1 /* 2 * linux/mm/oom_kill.c 3 * 4 * Copyright (C) 1998,2000 Rik van Riel 5 * Thanks go out to Claus Fischer for some serious inspiration and 6 * for goading me into coding this file... 7 * 8 * The routines in this file are used to kill a process when 9 * we're seriously out of memory. This gets called from __alloc_pages() 10 * in mm/page_alloc.c when we really run out of memory. 11 * 12 * Since we won't call these routines often (on a well-configured 13 * machine) this file will double as a 'coding guide' and a signpost 14 * for newbie kernel hackers. It features several pointers to major 15 * kernel subsystems and hints as to where to find out what things do. 16 */ 17 18 #include <linux/oom.h> 19 #include <linux/mm.h> 20 #include <linux/err.h> 21 #include <linux/sched.h> 22 #include <linux/swap.h> 23 #include <linux/timex.h> 24 #include <linux/jiffies.h> 25 #include <linux/cpuset.h> 26 #include <linux/module.h> 27 #include <linux/notifier.h> 28 #include <linux/memcontrol.h> 29 #include <linux/security.h> 30 31 int sysctl_panic_on_oom; 32 int sysctl_oom_kill_allocating_task; 33 int sysctl_oom_dump_tasks; 34 static DEFINE_SPINLOCK(zone_scan_lock); 35 /* #define DEBUG */ 36 37 /** 38 * badness - calculate a numeric value for how bad this task has been 39 * @p: task struct of which task we should calculate 40 * @uptime: current uptime in seconds 41 * 42 * The formula used is relatively simple and documented inline in the 43 * function. The main rationale is that we want to select a good task 44 * to kill when we run out of memory. 45 * 46 * Good in this context means that: 47 * 1) we lose the minimum amount of work done 48 * 2) we recover a large amount of memory 49 * 3) we don't kill anything innocent of eating tons of memory 50 * 4) we want to kill the minimum amount of processes (one) 51 * 5) we try to kill the process the user expects us to kill, this 52 * algorithm has been meticulously tuned to meet the principle 53 * of least surprise ... (be careful when you change it) 54 */ 55 56 unsigned long badness(struct task_struct *p, unsigned long uptime) 57 { 58 unsigned long points, cpu_time, run_time; 59 struct mm_struct *mm; 60 struct task_struct *child; 61 62 task_lock(p); 63 mm = p->mm; 64 if (!mm) { 65 task_unlock(p); 66 return 0; 67 } 68 69 /* 70 * The memory size of the process is the basis for the badness. 71 */ 72 points = mm->total_vm; 73 74 /* 75 * After this unlock we can no longer dereference local variable `mm' 76 */ 77 task_unlock(p); 78 79 /* 80 * swapoff can easily use up all memory, so kill those first. 81 */ 82 if (p->flags & PF_SWAPOFF) 83 return ULONG_MAX; 84 85 /* 86 * Processes which fork a lot of child processes are likely 87 * a good choice. We add half the vmsize of the children if they 88 * have an own mm. This prevents forking servers to flood the 89 * machine with an endless amount of children. In case a single 90 * child is eating the vast majority of memory, adding only half 91 * to the parents will make the child our kill candidate of choice. 92 */ 93 list_for_each_entry(child, &p->children, sibling) { 94 task_lock(child); 95 if (child->mm != mm && child->mm) 96 points += child->mm->total_vm/2 + 1; 97 task_unlock(child); 98 } 99 100 /* 101 * CPU time is in tens of seconds and run time is in thousands 102 * of seconds. There is no particular reason for this other than 103 * that it turned out to work very well in practice. 104 */ 105 cpu_time = (cputime_to_jiffies(p->utime) + cputime_to_jiffies(p->stime)) 106 >> (SHIFT_HZ + 3); 107 108 if (uptime >= p->start_time.tv_sec) 109 run_time = (uptime - p->start_time.tv_sec) >> 10; 110 else 111 run_time = 0; 112 113 if (cpu_time) 114 points /= int_sqrt(cpu_time); 115 if (run_time) 116 points /= int_sqrt(int_sqrt(run_time)); 117 118 /* 119 * Niced processes are most likely less important, so double 120 * their badness points. 