher/lower than the setpoint, the 839 * dirty position control ratio (and hence task dirty ratelimit) will be 840 * decreased/increased to bring the dirty pages back to the setpoint. 841 * 842 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT 843 * 844 * if (dirty < setpoint) scale up pos_ratio 845 * if (dirty > setpoint) scale down pos_ratio 846 * 847 * if (wb_dirty < wb_setpoint) scale up pos_ratio 848 * if (wb_dirty > wb_setpoint) scale down pos_ratio 849 * 850 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT 851 * 852 * (o) global control line 853 * 854 * ^ pos_ratio 855 * | 856 * | |<===== global dirty control scope ======>| 857 * 2.0 .............* 858 * | .* 859 * | . * 860 * | . * 861 * | . * 862 * | . * 863 * | . * 864 * 1.0 ................................* 865 * | . . * 866 * | . . * 867 * | . . * 868 * | . . * 869 * | . . * 870 * 0 +------------.------------------.----------------------*-------------> 871 * freerun^ setpoint^ limit^ dirty pages 872 * 873 * (o) wb control line 874 * 875 * ^ pos_ratio 876 * | 877 * | * 878 * | * 879 * | * 880 * | * 881 * | * |<=========== span ============>| 882 * 1.0 .......................* 883 * | . * 884 * | . * 885 * | . * 886 * | . * 887 * | . * 888 * | . * 889 * | . * 890 * | . * 891 * | . * 892 * | . * 893 * | . * 894 * 1/4 ...............................................* * * * * * * * * * * * 895 * | . . 896 * | . . 897 * | . . 898 * 0 +----------------------.-------------------------------.-------------> 899 * wb_setpoint^ x_intercept^ 900 * 901 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can 902 * be smoothly throttled down to normal if it starts high in situations like 903 * - start writing to a slow SD card and a fast disk at the same time. The SD 904 * card's wb_dirty may rush to many times higher than wb_setpoint. 905 * - the wb dirty thresh drops quickly due to change of JBOD workload 906 */ 907 static void wb_position_ratio(struct dirty_throttle_control *dtc) 908 { 909 struct bdi_writeback *wb = dtc->wb; 910 unsigned long write_bw = wb->avg_write_bandwidth; 911 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 912 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 913 unsigned long wb_thresh = dtc->wb_thresh; 914 unsigned long x_intercept; 915 unsigned long setpoint; /* dirty pages' target balance point */ 916 unsigned long wb_setpoint; 917 unsigned long span; 918 long long pos_ratio; /* for scaling up/down the rate limit */ 919 long x; 920 921 dtc->pos_ratio = 0; 922 923 if (unlikely(dtc->dirty >= limit)) 924 return; 925 926 /* 927 * global setpoint 928 * 929 * See comment for pos_ratio_polynom(). 930 */ 931 setpoint = (freerun + limit) / 2; 932 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit); 933 934 /* 935 * The strictlimit feature is a tool preventing mistrusted filesystems 936 * from growing a large number of dirty pages before throttling. For 937 * such filesystems balance_dirty_pages always checks wb counters 938 * against wb limits. Even if global "nr_dirty" is under "freerun". 939 * This is especially important for fuse which sets bdi->max_ratio to 940 * 1% by default. Without strictlimit feature, fuse writeback may 941 * consume arbitrary amount of RAM because it is accounted in 942 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty". 943 * 944 * Here, in wb_position_ratio(), we calculate pos_ratio based on 945 * two values: wb_dirty and wb_thresh. Let's consider an example: 946 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global 947 * limits are set by default to 10% and 20% (background and throttle). 948 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages. 949 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is 950 * about ~6K pages (as the average of background and throttle wb 951 * limits). The 3rd order polynomial will provide positive feedback if 952 * wb_dirty is under wb_setpoint and vice versa. 953 * 954 * Note, that we cannot use global counters in these calculations 955 * because we want to throttle process writing to a strictlimit wb 956 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB 957 * in the example above). 958 */ 959 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 960 long long wb_pos_ratio; 961 962 if (dtc->wb_dirty < 8) { 963 dtc->pos_ratio = min_t(long long, pos_ratio * 2, 964 2 << RATELIMIT_CALC_SHIFT); 965 return; 966 } 967 968 if (dtc->wb_dirty >= wb_thresh) 969 return; 970 971 wb_setpoint = dirty_freerun_ceiling(wb_thresh, 972 dtc->wb_bg_thresh); 973 974 if (wb_setpoint == 0 || wb_setpoint == wb_thresh) 975 return; 976 977 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty, 978 wb_thresh); 979 980 /* 981 * Typically, for strictlimit case, wb_setpoint << setpoint 982 * and pos_ratio >> wb_pos_ratio. In the other words global 983 * state ("dirty") is not limiting factor and we have to 984 * make decision based on wb counters. But there is an 985 * important case when global pos_ratio should get precedence: 986 * global limits are exceeded (e.g. due to activities on other 987 * wb's) while given strictlimit wb is below limit. 988 * 989 * "pos_ratio * wb_pos_ratio" would work for the case above, 990 * but it would look too non-natural for the case of all 991 * activity in the system coming from a single strictlimit wb 992 * with bdi->max_ratio == 100%. 993 * 994 * Note that min() below somewhat changes the dynamics of the 995 * control system. Normally, pos_ratio value can be well over 3 996 * (when globally we are at freerun and wb is well below wb 997 * setpoint). Now the maximum pos_ratio in the same situation 998 * is 2. We might want to tweak this if we observe the control 999 * system is too slow to adapt. 1000 */ 1001 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio); 1002 return; 1003 } 1004 1005 /* 1006 * We have computed basic pos_ratio above based on global situation. If 1007 * the wb is over/under its share of dirty pages, we want to scale 1008 * pos_ratio further down/up. That is done by the following mechanism. 1009 */ 1010 1011 /* 1012 * wb setpoint 1013 * 1014 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint) 1015 * 1016 * x_intercept - wb_dirty 1017 * := -------------------------- 1018 * x_intercept - wb_setpoint 1019 * 1020 * The main wb control line is a linear function that subjects to 1021 * 1022 * (1) f(wb_setpoint) = 1.0 1023 * (2) k = - 1 / (8 * write_bw) (in single wb case) 1024 * or equally: x_intercept = wb_setpoint + 8 * write_bw 1025 * 1026 * For single wb case, the dirty pages are observed to fluctuate 1027 * regularly within range 1028 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2] 1029 * for various filesystems, where (2) can yield in a reasonable 12.5% 1030 * fluctuation range for pos_ratio. 1031 * 1032 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its 1033 * own size, so move the slope over accordingly and choose a slope that 1034 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh. 1035 */ 1036 if (unlikely(wb_thresh > dtc->thresh)) 1037 wb_thresh = dtc->thresh; 1038 /* 1039 * It's very possible that wb_thresh is close to 0 not because the 1040 * device is slow, but that it has remained inactive for long time. 1041 * Honour such devices a reasonable good (hopefully IO efficient) 1042 * threshold, so that the occasional writes won't be blocked and active 1043 * writes can rampup the threshold quickly. 1044 */ 1045 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8); 1046 /* 1047 * scale global setpoint to wb's: 1048 * wb_setpoint = setpoint * wb_thresh / thresh 1049 */ 1050 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1); 1051 wb_setpoint = setpoint * (u64)x >> 16; 1052 /* 1053 * Use span=(8*write_bw) in single wb case as indicated by 1054 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case. 1055 * 1056 * wb_thresh thresh - wb_thresh 1057 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh 1058 * thresh thresh 1059 */ 1060 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16; 1061 x_intercept = wb_setpoint + span; 1062 1063 if (dtc->wb_dirty < x_intercept - span / 4) { 1064 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty), 1065 (x_intercept - wb_setpoint) | 1); 1066 } else 1067 pos_ratio /= 4; 1068 1069 /* 1070 * wb reserve area, safeguard against dirty pool underrun and disk idle 1071 * It may push the desired control point of global dirty pages higher 1072 * than setpoint. 