1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/mm/oom_kill.c 4 * 5 * Copyright (C) 1998,2000 Rik van Riel 6 * Thanks go out to Claus Fischer for some serious inspiration and 7 * for goading me into coding this file... 8 * Copyright (C) 2010 Google, Inc. 9 * Rewritten by David Rientjes 10 * 11 * The routines in this file are used to kill a process when 12 * we're seriously out of memory. This gets called from __alloc_pages() 13 * in mm/page_alloc.c when we really run out of memory. 14 * 15 * Since we won't call these routines often (on a well-configured 16 * machine) this file will double as a 'coding guide' and a signpost 17 * for newbie kernel hackers. It features several pointers to major 18 * kernel subsystems and hints as to where to find out what things do. 19 */ 20 21 #include <linux/oom.h> 22 #include <linux/mm.h> 23 #include <linux/err.h> 24 #include <linux/gfp.h> 25 #include <linux/sched.h> 26 #include <linux/sched/mm.h> 27 #include <linux/sched/coredump.h> 28 #include <linux/sched/task.h> 29 #include <linux/sched/debug.h> 30 #include <linux/swap.h> 31 #include <linux/timex.h> 32 #include <linux/jiffies.h> 33 #include <linux/cpuset.h> 34 #include <linux/export.h> 35 #include <linux/notifier.h> 36 #include <linux/memcontrol.h> 37 #include <linux/mempolicy.h> 38 #include <linux/security.h> 39 #include <linux/ptrace.h> 40 #include <linux/freezer.h> 41 #include <linux/ftrace.h> 42 #include <linux/ratelimit.h> 43 #include <linux/kthread.h> 44 #include <linux/init.h> 45 #include <linux/mmu_notifier.h> 46 47 #include <asm/tlb.h> 48 #include "internal.h" 49 #include "slab.h" 50 51 #define CREATE_TRACE_POINTS 52 #include <trace/events/oom.h> 53 54 int sysctl_panic_on_oom; 55 int sysctl_oom_kill_allocating_task; 56 int sysctl_oom_dump_tasks = 1; 57 58 /* 59 * Serializes oom killer invocations (out_of_memory()) from all contexts to 60 * prevent from over eager oom killing (e.g. when the oom killer is invoked 61 * from different domains). 62 * 63 * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled 64 * and mark_oom_victim 65 */ 66 DEFINE_MUTEX(oom_lock); 67 /* Serializes oom_score_adj and oom_score_adj_min updates */ 68 DEFINE_MUTEX(oom_adj_mutex); 69 70 static inline bool is_memcg_oom(struct oom_control *oc) 71 { 72 return oc->memcg != NULL; 73 } 74 75 #ifdef CONFIG_NUMA 76 /** 77 * oom_cpuset_eligible() - check task eligiblity for kill 78 * @start: task struct of which task to consider 79 * @oc: pointer to struct oom_control 80 * 81 * Task eligibility is determined by whether or not a candidate task, @tsk, 82 * shares the same mempolicy nodes as current if it is bound by such a policy 83 * and whether or not it has the same set of allowed cpuset nodes. 84 * 85 * This function is assuming oom-killer context and 'current' has triggered 86 * the oom-killer. 87 */ 88 static bool oom_cpuset_eligible(struct task_struct *start, 89 struct oom_control *oc) 90 { 91 struct task_struct *tsk; 92 bool ret = false; 93 const nodemask_t *mask = oc->nodemask; 94 95 if (is_memcg_oom(oc)) 96 return true; 97 98 rcu_read_lock(); 99 for_each_thread(start, tsk) { 100 if (mask) { 101 /* 102 * If this is a mempolicy constrained oom, tsk's 103 * cpuset is irrelevant. Only return true if its 104 * mempolicy intersects current, otherwise it may be 105 * needlessly killed. 106 */ 107 ret = mempolicy_nodemask_intersects(tsk, mask); 108 } else { 109 /* 110 * This is not a mempolicy constrained oom, so only 111 * check the mems of tsk's cpuset. 112 */ 113 ret = cpuset_mems_allowed_intersects(current, tsk); 114 } 115 if (ret) 116 break; 117 } 118 rcu_read_unlock(); 119 120 return ret; 121 } 122 #else 123 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc) 124 { 125 return true; 126 } 127 #endif /* CONFIG_NUMA */ 128 129 /* 130 * The process p may have detached its own ->mm while exiting or through 131 * kthread_use_mm(), but one or more of its subthreads may still have a valid 132 * pointer. Return p, or any of its subthreads with a valid ->mm, with 133 * task_lock() held. 134 */ 135 struct task_struct *find_lock_task_mm(struct task_struct *p) 136 { 137 struct task_struct *t; 138 139 rcu_read_lock(); 140 141 for_each_thread(p, t) { 142 task_lock(t); 143 if (likely(t->mm)) 144 goto found; 145 task_unlock(t); 146 } 147 t = NULL; 148 found: 149 rcu_read_unlock(); 150 151 return t; 152 } 153 154 /* 155 * order == -1 means the oom kill is required by sysrq, otherwise only 156 * for display purposes. 