xref: /openbmc/linux/mm/oom_kill.c (revision fcbd8037f7df694aa7bfb7ce82c0c7f5e53e7b7b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/oom_kill.c
4  *
5  *  Copyright (C)  1998,2000  Rik van Riel
6  *	Thanks go out to Claus Fischer for some serious inspiration and
7  *	for goading me into coding this file...
8  *  Copyright (C)  2010  Google, Inc.
9  *	Rewritten by David Rientjes
10  *
11  *  The routines in this file are used to kill a process when
12  *  we're seriously out of memory. This gets called from __alloc_pages()
13  *  in mm/page_alloc.c when we really run out of memory.
14  *
15  *  Since we won't call these routines often (on a well-configured
16  *  machine) this file will double as a 'coding guide' and a signpost
17  *  for newbie kernel hackers. It features several pointers to major
18  *  kernel subsystems and hints as to where to find out what things do.
19  */
20 
21 #include <linux/oom.h>
22 #include <linux/mm.h>
23 #include <linux/err.h>
24 #include <linux/gfp.h>
25 #include <linux/sched.h>
26 #include <linux/sched/mm.h>
27 #include <linux/sched/coredump.h>
28 #include <linux/sched/task.h>
29 #include <linux/swap.h>
30 #include <linux/timex.h>
31 #include <linux/jiffies.h>
32 #include <linux/cpuset.h>
33 #include <linux/export.h>
34 #include <linux/notifier.h>
35 #include <linux/memcontrol.h>
36 #include <linux/mempolicy.h>
37 #include <linux/security.h>
38 #include <linux/ptrace.h>
39 #include <linux/freezer.h>
40 #include <linux/ftrace.h>
41 #include <linux/ratelimit.h>
42 #include <linux/kthread.h>
43 #include <linux/init.h>
44 #include <linux/mmu_notifier.h>
45 
46 #include <asm/tlb.h>
47 #include "internal.h"
48 #include "slab.h"
49 
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/oom.h>
52 
53 int sysctl_panic_on_oom;
54 int sysctl_oom_kill_allocating_task;
55 int sysctl_oom_dump_tasks = 1;
56 
57 /*
58  * Serializes oom killer invocations (out_of_memory()) from all contexts to
59  * prevent from over eager oom killing (e.g. when the oom killer is invoked
60  * from different domains).
61  *
62  * oom_killer_disable() relies on this lock to stabilize oom_killer_disabled
63  * and mark_oom_victim
64  */
65 DEFINE_MUTEX(oom_lock);
66 
67 static inline bool is_memcg_oom(struct oom_control *oc)
68 {
69 	return oc->memcg != NULL;
70 }
71 
72 #ifdef CONFIG_NUMA
73 /**
74  * oom_cpuset_eligible() - check task eligiblity for kill
75  * @start: task struct of which task to consider
76  * @oc: pointer to struct oom_control
77  *
78  * Task eligibility is determined by whether or not a candidate task, @tsk,
79  * shares the same mempolicy nodes as current if it is bound by such a policy
80  * and whether or not it has the same set of allowed cpuset nodes.
81  *
82  * This function is assuming oom-killer context and 'current' has triggered
83  * the oom-killer.
84  */
85 static bool oom_cpuset_eligible(struct task_struct *start,
86 				struct oom_control *oc)
87 {
88 	struct task_struct *tsk;
89 	bool ret = false;
90 	const nodemask_t *mask = oc->nodemask;
91 
92 	if (is_memcg_oom(oc))
93 		return true;
94 
95 	rcu_read_lock();
96 	for_each_thread(start, tsk) {
97 		if (mask) {
98 			/*
99 			 * If this is a mempolicy constrained oom, tsk's
100 			 * cpuset is irrelevant.  Only return true if its
101 			 * mempolicy intersects current, otherwise it may be
102 			 * needlessly killed.
103 			 */
104 			ret = mempolicy_nodemask_intersects(tsk, mask);
105 		} else {
106 			/*
107 			 * This is not a mempolicy constrained oom, so only
108 			 * check the mems of tsk's cpuset.
109 			 */
110 			ret = cpuset_mems_allowed_intersects(current, tsk);
111 		}
112 		if (ret)
113 			break;
114 	}
115 	rcu_read_unlock();
116 
117 	return ret;
118 }
119 #else
120 static bool oom_cpuset_eligible(struct task_struct *tsk, struct oom_control *oc)
121 {
122 	return true;
123 }
124 #endif /* CONFIG_NUMA */
125 
126 /*
127  * The process p may have detached its own ->mm while exiting or through
128  * use_mm(), but one or more of its subthreads may still have a valid
129  * pointer.  Return p, or any of its subthreads with a valid ->mm, with
130  * task_lock() held.
131  */
132 struct task_struct *find_lock_task_mm(struct task_struct *p)
133 {
134 	struct task_struct *t;
135 
136 	rcu_read_lock();
137 
138 	for_each_thread(p, t) {
139 		task_lock(t);
140 		if (likely(t->mm))
141 			goto found;
142 		task_unlock(t);
143 	}
144 	t = NULL;
145 found:
146 	rcu_read_unlock();
147 
148 	return t;
149 }
150 
151 /*
152  * order == -1 means the oom kill is required by sysrq, otherwise only
153  * for display purposes.