121 */ 122 if (task_nice(p) > 0) 123 points *= 2; 124 125 /* 126 * Superuser processes are usually more important, so we make it 127 * less likely that we kill those. 128 */ 129 if (has_capability_noaudit(p, CAP_SYS_ADMIN) || 130 has_capability_noaudit(p, CAP_SYS_RESOURCE)) 131 points /= 4; 132 133 /* 134 * We don't want to kill a process with direct hardware access. 135 * Not only could that mess up the hardware, but usually users 136 * tend to only have this flag set on applications they think 137 * of as important. 138 */ 139 if (has_capability_noaudit(p, CAP_SYS_RAWIO)) 140 points /= 4; 141 142 /* 143 * If p's nodes don't overlap ours, it may still help to kill p 144 * because p may have allocated or otherwise mapped memory on 145 * this node before. However it will be less likely. 146 */ 147 if (!cpuset_mems_allowed_intersects(current, p)) 148 points /= 8; 149 150 /* 151 * Adjust the score by oomkilladj. 152 */ 153 if (p->oomkilladj) { 154 if (p->oomkilladj > 0) { 155 if (!points) 156 points = 1; 157 points <<= p->oomkilladj; 158 } else 159 points >>= -(p->oomkilladj); 160 } 161 162 #ifdef DEBUG 163 printk(KERN_DEBUG "OOMkill: task %d (%s) got %lu points\n", 164 p->pid, p->comm, points); 165 #endif 166 return points; 167 } 168 169 /* 170 * Determine the type of allocation constraint. 171 */ 172 static inline enum oom_constraint constrained_alloc(struct zonelist *zonelist, 173 gfp_t gfp_mask) 174 { 175 #ifdef CONFIG_NUMA 176 struct zone *zone; 177 struct zoneref *z; 178 enum zone_type high_zoneidx = gfp_zone(gfp_mask); 179 nodemask_t nodes = node_states[N_HIGH_MEMORY]; 180 181 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) 182 if (cpuset_zone_allowed_softwall(zone, gfp_mask)) 183 node_clear(zone_to_nid(zone), nodes); 184 else 185 return CONSTRAINT_CPUSET; 186 187 if (!nodes_empty(nodes)) 188 return CONSTRAINT_MEMORY_POLICY; 189 #endif 190 191 return CONSTRAINT_NONE; 192 } 193 194 /* 195 * Simple selection loop. We chose the process with the highest 196 * number of 'points'. We expect the caller will lock the tasklist. 197 * 198 * (not docbooked, we don't want this one cluttering up the manual) 199 */ 200 static struct task_struct *select_bad_process(unsigned long *ppoints, 201 struct mem_cgroup *mem) 202 { 203 struct task_struct *g, *p; 204 struct task_struct *chosen = NULL; 205 struct timespec uptime; 206 *ppoints = 0; 207 208 do_posix_clock_monotonic_gettime(&uptime); 209 do_each_thread(g, p) { 210 unsigned long points; 211 212 /* 213 * skip kernel threads and tasks which have already released 214 * their mm. 215 */ 216 if (!p->mm) 217 continue; 218 /* skip the init task */ 219 if (is_global_init(p)) 220 continue; 221 if (mem && !task_in_mem_cgroup(p, mem)) 222 continue; 223 224 /* 225 * This task already has access to memory reserves and is 226 * being killed. Don't allow any other task access to the 227 * memory reserve. 228 * 229 * Note: this may have a chance of deadlock if it gets 230 * blocked waiting for another task which itself is waiting 231 * for memory. Is there a better alternative? 232 */ 233 if (test_tsk_thread_flag(p, TIF_MEMDIE)) 234 return ERR_PTR(-1UL); 235 236 /* 237 * This is in the process of releasing memory so wait for it 238 * to finish before killing some other task by mistake. 239 * 240 * However, if p is the current task, we allow the 'kill' to 241 * go ahead if it is exiting: this will simply set TIF_MEMDIE, 242 * which will allow it to gain access to memory reserves in 243 * the process of exiting and releasing its resources. 