157 */ 158 static inline bool is_sysrq_oom(struct oom_control *oc) 159 { 160 return oc->order == -1; 161 } 162 163 /* return true if the task is not adequate as candidate victim task. */ 164 static bool oom_unkillable_task(struct task_struct *p) 165 { 166 if (is_global_init(p)) 167 return true; 168 if (p->flags & PF_KTHREAD) 169 return true; 170 return false; 171 } 172 173 /* 174 * Print out unreclaimble slabs info when unreclaimable slabs amount is greater 175 * than all user memory (LRU pages) 176 */ 177 static bool is_dump_unreclaim_slabs(void) 178 { 179 unsigned long nr_lru; 180 181 nr_lru = global_node_page_state(NR_ACTIVE_ANON) + 182 global_node_page_state(NR_INACTIVE_ANON) + 183 global_node_page_state(NR_ACTIVE_FILE) + 184 global_node_page_state(NR_INACTIVE_FILE) + 185 global_node_page_state(NR_ISOLATED_ANON) + 186 global_node_page_state(NR_ISOLATED_FILE) + 187 global_node_page_state(NR_UNEVICTABLE); 188 189 return (global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B) > nr_lru); 190 } 191 192 /** 193 * oom_badness - heuristic function to determine which candidate task to kill 194 * @p: task struct of which task we should calculate 195 * @totalpages: total present RAM allowed for page allocation 196 * 197 * The heuristic for determining which task to kill is made to be as simple and 198 * predictable as possible. The goal is to return the highest value for the 199 * task consuming the most memory to avoid subsequent oom failures. 200 */ 201 long oom_badness(struct task_struct *p, unsigned long totalpages) 202 { 203 long points; 204 long adj; 205 206 if (oom_unkillable_task(p)) 207 return LONG_MIN; 208 209 p = find_lock_task_mm(p); 210 if (!p) 211 return LONG_MIN; 212 213 /* 214 * Do not even consider tasks which are explicitly marked oom 215 * unkillable or have been already oom reaped or the are in 216 * the middle of vfork 217 */ 218 adj = (long)p->signal->oom_score_adj; 219 if (adj == OOM_SCORE_ADJ_MIN || 220 test_bit(MMF_OOM_SKIP, &p->mm->flags) || 221 in_vfork(p)) { 222 task_unlock(p); 223 return LONG_MIN; 224 } 225 226 /* 227 * The baseline for the badness score is the proportion of RAM that each 228 * task's rss, pagetable and swap space use. 229 */ 230 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) + 231 mm_pgtables_bytes(p->mm) / PAGE_SIZE; 232 task_unlock(p); 233 234 /* Normalize to oom_score_adj units */ 235 adj *= totalpages / 1000; 236 points += adj; 237 238 return points; 239 } 240 241 static const char * const oom_constraint_text[] = { 242 [CONSTRAINT_NONE] = "CONSTRAINT_NONE", 243 [CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET", 244 [CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY", 245 [CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG", 246 }; 247 248 /* 249 * Determine the type of allocation constraint. 250 */ 251 static enum oom_constraint constrained_alloc(struct oom_control *oc) 252 { 253 struct zone *zone; 254 struct zoneref *z; 255 enum zone_type highest_zoneidx = gfp_zone(oc->gfp_mask); 256 bool cpuset_limited = false; 257 int nid; 258 259 if (is_memcg_oom(oc)) { 260 oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1; 261 return CONSTRAINT_MEMCG; 262 } 263 264 /* Default to all available memory */ 265 oc->totalpages = totalram_pages() + total_swap_pages; 266 267 if (!IS_ENABLED(CONFIG_NUMA)) 268 return CONSTRAINT_NONE; 269 270 if (!oc->zonelist) 271 return CONSTRAINT_NONE; 272 /* 273 * Reach here only when __GFP_NOFAIL is used. So, we should avoid 274 * to kill current.We have to random task kill in this case. 275 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now. 276 */ 277 if (oc->gfp_mask & __GFP_THISNODE) 278 return CONSTRAINT_NONE; 279 280 /* 281 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in 282 * the page allocator means a mempolicy is in effect. Cpuset policy 283 * is enforced in get_page_from_freelist(). 