154  */
155 static inline bool is_sysrq_oom(struct oom_control *oc)
156 {
157 	return oc->order == -1;
158 }
159 
160 /* return true if the task is not adequate as candidate victim task. */
161 static bool oom_unkillable_task(struct task_struct *p)
162 {
163 	if (is_global_init(p))
164 		return true;
165 	if (p->flags & PF_KTHREAD)
166 		return true;
167 	return false;
168 }
169 
170 /*
171  * Print out unreclaimble slabs info when unreclaimable slabs amount is greater
172  * than all user memory (LRU pages)
173  */
174 static bool is_dump_unreclaim_slabs(void)
175 {
176 	unsigned long nr_lru;
177 
178 	nr_lru = global_node_page_state(NR_ACTIVE_ANON) +
179 		 global_node_page_state(NR_INACTIVE_ANON) +
180 		 global_node_page_state(NR_ACTIVE_FILE) +
181 		 global_node_page_state(NR_INACTIVE_FILE) +
182 		 global_node_page_state(NR_ISOLATED_ANON) +
183 		 global_node_page_state(NR_ISOLATED_FILE) +
184 		 global_node_page_state(NR_UNEVICTABLE);
185 
186 	return (global_node_page_state(NR_SLAB_UNRECLAIMABLE) > nr_lru);
187 }
188 
189 /**
190  * oom_badness - heuristic function to determine which candidate task to kill
191  * @p: task struct of which task we should calculate
192  * @totalpages: total present RAM allowed for page allocation
193  *
194  * The heuristic for determining which task to kill is made to be as simple and
195  * predictable as possible.  The goal is to return the highest value for the
196  * task consuming the most memory to avoid subsequent oom failures.
197  */
198 unsigned long oom_badness(struct task_struct *p, unsigned long totalpages)
199 {
200 	long points;
201 	long adj;
202 
203 	if (oom_unkillable_task(p))
204 		return 0;
205 
206 	p = find_lock_task_mm(p);
207 	if (!p)
208 		return 0;
209 
210 	/*
211 	 * Do not even consider tasks which are explicitly marked oom
212 	 * unkillable or have been already oom reaped or the are in
213 	 * the middle of vfork
214 	 */
215 	adj = (long)p->signal->oom_score_adj;
216 	if (adj == OOM_SCORE_ADJ_MIN ||
217 			test_bit(MMF_OOM_SKIP, &p->mm->flags) ||
218 			in_vfork(p)) {
219 		task_unlock(p);
220 		return 0;
221 	}
222 
223 	/*
224 	 * The baseline for the badness score is the proportion of RAM that each
225 	 * task's rss, pagetable and swap space use.
226 	 */
227 	points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
228 		mm_pgtables_bytes(p->mm) / PAGE_SIZE;
229 	task_unlock(p);
230 
231 	/* Normalize to oom_score_adj units */
232 	adj *= totalpages / 1000;
233 	points += adj;
234 
235 	/*
236 	 * Never return 0 for an eligible task regardless of the root bonus and
237 	 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
238 	 */
239 	return points > 0 ? points : 1;
240 }
241 
242 static const char * const oom_constraint_text[] = {
243 	[CONSTRAINT_NONE] = "CONSTRAINT_NONE",
244 	[CONSTRAINT_CPUSET] = "CONSTRAINT_CPUSET",
245 	[CONSTRAINT_MEMORY_POLICY] = "CONSTRAINT_MEMORY_POLICY",
246 	[CONSTRAINT_MEMCG] = "CONSTRAINT_MEMCG",
247 };
248 
249 /*
250  * Determine the type of allocation constraint.
251  */
252 static enum oom_constraint constrained_alloc(struct oom_control *oc)
253 {
254 	struct zone *zone;
255 	struct zoneref *z;
256 	enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
257 	bool cpuset_limited = false;
258 	int nid;
259 
260 	if (is_memcg_oom(oc)) {
261 		oc->totalpages = mem_cgroup_get_max(oc->memcg) ?: 1;
262 		return CONSTRAINT_MEMCG;
263 	}
264 
265 	/* Default to all available memory */
266 	oc->totalpages = totalram_pages() + total_swap_pages;
267 
268 	if (!IS_ENABLED(CONFIG_NUMA))
269 		return CONSTRAINT_NONE;
270 
271 	if (!oc->zonelist)
272 		return CONSTRAINT_NONE;
273 	/*
274 	 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
275 	 * to kill current.We have to random task kill in this case.
276 	 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
277 	 */
278 	if (oc->gfp_mask & __GFP_THISNODE)
279 		return CONSTRAINT_NONE;
280 
281 	/*
282 	 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
283 	 * the page allocator means a mempolicy is in effect.  Cpuset policy
284 	 * is enforced in get_page_from_freelist().
