1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * mm/page-writeback.c
4 *
5 * Copyright (C) 2002, Linus Torvalds.
6 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
7 *
8 * Contains functions related to writing back dirty pages at the
9 * address_space level.
10 *
11 * 10Apr2002 Andrew Morton
12 * Initial version
13 */
14
15 #include <linux/kernel.h>
16 #include <linux/math64.h>
17 #include <linux/export.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/slab.h>
23 #include <linux/pagemap.h>
24 #include <linux/writeback.h>
25 #include <linux/init.h>
26 #include <linux/backing-dev.h>
27 #include <linux/task_io_accounting_ops.h>
28 #include <linux/blkdev.h>
29 #include <linux/mpage.h>
30 #include <linux/rmap.h>
31 #include <linux/percpu.h>
32 #include <linux/smp.h>
33 #include <linux/sysctl.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/pagevec.h>
37 #include <linux/timer.h>
38 #include <linux/sched/rt.h>
39 #include <linux/sched/signal.h>
40 #include <linux/mm_inline.h>
41 #include <trace/events/writeback.h>
42
43 #include "internal.h"
44
45 /*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48 #define MAX_PAUSE max(HZ/5, 1)
49
50 /*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54 #define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
56 /*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59 #define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
61 #define RATELIMIT_CALC_SHIFT 10
62
63 /*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67 static long ratelimit_pages = 32;
68
69 /* The following parameters are exported via /proc/sys/vm */
70
71 /*
72 * Start background writeback (via writeback threads) at this percentage
73 */
74 static int dirty_background_ratio = 10;
75
76 /*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80 static unsigned long dirty_background_bytes;
81
82 /*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86 static int vm_highmem_is_dirtyable;
87
88 /*
89 * The generator of dirty data starts writeback at this percentage
90 */
91 static int vm_dirty_ratio = 20;
92
93 /*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97 static unsigned long vm_dirty_bytes;
98
99 /*
100 * The interval between `kupdate'-style writebacks
101 */
102 unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
103
104 EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
106 /*
107 * The longest time for which data is allowed to remain dirty
108 */
109 unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
110
111 /*
112 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
113 * a full sync is triggered after this time elapses without any disk activity.
114 */
115 int laptop_mode;
116
117 EXPORT_SYMBOL(laptop_mode);
118
119 /* End of sysctl-exported parameters */
120
121 struct wb_domain global_wb_domain;
122
123 /* consolidated parameters for balance_dirty_pages() and its subroutines */
124 struct dirty_throttle_control {
125 #ifdef CONFIG_CGROUP_WRITEBACK
126 struct wb_domain *dom;
127 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
128 #endif
129 struct bdi_writeback *wb;
130 struct fprop_local_percpu *wb_completions;
131
132 unsigned long avail; /* dirtyable */
133 unsigned long dirty; /* file_dirty + write + nfs */
134 unsigned long thresh; /* dirty threshold */
135 unsigned long bg_thresh; /* dirty background threshold */
136
137 unsigned long wb_dirty; /* per-wb counterparts */
138 unsigned long wb_thresh;
139 unsigned long wb_bg_thresh;
140
141 unsigned long pos_ratio;
142 };
143
144 /*
145 * Length of period for aging writeout fractions of bdis. This is an
146 * arbitrarily chosen number. The longer the period, the slower fractions will
147 * reflect changes in current writeout rate.
148 */
149 #define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
150
151 #ifdef CONFIG_CGROUP_WRITEBACK
152
153 #define GDTC_INIT(__wb) .wb = (__wb), \
154 .dom = &global_wb_domain, \
155 .wb_completions = &(__wb)->completions
156
157 #define GDTC_INIT_NO_WB .dom = &global_wb_domain
158
159 #define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
160 .dom = mem_cgroup_wb_domain(__wb), \
161 .wb_completions = &(__wb)->memcg_completions, \
162 .gdtc = __gdtc
163
mdtc_valid(struct dirty_throttle_control * dtc)164 static bool mdtc_valid(struct dirty_throttle_control *dtc)
165 {
166 return dtc->dom;
167 }
168
dtc_dom(struct dirty_throttle_control * dtc)169 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
170 {
171 return dtc->dom;
172 }
173
mdtc_gdtc(struct dirty_throttle_control * mdtc)174 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
175 {
176 return mdtc->gdtc;
177 }
178
wb_memcg_completions(struct bdi_writeback * wb)179 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
180 {
181 return &wb->memcg_completions;
182 }
183
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)184 static void wb_min_max_ratio(struct bdi_writeback *wb,
185 unsigned long *minp, unsigned long *maxp)
186 {
187 unsigned long this_bw = READ_ONCE(wb->avg_write_bandwidth);
188 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
189 unsigned long long min = wb->bdi->min_ratio;
190 unsigned long long max = wb->bdi->max_ratio;
191
192 /*
193 * @wb may already be clean by the time control reaches here and
194 * the total may not include its bw.
195 */
196 if (this_bw < tot_bw) {
197 if (min) {
198 min *= this_bw;
199 min = div64_ul(min, tot_bw);
200 }
201 if (max < 100 * BDI_RATIO_SCALE) {
202 max *= this_bw;
203 max = div64_ul(max, tot_bw);
204 }
205 }
206
207 *minp = min;
208 *maxp = max;
209 }
210
211 #else /* CONFIG_CGROUP_WRITEBACK */
212
213 #define GDTC_INIT(__wb) .wb = (__wb), \
214 .wb_completions = &(__wb)->completions
215 #define GDTC_INIT_NO_WB
216 #define MDTC_INIT(__wb, __gdtc)
217
mdtc_valid(struct dirty_throttle_control * dtc)218 static bool mdtc_valid(struct dirty_throttle_control *dtc)
219 {
220 return false;
221 }
222
dtc_dom(struct dirty_throttle_control * dtc)223 static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
224 {
225 return &global_wb_domain;
226 }
227
mdtc_gdtc(struct dirty_throttle_control * mdtc)228 static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
229 {
230 return NULL;
231 }
232
wb_memcg_completions(struct bdi_writeback * wb)233 static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
234 {
235 return NULL;
236 }
237
wb_min_max_ratio(struct bdi_writeback * wb,unsigned long * minp,unsigned long * maxp)238 static void wb_min_max_ratio(struct bdi_writeback *wb,
239 unsigned long *minp, unsigned long *maxp)
240 {
241 *minp = wb->bdi->min_ratio;
242 *maxp = wb->bdi->max_ratio;
243 }
244
245 #endif /* CONFIG_CGROUP_WRITEBACK */
246
247 /*
248 * In a memory zone, there is a certain amount of pages we consider
249 * available for the page cache, which is essentially the number of
250 * free and reclaimable pages, minus some zone reserves to protect
251 * lowmem and the ability to uphold the zone's watermarks without
252 * requiring writeback.
253 *
254 * This number of dirtyable pages is the base value of which the
255 * user-configurable dirty ratio is the effective number of pages that
256 * are allowed to be actually dirtied. Per individual zone, or
257 * globally by using the sum of dirtyable pages over all zones.
258 *
259 * Because the user is allowed to specify the dirty limit globally as
260 * absolute number of bytes, calculating the per-zone dirty limit can
261 * require translating the configured limit into a percentage of
262 * global dirtyable memory first.
263 */
264
265 /**
266 * node_dirtyable_memory - number of dirtyable pages in a node
267 * @pgdat: the node
268 *
269 * Return: the node's number of pages potentially available for dirty
270 * page cache. This is the base value for the per-node dirty limits.
271 */
node_dirtyable_memory(struct pglist_data * pgdat)272 static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
273 {
274 unsigned long nr_pages = 0;
275 int z;
276
277 for (z = 0; z < MAX_NR_ZONES; z++) {
278 struct zone *zone = pgdat->node_zones + z;
279
280 if (!populated_zone(zone))
281 continue;
282
283 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
284 }
285
286 /*
287 * Pages reserved for the kernel should not be considered
288 * dirtyable, to prevent a situation where reclaim has to
289 * clean pages in order to balance the zones.
290 */
291 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
292
293 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
294 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
295
296 return nr_pages;
297 }
298
highmem_dirtyable_memory(unsigned long total)299 static unsigned long highmem_dirtyable_memory(unsigned long total)
300 {
301 #ifdef CONFIG_HIGHMEM
302 int node;
303 unsigned long x = 0;
304 int i;
305
306 for_each_node_state(node, N_HIGH_MEMORY) {
307 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
308 struct zone *z;
309 unsigned long nr_pages;
310
311 if (!is_highmem_idx(i))
312 continue;
313
314 z = &NODE_DATA(node)->node_zones[i];
315 if (!populated_zone(z))
316 continue;
317
318 nr_pages = zone_page_state(z, NR_FREE_PAGES);
319 /* watch for underflows */
320 nr_pages -= min(nr_pages, high_wmark_pages(z));
321 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
322 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
323 x += nr_pages;
324 }
325 }
326
327 /*
328 * Make sure that the number of highmem pages is never larger
329 * than the number of the total dirtyable memory. This can only
330 * occur in very strange VM situations but we want to make sure
331 * that this does not occur.
332 */
333 return min(x, total);
334 #else
335 return 0;
336 #endif
337 }
338
339 /**
340 * global_dirtyable_memory - number of globally dirtyable pages
341 *
342 * Return: the global number of pages potentially available for dirty
343 * page cache. This is the base value for the global dirty limits.
344 */
global_dirtyable_memory(void)345 static unsigned long global_dirtyable_memory(void)
346 {
347 unsigned long x;
348
349 x = global_zone_page_state(NR_FREE_PAGES);
350 /*
351 * Pages reserved for the kernel should not be considered
352 * dirtyable, to prevent a situation where reclaim has to
353 * clean pages in order to balance the zones.
354 */
355 x -= min(x, totalreserve_pages);
356
357 x += global_node_page_state(NR_INACTIVE_FILE);
358 x += global_node_page_state(NR_ACTIVE_FILE);
359
360 if (!vm_highmem_is_dirtyable)
361 x -= highmem_dirtyable_memory(x);
362
363 return x + 1; /* Ensure that we never return 0 */
364 }
365
366 /**
367 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
368 * @dtc: dirty_throttle_control of interest
369 *
370 * Calculate @dtc->thresh and ->bg_thresh considering
371 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
372 * must ensure that @dtc->avail is set before calling this function. The
373 * dirty limits will be lifted by 1/4 for real-time tasks.
374 */
domain_dirty_limits(struct dirty_throttle_control * dtc)375 static void domain_dirty_limits(struct dirty_throttle_control *dtc)
376 {
377 const unsigned long available_memory = dtc->avail;
378 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
379 unsigned long bytes = vm_dirty_bytes;
380 unsigned long bg_bytes = dirty_background_bytes;
381 /* convert ratios to per-PAGE_SIZE for higher precision */
382 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
383 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
384 unsigned long thresh;
385 unsigned long bg_thresh;
386 struct task_struct *tsk;
387
388 /* gdtc is !NULL iff @dtc is for memcg domain */
389 if (gdtc) {
390 unsigned long global_avail = gdtc->avail;
391
392 /*
393 * The byte settings can't be applied directly to memcg
394 * domains. Convert them to ratios by scaling against
395 * globally available memory. As the ratios are in
396 * per-PAGE_SIZE, they can be obtained by dividing bytes by
397 * number of pages.
398 */
399 if (bytes)
400 ratio = min(DIV_ROUND_UP(bytes, global_avail),
401 PAGE_SIZE);
402 if (bg_bytes)
403 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
404 PAGE_SIZE);
405 bytes = bg_bytes = 0;
406 }
407
408 if (bytes)
409 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
410 else
411 thresh = (ratio * available_memory) / PAGE_SIZE;
412
413 if (bg_bytes)
414 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
415 else
416 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
417
418 tsk = current;
419 if (rt_task(tsk)) {
420 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
421 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
422 }
423 /*
424 * Dirty throttling logic assumes the limits in page units fit into
425 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
426 */
427 if (thresh > UINT_MAX)
428 thresh = UINT_MAX;
429 /* This makes sure bg_thresh is within 32-bits as well */
430 if (bg_thresh >= thresh)
431 bg_thresh = thresh / 2;
432 dtc->thresh = thresh;
433 dtc->bg_thresh = bg_thresh;
434
435 /* we should eventually report the domain in the TP */
436 if (!gdtc)
437 trace_global_dirty_state(bg_thresh, thresh);
438 }
439
440 /**
441 * global_dirty_limits - background-writeback and dirty-throttling thresholds
442 * @pbackground: out parameter for bg_thresh
443 * @pdirty: out parameter for thresh
444 *
445 * Calculate bg_thresh and thresh for global_wb_domain. See
446 * domain_dirty_limits() for details.
447 */
global_dirty_limits(unsigned long * pbackground,unsigned long * pdirty)448 void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
449 {
450 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
451
452 gdtc.avail = global_dirtyable_memory();
453 domain_dirty_limits(&gdtc);
454
455 *pbackground = gdtc.bg_thresh;
456 *pdirty = gdtc.thresh;
457 }
458
459 /**
460 * node_dirty_limit - maximum number of dirty pages allowed in a node
461 * @pgdat: the node
462 *
463 * Return: the maximum number of dirty pages allowed in a node, based
464 * on the node's dirtyable memory.
465 */
node_dirty_limit(struct pglist_data * pgdat)466 static unsigned long node_dirty_limit(struct pglist_data *pgdat)
467 {
468 unsigned long node_memory = node_dirtyable_memory(pgdat);
469 struct task_struct *tsk = current;
470 unsigned long dirty;
471
472 if (vm_dirty_bytes)
473 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
474 node_memory / global_dirtyable_memory();
475 else
476 dirty = vm_dirty_ratio * node_memory / 100;
477
478 if (rt_task(tsk))
479 dirty += dirty / 4;
480
481 /*
482 * Dirty throttling logic assumes the limits in page units fit into
483 * 32-bits. This gives 16TB dirty limits max which is hopefully enough.