1073 */ 1074 x_intercept = wb_thresh / 2; 1075 if (dtc->wb_dirty < x_intercept) { 1076 if (dtc->wb_dirty > x_intercept / 8) 1077 pos_ratio = div_u64(pos_ratio * x_intercept, 1078 dtc->wb_dirty); 1079 else 1080 pos_ratio *= 8; 1081 } 1082 1083 dtc->pos_ratio = pos_ratio; 1084 } 1085 1086 static void wb_update_write_bandwidth(struct bdi_writeback *wb, 1087 unsigned long elapsed, 1088 unsigned long written) 1089 { 1090 const unsigned long period = roundup_pow_of_two(3 * HZ); 1091 unsigned long avg = wb->avg_write_bandwidth; 1092 unsigned long old = wb->write_bandwidth; 1093 u64 bw; 1094 1095 /* 1096 * bw = written * HZ / elapsed 1097 * 1098 * bw * elapsed + write_bandwidth * (period - elapsed) 1099 * write_bandwidth = --------------------------------------------------- 1100 * period 1101 * 1102 * @written may have decreased due to account_page_redirty(). 1103 * Avoid underflowing @bw calculation. 1104 */ 1105 bw = written - min(written, wb->written_stamp); 1106 bw *= HZ; 1107 if (unlikely(elapsed > period)) { 1108 do_div(bw, elapsed); 1109 avg = bw; 1110 goto out; 1111 } 1112 bw += (u64)wb->write_bandwidth * (period - elapsed); 1113 bw >>= ilog2(period); 1114 1115 /* 1116 * one more level of smoothing, for filtering out sudden spikes 1117 */ 1118 if (avg > old && old >= (unsigned long)bw) 1119 avg -= (avg - old) >> 3; 1120 1121 if (avg < old && old <= (unsigned long)bw) 1122 avg += (old - avg) >> 3; 1123 1124 out: 1125 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */ 1126 avg = max(avg, 1LU); 1127 if (wb_has_dirty_io(wb)) { 1128 long delta = avg - wb->avg_write_bandwidth; 1129 WARN_ON_ONCE(atomic_long_add_return(delta, 1130 &wb->bdi->tot_write_bandwidth) <= 0); 1131 } 1132 wb->write_bandwidth = bw; 1133 wb->avg_write_bandwidth = avg; 1134 } 1135 1136 static void update_dirty_limit(struct dirty_throttle_control *dtc) 1137 { 1138 struct wb_domain *dom = dtc_dom(dtc); 1139 unsigned long thresh = dtc->thresh; 1140 unsigned long limit = dom->dirty_limit; 1141 1142 /* 1143 * Follow up in one step. 1144 */ 1145 if (limit < thresh) { 1146 limit = thresh; 1147 goto update; 1148 } 1149 1150 /* 1151 * Follow down slowly. Use the higher one as the target, because thresh 1152 * may drop below dirty. This is exactly the reason to introduce 1153 * dom->dirty_limit which is guaranteed to lie above the dirty pages. 1154 */ 1155 thresh = max(thresh, dtc->dirty); 1156 if (limit > thresh) { 1157 limit -= (limit - thresh) >> 5; 1158 goto update; 1159 } 1160 return; 1161 update: 1162 dom->dirty_limit = limit; 1163 } 1164 1165 static void domain_update_bandwidth(struct dirty_throttle_control *dtc, 1166 unsigned long now) 1167 { 1168 struct wb_domain *dom = dtc_dom(dtc); 1169 1170 /* 1171 * check locklessly first to optimize away locking for the most time 1172 */ 1173 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) 1174 return; 1175 1176 spin_lock(&dom->lock); 1177 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) { 1178 update_dirty_limit(dtc); 1179 dom->dirty_limit_tstamp = now; 1180 } 1181 spin_unlock(&dom->lock); 1182 } 1183 1184 /* 1185 * Maintain wb->dirty_ratelimit, the base dirty throttle rate. 1186 * 1187 * Normal wb tasks will be curbed at or below it in long term. 1188 * Obviously it should be around (write_bw / N) when there are N dd tasks. 1189 */ 1190 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc, 1191 unsigned long dirtied, 1192 unsigned long elapsed) 1193 { 1194 struct bdi_writeback *wb = dtc->wb; 1195 unsigned long dirty = dtc->dirty; 1196 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh); 1197 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh); 1198 unsigned long setpoint = (freerun + limit) / 2; 1199 unsigned long write_bw = wb->avg_write_bandwidth; 1200 unsigned long dirty_ratelimit = wb->dirty_ratelimit; 1201 unsigned long dirty_rate; 1202 unsigned long task_ratelimit; 1203 unsigned long balanced_dirty_ratelimit; 1204 unsigned long step; 1205 unsigned long x; 1206 unsigned long shift; 1207 1208 /* 1209 * The dirty rate will match the writeout rate in long term, except 1210 * when dirty pages are truncated by userspace or re-dirtied by FS. 1211 */ 1212 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed; 1213 1214 /* 1215 * task_ratelimit reflects each dd's dirty rate for the past 200ms. 1216 */ 1217 task_ratelimit = (u64)dirty_ratelimit * 1218 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT; 1219 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */ 1220 1221 /* 1222 * A linear estimation of the "balanced" throttle rate. The theory is, 1223 * if there are N dd tasks, each throttled at task_ratelimit, the wb's 1224 * dirty_rate will be measured to be (N * task_ratelimit). So the below 1225 * formula will yield the balanced rate limit (write_bw / N). 1226 * 1227 * Note that the expanded form is not a pure rate feedback: 1228 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1) 1229 * but also takes pos_ratio into account: 1230 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2) 1231 * 1232 * (1) is not realistic because pos_ratio also takes part in balancing 1233 * the dirty rate. Consider the state 1234 * pos_ratio = 0.5 (3) 1235 * rate = 2 * (write_bw / N) (4) 1236 * If (1) is used, it will stuck in that state! Because each dd will 1237 * be throttled at 1238 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5) 1239 * yielding 1240 * dirty_rate = N * task_ratelimit = write_bw (6) 1241 * put (6) into (1) we get 1242 * rate_(i+1) = rate_(i) (7) 1243 * 1244 * So we end up using (2) to always keep 1245 * rate_(i+1) ~= (write_bw / N) (8) 1246 * regardless of the value of pos_ratio. As long as (8) is satisfied, 1247 * pos_ratio is able to drive itself to 1.0, which is not only where 1248 * the dirty count meet the setpoint, but also where the slope of 1249 * pos_ratio is most flat and hence task_ratelimit is least fluctuated. 1250 */ 1251 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw, 1252 dirty_rate | 1); 1253 /* 1254 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw 1255 */ 1256 if (unlikely(balanced_dirty_ratelimit > write_bw)) 1257 balanced_dirty_ratelimit = write_bw; 1258 1259 /* 1260 * We could safely do this and return immediately: 1261 * 1262 * wb->dirty_ratelimit = balanced_dirty_ratelimit; 1263 * 1264 * However to get a more stable dirty_ratelimit, the below elaborated 1265 * code makes use of task_ratelimit to filter out singular points and 1266 * limit the step size. 1267 * 1268 * The below code essentially only uses the relative value of 1269 * 1270 * task_ratelimit - dirty_ratelimit 1271 * = (pos_ratio - 1) * dirty_ratelimit 1272 * 1273 * which reflects the direction and size of dirty position error. 1274 */ 1275 1276 /* 1277 * dirty_ratelimit will follow balanced_dirty_ratelimit iff 1278 * task_ratelimit is on the same side of dirty_ratelimit, too. 1279 * For example, when 1280 * - dirty_ratelimit > balanced_dirty_ratelimit 1281 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint) 1282 * lowering dirty_ratelimit will help meet both the position and rate 1283 * control targets. Otherwise, don't update dirty_ratelimit if it will 1284 * only help meet the rate target. After all, what the users ultimately 1285 * feel and care are stable dirty rate and small position error. 1286 * 1287 * |task_ratelimit - dirty_ratelimit| is used to limit the step size 1288 * and filter out the singular points of balanced_dirty_ratelimit. Which 1289 * keeps jumping around randomly and can even leap far away at times 1290 * due to the small 200ms estimation period of dirty_rate (we want to 1291 * keep that period small to reduce time lags). 1292 */ 1293 step = 0; 1294 1295 /* 1296 * For strictlimit case, calculations above were based on wb counters 1297 * and limits (starting from pos_ratio = wb_position_ratio() and up to 1298 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate). 1299 * Hence, to calculate "step" properly, we have to use wb_dirty as 1300 * "dirty" and wb_setpoint as "setpoint". 1301 * 1302 * We rampup dirty_ratelimit forcibly if wb_dirty is low because 1303 * it's possible that wb_thresh is close to zero due to inactivity 1304 * of backing device. 