285 	 */
286 	if (oc->nodemask &&
287 	    !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
288 		oc->totalpages = total_swap_pages;
289 		for_each_node_mask(nid, *oc->nodemask)
290 			oc->totalpages += node_present_pages(nid);
291 		return CONSTRAINT_MEMORY_POLICY;
292 	}
293 
294 	/* Check this allocation failure is caused by cpuset's wall function */
295 	for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
296 			high_zoneidx, oc->nodemask)
297 		if (!cpuset_zone_allowed(zone, oc->gfp_mask))
298 			cpuset_limited = true;
299 
300 	if (cpuset_limited) {
301 		oc->totalpages = total_swap_pages;
302 		for_each_node_mask(nid, cpuset_current_mems_allowed)
303 			oc->totalpages += node_present_pages(nid);
304 		return CONSTRAINT_CPUSET;
305 	}
306 	return CONSTRAINT_NONE;
307 }
308 
309 static int oom_evaluate_task(struct task_struct *task, void *arg)
310 {
311 	struct oom_control *oc = arg;
312 	unsigned long points;
313 
314 	if (oom_unkillable_task(task))
315 		goto next;
316 
317 	/* p may not have freeable memory in nodemask */
318 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(task, oc))
319 		goto next;
320 
321 	/*
322 	 * This task already has access to memory reserves and is being killed.
323 	 * Don't allow any other task to have access to the reserves unless
324 	 * the task has MMF_OOM_SKIP because chances that it would release
325 	 * any memory is quite low.
326 	 */
327 	if (!is_sysrq_oom(oc) && tsk_is_oom_victim(task)) {
328 		if (test_bit(MMF_OOM_SKIP, &task->signal->oom_mm->flags))
329 			goto next;
330 		goto abort;
331 	}
332 
333 	/*
334 	 * If task is allocating a lot of memory and has been marked to be
335 	 * killed first if it triggers an oom, then select it.
336 	 */
337 	if (oom_task_origin(task)) {
338 		points = ULONG_MAX;
339 		goto select;
340 	}
341 
342 	points = oom_badness(task, oc->totalpages);
343 	if (!points || points < oc->chosen_points)
344 		goto next;
345 
346 select:
347 	if (oc->chosen)
348 		put_task_struct(oc->chosen);
349 	get_task_struct(task);
350 	oc->chosen = task;
351 	oc->chosen_points = points;
352 next:
353 	return 0;
354 abort:
355 	if (oc->chosen)
356 		put_task_struct(oc->chosen);
357 	oc->chosen = (void *)-1UL;
358 	return 1;
359 }
360 
361 /*
362  * Simple selection loop. We choose the process with the highest number of
363  * 'points'. In case scan was aborted, oc->chosen is set to -1.
364  */
365 static void select_bad_process(struct oom_control *oc)
366 {
367 	if (is_memcg_oom(oc))
368 		mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
369 	else {
370 		struct task_struct *p;
371 
372 		rcu_read_lock();
373 		for_each_process(p)
374 			if (oom_evaluate_task(p, oc))
375 				break;
376 		rcu_read_unlock();
377 	}
378 }
379 
380 static int dump_task(struct task_struct *p, void *arg)
381 {
382 	struct oom_control *oc = arg;
383 	struct task_struct *task;
384 
385 	if (oom_unkillable_task(p))
386 		return 0;
387 
388 	/* p may not have freeable memory in nodemask */
389 	if (!is_memcg_oom(oc) && !oom_cpuset_eligible(p, oc))
390 		return 0;
391 
392 	task = find_lock_task_mm(p);
393 	if (!task) {
394 		/*
395 		 * This is a kthread or all of p's threads have already
396 		 * detached their mm's.  There's no need to report
397 		 * them; they can't be oom killed anyway.
398 		 */
399 		return 0;
400 	}
401 
402 	pr_info("[%7d] %5d %5d %8lu %8lu %8ld %8lu         %5hd %s\n",
403 		task->pid, from_kuid(&init_user_ns, task_uid(task)),
404 		task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
405 		mm_pgtables_bytes(task->mm),
406 		get_mm_counter(task->mm, MM_SWAPENTS),
407 		task->signal->oom_score_adj, task->comm);
408 	task_unlock(task);
409 
410 	return 0;
411 }
412 
413 /**
414  * dump_tasks - dump current memory state of all system tasks
415  * @oc: pointer to struct oom_control
416  *
417  * Dumps the current memory state of all eligible tasks.  Tasks not in the same
418  * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
419  * are not shown.
420  * State information includes task's pid, uid, tgid, vm size, rss,
421  * pgtables_bytes, swapents, oom_score_adj value, and name.