484 */
485 return min_t(unsigned long, dirty, UINT_MAX);
486 }
487
488 /**
489 * node_dirty_ok - tells whether a node is within its dirty limits
490 * @pgdat: the node to check
491 *
492 * Return: %true when the dirty pages in @pgdat are within the node's
493 * dirty limit, %false if the limit is exceeded.
494 */
node_dirty_ok(struct pglist_data * pgdat)495 bool node_dirty_ok(struct pglist_data *pgdat)
496 {
497 unsigned long limit = node_dirty_limit(pgdat);
498 unsigned long nr_pages = 0;
499
500 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
501 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
502
503 return nr_pages <= limit;
504 }
505
506 #ifdef CONFIG_SYSCTL
dirty_background_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)507 static int dirty_background_ratio_handler(struct ctl_table *table, int write,
508 void *buffer, size_t *lenp, loff_t *ppos)
509 {
510 int ret;
511
512 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
513 if (ret == 0 && write)
514 dirty_background_bytes = 0;
515 return ret;
516 }
517
dirty_background_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)518 static int dirty_background_bytes_handler(struct ctl_table *table, int write,
519 void *buffer, size_t *lenp, loff_t *ppos)
520 {
521 int ret;
522 unsigned long old_bytes = dirty_background_bytes;
523
524 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
525 if (ret == 0 && write) {
526 if (DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE) >
527 UINT_MAX) {
528 dirty_background_bytes = old_bytes;
529 return -ERANGE;
530 }
531 dirty_background_ratio = 0;
532 }
533 return ret;
534 }
535
dirty_ratio_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)536 static int dirty_ratio_handler(struct ctl_table *table, int write, void *buffer,
537 size_t *lenp, loff_t *ppos)
538 {
539 int old_ratio = vm_dirty_ratio;
540 int ret;
541
542 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
543 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
544 writeback_set_ratelimit();
545 vm_dirty_bytes = 0;
546 }
547 return ret;
548 }
549
dirty_bytes_handler(struct ctl_table * table,int write,void * buffer,size_t * lenp,loff_t * ppos)550 static int dirty_bytes_handler(struct ctl_table *table, int write,
551 void *buffer, size_t *lenp, loff_t *ppos)
552 {
553 unsigned long old_bytes = vm_dirty_bytes;
554 int ret;
555
556 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
557 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
558 if (DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) > UINT_MAX) {
559 vm_dirty_bytes = old_bytes;
560 return -ERANGE;
561 }
562 writeback_set_ratelimit();
563 vm_dirty_ratio = 0;
564 }
565 return ret;
566 }
567 #endif
568
wp_next_time(unsigned long cur_time)569 static unsigned long wp_next_time(unsigned long cur_time)
570 {
571 cur_time += VM_COMPLETIONS_PERIOD_LEN;
572 /* 0 has a special meaning... */
573 if (!cur_time)
574 return 1;
575 return cur_time;
576 }
577
wb_domain_writeout_add(struct wb_domain * dom,struct fprop_local_percpu * completions,unsigned int max_prop_frac,long nr)578 static void wb_domain_writeout_add(struct wb_domain *dom,
579 struct fprop_local_percpu *completions,
580 unsigned int max_prop_frac, long nr)
581 {
582 __fprop_add_percpu_max(&dom->completions, completions,
583 max_prop_frac, nr);
584 /* First event after period switching was turned off? */
585 if (unlikely(!dom->period_time)) {
586 /*
587 * We can race with other __bdi_writeout_inc calls here but
588 * it does not cause any harm since the resulting time when
589 * timer will fire and what is in writeout_period_time will be
590 * roughly the same.
591 */
592 dom->period_time = wp_next_time(jiffies);
593 mod_timer(&dom->period_timer, dom->period_time);
594 }
595 }
596
597 /*
598 * Increment @wb's writeout completion count and the global writeout
599 * completion count. Called from __folio_end_writeback().
600 */
__wb_writeout_add(struct bdi_writeback * wb,long nr)601 static inline void __wb_writeout_add(struct bdi_writeback *wb, long nr)
602 {
603 struct wb_domain *cgdom;
604
605 wb_stat_mod(wb, WB_WRITTEN, nr);
606 wb_domain_writeout_add(&global_wb_domain, &wb->completions,
607 wb->bdi->max_prop_frac, nr);
608
609 cgdom = mem_cgroup_wb_domain(wb);
610 if (cgdom)
611 wb_domain_writeout_add(cgdom, wb_memcg_completions(wb),
612 wb->bdi->max_prop_frac, nr);
613 }
614
wb_writeout_inc(struct bdi_writeback * wb)615 void wb_writeout_inc(struct bdi_writeback *wb)
616 {
617 unsigned long flags;
618
619 local_irq_save(flags);
620 __wb_writeout_add(wb, 1);
621 local_irq_restore(flags);
622 }
623 EXPORT_SYMBOL_GPL(wb_writeout_inc);
624
625 /*
626 * On idle system, we can be called long after we scheduled because we use
627 * deferred timers so count with missed periods.
628 */
writeout_period(struct timer_list * t)629 static void writeout_period(struct timer_list *t)
630 {
631 struct wb_domain *dom = from_timer(dom, t, period_timer);
632 int miss_periods = (jiffies - dom->period_time) /
633 VM_COMPLETIONS_PERIOD_LEN;
634
635 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
636 dom->period_time = wp_next_time(dom->period_time +
637 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
638 mod_timer(&dom->period_timer, dom->period_time);
639 } else {
640 /*
641 * Aging has zeroed all fractions. Stop wasting CPU on period
642 * updates.
643 */
644 dom->period_time = 0;
645 }
646 }
647
wb_domain_init(struct wb_domain * dom,gfp_t gfp)648 int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
649 {
650 memset(dom, 0, sizeof(*dom));
651
652 spin_lock_init(&dom->lock);
653
654 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
655
656 dom->dirty_limit_tstamp = jiffies;
657
658 return fprop_global_init(&dom->completions, gfp);
659 }
660
661 #ifdef CONFIG_CGROUP_WRITEBACK
wb_domain_exit(struct wb_domain * dom)662 void wb_domain_exit(struct wb_domain *dom)
663 {
664 del_timer_sync(&dom->period_timer);
665 fprop_global_destroy(&dom->completions);
666 }
667 #endif
668
669 /*
670 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
671 * registered backing devices, which, for obvious reasons, can not
672 * exceed 100%.
673 */
674 static unsigned int bdi_min_ratio;
675
bdi_check_pages_limit(unsigned long pages)676 static int bdi_check_pages_limit(unsigned long pages)
677 {
678 unsigned long max_dirty_pages = global_dirtyable_memory();
679
680 if (pages > max_dirty_pages)
681 return -EINVAL;
682
683 return 0;
684 }
685
bdi_ratio_from_pages(unsigned long pages)686 static unsigned long bdi_ratio_from_pages(unsigned long pages)
687 {
688 unsigned long background_thresh;
689 unsigned long dirty_thresh;
690 unsigned long ratio;
691
692 global_dirty_limits(&background_thresh, &dirty_thresh);
693 ratio = div64_u64(pages * 100ULL * BDI_RATIO_SCALE, dirty_thresh);
694
695 return ratio;
696 }
697
bdi_get_bytes(unsigned int ratio)698 static u64 bdi_get_bytes(unsigned int ratio)
699 {
700 unsigned long background_thresh;
701 unsigned long dirty_thresh;
702 u64 bytes;
703
704 global_dirty_limits(&background_thresh, &dirty_thresh);
705 bytes = (dirty_thresh * PAGE_SIZE * ratio) / BDI_RATIO_SCALE / 100;
706
707 return bytes;
708 }
709
__bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)710 static int __bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
711 {
712 unsigned int delta;
713 int ret = 0;
714
715 if (min_ratio > 100 * BDI_RATIO_SCALE)
716 return -EINVAL;
717 min_ratio *= BDI_RATIO_SCALE;
718
719 spin_lock_bh(&bdi_lock);
720 if (min_ratio > bdi->max_ratio) {
721 ret = -EINVAL;
722 } else {
723 if (min_ratio < bdi->min_ratio) {
724 delta = bdi->min_ratio - min_ratio;
725 bdi_min_ratio -= delta;
726 bdi->min_ratio = min_ratio;
727 } else {
728 delta = min_ratio - bdi->min_ratio;
729 if (bdi_min_ratio + delta < 100 * BDI_RATIO_SCALE) {
730 bdi_min_ratio += delta;
731 bdi->min_ratio = min_ratio;
732 } else {
733 ret = -EINVAL;
734 }
735 }
736 }
737 spin_unlock_bh(&bdi_lock);
738
739 return ret;
740 }
741
__bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)742 static int __bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
743 {
744 int ret = 0;
745
746 if (max_ratio > 100 * BDI_RATIO_SCALE)
747 return -EINVAL;
748
749 spin_lock_bh(&bdi_lock);
750 if (bdi->min_ratio > max_ratio) {
751 ret = -EINVAL;
752 } else {
753 bdi->max_ratio = max_ratio;
754 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
755 }
756 spin_unlock_bh(&bdi_lock);
757
758 return ret;
759 }
760
bdi_set_min_ratio_no_scale(struct backing_dev_info * bdi,unsigned int min_ratio)761 int bdi_set_min_ratio_no_scale(struct backing_dev_info *bdi, unsigned int min_ratio)
762 {
763 return __bdi_set_min_ratio(bdi, min_ratio);
764 }
765
bdi_set_max_ratio_no_scale(struct backing_dev_info * bdi,unsigned int max_ratio)766 int bdi_set_max_ratio_no_scale(struct backing_dev_info *bdi, unsigned int max_ratio)
767 {
768 return __bdi_set_max_ratio(bdi, max_ratio);
769 }
770
bdi_set_min_ratio(struct backing_dev_info * bdi,unsigned int min_ratio)771 int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
772 {
773 return __bdi_set_min_ratio(bdi, min_ratio * BDI_RATIO_SCALE);
774 }
775
bdi_set_max_ratio(struct backing_dev_info * bdi,unsigned int max_ratio)776 int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned int max_ratio)
777 {
778 return __bdi_set_max_ratio(bdi, max_ratio * BDI_RATIO_SCALE);
779 }
780 EXPORT_SYMBOL(bdi_set_max_ratio);
781
bdi_get_min_bytes(struct backing_dev_info * bdi)782 u64 bdi_get_min_bytes(struct backing_dev_info *bdi)
783 {
784 return bdi_get_bytes(bdi->min_ratio);
785 }
786
bdi_set_min_bytes(struct backing_dev_info * bdi,u64 min_bytes)787 int bdi_set_min_bytes(struct backing_dev_info *bdi, u64 min_bytes)
788 {
789 int ret;
790 unsigned long pages = min_bytes >> PAGE_SHIFT;
791 unsigned long min_ratio;
792
793 ret = bdi_check_pages_limit(pages);
794 if (ret)
795 return ret;
796
797 min_ratio = bdi_ratio_from_pages(pages);
798 return __bdi_set_min_ratio(bdi, min_ratio);
799 }
800
bdi_get_max_bytes(struct backing_dev_info * bdi)801 u64 bdi_get_max_bytes(struct backing_dev_info *bdi)
802 {
803 return bdi_get_bytes(bdi->max_ratio);
804 }
805
bdi_set_max_bytes(struct backing_dev_info * bdi,u64 max_bytes)806 int bdi_set_max_bytes(struct backing_dev_info *bdi, u64 max_bytes)
807 {
808 int ret;
809 unsigned long pages = max_bytes >> PAGE_SHIFT;
810 unsigned long max_ratio;
811
812 ret = bdi_check_pages_limit(pages);
813 if (ret)
814 return ret;
815
816 max_ratio = bdi_ratio_from_pages(pages);
817 return __bdi_set_max_ratio(bdi, max_ratio);
818 }
819
bdi_set_strict_limit(struct backing_dev_info * bdi,unsigned int strict_limit)820 int bdi_set_strict_limit(struct backing_dev_info *bdi, unsigned int strict_limit)
821 {
822 if (strict_limit > 1)
823 return -EINVAL;
824
825 spin_lock_bh(&bdi_lock);
826 if (strict_limit)
827 bdi->capabilities |= BDI_CAP_STRICTLIMIT;
828 else
829 bdi->capabilities &= ~BDI_CAP_STRICTLIMIT;
830 spin_unlock_bh(&bdi_lock);
831
832 return 0;
833 }
834
dirty_freerun_ceiling(unsigned long thresh,unsigned long bg_thresh)835 static unsigned long dirty_freerun_ceiling(unsigned long thresh,
836 unsigned long bg_thresh)
837 {
838 return (thresh + bg_thresh) / 2;
839 }
840
hard_dirty_limit(struct wb_domain * dom,unsigned long thresh)841 static unsigned long hard_dirty_limit(struct wb_domain *dom,
842 unsigned long thresh)
843 {
844 return max(thresh, dom->dirty_limit);
845 }
846
847 /*
848 * Memory which can be further allocated to a memcg domain is capped by
849 * system-wide clean memory excluding the amount being used in the domain.
850 */
mdtc_calc_avail(struct dirty_throttle_control * mdtc,unsigned long filepages,unsigned long headroom)851 static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
852 unsigned long filepages, unsigned long headroom)
853 {
854 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
855 unsigned long clean = filepages - min(filepages, mdtc->dirty);
856 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
857 unsigned long other_clean = global_clean - min(global_clean, clean);
858
859 mdtc->avail = filepages + min(headroom, other_clean);
860 }
861
862 /**
863 * __wb_calc_thresh - @wb's share of dirty throttling threshold
864 * @dtc: dirty_throttle_context of interest
865 *
866 * Note that balance_dirty_pages() will only seriously take it as a hard limit
867 * when sleeping max_pause per page is not enough to keep the dirty pages under
868 * control. For example, when the device is completely stalled due to some error
869 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
870 * In the other normal situations, it acts more gently by throttling the tasks
871 * more (rather than completely block them) when the wb dirty pages go high.