244 * Otherwise we could get an easy OOM deadlock. 245 */ 246 if (p->flags & PF_EXITING) { 247 if (p != current) 248 return ERR_PTR(-1UL); 249 250 chosen = p; 251 *ppoints = ULONG_MAX; 252 } 253 254 if (p->oomkilladj == OOM_DISABLE) 255 continue; 256 257 points = badness(p, uptime.tv_sec); 258 if (points > *ppoints || !chosen) { 259 chosen = p; 260 *ppoints = points; 261 } 262 } while_each_thread(g, p); 263 264 return chosen; 265 } 266 267 /** 268 * dump_tasks - dump current memory state of all system tasks 269 * @mem: target memory controller 270 * 271 * Dumps the current memory state of all system tasks, excluding kernel threads. 272 * State information includes task's pid, uid, tgid, vm size, rss, cpu, oom_adj 273 * score, and name. 274 * 275 * If the actual is non-NULL, only tasks that are a member of the mem_cgroup are 276 * shown. 277 * 278 * Call with tasklist_lock read-locked. 279 */ 280 static void dump_tasks(const struct mem_cgroup *mem) 281 { 282 struct task_struct *g, *p; 283 284 printk(KERN_INFO "[ pid ] uid tgid total_vm rss cpu oom_adj " 285 "name\n"); 286 do_each_thread(g, p) { 287 struct mm_struct *mm; 288 289 if (mem && !task_in_mem_cgroup(p, mem)) 290 continue; 291 if (!thread_group_leader(p)) 292 continue; 293 294 task_lock(p); 295 mm = p->mm; 296 if (!mm) { 297 /* 298 * total_vm and rss sizes do not exist for tasks with no 299 * mm so there's no need to report them; they can't be 300 * oom killed anyway. 301 */ 302 task_unlock(p); 303 continue; 304 } 305 printk(KERN_INFO "[%5d] %5d %5d %8lu %8lu %3d %3d %s\n", 306 p->pid, __task_cred(p)->uid, p->tgid, mm->total_vm, 307 get_mm_rss(mm), (int)task_cpu(p), p->oomkilladj, 308 p->comm); 309 task_unlock(p); 310 } while_each_thread(g, p); 311 } 312 313 /* 314 * Send SIGKILL to the selected process irrespective of CAP_SYS_RAW_IO 315 * flag though it's unlikely that we select a process with CAP_SYS_RAW_IO 316 * set. 317 */ 318 static void __oom_kill_task(struct task_struct *p, int verbose) 319 { 320 if (is_global_init(p)) { 321 WARN_ON(1); 322 printk(KERN_WARNING "tried to kill init!\n"); 323 return; 324 } 325 326 if (!p->mm) { 327 WARN_ON(1); 328 printk(KERN_WARNING "tried to kill an mm-less task!\n"); 329 return; 330 } 331 332 if (verbose) 333 printk(KERN_ERR "Killed process %d (%s)\n", 334 task_pid_nr(p), p->comm); 335 336 /* 337 * We give our sacrificial lamb high priority and access to 338 * all the memory it needs. That way it should be able to 339 * exit() and clear out its resources quickly... 340 */ 341 p->rt.time_slice = HZ; 342 set_tsk_thread_flag(p, TIF_MEMDIE); 343 344 force_sig(SIGKILL, p); 345 } 346 347 static int oom_kill_task(struct task_struct *p) 348 { 349 struct mm_struct *mm; 350 struct task_struct *g, *q; 351 352 mm = p->mm; 353 354 /* WARNING: mm may not be dereferenced since we did not obtain its 355 * value from get_task_mm(p). This is OK since all we need to do is 356 * compare mm to q->mm below. 357 * 358 * Furthermore, even if mm contains a non-NULL value, p->mm may 359 * change to NULL at any time since we do not hold task_lock(p). 360 * However, this is of no concern to us. 361 */ 362 363 if (mm == NULL) 364 return 1; 365 366 /* 367 * Don't kill the process if any threads are set to OOM_DISABLE 368 */ 369 do_each_thread(g, q) { 370 if (q->mm == mm && q->oomkilladj == OOM_DISABLE) 371 return 1; 372 } while_each_thread(g, q); 373 374 __oom_kill_task(p, 1); 375 376 /* 377 * kill all processes that share the ->mm (i.e. all threads), 378 * but are in a different thread group. Don't let them have access 379 * to memory reserves though, otherwise we might deplete all memory. 