422  */
423 static void dump_tasks(struct oom_control *oc)
424 {
425 	pr_info("Tasks state (memory values in pages):\n");
426 	pr_info("[  pid  ]   uid  tgid total_vm      rss pgtables_bytes swapents oom_score_adj name\n");
427 
428 	if (is_memcg_oom(oc))
429 		mem_cgroup_scan_tasks(oc->memcg, dump_task, oc);
430 	else {
431 		struct task_struct *p;
432 
433 		rcu_read_lock();
434 		for_each_process(p)
435 			dump_task(p, oc);
436 		rcu_read_unlock();
437 	}
438 }
439 
440 static void dump_oom_summary(struct oom_control *oc, struct task_struct *victim)
441 {
442 	/* one line summary of the oom killer context. */
443 	pr_info("oom-kill:constraint=%s,nodemask=%*pbl",
444 			oom_constraint_text[oc->constraint],
445 			nodemask_pr_args(oc->nodemask));
446 	cpuset_print_current_mems_allowed();
447 	mem_cgroup_print_oom_context(oc->memcg, victim);
448 	pr_cont(",task=%s,pid=%d,uid=%d\n", victim->comm, victim->pid,
449 		from_kuid(&init_user_ns, task_uid(victim)));
450 }
451 
452 static void dump_header(struct oom_control *oc, struct task_struct *p)
453 {
454 	pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
455 		current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
456 			current->signal->oom_score_adj);
457 	if (!IS_ENABLED(CONFIG_COMPACTION) && oc->order)
458 		pr_warn("COMPACTION is disabled!!!\n");
459 
460 	dump_stack();
461 	if (is_memcg_oom(oc))
462 		mem_cgroup_print_oom_meminfo(oc->memcg);
463 	else {
464 		show_mem(SHOW_MEM_FILTER_NODES, oc->nodemask);
465 		if (is_dump_unreclaim_slabs())
466 			dump_unreclaimable_slab();
467 	}
468 	if (sysctl_oom_dump_tasks)
469 		dump_tasks(oc);
470 	if (p)
471 		dump_oom_summary(oc, p);
472 }
473 
474 /*
475  * Number of OOM victims in flight
476  */
477 static atomic_t oom_victims = ATOMIC_INIT(0);
478 static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
479 
480 static bool oom_killer_disabled __read_mostly;
481 
482 #define K(x) ((x) << (PAGE_SHIFT-10))
483 
484 /*
485  * task->mm can be NULL if the task is the exited group leader.  So to
486  * determine whether the task is using a particular mm, we examine all the
487  * task's threads: if one of those is using this mm then this task was also
488  * using it.
489  */
490 bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
491 {
492 	struct task_struct *t;
493 
494 	for_each_thread(p, t) {
495 		struct mm_struct *t_mm = READ_ONCE(t->mm);
496 		if (t_mm)
497 			return t_mm == mm;
498 	}
499 	return false;
500 }
501 
502 #ifdef CONFIG_MMU
503 /*
504  * OOM Reaper kernel thread which tries to reap the memory used by the OOM
505  * victim (if that is possible) to help the OOM killer to move on.
506  */
507 static struct task_struct *oom_reaper_th;
508 static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
509 static struct task_struct *oom_reaper_list;
510 static DEFINE_SPINLOCK(oom_reaper_lock);
511 
512 bool __oom_reap_task_mm(struct mm_struct *mm)
513 {
514 	struct vm_area_struct *vma;
515 	bool ret = true;
516 
517 	/*
518 	 * Tell all users of get_user/copy_from_user etc... that the content
519 	 * is no longer stable. No barriers really needed because unmapping
520 	 * should imply barriers already and the reader would hit a page fault
521 	 * if it stumbled over a reaped memory.
522 	 */
523 	set_bit(MMF_UNSTABLE, &mm->flags);
524 
525 	for (vma = mm->mmap ; vma; vma = vma->vm_next) {
526 		if (!can_madv_lru_vma(vma))
527 			continue;
528 
529 		/*
530 		 * Only anonymous pages have a good chance to be dropped
531 		 * without additional steps which we cannot afford as we
532 		 * are OOM already.
533 		 *
534 		 * We do not even care about fs backed pages because all
535 		 * which are reclaimable have already been reclaimed and
536 		 * we do not want to block exit_mmap by keeping mm ref
537 		 * count elevated without a good reason.
538 		 */
539 		if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED)) {
540 			struct mmu_notifier_range range;
541 			struct mmu_gather tlb;
542 
543 			mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0,
544 						vma, mm, vma->vm_start,
545 						vma->vm_end);
546 			tlb_gather_mmu(&tlb, mm, range.start, range.end);
547 			if (mmu_notifier_invalidate_range_start_nonblock(&range)) {
548 				tlb_finish_mmu(&tlb, range.start, range.end);
549 				ret = false;
550 				continue;
551 			}
552 			unmap_page_range(&tlb, vma, range.start, range.end, NULL);
553 			mmu_notifier_invalidate_range_end(&range);
554 			tlb_finish_mmu(&tlb, range.start, range.end);
555 		}
556 	}
557 
558 	return ret;
559 }
560 
561 /*
562  * Reaps the address space of the give task.
563  *
564  * Returns true on success and false if none or part of the address space
565  * has been reclaimed and the caller should retry later.
566  */
567 static bool oom_reap_task_mm(struct task_struct *tsk, struct mm_struct *mm)
568 {
569 	bool ret = true;
570 
571 	if (!down_read_trylock(&mm->mmap_sem)) {
572 		trace_skip_task_reaping(tsk->pid);
573 		return false;
574 	}
575 
576 	/*
577 	 * MMF_OOM_SKIP is set by exit_mmap when the OOM reaper can't
578 	 * work on the mm anymore. The check for MMF_OOM_SKIP must run
579 	 * under mmap_sem for reading because it serializes against the
580 	 * down_write();up_write() cycle in exit_mmap().