284 */ 285 if (oc->nodemask && 286 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) { 287 oc->totalpages = total_swap_pages; 288 for_each_node_mask(nid, *oc->nodemask) 289 oc->totalpages += node_present_pages(nid); 290 return CONSTRAINT_MEMORY_POLICY; 291 } 292 293 /* Check this allocation failure is caused by cpuset's wall function */ 294 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist, 295 highest_zoneidx, oc->nodemask) 296 if (!cpuset_zone_allowed(zone, oc->gfp_mask)) 297 cpuset_limited = true; 298 299 if (cpuset_limited) { 300 oc->totalpages = total_swap_pages; 301 for_each_node_mask(nid, cpuset_current_mems_allowed) 302 oc->totalpages += node_present_pages(nid); 303 return CONSTRAINT_CPUSET; 304 } 305 return CONSTRAINT_NONE; 306 } 307 308 static int oom_evaluate_task(struct task_struct *task, void *arg) 309 { 310 struct oom_control *oc = arg; 311 long points; 312 313 if (oom_unkillable_task(task)) 314 goto next; 315 316 /* p may not have freeable memory in nodemask */ 317 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc)) 318 goto next; 319 320 /* 321 * This task already has access to memory reserves and is being killed. 322 * Don't allow any other task to have access to the reserves unless 323 * the task has MMF_OOM_SKIP because chances that it would release 324 * any memory is quite low. 325 */ 326 if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) { 327 if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags)) 328 goto next; 329 goto abort; 330 } 331 332 /* 333 * If task is allocating a lot of memory and has been marked to be 334 * killed first if it triggers an oom, then select it. 335 */ 336 if (oom_task_origin(task)) { 337 points = LONG_MAX; 338 goto select; 339 } 340 341 points = oom_badness(task, oc->totalpages); 342 if (points == LONG_MIN || points < oc->chosen_points) 343 goto next; 344 345 select: 346 if (oc->chosen) 347 put_task_struct(oc->chosen); 348 get_task_struct(task); 349 oc->chosen = task; 350 oc->chosen_points = points; 351 next: 352 return 0; 353 abort: 354 if (oc->chosen) 355 put_task_struct(oc->chosen); 356 oc->chosen = (void *)-1UL; 357 return 1; 358 } 359 360 /* 361 * Simple selection loop. We choose the process with the highest number of 362 * 'points'. In case scan was aborted, oc->chosen is set to -1. 363 */ 364 static void select_bad_process(struct oom_control *oc) 365 { 366 oc->chosen_points = LONG_MIN; 367 368 if (is_memcg_oom(oc)) 369 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc); 370 else { 371 struct task_struct *p; 372 373 rcu_read_lock(); 374 for_each_process(p) 375 if (oom_evaluate_task(p, oc)) 376 break; 377 rcu_read_unlock(); 378 } 379 } 380 381 static int dump_task(struct task_struct *p, void *arg) 382 { 383 struct oom_control *oc = arg; 384 struct task_struct *task; 385 386 if (oom_unkillable_task(p)) 387 return 0; 388 389 /* p may not have freeable memory in nodemask */ 390 if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc)) 391 return 0; 392 393 task = find_lock_task_mm(p); 394 if (!task) { 395 /* 396 * This is a kthread or all of p's threads have already 397 * detached their mm's. There's no need to report 398 * them; they can't be oom killed anyway. 399 */ 400 return 0; 401 } 402 403 pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu %5hd %s\n", 404 task->pid, from_kuid(&init_user_ns, task_uid(task)), 405 task->tgid, task->mm->total_vm, get_mm_rss(task->mm), 406 mm_pgtables_bytes(task->mm), 407 get_mm_counter(task->mm, MM_SWAPENTS), 408 task->signal->oom_score_adj, task->comm); 409 task_unlock(task); 410 411 return 0; 412 } 413 414 /** 415 * dump_tasks - dump current memory state of all system tasks 416 * @oc: pointer to struct oom_control 417 * 418 * Dumps the current memory state of all eligible tasks. Tasks not in the same 419 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes 420 * are not shown. 