1305 */ 1306 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) { 1307 dirty = dtc->wb_dirty; 1308 if (dtc->wb_dirty < 8) 1309 setpoint = dtc->wb_dirty + 1; 1310 else 1311 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2; 1312 } 1313 1314 if (dirty < setpoint) { 1315 x = min3(wb->balanced_dirty_ratelimit, 1316 balanced_dirty_ratelimit, task_ratelimit); 1317 if (dirty_ratelimit < x) 1318 step = x - dirty_ratelimit; 1319 } else { 1320 x = max3(wb->balanced_dirty_ratelimit, 1321 balanced_dirty_ratelimit, task_ratelimit); 1322 if (dirty_ratelimit > x) 1323 step = dirty_ratelimit - x; 1324 } 1325 1326 /* 1327 * Don't pursue 100% rate matching. It's impossible since the balanced 1328 * rate itself is constantly fluctuating. So decrease the track speed 1329 * when it gets close to the target. Helps eliminate pointless tremors. 1330 */ 1331 shift = dirty_ratelimit / (2 * step + 1); 1332 if (shift < BITS_PER_LONG) 1333 step = DIV_ROUND_UP(step >> shift, 8); 1334 else 1335 step = 0; 1336 1337 if (dirty_ratelimit < balanced_dirty_ratelimit) 1338 dirty_ratelimit += step; 1339 else 1340 dirty_ratelimit -= step; 1341 1342 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL); 1343 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit; 1344 1345 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit); 1346 } 1347 1348 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc, 1349 struct dirty_throttle_control *mdtc, 1350 unsigned long start_time, 1351 bool update_ratelimit) 1352 { 1353 struct bdi_writeback *wb = gdtc->wb; 1354 unsigned long now = jiffies; 1355 unsigned long elapsed = now - wb->bw_time_stamp; 1356 unsigned long dirtied; 1357 unsigned long written; 1358 1359 lockdep_assert_held(&wb->list_lock); 1360 1361 /* 1362 * rate-limit, only update once every 200ms. 1363 */ 1364 if (elapsed < BANDWIDTH_INTERVAL) 1365 return; 1366 1367 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]); 1368 written = percpu_counter_read(&wb->stat[WB_WRITTEN]); 1369 1370 /* 1371 * Skip quiet periods when disk bandwidth is under-utilized. 1372 * (at least 1s idle time between two flusher runs) 1373 */ 1374 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time)) 1375 goto snapshot; 1376 1377 if (update_ratelimit) { 1378 domain_update_bandwidth(gdtc, now); 1379 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed); 1380 1381 /* 1382 * @mdtc is always NULL if !CGROUP_WRITEBACK but the 1383 * compiler has no way to figure that out. Help it. 1384 */ 1385 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) { 1386 domain_update_bandwidth(mdtc, now); 1387 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed); 1388 } 1389 } 1390 wb_update_write_bandwidth(wb, elapsed, written); 1391 1392 snapshot: 1393 wb->dirtied_stamp = dirtied; 1394 wb->written_stamp = written; 1395 wb->bw_time_stamp = now; 1396 } 1397 1398 void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time) 1399 { 1400 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) }; 1401 1402 __wb_update_bandwidth(&gdtc, NULL, start_time, false); 1403 } 1404 1405 /* 1406 * After a task dirtied this many pages, balance_dirty_pages_ratelimited() 1407 * will look to see if it needs to start dirty throttling. 1408 * 1409 * If dirty_poll_interval is too low, big NUMA machines will call the expensive 1410 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin 1411 * (the number of pages we may dirty without exceeding the dirty limits). 1412 */ 1413 static unsigned long dirty_poll_interval(unsigned long dirty, 1414 unsigned long thresh) 1415 { 1416 if (thresh > dirty) 1417 return 1UL << (ilog2(thresh - dirty) >> 1); 1418 1419 return 1; 1420 } 1421 1422 static unsigned long wb_max_pause(struct bdi_writeback *wb, 1423 unsigned long wb_dirty) 1424 { 1425 unsigned long bw = wb->avg_write_bandwidth; 1426 unsigned long t; 1427 1428 /* 1429 * Limit pause time for small memory systems. If sleeping for too long 1430 * time, a small pool of dirty/writeback pages may go empty and disk go 1431 * idle. 1432 * 1433 * 8 serves as the safety ratio. 1434 */ 1435 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8)); 1436 t++; 1437 1438 return min_t(unsigned long, t, MAX_PAUSE); 1439 } 1440 1441 static long wb_min_pause(struct bdi_writeback *wb, 1442 long max_pause, 1443 unsigned long task_ratelimit, 1444 unsigned long dirty_ratelimit, 1445 int *nr_dirtied_pause) 1446 { 1447 long hi = ilog2(wb->avg_write_bandwidth); 1448 long lo = ilog2(wb->dirty_ratelimit); 1449 long t; /* target pause */ 1450 long pause; /* estimated next pause */ 1451 int pages; /* target nr_dirtied_pause */ 1452 1453 /* target for 10ms pause on 1-dd case */ 1454 t = max(1, HZ / 100); 1455 1456 /* 1457 * Scale up pause time for concurrent dirtiers in order to reduce CPU 1458 * overheads. 1459 * 1460 * (N * 10ms) on 2^N concurrent tasks. 1461 */ 1462 if (hi > lo) 1463 t += (hi - lo) * (10 * HZ) / 1024; 1464 1465 /* 1466 * This is a bit convoluted. We try to base the next nr_dirtied_pause 1467 * on the much more stable dirty_ratelimit. However the next pause time 1468 * will be computed based on task_ratelimit and the two rate limits may 1469 * depart considerably at some time. Especially if task_ratelimit goes 1470 * below dirty_ratelimit/2 and the target pause is max_pause, the next 1471 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a 1472 * result task_ratelimit won't be executed faithfully, which could 1473 * eventually bring down dirty_ratelimit. 1474 * 1475 * We apply two rules to fix it up: 1476 * 1) try to estimate the next pause time and if necessary, use a lower 1477 * nr_dirtied_pause so as not to exceed max_pause. When this happens, 1478 * nr_dirtied_pause will be "dancing" with task_ratelimit. 1479 * 2) limit the target pause time to max_pause/2, so that the normal 1480 * small fluctuations of task_ratelimit won't trigger rule (1) and 1481 * nr_dirtied_pause will remain as stable as dirty_ratelimit. 1482 */ 1483 t = min(t, 1 + max_pause / 2); 1484 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1485 1486 /* 1487 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test 1488 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}. 1489 * When the 16 consecutive reads are often interrupted by some dirty 1490 * throttling pause during the async writes, cfq will go into idles 1491 * (deadline is fine). So push nr_dirtied_pause as high as possible 1492 * until reaches DIRTY_POLL_THRESH=32 pages. 1493 */ 1494 if (pages < DIRTY_POLL_THRESH) { 1495 t = max_pause; 1496 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ); 1497 if (pages > DIRTY_POLL_THRESH) { 1498 pages = DIRTY_POLL_THRESH; 1499 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit; 1500 } 1501 } 1502 1503 pause = HZ * pages / (task_ratelimit + 1); 1504 if (pause > max_pause) { 1505 t = max_pause; 1506 pages = task_ratelimit * t / roundup_pow_of_two(HZ); 1507 } 1508 1509 *nr_dirtied_pause = pages; 1510 /* 1511 * The minimal pause time will normally be half the target pause time. 1512 */ 1513 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t; 1514 } 1515 1516 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc) 1517 { 1518 struct bdi_writeback *wb = dtc->wb; 1519 unsigned long wb_reclaimable; 1520 1521 /* 1522 * wb_thresh is not treated as some limiting factor as 1523 * dirty_thresh, due to reasons 1524 * - in JBOD setup, wb_thresh can fluctuate a lot 1525 * - in a system with HDD and USB key, the USB key may somehow 1526 * go into state (wb_dirty >> wb_thresh) either because 1527 * wb_dirty starts high, or because wb_thresh drops low. 1528 * In this case we don't want to hard throttle the USB key 1529 * dirtiers for 100 seconds until wb_dirty drops under 1530 * wb_thresh. Instead the auxiliary wb control line in 1531 * wb_position_ratio() will let the dirtier task progress 1532 * at some rate <= (write_bw / 2) for bringing down wb_dirty. 1533 */ 1534 dtc->wb_thresh = __wb_calc_thresh(dtc); 1535 dtc->wb_bg_thresh = dtc->thresh ? 1536 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0; 1537 1538 /* 1539 * In order to avoid the stacked BDI deadlock we need 1540 * to ensure we accurately count the 'dirty' pages when 1541 * the threshold is low. 1542 * 1543 * Otherwise it would be possible to get thresh+n pages 1544 * reported dirty, even though there are thresh-m pages 1545 * actually dirty; with m+n sitting in the percpu 1546 * deltas. 