872 *
873 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
874 * - starving fast devices
875 * - piling up dirty pages (that will take long time to sync) on slow devices
876 *
877 * The wb's share of dirty limit will be adapting to its throughput and
878 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
879 *
880 * Return: @wb's dirty limit in pages. The term "dirty" in the context of
881 * dirty balancing includes all PG_dirty and PG_writeback pages.
882 */
__wb_calc_thresh(struct dirty_throttle_control * dtc)883 static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
884 {
885 struct wb_domain *dom = dtc_dom(dtc);
886 unsigned long thresh = dtc->thresh;
887 u64 wb_thresh;
888 unsigned long numerator, denominator;
889 unsigned long wb_min_ratio, wb_max_ratio;
890
891 /*
892 * Calculate this BDI's share of the thresh ratio.
893 */
894 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
895 &numerator, &denominator);
896
897 wb_thresh = (thresh * (100 * BDI_RATIO_SCALE - bdi_min_ratio)) / (100 * BDI_RATIO_SCALE);
898 wb_thresh *= numerator;
899 wb_thresh = div64_ul(wb_thresh, denominator);
900
901 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
902
903 wb_thresh += (thresh * wb_min_ratio) / (100 * BDI_RATIO_SCALE);
904 if (wb_thresh > (thresh * wb_max_ratio) / (100 * BDI_RATIO_SCALE))
905 wb_thresh = thresh * wb_max_ratio / (100 * BDI_RATIO_SCALE);
906
907 return wb_thresh;
908 }
909
wb_calc_thresh(struct bdi_writeback * wb,unsigned long thresh)910 unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
911 {
912 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
913 .thresh = thresh };
914 return __wb_calc_thresh(&gdtc);
915 }
916
917 /*
918 * setpoint - dirty 3
919 * f(dirty) := 1.0 + (----------------)
920 * limit - setpoint
921 *
922 * it's a 3rd order polynomial that subjects to
923 *
924 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
925 * (2) f(setpoint) = 1.0 => the balance point
926 * (3) f(limit) = 0 => the hard limit
927 * (4) df/dx <= 0 => negative feedback control
928 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
929 * => fast response on large errors; small oscillation near setpoint
930 */
pos_ratio_polynom(unsigned long setpoint,unsigned long dirty,unsigned long limit)931 static long long pos_ratio_polynom(unsigned long setpoint,
932 unsigned long dirty,
933 unsigned long limit)
934 {
935 long long pos_ratio;
936 long x;
937
938 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
939 (limit - setpoint) | 1);
940 pos_ratio = x;
941 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
942 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
943 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
944
945 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
946 }
947
948 /*
949 * Dirty position control.
950 *
951 * (o) global/bdi setpoints
952 *
953 * We want the dirty pages be balanced around the global/wb setpoints.
954 * When the number of dirty pages is higher/lower than the setpoint, the
955 * dirty position control ratio (and hence task dirty ratelimit) will be
956 * decreased/increased to bring the dirty pages back to the setpoint.
957 *
958 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
959 *
960 * if (dirty < setpoint) scale up pos_ratio
961 * if (dirty > setpoint) scale down pos_ratio
962 *
963 * if (wb_dirty < wb_setpoint) scale up pos_ratio
964 * if (wb_dirty > wb_setpoint) scale down pos_ratio
965 *
966 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
967 *
968 * (o) global control line
969 *
970 * ^ pos_ratio
971 * |
972 * | |<===== global dirty control scope ======>|
973 * 2.0 * * * * * * *
974 * | .*
975 * | . *
976 * | . *
977 * | . *
978 * | . *
979 * | . *
980 * 1.0 ................................*
981 * | . . *
982 * | . . *
983 * | . . *
984 * | . . *
985 * | . . *
986 * 0 +------------.------------------.----------------------*------------->
987 * freerun^ setpoint^ limit^ dirty pages
988 *
989 * (o) wb control line
990 *
991 * ^ pos_ratio
992 * |
993 * | *
994 * | *
995 * | *
996 * | *
997 * | * |<=========== span ============>|
998 * 1.0 .......................*
999 * | . *
1000 * | . *
1001 * | . *
1002 * | . *
1003 * | . *
1004 * | . *
1005 * | . *
1006 * | . *
1007 * | . *
1008 * | . *
1009 * | . *
1010 * 1/4 ...............................................* * * * * * * * * * * *
1011 * | . .
1012 * | . .
1013 * | . .
1014 * 0 +----------------------.-------------------------------.------------->
1015 * wb_setpoint^ x_intercept^
1016 *
1017 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
1018 * be smoothly throttled down to normal if it starts high in situations like
1019 * - start writing to a slow SD card and a fast disk at the same time. The SD
1020 * card's wb_dirty may rush to many times higher than wb_setpoint.
1021 * - the wb dirty thresh drops quickly due to change of JBOD workload
1022 */
wb_position_ratio(struct dirty_throttle_control * dtc)1023 static void wb_position_ratio(struct dirty_throttle_control *dtc)
1024 {
1025 struct bdi_writeback *wb = dtc->wb;
1026 unsigned long write_bw = READ_ONCE(wb->avg_write_bandwidth);
1027 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1028 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1029 unsigned long wb_thresh = dtc->wb_thresh;
1030 unsigned long x_intercept;
1031 unsigned long setpoint; /* dirty pages' target balance point */
1032 unsigned long wb_setpoint;
1033 unsigned long span;
1034 long long pos_ratio; /* for scaling up/down the rate limit */
1035 long x;
1036
1037 dtc->pos_ratio = 0;
1038
1039 if (unlikely(dtc->dirty >= limit))
1040 return;
1041
1042 /*
1043 * global setpoint
1044 *
1045 * See comment for pos_ratio_polynom().
1046 */
1047 setpoint = (freerun + limit) / 2;
1048 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
1049
1050 /*
1051 * The strictlimit feature is a tool preventing mistrusted filesystems
1052 * from growing a large number of dirty pages before throttling. For
1053 * such filesystems balance_dirty_pages always checks wb counters
1054 * against wb limits. Even if global "nr_dirty" is under "freerun".
1055 * This is especially important for fuse which sets bdi->max_ratio to
1056 * 1% by default. Without strictlimit feature, fuse writeback may
1057 * consume arbitrary amount of RAM because it is accounted in
1058 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
1059 *
1060 * Here, in wb_position_ratio(), we calculate pos_ratio based on
1061 * two values: wb_dirty and wb_thresh. Let's consider an example:
1062 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
1063 * limits are set by default to 10% and 20% (background and throttle).
1064 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
1065 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
1066 * about ~6K pages (as the average of background and throttle wb
1067 * limits). The 3rd order polynomial will provide positive feedback if
1068 * wb_dirty is under wb_setpoint and vice versa.
1069 *
1070 * Note, that we cannot use global counters in these calculations
1071 * because we want to throttle process writing to a strictlimit wb
1072 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
1073 * in the example above).
1074 */
1075 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1076 long long wb_pos_ratio;
1077
1078 if (dtc->wb_dirty < 8) {
1079 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
1080 2 << RATELIMIT_CALC_SHIFT);
1081 return;
1082 }
1083
1084 if (dtc->wb_dirty >= wb_thresh)
1085 return;
1086
1087 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
1088 dtc->wb_bg_thresh);
1089
1090 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
1091 return;
1092
1093 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
1094 wb_thresh);
1095
1096 /*
1097 * Typically, for strictlimit case, wb_setpoint << setpoint
1098 * and pos_ratio >> wb_pos_ratio. In the other words global
1099 * state ("dirty") is not limiting factor and we have to
1100 * make decision based on wb counters. But there is an
1101 * important case when global pos_ratio should get precedence:
1102 * global limits are exceeded (e.g. due to activities on other
1103 * wb's) while given strictlimit wb is below limit.
1104 *
1105 * "pos_ratio * wb_pos_ratio" would work for the case above,
1106 * but it would look too non-natural for the case of all
1107 * activity in the system coming from a single strictlimit wb
1108 * with bdi->max_ratio == 100%.
1109 *
1110 * Note that min() below somewhat changes the dynamics of the
1111 * control system. Normally, pos_ratio value can be well over 3
1112 * (when globally we are at freerun and wb is well below wb
1113 * setpoint). Now the maximum pos_ratio in the same situation
1114 * is 2. We might want to tweak this if we observe the control
1115 * system is too slow to adapt.
1116 */
1117 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
1118 return;
1119 }
1120
1121 /*
1122 * We have computed basic pos_ratio above based on global situation. If
1123 * the wb is over/under its share of dirty pages, we want to scale
1124 * pos_ratio further down/up. That is done by the following mechanism.
1125 */
1126
1127 /*
1128 * wb setpoint
1129 *
1130 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
1131 *
1132 * x_intercept - wb_dirty
1133 * := --------------------------
1134 * x_intercept - wb_setpoint
1135 *
1136 * The main wb control line is a linear function that subjects to
1137 *
1138 * (1) f(wb_setpoint) = 1.0
1139 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1140 * or equally: x_intercept = wb_setpoint + 8 * write_bw
1141 *
1142 * For single wb case, the dirty pages are observed to fluctuate
1143 * regularly within range
1144 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
1145 * for various filesystems, where (2) can yield in a reasonable 12.5%
1146 * fluctuation range for pos_ratio.
1147 *
1148 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
1149 * own size, so move the slope over accordingly and choose a slope that
1150 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
1151 */
1152 if (unlikely(wb_thresh > dtc->thresh))
1153 wb_thresh = dtc->thresh;
1154 /*
1155 * It's very possible that wb_thresh is close to 0 not because the
1156 * device is slow, but that it has remained inactive for long time.
1157 * Honour such devices a reasonable good (hopefully IO efficient)
1158 * threshold, so that the occasional writes won't be blocked and active
1159 * writes can rampup the threshold quickly.
1160 */
1161 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
1162 /*
1163 * scale global setpoint to wb's:
1164 * wb_setpoint = setpoint * wb_thresh / thresh
1165 */
1166 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
1167 wb_setpoint = setpoint * (u64)x >> 16;
1168 /*
1169 * Use span=(8*write_bw) in single wb case as indicated by
1170 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
1171 *
1172 * wb_thresh thresh - wb_thresh
1173 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1174 * thresh thresh
1175 */
1176 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
1177 x_intercept = wb_setpoint + span;
1178
1179 if (dtc->wb_dirty < x_intercept - span / 4) {
1180 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
1181 (x_intercept - wb_setpoint) | 1);
1182 } else
1183 pos_ratio /= 4;
1184
1185 /*
1186 * wb reserve area, safeguard against dirty pool underrun and disk idle
1187 * It may push the desired control point of global dirty pages higher
1188 * than setpoint.
1189 */
1190 x_intercept = wb_thresh / 2;
1191 if (dtc->wb_dirty < x_intercept) {
1192 if (dtc->wb_dirty > x_intercept / 8)
1193 pos_ratio = div_u64(pos_ratio * x_intercept,
1194 dtc->wb_dirty);
1195 else
1196 pos_ratio *= 8;
1197 }
1198
1199 dtc->pos_ratio = pos_ratio;
1200 }
1201
wb_update_write_bandwidth(struct bdi_writeback * wb,unsigned long elapsed,unsigned long written)1202 static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1203 unsigned long elapsed,
1204 unsigned long written)
1205 {
1206 const unsigned long period = roundup_pow_of_two(3 * HZ);
1207 unsigned long avg = wb->avg_write_bandwidth;
1208 unsigned long old = wb->write_bandwidth;
1209 u64 bw;
1210
1211 /*
1212 * bw = written * HZ / elapsed
1213 *
1214 * bw * elapsed + write_bandwidth * (period - elapsed)
1215 * write_bandwidth = ---------------------------------------------------
1216 * period
1217 *
1218 * @written may have decreased due to folio_redirty_for_writepage().
1219 * Avoid underflowing @bw calculation.
1220 */
1221 bw = written - min(written, wb->written_stamp);
1222 bw *= HZ;
1223 if (unlikely(elapsed > period)) {
1224 bw = div64_ul(bw, elapsed);
1225 avg = bw;
1226 goto out;
1227 }
1228 bw += (u64)wb->write_bandwidth * (period - elapsed);
1229 bw >>= ilog2(period);
1230
1231 /*
1232 * one more level of smoothing, for filtering out sudden spikes
1233 */
1234 if (avg > old && old >= (unsigned long)bw)
1235 avg -= (avg - old) >> 3;
1236
1237 if (avg < old && old <= (unsigned long)bw)
1238 avg += (old - avg) >> 3;
1239
1240 out:
1241 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1242 avg = max(avg, 1LU);
1243 if (wb_has_dirty_io(wb)) {
1244 long delta = avg - wb->avg_write_bandwidth;
1245 WARN_ON_ONCE(atomic_long_add_return(delta,
1246 &wb->bdi->tot_write_bandwidth) <= 0);
1247 }
1248 wb->write_bandwidth = bw;
1249 WRITE_ONCE(wb->avg_write_bandwidth, avg);
1250 }
1251
update_dirty_limit(struct dirty_throttle_control * dtc)1252 static void update_dirty_limit(struct dirty_throttle_control *dtc)
1253 {
1254 struct wb_domain *dom = dtc_dom(dtc);
1255 unsigned long thresh = dtc->thresh;
1256 unsigned long limit = dom->dirty_limit;
1257
1258 /*
1259 * Follow up in one step.