380 */ 381 do_each_thread(g, q) { 382 if (q->mm == mm && !same_thread_group(q, p)) 383 force_sig(SIGKILL, q); 384 } while_each_thread(g, q); 385 386 return 0; 387 } 388 389 static int oom_kill_process(struct task_struct *p, gfp_t gfp_mask, int order, 390 unsigned long points, struct mem_cgroup *mem, 391 const char *message) 392 { 393 struct task_struct *c; 394 395 if (printk_ratelimit()) { 396 printk(KERN_WARNING "%s invoked oom-killer: " 397 "gfp_mask=0x%x, order=%d, oomkilladj=%d\n", 398 current->comm, gfp_mask, order, current->oomkilladj); 399 task_lock(current); 400 cpuset_print_task_mems_allowed(current); 401 task_unlock(current); 402 dump_stack(); 403 mem_cgroup_print_oom_info(mem, current); 404 show_mem(); 405 if (sysctl_oom_dump_tasks) 406 dump_tasks(mem); 407 } 408 409 /* 410 * If the task is already exiting, don't alarm the sysadmin or kill 411 * its children or threads, just set TIF_MEMDIE so it can die quickly 412 */ 413 if (p->flags & PF_EXITING) { 414 __oom_kill_task(p, 0); 415 return 0; 416 } 417 418 printk(KERN_ERR "%s: kill process %d (%s) score %li or a child\n", 419 message, task_pid_nr(p), p->comm, points); 420 421 /* Try to kill a child first */ 422 list_for_each_entry(c, &p->children, sibling) { 423 if (c->mm == p->mm) 424 continue; 425 if (!oom_kill_task(c)) 426 return 0; 427 } 428 return oom_kill_task(p); 429 } 430 431 #ifdef CONFIG_CGROUP_MEM_RES_CTLR 432 void mem_cgroup_out_of_memory(struct mem_cgroup *mem, gfp_t gfp_mask) 433 { 434 unsigned long points = 0; 435 struct task_struct *p; 436 437 read_lock(&tasklist_lock); 438 retry: 439 p = select_bad_process(&points, mem); 440 if (PTR_ERR(p) == -1UL) 441 goto out; 442 443 if (!p) 444 p = current; 445 446 if (oom_kill_process(p, gfp_mask, 0, points, mem, 447 "Memory cgroup out of memory")) 448 goto retry; 449 out: 450 read_unlock(&tasklist_lock); 451 } 452 #endif 453 454 static BLOCKING_NOTIFIER_HEAD(oom_notify_list); 455 456 int register_oom_notifier(struct notifier_block *nb) 457 { 458 return blocking_notifier_chain_register(&oom_notify_list, nb); 459 } 460 EXPORT_SYMBOL_GPL(register_oom_notifier); 461 462 int unregister_oom_notifier(struct notifier_block *nb) 463 { 464 return blocking_notifier_chain_unregister(&oom_notify_list, nb); 465 } 466 EXPORT_SYMBOL_GPL(unregister_oom_notifier); 467 468 /* 469 * Try to acquire the OOM killer lock for the zones in zonelist. Returns zero 470 * if a parallel OOM killing is already taking place that includes a zone in 471 * the zonelist. Otherwise, locks all zones in the zonelist and returns 1. 472 */ 473 int try_set_zone_oom(struct zonelist *zonelist, gfp_t gfp_mask) 474 { 475 struct zoneref *z; 476 struct zone *zone; 477 int ret = 1; 478 479 spin_lock(&zone_scan_lock); 480 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 481 if (zone_is_oom_locked(zone)) { 482 ret = 0; 483 goto out; 484 } 485 } 486 487 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 488 /* 489 * Lock each zone in the zonelist under zone_scan_lock so a 490 * parallel invocation of try_set_zone_oom() doesn't succeed 491 * when it shouldn't. 492 */ 493 zone_set_flag(zone, ZONE_OOM_LOCKED); 494 } 495 496 out: 497 spin_unlock(&zone_scan_lock); 498 return ret; 499 } 500 501 /* 502 * Clears the ZONE_OOM_LOCKED flag for all zones in the zonelist so that failed 503 * allocation attempts with zonelists containing them may now recall the OOM 504 * killer, if necessary. 