581 	 */
582 	if (test_bit(MMF_OOM_SKIP, &mm->flags)) {
583 		trace_skip_task_reaping(tsk->pid);
584 		goto out_unlock;
585 	}
586 
587 	trace_start_task_reaping(tsk->pid);
588 
589 	/* failed to reap part of the address space. Try again later */
590 	ret = __oom_reap_task_mm(mm);
591 	if (!ret)
592 		goto out_finish;
593 
594 	pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
595 			task_pid_nr(tsk), tsk->comm,
596 			K(get_mm_counter(mm, MM_ANONPAGES)),
597 			K(get_mm_counter(mm, MM_FILEPAGES)),
598 			K(get_mm_counter(mm, MM_SHMEMPAGES)));
599 out_finish:
600 	trace_finish_task_reaping(tsk->pid);
601 out_unlock:
602 	up_read(&mm->mmap_sem);
603 
604 	return ret;
605 }
606 
607 #define MAX_OOM_REAP_RETRIES 10
608 static void oom_reap_task(struct task_struct *tsk)
609 {
610 	int attempts = 0;
611 	struct mm_struct *mm = tsk->signal->oom_mm;
612 
613 	/* Retry the down_read_trylock(mmap_sem) a few times */
614 	while (attempts++ < MAX_OOM_REAP_RETRIES && !oom_reap_task_mm(tsk, mm))
615 		schedule_timeout_idle(HZ/10);
616 
617 	if (attempts <= MAX_OOM_REAP_RETRIES ||
618 	    test_bit(MMF_OOM_SKIP, &mm->flags))
619 		goto done;
620 
621 	pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
622 		task_pid_nr(tsk), tsk->comm);
623 	debug_show_all_locks();
624 
625 done:
626 	tsk->oom_reaper_list = NULL;
627 
628 	/*
629 	 * Hide this mm from OOM killer because it has been either reaped or
630 	 * somebody can't call up_write(mmap_sem).
631 	 */
632 	set_bit(MMF_OOM_SKIP, &mm->flags);
633 
634 	/* Drop a reference taken by wake_oom_reaper */
635 	put_task_struct(tsk);
636 }
637 
638 static int oom_reaper(void *unused)
639 {
640 	while (true) {
641 		struct task_struct *tsk = NULL;
642 
643 		wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
644 		spin_lock(&oom_reaper_lock);
645 		if (oom_reaper_list != NULL) {
646 			tsk = oom_reaper_list;
647 			oom_reaper_list = tsk->oom_reaper_list;
648 		}
649 		spin_unlock(&oom_reaper_lock);
650 
651 		if (tsk)
652 			oom_reap_task(tsk);
653 	}
654 
655 	return 0;
656 }
657 
658 static void wake_oom_reaper(struct task_struct *tsk)
659 {
660 	/* mm is already queued? */
661 	if (test_and_set_bit(MMF_OOM_REAP_QUEUED, &tsk->signal->oom_mm->flags))
662 		return;
663 
664 	get_task_struct(tsk);
665 
666 	spin_lock(&oom_reaper_lock);
667 	tsk->oom_reaper_list = oom_reaper_list;
668 	oom_reaper_list = tsk;
669 	spin_unlock(&oom_reaper_lock);
670 	trace_wake_reaper(tsk->pid);
671 	wake_up(&oom_reaper_wait);
672 }
673 
674 static int __init oom_init(void)
675 {
676 	oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
677 	return 0;
678 }
679 subsys_initcall(oom_init)
680 #else
681 static inline void wake_oom_reaper(struct task_struct *tsk)
682 {
683 }
684 #endif /* CONFIG_MMU */
685 
686 /**
687  * mark_oom_victim - mark the given task as OOM victim
688  * @tsk: task to mark
689  *
690  * Has to be called with oom_lock held and never after
691  * oom has been disabled already.
692  *
693  * tsk->mm has to be non NULL and caller has to guarantee it is stable (either
694  * under task_lock or operate on the current).
695  */
696 static void mark_oom_victim(struct task_struct *tsk)
697 {
698 	struct mm_struct *mm = tsk->mm;
699 
700 	WARN_ON(oom_killer_disabled);
701 	/* OOM killer might race with memcg OOM */
702 	if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
703 		return;
704 
705 	/* oom_mm is bound to the signal struct life time. */
706 	if (!cmpxchg(&tsk->signal->oom_mm, NULL, mm)) {
707 		mmgrab(tsk->signal->oom_mm);
708 		set_bit(MMF_OOM_VICTIM, &mm->flags);
709 	}
710 
711 	/*
712 	 * Make sure that the task is woken up from uninterruptible sleep
713 	 * if it is frozen because OOM killer wouldn't be able to free
714 	 * any memory and livelock. freezing_slow_path will tell the freezer
715 	 * that TIF_MEMDIE tasks should be ignored.