1260 */
1261 if (limit < thresh) {
1262 limit = thresh;
1263 goto update;
1264 }
1265
1266 /*
1267 * Follow down slowly. Use the higher one as the target, because thresh
1268 * may drop below dirty. This is exactly the reason to introduce
1269 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
1270 */
1271 thresh = max(thresh, dtc->dirty);
1272 if (limit > thresh) {
1273 limit -= (limit - thresh) >> 5;
1274 goto update;
1275 }
1276 return;
1277 update:
1278 dom->dirty_limit = limit;
1279 }
1280
domain_update_dirty_limit(struct dirty_throttle_control * dtc,unsigned long now)1281 static void domain_update_dirty_limit(struct dirty_throttle_control *dtc,
1282 unsigned long now)
1283 {
1284 struct wb_domain *dom = dtc_dom(dtc);
1285
1286 /*
1287 * check locklessly first to optimize away locking for the most time
1288 */
1289 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
1290 return;
1291
1292 spin_lock(&dom->lock);
1293 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
1294 update_dirty_limit(dtc);
1295 dom->dirty_limit_tstamp = now;
1296 }
1297 spin_unlock(&dom->lock);
1298 }
1299
1300 /*
1301 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
1302 *
1303 * Normal wb tasks will be curbed at or below it in long term.
1304 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1305 */
wb_update_dirty_ratelimit(struct dirty_throttle_control * dtc,unsigned long dirtied,unsigned long elapsed)1306 static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
1307 unsigned long dirtied,
1308 unsigned long elapsed)
1309 {
1310 struct bdi_writeback *wb = dtc->wb;
1311 unsigned long dirty = dtc->dirty;
1312 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
1313 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
1314 unsigned long setpoint = (freerun + limit) / 2;
1315 unsigned long write_bw = wb->avg_write_bandwidth;
1316 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
1317 unsigned long dirty_rate;
1318 unsigned long task_ratelimit;
1319 unsigned long balanced_dirty_ratelimit;
1320 unsigned long step;
1321 unsigned long x;
1322 unsigned long shift;
1323
1324 /*
1325 * The dirty rate will match the writeout rate in long term, except
1326 * when dirty pages are truncated by userspace or re-dirtied by FS.
1327 */
1328 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
1329
1330 /*
1331 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1332 */
1333 task_ratelimit = (u64)dirty_ratelimit *
1334 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
1335 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1336
1337 /*
1338 * A linear estimation of the "balanced" throttle rate. The theory is,
1339 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
1340 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1341 * formula will yield the balanced rate limit (write_bw / N).
1342 *
1343 * Note that the expanded form is not a pure rate feedback:
1344 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1345 * but also takes pos_ratio into account:
1346 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1347 *
1348 * (1) is not realistic because pos_ratio also takes part in balancing
1349 * the dirty rate. Consider the state
1350 * pos_ratio = 0.5 (3)
1351 * rate = 2 * (write_bw / N) (4)
1352 * If (1) is used, it will stuck in that state! Because each dd will
1353 * be throttled at
1354 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1355 * yielding
1356 * dirty_rate = N * task_ratelimit = write_bw (6)
1357 * put (6) into (1) we get
1358 * rate_(i+1) = rate_(i) (7)
1359 *
1360 * So we end up using (2) to always keep
1361 * rate_(i+1) ~= (write_bw / N) (8)
1362 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1363 * pos_ratio is able to drive itself to 1.0, which is not only where
1364 * the dirty count meet the setpoint, but also where the slope of
1365 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1366 */
1367 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1368 dirty_rate | 1);
1369 /*
1370 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1371 */
1372 if (unlikely(balanced_dirty_ratelimit > write_bw))
1373 balanced_dirty_ratelimit = write_bw;
1374
1375 /*
1376 * We could safely do this and return immediately:
1377 *
1378 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
1379 *
1380 * However to get a more stable dirty_ratelimit, the below elaborated
1381 * code makes use of task_ratelimit to filter out singular points and
1382 * limit the step size.
1383 *
1384 * The below code essentially only uses the relative value of
1385 *
1386 * task_ratelimit - dirty_ratelimit
1387 * = (pos_ratio - 1) * dirty_ratelimit
1388 *
1389 * which reflects the direction and size of dirty position error.
1390 */
1391
1392 /*
1393 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1394 * task_ratelimit is on the same side of dirty_ratelimit, too.
1395 * For example, when
1396 * - dirty_ratelimit > balanced_dirty_ratelimit
1397 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1398 * lowering dirty_ratelimit will help meet both the position and rate
1399 * control targets. Otherwise, don't update dirty_ratelimit if it will
1400 * only help meet the rate target. After all, what the users ultimately
1401 * feel and care are stable dirty rate and small position error.
1402 *
1403 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
1404 * and filter out the singular points of balanced_dirty_ratelimit. Which
1405 * keeps jumping around randomly and can even leap far away at times
1406 * due to the small 200ms estimation period of dirty_rate (we want to
1407 * keep that period small to reduce time lags).
1408 */
1409 step = 0;
1410
1411 /*
1412 * For strictlimit case, calculations above were based on wb counters
1413 * and limits (starting from pos_ratio = wb_position_ratio() and up to
1414 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
1415 * Hence, to calculate "step" properly, we have to use wb_dirty as
1416 * "dirty" and wb_setpoint as "setpoint".
1417 *
1418 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1419 * it's possible that wb_thresh is close to zero due to inactivity
1420 * of backing device.
1421 */
1422 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
1423 dirty = dtc->wb_dirty;
1424 if (dtc->wb_dirty < 8)
1425 setpoint = dtc->wb_dirty + 1;
1426 else
1427 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
1428 }
1429
1430 if (dirty < setpoint) {
1431 x = min3(wb->balanced_dirty_ratelimit,
1432 balanced_dirty_ratelimit, task_ratelimit);
1433 if (dirty_ratelimit < x)
1434 step = x - dirty_ratelimit;
1435 } else {
1436 x = max3(wb->balanced_dirty_ratelimit,
1437 balanced_dirty_ratelimit, task_ratelimit);
1438 if (dirty_ratelimit > x)
1439 step = dirty_ratelimit - x;
1440 }
1441
1442 /*
1443 * Don't pursue 100% rate matching. It's impossible since the balanced
1444 * rate itself is constantly fluctuating. So decrease the track speed
1445 * when it gets close to the target. Helps eliminate pointless tremors.
1446 */
1447 shift = dirty_ratelimit / (2 * step + 1);
1448 if (shift < BITS_PER_LONG)
1449 step = DIV_ROUND_UP(step >> shift, 8);
1450 else
1451 step = 0;
1452
1453 if (dirty_ratelimit < balanced_dirty_ratelimit)
1454 dirty_ratelimit += step;
1455 else
1456 dirty_ratelimit -= step;
1457
1458 WRITE_ONCE(wb->dirty_ratelimit, max(dirty_ratelimit, 1UL));
1459 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
1460
1461 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
1462 }
1463
__wb_update_bandwidth(struct dirty_throttle_control * gdtc,struct dirty_throttle_control * mdtc,bool update_ratelimit)1464 static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1465 struct dirty_throttle_control *mdtc,
1466 bool update_ratelimit)
1467 {
1468 struct bdi_writeback *wb = gdtc->wb;
1469 unsigned long now = jiffies;
1470 unsigned long elapsed;
1471 unsigned long dirtied;
1472 unsigned long written;
1473
1474 spin_lock(&wb->list_lock);
1475
1476 /*
1477 * Lockless checks for elapsed time are racy and delayed update after
1478 * IO completion doesn't do it at all (to make sure written pages are
1479 * accounted reasonably quickly). Make sure elapsed >= 1 to avoid
1480 * division errors.
1481 */
1482 elapsed = max(now - wb->bw_time_stamp, 1UL);
1483 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1484 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
1485
1486 if (update_ratelimit) {
1487 domain_update_dirty_limit(gdtc, now);
1488 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1489
1490 /*
1491 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1492 * compiler has no way to figure that out. Help it.
1493 */
1494 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1495 domain_update_dirty_limit(mdtc, now);
1496 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1497 }
1498 }
1499 wb_update_write_bandwidth(wb, elapsed, written);
1500
1501 wb->dirtied_stamp = dirtied;
1502 wb->written_stamp = written;
1503 WRITE_ONCE(wb->bw_time_stamp, now);
1504 spin_unlock(&wb->list_lock);
1505 }
1506
wb_update_bandwidth(struct bdi_writeback * wb)1507 void wb_update_bandwidth(struct bdi_writeback *wb)
1508 {
1509 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1510
1511 __wb_update_bandwidth(&gdtc, NULL, false);
1512 }
1513
1514 /* Interval after which we consider wb idle and don't estimate bandwidth */
1515 #define WB_BANDWIDTH_IDLE_JIF (HZ)
1516
wb_bandwidth_estimate_start(struct bdi_writeback * wb)1517 static void wb_bandwidth_estimate_start(struct bdi_writeback *wb)
1518 {
1519 unsigned long now = jiffies;
1520 unsigned long elapsed = now - READ_ONCE(wb->bw_time_stamp);
1521
1522 if (elapsed > WB_BANDWIDTH_IDLE_JIF &&
1523 !atomic_read(&wb->writeback_inodes)) {
1524 spin_lock(&wb->list_lock);
1525 wb->dirtied_stamp = wb_stat(wb, WB_DIRTIED);
1526 wb->written_stamp = wb_stat(wb, WB_WRITTEN);
1527 WRITE_ONCE(wb->bw_time_stamp, now);
1528 spin_unlock(&wb->list_lock);
1529 }
1530 }
1531
1532 /*
1533 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
1534 * will look to see if it needs to start dirty throttling.
1535 *
1536 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1537 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
1538 * (the number of pages we may dirty without exceeding the dirty limits).
1539 */
dirty_poll_interval(unsigned long dirty,unsigned long thresh)1540 static unsigned long dirty_poll_interval(unsigned long dirty,
1541 unsigned long thresh)
1542 {
1543 if (thresh > dirty)
1544 return 1UL << (ilog2(thresh - dirty) >> 1);
1545
1546 return 1;
1547 }
1548
wb_max_pause(struct bdi_writeback * wb,unsigned long wb_dirty)1549 static unsigned long wb_max_pause(struct bdi_writeback *wb,
1550 unsigned long wb_dirty)
1551 {
1552 unsigned long bw = READ_ONCE(wb->avg_write_bandwidth);
1553 unsigned long t;
1554
1555 /*
1556 * Limit pause time for small memory systems. If sleeping for too long
1557 * time, a small pool of dirty/writeback pages may go empty and disk go
1558 * idle.
1559 *
1560 * 8 serves as the safety ratio.
1561 */
1562 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
1563 t++;
1564
1565 return min_t(unsigned long, t, MAX_PAUSE);
1566 }
1567
wb_min_pause(struct bdi_writeback * wb,long max_pause,unsigned long task_ratelimit,unsigned long dirty_ratelimit,int * nr_dirtied_pause)1568 static long wb_min_pause(struct bdi_writeback *wb,
1569 long max_pause,
1570 unsigned long task_ratelimit,
1571 unsigned long dirty_ratelimit,
1572 int *nr_dirtied_pause)
1573 {
1574 long hi = ilog2(READ_ONCE(wb->avg_write_bandwidth));
1575 long lo = ilog2(READ_ONCE(wb->dirty_ratelimit));
1576 long t; /* target pause */
1577 long pause; /* estimated next pause */
1578 int pages; /* target nr_dirtied_pause */
1579
1580 /* target for 10ms pause on 1-dd case */
1581 t = max(1, HZ / 100);
1582
1583 /*
1584 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1585 * overheads.
1586 *
1587 * (N * 10ms) on 2^N concurrent tasks.
1588 */
1589 if (hi > lo)
1590 t += (hi - lo) * (10 * HZ) / 1024;
1591
1592 /*
1593 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1594 * on the much more stable dirty_ratelimit. However the next pause time
1595 * will be computed based on task_ratelimit and the two rate limits may
1596 * depart considerably at some time. Especially if task_ratelimit goes
1597 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1598 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1599 * result task_ratelimit won't be executed faithfully, which could
1600 * eventually bring down dirty_ratelimit.
1601 *
1602 * We apply two rules to fix it up:
1603 * 1) try to estimate the next pause time and if necessary, use a lower
1604 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1605 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1606 * 2) limit the target pause time to max_pause/2, so that the normal
1607 * small fluctuations of task_ratelimit won't trigger rule (1) and
1608 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
1609 */
1610 t = min(t, 1 + max_pause / 2);
1611 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1612
1613 /*
1614 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1615 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1616 * When the 16 consecutive reads are often interrupted by some dirty
1617 * throttling pause during the async writes, cfq will go into idles
1618 * (deadline is fine). So push nr_dirtied_pause as high as possible
1619 * until reaches DIRTY_POLL_THRESH=32 pages.
1620 */
1621 if (pages < DIRTY_POLL_THRESH) {
1622 t = max_pause;
1623 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1624 if (pages > DIRTY_POLL_THRESH) {
1625 pages = DIRTY_POLL_THRESH;
1626 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1627 }
1628 }
1629
1630 pause = HZ * pages / (task_ratelimit + 1);
1631 if (pause > max_pause) {
1632 t = max_pause;
1633 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1634 }
1635
1636 *nr_dirtied_pause = pages;
1637 /*
1638 * The minimal pause time will normally be half the target pause time.
1639 */
1640 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
1641 }
1642
wb_dirty_limits(struct dirty_throttle_control * dtc)1643 static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
1644 {
1645 struct bdi_writeback *wb = dtc->wb;
1646 unsigned long wb_reclaimable;
1647
1648 /*
1649 * wb_thresh is not treated as some limiting factor as
1650 * dirty_thresh, due to reasons
1651 * - in JBOD setup, wb_thresh can fluctuate a lot
1652 * - in a system with HDD and USB key, the USB key may somehow
1653 * go into state (wb_dirty >> wb_thresh) either because
1654 * wb_dirty starts high, or because wb_thresh drops low.
1655 * In this case we don't want to hard throttle the USB key
1656 * dirtiers for 100 seconds until wb_dirty drops under
1657 * wb_thresh. Instead the auxiliary wb control line in
1658 * wb_position_ratio() will let the dirtier task progress
1659 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
1660 */
1661 dtc->wb_thresh = __wb_calc_thresh(dtc);
1662 dtc->wb_bg_thresh = dtc->thresh ?