421 * State information includes task's pid, uid, tgid, vm size, rss, 422 * pgtables_bytes, swapents, oom_score_adj value, and name. 423 */ 424 static void dump_tasks(struct oom_control *oc) 425 { 426 pr_info("Tasks state (memory values in pages):\n"); 427 pr_info("[ pid ] uid tgid total_vm rss pgtables_bytes swapents oom_score_adj name\n"); 428 429 if (is_memcg_oom(oc)) 430 mem_cgroup_scan_tasks(oc->memcg, dump_task, oc); 431 else { 432 struct task_struct *p; 433 434 rcu_read_lock(); 435 for_each_process(p) 436 dump_task(p, oc); 437 rcu_read_unlock(); 438 } 439 } 440 441 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim) 442 { 443 /* one line summary of the oom killer context. */ 444 pr_info("oom-kill:constraint=%s,nodemask=%*pbl", 445 oom_constraint_text[oc->constraint], 446 nodemask_pr_args(oc->nodemask)); 447 cpuset_print_current_mems_allowed(); 448 mem_cgroup_print_oom_context(oc->memcg, victim); 449 pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid, 450 from_kuid(&init_user_ns, task_uid(victim))); 451 } 452 453 static void dump_header(struct oom_control *oc, struct task_struct *p) 454 { 455 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n", 456 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order, 457 current->signal->oom_score_adj); 458 if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order) 459 pr_warn("COMPACTION is disabled!!!\n"); 460 461 dump_stack(); 462 if (is_memcg_oom(oc)) 463 mem_cgroup_print_oom_meminfo(oc->memcg); 464 else { 465 show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask); 466 if (is_dump_unreclaim_slabs()) 467 dump_unreclaimable_slab(); 468 } 469 if (sysctl_oom_dump_tasks) 470 dump_tasks(oc); 471 if (p) 472 dump_oom_summary(oc, p); 473 } 474 475 /* 476 * Number of OOM victims in flight 477 */ 478 static atomic_t oom_victims = ATOMIC_INIT(0); 479 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait); 480 481 static bool oom_killer_disabled __read_mostly; 482 483 #define K(x) ((x) << (PAGE_SHIFT-10)) 484 485 /* 486 * task->mm can be NULL if the task is the exited group leader. So to 487 * determine whether the task is using a particular mm, we examine all the 488 * task's threads: if one of those is using this mm then this task was also 489 * using it. 490 */ 491 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm) 492 { 493 struct task_struct *t; 494 495 for_each_thread(p, t) { 496 struct mm_struct *t_mm = READ_ONCE(t->mm); 497 if (t_mm) 498 return t_mm == mm; 499 } 500 return false; 501 } 502 503 #ifdef CONFIG_MMU 504 /* 505 * OOM Reaper kernel thread which tries to reap the memory used by the OOM 506 * victim (if that is possible) to help the OOM killer to move on. 507 */ 508 static struct task_struct *oom_reaper_th; 509 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait); 510 static struct task_struct *oom_reaper_list; 511 static DEFINE_SPINLOCK(oom_reaper_lock); 512 513 bool __oom_reap_task_mm(struct mm_struct *mm) 514 { 515 struct vm_area_struct *vma; 516 bool ret = true; 517 518 /* 519 * Tell all users of get_user/copy_from_user etc... that the content 520 * is no longer stable. No barriers really needed because unmapping 521 * should imply barriers already and the reader would hit a page fault 522 * if it stumbled over a reaped memory. 523 */ 524 set_bit(MMF_UNSTABLE, &mm->flags); 525 526 for (vma = mm->mmap ; vma; vma = vma->vm_next) { 527 if (!can_madv_lru_vma(vma)) 528 continue; 529 530 /* 531 * Only anonymous pages have a good chance to be dropped 532 * without additional steps which we cannot afford as we 533 * are OOM already. 534 * 535 * We do not even care about fs backed pages because all 536 * which are reclaimable have already been reclaimed and 537 * we do not want to block exit_mmap by keeping mm ref 538 * count elevated without a good reason. 539 */ 540 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) { 541 struct mmu_notifier_range range; 542 struct mmu_gather tlb; 543 544 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, 545 vma, mm, vma->vm_start, 546 vma->vm_end); 547 tlb_gather_mmu(&tlb, mm, range.start, range.end); 548 if (mmu_notifier_invalidate_range_start_nonblock(&range)) { 549 tlb_finish_mmu(&tlb, range.start, range.end); 550 ret = false; 551 continue; 552 } 553 unmap_page_range(&tlb, vma, range.start, range.end, NULL); 554 mmu_notifier_invalidate_range_end(&range); 555 tlb_finish_mmu(&tlb, range.start, range.end); 556 } 557 } 558 559 return ret; 560 } 561 562 /* 563 * Reaps the address space of the give task. 564 * 565 * Returns true on success and false if none or part of the address space 566 * has been reclaimed and the caller should retry later. 