1547 */ 1548 if (dtc->wb_thresh < 2 * wb_stat_error()) { 1549 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE); 1550 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK); 1551 } else { 1552 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE); 1553 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK); 1554 } 1555 } 1556 1557 /* 1558 * balance_dirty_pages() must be called by processes which are generating dirty 1559 * data. It looks at the number of dirty pages in the machine and will force 1560 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2. 1561 * If we're over `background_thresh' then the writeback threads are woken to 1562 * perform some writeout. 1563 */ 1564 static void balance_dirty_pages(struct bdi_writeback *wb, 1565 unsigned long pages_dirtied) 1566 { 1567 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1568 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1569 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1570 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1571 &mdtc_stor : NULL; 1572 struct dirty_throttle_control *sdtc; 1573 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */ 1574 long period; 1575 long pause; 1576 long max_pause; 1577 long min_pause; 1578 int nr_dirtied_pause; 1579 bool dirty_exceeded = false; 1580 unsigned long task_ratelimit; 1581 unsigned long dirty_ratelimit; 1582 struct backing_dev_info *bdi = wb->bdi; 1583 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT; 1584 unsigned long start_time = jiffies; 1585 1586 for (;;) { 1587 unsigned long now = jiffies; 1588 unsigned long dirty, thresh, bg_thresh; 1589 unsigned long m_dirty = 0; /* stop bogus uninit warnings */ 1590 unsigned long m_thresh = 0; 1591 unsigned long m_bg_thresh = 0; 1592 1593 /* 1594 * Unstable writes are a feature of certain networked 1595 * filesystems (i.e. NFS) in which data may have been 1596 * written to the server's write cache, but has not yet 1597 * been flushed to permanent storage. 1598 */ 1599 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) + 1600 global_node_page_state(NR_UNSTABLE_NFS); 1601 gdtc->avail = global_dirtyable_memory(); 1602 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK); 1603 1604 domain_dirty_limits(gdtc); 1605 1606 if (unlikely(strictlimit)) { 1607 wb_dirty_limits(gdtc); 1608 1609 dirty = gdtc->wb_dirty; 1610 thresh = gdtc->wb_thresh; 1611 bg_thresh = gdtc->wb_bg_thresh; 1612 } else { 1613 dirty = gdtc->dirty; 1614 thresh = gdtc->thresh; 1615 bg_thresh = gdtc->bg_thresh; 1616 } 1617 1618 if (mdtc) { 1619 unsigned long filepages, headroom, writeback; 1620 1621 /* 1622 * If @wb belongs to !root memcg, repeat the same 1623 * basic calculations for the memcg domain. 1624 */ 1625 mem_cgroup_wb_stats(wb, &filepages, &headroom, 1626 &mdtc->dirty, &writeback); 1627 mdtc->dirty += writeback; 1628 mdtc_calc_avail(mdtc, filepages, headroom); 1629 1630 domain_dirty_limits(mdtc); 1631 1632 if (unlikely(strictlimit)) { 1633 wb_dirty_limits(mdtc); 1634 m_dirty = mdtc->wb_dirty; 1635 m_thresh = mdtc->wb_thresh; 1636 m_bg_thresh = mdtc->wb_bg_thresh; 1637 } else { 1638 m_dirty = mdtc->dirty; 1639 m_thresh = mdtc->thresh; 1640 m_bg_thresh = mdtc->bg_thresh; 1641 } 1642 } 1643 1644 /* 1645 * Throttle it only when the background writeback cannot 1646 * catch-up. This avoids (excessively) small writeouts 1647 * when the wb limits are ramping up in case of !strictlimit. 1648 * 1649 * In strictlimit case make decision based on the wb counters 1650 * and limits. Small writeouts when the wb limits are ramping 1651 * up are the price we consciously pay for strictlimit-ing. 1652 * 1653 * If memcg domain is in effect, @dirty should be under 1654 * both global and memcg freerun ceilings. 1655 */ 1656 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) && 1657 (!mdtc || 1658 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) { 1659 unsigned long intv = dirty_poll_interval(dirty, thresh); 1660 unsigned long m_intv = ULONG_MAX; 1661 1662 current->dirty_paused_when = now; 1663 current->nr_dirtied = 0; 1664 if (mdtc) 1665 m_intv = dirty_poll_interval(m_dirty, m_thresh); 1666 current->nr_dirtied_pause = min(intv, m_intv); 1667 break; 1668 } 1669 1670 if (unlikely(!writeback_in_progress(wb))) 1671 wb_start_background_writeback(wb); 1672 1673 /* 1674 * Calculate global domain's pos_ratio and select the 1675 * global dtc by default. 1676 */ 1677 if (!strictlimit) 1678 wb_dirty_limits(gdtc); 1679 1680 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) && 1681 ((gdtc->dirty > gdtc->thresh) || strictlimit); 1682 1683 wb_position_ratio(gdtc); 1684 sdtc = gdtc; 1685 1686 if (mdtc) { 1687 /* 1688 * If memcg domain is in effect, calculate its 1689 * pos_ratio. @wb should satisfy constraints from 1690 * both global and memcg domains. Choose the one 1691 * w/ lower pos_ratio. 1692 */ 1693 if (!strictlimit) 1694 wb_dirty_limits(mdtc); 1695 1696 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) && 1697 ((mdtc->dirty > mdtc->thresh) || strictlimit); 1698 1699 wb_position_ratio(mdtc); 1700 if (mdtc->pos_ratio < gdtc->pos_ratio) 1701 sdtc = mdtc; 1702 } 1703 1704 if (dirty_exceeded && !wb->dirty_exceeded) 1705 wb->dirty_exceeded = 1; 1706 1707 if (time_is_before_jiffies(wb->bw_time_stamp + 1708 BANDWIDTH_INTERVAL)) { 1709 spin_lock(&wb->list_lock); 1710 __wb_update_bandwidth(gdtc, mdtc, start_time, true); 1711 spin_unlock(&wb->list_lock); 1712 } 1713 1714 /* throttle according to the chosen dtc */ 1715 dirty_ratelimit = wb->dirty_ratelimit; 1716 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >> 1717 RATELIMIT_CALC_SHIFT; 1718 max_pause = wb_max_pause(wb, sdtc->wb_dirty); 1719 min_pause = wb_min_pause(wb, max_pause, 1720 task_ratelimit, dirty_ratelimit, 1721 &nr_dirtied_pause); 1722 1723 if (unlikely(task_ratelimit == 0)) { 1724 period = max_pause; 1725 pause = max_pause; 1726 goto pause; 1727 } 1728 period = HZ * pages_dirtied / task_ratelimit; 1729 pause = period; 1730 if (current->dirty_paused_when) 1731 pause -= now - current->dirty_paused_when; 1732 /* 1733 * For less than 1s think time (ext3/4 may block the dirtier 1734 * for up to 800ms from time to time on 1-HDD; so does xfs, 1735 * however at much less frequency), try to compensate it in 1736 * future periods by updating the virtual time; otherwise just 1737 * do a reset, as it may be a light dirtier. 1738 */ 1739 if (pause < min_pause) { 1740 trace_balance_dirty_pages(wb, 1741 sdtc->thresh, 1742 sdtc->bg_thresh, 1743 sdtc->dirty, 1744 sdtc->wb_thresh, 1745 sdtc->wb_dirty, 1746 dirty_ratelimit, 1747 task_ratelimit, 1748 pages_dirtied, 1749 period, 1750 min(pause, 0L), 1751 start_time); 1752 if (pause < -HZ) { 1753 current->dirty_paused_when = now; 1754 current->nr_dirtied = 0; 1755 } else if (period) { 1756 current->dirty_paused_when += period; 1757 current->nr_dirtied = 0; 1758 } else if (current->nr_dirtied_pause <= pages_dirtied) 1759 current->nr_dirtied_pause += pages_dirtied; 1760 break; 1761 } 1762 if (unlikely(pause > max_pause)) { 1763 /* for occasional dropped task_ratelimit */ 1764 now += min(pause - max_pause, max_pause); 1765 pause = max_pause; 1766 } 1767 1768 pause: 1769 trace_balance_dirty_pages(wb, 1770 sdtc->thresh, 1771 sdtc->bg_thresh, 1772 sdtc->dirty, 1773 sdtc->wb_thresh, 1774 sdtc->wb_dirty, 1775 dirty_ratelimit, 1776 task_ratelimit, 1777 pages_dirtied, 1778 period, 1779 pause, 1780 start_time); 1781 __set_current_state(TASK_KILLABLE); 1782 wb->dirty_sleep = now; 1783 io_schedule_timeout(pause); 1784 1785 current->dirty_paused_when = now + pause; 1786 current->nr_dirtied = 0; 1787 current->nr_dirtied_pause = nr_dirtied_pause; 1788 1789 /* 1790 * This is typically equal to (dirty < thresh) and can also 1791 * keep "1000+ dd on a slow USB stick" under control. 1792 */ 1793 if (task_ratelimit) 1794 break; 1795 1796 /* 1797 * In the case of an unresponding NFS server and the NFS dirty 1798 * pages exceeds dirty_thresh, give the other good wb's a pipe 1799 * to go through, so that tasks on them still remain responsive. 1800 * 1801 * In theory 1 page is enough to keep the consumer-producer 1802 * pipe going: the flusher cleans 1 page => the task dirties 1 1803 * more page. However wb_dirty has accounting errors. So use 1804 * the larger and more IO friendly wb_stat_error. 1805 */ 1806 if (sdtc->wb_dirty <= wb_stat_error()) 1807 break; 1808 1809 if (fatal_signal_pending(current)) 1810 break; 1811 } 1812 1813 if (!dirty_exceeded && wb->dirty_exceeded) 1814 wb->dirty_exceeded = 0; 1815 1816 if (writeback_in_progress(wb)) 1817 return; 1818 1819 /* 1820 * In laptop mode, we wait until hitting the higher threshold before 1821 * starting background writeout, and then write out all the way down 1822 * to the lower threshold. So slow writers cause minimal disk activity. 