1663 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
1664
1665 /*
1666 * In order to avoid the stacked BDI deadlock we need
1667 * to ensure we accurately count the 'dirty' pages when
1668 * the threshold is low.
1669 *
1670 * Otherwise it would be possible to get thresh+n pages
1671 * reported dirty, even though there are thresh-m pages
1672 * actually dirty; with m+n sitting in the percpu
1673 * deltas.
1674 */
1675 if (dtc->wb_thresh < 2 * wb_stat_error()) {
1676 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
1677 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
1678 } else {
1679 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
1680 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
1681 }
1682 }
1683
1684 /*
1685 * balance_dirty_pages() must be called by processes which are generating dirty
1686 * data. It looks at the number of dirty pages in the machine and will force
1687 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
1688 * If we're over `background_thresh' then the writeback threads are woken to
1689 * perform some writeout.
1690 */
balance_dirty_pages(struct bdi_writeback * wb,unsigned long pages_dirtied,unsigned int flags)1691 static int balance_dirty_pages(struct bdi_writeback *wb,
1692 unsigned long pages_dirtied, unsigned int flags)
1693 {
1694 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
1695 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
1696 struct dirty_throttle_control * const gdtc = &gdtc_stor;
1697 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1698 &mdtc_stor : NULL;
1699 struct dirty_throttle_control *sdtc;
1700 unsigned long nr_reclaimable; /* = file_dirty */
1701 long period;
1702 long pause;
1703 long max_pause;
1704 long min_pause;
1705 int nr_dirtied_pause;
1706 bool dirty_exceeded = false;
1707 unsigned long task_ratelimit;
1708 unsigned long dirty_ratelimit;
1709 struct backing_dev_info *bdi = wb->bdi;
1710 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
1711 unsigned long start_time = jiffies;
1712 int ret = 0;
1713
1714 for (;;) {
1715 unsigned long now = jiffies;
1716 unsigned long dirty, thresh, bg_thresh;
1717 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1718 unsigned long m_thresh = 0;
1719 unsigned long m_bg_thresh = 0;
1720
1721 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY);
1722 gdtc->avail = global_dirtyable_memory();
1723 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
1724
1725 domain_dirty_limits(gdtc);
1726
1727 if (unlikely(strictlimit)) {
1728 wb_dirty_limits(gdtc);
1729
1730 dirty = gdtc->wb_dirty;
1731 thresh = gdtc->wb_thresh;
1732 bg_thresh = gdtc->wb_bg_thresh;
1733 } else {
1734 dirty = gdtc->dirty;
1735 thresh = gdtc->thresh;
1736 bg_thresh = gdtc->bg_thresh;
1737 }
1738
1739 if (mdtc) {
1740 unsigned long filepages, headroom, writeback;
1741
1742 /*
1743 * If @wb belongs to !root memcg, repeat the same
1744 * basic calculations for the memcg domain.
1745 */
1746 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1747 &mdtc->dirty, &writeback);
1748 mdtc->dirty += writeback;
1749 mdtc_calc_avail(mdtc, filepages, headroom);
1750
1751 domain_dirty_limits(mdtc);
1752
1753 if (unlikely(strictlimit)) {
1754 wb_dirty_limits(mdtc);
1755 m_dirty = mdtc->wb_dirty;
1756 m_thresh = mdtc->wb_thresh;
1757 m_bg_thresh = mdtc->wb_bg_thresh;
1758 } else {
1759 m_dirty = mdtc->dirty;
1760 m_thresh = mdtc->thresh;
1761 m_bg_thresh = mdtc->bg_thresh;
1762 }
1763 }
1764
1765 /*
1766 * In laptop mode, we wait until hitting the higher threshold
1767 * before starting background writeout, and then write out all
1768 * the way down to the lower threshold. So slow writers cause
1769 * minimal disk activity.
1770 *
1771 * In normal mode, we start background writeout at the lower
1772 * background_thresh, to keep the amount of dirty memory low.
1773 */
1774 if (!laptop_mode && nr_reclaimable > gdtc->bg_thresh &&
1775 !writeback_in_progress(wb))
1776 wb_start_background_writeback(wb);
1777
1778 /*
1779 * Throttle it only when the background writeback cannot
1780 * catch-up. This avoids (excessively) small writeouts
1781 * when the wb limits are ramping up in case of !strictlimit.
1782 *
1783 * In strictlimit case make decision based on the wb counters
1784 * and limits. Small writeouts when the wb limits are ramping
1785 * up are the price we consciously pay for strictlimit-ing.
1786 *
1787 * If memcg domain is in effect, @dirty should be under
1788 * both global and memcg freerun ceilings.
1789 */
1790 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1791 (!mdtc ||
1792 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1793 unsigned long intv;
1794 unsigned long m_intv;
1795
1796 free_running:
1797 intv = dirty_poll_interval(dirty, thresh);
1798 m_intv = ULONG_MAX;
1799
1800 current->dirty_paused_when = now;
1801 current->nr_dirtied = 0;
1802 if (mdtc)
1803 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1804 current->nr_dirtied_pause = min(intv, m_intv);
1805 break;
1806 }
1807
1808 /* Start writeback even when in laptop mode */
1809 if (unlikely(!writeback_in_progress(wb)))
1810 wb_start_background_writeback(wb);
1811
1812 mem_cgroup_flush_foreign(wb);
1813
1814 /*
1815 * Calculate global domain's pos_ratio and select the
1816 * global dtc by default.
1817 */
1818 if (!strictlimit) {
1819 wb_dirty_limits(gdtc);
1820
1821 if ((current->flags & PF_LOCAL_THROTTLE) &&
1822 gdtc->wb_dirty <
1823 dirty_freerun_ceiling(gdtc->wb_thresh,
1824 gdtc->wb_bg_thresh))
1825 /*
1826 * LOCAL_THROTTLE tasks must not be throttled
1827 * when below the per-wb freerun ceiling.
1828 */
1829 goto free_running;
1830 }
1831
1832 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1833 ((gdtc->dirty > gdtc->thresh) || strictlimit);
1834
1835 wb_position_ratio(gdtc);
1836 sdtc = gdtc;
1837
1838 if (mdtc) {
1839 /*
1840 * If memcg domain is in effect, calculate its
1841 * pos_ratio. @wb should satisfy constraints from
1842 * both global and memcg domains. Choose the one
1843 * w/ lower pos_ratio.
1844 */
1845 if (!strictlimit) {
1846 wb_dirty_limits(mdtc);
1847
1848 if ((current->flags & PF_LOCAL_THROTTLE) &&
1849 mdtc->wb_dirty <
1850 dirty_freerun_ceiling(mdtc->wb_thresh,
1851 mdtc->wb_bg_thresh))
1852 /*
1853 * LOCAL_THROTTLE tasks must not be
1854 * throttled when below the per-wb
1855 * freerun ceiling.
1856 */
1857 goto free_running;
1858 }
1859 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1860 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1861
1862 wb_position_ratio(mdtc);
1863 if (mdtc->pos_ratio < gdtc->pos_ratio)
1864 sdtc = mdtc;
1865 }
1866
1867 if (dirty_exceeded != wb->dirty_exceeded)
1868 wb->dirty_exceeded = dirty_exceeded;
1869
1870 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
1871 BANDWIDTH_INTERVAL))
1872 __wb_update_bandwidth(gdtc, mdtc, true);
1873
1874 /* throttle according to the chosen dtc */
1875 dirty_ratelimit = READ_ONCE(wb->dirty_ratelimit);
1876 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
1877 RATELIMIT_CALC_SHIFT;
1878 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
1879 min_pause = wb_min_pause(wb, max_pause,
1880 task_ratelimit, dirty_ratelimit,
1881 &nr_dirtied_pause);
1882
1883 if (unlikely(task_ratelimit == 0)) {
1884 period = max_pause;
1885 pause = max_pause;
1886 goto pause;
1887 }
1888 period = HZ * pages_dirtied / task_ratelimit;
1889 pause = period;
1890 if (current->dirty_paused_when)
1891 pause -= now - current->dirty_paused_when;
1892 /*
1893 * For less than 1s think time (ext3/4 may block the dirtier
1894 * for up to 800ms from time to time on 1-HDD; so does xfs,
1895 * however at much less frequency), try to compensate it in
1896 * future periods by updating the virtual time; otherwise just
1897 * do a reset, as it may be a light dirtier.
1898 */
1899 if (pause < min_pause) {
1900 trace_balance_dirty_pages(wb,
1901 sdtc->thresh,
1902 sdtc->bg_thresh,
1903 sdtc->dirty,
1904 sdtc->wb_thresh,
1905 sdtc->wb_dirty,
1906 dirty_ratelimit,
1907 task_ratelimit,
1908 pages_dirtied,
1909 period,
1910 min(pause, 0L),
1911 start_time);
1912 if (pause < -HZ) {
1913 current->dirty_paused_when = now;
1914 current->nr_dirtied = 0;
1915 } else if (period) {
1916 current->dirty_paused_when += period;
1917 current->nr_dirtied = 0;
1918 } else if (current->nr_dirtied_pause <= pages_dirtied)
1919 current->nr_dirtied_pause += pages_dirtied;
1920 break;
1921 }
1922 if (unlikely(pause > max_pause)) {
1923 /* for occasional dropped task_ratelimit */
1924 now += min(pause - max_pause, max_pause);
1925 pause = max_pause;
1926 }
1927
1928 pause:
1929 trace_balance_dirty_pages(wb,
1930 sdtc->thresh,
1931 sdtc->bg_thresh,
1932 sdtc->dirty,
1933 sdtc->wb_thresh,
1934 sdtc->wb_dirty,
1935 dirty_ratelimit,
1936 task_ratelimit,
1937 pages_dirtied,
1938 period,
1939 pause,
1940 start_time);
1941 if (flags & BDP_ASYNC) {
1942 ret = -EAGAIN;
1943 break;
1944 }
1945 __set_current_state(TASK_KILLABLE);
1946 bdi->last_bdp_sleep = jiffies;
1947 io_schedule_timeout(pause);
1948
1949 current->dirty_paused_when = now + pause;
1950 current->nr_dirtied = 0;
1951 current->nr_dirtied_pause = nr_dirtied_pause;
1952
1953 /*
1954 * This is typically equal to (dirty < thresh) and can also
1955 * keep "1000+ dd on a slow USB stick" under control.
1956 */
1957 if (task_ratelimit)
1958 break;
1959
1960 /*
1961 * In the case of an unresponsive NFS server and the NFS dirty
1962 * pages exceeds dirty_thresh, give the other good wb's a pipe
1963 * to go through, so that tasks on them still remain responsive.
1964 *
1965 * In theory 1 page is enough to keep the consumer-producer
1966 * pipe going: the flusher cleans 1 page => the task dirties 1
1967 * more page. However wb_dirty has accounting errors. So use
1968 * the larger and more IO friendly wb_stat_error.
1969 */
1970 if (sdtc->wb_dirty <= wb_stat_error())
1971 break;
1972
1973 if (fatal_signal_pending(current))
1974 break;
1975 }
1976 return ret;
1977 }
1978
1979 static DEFINE_PER_CPU(int, bdp_ratelimits);
1980
1981 /*
1982 * Normal tasks are throttled by
1983 * loop {
1984 * dirty tsk->nr_dirtied_pause pages;
1985 * take a snap in balance_dirty_pages();
1986 * }
1987 * However there is a worst case. If every task exit immediately when dirtied
1988 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1989 * called to throttle the page dirties. The solution is to save the not yet
1990 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1991 * randomly into the running tasks. This works well for the above worst case,
1992 * as the new task will pick up and accumulate the old task's leaked dirty
1993 * count and eventually get throttled.
1994 */
1995 DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1996
1997 /**
1998 * balance_dirty_pages_ratelimited_flags - Balance dirty memory state.
1999 * @mapping: address_space which was dirtied.
2000 * @flags: BDP flags.
2001 *
2002 * Processes which are dirtying memory should call in here once for each page
2003 * which was newly dirtied. The function will periodically check the system's
2004 * dirty state and will initiate writeback if needed.
2005 *
2006 * See balance_dirty_pages_ratelimited() for details.
2007 *
2008 * Return: If @flags contains BDP_ASYNC, it may return -EAGAIN to
2009 * indicate that memory is out of balance and the caller must wait
2010 * for I/O to complete. Otherwise, it will return 0 to indicate
2011 * that either memory was already in balance, or it was able to sleep
2012 * until the amount of dirty memory returned to balance.
2013 */
balance_dirty_pages_ratelimited_flags(struct address_space * mapping,unsigned int flags)2014 int balance_dirty_pages_ratelimited_flags(struct address_space *mapping,
2015 unsigned int flags)
2016 {
2017 struct inode *inode = mapping->host;
2018 struct backing_dev_info *bdi = inode_to_bdi(inode);
2019 struct bdi_writeback *wb = NULL;
2020 int ratelimit;
2021 int ret = 0;
2022 int *p;
2023
2024 if (!(bdi->capabilities & BDI_CAP_WRITEBACK))
2025 return ret;
2026
2027 if (inode_cgwb_enabled(inode))
2028 wb = wb_get_create_current(bdi, GFP_KERNEL);
2029 if (!wb)
2030 wb = &bdi->wb;
2031
2032 ratelimit = current->nr_dirtied_pause;
2033 if (wb->dirty_exceeded)
2034 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
2035
2036 preempt_disable();
2037 /*
2038 * This prevents one CPU to accumulate too many dirtied pages without
2039 * calling into balance_dirty_pages(), which can happen when there are
2040 * 1000+ tasks, all of them start dirtying pages at exactly the same
2041 * time, hence all honoured too large initial task->nr_dirtied_pause.
2042 */
2043 p = this_cpu_ptr(&bdp_ratelimits);
2044 if (unlikely(current->nr_dirtied >= ratelimit))
2045 *p = 0;
2046 else if (unlikely(*p >= ratelimit_pages)) {
2047 *p = 0;
2048 ratelimit = 0;
2049 }
2050 /*
2051 * Pick up the dirtied pages by the exited tasks. This avoids lots of
2052 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
2053 * the dirty throttling and livelock other long-run dirtiers.