567 */ 568 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm) 569 { 570 bool ret = true; 571 572 if (!mmap_read_trylock(mm)) { 573 trace_skip_task_reaping(tsk->pid); 574 return false; 575 } 576 577 /* 578 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't 579 * work on the mm anymore. The check for MMF_OOM_SKIP must run 580 * under mmap_lock for reading because it serializes against the 581 * mmap_write_lock();mmap_write_unlock() cycle in exit_mmap(). 582 */ 583 if (test_bit(MMF_OOM_SKIP, &mm->flags)) { 584 trace_skip_task_reaping(tsk->pid); 585 goto out_unlock; 586 } 587 588 trace_start_task_reaping(tsk->pid); 589 590 /* failed to reap part of the address space. Try again later */ 591 ret = __oom_reap_task_mm(mm); 592 if (!ret) 593 goto out_finish; 594 595 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n", 596 task_pid_nr(tsk), tsk->comm, 597 K(get_mm_counter(mm, MM_ANONPAGES)), 598 K(get_mm_counter(mm, MM_FILEPAGES)), 599 K(get_mm_counter(mm, MM_SHMEMPAGES))); 600 out_finish: 601 trace_finish_task_reaping(tsk->pid); 602 out_unlock: 603 mmap_read_unlock(mm); 604 605 return ret; 606 } 607 608 #define MAX_OOM_REAP_RETRIES 10 609 static void oom_reap_task(struct task_struct *tsk) 610 { 611 int attempts = 0; 612 struct mm_struct *mm = tsk->signal->oom_mm; 613 614 /* Retry the mmap_read_trylock(mm) a few times */ 615 while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm)) 616 schedule_timeout_idle(HZ/10); 617 618 if (attempts <= MAX_OOM_REAP_RETRIES || 619 test_bit(MMF_OOM_SKIP, &mm->flags)) 620 goto done; 621 622 pr_info("oom_reaper: unable to reap pid:%d (%s)\n", 623 task_pid_nr(tsk), tsk->comm); 624 sched_show_task(tsk); 625 debug_show_all_locks(); 626 627 done: 628 tsk->oom_reaper_list = NULL; 629 630 /* 631 * Hide this mm from OOM killer because it has been either reaped or 632 * somebody can't call mmap_write_unlock(mm). 633 */ 634 set_bit(MMF_OOM_SKIP, &mm->flags); 635 636 /* Drop a reference taken by wake_oom_reaper */ 637 put_task_struct(tsk); 638 } 639 640 static int oom_reaper(void *unused) 641 { 642 while (true) { 643 struct task_struct *tsk = NULL; 644 645 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL); 646 spin_lock(&oom_reaper_lock); 647 if (oom_reaper_list != NULL) { 648 tsk = oom_reaper_list; 649 oom_reaper_list = tsk->oom_reaper_list; 650 } 651 spin_unlock(&oom_reaper_lock); 652 653 if (tsk) 654 oom_reap_task(tsk); 655 } 656 657 return 0; 658 } 659 660 static void wake_oom_reaper(struct task_struct *tsk) 661 { 662 /* mm is already queued? */ 663 if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags)) 664 return; 665 666 get_task_struct(tsk); 667 668 spin_lock(&oom_reaper_lock); 669 tsk->oom_reaper_list = oom_reaper_list; 670 oom_reaper_list = tsk; 671 spin_unlock(&oom_reaper_lock); 672 trace_wake_reaper(tsk->pid); 673 wake_up(&oom_reaper_wait); 674 } 675 676 static int __init oom_init(void) 677 { 678 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper"); 679 return 0; 680 } 681 subsys_initcall(oom_init) 682 #else 683 static inline void wake_oom_reaper(struct task_struct *tsk) 684 { 685 } 686 #endif /* CONFIG_MMU */ 687 688 /** 689 * mark_oom_victim - mark the given task as OOM victim 690 * @tsk: task to mark 691 * 692 * Has to be called with oom_lock held and never after 693 * oom has been disabled already. 694 * 695 * tsk->mm has to be non NULL and caller has to guarantee it is stable (either 696 * under task_lock or operate on the current). 697 */ 698 static void mark_oom_victim(struct task_struct *tsk) 699 { 700 struct mm_struct *mm = tsk->mm; 701 702 WARN_ON(oom_killer_disabled); 703 /* OOM killer might race with memcg OOM */ 704 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE)) 705 return; 706 707 /* oom_mm is bound to the signal struct life time. */ 708 if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) { 709 mmgrab(tsk->signal->oom_mm); 710 set_bit(MMF_OOM_VICTIM, &mm->flags); 711 } 712 713 /* 714 * Make sure that the task is woken up from uninterruptible sleep 715 * if it is frozen because OOM killer wouldn't be able to free 716 * any memory and livelock. freezing_slow_path will tell the freezer 717 * that TIF_MEMDIE tasks should be ignored. 