505 */ 506 void clear_zonelist_oom(struct zonelist *zonelist, gfp_t gfp_mask) 507 { 508 struct zoneref *z; 509 struct zone *zone; 510 511 spin_lock(&zone_scan_lock); 512 for_each_zone_zonelist(zone, z, zonelist, gfp_zone(gfp_mask)) { 513 zone_clear_flag(zone, ZONE_OOM_LOCKED); 514 } 515 spin_unlock(&zone_scan_lock); 516 } 517 518 /* 519 * Must be called with tasklist_lock held for read. 520 */ 521 static void __out_of_memory(gfp_t gfp_mask, int order) 522 { 523 struct task_struct *p; 524 unsigned long points; 525 526 if (sysctl_oom_kill_allocating_task) 527 if (!oom_kill_process(current, gfp_mask, order, 0, NULL, 528 "Out of memory (oom_kill_allocating_task)")) 529 return; 530 retry: 531 /* 532 * Rambo mode: Shoot down a process and hope it solves whatever 533 * issues we may have. 534 */ 535 p = select_bad_process(&points, NULL); 536 537 if (PTR_ERR(p) == -1UL) 538 return; 539 540 /* Found nothing?!?! Either we hang forever, or we panic. */ 541 if (!p) { 542 read_unlock(&tasklist_lock); 543 panic("Out of memory and no killable processes...\n"); 544 } 545 546 if (oom_kill_process(p, gfp_mask, order, points, NULL, 547 "Out of memory")) 548 goto retry; 549 } 550 551 /* 552 * pagefault handler calls into here because it is out of memory but 553 * doesn't know exactly how or why. 554 */ 555 void pagefault_out_of_memory(void) 556 { 557 unsigned long freed = 0; 558 559 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 560 if (freed > 0) 561 /* Got some memory back in the last second. */ 562 return; 563 564 /* 565 * If this is from memcg, oom-killer is already invoked. 566 * and not worth to go system-wide-oom. 567 */ 568 if (mem_cgroup_oom_called(current)) 569 goto rest_and_return; 570 571 if (sysctl_panic_on_oom) 572 panic("out of memory from page fault. panic_on_oom is selected.\n"); 573 574 read_lock(&tasklist_lock); 575 __out_of_memory(0, 0); /* unknown gfp_mask and order */ 576 read_unlock(&tasklist_lock); 577 578 /* 579 * Give "p" a good chance of killing itself before we 580 * retry to allocate memory. 581 */ 582 rest_and_return: 583 if (!test_thread_flag(TIF_MEMDIE)) 584 schedule_timeout_uninterruptible(1); 585 } 586 587 /** 588 * out_of_memory - kill the "best" process when we run out of memory 589 * @zonelist: zonelist pointer 590 * @gfp_mask: memory allocation flags 591 * @order: amount of memory being requested as a power of 2 592 * 593 * If we run out of memory, we have the choice between either 594 * killing a random task (bad), letting the system crash (worse) 595 * OR try to be smart about which process to kill. Note that we 596 * don't have to be perfect here, we just have to be good. 597 */ 598 void out_of_memory(struct zonelist *zonelist, gfp_t gfp_mask, int order) 599 { 600 unsigned long freed = 0; 601 enum oom_constraint constraint; 602 603 blocking_notifier_call_chain(&oom_notify_list, 0, &freed); 604 if (freed > 0) 605 /* Got some memory back in the last second. */ 606 return; 607 608 if (sysctl_panic_on_oom == 2) 609 panic("out of memory. Compulsory panic_on_oom is selected.\n"); 610 611 /* 612 * Check if there were limitations on the allocation (only relevant for 613 * NUMA) that may require different handling. 614 */ 615 constraint = constrained_alloc(zonelist, gfp_mask); 616 read_lock(&tasklist_lock); 617 618 switch (constraint) { 619 case CONSTRAINT_MEMORY_POLICY: 620 oom_kill_process(current, gfp_mask, order, 0, NULL, 621 "No available memory (MPOL_BIND)"); 622 break; 623 624 case CONSTRAINT_NONE: 625 if (sysctl_panic_on_oom) 626 panic("out of memory. panic_on_oom is selected\n"); 627 /* Fall-through */ 628 case CONSTRAINT_CPUSET: 629 __out_of_memory(gfp_mask, order); 630 break; 631 } 632 633 read_unlock(&tasklist_lock); 634 635 /* 636 * Give "p" a good chance of killing itself before we 637 * retry to allocate memory unless "p" is current 638 */ 639 if (!test_thread_flag(TIF_MEMDIE)) 640 schedule_timeout_uninterruptible(1); 641 } 642