2054 */
2055 p = this_cpu_ptr(&dirty_throttle_leaks);
2056 if (*p > 0 && current->nr_dirtied < ratelimit) {
2057 unsigned long nr_pages_dirtied;
2058 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
2059 *p -= nr_pages_dirtied;
2060 current->nr_dirtied += nr_pages_dirtied;
2061 }
2062 preempt_enable();
2063
2064 if (unlikely(current->nr_dirtied >= ratelimit))
2065 ret = balance_dirty_pages(wb, current->nr_dirtied, flags);
2066
2067 wb_put(wb);
2068 return ret;
2069 }
2070 EXPORT_SYMBOL_GPL(balance_dirty_pages_ratelimited_flags);
2071
2072 /**
2073 * balance_dirty_pages_ratelimited - balance dirty memory state.
2074 * @mapping: address_space which was dirtied.
2075 *
2076 * Processes which are dirtying memory should call in here once for each page
2077 * which was newly dirtied. The function will periodically check the system's
2078 * dirty state and will initiate writeback if needed.
2079 *
2080 * Once we're over the dirty memory limit we decrease the ratelimiting
2081 * by a lot, to prevent individual processes from overshooting the limit
2082 * by (ratelimit_pages) each.
2083 */
balance_dirty_pages_ratelimited(struct address_space * mapping)2084 void balance_dirty_pages_ratelimited(struct address_space *mapping)
2085 {
2086 balance_dirty_pages_ratelimited_flags(mapping, 0);
2087 }
2088 EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
2089
2090 /**
2091 * wb_over_bg_thresh - does @wb need to be written back?
2092 * @wb: bdi_writeback of interest
2093 *
2094 * Determines whether background writeback should keep writing @wb or it's
2095 * clean enough.
2096 *
2097 * Return: %true if writeback should continue.
2098 */
wb_over_bg_thresh(struct bdi_writeback * wb)2099 bool wb_over_bg_thresh(struct bdi_writeback *wb)
2100 {
2101 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
2102 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2103 struct dirty_throttle_control * const gdtc = &gdtc_stor;
2104 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
2105 &mdtc_stor : NULL;
2106 unsigned long reclaimable;
2107 unsigned long thresh;
2108
2109 /*
2110 * Similar to balance_dirty_pages() but ignores pages being written
2111 * as we're trying to decide whether to put more under writeback.
2112 */
2113 gdtc->avail = global_dirtyable_memory();
2114 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY);
2115 domain_dirty_limits(gdtc);
2116
2117 if (gdtc->dirty > gdtc->bg_thresh)
2118 return true;
2119
2120 thresh = wb_calc_thresh(gdtc->wb, gdtc->bg_thresh);
2121 if (thresh < 2 * wb_stat_error())
2122 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2123 else
2124 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2125
2126 if (reclaimable > thresh)
2127 return true;
2128
2129 if (mdtc) {
2130 unsigned long filepages, headroom, writeback;
2131
2132 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
2133 &writeback);
2134 mdtc_calc_avail(mdtc, filepages, headroom);
2135 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
2136
2137 if (mdtc->dirty > mdtc->bg_thresh)
2138 return true;
2139
2140 thresh = wb_calc_thresh(mdtc->wb, mdtc->bg_thresh);
2141 if (thresh < 2 * wb_stat_error())
2142 reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2143 else
2144 reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2145
2146 if (reclaimable > thresh)
2147 return true;
2148 }
2149
2150 return false;
2151 }
2152
2153 #ifdef CONFIG_SYSCTL
2154 /*
2155 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
2156 */
dirty_writeback_centisecs_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)2157 static int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
2158 void *buffer, size_t *length, loff_t *ppos)
2159 {
2160 unsigned int old_interval = dirty_writeback_interval;
2161 int ret;
2162
2163 ret = proc_dointvec(table, write, buffer, length, ppos);
2164
2165 /*
2166 * Writing 0 to dirty_writeback_interval will disable periodic writeback
2167 * and a different non-zero value will wakeup the writeback threads.
2168 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
2169 * iterate over all bdis and wbs.
2170 * The reason we do this is to make the change take effect immediately.
2171 */
2172 if (!ret && write && dirty_writeback_interval &&
2173 dirty_writeback_interval != old_interval)
2174 wakeup_flusher_threads(WB_REASON_PERIODIC);
2175
2176 return ret;
2177 }
2178 #endif
2179
laptop_mode_timer_fn(struct timer_list * t)2180 void laptop_mode_timer_fn(struct timer_list *t)
2181 {
2182 struct backing_dev_info *backing_dev_info =
2183 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
2184
2185 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
2186 }
2187
2188 /*
2189 * We've spun up the disk and we're in laptop mode: schedule writeback
2190 * of all dirty data a few seconds from now. If the flush is already scheduled
2191 * then push it back - the user is still using the disk.
2192 */
laptop_io_completion(struct backing_dev_info * info)2193 void laptop_io_completion(struct backing_dev_info *info)
2194 {
2195 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
2196 }
2197
2198 /*
2199 * We're in laptop mode and we've just synced. The sync's writes will have
2200 * caused another writeback to be scheduled by laptop_io_completion.
2201 * Nothing needs to be written back anymore, so we unschedule the writeback.
2202 */
laptop_sync_completion(void)2203 void laptop_sync_completion(void)
2204 {
2205 struct backing_dev_info *bdi;
2206
2207 rcu_read_lock();
2208
2209 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2210 del_timer(&bdi->laptop_mode_wb_timer);
2211
2212 rcu_read_unlock();
2213 }
2214
2215 /*
2216 * If ratelimit_pages is too high then we can get into dirty-data overload
2217 * if a large number of processes all perform writes at the same time.
2218 *
2219 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2220 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
2221 * thresholds.
2222 */
2223
writeback_set_ratelimit(void)2224 void writeback_set_ratelimit(void)
2225 {
2226 struct wb_domain *dom = &global_wb_domain;
2227 unsigned long background_thresh;
2228 unsigned long dirty_thresh;
2229
2230 global_dirty_limits(&background_thresh, &dirty_thresh);
2231 dom->dirty_limit = dirty_thresh;
2232 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
2233 if (ratelimit_pages < 16)
2234 ratelimit_pages = 16;
2235 }
2236
page_writeback_cpu_online(unsigned int cpu)2237 static int page_writeback_cpu_online(unsigned int cpu)
2238 {
2239 writeback_set_ratelimit();
2240 return 0;
2241 }
2242
2243 #ifdef CONFIG_SYSCTL
2244
2245 /* this is needed for the proc_doulongvec_minmax of vm_dirty_bytes */
2246 static const unsigned long dirty_bytes_min = 2 * PAGE_SIZE;
2247
2248 static struct ctl_table vm_page_writeback_sysctls[] = {
2249 {
2250 .procname = "dirty_background_ratio",
2251 .data = &dirty_background_ratio,
2252 .maxlen = sizeof(dirty_background_ratio),
2253 .mode = 0644,
2254 .proc_handler = dirty_background_ratio_handler,
2255 .extra1 = SYSCTL_ZERO,
2256 .extra2 = SYSCTL_ONE_HUNDRED,
2257 },
2258 {
2259 .procname = "dirty_background_bytes",
2260 .data = &dirty_background_bytes,
2261 .maxlen = sizeof(dirty_background_bytes),
2262 .mode = 0644,
2263 .proc_handler = dirty_background_bytes_handler,
2264 .extra1 = SYSCTL_LONG_ONE,
2265 },
2266 {
2267 .procname = "dirty_ratio",
2268 .data = &vm_dirty_ratio,
2269 .maxlen = sizeof(vm_dirty_ratio),
2270 .mode = 0644,
2271 .proc_handler = dirty_ratio_handler,
2272 .extra1 = SYSCTL_ZERO,
2273 .extra2 = SYSCTL_ONE_HUNDRED,
2274 },
2275 {
2276 .procname = "dirty_bytes",
2277 .data = &vm_dirty_bytes,
2278 .maxlen = sizeof(vm_dirty_bytes),
2279 .mode = 0644,
2280 .proc_handler = dirty_bytes_handler,
2281 .extra1 = (void *)&dirty_bytes_min,
2282 },
2283 {
2284 .procname = "dirty_writeback_centisecs",
2285 .data = &dirty_writeback_interval,
2286 .maxlen = sizeof(dirty_writeback_interval),
2287 .mode = 0644,
2288 .proc_handler = dirty_writeback_centisecs_handler,
2289 },
2290 {
2291 .procname = "dirty_expire_centisecs",
2292 .data = &dirty_expire_interval,
2293 .maxlen = sizeof(dirty_expire_interval),
2294 .mode = 0644,
2295 .proc_handler = proc_dointvec_minmax,
2296 .extra1 = SYSCTL_ZERO,
2297 },
2298 #ifdef CONFIG_HIGHMEM
2299 {
2300 .procname = "highmem_is_dirtyable",
2301 .data = &vm_highmem_is_dirtyable,
2302 .maxlen = sizeof(vm_highmem_is_dirtyable),
2303 .mode = 0644,
2304 .proc_handler = proc_dointvec_minmax,
2305 .extra1 = SYSCTL_ZERO,
2306 .extra2 = SYSCTL_ONE,
2307 },
2308 #endif
2309 {
2310 .procname = "laptop_mode",
2311 .data = &laptop_mode,
2312 .maxlen = sizeof(laptop_mode),
2313 .mode = 0644,
2314 .proc_handler = proc_dointvec_jiffies,
2315 },
2316 {}
2317 };
2318 #endif
2319
2320 /*
2321 * Called early on to tune the page writeback dirty limits.
2322 *
2323 * We used to scale dirty pages according to how total memory
2324 * related to pages that could be allocated for buffers.
2325 *
2326 * However, that was when we used "dirty_ratio" to scale with
2327 * all memory, and we don't do that any more. "dirty_ratio"
2328 * is now applied to total non-HIGHPAGE memory, and as such we can't
2329 * get into the old insane situation any more where we had
2330 * large amounts of dirty pages compared to a small amount of
2331 * non-HIGHMEM memory.
2332 *
2333 * But we might still want to scale the dirty_ratio by how
2334 * much memory the box has..
2335 */
page_writeback_init(void)2336 void __init page_writeback_init(void)
2337 {
2338 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2339
2340 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2341 page_writeback_cpu_online, NULL);
2342 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2343 page_writeback_cpu_online);
2344 #ifdef CONFIG_SYSCTL
2345 register_sysctl_init("vm", vm_page_writeback_sysctls);
2346 #endif
2347 }
2348
2349 /**
2350 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2351 * @mapping: address space structure to write
2352 * @start: starting page index
2353 * @end: ending page index (inclusive)
2354 *
2355 * This function scans the page range from @start to @end (inclusive) and tags
2356 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2357 * that write_cache_pages (or whoever calls this function) will then use
2358 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2359 * used to avoid livelocking of writeback by a process steadily creating new
2360 * dirty pages in the file (thus it is important for this function to be quick
2361 * so that it can tag pages faster than a dirtying process can create them).
2362 */
tag_pages_for_writeback(struct address_space * mapping,pgoff_t start,pgoff_t end)2363 void tag_pages_for_writeback(struct address_space *mapping,
2364 pgoff_t start, pgoff_t end)
2365 {
2366 XA_STATE(xas, &mapping->i_pages, start);
2367 unsigned int tagged = 0;
2368 void *page;
2369
2370 xas_lock_irq(&xas);
2371 xas_for_each_marked(&xas, page, end, PAGECACHE_TAG_DIRTY) {
2372 xas_set_mark(&xas, PAGECACHE_TAG_TOWRITE);
2373 if (++tagged % XA_CHECK_SCHED)
2374 continue;
2375
2376 xas_pause(&xas);
2377 xas_unlock_irq(&xas);
2378 cond_resched();
2379 xas_lock_irq(&xas);
2380 }
2381 xas_unlock_irq(&xas);
2382 }
2383 EXPORT_SYMBOL(tag_pages_for_writeback);
2384
2385 /**
2386 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
2387 * @mapping: address space structure to write
2388 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2389 * @writepage: function called for each page
2390 * @data: data passed to writepage function
2391 *
2392 * If a page is already under I/O, write_cache_pages() skips it, even
2393 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2394 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2395 * and msync() need to guarantee that all the data which was dirty at the time
2396 * the call was made get new I/O started against them. If wbc->sync_mode is
2397 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2398 * existing IO to complete.
2399 *
2400 * To avoid livelocks (when other process dirties new pages), we first tag
2401 * pages which should be written back with TOWRITE tag and only then start
2402 * writing them. For data-integrity sync we have to be careful so that we do
2403 * not miss some pages (e.g., because some other process has cleared TOWRITE
2404 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2405 * by the process clearing the DIRTY tag (and submitting the page for IO).
2406 *
2407 * To avoid deadlocks between range_cyclic writeback and callers that hold
2408 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2409 * we do not loop back to the start of the file. Doing so causes a page
2410 * lock/page writeback access order inversion - we should only ever lock
2411 * multiple pages in ascending page->index order, and looping back to the start
2412 * of the file violates that rule and causes deadlocks.