716 	 */
717 	__thaw_task(tsk);
718 	atomic_inc(&oom_victims);
719 	trace_mark_victim(tsk->pid);
720 }
721 
722 /**
723  * exit_oom_victim - note the exit of an OOM victim
724  */
725 void exit_oom_victim(void)
726 {
727 	clear_thread_flag(TIF_MEMDIE);
728 
729 	if (!atomic_dec_return(&oom_victims))
730 		wake_up_all(&oom_victims_wait);
731 }
732 
733 /**
734  * oom_killer_enable - enable OOM killer
735  */
736 void oom_killer_enable(void)
737 {
738 	oom_killer_disabled = false;
739 	pr_info("OOM killer enabled.\n");
740 }
741 
742 /**
743  * oom_killer_disable - disable OOM killer
744  * @timeout: maximum timeout to wait for oom victims in jiffies
745  *
746  * Forces all page allocations to fail rather than trigger OOM killer.
747  * Will block and wait until all OOM victims are killed or the given
748  * timeout expires.
749  *
750  * The function cannot be called when there are runnable user tasks because
751  * the userspace would see unexpected allocation failures as a result. Any
752  * new usage of this function should be consulted with MM people.
753  *
754  * Returns true if successful and false if the OOM killer cannot be
755  * disabled.
756  */
757 bool oom_killer_disable(signed long timeout)
758 {
759 	signed long ret;
760 
761 	/*
762 	 * Make sure to not race with an ongoing OOM killer. Check that the
763 	 * current is not killed (possibly due to sharing the victim's memory).
764 	 */
765 	if (mutex_lock_killable(&oom_lock))
766 		return false;
767 	oom_killer_disabled = true;
768 	mutex_unlock(&oom_lock);
769 
770 	ret = wait_event_interruptible_timeout(oom_victims_wait,
771 			!atomic_read(&oom_victims), timeout);
772 	if (ret <= 0) {
773 		oom_killer_enable();
774 		return false;
775 	}
776 	pr_info("OOM killer disabled.\n");
777 
778 	return true;
779 }
780 
781 static inline bool __task_will_free_mem(struct task_struct *task)
782 {
783 	struct signal_struct *sig = task->signal;
784 
785 	/*
786 	 * A coredumping process may sleep for an extended period in exit_mm(),
787 	 * so the oom killer cannot assume that the process will promptly exit
788 	 * and release memory.
789 	 */
790 	if (sig->flags & SIGNAL_GROUP_COREDUMP)
791 		return false;
792 
793 	if (sig->flags & SIGNAL_GROUP_EXIT)
794 		return true;
795 
796 	if (thread_group_empty(task) && (task->flags & PF_EXITING))
797 		return true;
798 
799 	return false;
800 }
801 
802 /*
803  * Checks whether the given task is dying or exiting and likely to
804  * release its address space. This means that all threads and processes
805  * sharing the same mm have to be killed or exiting.
806  * Caller has to make sure that task->mm is stable (hold task_lock or
807  * it operates on the current).
808  */
809 static bool task_will_free_mem(struct task_struct *task)
810 {
811 	struct mm_struct *mm = task->mm;
812 	struct task_struct *p;
813 	bool ret = true;
814 
815 	/*
816 	 * Skip tasks without mm because it might have passed its exit_mm and
817 	 * exit_oom_victim. oom_reaper could have rescued that but do not rely
818 	 * on that for now. We can consider find_lock_task_mm in future.
819 	 */
820 	if (!mm)
821 		return false;
822 
823 	if (!__task_will_free_mem(task))
824 		return false;
825 
826 	/*
827 	 * This task has already been drained by the oom reaper so there are
828 	 * only small chances it will free some more
829 	 */
830 	if (test_bit(MMF_OOM_SKIP, &mm->flags))
831 		return false;
832 
833 	if (atomic_read(&mm->mm_users) <= 1)
834 		return true;
835 
836 	/*
837 	 * Make sure that all tasks which share the mm with the given tasks
838 	 * are dying as well to make sure that a) nobody pins its mm and
839 	 * b) the task is also reapable by the oom reaper.
840 	 */
841 	rcu_read_lock();
842 	for_each_process(p) {
843 		if (!process_shares_mm(p, mm))
844 			continue;
845 		if (same_thread_group(task, p))
846 			continue;
847 		ret = __task_will_free_mem(p);
848 		if (!ret)
849 			break;
850 	}
851 	rcu_read_unlock();
852 
853 	return ret;
854 }
855 
856 static void __oom_kill_process(struct task_struct *victim, const char *message)
857 {
858 	struct task_struct *p;
859 	struct mm_struct *mm;
860 	bool can_oom_reap = true;
861 
862 	p = find_lock_task_mm(victim);
863 	if (!p) {
864 		put_task_struct(victim);
865 		return;
866 	} else if (victim != p) {
867 		get_task_struct(p);
868 		put_task_struct(victim);
869 		victim = p;
870 	}
871 
872 	/* Get a reference to safely compare mm after task_unlock(victim) */
873 	mm = victim->mm;
874 	mmgrab(mm);
875 
876 	/* Raise event before sending signal: task reaper must see this */
877 	count_vm_event(OOM_KILL);
878 	memcg_memory_event_mm(mm, MEMCG_OOM_KILL);
879 
880 	/*
881 	 * We should send SIGKILL before granting access to memory reserves
882 	 * in order to prevent the OOM victim from depleting the memory
883 	 * reserves from the user space under its control.