718 */ 719 __thaw_task(tsk); 720 atomic_inc(&oom_victims); 721 trace_mark_victim(tsk->pid); 722 } 723 724 /** 725 * exit_oom_victim - note the exit of an OOM victim 726 */ 727 void exit_oom_victim(void) 728 { 729 clear_thread_flag(TIF_MEMDIE); 730 731 if (!atomic_dec_return(&oom_victims)) 732 wake_up_all(&oom_victims_wait); 733 } 734 735 /** 736 * oom_killer_enable - enable OOM killer 737 */ 738 void oom_killer_enable(void) 739 { 740 oom_killer_disabled = false; 741 pr_info("OOM killer enabled.\n"); 742 } 743 744 /** 745 * oom_killer_disable - disable OOM killer 746 * @timeout: maximum timeout to wait for oom victims in jiffies 747 * 748 * Forces all page allocations to fail rather than trigger OOM killer. 749 * Will block and wait until all OOM victims are killed or the given 750 * timeout expires. 751 * 752 * The function cannot be called when there are runnable user tasks because 753 * the userspace would see unexpected allocation failures as a result. Any 754 * new usage of this function should be consulted with MM people. 755 * 756 * Returns true if successful and false if the OOM killer cannot be 757 * disabled. 758 */ 759 bool oom_killer_disable(signed long timeout) 760 { 761 signed long ret; 762 763 /* 764 * Make sure to not race with an ongoing OOM killer. Check that the 765 * current is not killed (possibly due to sharing the victim's memory). 766 */ 767 if (mutex_lock_killable(&oom_lock)) 768 return false; 769 oom_killer_disabled = true; 770 mutex_unlock(&oom_lock); 771 772 ret = wait_event_interruptible_timeout(oom_victims_wait, 773 !atomic_read(&oom_victims), timeout); 774 if (ret <= 0) { 775 oom_killer_enable(); 776 return false; 777 } 778 pr_info("OOM killer disabled.\n"); 779 780 return true; 781 } 782 783 static inline bool __task_will_free_mem(struct task_struct *task) 784 { 785 struct signal_struct *sig = task->signal; 786 787 /* 788 * A coredumping process may sleep for an extended period in exit_mm(), 789 * so the oom killer cannot assume that the process will promptly exit 790 * and release memory. 791 */ 792 if (sig->flags & SIGNAL_GROUP_COREDUMP) 793 return false; 794 795 if (sig->flags & SIGNAL_GROUP_EXIT) 796 return true; 797 798 if (thread_group_empty(task) && (task->flags & PF_EXITING)) 799 return true; 800 801 return false; 802 } 803 804 /* 805 * Checks whether the given task is dying or exiting and likely to 806 * release its address space. This means that all threads and processes 807 * sharing the same mm have to be killed or exiting. 808 * Caller has to make sure that task->mm is stable (hold task_lock or 809 * it operates on the current). 810 */ 811 static bool task_will_free_mem(struct task_struct *task) 812 { 813 struct mm_struct *mm = task->mm; 814 struct task_struct *p; 815 bool ret = true; 816 817 /* 818 * Skip tasks without mm because it might have passed its exit_mm and 819 * exit_oom_victim. oom_reaper could have rescued that but do not rely 820 * on that for now. We can consider find_lock_task_mm in future. 821 */ 822 if (!mm) 823 return false; 824 825 if (!__task_will_free_mem(task)) 826 return false; 827 828 /* 829 * This task has already been drained by the oom reaper so there are 830 * only small chances it will free some more 831 */ 832 if (test_bit(MMF_OOM_SKIP, &mm->flags)) 833 return false; 834 835 if (atomic_read(&mm->mm_users) <= 1) 836 return true; 837 838 /* 839 * Make sure that all tasks which share the mm with the given tasks 840 * are dying as well to make sure that a) nobody pins its mm and 841 * b) the task is also reapable by the oom reaper. 842 */ 843 rcu_read_lock(); 844 for_each_process(p) { 845 if (!process_shares_mm(p, mm)) 846 continue; 847 if (same_thread_group(task, p)) 848 continue; 849 ret = __task_will_free_mem(p); 850 if (!ret) 851 break; 852 } 853 rcu_read_unlock(); 854 855 return ret; 856 } 857 858 static void __oom_kill_process(struct task_struct *victim, const char *message) 859 { 860 struct task_struct *p; 861 struct mm_struct *mm; 862 bool can_oom_reap = true; 863 864 p = find_lock_task_mm(victim); 865 if (!p) { 866 pr_info("%s: OOM victim %d (%s) is already exiting. Skip killing the task\n", 867 message, task_pid_nr(victim), victim->comm); 868 put_task_struct(victim); 869 return; 870 } else if (victim != p) { 871 get_task_struct(p); 872 put_task_struct(victim); 873 victim = p; 874 } 875 876 /* Get a reference to safely compare mm after task_unlock(victim) */ 877 mm = victim->mm; 878 mmgrab(mm); 879 880 /* Raise event before sending signal: task reaper must see this */ 881 count_vm_event(OOM_KILL); 882 memcg_memory_event_mm(mm, MEMCG_OOM_KILL); 883 884 /* 885 * We should send SIGKILL before granting access to memory reserves 886 * in order to prevent the OOM victim from depleting the memory 887 * reserves from the user space under its control. 