2413 *
2414 * Return: %0 on success, negative error code otherwise
2415 */
write_cache_pages(struct address_space * mapping,struct writeback_control * wbc,writepage_t writepage,void * data)2416 int write_cache_pages(struct address_space *mapping,
2417 struct writeback_control *wbc, writepage_t writepage,
2418 void *data)
2419 {
2420 int ret = 0;
2421 int done = 0;
2422 int error;
2423 struct folio_batch fbatch;
2424 int nr_folios;
2425 pgoff_t index;
2426 pgoff_t end; /* Inclusive */
2427 pgoff_t done_index;
2428 int range_whole = 0;
2429 xa_mark_t tag;
2430
2431 folio_batch_init(&fbatch);
2432 if (wbc->range_cyclic) {
2433 index = mapping->writeback_index; /* prev offset */
2434 end = -1;
2435 } else {
2436 index = wbc->range_start >> PAGE_SHIFT;
2437 end = wbc->range_end >> PAGE_SHIFT;
2438 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2439 range_whole = 1;
2440 }
2441 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages) {
2442 tag_pages_for_writeback(mapping, index, end);
2443 tag = PAGECACHE_TAG_TOWRITE;
2444 } else {
2445 tag = PAGECACHE_TAG_DIRTY;
2446 }
2447 done_index = index;
2448 while (!done && (index <= end)) {
2449 int i;
2450
2451 nr_folios = filemap_get_folios_tag(mapping, &index, end,
2452 tag, &fbatch);
2453
2454 if (nr_folios == 0)
2455 break;
2456
2457 for (i = 0; i < nr_folios; i++) {
2458 struct folio *folio = fbatch.folios[i];
2459 unsigned long nr;
2460
2461 done_index = folio->index;
2462
2463 folio_lock(folio);
2464
2465 /*
2466 * Page truncated or invalidated. We can freely skip it
2467 * then, even for data integrity operations: the page
2468 * has disappeared concurrently, so there could be no
2469 * real expectation of this data integrity operation
2470 * even if there is now a new, dirty page at the same
2471 * pagecache address.
2472 */
2473 if (unlikely(folio->mapping != mapping)) {
2474 continue_unlock:
2475 folio_unlock(folio);
2476 continue;
2477 }
2478
2479 if (!folio_test_dirty(folio)) {
2480 /* someone wrote it for us */
2481 goto continue_unlock;
2482 }
2483
2484 if (folio_test_writeback(folio)) {
2485 if (wbc->sync_mode != WB_SYNC_NONE)
2486 folio_wait_writeback(folio);
2487 else
2488 goto continue_unlock;
2489 }
2490
2491 BUG_ON(folio_test_writeback(folio));
2492 if (!folio_clear_dirty_for_io(folio))
2493 goto continue_unlock;
2494
2495 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
2496 error = writepage(folio, wbc, data);
2497 nr = folio_nr_pages(folio);
2498 if (unlikely(error)) {
2499 /*
2500 * Handle errors according to the type of
2501 * writeback. There's no need to continue for
2502 * background writeback. Just push done_index
2503 * past this page so media errors won't choke
2504 * writeout for the entire file. For integrity
2505 * writeback, we must process the entire dirty
2506 * set regardless of errors because the fs may
2507 * still have state to clear for each page. In
2508 * that case we continue processing and return
2509 * the first error.
2510 */
2511 if (error == AOP_WRITEPAGE_ACTIVATE) {
2512 folio_unlock(folio);
2513 error = 0;
2514 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2515 ret = error;
2516 done_index = folio->index + nr;
2517 done = 1;
2518 break;
2519 }
2520 if (!ret)
2521 ret = error;
2522 }
2523
2524 /*
2525 * We stop writing back only if we are not doing
2526 * integrity sync. In case of integrity sync we have to
2527 * keep going until we have written all the pages
2528 * we tagged for writeback prior to entering this loop.
2529 */
2530 wbc->nr_to_write -= nr;
2531 if (wbc->nr_to_write <= 0 &&
2532 wbc->sync_mode == WB_SYNC_NONE) {
2533 done = 1;
2534 break;
2535 }
2536 }
2537 folio_batch_release(&fbatch);
2538 cond_resched();
2539 }
2540
2541 /*
2542 * If we hit the last page and there is more work to be done: wrap
2543 * back the index back to the start of the file for the next
2544 * time we are called.
2545 */
2546 if (wbc->range_cyclic && !done)
2547 done_index = 0;
2548 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2549 mapping->writeback_index = done_index;
2550
2551 return ret;
2552 }
2553 EXPORT_SYMBOL(write_cache_pages);
2554
writepage_cb(struct folio * folio,struct writeback_control * wbc,void * data)2555 static int writepage_cb(struct folio *folio, struct writeback_control *wbc,
2556 void *data)
2557 {
2558 struct address_space *mapping = data;
2559 int ret = mapping->a_ops->writepage(&folio->page, wbc);
2560 mapping_set_error(mapping, ret);
2561 return ret;
2562 }
2563
do_writepages(struct address_space * mapping,struct writeback_control * wbc)2564 int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2565 {
2566 int ret;
2567 struct bdi_writeback *wb;
2568
2569 if (wbc->nr_to_write <= 0)
2570 return 0;
2571 wb = inode_to_wb_wbc(mapping->host, wbc);
2572 wb_bandwidth_estimate_start(wb);
2573 while (1) {
2574 if (mapping->a_ops->writepages) {
2575 ret = mapping->a_ops->writepages(mapping, wbc);
2576 } else if (mapping->a_ops->writepage) {
2577 struct blk_plug plug;
2578
2579 blk_start_plug(&plug);
2580 ret = write_cache_pages(mapping, wbc, writepage_cb,
2581 mapping);
2582 blk_finish_plug(&plug);
2583 } else {
2584 /* deal with chardevs and other special files */
2585 ret = 0;
2586 }
2587 if (ret != -ENOMEM || wbc->sync_mode != WB_SYNC_ALL)
2588 break;
2589
2590 /*
2591 * Lacking an allocation context or the locality or writeback
2592 * state of any of the inode's pages, throttle based on
2593 * writeback activity on the local node. It's as good a
2594 * guess as any.
2595 */
2596 reclaim_throttle(NODE_DATA(numa_node_id()),
2597 VMSCAN_THROTTLE_WRITEBACK);
2598 }
2599 /*
2600 * Usually few pages are written by now from those we've just submitted
2601 * but if there's constant writeback being submitted, this makes sure
2602 * writeback bandwidth is updated once in a while.
2603 */
2604 if (time_is_before_jiffies(READ_ONCE(wb->bw_time_stamp) +
2605 BANDWIDTH_INTERVAL))
2606 wb_update_bandwidth(wb);
2607 return ret;
2608 }
2609
2610 /*
2611 * For address_spaces which do not use buffers nor write back.
2612 */
noop_dirty_folio(struct address_space * mapping,struct folio * folio)2613 bool noop_dirty_folio(struct address_space *mapping, struct folio *folio)
2614 {
2615 if (!folio_test_dirty(folio))
2616 return !folio_test_set_dirty(folio);
2617 return false;
2618 }
2619 EXPORT_SYMBOL(noop_dirty_folio);
2620
2621 /*
2622 * Helper function for set_page_dirty family.
2623 *
2624 * Caller must hold folio_memcg_lock().
2625 *
2626 * NOTE: This relies on being atomic wrt interrupts.
2627 */
folio_account_dirtied(struct folio * folio,struct address_space * mapping)2628 static void folio_account_dirtied(struct folio *folio,
2629 struct address_space *mapping)
2630 {
2631 struct inode *inode = mapping->host;
2632
2633 trace_writeback_dirty_folio(folio, mapping);
2634
2635 if (mapping_can_writeback(mapping)) {
2636 struct bdi_writeback *wb;
2637 long nr = folio_nr_pages(folio);
2638
2639 inode_attach_wb(inode, folio);
2640 wb = inode_to_wb(inode);
2641
2642 __lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, nr);
2643 __zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
2644 __node_stat_mod_folio(folio, NR_DIRTIED, nr);
2645 wb_stat_mod(wb, WB_RECLAIMABLE, nr);
2646 wb_stat_mod(wb, WB_DIRTIED, nr);
2647 task_io_account_write(nr * PAGE_SIZE);
2648 current->nr_dirtied += nr;
2649 __this_cpu_add(bdp_ratelimits, nr);
2650
2651 mem_cgroup_track_foreign_dirty(folio, wb);
2652 }
2653 }
2654
2655 /*
2656 * Helper function for deaccounting dirty page without writeback.
2657 *
2658 * Caller must hold folio_memcg_lock().
2659 */
folio_account_cleaned(struct folio * folio,struct bdi_writeback * wb)2660 void folio_account_cleaned(struct folio *folio, struct bdi_writeback *wb)
2661 {
2662 long nr = folio_nr_pages(folio);
2663
2664 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2665 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2666 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2667 task_io_account_cancelled_write(nr * PAGE_SIZE);
2668 }
2669
2670 /*
2671 * Mark the folio dirty, and set it dirty in the page cache, and mark
2672 * the inode dirty.
2673 *
2674 * If warn is true, then emit a warning if the folio is not uptodate and has
2675 * not been truncated.
2676 *
2677 * The caller must hold folio_memcg_lock(). Most callers have the folio
2678 * locked. A few have the folio blocked from truncation through other
2679 * means (eg zap_vma_pages() has it mapped and is holding the page table
2680 * lock). This can also be called from mark_buffer_dirty(), which I
2681 * cannot prove is always protected against truncate.
2682 */
__folio_mark_dirty(struct folio * folio,struct address_space * mapping,int warn)2683 void __folio_mark_dirty(struct folio *folio, struct address_space *mapping,
2684 int warn)
2685 {
2686 unsigned long flags;
2687
2688 xa_lock_irqsave(&mapping->i_pages, flags);
2689 if (folio->mapping) { /* Race with truncate? */
2690 WARN_ON_ONCE(warn && !folio_test_uptodate(folio));
2691 folio_account_dirtied(folio, mapping);
2692 __xa_set_mark(&mapping->i_pages, folio_index(folio),
2693 PAGECACHE_TAG_DIRTY);
2694 }
2695 xa_unlock_irqrestore(&mapping->i_pages, flags);
2696 }
2697
2698 /**
2699 * filemap_dirty_folio - Mark a folio dirty for filesystems which do not use buffer_heads.
2700 * @mapping: Address space this folio belongs to.
2701 * @folio: Folio to be marked as dirty.
2702 *
2703 * Filesystems which do not use buffer heads should call this function
2704 * from their set_page_dirty address space operation. It ignores the
2705 * contents of folio_get_private(), so if the filesystem marks individual
2706 * blocks as dirty, the filesystem should handle that itself.
2707 *
2708 * This is also sometimes used by filesystems which use buffer_heads when
2709 * a single buffer is being dirtied: we want to set the folio dirty in
2710 * that case, but not all the buffers. This is a "bottom-up" dirtying,
2711 * whereas block_dirty_folio() is a "top-down" dirtying.
2712 *
2713 * The caller must ensure this doesn't race with truncation. Most will
2714 * simply hold the folio lock, but e.g. zap_pte_range() calls with the
2715 * folio mapped and the pte lock held, which also locks out truncation.
2716 */
filemap_dirty_folio(struct address_space * mapping,struct folio * folio)2717 bool filemap_dirty_folio(struct address_space *mapping, struct folio *folio)
2718 {
2719 folio_memcg_lock(folio);
2720 if (folio_test_set_dirty(folio)) {
2721 folio_memcg_unlock(folio);
2722 return false;
2723 }
2724
2725 __folio_mark_dirty(folio, mapping, !folio_test_private(folio));
2726 folio_memcg_unlock(folio);
2727
2728 if (mapping->host) {
2729 /* !PageAnon && !swapper_space */
2730 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
2731 }
2732 return true;
2733 }
2734 EXPORT_SYMBOL(filemap_dirty_folio);
2735
2736 /**
2737 * folio_redirty_for_writepage - Decline to write a dirty folio.
2738 * @wbc: The writeback control.
2739 * @folio: The folio.
2740 *
2741 * When a writepage implementation decides that it doesn't want to write
2742 * @folio for some reason, it should call this function, unlock @folio and
2743 * return 0.
2744 *
2745 * Return: True if we redirtied the folio. False if someone else dirtied
2746 * it first.
2747 */
folio_redirty_for_writepage(struct writeback_control * wbc,struct folio * folio)2748 bool folio_redirty_for_writepage(struct writeback_control *wbc,
2749 struct folio *folio)
2750 {
2751 struct address_space *mapping = folio->mapping;
2752 long nr = folio_nr_pages(folio);
2753 bool ret;
2754
2755 wbc->pages_skipped += nr;
2756 ret = filemap_dirty_folio(mapping, folio);
2757 if (mapping && mapping_can_writeback(mapping)) {
2758 struct inode *inode = mapping->host;
2759 struct bdi_writeback *wb;
2760 struct wb_lock_cookie cookie = {};
2761
2762 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2763 current->nr_dirtied -= nr;
2764 node_stat_mod_folio(folio, NR_DIRTIED, -nr);
2765 wb_stat_mod(wb, WB_DIRTIED, -nr);
2766 unlocked_inode_to_wb_end(inode, &cookie);
2767 }
2768 return ret;
2769 }
2770 EXPORT_SYMBOL(folio_redirty_for_writepage);
2771
2772 /**
2773 * folio_mark_dirty - Mark a folio as being modified.
2774 * @folio: The folio.
2775 *
2776 * The folio may not be truncated while this function is running.
2777 * Holding the folio lock is sufficient to prevent truncation, but some
2778 * callers cannot acquire a sleeping lock. These callers instead hold
2779 * the page table lock for a page table which contains at least one page
2780 * in this folio. Truncation will block on the page table lock as it
2781 * unmaps pages before removing the folio from its mapping.
2782 *
2783 * Return: True if the folio was newly dirtied, false if it was already dirty.
2784 */
folio_mark_dirty(struct folio * folio)2785 bool folio_mark_dirty(struct folio *folio)
2786 {
2787 struct address_space *mapping = folio_mapping(folio);
2788
2789 if (likely(mapping)) {
2790 /*
2791 * readahead/folio_deactivate could remain
2792 * PG_readahead/PG_reclaim due to race with folio_end_writeback
2793 * About readahead, if the folio is written, the flags would be
2794 * reset. So no problem.
2795 * About folio_deactivate, if the folio is redirtied,
2796 * the flag will be reset. So no problem. but if the
2797 * folio is used by readahead it will confuse readahead
2798 * and make it restart the size rampup process. But it's
2799 * a trivial problem.