884 	 */
885 	do_send_sig_info(SIGKILL, SEND_SIG_PRIV, victim, PIDTYPE_TGID);
886 	mark_oom_victim(victim);
887 	pr_err("%s: Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB, UID:%u pgtables:%lukB oom_score_adj:%hd\n",
888 		message, task_pid_nr(victim), victim->comm, K(mm->total_vm),
889 		K(get_mm_counter(mm, MM_ANONPAGES)),
890 		K(get_mm_counter(mm, MM_FILEPAGES)),
891 		K(get_mm_counter(mm, MM_SHMEMPAGES)),
892 		from_kuid(&init_user_ns, task_uid(victim)),
893 		mm_pgtables_bytes(mm), victim->signal->oom_score_adj);
894 	task_unlock(victim);
895 
896 	/*
897 	 * Kill all user processes sharing victim->mm in other thread groups, if
898 	 * any.  They don't get access to memory reserves, though, to avoid
899 	 * depletion of all memory.  This prevents mm->mmap_sem livelock when an
900 	 * oom killed thread cannot exit because it requires the semaphore and
901 	 * its contended by another thread trying to allocate memory itself.
902 	 * That thread will now get access to memory reserves since it has a
903 	 * pending fatal signal.
904 	 */
905 	rcu_read_lock();
906 	for_each_process(p) {
907 		if (!process_shares_mm(p, mm))
908 			continue;
909 		if (same_thread_group(p, victim))
910 			continue;
911 		if (is_global_init(p)) {
912 			can_oom_reap = false;
913 			set_bit(MMF_OOM_SKIP, &mm->flags);
914 			pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
915 					task_pid_nr(victim), victim->comm,
916 					task_pid_nr(p), p->comm);
917 			continue;
918 		}
919 		/*
920 		 * No use_mm() user needs to read from the userspace so we are
921 		 * ok to reap it.
922 		 */
923 		if (unlikely(p->flags & PF_KTHREAD))
924 			continue;
925 		do_send_sig_info(SIGKILL, SEND_SIG_PRIV, p, PIDTYPE_TGID);
926 	}
927 	rcu_read_unlock();
928 
929 	if (can_oom_reap)
930 		wake_oom_reaper(victim);
931 
932 	mmdrop(mm);
933 	put_task_struct(victim);
934 }
935 #undef K
936 
937 /*
938  * Kill provided task unless it's secured by setting
939  * oom_score_adj to OOM_SCORE_ADJ_MIN.
940  */
941 static int oom_kill_memcg_member(struct task_struct *task, void *message)
942 {
943 	if (task->signal->oom_score_adj != OOM_SCORE_ADJ_MIN &&
944 	    !is_global_init(task)) {
945 		get_task_struct(task);
946 		__oom_kill_process(task, message);
947 	}
948 	return 0;
949 }
950 
951 static void oom_kill_process(struct oom_control *oc, const char *message)
952 {
953 	struct task_struct *victim = oc->chosen;
954 	struct mem_cgroup *oom_group;
955 	static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
956 					      DEFAULT_RATELIMIT_BURST);
957 
958 	/*
959 	 * If the task is already exiting, don't alarm the sysadmin or kill
960 	 * its children or threads, just give it access to memory reserves
961 	 * so it can die quickly
962 	 */
963 	task_lock(victim);
964 	if (task_will_free_mem(victim)) {
965 		mark_oom_victim(victim);
966 		wake_oom_reaper(victim);
967 		task_unlock(victim);
968 		put_task_struct(victim);
969 		return;
970 	}
971 	task_unlock(victim);
972 
973 	if (__ratelimit(&oom_rs))
974 		dump_header(oc, victim);
975 
976 	/*
977 	 * Do we need to kill the entire memory cgroup?
978 	 * Or even one of the ancestor memory cgroups?
979 	 * Check this out before killing the victim task.
980 	 */
981 	oom_group = mem_cgroup_get_oom_group(victim, oc->memcg);
982 
983 	__oom_kill_process(victim, message);
984 
985 	/*
986 	 * If necessary, kill all tasks in the selected memory cgroup.
987 	 */
988 	if (oom_group) {
989 		mem_cgroup_print_oom_group(oom_group);
990 		mem_cgroup_scan_tasks(oom_group, oom_kill_memcg_member,
991 				      (void*)message);
992 		mem_cgroup_put(oom_group);
993 	}
994 }
995 
996 /*
997  * Determines whether the kernel must panic because of the panic_on_oom sysctl.
998  */
999 static void check_panic_on_oom(struct oom_control *oc)
1000 {
1001 	if (likely(!sysctl_panic_on_oom))
1002 		return;
1003 	if (sysctl_panic_on_oom != 2) {
1004 		/*
1005 		 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
1006 		 * does not panic for cpuset, mempolicy, or memcg allocation
1007 		 * failures.