1823 * 1824 * In normal mode, we start background writeout at the lower 1825 * background_thresh, to keep the amount of dirty memory low. 1826 */ 1827 if (laptop_mode) 1828 return; 1829 1830 if (nr_reclaimable > gdtc->bg_thresh) 1831 wb_start_background_writeback(wb); 1832 } 1833 1834 static DEFINE_PER_CPU(int, bdp_ratelimits); 1835 1836 /* 1837 * Normal tasks are throttled by 1838 * loop { 1839 * dirty tsk->nr_dirtied_pause pages; 1840 * take a snap in balance_dirty_pages(); 1841 * } 1842 * However there is a worst case. If every task exit immediately when dirtied 1843 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be 1844 * called to throttle the page dirties. The solution is to save the not yet 1845 * throttled page dirties in dirty_throttle_leaks on task exit and charge them 1846 * randomly into the running tasks. This works well for the above worst case, 1847 * as the new task will pick up and accumulate the old task's leaked dirty 1848 * count and eventually get throttled. 1849 */ 1850 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0; 1851 1852 /** 1853 * balance_dirty_pages_ratelimited - balance dirty memory state 1854 * @mapping: address_space which was dirtied 1855 * 1856 * Processes which are dirtying memory should call in here once for each page 1857 * which was newly dirtied. The function will periodically check the system's 1858 * dirty state and will initiate writeback if needed. 1859 * 1860 * On really big machines, get_writeback_state is expensive, so try to avoid 1861 * calling it too often (ratelimiting). But once we're over the dirty memory 1862 * limit we decrease the ratelimiting by a lot, to prevent individual processes 1863 * from overshooting the limit by (ratelimit_pages) each. 1864 */ 1865 void balance_dirty_pages_ratelimited(struct address_space *mapping) 1866 { 1867 struct inode *inode = mapping->host; 1868 struct backing_dev_info *bdi = inode_to_bdi(inode); 1869 struct bdi_writeback *wb = NULL; 1870 int ratelimit; 1871 int *p; 1872 1873 if (!bdi_cap_account_dirty(bdi)) 1874 return; 1875 1876 if (inode_cgwb_enabled(inode)) 1877 wb = wb_get_create_current(bdi, GFP_KERNEL); 1878 if (!wb) 1879 wb = &bdi->wb; 1880 1881 ratelimit = current->nr_dirtied_pause; 1882 if (wb->dirty_exceeded) 1883 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10)); 1884 1885 preempt_disable(); 1886 /* 1887 * This prevents one CPU to accumulate too many dirtied pages without 1888 * calling into balance_dirty_pages(), which can happen when there are 1889 * 1000+ tasks, all of them start dirtying pages at exactly the same 1890 * time, hence all honoured too large initial task->nr_dirtied_pause. 1891 */ 1892 p = this_cpu_ptr(&bdp_ratelimits); 1893 if (unlikely(current->nr_dirtied >= ratelimit)) 1894 *p = 0; 1895 else if (unlikely(*p >= ratelimit_pages)) { 1896 *p = 0; 1897 ratelimit = 0; 1898 } 1899 /* 1900 * Pick up the dirtied pages by the exited tasks. This avoids lots of 1901 * short-lived tasks (eg. gcc invocations in a kernel build) escaping 1902 * the dirty throttling and livelock other long-run dirtiers. 1903 */ 1904 p = this_cpu_ptr(&dirty_throttle_leaks); 1905 if (*p > 0 && current->nr_dirtied < ratelimit) { 1906 unsigned long nr_pages_dirtied; 1907 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied); 1908 *p -= nr_pages_dirtied; 1909 current->nr_dirtied += nr_pages_dirtied; 1910 } 1911 preempt_enable(); 1912 1913 if (unlikely(current->nr_dirtied >= ratelimit)) 1914 balance_dirty_pages(wb, current->nr_dirtied); 1915 1916 wb_put(wb); 1917 } 1918 EXPORT_SYMBOL(balance_dirty_pages_ratelimited); 1919 1920 /** 1921 * wb_over_bg_thresh - does @wb need to be written back? 1922 * @wb: bdi_writeback of interest 1923 * 1924 * Determines whether background writeback should keep writing @wb or it's 1925 * clean enough. Returns %true if writeback should continue. 1926 */ 1927 bool wb_over_bg_thresh(struct bdi_writeback *wb) 1928 { 1929 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) }; 1930 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) }; 1931 struct dirty_throttle_control * const gdtc = &gdtc_stor; 1932 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ? 1933 &mdtc_stor : NULL; 1934 1935 /* 1936 * Similar to balance_dirty_pages() but ignores pages being written 1937 * as we're trying to decide whether to put more under writeback. 1938 */ 1939 gdtc->avail = global_dirtyable_memory(); 1940 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) + 1941 global_node_page_state(NR_UNSTABLE_NFS); 1942 domain_dirty_limits(gdtc); 1943 1944 if (gdtc->dirty > gdtc->bg_thresh) 1945 return true; 1946 1947 if (wb_stat(wb, WB_RECLAIMABLE) > 1948 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh)) 1949 return true; 1950 1951 if (mdtc) { 1952 unsigned long filepages, headroom, writeback; 1953 1954 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty, 1955 &writeback); 1956 mdtc_calc_avail(mdtc, filepages, headroom); 1957 domain_dirty_limits(mdtc); /* ditto, ignore writeback */ 1958 1959 if (mdtc->dirty > mdtc->bg_thresh) 1960 return true; 1961 1962 if (wb_stat(wb, WB_RECLAIMABLE) > 1963 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh)) 1964 return true; 1965 } 1966 1967 return false; 1968 } 1969 1970 /* 1971 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs 1972 */ 1973 int dirty_writeback_centisecs_handler(struct ctl_table *table, int write, 1974 void __user *buffer, size_t *length, loff_t *ppos) 1975 { 1976 unsigned int old_interval = dirty_writeback_interval; 1977 int ret; 1978 1979 ret = proc_dointvec(table, write, buffer, length, ppos); 1980 1981 /* 1982 * Writing 0 to dirty_writeback_interval will disable periodic writeback 1983 * and a different non-zero value will wakeup the writeback threads. 1984 * wb_wakeup_delayed() would be more appropriate, but it's a pain to 1985 * iterate over all bdis and wbs. 1986 * The reason we do this is to make the change take effect immediately. 1987 */ 1988 if (!ret && write && dirty_writeback_interval && 1989 dirty_writeback_interval != old_interval) 1990 wakeup_flusher_threads(WB_REASON_PERIODIC); 1991 1992 return ret; 1993 } 1994 1995 #ifdef CONFIG_BLOCK 1996 void laptop_mode_timer_fn(struct timer_list *t) 1997 { 1998 struct backing_dev_info *backing_dev_info = 1999 from_timer(backing_dev_info, t, laptop_mode_wb_timer); 2000 2001 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER); 2002 } 2003 2004 /* 2005 * We've spun up the disk and we're in laptop mode: schedule writeback 2006 * of all dirty data a few seconds from now. If the flush is already scheduled 2007 * then push it back - the user is still using the disk. 2008 */ 2009 void laptop_io_completion(struct backing_dev_info *info) 2010 { 2011 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode); 2012 } 2013 2014 /* 2015 * We're in laptop mode and we've just synced. The sync's writes will have 2016 * caused another writeback to be scheduled by laptop_io_completion. 2017 * Nothing needs to be written back anymore, so we unschedule the writeback. 2018 */ 2019 void laptop_sync_completion(void) 2020 { 2021 struct backing_dev_info *bdi; 2022 2023 rcu_read_lock(); 2024 2025 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) 2026 del_timer(&bdi->laptop_mode_wb_timer); 2027 2028 rcu_read_unlock(); 2029 } 2030 #endif 2031 2032 /* 2033 * If ratelimit_pages is too high then we can get into dirty-data overload 2034 * if a large number of processes all perform writes at the same time. 2035 * If it is too low then SMP machines will call the (expensive) 2036 * get_writeback_state too often. 2037 * 2038 * Here we set ratelimit_pages to a level which ensures that when all CPUs are 2039 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory 2040 * thresholds. 2041 */ 2042 2043 void writeback_set_ratelimit(void) 2044 { 2045 struct wb_domain *dom = &global_wb_domain; 2046 unsigned long background_thresh; 2047 unsigned long dirty_thresh; 2048 2049 global_dirty_limits(&background_thresh, &dirty_thresh); 2050 dom->dirty_limit = dirty_thresh; 2051 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32); 2052 if (ratelimit_pages < 16) 2053 ratelimit_pages = 16; 2054 } 2055 2056 static int page_writeback_cpu_online(unsigned int cpu) 2057 { 2058 writeback_set_ratelimit(); 2059 return 0; 2060 } 2061 2062 /* 2063 * Called early on to tune the page writeback dirty limits. 