2800 */
2801 if (folio_test_reclaim(folio))
2802 folio_clear_reclaim(folio);
2803 return mapping->a_ops->dirty_folio(mapping, folio);
2804 }
2805
2806 return noop_dirty_folio(mapping, folio);
2807 }
2808 EXPORT_SYMBOL(folio_mark_dirty);
2809
2810 /*
2811 * set_page_dirty() is racy if the caller has no reference against
2812 * page->mapping->host, and if the page is unlocked. This is because another
2813 * CPU could truncate the page off the mapping and then free the mapping.
2814 *
2815 * Usually, the page _is_ locked, or the caller is a user-space process which
2816 * holds a reference on the inode by having an open file.
2817 *
2818 * In other cases, the page should be locked before running set_page_dirty().
2819 */
set_page_dirty_lock(struct page * page)2820 int set_page_dirty_lock(struct page *page)
2821 {
2822 int ret;
2823
2824 lock_page(page);
2825 ret = set_page_dirty(page);
2826 unlock_page(page);
2827 return ret;
2828 }
2829 EXPORT_SYMBOL(set_page_dirty_lock);
2830
2831 /*
2832 * This cancels just the dirty bit on the kernel page itself, it does NOT
2833 * actually remove dirty bits on any mmap's that may be around. It also
2834 * leaves the page tagged dirty, so any sync activity will still find it on
2835 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2836 * look at the dirty bits in the VM.
2837 *
2838 * Doing this should *normally* only ever be done when a page is truncated,
2839 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2840 * this when it notices that somebody has cleaned out all the buffers on a
2841 * page without actually doing it through the VM. Can you say "ext3 is
2842 * horribly ugly"? Thought you could.
2843 */
__folio_cancel_dirty(struct folio * folio)2844 void __folio_cancel_dirty(struct folio *folio)
2845 {
2846 struct address_space *mapping = folio_mapping(folio);
2847
2848 if (mapping_can_writeback(mapping)) {
2849 struct inode *inode = mapping->host;
2850 struct bdi_writeback *wb;
2851 struct wb_lock_cookie cookie = {};
2852
2853 folio_memcg_lock(folio);
2854 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2855
2856 if (folio_test_clear_dirty(folio))
2857 folio_account_cleaned(folio, wb);
2858
2859 unlocked_inode_to_wb_end(inode, &cookie);
2860 folio_memcg_unlock(folio);
2861 } else {
2862 folio_clear_dirty(folio);
2863 }
2864 }
2865 EXPORT_SYMBOL(__folio_cancel_dirty);
2866
2867 /*
2868 * Clear a folio's dirty flag, while caring for dirty memory accounting.
2869 * Returns true if the folio was previously dirty.
2870 *
2871 * This is for preparing to put the folio under writeout. We leave
2872 * the folio tagged as dirty in the xarray so that a concurrent
2873 * write-for-sync can discover it via a PAGECACHE_TAG_DIRTY walk.
2874 * The ->writepage implementation will run either folio_start_writeback()
2875 * or folio_mark_dirty(), at which stage we bring the folio's dirty flag
2876 * and xarray dirty tag back into sync.
2877 *
2878 * This incoherency between the folio's dirty flag and xarray tag is
2879 * unfortunate, but it only exists while the folio is locked.
2880 */
folio_clear_dirty_for_io(struct folio * folio)2881 bool folio_clear_dirty_for_io(struct folio *folio)
2882 {
2883 struct address_space *mapping = folio_mapping(folio);
2884 bool ret = false;
2885
2886 VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2887
2888 if (mapping && mapping_can_writeback(mapping)) {
2889 struct inode *inode = mapping->host;
2890 struct bdi_writeback *wb;
2891 struct wb_lock_cookie cookie = {};
2892
2893 /*
2894 * Yes, Virginia, this is indeed insane.
2895 *
2896 * We use this sequence to make sure that
2897 * (a) we account for dirty stats properly
2898 * (b) we tell the low-level filesystem to
2899 * mark the whole folio dirty if it was
2900 * dirty in a pagetable. Only to then
2901 * (c) clean the folio again and return 1 to
2902 * cause the writeback.
2903 *
2904 * This way we avoid all nasty races with the
2905 * dirty bit in multiple places and clearing
2906 * them concurrently from different threads.
2907 *
2908 * Note! Normally the "folio_mark_dirty(folio)"
2909 * has no effect on the actual dirty bit - since
2910 * that will already usually be set. But we
2911 * need the side effects, and it can help us
2912 * avoid races.
2913 *
2914 * We basically use the folio "master dirty bit"
2915 * as a serialization point for all the different
2916 * threads doing their things.
2917 */
2918 if (folio_mkclean(folio))
2919 folio_mark_dirty(folio);
2920 /*
2921 * We carefully synchronise fault handlers against
2922 * installing a dirty pte and marking the folio dirty
2923 * at this point. We do this by having them hold the
2924 * page lock while dirtying the folio, and folios are
2925 * always locked coming in here, so we get the desired
2926 * exclusion.
2927 */
2928 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2929 if (folio_test_clear_dirty(folio)) {
2930 long nr = folio_nr_pages(folio);
2931 lruvec_stat_mod_folio(folio, NR_FILE_DIRTY, -nr);
2932 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
2933 wb_stat_mod(wb, WB_RECLAIMABLE, -nr);
2934 ret = true;
2935 }
2936 unlocked_inode_to_wb_end(inode, &cookie);
2937 return ret;
2938 }
2939 return folio_test_clear_dirty(folio);
2940 }
2941 EXPORT_SYMBOL(folio_clear_dirty_for_io);
2942
wb_inode_writeback_start(struct bdi_writeback * wb)2943 static void wb_inode_writeback_start(struct bdi_writeback *wb)
2944 {
2945 atomic_inc(&wb->writeback_inodes);
2946 }
2947
wb_inode_writeback_end(struct bdi_writeback * wb)2948 static void wb_inode_writeback_end(struct bdi_writeback *wb)
2949 {
2950 unsigned long flags;
2951 atomic_dec(&wb->writeback_inodes);
2952 /*
2953 * Make sure estimate of writeback throughput gets updated after
2954 * writeback completed. We delay the update by BANDWIDTH_INTERVAL
2955 * (which is the interval other bandwidth updates use for batching) so
2956 * that if multiple inodes end writeback at a similar time, they get
2957 * batched into one bandwidth update.
2958 */
2959 spin_lock_irqsave(&wb->work_lock, flags);
2960 if (test_bit(WB_registered, &wb->state))
2961 queue_delayed_work(bdi_wq, &wb->bw_dwork, BANDWIDTH_INTERVAL);
2962 spin_unlock_irqrestore(&wb->work_lock, flags);
2963 }
2964
__folio_end_writeback(struct folio * folio)2965 bool __folio_end_writeback(struct folio *folio)
2966 {
2967 long nr = folio_nr_pages(folio);
2968 struct address_space *mapping = folio_mapping(folio);
2969 bool ret;
2970
2971 folio_memcg_lock(folio);
2972 if (mapping && mapping_use_writeback_tags(mapping)) {
2973 struct inode *inode = mapping->host;
2974 struct backing_dev_info *bdi = inode_to_bdi(inode);
2975 unsigned long flags;
2976
2977 xa_lock_irqsave(&mapping->i_pages, flags);
2978 ret = folio_test_clear_writeback(folio);
2979 if (ret) {
2980 __xa_clear_mark(&mapping->i_pages, folio_index(folio),
2981 PAGECACHE_TAG_WRITEBACK);
2982 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
2983 struct bdi_writeback *wb = inode_to_wb(inode);
2984
2985 wb_stat_mod(wb, WB_WRITEBACK, -nr);
2986 __wb_writeout_add(wb, nr);
2987 if (!mapping_tagged(mapping,
2988 PAGECACHE_TAG_WRITEBACK))
2989 wb_inode_writeback_end(wb);
2990 }
2991 }
2992
2993 if (mapping->host && !mapping_tagged(mapping,
2994 PAGECACHE_TAG_WRITEBACK))
2995 sb_clear_inode_writeback(mapping->host);
2996
2997 xa_unlock_irqrestore(&mapping->i_pages, flags);
2998 } else {
2999 ret = folio_test_clear_writeback(folio);
3000 }
3001 if (ret) {
3002 lruvec_stat_mod_folio(folio, NR_WRITEBACK, -nr);
3003 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, -nr);
3004 node_stat_mod_folio(folio, NR_WRITTEN, nr);
3005 }
3006 folio_memcg_unlock(folio);
3007 return ret;
3008 }
3009
__folio_start_writeback(struct folio * folio,bool keep_write)3010 bool __folio_start_writeback(struct folio *folio, bool keep_write)
3011 {
3012 long nr = folio_nr_pages(folio);
3013 struct address_space *mapping = folio_mapping(folio);
3014 bool ret;
3015 int access_ret;
3016
3017 folio_memcg_lock(folio);
3018 if (mapping && mapping_use_writeback_tags(mapping)) {
3019 XA_STATE(xas, &mapping->i_pages, folio_index(folio));
3020 struct inode *inode = mapping->host;
3021 struct backing_dev_info *bdi = inode_to_bdi(inode);
3022 unsigned long flags;
3023
3024 xas_lock_irqsave(&xas, flags);
3025 xas_load(&xas);
3026 ret = folio_test_set_writeback(folio);
3027 if (!ret) {
3028 bool on_wblist;
3029
3030 on_wblist = mapping_tagged(mapping,
3031 PAGECACHE_TAG_WRITEBACK);
3032
3033 xas_set_mark(&xas, PAGECACHE_TAG_WRITEBACK);
3034 if (bdi->capabilities & BDI_CAP_WRITEBACK_ACCT) {
3035 struct bdi_writeback *wb = inode_to_wb(inode);
3036
3037 wb_stat_mod(wb, WB_WRITEBACK, nr);
3038 if (!on_wblist)
3039 wb_inode_writeback_start(wb);
3040 }
3041
3042 /*
3043 * We can come through here when swapping
3044 * anonymous folios, so we don't necessarily
3045 * have an inode to track for sync.
3046 */
3047 if (mapping->host && !on_wblist)
3048 sb_mark_inode_writeback(mapping->host);
3049 }
3050 if (!folio_test_dirty(folio))
3051 xas_clear_mark(&xas, PAGECACHE_TAG_DIRTY);
3052 if (!keep_write)
3053 xas_clear_mark(&xas, PAGECACHE_TAG_TOWRITE);
3054 xas_unlock_irqrestore(&xas, flags);
3055 } else {
3056 ret = folio_test_set_writeback(folio);
3057 }
3058 if (!ret) {
3059 lruvec_stat_mod_folio(folio, NR_WRITEBACK, nr);
3060 zone_stat_mod_folio(folio, NR_ZONE_WRITE_PENDING, nr);
3061 }
3062 folio_memcg_unlock(folio);
3063 access_ret = arch_make_folio_accessible(folio);
3064 /*
3065 * If writeback has been triggered on a page that cannot be made
3066 * accessible, it is too late to recover here.
3067 */
3068 VM_BUG_ON_FOLIO(access_ret != 0, folio);
3069
3070 return ret;
3071 }
3072 EXPORT_SYMBOL(__folio_start_writeback);
3073
3074 /**
3075 * folio_wait_writeback - Wait for a folio to finish writeback.
3076 * @folio: The folio to wait for.
3077 *
3078 * If the folio is currently being written back to storage, wait for the
3079 * I/O to complete.
3080 *
3081 * Context: Sleeps. Must be called in process context and with
3082 * no spinlocks held. Caller should hold a reference on the folio.
3083 * If the folio is not locked, writeback may start again after writeback
3084 * has finished.
3085 */
folio_wait_writeback(struct folio * folio)3086 void folio_wait_writeback(struct folio *folio)
3087 {
3088 while (folio_test_writeback(folio)) {
3089 trace_folio_wait_writeback(folio, folio_mapping(folio));
3090 folio_wait_bit(folio, PG_writeback);
3091 }
3092 }
3093 EXPORT_SYMBOL_GPL(folio_wait_writeback);
3094
3095 /**
3096 * folio_wait_writeback_killable - Wait for a folio to finish writeback.
3097 * @folio: The folio to wait for.
3098 *
3099 * If the folio is currently being written back to storage, wait for the
3100 * I/O to complete or a fatal signal to arrive.
3101 *
3102 * Context: Sleeps. Must be called in process context and with
3103 * no spinlocks held. Caller should hold a reference on the folio.
3104 * If the folio is not locked, writeback may start again after writeback
3105 * has finished.
3106 * Return: 0 on success, -EINTR if we get a fatal signal while waiting.
3107 */
folio_wait_writeback_killable(struct folio * folio)3108 int folio_wait_writeback_killable(struct folio *folio)
3109 {
3110 while (folio_test_writeback(folio)) {
3111 trace_folio_wait_writeback(folio, folio_mapping(folio));
3112 if (folio_wait_bit_killable(folio, PG_writeback))
3113 return -EINTR;
3114 }
3115
3116 return 0;
3117 }
3118 EXPORT_SYMBOL_GPL(folio_wait_writeback_killable);
3119
3120 /**
3121 * folio_wait_stable() - wait for writeback to finish, if necessary.
3122 * @folio: The folio to wait on.
3123 *
3124 * This function determines if the given folio is related to a backing
3125 * device that requires folio contents to be held stable during writeback.
3126 * If so, then it will wait for any pending writeback to complete.
3127 *
3128 * Context: Sleeps. Must be called in process context and with
3129 * no spinlocks held. Caller should hold a reference on the folio.
3130 * If the folio is not locked, writeback may start again after writeback
3131 * has finished.
3132 */
folio_wait_stable(struct folio * folio)3133 void folio_wait_stable(struct folio *folio)
3134 {
3135 if (mapping_stable_writes(folio_mapping(folio)))
3136 folio_wait_writeback(folio);
3137 }
3138 EXPORT_SYMBOL_GPL(folio_wait_stable);
3139