1008 		 */
1009 		if (oc->constraint != CONSTRAINT_NONE)
1010 			return;
1011 	}
1012 	/* Do not panic for oom kills triggered by sysrq */
1013 	if (is_sysrq_oom(oc))
1014 		return;
1015 	dump_header(oc, NULL);
1016 	panic("Out of memory: %s panic_on_oom is enabled\n",
1017 		sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
1018 }
1019 
1020 static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
1021 
1022 int register_oom_notifier(struct notifier_block *nb)
1023 {
1024 	return blocking_notifier_chain_register(&oom_notify_list, nb);
1025 }
1026 EXPORT_SYMBOL_GPL(register_oom_notifier);
1027 
1028 int unregister_oom_notifier(struct notifier_block *nb)
1029 {
1030 	return blocking_notifier_chain_unregister(&oom_notify_list, nb);
1031 }
1032 EXPORT_SYMBOL_GPL(unregister_oom_notifier);
1033 
1034 /**
1035  * out_of_memory - kill the "best" process when we run out of memory
1036  * @oc: pointer to struct oom_control
1037  *
1038  * If we run out of memory, we have the choice between either
1039  * killing a random task (bad), letting the system crash (worse)
1040  * OR try to be smart about which process to kill. Note that we
1041  * don't have to be perfect here, we just have to be good.
1042  */
1043 bool out_of_memory(struct oom_control *oc)
1044 {
1045 	unsigned long freed = 0;
1046 
1047 	if (oom_killer_disabled)
1048 		return false;
1049 
1050 	if (!is_memcg_oom(oc)) {
1051 		blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1052 		if (freed > 0)
1053 			/* Got some memory back in the last second. */
1054 			return true;
1055 	}
1056 
1057 	/*
1058 	 * If current has a pending SIGKILL or is exiting, then automatically
1059 	 * select it.  The goal is to allow it to allocate so that it may
1060 	 * quickly exit and free its memory.
1061 	 */
1062 	if (task_will_free_mem(current)) {
1063 		mark_oom_victim(current);
1064 		wake_oom_reaper(current);
1065 		return true;
1066 	}
1067 
1068 	/*
1069 	 * The OOM killer does not compensate for IO-less reclaim.
1070 	 * pagefault_out_of_memory lost its gfp context so we have to
1071 	 * make sure exclude 0 mask - all other users should have at least
1072 	 * ___GFP_DIRECT_RECLAIM to get here. But mem_cgroup_oom() has to
1073 	 * invoke the OOM killer even if it is a GFP_NOFS allocation.
1074 	 */
1075 	if (oc->gfp_mask && !(oc->gfp_mask & __GFP_FS) && !is_memcg_oom(oc))
1076 		return true;
1077 
1078 	/*
1079 	 * Check if there were limitations on the allocation (only relevant for
1080 	 * NUMA and memcg) that may require different handling.
1081 	 */
1082 	oc->constraint = constrained_alloc(oc);
1083 	if (oc->constraint != CONSTRAINT_MEMORY_POLICY)
1084 		oc->nodemask = NULL;
1085 	check_panic_on_oom(oc);
1086 
1087 	if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1088 	    current->mm && !oom_unkillable_task(current) &&
1089 	    oom_cpuset_eligible(current, oc) &&
1090 	    current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
1091 		get_task_struct(current);
1092 		oc->chosen = current;
1093 		oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
1094 		return true;
1095 	}
1096 
1097 	select_bad_process(oc);
1098 	/* Found nothing?!?! */
1099 	if (!oc->chosen) {
1100 		dump_header(oc, NULL);
1101 		pr_warn("Out of memory and no killable processes...\n");
1102 		/*
1103 		 * If we got here due to an actual allocation at the
1104 		 * system level, we cannot survive this and will enter
1105 		 * an endless loop in the allocator. Bail out now.
1106 		 */
1107 		if (!is_sysrq_oom(oc) && !is_memcg_oom(oc))
1108 			panic("System is deadlocked on memory\n");
1109 	}
1110 	if (oc->chosen && oc->chosen != (void *)-1UL)
1111 		oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1112 				 "Memory cgroup out of memory");
1113 	return !!oc->chosen;
1114 }
1115 
1116 /*
1117  * The pagefault handler calls here because it is out of memory, so kill a
1118  * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1119  * killing is already in progress so do nothing.
1120  */
1121 void pagefault_out_of_memory(void)
1122 {
1123 	struct oom_control oc = {
1124 		.zonelist = NULL,
1125 		.nodemask = NULL,
1126 		.memcg = NULL,
1127 		.gfp_mask = 0,
1128 		.order = 0,
1129 	};
1130 
1131 	if (mem_cgroup_oom_synchronize(true))
1132 		return;
1133 
1134 	if (!mutex_trylock(&oom_lock))
1135 		return;
1136 	out_of_memory(&oc);
1137 	mutex_unlock(&oom_lock);
1138 }
1139