888 */ 889 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID); 890 mark_oom_victim(victim); 891 pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n", 892 message, task_pid_nr(victim), victim->comm, K(mm->total_vm), 893 K(get_mm_counter(mm, MM_ANONPAGES)), 894 K(get_mm_counter(mm, MM_FILEPAGES)), 895 K(get_mm_counter(mm, MM_SHMEMPAGES)), 896 from_kuid(&init_user_ns, task_uid(victim)), 897 mm_pgtables_bytes(mm) >> 10, victim->signal->oom_score_adj); 898 task_unlock(victim); 899 900 /* 901 * Kill all user processes sharing victim->mm in other thread groups, if 902 * any. They don't get access to memory reserves, though, to avoid 903 * depletion of all memory. This prevents mm->mmap_lock livelock when an 904 * oom killed thread cannot exit because it requires the semaphore and 905 * its contended by another thread trying to allocate memory itself. 906 * That thread will now get access to memory reserves since it has a 907 * pending fatal signal. 908 */ 909 rcu_read_lock(); 910 for_each_process(p) { 911 if (!process_shares_mm(p, mm)) 912 continue; 913 if (same_thread_group(p, victim)) 914 continue; 915 if (is_global_init(p)) { 916 can_oom_reap = false; 917 set_bit(MMF_OOM_SKIP, &mm->flags); 918 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n", 919 task_pid_nr(victim), victim->comm, 920 task_pid_nr(p), p->comm); 921 continue; 922 } 923 /* 924 * No kthead_use_mm() user needs to read from the userspace so 925 * we are ok to reap it. 926 */ 927 if (unlikely(p->flags & PF_KTHREAD)) 928 continue; 929 do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID); 930 } 931 rcu_read_unlock(); 932 933 if (can_oom_reap) 934 wake_oom_reaper(victim); 935 936 mmdrop(mm); 937 put_task_struct(victim); 938 } 939 #undef K 940 941 /* 942 * Kill provided task unless it's secured by setting 943 * oom_score_adj to OOM_SCORE_ADJ_MIN. 944 */ 945 static int oom_kill_memcg_member(struct task_struct *task, void *message) 946 { 947 if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN && 948 !is_global_init(task)) { 949 get_task_struct(task); 950 __oom_kill_process(task, message); 951 } 952 return 0; 953 } 954 955 static void oom_kill_process(struct oom_control *oc, const char *message) 956 { 957 struct task_struct *victim = oc->chosen; 958 struct mem_cgroup *oom_group; 959 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL, 960 DEFAULT_RATELIMIT_BURST); 961 962 /* 963 * If the task is already exiting, don't alarm the sysadmin or kill 964 * its children or threads, just give it access to memory reserves 965 * so it can die quickly 966 */ 967 task_lock(victim); 968 if (task_will_free_mem(victim)) { 969 mark_oom_victim(victim); 970 wake_oom_reaper(victim); 971 task_unlock(victim); 972 put_task_struct(victim); 973 return; 974 } 975 task_unlock(victim); 976 977 if (__ratelimit(&oom_rs)) 978 dump_header(oc, victim); 979 980 /* 981 * Do we need to kill the entire memory cgroup? 982 * Or even one of the ancestor memory cgroups? 983 * Check this out before killing the victim task. 984 */ 985 oom_group = mem_cgroup_get_oom_group(victim, oc->memcg); 986 987 __oom_kill_process(victim, message); 988 989 /* 990 * If necessary, kill all tasks in the selected memory cgroup. 991 */ 992 if (oom_group) { 993 mem_cgroup_print_oom_group(oom_group); 994 mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member, 995 (void*)message); 996 mem_cgroup_put(oom_group); 997 } 998 } 999 1000 /* 1001 * Determines whether the kernel must panic because of the panic_on_oom sysctl. 1002 */ 1003 static void check_panic_on_oom(struct oom_control *oc) 1004 { 1005 if (likely(!sysctl_panic_on_oom)) 1006 return; 1007 if (sysctl_panic_on_oom != 2) { 1008 /* 1009 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel 1010 * does not panic for cpuset, mempolicy, or memcg allocation 1011 * failures. 