2064 * 2065 * We used to scale dirty pages according to how total memory 2066 * related to pages that could be allocated for buffers (by 2067 * comparing nr_free_buffer_pages() to vm_total_pages. 2068 * 2069 * However, that was when we used "dirty_ratio" to scale with 2070 * all memory, and we don't do that any more. "dirty_ratio" 2071 * is now applied to total non-HIGHPAGE memory (by subtracting 2072 * totalhigh_pages from vm_total_pages), and as such we can't 2073 * get into the old insane situation any more where we had 2074 * large amounts of dirty pages compared to a small amount of 2075 * non-HIGHMEM memory. 2076 * 2077 * But we might still want to scale the dirty_ratio by how 2078 * much memory the box has.. 2079 */ 2080 void __init page_writeback_init(void) 2081 { 2082 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL)); 2083 2084 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online", 2085 page_writeback_cpu_online, NULL); 2086 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL, 2087 page_writeback_cpu_online); 2088 } 2089 2090 /** 2091 * tag_pages_for_writeback - tag pages to be written by write_cache_pages 2092 * @mapping: address space structure to write 2093 * @start: starting page index 2094 * @end: ending page index (inclusive) 2095 * 2096 * This function scans the page range from @start to @end (inclusive) and tags 2097 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is 2098 * that write_cache_pages (or whoever calls this function) will then use 2099 * TOWRITE tag to identify pages eligible for writeback. This mechanism is 2100 * used to avoid livelocking of writeback by a process steadily creating new 2101 * dirty pages in the file (thus it is important for this function to be quick 2102 * so that it can tag pages faster than a dirtying process can create them). 2103 */ 2104 /* 2105 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency. 2106 */ 2107 void tag_pages_for_writeback(struct address_space *mapping, 2108 pgoff_t start, pgoff_t end) 2109 { 2110 #define WRITEBACK_TAG_BATCH 4096 2111 unsigned long tagged = 0; 2112 struct radix_tree_iter iter; 2113 void **slot; 2114 2115 spin_lock_irq(&mapping->tree_lock); 2116 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start, 2117 PAGECACHE_TAG_DIRTY) { 2118 if (iter.index > end) 2119 break; 2120 radix_tree_iter_tag_set(&mapping->page_tree, &iter, 2121 PAGECACHE_TAG_TOWRITE); 2122 tagged++; 2123 if ((tagged % WRITEBACK_TAG_BATCH) != 0) 2124 continue; 2125 slot = radix_tree_iter_resume(slot, &iter); 2126 spin_unlock_irq(&mapping->tree_lock); 2127 cond_resched(); 2128 spin_lock_irq(&mapping->tree_lock); 2129 } 2130 spin_unlock_irq(&mapping->tree_lock); 2131 } 2132 EXPORT_SYMBOL(tag_pages_for_writeback); 2133 2134 /** 2135 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2136 * @mapping: address space structure to write 2137 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2138 * @writepage: function called for each page 2139 * @data: data passed to writepage function 2140 * 2141 * If a page is already under I/O, write_cache_pages() skips it, even 2142 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2143 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2144 * and msync() need to guarantee that all the data which was dirty at the time 2145 * the call was made get new I/O started against them. If wbc->sync_mode is 2146 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2147 * existing IO to complete. 2148 * 2149 * To avoid livelocks (when other process dirties new pages), we first tag 2150 * pages which should be written back with TOWRITE tag and only then start 2151 * writing them. For data-integrity sync we have to be careful so that we do 2152 * not miss some pages (e.g., because some other process has cleared TOWRITE 2153 * tag we set). The rule we follow is that TOWRITE tag can be cleared only 2154 * by the process clearing the DIRTY tag (and submitting the page for IO). 2155 */ 2156 int write_cache_pages(struct address_space *mapping, 2157 struct writeback_control *wbc, writepage_t writepage, 2158 void *data) 2159 { 2160 int ret = 0; 2161 int done = 0; 2162 struct pagevec pvec; 2163 int nr_pages; 2164 pgoff_t uninitialized_var(writeback_index); 2165 pgoff_t index; 2166 pgoff_t end; /* Inclusive */ 2167 pgoff_t done_index; 2168 int cycled; 2169 int range_whole = 0; 2170 int tag; 2171 2172 pagevec_init(&pvec); 2173 if (wbc->range_cyclic) { 2174 writeback_index = mapping->writeback_index; /* prev offset */ 2175 index = writeback_index; 2176 if (index == 0) 2177 cycled = 1; 2178 else 2179 cycled = 0; 2180 end = -1; 2181 } else { 2182 index = wbc->range_start >> PAGE_SHIFT; 2183 end = wbc->range_end >> PAGE_SHIFT; 2184 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX) 2185 range_whole = 1; 2186 cycled = 1; /* ignore range_cyclic tests */ 2187 } 2188 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2189 tag = PAGECACHE_TAG_TOWRITE; 2190 else 2191 tag = PAGECACHE_TAG_DIRTY; 2192 retry: 2193 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) 2194 tag_pages_for_writeback(mapping, index, end); 2195 done_index = index; 2196 while (!done && (index <= end)) { 2197 int i; 2198 2199 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end, 2200 tag); 2201 if (nr_pages == 0) 2202 break; 2203 2204 for (i = 0; i < nr_pages; i++) { 2205 struct page *page = pvec.pages[i]; 2206 2207 done_index = page->index; 2208 2209 lock_page(page); 2210 2211 /* 2212 * Page truncated or invalidated. We can freely skip it 2213 * then, even for data integrity operations: the page 2214 * has disappeared concurrently, so there could be no 2215 * real expectation of this data interity operation 2216 * even if there is now a new, dirty page at the same 2217 * pagecache address. 2218 */ 2219 if (unlikely(page->mapping != mapping)) { 2220 continue_unlock: 2221 unlock_page(page); 2222 continue; 2223 } 2224 2225 if (!PageDirty(page)) { 2226 /* someone wrote it for us */ 2227 goto continue_unlock; 2228 } 2229 2230 if (PageWriteback(page)) { 2231 if (wbc->sync_mode != WB_SYNC_NONE) 2232 wait_on_page_writeback(page); 2233 else 2234 goto continue_unlock; 2235 } 2236 2237 BUG_ON(PageWriteback(page)); 2238 if (!clear_page_dirty_for_io(page)) 2239 goto continue_unlock; 2240 2241 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host)); 2242 ret = (*writepage)(page, wbc, data); 2243 if (unlikely(ret)) { 2244 if (ret == AOP_WRITEPAGE_ACTIVATE) { 2245 unlock_page(page); 2246 ret = 0; 2247 } else { 2248 /* 2249 * done_index is set past this page, 2250 * so media errors will not choke 2251 * background writeout for the entire 2252 * file. This has consequences for 2253 * range_cyclic semantics (ie. it may 2254 * not be suitable for data integrity 2255 * writeout). 2256 */ 2257 done_index = page->index + 1; 2258 done = 1; 2259 break; 2260 } 2261 } 2262 2263 /* 2264 * We stop writing back only if we are not doing 2265 * integrity sync. In case of integrity sync we have to 2266 * keep going until we have written all the pages 2267 * we tagged for writeback prior to entering this loop. 2268 */ 2269 if (--wbc->nr_to_write <= 0 && 2270 wbc->sync_mode == WB_SYNC_NONE) { 2271 done = 1; 2272 break; 2273 } 2274 } 2275 pagevec_release(&pvec); 2276 cond_resched(); 2277 } 2278 if (!cycled && !done) { 2279 /* 2280 * range_cyclic: 2281 * We hit the last page and there is more work to be done: wrap 2282 * back to the start of the file 2283 */ 2284 cycled = 1; 2285 index = 0; 2286 end = writeback_index - 1; 2287 goto retry; 2288 } 2289 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0)) 2290 mapping->writeback_index = done_index; 2291 2292 return ret; 2293 } 2294 EXPORT_SYMBOL(write_cache_pages); 2295 2296 /* 2297 * Function used by generic_writepages to call the real writepage 2298 * function and set the mapping flags on error 2299 */ 2300 static int __writepage(struct page *page, struct writeback_control *wbc, 2301 void *data) 2302 { 2303 struct address_space *mapping = data; 2304 int ret = mapping->a_ops->writepage(page, wbc); 2305 mapping_set_error(mapping, ret); 2306 return ret; 2307 } 2308 2309 /** 2310 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them. 2311 * @mapping: address space structure to write 2312 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2313 * 2314 * This is a library function, which implements the writepages() 2315 * address_space_operation. 2316 */ 2317 int generic_writepages(struct address_space *mapping, 2318 struct writeback_control *wbc) 2319 { 2320 struct blk_plug plug; 2321 int ret; 2322 2323 /* deal with chardevs and other special file */ 2324 if (!mapping->a_ops->writepage) 2325 return 0; 2326 2327 blk_start_plug(&plug); 2328 ret = write_cache_pages(mapping, wbc, __writepage, mapping); 2329 blk_finish_plug(&plug); 2330 return ret; 2331 } 2332 2333 EXPORT_SYMBOL(generic_writepages); 2334 2335 int do_writepages(struct address_space *mapping, struct writeback_control *wbc) 2336 { 2337 int ret; 2338 2339 if (wbc->nr_to_write <= 0) 2340 return 0; 2341 while (1) { 2342 if (mapping->a_ops->writepages) 2343 ret = mapping->a_ops->writepages(mapping, wbc); 2344 else 2345 ret = generic_writepages(mapping, wbc); 2346 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL)) 2347 break; 2348 cond_resched(); 2349 congestion_wait(BLK_RW_ASYNC, HZ/50); 2350 } 2351 return ret; 2352 } 2353 2354 /** 2355 * write_one_page - write out a single page and wait on I/O 2356 * @page: the page to write 2357 * 2358 * The page must be locked by the caller and will be unlocked upon return. 2359 * 2360 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this 2361 * function returns. 2362 */ 2363 int write_one_page(struct page *page) 2364 { 2365 struct address_space *mapping = page->mapping; 2366 int ret = 0; 2367 struct writeback_control wbc = { 2368 .sync_mode = WB_SYNC_ALL, 2369 .nr_to_write = 1, 2370 }; 2371 2372 BUG_ON(!PageLocked(page)); 2373 2374 wait_on_page_writeback(page); 2375 2376 if (clear_page_dirty_for_io(page)) { 2377 get_page(page); 2378 ret = mapping->a_ops->writepage(page, &wbc); 2379 if (ret == 0) 2380 wait_on_page_writeback(page); 2381 put_page(page); 2382 } else { 2383 unlock_page(page); 2384 } 2385 2386 if (!ret) 2387 ret = filemap_check_errors(mapping); 2388 return ret; 2389 } 2390 EXPORT_SYMBOL(write_one_page); 2391 2392 /* 2393 * For address_spaces which do not use buffers nor write back. 2394 */ 2395 int __set_page_dirty_no_writeback(struct page *page) 2396 { 2397 if (!PageDirty(page)) 2398 return !TestSetPageDirty(page); 2399 return 0; 2400 } 2401 2402 /* 2403 * Helper function for set_page_dirty family. 2404 * 2405 * Caller must hold lock_page_memcg(). 2406 * 2407 * NOTE: This relies on being atomic wrt interrupts. 2408 */ 2409 void account_page_dirtied(struct page *page, struct address_space *mapping) 2410 { 2411 struct inode *inode = mapping->host; 2412 2413 trace_writeback_dirty_page(page, mapping); 2414 2415 if (mapping_cap_account_dirty(mapping)) { 2416 struct bdi_writeback *wb; 2417 2418 inode_attach_wb(inode, page); 2419 wb = inode_to_wb(inode); 2420 2421 __inc_lruvec_page_state(page, NR_FILE_DIRTY); 2422 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2423 __inc_node_page_state(page, NR_DIRTIED); 2424 inc_wb_stat(wb, WB_RECLAIMABLE); 2425 inc_wb_stat(wb, WB_DIRTIED); 2426 task_io_account_write(PAGE_SIZE); 2427 current->nr_dirtied++; 2428 this_cpu_inc(bdp_ratelimits); 2429 } 2430 } 2431 EXPORT_SYMBOL(account_page_dirtied); 2432 2433 /* 2434 * Helper function for deaccounting dirty page without writeback. 2435 * 2436 * Caller must hold lock_page_memcg(). 2437 */ 2438 void account_page_cleaned(struct page *page, struct address_space *mapping, 2439 struct bdi_writeback *wb) 2440 { 2441 if (mapping_cap_account_dirty(mapping)) { 2442 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2443 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2444 dec_wb_stat(wb, WB_RECLAIMABLE); 2445 task_io_account_cancelled_write(PAGE_SIZE); 2446 } 2447 } 2448 2449 /* 2450 * For address_spaces which do not use buffers. Just tag the page as dirty in 2451 * its radix tree. 2452 * 2453 * This is also used when a single buffer is being dirtied: we want to set the 2454 * page dirty in that case, but not all the buffers. This is a "bottom-up" 2455 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying. 2456 * 2457 * The caller must ensure this doesn't race with truncation. Most will simply 2458 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and 2459 * the pte lock held, which also locks out truncation. 2460 */ 2461 int __set_page_dirty_nobuffers(struct page *page) 2462 { 2463 lock_page_memcg(page); 2464 if (!TestSetPageDirty(page)) { 2465 struct address_space *mapping = page_mapping(page); 2466 unsigned long flags; 2467 2468 if (!mapping) { 2469 unlock_page_memcg(page); 2470 return 1; 2471 } 2472 2473 spin_lock_irqsave(&mapping->tree_lock, flags); 2474 BUG_ON(page_mapping(page) != mapping); 2475 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page)); 2476 account_page_dirtied(page, mapping); 2477 radix_tree_tag_set(&mapping->page_tree, page_index(page), 2478 PAGECACHE_TAG_DIRTY); 2479 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2480 unlock_page_memcg(page); 2481 2482 if (mapping->host) { 2483 /* !PageAnon && !swapper_space */ 2484 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 2485 } 2486 return 1; 2487 } 2488 unlock_page_memcg(page); 2489 return 0; 2490 } 2491 EXPORT_SYMBOL(__set_page_dirty_nobuffers); 2492 2493 /* 2494 * Call this whenever redirtying a page, to de-account the dirty counters 2495 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written 2496 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to 2497 * systematic errors in balanced_dirty_ratelimit and the dirty pages position 2498 * control. 2499 */ 2500 void account_page_redirty(struct page *page) 2501 { 2502 struct address_space *mapping = page->mapping; 2503 2504 if (mapping && mapping_cap_account_dirty(mapping)) { 2505 struct inode *inode = mapping->host; 2506 struct bdi_writeback *wb; 2507 bool locked; 2508 2509 wb = unlocked_inode_to_wb_begin(inode, &locked); 2510 current->nr_dirtied--; 2511 dec_node_page_state(page, NR_DIRTIED); 2512 dec_wb_stat(wb, WB_DIRTIED); 2513 unlocked_inode_to_wb_end(inode, locked); 2514 } 2515 } 2516 EXPORT_SYMBOL(account_page_redirty); 2517 2518 /* 2519 * When a writepage implementation decides that it doesn't want to write this 2520 * page for some reason, it should redirty the locked page via 2521 * redirty_page_for_writepage() and it should then unlock the page and return 0 2522 */ 2523 int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page) 2524 { 2525 int ret; 2526 2527 wbc->pages_skipped++; 2528 ret = __set_page_dirty_nobuffers(page); 2529 account_page_redirty(page); 2530 return ret; 2531 } 2532 EXPORT_SYMBOL(redirty_page_for_writepage); 2533 2534 /* 2535 * Dirty a page. 2536 * 2537 * For pages with a mapping this should be done under the page lock 2538 * for the benefit of asynchronous memory errors who prefer a consistent 2539 * dirty state. This rule can be broken in some special cases, 2540 * but should be better not to. 2541 * 2542 * If the mapping doesn't provide a set_page_dirty a_op, then 2543 * just fall through and assume that it wants buffer_heads. 2544 */ 2545 int set_page_dirty(struct page *page) 2546 { 2547 struct address_space *mapping = page_mapping(page); 2548 2549 page = compound_head(page); 2550 if (likely(mapping)) { 2551 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty; 2552 /* 2553 * readahead/lru_deactivate_page could remain 2554 * PG_readahead/PG_reclaim due to race with end_page_writeback 2555 * About readahead, if the page is written, the flags would be 2556 * reset. So no problem. 2557 * About lru_deactivate_page, if the page is redirty, the flag 2558 * will be reset. So no problem. but if the page is used by readahead 2559 * it will confuse readahead and make it restart the size rampup 2560 * process. But it's a trivial problem. 2561 */ 2562 if (PageReclaim(page)) 2563 ClearPageReclaim(page); 2564 #ifdef CONFIG_BLOCK 2565 if (!spd) 2566 spd = __set_page_dirty_buffers; 2567 #endif 2568 return (*spd)(page); 2569 } 2570 if (!PageDirty(page)) { 2571 if (!TestSetPageDirty(page)) 2572 return 1; 2573 } 2574 return 0; 2575 } 2576 EXPORT_SYMBOL(set_page_dirty); 2577 2578 /* 2579 * set_page_dirty() is racy if the caller has no reference against 2580 * page->mapping->host, and if the page is unlocked. This is because another 2581 * CPU could truncate the page off the mapping and then free the mapping. 2582 * 2583 * Usually, the page _is_ locked, or the caller is a user-space process which 2584 * holds a reference on the inode by having an open file. 2585 * 2586 * In other cases, the page should be locked before running set_page_dirty(). 