1012 */ 1013 if (oc->constraint != CONSTRAINT_NONE) 1014 return; 1015 } 1016 /* Do not panic for oom kills triggered by sysrq */ 1017 if (is_sysrq_oom(oc)) 1018 return; 1019 dump_header(oc, NULL); 1020 panic("Out of memory: %s panic_on_oom is enabled\n", 1021 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide"); 1022 } 1023 1024 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 1025 1026 int register_oom_notifier(struct notifier_block *nb) 1027 { 1028 return blocking_notifier_chain_register(&oom_notify_list, nb); 1029 } 1030 EXPORT_SYMBOL_GPL(register_oom_notifier); 1031 1032 int unregister_oom_notifier(struct notifier_block *nb) 1033 { 1034 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 1035 } 1036 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 1037 1038 /** 1039 * out_of_memory - kill the "best" process when we run out of memory 1040 * @oc: pointer to struct oom_control 1041 * 1042 * If we run out of memory, we have the choice between either 1043 * killing a random task (bad), letting the system crash (worse) 1044 * OR try to be smart about which process to kill. Note that we 1045 * don't have to be perfect here, we just have to be good. 1046 */ 1047 bool out_of_memory(struct oom_control *oc) 1048 { 1049 unsigned long freed = 0; 1050 1051 if (oom_killer_disabled) 1052 return false; 1053 1054 if (!is_memcg_oom(oc)) { 1055 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 1056 if (freed > 0) 1057 /* Got some memory back in the last second. */ 1058 return true; 1059 } 1060 1061 /* 1062 * If current has a pending SIGKILL or is exiting, then automatically 1063 * select it. The goal is to allow it to allocate so that it may 1064 * quickly exit and free its memory. 1065 */ 1066 if (task_will_free_mem(current)) { 1067 mark_oom_victim(current); 1068 wake_oom_reaper(current); 1069 return true; 1070 } 1071 1072 /* 1073 * The OOM killer does not compensate for IO-less reclaim. 1074 * pagefault_out_of_memory lost its gfp context so we have to 1075 * make sure exclude 0 mask - all other users should have at least 1076 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to 1077 * invoke the OOM killer even if it is a GFP_NOFS allocation. 1078 */ 1079 if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc)) 1080 return true; 1081 1082 /* 1083 * Check if there were limitations on the allocation (only relevant for 1084 * NUMA and memcg) that may require different handling. 1085 */ 1086 oc->constraint = constrained_alloc(oc); 1087 if (oc->constraint != CONSTRAINT_MEMORY_POLICY) 1088 oc->nodemask = NULL; 1089 check_panic_on_oom(oc); 1090 1091 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task && 1092 current->mm && !oom_unkillable_task(current) && 1093 oom_cpuset_eligible(current, oc) && 1094 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) { 1095 get_task_struct(current); 1096 oc->chosen = current; 1097 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)"); 1098 return true; 1099 } 1100 1101 select_bad_process(oc); 1102 /* Found nothing?!?! */ 1103 if (!oc->chosen) { 1104 dump_header(oc, NULL); 1105 pr_warn("Out of memory and no killable processes...\n"); 1106 /* 1107 * If we got here due to an actual allocation at the 1108 * system level, we cannot survive this and will enter 1109 * an endless loop in the allocator. Bail out now. 1110 */ 1111 if (!is_sysrq_oom(oc) && !is_memcg_oom(oc)) 1112 panic("System is deadlocked on memory\n"); 1113 } 1114 if (oc->chosen && oc->chosen != (void *)-1UL) 1115 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" : 1116 "Memory cgroup out of memory"); 1117 return !!oc->chosen; 1118 } 1119 1120 /* 1121 * The pagefault handler calls here because it is out of memory, so kill a 1122 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom 1123 * killing is already in progress so do nothing. 1124 */ 1125 void pagefault_out_of_memory(void) 1126 { 1127 struct oom_control oc = { 1128 .zonelist = NULL, 1129 .nodemask = NULL, 1130 .memcg = NULL, 1131 .gfp_mask = 0, 1132 .order = 0, 1133 }; 1134 1135 if (mem_cgroup_oom_synchronize(true)) 1136 return; 1137 1138 if (!mutex_trylock(&oom_lock)) 1139 return; 1140 out_of_memory(&oc); 1141 mutex_unlock(&oom_lock); 1142 } 1143