2587 */ 2588 int set_page_dirty_lock(struct page *page) 2589 { 2590 int ret; 2591 2592 lock_page(page); 2593 ret = set_page_dirty(page); 2594 unlock_page(page); 2595 return ret; 2596 } 2597 EXPORT_SYMBOL(set_page_dirty_lock); 2598 2599 /* 2600 * This cancels just the dirty bit on the kernel page itself, it does NOT 2601 * actually remove dirty bits on any mmap's that may be around. It also 2602 * leaves the page tagged dirty, so any sync activity will still find it on 2603 * the dirty lists, and in particular, clear_page_dirty_for_io() will still 2604 * look at the dirty bits in the VM. 2605 * 2606 * Doing this should *normally* only ever be done when a page is truncated, 2607 * and is not actually mapped anywhere at all. However, fs/buffer.c does 2608 * this when it notices that somebody has cleaned out all the buffers on a 2609 * page without actually doing it through the VM. Can you say "ext3 is 2610 * horribly ugly"? Thought you could. 2611 */ 2612 void __cancel_dirty_page(struct page *page) 2613 { 2614 struct address_space *mapping = page_mapping(page); 2615 2616 if (mapping_cap_account_dirty(mapping)) { 2617 struct inode *inode = mapping->host; 2618 struct bdi_writeback *wb; 2619 bool locked; 2620 2621 lock_page_memcg(page); 2622 wb = unlocked_inode_to_wb_begin(inode, &locked); 2623 2624 if (TestClearPageDirty(page)) 2625 account_page_cleaned(page, mapping, wb); 2626 2627 unlocked_inode_to_wb_end(inode, locked); 2628 unlock_page_memcg(page); 2629 } else { 2630 ClearPageDirty(page); 2631 } 2632 } 2633 EXPORT_SYMBOL(__cancel_dirty_page); 2634 2635 /* 2636 * Clear a page's dirty flag, while caring for dirty memory accounting. 2637 * Returns true if the page was previously dirty. 2638 * 2639 * This is for preparing to put the page under writeout. We leave the page 2640 * tagged as dirty in the radix tree so that a concurrent write-for-sync 2641 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage 2642 * implementation will run either set_page_writeback() or set_page_dirty(), 2643 * at which stage we bring the page's dirty flag and radix-tree dirty tag 2644 * back into sync. 2645 * 2646 * This incoherency between the page's dirty flag and radix-tree tag is 2647 * unfortunate, but it only exists while the page is locked. 2648 */ 2649 int clear_page_dirty_for_io(struct page *page) 2650 { 2651 struct address_space *mapping = page_mapping(page); 2652 int ret = 0; 2653 2654 BUG_ON(!PageLocked(page)); 2655 2656 if (mapping && mapping_cap_account_dirty(mapping)) { 2657 struct inode *inode = mapping->host; 2658 struct bdi_writeback *wb; 2659 bool locked; 2660 2661 /* 2662 * Yes, Virginia, this is indeed insane. 2663 * 2664 * We use this sequence to make sure that 2665 * (a) we account for dirty stats properly 2666 * (b) we tell the low-level filesystem to 2667 * mark the whole page dirty if it was 2668 * dirty in a pagetable. Only to then 2669 * (c) clean the page again and return 1 to 2670 * cause the writeback. 2671 * 2672 * This way we avoid all nasty races with the 2673 * dirty bit in multiple places and clearing 2674 * them concurrently from different threads. 2675 * 2676 * Note! Normally the "set_page_dirty(page)" 2677 * has no effect on the actual dirty bit - since 2678 * that will already usually be set. But we 2679 * need the side effects, and it can help us 2680 * avoid races. 2681 * 2682 * We basically use the page "master dirty bit" 2683 * as a serialization point for all the different 2684 * threads doing their things. 2685 */ 2686 if (page_mkclean(page)) 2687 set_page_dirty(page); 2688 /* 2689 * We carefully synchronise fault handlers against 2690 * installing a dirty pte and marking the page dirty 2691 * at this point. We do this by having them hold the 2692 * page lock while dirtying the page, and pages are 2693 * always locked coming in here, so we get the desired 2694 * exclusion. 2695 */ 2696 wb = unlocked_inode_to_wb_begin(inode, &locked); 2697 if (TestClearPageDirty(page)) { 2698 dec_lruvec_page_state(page, NR_FILE_DIRTY); 2699 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2700 dec_wb_stat(wb, WB_RECLAIMABLE); 2701 ret = 1; 2702 } 2703 unlocked_inode_to_wb_end(inode, locked); 2704 return ret; 2705 } 2706 return TestClearPageDirty(page); 2707 } 2708 EXPORT_SYMBOL(clear_page_dirty_for_io); 2709 2710 int test_clear_page_writeback(struct page *page) 2711 { 2712 struct address_space *mapping = page_mapping(page); 2713 struct mem_cgroup *memcg; 2714 struct lruvec *lruvec; 2715 int ret; 2716 2717 memcg = lock_page_memcg(page); 2718 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page)); 2719 if (mapping && mapping_use_writeback_tags(mapping)) { 2720 struct inode *inode = mapping->host; 2721 struct backing_dev_info *bdi = inode_to_bdi(inode); 2722 unsigned long flags; 2723 2724 spin_lock_irqsave(&mapping->tree_lock, flags); 2725 ret = TestClearPageWriteback(page); 2726 if (ret) { 2727 radix_tree_tag_clear(&mapping->page_tree, 2728 page_index(page), 2729 PAGECACHE_TAG_WRITEBACK); 2730 if (bdi_cap_account_writeback(bdi)) { 2731 struct bdi_writeback *wb = inode_to_wb(inode); 2732 2733 dec_wb_stat(wb, WB_WRITEBACK); 2734 __wb_writeout_inc(wb); 2735 } 2736 } 2737 2738 if (mapping->host && !mapping_tagged(mapping, 2739 PAGECACHE_TAG_WRITEBACK)) 2740 sb_clear_inode_writeback(mapping->host); 2741 2742 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2743 } else { 2744 ret = TestClearPageWriteback(page); 2745 } 2746 /* 2747 * NOTE: Page might be free now! Writeback doesn't hold a page 2748 * reference on its own, it relies on truncation to wait for 2749 * the clearing of PG_writeback. The below can only access 2750 * page state that is static across allocation cycles. 2751 */ 2752 if (ret) { 2753 dec_lruvec_state(lruvec, NR_WRITEBACK); 2754 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2755 inc_node_page_state(page, NR_WRITTEN); 2756 } 2757 __unlock_page_memcg(memcg); 2758 return ret; 2759 } 2760 2761 int __test_set_page_writeback(struct page *page, bool keep_write) 2762 { 2763 struct address_space *mapping = page_mapping(page); 2764 int ret; 2765 2766 lock_page_memcg(page); 2767 if (mapping && mapping_use_writeback_tags(mapping)) { 2768 struct inode *inode = mapping->host; 2769 struct backing_dev_info *bdi = inode_to_bdi(inode); 2770 unsigned long flags; 2771 2772 spin_lock_irqsave(&mapping->tree_lock, flags); 2773 ret = TestSetPageWriteback(page); 2774 if (!ret) { 2775 bool on_wblist; 2776 2777 on_wblist = mapping_tagged(mapping, 2778 PAGECACHE_TAG_WRITEBACK); 2779 2780 radix_tree_tag_set(&mapping->page_tree, 2781 page_index(page), 2782 PAGECACHE_TAG_WRITEBACK); 2783 if (bdi_cap_account_writeback(bdi)) 2784 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK); 2785 2786 /* 2787 * We can come through here when swapping anonymous 2788 * pages, so we don't necessarily have an inode to track 2789 * for sync. 2790 */ 2791 if (mapping->host && !on_wblist) 2792 sb_mark_inode_writeback(mapping->host); 2793 } 2794 if (!PageDirty(page)) 2795 radix_tree_tag_clear(&mapping->page_tree, 2796 page_index(page), 2797 PAGECACHE_TAG_DIRTY); 2798 if (!keep_write) 2799 radix_tree_tag_clear(&mapping->page_tree, 2800 page_index(page), 2801 PAGECACHE_TAG_TOWRITE); 2802 spin_unlock_irqrestore(&mapping->tree_lock, flags); 2803 } else { 2804 ret = TestSetPageWriteback(page); 2805 } 2806 if (!ret) { 2807 inc_lruvec_page_state(page, NR_WRITEBACK); 2808 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING); 2809 } 2810 unlock_page_memcg(page); 2811 return ret; 2812 2813 } 2814 EXPORT_SYMBOL(__test_set_page_writeback); 2815 2816 /* 2817 * Return true if any of the pages in the mapping are marked with the 2818 * passed tag. 2819 */ 2820 int mapping_tagged(struct address_space *mapping, int tag) 2821 { 2822 return radix_tree_tagged(&mapping->page_tree, tag); 2823 } 2824 EXPORT_SYMBOL(mapping_tagged); 2825 2826 /** 2827 * wait_for_stable_page() - wait for writeback to finish, if necessary. 2828 * @page: The page to wait on. 2829 * 2830 * This function determines if the given page is related to a backing device 2831 * that requires page contents to be held stable during writeback. If so, then 2832 * it will wait for any pending writeback to complete. 2833 */ 2834 void wait_for_stable_page(struct page *page) 2835 { 2836 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host))) 2837 wait_on_page_writeback(page); 2838 } 2839 EXPORT_SYMBOL_GPL(wait_for_stable_page); 2840